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Abstract

Many everyday human skills can be framed in terms of perfogr@ome task sub-
ject to constraints imposed by the task or the environments@aints are usually
unobservable and frequently change between contexts.

In this thesis, we explore the problem of learning contrdigoes from data con-
taining variable, dynamic and non-linear constraints oniomo We show that an ef-
fective approach for doing this is to learn the unconstmipelicy in a way that is
consistent with the constraints.

We propose several novel algorithms for extracting the$ieips from movement
data, where observations are recorded under differentreams. Furthermore, we
show that, by doing so, we are able to learn representatiomoeement that gener-
alise over constraints and can predict behaviour under oastints.

In our experiments, we test the algorithms on systems ofngsize and complex-
ity, and show that the novel approaches give significantavgments in performance
compared with standard policy learning approaches thataiwe to the effect of con-
straints. Finally, we illustrate the utility of the apprt@s for learning from human
motion capture data and transferring behaviour to sevebaltic platforms.
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List of Notation

Below is a list of symbols and abbreviations used throughlomst thesis (unless an
exception is noted in the text). Entries of the foan) denote an argument should be
supplied to the functiom, for example where there is a direct dependency on some
guantity. In addition to the terms defined here, note that seethie convention of bold
upper-case lettergy, to denote matrices, bold lower-case lettexg0 denote vectors
and normal weighted fong, to denote scalar terms.

Symbols

X State space coordinate.

u Observed action.

() Policy mapping from states to actions.

t Time.

T Duration in time (e.g., of a trajectory).

w(-) Rheonomic or scleronomic constraint function.
A(Y) Pfaffian constraint matrix.

N(-) Nullspace projection matrix.

AT Transpose oA.

AT Moore-Penrose pseudoinversefafi.e., AT = (ATA)~1A.
I Identity matrix.

0 Vector of zeros.

a Time derivative ofa.
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a,9.q Position, velocity and acceleration in joint space.

r,r,r Position, velocity and acceleration in task space.
T Torque in joint space.

J(") Jacobian matrix.

M(-) Mass/inertia matrix.

Fe(+) Coriolis and centrifugal forces.

Fg(-) Gravitational force.

o(-) Scalar potential.

Oy f Gradient off with respect to.

D(-) Vector potential.

Oy x f Curl of f with respect t.

Ep Potential, estimated from Euler integration.

f() Model estimate of (-), e.g.,¢(x) is the estimate of at pointx taken

from the global model of(x).
Ai ith eigenvalue of a matrix.

A\ Diagonal matrix containing eigenvalues as the non-zerdesnti.e.
A =diag(A1,---,An).

Vi ith eigenvector of a matrix.

\Y Matrix containing eigenvectors as the columns,¥e= (vq,---,Vp).
H Hessian matrix.

A Regularisation parameter.

a Normalised vectoa.

n Unit normal vector.

P Projection matrix.
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N(, o)
U [Xmin, Xmax
A®B

vedA)

Abbreviations
AL
DMP
DPL
HMM
IRL
MDP
NN
PbD
CLIK
LWPR
nCPE
nMSE

nUPE

Rotation matrix. Argument denotes rotation angle.
Augmented state vectar= (x,1)".

Objective or error function. Arguments denote the quarttitipe opti-
mised.

Gaussian distribution with meanand standard deviatiom
Uniform random distribution ok with Xmin < X < Xmax
The Kronecker product of the matricAsandB.

Thevecoperation applied to the matri. For example, foA € R2*2,
vedA) = (A11,A21,A12, A22)T whereAj; denotes the element éf on
theith row andjth column.

Apprenticeship Learning.
Dynamic Movement Primitives.
Direct Policy Learning.
Hidden Markov Models.
Inverse Reinforcement Learning.
Markov Decision Process.
Nearest Neighbour.
Programming by Demonstration.
Close Loop Inverse Kinematics.
Locally Weighted Projection Regression.
Normalised Constrained Policy Error.
Normalised Mean Squared Error.
Normalised Unconstrained Policy Error.
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RBF Radial Basis Function.
RMRC Resolved Motion Rate Control.

WBM Whole Body Motion Control.
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Chapter 1

Introduction

A wide variety of everyday human skills can be framed in teahperforming some
task subject to a set of constraints. Constraints may be ietpegher by the envi-
ronment (Ohta et al., 2004), the task (Calinon and Billard,7Z2@0, more commonly,
both. For example, when opening a door, the door acts as amemental constraint
that restricts the movement of ones hand along the openmgfahe door. When
stirring soup in a saucepan, the sides of the pan preventpih@nsmoving beyond
their radius. Many tasks require self-imposed task comgr@o be fulfilled in order

to achieve adequate performance. For example, when powstey from a bottle to a
cup the orientation of the bottle must be constrained sottigastream of water falls
within the mouth of the cup. When wiping a window, ones handukhbe constrained
to maintain contact with the wiping surface (Park and Kha&ik06) and when climb-
ing a ladder, constraints may be applied to the centre of wratbe tilt of the torso of

the climber to prevent over-balancing. When manipulatingrasping solid objects
the motion of ones fingers is constrained by the presenceeobltiect (Sapio et al.,
2006). In systems designed to be highly competent and agagtich as humanoid
robots and robotic arms (Fig. 1.1), behaviour may be sulbgegtwide variety of con-

straints that are usually non-linear in actuator space dieeh aiscontinuous (Sentis
and Khatib, 2006, 2005; Gienger et al., 2005; Sapio et ab52Gentis and Khatib,
2004). Consider the task of running or walking on uneven iterrgne cyclic move-

ment of the legs of the runner is constrained by the impadiefeet on the ground in
a dynamic, discontinuous and unpredictable way.

A promising approach to providing robots with such skillg@sning and opening
doors is to take examples of motion from existing demonstsafe.g., from humans)

1



2 Chapter 1. Introduction

and attempt to learn a control policy that somehow capturesdesired behaviour
(Argall et al. 2008; Billard et al. 2007; Schaal et al. 2003¢ s¢so Ch. 2). Such

techniques offer (i) a simple, intuitive interface for pramming robots, (ii) effective

methods for motion recognition and classification (e.gantara et al. 2004), and;
(iif) accelerated optimisation of movements by using desti@tion data to seed the
solution (e.g., Schaal 1997).

However, while a wide variety of approaches for learning esqtesenting move-
ments have been proposed in recent years (Argall et al.,; Z08rd et al., 2007;
Schaal et al., 2003), few have explicitly considered thélenm of dealing with con-
straints on motion in learning. An important component a$ i the ability to deal
with the apparent variability in movements induced by vagyconstraints. For exam-
ple, one wishes to learn a policy that allows one not only teroa specific door of a
particular size (e.g. constraining the hand to a curve ofraqo#ar radius), but rather
to open many doors of varying sizes (radii).

The focus of this thesis is on modelling control policiesfromovement data con-
taining dynamic and uncertain constraints. The aim is telbgvmethods that allow
the effect of constraints to be dealt with in an appropriadég during learning, with a
view to improving existing methods that currently rely oaditional supervised learn-
ing techniques. In particular, we consider learning fronvements that are subject to
variable, dynamic, non-linear and even discontinuoustcaimss, and look for policies
that cangeneralise over constraints

The strategy we will use for this is to attempt to consolida®/ement observa-
tions under different constraints in order to model the ulyiteg unconstrained policy
common to all. Learning the latter enables generalisatinoeswe can apply new
constraints to predict behaviour in novel scenarios. Téimspired by recent work
in analytical dynamics (Udwadia, 2008) where an effectind mtuitive strategy for
analytically solving constrained motion problems has keetonsider the effect con-
straints have in modifying the fundamental equations ofiomodf a system.

In general, we will see that learning (unconstrained) pediérom constrained mo-
tion data is a formidable task. This is due to several problesuch as (iunobserv-
ability of constraints (iinon-convexityf observations under different constraints, and;
(i) degeneracyn the set of possible policies that could have produced Hseiwved
movement under the constraint (Howard et al., 2009b, 2008 will discuss at
length how these problems arise when learning in the canstiaetting, and develop



Figure 1.1: ASIMO humanoid robot (left) and anthropomorphic DLR light-weight arm
(LWR-III) (right) used in our experiments.

several methods to overcome them, first for the special chpetential-based poli-

cies, and later for learning generic, arbitrary policiese Wil show that despite these
difficulties, given observations (i) under a sufficientlgiriset of constraints it is pos-
sible to reconstruct the fully unconstrained policy; (inder an impoverished set of
constraints we can learn a policy that generalises well tstraints of a similar class,
and; (iii) under ‘pathological’ constraints we can learnddigy that, at worst, repro-

duces behaviour subject to those same constraints. Fomdhey achieving these is
possible without the need for explicit knowledge of the d¢raists in force at the time

of observation.

An extensive set of experiments are reported in order tdatdithe methods and to
assess the performance of the various learning technicwesoged. In these, learning
is performed on data from several policies on complex, lighensional movement
systems, subject to various realistic constraints. Fumibee, we illustrate the utility
of the proposed approach for learning from human demormtsaand transferring
behaviour to the ASIMO humanoid robot and the DLR robot arig.(E.1).

Thesis Outline

In the following, we give a short outline of the thesis higihliing the key content of
each chapter. Below each description we also list referetacagicles in which the
work has been published during the course of research, ghéidfit the original con-
tributions made in the chapter.



4 Chapter 1. Introduction

In Chapter 2, we review the current state of the art in modelling movenf@ntontrol
and imitation and discuss related work specifically focieegkbaling with constraints.

Original Contributions:

e Review of imitation learning methods in terms of policydihdrajectory-based,
and indirect methods.

e Common assumption of invariance in constraints in existimgstraint-focused
works highlighted and analysed.

e Comparison of sources of variability in observations undwariant and vari-
able constraints using a navigation task as an example.

In Chapter 3, we discuss how constraints affect the kinematics and digsaohmove-
ment in the light of recent theoretical work in analyticahdynics. We then go on to
discuss how different classes of constraint within this el@dfects learning.

Original Contributions:

e Constraints in imitation learning framed in terms of estabkd principles of
classical mechanics for the first time.

e Numerous examples of constrained systems provided, ingleiamples from
well-known kinematic and force control schemes.

¢ In-depth analysis of how constraints affect observationsiovement from the
viewpoint of learning, including degeneracy, non-conyeaitd problems with
‘forced-action’ constraints.

e Evidence for the feasibility of learning presented in teofia geometric analysis
of the problem.

Publications:

e Howard, M., Gienger, M., Goerick, C., and Vijayakumar, S. @00Learning
utility surfaces for movement selection. In IEEE Interaatil Conference on
Robotics and Biomimetics.



e Howard, M. and Vijayakumar, S. (2007). Reconstructing spkce policies
subject to dynamic task constraints in redundant manipugatin Workshop on
Robotics and Mathematics.

In Chapter 4, we propose a method for learning policies from systemsesutip

variable constraints for the special case of kinematicemidl-based policies. We
show that an effective method for representing movemerdsmudifferent constraints
is to learn the unconstrained policy, and that this is pdssiithout explicit knowledge

of the constraints.

Original Contributions:

e Basis for learning potential-based policies from consied observations de-
rived considering the relationship of observations to ditenal derivatives of
the potential.

¢ Novel learning method developed based on local modellingeopotential and

minimisation of global disagreement.

e Numerous experiments presented, highlighting enhancddrpgaince and gen-
eralisation over constraints compared to standard polegrhing techniques.

Publications:

e Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijaya&uyr8. (2008).
Learning potential-based policies from constrained mmotidn IEEE Interna-
tional Conference on Humanoid Robots.

e Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijaya&yr8. (2008).
Behaviour generation in humanoids by learning potentiasdd policies from
constrained motion. Applied Bionics and Biomechanics):505211.

In Chapter 5, we propose a new method for learning generic policies frgstesns

subject to variable constraints, removing the restrictiopotential-based policies. We
show that it is possible to learn arbitrary (e.g., rotatippalicies, again without ex-
plicit knowledge of the constraints. Furthermore, we apply approach to learning

from human motion capture data.

Original Contributions:
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e Analysis of plausible risk functions and their implicatsofor learning generic
constrained policies.

e Novel risk function proposed based on optimising consistemth the con-
straints using an approximated projection.

e Numerous experiments presented, showing improved perfoarfanarbitrary
(including rotational) policies, and demonstrating amaltion to real human
data.

Publications:
e Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijaya&yrs. (2009).
A novel method for learning policies from constrained muotim IEEE Interna-
tional Conference on Robotics and Automation.

e Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijaya&uyrgs. (2009).
A novel method for learning policies from variable consttalata. Autonomous
Robots. (submitted).

In Chapter 6, we present an extension of the general policy learning ooeéiimed at
improving robustness in learning. In particular, we dedahvpiroblems that arise when
learning with the method proposed in Ch. 5 from data contgimmariant or highly
correlated constraints.

Original Contributions:
¢ Analysis of model degeneracy problem for the novel methesepted in Ch. 5.

¢ Novel extension of the constraint-consistent learning apphn derived, based
on dual optimisation of constraint-consistency and staddusk.

e Numerous experiments presented, demonstrating robustitegfor constraints
with differing levels of variability, highlighting how cotnaint-consistent learn-
ing can be combined with standard policy learning approaches

Publications:
e Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijayaayrs. (2009).
Robust constraint-consistent learning. In IEEE Internatil Conference on In-
telligent Robots and Systems.

Finally, in Chapter 7, we give conclusions and suggest directions for future work



Chapter 2

Modelling Movement for Control and

Imitation

2.1 Introduction

In this chapter, we review the current state of the art in imgemovement for con-
trol and imitation, to provide a background to the researfedn this thesis, and to
highlight the novel contributions made. To do this, we brérgchapter into two parts.

In the first part we look at the general field of learning fromverxment data and
discuss three major classes of methods as categorised byptteeof model that they
produce. Specifically, we consider methods that leampdficy-based modelgi) tem-
poral or trajectory-based modelsnd (iii) indirect modelsof movement. Our aim in
this part is to ground the work contained in this thesis indbetext of the wider field
of research.

In the second part we focus specifically on works that explicdeal with con-
straints when modelling movement. We will see that much efwlork in this area
has focused on two main aspects of the modelling problenst,Rivere are studies
that focus ormodelling constraint$rom example movements. We will discuss sev-
eral methods proposed for doing this, based on looking feaaance information in
the observation data. Second, there are the studies thet to@mdaptation of move-
ments to constraintsWe will review several works that attempt to model adaptati
in terms of the optimal control framework, including worktime robotic and human
motor control literature.

Finally, we will highlight a common assumption shared bysthstudies that limits

7



8 Chapter 2. Modelling Movement for Control and Imitation

their applicability for a number of problems of interest. eSically, we will note
that they all assume the constraints toitneariant between observatiorfer trials of
adaptation). We therefore go on to discuss a third aspectalfrdy with constraints
in modelling movement that has received little attentiothia literature. This is the
problem of modelling movement where there dy@mamic, variable constrainis the
observations. We will show that current approaches do nagider this issue despite
its frequent appearance in many real-world scenarios.

2.2 Statistical Modelling of Movement

A wide variety of approaches have been proposed for thettatimodelling of move-
ment for purposes of control and imitation (Argall et al. 080 Billard et al., 2007;
Schaal et al., 2003). Broadly speaking most can be catedangethree major classes
according to the nature of the models learnt and their domiaapplicability. In this
section we will give a brief overview of these different das and the approaches pro-
posed for learning them. We will look at their advantages @disddvantages in terms
of their application domain. Our aim is to provide a backgmagainst which current
work dealing with the role of constraints in movement can t@pgared.

2.2.1 Policy-based Modelling

A popular class of approaches to modelling movements caarbeet that opolicy-
based modellingr Direct Policy Learning(DPL) method$ (Calinon and Billard,
2007; Alissandrakis et al., 2002; Grimes et al., 2007; CHabod et al., 2006; Grimes
et al., 2006; Schaal et al., 2007, 2003; ljspeert et al., 22082b,a). In these ap-
proaches the idea is to represent demonstrated movemdutgtional form as some
policy, i.e. as a mapping from states to actions

u=mx), T:R"—RY

wherex € R" andu € RY are appropriately chosen state- and action-spaces, respec
tively. Assuming that the observed system can be adequaeigsented in this way,

1To clarify the terminology used, we refer to DPL as the sujsexy learning of policies from given
motion data (e.g., from data recorded from a demonstrafbiik is in contrast to the learning of policies
from cost/reward feedback without the use of a value fungtighich is also sometimes referred to as
DPL.
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Demonstration Model Reproduction
/< 70
NN

State-action Policy-based Lot \ Correspondence State-action

Tuples (x,u) ~— Modelling >\ ! o Mapping > Tuples (x*,u')
NV YT

\\\"‘/f

Figure 2.1: Policy based modelling. Demonstration data in the form of state-action
tuples is used to form a policy model (vector field) that directly encodes the action for a
given state. For the reproduction, a correspondence mapping must be defined from the

demonstrator’s state-action space (X, U) to that of the imitator (x',u’).

the goal of DPL is to approximate the policy as closely asiptsgSchaal et al., 2003).
It is usually formulated as a supervised learning probleranelit is assumed that ob-
servations ofl, x (often, though not necessarily, in the form of trajectore® given
and from these we wish to learn the mappmg

A schematic of policy-based learning is shown in Fig. 2llistrating the data flow
from demonstration data, through learning, to movemenbiction. As can be seen,
this approach requires data in the form of tuples of statdsaations. For the repro-
duction, policy-based models produce atomic state-deperattions; however, if the
policy is applied in closed loop (i.e. state feedback is giafter applying actiom)
then trajectories are produced. It should also be noted @isatvith all policy-based
approaches, the choice of state- and action-space is pradpecific (Schaal et al.,
2003) and, when used for imitation learning, depends ordnespondencbetween
the state-action space of the demonstratou) and that of the imitatorx{,u’). For
example, if we wish to learn the policy a human demonstragesuo wash a window,
and transfer that behaviour to an imitator robot, an appaggchoice ok may be the
Cartesian coordinates of the hand, which would correspornlet@nd-effector coor-
dinates of the robot. Transfer of behaviour across non-agsphic state- and action-
spaces (for example, if the demonstrator and imitator h#ffereiht embodiments) is
also possible by defining an appropriate state-action m@&tissandrakis et al., 2007).

The policy-based approach to learning from observed bebhawias appeared in some
form or another in many early works on Programming by Dematish (PbD) (re-
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views can be found in Argall et al. 2008; Billard et al. 2007h&al et al. 2003).
In recent years several authors have taken the policy-bageebach using sophisti-
cated, non-parametric supervised learning techniquestiehobservation data. Re-
cently popular examples of such techniques inclodal learning methodéPeters and
Schaal, 2008a; Vijayakumar et al., 2005, 2002; Schaal akelsdn, 1998; Atkeson and
Schaal, 1997; Atkeson et al., 1997) dBayesian probabilistic method€alinon and
Billard, 2007; Grimes et al., 2007; Wang et al., 2006; Urtasual., 2006; Chalodhorn
et al., 2006; Grimes et al., 2006; Hsu et al., 2005; Grochoal.e2004). However,
in recent times a particularly appealing approach has beeonrhbine models learnt
from data with sets of dynamical systems for use as contriadips. In the robotics
community, this is commonly known as tliynamic Movement Primitive©MP)
approach (Schaal, 2006; Degallier et al., 2006; Nakanishl.£2004; ljspeert et al.,
2003, 2002a,b, 2001).

Example: Dynamic Movement Primitives

Dynamic Movement Primitive learning (Schaal, 2006; Degakt al., 2006; Nakan-
ishi et al., 2004; ljspeert et al., 2003, 2002a,b, 2001) ésgbneric term used for ap-
proaches that approximate movement data with models atiterely consisting of a
set of dynamical systems (ljspeert et al., 2001), or a coatlwn of dynamical sys-
tems and non-parametric regression models (e.g. ljspeatt 2003, 2002b,a). The
great strength of these approaches is that they combineasdeneficial properties
of dynamical systems with the convenience of a learnt modielother words, the
dynamical systems can be chosen to ensure that the reptbdumeement has cer-
tain desirable properties, such as guarantees on stakeltghability or controllability
(Sontag, 1998). On the other hand, the learning of non-patrearmodels can help
to provide a simple interface to modulate these systems atadtiven way, without
having to engineer the dynamical system from scratch.

An early proponent of this approach was ljspeert et al. (20@io proposed a
method for fitting mixtures of second-order dynamical systdo human trajectory
data. This was tested in a trajectory tracking task on a sitadlhumanoid robot
and resulted in trajectories that were stable against ietions during task execution
(lispeertetal., 2001). Since then, several extensions bagn proposed, such as learn-
ing discrete movements with stable attractor landscapsse@rt et al., 2003, 2002b)
and rhythmic movements with periodic systems (ljspeert £2@02a). Nakanishi et al.
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Demonstration Model Reproduction
Trajectories  Trajectory-based Correspondence _ Trajectories
x(t),u(t),T  Modelling - Mapping Tox(b),ul(t), T

Figure 2.2: Trajectory based modelling. Demonstration data in the form of trajectories
is modelled in a way that preserves the order and timing of states and actions. For the
reproduction a correspondence mapping is used to produce trajectories in the imitator’'s

state-action space.

(2004) proposed the use of DMPs in the form of neural osoiitafior learning bipedal
walking. Degallier et al. (2006) proposed a method for shwitg between discrete and
rhythmic dynamical systems for learning a humanoid drungmask. Finally, Park
et al. (2008) recently proposed a method to combine DMPs aytlamic potential
functions to incorporate simple obstacle avoidance belavi

DMPs and other policy-based methods are a relatively singftective approach to
modelling movement for control and imitation. By framing theblem as a super-
vised learning of the mapping between states and actioes,cdin draw on many so-
phisticated supervised learning techniques. This meayscidn be learnt very quickly
and efficiently, and are suitable for fast, real-time prédicof actions for closed-loop
control.

2.2.2 Temporal & Trajectory-based Modelling

A second important class of approaches for modelling mowtraee those based on
temporal and trajectory-based modelling. These use timesseodelling techniques
in an attempt to capture and exploit time dependencies ansktiuential nature of the
observed movement data (Dietterich, 2002).

A schematic of trajectory-based modelling is shown in Fig, RBlustrating the data
flow. In this class of approaches data arrives in the formayéttories; that is, strings
of states and actions with timing information, such as theaton T. Usually it is
assumed that some pre-processing of the data is perfornsegjteent the trajectories



12 Chapter 2. Modelling Movement for Control and Imitation

(i.e. to determine the start and end of the movement) andabvdéh synchronisation
(i.e. to ensure time correspondence between different pleamovements). The tra-
jectories are combined into models capturing the tempanattire of the movement,
which can then be used to predict the instantaneous actsomna instantaneous state
along a trajector(t), or a complete open-loop trajectory through states andrati
It should be noted that for movement reproduction, the spaadence problem must
again be solved, similar to the policy-based approachés3ee. 2.2.1).

Several approaches have been proposed for trajectorg-tmasdelling, such as
spline fitting of salient via points (Aleotti and Caselli, B)RAsfour et al., 2006; Cali-
non et al., 2005; Ude, 1993) and models based on autoreggdsshniques such as
recurrent neural networks (ljspeert and Cabelguen, 2008;arad Yamamoto, 2002;
ljspeert, 2001; Morita and Murakami, 1997; Morita, 1996).the recent literature a
particularly popular approach has been the use of Hidderkd¥akodels (HMMs)
(Lee and Nakamura, 2007; Takano et al., 2006; Lee and Nalkar@006; Inamura
et al., 2005, 2004; Inamura and Nakamura, 2003), to modekement data. In the
robotics community the major approach using HMMs is commadoatmed themime-

sis modebf imitation learning.

Example: Mimesis Model

The mimesis mode{Lee and Nakamura, 2007; Takano et al., 2006; Inamura et al.,
2005, 2004; Inamura and Nakamura, 2003; Inamura et al.,)20882 one of the first
approaches to take advantage of HMMs to unify behaviour tinderecognition, and
generation, as well as handling issues of correspondehaedadr the same probabilis-
tic framework.

In the framework proposed by Inamura et al. (2004), a databagemonstrated
trajectories is maintained and used for learning modelgbékiour using discrete and
continuous left-right HMMs. The parameters from the cambins models are used to
define salient reference points in the phase space of theelesobot, which are then
used as states in the discrete HMM models. Due to the greatgrutational efficiency
of discrete HMMs, these are used for the recognition and rgéine of movements.
Finally, to ensure that the learnt movements are viabletferrbbot to perform (i.e.,
to deal with correspondence issues) the database of motenseaugmented with
trajectories generated from the learnt HMMs in the phaseespéthe robot, causing
the reference points to be updated for recognising and gengmovement.
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Several extensions and applications of the mimesis model dlao been reported.
For example, Lee and Nakamura (2007) propose a method foiickimg human
movements from marker data using on-board monocular visiakano et al. (2006)
propose a hierarchical version of the mimesis model wheoddwer level HMMs are
used to model primitive behaviours of two agents, and anmuepel HMM is used to
model sequences of interactions between the lower levalvi@lrs. They apply this
to a kick-boxing match where the interaction between two &imcombatants is repro-
duced by a robot interacting with a human. Inamura et al. §208e verbal commands
captured from voice-recognition software to highlightrgeiof attention in demonstra-
tions and facilitate learning.

The mimesis model and other trajectory-based methods aieiparly suited to mod-
elling behaviour where order and sequence is importaningtance strings of actions
aimed at some outcome. An example would be that of makingvieere the sequence
of actions (i.e., boiling the water, adding the teabag, pgufrom the teapot etc.) is
important. They are also useful for modelling behaviourgmetthe timing of actions is
important, such as when to initiate a movement or the durdtiowhich a movement
should be performed. There are still some issues to resolirajectory-based learn-
ing, such as the segmentation and time synchronisationsgreations, but methods
to cope with these problems are currently active areas efreb.

2.2.3 Indirect & Inverse Optimal Modelling

The third major class of movement modelling approacheswatonsider here can
be broadly termedndirect or inverse optimal modellingnethods. In these, certain
assumptions are made about thevement generation processd based on these a
model is learnt that reproduces the movement when operaiad by that same, or a
similar, process.

A schematic of indirect modelling is illustrated in Fig. 2.®epending on the
method, the observation data required for indirect maadiglinay take either the form
of trajectories or tuples of states and actions. In additothis, information on the
generation process is needed, such as parameters detgythi@igeneration (e.g., dis-
counting factory or the state dynamics functioi{x, u)) or rules determining how to
transform the model to recover the movement (e.g., thropginssation of movement
with respect to the model). Similarly, appropriate infotioa on the movement gener-
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Demonstration Model Reproduction
State-action @%& State-action
Tuples (x,u) /0'0.“3\‘{\\{ Tuples (x',u’')
or Indirect %‘0“\‘\\3}\\&“’”””%%"3‘\\ Correspondence o
Modelling W\\\wwh‘w Mapping
Trajectories T T Trajectories
x(t),u(t),T x'(t),u'(t), T
Generation Generation
Parameters Parameters
e.qg. v, fix,u) e.g. y', f(x,u')

Figure 2.3: Indirect modelling. Demonstration data in the form of state-action tuples
or trajectories is combined with some assumed movement generation process and pa-
rameters. For decoding the movement from the model the same or similar movement
generation process is used to find a movement in the imitator’'s state-action space.
An example movement generation process could be reinforcement learning, with given

state dynamics for the demonstrator X = f(x,u) and imitator X' = f/(x’,u’).

ation process must be defined for the reproduction in theators state-action space.
It should be noted that the latter need not exactly matchdhedr; for example, the
state-dynamics might change or a different optimisatia@tess may be used.

A simple example of a class of functions that can be used twecity model
movement is that of scalar potentials (Park et al., 2008liBgiér, 2007; Khatib et al.,
2004; Ohnishi and Imiya, 2007; Conner et al., 2003; Rimon andit&ohek, 1992)
which can be used to model a certain class of policies (see )CHn4his case the
movement generation process is simply that of taking theigm of the potential
functior?. However, a family of indirect modelling approaches that haen growing
in popularity recently is that ahverse optimal methogsuch asnverse reinforcement
learningandapprenticeship learning

Example: Inverse Optimal Modelling

In recent years, approaches based on inverse optimal tsntb asApprenticeship
Learning(AL) (Kolter et al., 2008; Neu and Szepesy; 2007; Ng, 2006; Ratliff et al.,
2006a; Maire and Bulitko, 2005; Abbeel and Ng, 2005, 2004) lamdrse Reinforce-

Note that this can be thought of as a special case of invettsmalpnodelling under infinite dis-
counting, i.e. using a greedy one-step look-ahead for agition.
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ment LearningIRL) (Ziebart et al., 2008; Neu and Szepasgy 2007; Freire da Silva
et al., 2006; Ramachandran and Amir, 2006; Abbeel and Ng,;2004nd Russell,

2000; Russell, 1998; Atkeson and Schaal, 1997) become singdg popular as meth-
ods for indirect modelling of movement. These approachesmgut to model observed
movements through their underlying reward/cost functassuming that they come
from some optimally controlled system. In other words, trevement generation pro-
cess for these models is that of forward optimisation of tharol with respect to the
model (e.g. through reinforcement learning, Sutton andd3E988).

Early proponentsof this approach were Ng and Russell (2000) who first derived
the theoretical basis for IRL from the Bellman equations amghpsed heuristic algo-
rithms for its solution. Their derivation was presenteckimis of a discrete state-action
space where the reward function was simply a vector of valae&ining the reward at
each state. They showed that, given a (finite-state) Markesidion Process (MDP),
with a knowledge of (or samples from) the optimal polic§; discount factory and
state-transition probabilitieB,, linear programming with heuristics can be used to
find the reward vector most consistent with the optimal polidg and Russell, 2000).

Since then the method has been extended in different waysexample, Abbeel
and Ng (2004) describe a method for efficient learning wherréward is composed
of a weighted linear combination of known features, and yfm approach to learn-
ing different styles of driving in a simple simulated drigigame. Ratliff et al. (2006a)
present a similar approach but are able to incorporate datarhultiple MDPs. They
demonstrate their method on a number of navigation taskedbas 2-D satellite im-
ages (Ratliff et al., 2007, 2006a,b). Alternative approadbethe basic IRL problem
have also been suggested. For example, Ramachandran an@2A06) proposed a
formulation that defined a distribution over possible refamctions. This enabled
them to apply Bayesian inference to find the most likely rewémdcontrast, Neu and
Szepeséari (2007) use natural gradients to optimise the fit betwberobserved opti-
mal actions and the reward.

One of the appealing features of indirect modelling appneasuch as IRL and AL is
the promise of enhanced generalisation beyond that of aterspatio-temporal gener-
alisation (e.g. predicting behaviour in unseen parts okthge space). In approaches

3While here we review recent literature related to the statiblearning from demonstration data, it
should be noted that in fact the inverse optimal control fEebwas first posed by Kalman (1964), and
some solutions can be found as far back as Casti (1980).
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such as these, the models learnt may be decoupled from tlaeniys of the observed
systems in some way. For example, in IRL, the learnt rewardtfon may be used
for optimisation under a new set of state dynamics to prodpcitatively similar
behaviour (Neu and Szepésy, 2007). With this in mind, in Ch. 4 we will pursue
an indirect approach for modelling movement based on legrpotential functions in
order to generalise over different dynamics charactetigedifferent constraints.

2.3 Incorporating Motion Constraints

Despite the wide range of approaches proposed for modetiomement for control
and imitation, relatively few studies deal explicitly withe effect of constraints on
movement. In the majority of the examples presented abawg pmconstrained move-
ments, for example, squatting and kicking (Inamura and Naka, 2003) or tracing
figures (ljspeert et al., 2003), are considered. Altereffjin some cases constraints
may exist implicitly in the movement; for example, when liegita drum (Degallier
et al., 2006) there is a constraint that prevents the drekpgnetrating the skin. How-
ever, usually in these cases the constraints are keptamtdretween different demon-
strations and also for the reproduction; for example, bypkegthe position and ori-
entation of the drum fixed. Note that, provided this invac&m the constraints holds,
these approaches are effective. The reason for this isitheffect, the constraint can
be implicitly absorbed into the model itself (for more dé&taon learning from con-
sistently constrained observations, please refer to S8g. However, as we will see,
these methods face difficulties if this implicit assumpti®niolated.

Commonly, when constraints are explicitly considered, istébcus on two par-
ticular issues of the modelling problem. Broadly speakihgse can be categorised as
(i) inferring constraintsbased on variance in the observations, anda@idptation of
movement# the presence of a constraint. In this section we reviewksraimed at
dealing with these issues and discuss their benefits antcehungs with respect to
modelling movement from constrained data. In particularwilenote that, in com-
mon with the standard learning approaches described inrdeeging sections, these
also make the key assumptionin¥ariant constraints

Finally, we will go on to discuss a third, complementary a$jo¢ modelling move-
ment in the presence of constraints that has that has relcaiaively little attention
in the literature. This is the issue of dealing witariability in the constrainton-
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Figure 2.4. Inferring constraints from observed movements using variance informa-
tion. In the presence of high noise causing perturbations, demonstrated movements
(coloured lines) exhibit high variability in unconstrained regions (here, in the regions left
and right of the two obstacles (black boxes)). In contrast, in constrained regions (central
area between the boxes) the variability is reduced due to the constraints. This variability

can be used to infer the presence and location of constraints.

tained in the observations. We discuss how existing appesado not address this
iIssue despite its appearance in many real-world scenarios.

2.3.1 Inferring Constraints from Variable Observations

In a number of studies, several authors have proposed nsethasse demonstrated
movement data to infer information about constraints, camign by looking at the
variance in a set of observations (Delson and West, 19931891996; Ogawara
etal., 2002; Calinon and Billard, 2007; Guenter et al., 200TinGa and Billard, 2008;
Hersch et al., 2008) These approaches all share two comrmuomasions, namely that
(i) unconstrained movements contain high variability begw trials (e.g. due to noise
or environmental perturbations present during demonstrg), and (ii) consistency in
observations indicates a constraint on the motion.

To illustrate the concept behind these approaches, cartbiel@avigation problem
shown in Fig. 2.4. There, the task is to learn a control pdiicget from the start state
to the goal state, given a set of expert demonstrations.igretivironment, the task is
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made harder by the presence of two large obstacles (blackshatkhat constrain the
possible movements that can be taken (i.e., movement isctestby the obstacles
when in the centre of the space, between the two boxes). Naosider that we are
given a set of demonstrations of an expert performing thie, takere there is a lot
of noise or perturbations between the different demonstrat This noise will affect
the trajectories seen in different ways, depending on timstcaints. For example in
the unconstrained regions (e.g. near the start and goakstat-ig. 2.4) there may
be a large variance in the paths taken by the demonstratae as $he gets knocked
off course by the noise. In the constrained regions (e.gharcentral region between
the blocks), however, the effect of the noise will be redycgdce the constraints
effectively prevent perturbations in the vertical direati since the obstacles cannot
be penetrated. Under the assumption that the constrainers fietween the different
demonstrations (i.e. the shape, position, orientationrsézelof the boxes is fixed), and
that the noise (or the chance of a perturbation) is congisiEoss the space, we can
look for these regions where there is low variance in the demations to find out
where constraints are present.

One of the first studies to exploit ideas such as these in theexbof PbD, was
that of Delson and West (1994b). They describe a method fuygramming a robot
to find the shortest path between a set of obstacles to a taygetcording human
demonstrations with a force gripper, similar to the set igzdbed in Fig. 2.4. The data
was used to identify admissible (i.e. obstacle-free) megjioy looking at the range of
positions visited by the recorded trajectories. The task suech that the demonstrator
would always successfully avoid the obstacles and would phstacles on the same
side. This meant that the regions visited could be assumbd safe from collisions
and to lie on the path to the goal. Once these admissiblengdiad been identified,
a path planning algorithm was applied to find the shortedt pathe target within
the safe region. Note that, the constraint that trajectdioeind by the path planner
must lie within this region is an approximation of the trueieonmental constraints
(i.e. the those physically induced by the obstacles). Takims approach, Delson
and West (1994b) were able to program the robot to navigaseetivironment (i)
with the guarantee of obstacle avoidance, and (i) in a mamoee efficient than the
original demonstrations (since the robot always took theesahortest path, without
the variability of the human).

Since then several authors have also attacked this probignsiwwilar approaches.
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For example, Ogawara et al. (2002) proposed an approachrchsier ‘essential inter-
actions’ between objects in a manipulation task. Sequeosiceandidate interactions
were analysed to determine which were common to all in a sekeafonstrations,
using dynamic programming sequence matching. Calinon ardr@i(2008, 2007)
considerably extended the approach by applying more sigdtesd techniques to en-
code the statistics of the demonstrations. Instead of wsmpgle bounds on admissible
trajectories based on the range of the features (Delson ast, W994b,a), Gaussian
mixture models were used to form a probabilistic model ofdeenonstrations, and
Gaussian mixture regression to reproduce the maximumHi@ti movement. They
report better generalisation, and smoother trajectorfevearning from smaller data
sets compared to the original range-based approach. Fuxhe, their approach has
been applied to several new tasks such as laying a table ¢(@adind Billard, 2008)
and grasping and moving a chess piece (Calinon and Billard7)2@lnally, Hersch
et al. (2008) suggested an extension to the approach to ateddynamical systems
for robust trajectory tracking, similar to DMPs (ref. Se@.2).

These approaches based on looking at inter-trial varianicder constraints have been
successful for several scenarios of interest. Specifidhlyse involve situations where
constraints are consistent across triade that observed variability can be put down
to noise and perturbations in the control. However, theecadso other sources of
variability in constrained movement which this model canexplain. This includes
the effect ofadaptation of the controlleto the constraints. The latter has also received
some attention in the constrained movement modellingalitee. We turn to this in
the next section.

2.3.2 Adaptation to Constraints

A second area in which constraints have been consideretiélypivhen modelling

motion concerns the issue aflaptation to constraints Here, investigation is con-
cerned with ways in which systems can change their behawben experiencing a
new constraint, commonly with the rationale that the caistrprevents the existing
control strategy from performing adequately. Frequentlyk in this area makes the
assumption that adaptation is performed starting with see®&l policy (e.g., learnt
under one set of constraints) which is then modified to taakiew set of constraints
(Ohta et al., 2004; Svinin et al., 2005; Guenter et al., 200te that, again, a key
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Fixed Constraint 1 Fixed Constraint 2

Start &=

Trajectory learnt Trajectorylafter
from demonstrations adaptation

Figure 2.5: Adaptation to unseen constraints. In existing approaches, when a new
constraint (Constraint 2) is presented to an existing controller (Control 1), that controller
is adapted to generate a new controller (Control 2), tailored to the new constraint. Note

that the new constraint is usually held constant during adaptation.

assumption of these approaches is that the new constraetseptinvariant during
the adaptation, so that any variations come from a chandeindntroller (policy).

To illustrate the concept, let us return to the navigatioanegle described in the
preceding section. Again consider that we have to move fromesstart position to
the same goal in the presence of two obstacles. Howevetirttesconsider that (i) we
start with some initial control policy, for example, leamtthe context of the original
set of constraints (e.g. learnt from demonstrations omudjnaeinforcement learning),
and; (ii) we are then presented with a new scenario in whichmust perform the
same task under a new (fixed) constraint, for example withwioeobstacles shifted
to a new position, as shown in Fig. 2.5. Under the new comdfradlaptation proceeds
to change the original policy to improve performance, hbyealtering the path of the
nominal trajectory.

Most existing studies on adaptation looking at the role ofst@ints use this model
to explain changes in behaviour; namely that an existingeyp@possibly adapted to
one set of constraints), is adapted (usually through a psogkoptimisation) to a new
fixed constraint. Examples of this can be found in the humairabotics literature.

For example, in the human motor control literature Ohta e(28104) and Svinin
et al. (2005) recently performed experimental studies afdnuadaptation to externally
applied (i.e. environmental) movement constraints. Tha gbthese studies was to
look at ways in which humans interact with physical objeatshie environment that
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constrain movement; for example, when turning the handé&aufffee grinder (Svinin
et al., 2005). They approached the problem in terms of thienaptontrol framework
(Bertsekas, 2007) by analysing how humans adapted theirm@aws under an un-
familiar constraint, and comparing this with optimisatiohseveral established cost
functions from the human motor control literature. In the{periments, subjects were
asked to make point-to-point movements along a closed{patha loop, starting and
ending at the same point), subject to constraints on theesbfthe path. The con-
straints were enforced by use of a modified manipulandum tehwbkeveral metal
sheets could be attached. Each of the sheets had diffecsstdcpath groves cut into
them (e.g. circles, ellipses, clover-leaves) and, wheach#d, meant that the handle
of the manipulandum could only travel along the groove. Etaly this reduced the
mobility of the subjects’ hands to one degree of freedomresponding to the angular
position along the path. Angular velocity and normal andj&anial (to the path) force
profiles were collected and compared to simulated minimuta g&d torque/force-
change (in hand and joint space), and minimum muscle eftortrol. They found that
after several trials of training under the new constraifgjecis adapted their move-
ment in a way that was consistent with optimisation of a caratihand-force- and
joint-torque-change cost function.

A similar model has also been proposed in the robotics domgor example,
Guenter et al. (2007) report a method for handling previpuskeen constraints when
learning from demonstration data. The aim of this work waértd a way to adapt
policies to new constraints that are not contained in theaestnations, while avoiding
having to learn a new policy from scratch. Following eanierk by Calinon and Bil-
lard (2007), policies in the form of Gaussian mixture modedse initially learnt from
a set of teacher demonstrations. These were then adapted toomstraint conditions
through a reinforcement learning approach. For this, patars of the policy model
were directly optimised using episodic natural actoricrginforcement learning (Pe-
ters and Schaal, 2008b). It should be noted that the paresradtéhe constraints (e.g.
obstacle positions and shapes) were not explicitly givehaalgorithm, but were held
constant between trials during optimisation. The appreehtested for two tasks. In
the first the task was to place an object in a box when a (preljiainseen) obstacle
was placed between the robot’s hand and the box so that tle¢ hald to adapt the
movement and reach over the obstacle. In the second a poliayrdsping a chess
piece was learnt, then adapted by changing the constrathieodirection of approach
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of the hand to the piece.

Studies such as these confirm our intuition that under cediacumstances adapta-
tion is required to cope with new constraints. This can betdube existing control
strategies becoming ineffective under the new constrairgimply a drive to improve
performance when some specific constraint is experiencedder of times and thus
becomes familiar. Similar to the methods described in S&cl 2these adaptive stud-
ies also assume thabnstraints are invarianbetween trials and all changes to the
movement are due to adaptation of the control policy.

2.3.3 Variability in Constraints

In the preceding sections, we outlined a number of studegsstkplicitly consider con-
straints when modelling movement. We noted that a key assommade in these
studies is that there is invariance in constraints. In paldr, they assume consistency
in the constraints between observations and try to explifferences between obser-
vations in terms ofvariability in the contro] either due to noise and perturbations
(Sec. 2.3.1) or adaptation of the controller to the constréec. 2.3.2). However,
while these are important aspects of dealing with varigbifi observations of con-
strained movement, there is a third aspect to the probleth#sanot been considered
in the studies presented so far. This is the issueaahbility in the constraints

Variability in constraints can occur in many everyday bebaxs. For example,
consider the problem of opening doors in an everyday enwieont such as an office.
This is a very simple behaviour in which a successful styateguld involve grasping
the door handle and pulling it open. Here, we can identifyrarirenmental constraint
imposed by the door; namely, that the hand is forced to traeglg the opening arc of
the door. Note also that this constraint is specific to eactiqodar door, that is differ-
ent doors may have different widths or open in differentdions (e.g. depending on
which side of the door the hinges are attached) and thistaffieeobserved outcomef
the control (i.e. the shape and size of the opening arc). Meryvaote also that despite
the different constraints, the same control strategy ‘tling’) would be effective to
open many different doors without the need for a specialtssdroller for each.

As another example, consider also the task of stirring snupsaucepan. There,
we can also identify an environmental constraint; in thisecthe sides of the pan
constrain the movement (i.e., the spoon cannot leave thgsratithe pan). Again, this
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Figure 2.6: Inferring the control from variable constraints. Assuming consistency in
the control and high variability in the constraints it is predicted that consistency in the
observations can be used to model the control. This is the complement of the problem
of inferring the constraints (cf. Fig. 2.4).

constraint is dependent on the particular saucepan (dfgratit saucepans may have
different sizes and shapes). However, note also that @éggise differences, the same
periodic control strategy is effective for stirring in magiyferent saucepans.

The point of these examples is to highlight a situation tkatrgely neglected
in studies such as those described in Sec. 2.3.1 & Sec. ZI3&re, the focus was
on variability in the controlunder a set otonsistent constraintsHowever, in these
examples, a more appropriate approach seems to be the ecoemtlef this; namely,
to considerconsistency in the control under variable constrairits many cases such
as these, approaching the problem in this way is more im&jiind can offer a simpler
explanation of variations in movement that may be observed.

To compare how the concept of this approach differs from dfidthe approaches
described in the preceding two sections, we can again lookratavigation example,
but this time from the viewpoint of constraint variabilityef. Fig. 2.6). Consider,
again, that we wish to learn a control policy that takes usifemme start state to the
goal from a set of demonstrations. However, this time, aersihat the constraints
are different in each of our demonstrations; for example,width of the obstacles
varies for different demonstrations. This is illustratad=ig. 2.6, where we represent
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the distribution of different obstacles (i.e. constraj@is shaded regions (so, for exam-
ple, darker regions indicate a higher likelihood of the abk occupying that space).
Note that, since the same basic task is performed in eachrdgration, we can as-
sume a similar policy would be used. However, note also thdeuthis set up, even
assuming perfect consistency in the policy, one would saahiéity in the movement
due to variability in the constraintsFor example, in Fig. 2.6, we plot three example
trajectories that would result from applying a simple patttactor policy (with the
attractor point at the goal) for three different obstacldtivg (constraints). In this case,
differences in the paths can be attributed purely to vditglin the constraints.

One of the main novel contributions of the research conthinghis thesis is to
study the problem of modelling movement in this scenariggarticular, how to make
consistent models of movement when our observation dataiosrigh variability in
the constraints. This differs significantly from the apmioas described in the preced-
ing two sections, both in terms of the assumptions aboutdhstcaints, and the goals
of learning (for example, we no longer focus on finding thestints, but look instead
for consistency in the controls). There exist a number ofivatibns for approaching
the problem in this way.

For example, one major benefit of handling such cases isubiaiy such a model,
we can hope to predict movement in such a way teieralises over constraints
That is, if we can model the controller that is consistentweitset of demonstrations
observed under a given set of constraints, we can hope toplg-that policy to accu-
rately predict movemeninder a new set of constraintktuitively, if we observe that
our demonstrator uses the same policy successfully undeteavariety of constraints,
then presumably the demonstrator finds that policy suffiiembustagainst the ef-
fects of those different constraints for successful pemnéoce. Following this, we can
then reasonably assume that, by learning this policy anlyiaggt under similar con-
straint scenarios, this robustness will also be transieiwehe learner. For instance
in the door-opening example, by learning the control stpatesed by a demonstra-
tor to open several familiar doors (i.e. under a set of ‘irajrconstraints’), we may
learn a generalised ‘pulling’ control strategy. Assumihig to be successful for the
constraints (doors) seen in the training data, we could dpgthy the controller to new
settings with unfamiliar constraints, for example, to openew door (e.g. one that
opens upwards instead of to the side).

Related to this, another possible motivation is to use ourahtwdget a new per-
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Policy | Constraint| Modelling | Adaptation

Fixed Fixed [ -

Fixed Variable 0 -
Variable| Fixed [ [
Variable| Variable O O

Table 2.1: Array of possible scenarios in which constraints may affect actions observed.
Ticks and crosses indicate whether the given combination can be handled with existing
approaches, from the viewpoint of (i) statistical modelling of behaviour data, and (ii)

adaptation of behaviour.

spective on the classification of different observationshim movement recognition
setting. That is, if we are given a new set of observations<iaty under different
constraints), we can check these against our current modeassess their similar-
ity. For example, we could look at the distance in paramegiacs for the generalised
door-opening controller and a similar controller learmtdaother task, such as drawer-
pulling. This would enable us to group qualitatively similasks in the same category,
ignoring the specific differences due to the constraintsother words models learnt
by this approach offer alternative, meaningful, abstoagiof the observed movement,
i.e. we can say two movements are qualitatively or quantiit similar, up to a dif-
ference in constraints

Finally, this alternative approach to the problem of madgliconstrained move-
ment can also be used to complement, and improve undenstpofiihe existing stud-
ies on control-variability and adaptation under constsinFor example, we might
look for ways to detect the source of observed variabilitg. (due to the control, the
constraints or both) and improve our models of behaviouris Thuld be used, for
example, to determine when adaptation occurs or is negessdifferent constrained
scenarios. A further possibility in this direction would teedecompose the variabil-
ity in observations into its constituent parts, such as td&m, noise, changes to the
constraint, and other perturbations, further improving dality of our models of be-
haviour.
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2.3.4 Filling the Gap

Based on the analysis in the preceding three sections, weocarema position to
chart how different aspects of modelling movement in the@nee of constraints have
been studied or solved in the existing literature. In thesofvTable. 2.1 we consider
four cases in which constraints could affect the actionentesl from some policy,
categorised in terms the different possible sources oaldity. In the columns we
indicate whether the case has been (or could trivially bejlileal with existing methods
from the viewpoint of (i) statistical modelling of behaviodata, and (ii) adaptation of
behaviour. Note that here, the variability of a quantity nb@ydue to noise, external
perturbations or adaptation, and is assumed to occur agatasets when modelling,
or across learning trials during adaptation. Note alsowabnly consider adaptation
in terms of changes to the policy (hence under the assumgtiatixed policy it does
not make sense to deal with the adaptation problem).

As can be seen from the table, the simplest case, namelyrariga fixed policy
under fixed constraints, is straightforward using standaptoaches such as those de-
scribed in Sec. 2.2 (this will also be discussed in greattilda Sec. 3.3.1 & 3.3.2).
For the case of a fixed constraint, but variability in the pplie.g. due to noise in the
actions), methods such as those described in Sec. 2.3.1eirsuied for modelling
the movement from a given set of observations, and can eveisdstto infer infor-
mation about the constraints. Furthermore, under a fixedtcant, it has been shown
that one can optimise an existing policy to improve perfarogaunder that constraint,
for example using the methods described in Sec. 2.3.2.

However, looking at the cases where variability in the c@ists occurs (rows 2
and 4 of Table 2.1) there is a clear gap in current researcharlglenethods such
as those described in Sec. 2.3.1 and Sec. 2.3.2 that relyecaesgumption of a fixed
constraint are not suitable for such cases. Furthermordisagssed in detail in the
next chapter, most standard regression approaches dlsotfee presence of variable
constraints (essentially due to a mismatch between thetedfeconstraints and the
noise model commonly assumed in such approaches; see $2¢. B this thesis, our
goal is to take the first steps toward filling this gap by prapgsnethods specifically
tailored to such conditions.

Specifically, our goal is tackle the first of the gaps hightéghin Table 2.1; namely
the problem of modelling data where, under the assumptidaidy small variation
in the control, the main source of variability in the obseivas can be attributed to
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variability in the constraints. As discussed in Sec. 2.&h8ye are many real-world
scenarios where this is the case, allowing our methods tareetlg applied to learn-
ing in such scenarios. Furthermore, we hope that by studyiisgproblem we may
highlight principles that may then be used in filling in théet gaps, such as adap-
tation in the presence of variable constraints, and matgil the presence of the
combined variation of policies and constraints. By doing te hope to extend our
knowledge about modelling movement within the domain ofidgawith constraints.

2.4 Conclusion

In this chapter, we have reviewed a variety of methods foretliogd) movement data
from observations. We discussed several paradigms farilgamodels of movement,
in particular we highlighted methods that learn (i) pollzgsed, (ii) trajectory-based
and (iii) indirect models. In doing this we aimed to providerap-shot of the current
state of the art in the movement modelling literature, agfaivhich the work in this
thesis can be compared.

In the context of this broader field of work, we then went onoous specifically on
studies that explicitly address the role of constraints atiom. We noted that within
this more restricted field, work has primarily been direc¢dwo goals (i) inferring
the constraints in force during demonstrations, and (&daltion to (fixed) constraints.
We noted that these two approaches rely on a common assumplkiat the constraints
across demonstrations (or adaptation trials) are invama@aning that any variation in
movements is attributed purely to variation in the control.

We then went on to discuss a third source of variation in treepkations, that of
variation in the constraintand discussed examples of where this is a more intuitive
and fitting description of several real-world examples. \lge a@iscussed the motiva-
tion for studying the effect of variable constraints, bathterms of possible applica-
tions in, for example, imitation learning and movement gggtion. Furthermore, we
discussed how studying this problem fills a large hole intexgsresearch on methods
to model movement, and how filling this gap may enhance thdaséreg models.

In the next chapter, we take a detailed look at the effecttcaimés have on move-
ment observations. In particular, we outline a formal mddelconstraints based on
recent work in analytical dynamics (Udwadia and Kalaba6)9®%e will then look at
how different classes of constraint affect our observatiardifferent ways and discuss
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the implications these have for learning.



Chapter 3

Effect of Constraints on Dynamics and

Learning

3.1 Introduction

In this chapter we take a closer look at the the effect of camgs on the dynamics
of systems and the implications this has for learning. Tredyais is broken into two
parts.

First, we will introduce a formal model that can be used tacdbs the dynamics
of constrained motion. This is based on principles of amadydynamics (Udwadia
and Kalaba, 1996) and can be used to describe both naturaloaichlled dynamics
in terms of a generic set of constraints. In the roboticsditee this formalism is ex-
tensively used in the kinematic and force control of rigidipsystems such as manip-
ulators and humanoid robots (Udwadia, 2008; Peters et@03;2Sapio et al., 2006;
Gienger et al., 2005; Sentis and Khatib, 2004; Buss, 2004; Bnakx and Khatib,
2000; Nakamura, 1991; Khatib, 1987;&geois, 1977). However, the formalism is
generic and can be applied to a wide class of systems (Udveadidalaba, 1996).
We will discuss how such constraints affect motion and mlevilustrative examples
of how the formalism is used in control of redundant manifmr& In general, we will
see that an intuitive way to understand the constrainedvi@lraof a system is is to
consider how the unconstrained behaviour is modified by dnstcaints.

Second, we will discuss how constraints affect the obsiemvatand the problems
these induce when attempting to learn a policy to captutdgtaaviour (Howard et al.,
2008a, 2009a, 2008b; Howard and Vijayakumar, 2007; Howbadl ,£2006). We will

29
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see that different problems arise depending on the consgeiting. In particular, we
will identify three such settings and discuss examples arelthese might be observed
in everyday life.

Finally, we will discuss our strategy for overcoming theselgpems in order to
learn the best possible model from the given data. Theseipl&s will be used in the
learning approaches developed in later chapters.

3.2 Constraint Model

The constraint model assumed throughout this thesis igl@serinciples of analyti-
cal dynamics. Here, we will briefly outline the formalism atglrelation to everyday
control tasks. For a more thorough treatment of these miesiwe refer the reader to
any standard text on analytical dynamics, such as Udwadid&afaba (1996).

Following the policy-based approach (ref. Ch. 2), in thistheve consider policies
that can be described as autonomous systems of the form

ut) =m(x(t)), T:R"—RY (3.1)

wherex € R" andu € RY are appropriately chosen state- and action-spaces, respec
tively, andrtis some stationary mapping between the two. For exampleneniatic
control, the state vector could be the joint angles, g, and the action could be the ve-
locitiesu = q. In forced-based control a suitable state mighkbkeq, g, with actions
corresponding to applied torques=T .

We assume the policies to be subject to a set of Hadiimensional, Pfaffian con-
straints (wherd < d)

A(X,t)T(X) = b(x,t) (3.2)

whereA (x,t) € Rkd is some rank matrix andb(x,t) € R is some vector. Together
these two terms describe the constraints on the policy. ddnistraint equation can be
thought of as the result of a setlktonstraints of the form

l-pi(x7t) =0; I = 1727 U 7k (33)

where ;i (x,t) are smooth functions which, when differentiated, give thastraint
relation (3.2) (Udwadia and Kalaba, 1996). The effect ofdbestraints is to modify
the policy actions so that they are projected into the natispof the constraints. This
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means that the actions we observe under the constraintghef@m
u(x,t) = A(x,t)Tb(x,t) + N(x,t)TI(x) (3.4)

whereN(x,t) = (I — ATA) € R9Y s a projection matrix that, in general, has a non-
linear dependence on time and state, krdR%*9 is the identity matrix.

The formalism outlined is generic and can be used to handistnts in a wide
variety of systems (Udwadia, 2008). For example, condsaifthis form (3.2) com-
monly appear in scenarios where manipulators interactsalild objects, for example,
when grasping a tool or turning a crank or a pedal; also rediels as contact constraint
scenarios (Park and Khatib, 2006; Murray et al., 1994; Mailtiiand Khosla, 1992).
Such constraints are also common in the control of redundiegrtees of freedom in
high-dimensional manipulators @geois, 1977; Khatib, 1987; Peters et al., 2008),
where policies such as (3.4) are used, for example, to amd ghabilisation (Peters
et al., 2008), or to avoid joint limits (Chaumette and Maraha2001), kinematic sin-
gularities (Yoshikawa, 1985) or obstacles (Choi and Kim,®0Chatib, 1985) under
task constraints. As an example: Setthgo the Jacobian that maps from joint-space
to end-effector position increments, and setting 0, would allow any motion in the
joint space provided that the end-effector remained statip

The formalism can also readily be applied to learning petiddased on dynamic
guantities such as torques or (angular and linear) momestibject to constraints
(e.q., see Peters et al. 2008 and Kajita et al. 2003, respbgti In such cases, it is
assumed that the systems are subject a set of ‘ideal constriai the sense that they
satisfy d’Alembert’s principle. D’Alembert’s principlesia classical result in analyt-
ical mechanics that characterises ideal constraints & tthat can be described by
a set offorces of constraintvhich, for movements that satisfy the constraints, do no
work. The constraint formalism (3.1)-(3.4) used here isststent with this principle
for constraints on system dynamics involving forces (Udaaahd Kalaba, 1996).

Finally, it should be noted that such constraints are alsdimded to manipulator
kinematics and dynamics; for example, Antonelli et al. @0&pply it to team coordi-
nation in mobile robots, and Itiki et al. (1996) use the folisra to model the dynamics
of jumping.

In general, the effect of the constraints (3.2)-(3.4) is igalflow policy actions
in some sub-space of the system (specifically, the spacegmtial to the image of

'Note that a list of symbols is provided at the start of thisth@s a quick reference of the notation
used.
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N(x,t)). Additionally, for constraints with non-zero(x,t), certain actions may be
‘enforced’ by the constraint that are not derived from thégyo For example, if the
policy controls a movement of an arm through the joint-spaalecities, then grab-
bing the arm and holding it stationary would constrain thevemeent (ab(x,t) =0
constraint). Additionally, holding the arm and moving ita@gst the direction of the
policy would correspond to a non-zelpgx,t) constraint. To better illustrate the effect
of such constraints on system dynamics, in the following wirte some examples
from the kinematic and force-based control of redundantipudators.

3.2.1 Example: Resolved Motion Rate Control

A simple example of a constraint-based control scheme tinattty corresponds to
(3.2)-(3.4) is Resolved Motion Rate Control (RMRC) (Whitney, 196@geois, 1977).
RMRC is a popular scheme for velocity-based control of rigidipmanipulators. It
assumes a linearised forward model

F=J(a,t)q (3.5)

wherer € RKandq € R" are the task- and joint-space coordinates respectivalydq
denote the task- and joint-space velocities a(glt) is the Jacobian relating the two.
Note that, in general, the Jacobian is time-dependent teftethe fact that the task-
space may change (for example, a humanoid using this casth@me may switch
from using both hands to manipulate an object to using just Gienger et al. 2005).
In such a system, a typical task is to realise some trajectdty in the chosen task-
space. This places a constraint on the joint space velotityecsystem, i.e. the joint
space velocity must be such thdtt) —r(t) = 0 (this is also commonly known as
Closed-Loop Inverse Kinematics (CLIK), e.g. see Chiacchid.€i¥1). The solution
is given by the Legeois inverse kinematic model fgeois, 1977)

q:J(q>t)Tf+(| _‘J<q7t)T‘](qvt))a (36)

wherea € R" is an arbitrary vector. The Egeois model (3.6) can be used to represent
most velocity-control methods (English and MaciejewskKiD@). Note that in this
scheme, we can directly identify the state and action vecter g, u = g and the
constraint relation (3.2 (x,t) = J(x,t), b(x,t) =r. In (3.6) we are free to choose the
vectora as we wish and usually this is done by defining some policyidcking tasks,
policies may be chosen to complement the task constramt&xample, to promote
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stability in the joint-space (Peters and Schaal, 2008a) optimise the movement in
some way (Nakamura, 1991). A popular choice is to define ayditiat optimises a
potential function (English and Maciejewski, 2000; Nakaa.991)

a=m(q) = —Ue(q). (3.7)

Using a such a policy, it is guaranteed tkpady) will be minimised by the joint space
velocity vectorq at every time step (for = O, the decrease is monotonic (Nakamura,
1991)). Potentials can then be chosen whose minima comddposome ‘desirable’
joint configuration; for example, those that avoid joint iisn(Chaumette and Marc-
hand, 2001), kinematic singularities (Yoshikawa, 1985blostacles (Choi and Kim,
2000; Khatib, 1985).

An example of how the choice of nullspace policy affects tebdviour of a sim-
ple three-link manipulator is given in Fig. 3.1. There, écpries are shown for two
policies subject to the constraint that the end-effecttlofes a given trajectory in
Cartesian end-effector space.

3.2.2 Example: Force/Torque Control

For force or torque control of rigid body systems a similangtoaint-based control
scheme can be formulated (Udwadia, 2008; Peters et al., 2008; Udwadia, 2003;
Bruyninckx and Khatib, 2000). This scheme assumes a roboehmaked on the
Lagrangian equations of motion

T=M(q)q+Fc(q,q) +Fg(a) (3.8)

wheret € R" is the applied torque/force, ¢, € R" are joint-space positions, veloci-
ties and accelerationd (q) € R™" is an inertia/mass matri¥(q, ) € R" represents
centrifugal and Coriolis forces arfgy(q) € R" is the gravity. Here, the constraint re-
lation

A(g,4,)4 =b(a,q,t) (3.9)
is used to determine desired trajectories or forces acuprii the task (Peters and
Schaal, 2008a; Udwadia, 2008; Peters et al., 2005; Udwaaig; Bruyninckx and

Khatib, 2000). Substituting (3.9) into (3.8) gives (Petetral., 2005; Udwadia, 2003;
Bruyninckx and Khatib, 2000)

=TI (b—AMIF)+(1-TMa (3.10)
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Start Position

Figure 3.1: Two ways to utilise the null-space under the constraint that the end-effector
tracks a desired trajectory r*(t) (dashed line) with a three link arm. The choice a =
T (X,1) uses the three joints equally, whereas the choice a = Tp(X,t) uses the second

and third joints more.

where for compactness we defifre= —Fc—Fg, T = AM ~1 andais an arbitrary
vector. Here, a weighted pseudoinverse is often used, inhndase different choices

of weighting matrixW determine the control paradigm (Peters and Schaal, 2008a,;
Peters et al., 2005). For example, resolved accelerati@miatic control(V = M ~2)

or the Operational Space Formulation (Khatib, 198%) - M 1) both fit into this
framework. As before, the vectarcan be freely chosen, but is commonly used to
implement some stabilising policy (Peters and Schaal, @00&n example of the
effect of two different choices of policy is given in Fig. 3.2

3.3 Learning from Constrained Policies

In the preceding section, we outlined a generic formulatbononstraints applied to
motion and illustrated how the dynamics of systems are ttely the constraint. In
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Figure 3.2: Two ways to utilise the null-space in dynamics control when applying a force
F to mass (box) with a fixed-base three link arm. The upper scheme applies a large
torque to the base joint, a medium torque to the second joint and a small torque to the
third joint. The lower scheme uses equal torques for each joint. The choice of a in

(3.10) determines the scheme used.

general, we saw that policies are projected into the nullspéthe constraints (i.e. the
nullspace ofA). This results in changes in the observed behaviour, thatrmwill
affect how we can learn from observations.

Here, and throughout the thesis, we make certain assursgiiowhat is contained
in the given observation data. In particular, we will assuhed the data consists of
observations of states and actid®s, un), usually in the form of trajectories. Further-
more, we assume that the constraints are not explicitlyrghbée (i.e. we do not have
direct access tA(x,t), b(x,t) or N(x,t)), and data sets are not labelled with respect to
the constraints (i.e. observations may not all come fronstme set of constraints).
Our goal throughout is to find the underlying polinyx). In the following we char-
acterise the implications of different classes of constriir learning that policy. We
first consider the simplest case (i.e. unconstrained oasens) then go on to look at
more complex problems, such as stationary and forcedractinstraints.
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3.3.1 Unconstrained Systems

The simplest class of systems that we may encounter in legieithat of directly
observedunconstrainedgolicies. In terms of the constraint formalism outlined e t
preceding section, this corresponds to having 0 (a matrix of zeros) anth = 0 in
(3.2)-(3.4) so that the projection operator is simply theniity matrixN = I. Under
such conditions the policy is fully observable, i.e. theaiations are simply

u=TX).

From the viewpoint of learning, the case of unconstraindities is straightforward.
Provided the policy is autonomous, the mappimig< — u is static and so lends itself
well to supervised learning techniques, such as thoseidleddn Ch. 2.

As an example, consider a simple unconstrained policy teneka jointed finger
as shown in Fig. 3.3(a). There, the policy simply moves thetgotowards the zero
(outstretched) position. The vector field representatibthe behaviour is shown in
red in Fig. 3.3(c). Learning the unconstrained policy irstbase is simply a matter
of finding a good fit to this vector field; for example, by fittilgMPs (ljspeert et al.,
2003, 2002b) or non-parametric modelling (Peters and $c2@@8a) (ref. Sec. 2.2.1).

3.3.2 Stationary Constraint Systems

The second class of systems that we may encounter are thbjgetsto stationary
constraints These are constraints which act as hard restrictions cactiens available
to the policy, but do not enforce actions as in the system).(3mother words, these
are systems whete= 0, so satisfy the constraint relation

A(x,t)u=0. (3.11)

This means that the observations consist of a projectiomegbblicy into the nullspace
of A(x,t):
u(x,t) = N, t)T(x(t)). (3.12)

The effect of the constraints (3.11)-(3.12) is to disallowtion in some sub-space of
the system, specifically the space orthogonal to the imagxt).

Constraints of the form (3.11) commonly appear in scenariosrezmanipulators
interact with solid objects; for example, when graspinga@ to turning a crank or a
pedal, i.e., contact constraint scenarios (Park and Kh2@06; Murray et al., 1994,
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Figure 3.3: lllustration of two apparently different behaviours from the same policy:
(a) unconstrained movement (b) movement constrained by an obstacle (black box) (c)
vector field visualisation of the unconstrained (red) and constrained (black) policy for

two of the finger joints as a function of their angles.

Mattikalli and Khosla, 1992). As a concrete example, comsabain the finger exten-
sion policy, but this time with an immovable obstacle lyinghe path of the finger, as
shown in Fig. 3.3(b). Here, the obstacle acts as a statiamargtraint since the finger
cannot penetrate the obstacle surface. This alters thewvaltieas of the policy, as the
finger moves along the surface due to the constraint. Thewbeld representation of
this constrained behaviour is shown in black in Fig. 3.3(c).

In itself, a stationary constraint such as this applied ®ghblicy does not cause
problems for standard approaches to policy learnimgyided that the constraints are
consistent across observationshat is, if the constraint matrix is the same function
of stateA(x,t) = A(x) in all observations, the constraints can be absorbed irgo th
policy model, i.e. we can learn the constrained policy magpiy : X — U where
Ty (X) = N(X)T(X). As already mentioned, this is exhibited by many existingl&s
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where policy-based learning has been applied to problenesenixed constraints are
implicit in the movement; ref. Ch. 2.

The difficulty, however, arises when there is the possybditvariation in the con-
straints appearing in the data, for example if the shapatipo®r orientation of the
obstacle in Fig. 3.3(b) changed between or during obsemnsti If this is the case,
applying traditional approaches to learning in this scienaould result in one of two
possibilities. The first is that if the observations &elled with respect to the con-
straint, one could learn a separate policy model for the behavioeach of the set-
tings. In other words, we could learn a set of policigs for each constrainN;,

i € {1,...,N}. However, this is unsatisfactory, since each model woulg bae valid
for the specific setting (i.e. specific obstacle configurgti@and we would need in-
creasing numbers of models as we observed the policy undecomstraints (obstacle
configurations).

The second possibility arises when the data is eith@abelledwith respect to
the constraint or contains a mixture of observations undérent constraints. In
this case, one might try to perform regression directly am abservations, that is
observations from both vector fields (cf. Fig. 3.3(c), blackl red vectors). However,
this presents the problem nbn-convexityn the training data, which causes difficulties
for many supervised learning algorithms.

The problem is illustrated in Fig. 3.4(a). There we show agyatt constrained in
two different ways. In the first observation, the constraint prevents movement in the
direction normal to the vertical pIaﬁeFor the second observation, the constraint
only allows movement in the horizontal plane. To the leardeta from these two
scenarios appeamn-convexin the sense that for any given pokin the input space
multiple observed outputs exist. Directly training on these observations with many
supervised learning algorithms would resultnmodel-averaging Here, averaging of
u1, Uy results in the prediction that is clearly a poor representation of the true paticy
both in terms of direction and magnitude of the predictiaes$. (Fig. 3.4(b)). In order
to avoid this, we need to explicitly consider the effect ofisaints when learning.

A second problem that arises when training on data from caingid policies
(3.11)—(3.12) is that otlegeneracyin the data. This stems from the fact that, for
any given set of projected (constrained) policy observatiohere exist multiple can-

2It should be noted that in general the orientation of the trairg plane onto which the policy is
projected may vary both with state position and time.
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() (b)

()
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Figure 3.4: lllustration of the effect of constraints on the unconstrained policy, the aver-
aging effect of standard DPL and the degeneracy problem. (a) Two constraints applied
to the policy Ttresult in projected observations Uz, Uy. (b) Direct regression results in av-
eraging of the two movements U in a way that cannot explain the observations. (c) Two
policies Tt TT that both may be constrained in such a way as to produce the observation

Uo.

didate policies that could have produced that movement.ca@lise for this is that the
projection eliminates components of the unconstrainettydhat are orthogonal to
the image ofN(x,t) so that the component af in this direction is undetermined by
the observation. For example, consider the constraineeredsonu, in Fig. 3.4(c).
There, the restriction of the motion in vertical directiomglies that we do not observe
the vertical component af. Given onlyu,, we cannot determine if the poliagyor an
alternative, such ag (ref. Fig. 3.4(c)) produced the observation. In effect we rawt
given sufficient information about the unconstrained polacguarantee that it is fully
reconstructed.

This problem cannot be avoided when dealing with statiocanstraint systems.
However, despite this, we wish to do the best we can with the aaailable. In the
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methods developed in this thesis, we adopt a strategy wiaevedook for policies
that are, as a minimum, consistent with the constrainedreéisensu. For exam-
ple, returning to Fig. 3.4(c), if we only observe, (that is the policy under a single,
specific constraint) the simplest (and safest) strategyldvoe to use that same vec-
tor as our prediction. In this way, we can at least accurgisdgict the policy under
that constraint (albeit only under that particular conatja If we are then given fur-
ther observations under new constraints, we can recoveg mtmrmation about the
unconstrained policyt For instance, observing; eliminates the possibility that
underlies the movements since it cannot project onto betandu,. Applying this
strategy for increasing numbers of observations, our madlehot only generalise
over the constraints seen, but also come closer to the utnaoresl policyrt

Finally, it should be noted that if, in all observations,te@r components of the
policy are always constrained, then we can never hope toventbose components.
However, in such cases it is reasonable to assume thatsgé twmponents are always
eliminated by the constraints, then they are not relevantHe scenarios in which
movements were recorded.

In the following chapters, we propose several methods bghwve can overcome
these problems to learn a good model of the paticwithout need for explicit knowl-
edge of the constraintd(x,t), and that is, at the very least, consistent with all the
observations under the constraints seen in the data.

3.3.3 Forced-action Constraint Systems

The final class of constrained system that we consider isafh&rced-action’ con-
straints, i.e. the system (3.2)—(3.4):

A(x,t)T(x) = b(x,t)
with policy observations
u(t) = A(x,t)Tb(x,t) + N(x,t)T(x).

Here, the effect of the constraints is two-fold. First, $anto the stationary constraint
case, the policytis restricted in the sense that the action components asttaddo
the image ofN(x,t) are projected out of the observations. However, in this tase
is the further complication that the observed actions gorga additional component
that is independent of the policy, due to the additive térfr,t)Tb(x,t). This term can
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(b)

Figure 3.5: Finger extension under moving constraints. The fingertip is constrained to
maintain contact with the obstacle as the obstacle moves. The observed policy (red)
is now a combination of forced movement due to the motion of the obstacle (light blue)

and constrained policy (black) components.

be thought of as a ‘forced action’, i.e. an action that mustialzen in order to satisfy
the constraints.

For example, consider again the finger-extension policth Wie constraint that
the fingertip maintains contact with the surface of the aldefdbut this time with an
external force moving the obstacle. This is illustrated ig. B.5 for the same policy
as that in Fig. 3.3. Here, the finger extends along the sudatee obstacle until it
reaches the contact point furthest from the base of the fifagerclosest to the fully
extended position). However, as the obstacle moves towardinger, the finger is
forced away from the fully extended position. In the vecteldiview, Fig. 3.5(b), the
observed motion (red) contains a component due to the @imett policy (blackd and
an additional component due to the motion of the obstacies{bl

Constraints of this form are also commonly applied in the rdf redundant
manipulators (Sec. 3.2.1 and Sec. 3.2.2), where the faactgdn component (also
known as the task- or Operational Space component) is usatstoe that the system
follows some desired trajectory (e.g. in end-effector spac applies a desired set of
forces.

With regards to learning, the same problemslefeneracyandnon-convexityap-

3This is identical to that of the policy subject to stationapnstraints (compare black vectors in
Fig. 3.5(b) and Fig. 3.3(c).
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ply for this kind of constraint, as for the stationary coasit case (ref. Sec. 3.3.2).
However, in addition to this, the added movement compom&hided by this kind of
constraint results in ambiguity as to what parts of the olzgems belong to the policy
and which to the constraint. If it is assumed that no prionkedge about the con-
straints (i.e.A(x,t) andb(x,t)) is given, then there is the problem of separating the
two components of action before learning can proceed. Tauditigor's knowledge, it
remains an open problem whether the policy can be learntrahnidekind of constraint.

3.4 Feasibility of Learning and Measuring Performance

In the preceding three sections, we saw how different céagkeonstraint affect our
observations and the problems this causes when trying tehtioel underlying policy.
In particular, we noted that in some cases, it may not be plest fully reconstruct
the unconstrained policy (due to the specific set of comgsaontained in the data),
but that we still wish to do the best we can with the data alielaGiven this to be the
case, in this section we explore possible limitations ofrieey in two ways.

First, we look at théeasibility of learningand characterise the conditions necessary
for accurate modelling in the ideal case. We present a geanagument and derive
the ideal set of observations necessary for exact recaistnuof the policy. We will
see that, though ideal observations are unlikely in reah dats, this analysis still
indicates that learning is feasible and even suggests saive methods that may lead
to a solution.

Second, we look at how we cameasure performanda settings where the con-
straints do not permit exact reconstruction. Specificallydefine a pair of error mea-
sures by which we can judge (i) how well our policy models espnt the observed
(constrained) data, and; (ii) the extent to which our mo@elegalises over constraints.
In later chapters we will use these measures extensivelystesa the quality of models
learnt by the algorithms developed in this thesis.

3.4.1 Exact Geometric Reconstruction of Policies

Given the difficulties highlighted in the preceding secsipane may ask whether it is
plausible to expect any learning algorithm to be able to metact the policy from

constrained observations, or whether the problem itsélfp®sed. However, as an in-
dication of the feasibility, we can perform a geometric gsgl to see how, under ideal
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conditions, it is possible to exactly reconstruct the pofrom projected observations
(Howard and Vijayakumar, 2007).

Theorem 3.4.1.Exact Reconstruction of Projected Policies

Given observationsi, = Nyt n = {1,...,N} of a policy (x) projected into the
nullspace of a set of N constraints at a poiin the state space; if the constraints
are such that the observations span the action space, thenrhonstrained policy
can be exactly reconstructed as

m=u”" (3.13)

whereu” is the solution to the linear system
ulu*=d (3.14)
whereU = (uy,...,uy) and the elements afare given by d = qun.

Proof. Consider that we observe a two dimensional politg, R?, constrained by a
number of constraints of the form

An = (0,02)n = Q. (3.15)

Under the constraints, the observations that weusee Nyt will lie inscribed in a
circle in the two-dimensional space with diameter equah® niorm of the (uncon-
strained) policy vector at that point, i.ety| , as illustrated in Fig. 3.6. Euclid’s theo-
rem states that any triangle inscribed in a semi-circle iglgt4angle triangle. Hence, if
we construct a line orthogonal to thé observatio; and find the appropriate triangle
whose hypotenuse matches the diameter of the circle, thexmmwealculate the length
of the vector along the hypotenuse and thus reconstructrtbenstrained policy vec-
tor. To do this in two-dimensional space, we can take two iagiens under different
constraintsls, uo, find the equations of the two lines orthogonal to those olagiens
and solve for the intersection poiat, to exactly recover the unconstrained policy
as illustrated in Fig. 3.6. Imdimensional space we can take a similar approach; there,
the constrained observations lie on a hypersphere, so varachhyperplanes normal
to each observation and solve for the intersection This leads to the system (3.14)
with the unconstrained policy given by (3.13).

Theorem 3.4.1 also suggests the following corollary.
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Figure 3.6: Under each of the different constraints (3.15), the policy is projected onto
a different manifold orthogonal to the constraint direction 0. These constrained policy
vectors Up lie inscribed in a hypersphere in state-space (left). Euclid’s Theorem can be

used to exactly reconstruct Ttgiven observations under different constraints (right).

Corollary 3.4.1. Given observations, = Ny, n=1,...,N of a policyr, at a point
X in state space, the observation with the largest ndury| lies closest to the uncon-
strained policy.

Proof. By inspection of Fig. 3.6, or by considering thd{x,t) is a projection ma-
trix, with k eigenvalues of value 0 art— k eigenvalues of value 1. Fewer constraints
(smallerk) results in larger norms;

These results indicate that, at least under these idealtoorg] it is possible to re-
construct the policy from constrained observations. Farrtiore, this gives us reason
to believe that a learning algorithm can be formulated td detx this problem. For
example, corollary 3.4.1 immediately suggests a posgidlieeit rather data-intensive)
solution: One could train in such a way that, as increasirggnkations under dif-
ferent constraints arrive, observations with smaller roare down-weighted in the
regression. As the amount of data presented to the leartreaises, the model should
come ever closer to the unconstrained policy. In fact, as Wesee in later chapters,
there are far more efficient ways to formulate the learningpj@m and find a good
approximation of the policy with relatively small data sets
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3.4.2 Error Measures

In the preceding section we saw how exact reconstructioneofihconstrained policy
at a given point in state space is possible under ideal dondjthamely, given a span-
ning set of constrained observations. In practice, howeweh ideal observations will
not, in general, be available and an approximation musetbex be made. In order to
measure the quality of this approximation, we must defineremeasures that reflect
our learning goals. In this thesis, the primary goals ofrieay are to (i) represent the
movement in such a way as to be at least consistent with thestf@ned) observa-
tions, and, (ii) where possible, fully reconstruct the umsteained policy to generalise
over constraints. To quantify these goals, we can defineoll@ving two metrics.
First, we define the normalisashconstrained policy errofnUPE) as
EupdT = iz % [17(n) — ft(xn) ||? (3.16)
Noj &
whereN is the number of data pointsyx,) andi(x,) are the (unconstrained) true
and learnt policy predictions at the poinéganda? is the variance in the true policy
over those points. The nUPE measures the difference betsaeeples of the (uncon-
strained) true and learnt policies, normalised by the naea Since the primary goal
of the approaches developed in this thesis is to find a goocbaippation of the un-
constrained policy, a low nUPE indicates good performahtse also that the nUPE
also gives an indication of how well the learnt policy willrgalise over different con-
straints, since if the learnt policy closely matches the traconstrained policy, then it
will also closely match the true policy under any arbitrargjpction (constraint).
The second measure we define is the normalkisetrained policy erro(nCPE)

N
Eopdl = 152 3 N (1) — ) (3.17)

where N, denotes the constraint (projection) matrix for th¢h point. The nCPE

measures the difference between the true and learnt golicider the projections,.

The significance of the nCPE is that it allows one to measurad¢beracy of the learnt

policy under a specific set of constraints (i.e. those emtdnyethe projectiondNpy).

For example, if we chosl, as the set of projections corresponding to the constraints

in force in the training data, then we can assess how well @mgetwill perform under

those same constraints. Alternatively, if we chbkgecorresponding to a set of novel,

unseen constraints, we can directly measure how well theypgéneralises to predict

behaviour under those new constraints.
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In later chapters we will use these measures extensivelypiapare the perfor-
mance of our algorithms against each other and againstrexsvlicy learning meth-
ods. We will also see how, considering the goal of learninggims of such measures
leads to novel approaches to learning (ref. Ch. 5).

3.5 Conclusion

In this chapter, we outlined a formal system for the analgsonstrained motion sys-
tems. Based on recent work in analytical dynamics, the fasmaprovides a simple
and intuitive way to deal with constraints both in terms & kinematics and dynamics
of a wide variety of systems. Further to this, we gave exampfats application in
terms of well-known kinematic and force-based control seb®for redundant manip-
ulators.

Using this model, we then discussed the implications thastaints have on the
learning of policies from raw observation data. We saw tivhile standard approaches
to policy-based learning are effective for learning frontamstrained or consistently
constrained data, they face difficulties when policies atgjext to several different
constraints. For stationary constraints, these can beetkrtime problems ohon-
convexityand degeneracy For forced-action constraints, these problems are furthe
complicated by additional components to the observed retioduced by the con-
straints.

Finally, we discussed our strategy for dealing with thesestaints by looking
for policy models that areonsistentvith the observations subject to the constraints.
We noted that, with a geometrical analysis, exact recocttru of the policy from
constrained observations is possible under ideal comditi®his suggests that learning
in this scenario is feasible despite the problems causedbsgt@ints. In the next
chapter, we discuss a method for doing this for the specis¢ ©d potential-based
policies, before going on to deal with the learning of gen@olicies in subsequent
parts of the thesis.



Chapter 4

Learning Potential-based Policies from

Constrained Motion

4.1 Introduction

In the previous chapter, we reviewed a formal framework &alohg with constraints in
movement and discussed the problems such constraints foaussandard approaches
to learning. We noted that direct regression of the obseagtidns and commands
is unlikely to produce satisfactory results when there amestraints due to model
averaging effects. Further, it was suggested that newithigos be developed that can
learn models that are consistent with the constrained vhens.

In this chapter, we describe a method for doing this for aigpelass of policies,
namely that ofpotential-based policies The method can be classed as an indirect
learning approach (cf. Sec. 2.2.3) in that it aims to repregelicies in terms of their
generating functions; in this case, the potential functioderlying the policy.

In the following we first describe in detail the definition opatential-based pol-
icy, and how dealing with these is a promising way to solve sahthe problems
with direct learning as outlined in in the previous chapt&e then go on to pro-
pose a method to learn potential-based policies for st@tjooonstraint systems (ref.
Sec. 3.3.2) through a local model alignment scheme. Finakylook at the perfor-
mance of the method on a number of constrained systems ohgasize and com-
plexity.

47
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4.1.1 Potential-based Policies

Potential-based policies are a special subclass of gep@iaes that are conservative
in the mathematical sense. Specifically, a generic patiey € R" — RY is a vector
fieldy = f(x) € RY on on the state-spasec R", wheren,d are the dimensions of the
input/output state spaces, respectively.

According to the Helmholtz decomposition, any vector figld may be comprised
of rotational and divergent components

f(x) = Dx x @ (x) + Ox@(x) (4.1)

where® and@ are vector and scalar potentials, respectively. A potehtaed (i.e.

conservative) policy is one for which the first term in (4.4)zero so that the policy
can be fully represented by the potential functigix). This leads to the following
definition:

Definition 4.1.1. Conservative Policies
A conservative (i.e. potential-based) policy is a policfirted through the gradient of
a scalar potential functiop(x)

(X) = —0Ox@(x), ¥xeX (4.2

where X is the region of the input (state) space of interest.e Nlwat policies may
be globally or locally conservative, that is, there may bgioes outside X where the
vector field is non-conservative (Boas, 2006).

A necessary and sufficient condition for a policy to be covesiere (potential-based)
is that it haszero curlin the regionX:

Ox x1(x) =0, W¥xeX. (4.3)

The curl of a vector field is a measure of rotational flow of tieédfiso if the curl is zero
the policy contains no rotational components. In other wppdtential-based policies
do not contain periodic behaviour; for example, a limit @/chnnot be represented as
a potential-based policy. Instead, potential-based jeslicepresent divergent attrac-
tor landscapes where the minima of the potential correspostable attractors, and
maxima correspond to repellors. They can be also be thodigistmolicies that greed-
ily optimise the potential function at every time step (Nikea, 1991). An example
is given in Fig. 4.1 where a potential function with three ma (repellors) and two
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Figure 4.1: Potential function with three maxima (repellors) and two minima (attrac-
tors). Overlaid are the corresponding unconstrained policy vectors (black) and a set of

constrained policy vectors (red).

minima (attractors) is shown, and the corresponding pasioyerlaid (black vectors).

A wide variety of behaviours may be represented as potelndis¢d. For example,
reaching behaviours may be represented by a potential dafifeand space, with a
single minimum at the target. Furthermore, decision-basédviours may be encoded
as potentials (Krding and Wolpert, 2004; &ding et al., 2004; Chajewska et al., 2001,
1998). For example, when reaching for an object, a potemizgl be defined with two
minima, one corresponding to reaching with the right halnel gther reaching with the
left. The decision of which hand to use for reaching wouldstha determined by the
start state (e.g. reach with the closest hand) and thevelafiset of the two minima
(e.g. right-handedness would imply a lower minimum for thamnd). Potential-based
policies are also extensively used as nullspace policiesntrol of redundant manipu-
lators (Gienger et al., 2005; English and Maciejewski, 2@taumette and Marchand,
2001; Choi and Kim, 2000; Nakamura, 1991; Yoshikawa, 198&{, far navigation
and obstacle avoidance problems in mobile robotics (Ren,e2@06; Conner et al.,
2003; Rimon and Koditschek, 1992). Furthermore, in reirdarent learning and op-
timal control (Bertsekas, 2007; Sutton and Barto, 1998; Toeda2006), policies that
are greedy with respect to the value function can be thoulgas potential-based, in
the sense that the policy does a gradient descent on thefualctéon.
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4.1.2 Learning from Constrained Potential-based Policies

If the policy under observation is potential-based, anaiégolution to solving the
non-convexity and degeneracy problems is to model the yslmotential function
(Howard et al., 2008a,b; Howard and Vijayakumar, 2007)eathan modelling it di-
rectly. This is due to a special property of constrained midebased policies, namely
that observations of the constrained movements give uswmaton about the shape of
the underlying potential, up to a translationgicorresponding to constants of integra-
tion for the observations.

In Fig. 4.1 this is shown for a potential function defined ogemwo-dimensional
state-space (top and 3-D perspective views). The potdatation (colours) and un-
constrained policy (black vectors) is shown, along with plodicy subject to a con-
straint (red vectors). For the case of potential-basectieslithe policy vectors are
given by the gradient vector of the potential (as expressdd.R)). This means that
the (unconstrained) policy vectors point in the directidrsteepest descent, with the
magnitude equal to the slope in that direction (Fig. 4.1clblgectors).

Now, if a constraint is applied, the direction and magnitoflthe vectors change.
In the example in Fig. 4.1 the constraint prevents movemennhe dimensionX di-
mension in Fig. 4.1, left) so that only motion correspondimghe second dimension
(y dimension in Fig. 4.1, left) is observed. The vectors nownpai the direction of
steepest descestibject to the constraintith magnitude equal to the slope of the
potential in that direction, as can be seen from Fig. 4.htritn other words the pro-
jected vectors correspond to ttigectional derivative®f the potential, in the direction
parallel to the observations.

This lends us the opportunity of modelling the unconstraipelicy, by piecing
together information about the slope of the potential ifiedént directions. For each
observation (e.gu; in Fig. 3.4) we get information about the directional detivain
that direction (i.e. the direction parallel tg). This means we transform the problem
of combining a set oh-dimensional vector observations (ref. Sec. 3.4.1) to dne o
‘piecing together’ local estimates of the slope of the ptén

A convenient method for doing this for policies with a lineatationship between
actions and state-changes (i.e. those for whiehx , such as kinematic policies) is to
use line integration to accurately estimate the form of tbeeptial along trajectories
(Howard et al., 2008a,b; Howard and Vijayakumar, 2007; Howet al., 2006) and
then use these local estimates to build a global model of divengial. We outline a
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method for doing this in the next section.

4.2 Learning Policies Through Local Model Alignment

In the following we propose a method for modelling the patdrftom constrained
motion data for a kinematic policy subject to stationarystomints. Specifically, we
assume we are given a setlobbserved trajectorig(t), uk(t) = X(t)) that, during
any given observation, may have been constrained (profeate= Nk (X, t)T(Xk(t))
(ref. (3.11)), with unknown projection matriXy(x,t). Our goal is to uncover the
unconstrained policyt(x) = —Ox@(x) by modelling the potential functiop(x). To
do this, we first model the potential on a trajectory-wiseidasing numerical line
integration. We then consolidate these trajectory-wisel@susing results from re-
cent work in dimensionality reduction (Verbeek, 2006; \é=k et al., 2004) to ensure
consistency. Finally, we use these consistent models ta E@lobal model of the
potential function, and thus the policy, for use in control.

4.2.1 Estimating the Potential along Single Trajectories

As has been described in (Howard et al., 2008a,b; Howard #@agakumar, 2007;
Howard et al., 2006), it is possible to model the potentiahglsampled trajectories
using a form of line integration. Specifically, combiningX3) and (4.2) fou = X, the
(continuous time) state evolution of the system is given by

X = N(X,t)1(X) = —N(X,t)Ox@(X) (4.4)
Let x(t) be the solution of (4.4). If we line-integrate alorg@) we have

s ts
[0 dx= [ (0@ Txdt= - [ (G N To)dt,  (45)

to to

wherety andts are the start and finishing instants>gt). We assume that we have
recorded trajectories(t),X(t) of lengthT sampled at some sampling rat&di Hz so
that for each trajectory we have a tuple of poiKi{s= X 1,...,Xx 5. Now, assuming
the sampling rate to be sufficiently high, we can make a liaggroximation to (4.4)

Xi+1 ~ Xj + Ot Ni 15 = X; — &t N; Ux@(X;) (4.6)
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and (4.5) can be approximated using an appropriate nurhariegration scheme. An
example of such a scheme is Euler integration, which inotiie first order approxi-
mation

O(Xi+1) ~ Q(Xi) + 6_1,[(Xi+1—xi)TNli(P<Xi)~ (4.7)

Since the effect of the time constatis simply to scale the discretised policy vectors,
we can neglect it by scaling time units such tbtat 1. This comes with the proviso that
for implementation on the imitator robot, the learnt poliogy need to be scaled back
to ensure that the correct time correspondence is kept.t€os»s — X;1 that follow
the projected policy (3.4) we can rearrange (4.6) with ttadesttime coordinates, and
substitute into (4.7) to yield

O(Xit1) ~ Q(xi) — [[xiz1 — Xi|%, (4.8)

where the negative sign reflects our assumption (as exjgresé€.2)) that attractors
are minima of the potential. We use this approximation toegate estimateé(xi)
of the potential along any given trajectoxy, x»...Xy in the following way: We set
@ = ¢(x1) to an arbitrary value and then iteratively assign; := @ — [|Xi+1 — Xi||2
for the remaining points in the trajectory.

Note that an arbitrary constant can be added to the potemtiation without
changing the policy. Therefore, ‘local’ potentials that @stimate along different tra-
jectories need to balignedin a way that their function value matches in intersecting
regions. We'll turn to this problem in the next section.

4.2.2 Constructing the Global Potential Function

Let us assume we are givéhtrajectoriesXy = (Xk1,Xk2 . . - Xkn,) and corresponding
point-wise estimate®y = (@1, 2. - - @) Of the potential, as provided from the Eu-
ler integration just described. In a first step, we fit a fumctinodelkp,(x) of the poten-
tial to each tuple Xy, dy), such thatp(x;) =~ ¢ Although in principle any regression
method could be applied here, our options are somewhatlihiiy the fact that these
possibly non-linear models have to be acquired from the fata goints available in
each trajectory. To avoid unnecessary complications, e a nearest-neighbour
(NN) regression model, i.e.,

®(X) = Dye , i* =arg fTi“nHX—inllz- (4.9)
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Since we wish to combine the models to a global potentialtftancwe need to define
some function for weighting the outputs of the different raksd For the NN algorithm,
we choose to use a Gaussian kernel

1 2
W (X) = exp ~ 552 mi|n||x—xk,|| : (4.10)
From these weights we can calculate responsibilities

o Wk(x)
W)= S w(w)

and a (naive) global predicticfp(x) = z,’le qk(x)fp,((x) of the potential ak. However,

(4.11)

as already stated, the potential is only defined up to aniaddibnstant, and most
importantly this constant can vary from one local model tothar. This means that we
first have to shift the models by adding soofésetto their estimates of the potential,
such that all local models aiie good agreemenabout the global potential at any
number of states.

Fortunately, a similar problem has already been tackleldaniterature: In the field
of non-linear dimensionality reduction, Verbeek et al.q2Pphave shown how to align
multiple local PCA models into a common low-dimensional gda particular, they
endowed each local PCA model with an additional affine mappitg) = Axz + by,
which transformed the coordinatggof a data poinwithin the k-th PCA model into
the desired global coordinate system. Verbeek et al. (2@@r¢ved the parameters of
the optimal mappinggk by minimising the objective function

M K K

1
E=33 3 3 GG gjm|* (4.12)
m=1k=1]=1

wheregkm denotes the coordinate of theth data vector, as mapped through Kdh
PCA model, andj, is the corresponding responsibility of that model. The otije
can easily be interpreted as the ‘disagreement’ betweervamynodels, summed up
over all data points, and weighted by the responsibilitiesvo models each. That is,
the disagreement for any combinationmfk and j only really counts, if the respon-
sibility of both thek-th and thej-th model is sufficiently high for the particular query
point. Notably,E is convex and can be minimised by solving a generalised eides
problem of moderate dimensions, that is, there are no logahm, and the solution
can be found efficiently.

In analogy to the PCA-alignment method (Verbeek et al., 20@4)augment our
local potential modeIéK(-) by a scalar offsdb, and define the corresponding objective



54 Chapter 4. Learning Potential-based Policies from Constrained Motion

function as
1M KK
= Ok(Xm)dj (Xm) <
173,22, 2,
((@c(Xm) +bi) — (@} (Xm) +bj))?, (4.13)
or, in a slightly shorter form,
1 ~ ~ 2
E(b) =3 Z_QKmCIjm (Qm+ bk —@jm—hj)”~. (4.14)

Here, , denotes a summation over the complete data set, that isabbyeints from
all trajectories 1 = $X ;| Ny). Using the symmetry ifj < k and s, on = 1, we split
(4.14) into terms that are constant, linear, or quadratig jiyielding

E(b) = ;CIkm([ﬁm CIkajm;PKmEij
m, |,k

+25 Qem@ambk —2'S GQemjm®jmbik
% %

+3 GbE— S Gkmjmbib;
r%( mBk m%j mUjmBkDj
— Eg+2a'b+b"Hb. (4.15)

Here, we introduceéfy as a shortcut for the terms independeriy athe vectora € RX
with elementsa, = ¥ i Okm®m — ¥ m j Gkmdjm@jm, and the Hessian matrid € RK*K
with elementdj = &ij ¥ mdjm — Y mGimdjm. The objective function is quadratic in
S0 we retrieve the optimal solution by setting the derieito zero, which yields the
equationHb = —a.

However, note that a common shift of all offsé{sdoes not change the objective
(4.13), which corresponds to the shift-invariance of thabgl potential. Therefore, the
vector(1,1,...,1)T spans the nullspace &f, and we need to use the pseudo-inverse
of H to calculate the optimal offset vector

Compared to aligning PCA models, the case we handle here isssimphe sense that
we only need to optimise for scalar offséisinstead of affine mappings. On the other
hand, our local potential models are non-linear, have tostienated from relatively
little data, and therefore do not extrapolate well, as wélldiscussed in the following
section.
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4.2.3 Smoothing Parameter Selection and Outlier Detection

Since we restrict ourselves to using simple NN regressioth®local potential mod-
els, the only open parameter of our algorithnofs i.e., the kernel parameter used for
calculating the responsibilities (4.10). A too large cleoad this parameter will over-
smooth the potential, because the NN regression modeldiigspredicts a locally
constant potential, but at the same time trajectories \&erelatively high responsi-
bilities for even far apart pointsin state space.

On the other hand, a too small valueasf might lead toweakly connected trajec-
tories If a particular trajectory does not make any close appréadciher trajectories
in the set, the quick drop-off of its responsibility impligeat it will not contribute to
the alignment error (based on pairs of significant respditg)bwhich in turn implies
that its own alignment — the value of its offset — does not enattuch.

The same reasoning applies to groups of trajectories tkatlase to each other,
but have little connection to the rest of the set. For the red® of this chapter, we
will refer to such trajectories as ‘outliers’, since like @hassical statistics we need
to remove these from the training set: If their influence om derall alignment is
negligible, their own alignment can be poor, and this beeaproblem when using
the output of the optimisation (4.16) to learn a global maxfehe potential. To avoid
interference, we only include trajectories if we are sui their offset is consistent
with the rest of the data

Fortunately, outliers in this sense can be detected auicatigtby looking for
small eigenvalues dfi: In the same way as adding the same offset to all trajecto-
ries leads to a zero eigenvalue, further very small eigeiegénd the corresponding
eigenvectors indicate indifference towards a shift of seoieset of trajectories versus
the rest of the set. In practice, we look for eigenvales 10~8, and use a recursive
bi-partitioning algorithm in a way that is very similar toesgral clustering (Kannan
etal., 2004). We then discard all trajectories apart frooséhin the largest ‘connected’
group. Please refer to Sec. 4.2.4 for details of this step.

Finally, with these considerations in mind, we select thestning parametes? to
match the scale of typical distances in the data sets. Irf 2ibcexperiments presented

LIt should be noted that these trajectories are not outliethié sense of containing corrupt data
and could in fact be used for further training of the modelr &mample, one could take a hierarchical
approach, where groups of strongly connected trajectaresaligned first to form models consisting of
groups of trajectories with good alignment. We can thennsicely repeat the process, aligning these
larger (but more weakly connected) groups until all of thieadeas been included.
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here we used the same heuristic selection. In particuldiystealculated the distances
between any two trajectorids j € {1...K} in the set as the distances between their
closest points

dij = min{|[Xkn— Xjm||? | n,me {1...N}}, (4.17)

and also the distances to the closest trajectory
d" = min{dy; | j #k}. (4.18)

We then consider three choices fof, which we refer to as ‘narrow’, ‘wide’ and
‘medium’;

02y = median{di™ ke {1...K}} (4.19)
0%q = median{dy | j.ke {1...K},j#k} (4.20)

o-r2ned =\ O-%aro-\%/id' (4'21)

In Sec. 4.3.1 we give a comparison of the learning performdoc each of these
choices ofo? for policies of varying complexity.

4.2.4 Recursive Bi-partitioning for Outlier Detection

In the following, we describe our mechanism for detectiraettories (or groups
thereof) that we need to discard from the training set bd&aming a global model of
the potential. To this end, similarly to spectral clustgriwe look at the eigenvectors
belonging to all small eigenvalues of the Hesdth(4.15). Let

V = (viv2...vp)' where Ajvi=Hv;, A\ <108 (4.22)

That is, if H was calculated from 100 trajectories and Imas 7 small eigenvalues,
V would be a 7x 100 matrix. We then cluster the columns \éfinto two centres
c1,C2 € R". Since each column &f represents a trajectory, we effectively partition the
training data into two groups whose relative potentialetffsas negligible influence on
the alignment objective function (4.15). For both groups,repeat the process using
corresponding sub-matrices ldf That is, we recursively split up our trajectories into
groups until there is only one zero eigenvalue left in eadugr(corresponding to
v = 1, the constant shift of all trajectories in that group). Thegess is visualised in
Fig. 4.2.
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Figure 4.2: lllustration of our recursive outlier detection scheme. At any stage, we look

for non-trivial small eigenvalues of the alignment Hessian, and if those exist, we split
the trajectories into 2 independent groups (red and blue). From left to right: 1) top-level
partitioning 2) splitting up the red group from step 1, 3) splitting the red group from step
2, 4) splitting the red group from step 3. The largest connected group consists of the

blue trajectories from step 3, which we use for training the global model.

4.2.5 Learning the Global Model

After calculating optimal offsetbopt and cleaning the data set from outliers, we can
learn a global modef(x) of the potential using any regression algorithm. Here, we
choose Locally Weighted Projection Regression (LWPR) (Vikayaar et al., 2005)
because it has been demonstrated to perform well in casesg Wieedata lies on low-
dimensional manifolds in a high-dimensional space, whictames our problem of
learning the potential from a set of trajectories. As thantrg data for LWPR, we
use all non-outlier trajectories and their estimated ptaénas given by the Euler
integrationplustheir optimal offset, that is, the input-output tuples

{ (Xkm, @en +be™) [ k€ K,ne {1...N}}, (4.23)

where K denotes the set of indices of non-outlier trajectories. éwe have learnt
the modelkp(x) of the potential, we can take derivatives to estimate theusirained
policy fi(x) = —Ox@(x). For convenience, the complete procedure is summarised in
Algorithm 1.

4.3 Experiments

To explore the performance of the algorithm, experimentsewerformed on data
from autonomous kinematic control policies (Schaal e24103) applied to different

2Since the goal of the experiments was to validate the prapapproach, we used policies known
in closed form as a ground truth.
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Algorithm 1 Local Potential Alignment
1: EstimateX, ﬁ)k,{k: 1...K} using Euler integration. Calculate.

2: Alignment:

e Calculate prediction and responsibility of each local magiedn each data
pointXm, m=1...M:

(~P,<m = (NPK(Xm); Okm = Wk (Xm)/ 3 Wi (Xm).

e ConstructH,a with elements
hij = &j Ymim — YmGim0jm; 8 = ¥ mOkm®m— ¥ m j Gkmjm@jm-
e Find optimal offsetdop = —H'a.

3: Discard outliersi eigenvaluesh < 1079).

4: Train global model on data tuplesun, Gn+ bp™).

plants, including the whole body motion controller (WBM) ofetihumanoid robot
ASIMO (Gienger et al., 2005). In this section, we first disctesults from an artificial
toy problem controlled according to the same generic fraonkewo illustrate the key
concepts. We then discuss an example scenario in which goeithim is used to
enable ASIMO to learn a realistic bi-manual grasping tasknfrobservations of a
constrained demonstrator. We then give a brief discussidrow the algorithm scales
to policies in very high dimensional systems defined over ZXDbf the ASIMO
WBM controller (Gienger et al., 2005). Finally, we report therformance of the
algorithm when learning from data containing a set of patfiglal constraints.

4.3.1 Toy Example

The toy example consists of a two-dimensional system witlolecy defined by a
guadratic potential, subject to discontinuously switghtonstraints. Specifically, the
potential is given by

O(X) = (Xx—X¢) "W (X — X¢) (4.24)
whereW is some square weighting matrix which we set t63D andx. is a vector

defining the location of the attractor point, here chosereta.b= 0. Data was collected
by recording trajectories generated by the policy from & state distributiorko.
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Figure 4.3: Top: (a) Toy data (trajectories (2-D) and contour of true potential. Estimated
potential along the trajectories before (b) and after (c) alignment. Trajectories detected
as difficult to align ‘outliers’ are shown by light crosses. Bottom: Learnt (d) and true (e)

potential function after training on the aligned trajectories.

During the movement, the policy was subjected to randomtcaings
A(x,t) = (ag,a) =a (4.25)

where then; 2 were drawn from a normal distribution; = A((0, 1) . The constraints
mean that motion is constrained in the direction orthogtodhe vectora in state
space. To increase the complexity of the problem, the cainssr were randomly
switched during trajectories by re-sampliagwice at regular intervals during the tra-
jectory. This switches the direction in which motion is cwamed as can be seen by
the sharp turns in the trajectories (ref. Fig. 4.3(a)).

Figure 4.3 shows an example of our algorithm at work for a 6&t & 40 trajecto-
ries of lengthN = 40 for the toy system. The raw data, as a set of trajectoriesigjn
the two-dimensional state space, is shown in panel (a),edlsgranel (b) additionally
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depicts the local potential models as estimated from theritegration prior to align-

ment. Each local model has an arbitrary offset against the fiotential so there are
inconsistencies between the predictions from each locaemd-igure 4.3(c) shows
the trajectories after alignment, already revealing thecstire of the parabola.

At this point, the outlier detection scheme has identifigdéltrajectories as being
weakly connected to the remaining set. In Fig. 4.3(a), weseanthat the outliers are
indeed the only trajectories that do not have any interseatiith neighbouring tra-
jectories. At the ‘narrow’ length scale determined by theething parameter (4.19),
they are hard to align properly, and need to be discardeddédarning the global
model. Finally, Fig. 4.3(d) shows the global modegk) of the potential that was
trained on the aligned trajectories, which is clearly a gapdroximation of the true
parabolic potential shown in Fig. 4.3(e).

For a more thorough evaluation, we repeated this experioreta00 data sets and
evaluated

e the nMSE of thealigned potential, which measures the difference between
@ -+ b and the true potentiag, i.e.,

Ealign[0] ~ No2 Zl -
(pn

N
Z —@(Xn)), (4.26)

Z|H

where the notatiom(xn) is understood to already include the proper offset, that
is, @(Xn) = @y + by and Wherej(zp denotes the variance of the true potential;

e the NMSE of thelearnt potential, measuring the difference betweef) and

@), i.e.,

N

Epot[gp] = N_](-I% nzl ((~|)(Xn) — @(Xn) — U)z o M= %n ) ((])(Xn) - (P(Xn)), (4.27)

z

e the normalisedinconstrained policy error, (3.16), quantifying the difference
betweerft= 0@ andt= O,

¢ the normalisedonstrained policy error, (3.17), which is the discrepancy be-
tweenNTtandNTT, and finally;

e the percentage of trajectories discarded as outliers

on a subsample of the data held out for testing. Please naténtig4.26) and (4.27)
we subtract the mean differeneeand |, respectively, between the two quantities to
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Setup 0? Potential NMSE nUPE nCPE Disc. (%)
Parabola | narrow | 0.0052+0.0024 | 0.0486+40.0211 | 0.0235+0.0092 | 17.55+15.96
K =40 medium | 0.0195+0.0203 | 0.0859+ 0.0486 | 0.0224+0.0074| 0.48+1.11

N =40 wide 0.3143+0.1045 | 0.5758+0.2726 | 0.1135+0.0371 0+0
Sinusoidal| narrow | 0.0026+0.0019 | 0.1275+0.1125 | 0.0535+0.0353 | 50.18+ 14.37
K =40 medium | 0.05224+0.0645 | 0.1399+0.0422 | 0.0376+0.0097 | 1.034+3.99

N =40 wide | 0.5670+0.1363 | 0.8373+0.2188 | 0.2464+0.0638 0+0

Sinusoidal| narrow | 0.00144+0.0004 | 0.0657+0.0142 | 0.0308+0.0065 | 2546+ 11.42
K =100 | medium| 0.0019+0.0017 | 0.0628+0.0089 | 0.0284+0.0044 | 1.25+3.33
N =100 wide | 0.2137+0.1000 | 0.4262+0.1367 | 0.1554+0.0483 0+0

Table 4.1: Error and outlier statistics (mean=std.dev. over 100 data sets) for the ex-
periment on 2-D toy data. Here, the ‘narrow’, ‘medium’ and ‘wide’ choices of 0?2 were
calculated according to (4.19), (4.21) and (4.20), respectively. For brevity, we did not
include the figures for the alignment nMSE. These were only marginally different from

the potential nMSE.

remove the irrelevant global offset of the potentials. W b for our three different
choices ofo? given in (4.19)-(4.21). We also repeated the experimemtguai sinu-
soidal potential function

@(x) = 0.1sin(x1) cogX2)

with the same amount of data, as well as while usdfng 100 trajectories of length
N = 100 for each data set.
Table 4.1 summarises the results. Firstly, we can see tkdinide’ choice for

(4.28)

02 leads to large error values which are due to over-smoothirsing the narrowo?,
we retrieve very small errors at the cost of discarding caitet of trajectoried, and
the medium choice seems to strike a reasonable balancdakpetith respect to the
NUPE and nCPE statistics. Further to this, Fig. 4.4(a) depictv the nUPE and nCPE
evolve with increasing size of the training set, showing aatin decline (please note
the logarithmic scale).

Secondly, when comparing the results for the parabolic angsidal potentials,
we can see that the latter, more complex potential (withipialsinks) requires much
more data. With only 40 trajectories and 40 points each, wiodte data sets are too

3Please note that we also discard the outliers for evalugtmgrror statistics —we can hardly expect
to observe good performance in regions where the learnt hggglehas seen no data.
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disrupted to learn a reasonable potential model. While anéneow length scale (4th
row), on average more than half of the data set is discarded, the medium length
scale (5th row) over-smooths the subtleties of the undeglpotential.

Finally, the nCPE is always much lower than the nUPE, whiclofed naturally
when training on data containing those very movement caimss: Still, with a reason-
able amount of data, even the unconstrained policy can belteddvith remarkable
accuracy.

As a final test, we also performed experiments to assess tbe rubustness of the
proposed approach. For this, we again used data from theajicagotential and but
this time contaminated the observed stagewith Gaussian noise, the scale of which
we varied to match up to 20% of the scale of the data. The reguitJPE roughly
follows the noise level, as is plotted in Fig. 4.4(b).
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Figure 4.4: Learning performance on the quadratic potential (4.24) with varying data
set sizes and noise levels. (a) Potential NMSE, nCPE and nUPE versus data set size as
a percentage of the full K=40trajectories of length N=40. (b) Potential NMSE, nCPE

and nUPE for increasing noise levels in the observed X.

4.3.2 Reaching for a Ball

The two goals of our second set of experiments were (i) toattarise how well the
algorithm scaled to more complex, realistic constraint$ policies and (ii) to assess
how well the learnt policies generalised over differentstamints. For this, we set
up a demo scenario in which a set of trajectories demonsgy#tie task of reaching



4.3. Experiments 63

Figure 4.5: Example constrained trajectory used as training data in the ball-reaching
experiment. Starting with hands at the sides, the demonstrator robot reaches between
the barriers to get the ball. Note that the width of the gap in the barriers was randomly

altered for each trajectory recorded.

for a ball on a table were given. Furthermore, it was assurmatttajectories were
recorded under different contexts where different congsaapplied. The goal was
then to uncover a policy that both accurately reproducediémeonstrated behaviour
and furthermorgeneralisedo novel contexts with unseen constraints.

The example scenario was implemented using the whole botigm@&@VBM) con-
troller of the 27-DOF humanoid robot ASIMO (for details see@er et al. 2005). For
this, data was recorded from a ‘demonstrator’ robot thatefse of comparison with
the 2-D system, was defined by the same quadratic potent)(4.e.,

T(x) = —0x@(X);  P(X) = (X —Xc) "W (X —Xe), (4.29)

this time with the target point; € R® corresponding to a grasping position, with the
two hands positioned on either side of the ball. The stateesmwf the policy was
defined as the Cartesian position of the two hands, corregmpital 6 DOF$ (here-
after, the ‘task space’). Following the policy (4.29) withid set of parameters, the
demonstrator was able to reach the ball under each of thdraons considered in
this experiment (see below). Inverse kinematics via the WBMtrodler was used
to map the desired task space policy motion into the apptgpjoint-space velocity
commands for sending to the robot.

The demonstrator's movements were constrained by therpres® a barrier on
the table with a gap in it, placed so that the demonstratastrbad to reach through
the gap to get the ball (ref. Fig. 4.5). The barriers actedhagquality constraints on
each of the hands so that motion in the direction normal tobtmeier surface was

43 DOFs per hanc 2 hands.
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prevented if a hand came too close. Specifically, the cansireook the form

A(x,t) = Anz | O (4.30)
0 |Apy

0 A [2,2]

where
A]; dij <dmin and GgA; >0
A[L”(X,t) = 0 ; otherwise

Here, d; j is the distance of théh hand (where € {1,2}, i.e. left and right hands
respectively) to the closest point on tlign barrier (wherej € {1,2}, i.e. left and
right barriers respectivelyfij € R® is the normal to the barrier surfatat that point
andiy) € R3 is the normalised command for th hand (i.e. theéth 3-vector block
of the command vectar corresponding to that hand; for example, for the right hand
(i = 2) this wasuy = (ug, Us, ug)" with Upg = U /|uz [)- Here, the full constraint ma-
trix A(x,t) € R**® was constructed by assigning 3-vectors to the appropriatem
blocksAj; j;, according to the system state. For example, if the left Hardl) ap-
proached the left barrief & 1) to a distance afly 1 < dmin, and if the next commanded
movement would bring the hand toward that barrier @.ﬁ]ﬁl > 0), then the elements
of the constraint matrix corresponding to that hand/bapar were updated (in this
example the first row of the matrix would be updatad, = (ﬁI,O, 0,0), constraining
the left hand). Note that under this setup the constrai$hmhly nonlinear (due to
the complex dependence on state) and have discontinuaumsthsg dimensionality
(i.e. the rank ofA(x,t) switches) when either of the hands approaches or recedas fro
the barrier.

Data was collected by recordiig= 100 trajectories of lengths2at 50 Hz, (i.e.
N =100 points per trajectory) from the demonstrator followihg policy (5.10) under
the constraints (4.30). Start states were sampled from asgaudistribution over joint
configurationgy ~ A(qo, 0.11) (whereqo corresponds to the default standing position)
and using forward kinematics to calculate the correspanbdand positions. The joint
vectorg was clipped where necessary to avoid joint limits and sdlfstons, and to
ensure the start postures looked natural.

SNote that in order to ensure smooth, natural-looking ttajées the barriers were modelled as
planes with smooth ‘swept-sphere’ edges, similar to theseribed in Sugiura et al. (2007).
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Figure 4.6: Unconstrained reaching movement for the expert policy (black), the policy
learnt with the naive approach (green) and that learnt with the policy alignment algo-
rithm (red).

Constraint Naive Pot. Align.

Training 0.1298+0.0113| 0.1691+ 0.0289
Unseen Barrier 0.5108+0.0327 | 0.2104+ 0.0357
Unconstrained 0.8766+0.0589 | 0.2277+0.0386

Table 4.2: Constrained policy nMSEfor unseen constraints on the ball-grasping task.

Values are mean=s.d. over 50 data sets.

For each trajectory, the constraints were varied by randaménging the width
of the gap in the barriers. The gap widths were sampled fromaws8&8an distribution
dgap ~ N (Hgap, Ogap) Wherepgap = 0.25m, 0gap = 0.1m and the diameter of the ball
was 015m. The hand-barrier distance at which the constraints camoefance was
fixed atdmnin = 0.05m. Fig. 4.5 shows an example trajectory under this set-up.

We used our algorithm to perform learning on 50 such datausetg the ‘narrow’
choice of smoothing parametef. For comparison, we also repeated the experiment
on the same data, using a naive approach that legg: X — u € R" — R" by
training directly on the tuples$x;,u;),i = 1,...K x N and used LWPR to learn the
global model. This is in contrast to the proposed alignmeheme where we learn
the 1-dimensional potential function and use the gradiéttielearnt function as the
policy prediction.

For this task, our algorithm achieved a very low alignmenvreof 6.95+ 0.09 x
104, with 0.48+ 0.84% of the trajectories discarded, resulting in an NMSE @& th
learnt potential of B5+ 0.56x 10~4 (meants.d. over 50 data sets). In Table 4.2
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we give the errors in predicting the policy subject to (i) theeining data constraints
(nCPE), (ii) no constraints (NUPE), and (iii) a novel conisiiaunseen in the training
data, on a set of test data. For the latter, a barrier was ¢leeetrally between the
robot and the ball, so that the robot had to reach around thiebto reach the ball.

The remarkably low alignment error can be attributed to #ot that in most of the
observations the grasping task was achieved successgditd the constraints forc-
ing the hands to take alternative routes to the ball. Thisntne@ny of the trajectories
closely approached the minimum of the potential, makingaffgnment easier around
this point. This is further indicated by the low percentagjgaectories discarded.

The key result, however, can be seen by examining the patioys(ref. Table 4.2).
Comparing the two approaches, both achieve a similar nCPE tigtnaive approach
in fact performing slightly better. This indicates that thh® methods both do equally
well in modelling the movement under the training constranapproximately the
same level of accuracy.

However, when comparing the errors for the unconstraindéidyp@nd the policy
subject to the unseen constraint, a different picture eesertysing the model learnt
by the alignment approach, the unconstrained policy ptiedis, and the predictions
under the unseen constraint, maintain a similar level afrda that of the constrained
policy. In stark contrast to this, the naive approach fary poorly, with a large
jump in error when predicting the policy under the new barcenstraint and when
predicting the unconstrained behaviour.

The difference in the two approaches is highlighted if we pare trajectories gen-
erated by the two policies. In Fig. 4.6 we show example ttajees for the uncon-
strained reaching movement produced by the expert (blackl)the policies learnt by
(i) the naive approach (green), and (ii) the alignment apghdqred). In the former the
hands take a curved path to the ball, reproducing the avéxetgviour of the demon-
strated (constrained) trajectories — the naive methodablerto extract the underlying
task (policy) from the observed paths around the obstadiesontrast, the policy
learnt with the alignment approach better predicts the nsitained policy, enabling it
to take a direct route to the ball that closely matches thdte@gxpert (Fig. 4.6, right).

4.3.3 Learning from High-dimensional Joint-space Data

In our next experiment, we tested the scalability of our apph for learning in very
high dimensions. For this, we again used the quadratic patgd.24) where now
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the state vectox corresponded to the 22-dimensional joint configuratiorhefupper
body of the ASIMO humanoid robot (ref. Fig. 1.1). In this cdake policy (4.24)
represents an attractor in joint space that pulls the raiiota desired posture at.
For the experiments was chosen to correspond to a reaching posture with both arms
outstretched and we cho%¢ = 0.05.

In this experiment, the policy was constrained such thadahdrajectory one of the
hands of the robot was constrained to lie in a plane of randoent@ation. Specifically,
the constraint matri’ (x,t) € R1*22, took the form

Ax,t) = ALJi(x) (4.31)

wherefs € R? is the normal to the plane arli(x) € R2*?7 is the Jacobian mapping
from joint-space to the Cartesiatih hand velocity (withi € {1,2}, i.e. left and right
hands respectively), The constraints were alternateddestwhe left and right hands
for successive trajectories, so that the left hand was rinstd for half of the trajec-
tories, and the right hand was constrained for the remaindlbe plane orientation
s was drawn from a uniform random distribution. Similar coastts such as these
occur in a variety of behaviours where contact must be miaiedawith a surface; for
example, when writing on a whiteboard or when wiping a wind@ark and Khatib,
2006).

We ran the experiment on 50 data setsof 100 trajectories of length = 100,
with start states selected using the same process as agbsirithe preceding section.
Using the narrow setting of the smoothing parameter theriifgo achieved an align-
ment error of 16+ 0.3 x 102 with just 002+ 0.14% of the trajectories discarded.
Learning on this data with LWPR, we achieved an nMSE in the tepotential of
1.5+ 0.4 x 10~3, nCPE of 0065+ 0.014 and nUPE of 157+ 0.047. We consider
this to be remarkably good performance given the high dimoeasity of the input
space and the relatively small size of the data set.

4.3.4 Degeneracy due to Constraints

In our final set of experiments, we briefly explore the limdas in performance of

our algorithm for reconstructing the (unconstrained) @olhen, due to the particular
set of constraints found in the data, there is degeneradyeipossible solutions (see
discussion in Sec. 3.3.2). We found an illustrative exanopkhis can be found when

considering the movement of a constrained planar thréealim.
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The experimental set up was as follows. Data was collectauh fa simulated
planar arm with revolute joints and unit link lengths, mayaccording to the quadratic
potential (4.24) (withkc = 0andW = 0.051) from a random distribution of start states.
The movement of the arm was restricted by constraining tdeséiector to move along
a line. Mathematically the constraint matrix was

A(X,t) = AT Inand(X) (4.32)

wheren is a unit vector normal to the hand-space plane &ady(X) is the hand Jaco-
bian. The constraint was varied by altering the orientatibthe plane by drawing
from a uniform random distributiod; at the start of each trajectory.

We ran experiments on 50 such data sets each containin@00 trajectories of
lengthN =100. For this learning problem, the algorithm achieved nWdP& 3524+
0.1626 and nCPE of.0455+ 0.0276. The nMSE in the learnt potential wag 189+
0.1424 with 1028+ 8.25% trajectories discarded. In comparison the naive agproa
to learning achieved nUPE of&008+ 0.0274 and nCPE of.0105+ 0.0023.

The reason for the comparatively high nUPE here becomesitlea analyse the
effect of the constraints on the movement of the arm (seedFfg. In Fig. 4.7(a) the
training data trajectories are plotted over the three gooftthe arm. It can be seen
that the trajectories do not reach the point attractor-at0, but rather move to a line
in joint space (shown in black). This ‘line attractor’ repeats the minimum of the
potential that can be reached without breaking the comsgralNo trajectories travel in
the direction parallel to this line. Furthermore, away frilms line there are few points
where trajectories come close to one another or interséet.effect of this is that the
algorithm gets little or no information about how the potainthanges in the direction
parallel to the line.

This is confirmed by comparing how the nUPE and nCPE change anave
along the line attractor, and radially outward from it. lgFH.7 we show the potential
NMSE, nUPE and nCPE on data contained within different regairihe state space.

First, we evaluated the error on data points contained lestvixeo planes normal
to the line attractor at distanakfrom the point attractox = 0 (Fig 4.7(b), dashed
lines), and plotted it with increasirdy(Fig 4.7(d)). We can see that closexte- O, the
potential NMSE and nUPE start low but increase rapidly fayéa. On the other hand
the nCPE stays approximately constant over the entire set.

Second, we looked at how the errors change as we move radidiard. For this,
we evaluated errors on data contained within a cylinder @iusr centred on the line
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(d) 0.2 0.4 Radifj).se(rad) 0.8 1 (e) 0.2 0.4 Radi8.56(rad) 0.8 1

Figure 4.7: (a) Trajectories in state-space for the three link arm subject to random
planar constraints on the hand. (b) and (c) show projections onto the first two joints of
the arm, and also indicate the line attractor (solid black line). We sampled the nMSE at
increasing distances along the line (b) and radially outward from it (c). Plots (d) and (e)
depict the cumulative nMSE of the potential @, policy Tt and constrained policy (NTT) as

a function of the distance measures from (b) and (c), respectively.

attractor (Fig 4.7(c), dashed lines). Fig 4.7(e) shows ki@ege in error with increasing
radiusr. Again the nCPE remains constant. This time, however, thenpiad nMSE
and nUPE are high even at smallThis indicates that the points at the two ends of the
line are contributing most of the error.
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Clearly in this example, the adverse constraints in the itrgidata prevent our
algorithm from fully reconstructing the unconstrainedippl The constraints prevent
motion parallel to the line attractor so we cannot recoverfdihm of the potential along
that direction. However, the good performance in terms eft@PE indicates that, at
the very least, the algorithm is able to reconstruct thecgalnder the same constraints
despite these adverse conditions.

4.4 Conclusion

In this chapter, we explored the learning of policies fromstoained motion data, for
the special case of potential-based policies. We gave alatefinition of a potential-
based policy in terms of the curl properties of the vectodfagscribed by the policy,
and characterised the kinds of behaviour such a policy magds that is, discrete
movements such as goal-oriented reaching.

We then went on to discuss why this class of policy is amenableonstraint-
consistent learning. We noted the special property of piatielbased policies; namely
that the projected gradient vectors give us directionavd#ve information that can be
used to recover the shape of the potential. We then proposedehmethod to exploit
this property, allowing us to learn kinematic policies ®dbjto stationary constraints
indirectly, by modelling the underlying potential funatioThe proposed method is fast
and data-efficient, and it scales to complex constraintsgh-Hdimensional movement
systems. The core ingredient is an algorithmdlgning local models of the potentjal
which leads to a convex optimisation problem.

Given the difficulties in learning that we predicted in Ch.l8stmethod performs
remarkably well. Ultimately, the ability to learn the potiath depends on the con-
straints: Given a pathological set of constraints, one @memnhope to recover the
potential. However, using this method, motion data und#emint constraints can
be combined to learn a potential that is consistent with tieeovations. With a rea-
sonably rich set of constraints, we can recover the uncains policy with high
accuracy, and we cageneralise to predict behaviour under different constisin

Having proven then, the principle that learning policiesnirconstrained motion
data is feasible, at least for this restricted class of gnoisl (i.e. kinematic trajec-
tory data from potential-based policies), we are now in atjosto look for ways
to tackle more generic policy learning problems. In patégut is desirable that we
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remove the restriction to potential-based policies, tdbénas to learn more generic
movements, including rotational or periodic movementsgiample, stirring soup or
turning a crank or pedal. Furthermore, in order to extendribehod to more generic,
non-kinematic policies (e.g. force-based policies) anatsi@ationary constraints (ref.
Sec. 3.3.3) it will be necessary to remove the need to baptstie learning along ob-
served trajectories (ref. Sec. 4.2.1). In the next chaptemyill see how re-examining
the problem in terms of the objective functions used forredy leads to an alternative
approach to learning that no longer suffers from the rdgines of the potential-based
approach.






Chapter 5

Learning Generic Policies from

Constrained Motion

5.1 Introduction

In the preceding chapter we saw how, for the special casaehkatic, potential-based
policies it is possible to accurately learn the unconsgéaipolicy without need for ex-
plicit knowledge of the constraints. This was done usingttary data collected under
different constraints to find a model that was consistertt thie observations by seek-
ing the underlying potential function. We saw that this &yah is a great improvement
over the standard approach to direct policy learning, @utepming direct regression
in a number of experiments. However, it still suffers fronvesal limitations. Es-
sentially these are due to the assumptions (i) that the ypdipotential-based (i.e.
irrotational in the sense of having zero curl; ref. Sec.}.ii) the data is kinematic
(i.e. u=x) and (iii) the data takes the form of trajectories throughdtate-space.

In this chapter, we explore ways to remove these limitatiang learn generic
policies from observed state-action pairs for stationamstraint systems. We will
show that it is still possible to learn a good model of the @oii, without need for
explicit knowledge of the constraindé(x,t), and without the need for the restrictive
assumptions outlined above. In order to do this, the key toapproach will be to
reconsider theisk functionused for modelling the policy.

An outline of the chapter is as follows. First we will look affdrent risk functions
that may be used to optimise our model with respect to thegia¢s. We will assess
the suitability of several candidate error measures, doly the standard risk, the

73
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UPE and CPE (as defined in Sec. 3.4.2). We will then go on to pepmovel risk
function for learning, based amaximising consistenayith the constraints based on
projections of the unconstrained policy vector. We willlong how this new functional
can be used in combination with two example policy modelat ih parametric and
local linear policy models. Finally we will test the perfoamce of this approach on
several constrained systems of varying size and comp)esitylar those described in
the preceding chapter.

5.2 Learning Policies by Minimising Inconsistency

In this section we consider several candidate risk funstittrat could be used for

learning and assess their suitability with respect to tha d& are assumed given. We
will then propose a novel risk function (Howard et al., 20@9lhat both satisfies our

original assumptions, and promises to be effective foniegrfrom variable constraint

data.

5.2.1 Optimisation of the Standard Risk, UPE and CPE

As outlined in Sec. 3.3, throughout this thesis we targeblgrms where we are given
data in the form of tupleéx,,uy,) of observed states and constrained actions. We as-
sume that all commandsare generated from the same underlying potity), which
for a particular observation might have been constrainedtihe stationary constraint
problem (ref. Sec. 3.3.2), this means that we obsapve Np1i(Xn) for some projec-
tion matrixN,. We assume that the projection matrix for any given obsemas not
explicitly known, i.e. our data is unlabelled with respextiie constraints in force at
the time of observation.

Given this data, the first possibility that springs to mindoiperform direct least-
squares regression for learning. In this approach one waii#anpt to estimate the
policy 1(-) by minimising thestandard risk

N
Edirect[T] = Z lun — Ti(xn)[|. (5.1)
n=1

As already mentioned in Ch. 3, this is an effective approachHdarning from un-
constrained data (ref. Sec. 3.3.1) or data where the sanstraom appears in all
observations (i.e. the constraint mathxx) is the same static function of state for all
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observations). In the former case, one would obtain the fiiest the unconstrained
policy, and in the latter one would find the best fit to twnstrained policy under that
particular set of constraintsFor example, if one had several observations of a system
opening some particular door and in every observation tleg das the same, then
optimisation of (5.1) would be effective for learning.

The problem with this approach, however, is that it cannathadata where com-
mands are observed under variable constraints. As alsoionedtin Sec. 3.3.2, if
we consider an example where multiple observations arengiveler different con-
straints, optimisation of (5.1) would result in a naive agng of commands from
different circumstances (cf. Fig. 3.4, centre). In termswfdoor opening example, if
we observed the agent opening a new door and attempted tparate that into our
policy model, we would either get the average door openitigmcor have to start a
new policy model for the new door. We can therefore rule odit)(&r learning in this
setting, since it does not meet our requirements for acgwad generalisation.

An alternative approach then, might be to directly targetehror measures that
we use to measure performance (ref. Sec. 3.4.2). For exampleould attempt to
optimise our model with respect to theconstrained policy error

N
EupdT = Zl 176 — 7i(Xn)[|%. (5.2)

Optimising (5.2) would clearly give us the best fit to the pgliand in the case that no
constraints were in force, would correspond to direct regjom on the policy obser-
vations. This would also satisfy our accuracy and genextais requirements since,
as discussed in Sec. 3.4.2, we could project our policy madaty arbitrary way and
still hope to get a good nCPE. However, the problem here is Hyahssumption, we
do not have access to samples of the (unconstrained) pglieyri(x,) so (5.2) is not
available for learning.
Alternatively, we could try optimising for theonstrained policy error

N
Ecpel T = Zl 1un — NinFt(xn) > (5.3)

Optimising (5.3) would give the fit that imost consistent with the constrained obser-
vations i.e., it would minimise the error in the components of thdigyoalong the
dimensions left unconstrained in the observations. Conapareptimising the UPE,

it would not give such a tight fit, since the projectiddg eliminate components of the
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policy that could potentially contain errors. However, pigsthis, we could still hope
to get good generalisation given sufficient variability lke ttonstraints.

Unfortunately, there are a number of problems with usin@)(%or learning. In
most problems of interest, while it may be relatively easglémtify when a constraint
is in force it is usually much more difficult to determinghat that constraint is In
most cases constraints are not directly observable ane iheftenambiguityin what
features of motion are due to constraints and what are imhplithe policy itself.

For example, consider a contact control scenario such aagvipwindow. There,
we can identify the surface of the window asenvironmental constraiftpreventing
the wiping hand from penetrating the surface. We may alsuptifyea task constraint
preventing the hand from lifting from the surface, sincetachmust be maintained
for successful wiping. This is one reasonable analysis®&istem and, assuming it
to be correct, we may go on to estimate the constraint. Fanpkg we may model
the shape of the surface being wiped, assume constrainggasfiaular form and then
estimate the corresponding projectidds. This would then allow us to use (5.3) to
estimate the policy.

However, the difficulty here is that it is not clear how, in geal, such identification
of the constraints can be done. For example, while the abwalysis seems relatively
straight-forward to the expert human, it requires a ratle¢aited understanding of the
interaction between wiping hand and surface, and of theirements of the wiping
task. Such an analysis, if available, would considerabkedae learning problem
(allowing us to use (5.3) for higher-accuracy predictiortdpwever, it is not clear at
the present time how such an analysis may be automated irpéesivay.

An additional, and perhaps more critical, problem, howgigethat of ambiguities
in the observations that may lead to different analyses aedigtions of the true con-
straints. For example, it may be that tineconstrained policy itsetfxactly encodes a
wiping movement parallel to the surface, so that the presehthe surface is inciden-
tal. Alternatively, there could be additional task constrairdpplied that prevents the
hand from pressing hard against the surface. Note that waotalirectly determine
which is the correct analysis simply by observing the givesvement: If the win-
dow surface (environmental constraint) was removed in bbthese cases the wiping
would still appear to go on exactly as before. In this exantipds, there is ambiguity

Note that would in fact be an inequality constraint since/anbvement into the surface is restricted,
while movement away is unconstrained.
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in what features of movement are due to the policy, what aeetduhe constraints,
and exactly what constraints (if any) are in force.

To avoid these problems, in this thesis we take a differeptagzh. In Ch. 4 we
saw how, for the special case of potential-based polidias®s possible to achieve high
modelling accuracyvithout explicit knowledge of the constrair{te. without using
the projection®N,). In this chapter then, we will look for a similar approacaan with
the assumption that the constraifitg are unknown. While this may result in poorer
accuracy as compared to methods that explicitly use knaeled the projections, it
has the great benefit that the problems of modelling the caingt in the data are
avoided. To do this, in the next section we will look at anraégive risk function that
satisfies our assumptions while still promising high accyi@nd good generalisation
over constraints.

5.2.2 Optimisation of the Inconsistency

Having ruled out the use of (5.2)-(5.3) for learning in thettsig we must look for

alternative approaches. Our aim is to try to estimate a ypdtic) that isconsistent

with our observedl,, only using quantities that we can derive from the data. Tat
we wish to reconstruct the policy, knowing that it may be potg¢d in some way by
the constraints. At this point a key observation can be maderder to uncover the
unconstrained policy we must find a policy model that capiogected in such a way
that the observed commands are recovetadther words, we require

u(x) := Pri(x)

for an appropriate projection matrix, that either projects onto the same space as the
(unknown)N(x) (i.e. the image oN), or an (even smaller) subspace of that. One such
projection, which we know to lie within this subspace, is Ih® projection onto the
observed command itself, thatfts= (", with = u/||ul| (ref. Fig. 5.1). Furthermore,
sinceu is given, we have all the information we need to calculats ghojection and
use it for learning, neatly side-stepping the need to eiylimodel the full constraint
matrix N.

With this as motivation, we propose to repladgin (5.3) by a projection ontay,
and minimise thénconsistencyvhich we define as the functional

N

z lun — GnlF )2 = S (Fn— G (xn)? (5.4)

n=1
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Figure 5.1: lllustration of our learning scheme. The projection of the correct policy Tt

onto the observations matches those observations.

with rp= [|up||, On= ‘ﬁ—: Sinceun = NpTi, we can write]|un — NpTi(Xn)||% = ||Nn(Th —
7i(xn))||? and recognise that the CPE is always less than or equal to tEe héeause
the projectionsN,, can only decrease the norm of the difference between trupr@ad
dicted policy. The same argument holds for the inconsistemmr (5.4) where the
projection onto the 1-D subspace spannedifypossibly takes away even more of the
errof. So we can establish the inequality

Ei [T] < EcpelT < Eupd[TT.

Naturally, for estimating the correct policy, we would rathike to minimise arupper
boundof Eype but it is unclear how such a bound could be derived from tha de
are assumed given (we will revisit this issue in Ch. 6). Howewete that by framing
our learning problem as a risk minimisation task, we canyaptaindard regularisation
techniques such as adding suitable penalty terms to prevenditting due to noise.
The proposed risk functional (5.4) can be used in conjunatitth many standard
regression techniques. In principle, provided that thersuificient variability in the
constraints, policies of arbitrary complexity can be I¢dimited only by the represen-
tational power of the underlying regression model. (Nose &hat since the constraints

Note that, in the approach described in Ch. 4, since we lookflels that are consistent along the
direction of movement of the trajectories along the dittiwe also effectively minimise the error in
the same sub-space.
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do not explicitly enter into the risk calculation, the comty of the constraints does
not affect the performance of learning.) However, for thpegknents in the remain-
der of this chapter, we focus to two classes of function axprator for learning the
(unconstrained) policy to demonstrate how the risk fumala@an be used. The exam-
ple function approximators we use are (i) simple parametiaciels with fixed basis
functions (Sec. 5.2.3), and (ii) locally linear models (SB2.4). In the next section
we describe how the two models can be reformulated to takeraage of the new risk
functional.

5.2.3 Example: Parametric Policy Models

A particularly convenient model of the policy is given fyx) =Wb(x), whereW ¢
R9M is a matrix of weights, anl(x) cRM is a vector of fixed basis functions. This

notably includes the case of (globally) linear models whegeseth(x) =x= (xT,1)T,

or the case of normalised radial basis functions (RBHRS) = EM% calculated
j=1 -

from Gaussian kernel§(-) aroundM pre-determined centres i—1...M. With this

model, thenconsistencyerror from (5.4) becomes

N
E(W) = Z(rn—GIWb(Xn))Z
1

=]
z

= (rn—vlw)2 = Ei(w),

n=1

where we defined/=veqW) andvp,=vedlnb(xn)") =b(x,) @ Gy in order to retrieve
a simpler functional form. Since our objective function isagratic inw, we can solve
for the optimal weight vector easily:

Ew) = Sr2=25rmw+w’ Svavw
| Z n Z nvn ; nvVn

= Ep—29"w+w'Hw
yielding

wOP' = argminE; (w) = H g (5.5)
with H = $,,vpv! andg = 5, rnvn. For regularisation, we use a simple weight-decay
penalty term, that is, we selevxt‘r:’e%t = argminE; (w) +A]|w|?). This only requires
modifying the Hessian tel"9 = 5 vV} +Al.

Please note that the projection ontintroduces a coupling between the different
components oft, which prevents us from learning those independently asriseon
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in normal regression tasks. For the same reason, the site dld¢ssian scales with
O(d?M?). For convenience, pseudocode for the learning is given godtm 2.

Algorithm 2 Inconsistency Optimisation
1: Initialise policy model (e.g., allocate RBF cente@sind kernel size?).

2: Pre-calculation of terms:

e Findr, = |jun

, Un = up/rn, andvy = b(xn) ® G for each data point.
3: Optimisation:

Build HessiarH = ¥ ,vqyv/ and linear terng = 3, 1oV .

(Optional: Replacingd with H™9 = H +Al and assign regularisation pa-

rameted that minimised; |71 on validation data subset.)

Find optimal weightsv°P! = H1g

Reshap&VOPt = vec 1(wOP) for prediction.

5.2.4 Example: Locally Linear Policy Models

The basis function approach quickly becomes non-viableigh-dimensional input
spaces. Alternatively, we can fit multiple locally weightittear modelsity(x) =
BmX = Bm(x",1)T to the data, learning each local model independently (Serah
Atkeson, 1998). For a linear model centreat@atwith an isotropic Gaussian receptive
field with variances?, we would minimise

N
Ei(Bm) = Z an(rn - lAJIBm)?n)Z (5.6)
n=1
N 2
= Z an(rn _V-rll—bm) = Ej(bm), (5.7)
n=1

where we defineth,, = veqBp,) andvy, = ved (X! ) similarly to the parametric case.
The factors
1 2
Wnm = exq—@]\xn —Cml|%)
weight the importance of each observati@p, un), giving more weight to nearby sam-

ples. The optimal slopeBy, in vector form are retrieved by

boP' — argminE; (bm) = Hylom (5.8)
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With Hm = 3y WamVnV}, @andgm = 3 nWaml nVn.
For predicting the global policy, we combine the local lineaodels using the

convex combination " B
_ Ime1WmBmX

M
zrrb1Wm

wherewy, = exp(—%zﬂx—cmuz). For implementation, the pseudocode in Algo-

T(x)

rithm 2 can be used for each local model simply by making gmeite substitutions
to incorporate the weighting factong, in the calculation of the Hessiath,, and linear
termgm.

5.3 Experiments

To explore the performance of the new algorithm, we perfar@geriments on data
from autonomous control policies of varying size and comipfesimilar to those re-
ported in Sec. 4.3. In this section, we first discuss restdts fan illustrative toy prob-
lem, this time focusing on a on a rotational (i.e. non-poiased) policy. We then
demonstrate how the method generalises across constaikisematic data from the
7-DOF DLR lightweight arm (Sec. 5.3.2). Next, we repeat taé-teaching exper-
iment (ref. Sec. 4.3.2) using WBM control of the humanoid roA8IMO (Gienger
et al., 2005) and that of learning in the full 22-DOF ASIMO eppody joint space (cf.
Sec. 4.3.3). After validating the approach on these adifgystems where the ground
truth is known, we then explore the utility of the new appto&ar learning in a real
imitation learning setting: We demonstrate an applicabbour approach to enable
the ASIMO robot to learn a car washing task from observed llumavements (Sec.
5.3.5). Finally, in Sec. 5.3.6, the performance of the nepra@ch is compared with
that of the previous alignment-based approach of the pnegetiapter, using identical
data sets and with similar policy models.

5.3.1 Toy Example

Our first experiment demonstrates the learning of rotatipakcies from constrained
trajectories in a simple toy example consisting of a two-tigional system with dis-
continuously switching motion constraints. As an exampécy, we used a limit

cycle attractor of the form

F=r(p—r?), 6=w (5.9)
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wherer, 0 are the polar representation of the Cartesian state spacdimakes (i.e.
X1 =1rsinB, xo =r cosP), p is the radius of the attractor ardis the angular velocity
(see Fig. 5.2 (a)). For the experiments we get0.5 mandw=1 rad s with a
sampling rate of 50 Hz. Data was collected by recording 4j@dtaries of length 40
time steps each, generated by the policy from a random st distributionXo.

During the trajectories the policy was subjected to randwitching constraints,
similar to those described in Sec. 4.3.1, i.e. constraihtiseoform

A(x,t) = (ag,02) =a

where thea » were drawn from a normal distributiam = N(0,1). The constraints
mean that motion is constrained in the direction orthogtodhe vectora in state
space. As before, these were randomly switched by gengi@ahewa twice at regular
intervals during the trajectory, inducing sharp turns watgan be seen in Fig. 5.2 (b-d).

We used a parametric model to learn the policy through msation of the incon-
sistency (5.4) as described in section 5.2.3. We includeddbularisation term and
picked the parametér by minimising the inconsistency on a validation subset. For
this toy problem, we chose our function model as a set of 36hatised RBFs cen-
tred on a 6x 6 grid, and we simply fixed the kernel width to yield suitabledap.
We repeated this experiment on 100 data sets and evaluateditmalised UPE, CPE
(ref. Appendix 3.4.2) and the inconsisteAon a subset held out for testing. For com-
parison, we repeated the experiment using a naive apprbathttempted to perform
regression with the same RBF model directly on the constrasbedrvations, i.e., the
naive approach attempted to minimise the functional (5.1).

Figure 5.2 shows the true policy, the trajectories we trioe, the policies learnt
using our and the naive approach, and finally the error ststiselow the plots. With
an average nUPE of 0.0027, our method outperforms the napeach by orders
of magnitude. Notably, even with only 4 trajectories (Fig(6)), the reconstructed
policy already resembles the limit cycle, although largemr still persist in some
parts of the state space (e.g., the lower right corner).hEutb this, the top panel of
Fig. 5.3 depicts how the nUPE and nCPE evolve with increasag«f the training
set, showing a smooth decline (please note the log. scale).

In order to further explore the performance of our algoritlwe contaminated the
observed commands, with Gaussian noise, the scale of which we varied to match up

3Actually, for u € R? the inconsistency is exactly equivalent to the CPE, sindé becessarily
involve the same 1-D projection.
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to 20% of the scale of the data. The resulting nUPE roughlpid the noise level, as
is plotted in Fig. 5.3 (bottom).

5.3.2 Generalisation Over Unseen Constraints

The two goals of our second set of experiments were (i) toatdtarise how well the
algorithm scaled to more complex, realistic constraints@hto characterise how well
the learnt policies generalised over unseen constrainis.thits, we used kinematic
data from the 7-DOF DLR lightweight robot (LWR-III) (Fig. 1.1Yhe experimental
procedure was as follows: We generated a random initiaupedty drawing 7 joint
angles uniformly from half the range of each joint, thakjis- U [—0.5x"2% 0.5x"%,
where, for examplex'®* = 170°. We set up a joint limit avoidance type policy as
m(x) = —0.050¢(x), with the potential given by(x) = 57, |x|P for p=1.5,p= 1.8,

or p=2.0. We then generated 100 trajectories with 100 points eatlowing the
policy under 4 different constraints, which we refer to a&-3; 4-5-6, 1-3-5, and 2-4-
6. Here, the three numbers denote which end-effector coamies in task spateve
kept fixed, that is, 1-2-3 means we constrained the endteff@osition, but allowed
arbitrary changes in the orientation (here, orientatios vapresented as yaw, pitch
and roll angles in the inertial frame). Similarly, 2-4-6 meave constrained thg
coordinate and the orientation around #heand z-axis, while allowing movement in
x-z position and around thgaxis. For all 4 constraint types, we estimated the policy
from a training subset, and evaluated it on test data frons&nee constraint, as well
as on trajectories from the complementary constraint,(2-4-6 is complementary to
1-3-5).

For learning in the 7-D state space, we selected locallafineodels as described
in Sec. 5.2.4, where we chose rather wide receptive fieldagfo€ = 3) and placed the
centres{cny} of the local models such that every training sanfgleun) was weighted
within at least one receptive field witlin(x,) > 0.7. On average, this yielded about
50 local models.

While the linear policyr(-) corresponding tg=2.0 was learnt almost perfectly
(all normalised errors were in the order of £, the less linear policiep=1.8 and
especiallyp=1.5) turned out to be a much harder problem. This can be seen when
comparing both the nUPE and nCPE for the two policies (ref.leTakl). Still, we

4The numbers can also be read as row indices of #eJacobian matrix.



84 Chapter 5. Learning Generic Policies from Constrained Motion
Potential| Constr. nUPE nCPE Compl. nCPE || Norm. Incon.
1-2-3| 64.338+32.030| 2.9174+0.368 | 15.951+ 6.473 || 0.755+ 0.067
4-5-6| 34.753+19.125| 2.491+0.228 | 15.478+ 7.755 || 0.388+ 0.036
p=15 1-3-5| 16.179+ 3.813| 3.204+0.276| 5.108+ 1.079| 0.706+ 0.067
2-4-6|10.355+ 1.827| 2.723+0.237| 4.749+0.956| 0.401+0.039
1-2-3| 8.096+ 5.766| 0.4774+0.088| 2.278+1.133| 0.112+0.011
4-5-6| 5.364+ 2.961| 0.352+0.038| 2.221+0.984 | 0.051+ 0.006
p=18 1-3-5| 2.275+ 0.645| 0.455+0.041| 0.773+0.171| 0.098+0.011
2-4-6| 1421+ 0.314| 0.401+0.042| 0.729+0.174| 0.058+ 0.007

Table 5.1: Normalised UPE, CPE on the training constraints, CPE on complementary
constraints and inconsistency error, for data from the DLR arm (Fig. 1.1). All errors
normalised by the variance of the policy. We report (mean + s.d.) X 102 over 100 trials

with different data sets.

recovered the constrained policy in all cases to good acg(raf. Table 5.1, 4th col-
umn), with good generalisation to the complementary cairgs (ref. Table 5.1, 5th
column). We can also see that constraining the end-eff@dsition (1-2-3) made it
more difficult to recover the unconstrained policy compdaedonstraining the orien-
tation (4-5-6), or using mixed constraints (1-3-5 and 2}446 should also be noted
that running the same experiment using the naive approath @ec. 5.3.1) gave
consistently poor results; for example, when training otadmder the (1-2-3) con-
straint, the naive approach gave nUPE of483t 1.20x 102 for the p=1.5 policy,
80.94+1.37x10 2 for p=1.8 and 7962+ 1.39x 102 for p=2.0.

5.3.3 Reaching for a Ball

The goal of our next set of experiments was to illustrate tiigyuof our approach for
learning from observations of an everyday task with realsbnstraints. For this, we
re-visited the ball reaching experiment (ref. Sec. 4.3tR)vhich we are given a set of
observations of a demonstrator reaching for a ball on a fdethe task is to learn a
policy that reproduces this movement. As before, the legrproblem is complicated
by the presence of barriers on the table that constrain thglgle movements and force
the demonstrator to reach between the barriers to get taathelle goal is to uncover
a policy that accurately predicts the demonstrator’s belaand generalises across
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Constraint

Naive

Non-naive

Training
Unseen Barrier
Unconstrained

0.1940+0.0153
0.4678+0.0264
0.7014+0.0430

0.0056=+0.0022
0.0057+0.0023
0.0058+0.0023

Table 5.2: Normalised policy errors for predicting the policy under three constraint con-
ditions from the ball-reaching data for the naive and non-naive methods. Values are

meanz=s.d. over 50 data sets.

constraints.

To simulate this scenario we again used the WBM controller e/ ABIMO hu-
manoid (for details see Gienger et al. 2005). We collect¢d flam a ‘demonstrator’
robot, this time following a policyu = x = 11(x) defined by an inverted Gaussian po-
tential

mx) = —0k@(X); @X) = (1— e”x‘X°”2/2°2> , (5.10)

wherex € R® corresponds to the Cartesian position of the two hands anchasec
0% =2,a = 0.25 and the target point. € R® to correspond to a reaching position, with
the two hands positioned on either side of the ball. Simdahe quadratic potential-
based policy (4.29), with this set of parameters, the detrnatas was able to reach the
ball under each of the constraints considered in this expri (see below). However,
note that here, unlike the potential-based policy, thecga a non-linear function of
state, and thus represents a more difficult learning task.
The demonstrator's movements were constrained by the samséraints described
in Sec. 4.3.2, i.e., (4.30), with the width of the gap randootianged at the start of
each demonstrated trajectory according to a Gaussiaibdistin dgap ~ A (Hgap, Ogap)
wherepgap = 0.25m, 0gap = 0.1m. Under this set up we collectéd= 100 trajectories
of length % at 50 Hz, (i.e.N =100 points per trajectory). Start states were sampled
from a Gaussian distribution over joint configuratiogs; \'(go, 0.1l ) (whereqg cor-
responds to the default standing position) and using fahkerematics to calculate the
corresponding hand positions. The joint veajowvas again clipped where necessary
to avoid joint limits and self collisions, and to ensure ttetspostures looked natural.
Learning was performed on 50 such data sets using 150 |loesrlimodels, with
centres placed usingmeans. For comparison, the experiment was also repeated on
the same data with the same local linear model (i.e., samdauand placement of
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centres), but using the naive approach for training (i.@ining on(x;,u; = X;),i =
1,...K x N directly, using the risk functional (5.1)).

To assess the performance for both methods we evaluatedrtns | predicting
the policy subject to (i) the training data constraints (n§;RiB no constraints (nUPE),
and (iii) a novel constraint, unseen in the training dataaa@et of test data. For the
latter, a barrier was placed centrally between the robotth@dall, so that the robot
had to reach around the barrier to reach the ball (see Fijy. 5.5

As expected, learning using the proposed risk functiondl) (&he ‘non-naive’ ap-
proach) performed much better than the naive approachnrstef the numerical error
measures (ref. Table 5.2), similar to our results with theepital based approach (ref.
Table 4.2). To further confirm this, we also compared thett@ries generated by the
two policies under the different constraint settings toitee effect of generalisation
over constraints was reproduced with the new method.

In Fig. 5.4 we show example trajectories for theconstrainedeaching move-
ments produced by the demonstrator (‘expert’), and thedlilearnt by (i) the naive
approach, and; (ii) the non-naive approach; from a numbstaot states. We see that,
for the former, the hands always take a curved path to the(Bigl 5.4, left), repro-
ducing the average behaviour of the (constrained) denatiwsis (and similar to what
we saw when learning with the naive approach and LWPR, ref. £82). However,
in contrast, the policy learnt with the new approach bettedjgts the unconstrained
policy, and takes a direct route to the ball that closely ime¢dhat of the demonstrator
(Fig. 5.4, right). Similar to the potential-based approten, the new method extracts
the essential unconstrained grasping movement despitenggaexclusively on data
containing constraints.

Secondly, Fig. 5.5 shows example trajectories when theigrlicies are again
constrained. Figure 5.5 (top) shows the movement from thenaive policy under
a similar constraint as in the training data. Under this transt both naive and non-
naive policies take a similar path as the demonstrator: Hmel$ move in first, then
forward to the ball. Note that under this constraint the nmoget of the naive policy is
noticeably slower due to the model averaging effect (re€. Se.2).

Finally, under the unseen barrier constraint, there is &ethdifference in be-
haviour. Under this constraint, the demonstrator (stillofwing the policy (5.10))
reaches around the barrier to get the ball. This behaviowpiduced by the policy
learnt with the new approach (Fig. 5.5, middle). In contrastvever, the naive policy
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does not generalise to the new constraint and gets trappattkibe barrier, eventually
dislodging iP (Fig. 5.5, bottom). The behaviour of the three policies (destrator,
naive and non-naive policies) can be examined in detailérattcompanying video.

5.3.4 Learning from High-dimensional Joint-space Data

To test the scalability of the new approach for learning iryvegh dimensions, we also
re-visited the experiment on learning from ASIMO joint spatata (ref. Sec. 4.3.3).
For this, we again used a policy based on a quadratic poténj@nt space

TX) = —0k@(X);  @(X) = (X—Xc)TW (X —X¢),

wherex; € R?’ is a target posture and/ is a weighting matrix. The policy repre-
sents an attractor in joint space that pulls the robot intesirdd posture at.. For
the experimentsy. was chosen to correspond to a reaching posture with both arms
outstretched (ref. Fig. 5.6, right) and we chad¥e= 0.051. Note that, in contrast to
the experiment described in Sec. 4.3.3), to increase theutiy of the learning task,
5 additional DOFs (corresponding to the Cartesian heelipasitthe torso height and
torso lateral orientation) were included in the state vecto

During data collection, the policy was constrained by thespnce of obstacles
which took the form of a vertical wall placed directly in frioof the robot at differ-
ent orientations and distances (ref. Fig. 5.6, left). Spedly, the constraint matrix,
A(x,t) € R?*?7 took the form

Ai(x,;t) = 0 ;o di>0
Ai(x,t) = ATJi(x) ; otherwise (5.11)

Here,A € R? is the normdi to the wall surfaceg; is the perpendicular distance of the
ith hand from the wall surface (withe {1,2}, i.e. left and right hands respectively),
Ji(x) € R?*?7 is the Jacobian mapping from joint-space to the lateral tiaizontal
planar) coordinates of that hand aAgx,t) € R*?7 is the corresponding row of the
constraint matrix. At the start of each trajectory, the wiaion of the wall was drawn

SNote that the collision of the hands with the barrier in faiciates the constraint. The reason for
this is that on the real robot, under this constraint, theenpolicy forces the robot into a self-collision
(of the robot’s arms with the torso). To prevent damage tadbet, an on-board safety mechanism then
kicks in and pushes the hands away from the body, causingioallwith the barrier.

SNote that since the wall was vertical in all example trajéew (and thus did not affect vertical
movements) only the normal in the horizontal plane is reiet@calculation of the constraints.
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from a uniform random distributio® ~ U [—8™2X 8M2] whereb is the angle of the wall
with respect to the left-right axis of the robot heel framer{pontal axis in Fig. 5.6,
left), and we chos®M® = 27°. The distance of the wall was adjusted at the start of
each trajectory to ensure that the the hands were a minimstandie of QL5m from

the wall before the onset of movement.

The effect of the constraints was to restrict the movemetit@hands when they
approached the wall. This constraint was projected baaktimt joint space where
the policy was operating via the Jacobian. This causes theygo appear highly
complex and non-linear in the state space (joint spacef), disicontinuous changes to
the dimensionality of the constraints as the hands of thetrapproached the wall.

Using the formalism from Sec. 5.2.3 witi(x) = x, we fitted linear models to
100 data sets, each consisting of 100 trajectories of 1@0mtants. Despite the high
dimensionality, the new method reached a normalised UPE28f1& 0.313x 10 2.

It is important to point out that this result can not only beleined by our choice
of a linear model where we knew that the true policy was alsedi: Direct (naive)
linear regression on the observed commands resulted innaatised UPE of 63 +
3.1x 1072 (nCPE was P8+ 0.66x 10-2), which again is orders of magnitude higher,
similar to our results on the lower dimensional data in thexpding sections.

5.3.5 Washing a Car

Having validated our approach on data where the ground f{tutle unconstrained
policy) was known, in this section, we report experimentdearning from human
demonstrations for seeding the robot motion. For this expat, we chose to inves-
tigate the problem of learning to wash a car. This is an examaph task which can
be intuitively described in terms of a simple movement polieviping’) subject to
contact constraints that vary depending on the differerisas of the car to be wiped.
Due to the different shapes and orientations of the car sesfacomplex, non-linear
constraints are imposed on the motion. The resultant taajes appear periodic, but
are perturbed in different ways by the constraints. The gbalr experiments was to
learn a policy that captured the periodic nature of the mares) while eliminating
artifacts induced by the constraints.

The experimental setup was as follows. Seven demonstsatiba human wiping
different surfaces with a sponge were given to the robot. ifmlate observations of
washing different surfaces of the car, the wiping was penéat on a perspex sheet



5.3. Experiments 89

placed at different tilts and rotations with respect to tbieot (see Fig. 5.7). Specif-
ically, the sheet was oriented to be flat (horizontal), dilte16° and +27° about the
x-axis (horizontal axis pointing directly ahead from theatjband+16° about they-
axis (horizontal right-left axis). The three-dimensiooabrdinates of the sponge were
tracked using the on-board stereo cameras of the ASIMO attetate of 20 frames
per second (for details on the ASIMO vision system pleaseBsager et al. 2007).
The recorded trajectories are shown in Fig. 5.8 (left).

The policy was modelled as tfi?* — R3 mapping from hand (sponge) positions
to velocities. Since this is a relatively low-dimensioneblplem, and for ease of com-
parison with the toy problem (Sec. 5.3.1), we used RBFs to ntbdgdolicy. For each
of the experiments described below, we used a set of 300 RBRs®iittres placed by
k-means as our policy model.

Since the ground truth (i.e. the true unconstrained policythe exact constraints
in force) is not known for the human data, performance wakiated on a behavioural
level. In particular, we looked at how the movements produmgthe learnt policies
compared with those of the human when subject to (what wearesswo be) a sim-
ilar set of constraints. For this, we implemented the leaoiicies on the ASIMO
humanoid robot and applied constraints that approxinfatiedse contained in the
demonstrations.

Specifically, we assumed the constraints in the car washttaskise from two
sources, namely (i) environmental (i.e. physical) comstsaand (ii) constraints self-
imposed by the demonstrator to ensure task success. Irxgresiment, the former can
be clearly identified as an inequality constraint preventime hand from penetrating
the wiping surface, i.e.

A(x,t) =fAs(x) ; d=0 and G"As(x) >0 (5.12)

whered is the distance of the hand from the surface ag) is the normal to the
surfaces at pointx. In addition, we can also identify a self-imposed constrain

force. In the car wash setting, successful performanceeafisk (i.e. wiping) requires
the sponge to maintain contact with the surface at all tinoethat motion of the hand
away from the surface (i.e. lifting the sponge) is not petgdit To capture this, we
therefore assumed a further constraint of the form

A(x,t)=RAs(x) ; d=0 and 0TAg(x) <O. (5.13)

’Please note that for training the policy models, the comgsavere not explicitly modelled.
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Note that in combination, the effect of the two constraiBtd2)-(5.13), when consid-
ered on the wiping surfacel & 0), amounts to the single equality constraint

A(x,t)=ns(x) ; d=0. (5.14)

This constraint was applied to the learnt policies as a restsle approximation of
the true constraints contained in the data, in order to coenfbee demonstrated and
reproduced movements for any given surfacand assess the generalisation across
constraints.

Under this set-up, we first compared learning with our apgnaegainst learning
with the naive approach. For this, we trained two RBF modelsherfull data set of
seven demonstrations (i.e. wiping data for each of the sesfa The first model was
trained with the approach described in Sec. 5.2.3, the slawidh the standard (naive)
approach to regression. We then used the policies learnhdoywio approaches to
reproduce the movements under each of the surface const(iaén constraint (5.14)
fors=1,---,7). The results are shown in Fig. 5.8, where we show the deinaded
trajectories (left), those produced by the non-naive gdiientre) and those learnt by
the naive approach (right) under the different constrdtiits of the surface).

Looking at the learnt policies, we see that our approacmgarsmooth policy
that resembles the limit cycle of Section 5.3.1. The trajees under each of the
constraints are smooth periodic movements, similar toehasthe human. These
were implemented on the ASIMO robot to produce natural vgpimovements (see
Fig. 5.9). The policy learnt with the naive approach alsotaegs the periodicity to
some extent. However, it appears highly irregular in sdvegaons and the trajectories
are unstable, with some spiralling in to the centre, andrsti&erging to other parts
of the state space. By attempting to learn all of the artifanctaced by the constraints,
the naive approach learns an unstable policy that cannafby sised for movement
reproduction on the rob®t

Finally, to confirm that our approach is able to generalisé exer unseen con-
straints, we repeated the experiment, but this time trgitinie model on a subset of
the data containing one set of constraints, then testingdiffieent subset containing
different constraints. Specifically, we used our approadinain a model on the three
demonstrations corresponding to the surface tiltedhyQ6° and+27° about thex-
axis (Fig. 5.10, left). We then took the demonstrated mowves®r the surface tilted

8The behaviour produced by the two methods can be examinestaii oh the second accompanying
video.
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at —16° and—27° about thex-axis (Fig. 5.10, right) as our test set and compared the
movement reproduction.

In Fig. 5.10 we show the demonstrated (grey) and reprodudedk) trajectories
for the training data constraints (left) and the test datastraints (right). Though we
train on a smaller data set here, the policy learnt by ouraggtr again produces a
smooth wiping movement that reproduces the human movemahthweth under the
training data constraints and under the unseen test coristra

5.3.6 Direct Comparison with the Potential-based Approach

As a final test, we performed several experiments to direxdiypare the alignment
approach described in Ch. 4 and the new approach based orsipgjrthe inconsis-
tency. For simplicity we analysed the learning of several-thimensional policies
of varying complexity. Specifically, we tested our appraefor learning the policy
derived from the quadratic potential (4.24), that derivexhf the sinusoidal potential
(4.28), and the limit cycle policy (5.9).

The experimental procedure was as follows. We sampled {rtosies from the
three policies with random start states and at a rate of 50réslting in 40 data
points per trajectory. During each trajectory the policyswabject to the same random
switching 1-D constraints described in Sec. 4.3.1. We é@imodels of the policy
(i) using direct regression on the state-action tupglesun), (ii) using the alignment
approach of Ch. 4, and (iii) optimising the inconsistency)5or 50 such data sets.
In each case we used the same policy model for learning, sha¢ iused a set of 36
normalised Gaussian RBFs placed onxa® grid, and selected the kernel widths to
yield a suitable overlap. Note that for the alignment apphothe RBF model was
used in place of LWPR to learn the potential function from theppocessed data, i.e.
it was trained on the tuple(xkn,fn(nJr bﬁpt), wherek € K the non-outlier trajectories
andn e {1...N¢} (ref. Sec. 4.2.5).

The results are summarised in Table 5.3, where we see tlogvfol trends. First,
the direct learning approach performs the worst both in sesfithe nUPE and nCPE.
This approach is naive to the constraints so is unable to fowhaistent model. Look-
ing at the errors for potential-based (quadratic and sida$jopolicies, the alignment
approach does approximately an order of magnitude betéer tie direct approach
both in terms of NUPE and nCPE. However, as expected, it pasf@oorly for the
limit cycle policy since this a rotational (i.e. non-zerorlgyolicy, and cannot be
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Policy Alg. nUPE nCPE

Quad. Pot| direct | 0.54727+0.06218| 0.107324+0.02010
align. | 0.011584+0.01561| 0.00443+0.00588

incon. | 0.00001+0.00001| 0.00001+ 0.00001

Sin. Pot | direct | 0.40478+0.04789| 0.12354+0.01097
align. | 0.05020+ 0.05395| 0.02162+ 0.02536

incon. | 0.00003+0.00003| 0.00001+ 0.00004

Lim. Cyc. | direct | 0.43225+0.06599| 0.10034+ 0.01678
align. | 2.91233+1.56180| 1.26902+ 0.80364

incon. | 0.00024+ 0.00040| 0.00003+ 0.00002

Table 5.3: Normalised CPE and UPE for the direct, alignment- and inconsistency-based
approaches when learning policies based on a quadratic and sinusoidal potential, and

a limit cycle policy. All errors are mean=+s.d. on 50 data sets.

represented well by a potential function. Finally, lookiagthe errors for the new
approach based on optimising the inconsistency, the earerseveral orders of mag-
nitude smaller than even the alignment approach. We atiérithis to the build up

of error from several sources in the alignment approachgkample, errors in the
alignment and errors in modelling the aligned data.

5.4 Conclusion

In this chapter, we introduced a novel approach to learrag) ¢nabled us to model
policies subject to stationary constraints. Having comsd several possible risk func-
tions, we settled on a small but very effective modificatiorthie calculation of the
standard risk that satisfied our assumptions on the datanasksgiven. Similar to
the potential-based approach reported in Ch. 4, this allavget recover the uncon-
strained policy from arbitrarily constrained observasipwithout the need for explicit
knowledge of the constraints. However, unlike that appnotiee new method does not
rely on the somewhat restrictive assumptions of kinemaiitential-based policies,
and data in the form of trajectories. The effectiveness efntw method was demon-
strated using parametric (RBF) and locally linear functiopragimators to learn poli-
cies for problems of varying size and complexity, and in meages the new method
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also out-performed the potential-based approach.

While the new approach avoids many of the restrictions of thiengial-based
method, it still suffers from several problems. In partaouls discussed in Sec. 5.2.2
there is the problem that the inconsistency error is a Ildveemd on error. This is due
to the fact that the assumed project®rs a loose approximation of the true projection
N induced by the constraints. This can result in poor and pbsanstable learning
in certain cases. In the next chapter, we discuss theseepnslih detail and discuss
methods to alleviate them.
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(a) True policy (b) Our method, trained on 4 traj.
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nUPE: 03788+ 0.2688
nCPE: 01276+ 0.1140

(c) Our method, 40 trajectories  (d) Naive method, 40 trajectories

. e

NUPE: 00027+ 0.0087  nUPE: 05709+ 0.0853

nCPE: 00002+ 0.0002 nCPE: 00010+ 0.0363

Figure 5.2: Results on 2D toy data. (a) true limit cycle policy, (b) learnt policy trained on
4 constrained trajectories, (c) learnt policy from 40 constrained trajectories, (d) policy
resulting from naive regression on observed commands. Trajectories are shown as
dotted lines, the policy is depicted by black arrows. The normalised CPE and UPE

(mean=s.d. over 100 data sets) are given below the figures.
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Figure 5.3: Learning performance on the limit-cycle policy (5.9) with varying data set
sizes and noise levels. Top: Normalised UPE and CPE versus data set size as a
percentage of the full K =40 trajectories of length N=40. Bottom: Normalised UPE
and CPE for increasing noise levels in the observed uy. For clarity, we do not report the

(consistently high) errors of the naive method.
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Data Data

— Naive m— Non-Nai.

= = = Expert

= = = Expert

Figure 5.4: Reaching movements produced by the policies learnt by the naive approach
(top) and by optimisation of the inconsistency (bottom) when unconstrained. Shown
are trajectories of the hands from five start states, with one example highlighted (thick
line). The expert trajectory corresponding to the highlighted example is overlaid (black

dashed line). Twenty example training data trajectories are also shown (thin grey lines).

Figure 5.5: Reaching movements produced by the learnt policies under different con-
straints. Shown are trajectories from (i) the non-naive policy under a similar constraint

as in the training data (top row); (ii) the non-naive policy under a new, unseen barrier

constraint (middle row), and; (iii) the naive policy under the new constraint.
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Figure 5.6: Data collection for the joint space policy under wall constraints. Left: Start
states for two example reaching movements with the wall at different distances and

orientations with respect to the robot. Right: Side view after reaching.

Figure 5.7: Human wiping demonstrations on surfaces of varying tilt and rotations.

The ASIMO stereo vision system was used to track the 3-D coordinates of the sponge
(coloured rectangles show the estimated position). Tilts of 216° and +27° about the

X-axis are shown.
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Figure 5.8: Learning from human wiping demonstrations. Left: Trajectories of the
sponge when wiping on the surface when flat (black), tilted +16° and +27° about the
x-axis (red), —16° and —27° about the x-axis (blue), and +=16° about the y-axis (grey).
Centre and right: Reproduced trajectories using the policies (black arrows) learnt with
the non-naive and naive approaches respectively. In each case the same example tra-
jectory is highlighted (thick black). The top and front views are shown (top and bottom

rows).

Figure 5.9: Reproduced movements on the ASIMO robot for the surface tilted 0°, +16°,
—27° about the x-axis, and +16° about the y-axis.
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Figure 5.10: Generalisation over constraints when learning from human wiping data.
Left: Three demonstrated trajectories with surface tilt 0°, +16° and +27° (grey lines)
used to train the model. Right: Two trajectories with tilt —16° and —27° (grey lines) held
out for testing. Reproduced trajectories from the learnt policy under the corresponding

constraints (both train and test) are overlaid in black.






Chapter 6

Improving Robustness for

Constraint-consistent Learning

6.1 Introduction

In the preceding chapter, we explored a novel reformulagfdhe risk functional used
to optimise our policy model. This proved to be highly effeefor reconstructing poli-
cies from stationary constraint systems without explicibwledge of the constraints
for generic policies of arbitrary complexity.

However, while this method performed well in the variousemments considered
in the preceding chapter, in its most basic form it has séVWendations. In particu-
lar, its effectiveness is highly dependent on the ‘richhekthe data, in terms of the
number of different constraints seen (specifically, thewixto which the action space
is spanned by the observations). In fact, if the data cositany little variability in the
constraints, for example, if the data is unconstrained otaios a highly correlated
constraints, then the approach of optimising the refortedlaisk (5.4) alone can re-
sult in poor performance. This is because the inconsistenoy tends to explain all
variations in the observations as variations in constaiather than as variations in
the policy itself.

In this chapter, we propose an extension to the method tovd#athis problem.
As a key ingredient, we suggest a partitioning of the modghupation into two parts.
The primary part uses the same inconsistency objectivaibm(5.4) to deal with the
effect of variable constraints in the data. However, we {h@pose asecondary opti-
misationscheme to tighten the fit to the dataregions where there is little variation

101
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in the constraints By extending the method in this way, we will see it is possible
to seamlessly blend constraint-consistent learning witinosation of more standard
risk functionals.

In the following, we first explain the model degeneracy peobithat can lead de-
graded performance in certain cases. We then describe leguatameter null space of
our models can be utilised for secondary optimisation oftathl criteria to tighten
the fit. We derive the appropriate learning rules for the gxanpolicy models dis-
cussed in the preceding chapter, i.e. parametric and lovedr models. Finally, we
present experiments where the pure inconsistency-baggdagh has difficulties in
learning, and show that the two-step optimisation apprediaiinates these problems,
selectively providing the best aspects of both standaettlearning and constraint-
consistent learning.

6.2 Model Degeneracy for Correlated Constraints

Optimisation of the inconsistency (5.4) has been demaestri be effective when
learning from data containing high variability in the caagtts for systems of varying
size and complexity (ref. Ch.. 5, Howard et al. 2009b,a). Hexegn the simple form
outlined so far, it can suffer from the problemdsgeneracy in the set of mod#iat are
optimal with respect to (5.4) when the data contains litgability in the constraints.
Because the observationsnfluence the estimated policy in a more complex way than
in direct regression, small variations in the observatimay result in large variations
of the learnt policy, which can become catastrophic when the method is given data
with insufficient variability in the constraints to disargbate the best policy models.
To illustrate the problem, Fig. 6.1 shows three candidatieypmodelsiy, T and
T as well as data under a single constraint (right) and tweifit constraints (left).
Consider that we have to select one of these candidates basee available data. For
the multiple (i.e. variable) constraint case (Fig. 6.1t)|edptimising the inconsistency
(5.4) clearly determines the best model given the availdhta: In this case we would
choose, since this has the lowest inconsistency erfliy ] < Ei[To] < Ei[Tg).
However, when there is less variability in the constraiftsexample, we only see
an observation under a single constraint (Fig. 6.1, righ8re may be little difference
in the inconsistency for the three models (hétglu| = E;[Tp] = Ei[T]) resulting in

1In machine learning terms, the pure inconsistency-bas@datsr has high variance.
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Figure 6.1: lllustration of the model degeneracy problem. Shown are three different
models with equal inconsistency with respect to the observation u;. Left: Given ob-
servations under different constraints, e.g. Uy, the inconsistency error disambiguates
between the three candidate models selecting that which is consistent with both ob-
servations (i.e. 7). Right: Given only observations under a single constraint there is
ambiguity in which is the best model since we cannot be sure about the policy compo-

nents in the vertical dimension.

ambiguity as to which model to choose. This is a critical ol since if we select
the wrong model, e.giz, then it may significantly degrade performance both in terms
of prediction of the unconstrained policy (comparandfg in Fig. 6.1) and also the
constrained policy (consider the projectionfafonto the vertical plane, and compare
with uz). Note also that this is a manifestation of the fact tBats a lower bound

on both the unconstrained policy error (UPE) and the comstdapolicy error (CPE)
(ref. Sec. 5.2.2), since it is precisely the fact that thesaponents of the policy that
are projected out in the calculation of the inconsistencgrehat leads to this model
degeneracy problem.

6.3 Secondary Optimisation of the Standard Risk

In order to deal with this problem, our proposal is to perf@madditionakecondary
optimisationto select between models. For this, we propose to optimesedbondary
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objective

N
Eoffi= Y [un—Tixn)[* st. fie argnrwfin{Ei[n’]}. (6.1)
=]

In other words, we optimise the standard r@kbject to the model being consistent
with the constrained observatiohs

By performing this additional secondary optimisation wéten our fit to the avail-
able data and avoid models that are not strongly supportetiebjnconsistency. For
example, in Fig. 6.1 (right), optimisation of (6.1) will idsin modeli, being chosen
since this has the lowét,. Since we have no information about the vertical component
of the policy here, choosing this model is the safest styedetce there is little support
for Ty or T based on the available data. In effect, this acts like agigrantee on
the model performance: In the case, that observationsaea gnder an impoverished
set of constraints, the model will at worst reproduce theabtur under those same
constraints.

Similar to the pure inconsistency optimisation approach &hwe can apply the
extended approach to many standard regression technitiosgever, for the exper-
iments in the remainder of the chapter, we again restrictedues to two example
classes of function approximator (i) simple parametric aisavith fixed basis func-
tions (Sec. 6.3.1), and (ii) locally linear models (Sec..®.3 In the following we
describe how these two models can be reformulated to takenéatye of the new ap-
proach.

6.3.1 Parametric Policy Models

As described in Sec. 5.2.3, for the parametric policy modebhasume a model of the
form fi(x) =Wb(x), whereW ¢ R%*M is a matrix of weights, antd(x) e RM is a vector
of fixed basis functions. With this model, tireconsistencerror from (5.4) becomes

(rn— 0T Wb (xn))?

Mz

E(W) =

n=1

P4

= (rn—vﬁw)zz Ei(w),
=]

2|t should also be noted that in principle we may choose aitéra secondary optimisation functions
depending on the application. For example, we may wish te $méutions toward a particular dynamic
behaviour, e.g. stabilising movements, subject to comsist with the demonstrated observations.

3This is similar to the minimum performance guarantee regabimn (Howard et al., 2008a) for the
special case of potential-based policies, now extendduktetirning of any arbitrary policy.
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wherew =vedqW) andv,=ved{nb(x,)") =b(xn) ® On. Since our objective function
is quadratic inwv, we can rearrange to give

Ew = Y r2— 23 ravaw+w' Y vavaw
n n n
= Ep—29"w+w'Hw

with H = znvnvl andg = 5 ,rnvn. Now, to solve for the optimal weight vector, in the
pure inconsistency approach we would take the direct ievers

w1 = argminE;(w) = H 1g

as described in Sec. 5.2.3. However, this ignores deggnerdice solutions and may
result in over-fitting. To avoid this, here we only optimise @ements of the weight
vector that make a significant contribution to the incorsisy errorkg;. For this, we
perform an eigendecomposition for the inversion

w1 =ViA V]g (6.2)

whereA\ is a diagonal matrix containing the large eigenvaluebl di.e. eigenvalues
above some minimum threshold> A;) and the columns 0¥, are the corresponding
eigenvectors.

In the part of the parameter space spanned by the remainialj sigenvectors
(A < At) we then perform the secondary optimisation. For the paden@odel, we
wish to minimise

N
Ex(W) =3 [|un—Wb(xn)| (6.3)
n=1

subject to the solution being optimal with respect to theigistency. We therefore
look for a solution that has the form

W =wi+Voz (6.4)

where the columns od¥, contain the remaining eigenvectorstéfandz is a vector.
Using solution of this form means that our optimisation & thodel with respect to
the secondary objective does not affect the primary opé#tiua of the inconsistency
error.

Rearranging (6.3), we have

Ep(W) =3 Upn—2y upWh+ Y [ Wby (6.5)
n n n
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which can be written in terms of as
Ex(w) = Yujun—2% (bn@ug)w
n n

+w' (Z bnbﬁ®|)w (6.6)

= FEgo— ZQEW +w' How.

whereEg, = Spulun, g2 = Sp(bn@ul)T = veqUBT) andH;, = (3,bab] ®1) =
BB ®I.
Substituting (6.4) and differentiating, we can then regithe optimak:

2°P' = (VIH2V2) 'V (g2 —Hawy). (6.7)
We then combine (6.2) and (6.7) to find the optimal weightsofarmodel
woPt =V AT g+ Vv,zoPt (6.8)

Finally, in order to automatically select the minimum eiga&ne threshold; we per-
form a line search, repeating the above optimisation forges®f values of\; on a
subset of the data, and picking thewhich minimises the quantity

Ex[T = Ei[f + aEo[f.

Herea is a weighting factor that reflects our prior belief on whettiee data contains
variable constraints. For example, one would choose a werylfor data containing
very high variance in the constraints. For convenienceygseode for the learning is
given in Algorithm 3.

6.3.2 Locally Linear Policy Models

For multiple local linear policy modelim(x) = BmX = Bm(x",1)T, the derivation
follows similar lines. For a linear model centred gt with an isotropic Gaussian
receptive field with variance?, the inconsistency error is given by

an (rn - GIBm)?n) 2

Mz

Ei(Bm) =

>
Z |l
[

>
[
[
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Algorithm 3 Hybrid Optimisation
1: Initialise policy model (e.g., allocate RBF cent@sind kernel size?). Select.

2: Pre-calculation of terms:
e Findry, = ||unl/, On = un/ry, andvy = b(x,) ® G for each data point.

e Construct primary Hessiad = znvnvﬁ, linear termg = znrnvﬁ and con-
stant termEg = ¥ ,,r2. Find eigenvaluei € {\1,---,Am} and eigenvectors
V= [V]_,--- ,VM] of H.

e Construct secondary Hessibln = BBT ® 1, linear termg, = vec(UBT) and
constant ternEg, = U un.

3: Optimisation:

e Repeat fol\; € {Amin,* -, Amax}-

1. Build eigenvalue matriX\ containing allA > A;. SplitV into V1 and
V5, according to eigenvalues.

2. Findz°P andw;. Calculaten®P' = ViA~1VT g+ V,z°Pt for this A;.
3. EvaluateE, [T = E;[T] + o E[T] on validation data subset.

4: Return weightsv°P* that minimiseE, [T

whereb,, = veqBp,) andv, = vec(anil) as described in Sec. 5.2.4. The factops, =
exp(—z%zﬂxn — ¢m||?) weight the importance of each observatian, up), giving more
weight to nearby samples.

The optimal slope8n, with respect to (5.7) can again be retrieved using an eigen-
decomposition:

b1m = argming; (bm) = VimAn'Vimngm (6.9)

where/An andVym are the large eigenvalues and corresponding eigenvedtong o
HessiartH, = znwnmvnvﬁ for the mth local model an@jm = 5, WnmVvn. We select
the number of eigenvalues used for the primary optimisaifdhe inconsistency using
a subset-validation approach similar to the parametrie.cas
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The secondary objective for this model is

N

EZ(Bm) = Z an”un — Bm)?nH2
n=1

WhereEo’z = ZanmU-rI]—Un, gz/m = annm()?n ® U-r[]-)T andH27m = (Zanm)?n)TnT ® I ) .
Similar to the parametric case, we look for a solution of th@fbm = b1 m+ V2 mzm.
This yields optimal weights

b = Vl,m/\r;lv-{, mIm+ VamzpP (6.10)
with
zoP = (VZ,mH 2,mV2,m)71V£m(92,m —Hzmb1m). (6.11)

Finally, for predicting the global policy, we combine the#b linear models using the
convex combination

M —_—
- B 1
:—Z'Z'j}wm ™ wmzexp(——ZGZHX—CmHZ)
m=1Wm

For implementation, the pseudocode in Algorithm 3 can be fseeach local model

fi(x)

with appropriate substitutions to incorporate the weigdnfiactorswy, in the calcula-
tion of objective function terms (i.e., the primary and sedary HessiarHm, Hom,
linear termsym, g2 m and constant termis, Eq 7).

6.4 Experiments

In this section we report experiments exploring the pertoroe of the new approach
when learning on data from systems of varying complexity siad. First, in order

to illustrate the concepts involved, we apply our methodatadrom a simulated 2-D
toy system. We then test the scalability of the method to dniglimensional sys-

tems with more complex constraints using data from the jgpatce of the 7-DOF

DLR lightweight arm (Fig. 1.1). Finally we re-visit the caurashing experiment (ref.
Sec. 5.3.5) in order to demonstrate the utility of our apphoa

6.4.1 Toy Example

Our first experiment demonstrates the robustness of the ppmwach for learning un-
constrained policies from variable-constraint data. Ris, e re-used the toy example
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Figure 6.2: Policy learnt with the direct approach (blue) and pure inconsistency ap-
proach (red) when training on unconstrained (left) and randomly constrained (right)
data. The true policy (thin black arrows) and training data (grey trajectories) are over-
laid.

from Sec. 5.3.1, i.e. the simple two-dimensional limitdeysystem with discontinu-

ously switching motion constraints. However, here, in iddito collecting data from

the policy subject to random 1-D constraints (ref. Sec.1),3ve also recorded trajec-
tories from the unconstrained policy from the same statéstdn Fig. 6.2, examples
of the unconstrained (left) and constrained (right) tregges are shown in grey.

We used a parametric model to learn the policy through theithydptimisation
approach as described in Sec. 6.3.1. For this toy problerahase our function model
as a set of 36 normalised RBFs centred onaagrid, and we simply fixed the kernel
width to yield suitable overlap. We repeated this experiimen 100 data sets and
evaluated the normalised UPE and CPE (ref. Appendix 3.4 @)@ inconsistency,
divided by the number of data points and the variance of thieypt, on a subset held
out for testing. For comparison, we repeated the experinngng (i) direct regression
on the observations (i.e. minimising (5.1)) and (ii) opsation of the inconsistency
alone (i.e. minimising the functional (5.4) without the sedary optimisation step)
with the same RBF model.

Table 6.1 shows the results of learning with the differenthods under the dif-
ferent constraint settings. Looking at the first row, we ded the direct regression
approach is effective for learning on unconstrained datapbrforms poorly on data
containing random constraints. This is in line with exp#otes since for the former
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Method| Constr. nUPE nCPE Norm. Incon.
Direct | None | 0.034+ 0.044| 0.034+ 0.044|0.026+4 0.039
Rand.|58.338+ 9.556| 8.596+ 2.813|8.596+ 2.813
Incon. | None |26.640+52.737| 26.640+ 52.737 0.014+ 0.031
Rand.| 0.118+ 0.162/ 0.007+ 0.010/0.007+0.010
Hybrid | None | 0.065+ 0.268) 0.065+ 0.268|0.042+0.143
Rand.| 0.373+ 1.109, 0.011+ 0.017/0.011+0.017

Table 6.1: Error for the direct, inconsistency and hybrid optimisation approaches when
learning on K = 40 trajectories of length N = 40 points, sampled from the limit cycle

policy. All values given as (meanis.d.)xlO’2

the data is unaffected by constraints and is thus alreadsistent (i.e. a unique output
is observed at each point in the input space), whereas fdatte the variability in
the constraints causes model averaging. In contrast,rigaki the second row we see
that optimisation of the inconsistency is highly effectigelearning the unconstrained
policy when there is high variation in the constraints. Hegreon the unconstrained
data, though the normalised inconsistency (5th colummwsthe policy errors are rel-
atively large. The pure inconsistency approaukinterprets the variation in the policy
as variation in the constraint@nd fits an incorrect model (shown in red in Fig. 6.2).

In contrast, the proposed hybrid approach achieves vergtowrs both on the un-
constrained and the constrained data. With this approadenie best of both of the
other approaches: For data that is already self-consigtbanefits from the tight fit
offered by direct least-squares regression. Conversetigtd contains variable con-
straints a model that is consistent with the observationeuthe different constraints
is learnt.

To further test this, we repeated the experiment on dataacong several levels
of variability in the constraints. For this we again sampezkt ofK = 40 trajectories
of lengthN = 40 points from the limit cycle policy, however this time wepéipd the
constraints

A(X,t) =1 —@albx (6.12)

whereln = ar/||0x|, ar=R(0)T(x) andR(0) is a rotation matrix with rotation angle
8. The latter was drawn uniform-randomly with increasing@agrange, that i® ~
U[—8M& 8M2Y for increasingd™®. This constraint was chosen since it allows us to
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Figure 6.3: Normalised UPE and CPE versus variance in the constraints for learning

with the (a) direct, (b) pure inconsistency and (c) hybrid optimisation approaches.

smoothly vary the effect of the constraints on the obsewnati For example, f& =0
the direction of the constraint is exactly orthogonal topbgcy at that point so that the
resultant projection has no effect on the policy. As the eanf@ increases however, the
observations of the unconstrained policy are increasiogiyupted by the projections
induced by the constraints.

Fig. 6.3 depicts how the UPE and CPE evolve with increasingtcaimt variance
(i.e. increasingd™®) for the direct, pure inconsistency and hybrid optimisatap-
proaches (please note the log. scale). For the direct apiprtd@e UPE and CPE are
low when the constraint variance is low, but rapidly inceeas the variance grows
due to increased model-averaging. In contrast, the pumnsistency approach deals
well with constraints of high variance since this increabesspan of the observations,
resulting in most of the components of the policy being pitldp by the inconsistency
error. However, when the variance in constraints decre#sepure inconsistency ap-
proach misinterprets the remaining variability in the aliagons (due to variation in
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the policy) as variation in the constraints, causing angase in error.

Finally, the proposed hybrid approach achieves conslgtient errors irrespective
of the variance in the constraints, by automatically selgcthe direct least-squares
fit for low-variance constraints, and increasingly using tlonstraint-consistent fit for
high-variance constraints. This automatic selection iidyfaobust across the range
of variances in the constraints seen. However, compariegtior for the very low
variance constraints for the direct and hybrid methodsr(@&ga= 0 in Fig. 6.3(a) and
(c)) the error is somewhat higher for the hybrid approach.atifgbute this to a slight
tendency to favour the constraint-consistent fit in casesrgvkhe data is ambiguous
as to whether it is constrained or not, causing an increageiaverage error over the
100 trials. This effect may be removed with an improved maeé&tction method.

6.4.2 Higher Dimensional Policies and Constraints

The goal of our second set of experiments was to evaluatethalslity of the hybrid
approach to higher dimensional systems with constraintg@pfing dimensionality.
This is important when considering systems with many degoé&eedom and where
the dimensionality of constraints may switch; for exampdgen switching between
control of the position of an end-effector to control of tlertbined position and ori-
entation. It is also the case that with increasing numbediroénsions there are in-
creasing numbers of ways in which the system can be consttaimterms both of the
different dimensionalities of the constraints (i.e. rafkh@ constraint matrix) and the
ways in which constraints can be combined.

For this experiment, kinematic data from the 7-DOF DLR hghight robot (Fig. 1.1)
was again used. Similar to the experiment in Sec. 5.3.2 wiateacollected in the form
of 100 trajectories of 100 points each, starting from randomial postures (drawn
uniform-randomly from half the range of each joint, i.8.~~ U [—0.5x"2% 0.5x"2)
following the p = 1.8 joint limit avoidance policy, i.e.,

T(X) = —0.050¢(x); @(X) :-i‘xi ’1.8

under different constraints. This time trajectories weakected under 6 different con-
straints of differing dimensionality, which we refer to gd 12, 1-2-3, etc., where again
the numbers denote which end-effector coordinates in faa&eswere kept fixed. For
example, 1-2-3 means the end-effector position was cansttabut arbitrary changes
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in the orientation were allowed. Similarly, 1-2-3-4 meams ¢nd-effector position and
the orientation around theaxis were constrained, while movement aroundytlaed
zaxes was permitted. For all constraint types, the policy egiisnated from a training
subset, and the normalised CPE on test data from the sameainfsds well as the
normalised UPE were evaluated.

For learning in the 7-D state space, we selected locallatineodels as described
in Sec. 6.3.2, where we chose rather wide receptive fieldagfod = 3) and placed the
centres{cy} of the local models such that every training sanfgleun) was weighted
within at least one receptive field within(x,) > 0.7. On average, this yielded about
50 local models.

The results are shown in Table 6.2 where we can see the foliptsends. First,
as the constraint dimension increases, learning with tteet@pproach yields increas-
ingly poor performance in terms of UPE and roughly consigpenformance in terms
of CPE. This is to be expected since, being naive to the effemmstraints, the direct
approach attempts to find the closest fit to the constrainedraoations. Further, as
the number of constraints increases the difference bettheeronstrained and uncon-
strained policy vectors increases (since the number of coets of the unconstrained
policy projected out by the constraints increases). Asatdse directly learnt model,
while fitting the constrained policy closely, performs ieasingly poorly in terms of
UPE.

Second, for the pure inconsistency approach, we see thatPeis worse for
the 1-D constraint compared to the direct approach, but netter for the higher
dimensional constraints. We also see much better perfarenarterms of the UPE for
the intermediate constraints, but very large errors fo6tieconstraint. For the hybrid
approach the UPE is uniformly better, and the CPE lower inwlthe 1-D constraint
case.

The improved UPE performance for these methods may be sunggiven that the
same constraint is applied for each observation. This wsuddest that certain com-
ponents of the policy are undetermined by the observatimte shey are never un-
constrained. However, here the constraint matrix (i.e #w®Bdian) is state-dependent,
yielding somespatial variabilityin the constraints, and thereby sufficient information
to improve the reconstruction of the unconstrained policy.

Looking at the inconsistency and hybrid approaches, welsggerformance (es-
pecially in terms of CPE) increases with constraint dimemelity which can be ex-
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plained by the approximation of the projection (as discdsseSec. 5.2.2) becoming
increasingly accurate. In fact, for the 6-D constraint thpraximation is exact.

However, for this latter constraint, we see a huge increaddHE for the pure
inconsistency approach which is not seen for the hybrid@ggr. We attribute this to
the combined spatial variation in the policy and the comstsan this particular case,
to which the inconsistency approach is overly sensitive.ir@pection we noted that
the Hessian matrices of the local models had become illitondd in this case. The
secondary optimisation in the hybrid approach avoids thablem and emphatically
outperforms the two other approaches.

6.4.3 Car Washing Experiment Revisited

Having validated our approach on data where the true un@anet policy and con-
straints in force (i.e. the ground truth) were known, in thegtion we report experi-
ments applying the hybrid approach to learning from humanaiestration data. For
this, we chose to re-visit the car-washing experiment desdrin Sec. 5.3.5.

Seven demonstrations of a human wiping different surfagds avsponge were
used to train a local linear model as described in Sec. 6.Bd.learning we used
a fixed kernel width ofo? = 0.025, and centres placed so that every data point was
weighted with at leastvy(Xn) > 0.7. For this data set this yielded about 22 local
models.

We evaluated performance on a behavioural level by impléimgithe resultant
policy on the DLR Lightweight arm (see Fig. 6.4). A simple Resd Motion Rate
Control (ref. Sec. 3.2.1) inverse kinematics controlleefgois, 1977; Whitney, 1969)
was used to realise the policy motion in end-effector spack similar to Sec. 5.3.5,
we assumed constraints of the foAg(x,t) = Nj wheren; is the normal to thgth sur-
face. That is, the constraints ensured that the sponge tligemetrate the surface and
would not be lifted from the surface. Similar to our previgasult using the inconsis-
tency approach (ref. Sec. 5.3.5), the policy learnt by tharidyapproach produced a
smooth, periodic trajectory closely resembling that of lnenan (see accompanying
video).
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Figure 6.4: Reproduction of the car washing movement on the DLR Lightweight arm on

a training constraint (top row) and an unseen test constraint (bottom row).

6.5 Conclusion

In this chapter, we extended the method proposed in Ch. 5 tmiwepobustness when
learning policies from constrained observations. Buildipgn that method, we intro-
duced a two-stage optimisation approach which seamlessipines standard direct
policy learning with the idea of fitting a model that is conerg with variable constraint
data. Although the previous approach could handle casesevdenonstrated move-
ments are subject to variable, dynamic, non-linear and disaontinuous constraints,
it suffered from poor performance on data containing higidyrelated constraints or
purely unconstrained data. The novel approach proposedaveids these problems
as demonstrated in our experiments.
In the next chapter, we summarise and give conclusions owahleundertaken in

this thesis and suggest directions for future work.
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Method | Constr. nUPE nCPE
1 26.94+ 3.02| 3.63+0.54
Direct | 1-2 7051+ 2.22| 5.72+0.66

1-2-3 | 80.70+ 1.59| 4.09+0.33
1-...-4| 86.63+= 1.36| 4.66+0.44
1-...-5] 9147+ 0.91| 3.59+0.39
1-...-6] 96.78+ 0.78| 1.85+0.27
1 18.30+ 5.46| 14.53+5.08
Incon. | 1-2 6.53+ 2.90| 1.04+0.37
1-2-3 6.93+ 2.79| 0.50+£0.11
1-...-4| 457+ 2.49| 0.27+0.02
1-...-5 5.28+4 3.40| 0.16+0.02
1-...-6] 233.37£136.97| 0.04+0.01
1 10.54+ 4.56| 6.98+3.90
Hybrid | 1-2 5.85+ 1.94| 1.00+0.30
1-2-3 | 18.17+ 8.00| 0.55+0.14
1-...-4] 8.04+ 4.16| 0.28+0.03
1-...-5 8.98+ 5.25| 0.184+0.03
1-...-6] 41.30+ 3.93| 0.05+0.01

Table 6.2: Normalised UPE and CPE for the three methods when training on data
from the DLR arm. All errors normalised by the variance of the policy. We report

(mean £s.d.)x 102 over 50 trials with different data sets.



Chapter 7
Conclusions

In this thesis, we have explored the problem of learning robmqtolicies from con-
strained movement data with the aim of behaviour imitatiott ansfer from humans
to robots. We have discussed several examples of humas siall can be framed in
terms of performing some task subject to variable condgsaamd shown that in many
cases these constraints are unobservable from the dateegemtly change between
contexts.

In Chapter 2 we reviewed several state of the art methodsdonileg from move-
ment data and their suitability for learning in this settihgparticular, we showed that
few of these methods explicitly consider the effect of coaiets on observed data,
and commonly unconstrained or consistently constrainéa idaused when evaluat-
ing these methods. Furthermore, we saw that in the studi¢sithexplicitly consider
movement constraints, these usually only consider dati@icong the same consistent
constraints in all observations, and cannot handle thetaffeconstraint variability

In Chapter 3 (Howard et al., 2006; Howard and Vijayakumar,720@e outlined
a model for constrained motion based on recent work in aigalylynamics. In the
light of this model, we analysed the way in which constraaffect the kinematics
and dynamics of movement and discussed the implicatioesh#s for learning under
several different classes of constraint. In the remainimgpters we then went on to
propose several methods for learning from variable comstcata for the class of
stationary movement constraints.

In Chapter 4, (Howard et al., 2008b,a) we showed that an eféectethod for rep-
resenting constrained movements is to learn the underlymegnstrained policy. We
discussed how this can be done without need for explicit kadge of the constraints

117
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by looking for a model that is consistent with the observagionder the constraints.
Furthermore, we proposed a method for doing this for theiapease of potential-
based policies from constrained data, based on formingd foodels of the potential
and aligning these for global prediction. In our experinsene demonstrated robust
learning on data containing variable, non-linear and everoditinuous constraints for
several problems of varying size and complexity.

In Chapter 5 (Howard et al., 2009a,b) we then extended thigapp by removing
the restriction to potential-based policies. We proposed\el method for learning
generic policies from constrained observations based anadl,sbut very effective
modification of the standard risk. This enabled us to ledbitrary policies from con-
strained data, again without explicit knowledge of the ¢tasts. We tested the per-
formance of the approach on various systems, includingiilegfrom human demon-
stration data. The novel approach showed a significant imgonent in performance
over standard direct regression techniques, and alsorboiped the potential-based
approach.

Finally, in Chapter 6 (Howard et al., 2009c) we identified salsituations where
the method proposed in Ch. 5 has difficulties in learning, mi@aar when data con-
tains invariant or highly correlated constraints. We theaspnted an extension to
the method aimed at improving robustness in these situafidoward et al., 2009c),
based on a two-step optimisation approach. By applying tiension we were able
to seamlessly integrate constraint-consistent learniitig standard direct regression
approaches, eliminating the problem of invariant constsai

Outlook & Future Work

There exist a number of directions in which the work presgimehis thesis may be
extended in future work.

Constrained Dynamics

In all of the experiments presented in this thesis data wed frem constrained kine-
matic policies, that is, mappings from positions to velesiteither in joint space or
Cartesian space. This was partly in order to keep the expdarsand analysis simple,
and partly due to technical limitations, e.g. a lack of focomtrol or sensing on our
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robotic platforms. However, as discussed in Ch. 3, the camstformalism used in
this thesis is generic and can be applied to a wide varietyhdresystems (Udwadia
and Kalaba, 1996). Example systems include higher-orawmmkatic control policies
(i.e. control of accelerations or jerk), dynamic controlipies (i.e. control of forces
and torques) and the passive dynamics of several systemsntéuesting direction
of future work then, could be to apply the approaches deeeldyere to learning from
such systems. For example, in the window wiping task, ondtailyo use information
from the normal forces applied to the wiping surface foriéag the policy.

Alternative Constraint Types

Each of the algorithms presented in this thesis deals ssittlyswith the problem of
variable, non-linear stationary constraints in the da&a, those that can be described
in terms of the formalism outlined in Sec. 3.3.2. Howevegyéhare a number of alter-
native constraint types that they cannot currently hanBte. example, systems with
moving or ‘forced action’ constraints can cause additiaifficulties as described in
Sec. 3.3.3. Another example is that of constraints on moneharation (as distinct
from constraints that are time-dependent in the sense ofgihg during the move-
ment, ref. Ch. 3), which may have different effects on the olesk actions. For
example, a stringent constraint on the time permitted &k &xecution may mean that
commands are scaled up to produce a quicker movement. Horatiecnative con-
straint types new learning methods may be developed to @mgit the approaches
proposed in this thesis.

Improved Learning Theory

The learning algorithms proposed in this thesis, in paldicthose presented in Ch. 5
and Ch. 6 constitute a non-standard form of regression. Whédeekperiments are
testament to their good performance, there are still a nuoflegpen issues remaining
in terms of theoretical predictions of performance. In jgatér, an interesting direc-

tion of future work could be to attempt to derive error boundsonfidence intervals

on the learnt policies. Such bounds could used to improvestitategy for selecting

between learning approaches (e.g. constraint-consigi@mting versus direct regres-
sion, cf. Ch. 6). Another possibility could be to reformulttte current strategy based
on least-squares optimisation into the full Bayesian fraoréw
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Extensive Experiments on Human Data

In Ch. 5 and Ch. 6, we presented experiments that illustratedthe proposed ap-
proaches can be used for transferring behaviour from hurearodstration to generate
movements on the robot. We investigated the task of wipimtgudifferent constraints
as induced by the shape and orientation of the wiping surféegfound that our meth-
ods enabled us to transfer the wiping to two robot platfonma way that generalised
over the constraints. However, while the resultant motiwase qualitatively similar

to the human demonstrations, there is still much to be dorerms of quantitative

evaluations. In particular, an interesting direction dfife work would be to perform

extensive experiments on human data for a series of differesryday constrained
tasks, such as opening doors, stirring soup in a pan andiggirffee in a coffee

grinder.

Modelling Adaptation to Constraints

In Ch. 2 we mentioned how, under the assumption of an invas@nof constraints,
models of human and robotic adaptation have been develdpédther direction of
future work could be to look at when and how adaptation magged in the presence
of uncertain and variable constraints. For example, thensistency error (5.4) can be
used as a distance metric by which to measure differenceshiaMour (as represented
by policies), up to a difference in constraints. Given a nhadebehaviour in one
context (e.g. walking in an office environment) we could patdly use that model
to measure how much, and in what ways that behaviour differs s adapted) under
new constraints (e.g. walking on a paved street versus malki a rough, ploughed
field). This could potentially provide better insight intov learnt behaviours can
be transferred from one constraint setting to anotherdavgithe need to completely
re-plan the behaviour from scratch.
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