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Abstract

Many everyday human skills can be framed in terms of performing some task sub-

ject to constraints imposed by the task or the environment. Constraints are usually

unobservable and frequently change between contexts.

In this thesis, we explore the problem of learning control policies from data con-

taining variable, dynamic and non-linear constraints on motion. We show that an ef-

fective approach for doing this is to learn the unconstrained policy in a way that is

consistent with the constraints.

We propose several novel algorithms for extracting these policies from movement

data, where observations are recorded under different constraints. Furthermore, we

show that, by doing so, we are able to learn representations of movement that gener-

alise over constraints and can predict behaviour under new constraints.

In our experiments, we test the algorithms on systems of varying size and complex-

ity, and show that the novel approaches give significant improvements in performance

compared with standard policy learning approaches that arenaive to the effect of con-

straints. Finally, we illustrate the utility of the approaches for learning from human

motion capture data and transferring behaviour to several robotic platforms.
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List of Notation

Below is a list of symbols and abbreviations used throughout this thesis (unless an

exception is noted in the text). Entries of the forma(·) denote an argument should be

supplied to the functiona, for example where there is a direct dependency on some

quantity. In addition to the terms defined here, note that we use the convention of bold

upper-case letters,A, to denote matrices, bold lower-case letters,a, to denote vectors

and normal weighted font,a, to denote scalar terms.

Symbols

x State space coordinate.

u Observed action.

π(·) Policy mapping from states to actions.

t Time.

T Duration in time (e.g., of a trajectory).

ψ(·) Rheonomic or scleronomic constraint function.

A(·) Pfaffian constraint matrix.

N(·) Nullspace projection matrix.

AT Transpose ofA.

A† Moore-Penrose pseudoinverse ofA, i.e.,A† = (ATA)−1A.

I Identity matrix.

0 Vector of zeros.

ȧ Time derivative ofa.
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q, q̇, q̈ Position, velocity and acceleration in joint space.

r , ṙ , r̈ Position, velocity and acceleration in task space.

τ Torque in joint space.

J(·) Jacobian matrix.

M(·) Mass/inertia matrix.

Fc(·) Coriolis and centrifugal forces.

Fg(·) Gravitational force.

φ(·) Scalar potential.

∇x f Gradient off with respect tox.

Φ(·) Vector potential.

∇x × f Curl of f with respect tox.

φ̆ Potential, estimated from Euler integration.

f̃ (·) Model estimate off (·), e.g.,φ̃(x) is the estimate ofφ at pointx taken

from the global model ofφ(x).

λi ith eigenvalue of a matrix.

Λ Diagonal matrix containing eigenvalues as the non-zero entries, i.e.

Λ = diag(λ1, · · · ,λn).

vi ith eigenvector of a matrix.

V Matrix containing eigenvectors as the columns, i.e.V = (v1, · · · ,vn).

H Hessian matrix.

λ̄ Regularisation parameter.

â Normalised vectora.

n̂ Unit normal vector.

P Projection matrix.
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R(·) Rotation matrix. Argument denotes rotation angle.

x̄ Augmented state vector̄x = (x,1)T .

E[·] Objective or error function. Arguments denote the quantityto be opti-

mised.

N (µ,σ) Gaussian distribution with meanµ and standard deviationσ.

U [xmin,xmax] Uniform random distribution ofx with xmin ≤ x≤ xmax.

A⊗B The Kronecker product of the matricesA andB.

vec(A) Thevecoperation applied to the matrixA. For example, forA ∈R
2×2,

vec(A) = (A11,A21,A12,A22)
T whereAi j denotes the element ofA on

the ith row andjth column.

Abbreviations

AL Apprenticeship Learning.

DMP Dynamic Movement Primitives.

DPL Direct Policy Learning.

HMM Hidden Markov Models.

IRL Inverse Reinforcement Learning.

MDP Markov Decision Process.

NN Nearest Neighbour.

PbD Programming by Demonstration.

CLIK Close Loop Inverse Kinematics.

LWPR Locally Weighted Projection Regression.

nCPE Normalised Constrained Policy Error.

nMSE Normalised Mean Squared Error.

nUPE Normalised Unconstrained Policy Error.
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RBF Radial Basis Function.

RMRC Resolved Motion Rate Control.
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Chapter 1

Introduction

A wide variety of everyday human skills can be framed in termsof performing some

task subject to a set of constraints. Constraints may be imposed either by the envi-

ronment (Ohta et al., 2004), the task (Calinon and Billard, 2007) or, more commonly,

both. For example, when opening a door, the door acts as an environmental constraint

that restricts the movement of ones hand along the opening arc of the door. When

stirring soup in a saucepan, the sides of the pan prevent the spoon moving beyond

their radius. Many tasks require self-imposed task constraints to be fulfilled in order

to achieve adequate performance. For example, when pouringwater from a bottle to a

cup the orientation of the bottle must be constrained so thatthe stream of water falls

within the mouth of the cup. When wiping a window, ones hand should be constrained

to maintain contact with the wiping surface (Park and Khatib, 2006) and when climb-

ing a ladder, constraints may be applied to the centre of massor the tilt of the torso of

the climber to prevent over-balancing. When manipulating orgrasping solid objects

the motion of ones fingers is constrained by the presence of the object (Sapio et al.,

2006). In systems designed to be highly competent and adaptive, such as humanoid

robots and robotic arms (Fig. 1.1), behaviour may be subjectto a wide variety of con-

straints that are usually non-linear in actuator space and often discontinuous (Sentis

and Khatib, 2006, 2005; Gienger et al., 2005; Sapio et al., 2005; Sentis and Khatib,

2004). Consider the task of running or walking on uneven terrain: the cyclic move-

ment of the legs of the runner is constrained by the impact of the feet on the ground in

a dynamic, discontinuous and unpredictable way.

A promising approach to providing robots with such skills asrunning and opening

doors is to take examples of motion from existing demonstrators (e.g., from humans)

1



2 Chapter 1. Introduction

and attempt to learn a control policy that somehow captures the desired behaviour

(Argall et al. 2008; Billard et al. 2007; Schaal et al. 2003; see also Ch. 2). Such

techniques offer (i) a simple, intuitive interface for programming robots, (ii) effective

methods for motion recognition and classification (e.g., Inamura et al. 2004), and;

(iii) accelerated optimisation of movements by using demonstration data to seed the

solution (e.g., Schaal 1997).

However, while a wide variety of approaches for learning andrepresenting move-

ments have been proposed in recent years (Argall et al., 2008; Billard et al., 2007;

Schaal et al., 2003), few have explicitly considered the problem of dealing with con-

straints on motion in learning. An important component of this is the ability to deal

with the apparent variability in movements induced by varying constraints. For exam-

ple, one wishes to learn a policy that allows one not only to open a specific door of a

particular size (e.g. constraining the hand to a curve of a particular radius), but rather

to open many doors of varying sizes (radii).

The focus of this thesis is on modelling control policies from movement data con-

taining dynamic and uncertain constraints. The aim is to develop methods that allow

the effect of constraints to be dealt with in an appropriate way during learning, with a

view to improving existing methods that currently rely on traditional supervised learn-

ing techniques. In particular, we consider learning from movements that are subject to

variable, dynamic, non-linear and even discontinuous constraints, and look for policies

that cangeneralise over constraints.

The strategy we will use for this is to attempt to consolidatemovement observa-

tions under different constraints in order to model the underlying unconstrained policy

common to all. Learning the latter enables generalisation since we can apply new

constraints to predict behaviour in novel scenarios. This is inspired by recent work

in analytical dynamics (Udwadia, 2008) where an effective and intuitive strategy for

analytically solving constrained motion problems has beento consider the effect con-

straints have in modifying the fundamental equations of motion of a system.

In general, we will see that learning (unconstrained) policies from constrained mo-

tion data is a formidable task. This is due to several problems, such as (i)unobserv-

ability of constraints (ii)non-convexityof observations under different constraints, and;

(iii) degeneracyin the set of possible policies that could have produced the observed

movement under the constraint (Howard et al., 2009b, 2008a). We will discuss at

length how these problems arise when learning in the constrained setting, and develop
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Figure 1.1: ASIMO humanoid robot (left) and anthropomorphic DLR light-weight arm

(LWR-III) (right) used in our experiments.

several methods to overcome them, first for the special case of potential-based poli-

cies, and later for learning generic, arbitrary policies. We will show that despite these

difficulties, given observations (i) under a sufficiently rich set of constraints it is pos-

sible to reconstruct the fully unconstrained policy; (ii) under an impoverished set of

constraints we can learn a policy that generalises well to constraints of a similar class,

and; (iii) under ‘pathological’ constraints we can learn a policy that, at worst, repro-

duces behaviour subject to those same constraints. Furthermore, achieving these is

possible without the need for explicit knowledge of the constraints in force at the time

of observation.

An extensive set of experiments are reported in order to validate the methods and to

assess the performance of the various learning techniques developed. In these, learning

is performed on data from several policies on complex, high-dimensional movement

systems, subject to various realistic constraints. Furthermore, we illustrate the utility

of the proposed approach for learning from human demonstrations and transferring

behaviour to the ASIMO humanoid robot and the DLR robot arm (Fig. 1.1).

Thesis Outline

In the following, we give a short outline of the thesis highlighting the key content of

each chapter. Below each description we also list referencesto articles in which the

work has been published during the course of research, and highlight the original con-

tributions made in the chapter.



4 Chapter 1. Introduction

In Chapter 2, we review the current state of the art in modelling movementfor control

and imitation and discuss related work specifically focusedat dealing with constraints.

Original Contributions:

• Review of imitation learning methods in terms of policy-based, trajectory-based,

and indirect methods.

• Common assumption of invariance in constraints in existing constraint-focused

works highlighted and analysed.

• Comparison of sources of variability in observations under invariant and vari-

able constraints using a navigation task as an example.

In Chapter 3, we discuss how constraints affect the kinematics and dynamics of move-

ment in the light of recent theoretical work in analytical dynamics. We then go on to

discuss how different classes of constraint within this model affects learning.

Original Contributions:

• Constraints in imitation learning framed in terms of established principles of

classical mechanics for the first time.

• Numerous examples of constrained systems provided, including examples from

well-known kinematic and force control schemes.

• In-depth analysis of how constraints affect observations of movement from the

viewpoint of learning, including degeneracy, non-convexity and problems with

‘forced-action’ constraints.

• Evidence for the feasibility of learning presented in termsof a geometric analysis

of the problem.

Publications:

• Howard, M., Gienger, M., Goerick, C., and Vijayakumar, S. (2006). Learning

utility surfaces for movement selection. In IEEE International Conference on

Robotics and Biomimetics.
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• Howard, M. and Vijayakumar, S. (2007). Reconstructing null-space policies

subject to dynamic task constraints in redundant manipulators. In Workshop on

Robotics and Mathematics.

In Chapter 4, we propose a method for learning policies from systems subject to

variable constraints for the special case of kinematic, potential-based policies. We

show that an effective method for representing movements under different constraints

is to learn the unconstrained policy, and that this is possible without explicit knowledge

of the constraints.

Original Contributions:

• Basis for learning potential-based policies from constrained observations de-

rived considering the relationship of observations to directional derivatives of

the potential.

• Novel learning method developed based on local modelling of the potential and

minimisation of global disagreement.

• Numerous experiments presented, highlighting enhanced performance and gen-

eralisation over constraints compared to standard policy learning techniques.

Publications:

• Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijayakumar, S. (2008).

Learning potential-based policies from constrained motion. In IEEE Interna-

tional Conference on Humanoid Robots.

• Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijayakumar, S. (2008).

Behaviour generation in humanoids by learning potential-based policies from

constrained motion. Applied Bionics and Biomechanics, 5(4):195211.

In Chapter 5, we propose a new method for learning generic policies from systems

subject to variable constraints, removing the restrictionto potential-based policies. We

show that it is possible to learn arbitrary (e.g., rotational) policies, again without ex-

plicit knowledge of the constraints. Furthermore, we applyour approach to learning

from human motion capture data.

Original Contributions:
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• Analysis of plausible risk functions and their implications for learning generic

constrained policies.

• Novel risk function proposed based on optimising consistency with the con-

straints using an approximated projection.

• Numerous experiments presented, showing improved performance for arbitrary

(including rotational) policies, and demonstrating application to real human

data.

Publications:

• Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijayakumar, S. (2009).

A novel method for learning policies from constrained motion. In IEEE Interna-

tional Conference on Robotics and Automation.

• Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijayakumar, S. (2009).

A novel method for learning policies from variable constraint data. Autonomous

Robots. (submitted).

In Chapter 6, we present an extension of the general policy learning method aimed at

improving robustness in learning. In particular, we deal with problems that arise when

learning with the method proposed in Ch. 5 from data containing invariant or highly

correlated constraints.

Original Contributions:

• Analysis of model degeneracy problem for the novel method presented in Ch. 5.

• Novel extension of the constraint-consistent learning approach derived, based

on dual optimisation of constraint-consistency and standard risk.

• Numerous experiments presented, demonstrating robust learning for constraints

with differing levels of variability, highlighting how constraint-consistent learn-

ing can be combined with standard policy learning approaches.

Publications:

• Howard, M., Klanke, S., Gienger, M., Goerick, C., and Vijayakumar, S. (2009).

Robust constraint-consistent learning. In IEEE International Conference on In-

telligent Robots and Systems.

Finally, in Chapter 7, we give conclusions and suggest directions for future work.



Chapter 2

Modelling Movement for Control and

Imitation

2.1 Introduction

In this chapter, we review the current state of the art in modelling movement for con-

trol and imitation, to provide a background to the research done in this thesis, and to

highlight the novel contributions made. To do this, we breakthe chapter into two parts.

In the first part we look at the general field of learning from movement data and

discuss three major classes of methods as categorised by thetypes of model that they

produce. Specifically, we consider methods that learn (i)policy-based models(ii) tem-

poral or trajectory-based models, and (iii) indirect modelsof movement. Our aim in

this part is to ground the work contained in this thesis in thecontext of the wider field

of research.

In the second part we focus specifically on works that explicitly deal with con-

straints when modelling movement. We will see that much of the work in this area

has focused on two main aspects of the modelling problem. First, there are studies

that focus onmodelling constraintsfrom example movements. We will discuss sev-

eral methods proposed for doing this, based on looking for atvariance information in

the observation data. Second, there are the studies that focus onadaptation of move-

ments to constraints. We will review several works that attempt to model adaptation

in terms of the optimal control framework, including work inthe robotic and human

motor control literature.

Finally, we will highlight a common assumption shared by these studies that limits

7



8 Chapter 2. Modelling Movement for Control and Imitation

their applicability for a number of problems of interest. Specifically, we will note

that they all assume the constraints to beinvariant between observations(or trials of

adaptation). We therefore go on to discuss a third aspect of dealing with constraints

in modelling movement that has received little attention inthe literature. This is the

problem of modelling movement where there aredynamic, variable constraintsin the

observations. We will show that current approaches do not consider this issue despite

its frequent appearance in many real-world scenarios.

2.2 Statistical Modelling of Movement

A wide variety of approaches have been proposed for the statistical modelling of move-

ment for purposes of control and imitation (Argall et al., 2008; Billard et al., 2007;

Schaal et al., 2003). Broadly speaking most can be categorised into three major classes

according to the nature of the models learnt and their domainof applicability. In this

section we will give a brief overview of these different classes and the approaches pro-

posed for learning them. We will look at their advantages anddisadvantages in terms

of their application domain. Our aim is to provide a background against which current

work dealing with the role of constraints in movement can be compared.

2.2.1 Policy-based Modelling

A popular class of approaches to modelling movements can be termed that ofpolicy-

based modellingor Direct Policy Learning(DPL) methods1 (Calinon and Billard,

2007; Alissandrakis et al., 2002; Grimes et al., 2007; Chalodhorn et al., 2006; Grimes

et al., 2006; Schaal et al., 2007, 2003; Ijspeert et al., 2003, 2002b,a). In these ap-

proaches the idea is to represent demonstrated movements infunctional form as some

policy, i.e. as a mapping from states to actions

u = π(x) , π : R
n 7→ R

d,

wherex ∈ R
n andu ∈ R

d are appropriately chosen state- and action-spaces, respec-

tively. Assuming that the observed system can be adequatelyrepresented in this way,

1To clarify the terminology used, we refer to DPL as the supervised learning of policies from given
motion data (e.g., from data recorded from a demonstrator).This is in contrast to the learning of policies
from cost/reward feedback without the use of a value function, which is also sometimes referred to as
DPL.
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Figure 2.1: Policy based modelling. Demonstration data in the form of state-action

tuples is used to form a policy model (vector field) that directly encodes the action for a

given state. For the reproduction, a correspondence mapping must be defined from the

demonstrator’s state-action space (x,u) to that of the imitator (x′,u′).

the goal of DPL is to approximate the policy as closely as possible (Schaal et al., 2003).

It is usually formulated as a supervised learning problem where it is assumed that ob-

servations ofu, x (often, though not necessarily, in the form of trajectories) are given

and from these we wish to learn the mappingπ.

A schematic of policy-based learning is shown in Fig. 2.1, illustrating the data flow

from demonstration data, through learning, to movement reproduction. As can be seen,

this approach requires data in the form of tuples of states and actions. For the repro-

duction, policy-based models produce atomic state-dependent actions; however, if the

policy is applied in closed loop (i.e. state feedback is given after applying actionu)

then trajectories are produced. It should also be noted that, as with all policy-based

approaches, the choice of state- and action-space is problem specific (Schaal et al.,

2003) and, when used for imitation learning, depends on thecorrespondencebetween

the state-action space of the demonstrator (x,u) and that of the imitator (x′,u′). For

example, if we wish to learn the policy a human demonstrator uses to wash a window,

and transfer that behaviour to an imitator robot, an appropriate choice ofx may be the

Cartesian coordinates of the hand, which would correspond tothe end-effector coor-

dinates of the robot. Transfer of behaviour across non-isomorphic state- and action-

spaces (for example, if the demonstrator and imitator have different embodiments) is

also possible by defining an appropriate state-action metric (Alissandrakis et al., 2007).

The policy-based approach to learning from observed behaviour has appeared in some

form or another in many early works on Programming by Demonstration (PbD) (re-
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views can be found in Argall et al. 2008; Billard et al. 2007; Schaal et al. 2003).

In recent years several authors have taken the policy-basedapproach using sophisti-

cated, non-parametric supervised learning techniques to model observation data. Re-

cently popular examples of such techniques includelocal learning methods(Peters and

Schaal, 2008a; Vijayakumar et al., 2005, 2002; Schaal and Atkeson, 1998; Atkeson and

Schaal, 1997; Atkeson et al., 1997) andBayesian probabilistic methods(Calinon and

Billard, 2007; Grimes et al., 2007; Wang et al., 2006; Urtasunet al., 2006; Chalodhorn

et al., 2006; Grimes et al., 2006; Hsu et al., 2005; Grochow etal., 2004). However,

in recent times a particularly appealing approach has been to combine models learnt

from data with sets of dynamical systems for use as control policies. In the robotics

community, this is commonly known as theDynamic Movement Primitives(DMP)

approach (Schaal, 2006; Degallier et al., 2006; Nakanishi et al., 2004; Ijspeert et al.,

2003, 2002a,b, 2001).

Example: Dynamic Movement Primitives

Dynamic Movement Primitive learning (Schaal, 2006; Degallier et al., 2006; Nakan-

ishi et al., 2004; Ijspeert et al., 2003, 2002a,b, 2001) is the generic term used for ap-

proaches that approximate movement data with models eitherentirely consisting of a

set of dynamical systems (Ijspeert et al., 2001), or a combination of dynamical sys-

tems and non-parametric regression models (e.g. Ijspeert et al. 2003, 2002b,a). The

great strength of these approaches is that they combine several beneficial properties

of dynamical systems with the convenience of a learnt model.In other words, the

dynamical systems can be chosen to ensure that the reproduced movement has cer-

tain desirable properties, such as guarantees on stability, reachability or controllability

(Sontag, 1998). On the other hand, the learning of non-parametric models can help

to provide a simple interface to modulate these systems in a data-driven way, without

having to engineer the dynamical system from scratch.

An early proponent of this approach was Ijspeert et al. (2001) who proposed a

method for fitting mixtures of second-order dynamical systems to human trajectory

data. This was tested in a trajectory tracking task on a simulated humanoid robot

and resulted in trajectories that were stable against perturbations during task execution

(Ijspeert et al., 2001). Since then, several extensions have been proposed, such as learn-

ing discrete movements with stable attractor landscapes (Ijspeert et al., 2003, 2002b)

and rhythmic movements with periodic systems (Ijspeert et al., 2002a). Nakanishi et al.
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Figure 2.2: Trajectory based modelling. Demonstration data in the form of trajectories

is modelled in a way that preserves the order and timing of states and actions. For the

reproduction a correspondence mapping is used to produce trajectories in the imitator’s

state-action space.

(2004) proposed the use of DMPs in the form of neural oscillators for learning bipedal

walking. Degallier et al. (2006) proposed a method for switching between discrete and

rhythmic dynamical systems for learning a humanoid drumming task. Finally, Park

et al. (2008) recently proposed a method to combine DMPs withdynamic potential

functions to incorporate simple obstacle avoidance behaviour.

DMPs and other policy-based methods are a relatively simple, effective approach to

modelling movement for control and imitation. By framing theproblem as a super-

vised learning of the mapping between states and actions, they can draw on many so-

phisticated supervised learning techniques. This means they can be learnt very quickly

and efficiently, and are suitable for fast, real-time prediction of actions for closed-loop

control.

2.2.2 Temporal & Trajectory-based Modelling

A second important class of approaches for modelling movement are those based on

temporal and trajectory-based modelling. These use time series modelling techniques

in an attempt to capture and exploit time dependencies and the sequential nature of the

observed movement data (Dietterich, 2002).

A schematic of trajectory-based modelling is shown in Fig. 2.2, illustrating the data

flow. In this class of approaches data arrives in the form of trajectories; that is, strings

of states and actions with timing information, such as the duration T. Usually it is

assumed that some pre-processing of the data is performed tosegment the trajectories
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(i.e. to determine the start and end of the movement) and to deal with synchronisation

(i.e. to ensure time correspondence between different example movements). The tra-

jectories are combined into models capturing the temporal structure of the movement,

which can then be used to predict the instantaneous action atsome instantaneous state

along a trajectoryx(t), or a complete open-loop trajectory through states and actions.

It should be noted that for movement reproduction, the correspondence problem must

again be solved, similar to the policy-based approaches (ref. Sec. 2.2.1).

Several approaches have been proposed for trajectory-based modelling, such as

spline fitting of salient via points (Aleotti and Caselli, 2006; Asfour et al., 2006; Cali-

non et al., 2005; Ude, 1993) and models based on autoregressive techniques such as

recurrent neural networks (Ijspeert and Cabelguen, 2006; Tani and Yamamoto, 2002;

Ijspeert, 2001; Morita and Murakami, 1997; Morita, 1996). In the recent literature a

particularly popular approach has been the use of Hidden Markov Models (HMMs)

(Lee and Nakamura, 2007; Takano et al., 2006; Lee and Nakamura, 2006; Inamura

et al., 2005, 2004; Inamura and Nakamura, 2003), to model movement data. In the

robotics community the major approach using HMMs is commonly termed themime-

sis modelof imitation learning.

Example: Mimesis Model

The mimesis model(Lee and Nakamura, 2007; Takano et al., 2006; Inamura et al.,

2005, 2004; Inamura and Nakamura, 2003; Inamura et al., 2002) was one of the first

approaches to take advantage of HMMs to unify behaviour modelling, recognition, and

generation, as well as handling issues of correspondence all under the same probabilis-

tic framework.

In the framework proposed by Inamura et al. (2004), a database of demonstrated

trajectories is maintained and used for learning models of behaviour using discrete and

continuous left-right HMMs. The parameters from the continuous models are used to

define salient reference points in the phase space of the learner robot, which are then

used as states in the discrete HMM models. Due to the greater computational efficiency

of discrete HMMs, these are used for the recognition and generation of movements.

Finally, to ensure that the learnt movements are viable for the robot to perform (i.e.,

to deal with correspondence issues) the database of movements is augmented with

trajectories generated from the learnt HMMs in the phase space of the robot, causing

the reference points to be updated for recognising and generating movement.
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Several extensions and applications of the mimesis model have also been reported.

For example, Lee and Nakamura (2007) propose a method for mimicking human

movements from marker data using on-board monocular vision. Takano et al. (2006)

propose a hierarchical version of the mimesis model where two lower level HMMs are

used to model primitive behaviours of two agents, and an upper level HMM is used to

model sequences of interactions between the lower level behaviours. They apply this

to a kick-boxing match where the interaction between two human combatants is repro-

duced by a robot interacting with a human. Inamura et al. (2005) use verbal commands

captured from voice-recognition software to highlight points of attention in demonstra-

tions and facilitate learning.

The mimesis model and other trajectory-based methods are particularly suited to mod-

elling behaviour where order and sequence is important, forinstance strings of actions

aimed at some outcome. An example would be that of making tea,where the sequence

of actions (i.e., boiling the water, adding the teabag, pouring from the teapot etc.) is

important. They are also useful for modelling behaviours where the timing of actions is

important, such as when to initiate a movement or the duration for which a movement

should be performed. There are still some issues to resolve in trajectory-based learn-

ing, such as the segmentation and time synchronisation of observations, but methods

to cope with these problems are currently active areas of research.

2.2.3 Indirect & Inverse Optimal Modelling

The third major class of movement modelling approaches thatwe consider here can

be broadly termedindirect or inverse optimal modellingmethods. In these, certain

assumptions are made about themovement generation process, and based on these a

model is learnt that reproduces the movement when operated upon by that same, or a

similar, process.

A schematic of indirect modelling is illustrated in Fig. 2.3. Depending on the

method, the observation data required for indirect modelling may take either the form

of trajectories or tuples of states and actions. In additionto this, information on the

generation process is needed, such as parameters determining the generation (e.g., dis-

counting factorsγ or the state dynamics functionf (x,u)) or rules determining how to

transform the model to recover the movement (e.g., through optimisation of movement

with respect to the model). Similarly, appropriate information on the movement gener-
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Figure 2.3: Indirect modelling. Demonstration data in the form of state-action tuples

or trajectories is combined with some assumed movement generation process and pa-

rameters. For decoding the movement from the model the same or similar movement

generation process is used to find a movement in the imitator’s state-action space.

An example movement generation process could be reinforcement learning, with given

state dynamics for the demonstrator ẋ = f (x,u) and imitator ẋ′ = f ′(x′,u′).

ation process must be defined for the reproduction in the imitator’s state-action space.

It should be noted that the latter need not exactly match the former; for example, the

state-dynamics might change or a different optimisation process may be used.

A simple example of a class of functions that can be used to indirectly model

movement is that of scalar potentials (Park et al., 2008; Brillinger, 2007; Khatib et al.,

2004; Ohnishi and Imiya, 2007; Conner et al., 2003; Rimon and Koditschek, 1992)

which can be used to model a certain class of policies (see Ch. 4). In this case the

movement generation process is simply that of taking the gradient of the potential

function2. However, a family of indirect modelling approaches that has been growing

in popularity recently is that ofinverse optimal methods, such asinverse reinforcement

learningandapprenticeship learning.

Example: Inverse Optimal Modelling

In recent years, approaches based on inverse optimal control such asApprenticeship

Learning(AL) (Kolter et al., 2008; Neu and Szepesvári, 2007; Ng, 2006; Ratliff et al.,

2006a; Maire and Bulitko, 2005; Abbeel and Ng, 2005, 2004) andInverse Reinforce-

2Note that this can be thought of as a special case of inverse optimal modelling under infinite dis-
counting, i.e. using a greedy one-step look-ahead for optimisation.
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ment Learning(IRL) (Ziebart et al., 2008; Neu and Szepesvári, 2007; Freire da Silva

et al., 2006; Ramachandran and Amir, 2006; Abbeel and Ng, 2004; Ng and Russell,

2000; Russell, 1998; Atkeson and Schaal, 1997) become increasingly popular as meth-

ods for indirect modelling of movement. These approaches attempt to model observed

movements through their underlying reward/cost function,assuming that they come

from some optimally controlled system. In other words, the movement generation pro-

cess for these models is that of forward optimisation of the control with respect to the

model (e.g. through reinforcement learning, Sutton and Barto 1998).

Early proponents3 of this approach were Ng and Russell (2000) who first derived

the theoretical basis for IRL from the Bellman equations and proposed heuristic algo-

rithms for its solution. Their derivation was presented in terms of a discrete state-action

space where the reward function was simply a vector of valuescontaining the reward at

each state. They showed that, given a (finite-state) Markov Decision Process (MDP),

with a knowledge of (or samples from) the optimal policyπ∗, discount factorγ and

state-transition probabilitiesPa, linear programming with heuristics can be used to

find the reward vector most consistent with the optimal policy (Ng and Russell, 2000).

Since then the method has been extended in different ways. For example, Abbeel

and Ng (2004) describe a method for efficient learning when the reward is composed

of a weighted linear combination of known features, and apply the approach to learn-

ing different styles of driving in a simple simulated driving game. Ratliff et al. (2006a)

present a similar approach but are able to incorporate data from multiple MDPs. They

demonstrate their method on a number of navigation tasks based on 2-D satellite im-

ages (Ratliff et al., 2007, 2006a,b). Alternative approaches to the basic IRL problem

have also been suggested. For example, Ramachandran and Amir(2006) proposed a

formulation that defined a distribution over possible reward functions. This enabled

them to apply Bayesian inference to find the most likely reward. In contrast, Neu and

Szepesv́ari (2007) use natural gradients to optimise the fit between the observed opti-

mal actions and the reward.

One of the appealing features of indirect modelling approaches such as IRL and AL is

the promise of enhanced generalisation beyond that of standard spatio-temporal gener-

alisation (e.g. predicting behaviour in unseen parts of thestate space). In approaches

3While here we review recent literature related to the statistical learning from demonstration data, it
should be noted that in fact the inverse optimal control problem was first posed by Kalman (1964), and
some solutions can be found as far back as Casti (1980).



16 Chapter 2. Modelling Movement for Control and Imitation

such as these, the models learnt may be decoupled from the dynamics of the observed

systems in some way. For example, in IRL, the learnt reward function may be used

for optimisation under a new set of state dynamics to producequalitatively similar

behaviour (Neu and Szepesvári, 2007). With this in mind, in Ch. 4 we will pursue

an indirect approach for modelling movement based on learning potential functions in

order to generalise over different dynamics characterisedby different constraints.

2.3 Incorporating Motion Constraints

Despite the wide range of approaches proposed for modellingmovement for control

and imitation, relatively few studies deal explicitly withthe effect of constraints on

movement. In the majority of the examples presented above, only unconstrained move-

ments, for example, squatting and kicking (Inamura and Nakamura, 2003) or tracing

figures (Ijspeert et al., 2003), are considered. Alternatively, in some cases constraints

may exist implicitly in the movement; for example, when beating a drum (Degallier

et al., 2006) there is a constraint that prevents the drumstick penetrating the skin. How-

ever, usually in these cases the constraints are kept invariant between different demon-

strations and also for the reproduction; for example, by keeping the position and ori-

entation of the drum fixed. Note that, provided this invariance in the constraints holds,

these approaches are effective. The reason for this is that,in effect, the constraint can

be implicitly absorbed into the model itself (for more details on learning from con-

sistently constrained observations, please refer to Sec. 3.3). However, as we will see,

these methods face difficulties if this implicit assumptionis violated.

Commonly, when constraints are explicitly considered, studies focus on two par-

ticular issues of the modelling problem. Broadly speaking, these can be categorised as

(i) inferring constraintsbased on variance in the observations, and (ii)adaptation of

movementsin the presence of a constraint. In this section we review works aimed at

dealing with these issues and discuss their benefits and shortcomings with respect to

modelling movement from constrained data. In particular wewill note that, in com-

mon with the standard learning approaches described in the preceding sections, these

also make the key assumption ofinvariant constraints.

Finally, we will go on to discuss a third, complementary aspect of modelling move-

ment in the presence of constraints that has that has received relatively little attention

in the literature. This is the issue of dealing withvariability in the constraintscon-
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Figure 2.4: Inferring constraints from observed movements using variance informa-

tion. In the presence of high noise causing perturbations, demonstrated movements

(coloured lines) exhibit high variability in unconstrained regions (here, in the regions left

and right of the two obstacles (black boxes)). In contrast, in constrained regions (central

area between the boxes) the variability is reduced due to the constraints. This variability

can be used to infer the presence and location of constraints.

tained in the observations. We discuss how existing approaches do not address this

issue despite its appearance in many real-world scenarios.

2.3.1 Inferring Constraints from Variable Observations

In a number of studies, several authors have proposed methods to use demonstrated

movement data to infer information about constraints, commonly by looking at the

variance in a set of observations (Delson and West, 1993, 1994b,a, 1996; Ogawara

et al., 2002; Calinon and Billard, 2007; Guenter et al., 2007; Calinon and Billard, 2008;

Hersch et al., 2008) These approaches all share two common assumptions, namely that

(i) unconstrained movements contain high variability between trials (e.g. due to noise

or environmental perturbations present during demonstrations); and (ii) consistency in

observations indicates a constraint on the motion.

To illustrate the concept behind these approaches, consider the navigation problem

shown in Fig. 2.4. There, the task is to learn a control policyto get from the start state

to the goal state, given a set of expert demonstrations. In this environment, the task is
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made harder by the presence of two large obstacles (black boxes), that constrain the

possible movements that can be taken (i.e., movement is restricted by the obstacles

when in the centre of the space, between the two boxes). Now consider that we are

given a set of demonstrations of an expert performing the task, where there is a lot

of noise or perturbations between the different demonstrations. This noise will affect

the trajectories seen in different ways, depending on the constraints. For example in

the unconstrained regions (e.g. near the start and goal states in Fig. 2.4) there may

be a large variance in the paths taken by the demonstrator as he or she gets knocked

off course by the noise. In the constrained regions (e.g. in the central region between

the blocks), however, the effect of the noise will be reduced, since the constraints

effectively prevent perturbations in the vertical direction, since the obstacles cannot

be penetrated. Under the assumption that the constraint is fixed between the different

demonstrations (i.e. the shape, position, orientation andsize of the boxes is fixed), and

that the noise (or the chance of a perturbation) is consistent across the space, we can

look for these regions where there is low variance in the demonstrations to find out

where constraints are present.

One of the first studies to exploit ideas such as these in the context of PbD, was

that of Delson and West (1994b). They describe a method for programming a robot

to find the shortest path between a set of obstacles to a targetby recording human

demonstrations with a force gripper, similar to the set up described in Fig. 2.4. The data

was used to identify admissible (i.e. obstacle-free) regions by looking at the range of

positions visited by the recorded trajectories. The task was such that the demonstrator

would always successfully avoid the obstacles and would pass obstacles on the same

side. This meant that the regions visited could be assumed tobe safe from collisions

and to lie on the path to the goal. Once these admissible regions had been identified,

a path planning algorithm was applied to find the shortest path to the target within

the safe region. Note that, the constraint that trajectories found by the path planner

must lie within this region is an approximation of the true environmental constraints

(i.e. the those physically induced by the obstacles). Taking this approach, Delson

and West (1994b) were able to program the robot to navigate this environment (i)

with the guarantee of obstacle avoidance, and (ii) in a manner more efficient than the

original demonstrations (since the robot always took the same shortest path, without

the variability of the human).

Since then several authors have also attacked this problem with similar approaches.
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For example, Ogawara et al. (2002) proposed an approach to search for ‘essential inter-

actions’ between objects in a manipulation task. Sequencesof candidate interactions

were analysed to determine which were common to all in a set ofdemonstrations,

using dynamic programming sequence matching. Calinon and Billard (2008, 2007)

considerably extended the approach by applying more sophisticated techniques to en-

code the statistics of the demonstrations. Instead of usingsimple bounds on admissible

trajectories based on the range of the features (Delson and West, 1994b,a), Gaussian

mixture models were used to form a probabilistic model of thedemonstrations, and

Gaussian mixture regression to reproduce the maximum likelihood movement. They

report better generalisation, and smoother trajectories when learning from smaller data

sets compared to the original range-based approach. Furthermore, their approach has

been applied to several new tasks such as laying a table (Calinon and Billard, 2008)

and grasping and moving a chess piece (Calinon and Billard, 2007). Finally, Hersch

et al. (2008) suggested an extension to the approach to modulate dynamical systems

for robust trajectory tracking, similar to DMPs (ref. Sec. 2.2.1).

These approaches based on looking at inter-trial variance to infer constraints have been

successful for several scenarios of interest. Specifically, these involve situations where

constraints are consistent across trialsso that observed variability can be put down

to noise and perturbations in the control. However, there are also other sources of

variability in constrained movement which this model cannot explain. This includes

the effect ofadaptation of the controllerto the constraints. The latter has also received

some attention in the constrained movement modelling literature. We turn to this in

the next section.

2.3.2 Adaptation to Constraints

A second area in which constraints have been considered explicitly when modelling

motion concerns the issue ofadaptation to constraints. Here, investigation is con-

cerned with ways in which systems can change their behaviourwhen experiencing a

new constraint, commonly with the rationale that the constraint prevents the existing

control strategy from performing adequately. Frequently,work in this area makes the

assumption that adaptation is performed starting with someseed policy (e.g., learnt

under one set of constraints) which is then modified to tacklea new set of constraints

(Ohta et al., 2004; Svinin et al., 2005; Guenter et al., 2007). Note that, again, a key
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Figure 2.5: Adaptation to unseen constraints. In existing approaches, when a new

constraint (Constraint 2) is presented to an existing controller (Control 1), that controller

is adapted to generate a new controller (Control 2), tailored to the new constraint. Note

that the new constraint is usually held constant during adaptation.

assumption of these approaches is that the new constraints are keptinvariant during

the adaptation, so that any variations come from a change in the controller (policy).

To illustrate the concept, let us return to the navigation example described in the

preceding section. Again consider that we have to move from some start position to

the same goal in the presence of two obstacles. However, thistime consider that (i) we

start with some initial control policy, for example, learntin the context of the original

set of constraints (e.g. learnt from demonstrations or through reinforcement learning),

and; (ii) we are then presented with a new scenario in which wemust perform the

same task under a new (fixed) constraint, for example with thetwo obstacles shifted

to a new position, as shown in Fig. 2.5. Under the new constraint, adaptation proceeds

to change the original policy to improve performance, here,by altering the path of the

nominal trajectory.

Most existing studies on adaptation looking at the role of constraints use this model

to explain changes in behaviour; namely that an existing policy (possibly adapted to

one set of constraints), is adapted (usually through a process of optimisation) to a new

fixed constraint. Examples of this can be found in the human and robotics literature.

For example, in the human motor control literature Ohta et al. (2004) and Svinin

et al. (2005) recently performed experimental studies of human adaptation to externally

applied (i.e. environmental) movement constraints. The goal of these studies was to

look at ways in which humans interact with physical objects in the environment that
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constrain movement; for example, when turning the handle ofa coffee grinder (Svinin

et al., 2005). They approached the problem in terms of the optimal control framework

(Bertsekas, 2007) by analysing how humans adapted their movements under an un-

familiar constraint, and comparing this with optimisationof several established cost

functions from the human motor control literature. In theirexperiments, subjects were

asked to make point-to-point movements along a closed-path(i.e., a loop, starting and

ending at the same point), subject to constraints on the shape of the path. The con-

straints were enforced by use of a modified manipulandum to which several metal

sheets could be attached. Each of the sheets had different closed-path groves cut into

them (e.g. circles, ellipses, clover-leaves) and, when attached, meant that the handle

of the manipulandum could only travel along the groove. Essentially this reduced the

mobility of the subjects’ hands to one degree of freedom, corresponding to the angular

position along the path. Angular velocity and normal and tangential (to the path) force

profiles were collected and compared to simulated minimum jerk and torque/force-

change (in hand and joint space), and minimum muscle effort control. They found that

after several trials of training under the new constraint subjects adapted their move-

ment in a way that was consistent with optimisation of a combined hand-force- and

joint-torque-change cost function.

A similar model has also been proposed in the robotics domain. For example,

Guenter et al. (2007) report a method for handling previously unseen constraints when

learning from demonstration data. The aim of this work was tofind a way to adapt

policies to new constraints that are not contained in the demonstrations, while avoiding

having to learn a new policy from scratch. Following earlierwork by Calinon and Bil-

lard (2007), policies in the form of Gaussian mixture modelswere initially learnt from

a set of teacher demonstrations. These were then adapted to new constraint conditions

through a reinforcement learning approach. For this, parameters of the policy model

were directly optimised using episodic natural actor-critic reinforcement learning (Pe-

ters and Schaal, 2008b). It should be noted that the parameters of the constraints (e.g.

obstacle positions and shapes) were not explicitly given tothe algorithm, but were held

constant between trials during optimisation. The approachwas tested for two tasks. In

the first the task was to place an object in a box when a (previously unseen) obstacle

was placed between the robot’s hand and the box so that the robot had to adapt the

movement and reach over the obstacle. In the second a policy for grasping a chess

piece was learnt, then adapted by changing the constraint onthe direction of approach
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of the hand to the piece.

Studies such as these confirm our intuition that under certain circumstances adapta-

tion is required to cope with new constraints. This can be dueto the existing control

strategies becoming ineffective under the new constraint,or simply a drive to improve

performance when some specific constraint is experienced a number of times and thus

becomes familiar. Similar to the methods described in Sec. 2.3.1, these adaptive stud-

ies also assume thatconstraints are invariantbetween trials and all changes to the

movement are due to adaptation of the control policy.

2.3.3 Variability in Constraints

In the preceding sections, we outlined a number of studies that explicitly consider con-

straints when modelling movement. We noted that a key assumption made in these

studies is that there is invariance in constraints. In particular, they assume consistency

in the constraints between observations and try to explain differences between obser-

vations in terms ofvariability in the control; either due to noise and perturbations

(Sec. 2.3.1) or adaptation of the controller to the constraint (Sec. 2.3.2). However,

while these are important aspects of dealing with variability in observations of con-

strained movement, there is a third aspect to the problem that has not been considered

in the studies presented so far. This is the issue ofvariability in the constraints.

Variability in constraints can occur in many everyday behaviours. For example,

consider the problem of opening doors in an everyday environment such as an office.

This is a very simple behaviour in which a successful strategy would involve grasping

the door handle and pulling it open. Here, we can identify an environmental constraint

imposed by the door; namely, that the hand is forced to travelalong the opening arc of

the door. Note also that this constraint is specific to each particular door, that is differ-

ent doors may have different widths or open in different directions (e.g. depending on

which side of the door the hinges are attached) and this affects theobserved outcomeof

the control (i.e. the shape and size of the opening arc). However, note also that despite

the different constraints, the same control strategy (i.e.‘pulling’) would be effective to

open many different doors without the need for a specialisedcontroller for each.

As another example, consider also the task of stirring soup in a saucepan. There,

we can also identify an environmental constraint; in this case the sides of the pan

constrain the movement (i.e., the spoon cannot leave the radius of the pan). Again, this
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Figure 2.6: Inferring the control from variable constraints. Assuming consistency in

the control and high variability in the constraints it is predicted that consistency in the

observations can be used to model the control. This is the complement of the problem

of inferring the constraints (cf. Fig. 2.4).

constraint is dependent on the particular saucepan (e.g. different saucepans may have

different sizes and shapes). However, note also that despite these differences, the same

periodic control strategy is effective for stirring in manydifferent saucepans.

The point of these examples is to highlight a situation that is largely neglected

in studies such as those described in Sec. 2.3.1 & Sec. 2.3.2.There, the focus was

on variability in the controlunder a set ofconsistent constraints. However, in these

examples, a more appropriate approach seems to be the complement of this; namely,

to considerconsistency in the control under variable constraints. In many cases such

as these, approaching the problem in this way is more intuitive, and can offer a simpler

explanation of variations in movement that may be observed.

To compare how the concept of this approach differs from thatof the approaches

described in the preceding two sections, we can again look atour navigation example,

but this time from the viewpoint of constraint variability (ref. Fig. 2.6). Consider,

again, that we wish to learn a control policy that takes us from some start state to the

goal from a set of demonstrations. However, this time, consider that the constraints

are different in each of our demonstrations; for example, the width of the obstacles

varies for different demonstrations. This is illustrated in Fig. 2.6, where we represent
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the distribution of different obstacles (i.e. constraints) as shaded regions (so, for exam-

ple, darker regions indicate a higher likelihood of the obstacle occupying that space).

Note that, since the same basic task is performed in each demonstration, we can as-

sume a similar policy would be used. However, note also that under this set up, even

assuming perfect consistency in the policy, one would see variability in the movement

due to variability in the constraints. For example, in Fig. 2.6, we plot three example

trajectories that would result from applying a simple pointattractor policy (with the

attractor point at the goal) for three different obstacle widths (constraints). In this case,

differences in the paths can be attributed purely to variability in the constraints.

One of the main novel contributions of the research contained in this thesis is to

study the problem of modelling movement in this scenario; inparticular, how to make

consistent models of movement when our observation data contains high variability in

the constraints. This differs significantly from the approaches described in the preced-

ing two sections, both in terms of the assumptions about the constraints, and the goals

of learning (for example, we no longer focus on finding the constraints, but look instead

for consistency in the controls). There exist a number of motivations for approaching

the problem in this way.

For example, one major benefit of handling such cases is that,using such a model,

we can hope to predict movement in such a way thatgeneralises over constraints.

That is, if we can model the controller that is consistent with a set of demonstrations

observed under a given set of constraints, we can hope to re-apply that policy to accu-

rately predict movementunder a new set of constraints. Intuitively, if we observe that

our demonstrator uses the same policy successfully under a wide variety of constraints,

then presumably the demonstrator finds that policy sufficiently robustagainst the ef-

fects of those different constraints for successful performance. Following this, we can

then reasonably assume that, by learning this policy and applying it under similar con-

straint scenarios, this robustness will also be transferred to the learner. For instance

in the door-opening example, by learning the control strategy used by a demonstra-

tor to open several familiar doors (i.e. under a set of ‘training constraints’), we may

learn a generalised ‘pulling’ control strategy. Assuming this to be successful for the

constraints (doors) seen in the training data, we could thenapply the controller to new

settings with unfamiliar constraints, for example, to opena new door (e.g. one that

opens upwards instead of to the side).

Related to this, another possible motivation is to use our model to get a new per-
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Policy Constraint Modelling Adaptation

Fixed Fixed ✓ –

Fixed Variable ✗ –

Variable Fixed ✓ ✓

Variable Variable ✗ ✗

Table 2.1: Array of possible scenarios in which constraints may affect actions observed.

Ticks and crosses indicate whether the given combination can be handled with existing

approaches, from the viewpoint of (i) statistical modelling of behaviour data, and (ii)

adaptation of behaviour.

spective on the classification of different observations inthe movement recognition

setting. That is, if we are given a new set of observations (possibly under different

constraints), we can check these against our current model and assess their similar-

ity. For example, we could look at the distance in parameter space for the generalised

door-opening controller and a similar controller learnt for another task, such as drawer-

pulling. This would enable us to group qualitatively similar tasks in the same category,

ignoring the specific differences due to the constraints. Inother words models learnt

by this approach offer alternative, meaningful, abstractions of the observed movement,

i.e. we can say two movements are qualitatively or quantitatively similar, up to a dif-

ference in constraints.

Finally, this alternative approach to the problem of modelling constrained move-

ment can also be used to complement, and improve understanding of the existing stud-

ies on control-variability and adaptation under constraints. For example, we might

look for ways to detect the source of observed variability (i.e. due to the control, the

constraints or both) and improve our models of behaviour. This could be used, for

example, to determine when adaptation occurs or is necessary in different constrained

scenarios. A further possibility in this direction would beto decompose the variabil-

ity in observations into its constituent parts, such as adaptation, noise, changes to the

constraint, and other perturbations, further improving the quality of our models of be-

haviour.
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2.3.4 Filling the Gap

Based on the analysis in the preceding three sections, we are now in a position to

chart how different aspects of modelling movement in the presence of constraints have

been studied or solved in the existing literature. In the rows of Table. 2.1 we consider

four cases in which constraints could affect the actions observed from some policy,

categorised in terms the different possible sources of variability. In the columns we

indicate whether the case has been (or could trivially be) handled with existing methods

from the viewpoint of (i) statistical modelling of behaviour data, and (ii) adaptation of

behaviour. Note that here, the variability of a quantity maybe due to noise, external

perturbations or adaptation, and is assumed to occur acrossdata sets when modelling,

or across learning trials during adaptation. Note also thatwe only consider adaptation

in terms of changes to the policy (hence under the assumptionof a fixed policy it does

not make sense to deal with the adaptation problem).

As can be seen from the table, the simplest case, namely a learning a fixed policy

under fixed constraints, is straightforward using standardapproaches such as those de-

scribed in Sec. 2.2 (this will also be discussed in greater detail in Sec. 3.3.1 & 3.3.2).

For the case of a fixed constraint, but variability in the policy (e.g. due to noise in the

actions), methods such as those described in Sec. 2.3.1 are well-suited for modelling

the movement from a given set of observations, and can even beused to infer infor-

mation about the constraints. Furthermore, under a fixed constraint, it has been shown

that one can optimise an existing policy to improve performance under that constraint,

for example using the methods described in Sec. 2.3.2.

However, looking at the cases where variability in the constraints occurs (rows 2

and 4 of Table 2.1) there is a clear gap in current research. Clearly, methods such

as those described in Sec. 2.3.1 and Sec. 2.3.2 that rely on the assumption of a fixed

constraint are not suitable for such cases. Furthermore, asdiscussed in detail in the

next chapter, most standard regression approaches also fail in the presence of variable

constraints (essentially due to a mismatch between the effect of constraints and the

noise model commonly assumed in such approaches; see Sec. 3.3.2). In this thesis, our

goal is to take the first steps toward filling this gap by proposing methods specifically

tailored to such conditions.

Specifically, our goal is tackle the first of the gaps highlighted in Table 2.1; namely

the problem of modelling data where, under the assumption offairly small variation

in the control, the main source of variability in the observations can be attributed to
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variability in the constraints. As discussed in Sec. 2.3.3,there are many real-world

scenarios where this is the case, allowing our methods to be directly applied to learn-

ing in such scenarios. Furthermore, we hope that by studyingthis problem we may

highlight principles that may then be used in filling in the other gaps, such as adap-

tation in the presence of variable constraints, and modelling in the presence of the

combined variation of policies and constraints. By doing this we hope to extend our

knowledge about modelling movement within the domain of dealing with constraints.

2.4 Conclusion

In this chapter, we have reviewed a variety of methods for modelling movement data

from observations. We discussed several paradigms for learning models of movement,

in particular we highlighted methods that learn (i) policy-based, (ii) trajectory-based

and (iii) indirect models. In doing this we aimed to provide asnap-shot of the current

state of the art in the movement modelling literature, against which the work in this

thesis can be compared.

In the context of this broader field of work, we then went on to focus specifically on

studies that explicitly address the role of constraints in motion. We noted that within

this more restricted field, work has primarily been directedat two goals (i) inferring

the constraints in force during demonstrations, and (ii) adaptation to (fixed) constraints.

We noted that these two approaches rely on a common assumption: That the constraints

across demonstrations (or adaptation trials) are invariant, meaning that any variation in

movements is attributed purely to variation in the control.

We then went on to discuss a third source of variation in the observations, that of

variation in the constraintsand discussed examples of where this is a more intuitive

and fitting description of several real-world examples. We also discussed the motiva-

tion for studying the effect of variable constraints, both in terms of possible applica-

tions in, for example, imitation learning and movement recognition. Furthermore, we

discussed how studying this problem fills a large hole in existing research on methods

to model movement, and how filling this gap may enhance these existing models.

In the next chapter, we take a detailed look at the effect constraints have on move-

ment observations. In particular, we outline a formal modelfor constraints based on

recent work in analytical dynamics (Udwadia and Kalaba, 1996). We will then look at

how different classes of constraint affect our observations in different ways and discuss
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the implications these have for learning.



Chapter 3

Effect of Constraints on Dynamics and

Learning

3.1 Introduction

In this chapter we take a closer look at the the effect of constraints on the dynamics

of systems and the implications this has for learning. The analysis is broken into two

parts.

First, we will introduce a formal model that can be used to describe the dynamics

of constrained motion. This is based on principles of analytical dynamics (Udwadia

and Kalaba, 1996) and can be used to describe both natural andcontrolled dynamics

in terms of a generic set of constraints. In the robotics literature this formalism is ex-

tensively used in the kinematic and force control of rigid body systems such as manip-

ulators and humanoid robots (Udwadia, 2008; Peters et al., 2008; Sapio et al., 2006;

Gienger et al., 2005; Sentis and Khatib, 2004; Buss, 2004; Bruyninckx and Khatib,

2000; Nakamura, 1991; Khatib, 1987; Liégeois, 1977). However, the formalism is

generic and can be applied to a wide class of systems (Udwadiaand Kalaba, 1996).

We will discuss how such constraints affect motion and provide illustrative examples

of how the formalism is used in control of redundant manipulators. In general, we will

see that an intuitive way to understand the constrained behaviour of a system is is to

consider how the unconstrained behaviour is modified by the constraints.

Second, we will discuss how constraints affect the observations and the problems

these induce when attempting to learn a policy to capture that behaviour (Howard et al.,

2008a, 2009a, 2008b; Howard and Vijayakumar, 2007; Howard et al., 2006). We will

29
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see that different problems arise depending on the constraint setting. In particular, we

will identify three such settings and discuss examples of where these might be observed

in everyday life.

Finally, we will discuss our strategy for overcoming these problems in order to

learn the best possible model from the given data. These principles will be used in the

learning approaches developed in later chapters.

3.2 Constraint Model

The constraint model assumed throughout this thesis is based on principles of analyti-

cal dynamics. Here, we will briefly outline the formalism andits relation to everyday

control tasks. For a more thorough treatment of these principles we refer the reader to

any standard text on analytical dynamics, such as Udwadia and Kalaba (1996).

Following the policy-based approach (ref. Ch. 2), in this thesis we consider policies

that can be described as autonomous systems of the form

u(t) = π(x(t)) , π : R
n 7→ R

d, (3.1)

wherex ∈ R
n andu ∈ R

d are appropriately chosen state- and action-spaces, respec-

tively, andπ is some stationary mapping between the two. For example, in kinematic

control, the state vector could be the joint angles,x ≡ q , and the action could be the ve-

locitiesu ≡ q̇. In forced-based control a suitable state might bex ≡ q, q̇, with actions

corresponding to applied torquesu ≡ τ .

We assume the policies to be subject to a set of hard,k-dimensional, Pfaffian con-

straints (wherek≤ d)

A(x, t)π(x) = b(x, t) (3.2)

whereA(x, t) ∈ R
k×d is some rank-k matrix andb(x, t) ∈ R

k is some vector. Together

these two terms describe the constraints on the policy. Thisconstraint equation can be

thought of as the result of a set ofk constraints of the form

ψi(x, t) = 0; i = 1,2, · · · ,k (3.3)

whereψi(x, t) are smooth functions which, when differentiated, give the constraint

relation (3.2) (Udwadia and Kalaba, 1996). The effect of theconstraints is to modify

the policy actions so that they are projected into the nullspace of the constraints. This
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means that the actions we observe under the constraints havethe form

u(x, t) = A(x, t)†b(x, t)+N(x, t)π(x) (3.4)

whereN(x, t)≡ (I −A†A) ∈ R
d×d is a projection matrix that, in general, has a non-

linear dependence on time and state, andI ∈ R
d×d is the identity matrix1.

The formalism outlined is generic and can be used to handle constraints in a wide

variety of systems (Udwadia, 2008). For example, constraints of this form (3.2) com-

monly appear in scenarios where manipulators interact withsolid objects, for example,

when grasping a tool or turning a crank or a pedal; also referred to as contact constraint

scenarios (Park and Khatib, 2006; Murray et al., 1994; Mattikalli and Khosla, 1992).

Such constraints are also common in the control of redundantdegrees of freedom in

high-dimensional manipulators (Liégeois, 1977; Khatib, 1987; Peters et al., 2008),

where policies such as (3.4) are used, for example, to aid joint stabilisation (Peters

et al., 2008), or to avoid joint limits (Chaumette and Marchand, 2001), kinematic sin-

gularities (Yoshikawa, 1985) or obstacles (Choi and Kim, 2000; Khatib, 1985) under

task constraints. As an example: SettingA to the Jacobian that maps from joint-space

to end-effector position increments, and settingb = 0, would allow any motion in the

joint space provided that the end-effector remained stationary.

The formalism can also readily be applied to learning policies based on dynamic

quantities such as torques or (angular and linear) momentumsubject to constraints

(e.g., see Peters et al. 2008 and Kajita et al. 2003, respectively). In such cases, it is

assumed that the systems are subject a set of ‘ideal constraints’ in the sense that they

satisfy d’Alembert’s principle. D’Alembert’s principle is a classical result in analyt-

ical mechanics that characterises ideal constraints as those that can be described by

a set offorces of constraintwhich, for movements that satisfy the constraints, do no

work. The constraint formalism (3.1)-(3.4) used here is consistent with this principle

for constraints on system dynamics involving forces (Udwadia and Kalaba, 1996).

Finally, it should be noted that such constraints are also not limited to manipulator

kinematics and dynamics; for example, Antonelli et al. (2005) apply it to team coordi-

nation in mobile robots, and Itiki et al. (1996) use the formalism to model the dynamics

of jumping.

In general, the effect of the constraints (3.2)-(3.4) is to disallow policy actions

in some sub-space of the system (specifically, the space orthogonal to the image of

1Note that a list of symbols is provided at the start of this thesis as a quick reference of the notation
used.



32 Chapter 3. Effect of Constraints on Dynamics and Learning

N(x, t)). Additionally, for constraints with non-zerob(x, t), certain actions may be

‘enforced’ by the constraint that are not derived from the policy. For example, if the

policy controls a movement of an arm through the joint-spacevelocities, then grab-

bing the arm and holding it stationary would constrain the movement (ab(x, t) = 0

constraint). Additionally, holding the arm and moving it against the direction of the

policy would correspond to a non-zerob(x, t) constraint. To better illustrate the effect

of such constraints on system dynamics, in the following we outline some examples

from the kinematic and force-based control of redundant manipulators.

3.2.1 Example: Resolved Motion Rate Control

A simple example of a constraint-based control scheme that directly corresponds to

(3.2)-(3.4) is Resolved Motion Rate Control (RMRC) (Whitney, 1969;Li égeois, 1977).

RMRC is a popular scheme for velocity-based control of rigid-body manipulators. It

assumes a linearised forward model

ṙ = J(q, t)q̇ (3.5)

wherer ∈R
k andq ∈R

n are the task- and joint-space coordinates respectively,ṙ andq̇

denote the task- and joint-space velocities andJ(q, t) is the Jacobian relating the two.

Note that, in general, the Jacobian is time-dependent reflecting the fact that the task-

space may change (for example, a humanoid using this controlscheme may switch

from using both hands to manipulate an object to using just one; Gienger et al. 2005).

In such a system, a typical task is to realise some trajectoryr∗(t) in the chosen task-

space. This places a constraint on the joint space velocity of the system, i.e. the joint

space velocity must be such thatr∗(t)− r(t) = 0 (this is also commonly known as

Closed-Loop Inverse Kinematics (CLIK), e.g. see Chiacchio et al. 1991). The solution

is given by the Líegeois inverse kinematic model (Liégeois, 1977)

q̇ = J(q, t)†ṙ +(I −J(q, t)†J(q, t))a (3.6)

wherea∈ R
n is an arbitrary vector. The Liégeois model (3.6) can be used to represent

most velocity-control methods (English and Maciejewski, 2000). Note that in this

scheme, we can directly identify the state and action vectors x ≡ q, u ≡ q̇ and the

constraint relation (3.2)A(x, t) ≡ J(x, t), b(x, t) ≡ ṙ . In (3.6) we are free to choose the

vectora as we wish and usually this is done by defining some policy. In tracking tasks,

policies may be chosen to complement the task constraints; for example, to promote
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stability in the joint-space (Peters and Schaal, 2008a) or to optimise the movement in

some way (Nakamura, 1991). A popular choice is to define a policy that optimises a

potential function (English and Maciejewski, 2000; Nakamura, 1991)

a≡ π(q) = −∇φ(q). (3.7)

Using a such a policy, it is guaranteed thatφ(q) will be minimised by the joint space

velocity vectorq̇ at every time step (foṙr = 0, the decrease is monotonic (Nakamura,

1991)). Potentials can then be chosen whose minima correspond to some ‘desirable’

joint configuration; for example, those that avoid joint limits (Chaumette and Marc-

hand, 2001), kinematic singularities (Yoshikawa, 1985) orobstacles (Choi and Kim,

2000; Khatib, 1985).

An example of how the choice of nullspace policy affects the behaviour of a sim-

ple three-link manipulator is given in Fig. 3.1. There, trajectories are shown for two

policies subject to the constraint that the end-effector follows a given trajectory in

Cartesian end-effector space.

3.2.2 Example: Force/Torque Control

For force or torque control of rigid body systems a similar constraint-based control

scheme can be formulated (Udwadia, 2008; Peters et al., 2008, 2005; Udwadia, 2003;

Bruyninckx and Khatib, 2000). This scheme assumes a robot model based on the

Lagrangian equations of motion

τ = M(q)q̈+Fc(q, q̇)+Fg(q) (3.8)

whereτ ∈ R
n is the applied torque/force,q, q̇, q̈ ∈ R

n are joint-space positions, veloci-

ties and accelerationsM(q)∈R
n×n is an inertia/mass matrix,Fc(q, q̇) ∈ R

n represents

centrifugal and Coriolis forces andFg(q) ∈ R
n is the gravity. Here, the constraint re-

lation

A(q, q̇, t)q̈ = b(q, q̇, t) (3.9)

is used to determine desired trajectories or forces according to the task (Peters and

Schaal, 2008a; Udwadia, 2008; Peters et al., 2005; Udwadia,2003; Bruyninckx and

Khatib, 2000). Substituting (3.9) into (3.8) gives (Peterset al., 2005; Udwadia, 2003;

Bruyninckx and Khatib, 2000)

τ = T†(b−AM −1F)+(I −T†T)a (3.10)
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Figure 3.1: Two ways to utilise the null-space under the constraint that the end-effector

tracks a desired trajectory r∗(t) (dashed line) with a three link arm. The choice a =

π1(x, t) uses the three joints equally, whereas the choice a = π2(x, t) uses the second

and third joints more.

where for compactness we defineF ≡−Fc−Fg, T ≡ AM −1 and a is an arbitrary

vector. Here, a weighted pseudoinverse is often used, in which case different choices

of weighting matrixW determine the control paradigm (Peters and Schaal, 2008a;

Peters et al., 2005). For example, resolved acceleration kinematic control (W = M−2)

or the Operational Space Formulation (Khatib, 1987) (W = M−1) both fit into this

framework. As before, the vectora can be freely chosen, but is commonly used to

implement some stabilising policy (Peters and Schaal, 2008a). An example of the

effect of two different choices of policy is given in Fig. 3.2.

3.3 Learning from Constrained Policies

In the preceding section, we outlined a generic formulationof constraints applied to

motion and illustrated how the dynamics of systems are affected by the constraint. In
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Figure 3.2: Two ways to utilise the null-space in dynamics control when applying a force

F to mass (box) with a fixed-base three link arm. The upper scheme applies a large

torque to the base joint, a medium torque to the second joint and a small torque to the

third joint. The lower scheme uses equal torques for each joint. The choice of a in

(3.10) determines the scheme used.

general, we saw that policies are projected into the nullspace of the constraints (i.e. the

nullspace ofA). This results in changes in the observed behaviour, that inturn will

affect how we can learn from observations.

Here, and throughout the thesis, we make certain assumptions on what is contained

in the given observation data. In particular, we will assumethat the data consists of

observations of states and actions(xn,un), usually in the form of trajectories. Further-

more, we assume that the constraints are not explicitly observable (i.e. we do not have

direct access toA(x, t), b(x, t) or N(x, t)), and data sets are not labelled with respect to

the constraints (i.e. observations may not all come from thesame set of constraints).

Our goal throughout is to find the underlying policyπ(x). In the following we char-

acterise the implications of different classes of constraint for learning that policy. We

first consider the simplest case (i.e. unconstrained observations) then go on to look at

more complex problems, such as stationary and forced-action constraints.
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3.3.1 Unconstrained Systems

The simplest class of systems that we may encounter in learning is that of directly

observedunconstrainedpolicies. In terms of the constraint formalism outlined in the

preceding section, this corresponds to havingA = 0 (a matrix of zeros) andb = 0 in

(3.2)-(3.4) so that the projection operator is simply the identity matrixN ≡ I . Under

such conditions the policy is fully observable, i.e. the observations are simply

u = π(x).

From the viewpoint of learning, the case of unconstrained policies is straightforward.

Provided the policy is autonomous, the mappingπ : x → u is static and so lends itself

well to supervised learning techniques, such as those described in Ch. 2.

As an example, consider a simple unconstrained policy to extend a jointed finger

as shown in Fig. 3.3(a). There, the policy simply moves the joints towards the zero

(outstretched) position. The vector field representation of the behaviour is shown in

red in Fig. 3.3(c). Learning the unconstrained policy in this case is simply a matter

of finding a good fit to this vector field; for example, by fittingDMPs (Ijspeert et al.,

2003, 2002b) or non-parametric modelling (Peters and Schaal, 2008a) (ref. Sec. 2.2.1).

3.3.2 Stationary Constraint Systems

The second class of systems that we may encounter are those subject to stationary

constraints. These are constraints which act as hard restrictions on theactions available

to the policy, but do not enforce actions as in the system (3.4). In other words, these

are systems whereb = 0, so satisfy the constraint relation

A(x, t)u = 0. (3.11)

This means that the observations consist of a projection of the policy into the nullspace

of A(x, t):

u(x, t) = N(x, t)π(x(t)). (3.12)

The effect of the constraints (3.11)-(3.12) is to disallow motion in some sub-space of

the system, specifically the space orthogonal to the image ofN(x, t).

Constraints of the form (3.11) commonly appear in scenarios where manipulators

interact with solid objects; for example, when grasping a tool or turning a crank or a

pedal, i.e., contact constraint scenarios (Park and Khatib, 2006; Murray et al., 1994;
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(a) (b)

(c)

Figure 3.3: Illustration of two apparently different behaviours from the same policy:

(a) unconstrained movement (b) movement constrained by an obstacle (black box) (c)

vector field visualisation of the unconstrained (red) and constrained (black) policy for

two of the finger joints as a function of their angles.

Mattikalli and Khosla, 1992). As a concrete example, consider again the finger exten-

sion policy, but this time with an immovable obstacle lying in the path of the finger, as

shown in Fig. 3.3(b). Here, the obstacle acts as a stationaryconstraint since the finger

cannot penetrate the obstacle surface. This alters the observations of the policy, as the

finger moves along the surface due to the constraint. The vector field representation of

this constrained behaviour is shown in black in Fig. 3.3(c).

In itself, a stationary constraint such as this applied to the policy does not cause

problems for standard approaches to policy learning,provided that the constraints are

consistent across observations. That is, if the constraint matrix is the same function

of stateA(x, t) ≡ A(x) in all observations, the constraints can be absorbed into the

policy model, i.e. we can learn the constrained policy mapping πN : x 7→ u where

πN(x) ≡ N(x)π(x). As already mentioned, this is exhibited by many existing studies
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where policy-based learning has been applied to problems where fixed constraints are

implicit in the movement; ref. Ch. 2.

The difficulty, however, arises when there is the possibility of variation in the con-

straints appearing in the data, for example if the shape, position or orientation of the

obstacle in Fig. 3.3(b) changed between or during observations. If this is the case,

applying traditional approaches to learning in this scenario would result in one of two

possibilities. The first is that if the observations arelabelled with respect to the con-

straint, one could learn a separate policy model for the behaviour ineach of the set-

tings. In other words, we could learn a set of policiesπ̃Ni for each constraintNi,

i ∈ {1, . . . ,N}. However, this is unsatisfactory, since each model would only be valid

for the specific setting (i.e. specific obstacle configuration), and we would need in-

creasing numbers of models as we observed the policy under new constraints (obstacle

configurations).

The second possibility arises when the data is eitherunlabelledwith respect to

the constraint or contains a mixture of observations under different constraints. In

this case, one might try to perform regression directly on the observations, that is

observations from both vector fields (cf. Fig. 3.3(c), blackand red vectors). However,

this presents the problem ofnon-convexityin the training data, which causes difficulties

for many supervised learning algorithms.

The problem is illustrated in Fig. 3.4(a). There we show a policy π constrained in

two different ways. In the first observationu1, the constraint prevents movement in the

direction normal to the vertical plane2. For the second observationu2, the constraint

only allows movement in the horizontal plane. To the learner, data from these two

scenarios appearsnon-convex, in the sense that for any given pointx in the input space

multiple observed outputsu exist. Directly training on these observations with many

supervised learning algorithms would result inmodel-averaging. Here, averaging of

u1,u2 results in the prediction̄u that is clearly a poor representation of the true policyπ,

both in terms of direction and magnitude of the predictions (ref. Fig. 3.4(b)). In order

to avoid this, we need to explicitly consider the effect of constraints when learning.

A second problem that arises when training on data from constrained policies

(3.11)–(3.12) is that ofdegeneracyin the data. This stems from the fact that, for

any given set of projected (constrained) policy observations, there exist multiple can-

2It should be noted that in general the orientation of the constraint plane onto which the policy is
projected may vary both with state position and time.
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(a) (b)

(c)

Figure 3.4: Illustration of the effect of constraints on the unconstrained policy, the aver-

aging effect of standard DPL and the degeneracy problem. (a) Two constraints applied

to the policy π result in projected observations u1,u2. (b) Direct regression results in av-

eraging of the two movements ū in a way that cannot explain the observations. (c) Two

policies π,π′ that both may be constrained in such a way as to produce the observation

u2.

didate policies that could have produced that movement. Thecause for this is that the

projection eliminates components of the unconstrained policy that are orthogonal to

the image ofN(x, t) so that the component ofπ in this direction is undetermined by

the observation. For example, consider the constrained observationu2 in Fig. 3.4(c).

There, the restriction of the motion in vertical direction implies that we do not observe

the vertical component ofπ. Given onlyu2, we cannot determine if the policyπ or an

alternative, such asπ′ (ref. Fig. 3.4(c)) produced the observation. In effect we are not

given sufficient information about the unconstrained policy to guarantee that it is fully

reconstructed.

This problem cannot be avoided when dealing with stationaryconstraint systems.

However, despite this, we wish to do the best we can with the data available. In the
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methods developed in this thesis, we adopt a strategy whereby we look for policies

that are, as a minimum, consistent with the constrained observationsu. For exam-

ple, returning to Fig. 3.4(c), if we only observeu2, (that is the policy under a single,

specific constraint) the simplest (and safest) strategy would be to use that same vec-

tor as our prediction. In this way, we can at least accuratelypredict the policy under

that constraint (albeit only under that particular constraint). If we are then given fur-

ther observations under new constraints, we can recover more information about the

unconstrained policyπ. For instance, observingu1 eliminates the possibility thatπ′

underlies the movements since it cannot project onto bothu1 andu2. Applying this

strategy for increasing numbers of observations, our modelwill not only generalise

over the constraints seen, but also come closer to the unconstrained policyπ.

Finally, it should be noted that if, in all observations, certain components of the

policy are always constrained, then we can never hope to uncover those components.

However, in such cases it is reasonable to assume that, if these components are always

eliminated by the constraints, then they are not relevant for the scenarios in which

movements were recorded.

In the following chapters, we propose several methods by which we can overcome

these problems to learn a good model of the policyπ, without need for explicit knowl-

edge of the constraintsN(x, t), and that is, at the very least, consistent with all the

observations under the constraints seen in the data.

3.3.3 Forced-action Constraint Systems

The final class of constrained system that we consider is thatof ‘forced-action’ con-

straints, i.e. the system (3.2)–(3.4):

A(x, t)π(x) = b(x, t)

with policy observations

u(t) = A(x, t)†b(x, t)+N(x, t)π(x).

Here, the effect of the constraints is two-fold. First, similar to the stationary constraint

case, the policyπ is restricted in the sense that the action components orthogonal to

the image ofN(x, t) are projected out of the observations. However, in this casethere

is the further complication that the observed actions contain an additional component

that is independent of the policy, due to the additive termA(x, t)†b(x, t). This term can
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(a) (b)

Figure 3.5: Finger extension under moving constraints. The fingertip is constrained to

maintain contact with the obstacle as the obstacle moves. The observed policy (red)

is now a combination of forced movement due to the motion of the obstacle (light blue)

and constrained policy (black) components.

be thought of as a ‘forced action’, i.e. an action that must betaken in order to satisfy

the constraints.

For example, consider again the finger-extension policy, with the constraint that

the fingertip maintains contact with the surface of the obstacle, but this time with an

external force moving the obstacle. This is illustrated in Fig. 3.5 for the same policy

as that in Fig. 3.3. Here, the finger extends along the surfaceof the obstacle until it

reaches the contact point furthest from the base of the finger(i.e. closest to the fully

extended position). However, as the obstacle moves toward the finger, the finger is

forced away from the fully extended position. In the vector field view, Fig. 3.5(b), the

observed motion (red) contains a component due to the constrained policy (black)3 and

an additional component due to the motion of the obstacle (blue).

Constraints of this form are also commonly applied in the control of redundant

manipulators (Sec. 3.2.1 and Sec. 3.2.2), where the forced-action component (also

known as the task- or Operational Space component) is used toensure that the system

follows some desired trajectory (e.g. in end-effector space) or applies a desired set of

forces.

With regards to learning, the same problems ofdegeneracyandnon-convexityap-

3This is identical to that of the policy subject to stationaryconstraints (compare black vectors in
Fig. 3.5(b) and Fig. 3.3(c).
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ply for this kind of constraint, as for the stationary constraint case (ref. Sec. 3.3.2).

However, in addition to this, the added movement component induced by this kind of

constraint results in ambiguity as to what parts of the observations belong to the policy

and which to the constraint. If it is assumed that no prior knowledge about the con-

straints (i.e.A(x, t) andb(x, t)) is given, then there is the problem of separating the

two components of action before learning can proceed. To theauthor’s knowledge, it

remains an open problem whether the policy can be learnt under this kind of constraint.

3.4 Feasibility of Learning and Measuring Performance

In the preceding three sections, we saw how different classes of constraint affect our

observations and the problems this causes when trying to model the underlying policy.

In particular, we noted that in some cases, it may not be possible to fully reconstruct

the unconstrained policy (due to the specific set of constraints contained in the data),

but that we still wish to do the best we can with the data available. Given this to be the

case, in this section we explore possible limitations of learning in two ways.

First, we look at thefeasibility of learningand characterise the conditions necessary

for accurate modelling in the ideal case. We present a geometric argument and derive

the ideal set of observations necessary for exact reconstruction of the policy. We will

see that, though ideal observations are unlikely in real data sets, this analysis still

indicates that learning is feasible and even suggests some naive methods that may lead

to a solution.

Second, we look at how we canmeasure performancein settings where the con-

straints do not permit exact reconstruction. Specifically,we define a pair of error mea-

sures by which we can judge (i) how well our policy models represent the observed

(constrained) data, and; (ii) the extent to which our model generalises over constraints.

In later chapters we will use these measures extensively to assess the quality of models

learnt by the algorithms developed in this thesis.

3.4.1 Exact Geometric Reconstruction of Policies

Given the difficulties highlighted in the preceding sections, one may ask whether it is

plausible to expect any learning algorithm to be able to reconstruct the policy from

constrained observations, or whether the problem itself isill-posed. However, as an in-

dication of the feasibility, we can perform a geometric analysis to see how, under ideal
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conditions, it is possible to exactly reconstruct the policy from projected observations

(Howard and Vijayakumar, 2007).

Theorem 3.4.1.Exact Reconstruction of Projected Policies

Given observationsun = Nnπ; n = {1, . . . ,N} of a policy π(x) projected into the

nullspace of a set of N constraints at a pointx in the state space; if the constraints

are such that the observations span the action space, then the unconstrained policy

can be exactly reconstructed as

π = u× (3.13)

whereu× is the solution to the linear system

UTu× = d (3.14)

whereU ≡ (u1, . . . ,uN) and the elements ofd are given by dn = uT
n un.

Proof. Consider that we observe a two dimensional policy,π ∈ R
2, constrained by a

number of constraints of the form

An = (α1,α2)n = αn. (3.15)

Under the constraints, the observations that we seeun = Nnπ will lie inscribed in a

circle in the two-dimensional space with diameter equal to the norm of the (uncon-

strained) policy vector at that point, i.e.‖π‖ , as illustrated in Fig. 3.6. Euclid’s theo-

rem states that any triangle inscribed in a semi-circle is a right-angle triangle. Hence, if

we construct a line orthogonal to theith observationui and find the appropriate triangle

whose hypotenuse matches the diameter of the circle, then wecan calculate the length

of the vector along the hypotenuse and thus reconstruct the unconstrained policy vec-

tor. To do this in two-dimensional space, we can take two observations under different

constraintsu1,u2, find the equations of the two lines orthogonal to those observations

and solve for the intersection pointu×, to exactly recover the unconstrained policyπ,

as illustrated in Fig. 3.6. Inmdimensional space we can take a similar approach; there,

the constrained observations lie on a hypersphere, so we construct hyperplanes normal

to each observation and solve for the intersectionu×. This leads to the system (3.14)

with the unconstrained policy given by (3.13).�

Theorem 3.4.1 also suggests the following corollary.



44 Chapter 3. Effect of Constraints on Dynamics and Learning

π

u3
=

N3
πu 2

=
N

2
π

u
5 =

N
5π

u
6
=

N
6π

u
1

=
N

1
π

u2

u1

u
4 = N

4π

u1

π

u2

u
×

u
⊥
1

u
⊥
2

0

u2

u1

Figure 3.6: Under each of the different constraints (3.15), the policy is projected onto

a different manifold orthogonal to the constraint direction αn. These constrained policy

vectors un lie inscribed in a hypersphere in state-space (left). Euclid’s Theorem can be

used to exactly reconstruct π given observations under different constraints (right).

Corollary 3.4.1. Given observationsun = Nnπ, n = 1, . . . ,N of a policyπ, at a point

x in state space, the observation with the largest norm‖un‖ lies closest to the uncon-

strained policy.

Proof. By inspection of Fig. 3.6, or by considering thatN(x, t) is a projection ma-

trix, with k eigenvalues of value 0 andd−k eigenvalues of value 1. Fewer constraints

(smallerk) results in larger norms.�

These results indicate that, at least under these ideal conditions, it is possible to re-

construct the policy from constrained observations. Furthermore, this gives us reason

to believe that a learning algorithm can be formulated to deal with this problem. For

example, corollary 3.4.1 immediately suggests a possible,(albeit rather data-intensive)

solution: One could train in such a way that, as increasing observations under dif-

ferent constraints arrive, observations with smaller norms are down-weighted in the

regression. As the amount of data presented to the learner increases, the model should

come ever closer to the unconstrained policy. In fact, as we will see in later chapters,

there are far more efficient ways to formulate the learning problem and find a good

approximation of the policy with relatively small data sets.
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3.4.2 Error Measures

In the preceding section we saw how exact reconstruction of the unconstrained policy

at a given point in state space is possible under ideal conditions, namely, given a span-

ning set of constrained observations. In practice, however, such ideal observations will

not, in general, be available and an approximation must therefore be made. In order to

measure the quality of this approximation, we must define error measures that reflect

our learning goals. In this thesis, the primary goals of learning are to (i) represent the

movement in such a way as to be at least consistent with the (constrained) observa-

tions, and, (ii) where possible, fully reconstruct the unconstrained policy to generalise

over constraints. To quantify these goals, we can define the following two metrics.

First, we define the normalisedunconstrained policy error(nUPE) as

Eupe[π̃] =
1

Nσ2
π

N

∑
n=1

||π(xn)− π̃(xn)||
2 (3.16)

whereN is the number of data points,π(xn) and π̃(xn) are the (unconstrained) true

and learnt policy predictions at the pointsxn andσ2
π is the variance in the true policy

over those points. The nUPE measures the difference betweensamples of the (uncon-

strained) true and learnt policies, normalised by the variance. Since the primary goal

of the approaches developed in this thesis is to find a good approximation of the un-

constrained policy, a low nUPE indicates good performance.Note also that the nUPE

also gives an indication of how well the learnt policy will generalise over different con-

straints, since if the learnt policy closely matches the true unconstrained policy, then it

will also closely match the true policy under any arbitrary projection (constraint).

The second measure we define is the normalisedconstrained policy error(nCPE)

Ecpe[π̃] =
1

Nσ2
π

N

∑
n=1

||Nn(π(xn)− π̃(xn)) ||
2 (3.17)

whereNn denotes the constraint (projection) matrix for then-th point. The nCPE

measures the difference between the true and learnt policies under the projectionsNn.

The significance of the nCPE is that it allows one to measure theaccuracy of the learnt

policy under a specific set of constraints (i.e. those encoded by the projectionsNn).

For example, if we choseNn as the set of projections corresponding to the constraints

in force in the training data, then we can assess how well our model will perform under

those same constraints. Alternatively, if we choseNn corresponding to a set of novel,

unseen constraints, we can directly measure how well the policy generalises to predict

behaviour under those new constraints.
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In later chapters we will use these measures extensively to compare the perfor-

mance of our algorithms against each other and against existing policy learning meth-

ods. We will also see how, considering the goal of learning interms of such measures

leads to novel approaches to learning (ref. Ch. 5).

3.5 Conclusion

In this chapter, we outlined a formal system for the analysisof constrained motion sys-

tems. Based on recent work in analytical dynamics, the formalism provides a simple

and intuitive way to deal with constraints both in terms of the kinematics and dynamics

of a wide variety of systems. Further to this, we gave examples of its application in

terms of well-known kinematic and force-based control schemes for redundant manip-

ulators.

Using this model, we then discussed the implications that constraints have on the

learning of policies from raw observation data. We saw that,while standard approaches

to policy-based learning are effective for learning from unconstrained or consistently

constrained data, they face difficulties when policies are subject to several different

constraints. For stationary constraints, these can be termed the problems ofnon-

convexityanddegeneracy. For forced-action constraints, these problems are further

complicated by additional components to the observed actions induced by the con-

straints.

Finally, we discussed our strategy for dealing with these constraints by looking

for policy models that areconsistentwith the observations subject to the constraints.

We noted that, with a geometrical analysis, exact reconstruction of the policy from

constrained observations is possible under ideal conditions. This suggests that learning

in this scenario is feasible despite the problems caused by constraints. In the next

chapter, we discuss a method for doing this for the special case of potential-based

policies, before going on to deal with the learning of generic policies in subsequent

parts of the thesis.



Chapter 4

Learning Potential-based Policies from

Constrained Motion

4.1 Introduction

In the previous chapter, we reviewed a formal framework for dealing with constraints in

movement and discussed the problems such constraints causefor standard approaches

to learning. We noted that direct regression of the observedactions and commands

is unlikely to produce satisfactory results when there are constraints due to model

averaging effects. Further, it was suggested that new algorithms be developed that can

learn models that are consistent with the constrained observations.

In this chapter, we describe a method for doing this for a special class of policies,

namely that ofpotential-based policies. The method can be classed as an indirect

learning approach (cf. Sec. 2.2.3) in that it aims to represent policies in terms of their

generating functions; in this case, the potential functionunderlying the policy.

In the following we first describe in detail the definition of apotential-based pol-

icy, and how dealing with these is a promising way to solve some of the problems

with direct learning as outlined in in the previous chapter.We then go on to pro-

pose a method to learn potential-based policies for stationary constraint systems (ref.

Sec. 3.3.2) through a local model alignment scheme. Finally, we look at the perfor-

mance of the method on a number of constrained systems of varying size and com-

plexity.

47
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4.1.1 Potential-based Policies

Potential-based policies are a special subclass of genericpolicies that are conservative

in the mathematical sense. Specifically, a generic policyπ(x) ∈ R
n 7→ R

d is a vector

field y = f(x) ∈ R
d on on the state-spacex ∈ R

n, wheren,d are the dimensions of the

input/output state spaces, respectively.

According to the Helmholtz decomposition, any vector fieldf(x) may be comprised

of rotational and divergent components

f(x) = ∇x ×Φ(x)+∇xφ(x) (4.1)

whereΦ andφ are vector and scalar potentials, respectively. A potential-based (i.e.

conservative) policy is one for which the first term in (4.1) is zero so that the policy

can be fully represented by the potential functionφ(x). This leads to the following

definition:

Definition 4.1.1. Conservative Policies

A conservative (i.e. potential-based) policy is a policy defined through the gradient of

a scalar potential functionφ(x)

π(x) = −∇xφ(x), ∀x ∈ X (4.2)

where X is the region of the input (state) space of interest. Note that policies may

be globally or locally conservative, that is, there may be regions outside X where the

vector field is non-conservative (Boas, 2006).

A necessary and sufficient condition for a policy to be conservative (potential-based)

is that it haszero curlin the regionX:

∇x ×π(x) = 0, ∀x ∈ X. (4.3)

The curl of a vector field is a measure of rotational flow of the field, so if the curl is zero

the policy contains no rotational components. In other words, potential-based policies

do not contain periodic behaviour; for example, a limit cycle cannot be represented as

a potential-based policy. Instead, potential-based policies represent divergent attrac-

tor landscapes where the minima of the potential correspondto stable attractors, and

maxima correspond to repellors. They can be also be thought of as policies that greed-

ily optimise the potential function at every time step (Nakamura, 1991). An example

is given in Fig. 4.1 where a potential function with three maxima (repellors) and two



4.1. Introduction 49

Figure 4.1: Potential function with three maxima (repellors) and two minima (attrac-

tors). Overlaid are the corresponding unconstrained policy vectors (black) and a set of

constrained policy vectors (red).

minima (attractors) is shown, and the corresponding policyis overlaid (black vectors).

A wide variety of behaviours may be represented as potential-based. For example,

reaching behaviours may be represented by a potential defined in hand space, with a

single minimum at the target. Furthermore, decision-basedbehaviours may be encoded

as potentials (K̈ording and Wolpert, 2004; K̈ording et al., 2004; Chajewska et al., 2001,

1998). For example, when reaching for an object, a potentialmay be defined with two

minima, one corresponding to reaching with the right hand, the other reaching with the

left. The decision of which hand to use for reaching would thus be determined by the

start state (e.g. reach with the closest hand) and the relative offset of the two minima

(e.g. right-handedness would imply a lower minimum for thathand). Potential-based

policies are also extensively used as nullspace policies incontrol of redundant manipu-

lators (Gienger et al., 2005; English and Maciejewski, 2000; Chaumette and Marchand,

2001; Choi and Kim, 2000; Nakamura, 1991; Yoshikawa, 1985), and for navigation

and obstacle avoidance problems in mobile robotics (Ren et al., 2006; Conner et al.,

2003; Rimon and Koditschek, 1992). Furthermore, in reinforcement learning and op-

timal control (Bertsekas, 2007; Sutton and Barto, 1998; Todorov, 2006), policies that

are greedy with respect to the value function can be thought of as potential-based, in

the sense that the policy does a gradient descent on the valuefunction.
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4.1.2 Learning from Constrained Potential-based Policies

If the policy under observation is potential-based, an elegant solution to solving the

non-convexity and degeneracy problems is to model the policy’s potential function

(Howard et al., 2008a,b; Howard and Vijayakumar, 2007) rather than modelling it di-

rectly. This is due to a special property of constrained potential-based policies, namely

that observations of the constrained movements give us information about the shape of

the underlying potential, up to a translation inφ corresponding to constants of integra-

tion for the observations.

In Fig. 4.1 this is shown for a potential function defined overa two-dimensional

state-space (top and 3-D perspective views). The potentialfunction (colours) and un-

constrained policy (black vectors) is shown, along with thepolicy subject to a con-

straint (red vectors). For the case of potential-based policies the policy vectors are

given by the gradient vector of the potential (as expressed in (4.2)). This means that

the (unconstrained) policy vectors point in the direction of steepest descent, with the

magnitude equal to the slope in that direction (Fig. 4.1, black vectors).

Now, if a constraint is applied, the direction and magnitudeof the vectors change.

In the example in Fig. 4.1 the constraint prevents movement in one dimension (x di-

mension in Fig. 4.1, left) so that only motion correspondingto the second dimension

(y dimension in Fig. 4.1, left) is observed. The vectors now point in the direction of

steepest descentsubject to the constraint, with magnitude equal to the slope of the

potential in that direction, as can be seen from Fig. 4.1, right. In other words the pro-

jected vectors correspond to thedirectional derivativesof the potential, in the direction

parallel to the observations.

This lends us the opportunity of modelling the unconstrained policy, by piecing

together information about the slope of the potential in different directions. For each

observation (e.g.u1 in Fig. 3.4) we get information about the directional derivative in

that direction (i.e. the direction parallel tou1). This means we transform the problem

of combining a set ofn-dimensional vector observations (ref. Sec. 3.4.1) to one of

‘piecing together’ local estimates of the slope of the potential.

A convenient method for doing this for policies with a linearrelationship between

actions and state-changes (i.e. those for whichu ≡ ẋ , such as kinematic policies) is to

use line integration to accurately estimate the form of the potential along trajectories

(Howard et al., 2008a,b; Howard and Vijayakumar, 2007; Howard et al., 2006) and

then use these local estimates to build a global model of the potential. We outline a
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method for doing this in the next section.

4.2 Learning Policies Through Local Model Alignment

In the following we propose a method for modelling the potential from constrained

motion data for a kinematic policy subject to stationary constraints. Specifically, we

assume we are given a set ofK observed trajectories(xk(t),uk(t) ≡ ẋk(t)) that, during

any given observation, may have been constrained (projected) uk = Nk(x, t)π(xk(t))

(ref. (3.11)), with unknown projection matrixNk(x, t). Our goal is to uncover the

unconstrained policyπ(x) = −∇xφ(x) by modelling the potential functionφ(x). To

do this, we first model the potential on a trajectory-wise basis using numerical line

integration. We then consolidate these trajectory-wise models using results from re-

cent work in dimensionality reduction (Verbeek, 2006; Verbeek et al., 2004) to ensure

consistency. Finally, we use these consistent models to learn a global model of the

potential function, and thus the policy, for use in control.

4.2.1 Estimating the Potential along Single Trajectories

As has been described in (Howard et al., 2008a,b; Howard and Vijayakumar, 2007;

Howard et al., 2006), it is possible to model the potential along sampled trajectories

using a form of line integration. Specifically, combining (3.12) and (4.2) foru ≡ ẋ, the

(continuous time) state evolution of the system is given by

ẋ = N(x, t)π(x) = −N(x, t)∇xφ(x) (4.4)

Let x̄(t) be the solution of (4.4). If we line-integrate alongx̄(t) we have

Z

x̄
(∇xφ)T dx =

Z t f

t0
(∇xφ)T ẋdt = −

Z t f

t0
(∇xφ)TN(x, t)∇xφ(x)dt, (4.5)

wheret0 andt f are the start and finishing instants ofx̄(t). We assume that we have

recorded trajectoriesx(t), ẋ(t) of lengthT sampled at some sampling rate 1/δt Hz so

that for each trajectory we have a tuple of pointsXk = xk,1, . . . ,xk,Tδt . Now, assuming

the sampling rate to be sufficiently high, we can make a linearapproximation to (4.4)

xi+1 ≈ xi +δt Niπi = xi −δt Ni∇xφ(xi) (4.6)
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and (4.5) can be approximated using an appropriate numerical integration scheme. An

example of such a scheme is Euler integration, which involves the first order approxi-

mation

φ(xi+1) ≈ φ(xi)+
1
δt

(xi+1−xi)
TNi∇xφ(xi). (4.7)

Since the effect of the time constantδt is simply to scale the discretised policy vectors,

we can neglect it by scaling time units such thatδt=1. This comes with the proviso that

for implementation on the imitator robot, the learnt policymay need to be scaled back

to ensure that the correct time correspondence is kept. For stepsxi → xi+1 that follow

the projected policy (3.4) we can rearrange (4.6) with the scaled time coordinates, and

substitute into (4.7) to yield

φ(xi+1) ≈ φ(xi)−‖xi+1−xi‖
2, (4.8)

where the negative sign reflects our assumption (as expressed in (4.2)) that attractors

are minima of the potential. We use this approximation to generate estimates̆φ(xi)

of the potential along any given trajectoryx1,x2 . . .xN in the following way: We set

φ̆1 = φ̆(x1) to an arbitrary value and then iteratively assignφ̆i+1 := φ̆i −‖xi+1− xi‖
2

for the remaining points in the trajectory.

Note that an arbitrary constant can be added to the potentialfunction without

changing the policy. Therefore, ‘local’ potentials that weestimate along different tra-

jectories need to bealigned in a way that their function value matches in intersecting

regions. We’ll turn to this problem in the next section.

4.2.2 Constructing the Global Potential Function

Let us assume we are givenK trajectoriesXk = (xk1,xk2 . . .xkNk) and corresponding

point-wise estimates̆Φk = (φ̆k1, φ̆k2 . . . φ̆kNk) of the potential, as provided from the Eu-

ler integration just described. In a first step, we fit a function modelφ̃k(x) of the poten-

tial to each tuple(Xk,Φ̆k), such that̃φk(xi)≈ φ̆ki. Although in principle any regression

method could be applied here, our options are somewhat limited by the fact that these

possibly non-linear models have to be acquired from the few data points available in

each trajectory. To avoid unnecessary complications, we choose a nearest-neighbour

(NN) regression model, i.e.,

φ̃k(x) = Φ̆ki∗ , i∗ = argmin
i
‖x−xki‖

2. (4.9)
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Since we wish to combine the models to a global potential function, we need to define

some function for weighting the outputs of the different models. For the NN algorithm,

we choose to use a Gaussian kernel

wk(x) = exp

[

−
1

2σ2 min
i
‖x−xki‖

2
]

. (4.10)

From these weights we can calculate responsibilities

qk(x) =
wk(x)

∑K
i=1wi(x)

(4.11)

and a (naive) global predictioñφ(x) = ∑K
k=1qk(x)φ̃k(x) of the potential atx. However,

as already stated, the potential is only defined up to an additive constant, and most

importantly this constant can vary from one local model to another. This means that we

first have to shift the models by adding someoffsetto their estimates of the potential,

such that all local models arein good agreementabout the global potential at any

number of statesx.

Fortunately, a similar problem has already been tackled in the literature: In the field

of non-linear dimensionality reduction, Verbeek et al. (2004) have shown how to align

multiple local PCA models into a common low-dimensional space. In particular, they

endowed each local PCA model with an additional affine mappinggk(z) = Akz+ bk,

which transformed the coordinateszk of a data pointwithin thek-th PCA model into

the desired global coordinate system. Verbeek et al. (2004)retrieved the parameters of

the optimal mappingsgk by minimising the objective function

E =
1
2

M

∑
m=1

K

∑
k=1

K

∑
j=1

qkmq jm‖gkm−g jm‖
2, (4.12)

wheregkm denotes the coordinate of them-th data vector, as mapped through thek-th

PCA model, andqkm is the corresponding responsibility of that model. The objective

can easily be interpreted as the ‘disagreement’ between anytwo models, summed up

over all data points, and weighted by the responsibilities of two models each. That is,

the disagreement for any combination ofm,k and j only really counts, if the respon-

sibility of both thek-th and thej-th model is sufficiently high for the particular query

point. Notably,E is convex and can be minimised by solving a generalised eigenvalue

problem of moderate dimensions, that is, there are no local minima, and the solution

can be found efficiently.

In analogy to the PCA-alignment method (Verbeek et al., 2004), we augment our

local potential models̃φk(·) by a scalar offsetbk and define the corresponding objective
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function as

E(b1 . . .bK) =
1
2

M

∑
m=1

K

∑
k=1

K

∑
j=1

qk(xm)q j(xm)×

(

(φ̃k(xm)+bk)− (φ̃ j(xm)+b j)
)2

, (4.13)

or, in a slightly shorter form,

E(b) =
1
2 ∑

m,k, j

qkmq jm
(

φ̃km+bk− φ̃ jm−b j
)2

. (4.14)

Here,∑m denotes a summation over the complete data set, that is, overall points from

all trajectories (M = ∑K
k=1Nk). Using the symmetry inj ↔ k and∑k qkn = 1, we split

(4.14) into terms that are constant, linear, or quadratic inbk, yielding

E(b) = ∑
m,k

qkmφ̃2
km− ∑

m, j,k

qkmq jmφ̃kmφ̃ jm

+2∑
m,k

qkmφ̃kmbk−2∑
m,k

qkmq jmφ̃ jmbk

+∑
m,k

qkmb2
k − ∑

m,k, j

qkmq jmbkb j

= E0 +2aTb+bTHb. (4.15)

Here, we introducedE0 as a shortcut for the terms independent ofb, the vectora∈ R
K

with elementsak = ∑mqkmφ̃km−∑m, j qkmq jmφ̃ jm, and the Hessian matrixH ∈ R
K×K

with elementshi j = δi j ∑mq jm−∑mqimq jm. The objective function is quadratic inb,

so we retrieve the optimal solution by setting the derivatives to zero, which yields the

equationHb = −a.

However, note that a common shift of all offsetsbk does not change the objective

(4.13), which corresponds to the shift-invariance of the global potential. Therefore, the

vector(1,1, . . . ,1)T spans the nullspace ofH, and we need to use the pseudo-inverse

of H to calculate the optimal offset vector

bopt = −H†a. (4.16)

Compared to aligning PCA models, the case we handle here is simpler in the sense that

we only need to optimise for scalar offsetsbk instead of affine mappings. On the other

hand, our local potential models are non-linear, have to be estimated from relatively

little data, and therefore do not extrapolate well, as will be discussed in the following

section.
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4.2.3 Smoothing Parameter Selection and Outlier Detection

Since we restrict ourselves to using simple NN regression for the local potential mod-

els, the only open parameter of our algorithm isσ2, i.e., the kernel parameter used for

calculating the responsibilities (4.10). A too large choice of this parameter will over-

smooth the potential, because the NN regression model basically predicts a locally

constant potential, but at the same time trajectories will have relatively high responsi-

bilities for even far apart pointsx in state space.

On the other hand, a too small value ofσ2 might lead toweakly connected trajec-

tories: If a particular trajectory does not make any close approachto other trajectories

in the set, the quick drop-off of its responsibility impliesthat it will not contribute to

the alignment error (based on pairs of significant responsibility), which in turn implies

that its own alignment – the value of its offset – does not matter much.

The same reasoning applies to groups of trajectories that are close to each other,

but have little connection to the rest of the set. For the remainder of this chapter, we

will refer to such trajectories as ‘outliers’, since like inclassical statistics we need

to remove these from the training set: If their influence on the overall alignment is

negligible, their own alignment can be poor, and this becomes a problem when using

the output of the optimisation (4.16) to learn a global modelof the potential. To avoid

interference, we only include trajectories if we are sure that their offset is consistent

with the rest of the data1.

Fortunately, outliers in this sense can be detected automatically by looking for

small eigenvalues ofH: In the same way as adding the same offset to all trajecto-

ries leads to a zero eigenvalue, further very small eigenvalues and the corresponding

eigenvectors indicate indifference towards a shift of somesubset of trajectories versus

the rest of the set. In practice, we look for eigenvaluesλ < 10−8, and use a recursive

bi-partitioning algorithm in a way that is very similar to spectral clustering (Kannan

et al., 2004). We then discard all trajectories apart from those in the largest ‘connected’

group. Please refer to Sec. 4.2.4 for details of this step.

Finally, with these considerations in mind, we select the smoothing parameterσ2 to

match the scale of typical distances in the data sets. In all of the experiments presented

1It should be noted that these trajectories are not outliers in the sense of containing corrupt data
and could in fact be used for further training of the model. For example, one could take a hierarchical
approach, where groups of strongly connected trajectoriesare aligned first to form models consisting of
groups of trajectories with good alignment. We can then recursively repeat the process, aligning these
larger (but more weakly connected) groups until all of the data has been included.
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here we used the same heuristic selection. In particular, wefirst calculated the distances

between any two trajectoriesk, j ∈ {1. . .K} in the set as the distances between their

closest points

dk j = min
{

‖xkn−x jm‖
2 | n,m∈ {1. . .N}

}

, (4.17)

and also the distances to the closest trajectory

dmin
k = min

{

dk j | j 6= k
}

. (4.18)

We then consider three choices forσ2, which we refer to as ‘narrow’, ‘wide’ and

‘medium’:

σ2
nar = median

{

dmin
k | k∈ {1. . .K}

}

(4.19)

σ2
wid = median

{

d jk | j,k∈ {1. . .K}, j 6= k
}

(4.20)

σ2
med =

√

σ2
narσ2

wid. (4.21)

In Sec. 4.3.1 we give a comparison of the learning performance for each of these

choices ofσ2 for policies of varying complexity.

4.2.4 Recursive Bi-partitioning for Outlier Detection

In the following, we describe our mechanism for detecting trajectories (or groups

thereof) that we need to discard from the training set beforelearning a global model of

the potential. To this end, similarly to spectral clustering, we look at the eigenvectors

belonging to all small eigenvalues of the HessianH (4.15). Let

V = (v1v2 . . .vn)
T where λivi = Hv i , λi < 10−8. (4.22)

That is, if H was calculated from 100 trajectories and hasn = 7 small eigenvalues,

V would be a 7× 100 matrix. We then cluster the columns ofV into two centres

c1,c2 ∈R
n. Since each column ofV represents a trajectory, we effectively partition the

training data into two groups whose relative potential offset has negligible influence on

the alignment objective function (4.15). For both groups, we repeat the process using

corresponding sub-matrices ofH. That is, we recursively split up our trajectories into

groups until there is only one zero eigenvalue left in each group (corresponding to

v = 1, the constant shift of all trajectories in that group). The process is visualised in

Fig. 4.2.
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Figure 4.2: Illustration of our recursive outlier detection scheme. At any stage, we look

for non-trivial small eigenvalues of the alignment Hessian, and if those exist, we split

the trajectories into 2 independent groups (red and blue). From left to right: 1) top-level

partitioning 2) splitting up the red group from step 1, 3) splitting the red group from step

2, 4) splitting the red group from step 3. The largest connected group consists of the

blue trajectories from step 3, which we use for training the global model.

4.2.5 Learning the Global Model

After calculating optimal offsetsbopt and cleaning the data set from outliers, we can

learn a global model̃φ(x) of the potential using any regression algorithm. Here, we

choose Locally Weighted Projection Regression (LWPR) (Vijayakumar et al., 2005)

because it has been demonstrated to perform well in cases where the data lies on low-

dimensional manifolds in a high-dimensional space, which matches our problem of

learning the potential from a set of trajectories. As the training data for LWPR, we

use all non-outlier trajectories and their estimated potentials as given by the Euler

integrationplus their optimal offset, that is, the input-output tuples

{

(xkn, φ̆kn+bopt
k ) | k∈K ,n∈ {1. . .Nk}

}

, (4.23)

whereK denotes the set of indices of non-outlier trajectories. Once we have learnt

the modelφ̃(x) of the potential, we can take derivatives to estimate the unconstrained

policy π̃(x) = −∇xφ̃(x). For convenience, the complete procedure is summarised in

Algorithm 1.

4.3 Experiments

To explore the performance of the algorithm, experiments were performed on data

from autonomous kinematic control policies (Schaal et al.,2003) applied2 to different

2Since the goal of the experiments was to validate the proposed approach, we used policies known
in closed form as a ground truth.
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Algorithm 1 Local Potential Alignment

1: EstimateXk, Φ̆k,{k = 1. . .K} using Euler integration. Calculateσ2.

2: Alignment:

• Calculate prediction and responsibility of each local modelφ̃k on each data

pointxm, m= 1. . .M:

φ̃km = φ̃k(xm); qkm = wk(xm)/∑i wi(xm).

• ConstructH,a with elements

hi j = δi j ∑mq jm−∑mqimq jm; ak = ∑mqkmφ̃km−∑m, j qkmq jmφ̃ jm.

• Find optimal offsetsbopt = −H†a.

3: Discard outliers (H eigenvalues,λ < 10−8).

4: Train global model on data tuples(xkn, φ̆kn+bopt
k ).

plants, including the whole body motion controller (WBM) of the humanoid robot

ASIMO (Gienger et al., 2005). In this section, we first discuss results from an artificial

toy problem controlled according to the same generic framework to illustrate the key

concepts. We then discuss an example scenario in which the algorithm is used to

enable ASIMO to learn a realistic bi-manual grasping task from observations of a

constrained demonstrator. We then give a brief discussion on how the algorithm scales

to policies in very high dimensional systems defined over 22 DOF of the ASIMO

WBM controller (Gienger et al., 2005). Finally, we report the performance of the

algorithm when learning from data containing a set of pathological constraints.

4.3.1 Toy Example

The toy example consists of a two-dimensional system with a policy defined by a

quadratic potential, subject to discontinuously switching constraints. Specifically, the

potential is given by

φ(x) = (x−xc)
TW(x−xc) (4.24)

whereW is some square weighting matrix which we set to 0.05I andxc is a vector

defining the location of the attractor point, here chosen to bexc = 0. Data was collected

by recording trajectories generated by the policy from a start state distributionX0.
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Figure 4.3: Top: (a) Toy data (trajectories (2-D) and contour of true potential. Estimated

potential along the trajectories before (b) and after (c) alignment. Trajectories detected

as difficult to align ‘outliers’ are shown by light crosses. Bottom: Learnt (d) and true (e)

potential function after training on the aligned trajectories.

During the movement, the policy was subjected to random constraints

A(x, t) = (α1,α2) ≡ α (4.25)

where theα1,2 were drawn from a normal distribution,αi = N (0,1) . The constraints

mean that motion is constrained in the direction orthogonalto the vectorα in state

space. To increase the complexity of the problem, the constraints were randomly

switched during trajectories by re-samplingα twice at regular intervals during the tra-

jectory. This switches the direction in which motion is constrained as can be seen by

the sharp turns in the trajectories (ref. Fig. 4.3(a)).

Figure 4.3 shows an example of our algorithm at work for a set of K = 40 trajecto-

ries of lengthN = 40 for the toy system. The raw data, as a set of trajectories through

the two-dimensional state space, is shown in panel (a), whereas panel (b) additionally
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depicts the local potential models as estimated from the Euler integration prior to align-

ment. Each local model has an arbitrary offset against the true potential so there are

inconsistencies between the predictions from each local model. Figure 4.3(c) shows

the trajectories after alignment, already revealing the structure of the parabola.

At this point, the outlier detection scheme has identified three trajectories as being

weakly connected to the remaining set. In Fig. 4.3(a), we cansee that the outliers are

indeed the only trajectories that do not have any intersection with neighbouring tra-

jectories. At the ‘narrow’ length scale determined by the smoothing parameter (4.19),

they are hard to align properly, and need to be discarded before learning the global

model. Finally, Fig. 4.3(d) shows the global modelf (x) of the potential that was

trained on the aligned trajectories, which is clearly a goodapproximation of the true

parabolic potential shown in Fig. 4.3(e).

For a more thorough evaluation, we repeated this experimenton 100 data sets and

evaluated

• the nMSE of thealigned potential, which measures the difference between

φ̆kn+bk and the true potentialφ, i.e.,

Ealign[b] =
1

Nσ2
φ

N

∑
n=1

(

φ̆(xn)−φ(xn)−ν
)2

, ν =
1
N

N

∑
n=1

(

φ̆(xn)−φ(xn)
)

, (4.26)

where the notation̆φ(xn) is understood to already include the proper offset, that

is, φ̆(xn) = φ̆kn′ +bk and whereσ2
φ denotes the variance of the true potential;

• the nMSE of thelearnt potential, measuring the difference betweenφ̃(·) and

φ(·), i.e.,

Epot[φ̃] =
1

Nσ2
φ

N

∑
n=1

(

φ̃(xn)−φ(xn)−µ
)2

, µ=
1
N

N

∑
n=1

(

φ̃(xn)−φ(xn)
)

, (4.27)

• the normalisedunconstrained policy error, (3.16), quantifying the difference

betweeñπ=∇φ̃ andπ=∇φ;

• the normalisedconstrained policy error, (3.17), which is the discrepancy be-

tweenNπ̃ andNπ, and finally;

• the percentage of trajectories discarded as outliers

on a subsample of the data held out for testing. Please note that in (4.26) and (4.27)

we subtract the mean differenceν andµ, respectively, between the two quantities to
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Setup σ2 Potential nMSE nUPE nCPE Disc. (%)

Parabola narrow 0.0052±0.0024 0.0486±0.0211 0.0235±0.0092 17.55±15.96

K = 40 medium 0.0195±0.0203 0.0859±0.0486 0.0224±0.0074 0.48±1.11

N = 40 wide 0.3143±0.1045 0.5758±0.2726 0.1135±0.0371 0±0

Sinusoidal narrow 0.0026±0.0019 0.1275±0.1125 0.0535±0.0353 50.18±14.37

K = 40 medium 0.0522±0.0645 0.1399±0.0422 0.0376±0.0097 1.03±3.99

N = 40 wide 0.5670±0.1363 0.8373±0.2188 0.2464±0.0638 0±0

Sinusoidal narrow 0.0014±0.0004 0.0657±0.0142 0.0308±0.0065 25.46±11.42

K = 100 medium 0.0019±0.0017 0.0628±0.0089 0.0284±0.0044 1.25±3.33

N = 100 wide 0.2137±0.1000 0.4262±0.1367 0.1554±0.0483 0±0

Table 4.1: Error and outlier statistics (mean±std.dev. over 100 data sets) for the ex-

periment on 2-D toy data. Here, the ‘narrow’, ‘medium’ and ‘wide’ choices of σ2 were

calculated according to (4.19), (4.21) and (4.20), respectively. For brevity, we did not

include the figures for the alignment nMSE. These were only marginally different from

the potential nMSE.

remove the irrelevant global offset of the potentials. We did so for our three different

choices ofσ2 given in (4.19)-(4.21). We also repeated the experiment using a sinu-

soidal potential function

φ(x) = 0.1sin(x1)cos(x2) (4.28)

with the same amount of data, as well as while usingK = 100 trajectories of length

N = 100 for each data set.

Table 4.1 summarises the results. Firstly, we can see that the ‘wide’ choice for

σ2 leads to large error values which are due to over-smoothing.Using the narrowσ2,

we retrieve very small errors at the cost of discarding quitea lot of trajectories3, and

the medium choice seems to strike a reasonable balance especially with respect to the

nUPE and nCPE statistics. Further to this, Fig. 4.4(a) depicts how the nUPE and nCPE

evolve with increasing size of the training set, showing a smooth decline (please note

the logarithmic scale).

Secondly, when comparing the results for the parabolic and sinusoidal potentials,

we can see that the latter, more complex potential (with multiple sinks) requires much

more data. With only 40 trajectories and 40 points each, mostof the data sets are too

3Please note that we also discard the outliers for evaluatingthe error statistics – we can hardly expect
to observe good performance in regions where the learnt model φ̃(x) has seen no data.
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disrupted to learn a reasonable potential model. While at thenarrow length scale (4th

row), on average more than half of the data set is discarded, even the medium length

scale (5th row) over-smooths the subtleties of the underlying potential.

Finally, the nCPE is always much lower than the nUPE, which follows naturally

when training on data containing those very movement constraints. Still, with a reason-

able amount of data, even the unconstrained policy can be modelled with remarkable

accuracy.

As a final test, we also performed experiments to assess the noise robustness of the

proposed approach. For this, we again used data from the quadratic potential and but

this time contaminated the observed statesxn with Gaussian noise, the scale of which

we varied to match up to 20% of the scale of the data. The resulting nUPE roughly

follows the noise level, as is plotted in Fig. 4.4(b).
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Figure 4.4: Learning performance on the quadratic potential (4.24) with varying data

set sizes and noise levels. (a) Potential nMSE, nCPE and nUPE versus data set size as

a percentage of the full K =40 trajectories of length N=40. (b) Potential nMSE, nCPE

and nUPE for increasing noise levels in the observed xn.

4.3.2 Reaching for a Ball

The two goals of our second set of experiments were (i) to characterise how well the

algorithm scaled to more complex, realistic constraints and policies and (ii) to assess

how well the learnt policies generalised over different constraints. For this, we set

up a demo scenario in which a set of trajectories demonstrating the task of reaching
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Figure 4.5: Example constrained trajectory used as training data in the ball-reaching

experiment. Starting with hands at the sides, the demonstrator robot reaches between

the barriers to get the ball. Note that the width of the gap in the barriers was randomly

altered for each trajectory recorded.

for a ball on a table were given. Furthermore, it was assumed that trajectories were

recorded under different contexts where different constraints applied. The goal was

then to uncover a policy that both accurately reproduced thedemonstrated behaviour

and furthermoregeneralisedto novel contexts with unseen constraints.

The example scenario was implemented using the whole body motion (WBM) con-

troller of the 27-DOF humanoid robot ASIMO (for details see Gienger et al. 2005). For

this, data was recorded from a ‘demonstrator’ robot that, for ease of comparison with

the 2-D system, was defined by the same quadratic potential (4.24), i.e.,

π(x) = −∇xφ(x); φ(x) = (x−xc)
TW(x−xc), (4.29)

this time with the target pointxc ∈ R
6 corresponding to a grasping position, with the

two hands positioned on either side of the ball. The state-space of the policy was

defined as the Cartesian position of the two hands, corresponding to 6 DOFs4 (here-

after, the ‘task space’). Following the policy (4.29) with this set of parameters, the

demonstrator was able to reach the ball under each of the constraints considered in

this experiment (see below). Inverse kinematics via the WBM controller was used

to map the desired task space policy motion into the appropriate joint-space velocity

commands for sending to the robot.

The demonstrator’s movements were constrained by the presence of a barrier on

the table with a gap in it, placed so that the demonstrator robot had to reach through

the gap to get the ball (ref. Fig. 4.5). The barriers acted as inequality constraints on

each of the hands so that motion in the direction normal to thebarrier surface was
43 DOFs per hand× 2 hands.
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prevented if a hand came too close. Specifically, the constraints took the form

A(x, t) =















A[1,1] 0

A[1,2] 0

0 A[2,1]

0 A[2,2]















(4.30)

where

A[i, j](x, t) = n̂T
j ; di, j ≤ dmin and ûT

[i]n̂ j > 0

A[i, j](x, t) = 0 ; otherwise.

Here,di, j is the distance of theith hand (wherei ∈ {1,2}, i.e. left and right hands

respectively) to the closest point on thejth barrier (wherej ∈ {1,2}, i.e. left and

right barriers respectively),̂n j ∈ R
3 is the normal to the barrier surface5 at that point

andû[i] ∈ R
3 is the normalised command for theith hand (i.e. theith 3-vector block

of the command vectoru corresponding to that hand; for example, for the right hand

(i = 2) this wasu[2] ≡ (u4,u5,u6)
T with û[2] = u[2]/|u[2]|). Here, the full constraint ma-

trix A(x, t) ∈ R
4×6 was constructed by assigning 3-vectors to the appropriate matrix

blocksA[i, j], according to the system state. For example, if the left hand(i = 1) ap-

proached the left barrier (j = 1) to a distance ofd1,1 < dmin, and if the next commanded

movement would bring the hand toward that barrier (i.e.ûT
[1]n̂1 > 0), then the elements

of the constraint matrix corresponding to that hand/barrier pair were updated (in this

example the first row of the matrix would be updated,A1,: = (n̂T
1 ,0,0,0), constraining

the left hand). Note that under this setup the constraints are highly nonlinear (due to

the complex dependence on state) and have discontinuously switching dimensionality

(i.e. the rank ofA(x, t) switches) when either of the hands approaches or recedes from

the barrier.

Data was collected by recordingK = 100 trajectories of length 2s at 50 Hz, (i.e.

N=100 points per trajectory) from the demonstrator followingthe policy (5.10) under

the constraints (4.30). Start states were sampled from a Gaussian distribution over joint

configurationsq∼N (q0,0.1I) (whereq0 corresponds to the default standing position)

and using forward kinematics to calculate the corresponding hand positions. The joint

vectorq was clipped where necessary to avoid joint limits and self collisions, and to

ensure the start postures looked natural.

5Note that in order to ensure smooth, natural-looking trajectories the barriers were modelled as
planes with smooth ‘swept-sphere’ edges, similar to those described in Sugiura et al. (2007).
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Figure 4.6: Unconstrained reaching movement for the expert policy (black), the policy

learnt with the naive approach (green) and that learnt with the policy alignment algo-

rithm (red).

Constraint Naive Pot. Align.

Training 0.1298±0.0113 0.1691±0.0289

Unseen Barrier 0.5108±0.0327 0.2104±0.0357

Unconstrained 0.8766±0.0589 0.2277±0.0386

Table 4.2: Constrained policy nMSEfor unseen constraints on the ball-grasping task.

Values are mean±s.d. over 50 data sets.

For each trajectory, the constraints were varied by randomly changing the width

of the gap in the barriers. The gap widths were sampled from a Gaussian distribution

dgap∼ N (µgap,σgap) whereµgap = 0.25m, σgap = 0.1m and the diameter of the ball

was 0.15m. The hand-barrier distance at which the constraints came into force was

fixed atdmin = 0.05m. Fig. 4.5 shows an example trajectory under this set-up.

We used our algorithm to perform learning on 50 such data setsusing the ‘narrow’

choice of smoothing parameterσ2. For comparison, we also repeated the experiment

on the same data, using a naive approach that learntπ̃naive : x → u ∈ R
n 7→ R

n by

training directly on the tuples(xi ,ui), i = 1, . . .K ×N and used LWPR to learn the

global model. This is in contrast to the proposed alignment scheme where we learn

the 1-dimensional potential function and use the gradient of the learnt function as the

policy prediction.

For this task, our algorithm achieved a very low alignment error of 6.95±0.09×

10−4, with 0.48± 0.84% of the trajectories discarded, resulting in an nMSE in the

learnt potential of 7.85± 0.56× 10−4 (mean±s.d. over 50 data sets). In Table 4.2
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we give the errors in predicting the policy subject to (i) thetraining data constraints

(nCPE), (ii) no constraints (nUPE), and (iii) a novel constraint, unseen in the training

data, on a set of test data. For the latter, a barrier was placed centrally between the

robot and the ball, so that the robot had to reach around the barrier to reach the ball.

The remarkably low alignment error can be attributed to the fact that in most of the

observations the grasping task was achieved successfully despite the constraints forc-

ing the hands to take alternative routes to the ball. This meant many of the trajectories

closely approached the minimum of the potential, making thealignment easier around

this point. This is further indicated by the low percentage of trajectories discarded.

The key result, however, can be seen by examining the policy errors (ref. Table 4.2).

Comparing the two approaches, both achieve a similar nCPE, with the naive approach

in fact performing slightly better. This indicates that thetwo methods both do equally

well in modelling the movement under the training constraint to approximately the

same level of accuracy.

However, when comparing the errors for the unconstrained policy, and the policy

subject to the unseen constraint, a different picture emerges. Using the model learnt

by the alignment approach, the unconstrained policy predictions, and the predictions

under the unseen constraint, maintain a similar level of error to that of the constrained

policy. In stark contrast to this, the naive approach fares very poorly, with a large

jump in error when predicting the policy under the new barrier constraint and when

predicting the unconstrained behaviour.

The difference in the two approaches is highlighted if we compare trajectories gen-

erated by the two policies. In Fig. 4.6 we show example trajectories for the uncon-

strained reaching movement produced by the expert (black),and the policies learnt by

(i) the naive approach (green), and (ii) the alignment approach (red). In the former the

hands take a curved path to the ball, reproducing the averagebehaviour of the demon-

strated (constrained) trajectories – the naive method is unable to extract the underlying

task (policy) from the observed paths around the obstacles.In contrast, the policy

learnt with the alignment approach better predicts the unconstrained policy, enabling it

to take a direct route to the ball that closely matches that ofthe expert (Fig. 4.6, right).

4.3.3 Learning from High-dimensional Joint-space Data

In our next experiment, we tested the scalability of our approach for learning in very

high dimensions. For this, we again used the quadratic potential (4.24) where now
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the state vectorx corresponded to the 22-dimensional joint configuration of the upper

body of the ASIMO humanoid robot (ref. Fig. 1.1). In this casethe policy (4.24)

represents an attractor in joint space that pulls the robot into a desired posture atxc.

For the experiments,xc was chosen to correspond to a reaching posture with both arms

outstretched and we choseW = 0.05I .

In this experiment, the policy was constrained such that in each trajectory one of the

hands of the robot was constrained to lie in a plane of random orientation. Specifically,

the constraint matrixA(x, t) ∈ R
1×22, took the form

A(x, t) = n̂T
s Ji(x) (4.31)

wheren̂s ∈ R
3 is the normal to the plane andJi(x) ∈ R

2×27 is the Jacobian mapping

from joint-space to the Cartesianith hand velocity (withi ∈ {1,2}, i.e. left and right

hands respectively), The constraints were alternated between the left and right hands

for successive trajectories, so that the left hand was constrained for half of the trajec-

tories, and the right hand was constrained for the remainder. The plane orientation

n̂s was drawn from a uniform random distribution. Similar constraints such as these

occur in a variety of behaviours where contact must be maintained with a surface; for

example, when writing on a whiteboard or when wiping a window(Park and Khatib,

2006).

We ran the experiment on 50 data sets ofK =100 trajectories of lengthN=100,

with start states selected using the same process as described in the preceding section.

Using the narrow setting of the smoothing parameter the algorithm achieved an align-

ment error of 1.6± 0.3× 10−3 with just 0.02± 0.14% of the trajectories discarded.

Learning on this data with LWPR, we achieved an nMSE in the learnt potential of

1.5± 0.4× 10−3, nCPE of 0.065± 0.014 and nUPE of 0.157± 0.047. We consider

this to be remarkably good performance given the high dimensionality of the input

space and the relatively small size of the data set.

4.3.4 Degeneracy due to Constraints

In our final set of experiments, we briefly explore the limitations in performance of

our algorithm for reconstructing the (unconstrained) policy when, due to the particular

set of constraints found in the data, there is degeneracy in the possible solutions (see

discussion in Sec. 3.3.2). We found an illustrative exampleof this can be found when

considering the movement of a constrained planar three-link arm.
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The experimental set up was as follows. Data was collected from a simulated

planar arm with revolute joints and unit link lengths, moving according to the quadratic

potential (4.24) (withxc = 0 andW = 0.05I ) from a random distribution of start states.

The movement of the arm was restricted by constraining the end-effector to move along

a line. Mathematically the constraint matrix was

A(x, t) = n̂TJhand(x) (4.32)

wheren̂ is a unit vector normal to the hand-space plane andJhand(x) is the hand Jaco-

bian. The constraint was varied by altering the orientationof the plane by drawinĝn

from a uniform random distributionUn̂ at the start of each trajectory.

We ran experiments on 50 such data sets each containingK =100 trajectories of

lengthN=100. For this learning problem, the algorithm achieved nUPEof 0.3524±

0.1626 and nCPE of 0.0455±0.0276. The nMSE in the learnt potential was 0.1739±

0.1424 with 10.28±8.25% trajectories discarded. In comparison the naive approach

to learning achieved nUPE of 0.8008±0.0274 and nCPE of 0.0105±0.0023.

The reason for the comparatively high nUPE here becomes clear if we analyse the

effect of the constraints on the movement of the arm (see Fig.4.7). In Fig. 4.7(a) the

training data trajectories are plotted over the three joints of the arm. It can be seen

that the trajectories do not reach the point attractor atx = 0, but rather move to a line

in joint space (shown in black). This ‘line attractor’ represents the minimum of the

potential that can be reached without breaking the constraints. No trajectories travel in

the direction parallel to this line. Furthermore, away fromthis line there are few points

where trajectories come close to one another or intersect. The effect of this is that the

algorithm gets little or no information about how the potential changes in the direction

parallel to the line.

This is confirmed by comparing how the nUPE and nCPE change as wemove

along the line attractor, and radially outward from it. In Fig. 4.7 we show the potential

nMSE, nUPE and nCPE on data contained within different regions of the state space.

First, we evaluated the error on data points contained between two planes normal

to the line attractor at distanced from the point attractorx = 0 (Fig 4.7(b), dashed

lines), and plotted it with increasingd (Fig 4.7(d)). We can see that close tox = 0, the

potential nMSE and nUPE start low but increase rapidly for larged. On the other hand

the nCPE stays approximately constant over the entire set.

Second, we looked at how the errors change as we move radiallyoutward. For this,

we evaluated errors on data contained within a cylinder of radiusr centred on the line
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Figure 4.7: (a) Trajectories in state-space for the three link arm subject to random

planar constraints on the hand. (b) and (c) show projections onto the first two joints of

the arm, and also indicate the line attractor (solid black line). We sampled the nMSE at

increasing distances along the line (b) and radially outward from it (c). Plots (d) and (e)

depict the cumulative nMSE of the potential φ, policy π, and constrained policy (Nπ) as

a function of the distance measures from (b) and (c), respectively.

attractor (Fig 4.7(c), dashed lines). Fig 4.7(e) shows the change in error with increasing

radiusr. Again the nCPE remains constant. This time, however, the potential nMSE

and nUPE are high even at smallr. This indicates that the points at the two ends of the

line are contributing most of the error.
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Clearly in this example, the adverse constraints in the training data prevent our

algorithm from fully reconstructing the unconstrained policy. The constraints prevent

motion parallel to the line attractor so we cannot recover the form of the potential along

that direction. However, the good performance in terms of the nCPE indicates that, at

the very least, the algorithm is able to reconstruct the policy under the same constraints

despite these adverse conditions.

4.4 Conclusion

In this chapter, we explored the learning of policies from constrained motion data, for

the special case of potential-based policies. We gave a formal definition of a potential-

based policy in terms of the curl properties of the vector field described by the policy,

and characterised the kinds of behaviour such a policy may encode; that is, discrete

movements such as goal-oriented reaching.

We then went on to discuss why this class of policy is amenableto constraint-

consistent learning. We noted the special property of potential-based policies; namely

that the projected gradient vectors give us directional derivative information that can be

used to recover the shape of the potential. We then proposed anovel method to exploit

this property, allowing us to learn kinematic policies subject to stationary constraints

indirectly, by modelling the underlying potential function. The proposed method is fast

and data-efficient, and it scales to complex constraints in high-dimensional movement

systems. The core ingredient is an algorithm foraligning local models of the potential,

which leads to a convex optimisation problem.

Given the difficulties in learning that we predicted in Ch. 3, this method performs

remarkably well. Ultimately, the ability to learn the potential depends on the con-

straints: Given a pathological set of constraints, one can never hope to recover the

potential. However, using this method, motion data under different constraints can

be combined to learn a potential that is consistent with the observations. With a rea-

sonably rich set of constraints, we can recover the unconstrained policy with high

accuracy, and we cangeneralise to predict behaviour under different constraints.

Having proven then, the principle that learning policies from constrained motion

data is feasible, at least for this restricted class of problems (i.e. kinematic trajec-

tory data from potential-based policies), we are now in a position to look for ways

to tackle more generic policy learning problems. In particular, it is desirable that we
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remove the restriction to potential-based policies, to enable us to learn more generic

movements, including rotational or periodic movements; for example, stirring soup or

turning a crank or pedal. Furthermore, in order to extend themethod to more generic,

non-kinematic policies (e.g. force-based policies) and non-stationary constraints (ref.

Sec. 3.3.3) it will be necessary to remove the need to bootstrap the learning along ob-

served trajectories (ref. Sec. 4.2.1). In the next chapter,we will see how re-examining

the problem in terms of the objective functions used for learning leads to an alternative

approach to learning that no longer suffers from the restrictions of the potential-based

approach.





Chapter 5

Learning Generic Policies from

Constrained Motion

5.1 Introduction

In the preceding chapter we saw how, for the special case of kinematic, potential-based

policies it is possible to accurately learn the unconstrained policy without need for ex-

plicit knowledge of the constraints. This was done using trajectory data collected under

different constraints to find a model that was consistent with the observations by seek-

ing the underlying potential function. We saw that this approach is a great improvement

over the standard approach to direct policy learning, out-performing direct regression

in a number of experiments. However, it still suffers from several limitations. Es-

sentially these are due to the assumptions (i) that the policy is potential-based (i.e.

irrotational in the sense of having zero curl; ref. Sec. 4.1.1) (ii) the data is kinematic

(i.e. u = ẋ) and (iii) the data takes the form of trajectories through the state-space.

In this chapter, we explore ways to remove these limitationsand learn generic

policies from observed state-action pairs for stationary constraint systems. We will

show that it is still possible to learn a good model of the policy π, without need for

explicit knowledge of the constraintsN(x, t), and without the need for the restrictive

assumptions outlined above. In order to do this, the key to our approach will be to

reconsider therisk functionused for modelling the policy.

An outline of the chapter is as follows. First we will look at different risk functions

that may be used to optimise our model with respect to the datagiven. We will assess

the suitability of several candidate error measures, including the standard risk, the

73
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UPE and CPE (as defined in Sec. 3.4.2). We will then go on to propose a novel risk

function for learning, based onmaximising consistencywith the constraints based on

projections of the unconstrained policy vector. We will outline how this new functional

can be used in combination with two example policy models, that is parametric and

local linear policy models. Finally we will test the performance of this approach on

several constrained systems of varying size and complexity, similar those described in

the preceding chapter.

5.2 Learning Policies by Minimising Inconsistency

In this section we consider several candidate risk functions that could be used for

learning and assess their suitability with respect to the data we are assumed given. We

will then propose a novel risk function (Howard et al., 2009b,a) that both satisfies our

original assumptions, and promises to be effective for learning from variable constraint

data.

5.2.1 Optimisation of the Standard Risk, UPE and CPE

As outlined in Sec. 3.3, throughout this thesis we target problems where we are given

data in the form of tuples(xn,un) of observed states and constrained actions. We as-

sume that all commandsu are generated from the same underlying policyπ(x), which

for a particular observation might have been constrained. For the stationary constraint

problem (ref. Sec. 3.3.2), this means that we observeun = Nnπ(xn) for some projec-

tion matrixNn. We assume that the projection matrix for any given observation is not

explicitly known, i.e. our data is unlabelled with respect to the constraints in force at

the time of observation.

Given this data, the first possibility that springs to mind isto perform direct least-

squares regression for learning. In this approach one wouldattempt to estimate the

policy π̃(·) by minimising thestandard risk

Edirect[π̃] =
N

∑
n=1

‖un− π̃(xn)‖
2. (5.1)

As already mentioned in Ch. 3, this is an effective approach for learning from un-

constrained data (ref. Sec. 3.3.1) or data where the same constraint appears in all

observations (i.e. the constraint matrixA(x) is the same static function of state for all
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observations). In the former case, one would obtain the bestfit to the unconstrained

policy, and in the latter one would find the best fit to theconstrained policy under that

particular set of constraints. For example, if one had several observations of a system

opening some particular door and in every observation the door was the same, then

optimisation of (5.1) would be effective for learning.

The problem with this approach, however, is that it cannot handle data where com-

mands are observed under variable constraints. As also mentioned in Sec. 3.3.2, if

we consider an example where multiple observations are given under different con-

straints, optimisation of (5.1) would result in a naive averaging of commands from

different circumstances (cf. Fig. 3.4, centre). In terms ofour door opening example, if

we observed the agent opening a new door and attempted to incorporate that into our

policy model, we would either get the average door opening action, or have to start a

new policy model for the new door. We can therefore rule out (5.1) for learning in this

setting, since it does not meet our requirements for accuracy and generalisation.

An alternative approach then, might be to directly target the error measures that

we use to measure performance (ref. Sec. 3.4.2). For example, we could attempt to

optimise our model with respect to theunconstrained policy error

Eupe[π̃] =
N

∑
n=1

‖πn− π̃(xn)‖
2. (5.2)

Optimising (5.2) would clearly give us the best fit to the policy, and in the case that no

constraints were in force, would correspond to direct regression on the policy obser-

vations. This would also satisfy our accuracy and generalisation requirements since,

as discussed in Sec. 3.4.2, we could project our policy modelin any arbitrary way and

still hope to get a good nCPE. However, the problem here is that, by assumption, we

do not have access to samples of the (unconstrained) policyπn = π(xn) so (5.2) is not

available for learning.

Alternatively, we could try optimising for theconstrained policy error

Ecpe[π̃] =
N

∑
n=1

‖un−Nnπ̃(xn)‖
2. (5.3)

Optimising (5.3) would give the fit that ismost consistent with the constrained obser-

vations, i.e., it would minimise the error in the components of the policy along the

dimensions left unconstrained in the observations. Compared to optimising the UPE,

it would not give such a tight fit, since the projectionsNn eliminate components of the
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policy that could potentially contain errors. However, despite this, we could still hope

to get good generalisation given sufficient variability in the constraints.

Unfortunately, there are a number of problems with using (5.3) for learning. In

most problems of interest, while it may be relatively easy toidentify when a constraint

is in force, it is usually much more difficult to determinewhat that constraint is. In

most cases constraints are not directly observable and there is oftenambiguityin what

features of motion are due to constraints and what are implicit in the policy itself.

For example, consider a contact control scenario such as wiping a window. There,

we can identify the surface of the window as anenvironmental constraint1 preventing

the wiping hand from penetrating the surface. We may also identify a task constraint

preventing the hand from lifting from the surface, since contact must be maintained

for successful wiping. This is one reasonable analysis of the system and, assuming it

to be correct, we may go on to estimate the constraint. For example, we may model

the shape of the surface being wiped, assume constraints of aparticular form and then

estimate the corresponding projectionsNn. This would then allow us to use (5.3) to

estimate the policy.

However, the difficulty here is that it is not clear how, in general, such identification

of the constraints can be done. For example, while the above analysis seems relatively

straight-forward to the expert human, it requires a rather detailed understanding of the

interaction between wiping hand and surface, and of the requirements of the wiping

task. Such an analysis, if available, would considerably ease the learning problem

(allowing us to use (5.3) for higher-accuracy predictions). However, it is not clear at

the present time how such an analysis may be automated in a simple way.

An additional, and perhaps more critical, problem, however, is that of ambiguities

in the observations that may lead to different analyses and predictions of the true con-

straints. For example, it may be that theunconstrained policy itselfexactly encodes a

wiping movement parallel to the surface, so that the presence of the surface is inciden-

tal. Alternatively, there could be anadditional task constraintapplied that prevents the

hand from pressing hard against the surface. Note that we cannot directly determine

which is the correct analysis simply by observing the given movement: If the win-

dow surface (environmental constraint) was removed in bothof these cases the wiping

would still appear to go on exactly as before. In this examplethen, there is ambiguity

1Note that would in fact be an inequality constraint since only movement into the surface is restricted,
while movement away is unconstrained.
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in what features of movement are due to the policy, what are due to the constraints,

and exactly what constraints (if any) are in force.

To avoid these problems, in this thesis we take a different approach. In Ch. 4 we

saw how, for the special case of potential-based policies, it was possible to achieve high

modelling accuracywithout explicit knowledge of the constraints(i.e. without using

the projectionsNn). In this chapter then, we will look for a similar approach, again with

the assumption that the constraintsNn are unknown. While this may result in poorer

accuracy as compared to methods that explicitly use knowledge of the projections, it

has the great benefit that the problems of modelling the constraints in the data are

avoided. To do this, in the next section we will look at an alternative risk function that

satisfies our assumptions while still promising high accuracy and good generalisation

over constraints.

5.2.2 Optimisation of the Inconsistency

Having ruled out the use of (5.2)-(5.3) for learning in this setting we must look for

alternative approaches. Our aim is to try to estimate a policy π̃(·) that isconsistent

with our observedun, only using quantities that we can derive from the data. Thatis,

we wish to reconstruct the policy, knowing that it may be projected in some way by

the constraints. At this point a key observation can be made:in order to uncover the

unconstrained policy we must find a policy model that can beprojected in such a way

that the observed commands are recovered. In other words, we require

u(x) := Pπ(x)

for an appropriate projection matrixP , that either projects onto the same space as the

(unknown)N(x) (i.e. the image ofN), or an (even smaller) subspace of that. One such

projection, which we know to lie within this subspace, is the1-D projection onto the

observed command itself, that isP= ûûT , with û= u/‖u‖ (ref. Fig. 5.1). Furthermore,

sinceu is given, we have all the information we need to calculate this projection and

use it for learning, neatly side-stepping the need to explicitly model the full constraint

matrix N.

With this as motivation, we propose to replaceNn in (5.3) by a projection ontoun

and minimise theinconsistencywhich we define as the functional

Ei[π̃] =
N

∑
n=1

‖un− ûnûT
n π̃(xn)‖

2 =
N

∑
n=1

(

rn− ûT
n π̃(xn)

)2
(5.4)
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Figure 5.1: Illustration of our learning scheme. The projection of the correct policy π
onto the observations matches those observations.

with rn= ‖un‖, ûn= un
rn

. Sinceun = Nnπn we can write‖un−Nnπ̃(xn)‖
2 = ‖Nn(πn−

π̃(xn))‖
2 and recognise that the CPE is always less than or equal to the UPE, because

the projectionsNn can only decrease the norm of the difference between true andpre-

dicted policy. The same argument holds for the inconsistency error (5.4) where the

projection onto the 1-D subspace spanned byûn, possibly takes away even more of the

error2. So we can establish the inequality

Ei[π̃] ≤ Ecpe[π̃] ≤ Eupe[π̃].

Naturally, for estimating the correct policy, we would rather like to minimise anupper

boundof Eupe, but it is unclear how such a bound could be derived from the data we

are assumed given (we will revisit this issue in Ch. 6). However, note that by framing

our learning problem as a risk minimisation task, we can apply standard regularisation

techniques such as adding suitable penalty terms to preventover-fitting due to noise.

The proposed risk functional (5.4) can be used in conjunction with many standard

regression techniques. In principle, provided that there is sufficient variability in the

constraints, policies of arbitrary complexity can be learnt, limited only by the represen-

tational power of the underlying regression model. (Note also that since the constraints

2Note that, in the approach described in Ch. 4, since we look for models that are consistent along the
direction of movement of the trajectories along the direction, we also effectively minimise the error in
the same sub-space.
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do not explicitly enter into the risk calculation, the complexity of the constraints does

not affect the performance of learning.) However, for the experiments in the remain-

der of this chapter, we focus to two classes of function approximator for learning the

(unconstrained) policy to demonstrate how the risk functional can be used. The exam-

ple function approximators we use are (i) simple parametricmodels with fixed basis

functions (Sec. 5.2.3), and (ii) locally linear models (Sec. 5.2.4). In the next section

we describe how the two models can be reformulated to take advantage of the new risk

functional.

5.2.3 Example: Parametric Policy Models

A particularly convenient model of the policy is given byπ̃(x)=Wb(x), whereW ∈

R
d×M is a matrix of weights, andb(x)∈R

M is a vector of fixed basis functions. This

notably includes the case of (globally) linear models wherewe setb(x)= x̄=(xT ,1)T ,

or the case of normalised radial basis functions (RBFs)bi(x)= K(x−ci)

∑M
j=1 K(x−c j)

calculated

from Gaussian kernelsK(·) aroundM pre-determined centresci, i = 1. . .M. With this

model, theinconsistencyerror from (5.4) becomes

Ei(W) =
N

∑
n=1

(

rn− ûT
n Wb(xn)

)2

=
N

∑
n=1

(

rn−vT
n w

)2
= Ei(w),

where we definedw≡vec(W) andvn≡vec(ûnb(xn)
T)=b(xn)⊗ ûn in order to retrieve

a simpler functional form. Since our objective function is quadratic inw, we can solve

for the optimal weight vector easily:

Ei(w) = ∑
n

r2
n−2∑

n
rnvT

n w+wT ∑
n

vnvT
n w

= E0−2gTw+wTHw

yielding

wopt = argminEi(w) = H−1g (5.5)

with H = ∑nvnvT
n andg = ∑n rnvn. For regularisation, we use a simple weight-decay

penalty term, that is, we selectwopt
reg = argmin(Ei(w) +λ̄‖w‖2). This only requires

modifying the Hessian toHreg = ∑nvnvT
n +λ̄I .

Please note that the projection ontou introduces a coupling between the different

components of̃π, which prevents us from learning those independently as is common
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in normal regression tasks. For the same reason, the size of the Hessian scales with

O(d2M2). For convenience, pseudocode for the learning is given in Algorithm 2.

Algorithm 2 Inconsistency Optimisation

1: Initialise policy model (e.g., allocate RBF centresci and kernel sizeσ2).

2: Pre-calculation of terms:

• Find rn = ‖un‖, ûn = un/rn, andvn = b(xn)⊗ û for each data point.

3: Optimisation:

• Build HessianH = ∑nvnvT
n and linear termg = ∑n rnvT

n .

• (Optional: ReplacingH with Hreg = H +λ̄I and assign regularisation pa-

rameter ¯λ that minimisesEi[π̃] on validation data subset.)

• Find optimal weightswopt = H−1g.

• ReshapeWopt = vec−1(wopt) for prediction.

5.2.4 Example: Locally Linear Policy Models

The basis function approach quickly becomes non-viable in high-dimensional input

spaces. Alternatively, we can fit multiple locally weightedlinear modelsπ̃m(x) =

Bmx̄ = Bm(xT ,1)T to the data, learning each local model independently (Schaal and

Atkeson, 1998). For a linear model centred atcm with an isotropic Gaussian receptive

field with varianceσ2, we would minimise

Ei(Bm) =
N

∑
n=1

wnm
(

rn− ûT
n Bmx̄n

)2
(5.6)

=
N

∑
n=1

wnm
(

rn−vT
n bm

)2
= Ei(bm), (5.7)

where we definedbm = vec(Bm) andvn ≡ vec(ûnx̄T
n ) similarly to the parametric case.

The factors

wnm = exp(−
1

2σ2‖xn−cm‖
2)

weight the importance of each observation(xn,un), giving more weight to nearby sam-

ples. The optimal slopesBm in vector form are retrieved by

bopt
m = argminEi(bm) = H−1

m gm (5.8)
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with Hm = ∑nwnmvnvT
n andgm = ∑nwnmrnvn.

For predicting the global policy, we combine the local linear models using the

convex combination

π̃(x) =
∑M

m=1wmBmx̄

∑M
m=1wm

wherewm = exp
(

− 1
2σ2‖x−cm‖

2
)

. For implementation, the pseudocode in Algo-

rithm 2 can be used for each local model simply by making appropriate substitutions

to incorporate the weighting factorswm in the calculation of the HessianHm and linear

termgm.

5.3 Experiments

To explore the performance of the new algorithm, we performed experiments on data

from autonomous control policies of varying size and complexity, similar to those re-

ported in Sec. 4.3. In this section, we first discuss results from an illustrative toy prob-

lem, this time focusing on a on a rotational (i.e. non-potential-based) policy. We then

demonstrate how the method generalises across constraintson kinematic data from the

7-DOF DLR lightweight arm (Sec. 5.3.2). Next, we repeat the ball-reaching exper-

iment (ref. Sec. 4.3.2) using WBM control of the humanoid robotASIMO (Gienger

et al., 2005) and that of learning in the full 22-DOF ASIMO upper body joint space (cf.

Sec. 4.3.3). After validating the approach on these artificial systems where the ground

truth is known, we then explore the utility of the new approach for learning in a real

imitation learning setting: We demonstrate an applicationof our approach to enable

the ASIMO robot to learn a car washing task from observed human movements (Sec.

5.3.5). Finally, in Sec. 5.3.6, the performance of the new approach is compared with

that of the previous alignment-based approach of the preceding chapter, using identical

data sets and with similar policy models.

5.3.1 Toy Example

Our first experiment demonstrates the learning of rotational policies from constrained

trajectories in a simple toy example consisting of a two-dimensional system with dis-

continuously switching motion constraints. As an example policy, we used a limit

cycle attractor of the form

ṙ = r(ρ− r2), θ̇ = ω (5.9)
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wherer, θ are the polar representation of the Cartesian state space coordinates (i.e.

x1 = r sinθ, x2 = r cosθ), ρ is the radius of the attractor andθ̇ is the angular velocity

(see Fig. 5.2 (a)). For the experiments we setρ = 0.5 m and ω = 1 rad s−1 with a

sampling rate of 50 Hz. Data was collected by recording 40 trajectories of length 40

time steps each, generated by the policy from a random start state distributionX0.

During the trajectories the policy was subjected to random switching constraints,

similar to those described in Sec. 4.3.1, i.e. constraints of the form

A(x, t) = (α1,α2) ≡ α

where theα1,2 were drawn from a normal distributionαi = N(0,1). The constraints

mean that motion is constrained in the direction orthogonalto the vectorα in state

space. As before, these were randomly switched by generating a newα twice at regular

intervals during the trajectory, inducing sharp turns which can be seen in Fig. 5.2 (b-d).

We used a parametric model to learn the policy through minimisation of the incon-

sistency (5.4) as described in section 5.2.3. We included the regularisation term and

picked the parameter ¯λ by minimising the inconsistency on a validation subset. For

this toy problem, we chose our function model as a set of 36 normalised RBFs cen-

tred on a 6× 6 grid, and we simply fixed the kernel width to yield suitable overlap.

We repeated this experiment on 100 data sets and evaluated the normalised UPE, CPE

(ref. Appendix 3.4.2) and the inconsistency3 on a subset held out for testing. For com-

parison, we repeated the experiment using a naive approach that attempted to perform

regression with the same RBF model directly on the constrainedobservations, i.e., the

naive approach attempted to minimise the functional (5.1).

Figure 5.2 shows the true policy, the trajectories we trained on, the policies learnt

using our and the naive approach, and finally the error statistics below the plots. With

an average nUPE of 0.0027, our method outperforms the naive approach by orders

of magnitude. Notably, even with only 4 trajectories (Fig. 5.2(b)), the reconstructed

policy already resembles the limit cycle, although large errors still persist in some

parts of the state space (e.g., the lower right corner). Further to this, the top panel of

Fig. 5.3 depicts how the nUPE and nCPE evolve with increasing size of the training

set, showing a smooth decline (please note the log. scale).

In order to further explore the performance of our algorithm, we contaminated the

observed commandsun with Gaussian noise, the scale of which we varied to match up

3Actually, for u ∈ R
2 the inconsistency is exactly equivalent to the CPE, since both necessarily

involve the same 1-D projection.
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to 20% of the scale of the data. The resulting nUPE roughly follows the noise level, as

is plotted in Fig. 5.3 (bottom).

5.3.2 Generalisation Over Unseen Constraints

The two goals of our second set of experiments were (i) to characterise how well the

algorithm scaled to more complex, realistic constraints and (ii) to characterise how well

the learnt policies generalised over unseen constraints. For this, we used kinematic

data from the 7-DOF DLR lightweight robot (LWR-III) (Fig. 1.1). The experimental

procedure was as follows: We generated a random initial posture by drawing 7 joint

angles uniformly from half the range of each joint, that isxi ∼ U [−0.5xmax
i ;0.5xmax

i ],

where, for example,xmax
1 = 170◦. We set up a joint limit avoidance type policy as

π(x) =−0.05∇φ(x), with the potential given byφ(x) = ∑7
i=1 |xi|

p for p= 1.5, p= 1.8,

or p = 2.0. We then generated 100 trajectories with 100 points each, following the

policy under 4 different constraints, which we refer to as 1-2-3, 4-5-6, 1-3-5, and 2-4-

6. Here, the three numbers denote which end-effector coordinates in task space4 we

kept fixed, that is, 1-2-3 means we constrained the end-effector position, but allowed

arbitrary changes in the orientation (here, orientation was represented as yaw, pitch

and roll angles in the inertial frame). Similarly, 2-4-6 means we constrained they-

coordinate and the orientation around thex- andz-axis, while allowing movement in

x-z position and around they-axis. For all 4 constraint types, we estimated the policy

from a training subset, and evaluated it on test data from thesame constraint, as well

as on trajectories from the complementary constraint (e.g., 2-4-6 is complementary to

1-3-5).

For learning in the 7-D state space, we selected locally linear models as described

in Sec. 5.2.4, where we chose rather wide receptive fields (fixing σ2 = 3) and placed the

centres{cm} of the local models such that every training sample(xn,un) was weighted

within at least one receptive field withwm(xn) ≥ 0.7. On average, this yielded about

50 local models.

While the linear policyπ(·) corresponding top=2.0 was learnt almost perfectly

(all normalised errors were in the order of 10−9), the less linear policies (p=1.8 and

especiallyp=1.5) turned out to be a much harder problem. This can be seen when

comparing both the nUPE and nCPE for the two policies (ref. Table 5.1). Still, we

4The numbers can also be read as row indices of the 6×7 Jacobian matrix.
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Potential Constr. nUPE nCPE Compl. nCPE Norm. Incon.

p=1.5

1 - 2 - 3 64.338±32.030 2.917±0.368 15.951±6.473 0.755±0.067

4 - 5 - 6 34.753±19.125 2.491±0.228 15.478±7.755 0.388±0.036

1 - 3 - 5 16.179± 3.813 3.204±0.276 5.108±1.079 0.706±0.067

2 - 4 - 6 10.355± 1.827 2.723±0.237 4.749±0.956 0.401±0.039

p=1.8

1 - 2 - 3 8.096± 5.766 0.477±0.088 2.278±1.133 0.112±0.011

4 - 5 - 6 5.364± 2.961 0.352±0.038 2.221±0.984 0.051±0.006

1 - 3 - 5 2.275± 0.645 0.455±0.041 0.773±0.171 0.098±0.011

2 - 4 - 6 1.421± 0.314 0.401±0.042 0.729±0.174 0.058±0.007

Table 5.1: Normalised UPE, CPE on the training constraints, CPE on complementary

constraints and inconsistency error, for data from the DLR arm (Fig. 1.1). All errors

normalised by the variance of the policy. We report (mean± s.d.)×10−2 over 100 trials

with different data sets.

recovered the constrained policy in all cases to good accuracy (ref. Table 5.1, 4th col-

umn), with good generalisation to the complementary constraints (ref. Table 5.1, 5th

column). We can also see that constraining the end-effectorposition (1-2-3) made it

more difficult to recover the unconstrained policy comparedto constraining the orien-

tation (4-5-6), or using mixed constraints (1-3-5 and 2-4-6). It should also be noted

that running the same experiment using the naive approach (ref. Sec. 5.3.1) gave

consistently poor results; for example, when training on data under the (1-2-3) con-

straint, the naive approach gave nUPE of 83.44±1.20×10−2 for the p=1.5 policy,

80.94±1.37×10−2 for p=1.8 and 79.62±1.39×10−2 for p=2.0.

5.3.3 Reaching for a Ball

The goal of our next set of experiments was to illustrate the utility of our approach for

learning from observations of an everyday task with realistic constraints. For this, we

re-visited the ball reaching experiment (ref. Sec. 4.3.2),in which we are given a set of

observations of a demonstrator reaching for a ball on a tableand the task is to learn a

policy that reproduces this movement. As before, the learning problem is complicated

by the presence of barriers on the table that constrain the possible movements and force

the demonstrator to reach between the barriers to get to the ball. The goal is to uncover

a policy that accurately predicts the demonstrator’s behaviour and generalises across
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Constraint Naive Non-naive

Training 0.1940±0.0153 0.0056±0.0022

Unseen Barrier 0.4678±0.0264 0.0057±0.0023

Unconstrained 0.7014±0.0430 0.0058±0.0023

Table 5.2: Normalised policy errors for predicting the policy under three constraint con-

ditions from the ball-reaching data for the naive and non-naive methods. Values are

mean±s.d. over 50 data sets.

constraints.

To simulate this scenario we again used the WBM controller of the ASIMO hu-

manoid (for details see Gienger et al. 2005). We collected data from a ‘demonstrator’

robot, this time following a policyu = ẋ = π(x) defined by an inverted Gaussian po-

tential

π(x) = −∇xφ(x); φ(x) = α
(

1−e‖x−xc‖
2/2σ2

)

, (5.10)

wherex ∈ R
6 corresponds to the Cartesian position of the two hands and we chose

σ2 = 2, α = 0.25 and the target pointxc ∈R
6 to correspond to a reaching position, with

the two hands positioned on either side of the ball. Similar to the quadratic potential-

based policy (4.29), with this set of parameters, the demonstrator was able to reach the

ball under each of the constraints considered in this experiment (see below). However,

note that here, unlike the potential-based policy, the policy is a non-linear function of

state, and thus represents a more difficult learning task.

The demonstrator’s movements were constrained by the same constraints described

in Sec. 4.3.2, i.e., (4.30), with the width of the gap randomly changed at the start of

each demonstrated trajectory according to a Gaussian distributiondgap∼N (µgap,σgap)

whereµgap= 0.25m, σgap= 0.1m. Under this set up we collectedK =100 trajectories

of length 2s at 50 Hz, (i.e.N=100 points per trajectory). Start states were sampled

from a Gaussian distribution over joint configurations,q∼N (q0,0.1I) (whereq0 cor-

responds to the default standing position) and using forward kinematics to calculate the

corresponding hand positions. The joint vectorq was again clipped where necessary

to avoid joint limits and self collisions, and to ensure the start postures looked natural.

Learning was performed on 50 such data sets using 150 local linear models, with

centres placed usingk-means. For comparison, the experiment was also repeated on

the same data with the same local linear model (i.e., same number and placement of
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centres), but using the naive approach for training (i.e. training on(xi ,ui ≡ ẋi), i =

1, . . .K×N directly, using the risk functional (5.1)).

To assess the performance for both methods we evaluated the errors in predicting

the policy subject to (i) the training data constraints (nCPE), (ii) no constraints (nUPE),

and (iii) a novel constraint, unseen in the training data, ona set of test data. For the

latter, a barrier was placed centrally between the robot andthe ball, so that the robot

had to reach around the barrier to reach the ball (see Fig. 5.5).

As expected, learning using the proposed risk functional (5.4) (the ‘non-naive’ ap-

proach) performed much better than the naive approach in terms of the numerical error

measures (ref. Table 5.2), similar to our results with the potential based approach (ref.

Table 4.2). To further confirm this, we also compared the trajectories generated by the

two policies under the different constraint settings to seeif the effect of generalisation

over constraints was reproduced with the new method.

In Fig. 5.4 we show example trajectories for theunconstrainedreaching move-

ments produced by the demonstrator (‘expert’), and the policies learnt by (i) the naive

approach, and; (ii) the non-naive approach; from a number ofstart states. We see that,

for the former, the hands always take a curved path to the ball(Fig. 5.4, left), repro-

ducing the average behaviour of the (constrained) demonstrations (and similar to what

we saw when learning with the naive approach and LWPR, ref. Sec.4.3.2). However,

in contrast, the policy learnt with the new approach better predicts the unconstrained

policy, and takes a direct route to the ball that closely matches that of the demonstrator

(Fig. 5.4, right). Similar to the potential-based approachthen, the new method extracts

the essential unconstrained grasping movement despite training exclusively on data

containing constraints.

Secondly, Fig. 5.5 shows example trajectories when the learnt policies are again

constrained. Figure 5.5 (top) shows the movement from the non-naive policy under

a similar constraint as in the training data. Under this constraint both naive and non-

naive policies take a similar path as the demonstrator: The hands move in first, then

forward to the ball. Note that under this constraint the movement of the naive policy is

noticeably slower due to the model averaging effect (ref. Sec. 3.3.2).

Finally, under the unseen barrier constraint, there is a marked difference in be-

haviour. Under this constraint, the demonstrator (still following the policy (5.10))

reaches around the barrier to get the ball. This behaviour isreproduced by the policy

learnt with the new approach (Fig. 5.5, middle). In contrast, however, the naive policy
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does not generalise to the new constraint and gets trapped behind the barrier, eventually

dislodging it5 (Fig. 5.5, bottom). The behaviour of the three policies (demonstrator,

naive and non-naive policies) can be examined in detail in the accompanying video.

5.3.4 Learning from High-dimensional Joint-space Data

To test the scalability of the new approach for learning in very high dimensions, we also

re-visited the experiment on learning from ASIMO joint space data (ref. Sec. 4.3.3).

For this, we again used a policy based on a quadratic potential in joint space

π(x) = −∇xφ(x); φ(x) = (x−xc)
TW(x−xc),

wherexc ∈ R
27 is a target posture andW is a weighting matrix. The policy repre-

sents an attractor in joint space that pulls the robot into a desired posture atxc. For

the experiments,xc was chosen to correspond to a reaching posture with both arms

outstretched (ref. Fig. 5.6, right) and we choseW = 0.05I . Note that, in contrast to

the experiment described in Sec. 4.3.3), to increase the difficulty of the learning task,

5 additional DOFs (corresponding to the Cartesian heel positions, the torso height and

torso lateral orientation) were included in the state vector.

During data collection, the policy was constrained by the presence of obstacles

which took the form of a vertical wall placed directly in front of the robot at differ-

ent orientations and distances (ref. Fig. 5.6, left). Specifically, the constraint matrix,

A(x, t) ∈ R
2×27, took the form

A i(x, t) = 0 ; di > 0

A i(x, t) = n̂TJi(x) ; otherwise. (5.11)

Here,n̂ ∈ R
2 is the normal6 to the wall surface,di is the perpendicular distance of the

ith hand from the wall surface (withi ∈ {1,2}, i.e. left and right hands respectively),

Ji(x) ∈ R
2×27 is the Jacobian mapping from joint-space to the lateral (i.e. horizontal

planar) coordinates of that hand andA i(x, t) ∈ R
1×27 is the corresponding row of the

constraint matrix. At the start of each trajectory, the orientation of the wall was drawn

5Note that the collision of the hands with the barrier in fact violates the constraint. The reason for
this is that on the real robot, under this constraint, the naive policy forces the robot into a self-collision
(of the robot’s arms with the torso). To prevent damage to therobot, an on-board safety mechanism then
kicks in and pushes the hands away from the body, causing collision with the barrier.

6Note that since the wall was vertical in all example trajectories (and thus did not affect vertical
movements) only the normal in the horizontal plane is relevant to calculation of the constraints.
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from a uniform random distributionθ∼U [−θmax,θmax] whereθ is the angle of the wall

with respect to the left-right axis of the robot heel frame (horizontal axis in Fig. 5.6,

left), and we choseθmax= 27◦. The distance of the wall was adjusted at the start of

each trajectory to ensure that the the hands were a minimum distance of 0.15m from

the wall before the onset of movement.

The effect of the constraints was to restrict the movement ofthe hands when they

approached the wall. This constraint was projected back into the joint space where

the policy was operating via the Jacobian. This causes the policy to appear highly

complex and non-linear in the state space (joint space), with discontinuous changes to

the dimensionality of the constraints as the hands of the robot approached the wall.

Using the formalism from Sec. 5.2.3 withb(x) = x̄, we fitted linear models to

100 data sets, each consisting of 100 trajectories of 100 data points. Despite the high

dimensionality, the new method reached a normalised UPE of 0.291±0.313×10−2.

It is important to point out that this result can not only be explained by our choice

of a linear model where we knew that the true policy was also linear: Direct (naive)

linear regression on the observed commands resulted in a normalised UPE of 63.9 ±

3.1×10−2 (nCPE was 7.98± 0.66×10−2), which again is orders of magnitude higher,

similar to our results on the lower dimensional data in the preceding sections.

5.3.5 Washing a Car

Having validated our approach on data where the ground truth(true unconstrained

policy) was known, in this section, we report experiments onlearning from human

demonstrations for seeding the robot motion. For this experiment, we chose to inves-

tigate the problem of learning to wash a car. This is an example of a task which can

be intuitively described in terms of a simple movement policy (‘wiping’) subject to

contact constraints that vary depending on the different surfaces of the car to be wiped.

Due to the different shapes and orientations of the car surfaces, complex, non-linear

constraints are imposed on the motion. The resultant trajectories appear periodic, but

are perturbed in different ways by the constraints. The goalof our experiments was to

learn a policy that captured the periodic nature of the movements, while eliminating

artifacts induced by the constraints.

The experimental setup was as follows. Seven demonstrations of a human wiping

different surfaces with a sponge were given to the robot. To simulate observations of

washing different surfaces of the car, the wiping was performed on a perspex sheet
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placed at different tilts and rotations with respect to the robot (see Fig. 5.7). Specif-

ically, the sheet was oriented to be flat (horizontal), tilted ±16◦ and±27◦ about the

x-axis (horizontal axis pointing directly ahead from the robot) and±16◦ about they-

axis (horizontal right-left axis). The three-dimensionalcoordinates of the sponge were

tracked using the on-board stereo cameras of the ASIMO robotat a rate of 20 frames

per second (for details on the ASIMO vision system please seeBolder et al. 2007).

The recorded trajectories are shown in Fig. 5.8 (left).

The policy was modelled as theR3 7→ R
3 mapping from hand (sponge) positions

to velocities. Since this is a relatively low-dimensional problem, and for ease of com-

parison with the toy problem (Sec. 5.3.1), we used RBFs to modelthe policy. For each

of the experiments described below, we used a set of 300 RBFs with centres placed by

k-means as our policy model.

Since the ground truth (i.e. the true unconstrained policy and the exact constraints

in force) is not known for the human data, performance was evaluated on a behavioural

level. In particular, we looked at how the movements produced by the learnt policies

compared with those of the human when subject to (what we assumed to be) a sim-

ilar set of constraints. For this, we implemented the learntpolicies on the ASIMO

humanoid robot and applied constraints that approximated7 those contained in the

demonstrations.

Specifically, we assumed the constraints in the car wash taskto arise from two

sources, namely (i) environmental (i.e. physical) constraints and (ii) constraints self-

imposed by the demonstrator to ensure task success. In this experiment, the former can

be clearly identified as an inequality constraint preventing the hand from penetrating

the wiping surface, i.e.

A(x, t) = n̂s(x) ; d = 0 and ûT n̂s(x) > 0 (5.12)

whered is the distance of the hand from the surface andn̂s(x) is the normal to the

surfaces at point x. In addition, we can also identify a self-imposed constraint in

force. In the car wash setting, successful performance of the task (i.e. wiping) requires

the sponge to maintain contact with the surface at all times so that motion of the hand

away from the surface (i.e. lifting the sponge) is not permitted. To capture this, we

therefore assumed a further constraint of the form

A(x, t) = n̂s(x) ; d = 0 and ûT n̂s(x) < 0. (5.13)

7Please note that for training the policy models, the constraints were not explicitly modelled.
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Note that in combination, the effect of the two constraints (5.12)-(5.13), when consid-

ered on the wiping surface (d = 0), amounts to the single equality constraint

A(x, t) = n̂s(x) ; d = 0. (5.14)

This constraint was applied to the learnt policies as a reasonable approximation of

the true constraints contained in the data, in order to compare the demonstrated and

reproduced movements for any given surfaces and assess the generalisation across

constraints.

Under this set-up, we first compared learning with our approach against learning

with the naive approach. For this, we trained two RBF models on the full data set of

seven demonstrations (i.e. wiping data for each of the surfaces). The first model was

trained with the approach described in Sec. 5.2.3, the second with the standard (naive)

approach to regression. We then used the policies learnt by the two approaches to

reproduce the movements under each of the surface constraints (i.e. constraint (5.14)

for s= 1, · · · ,7). The results are shown in Fig. 5.8, where we show the demonstrated

trajectories (left), those produced by the non-naive policy (centre) and those learnt by

the naive approach (right) under the different constraints(tilts of the surface).

Looking at the learnt policies, we see that our approach learns a smooth policy

that resembles the limit cycle of Section 5.3.1. The trajectories under each of the

constraints are smooth periodic movements, similar to those of the human. These

were implemented on the ASIMO robot to produce natural wiping movements (see

Fig. 5.9). The policy learnt with the naive approach also captures the periodicity to

some extent. However, it appears highly irregular in several regions and the trajectories

are unstable, with some spiralling in to the centre, and others diverging to other parts

of the state space. By attempting to learn all of the artifactsinduced by the constraints,

the naive approach learns an unstable policy that cannot be safely used for movement

reproduction on the robot8.

Finally, to confirm that our approach is able to generalise well over unseen con-

straints, we repeated the experiment, but this time training the model on a subset of

the data containing one set of constraints, then testing on adifferent subset containing

different constraints. Specifically, we used our approach to train a model on the three

demonstrations corresponding to the surface tilted by 0◦, +16◦ and+27◦ about thex-

axis (Fig. 5.10, left). We then took the demonstrated movements for the surface tilted

8The behaviour produced by the two methods can be examined in detail in the second accompanying
video.
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at−16◦ and−27◦ about thex-axis (Fig. 5.10, right) as our test set and compared the

movement reproduction.

In Fig. 5.10 we show the demonstrated (grey) and reproduced (black) trajectories

for the training data constraints (left) and the test data constraints (right). Though we

train on a smaller data set here, the policy learnt by our approach again produces a

smooth wiping movement that reproduces the human movement well, both under the

training data constraints and under the unseen test constraints.

5.3.6 Direct Comparison with the Potential-based Approach

As a final test, we performed several experiments to directlycompare the alignment

approach described in Ch. 4 and the new approach based on optimising the inconsis-

tency. For simplicity we analysed the learning of several two-dimensional policies

of varying complexity. Specifically, we tested our approaches for learning the policy

derived from the quadratic potential (4.24), that derived from the sinusoidal potential

(4.28), and the limit cycle policy (5.9).

The experimental procedure was as follows. We sampled 40 trajectories from the

three policies with random start states and at a rate of 50 Hz,resulting in 40 data

points per trajectory. During each trajectory the policy was subject to the same random

switching 1-D constraints described in Sec. 4.3.1. We trained models of the policy

(i) using direct regression on the state-action tuples(xn,un), (ii) using the alignment

approach of Ch. 4, and (iii) optimising the inconsistency (5.4) for 50 such data sets.

In each case we used the same policy model for learning, that is we used a set of 36

normalised Gaussian RBFs placed on a 6×6 grid, and selected the kernel widths to

yield a suitable overlap. Note that for the alignment approach the RBF model was

used in place of LWPR to learn the potential function from the preprocessed data, i.e.

it was trained on the tuples(xkn, φ̆kn+bopt
k ), wherek ∈ K the non-outlier trajectories

andn∈ {1. . .Nk} (ref. Sec. 4.2.5).

The results are summarised in Table 5.3, where we see the following trends. First,

the direct learning approach performs the worst both in terms of the nUPE and nCPE.

This approach is naive to the constraints so is unable to find aconsistent model. Look-

ing at the errors for potential-based (quadratic and sinusoidal) policies, the alignment

approach does approximately an order of magnitude better than the direct approach

both in terms of nUPE and nCPE. However, as expected, it performs poorly for the

limit cycle policy since this a rotational (i.e. non-zero curl) policy, and cannot be
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Policy Alg. nUPE nCPE

Quad. Pot. direct 0.54727±0.06218 0.10732±0.02010

align. 0.01158±0.01561 0.00443±0.00588

incon. 0.00001±0.00001 0.00001±0.00001

Sin. Pot direct 0.40478±0.04789 0.12354±0.01097

align. 0.05020±0.05395 0.02162±0.02536

incon. 0.00003±0.00003 0.00001±0.00004

Lim. Cyc. direct 0.43225±0.06599 0.10034±0.01678

align. 2.91233±1.56180 1.26902±0.80364

incon. 0.00024±0.00040 0.00003±0.00002

Table 5.3: Normalised CPE and UPE for the direct, alignment- and inconsistency-based

approaches when learning policies based on a quadratic and sinusoidal potential, and

a limit cycle policy. All errors are mean±s.d. on 50 data sets.

represented well by a potential function. Finally, lookingat the errors for the new

approach based on optimising the inconsistency, the errorsare several orders of mag-

nitude smaller than even the alignment approach. We attribute this to the build up

of error from several sources in the alignment approach; forexample, errors in the

alignment and errors in modelling the aligned data.

5.4 Conclusion

In this chapter, we introduced a novel approach to learning that enabled us to model

policies subject to stationary constraints. Having considered several possible risk func-

tions, we settled on a small but very effective modification in the calculation of the

standard risk that satisfied our assumptions on the data assumed given. Similar to

the potential-based approach reported in Ch. 4, this allowedus to recover the uncon-

strained policy from arbitrarily constrained observations, without the need for explicit

knowledge of the constraints. However, unlike that approach, the new method does not

rely on the somewhat restrictive assumptions of kinematic,potential-based policies,

and data in the form of trajectories. The effectiveness of the new method was demon-

strated using parametric (RBF) and locally linear function approximators to learn poli-

cies for problems of varying size and complexity, and in manycases the new method
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also out-performed the potential-based approach.

While the new approach avoids many of the restrictions of the potential-based

method, it still suffers from several problems. In particular, as discussed in Sec. 5.2.2

there is the problem that the inconsistency error is a lower-bound on error. This is due

to the fact that the assumed projectionP is a loose approximation of the true projection

N induced by the constraints. This can result in poor and possibly unstable learning

in certain cases. In the next chapter, we discuss these problems in detail and discuss

methods to alleviate them.
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(a) True policy (b) Our method, trained on 4 traj.

nUPE: 0.3788± 0.2688

nCPE: 0.1276± 0.1140

(c) Our method, 40 trajectories (d) Naive method, 40 trajectories

nUPE: 0.0027± 0.0087

nCPE: 0.0002± 0.0002

nUPE: 0.5709± 0.0853

nCPE: 0.0010± 0.0363

Figure 5.2: Results on 2D toy data. (a) true limit cycle policy, (b) learnt policy trained on

4 constrained trajectories, (c) learnt policy from 40 constrained trajectories, (d) policy

resulting from naive regression on observed commands. Trajectories are shown as

dotted lines, the policy is depicted by black arrows. The normalised CPE and UPE

(mean±s.d. over 100 data sets) are given below the figures.
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Figure 5.3: Learning performance on the limit-cycle policy (5.9) with varying data set

sizes and noise levels. Top: Normalised UPE and CPE versus data set size as a

percentage of the full K =40 trajectories of length N=40. Bottom: Normalised UPE

and CPE for increasing noise levels in the observed un. For clarity, we do not report the

(consistently high) errors of the naive method.
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Data

Naive

Expert

Data

Non−Nai.

Expert

Figure 5.4: Reaching movements produced by the policies learnt by the naive approach

(top) and by optimisation of the inconsistency (bottom) when unconstrained. Shown

are trajectories of the hands from five start states, with one example highlighted (thick

line). The expert trajectory corresponding to the highlighted example is overlaid (black

dashed line). Twenty example training data trajectories are also shown (thin grey lines).

Figure 5.5: Reaching movements produced by the learnt policies under different con-

straints. Shown are trajectories from (i) the non-naive policy under a similar constraint

as in the training data (top row); (ii) the non-naive policy under a new, unseen barrier

constraint (middle row), and; (iii) the naive policy under the new constraint.
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Figure 5.6: Data collection for the joint space policy under wall constraints. Left: Start

states for two example reaching movements with the wall at different distances and

orientations with respect to the robot. Right: Side view after reaching.

Figure 5.7: Human wiping demonstrations on surfaces of varying tilt and rotations.

The ASIMO stereo vision system was used to track the 3-D coordinates of the sponge

(coloured rectangles show the estimated position). Tilts of ±16o and +27o about the

x-axis are shown.
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Figure 5.8: Learning from human wiping demonstrations. Left: Trajectories of the

sponge when wiping on the surface when flat (black), tilted +16◦ and +27◦ about the

x-axis (red), −16◦ and −27◦ about the x-axis (blue), and ±16◦ about the y-axis (grey).

Centre and right: Reproduced trajectories using the policies (black arrows) learnt with

the non-naive and naive approaches respectively. In each case the same example tra-

jectory is highlighted (thick black). The top and front views are shown (top and bottom

rows).

Figure 5.9: Reproduced movements on the ASIMO robot for the surface tilted 0◦, +16◦,

−27◦ about the x-axis, and +16◦ about the y-axis.
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Figure 5.10: Generalisation over constraints when learning from human wiping data.

Left: Three demonstrated trajectories with surface tilt 0◦, +16◦ and +27◦ (grey lines)

used to train the model. Right: Two trajectories with tilt −16◦ and −27◦ (grey lines) held

out for testing. Reproduced trajectories from the learnt policy under the corresponding

constraints (both train and test) are overlaid in black.





Chapter 6

Improving Robustness for

Constraint-consistent Learning

6.1 Introduction

In the preceding chapter, we explored a novel reformulationof the risk functional used

to optimise our policy model. This proved to be highly effective for reconstructing poli-

cies from stationary constraint systems without explicit knowledge of the constraints

for generic policies of arbitrary complexity.

However, while this method performed well in the various experiments considered

in the preceding chapter, in its most basic form it has several limitations. In particu-

lar, its effectiveness is highly dependent on the ‘richness’ of the data, in terms of the

number of different constraints seen (specifically, the extent to which the action space

is spanned by the observations). In fact, if the data contains very little variability in the

constraints, for example, if the data is unconstrained or contains a highly correlated

constraints, then the approach of optimising the reformulated risk (5.4) alone can re-

sult in poor performance. This is because the inconsistencyerror tends to explain all

variations in the observations as variations in constraints rather than as variations in

the policy itself.

In this chapter, we propose an extension to the method to dealwith this problem.

As a key ingredient, we suggest a partitioning of the model optimisation into two parts.

The primary part uses the same inconsistency objective function (5.4) to deal with the

effect of variable constraints in the data. However, we thenpropose asecondary opti-

misationscheme to tighten the fit to the datain regions where there is little variation

101
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in the constraints. By extending the method in this way, we will see it is possible

to seamlessly blend constraint-consistent learning with optimisation of more standard

risk functionals.

In the following, we first explain the model degeneracy problem that can lead de-

graded performance in certain cases. We then describe how the parameter null space of

our models can be utilised for secondary optimisation of additional criteria to tighten

the fit. We derive the appropriate learning rules for the example policy models dis-

cussed in the preceding chapter, i.e. parametric and local linear models. Finally, we

present experiments where the pure inconsistency-based approach has difficulties in

learning, and show that the two-step optimisation approacheliminates these problems,

selectively providing the best aspects of both standard direct learning and constraint-

consistent learning.

6.2 Model Degeneracy for Correlated Constraints

Optimisation of the inconsistency (5.4) has been demonstrated to be effective when

learning from data containing high variability in the constraints for systems of varying

size and complexity (ref. Ch.. 5, Howard et al. 2009b,a). However, in the simple form

outlined so far, it can suffer from the problem ofdegeneracy in the set of modelsthat are

optimal with respect to (5.4) when the data contains little variability in the constraints.

Because the observationsu influence the estimated policy in a more complex way than

in direct regression, small variations in the observationsmay result in large variations

of the learnt policy1, which can become catastrophic when the method is given data

with insufficient variability in the constraints to disambiguate the best policy models.

To illustrate the problem, Fig. 6.1 shows three candidate policy modelsπ̃1, π̃2 and

π̃3 as well as data under a single constraint (right) and two different constraints (left).

Consider that we have to select one of these candidates based on the available data. For

the multiple (i.e. variable) constraint case (Fig. 6.1, left), optimising the inconsistency

(5.4) clearly determines the best model given the availabledata: In this case we would

choosẽπ1, since this has the lowest inconsistency error,Ei[π̃1] < Ei[π̃2] < Ei[π̃3].

However, when there is less variability in the constraints,for example, we only see

an observation under a single constraint (Fig. 6.1, right),there may be little difference

in the inconsistency for the three models (here,Ei[π̃1] = Ei[π̃2] = Ei[π̃3]) resulting in

1In machine learning terms, the pure inconsistency-based estimator has high variance.
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Figure 6.1: Illustration of the model degeneracy problem. Shown are three different

models with equal inconsistency with respect to the observation u1. Left: Given ob-

servations under different constraints, e.g. u2, the inconsistency error disambiguates

between the three candidate models selecting that which is consistent with both ob-

servations (i.e. π̃1). Right: Given only observations under a single constraint there is

ambiguity in which is the best model since we cannot be sure about the policy compo-

nents in the vertical dimension.

ambiguity as to which model to choose. This is a critical problem, since if we select

the wrong model, e.g.̃π3, then it may significantly degrade performance both in terms

of prediction of the unconstrained policy (compareπ andπ̃3 in Fig. 6.1) and also the

constrained policy (consider the projection ofπ̃3 onto the vertical plane, and compare

with u2). Note also that this is a manifestation of the fact thatEi is a lower bound

on both the unconstrained policy error (UPE) and the constrained policy error (CPE)

(ref. Sec. 5.2.2), since it is precisely the fact that these components of the policy that

are projected out in the calculation of the inconsistency error that leads to this model

degeneracy problem.

6.3 Secondary Optimisation of the Standard Risk

In order to deal with this problem, our proposal is to performan additionalsecondary

optimisationto select between models. For this, we propose to optimise the secondary
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objective

E2[π̃] =
N

∑
n=1

‖un− π̃(xn)‖
2 s.t. π̃ ∈ argmin

π′

{

Ei[π′]
}

. (6.1)

In other words, we optimise the standard risksubject to the model being consistent

with the constrained observations2.

By performing this additional secondary optimisation we tighten our fit to the avail-

able data and avoid models that are not strongly supported bythe inconsistency. For

example, in Fig. 6.1 (right), optimisation of (6.1) will result in modelπ̃2 being chosen

since this has the lowerE2. Since we have no information about the vertical component

of the policy here, choosing this model is the safest strategy since there is little support

for π̃1 or π̃3 based on the available data. In effect, this acts like a safety guarantee on

the model performance: In the case, that observations are given under an impoverished

set of constraints, the model will at worst reproduce the behaviour under those same

constraints3.

Similar to the pure inconsistency optimisation approach (Ch. 5), we can apply the

extended approach to many standard regression techniques.However, for the exper-

iments in the remainder of the chapter, we again restrict ourselves to two example

classes of function approximator (i) simple parametric models with fixed basis func-

tions (Sec. 6.3.1), and (ii) locally linear models (Sec. 6.3.2). In the following we

describe how these two models can be reformulated to take advantage of the new ap-

proach.

6.3.1 Parametric Policy Models

As described in Sec. 5.2.3, for the parametric policy model we assume a model of the

form π̃(x)=Wb(x), whereW∈R
d×M is a matrix of weights, andb(x)∈R

M is a vector

of fixed basis functions. With this model, theinconsistencyerror from (5.4) becomes

Ei(W) =
N

∑
n=1

(

rn− ûT
n Wb(xn)

)2

=
N

∑
n=1

(

rn−vT
n w

)2
= Ei(w),

2It should also be noted that in principle we may choose alternative secondary optimisation functions
depending on the application. For example, we may wish to bias solutions toward a particular dynamic
behaviour, e.g. stabilising movements, subject to consistency with the demonstrated observations.

3This is similar to the minimum performance guarantee reported in (Howard et al., 2008a) for the
special case of potential-based policies, now extended to the learning of any arbitrary policy.



6.3. Secondary Optimisation of the Standard Risk 105

wherew≡vec(W) andvn≡vec(ûnb(xn)
T)=b(xn)⊗ ûn. Since our objective function

is quadratic inw, we can rearrange to give

Ei(w) = ∑
n

r2
n−2∑

n
rnvT

n w+wT ∑
n

vnvT
n w

= E0−2gTw+wTHw

with H = ∑nvnvT
n andg = ∑n rnvn. Now, to solve for the optimal weight vector, in the

pure inconsistency approach we would take the direct inverse

w1 = argminEi(w) = H−1g

as described in Sec. 5.2.3. However, this ignores degeneracy in the solutions and may

result in over-fitting. To avoid this, here we only optimise on elements of the weight

vector that make a significant contribution to the inconsistency errorEi. For this, we

perform an eigendecomposition for the inversion

w1 = V1Λ−1VT
1 g (6.2)

whereΛ is a diagonal matrix containing the large eigenvalues ofH (i.e. eigenvalues

above some minimum thresholdλ≥λt) and the columns ofV1 are the corresponding

eigenvectors.

In the part of the parameter space spanned by the remaining small eigenvectors

(λ < λt) we then perform the secondary optimisation. For the parametric model, we

wish to minimise

E2(W) =
N

∑
n=1

‖un−Wb(xn)‖
2 (6.3)

subject to the solution being optimal with respect to the inconsistency. We therefore

look for a solution that has the form

w = w1 +V2z. (6.4)

where the columns ofV2 contain the remaining eigenvectors ofH andz is a vector.

Using solution of this form means that our optimisation of the model with respect to

the secondary objective does not affect the primary optimisation of the inconsistency

error.

Rearranging (6.3), we have

E2(W) = ∑
n

uT
n un−2∑

n
uT

n Wbn +∑
n
‖Wbn‖

2 (6.5)
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which can be written in terms ofw as

E2(w) = ∑
n

uT
n un−2∑

n
(bn⊗uT

n )w

+wT
(

∑
n

bnbT
n ⊗ I

)

w (6.6)

= E0,2−2gT
2 w+wTH2w.

whereE0,2 = ∑nuT
n un, g2 ≡ ∑n(bn⊗ uT

n )T = vec(UBT) andH2 ≡
(

∑nbnbT
n ⊗ I

)

=

BBT ⊗ I .

Substituting (6.4) and differentiating, we can then retrieve the optimalz:

zopt = (VT
2 H2V2)

−1VT
2 (g2−H2w1). (6.7)

We then combine (6.2) and (6.7) to find the optimal weights forour model

wopt = V1Λ−1VT
1 g+V2zopt. (6.8)

Finally, in order to automatically select the minimum eigenvalue thresholdλt we per-

form a line search, repeating the above optimisation for a series of values ofλt on a

subset of the data, and picking theλt which minimises the quantity

Eλ[π̃] = Ei[π̃]+αE2[π̃].

Hereα is a weighting factor that reflects our prior belief on whether the data contains

variable constraints. For example, one would choose a very low α for data containing

very high variance in the constraints. For convenience, pseudocode for the learning is

given in Algorithm 3.

6.3.2 Locally Linear Policy Models

For multiple local linear policy models̃πm(x) = Bmx̄ = Bm(xT ,1)T , the derivation

follows similar lines. For a linear model centred atcm with an isotropic Gaussian

receptive field with varianceσ2, the inconsistency error is given by

Ei(Bm) =
N

∑
n=1

wnm
(

rn− ûT
n Bmx̄n

)2

=
N

∑
n=1

wnm
(

rn−vT
n bm

)2
= Ei(bm)
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Algorithm 3 Hybrid Optimisation

1: Initialise policy model (e.g., allocate RBF centresci and kernel sizeσ2). Selectα.

2: Pre-calculation of terms:

• Find rn = ‖un‖, ûn = un/rn, andvn = b(xn)⊗ û for each data point.

• Construct primary HessianH = ∑nvnvT
n , linear termg = ∑n rnvT

n and con-

stant termE0 = ∑n r2
n. Find eigenvaluesλ ∈ {λ1, · · · ,λM} and eigenvectors

V = [v1, · · · ,vM] of H.

• Construct secondary HessianH2 = BBT ⊗ I , linear termg2 = vec(UBT) and

constant termE0,2 = ∑nuT
n un.

3: Optimisation:

• Repeat forλt ∈ {λmin, · · · ,λmax}.

1. Build eigenvalue matrixΛ containing allλ ≥ λt . Split V into V1 and

V2 according to eigenvalues.

2. Findzopt andw1. Calculatewopt = V1Λ−1VT
1 g+V2zopt for this λt .

3. EvaluateEλ[π̃] = Ei[π̃]+αE2[π̃] on validation data subset.

4: Return weightswopt that minimiseEλ[π̃].

wherebm = vec(Bm) andvn ≡ vec(ûnx̄T
n ) as described in Sec. 5.2.4. The factorswnm=

exp(− 1
2σ2‖xn−cm‖

2) weight the importance of each observation(xn,un), giving more

weight to nearby samples.

The optimal slopesBm with respect to (5.7) can again be retrieved using an eigen-

decomposition:

b1,m = argminEi(bm) = V1,mΛ−1
m VT

1,mgm (6.9)

whereΛm andV1,m are the large eigenvalues and corresponding eigenvectors of the

HessianHm = ∑nwnmvnvT
n for themth local model andgm = ∑nwnmrnvn. We select

the number of eigenvalues used for the primary optimisationof the inconsistency using

a subset-validation approach similar to the parametric case.
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The secondary objective for this model is

E2(Bm) =
N

∑
n=1

wnm‖un−Bmx̄n‖
2

= E0,2−2gT
2,mbm+bT

mH2,mbm = E2(bm)

whereE0,2 = ∑nwnmuT
n un, g2,m ≡ ∑nwnm(x̄n⊗uT

n )T andH2,m ≡
(

∑nwnmx̄nx̄n
T ⊗ I

)

.

Similar to the parametric case, we look for a solution of the formbm = b1,m+V2,mzm.

This yields optimal weights

bopt
m = V1,mΛ−1

m VT
1,mgm+V2,mzopt

m (6.10)

with

zopt
m = (VT

2,mH2,mV2,m)−1VT
2,m(g2,m−H2,mb1,m). (6.11)

Finally, for predicting the global policy, we combine the local linear models using the

convex combination

π̃(x) =
∑M

m=1wmBmx̄

∑M
m=1wm

; wm = exp

(

−
1

2σ2‖x−cm‖
2
)

.

For implementation, the pseudocode in Algorithm 3 can be used for each local model

with appropriate substitutions to incorporate the weighting factorswm in the calcula-

tion of objective function terms (i.e., the primary and secondary HessianHm,H2,m,

linear termsgm,g2,m and constant termsE0,E0,2).

6.4 Experiments

In this section we report experiments exploring the performance of the new approach

when learning on data from systems of varying complexity andsize. First, in order

to illustrate the concepts involved, we apply our method to data from a simulated 2-D

toy system. We then test the scalability of the method to higher dimensional sys-

tems with more complex constraints using data from the joint-space of the 7-DOF

DLR lightweight arm (Fig. 1.1). Finally we re-visit the car-washing experiment (ref.

Sec. 5.3.5) in order to demonstrate the utility of our approach.

6.4.1 Toy Example

Our first experiment demonstrates the robustness of the new approach for learning un-

constrained policies from variable-constraint data. For this, we re-used the toy example
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Figure 6.2: Policy learnt with the direct approach (blue) and pure inconsistency ap-

proach (red) when training on unconstrained (left) and randomly constrained (right)

data. The true policy (thin black arrows) and training data (grey trajectories) are over-

laid.

from Sec. 5.3.1, i.e. the simple two-dimensional limit-cycle system with discontinu-

ously switching motion constraints. However, here, in addition to collecting data from

the policy subject to random 1-D constraints (ref. Sec. 5.3.1), we also recorded trajec-

tories from the unconstrained policy from the same start states. In Fig. 6.2, examples

of the unconstrained (left) and constrained (right) trajectories are shown in grey.

We used a parametric model to learn the policy through the hybrid optimisation

approach as described in Sec. 6.3.1. For this toy problem, wechose our function model

as a set of 36 normalised RBFs centred on a 6×6 grid, and we simply fixed the kernel

width to yield suitable overlap. We repeated this experiment on 100 data sets and

evaluated the normalised UPE and CPE (ref. Appendix 3.4.2) and the inconsistency,

divided by the number of data points and the variance of the policy πn on a subset held

out for testing. For comparison, we repeated the experimentusing (i) direct regression

on the observations (i.e. minimising (5.1)) and (ii) optimisation of the inconsistency

alone (i.e. minimising the functional (5.4) without the secondary optimisation step)

with the same RBF model.

Table 6.1 shows the results of learning with the different methods under the dif-

ferent constraint settings. Looking at the first row, we see that the direct regression

approach is effective for learning on unconstrained data, but performs poorly on data

containing random constraints. This is in line with expectations since for the former
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Method Constr. nUPE nCPE Norm. Incon.

Direct None 0.034± 0.044 0.034± 0.044 0.026±0.039

Rand. 58.338± 9.556 8.596± 2.813 8.596±2.813

Incon. None 26.640±52.737 26.640±52.737 0.014±0.031

Rand. 0.118± 0.162 0.007± 0.010 0.007±0.010

Hybrid None 0.065± 0.268 0.065± 0.268 0.042±0.143

Rand. 0.373± 1.109 0.011± 0.017 0.011±0.017

Table 6.1: Error for the direct, inconsistency and hybrid optimisation approaches when

learning on K = 40 trajectories of length N = 40 points, sampled from the limit cycle

policy. All values given as (mean±s.d.)×10−2

the data is unaffected by constraints and is thus already consistent (i.e. a unique output

is observed at each point in the input space), whereas for thelatter the variability in

the constraints causes model averaging. In contrast, looking at the second row we see

that optimisation of the inconsistency is highly effectivefor learning the unconstrained

policy when there is high variation in the constraints. However, on the unconstrained

data, though the normalised inconsistency (5th column) is low, the policy errors are rel-

atively large. The pure inconsistency approachmisinterprets the variation in the policy

as variation in the constraints, and fits an incorrect model (shown in red in Fig. 6.2).

In contrast, the proposed hybrid approach achieves very lowerrors both on the un-

constrained and the constrained data. With this approach weget the best of both of the

other approaches: For data that is already self-consistentit benefits from the tight fit

offered by direct least-squares regression. Conversely, ifdata contains variable con-

straints a model that is consistent with the observations under the different constraints

is learnt.

To further test this, we repeated the experiment on data containing several levels

of variability in the constraints. For this we again sampleda set ofK = 40 trajectories

of lengthN = 40 points from the limit cycle policy, however this time we applied the

constraints

A(x, t) = I − α̂T
π α̂π (6.12)

whereα̂π ≡απ/‖απ‖, απ ≡R(θ)π(x) andR(θ) is a rotation matrix with rotation angle

θ. The latter was drawn uniform-randomly with increasing angular range, that isθ ∼

U [−θmax,θmax] for increasingθmax. This constraint was chosen since it allows us to



6.4. Experiments 111

(a) θ
max

 (rad)

N
or

m
al

is
ed

 E
rr

or

 

 

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

nUPE
nCPE

(b) θ
max

 (rad)

N
or

m
al

is
ed

 E
rr

or

 

 

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

nUPE
nCPE

(c) θ
max

 (rad)

N
or

m
al

is
ed

 E
rr

or

 

 

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

nUPE
nCPE

Figure 6.3: Normalised UPE and CPE versus variance in the constraints for learning

with the (a) direct, (b) pure inconsistency and (c) hybrid optimisation approaches.

smoothly vary the effect of the constraints on the observations. For example, forθ = 0

the direction of the constraint is exactly orthogonal to thepolicy at that point so that the

resultant projection has no effect on the policy. As the range ofθ increases however, the

observations of the unconstrained policy are increasinglycorrupted by the projections

induced by the constraints.

Fig. 6.3 depicts how the UPE and CPE evolve with increasing constraint variance

(i.e. increasingθmax) for the direct, pure inconsistency and hybrid optimisation ap-

proaches (please note the log. scale). For the direct approach, the UPE and CPE are

low when the constraint variance is low, but rapidly increase as the variance grows

due to increased model-averaging. In contrast, the pure inconsistency approach deals

well with constraints of high variance since this increasesthe span of the observations,

resulting in most of the components of the policy being picked up by the inconsistency

error. However, when the variance in constraints decreases, the pure inconsistency ap-

proach misinterprets the remaining variability in the observations (due to variation in
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the policy) as variation in the constraints, causing an increase in error.

Finally, the proposed hybrid approach achieves consistently low errors irrespective

of the variance in the constraints, by automatically selecting the direct least-squares

fit for low-variance constraints, and increasingly using the constraint-consistent fit for

high-variance constraints. This automatic selection is fairly robust across the range

of variances in the constraints seen. However, comparing the error for the very low

variance constraints for the direct and hybrid methods (near θmax= 0 in Fig. 6.3(a) and

(c)) the error is somewhat higher for the hybrid approach. Weattribute this to a slight

tendency to favour the constraint-consistent fit in cases where the data is ambiguous

as to whether it is constrained or not, causing an increase inthe average error over the

100 trials. This effect may be removed with an improved modelselection method.

6.4.2 Higher Dimensional Policies and Constraints

The goal of our second set of experiments was to evaluate the scalability of the hybrid

approach to higher dimensional systems with constraints ofvarying dimensionality.

This is important when considering systems with many degrees of freedom and where

the dimensionality of constraints may switch; for example,when switching between

control of the position of an end-effector to control of the combined position and ori-

entation. It is also the case that with increasing numbers ofdimensions there are in-

creasing numbers of ways in which the system can be constrained, in terms both of the

different dimensionalities of the constraints (i.e. rank of the constraint matrix) and the

ways in which constraints can be combined.

For this experiment, kinematic data from the 7-DOF DLR lightweight robot (Fig. 1.1)

was again used. Similar to the experiment in Sec. 5.3.2, datawas collected in the form

of 100 trajectories of 100 points each, starting from randominitial postures (drawn

uniform-randomly from half the range of each joint, i.e.,xi ∼U [−0.5xmax
i ;0.5xmax

i ])

following the p = 1.8 joint limit avoidance policy, i.e.,

π(x) = −0.05∇φ(x); φ(x)=
7

∑
i=1

|xi|
1.8

under different constraints. This time trajectories were collected under 6 different con-

straints of differing dimensionality, which we refer to as 1, 1-2, 1-2-3, etc., where again

the numbers denote which end-effector coordinates in task space were kept fixed. For

example, 1-2-3 means the end-effector position was constrained, but arbitrary changes
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in the orientation were allowed. Similarly, 1-2-3-4 means the end-effector position and

the orientation around thex-axis were constrained, while movement around they and

zaxes was permitted. For all constraint types, the policy wasestimated from a training

subset, and the normalised CPE on test data from the same constraint, as well as the

normalised UPE were evaluated.

For learning in the 7-D state space, we selected locally linear models as described

in Sec. 6.3.2, where we chose rather wide receptive fields (fixing σ2 = 3) and placed the

centres{cm} of the local models such that every training sample(xn,un) was weighted

within at least one receptive field withwm(xn) ≥ 0.7. On average, this yielded about

50 local models.

The results are shown in Table 6.2 where we can see the following trends. First,

as the constraint dimension increases, learning with the direct approach yields increas-

ingly poor performance in terms of UPE and roughly consistent performance in terms

of CPE. This is to be expected since, being naive to the effect of constraints, the direct

approach attempts to find the closest fit to the constrained observations. Further, as

the number of constraints increases the difference betweenthe constrained and uncon-

strained policy vectors increases (since the number of components of the unconstrained

policy projected out by the constraints increases). As a result the directly learnt model,

while fitting the constrained policy closely, performs increasingly poorly in terms of

UPE.

Second, for the pure inconsistency approach, we see that theCPE is worse for

the 1-D constraint compared to the direct approach, but muchbetter for the higher

dimensional constraints. We also see much better performance in terms of the UPE for

the intermediate constraints, but very large errors for the6-D constraint. For the hybrid

approach the UPE is uniformly better, and the CPE lower in all but the 1-D constraint

case.

The improved UPE performance for these methods may be surprising given that the

same constraint is applied for each observation. This wouldsuggest that certain com-

ponents of the policy are undetermined by the observations since they are never un-

constrained. However, here the constraint matrix (i.e the Jacobian) is state-dependent,

yielding somespatial variability in the constraints, and thereby sufficient information

to improve the reconstruction of the unconstrained policy.

Looking at the inconsistency and hybrid approaches, we see that performance (es-

pecially in terms of CPE) increases with constraint dimensionality which can be ex-
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plained by the approximation of the projection (as discussed in Sec. 5.2.2) becoming

increasingly accurate. In fact, for the 6-D constraint the approximation is exact.

However, for this latter constraint, we see a huge increase in UPE for the pure

inconsistency approach which is not seen for the hybrid approach. We attribute this to

the combined spatial variation in the policy and the constraints in this particular case,

to which the inconsistency approach is overly sensitive. Oninspection we noted that

the Hessian matrices of the local models had become ill-conditioned in this case. The

secondary optimisation in the hybrid approach avoids this problem and emphatically

outperforms the two other approaches.

6.4.3 Car Washing Experiment Revisited

Having validated our approach on data where the true unconstrained policy and con-

straints in force (i.e. the ground truth) were known, in thissection we report experi-

ments applying the hybrid approach to learning from human demonstration data. For

this, we chose to re-visit the car-washing experiment described in Sec. 5.3.5.

Seven demonstrations of a human wiping different surfaces with a sponge were

used to train a local linear model as described in Sec. 6.3.2.For learning we used

a fixed kernel width ofσ2 = 0.025, and centres placed so that every data point was

weighted with at leastwm(xn) ≥ 0.7. For this data set this yielded about 22 local

models.

We evaluated performance on a behavioural level by implementing the resultant

policy on the DLR Lightweight arm (see Fig. 6.4). A simple Resolved Motion Rate

Control (ref. Sec. 3.2.1) inverse kinematics controller (Liégeois, 1977; Whitney, 1969)

was used to realise the policy motion in end-effector space and, similar to Sec. 5.3.5,

we assumed constraints of the formA j(x, t) = n̂ j wheren̂ j is the normal to thejth sur-

face. That is, the constraints ensured that the sponge did not penetrate the surface and

would not be lifted from the surface. Similar to our previousresult using the inconsis-

tency approach (ref. Sec. 5.3.5), the policy learnt by the hybrid approach produced a

smooth, periodic trajectory closely resembling that of thehuman (see accompanying

video).
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Figure 6.4: Reproduction of the car washing movement on the DLR Lightweight arm on

a training constraint (top row) and an unseen test constraint (bottom row).

6.5 Conclusion

In this chapter, we extended the method proposed in Ch. 5 to improve robustness when

learning policies from constrained observations. Buildingupon that method, we intro-

duced a two-stage optimisation approach which seamlessly combines standard direct

policy learning with the idea of fitting a model that is consistent with variable constraint

data. Although the previous approach could handle cases where demonstrated move-

ments are subject to variable, dynamic, non-linear and evendiscontinuous constraints,

it suffered from poor performance on data containing highlycorrelated constraints or

purely unconstrained data. The novel approach proposed here avoids these problems

as demonstrated in our experiments.

In the next chapter, we summarise and give conclusions on thework undertaken in

this thesis and suggest directions for future work.
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Method Constr. nUPE nCPE

Direct

1 26.94± 3.02 3.63±0.54

1 - 2 70.51± 2.22 5.72±0.66

1 - 2 - 3 80.70± 1.59 4.09±0.33

1 -. . . - 4 86.63± 1.36 4.66±0.44

1 -. . . - 5 91.47± 0.91 3.59±0.39

1 -. . . - 6 96.78± 0.78 1.85±0.27

Incon.

1 18.30± 5.46 14.53±5.08

1 - 2 6.53± 2.90 1.04±0.37

1 - 2 - 3 6.93± 2.79 0.50±0.11

1 -. . . - 4 4.57± 2.49 0.27±0.02

1 -. . . - 5 5.28± 3.40 0.16±0.02

1 -. . . - 6 233.37±136.97 0.04±0.01

Hybrid

1 10.54± 4.56 6.98±3.90

1 - 2 5.85± 1.94 1.00±0.30

1 - 2 - 3 18.17± 8.00 0.55±0.14

1 -. . . - 4 8.04± 4.16 0.28±0.03

1 -. . . - 5 8.98± 5.25 0.18±0.03

1 -. . . - 6 41.30± 3.93 0.05±0.01

Table 6.2: Normalised UPE and CPE for the three methods when training on data

from the DLR arm. All errors normalised by the variance of the policy. We report

(mean± s.d.)×10−2 over 50 trials with different data sets.
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Conclusions

In this thesis, we have explored the problem of learning control policies from con-

strained movement data with the aim of behaviour imitation and transfer from humans

to robots. We have discussed several examples of human skills that can be framed in

terms of performing some task subject to variable constraints, and shown that in many

cases these constraints are unobservable from the data and frequently change between

contexts.

In Chapter 2 we reviewed several state of the art methods for learning from move-

ment data and their suitability for learning in this setting. In particular, we showed that

few of these methods explicitly consider the effect of constraints on observed data,

and commonly unconstrained or consistently constrained data is used when evaluat-

ing these methods. Furthermore, we saw that in the studies that do explicitly consider

movement constraints, these usually only consider data containing the same consistent

constraints in all observations, and cannot handle the effect of constraint variability.

In Chapter 3 (Howard et al., 2006; Howard and Vijayakumar, 2007) we outlined

a model for constrained motion based on recent work in analytical dynamics. In the

light of this model, we analysed the way in which constraintsaffect the kinematics

and dynamics of movement and discussed the implications this has for learning under

several different classes of constraint. In the remaining chapters we then went on to

propose several methods for learning from variable constraint data for the class of

stationary movement constraints.

In Chapter 4, (Howard et al., 2008b,a) we showed that an effective method for rep-

resenting constrained movements is to learn the underlyingunconstrained policy. We

discussed how this can be done without need for explicit knowledge of the constraints

117



118 Chapter 7. Conclusions

by looking for a model that is consistent with the observations under the constraints.

Furthermore, we proposed a method for doing this for the special case of potential-

based policies from constrained data, based on forming local models of the potential

and aligning these for global prediction. In our experiments we demonstrated robust

learning on data containing variable, non-linear and even discontinuous constraints for

several problems of varying size and complexity.

In Chapter 5 (Howard et al., 2009a,b) we then extended this approach by removing

the restriction to potential-based policies. We proposed anovel method for learning

generic policies from constrained observations based on a small, but very effective

modification of the standard risk. This enabled us to learn arbitrary policies from con-

strained data, again without explicit knowledge of the constraints. We tested the per-

formance of the approach on various systems, including learning from human demon-

stration data. The novel approach showed a significant improvement in performance

over standard direct regression techniques, and also outperformed the potential-based

approach.

Finally, in Chapter 6 (Howard et al., 2009c) we identified several situations where

the method proposed in Ch. 5 has difficulties in learning, in particular when data con-

tains invariant or highly correlated constraints. We then presented an extension to

the method aimed at improving robustness in these situations (Howard et al., 2009c),

based on a two-step optimisation approach. By applying this extension we were able

to seamlessly integrate constraint-consistent learning with standard direct regression

approaches, eliminating the problem of invariant constraints.

Outlook & Future Work

There exist a number of directions in which the work presented in this thesis may be

extended in future work.

Constrained Dynamics

In all of the experiments presented in this thesis data was used from constrained kine-

matic policies, that is, mappings from positions to velocities either in joint space or

Cartesian space. This was partly in order to keep the explanations and analysis simple,

and partly due to technical limitations, e.g. a lack of forcecontrol or sensing on our
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robotic platforms. However, as discussed in Ch. 3, the constraint formalism used in

this thesis is generic and can be applied to a wide variety of other systems (Udwadia

and Kalaba, 1996). Example systems include higher-order kinematic control policies

(i.e. control of accelerations or jerk), dynamic control policies (i.e. control of forces

and torques) and the passive dynamics of several systems. Aninteresting direction

of future work then, could be to apply the approaches developed here to learning from

such systems. For example, in the window wiping task, one might also use information

from the normal forces applied to the wiping surface for learning the policy.

Alternative Constraint Types

Each of the algorithms presented in this thesis deals successfully with the problem of

variable, non-linear stationary constraints in the data, i.e. those that can be described

in terms of the formalism outlined in Sec. 3.3.2. However, there are a number of alter-

native constraint types that they cannot currently handle.For example, systems with

moving or ‘forced action’ constraints can cause additionaldifficulties as described in

Sec. 3.3.3. Another example is that of constraints on movement duration (as distinct

from constraints that are time-dependent in the sense of changing during the move-

ment, ref. Ch. 3), which may have different effects on the observed actions. For

example, a stringent constraint on the time permitted for task execution may mean that

commands are scaled up to produce a quicker movement. For such alternative con-

straint types new learning methods may be developed to complement the approaches

proposed in this thesis.

Improved Learning Theory

The learning algorithms proposed in this thesis, in particular those presented in Ch. 5

and Ch. 6 constitute a non-standard form of regression. While the experiments are

testament to their good performance, there are still a number of open issues remaining

in terms of theoretical predictions of performance. In particular, an interesting direc-

tion of future work could be to attempt to derive error boundsor confidence intervals

on the learnt policies. Such bounds could used to improve thestrategy for selecting

between learning approaches (e.g. constraint-consistentlearning versus direct regres-

sion, cf. Ch. 6). Another possibility could be to reformulatethe current strategy based

on least-squares optimisation into the full Bayesian framework.
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Extensive Experiments on Human Data

In Ch. 5 and Ch. 6, we presented experiments that illustrated how the proposed ap-

proaches can be used for transferring behaviour from human demonstration to generate

movements on the robot. We investigated the task of wiping under different constraints

as induced by the shape and orientation of the wiping surface. We found that our meth-

ods enabled us to transfer the wiping to two robot platforms in a way that generalised

over the constraints. However, while the resultant motionswere qualitatively similar

to the human demonstrations, there is still much to be done interms of quantitative

evaluations. In particular, an interesting direction of future work would be to perform

extensive experiments on human data for a series of different everyday constrained

tasks, such as opening doors, stirring soup in a pan and grinding coffee in a coffee

grinder.

Modelling Adaptation to Constraints

In Ch. 2 we mentioned how, under the assumption of an invariantset of constraints,

models of human and robotic adaptation have been developed.A further direction of

future work could be to look at when and how adaptation may proceed in the presence

of uncertain and variable constraints. For example, the inconsistency error (5.4) can be

used as a distance metric by which to measure differences in behaviour (as represented

by policies), up to a difference in constraints. Given a model of behaviour in one

context (e.g. walking in an office environment) we could potentially use that model

to measure how much, and in what ways that behaviour differs (i.e., is adapted) under

new constraints (e.g. walking on a paved street versus walking in a rough, ploughed

field). This could potentially provide better insight into how learnt behaviours can

be transferred from one constraint setting to another, avoiding the need to completely

re-plan the behaviour from scratch.
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