

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

From Constraint Programming

to Heterogeneous Parallelism

Philip Ginsbach
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2020

Abstract

The scaling limitations of multi-core processor development have led to a diversification of

the processor cores used within individual computers. Heterogeneous computing has become

widespread, involving the cooperation of several structurally different processor cores. Central

processor (CPU) cores are most frequently complemented with graphics processors (GPUs),

which despite their name are suitable for many highly parallel computations besides computer

graphics. Furthermore, deep learning accelerators are rapidly gaining relevance.

Many applications could profit from heterogeneous computing but are held back by the

surrounding software ecosystems. Heterogeneous systems are a challenge for compilers in

particular, which usually target only the increasingly marginalised homogeneous CPU cores.

Therefore, heterogeneous acceleration is primarily accessible via libraries and domain-specific

languages (DSLs), requiring application rewrites and resulting in vendor lock-in.

This thesis presents a compiler method for automatically targeting heterogeneous hardware

from existing sequential C/C++ source code. A new constraint programming method enables

the declarative specification and automatic detection of computational idioms within compiler

intermediate representation code. Examples of computational idioms are stencils, reductions,

and linear algebra. Computational idioms denote algorithmic structures that commonly occur

in performance-critical loops. Consequently, well-designed accelerator DSLs and libraries

support computational idioms with their programming models and function interfaces. The

detection of computational idioms in their middle end enables compilers to incorporate DSL

and library backends for code generation. These backends leverage domain knowledge for the

efficient utilisation of heterogeneous hardware.

The constraint programming methodology is first derived on an abstract model and then

implemented as an extension to LLVM. Two constraint programming languages are designed

to target this implementation: the Compiler Analysis Description Language (CAnDL), and

the extended Idiom Detection Language (IDL). These languages are evaluated on a range of

different compiler problems, culminating in a complete heterogeneous acceleration pipeline

integrated with the Clang C/C++ compiler. This pipeline was evaluated on the established

benchmark collections NPB and Parboil. The approach was applicable to 10 of the benchmark

programs, resulting in significant speedups from 1.26× on “histo” to 275× on “sgemm” when

starting from sequential baseline versions.

In summary, this thesis shows that the automatic recognition of computational idioms

during compilation enables the heterogeneous acceleration of sequential C/C++ programs.

Moreover, the declarative specification of computational idioms is derived in novel declarative

programming languages, and it is demonstrated that constraint programming on Single Static

Assignment intermediate code is a suitable method for their automatic detection.

iii

iv

Lay Summary

New computer processors used to improve over the speed of previous versions mostly

because the transistors got smaller and more efficient. In recent years, the engineers have

been unable to continue this process. Because the speed of processors is stagnating, companies

try to improve other metrics. Specialised processors are now widespread, which cooperate with

the central processor and complement its abilities. However, many software programs were not

designed for this and ignore the specific features.

This thesis presents an approach to make existing programs use such specialised hardware

efficiently. This approach was implemented in a software prototype. The prototype detects

particular mathematical methods in other programs. Other researchers have already found the

best ways to compute these methods on new hardware, and stored them in “libraries”. By

detecting that programs rely on the methods, the prototype can make the program use these

efficient “libraries” instead. However, recognising the methods is hard. This thesis introduces

new specification languages to express them. With the resulting precise formulations, it is

possible to identify the mathematical methods automatically with algorithms.

The prototype software was evaluated by using it on standard test programs. Some of these

programs are from NASA and imitate the calculations on their supercomputers. The prototype

understood the essential parts of many programs. This allowed executing them on specialised

processors and made five of them more than ten times faster.

v

Acknowledgements

First of all, I want to thank my adviser, Michael O’Boyle, for his guidance and sound advice

throughout my PhD studies. I would also like to thank my other advisers at the university,

Björn Franke and Adam Lopez, and my mentors at ARM, Chris Ryder and Pablo Barrio, whom

I could rely on for additional insights and suggestions.

My time as a PhD student would not have been half as enjoyable without the PPar cohort.

Amna, Caoimhín, Dan, Daniel, Floyd, Jakub, Paul, Rajkarn, Reese, Vanya, Victor, you made

Edinburgh a great place to be for the last few years! Paul, Vanya, Reese, Dan, I will miss our

lunches in particular. Caoimhín and Braedy, thank you for helping me polish this thesis. Thank

you also to Reese, Lewis, and Vanya for some additional proofreading.

Finally, I am grateful to my parents, who have always supported and encouraged me.

vi

Declaration

Ginsbach et al. [1] Ginsbach and O’Boyle [2] Ginsbach et al. [3]

vii

Table of Contents

List of Symbols and Notation 1

1 Introduction 3

1.1 The Emergence of Heterogeneous Computing 3

1.1.1 Via Multi-Processing to Heterogeneity 3

1.2 The Diminished Role of Traditional Compilers 4

1.2.1 Libraries and Domain-Specific Languages 4

1.2.2 The Consequences of the Decline of Compilers 5

1.3 Host Compilers and Kernel Compilers . 6

1.3.1 The Spectrum of Specialisation . 7

1.4 Moving on the Spectrum of Specialisation . 8

1.4.1 Contributions of this Thesis . 8

1.5 Structure of this Thesis . 9

1.6 Summary . 10

2 Constraint Programming on Static Single Assignment Code 11

2.1 Background . 12

2.1.1 Static Single Assignment Form . 13

2.1.2 SSA Emerges During Compilation . 14

2.2 Deriving the SSA Model . 16

2.2.1 Data Flow and Control Flow . 16

2.2.2 Identifying Remaining Structure . 18

2.2.3 Putting the SSA Model Together . 20

2.2.4 Additional Notation . 20

2.2.5 The LLVM Compiler Framework . 22

2.2.6 LLVM IR Example . 22

2.3 Constraint Programming on the SSA Model 24

2.3.1 SSA Constraint Problem Example . 26

2.4 Solving SSA Constraint Problems . 28

ix

2.4.1 The Structure of SSA Constraint Problems 28

2.4.2 Backtracking Example . 32

2.4.3 Implementation, Data Structures and Complexity 34

2.4.4 Additional SSA Constraint Problems 38

2.4.5 Satifiability Modulo Theory . 40

2.5 Summary . 40

3 Related Work 41

3.1 Constraint Programming and Specification Languages 41

3.1.1 Constraint Programming for Program Analysis 42

3.1.2 Declarative Programming Languages for Program Analysis 44

3.2 Compiler Analysis and Auto-Parallelisation 45

3.2.1 Compilation with the Polyhedral Model 46

3.2.2 Reduction Parallelism . 48

3.2.3 Dynamic Analysis Approaches . 49

3.3 Heterogeneous Computing . 50

3.3.1 Libraries . 50

3.3.2 Domain-Specific Languages . 51

3.4 Computational Idioms . 53

3.4.1 Higher-Order Functions . 53

3.4.2 Berkeley Parallel Dwarfs . 54

3.4.3 Algorithmic Skeletons . 54

4 The Compiler Analysis Description Language 55

4.1 Introduction . 56

4.2 Motivating Example . 57

4.3 Language Specification . 60

4.3.1 Top-Level Structure of CAnDL Programs 60

4.3.2 Atomic Constraints . 61

4.3.3 Range Constraints . 63

4.3.4 Modularity . 64

4.3.5 Expressing Larger Structures . 66

4.4 Implementation . 68

4.4.1 Normalisation of LLVM IR . 68

4.4.2 The CAnDL Compiler . 71

4.4.3 Developer Tools . 73

4.5 Case Studies . 74

4.5.1 Case Study 1: Simple Optimisations 74

x

4.5.2 Case Study 2: Graphics Shader Optimisations 76

4.5.3 Case Study 3: Detection of Polyhedral SCoPs 78

4.6 Conclusions . 82

5 Automatic Parallelisation of Reductions and Histograms 83

5.1 Introduction . 84

5.2 Motivation . 85

5.3 Recognising CReHCs . 88

5.3.1 Constraint-Based Formulation . 88

5.3.2 The Idiom Detection Language . 91

5.3.3 Specification of CReHCs in IDL . 96

5.4 Code Generation for CReHCs . 96

5.5 Experimental Setup . 98

5.5.1 Benchmarks and Platform . 98

5.5.2 Competing Approaches . 98

5.6 Results . 100

5.6.1 Discovery . 100

5.6.2 Runtime Coverage . 104

5.6.3 Performance . 104

5.7 Conclusions . 106

6 Heterogeneous Acceleration via Computational Idioms 107

6.1 Introduction . 108

6.2 Overview . 110

6.2.1 Compiler Flow . 110

6.2.2 Accelerating Sparse Linear Algebra 112

6.3 Specification of Idioms in IDL . 114

6.3.1 Sparse Linear Algebra . 114

6.3.2 Dense Linear Algebra . 116

6.3.3 Stencils . 118

6.4 Comparison to Syntactic Matching . 118

6.5 Targeting Heterogeneous Backends . 120

6.5.1 Domain-Specific Libraries . 120

6.5.2 Domain-Specific Code Generators . 120

6.6 Translating Computational Idioms . 121

6.6.1 Domain-Specific Libraries . 121

6.6.2 Domain-Specific Code Generators . 121

6.6.3 Pointer Aliasing . 122

xi

6.7 Experimental Setup . 123

6.8 Results . 124

6.8.1 Idiom Detection . 124

6.8.2 Runtime Coverage . 124

6.8.3 Performance Results . 126

6.9 Conclusions . 129

7 Conclusions 131

7.1 Contributions . 132

7.2 Critical Analysis . 133

7.3 Future Work . 134

7.4 Summary . 136

Bibliography 137

A Full Grammar of CAnDL 159

B Polyhedral Code Sections in CAnDL 163

C Full Grammar of IDL 169

D Complex Reductions and Histograms in IDL 173

xii

List of Symbols and Notation

N The set of all positive integers, N= {1,2,3, . . .}
R The set of all real numbers

/0 The empty set, containing no elements

s ∈ S Element-of relationship, s is in the set S

A⊂ B Subset-relationship, every element of A is also in B

|S| Cardinality of S, the number of elements in the finite set S

{x | P(x)} Set-builder notation, the set of all x that satisfy P(x)

A×B
Cartesian product of sets, A×B = {(a,b) | a ∈ A and b ∈ B},
corresponds to pair<A,B> in C++

An
Set of n-tuples in A, short for An = A×·· ·×A,

corresponds to array<A,n> in C++

AB
Generalisation of An, x ∈ AB has a value xb ∈ A for each b ∈ B,

corresponds to map<B,A> in C++

P(S) Power set of S, the set of all subsets of S

f : A→ B Function f that maps elements of A onto elements of B

f : A ↪→ B Injective function x 6= y =⇒ f (x) 6= f (y), generalises A⊂ B

x 7→ y The value x gets mapped onto the value y

P =⇒ Q Logical consequence, “P implies Q”

P ⇐⇒ Q Logical equality, “P if and only if Q”

P ∧ Q Logical conjunction, “P and Q”

P ∨ Q Logical disjunction, “P or Q”

¬P Logical negation, “not P”

1

Chapter 1

Introduction

1.1 The Emergence of Heterogeneous Computing

For several decades, from the 1970s until the early 2000s, advances in processor development

followed Moore’s Law [4] and Dennard Scaling [5]. The density of integrated circuits doubled

every two years, and this allowed increased clock frequencies while maintaining steady power

consumption. These conditions enabled continual processor improvements primarily via rising

clock frequencies and microarchitectural refinements, enabling ever faster computations.

The physics-driven nature [6] of these advances in hardware has had important implications

for software development. Not only did the performance of computers improve exponentially,

but these performance gains were in the form of direct speedups, available to all the already

existing programs. The primary interfaces between software and hardware - the instruction

set architectures of processors - evolved gradually and with few paradigmatic changes [7].

This is best exemplified by the pervasive x86 instruction set architecture, which still retains

backward compatibility with its initial version from 1978, and dominates desktop processors

to this day. Therefore, software developers and users could rely on ever-increasing performance

from hardware progress alone, without any intervention.

1.1.1 Via Multi-Processing to Heterogeneity

This continual progress started breaking down around 2005 with the apparent end of Dennard

Scaling [8]. While the shrinking of transistors continued, this no longer enabled proportionally

increased clock frequencies with the same power budget. Instead, processor designers started

using the increasing transistor budget for additional processor cores. This shift toward multi-

processing has left a deep mark on software development. New programming paradigms and

languages, annotation systems, programming interfaces, libraries and compiler techniques are

still being developed to address the challenges of parallel computing.

3

4 Chapter 1. Introduction

In recent years, transistor scaling has slowed significantly. In response to the breakdown of

both Dennard Scaling and Moore’s Law, the hardware industry has turned toward architectural

innovation [9]. In particular, there is a trend toward specialised processors that work in tandem

as heterogeneous systems. Specialised processor cores outperform general-purpose cores on

specific tasks. Furthermore, as heat dissipation has become a major challenge, simultaneously

powering all transistors is often unviable. This means that different processor cores have to

be masked out dynamically at runtime (“dark silicon”) [8]. This situation favours specialised

cores, which can improve the overall system performance even if they are disabled most of the

time and only used for the specific tasks at which they excel. By contrast, disabling a subset of

a homogeneous multi-core system renders some of its cores redundant.

1.2 The Diminished Role of Traditional Compilers

Heterogeneous computing can help overcome the scaling limitations of homogeneous, general-

purpose processors. However, it also poses a challenge to the associated software ecosystems.

Existing software does not automatically benefit from entirely new accelerator designs in the

way that it profited from the continuous improvements of established architectures. Where

programs previously performed better on each succeeding hardware generation, heterogeneous

accelerators arrive with novel and incompatible interfaces. This puts into question many of

the achievements in portability and longevity of programs that are taken for granted in modern

computing [10].

In particular, this new hardware landscape greatly diminishes the scope of responsibilities

and impact that traditional compilers for languages such as C, C++ and Fortran can have.

Such compilers used to be responsible for orchestrating program execution on the entirety of

available computing resources. They are now generally limited to only targeting the relatively

small homogeneous fraction of processor cores directly.

1.2.1 Libraries and Domain-Specific Languages

In order to reach peak performance on rapidly evolving and highly parallel hardware, new

programming paradigms built around libraries and domain-specific languages have emerged.

They succeed in utilising heterogeneous hardware in situations where traditional compilers fail.

Two examples show the diversity of these approaches. Firstly, Ragan-Kelley et al. [11]

developed the domain-specific language Halide for image processing. The Halide toolchain is

able to generate fast code for heterogeneous platforms by focusing on a well-understood class

of computations, and by using a restrictive program representation. After tuning programs

for particular platforms, it outperforms hand-optimised code, demonstrating the advantage of

domain-specific compiler optimisation under circumstances of constrained semantics.

1.2. The Diminished Role of Traditional Compilers 5

Secondly, Basic Linear Algebra Subprograms (BLAS) [12], a specification of function

interfaces going back to the 1970s [13], remains the standard encapsulation for linear algebra

and has been implemented for most accelerators. These implementations are widely used and

offer unrivalled performance. Some versions are provided directly by hardware vendors to

support accelerators [14, 15, 16, 17, 18], while others originated as academic projects [19].

These competing implementations use a plethora of approaches to achieve as close to peak

performance as possible. These methods include manually written assembly code but also

highly advanced code generation techniques, custom program representations, and many more.

1.2.2 The Consequences of the Decline of Compilers

Domain-specific languages and library interfaces make the full performance of heterogeneous

systems accessible to programs. However, these success stories also leave significant problems

unaddressed. The adoption costs are high, requiring application rewrites for accelerators. This

coincides with often uncertain long-term prospects and minimal cross-platform portability.

Even in the case of the agreed-upon BLAS standard – arguably the best case scenario – adoption

of novel implementations is non-trivial in practice, due to the frequently encountered interface

extensions for managing device handlers and memory synchronisation. For academic-backed

domain-specific languages like Halide, on the other hand, complete rewrites are required in

entirely novel software ecosystems, with an unclear future of support.

On homogeneous systems, programmers could rely on compilers for existing programming

languages to evolve in lockstep with processor development. For example, even decades-old

C++ source code compiles into efficient programs for the newest generation of x86 processors.

Libraries and domain-specific languages are useful on homogeneous systems for achieving

absolute maximum performance, but only in the context of heterogeneous computing do they

become essential. Therefore, the pervasive requirement for domain-specific languages and

libraries only arises because compilers are unable to map programs onto specialised cores.

Instead, compilers are increasingly downgraded to merely coordinating the execution of core

workloads as separate and opaque programs.

It may appear apparent that, for example, a C++ or Java compiler cannot be provided for a

typical graphics processor. After all, most graphics processors have hardware limitations that

prevent them from implementing the entire language standard. Indeed, many accelerators are

further from Turing complete [20]. Nevertheless, this should not prevent a partial compiler.

Such a partial compiler would compile fitting program parts for accelerators and utilise a

fallback system for the remainder of the code. After all, that is precisely the result achieved

with libraries and domain-specific languages, and likely the desirable outcome. Despite the

apparent convenience of such an approach, the next section gives reasons why such a scheme

has not become widespread so far.

6 Chapter 1. Introduction

1.3 Host Compilers and Kernel Compilers

While mainstream compilers for languages such as C, C++, Fortran or Java generally fail to

exploit the full performance of heterogeneous systems, a specific class of compilers already

plays an essential role in targeting heterogeneous hardware. Many of the kernel programs

that remain opaque to the application compilers are themselves products of other, specialised

compilers. This necessitates a distinction between host compilers and kernel compilers, which

is mirrored by the differences between host languages and kernel languages. Host compilers

translate full applications written in host languages – such as C, C++, Fortran and Java – while

kernel compilers handle only succinct computational kernels that are expressed in dedicated

domain-specific programming languages. These two classes of compilers have developed

differently. Kernel compilers successfully apply many advanced techniques that are severely

limited on host compilers [21, 22]. They reason automatically about parallelism [23], are

more successful at accurately modelling data dependencies [11], and incorporate autotuning

techniques [24].

This is made possible by a combination of factors that uniquely apply to kernel compilers.

Smaller programs allow for more expensive compilation techniques; more restrictive languages

and intermediate representations allow for stronger reasoning; abstractions in kernel compilers

can be customised for the exact hardware architecture of accelerators; and domain knowledge

from areas such as image processing can be directly embedded in custom compiler technology,

without requiring their validity on generic programs. Moreover, kernel compilers often run in

more controlled environments, with less need for predictability, reproducibility, and stability.

The range of input programs might even be small enough to ship them in an already compiled

form, making the compiler a behind-the-scenes tool in the library implementation process.

As host compilers operate under less forgiving conditions, it is unsurprising that they have

lagged behind these developments. Because they cannot rely on such a restricted environment,

host compilers are unable to match the optimisation capabilities of kernel compilers, even when

a functional translation is possible. Straightforward approaches to targeting heterogeneous

accelerators from host compilers, therefore, have intrinsic disadvantages when compared to

domain-specific compilers. Host compilers that translate suitable program parts to accelerators

without matching domain-specific performance are undesirable.

Hybrid approaches, such as OpenCL, reinforce this hypothesis. OpenCL is domain-specific

in its expression of parallelism but otherwise designed to be general-purpose. Compilers are

provided for many structurally different computing architectures, but as a consequence of being

a relatively unrestricted language, the compilers often underperform, and OpenCL programs

are notoriously lacking in performance portability [25]. Host compilers that require the same

compromises as the OpenCL toolchain, being unable to leverage the restricted nature of input

programs, would surely suffer the same shortcomings when targeting accelerators.

1.3. Host Compilers and Kernel Compilers 7

constrained semantics enable better optimisations

flexibility to express programs from more domains

C++

pyTorch
Fortran

OpenCL
Halide FFTW

BLAS
domain-specific languages

general-purpose languages accelerator libraries

Figure 1.1: Domain-specific languages on a spectrum between general-purpose languages
and libraries: Less flexibility allows for stronger reasoning and greater optimisation potential.

1.3.1 The Spectrum of Specialisation

General-purpose programming languages, domain-specific languages, and accelerator libraries

exist on a spectrum of specialisation. Figure 1.1 provides some intuition about this spectrum

by estimating the positions of popular languages and libraries in it. On the far left are versatile

general-purpose languages, such as C++ and Fortran. Moving right, flexibility is gradually

lost, with BLAS libraries at the end providing only fixed-function computations. However, the

reduced scope allows for increased compiler optimisation capabilities in return.

It is necessary to clarify what is meant by compiler optimisation potential in this context

and how it differs from raw performance. At the very left, C++ is renowned as a low-overhead,

high-performance language, but it is difficult to apply profound structural changes to C++

programs in compilers. At the other extreme, the semantics of BLAS can be maintained with

many structurally different implementations. The routines are so narrowly specified that they

allow the library implementer to effectively operate as a compiler with almost unrestricted

optimisation abilities. C++ is fast because of its low overhead, but BLAS is fast because its

semantics are so constrained that implementations can be tuned to perfection.

More broadly, the superior optimisation potential of libraries and kernel compilers is a

consequence of operating under more constrained conditions than host compilers. While expert

programmers can often apply domain knowledge themselves when using versatile general-

purpose languages, this potential is uncovered automatically and tuned for the target hardware

by specialised tools. The restrictions on input programs imply domain knowledge that is

leveraged to make stronger assumptions, use more powerful reasoning and generate better code.

Hypothesis: Restrictive program models expose additional optimisation opportunities

and lead to increased portability. Compilers use program models that correspond closely to

their input programming languages. This correspondence could be decoupled by recognising

program parts that adhere to more constrained models, making the powerful domain-specific

optimisation techniques of kernel compilers available to host compilers.

8 Chapter 1. Introduction

1.4 Moving on the Spectrum of Specialisation

Host compilers need methods to recognise restrictive program models within general-purpose

code automatically. The term program model in this context means an internal representation

of the program logic with associated assumptions and ways of reasoning about the behaviour.

Reformulating program sections in restrictive models would make the superior domain-specific

capabilities of kernel compilers applicable in host compilers. This would result in a compiler

that can combine the positive aspects of both sides of the spectrum of specialisation.

Such an approach of detecting restricted models in general-purpose code has previously

been used only for specific individual domains and required elaborate manually implemented

compiler analysis functionality. For example, the Polly compiler by Grosser et al. [26] takes

arbitrary C/C++ code as input and recognises whether parts of this code are expressible in the

more restrictive polyhedral model [27, 28]. The compiler reformulates the relevant code in

this model, enabling advanced optimisation techniques that use the domain knowledge of the

polyhedral model for generating faster code [29, 30], substantiating the hypothesis.

1.4.1 Contributions of this Thesis

This thesis derives a systematic and configurable method for recognising constrained program

sections that fit restrictive models during the compilation process. The approach emerges from

the analysis of a standard program model for host compilers: Static Single Assignment (SSA)

form. Intermediate representations based on SSA are accessible to mathematical reasoning,

with their most relevant features built on graph and list structures. With this in mind, structural

restrictions on intermediate representation code – corresponding to restricted domain-specific

models – can be precisely formulated as constraints on a mathematical characterisation of SSA

form programs. Constraint solver techniques then make the automatic recognition of adhering

code sections feasible.

Instead of manually implementing sophisticated compiler analysis functionality, a flexible

constraint programming language is introduced that can express many different such domain-

specific models. An accompanying toolchain is developed that uses these specifications to

automatically recognise code sections that satisfy them. This system captures the spectrum

from Figure 1.1. On one extreme, sections of code are recognised as implementing specific

algorithms, like matrix multiplication, that are parametrised with numeric values. Algorithms

that allow parametrisation with an operator are next. Stencil kernels and reduction operations

fall into this category. More generic again are programs that merely follow certain structural

restrictions, such as code adhering to the polyhedral model. Chapters 4 to 6 cover each of these

domains, culminating in a system for the automatic heterogeneous acceleration of sequential

C/C++ code.

1.5. Structure of this Thesis 9

1.5 Structure of this Thesis

This thesis is divided into seven chapters.

Following the introduction, Chapter 2 derives the underlying methodology of this thesis

in the context of conventional compiler analysis. Based on a mathematical characterisation of

programs in Static Single Assignment form, the chapter presents a new constraint programming

method for expressing algorithmic program structures as constraint formulas. Later sections of

the chapter discuss implementation decisions, the algorithmic complexity of the approach, and

differences to established Satisfiability Modulo Theory (SMT) problems.

Chapter 3 gives an overview of the related work. This literature survey covers the four

main areas of research relevant to this thesis. Firstly, constraint programming underpins the

methodology of this thesis. Secondly, previous compiler analysis and auto-parallelisation

approaches are used used to evaluate the results of this work. Thirdly, heterogeneous computing

and the corresponding challenges motivate many of the compiler approaches that this thesis

implements. Finally, the term “computational idiom” is used in this thesis to denote shared

computational structures of performance bottlenecks. This term is established by comparison

with literature on several overlapping concepts from different research disciplines.

Chapters 4 to 6 are each based on a published research article and elaborate on different

applications of constraint programming in compilers.

Chapter 4 develops the Compiler Analysis Description Language (CAnDL) and presents

its implementation in the LLVM compiler infrastructure. CAnDL is a specification language

that generates compiler analysis passes from declarative descriptions via the CAnDL compiler.

The chapter explores several compiler use cases with CAnDL, including the implementation

of peephole optimisations and the prototyping of graphics shader optimisations. The chapter is

based on published research [1].

Chapter 5 extends CAnDL into the Idiom Detection Langauge (IDL) and develops an

auto-parallelising compiler for Complex Reduction and Histogram Computations (CReHCs)

built on IDL-powered analysis functionality. CReHCs cover loops with indirect data accesses

that are inaccessible to established approaches based on data flow and polyhedral analysis. The

flexibility of constraint programming allows it to capture such irregular computations. The

chapter is based on published research [2].

Chapter 6 applies IDL to the detection of algorithmic structures that go beyond the scope

of traditional compiler analysis, including stencils, histograms, and sparse linear algebra. The

recognition in LLVM enables automatic heterogeneous parallelisation of sequential code with

domain-specific backends, resulting in significant speedups on benchmark programs from the

established NPB and Parboil suites. The chapter is based on published research [3].

Finally, Chapter 7 concludes this thesis with a summary of the core contributions, a critical

analysis of the approaches, and a discussion of future work.

10 Chapter 1. Introduction

1.6 Summary

The end of Moore’s Law and Dennard Scaling has resulted in a shift away from homogeneous

multi-processing, toward architectural innovation and specialised processor cores. The rising

heterogeneity of computing resources poses a challenge to established compiler toolchains,

which often only access the increasingly marginal homogeneous fraction of processing power.

Therefore, application programmers depend on domain-specific languages and libraries that

leverage knowledge from their restricted operating domains to generate efficient code for the

modern hardware landscape.

This domain knowledge can be made available to host compilers with approaches that

automatically specialise general-purpose code and reformulate it in more restrictive program

models. Previous work has established this on individual models, but this thesis develops a

framework to formulate a wide range of restricted program models using a systematic approach

based on constraint solving. To this purpose, a custom constraint programming language is

developed and successively extended. Starting from a discussion of the underlying assumptions

and features of SSA code, the methodology is developed into a complete system, implemented

as part of the mature Clang C/C++ compiler.

In the later chapters, this core system is applied in combination with other techniques on

a range of different compiler challenges. These include the rapid prototyping of compiler

optimisations, the automatic parallelisation of programs with indirect memory accesses, a new

formulation of the polyhedral model, and the detection of computational structures that occur

widely in important bottlenecks of scientific programs.

Eventually, the techniques are combined into a fully integrated, extensible compiler tool for

efficiently mapping sequential programs onto heterogeneous systems. This develops the thesis

all the way from theoretical discussions of constraint programming approaches in compilers,

to the experimental evaluation of real performance improvements on established benchmark

suites and scientific applications.

Chapter 2

Constraint Programming on Static

Single Assignment Code

The research contributions of this thesis are built on a new method for constraint programming

on Static Single Assignment (SSA) compiler intermediate representation. This chapter derives

and motivates the underlying methodology, which is then used as the basis for Chapters 4 to 6.

The constraint programming approach is developed in three steps.

First, an overview of program representations during different compilation stages is given,

and the particular features of SSA representations are highlighted. These features are used to

derive a mathematical characterisation of the static structure of SSA programs, the SSA model.

This is first derived generically and then demonstrated in more detail on LLVM IR, a specific

SSA intermediate representation. Some mathematical notation is used in this section to build

a reliable foundation for later parts of this thesis. The List of Symbols and Notation contains

some of the notational conventions.

After the derivation of the SSA model, the concept of SSA constraint problems is defined.

These are formulas that impose restrictions on parts of SSA code, formulated as constraints on

the SSA model. SSA constraint problems can define code structures such as loops. Detecting

adhering code sections in SSA code is then equivalent to finding solutions to the constraints.

The structure of several classes of constraint formulas is discussed, reflecting conventional

compiler analysis methods like data flow, dominance relationships, and data type restrictions.

Finally, efficient algorithms for solving SSA constraint problems are derived. Backtracking

is used to find solutions quickly by incrementally extending partial solutions. The structure of

specific classes of SSA constraint problems is analysed, and efficient backtracking solutions

are derived individually, yielding composable building blocks for the solver. After deriving the

algorithms, implementation considerations are discussed. Suitable data structures are selected,

and the runtime complexity is analysed. To conclude the chapter, constraint programming on

SSA intermediate representation is compared with Satisfiability Modulo Theory (SMT).

11

12 Chapter 2. Constraint Programming on Static Single Assignment Code

2.1 Background

Modern compilers for procedural languages such as C/C++, Fortran or JavaScript typically use

a succession of different representations for the program during compilation. They reflect the

requirements of the compilation stages in which they are used.

Front end representations are close to the source program and strongly influenced by the

specific grammar of the programming language. Typically, they are built around an abstract

syntax tree with additional annotations, such as type information. These representations are

rich in information about syntactic and stylistic choices of the programmer, and they scale in

complexity with the source language. Some advanced language features, such as overloaded

operators, are not resolved in this class of representations. Therefore, the semantics of program

parts is highly dependent on context.

Back end representations are based on a model of the target hardware. They typically

approach an assembly-style format and expose the instruction set architecture of the hardware,

making them platform-specific. Back end representations also encode decisions for problems

that are removed from the algorithmic content of the user program, such as instruction selection

and register allocation.

Middle end representations are designed to enable the analysis and transformation of

code in order to apply optimisations. Static Single Assignment (SSA) representations have

emerged as a common choice for the middle end in leading compilers. SSA abstracts away

the complexities of the source language and the target architecture, focusing on a relatively

simple description of the user program semantics. This enables reliable analysis and platform-

independent reasoning.

Static Single Assignment was first proposed by Rosen et al. [31], and there are now many

different compiler intermediate representations that implement the concept. Instruction sets,

type systems and syntax (if a textual representation is even specified) of these representations

vary considerably, depending on the requirements of the source languages (static or dynamic)

and the operating constraints (just-in-time or ahead-of-time). Some prominent examples of

compilers using SSA are Clang (LLVM IR), GCC (GIMPLE), v8 Crankshaft (Hydrogen),

and SpiderMonkey (IonMonkey/MIR). Despite many differences, they share the same basic

structure that is discussed in this chapter.

SSA form was developed as an improvement over previously used compiler intermediate

representations. Specifically, the eponymous Static Single Assignment property applies to the

more general Linear Intermediate Representations as an additional restriction, as described in

Torczon and Cooper [32]. The following Section 2.1.1 gives an overview of the characteristic

shared features of SSA representations that are relevant to this work.

2.1. Background 13

2.1.1 Static Single Assignment Form

SSA representations are Linear Intermediate Representations, meaning that they represent each

function as a single linear sequence of instructions. These instructions operate on an unlimited

number of registers, using a well defined – but representation specific – instruction set. Branch

instructions are used to redirect the execution conditionally or unconditionally. Consecutive

instructions with no branching between them are grouped into basic blocks. Within these,

instructions are executed in order of appearance. Basic blocks may have labels or be identified

simply by enumerating them. Instruction arguments can be registers, constants, globals or

function parameters. Additionally, branch instructions take basic block arguments as branch

targets. Instructions may write their result into a single output register.

The SSA property stipulates that within a function, no register can be written at more than

one static location. This means that registers can be identified directly with the instructions that

define them. The registers can, therefore, be made implicit, with only the data flow between

instructions required to recover them. In the presence of dynamic control flow, Φ-instructions

are required to uphold the SSA property. These Φ-instructions are placed at the beginning of a

basic block, and select one of several values dynamically, depending on the origin of incoming

branches, i.e. depending on the previously executed basic block.

Figure 2.1 shows how SSA programs can be represented as a hierarchy of lists. Programs

are lists of functions, which are lists of basic blocks, which are lists of instructions, which take

lists of arguments. The ability to enumerate all these entities in linear sequences enables the

identification of SSA values with integer indices in the later sections of this chapter.

Data Flow Control Flow

program

function

globals

function

function
...

function

basic block

parameters

basic block

basic block
...

basic block

instruction

label

instruction

instruction
...

instruction

argument

opcode

argument

argument
...

argument

constantregister global

parameter instruction

label

basic block

Figure 2.1: Structural overview of SSA: Programs are represented as hierarchies of lists. The
SSA property makes registers implicit; values can be statically matched to defining instructions.

14 Chapter 2. Constraint Programming on Static Single Assignment Code

2.1.2 SSA Emerges During Compilation

Figure 2.2 shows how critical features of SSA form emerge from simplification steps that are

applied to source code. This is demonstrated on the “sqrt” example function that approximates

the square root of a double-precision floating-point value in C using the Babylonian method in

Equation (2.1). Beginning with an initial guess x0, the approximation is improved iteratively.

x0 ≈
√

S, xn+1 =
xn +

S
xn

2
=⇒ lim

n→∞
xn =

√
S (2.1)

Starting from the source code (a) at the top left of the figure, the function is first modified

by breaking down complex expressions. The expressions are turned into sequences of basic

operations, shown at the top right (b). Explicit variables appear for the previously implicit

temporary values. This simplifies the program, with many of the operations directly mapping

to individual processor instructions. Moreover, different input programs get mapped to the

same, predictable output by this transformation, making it a normalisation.

In a second step, the structured control flow of the program is replaced with goto statements

that coordinate the control flow between basic blocks. This is shown at the bottom right (c).

Although this does not ease the intuitive understanding of the program, it unifies several distinct

control flow structures provided in the source language into a single mechanism. This simplifies

program analysis. Importantly, no relevant information is lost by discarding the control flow

structures. They can be reconstructed algorithmically.

Finally, the Static Single Assignment property is introduced at the bottom left (d). Each

variable that is assigned at more than one static location in the program is instead duplicated

into multiple variables. Where necessary, these now distinct variables are bound together with

Φ-instructions. This cannot be expressed in the C programming language syntax. Instead, the

behaviour is documented by comments at lines 8–13.

The impact of the SSA property seems minor at first, but convenient implications can

already be identified within the C language. As all local variables are written at exactly one

static location, each variable can be declared and defined in the same place. This means

that it is always known statically, which expression yielded the value of each variable. This

immediately guarantees that the variable “i” in the example always has the value “0”, and that

the variable “x” always has the value “1.0”.

In summary, this section developed an understanding of how SSA originated historically

and how it emerges during the compilation process. The following section uses the observations

from Figure 2.1 – that most parts of SSA code can be enumerated and represented as elements

in lists – to derive a mathematical characterisation of the static structure of SSA programs. This

characterisation then serves as the foundation of later sections, which define compiler analysis

problems on it via constraints.

2.1. Background 15

(a) C source function:

1 double sqrt(double S) {
2 double x = 1.0;
3 for(int i=0; i<N; i+=1)
4 x = 0.5 * (x + S / x);
5 return x;
6 }

(d) The SSA property is introduced:

1 double sqrt(double S) {
2 entry:
3 double x = 1.0;
4 int i = 0;
5 goto header;
6

7 header:
8 int i2 = /* if reached
9 from line 5: i,

10 from line 23: i3 */
11 int x2 = /* if reached
12 from line 5: x,
13 from line 23: x3 */
14 bool test = i2 < N;
15 if(test) goto loop;
16 else goto exit;
17

18 loop:
19 double t1 = S / x2;
20 double t2 = x2 + t1;
21 double x3 = 0.5 * t2;
22 int i3 = i2+1;
23 goto header;
24

25 exit:
26 return x2;
27 }

(b) Complex expressions are broken down:

1double sqrt(double S) {

2double x = 1.0;

3for(int i=0; i<N; i+=1)

4{

5double t1 = S / x;

6double t2 = x + t1;

7x = 0.5 * t2;

8}

9return x;

10}

⇓
(c) Structured control flow is expanded:

1double sqrt(double S) {

2entry:
3double x = 1.0;

4int i = 0;

5goto header;

6

7header:
8bool test = i < N;

9if(test) goto loop;

10else goto exit;

11

12loop:
13double t1 = S / x;

14double t2 = x + t1;

15x = 0.5 * t2;

16i = i+1;

17goto header;

18

19exit:
20return x;

21}

⇒

⇐

Figure 2.2: Static Single Assignment emerges from successive simplification and normalisation
of source language features: Demonstration on an example C function that approximates the
square root of an input value with the Babylonian method. The transformation results (b-d) are
rendered in C. Real compilers typically operate on dedicated internal representations instead.

16 Chapter 2. Constraint Programming on Static Single Assignment Code

2.2 Deriving the SSA Model

This section develops a mathematical characterisation of SSA programs, denoted SSA model.

The focus is on precise notation to express the static structure of existing SSA intermediate

representations. The SSA model is unrelated to the operational semantics of programs and

not a method for studying their behaviour at runtime. However, it contains all the information

required to reconstruct a program that is semantically equivalent to the one from which it was

extracted. The remainder of this section adheres to the naming conventions in Definition 2.1.

This notation already implies several decisions about the SSA model that is derived in this

section. Firstly, the model captures only a single function at once. Secondly, basic blocks are

not explicitly encoded. Instead, all instructions of the function are enumerated sequentially in

depth-first order, starting from the function entry. Despite not being explicitly encoded, basic

blocks can be reconstructed from the control flow, as discussed in Section 2.2.2. Thirdly, the

argument structure of the instructions is modelled separately.

2.2.1 Data Flow and Control Flow

The data flow between instructions, as well as the control flow, is captured in graph structures.

The Static Single Assignment property makes registers implicit, and the direct interaction

between instructions becomes the natural model for data flow. Instruction arguments fall into

four categories: function parameters (“par”), other instructions (“ins”), globals (“glb”), and

constants (“cst”). Branching instructions also take basic block labels as branch targets, but

those are treated separately in the control flow graph. All instruction arguments are therefore

taken from the named lists introduced in Definition 2.1.

For each function, the sequences “par”, “ins”, “glb”, “cst” can be statically determined.

Individual instruction arguments can, therefore, be encoded by one integer each, indexing the

list of used values as in Definition 2.2. The entire argument structure of the instructions in an

SSA function can then be turned into a labelled multigraph, with edge labels accounting for the

positional order of the arguments. This is the data flow graph in Definition 2.3. The source of

a data flow edge can be any value, but the target is always an instruction (Lins ≤ b≤ Rins).

Complementing the data flow graph is the control flow graph of the function, as introduced

in Definition 2.4. The control flow graph is often defined with edges between basic blocks. By

contrast, in this definition, the edges are directly between instructions. This is convenient later,

in Sections 2.3 and 2.4, where both graphs can be treated identically.

The defining equation can be separated into several parts. The first line expresses that edges

in the control flow graph are always between two instructions. The remainder of the equation

gives two options, corresponding to different types of edges in the control flow graph. Firstly,

there are trivial edges within basic blocks. Secondly, there are edges between basic blocks.

2.2. Deriving the SSA Model 17

Definition 2.1: Features of Static Single Assignment Functions

For the remainder of this section, some function F in SSA form is assumed fixed. The

following identifiers are then used to describe the features of this function:

• |par| is the number of function parameters par1, . . . par|par|.

• |ins| is the number of instructions ins1, . . . ins|ins| that make up the function, in

depth-first order, starting from the execution entry.

• |glb| is the number of unique globals glb1, . . .glb|glb| that are used as operands of

any of the instructions.

• |cst| is the number of unique constants cst1, . . .cst|cst| that are used as operands of

any of the instructions.

Definition 2.2: List of Used Values

The list of used values of the SSA function F is the tuple

val = (par1, . . . , par|par|, ins1, . . . , ins|ins|,glb1, . . . ,glb|glb|,cst1, . . . ,cst|cst|).

Furthermore, the following values are used to identify specific ranges in val:

Lpar = 1 Rpar = |par| Lins = Rpar +1 Rins = Rpar + |ins|
Lglb = Rins +1 Rglb = Rins + |glb| Lcst = Rglb +1 Rcst = Rglb + |cst|
Lval = Lpar Rval = Rcst

Definition 2.3: Data Flow Graph

The data flow graph of the SSA function F is the set DFGF ⊂ N3 such that

(n,a,b) ∈ DFGF ⇐⇒ (Lval ≤ a≤ Rval) ∧ (Lins ≤ b≤ Rins)

∧ (vala is the nth argument of insb−Lins+1).

For Φ-instructions, the incoming basic blocks are ordered according to the order on ins.

The nth argument is the incoming value attached to the nth incoming basic blocks.

Definition 2.4: Control Flow Graph

The control flow graph of the SSA function F is the set CFGF ⊂ N3 such that

(n,a,b) ∈CFGF ⇐⇒ (Lins ≤ a≤ Rins) ∧ (Lins ≤ b≤ Rins)

∧


(¬(insa−Lins+1 terminates basic block) ∧ (b = a+1) ∧ (n = 1))

∨ ((insa−Lins+1 terminates basic block) ∧ (insb−Lins+1 first instruction in nth
target basic block of insa−Lins+1)) .



18 Chapter 2. Constraint Programming on Static Single Assignment Code

2.2.2 Identifying Remaining Structure

Section 2.2.1 introduced structures to model the control flow and data flow of SSA programs.

This section identifies the remaining information that the SSA model needs in order to capture

the program semantics fully. The benchmark for completion of the SSA model is the ability

to recreate a semantically equivalent program in the SSA intermediate representation from it.

Most of the program structure can already be recovered from DFGF and CFGF :

1. The basic block boundaries are reconstructed by identifying all consecutive instructions

A, B, where at least one of the following conditions is violated:

• {(n,a,b) ∈ DFG∗F | a = A}= {(1,A,B)}

• {(n,a,b) ∈ DFG∗F | b = B}= {(1,A,B)}.

2. Basic block labels and register names can be chosen freely without changing semantics.

3. The arguments of all instructions can be immediately filled in from DFGF . Similarly,

CFGF directly provides the target instructions for all goto statements.

4. The positional arguments of Φ-instructions in DFGF are attached as incoming values to

the incoming basic blocks after ordering those according to the order on ins. The original

positional order of the incoming pairs is not recovered, but it is semantically equivalent.

The only part of the SSA representation that still needs modelling is per-value information.

This includes the opcodes of instructions, the values of constants, and type information. This

is demonstrated in Figure 2.3. At the top of the figure is a simple function in an abstract SSA

representation, which calculates an approximation of the square root of a number using the

Babylonian method. It has 11 instructions separated into four basic blocks, with the majority

of the instructions in a loop that iteratively improves the result. The entire semantic information

that is encoded in this SSA representation can be recovered from the structures at the bottom of

the figure: per-instruction opcode information, lists of the parameters, globals, and constants

used, the data flow graph as in Definition 2.3 and the control flow graph as in Definition 2.4.

Instruction sets and type systems differ between SSA representations, although they overlap

significantly. This chapter aims to capture commonalities of SSA representations, the study of

instruction sets and type systems is orthogonal to this. These structures are, therefore, modelled

as opaque sets as in Definition 2.5.

Definition 2.5: Representation-Specific Sets

OpcodesL is the set of all opcodes available in the SSA language L, TypesL is the set of

all types in L, and GlobalNamesL is the set of all available names for global values.

2.2. Deriving the SSA Model 19

function Sqrt(S)

entry goto header

header

i←Φ(entry : 0, loop : i′)

x←Φ(entry : 1, loop : x′)

c← i < N

if c goto loop else exit

loop

t1← S/x

t2← x+ t1

x′← t2/2

i′← i+1

goto header

exit return x

∼=

1:

parameters:

S

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

instructions:

goto �

Φ(� : �, � : �)

Φ(� : �, � : �)

�<�

if � goto � else �

�/�

�+�

�/�

�+�

goto �

return �

13:

globals:

N

14:

15:

16:

constants:

1

2

0



+



DFGF = {10 2−→ 3, 16 1−→ 3,

9 2−→ 4, 14 1−→ 4,

3 1−→ 5, 13 2−→ 5,

5 1−→ 6

1 1−→ 7, 4 2−→ 7,

4 1−→ 8, 7 2−→ 8

8 1−→ 9, 15 2−→ 9

3 1−→ 10, 14 2−→ 10,

4 1−→ 12}

CFGF = {2 1−→ 3,

3 1−→ 4,

4 1−→ 5,

5 1−→ 6,

6 1−→ 7, 6 2−→ 12,

7 1−→ 8,

8 1−→ 9,

9 1−→ 10,

10 1−→ 11,

11 1−→ 3}


Figure 2.3: SSA representation is decomposed into individual instructions, data flow and control
flow. This is an equivalent representation of the function; no semantic information is lost. The
example is a rendering of the Babylonian method in Figure 2.2, abstracting away the C syntax.

20 Chapter 2. Constraint Programming on Static Single Assignment Code

2.2.3 Putting the SSA Model Together

With separate mathematical structures in place to capture all the relevant information contained

in SSA programs, the SSA model can now be assembled. Definition 2.6 shows the completed

SSA model. The data flow graph DFGF and the control flow graph CFGF were discussed in

detail previously, but some clarifications are provided for the remaining five structures.

The type model, instruction model, and constant model assign additional information from

different domains to the values used in the function. Instead of attaching a single type to each

value, the type model allows values to be linked with several elements in the set “Types”.

This is convenient to model subtyping hierarchies where, for example, an integer pointer value

is a pointer in particular. The same is true for the instruction model, which enables it to

express opcode categories, e.g. an arithmetic operation might be a subtraction in particular.

The constant model is defined likewise as a subset of R×N but makes no use of the ability to

assign multiple numeric values to the same constant.

Finally, the parameter model and global model encode which elements in the list of used

values of F are parameters and globals, respectively. Parameter names are not significant,

because their position already identifies parameters uniquely within the function signature.

Therefore, the parameter model identifies all parameters but attaches no additional data. For

global values, on the other hand, the names are attached by the global model as elements from

the set “GlobalNames”.

2.2.4 Additional Notation

The seven basic components of the SSA model are each expressed as a set of tuples. In order

to conveniently manipulate these structures in later sections, Definition 2.7 introduces several

functions and shorthand notation.

For a set of tuples, the function “heads” returns the set of all the first elements of the tuples.

For example, “heads(IF)” yields all the opcodes that are used in the function F . In contrast,

the function “tails” removes the first element of all tuples within a set. For example, “tails(IF)”

identifies the indices of all the instructions within the list of used values of F but removes the

information about their opcodes. Finally, the “select” function is used to filter a set for only

those tuples with a specific first element, and then returns the tails of all these tuples. For

example, “select(add, IF)” gives the indices of all additions within the list of used values of

the function F .

The representation of data flow and control flow as labelled multigraphs contains more

information than is required for many tasks. The simplified versions DFG∗F and CFG∗F are

constructed with the “tails” function, effectively removing the labels and resulting in ordinary

graph structures. Similarly, the sets I∗F and C∗F are used for shorter notation.

2.2. Deriving the SSA Model 21

Definition 2.6: Mathematical Characterisation of SSA Functions

The SSA model of the function F is the tuple

(DFGF ,CFGF ,TF ,PF , IF ,GF ,CF),

where

• DFGF ⊂ N3 and CFGF ⊂ N3 are the data flow and control flow graph;

• TF ⊂ Types×N is the type model, defined by the property

(t,k) ∈ TF ⇐⇒ (Lval ≤ k ≤ Rval) ∧ (valk has type t);

• PF ⊂ N is the parameter model, defined by the property

k ∈ PF ⇐⇒ Lpar ≤ k ≤ Rpar;

• IF ⊂ Opcodes×N is the instruction model, defined by the property

(c,k) ∈ IF ⇐⇒ (Lins ≤ k ≤ Rins) ∧ (insk−Lins+1 has opcode c);

• GF ⊂ GlobalNames×N is the global model, defined by the property

(n,k) ∈ GF ⇐⇒
(
Lglb ≤ k ≤ Rglb

)
∧ (glbk−Lglb+1 has name n);

• CF ⊂ R×N is the constant model, defined by the property

(x,k) ∈CF ⇐⇒ (Lcst ≤ k ≤ Rcst) ∧ (cstk−Lcst+1 has numeric value x).

Definition 2.7: Notation for Reducing Dimensionality

For a set A, any a ∈ A, and S⊂ A×Nk for some k > 0, the following are defined:

heads(S) = {a ∈ A | (a,b1, . . . ,bk) ∈ S for some b1, . . . ,bk ∈ N}

tails(S) = {b ∈ Nk | (a,b1, . . . ,bk) ∈ S for some a ∈ A}

select(a,S) = {b ∈ Nk | (a,b1, . . . ,bk) ∈ S}.

Note that the case A = N is common.

In addition, rev(S′) = {(a,b) | (b,a)∈ S′} is defined for S′ ⊂Nk and the following used:

DFG∗F = tails(DFGF)

CFG∗F = tails(CFGF)

I∗F = tails(IF)

C∗F = tails(CF)

22 Chapter 2. Constraint Programming on Static Single Assignment Code

2.2.5 The LLVM Compiler Framework

The previously introduced SSA model is generic and applies to all SSA compiler intermediate

representations. However, it needs to be specialised to a specific representation in order to use

it on real compiler problems. LLVM intermediate representation (LLVM IR) is one of the most

common languages in that class, because of its use in the popular LLVM framework started by

Lattner and Adve [33]. It is used throughout this thesis for demonstration and evaluation.

LLVM is a comprehensive compiler infrastructure project, using LLVM IR as its central

abstraction. The LLVM project was formerly named “Low Level Virtual Machine”, alluding

to a hypothetical machine that uses LLVM IR as its native assembly language. The instruction

set of LLVM IR is roughly aligned to the semantics of C-style programming languages, but

the project has matured beyond this background. It is now a widely influential framework with

compiler front ends for a diverse set of languages, including C, C++, Haskell, Julia, Objective-

C, Rust, Scala, and CUDA.

Other mainstream compilers, such as the GCC project, use very similar representations

internally. Despite this, LLVM is unique in understanding the intermediate representation as

an advertised and documented interface within the toolchain, as opposed to an obscure internal

abstraction. This makes it very suitable for research implementations.

2.2.6 LLVM IR Example

Some crucial features of LLVM IR in the context of this thesis are demonstrated on an example

in Figure 2.4. At the top (a) of the figure, a dot product is implemented as a function in C. This

function takes as arguments two pointers “a”, “b” to arrays of double-precision floating-point

values representing the input vectors, and an unsigned integer “n” giving the size of the arrays.

Within a single loop at lines 4–5, the dot product is accumulated in the variable “d”, which is

eventually returned as the result of the function.

At the bottom (b) of the figure is the corresponding LLVM IR code, captured from the

middle end of the LLVM-based Clang compiler after optimisations. Additional comments

were inserted manually. Lines 2–4 are the result of an optimisation called “loop inversion”. If

the arrays are empty, the loop is skipped entirely, and the program returns zero via lines 6–8.

Otherwise, the loop at lines 13–24 is entered via the basic block at lines 10–11, which exists

for normalisation purposes as the dedicated loop entry block.

Memory access in LLVM is expressed separately from index calculations. This is visible at

lines 16–19. The “getelementptr” instruction is used to calculate the memory addresses of

the array elements “a[i]” and “b[i]”. The “load” instruction then reads the memory at the

calculated addresses. This scheme simplifies the effectful memory access instructions, pushing

the complexity of index calculations into the “getelementptr” instruction.

2.2. Deriving the SSA Model 23

(a) C source code of a dot product function implementation:

1 double dot(double* a, double *b, size_t n)
2 {
3 double d = 0.0;
4 for(int i = 0; i < n; i++)
5 d += a[i]*b[i];
6 return d;
7 }

(b) LLVM IR of the same dot product function:

1 define double @dot(double* %0, double* %1, i64 %2) {
2 ; <label>:3:
3 %4 = icmp eq i64 %2, 0 ; integer (i) comparison (cmp):

check if register %2 is equal (eq) to constant zero
4 br i1 %4, label %5, label %7 ; jump to line 6 if the

comparison held, otherwise jump to line 10 instead
5

6 ; <label>:5:
7 %6 = phi double [0.0, %3], [%16, %8] ; result is 0 if

the phi node was reached from line 4, otherwise it was
reached from line 24 and the result is taken from %16

8 ret double %6
9

10 ; <label>:7:
11 br label %8
12

13 ; <label>:8:
14 %9 = phi i64 [%17, %8], [0, %7]
15 %10 = phi double [%16, %8], [0.0, %7]
16 %11 = getelementptr double, double* %0, i64 %9 ;

getelementptr calculates memory addresses: here it
computes the address of the %9-th value in the array %0

17 %12 = load double, double* %11 ; loads a double precision
floating point value from the calculated address

18 %13 = getelementptr double, double* %1, i64 %9
19 %14 = load double, double* %13
20 %15 = fmul double %12, %14
21 %16 = fadd double %10, %15
22 %17 = add i64 %9, 1
23 %18 = icmp eq i64 %17, %2
24 br i1 %18, label %5, label %8
25 }

Figure 2.4: The correspondence between C and LLVM IR on an example function: The function
computes the dot product of two vectors in a simple reduction loop. In the LLVM IR – generated
by Clang – pointer calculations and memory accesses are visible within the SSA representation.

24 Chapter 2. Constraint Programming on Static Single Assignment Code

Figure 2.5 shows in detail how the SSA model is constructed from the LLVM intermediate

representation of the program in Figure 2.4. At the top left, implementations of the dot product

are shown in three programming languages that LLVM supports: Fortran, C and C++. At the

top right is the corresponding LLVM IR code. While this is not precisely identical for different

implementations, its basic structure is independent of the source language.

In the middle row, the structure of the LLVM IR code is separated into three components:

labelled multigraphs for the data flow and control flow, as well as the per-instruction properties

represented as a list. Together, they capture all the semantically significant information of the

function, as previously demonstrated in Section 2.2.2. In the bottom row, the SSA model is

shown, adhering to Definition 2.6. The labelled multigraphs for the control flow and data flow

graphs are represented as sets of 3-tuples of integers.

2.3 Constraint Programming on the SSA Model

Properties of SSA programs can now be formulated as constraint problems on the SSA model.

For this purpose, the set of SSA models is introduced in Definition 2.8, which Definition 2.9

then uses to formulate SSA constraint problems.

Definition 2.8: Set of SSA Models

Given a specific SSA representation (LLVM, Hydrogen, MIR, . . .), denote F the set of

all valid functions that can be expressed in it.

The set of SSA models M is defined as

M = {M |M is the SSA model of some F ∈ F}.

Definition 2.9: SSA constraint problem

An SSA constraint problem (V,C) is a pair of a finite set of variables V and a boolean

predicate C : M ×NV 7→ {1,0}. The set of constraint solutions for an SSA constraint

problem in the context of a specific SSA model M ∈M is given as

SM(V,C) = {s ∈ NV |C(M,s) = 1}.

The following intuition applies: The first argument of C is the SSA model of a function.

The second argument of C is a solution candidate. NV can be understood as abstractly rendering

map<string,unsigned>, with elements assigning an integer to each constraint variable.

These integers represent values in the SSA function by indexing into the list of used values.

The predicate function determines whether these values have a specific relationship to each

other. Finally, the set of constraint solutions lists all those tuples for which the predicate holds.

2.3. Constraint Programming on the SSA Model 25

Textual Representation
LLVM Intermediate

define double @dot(double* %0, double* %1, i64 %2) {

}

C
double dot(double* a, double* b, uint64_t n)
{

}

; <label>:3:
 %4 = icmp eq i64 %2, 0
 br i1 %4, label %5, label %7

; <label>:5:
 %6 = phi double [0.0, %3], [%16, %8]
 ret double %6

; <label>:7:
 br label %8

; <label>:8:
 %9 = phi i64 [0, %7], [%17, %8]
 %10 = phi double [0.0, %7], [%16, %8]
 %11 = getelementptr double, double* %0, i64 %9
 %12 = load double, double* %11
 %13 = getelementptr double, double* %1, i64 %9
 %14 = load double, double* %13
 %15 = fmul double %12, %14
 %16 = fadd double %10, %15
 %17 = add i64 %9, 1
 %18 = icmp eq i64 %17, %2
 br i1 %18, label %5, label %8

 double d = 0.0;
 for(int i = 0; i < n; i++)
 d += a[i]*b[i];
 return d;

C++
double dot(vector<double> vec_a,
 vector<double> vec_b)
{

}

 double x = 0.0;
 for(int i = 0; i < vec_a.size(); i++)
 x += vec_a[i]*vec_b[i];
 return x;

FORTRAN

SUBROUTINE DOT(A,B,N,RES)

END

 INTEGER N
 REAL X,A(:),B(:)
 X=0.0
 DO I = 1, N, 1
 X = X + A(i)*B(i)
 END DO
 RES=X
 RETURN

Structural Representation
�����������	�
���

� �

��

��

��

��

��

��

��

��

�

�

�

��

� �

�

�

�

��

�

� �

�

�

�

�

�

�

�
�

	

���	

�

�

��

��������	�
���

�

	

�

��

��

��

��

�

�

�

�

�

�

�

� �

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�	

�

�

��

��

�

��

���

�

��

����������

�������

�������
�������
�
�
���
��
�
�
�
�
���
����
���
����
����
����
���
�������

��

������

���
������

�������
������

�������
������
������
������

���
��

�

�

�

	

�

��

��

��

��

��

��

�

��

�	

��

���
������

���

�
� �
�

��

��

��

�������
�������

���

�

�

�

Mathematical Representation

DFGF = {(1,1,11),(1,2,13)
(1,3,4),(2,3,18),(1,4,5),
(1,6,7),(2,9,11),(2,9,13),
(1,9,17),(1,10,16),(1,11,12),
(1,12,15),(1,13,14),(2,14,15),
(2,15,16),(2,16,6),(2,16,10),
(2,17,9),(1,17,18),(1,18,19),
(2,20,4),(1,20,9),(1,21,6),
(1,21,10),(2,22,17)} ⊂ N3

CFGF = {(1,4,5),(1,5,6),
(2,5,8),(1,6,7),
(1,8,9),(1,9,10),
(1,10,11),(1,11,12),
(1,12,13),(1,13,14),
(1,14,15),(1,15,16),
(1,16,17),(1,17,18),
(1,18,19),(1,19,6),
(2,19,9)} ⊂ N3

TF = {(double*,1),(double*,2), . . .}
⊂ TypesLLVM×N

PF = {1,2,3} ⊂ N

IF = {(icmp eq,4),(cond br,5), . . .}
⊂ OpcodesLLVM×N

GF = {} ⊂ GlobalNamesLLVM×N

CF = {(0,20),(0,21),(1,22)}
⊂ R×N

Mdot = (DFGF ,CFGF ,TF ,PF , IF ,GF ,CF)

Figure 2.5: Compiler-generated LLVM IR code is decomposed into data flow, control flow and
per-value attributes. Mathematical notations of the three components are shown at the bottom.

26 Chapter 2. Constraint Programming on Static Single Assignment Code

2.3.1 SSA Constraint Problem Example

Consider the task of detecting all simple loop iterators in a program. These are variables within

a loop that are incremented by a constant value of one in each iteration. Figure 2.6 shows how

this can be formulated as an SSA constraint problem and then demonstrates its application on

the SSA model that was derived in Figure 2.5. The top (a) of the figure first gives an intuition

about how such a compiler analysis task can be interpreted as a constraint problem to be solved

in the context of an SSA model.

Simple loop iterators show up in LLVM IR as data flow cycles between a Φ-instruction and

an addition. This is expressed as an SSA constraint problem at the top of the central part (b)

of the figure. The formulation introduces the variables “phi”, “update”, “step” and a predicate

C to describe the required conditions on the variables. This predicate is composed by logical

conjunctions (“∧”) of several element-of relationships that must hold simultaneously on the

structures CF , IF , and DFGF of the SSA model:

• The iterator is incremented in steps of one [(1,xstep) ∈CF].

• The updated iterator value is computed as an addition [(add,xupdate)∈ IF] of the previous

iterator value [(xphi,xupdate) ∈ DFG∗F] and the step size [(xstep,xupdate) ∈ DFG∗F].

• The updated iterator is an incoming value [(xupdate,xphi) ∈ DFG∗F] to the Φ-instruction

that holds the current iterator value [(phi,xphi) ∈ IF].

Explicit control flow constraints for establishing the loop structure around the iterator are not

required, because the data flow cycle [(xphi,xupdate)∈DFG∗F ∧ (xupdate,xphi)∈DFG∗F] already

implies the presence of a loop.

The lower section of Figure 2.6 (b) replicates the SSA model from Figure 2.5. Finally, the

bottom (c) of the figure shows the constraint solutions SMdot (V,C). This set contains only one

tuple: {phi 7→ 9,update 7→ 17,step 7→ 22}. The underlined items in the SSA model evidence the

validity of this solution: (1,22)∈CF , (add,17)∈ IF , (1,9,17)∈DFGF , (2,22,17)∈DFGF ,

(2,17,9) ∈ DFGF , and (phi,9) ∈ IF . Therefore, all six element-of conditions that make up

the SSA constraint problem hold.

Figure 2.5 identifies the integer values 9 and 17 with the instructions at lines 14 and 22

of the LLVM IR code from Figure 2.4 (b). These two instructions correspond to the simple

loop iterator “i” of the for-loop at lines 4–5 of the C source code in Figure 2.4 (a), correctly

identifying the only simple loop iterator in the program.

After the detailed derivation of the SSA model and some intuition about the nature of SSA

constraint problems, only the solver S in Figure 2.6 remains unexplained. The next sections

derive how backtracking can be used to compute the set of constraint solutions efficiently.

2.3. Constraint Programming on the SSA Model 27

(a) Initial problem statement:

Detect︸ ︷︷ ︸
solver S

simple loop iterators︸ ︷︷ ︸
SSA constraint problem (V,C)

in the dot product function︸ ︷︷ ︸
SSA model Mdot

.

(b) Formulation as constraint problem:

S



SSA constraint problem

V = {phi,update,step}

C(M,x) = ((1,xstep) ∈CF ∧ (add,xupdate) ∈ IF ∧

(xphi,xupdate) ∈ DFG∗F ∧ (xstep,xupdate) ∈ DFG∗F ∧

(xupdate,xphi) ∈ DFG∗F ∧ (phi,xphi) ∈ IF)

SSA model

DFGF = {(1,1,11),(1,2,13),(1,3,4),(2,3,18),(1,4,5),(1,6,7),
(2,9,11),(2,9,13),(1,9,17),(1,10,16),(1,11,12),(1,12,15),
(1,13,14),(2,14,15),(2,15,16),(2,16,6),(2,16,10),(2,17,9),
(1,17,18),(1,18,19),(2,20,4),(1,20,9),(1,21,6),(1,21,10),
(2,22,17)}

CFGF = {(1,4,5),(1,5,6),(2,5,8),(1,6,7),(1,8,9),(1,9,10),
(1,10,11),(1,11,12),(1,12,13),(1,13,14),(1,14,15),
(1,15,16),(1,16,17),(1,17,18),(1,18,19),(1,19,6),(2,19,9)}

TF = {(double*,1),(double*,2), . . .}
PF = {1,2,3}
IF = {(icmp eq,4),(cond br,5),(phi,6),(ret,7),(br,8),(phi,9),

(phi,10),(gep,11),(load,12),(gep,13),(load,14),(fmul,15),
(fadd,16),(add,17),(icmp eq,18),(cond br,19)}

GF = {}
CF = {(0,20),(0,21),(1,22)}


(c) Resulting set of constraint solutions:

SMdot(V,C) = {{phi 7→ 9,update 7→ 17,step 7→ 22}} ⊂ NV

Figure 2.6: Detection of simple loop iterators is formulated as a constraint problem and applied
to the SSA model from Figure 2.5. A single solution corresponding to the C variable “i” is found.

28 Chapter 2. Constraint Programming on Static Single Assignment Code

2.4 Solving SSA Constraint Problems

The solver for SSA constraint problems should efficiently compute SM(V,C) for some concrete

SSA constraint problem (V,C) and SSA model M. This is a search problem: all values in NV

that satisfy C in the context M need to be identified.

The search space NV is infinitely large, but it can immediately be trimmed to only tuples

that have all values ≤ |val|. The case |V |> 50 is common in Chapters 4 to 6, and interesting

functions often have |val|> 100. The remaining search space therefore has > 10050 = 10100

elements. Brute-force search is unfeasible on such a large search space, even when assuming

that the direct evaluation of the predicate for any potential solution can be performed efficiently.

However, backtracking can be used to find partial solutions that are incrementally extended.

Definition 2.10: Backtracking Solution of Constraint Problems

Given an SSA constraint problem (V,C) and an enumeration of V = {v1, . . . ,v|V |}, any

collection (Bk)k=1...|V | of functions Bk : M ×Nk−1→P(N) is denoted a backtracking

solution of (V,C) if and only if the following is satisfied for all M ∈M ,x ∈ NV :

C(M,x) = 1 ⇐⇒ [xvk ∈ Bk(M, pk−1(x)) for all 1≤ k ≤ |V |] , (2.2)

where the projections pk : NV → Nk are defined by x 7→ (xv1 , . . .xvk) for all 0≤ k ≤ |V |.

Definition 2.10 defines the concept of a backtracking solution, but it does not show how

such a backtracking solution could be constructed. That is explained in the next section. The

concept is introduced in order to allow the definition of the backtracking search Algorithm 1,

which works as follows: The variable x iterates over Nn (n = |V |, identified with NV at line 7).

The variable k tracks the number of currently considered dimensions of this partial solution.

After the initialisation assignments at line 2, a single loop spans the remainder of the algorithm.

In each iteration, the algorithm tries to assign a valid value to the latest considered element in

the partial solution x (line 4). By convention, the minimum of the empty set is the symbol “∞”.

If this case occurs, the algorithm backtracks at lines 12–17. Otherwise, the solution is either

complete (lines 6–8), or the dimension k of the partial solution is increased at line 10, and the

algorithm continues by searching for the next element of x in the following iteration.

2.4.1 The Structure of SSA Constraint Problems

Basic construction rules for SSA constraint problems are the element-of constraint problem

in Definition 2.11, and the conjunction and disjunction constraint problems in Definition 2.12.

Definition 2.13 enables the composition of constraint problems that are not defined on the same

set of variables. The example in Figure 2.6 can be constructed with only these rules.

2.4. Solving SSA Constraint Problems 29

Algorithm 1 Backtracking algorithm

1: procedure DETECT(M,(Bk)k=1...n,(vk)k=1...n)
2: k← 1, x← (1, . . . ,1) ∈ Nn

3: while true do
4: xk← min{y ∈ Bk(M, pk−1(x)) | y≥ xk}
5: if xk < ∞ then
6: if k = n then
7: yield {vk 7→ xk}k=1...n ∈ NV

8: xk← xk +1
9: else

10: k← k+1
11: xk← 1
12: else
13: k← k−1
14: if k ≥ 1 then
15: xk← xk +1
16: else
17: exit

Definition 2.11: Element-of Constraint Problem

Given a set of tuples S(M) ⊂ NV that may depend on M ∈M (e.g. S(M) ≈ DFG∗F),

the element-of constraint problem (V,ES) is defined by

ES(M,x) =

{
1 if x ∈ S(M)

0 otherwise.

Definition 2.12: Conjunction and Disjunction Constraint Problems

Given SSA constraint problems (V,C) and (V,C′), the conjunction constraint problem

(V,C∧C′) and the disjunction constraint problem (V,C∨C′) are defined by

C∧C′(M,x) =

{
1 if C(M,x) = 1 ∧C′(M,x) = 1

0 otherwise

C∨C′(M,x) =

{
1 if C(M,x) = 1 ∨C′(M,x) = 1

0 otherwise.

Definition 2.13: Extension of a Constraint Problem

Given an SSA constraint problem (V,C) and an injection i : V ↪→W , the extension of

the constraint problem (W,CW) is defined by

CW (M,x) =C
(

M,
(
xi(v)

)
v∈V

)
.

30 Chapter 2. Constraint Programming on Static Single Assignment Code

Theorem 2.1: Backtracking Solution for Element-of Constraint Problems

For S(M) ⊂ NV , n = |V |, V = {v1, . . . ,vn}, the collection (Bk[ES])k=1...n of functions

Bk[ES] : M ×Nk−1→P(N) is a backtracking solution of (V,ES) when defined by

Bk[ES](M,x) = heads(Rk(M,x))

R1(M) = {pn(s) | s ∈ S(M)} ⊂ Nn

Rk+1(M,x) = select(xk,Rk(M,(x1, . . . ,xk−1)))⊂ Nn−k.

Proof: By definition, ES(M,x) = 1 ⇐⇒ x ∈ S(M) ⇐⇒ pn(x) ∈ R1(M).

It is also clear that for all 1 < k ≤ n holds

pn(x) ∈ {pn(s) | s ∈ S(M)} ⇐⇒ pn(x) ∈ {pn(s) | s ∈ S(M), pk−1(s) = pk−1(x)}.

For all 1 < k ≤ n, this gives

ES(M,x) = 1 =⇒ xvk ∈ {svk | s ∈ S(M), pk−1(s) = pk−1(x)}= Bk[ES](M, pk−1(x)).

This gives “ =⇒ ” for the equation in Definition 2.10. The reverse is true for k = n, as

xvn ∈ Bn[ES](M, pn−1(x)) = {svn | s ∈ S(M), pn−1(s) = pn−1(x)} =⇒ x ∈ S(M).

Therefore, the equivalence from Definition 2.10 holds in both directions.

Theorem 2.2: Backtracking Solution for Conjunction Constraint Problems

For SSA constraint problems (V,C) and (V,C′) with backtracking solutions (Bk)k=1...n,

(B′k)k=1...n, the collection (Bk[C∧C′])k=1...n of functions Bk[C∧C′] : M ×Nk−1→P(N)
is a backtracking solution of (V,C∧C′) when defined by

Bk[C∧C′](M,x) = Bk(M,x) ∩ B′k(M,x).

Proof: The definition of (V,C∧C′) together with the assumption that Definition 2.10

holds for the two given backtracking solutions gives

C∧C′(M,x) = 1 ⇐⇒ [xvk ∈ Bk(M, pk−1(x)) for all 1≤ k ≤ n]

∧
[
xvk ∈ B′k(M, pk−1(x)) for all 1≤ k ≤ n

]
.

With the definition of Bk[C∧C′], this immediately gives

C∧C′(M,x) = 1 ⇐⇒
[
xvk ∈ Bk[C∧C′](M,(xv1 , . . . ,xvk−1),xvk) for all 1≤ k ≤ n

]
.

2.4. Solving SSA Constraint Problems 31

Theorem 2.3: Backtracking Solution for Disjunction Constraint Problems

For SSA constraint problems (V,C) and (V,C′) with backtracking solutions (Bk)k=1...n,

(B′k)k=1...n, the collection (Bk[C∨C′])k=1...n of functions Bk[C∨C′] : M ×Nk−1→P(N)
is a backtracking solution of (V,C∨C′) when defined by

Bk[C∨C′](M,x) =

({
Bk(M,x) if Rk,1(M,x)

/0 otherwise

)
∪

({
B′k(M,x) if Rk,2(M,x)

/0 otherwise

)

R1(M) =

(
1

1

)
Rk+1(M,x,xk) =

(
Rk,1(M,x) ∧ xk ∈ Bk(M,x)

Rk,2(M,x) ∧ xk ∈ B′k(M,x)

)
.

Proof: The equivalence from Definition 2.10 holds for the backtracking solutions of

(V,C), (V,C′) by assumption. With C∨C′(M,x) = 1 ⇐⇒ C(M,x) = 1 ∨C′(M,x) = 1,

this gives

C∨C′(M,x) = 1 ⇐⇒ xvk ∈ Bk(M, pk−1(x)) for all 1≤ k ≤ n

∨ xvk ∈ B′k(M, pk−1(x)) for all 1≤ k ≤ n.

After expanding Rk, this directly corresponds to the definition of Bn[C∨C′]. Therefore

C∨C′(M,x) = 1 ⇐⇒ xvn ∈ Bn[C∨C′](M, pn−1(x)).

This is sufficient for the equivalence in Definition 2.10 to hold in both directions, as for

all 1≤ k ≤ n, the definition of Bk[C∨C′] with expanded Rk directly gives

xvn ∈ Bn[C∨C′](M, pn−1(x)) =⇒ xvk ∈ Bk[C∨C′](M, pk−1(x)).

Theorem 2.4: Backtracking Solution for Extensions of Constraint Problems

For an SSA constraint problem (V,C) with a backtracking solution (Bk)k=1...|V | and a

set W with an injection i : V ↪→W and an enumeration of W = {w1, . . . ,w|W |} that is

compatible with the enumeration of V such that i(vk)=wt(k) with some t :N→N strictly

increasing, the collection (Bk[CW])k=1...|W | of functions Bk[CW] : M ×Nk−1 →P(N)
is a backtracking solution of (V,CW) when defined by

Bk[CW](M,x) =

{
Bk
(
M,
(
xt(1), . . . ,xt(k′−1)

))
if k = t(k′) for some 1≤ k′ ≤ |V |

N otherwise
.

Proof: This follows immediately from Definition 2.10 and Definition 2.13.

32 Chapter 2. Constraint Programming on Static Single Assignment Code

Theorem 2.1 introduces backtracking solutions for element-of constraint problems. They

are constructed such that Bk[ES](M,x) = {yvk | y ∈ S(M),yv1 = x1, . . . ,yvk−1 = xk−1}. This is

optimal in the sense that the backtracking algorithm will only ever backtrack immediately after

yielding a result. In the theorem, the backtracking solution is not defined directly. Instead, it

uses a helper construct Rk. Section 2.4.3 derives an efficient implementation of Rk.

Theorem 2.2 introduces backtracking solutions for conjunction constraint problems. These

are constructed in an obvious way, by taking the intersection set of the underlying backtracking

solutions at each k. This is not possible for disjunction constraint problems, which are discussed

in Theorem 2.3. The additional structure Rk is used to keep track of whether the current partial

solution satisfies C or C′ so far (this was a given for conjunctions). The backtracking solution at

k is then the union only of those underlying backtracking solutions at k where the corresponding

element in Rk signals validity. Finally, Theorem 2.3 shows that backtracking solutions for

extensions of constraint problems can be constructed by skipping the additional variables.

2.4.2 Backtracking Example

Figure 2.7 demonstrates how backtracking can algorithmically determine the solution of the

SSA constraint problem that was introduced in Figure 2.6 for recognising simple loop iterators.

This SSA constraint problem is replicated at the top of the figure. Its construction follows the

rules in Definitions 2.11 to 2.13, using conjunctions of element-of constraint problems.

The bottom left part of the figure shows the backtracking solution of the SSA constraint

problem that is obtained by applying Theorems 2.1, 2.2 and 2.4. This construction, according to

the theorems, guarantees that the defining condition in Definition 2.10 holds for (Bk[C])k=1...3

and that Algorithm 1 can be applied. The construction of one element in the backtracking

solution is explained in detail as follows.

The condition (xupdate,xphi) ∈ DFG∗F corresponds to the element-of constraint problem ES

with S(M) = {x ∈ N{update,phi} | (xupdate,xphi) ∈ DFG∗F}. Following Theorem 2.1, this gives

v1 = phi v2 = update

R1(M) = rev(DFG∗F) R2(M,x1) = select(x1,rev(DFG∗F)).

Therefore, the backtracking solution is given by

B1[ES](M) = heads(rev(DFG∗F))

B2[ES](M,x1) = heads(select(x1,heads(rev(DFG∗F)))).

This backtracking solution for ES is extended to the entire set V using Theorem 2.4, yielding the

additional function B3[EV
S](M,x) =N. Finally, Theorem 2.2 embeds B1[SV

S] in B1[C] and B2[SV
S]

in B2[C] using set intersections with the other terms. The third term B3[EV
S] = N disappears in

the assembled backtracking solution, as the intersection with N is redundant.

2.4. Solving SSA Constraint Problems 33

Original SSA Constraint Problem

V = {phi,update,step}

C(M,x) = ((1,xstep) ∈CF ∧ (add,xupdate) ∈ IF ∧

(xphi,xupdate) ∈ DFG∗F ∧ (xstep,xupdate) ∈ DFG∗F ∧

(xupdate,xphi) ∈ DFG∗F ∧ (phi,xphi) ∈ IF)

Backtracking Solution:
k = 1 v1 = phi

B1[C](M) = heads(DFG∗F)

∩ heads(rev(DFG∗F))

∩ heads(select(phi, IF))

k = 2 v2 = update

B2[C](M,x) =

heads(select(add, IF))

∩ heads(select(x1,DFG∗F))

∩ heads(rev(DFG∗F))

∩ heads(select(x1,rev(DFG∗F)))

k = 3 v3 = step

B3[C](M,x) = select(1,CF)

∩ heads(select(x2,rev(DFG∗F)))

Backtracking Algorithm:
x = ()

B1[C](M) = {6,9,10}

↓ ↓ ↓
x = (6)

B2[C](M,6)

=

{}

backtrack!

x = (9)

B2[C](M,9)

=

{17}

↓

x = (10)

B2[C](M,10)

=

{}

backtrack!
x = (9,17)

B3[C](M,9,17) = {22}

↓
x = (9,17,22)

Figure 2.7: Backtracking is used to find the single solution of the SSA constraint problem for
simple loop iterators from Figure 2.6. The backtracking solution (Bk[C])k=1...3 is constructed with
Theorems 2.1, 2.2 and 2.4. The partial solution x is extended in three steps, from top to bottom.

34 Chapter 2. Constraint Programming on Static Single Assignment Code

The bottom right of the figure shows the backtracking algorithm applied to the SSA model

from Figure 2.5. Starting from the top with an empty partial solution, candidates for x1 are

determined, corresponding to the variable “phi”. There are three Φ-instructions in the SSA

model, all of which also satisfy the other conditions of being the source and destination of

some edge in the data flow graph. Therefore, the algorithm continues with the partial solutions

(6), (9) and (10) one level further down in the figure.

For k = 2, which corresponds to the variable “update”, the backtracking solution requires

x2 to form a data flow cycle with x1. This is expressed in the second and in the last line of

B2[C](M,x). Furthermore, the value x2 has to be an “add” instruction. The partial solution (6)

corresponds to a Φ-instruction that is not part of any data flow cycle. Therefore, the algorithm

backtracks. For the partial solution (10), the Φ-instruction is part of a data flow loop cycle with

the value 16, but that value is an “fadd” instruction. The partial solution (9), however, can be

extended according to the backtracking solution with the value 17. Therefore, the algorithm

only continues at the bottom of the figure with this one partial solution (9,17).

To complete this partial solution, B3[C] requires the value for the “step” variable to be a

constant of value 1. Furthermore, it needs to be used as an argument to x2, i.e. the “update”

variable. Both of these conditions hold for the value 22, yielding a complete solution.

2.4.3 Implementation, Data Structures and Complexity

With the explicit construction rules for backtracking solutions in Theorems 2.1 to 2.4, suitable

data structures can be identified in order to efficiently implement the backtracking algorithm.

This requires a slight extension of Algorithm 1 to provide suitable interfaces for computing the

supporting structures Rk from Theorems 2.1 and 2.3. Listing 2.1 shows how the backtracking

algorithm with those hooks is implemented as a C++ function. Most of the “solver” function

at lines 12–43 maps directly onto Algorithm 1 and needs no further explanation. However,

some crucial details need elaboration, mostly relating to the iteration over the backtracking

solution at line 4 of Algorithm 1.

The “BacktrackingPart” class provides a C++ interface for the individual functions Bk

in backtracking solutions as in Definition 2.10. Four member functions must be implemented.

The most important of them, “skip_invalid”, gives xk ← min{y ∈ Bk(M, pk−1(x)) | y ≥ xk}
from line 4 of Algorithm 1 via “B[k]->skip_invalid(x[k])”.

The other three member functions of “BacktrackingPart” manipulate shared state of

“BacktrackingPart” objects that together comprise a backtracking solution. This allows

computations that would otherwise have to be performed repeatedly by “skip_invalid”, to

be done ahead of time. More specifically, this corresponds to Rk in Theorems 2.1 and 2.4.

Crucially, this distribution of the computations allows all previously discussed types of SSA

constraint problems to be implemented efficiently with the “BacktrackingPart” interface.

2.4. Solving SSA Constraint Problems 35

1 // This class corresponds to Definition 2.10.
2 class BacktrackingPart {
3 public:
4 virtual SkipResult skip_invalid(unsigned& c) = 0;
5 virtual void begin() = 0;
6 virtual void fixate(unsigned c) = 0;
7 virtual void resume() = 0;
8 };
9

10 void yield(const vector<unsigned>& solution);
11

12 // This function corresponds to Algorithm 1.
13 void solver(vector<BacktrackingPart*> B) {
14 unsigned k = 0;
15 vector<unsigned> x(B.size(), 0);
16 while(true) {
17 SkipResult result = B[k]->skip_invalid(x[k]);
18 if(result == SkipResult::CHANGE) continue;
19 if(result != SkipResult::FAIL) {
20 if(k + 1 == B.size())
21 {
22 yield(x);
23 B[k]->resume();
24 x[k]++;
25 }
26 else {
27 B[k]->fixate(x[k]);
28 k++;
29 [k]->begin();
30 x[k] = 0;
31 }
32 }
33 else {
34 if(k > 0) {
35 k = k - 1;
36 B[k]->resume();
37 x[k] = x[k] + 1;
38 }
39 else
40 return;
41 }
42 }
43 }

Listing 2.1: Complete C++ implementation of Algorithm 1: The if-else statements at lines 19–41
precisely correspond to those at lines 5–17 of the algorithm. The “BacktrackingPart” objects
iterate over Bk[C](M,x) via the “skip_invalid” method. The remaining member function
calls at lines 23,27,29,36 precompute structures used in “skip_invalid” for quick evaluation.

36 Chapter 2. Constraint Programming on Static Single Assignment Code

2.4.3.1 Data Structures for Constraint Classes

Element-of constraint problems require the structures Rk. These can be implemented with

a tree, built around a sorted array of pairs, as shown with the definition of “Tree” on the first

line of the top section of Listing 2.2. Each subtree in the array corresponds to a potential Rk+1.

The instances of “BacktrackingPart” for this constraint keep an index (line 25) into the array

(line 3), which “begin” initialises (line 18). Each time “skip_invalid” is called, the index is

incremented until it either points to an entry ≥ the lower bound c or hits the end of the array

(lines 9–10). Finally, “resume” does nothing (line 22), and “fixate” simply accesses the array

at the current index for the subtree Rk+1 (lines 20–21).

Conjunction constraint problems are simpler to implement, as shown in the lower section

of Listing 2.2. The methods “begin”, “fixate”, and “resume” call the corresponding member

functions of the underlying BacktrackingPart objects (line 20), and “skip_invalid” checks

both of them with short-circuit evaluation in case of a “FAIL” result.

Disjunction constraints again require the structures Rk, consisting of an array of booleans,

with each element corresponding to an underlying constraint option. Calls to “skip_invalid”

are passed on to those underlying “BacktrackingPart” objects that are not disabled via Rk. If

any succeed, then the smallest resulting value among them is selected. The “fixate” function

determines Rk+1 with “skip_invalid”, disabling all of the underlying constraint options that

do not return “PASS”. The “begin”, “fixate” and “resume” member calls are additionally

passed on to all “BacktrackingPart” instances that are enabled in Rk.

2.4.3.2 Computational Complexity

The chosen data structures allow for efficient implementations of the individual functions that

are used to search for solutions. However, SSA constraint problems are a generalisation of the

subgraph isomorphism problem. Any subgraph can be specified using conjunctions of element-

of constraints, and the solver will search for these within any provided SSA model. Cook [34]

showed that this problem is NP-hard [35]. Therefore, the computational complexity has an

exponential worst case (in the number of variables) when evaluated in general.

The exponential worst case is no impediment in practice due to the particular use case of

SSA constraint problems. The nature of SSA constraint problems means that the same limited

set of formulas is repeatedly solved in the context of many different SSA models. Therefore,

it is viable to tune the formulas ahead of solving time to be efficiently solvable, in particular

by choosing a good order in which to iterate over the variables. For specific SSA constraint

problems, it can then be possible to make complexity assumptions.

2.4. Solving SSA Constraint Problems 37

1 struct Tree { vector<pair<int,Tree>> t; };
2 template<int n> // These are S(M) and (Rk(M,x))k=1...n in Theorem 2.1.
3 struct ElementOfShared { Tree S; array<Tree*,n> R; };
4

5 template<int n, int k>
6 class ElementOfPart : public BacktrackingPart {
7 public:
8 SkipResult skip_invalid(unsigned& c) override {
9 while(index < shared ->R[k]->t.size()

10 && c > shared ->R[k]->t[index].first) index++;
11 if(index == shared ->R[k]->t.size())
12 return SkipResult::FAIL;
13 if(shared ->R[k]->t[index].first == c)
14 return SkipResult::PASS;
15 c = shared ->R[k]->t[index].first;
16 return SkipResult::SUCCESS;
17 }
18 void begin() override { index = 0;
19 if(k == 0) shared ->R[k] = &shared ->S; }
20 void fixate(unsigned) override {
21 if(k < n) shared ->R[k+1] = &shared ->R[k][index]; }
22 void resume() override {}
23 private:
24 shared_ptr<ElementOfShared<n>> shared;
25 size_t index;
26 };

1 class ConjunctionPart : public BacktrackingPart {
2 public:
3 SkipResult skip_invalid(unsigned& c) {
4 SkipResult r1 = parts[0]->skip_invalid(c);
5 if(r1 == SkipResult::FAIL) return r1;
6 if(r1 == SkipResult::CHANGE) return r1;
7 SkipResult r2 = parts[1]->skip_invalid(c);
8 if(r2 == SkipResult::FAIL) return r2;
9 if(r2 != SkipResult::PASS)

10 return SkipResult::CHANGE;
11 return r1;
12 }
13 void begin() override {
14 for(auto part: parts) part ->begin(); }
15 void fixate(unsigned c) override {
16 for(auto part: parts) part ->fixate(c); }
17 void resume() override {
18 for(auto part: parts) part ->resume(); }
19 private:
20 array<shared_ptr<BacktrackingPart>,2> parts;
21 };

Listing 2.2: “BacktrackingPart” is implemented for element-of constraints and conjunction
constraints. The array “R” in “ElementOfShared” matches (Rk(M,x))k=1...n from Theorem 2.1.

38 Chapter 2. Constraint Programming on Static Single Assignment Code

2.4.4 Additional SSA Constraint Problems

Beyond Definitions 2.11 to 2.13, there are a number of supplementary construction rules for

SSA constraint problems that are used in this thesis. Firstly, there are simple SSA constraint

problems that operate directly on the integer values, without interpreting them as indices into

the value list of the SSA model. These are listed in Definition 2.14. The first two, ({a,b},C=)

and ({a,b},C 6=), enforce equality and inequality of the integer values, respectively. The third,

({a},Cunused), prevents the assignment of values from the SSA model to the variable. This is

convenient only in disjunctions, for parts of solutions that may be omitted. For example, an

offset may be optionally added when accessing an element in a structure. If the offset is not

present, the corresponding variable is unused in that constraint solution. The value Rval +1 is

the smallest integer that cannot be used as an index into the list of used values.

Generalised graph domination constraint problems as in Definition 2.15 are versatile tools

for analysing SSA models. The special case of |Orig| = |Dom| = |Dest| = 1, with xv for

the unique v ∈ Orig restricted to the control origin of the function, turns this definition into

the established control flow domination concept. However, the generalisation encompasses a

much larger set of interesting conditions. Importantly, generalised graph domination can also

be applied to data flow, which Chapter 5 uses for defining kernel functions with restricted

interfaces. In this interpretation, the set Dom represents an interface to the computation of the

values in Dest, when data flow can originate from all the values in Orig.

The backtracking solution of generalised graph domination constraint problems is brute-

force, meaning that Bn[DG] checks the condition as specified, and Bk[DG]≡N for all 1≤ k < n.

The checking of the condition in Bn[DG] is typically performed in O(|val|) time, making this

a computationally expensive constraint. The solver relies on this construction occurring only

in conjunctions with other, more restrictive constraints. In addition, special cases can also be

implemented as element-of constraint problems by pre-computing dominator trees.

Finally, collect-all constraint problems are introduced in Definition 2.16. Given a constraint

problem (V,C), the variables V are divided into two subsets. The collect-all constraint problem

identifies all possible solutions over one of the variable subsets, given that the other variable

subset is fixed. The parameter n gives an upper limit to the number of these solutions, which is

required to maintain a finite number of variables. Such collect-all constraint problems are used

to approximate logical quantifiers. This is discussed in more detail in Chapter 4.

In order to efficiently calculate a backtracking solution of collect-all constraint problems,

the enumeration of V 〈U,n〉 must satisfy the ordering u< (k,v) for all u∈U,k = 1 . . .n,v∈V \U .

For values in U , the backtracking solution is the same as for the underlying constraint (V,C).

Whenever a partial solution is determined for all variables in U , an invocation to the full solver

is performed that identifies all possible partial solutions over V \U . The remaining steps of the

backtracking solution merely enforce this pre-computed list of solutions.

2.4. Solving SSA Constraint Problems 39

Definition 2.14: Simple Integer Constraint Problems

The SSA constraint problems ({a,b},C=), ({a,b},C 6=), and ({a},Cunused) are given by

C=(M,x) = 1 ⇐⇒ xa = xb

C 6=(M,x) = 1 ⇐⇒ xa 6= xb

Cunused(M,x) = 1 ⇐⇒ xa = Rval +1.

Definition 2.15: Generalised Graph Domination Constraint Problem

Given a graph G(M) ⊂ N2, a set of variables V , a set of origins Orig ⊂ V , a set of

generalised dominators Dom ⊂ V , and a set of destinations Dest ⊂ V , the generalised

graph domination constraint problem (V,DG) is defined by

DG(M,x) = 1 ⇐⇒ (xv /∈ R∞(M,x) for all v ∈ Dest with Lval ≤ xv ≤ Rval),

where Rk(M,x)⊂ N, the set of vertices reachable in k steps, is defined as

R0(M,x) = {xv | v ∈ Orig}\{xv | v ∈ Dom}

Rk+1(M,x) = {b | (a,b) ∈ G(M),a ∈ Rk(M,x)}\{xv | v ∈ Dom}

R∞(M,x) =
⋃

∞
k=0 Rk(M,x).

Definition 2.16: Collect-all Constraint Problem

Given a set of variables V , a subset U ⊂V , and some n≥ 1, the set containing one copy

of each variable in U and n copies of each value in V \U is denoted

V 〈U,n〉 =U ∪ ({1, . . . ,n}× (V \U)).

For any r ∈ NU , the set of constraint solutions restricted to r in NU is defined as

SM(V,C)|r = {x ∈ SM(V,C) | xu = ru for all u ∈U}.

The functions fk : NV 〈U,n〉 →NV and g : NV 〈U,n〉 →NU are defined as selecting the values

for the kth copy of variables in V \U and directly projecting on NU .

For an SSA constraint problem (V,C), the collect-all constraint problem (V 〈U,n〉,C〈U,n〉)

is uniquely defined by the following conditions:

C〈U,n〉(M,x) = 1 ⇐⇒
∣∣SM(V,C)|g(x)

∣∣≤ n

∧
{

fk(x) | 1≤ k ≤
∣∣SM(V,C)|g(x)

∣∣}= SM(V,C)|g(x)
∧ fk(x)≡ Rval +1 for all k >

∣∣SM(V,C)|g(x)
∣∣

∧ pn(f1(x)), . . . , pn(fn(x)) are in lexicographic order.

40 Chapter 2. Constraint Programming on Static Single Assignment Code

2.4.5 Satifiability Modulo Theory

There are some parallels between SSA constraint problems and other satisfiability problems,

most importantly, Satisfiability Modulo Theory (SMT). Both methods construct formulas via

constraints on variables that are combined with logical connectors, and backtracking is in both

cases used as the basis for developing efficient solvers. This suggests that it could be possible to

recast SSA constraint problems in the language of SMT. Where typical SMT problems might

be formulated on the theory of linear arithmetic or the theory of bit-vectors, SSA constraint

problems would operate on the theory of SSA intermediate representation. Powerful solvers

have been developed for SMT problems over the last decade, making this appear worthwhile.

However, the structure and usage scenario of SSA constraint problems make them unfitting

for this approach. The contextual nature of SSA constraint problems means that the constraint

formulation in SMT would have to encode also the graph structure of the SSA function as

context. This encoding is non-trivial and would introduce significant overhead.

Furthermore, one SSA constraint problem is typically evaluated with many different SSA

function contexts, but an off-the-shelf SMT solver has no way of leveraging this knowledge.

SSA constraint problems are crafted by hand, and some manual tuning is acceptable to enable

quick solving times. In particular, the backtracking order for variables can be adjusted. Thus, it

is a requirement for the solver to have consistently good performance across all SSA function

contexts, but not necessarily across every possible constraint formula. Instead, it can dictate

specific programming styles. The solver relying on such pre-processed formulas makes most

of the sophisticated optimisations that are crucial for SMT redundant.

2.5 Summary

The chapter introduced an approach for applying constraint programming to SSA intermediate

representation code. Based on a mathematical characterisation of the static structure of SSA

functions, SSA constraint problems were defined. These are formulas that impose restrictions

on compiler intermediate code, turning the detection of adhering program parts into a constraint

satisfiability problem. The chapter derived efficient algorithms for solving such SSA constraint

problems and discussed several significant types of constraint formulas, reflecting compiler

analysis methods like data flow and dominator relationships.

Outlook Constraint programming on SSA intermediate representation forms the principal

methodological basis of this thesis. Chapters 4 and 5 refer back to the definitions in this chapter

for designing and implementing the languages CAnDL and IDL, which integrate constraint

programming on SSA code into LLVM. Preceding that, the following chapter provides a review

of related literature, putting the work into a broader context.

Chapter 3

Related Work

Four areas of research are of particular relevance to this thesis: Constraint programming

and specification languages are central to the introduced methodology. The relevant literature

includes the research into constraint programming in the context of program analysis and the

design of specification languages. The survey of previous approaches to compiler analysis and

auto-parallelisation establishes the baselines for the later evaluation sections. Related work

on heterogeneous computing motivates the proposed approaches, by presenting the plethora

of other programming paradigms to overcome the specific challenges of emerging hardware.

Lastly, the diverse research landscape around concepts related to computational idioms puts

the algorithmic structures that are detected in later chapters of this thesis into context.

3.1 Constraint Programming and Specification Languages

Declarative Languages, constraint programming, and the application of constraints to program

analysis problems are well-established in the literature. Previous work covers query languages,

logic programming, applications to software security and formal verification, model checking

and SMT, but also more compiler-centric data flow analysis and type inference problems. The

limited scope of this section requires a focus on work that is particularly relevant to this thesis.

For this research, constraint programming is most interesting within the context of research

fields such as program analysis and model checking. Crucial background material for this thesis

also comes from the programming language design community of declarative programming

languages. Prolog and its many extensions and dialects particularly stand out as fully fledged

logic programming languages, but parallels can also be drawn to querying languages that apply

database techniques to static analysis.

These different fields vary significantly in their interests, motivations, and approaches, but

the underlying challenges are often similar. Notably, the performance of backtracking solvers

and the scalability to complex problems are a recurring theme.

41

42 Chapter 3. Related Work

3.1.1 Constraint Programming for Program Analysis

Constraint analysis on abstract languages Constraint systems have long been used for

program analysis. Aiken [36] gives a comprehensive overview of earlier work, highlighting the

crucial ability of constraint-based program analysis to separate constraint specification from

constraint resolution. This separation is critical also for this thesis, as it enables the scalability

of compiler analysis problems beyond what could reasonably be implemented with manual

recognition routines. The constraint specification can be formulated briefly, by offloading the

constraint resolution to a separate solver. However, the article does not present any techniques

to capture higher-level algorithmic concepts like computational idioms. Instead, it focuses on

more basic compiler analysis problems, such as data flow analysis and type inference.

More recent work on constraint-based program analysis by Gulwani et al. [37] leverages

the advancements in modern off-the-shelf SAT/SMT solver technology. The analysis problems

are lowered to bit-vector formulations, and the constraint resolution is entirely externalised

to independently developed SMT solvers. The motivation of the approach is mainly to verify

program properties, as opposed to the application of parallelising code transformation in this

thesis. Furthermore, Section 2.4.5 showed that the confinement to conventional SMT solvers

is inefficient for the resolution of SSA constraint problems.

Kundu et al. [38] propose constraints to verify the correctness of program transformations

with their system for Parameterized Equivalence Checking (PEC). This system improves on

previous work performing translation validation. Translation validation is the validity checking

of transformations on concrete input programs by comparing the semantics before and after

modification. PEC implements a hybrid approach that allows some aspects of the program

to be underspecified, yet does not check the soundness of transformations in full generality.

The checking is done via a custom solver for the generated constraint problems. The hybrid

nature allows the system also to validate program transformations that significantly modify the

control flow, e.g. loop unswitching. The system cannot discover transformation opportunities,

only verify them after the transformation was applied.

Constraint analysis on compiler IR code There is previous work on using constraint-based

program analysis for real compiler intermediate representations, mostly in the area of security

and the formal verification of software systems. This includes investigations into using SMT

on LLVM intermediate representation, which is also used for the implementations in this thesis.

Zhao et al. [39] built a model of LLVM IR for such solvers. However, this model serves an

entirely different purpose to the SSA model of this thesis. The model provides operational

semantics, but cannot be used to detect large-scale algorithmic structures in user programs, as

is required for automatic heterogeneous acceleration. Instead, the focus is on formally verifying

the correctness of existing compiler transformations for all possible user input.

3.1. Constraint Programming and Specification Languages 43

Recent domain-specific languages, such as Alive [40], operate on subsets of LLVM IR.

The individual instructions are reformulated on bit-vectors, and the correctness of conditions

is checked with an SMT solver. Alive only implements a subset of LLVM’s integer and pointer

arithmetic instructions. It has no support for control flow and does not scale to the applications

that are used in this thesis for evaluation. Instead, it is designed for formally verifying already

existing compiler optimisations that operate on only a handful of integer instructions at a time.

Alive is meant to improve compilers, not user programs.

LifeJacket [41] proves the correctness of floating-point optimisations in LLVM, as does

Alive-FP [42]. Both of these projects are extensions of the SMT-based Alive system. They

extend the scope of the system to model a wider range of instructions as bit-vectors, enabling

the verification of more compiler optimisations. LifeJacket and Alive-FP were successfully

used to identify wrongly implemented optimising transformations in compilers. Nonetheless,

the fundamental limitations of Alive remain, and control flow is not supported. Therefore, only

peephole optimisations can be evaluated by these approaches.

The Alive-Infer system [43] also builds on Alive but goes beyond the verification of existing

compiler optimisations. The tool uses an SMT solver to automatically generate preconditions

that need to hold for transformations to be applied. This moves the Alive system away from

verifying optimisations and closer to automatically detecting algorithmic structure in parts

of user programs. However, Alive-Infer still requires the separate specification of the actual

transformation. It only generates additional conditions and does not handle control flow.

Constraint analysis on other program models Other advanced approaches to extracting

high-level code structures from programs that use constraints and verification systems have

been proposed. Mendis et al. [44], Kamil et al. [45] suggest temporal logic as the foundation to

formulate the necessary conditions for rephrasing well-structured Fortran and assembly code

in restrictive models. These techniques leverage counter-example guided inductive synthesis

to find provably correct translations into the high-level Halide language. The Halide compiler

specialises the code again, exploring the optimisation space via powerful transformations that

are enabled by its restrictive semantics. The focus is on a small class of computations with only

dense memory accesses. This allows formal reasoning about correctness but is too restrictive

for interesting computational idioms, such as sparse linear algebra.

Mullen et al. [46] study low-level program transformations that are implemented for the

formally verified CompCert compiler [47], directly on x86 assembly. Instead of an automatic

verification after modelling optimisations as SMT problems, the presented Peek system was

checked with the interactive theorem prover Coq. This required approximately 30000 lines of

manually written Coq code and proof lines. Some of the transformations consider rudimentary

control flow constraints, but they cannot scale to computational idioms.

44 Chapter 3. Related Work

3.1.2 Declarative Programming Languages for Program Analysis

Languages for querying program properties From the perspective of language design, the

declarative programming languages Prolog and SQL are perhaps most influential. The two

languages differ fundamentally. Prolog (“programmation en logique”) is a logic programming

language that originated in academia for analysing natural language [48]. By contrast, SQL

(“Structured Query Language”) was developed at IBM for managing data in relational database

management systems [49]. Nonetheless, specification languages for structures in program code

have been designed taking inspiration from both backgrounds.

The first such specification language was the Omega system by Linton [50]. It uses a

relational database to store all the relevant properties of a program. The captured information

is based on the abstract syntax tree of programs that are implemented in a subset of the Ada

programming language. Additional edges are inserted to connect shared variables of successive

expressions, given some indication of data flow between instructions. The system then allows

database-style queries formulated in QUEL [51], an SQL-style language.

The CodeQuest system [52] first combined the ideas of Omega and its database-oriented

successors with the use of logic programming. The queries are translated into Datalog, a Prolog

derivative that is implemented on top of SQL. This allows CodeQuest to be fundamentally

more expressive, allowing recursive queries that are required for meaningful CFG inspection.

Nevertheless, the approach is based on querying for source language features. This makes the

detection of large-scale algorithmic structures in complex programming languages such as C++

infeasible, as demonstrated in Section 6.4.

Languages for generating compiler passes Custom specification languages for generating

compiler analysis and transformation passes have been presented in the literature. Martin [53]

introduced a specification language for program analysis functionality called PAG, based on

abstract interpretation. The generated functionality was integrated into C and Fortran compilers

via a well-specified interface and applied successfully to real benchmark codes. However, the

tool is focused on relatively simple compiler optimisations such as constant propagation.

Domain-specific languages for compiler transformation passes were also studied by Olmos

and Visser [54]. The proposed Stratego system uses rewrite rules to apply tree transformations

to the abstract syntax tree of source programs. However, this was only evaluated on the Octave

language, and the general applicability on large-scale programs remains unclear.

Lipps et al. [55] designed the domain-specific language OPTRAN for matching patterns

in attributed abstract syntax trees of Pascal programs. Semantically equivalent, more efficient

implementations can then automatically replace the matching code patterns. With the focus on

Pascal, it remains unclear how the proposed concepts translate to the complex C++ programs

with pointer calculations that were used for the evaluation of this thesis.

3.2. Compiler Analysis and Auto-Parallelisation 45

Another language for implementing compiler optimisations from declarative specifications

is OPTIMIX [56, 57]. Similarly to the presented work in Chapter 4, OPTIMIX emphasises

developer productivity. The system is based on graph rewrite rules. OPTIMIX programs

are compiled into C code that performs the specified transformation. Such a domain-specific

language for the generation of optimisation transformations was also used in the CoSy compiler

[58]. Both OPTIMIX and the CoSy method are simple rewrite engines that have no knowledge

of global program constraints.

Different code transformation techniques use LibASTMatchers and LibTooling [59] from

the LLVM project. These tools do not provide a complete standalone language but are instead

implemented in C++ as an embedded domain-specific language for pattern matching, relying

heavily on other LLVM libraries. The approach is deeply integrated with the Clang compiler

and exposes the abstract syntax tree (AST) of the compiler frontend directly. There are more

than a thousand separate classes that implement types of AST nodes in Clang, introducing

considerable complexity for any non-trivial pattern. Therefore, this is an entirely impractical

approach for detecting complex algorithmic structures such as computational idioms.

Willcock et al. [60] designed a complex system for generating generic optimisation passes

using concepts from generic programming. However, such schemes do not work at the IR level

of established compiler frameworks. Instead, they require program rewrites by the user.

Whitfield and Soffa [61] praise Gospel, their framework and specification scripture for

the exploration of the properties of code-improving transformations. The project furthermore

includes the Genesis tool, which automatically generates transformers as specified in Gospel.

Several standard optimisations were implemented with Gospel and Genesis, such as constant

folding and common subexpression elimination. Similar approaches to generating compiler

optimisations from specification languages include Rhodium [62]. The language expresses

optimisations using explicit data flow facts, which are manipulated by local propagation and

transformation rules. The transformations are applied to a custom intermediate language and

can be proven correct with a theorem prover. Neither Gospel nor Rhodium provides means to

tackle the issue of efficiently enabling large-scale program transformations.

3.2 Compiler Analysis and Auto-Parallelisation

The core motivation for the work in this thesis is the automatic heterogeneous parallelisation

of sequential code. The derived methods are evaluated on two metrics: how broadly they apply

to real code, and how significant their performance impact is when applied. These metrics are

evaluated against other compiler analysis and parallelisation approaches. This section focuses

on three areas of the vast research landscape that are particularly relevant for this: polyhedral

compilation, the parallelisation of reductions, and dynamic approaches.

46 Chapter 3. Related Work

3.2.1 Compilation with the Polyhedral Model

The polyhedral model [27] is an established mathematical framework for modelling, analysing,

and transforming well-behaved loop nests. Iterations in loop nests are treated as lattice points

in a multi-dimensional grid. The iteration space can then be transformed with affine maps,

potentially uncovering new parallelisation opportunities. This basic approach has been applied

extensively in compilers. Furthermore, the required conditions have been relaxed in different

ways, allowing the application of the approach to more input code.

Polly in LLVM Polyhedral optimisers have been integrated into mainstream C/C++ compilers.

Most notably, Grosser et al. [26] implemented the Polly extensions for LLVM. Polly recognises

parts of LLVM IR that are expressible in the polyhedral model and transforms them into that

representation. Polyhedral optimisations can then be applied with PLuTo [63] before the model

is translated back into optimised LLVM IR for further treatment by the core compiler. This

enables the seamless application of polyhedral techniques on large-scale applications without

source code changes via the many frontends of the LLVM infrastructure. However, this impacts

only code that the tool can translate into a polyhedral representation.

Polly-ACC [64] is an extension of the Polly compiler that provides code generation for

heterogeneous hardware. The tool uses the recognition functionality of standard Polly to detect

code sections in LLVM IR that can be represented in the polyhedral model. These code sections

are optimised with established polyhedral transformation techniques from Grosser et al. [26].

The optimised polyhedral code sections are then translated into CUDA code to be executed

on the GPU. This results in significant speedups of some benchmark programs, but the impact

remains limited to code that fits the polyhedral model.

Doerfert et al. [30] extended the applicability of polyhedral transformations within the Polly

compiler to a broader set of input programs. Dependencies between iterations that originate

from reduction variables cannot be eliminated with affine transformations. Therefore, they

prohibit DOALL parallelism in a way that standard Polly is unable to resolve. By contrast, the

reduction-enabled scheduling approach for Polly can parallelise such loop despite the reduction

dependencies. This ability significantly improved the achieved speedup of Polly on benchmark

programs that contain reductions.

Doerfert et al. [65] also investigated another method for widening the scope of polyhedral

code transformations. This approach allows some conditions that are required for the legal

application of transformations to remain unproven at compile time. These conditions are then

checked at runtime, providing a fallback to the original code when assumptions are not met.

The checks that this work allows to be delayed include the absence of aliasing, finite loop

boundaries, and in-bounds memory accesses. This enabled Polly to cover 3.9× as many loops

in the SPEC and NPB benchmarks at a negligible runtime overhead.

3.2. Compiler Analysis and Auto-Parallelisation 47

Other tools with automatic detection The Polyhedral Parallel Code Generator (PPCG) [66]

is a source-to-source compiler that takes sequential C programs and generates optimised CUDA

kernels to target GPU acceleration. The extraction of polyhedral code sections from the C input

is based on the Polyhedral Extraction Tool [67]. This extraction system can automatically

detect relevant code regions, but it is implemented on syntax level and relies on purpose-built

C code with all arrays declared in variable-length C99 array syntax. This is not robust enough

to reliably cover larger programs from benchmark collections such as NPB or Parboil, which

are used for evaluation in this thesis.

C-to-CUDA [68] is another compiler that offers heterogeneous acceleration of sequential

C code by representing it in the polyhedral model. However, the focus is on code generation

and the application of optimising transformations. The automatic recognition in the abstract

syntax tree of parallel loops that can be represented in the polyhedral model remains ad-hoc

and handles only a small set of benchmarks.

Increased applicability of polyhedral transformations Recent work by Baghdadi et al. [69]

has extended the polyhedral model beyond affine programs to some forms of sparsity. This is

implemented in the Platform-Neutral Compute Intermediate Language, which is intended for

heterogeneous systems and provides backends for accelerator programming. The platform

provides extensions that can be used to model important features of sparse linear algebra, such

as counted loops [70]. Such loops have dynamic, memory dependent bounds but statically

known strides and are central to sparse linear algebra.

Tiramisu [71] is a polyhedral framework for targeting heterogeneous hardware, providing

backends for CPUs, GPUs, distributed architectures, and FPGAs. Optimisations are performed

on four layers of intermediate representation, resulting in performance that almost matches

dedicated library functions. However, the tool does not detect polyhedral code sections within

existing source code. Instead, it requires the programmer to implement the algorithms manually

with a dedicated C++ API.

Zhang et al. [72] studied the extension of polyhedral approaches to allow the capturing

of some sparse linear algebra calculations in the polyhedral model. The article introduces a

novel non-affine split transformation for this purpose. Using the inspector-executor model, the

approach achieved significant speedups when evaluated on some benchmark programs. The

research does not address the automatic recognition of sparse linear algebra routines within

existing programs. Besides, the approach was not evaluated against state-of-the-art library

implementations such as Intel MKL and cuSPARSE.

Many approaches have been proposed for parallelising loop nests with reduction variables

in the polyhedral model, among them Jouvelot and Dehbonei [73], Redon and Feautrier [74],

Chi-Chung et al. [75], Gupta and Rajopadhye [76], Stock et al. [77].

48 Chapter 3. Related Work

3.2.2 Reduction Parallelism

Discovering and exploiting scalar reductions in programs has been studied for many years

based on dependence analysis and idiom detection. Early work by Pottenger and Eigenmann

[78], Suganuma et al. [79], Fisher and Ghuloum [80] focused on well-structured Fortran code

and often paid little attention to robust detection in more complex programs. Rauchwerger

and Padua [81] went beyond previous static approaches and developed a dynamic test to

speculatively exploit reduction parallelism. Work by Gutiérrez et al. [82, 83, 84] has focused on

the exploitation of reductions rather than discovery. Approaches to heterogeneous acceleration

examined trade-offs in implementation [85] or exploitation of novel hardware [86, 87].

The treatment of more general reduction operations has received less attention. Das and

Peng Wu [88] used dynamic profile analysis to guide manual analysis and show there is

potential for finding generalised reductions. Kim [89] explored the use of dynamic analysis

further but states in the article that detecting reductions on arrays remains challenging.

The difficulty in automatically detecting reductions has led to languages and annotation-

based approaches, where it is the responsibility of the user to mark reductions in the program.

Such a system was proposed by Deitz et al. [90]. Chandan Reddy and Cohen [91] also describe

an annotation approach, based on the Platform-Neutral Compute Intermediate Language [69],

incorporating the PPCG code generator to generate CUDA and OpenCL code for multiple

computing platforms.

There has also been recent work extending on Rauchwerger and Padua [81] with more

aggressive speculation and dynamic analysis [92] to exploit reduction parallelism. Han et al.

[93] explain an approach for the parallelisation of a wide class of scalar reductions. They start

from the observation that many reductions in real benchmark programs are not detected by

current static analysis approaches. They propose a hardware-assisted speculative parallelisation

approach for likely runtime reductions, denoted “partial reduction variables”. Candidates for

speculative parallelisation are determined by searching for update-chains in the data flow graph.

The approach was evaluated on some of the SPEC2000 benchmarks with a simulator. They

achieve up to 46% speedup by including speculative reductions, but this approach requires

hardware speculation support. Despite the hardware support, the system is unable to detect

histogram reductions.

Privateer [94] is a complex system featuring combined compiler and runtime support to

enable speculative parallelisation. The core approach is the privatisation of memory for each

thread and an exception mechanism with recovery routines for accesses that violate parallelism.

The authors explicitly allow for reduction parallelism involving only a single scalar associative

and commutative operator. The evaluation only covered a set of five benchmark programs but

yielded a geometric mean speedup of 11.4× on a 24-core machine. The runtime overhead was

up to >50%. Despite this complexity, the approach only exploits simple scalar reductions.

3.2. Compiler Analysis and Auto-Parallelisation 49

3.2.3 Dynamic Analysis Approaches

There is an extensive body of work on complementing static analysis with profiling information

from test runs. Other research uses runtime checks for unproven assumptions to allow unsound

reasoning at compile time. Furthermore, functional mapping to heterogeneous systems with

compilers has been combined with machine learning decision making at runtime for selecting

the appropriate computing hardware to execute a given piece of code.

Tournavitis et al. [95] characterised the significant weaknesses of established static data

dependence analysis techniques. Profile-driven parallelism detection and machine learning-

based mapping approaches are suggested in order to improve on the state-of-art parallelising

compilers. Wang et al. [96] implemented a system that automatically discovers parallelism

based on profile-driven parallelism detection. The approach improves significantly over purely

static approaches by replacing the traditional target-specific and inflexible mapping heuristics

with a prediction mechanism that uses machine learning. The model is trained via an offline

supervised learning scheme, using both static and dynamic features, such as cache miss rates

and branch miss prediction rate. Dynamic approaches can eliminate spurious dependencies and

profitability models based on powerful machine learning techniques greatly improve on simple

heuristics. Nonetheless, such an approach cannot match the potential of domain-specific library

backends and requires significant manual tuning effort.

Manilov et al. [97] present a dynamic approach to detecting a wide class of iterators using

dynamic profiling data. The recognised iterators describe the traversal of data structures that

are difficult to capture with traditional static techniques. This is an essential prerequisite for

implementing compiler parallelisation approaches to pointer-based data structures. However,

the approach only captures a small, if crucial, part of the calculations, and does not extend to

full computational idioms such as sparse linear algebra.

Wen and O’Boyle [98] implemented a runtime framework for scheduling OpenCL kernels

on a heterogeneous CPU/GPU system, improving on a previous approach by Wen et al. [99].

The presented machine learning-based predictive model decides at runtime whether kernels

are merged or executed separately on appropriate devices. However, such a system can only be

applied when the functional translation to accelerators is available. This is not the case for the

sequential C code that this thesis is evaluated on. Moreover, the approach improves OpenCL

performance but does not consider the impact of library backends, which often significantly

outperform generic OpenCL implementations on appropriate tasks.

Ogilvie et al. [100] propose a system for performance prediction on heterogeneous systems

that is based on active learning. This significantly reduces the tuning that is required for

machine learning-based scheduling algorithms on CPU/GPU systems. This approach still

requires the availability of functional mapping to heterogeneous devices, and cannot work on

unchanged sequential C/C++ inputs.

50 Chapter 3. Related Work

3.3 Heterogeneous Computing

Heterogeneous computing has been a particularly active field of research since the widespread

adoption of GPUs for general-purpose computations during the last decade. This field includes

research from both software and hardware perspectives. The hardware research investigates

the most promising directions of diversification for processors in heterogeneous systems [101].

However, the related work in the context of this research is from the software perspective.

This section focuses on the different programming approaches that have been championed for

targeting existing heterogeneous accelerators. These methods broadly fall into two categories:

library approaches and domain-specific languages.

3.3.1 Libraries

Library interfaces are often the most performant path to exploiting heterogeneous computing.

However, they provide narrow interfaces, accelerating only very particular computations. The

established way of encapsulating fast linear algebra is via dedicated library implementations

based on the BLAS interfaces [12]. Leading BLAS implementations are unmatched in speed

on their target hardware platforms, but require application programmer effort and offer little

portability. Implementations of dense linear algebra are available for many hardware platforms,

such as cuBLAS [15] for NVIDIA GPUs, clBLAS [16] for AMD GPUs, and MKL [14] for

Intel CPUs and accelerators.

While most individual library implementations focus on a single target hardware platform,

some BLAS implementations attempt cross-platform acceleration and heterogeneity. Among

them are systems by Wang et al. [102], Moreton-Fernandez et al. [103, 104].

Dense linear algebra is the best-supported class of calculations. Besides, implementations

of sparse linear algebra also exist for the most important platforms, including cuSPARSE [105]

for NVIDIA GPUs and clSPARSE [106] built on top of OpenCL.

More expressive computational idioms, such as reductions and stencils, are not suitable for

library implementation. These idioms are parameterised with kernel functions, which could be

implemented as callbacks but prevent a direct execution on heterogeneous hardware. Instead,

domain-specific languages provide the appropriate abstraction level for these computations.

CPU-GPU data transfer optimisations Library implementations often require the manual

management of CPU-GPU data transfers. These transfers have been studied extensively as

bottlenecks for parallelisation efforts. Work by Jablin et al. [107] established a method for the

automatic management of CPU-GPU communication. Similarly, Lee et al. [108] implemented

a system to optimising data transfers using data flow analysis, although this was in the context

of moving OpenMP code to GPUs.

3.3. Heterogeneous Computing 51

3.3.2 Domain-Specific Languages

Many domain-specific languages have been proposed for the efficient and easy programming

of heterogeneous systems. They allow implementers to restrict the compiler and runtime away

from general-purpose programming concepts that are difficult to support on specific hardware.

Domain-specific languages can be standalone with an entire toolchain and runtime ecosystem

or be embedded in existing languages. Python and Scala are popular host languages for DSLs.

DSLs range in complexity from only marginally more flexible than library interfaces to fully

fledged programming languages such as OpenCL and CUDA.

Functional languages Lift [109] provides composable constructs that enable the functional

implementation of data-parallel algorithms and operations. The language is especially suitable

for dense linear algebra applications [110] and stencil codes [111], but extensions to support

some forms of sparsity exist as well [112]. Lift performs optimisations by applying functional

rewrite rules. This extensible set of rewrite rules allows the compiler to explore a vast space of

possible program transformations. However, selecting the best of these many versions requires

guidance from profiling runs. These profiling runs can be computationally expensive, taking

approximately one day for the evaluation of a sufficient number of variants for tuning the

matrix multiplication kernel [110]. Such user effort can be prohibitive but promises highly

tuned OpenCL outputs.

There exist multiple other functional approaches to generating code for heterogeneous

hardware. Among them, Chakravarty et al. [113], McDonell et al. [114] propose Accelerate,

a domain-specific language that is embedded in Haskell. Accelerate applies sharing recovery

and loop fusion optimisations to generates efficient GPU code. Many of these techniques

target particular challenges that arise from the untypical nature of Haskell, especially the

methods for interfacing heterogeneous accelerators from a lazily evaluated environment. This

makes Accelerate unsuitable for evaluation in this thesis, which focuses on benchmarks that

are provided as C/C++ programs.

Copperhead [115], is a data-parallel language embedded in Python. It exposes parallelism

via higher-order functions such as map, gather, and reduce. However, Copperhead is unable

to compile the formulated programs into standalone binaries, leaving the programs integrated

tightly with the Python environment. This integration makes interfacing with C/C++ nontrivial

and is unsuitable for the acceleration of existing benchmarks.

Collins et al. [116] introduced NOVA, a functional language targeted at code generation for

GPUs. The evaluation showed comparable performance to dedicated library implementations

on several important applications, including sparse matrix-vector multiplication. However, the

work is highly focused on the generation of CUDA code and does not provide an OpenCL

backend, which is crucial for evaluation on GPUs of multiple vendors.

52 Chapter 3. Related Work

Intermediate languages Delite [117] was presented as an intermediate representation that

facilitates the rapid construction of domain-specific languages. The provided infrastructure

targets heterogeneous platforms, with backends available for OpenMP, CUDA, and even MPI

for cluster computing. Delite-based DSLs are proposed for machine learning, data querying,

graph analysis, and scientific computing. However, the Delite approach is tightly integrated

with the Scala language and does not offer a readily available end-to-end solution.

Halide, as proposed by Ragan-Kelley et al. [118] was designed for image processing, but is

flexible enough also to allow the formulation of matrix multiplication and other computations.

Suriana et al. [119] demonstrated that this extends to reduction computations as well. Halide’s

core design decision is the scheduling model, which allows the separation of the computation

schedule and the actual computation. There has been follow-up work on automatically tuning

the schedules, e.g. Mullapudi et al. [120], but by default, the burden of implementing efficient

schedules is put on the application programmer.

Embedded languages Milk [121] is a pragma-based domain-specific language to annotate

indirect memory accesses in C++. The approach is inspired by OpenMP and supported by

modified versions of Clang and LLVM. This allows low-level optimisations that are particularly

applicable to sparse linear algebra. The authors report performance gains of up to 3x, but the

approach is unable to utilise the much greater potential of heterogeneous compute and requires

detailed programmer intervention.

Other approaches Spatial [122] is a domain-specific language for high-level descriptions of

application accelerators. It provides hardware-centric abstractions but also takes programmer

productivity into consideration. The language does not target the established heterogeneous

CPU-GPU systems. Instead, the focus is on Field Programmable Gate Arrays (FPGAs) and

Coarse Grain Reconfigurable Architectures (CGRAs). This makes it unfit for comparative

evaluation with the methods proposed in this thesis.

There have been multiple domain-specific libraries proposed specifically for linear algebra

computations. Spampinato and Püschel [123, 124] introduced and extended the high-level

LGen language, based on standard mathematical notation. The implemented routines are

optimised with an autotuning compiler, exploring many transformations such as tiling, loop

fusion, and vectorisation. The tool improves over Intel MKL on specific small-scale matrices

but is unable to generate code for GPUs.

Recent research has highlighted the challenge of generating code that performs well across

different heterogeneous hardware architectures. The PetaBricks language [125, 126] was one

of the first to address this performance portability challenge by encoding algorithmic choices,

which are empirically evaluated and decided on by the compiler. Similarly, Muralidharan et al.

[127] explored the automatic selection of code variants using machine learning.

3.4. Computational Idioms 53

3.4 Computational Idioms

Notions that recognise the existence of computational idioms are known in several disciplines.

The core observation is that existing software is not distributed evenly in the space of possible

programs. Instead, programs tend to be clustered around design principles. Interestingly, this

appears true in particular for performance-intensive programs and bottleneck computations.

The concrete concepts are partially overlapping and sometimes vague. In the discipline of

software engineering, software design patterns describe program components as specialising

implementations of a class of standard approaches.

Terms such as map and reduce, stencil code, and linear algebra are commonly used when

designing libraries and domain-specific languages. Scientific computing is mostly concerned

with the architectural implications of specific memory access patterns that are intrinsic to the

choice of certain algorithmic approaches.

This section attempts to demarcate a meaningful conception of the term computational

idiom by comparison with the existing literature of different domains with related concepts.

3.4.1 Higher-Order Functions

Many functional programming languages, such as OCaml and Haskell, encapsulate high-level

algorithmic choices and common programming patterns as higher-order functions [128]. These

are functions that are parameterised with other functions. Examples of higher-order functions

are map, which applies a function to each element in a data structure, and fold / reduce, which

accumulates the elements in a data structure with a reduction operator.

Many computational workloads can be expressed as instances of higher-order functions.

For example, the popularity of the MapReduce framework [129] stems from the observation

that many big data workloads exhibit characteristics that can be expressed efficiently with

combinations of map and reduce. The framework provides an idiomatic approach to the

development of big data applications, enabling shorter development times and more predictable

performance.

The use of computational idioms for automatic heterogeneous acceleration requires a more

restrictive view of types than what is common in functional programming languages. For

example, the reduce operator allows the implementation of the insertion sort algorithm, as well

as a simple sum over an array of floating-point values. These two algorithms do not share

parallelisation opportunities. Therefore, the detection of reduce-instances is insufficient for

enabling compiler parallelisation approaches. However, more restrictive versions of reduce

are suitable for compiler detection. Chapter 5 studies the class of Complex Reduction and

Histogram Computations, which is formulated as a computational idiom. This restricted class

of reduce-calculations shares a common parallelisation approach.

54 Chapter 3. Related Work

3.4.2 Berkeley Parallel Dwarfs

The Berkeley Dwarfs are a collection of 13 computational methods that together comprise

a large portion of the most common parallel computing workloads [130]. Each Dwarf is a

computational pattern that appears in many such applications. The authors observed that these

Dwarfs have persisted fundamentally unchanged for many years, even as concrete applications

were repeatedly supplanted. The Dwarfs are informed by numerical computations that arise

in the scientific computing community, but the authors suggest that the experience from this

domain may prove useful in other areas as well.

The Berkeley Dwarfs were studied from the perspective of architecture requirements, not

with automatic compiler recognition in mind. Therefore, some of the dwarfs are specified too

broadly for use as computational idioms in this paper. However, dense linear algebra, sparse

linear algebra, and structured grid computations (stencils) are essential idioms in Chapter 6.

3.4.3 Algorithmic Skeletons

Another abstraction that is related to computational idioms as used in this thesis is the notion

of algorithmic skeletons [131]. This concept was introduced to classify the behaviour of

parallel programs according to their organisation of workload distribution among threads.

The motivation behind this classification was to enable the introduction of new, higher-level

programming models and tools for parallel programming. The higher-order functions from

functional programming were a major inspiration, observing a lack of similar abstractions on

more mainstream programming languages. Among the established algorithmic skeletons are

“Fixed Degree Divide & Conquer” and “Task Queue”.

The concept of algorithmic skeletons has been used to implement many programming

frameworks and libraries. The eSkel library was sketched on top of C and MPI by Cole [132],

providing a higher-level programming model based on algorithmic skeletons. Skandium [133]

is a parallel skeleton library that targets multi-core architectures. Eden [134] provides skeletons

for parallel programming in Haskell. SkelCL [135] provides implementations of algorithmic

skeletons that target GPUs via CUDA. This is implemented in C++, providing versions of

higher-order functions such as map, reduce, and zip as templates. Finally, the Thread Building

Blocks (TBB) library [136] was inspired by algorithmic skeletons.

The definitions for Algorithmic Skeletons are not specified formally to enable automated

reasoning. They were instead drafted for human understanding and to guide the design of

libraries and DSLs. This abstraction level is similar to the Berkley Dwarfs. The algorithmic

skeletons were, however, heavily inspired by higher-order functions and similarly describe the

algorithmic structure of computations. This distinguishes them from the Berkeley Dwarfs,

which are more focused on mathematical domains and architectural requirements.

Chapter 4

The Compiler Analysis Description

Language*

Chapter 2 derived an approach for constraint programming on Static Single Assignment (SSA)

compiler intermediate representation. This chapter develops a novel domain-specific constraint

programming language based on that methodology and presents an implementation within the

production-quality LLVM compiler infrastructure.

In the first sections, the design of the Compiler Analysis Description Language (CAnDL) is

motivated as an approach for simplifying the implementation of LLVM transformation passes.

Optimising compilers have to use elaborate program transformations to exploit increasingly

complex hardware. Implementing the required analysis functionality for such optimisations to

be safely applied is a time-consuming and error-prone activity. This is a barrier to the rapid

prototyping and evaluation of innovative new compiler optimisations. CAnDL automatically

generates such compiler analysis functionality from constraint specifications.

The individual language constructs are introduced with their syntax and functionality in

the third section of this chapter. The first introduced language features directly expose parts

of the underlying SSA model from Chapter 2. Building on that, CAnDL provides higher-level

constructs that allow for modularity in specifications and the reduction of repetitive constraints.

Using these higher-level constructs, a collection of CAnDL specifications of standard compiler

concepts is introduced as the CAnDL standard library. This collection of common building

blocks includes single-entry single-exit regions, loops, and array-based memory accesses.

Finally, several case studies are presented for the experimental evaluation of CAnDL. They

show that CAnDL scales to a wide range of compiler analysis tasks. These tasks range from

the detection of peephole optimisation opportunities, over graphics shader optimisations, to

fully capturing Static Control Parts (SCoPs) for polyhedral code analysis. All of them can be

expressed more succinctly in CAnDL than with previous approaches.

*This chapter is based on published research: Ginsbach et al. [1].

55

56 Chapter 4. The Compiler Analysis Description Language

4.1 Introduction

Compilers are intricate pieces of software responsible for the generation of efficient code. They

transform input source code through several compilation stages, resulting in a binary program.

In order to generate fast programs, state-of-the-art compilers rely on an elaborate middle end.

At this stage, the user code is typically expressed in an SSA intermediate representation, and

improved by successively applying a wide range of optimisations.

Most compiler optimisations require two steps: analysis and transformation. First, analysis

routines find sections in user programs that enable the application of specific transformations.

They further verify the necessary conditions to ensure the transformation can be applied legally

without changing the program semantics. It is crucial that optimisations retain the semantics of

the original program, as otherwise the resulting binary might be corrupted. Transformations are

then applied to the analysis results in a second step. This often involves heuristic cost models

to gauge the effect on runtime, code size, and other metrics.

The complexity of the necessary analysis is an impediment to the implementation of new

compiler passes, preventing the rapid prototyping of new ideas. For example, simple peephole

optimisations in the LLVM “instcombine” pass require approximately 30000 lines of C++

code, despite the transformations being simple. Menendez and Nagarakatte [43] showed that

“instcombine” is an important source of bugs, and bugs in the middle end of a compiler are

particularly pernicious [137]. They tamper with the user programs but can remain unnoticed

and often only trigger in corner cases. Ideally, there would be a simpler way of implementing

such analysis that reduces boilerplate code and opens the way for new compiler innovation.

This chapter presents the Compiler Analysis Description Language (CAnDL), a domain-

specific language for compiler analysis. It is a constraint programming language, operating on

the SSA intermediate representation of the LLVM compiler infrastructure (LLVM IR). Instead

of writing compiler analysis code inside the main codebase of the compiler infrastructure, it

lets compiler writers specify optimisation functionality external to the main C++ codebase. The

CAnDL compiler then generates C++ functions that implement LLVM analysis passes, and are

linked together with the Clang compiler binary. The formulation of optimising transformations

in CAnDL is faster, simpler and less error-prone than writing them in C++. The language has

a strong emphasis on modularity, which facilitates debugging and the formulation of highly

readable code.

CAnDL is based on the constraint programming methodology introduced in Chapter 2. It

uses a solver that is integrated into the LLVM codebase. CAnDL is developed as a complete

programming language, with a full parser and code generator. The system is evaluated on

a range of use cases from different domains, including standard LLVM optimisation passes,

custom optimisations for graphics shader programs, and the detection of Static Control Parts

(SCoPs) [26] for polyhedral program transformations [27].

4.2. Motivating Example 57

4.2 Motivating Example

For an example of the CAnDL workflow, consider Equation (4.1). This basic algebraic equation

can be interpreted as a recipe for a compiler optimisation: Assuming an environment without

the particularities of floating-point arithmetic (i.e. assuming the “-ffast-math” flag is active),

the compiler could use this equality to eliminate some square root invocations in user code.

This is desirable, as the square root has to be approximated with relatively expensive numerical

methods, whereas computing the absolute value is computationally cheap.

∀a ∈ R :
√

a∗a = |a| (4.1)

The compiler should use the equation left-to-right. It should analyse the user code in order

to find segments that correspond to the left side of the equation and then transform all those

occurrences analogous to the right side of the equation. The compiler, therefore, must detect
√

a∗a in the LLVM IR code and replace it with calls to the “abs” function. The generation of

the new function call is trivial, but the detection of even this simple pattern requires some care

when implemented manually in a sophisticated codebase such as LLVM.

The traditional approach in the Clang compiler is to integrate such optimisations into the

previously mentioned “instcombine” pass. which already applies an extensive collection of

peephole optimisations. However, this code makes heavy use of raw pointers and dynamic type

casts, spans ∼30000 lines, and has been identified as a frequent source of bugs in Menendez

and Nagarakatte [43], Yang et al. [137]. This is impractical and an impediment to compiler

development.

Instead, CAnDL allows a declarative description of the analysis problem. It is easier to

follow, has no interaction with other optimisations and is concise, as presented in Listing 4.1.

The first line of the program assigns a name to the specification, which is then defined by the

interaction of seven atomic constraints. These individual statements must simultaneously hold

on the values of “sqrt_call”, “sqrt_fn”, “square” and “a”. Lines 2–8 each stipulate one of

these constraints, and they are joined together with logical conjunctions “∧”.

1 Constraint SqrtOfSquare
2 (opcode{sqrt_call} = call
3 ∧ {sqrt_fn} = {sqrt_call}.args[0]
4 ∧ function_name{sqrt_fn} = sqrt
5 ∧ {square} = {sqrt_call}.args[1]
6 ∧ opcode{square} = fmul
7 ∧ {a} = {square}.args[0]
8 ∧ {a} = {square}.args[1])
9 End

Listing 4.1: The left side of Equation (4.1) as specified in CAnDL

58 Chapter 4. The Compiler Analysis Description Language

The CAnDL compiler translates the declarative program into a C++ function, which is then

used for the analysis step in an LLVM optimisation pass. This is demonstrated in Figure 4.1,

which shows the application of the analysis function generated from the CAnDL specification

in Listing 4.1 to a user program. The input program (a) is a simple C function that calls the

“sqrt” function twice with squares of floating-point values. This is translated using the Clang

compiler into LLVM IR code (b), using standard optimisation passes during the compilation.

The expression from the user program is here represented as a list of individual instructions and

register assignments, with the occurrences of “SqrtOfSquare” clearly visible: the two “fmul”

instructions (lines 4 and 6) compute squares via a floating-point multiplication, and these are

then used as arguments to “sqrt” function invocations (lines 5 and 7).

The optimised LLVM IR (b) is used as the input to the generated analysis function, which

detects two optimisation opportunities. These are identified as the first (c) and second (d)

solution of the constraint problem. Each of the solutions assigns values from within the LLVM

IR code to all the CAnDL variables in Listing 4.1, such that all constraints are satisfied. The

validity of these solutions is demonstrated in the middle row of the figure (e-f). Substituting the

variables in the CAnDL program with the concrete instances from the solutions, the individual

atomic constraints can be checked individually:

• %4 and %6 are function calls, and their first argument (the function to be called) is @sqrt.

• @sqrt is the square root function. Note that it is identified by name.

• The second arguments of the function call instructions (the first function arguments) are

%3 and %5, respectively.

• %3 and %5 are square values, i.e. floating-point multiplications of a value with itself.

Using the solutions identified by the CAnDL system, a separate C++ function (g) applies

the transformation. This function is easy to implement. The solutions to the constraint problem

are internally provided as C++ dictionaries of type “map<std::string,llvm::Value*>”,

containing the information needed to apply code transformations. A new function call to “abs”

is generated, with the value determined for “a” from Listing 4.1 as the only argument (line 6).

This instruction replaces (line 4) the call instruction that was captured in “sqrt_call” (line 5).

Conveniently, the LLVM infrastructure already provides all the necessary functions to create

and replace instructions in the intermediate representation. After post-processing with standard

dead code elimination, this results in the optimised code shown at the bottom of the figure (h).

Although this is a small example, it illustrates the main steps of the CAnDL scheme. In

practice, the strength of the system is its ability to scale to very complex specifications, as

demonstrated toward the end of the chapter. The following sections describe the CAnDL

language in detail and outline how it is implemented on top of the constraint programming

methodology from Chapter 2.

4.2. Motivating Example 59

(a) C program code:

double example(double a, double b) {return sqrt(a*a) + sqrt(b*b); }

(b) Resulting LLVM IR:

1 define double @example(
2 double %0,
3 double %1) {
4 %3 = fmul double %0, %0
5 %4 = call double @sqrt(%3)
6 %5 = fmul double %1, %1
7 %6 = call double @sqrt(%5)
8 %7 = fadd double %4, %6
9 ret double %7 }

10 declare double @sqrt(double)

(c) First solution:

a = %0

square = %3
sqrt_call = %4

sqrt_fn = @sqrt

(d) Second solution:

a = %1

square = %5
sqrt_call = %6

sqrt_fn = @sqrt

(e) Validating the first solution:

(opcode{%4} = call
∧ {@sqrt} = {%4}.args[0]
∧ function_name{@sqrt} = sqrt
∧ {%3} = {%4}.args[1]
∧ opcode{%3} = fmul
∧ {%0} = {%3}.args[0]
∧ {%0} = {%3}.args[1])

(f) Validating the second solution:

(opcode{%6} = call
∧ {@sqrt} = {%6}.args[0]
∧ function_name{@sqrt} = sqrt
∧ {%5} = {%4}.args[1]
∧ opcode{%5} = fmul
∧ {%1} = {%5}.args[0]
∧ {%1} = {%5}.args[1])

(g) Complementing C++ transformation code:

1 using namespace std;
2 using namespace llvm;
3 void transform(map<string,Value*> solution , Function* abs) {
4 ReplaceInstWithInst(
5 dyn_cast<Instruction>(solution["sqrt_call"]),
6 CallInst::Create(abs, {solution["a"]}));
7 }

(h) Transformed LLVM IR after dead code elimination:

1 define double @example(double %0, double %1) {
2 %3 = call double @abs(double %0)
3 %4 = call double @abs(double %1)
4 %5 = fadd double %3, %4
5 ret double %5 }

Figure 4.1: Demonstration of CAnDL specification in Listing 4.1 on an example C program (a):
In the generated LLVM IR code (b), instances (c,d) of “SqrtOfSquare” are detected that fulfil
all the constraints (e, f). Applying a transformation is simple (g) and results in efficient code (h).

60 Chapter 4. The Compiler Analysis Description Language

4.3 Language Specification

The Compiler Analysis Description Language is a domain-specific programming language for

the specification of compiler analysis problems. Individual CAnDL programs define specific

computational structures that exist in user programs and can be exploited by applying code

transformations. These structures are specified as constraint programs on the LLVM IR of user

code. CAnDL builds on generic concepts from Chapter 2. These are independent of LLVM, so

the methodology translates to other SSA representations.

The expressed structures can scale from simple instruction patterns that enable peephole

optimisations, over control flow structures such as loops, to complex algorithmic concepts

such as code regions that are suitable for polyhedral code transformations.

Like traditional constraint programs, CAnDL specifications have two fundamental features:

variables and constraints. The basic constraint building blocks are well-established compiler

analysis tools, such as constraints on data and control flow, data types and instruction opcodes.

These are composed with logical connectors and several higher-level language features, such

as range expressions, with finally a system of modularity and extensibility on top. This section

introduces the language features, starting from the overall program structure.*

4.3.1 Top-Level Structure of CAnDL Programs

The following notational conventions are used for the description of CAnDL syntax in this

section: terminal symbols are bold, non-terminals are italic, 〈s〉 is an identifier (alphanumeric

string), and 〈n〉 is an integer literal. CAnDL uses Unicode characters such as “∧”, “∈”, “Φ”

and is encoded as UTF-8. An individual CAnDL program contains constraint formulas that are

bound to identifiers. As previously shown in Listing 4.1, the syntax for this is as follows:

specification ::= Constraint 〈s〉 formula End

Listing 4.1 already demonstrated how logical conjunctions are used to combine simpler

formulas. More generally, a formula can be any of the following:

formula ::= atomic | conjunction | disjunction | conRange | disRange | include | collect

The fundamental elements of every CAnDL program are atomic constraints. They are bound

together by logical connectives “∧” and “∨” (conjunction and disjunction), as well as other

higher-level constructs. These include two kinds of range structures (conRange, disRange),

and a system for modularity (include). Lastly, the collect construct allows for the formulation

of more complex constraints that require quantifiers from first-order logic. The individual

classes of atomic constraints are introduced next, followed by the higher-level constructs.
*The complete grammar file that was used to generate the parser of the CAnDL compiler is in Appendix A.

4.3. Language Specification 61

Syntax SSA model formulation

data_type variable = 〈s〉 (s,x) ∈ TF

opcode variable = 〈s〉 (s,x) ∈ IF
ir_type variable = literal x ∈C∗F

ir_type variable = argument x ∈ P∗F
ir_type variable = instruction x ∈ I∗F
function_name variable = 〈s〉 (s,x) ∈ GF

Table 4.1: The simplest atomic constraints operate on a single variable and check element-of
properties for the different sets in the SSA model. Function names are from the global model.

Syntax SSA model formulation

variable = variable.args[〈n〉] (n,x,y) ∈ DFGF

variable ∈ variable.args (x,y) ∈ DFG∗F
variable = variable.successors[〈n〉] (n,y,x) ∈CFGF

variable ∈ variable.successors (y,x) ∈CFG∗F
variable = variable x = y

variable != variable x 6= y

Table 4.2: The second class of atomic constraints operate on pairs of variables. The constraints
check for graph edges in the data flow or control flow graphs, or directly for shallow equivalence.

4.3.2 Atomic Constraints

Based on the SSA model from Definition 2.6 in Chapter 2, CAnDL provides a wide range of

atomic constraints. The simplest group consists of those that operate on only a single variable,

listed in Table 4.1. These operate immediately on the underlying mathematical structures,

testing element-of properties between variables and the sets. This can constrain data types (TF)

and instruction opcodes (IF), or restrict variables to constant literals (C∗F), function parameters

(P∗F), and instructions (I∗F). Ending the list is the “function_name” constraint. Function names

can be statically determined only for direct function calls. In that case, the called object is

necessarily a global value, and the function name can be identified in the global model GF .

There are additional atomic constraints that operate on pairs of variables. These are listed

in Table 4.2. Most importantly, they check for specific edges in the control flow (CFGF) and

data flow graphs (DFGF). CAnDL also provides weaker versions that do not enforce specific

edge labels. Furthermore, two constraints are available for shallow comparisons of variables.

Besides those constraints that operate immediately on the sets of the SSA model, there

are atomic constraints that enforce graph properties. Such graph properties include dominance

relationships and the interaction of data flow and control flow for Φ-instructions.

62 Chapter 4. The Compiler Analysis Description Language

4.3.2.1 Constraining Φ-Instructions

CAnDL provides the following syntax for expressing the data flow of Φ-instructions:

variable -> variable Φ variable

The expression {A}->{B}Φ{C} means that C takes the value of A when reached from B. The

underlying condition on the SSA model is more difficult to express than for the previous atomic

constraints. Specifically, “reached from B” means that B was the last branch taken before

arriving at C. Using the SSA model, this is equivalent to the following:

(C, phi) ∈ IF ∧ (B,h(C)) ∈CFG∗F ∧ (A,C,n) ∈ DFGF ,

where h(C) := min{c | (phi,x) ∈ IF for all c≤ x≤C}

and n := {b≤ B | (b,h(C)) ∈CFG∗F}.

Firstly, C is a Φ-instruction. Secondly, B has control flow to the basic block that contains C.

The first instruction of this basic block is identified as h(C), to account for the possibility of

more than one Φ-instruction in the basic block. Thirdly, A is the nth argument of C, where n is

the index of B in the list of jump instructions that target h(C).

4.3.2.2 Identifying Graph Dominators

In order to express domination in the control flow graph [138], the following syntax is used:

domination(variable,variable)

strict_domination(variable,variable)

For both these constraints, the values are implicitly limited to instructions. The expression

“domination({A},{B})” means that A is a dominator of B, i.e. any path through the control

flow graph from the entry node to B must go through A. Strict domination additionally requires

that A and B are distinct. Complementing these constructs, there are post-dominator versions

“post_domination” and “strict_post_domination”, as well as the following generalisation:

all control flow from variable to variable passes through variable

This constraint is similar to a standard control flow domination, but instead of taking paths from

the control flow origin, a third variable is used for parametrisation, as required for Listing 4.6.

4.3.2.3 Additional Atomic Constraints

The set of atomic constraints that are supported by CAnDL can easily be extended. Possible

additions include constraints on function attributes and value constraints on literals. This will

be further explored in Chapters 5 and 6.

4.3. Language Specification 63

1 Constraint ValueChain
2 {element[i] ∈ {element[i+1]}.args foreach i=0..4
3 End

1 Constraint ValueChain
2 ({element[0]} ∈ {element[1]}.args
3 ∧ {element[1]} ∈ {element[2]}.args
4 ∧ {element[2]} ∈ {element[3]}.args
5 ∧ {element[3]} ∈ {element[4]}.args)
6 End

Listing 4.2: Example for the expansion of range constraints in CAnDL: The specification at the
top can be “unrolled” manually, resulting in the equivalent, but more verbose, specification below.

4.3.3 Range Constraints

Building on top of the atomic constraints and the fundamental conjunction and disjunction

constructs, there are range based constraints that operate on arrays of variables:

conRange ::= formula foreach 〈s〉 = index .. index

disRange ::= formula forany 〈s〉 = index .. index

These constructs allow the replication of a constraint formula over a range of indices. This

is demonstrated in Listing 4.2, which shows two equivalent CAnDL programs, the first one

formulated with conRange and the second one without. In both cases, the program specifies an

array of five variables with data flow from each element to the next. This shows how conRange

can be expanded by duplicating the contained formula, with logical conjunctions binding the

replicas of the formula together. Otherwise identical, the disRange construct is based on logical

disjunctions instead.

The syntactic structure of variable identifiers carries no semantic information for atomic

constraints. Clearly, this is not true for range expressions, which rely on index calculations

in order to evaluate the underlying variables. Therefore, it is important to introduce next the

precise syntax for variable names, which are constructed as follows:

variable ::= 〈s〉 | variable [calculation] | variable . 〈s〉
calculation ::= 〈s〉 | 〈n〉 | calculation + calculation | calculation - calculation

The syntax of variable identifiers in CAnDL aligns closely to C/C++ conventions. They can

contain simple index calculations to support the range constructs, as well as a hierarchical

structure. This hierarchical structure corresponds to the modularity capabilities of CAnDL that

are introduced in the next section.

64 Chapter 4. The Compiler Analysis Description Language

4.3.4 Modularity

Modularity is central to CAnDL, and it is achieved using the include construct.

include 〈s〉 [(variable -> variable { , variable -> variable })] [@ variable]

Note that the syntax in square brackets is optional and the syntax in curly brackets may be

repeated. The basic version of include, using neither of the two optional structures, is simple.

It copies the formula that corresponds to the identifier verbatim into the current specification.

If “[@variable]” is specified, then all the variable names of the inserted constraint formula

are prefixed with the given variable name, separated by a dot. This namespaces the inserted

formula and prevents unwanted interactions with surrounding constraints. The other optional

syntax is used to rename variables in the included formula. In contrast to the prefix syntax, this

increases the interaction with surrounding constraints by injecting other variables. Accordingly,

if both optional constructs are used, the prefix is only applied to variables that are not renamed.

Listing 4.3 illustrates this with two equivalent constraint programs. Both programs specify

an addition of four values, first adding pairwise and then adding the intermediate results. In the

code at the top, a formula for the addition of two values is bound to the name “Sum”. This is then

included three times in another formula named “SumOfSums”. Using the optional grammatical

constructs, the formula operates on a different set of variables each time, such that the third

addition takes the results of the previous two as input.

1 Constraint Sum
2 (opcode{out} = add
3 ∧ {in1} = {out}.args[0]
4 ∧ {in2} = {out}.args[1])
5 End
6 Constraint SumOfSums
7 (include Sum@{sum1}
8 ∧ include Sum@{sum2}
9 ∧ include Sum({sum1.out}->{in1},{sum2.out}->{in2}))

10 End

1 Constraint SumOfSums
2 (opcode{sum1.out} = add
3 ∧ {sum1.in1} = {sum1.out}.args[0]
4 ∧ {sum1.in2} = {sum1.out}.args[1]
5 ∧ opcode{sum2.out} = add
6 ∧ {sum2.in1} = {sum2.out}.args[0]
7 ∧ {sum2.in2} = {sum2.out}.args[1]
8 ∧ opcode{out} = add
9 ∧ {sum1.out} = {out}.args[0]

10 ∧ {sum2.out} = {out}.args[1])
11 End

Listing 4.3: Example for expansion of the include construct: Both specifications are equivalent.

4.3. Language Specification 65

1 Constraint CollectArguments
2 (ir_type{ins} = instruction
3 ∧ collect i 8 ({arg[i]} ∈ {ins}.args))
4 End

Listing 4.4: Simple collect example in CAnDL: Direct data dependencies of “ins” are collected.

4.3.4.1 Collect-all Constraints

The collect construct captures all possible solutions of a given formula, as in Definition 2.16.

collect 〈s〉 index formula

In Listing 4.4, the variables “arg[0]”,. . . ,“arg[7]” are specified to contain all of the direct

data dependencies of “ins”. In this example, solutions of “arg[i]” for a given value of “ins”

are identified. The second argument gives an upper limit to the number of collected variables.

The constant upper bound “8” is required here to keep the dimensionality of the search space

finite. If “ins” has less than 8 arguments, the remaining “arg[]” are constrainted to unused.

The first argument of collect specifies the name of an index variable that is used to detect which

variables belong to the collected set.

This example is now extended to show how collect can be used to implement quantifiers.

Consider the task of detecting instructions with only floating-point arguments. This involves

the “∀” quantifier, as it is equivalent to the following equation:

ins has only float arguments ⇐⇒ [∀x : (x,ins) ∈ DFG∗F =⇒ (float,x) ∈ IF] (4.2)

This can be rewritten to an equivalent formulation on sets:

S1 = select(ins,rev(DFG∗F))⊂ select(float,TF) = S2.

Elementary set theory gives S1 ⊆ S2 ⇐⇒ S1 = S1∩S2. Therefore, if a set S is constrained

to be equal to both S1 and S1∩S2, then Equation (4.2) gives that this is satisfiable if and only

if “ins” has only floating-point arguments. This condition can be expressed in CAnDL, as is

shown in Listing 4.5. With the first collect statement at line 3, the set “arg” is constrained to

be equal to S1 and with the second one at lines 4-5, it is constrained to be equal to S1∩S2.

1 Constraint FloatingPointInstruction
2 (ir_type{ins} = instruction
3 ∧ collect i 8 ({ins} ∈ {arg[i]}.args)
4 ∧ collect i 8 ({ins} ∈ {arg[i]}.args
5 ∧ data_type{arg[i]} = float))
6 End

Listing 4.5: Collect restricts “ins” to instructions with only (up to 8) floating-point operands.

66 Chapter 4. The Compiler Analysis Description Language

The exact same approach can be used for much more complex analysis tasks. For example,

the final case study at the end of this chapter uses collect statements to restrict all array accesses

within a loop to be affine in the loop iterators. First, collect all memory accesses in the loop

(i.e. all “load” and “store” instructions), and then use a second collect statement to enforce

affine calculations of the access indices that are used for these instructions.

4.3.5 Expressing Larger Structures

The modularity of CAnDL allows for the creation of building blocks that are used by multiple

CAnDL specifications. This includes classic control flow structures, such as single-entry

single-exit (SESE) regions and different classes of loops, as well as memory access patterns.

These definitions a standard library that enables higher-level programming with CAnDL. This

section gives an overview of how some of these standard building blocks are defined.

Listing 4.6 gives the specification of SESE regions in CAnDL. Such regions are spanned

by the variables “begin” and “end”, with an incoming control flow edge from “precursor”

to “begin” (line 3) and an outgoing control flow edge from “end” to “successor” (line 5).

Graph domination constraints at lines 8 and 9 guarantee that these are the only entry and exit

of the region. Additional domination constraints at lines 6–7 and lines 10–13 make sure that

there are no jumps from outside the region into an instruction of the region that is not “begin”,

and similarly that there are no early exits of the region. Finally, regions are restricted to align

with basic block boundaries in lines 2 and 4.

Note that the use of variables “precursor” and “successor” prevents the detection of

SESE regions without a precursor or successor. These two special cases could easily be

captured with additional constraints that account for the possibility of an unused successor

or precursor. However, this situation is only relevant in the case of basic blocks that end

with a return statement or that are the entry point of a function. In the context of the loop-

based algorithmic structures that this thesis focuses on, basic blocks can be assumed to have a

precursor and successor.

Natural loops are easily defined in CAnDL, as shown in Listing 4.7. The specification

includes “SESE” and adds only a single additional constraint for the back edge of the loop

at line 3. Additional extensions to this specification are added to define more restricted loop

structures, such as for-loops. This involves the identification of the loop iterator, the breaking

condition, and the corresponding iteration space boundaries. In order to be a valid for-loop, the

end of the iteration space must be determined before the loop is entered. This is expressed in

Listing 4.8, restricting “value” to be either a function argument, a constant, or an instruction

that strictly dominates the loop entry. Note that this formula is underspecified on its own. In

order to get a useful constraint specification, it has to be included in larger CAnDL programs

that also include “Loop”.

4.3. Language Specification 67

1 Constraint SESE
2 (opcode{precursor} = branch
3 ∧ {begin} ∈ {precursor}.successors
4 ∧ opcode{end} = branch
5 ∧ {successor} ∈ {end}.successors
6 ∧ domination({begin}, {end})
7 ∧ post_domination({end}, {begin})
8 ∧ strict_domination({precursor}, {begin})
9 ∧ strict_post_domination({successor}, {end})

10 ∧ all control flow from {begin} to {precursor}
11 passes through {end}
12 ∧ all control flow from {successor} to {end}
13 passes through {begin}) End

Listing 4.6: Single-entry single-exit region in CAnDL: The region spans “begin” to “end”, with
control flow “precursor” to “begin” as the entry, control flow “end” to “successor” as the exit.

1 Constraint Loop
2 (include SESE
3 ∧ {begin} ∈ {end}.successors) End

Listing 4.7: Loops are defined in CAnDL as single-entry single-exit regions with a back edge.
The back edge does not break the “single-exit” condition because it does not exit the region.

1 Constraint LocalConst
2 (ir_type{value} = literal
3 ∨ ir_type{value} = argument
4 ∨ strict_domination({value}, {scope.begin})) End

Listing 4.8: This specification restricts “value” to remain constant during loop execution. It is
underspecified on its own and should be included in larger CAnDL programs that also include
“Loop”, renaming “value” to the specific variable that needs to be constrained in this way.

1 Constraint PointerAccess
2 (((opcode{access} = store ∧ {pointer} = {access}.args[1])
3 ∨ (opcode{access} = load ∧ {pointer} = {access}.args[0]))
4 ∧ domination({scope.begin}, {access})
5 ∧ post_domination({scope.end}, {access})) End
6

7 Constraint ArrayAccess
8 (include PointerAccess
9 ∧ opcode{pointer} = gep

10 ∧ {base_pointer} = {pointer}.args[0]
11 ∧ include LocalConst({base_pointer}->{value})) End
12

13 Constraint LoopWithOnlyArrayAccesses
14 (include Loop @ {loop}
15 ∧ collect i N (include PointerAccess({loop}->{scope})
16 @{acc[i]})
17 ∧ collect i N (include ArrayAccess ({loop}->{scope})
18 @{acc[i]})) End

Listing 4.9: Building blocks are combined to restrict the permitted memory access within a loop.

68 Chapter 4. The Compiler Analysis Description Language

Another class of important building blocks is different categories of memory access. These

form a hierarchy of restrictiveness and include multi-dimensional array access and array access

that is affine in some loop iterators. Listing 4.9 combines several of the introduced building

blocks to specify a loop in which all memory access locations are calculated as offsets from

base pointers that are constant within the loop. This, for example, excludes loops with pointer-

chasing. The “ArrayAccess” specification can be extended with more restrictive memory

access patterns as previously mentioned. This is crucial to define advanced compiler analysis

passes, such as the detection of regions suitable for polyhedral code analysis.

4.4 Implementation

CAnDL is integrated into the LLVM framework. CAnDL programs are read by the CAnDL

compiler during LLVM build time, which then generates C++ source code to implement the

specified LLVM analysis functionality. This code depends on the generic backtracking solver

derived in Chapter 2, which is incorporated directly into the LLVM codebase. The generated

code is compiled and linked together with the existing LLVM libraries. The Clang compiler,

which is built on LLVM, then automatically invokes this solver during the compilation of user

programs, after the optimisation passes.

The resulting Clang binary, built on the modified version LLVM, uses the solver to search

for the specified computational structures and outputs the found instances into report files. It

also makes the results available to ensuing transformation passes in the form of C++ structures.

4.4.1 Normalisation of LLVM IR

For reliable detection of code structures, the normalisation of LLVM IR via optimisation passes

is critical. The promotion of memory to registers, loop-independent code motion, constant

folding, loop normalisations, inlining, and other standard transformations result in predictable

code structures that simplify the formulation of CAnDL specifications.

For example, elements of C++ vectors are accessed via the overloaded operator[].

Such operators appear in LLVM IR as opaque function calls and potentially hinder analysis

with CAnDL specifications. However, these operators are inlined during optimisation, and

parts of the resulting code are propagated out of loops by loop-independent code motion. The

remaining array access can easily be captured by CAnDL using the same specifications that

treat C code. Listing 4.10 demonstrates this normalising effect of optimisations. The top of

the figure shows the C++ implementation of a function that computes a reduction over two

sequences of integers. The first sequence is stored in a plain C array, whereas the second is in

an instance of the vector class. In the optimised LLVM IR code, the difference between these

implementations has disappeared from the reduction loops at lines 24–32 and 39–47.

4.4. Implementation 69

1 int reduce(int* input1 , size_t input1_size ,
2 std::vector<int> input2) {
3 int result1 = 0, result2 = 0;
4 for(size_t i = 0; i != input1_size; i++)
5 result1 += input1[i];
6 for(size_t i = 0; i != input2.size(); i++)
7 result2 += input2[i];
8 return result1 + result2;
9 }

1 define i32 @_Z23reducePimSt6vectorIiSaIiEE(i32*, i64,
2 %"class.std::vector"*) {
3 %4 = icmp eq i64 %1, 0
4 br i1 %4, label %5, label %17
5
6 ; <label>:5:
7 %6 = phi i32 [0, %3], [%22, %17]
8 %7 = getelementptr inbounds %"class.std::vector",
9 %"class.std::vector"* %2,

10 i64 0, i32 0, i32 0, i32 0, i32 1
11 %8 = bitcast i32** %7 to i64*
12 %9 = load i64, i64* %8, align 8
13 %10 = bitcast %"class.std::vector"* %2 to i64*
14 %11 = load i64, i64* %1
15 %12 = icmp eq i64 %9, %11
16 %13 = inttoptr i64 %11 to i32*
17 br i1 %12, label %25, label %14
18
19 ; <label>:14:
20 %15 = sub i64 %9, %11
21 %16 = ashr exact i64 %15, 2
22 br label %28
23
24 ; <label>:17:
25 %18 = phi i64 [%23, %17], [0, %3]
26 %19 = phi i32 [%22, %17], [0, %3]
27 %20 = getelementptr inbounds i32, i32* %0, i64 %18
28 %21 = load i32, i32* %20
29 %22 = add nsw i32 %21, %19
30 %23 = add nuw i64 %18, 1
31 %24 = icmp eq i64 %23, %1
32 br i1 %24, label %5, label %17
33
34 ; <label>:25:
35 %26 = phi i32 [0, %5], [%33, %28]
36 %27 = add nsw i32 %26, %6
37 ret i32 %27
38
39 ; <label>:28:
40 %29 = phi i64 [0, %14], [%34, %28]
41 %30 = phi i32 [0, %14], [%33, %28]
42 %31 = getelementptr inbounds i32, i32* %13, i64 %29
43 %32 = load i32, i32* %31
44 %33 = add nsw i32 %32, %30
45 %34 = add i64 %29, 1
46 %35 = icmp eq i64 %34, %16
47 br i1 %35, label %25, label %28
48 }

Listing 4.10: Standard LLVM optimisations as normalising passes: The same computation
is expressed with a plain C array and a C++ std::vector respectively. During compilation,
the interaction of function inlining and loop-independent code motion results in equivalent
intermediate representation code for the reduction loops at lines 24–32 and at lines 39–47.

70 Chapter 4. The Compiler Analysis Description Language

Most standard optimisations that LLVM provides have this implicit effect of normalising

the code, but there are some notable exceptions. Most importantly, this involves optimisations

that are not reliably applied uniformly on all code but utilise opaque cost heuristics or that

require complex preconditions. Notably, this includes loop unrolling and vectorization, which

are hence disabled. The CAnDL-enabled compiler invokes the detection functionality directly

after optimisations and expects the pipeline to be configured with the command-line options

“-Os -fno-unroll-loops -fno-vectorize -fno-slp-vectorize -ffast-math”.

Some other LLVM optimisations also obfuscate the resulting LLVM IR but cannot be

disabled via command-line options. Furthermore, there is some semantic information about

multidimensional arrays that LLVM retains from the input language that effectively results in

multiple distinct ways to express array accesses that are equivalent. To alleviate this, in addition

to standard optimisations, the CAnDL-enabled compiler applies some custom transformations

in order to pass on predictable LLVM IR code to the solver:

• Strength reductions result in special cases that would have to be covered explicitly by

CAnDL specifications. To remove the requirement of considering these special cases,

two strength reduction optimisations are reversed: add 7→or and mul 7→shift. Such

instruction specialisations run counter to the goal of normalising the IR.

• Multi-dimensional array access can be expressed directly in LLVM IR. However, this

only works for statically allocated arrays. As CAnDL should work on dynamically-

sized arrays as well, this representation cannot be relied on and, in effect, introduces

additional complexity. In order to remove this complication, complex “getelementptr”

instructions are simplified to add an offset to a raw pointer. The index calculations are

then performed entirely as integer arithmetic on the indices. This process effectively

flattens multi-dimensional arrays. Chains of “getelementptr” instructions are merged,

again resulting in integer arithmetic instead.

• Some interactions of “select” and “getelementptr” instructions are transformed as

(c?a[i]:a[j])7→a[c?i:j] to minimise the number of “getelementptr” instructions.

Finally, some structures in the LLVM IR are not modified by normalising transformations, but

they are omitted in the SSA model that underpins the CAnDL specifications. This applies to

all integer extension instructions and pointer conversions. These constructs are represented in

LLVM IR as instructions with a single argument. In the SSA model, data flow edges skip these

instructions, pointing from the argument of the instruction to any use of it. The conventional

use of 32-bit integers on 64-bit systems obfuscates the SSA model without these omissions,

particularly in the context of 32-bit loop interators that are automatically elevated to 64-bit

integers during optimisation but then have to be downcast in every iteration before applying a

comparison operator.

4.4. Implementation 71

Abstract syntax tree

Abstract syntax tree

Abstract syntax tree

C++ source code

CAnDL source code

inline includes
unroll loops

parsing

apply optimisations

generate code

Figure 4.2: Flow within the CAnDL compiler: The CAnDL source
code gets lowered in several steps to generated C++ source code.

4.4.2 The CAnDL Compiler

The CAnDL compiler is responsible for parsing CAnDL programs and generating C++ code

from them. An overview of its flow is shown in Figure 4.2. The frontend reads in CAnDL

source code and builds an abstract syntax tree. This syntax tree is simplified in two steps

to eliminate some of the higher-order constructs of CAnDL. The include clauses are inlined

and contained variables transformed accordingly. Furthermore, conRange and disRange are

lowered to conjunction and disjunction constructs by duplicating the contained constraint code

and renaming its variables appropriately for each iteration. The remaining core language

consists only of atomics, conjunctions, disjunctions and collections.

The CAnDL compiler then applies optimisations to speed up the solving process using the

later generated C++ code. For example, nested conjunctions and disjunctions are flattened

wherever possible. Furthermore, if shallow equivalence of two variables is enforced in a

conjunction, one of the two variables is chosen as having higher priority. All other occurrences

of the other variable are then replaced with that one.

Finally, the compiler generates C++. This essentially means generating a function which at

runtime constructs the constraint problem as a graph structure that is accessible to the solver.

72 Chapter 4. The Compiler Analysis Description Language

1 Constraint SimpleAddition
2 (opcode{addition} = add
3 ∧ {addition}.args[0] = {left}
4 ∧ {addition}.args[1] = {right}) End

1 // Step 1: Instantiate Atomic Constraints
2 auto constr0 = make_shared <AddInstruction>(model);
3 auto constr1 = make_shared <FirstArgument> (model);
4 auto constr2 = make_shared <SecondArgument>(model);
5 // Step 2: Compose Higher-Level Constraints
6 auto constr3 = make_shared <Conjunction>(
7 constr0 ,
8 select <0>(constr1),
9 select <0>(constr2));

10 // Step 3: Assemble Backtracking Solution
11 vector<pair<string,shared_ptr<BacktrackingPart>>> result(3);
12 result[0] = make_pair("addition", constr3);
13 result[1] = make_pair("left", select <1>(constr1));
14 result[2] = make_pair("right", select <1>(constr2));

Listing 4.11: C++ code generation: The code is generated to first instantiate atomic constraints,
then compose higher-level constructs, and finally assemble a backtracking solution for solving.

4.4.2.1 C++ Code Generation

The code generation process is demonstrated with an example in Listing 4.11. Every atomic

constraint in CAnDL results in a line of C++ code that constructs an object of a corresponding

class: In this case, the involved atomic constraints are implemented by “AddInstruction”,

“FirstArgument” and “SecondArgument”. These objects are instantiated as shared pointers.

The compiler then generates analogous objects for the conjunction, disjunction and collect

structures. In our example, this only affects the “addition”, which is part of a conjunction

clause. This results in an additional object construction that instantiates the “Conjunction”

class corresponding to the “∧” operator in CAnDL.

Constraint classes that implement constraints operating on a single variable directly expose

the “BacktrackingPart” interface introduced in Listing 2.1. In the example, this applies

to “AddInstruction” and “Conjunction”. For more complex constraints, the “select<>”

template is used to specify which variable of a constraint is being considered. At lines 8–9, this

is used to extract the parts of backtracking solutions referring to the “addition” variable, and

to then pass them as arguments to the conjunction.

Finally, the generated objects are inserted into a vector, together with the corresponding

variable names. The variables are in the order of appearance in the CAnDL code. This vector

corresponds to the backtracking solution of the constraint problem and is passed to the solver.

4.4. Implementation 73

Figure 4.3: Interactive CAnDL test tool: The left hand panel shows a Static Control Part (SCoP)
in Polybench jacobi-2d, the right hand panel shows the constraint solutions found by the solver.

4.4.3 Developer Tools

CAnDL simplifies the construction of compiler analysis functionality, but reasoning about

the semantics of compiler intermediate representation remains difficult. The solver detects

whatever the programmer specifies, without any additional effort, but it is difficult to ensure

that the CAnDL code actually specifies the structures that the programmer intended. Generally,

the accuracy of CAnDL programs can only be ensured with thorough testing, and it is important

to keep in mind that CAnDL is targeted at expert compiler developers.

In order to make the debugging of CAnDL programs more feasible, supporting tools are

provided. Most importantly, this includes an interactive GUI, where developers can test out

corner cases of their CAnDL programs to find false positives and false negatives. This GUI is

shown in Figure 4.3, with an example from one of the use cases presented in Section 4.5.

In the left half, part of a C program from the PolyBench benchmark suite is visible, which

implements a two-dimensional Jacobi stencil. The GUI was configured to look for Static

Control Parts (SCoPs), as described later. The user has clicked the “analyze” button, which

triggered the analysis to run by invoking the modified Clang compiler. The GUI then read the

report file and printed the results in the right-hand part of the figure.

The solver found a SCoP in the IR code (corresponding to lines 459–468 of the C program).

The text on the right shows the hierarchical structure of the solution, with IR values assigned

to every variable. The corresponding C entities can be recovered using the debug information

that is contained in the generated LLVM IR code. By modifying the C code, the developer can

test the detection and verify that no SCoP is detected if irregular control flow is introduced.

74 Chapter 4. The Compiler Analysis Description Language

1 Constraint ComplexFactorisation
2 (opcode{value} = add
3 ∧ {sum1.value} = {value}.args[0]
4 ∧ {sum2.value} = {value}.args[1]
5 ∧ include SumChain @ {sum1}
6 ∧ {product1.value} = {sum1.last_factor}
7 ∧ include MulChain @ {product1}
8 ∧ {product1.last_factor} = {product2.last_factor}
9 ∧ include SumChain @ {sum2}

10 ∧ {product2.value} = {sum2.last_factor}
11 ∧ include MulChain @ {product2}) End

Listing 4.12: Factorisation opportunities in CAnDL: This captures some opportunities that LLVM
“instcombine” misses. “SumChain”, “MulChain” are themselves specified in CAnDL (16 LoC).

4.5 Case Studies

The effectiveness of CAnDL was evaluated in three different use cases. Firstly, it was used

for detecting opportunities to apply a simple peephole optimisation. Secondly, CAnDL was

applied to graphics shader code optimisation. Finally, the detection of Static Control Parts

(SCoPs) that are amenable for polyhedral code transformations was implemented in CAnDL.

Where possible, the evaluation compares the number of lines of CAnDL code, the program

coverage achieved and performance against prior approaches.

4.5.1 Case Study 1: Simple Optimisations

Arithmetic simplifications in LLVM are implemented in the “instcombine” pass. An example

of this is the standard factorisation optimisation that uses the law of distributivity to simplify

integer calculations, as shown in Equation (4.3). Within “instcombine”, this is implemented

in 203 lines of code (commit 7de5f26d, InstructionCombining.cpp lines 549-756 excluding

lines 637-641), and additionally uses supporting functionality shared with other optimisations.

a∗b+a∗ c→ a∗ (b+ c) (4.3)

This analysis problem can be formulated in CAnDL, as shown in Listing 4.12. Crucially,

at lines 5,7,9,11, the specification makes use of “SumChain” and “MulChain”, which allows

the CAnDL program to capture a large, generalised class of opportunities for factorisation.

The “instcombine” pass has limited support for this, and first requires the application of

associative and commutative laws to reorder the values. For example, this is needed for

Equation (4.4), and only partially supported by LLVM with the additional “reassociate”

pass.

a∗b+ c+d ∗a∗ e−> a∗ (b+d ∗ e)+ c (4.4)

4.5. Case Studies 75

LLVM CAnDL

Lines of Code 203 12

Detected in NPB 1 1 + 2

Detected in Parboil 0 0 + 1

Detected in Rodinia 24 24 + 4

Total Compilation time 152.2s 152.2s+7.8s

Table 4.3: Factorisations enabled by LLVM vs CAnDL

4.5.1.1 Experimental Setup

The specification in Listing 4.12 was evaluated against the default factorisation optimisation

in “instcombine” on three different benchmark collections: the sequential C versions of the

NAS Parallel Benchmarks [139], as provided by Seo et al. [140]; the C/C++ Parboil programs

by Stratton et al. [141]; and the OpenMP C/C++ programs of the Rodinia benchmark suite

[142]. The existing LLVM “instcombine” pass was extended, so that it automatically logs

every time that it successfully applied the “tryFactorization” function.

The individual benchmark programs in the three benchmark suites consist of 94915 lines

of code in total. For each benchmark suite, the total number of reported factorisations, as

well as the total compilation time, were measured. The standard LLVM optimisation was

then disabled, and the CAnDL-generated detection functionality was used instead. The same

application programs were compiled with the same version of Clang and identical compiler

options, reporting the number of factorisations found and measuring the total compilation time

again. This timing includes all the other passes within LLVM, plus the CAnDL code path.

4.5.1.2 Results

The results of the evaluation are shown in Table 4.3. In two of the benchmark collections –

NPB and Parboil – there are only a limited number of factorisation opportunities. LLVM was

unable to perform any factorisation in the entire Parboil suite. However, the Rodinia suite

contains more opportunities, mostly in the “particlefilter” and “mummergpu” programs.

In all three benchmarks suites, the CAnDL system found all factorisation opportunities

that the “instcombine” pass identified. In addition, it detected an additional 7 cases across all

programs. Just 12 lines of CAnDL code were able to capture more factorisation opportunities

than 200 lines of C++ code in LLVM.

Using CAnDL on large benchmark suites increased total compilation time by ∼5%. Given

the small impact of individual peephole optimisations, an evaluation of the performance or

code size impact vs “instcombine” is unlikely to yield significant results.

76 Chapter 4. The Compiler Analysis Description Language

1 Constraint FloatingPointAssociativeReorder
2 (include VectorMulChain
3 ∧ collect j N
4 ({hoisted[k]} = {factors[i]} forany i=0..N
5 ∧ include ScalarHoist({hoisted[j]}->{out},
6 {scalar[j]}->{in})@{hoist[j]})
7 ∧ collect j N
8 ({nonhoisted[j]} = {factors[i]} forany i=0..N
9 ∧ {nonhoisted[j]} != {hoisted[i]} foreach i=0..N))

10 End

Listing 4.13: CAnDL defines multiplication chains with genuine vectors and hoisted scalars:
After separating the two cases, some of the multiplications can be performed on scalars instead.

4.5.2 Case Study 2: Graphics Shader Optimisations

Graphics computations often involve arithmetic on vectors of single-precision floating-point

values, which can represent vertex positions in space or colour values. Established graphics

shader compilers utilise the LLVM intermediate representation internally [143].

In real shader code, there are often element-wise products of several floating-point vectors,

where some of the factors are actually scalars that were hoisted to vectors. By reordering the

factors and delaying the hoisting to vectors, some of the element-wise vector products can be

simplified to products on scalars, as shown by example in the following equation.

~x =~a∗v~b∗v vec3(c)∗v ~d ∗v vec3(e)

= vec3(c∗ e)∗~a∗v~b∗v ~d

For general-purpose code, such reordering can be problematic. This is due to computation

artefacts in floating-point arithmetic. However, this is generally no problem in the domain of

graphics processing. Instead, associative reordering can result in performance improvements

when combined with lowering to scalar multiplications as discussed above.

The required analysis functionality for this optimisation was implemented with CAnDL,

as shown in Listing 4.13. Firstly, the specification uses “VectorMulChain” to detect chains

of floating-point vector multiplications. At lines 4–6, all the factors that are hoisted from

some scalar are collected into the array “hoisted”. Correspondingly, all the other factors are

collected into the array “nonhoisted” at lines 7–9.

“VectorMulChain” and “ScalarHoist” are in turn implemented as CAnDL programs.

“VectorMulChain” discovers chains of floating-point vector multiplications in the IR code. It

is defined very similarly to “SumChain” and “MulChain”, which were used in the previous case

study. It guarantees chains of maximal length by checking that neither of the first two factors

is a multiplication itself and that the last factor is not used in any multiplication.

4.5. Case Studies 77

shader programs
0 0

1 1

2 2

3 3

4 4

sp
ee

d
u

p
in

p
er

ce
n

t

Figure 4.4: Speedup on Qualcomm Adreno 530 (evaluated on HTC 10, running Android 7.0)

“ScalarHoist” operates on “in” and “out”, as well as some hidden internal variables. It

specifies that “out” is a vector generated from “in” by setting all vector dimensions equal to

“in”. The precise implementation of this is highly specific to LLVM and involves combinations

of the LLVM IR instructions “insertelement” and “shufflevector”.

4.5.2.1 Experimental Setup

The LunarGLASS project [144] was used in this work to transform shaders into LLVM IR

and back after optimisation. The CAnDL specification was applied to all fragment shaders in

the GFXBench 4.0 suite taken from Kishonti [145]. A corresponding transformation pass was

added to LLVM, which uses the detected solutions to implement the described optimisation.

This was done by constructing the appropriate scalar and vector multiplications from the arrays

“hoisted” and “nonhoisted”, and then replacing the result of the original multiplication

chain with the final multiplication in these newly generated instructions. Standard dead code

elimination automatically removes the remnants of the original calculation.

The performance impact was evaluated on the Qualcomm Adreno 530 GPU. To measure

the baseline of benchmark performance, all shaders were compiled with the default Qualcomm

graphics stack. They were then compiled with LunarGLASS into LLVM, CAnDL was applied,

and they were transformed back into GLSL code [146]. To evaluate the impact, the result was

passed through the default graphics stack again, and the performance measured.

4.5.2.2 Results

There were 19 solutions to the specification across the benchmarks, and the transformation

had an impact on the performance of 8 fragment shaders. The resulting performance impact

is shown in Figure 4.4. Evidently, there are opportunities for such associative reordering that

the default graphics stack misses. Although the performance impact was moderate with 1–4%

speedup on 8 of the fragment shaders, it shows how new analysis can be rapidly prototyped

and evaluated with only a few lines of code.

78 Chapter 4. The Compiler Analysis Description Language

4.5.3 Case Study 3: Detection of Polyhedral SCoPs

The polyhedral model [27, 28] allows compilers to utilise powerful mathematical reasoning

to detect parallelism opportunities in sequential code and to implement code transformations.

However, this applies only for a restrictive class of well-structured loop nests. More precisely,

conventional polyhedral code transformations are applicable to Static Control Parts (SCoPs).

Detecting SCoPs is a fundamental and necessary first step for any later polyhedral optimisation.

Implementations of the polyhedral model may differ in their precise definition of SCoPs.

The definition of Semantic SCoPs from the Polly compiler by Grosser et al. [26] was used

for reference here. SCoP detection functionality was implemented in CAnDL and compared

against Polly, which is also implemented as an extension to LLVM. The use of the same

definition for SCoPS and the implementation in the same compiler infrastructure allow for

a direct comparison between Polly and CAnDL. The specification of SCoPs is significantly

more complex than the required CAnDL code for the previous case studies. However, it can

be broken into several components, with some of them shown in Listing 4.14.* The integer

constants “10” and “20” in the collect statements are required for the solver to restrict the

search space to a finite set of variables.

Structured Control Flow SCoPs require well-structured control flow. This means that each

conditional jump within the corresponding piece of LLVM IR is accounted for by for-loops

and conditionals. This is ensured with the collect constraints, as in Listing 4.5. The construct

is used with the CAnDL specifications “For” (lines 21–25) and “IfBlock” (lines 26–30) that

describe the control flow of for-loops and conditionals. All the involved conditional jump

instructions are extracted, and it is checked that these are indeed all conditional jumps within

the potential SCoP (lines 14–24 and lines 31-33).

Once the control flow has been established, the iterators of the loops (lines 4–5) are used to

define affine integer computations in the loop (lines 6–9). This is done in a brute-force fashion

with a recursive constraint program “AffineCalc” (line 50). It is checked that the iteration

domain of all the for-loops is well-behaved, i.e. the boundaries are affine in the loop iterators.

Affine Memory Access All memory accesses in the SCoP must be affine. For this to be true,

it needs to be verified that for each “load” and “store” instruction, the base pointer is loop-

invariant, and the index is calculated affinely. The loop-invariant base pointer is easily checked

in “MemoryAccess with the “LocalConst” program from Listing 4.8.

Checking the index calculations is more involved and is again based on the method that

was demonstrated in Listing 4.5. The collect construct is used to find all of the affine memory

accesses in all the loop nests (lines 43–54). Another collect gathers all “load” and “store”

instructions (36–42), guaranteeing that both collections are identical.

*The complete CAnDL code for this section is in Appendix B.

4.5. Case Studies 79

1 Constraint SCoP
2 (include For @ {loop}
3 ∧ include StructuredControlFlow({loop}->{scope}) @ {control}
4 ∧ {inputs[0]} = {loop.iterator}
5 ∧ {inputs[i]} = {control.loop[i-1].iterator} foreach i=1..10
6 ∧ include AffineControlFlow({loop}->{scope},
7 {inputs}->{inputs}) @ {control}
8 ∧ include AffineMemAccesses({loop}->{scope},
9 {inputs}->{inputs}) @ {accesses}

10 ∧ include SideEffectFreeCalls({loop}->{scope}) @ {effects})
11 End
12
13 Constraint StructuredControlFlow
14 (collect i 20 (opcode{branch[i].value} = branch
15 ∧ {branch[i].target1} =
16 {branch[i].value}.successors[0]
17 ∧ {branch[i].target2} =
18 {branch[i].value}.successors[1]
19 ∧ include ScopeValue({scope}->{scope},
20 {branch[i].value}->{value}))
21 ∧ collect i 10 (include For @ {loop[i]}
22 ∧ domination({scope.begin},
23 {loop[i].begin})
24 ∧ strict_post_domination({scope.end},
25 {loop[i].end}))
26 ∧ collect i 10 (include IfBlock @ {ifblock[i]}
27 ∧ domination({scope.begin},
28 {ifblock[i].precursor})
29 ∧ strict_post_domination({scope.end},
30 {ifblock[i].successor}))
31 ∧ {loop[0..10].end,ifblock[0..10].precursor}
32 is the same set as {branch[0..20].value})
33 End
34
35 Constraint AffineMemAccesses
36 (collect x 20 (include MemoryAccess({scope}->{scope})
37 @ {newaccess[x]}
38 ∧ opcode{newaccess[x].pointer} = gep
39 ∧ domination({scope.begin},
40 {newaccess[x].pointer})
41 ∧ {newaffine[x].value} =
42 {newaccess[x].pointer}.args[1])
43 ∧ collect x 20 (include MemoryAccess({scope}->{scope})
44 @ {newaccess[x]}
45 ∧ opcode{newaccess[x].pointer} = gep
46 ∧ domination({scope.begin},
47 {newaccess[x].pointer})
48 ∧ {newaffine[x].value} =
49 {newaccess[x].pointer}.args[1]
50 ∧ include AffineCalc[M=10,N=6](
51 {scope}->{scope},
52 {inputs}->{input})
53 @ {newaffine[x]}))
54 End

Listing 4.14: Fragments of the specification of Scalar Control Parts (SCoPs) using CAnDL:
SCoPs are defined at lines 1–11 by applying multiple restrictions to the containing loop. These
restrictions are then individually implemented in CAnDL, using “StructuredControlFlow” and
“AffineMemAccesses”, shown in lines 13–33 and lines 35–54, respectively (cf. Appendix B).

80 Chapter 4. The Compiler Analysis Description Language

Polly CAnDL

Lines of Code 1903 45

Detected in datamining 2 2

Detected in Linear-algebra 19 19

Detected in medley 3 3

Detected in stencils 6 6

Table 4.4: Polly and CAnDL detected all SCoPs.

4.5.3.1 Experimental Setup

The reliable detection of SCoPs was evaluated on the PolyBench suite [147], a collection of

31 benchmark programs that contain SCoPs of differing complexity from several application

domains. For both the CAnDL-based approach and for the evaluation of Polly, it was counted

how many of the computational kernels contained in the benchmark suite were captured in their

entirety by the respective analysis.

Some post-processing of the generated constraint solutions was required to compare the

results of CAnDL and Polly. This was needed because the output of CAnDL was not in the

JSCoP format that Polly generates, but contained the raw constraint solution encoded as a

JSON file. Furthermore, the CAnDL implementation did not merge consecutive outer level

loops into a single SCoP of maximum size. Therefore, the detected loops from the CAnDL

solver were extracted and grouped together. A Python script was then used to verify that they

precisely covered the SCoPs detected by Polly.

4.5.3.2 Results

Table 4.4 shows that the CAnDL specification captured all the SCoPs that Polly detected. To

measure the lines of code required, the CAnDL version was compared with the amount of code

in ScopDetection.cpp of Polly. The same detection results were achieved with much fewer

lines of code in CAnDL. Note that the line count that is given for the CAnDL program does

not include all the CAnDL code involved in the detection of polyhedral regions. Code that is

not specific to this idiom (such as loop structures) is considered as part of the CAnDL standard

library. In the same way, the line count for Polly does not account for additional code that Polly

relies on when detecting SCoPS, e.g. the expansive “ScalarEvolution” pass.

Detecting SCoPs with CAnDL incurred a significant overhead, but compile times remained

below one second for each PolyBench program on an Intel i7-8665U processor. Detailed

compile time results are presented in Table 4.5. The geomean overhead of enabling the CAnDL

detection of SCoPS during compilation was 556%, mostly due to the large number of variables

4.5. Case Studies 81

Clang compile times Clang+CAnDL compile times

datamining/correlation 59 427

datamining/covariance 48 344

linear-algebra/2mm 53 599

linear-algebra/3mm 52 844

linear-algebra/atax 48 241

linear-algebra/bicg 51 246

linear-algebra/cholesky 52 245

linear-algebra/doitgen 46 424

linear-algebra/gemm 50 330

linear-algebra/gemver 53 329

linear-algebra/gesummv 46 170

linear-algebra/mvt 50 224

linear-algebra/symm 54 293

linear-algebra/syr2k 51 341

linear-algebra/syrk 49 327

linear-algebra/trisolv 49 187

linear-algebra/trmm 46 223

linear-algebra/durbin 54 309

linear-algebra/dynprog 47 291

linear-algebra/gramschmidt 54 704

linear-algebra/lu 48 245

linear-algebra/ludcmp 52 521

medley/floyd-warshall 47 204

medley/reg_detect 54 566

stencils/adi 54 753

stencils/fdtd-2d 52 500

stencils/fdtd-apml 61 977

stencils/jacobi-1d-imper 76 163

stencils/jacobi-2d-imper 56 299

stencils/seidel-2d 58 229

Table 4.5: Overhead of SCoP detection with CAnDL: Compile times are listed in milliseconds.
The geomean increase in compile times due to SCoP detection with CAnDL was 556%.

82 Chapter 4. The Compiler Analysis Description Language

that are required for expressing affine calculations. The compile time impact of all other idioms

discussed in this thesis is much more moderate (compare Table 6.3). This overhead can be

prohibitive during software development when frequent recompilation is required. However, it

pales in comparison to autotuners, superoptimisation, and many other compiler techniques that

involve constraint solvers and should be unproblematic in many contexts.

With a high-level representation of SCoPs, CAnDL allows polyhedral compiler researchers

to explore the impact of relaxing or tightening the exact definition of SCoPs in a straightforward

manner, enabling rapid prototyping. Simple commenting out of constraint statements in the

CAnDL specification relaxes the conditions.

4.6 Conclusions

Optimising compilers require sophisticated program analysis in order to generate performant

code. The state-of-the-art approach for implementing this functionality manually in C++ is

not satisfactory, as exemplified by the complicated and error-prone “instcombine” pass in the

LLVM compiler infrastructure.

The domain-specific Compiler Analysis Description Language (CAnDL) provides a more

efficient approach. CAnDL specifications can automatically generate compiler analysis passes

from a declarative description. They are easier to program and significantly reduce the code

size and complexity when comparing against manual C++ implementations. Although CAnDL

is based on a constraint programming paradigm and uses a backtracking solver to analyse the

LLVM IR code, compile times never exceeded one second.

Many compiler analysis tasks are suitable for implementation with CAnDL. It can be used

for the detection of standard peephole optimisation opportunities and the rapid prototyping

of graphics shader optimisations. Despite its general approach, CAnDL scales to complex

domain-specific code structures and can efficiently recognise large code regions suitable for

polyhedral transformations.

Outlook The final case study showed that CAnDL can express the algorithmic structure of

complex loop nests, not just peephole optimisation opportunities. This enables the capturing

of entire loops at a time. The following chapters expand on this observation by investigating

how the recognition of computational idioms can be leveraged for performance. While SCoPs

were reported without informing additional compiler transformations, Chapter 5 applies auto-

parallelisation techniques to a broad generalisation of reduction computations.

Chapter 5

Automatic Parallelisation of

Reductions and Histograms*

The Compiler Analysis Description Language (CAnDL) makes the constraint methodology

from Chapter 2 accessible to the Clang compiler within the LLVM compiler infrastructure.

The previous chapter showed how this enables compiler analysis tools to be generated from

declarative specifications, replicating and extending established compiler abilities. This chapter

goes beyond restating and improving existing functionality. Instead, it implements automatic

parallelisation methods for programs that were previously inaccessible to compiler reasoning.

Complex Reduction and Histogram Computations (CReHCs) are identified as a previously

overlooked computational idiom. CReHCs constitute performance bottlenecks of important

benchmark programs and share algorithmic structure that allows for targeted acceleration and

parallelisation approaches. In contrast to the better-understood scalar reductions, CReHCs may

contain indirect memory accesses and non-trivial control flow. Such loops have not typically

been studied as a single class of calculations, but this chapter demonstrates that grouping them

together allows for automatic detection and parallelisation using shared methods.

After introducing CReHCs, this chapter presents the Idiom Description Language (IDL) as

an extension of CAnDL and uses it to implement the detection of this idiom. The additional

language features of IDL enable capturing well-behaved kernel functions. CReHCs contain

reduction operators that are modelled as kernel functions, but kernel functions are also required

in the formulation of other computational idioms, such as stencil codes.

Grouping reductions and histograms together and formulating CReHCs in IDL enables

their automatic recognition in C/C++ program code. The evaluation section shows results from

benchmarking the outcomes of parallelisation routines that were implemented to complement

the detection. Significant speedups were achieved on several programs from the NAS Parallel

Benchmark suite, the Parboil Benchmarks, and Rodinia.

*This chapter is based on published research: Ginsbach and O’Boyle [2].

83

84 Chapter 5. Automatic Parallelisation of Reductions and Histograms

5.1 Introduction

Reductions occur widely in numerical applications. Parallelisation techniques for them were

established by Rauchwerger and Padua [81], Yu and Rauchwerger [85], Jradi et al. [148], and

others. Typical reductions successively apply an arithmetic operator over an array of numeric

values in order to compute, for example, the sum of a set of floating-point numbers. Perhaps

most prominently, a reduction makes up the innermost loop of the matrix multiplication kernel

in the form of a dot product. In this form, reductions are critical to high performance computing

workloads based on linear algebra, as well as embedded benchmarks and emerging machine

learning and computer vision applications [91]. Even so, linear algebra allows for much more

targeted optimisation methods. Interpreting the innermost loop of matrix multiplication as an

arbitrary reduction is unlikely to achieve comparable performance.

However, there is a much larger class of computations that can be parallelised in much the

same way. This is the class of Complex Reduction and Histogram Computations (CReHCs), a

broad generalisation of conventional reductions that may also contain updates to dynamically

selected elements in arrays. This manner of array access is characteristic for the calculation of

histograms. CReHCs constitute an important set of standard program kernels. They typically

have a higher arithmetic intensity and can be more profitably exploited on their own than simple

scalar reductions.

Discovering and exploiting scalar reductions in programs has been studied for many years,

by Pottenger and Eigenmann [78], among others. The treatment of generalisations of reduction

operations has received less attention. While some work has been published on parallelising

such computations, automatic detection mostly evades established compiler analysis methods.

The reason is that histogram reductions intrinsically contain indirect memory accesses, posing

a challenge to compilers that use standard data dependence [149] or the polyhedral model [28]

as the basis of their analysis.

The constraint programming methodology derived in Chapter 2, however, is not inhibited

by such indirect memory accesses. Chapter 4 developed the constraint programming language

CAnDL using this methodology and showed that it could also recognise intricate control flow.

This chapter presents the Idiom Detection Language (IDL) as an extension of CAnDL and

uses it to implement the detection of CReHCs. The additional language features enable IDL to

express well-behaved kernel functions, which capture the reduction operators of CReHCs. The

IDL solver automatically identifies conforming subsets of LLVM IR during compilation.

This chapter focuses on deriving the detection of reductions and assumes that later compiler

stages are responsible for mapping this to dedicated code generation backends. Nevertheless,

to illustrate the potential performance of the scheme, it also introduces a complementing code

generation pass. This transformation pass achieved significant program-wide speedups on

those benchmarks where reductions were performance bottlenecks.

5.2. Motivation 85

5.2 Motivation

Listing 5.1 shows a standard scalar reduction. Inside a single loop, the elements of the array “a”

are successively accumulated in the variable “sum” using the “+=” operator. This accumulation

creates dependencies between successive loop iterations. However, those are easy to break.

Rather than sequentially accumulating “a” into “sum”, it is possible to accumulate partial sums

into thread-private copies of “sum” in parallel, which are then added to form the final value.

1 sum = 0;
2 for(i = 0; i < n; i++)
3 sum += a[i];

Listing 5.1: The most conventional example of a reduction is the adding up of values in an array:
The reduction operator “+” reduces the array “a” to a single value – the reduction variable “sum”.

Simple scalar reductions frequently occur, and existing compilers readily exploit them.

Despite their abundance, scalar reductions rarely dominate execution time, and when they

do, they are often part of more prominent algorithms, such as matrix multiplication. This

often makes outer-scope parallelism more profitable to exploit. Therefore, the parallelisation

of simple reductions alone has only a limited impact on program performance.

Listing 5.2 shows a more complex section of code that constitutes a performance bottleneck

of the “Embarrassingly Parallel” benchmark program in the NAS Parallel Benchmarks. Note

that the name of the benchmark refers to outer-loop parallelism. It is not directly evident that

this computation can be treated as a reduction. However, it can be parallelised similarly to the

simple sum. Creating thread-private copies of the reduction variables is again the critical step.

1 for(i = 0; i < NK; i++) {
2 x1 = 2.0 * x[2*i] - 1.0;
3 x2 = 2.0 * x[2*i+1] - 1.0;
4 t1 = x1 * x1 + x2 * x2;
5 if(t1 <= 1.0) {
6 t2 = sqrt(-2.0 * log(t1) / t1);
7 t3 = (x1 * t2);
8 t4 = (x2 * t2);
9 l = MAX(fabs(t3), fabs(t4));

10 q[l] = q[l] + 1.0;
11 sx = sx + t3;
12 sy = sy + t4;
13 }
14 }

Listing 5.2: Example of a Complex Reduction and Histogram Computation: The bottleneck from
the NAS Parallel Benchmarks can be parallelised as a reduction by privatising “sx”, “sy”, “q[]”.

86 Chapter 5. Automatic Parallelisation of Reductions and Histograms

sx sy

x=

q=

sx sy

x=

q=

sx’ sy’

q’=

sx += sx’

sy += sy’

q=

q’=

+
=

+
=

+
=

s
y
n
c
h
r
o
n
i
s
a
t
i
o
n

Figure 5.1: Parallelisation of Listing 5.2: The input “x[]” is split over two threads (red/blue) that
operate on private copies of “sx”, “sy”, “q[]”. These are merged after a synchronisation barrier.

The loop in Listing 5.2 is considered a CReHC for the following reasons: Firstly, there is

an input array “x[]”, from which values are read successively in each iteration. Secondly, the

values “sx” and “sy” are scalar reduction variables, as is evident from lines 11–12. They are

incremented conditionally, and the added value is not merely “x[i]” but the result of a complex

calculation with control flow. Nonetheless, the calculation and the branching condition only

depend on the input values “x[2*i]” and “x[2*i+1]”. Thirdly, the array “q[]” is updated as

a histogram array at line 10. The index “l” is not directly read from an input array, as in a

conventional histogram, but again the calculation only depends on the input values.

As in the case of the simple sum, the parallelisation of this code requires the computation

of partial results in separate memory locations before merging the partial results. The whole

process is illustrated in Figure 5.1, with different colours on the right showing the distribution

of the program over two threads. The scalar variables “sx”, “sy” and the array “q[]” are

privatised. Partial results are then accumulated in the local copies by partitioning the input

array equally across the two threads. Finally, the threads are synchronised, and partial results

merged. This is done by adding the local copies of “sx”, “sy” and performing an element-wise

addition of the local copies of “q[]”.

Figure 5.2 gives an insight into why existing schemes do not detect such reductions by

showing the compiler representation of this program. The histogram update occurs in the third

basic block with the “load”, assignment and “store” operations, but it is by no means obvious

that this is a safe reduction. In fact, accurately detecting reductions is non-trivial. If in the

original program, shown in Listing 5.2, the condition on line 5 was changed to “t1 <= sx”,

this would be no longer be a sound reduction, as there would now be a control dependence on

an intermediate result. This, in turn, would manifest itself as an additional data dependence

edge from block 3 to block 2 in Figure 5.2. Moreover, the code segment can only be classified

as a reduction because all the function calls that are present are pure. Such details have to be

checked to ensure correctness. What is needed is a way to specify these conditions precisely

and to then automatically identify code regions that satisfy the constraints.

5.2. Motivation 87

Figure 5.2: Fragments of the data flow, control flow, and control dependencies in the internal
compiler representation of the source code in Listing 5.2: These interactions must be considered
when searching for code that implements Complex Reduction and Histogram Computations.

88 Chapter 5. Automatic Parallelisation of Reductions and Histograms

5.3 Recognising CReHCs

There are three fundamental issues to address in exploiting CReHCs: detection, replacement,

and profitability. This chapter focuses on the reliable detection of reductions. For evaluation

purposes, a preliminary code generation phase that generates parallel code was implemented

targeting the POSIX Threads interfaces. Smart profitability heuristics are essential in practice

to determine whether or not to apply parallelising code transformations. For this work, a simple

profile-based approach was used.

In the following sub-sections, the properties that loops need to satisfy to be interpreted

as CReHCs are derived. Conditions for sound CReHCs are established and demonstrated on

counterexamples. These observations then motivate extensions to CAnDL that culminate in

the Idiom Detection Language (IDL). This language eventually enables the constraint-based

specification of CReHCs for automatic compiler detection.

5.3.1 Constraint-Based Formulation

The motivation section described how CReHCs could be parallelised as reduction operations.

For compilers to apply this parallelisation automatically, a precise specification of the suitable

program loops is required. This section gives an overview of the necessary conditions for

CReHCs, which are then precisely formulated in Sections 5.3.2 and 5.3.3.

5.3.1.1 Scalar Reductions

Informally, the following conditions are required to hold in a piece of source code for it to

contain a computation that can be parallelised like a scalar reduction:

1. The code is contained in a for-loop, and the iteration space of the loop is known ahead

of time (but not necessarily at compile time).

2. There is a scalar value x that is updated in every iteration.

3. One or multiple values a1, . . . ,an are read from arrays, and the access indices are affine

in the loop iterator.

4. The updated value x′ is computed as a term only of x, the array values a1, . . . ,an, and of

values that are constant within the loop.

This definition is broader than usual. In particular, it allows the reduction to encompass

multiple input arrays. Furthermore, complex computations inside the reduction are possible,

not just binary scalar operators. Note that condition 2 is enforced only at SSA level. Finally,

this definition does not yet contain a commutativity condition that would be necessary to allow

the parallelisation to work. Instead, it also captures intrinsically sequential scalar reductions.

5.3. Recognising CReHCs 89

1 sum = 0;
2 for(i = 0; i < n && sum < 10; i++)
3 sum += a[i];

1 sum = 0;
2 for(i = 0; i < n; i++)
3 b[i] += a[i];

1 chase = 0;
2 for(i = 0; i < n; i++)
3 chase = a[chase];

1 sum = 0;
2 active = true;
3 for(i = 0; i < n; i++) {
4 sum += active?a[i]:0;
5 active = active && (sum < 10);
6 }

Listing 5.3: Counterexamples to the four conditions: None of these computations can be
parallelised as scalar reductions. The first and last example implement the same program.

Example Both “sx” and “sy” in Listing 5.2 satisfy the conditions. Firstly, the iteration space

of the loop is bounded by “NK”, which is constant. Secondly, within the SSA representation,

both “sx” and “sy” are unconditionally updated via Φ-instructions, shown in Figure 5.2. This

is despite the conditional statement in the original C representation of the program. Thirdly,

two values are read from the single input array “x[]” in every iteration, and the indices “2*i”

and “2*i+1” are affine in “i”. Finally, the updated values depend only on their respective old

values, the two values read from “x[]”, and the constants “1.0” and “2.0”. This also relies on

the fact that all functions used in the computation are pure functions.

Counterexamples Listing 5.3 shows counterexamples to the four conditions, demonstrating

why they are all needed in order to parallelise a given computation as a scalar reduction.

In the first example, the iteration space is not known in advance, as the computation can

be terminated depending on the input data. This makes it impossible to compute partial sums

in parallel. The second example is straightforward, as there is no reduction variable that could

be privatised. The loop could still be computed in parallel – but not as a scalar reduction. The

third example uses index calculations that are not affine in “i”. This prevents a straightforward

distribution of the input array across threads. In this particular case, the index calculation also

involves values other than “i”, preventing the computation of partial results entirely. The final

example is equivalent to the first but breaks the fourth condition instead of the first.

90 Chapter 5. Automatic Parallelisation of Reductions and Histograms

5.3.1.2 Histogram Reductions

The conditions that apply to histogram reductions are similar to those for scalar reductions.

However, instead of one function parameter, there are two:

1. The code is contained in a for-loop, and the iteration space of the loop is known ahead

of time (but not necessarily at compile time).

2. One or multiple values a1, . . . ,an are read from arrays, and the access indices are affine

in the loop iterator.

3. An integer k is computed as a term only of the array values a1, . . . ,an, and of values that

are constant within the loop.

4. A value x is read from an array at index k and a modified value x′ is written at the same

index. The writing may be control-dependent only on a1, . . . ,an and it may not be in a

nested loop.

5. The updated value x′ is computed as a term only of x, the array values a1, . . . ,an, and of

values that are constant within the loop.

Histogram reductions are only parallelisable if their update operator is commutative, just as

is the case for scalar reductions. However, checking this condition requires a post-processing

step, which is independent of the detection of the algorithmic structure. For this research,

checking commutativity was considered the responsibility of code generation.

Example The first two conditions are the same as those in the previous discussion of scalar

reductions and were shown to hold for the loop in Listing 5.2. The array “q[]” also satisfies

the remaining conditions. Firstly, the variable “l” corresponds to the index k. Secondly, the

element “q[l]” is read, modified and written. Lastly, the updated value is computed in an

allowed fashion, as it is obtained by merely adding a constant “1.0” to the previous value.

Counterexamples Again, counterexamples are given in Listing 5.4 to develop an intuition

about the significance of conditions 3–5.

In the first example, the index of the histogram is not computed from an input array but

instead read from an input stream. This makes parallelisation as a histogram impossible, as

the stream is only available sequentially. In the second and third examples, the computation

effectively stops when an index beyond a threshold size occurs. This can only be accounted for

by sequentially going through the array. Therefore, the parallel computation of partial results

is not efficiently possible. This behaviour is evoked in two different ways, by breaking the

conditions 4 and 5, respectively. This shows the need to restrict both the data flow and control

flow of the histogram kernel.

5.3. Recognising CReHCs 91

1 for(i = 0; i < n; i++)
2 hist[getchar()] += 1;

1 active = true;
2 for(i = 0; i < n; i++) {
3 if(a[i] > 9)
4 active = false;
5 if(active)
6 hist[a[i]] += 1;
7 }

1 active = true;
2 for(i = 0; i < n; i++) {
3 if(a[i] > 9)
4 active = false;
5 hist[a[i]] += active?1:0;
6 }

Listing 5.4: Counterexamples to the last three conditions: None of these computations can
be parallelised as histograms. The final two example loops implement equivalent functionality.

5.3.2 The Idiom Detection Language

For automatic detection during compilation, the conditions from Sections 5.3.1.1 and 5.3.1.2

are specified formally in a constraint language. CAnDL from Chapter 4 is taken as the basis

for this formulation. However, additional language constructs are required in order to capture

the kernel computations.

This extension of CAnDL leads to the definition of the Idiom Detection Language (IDL).

IDL uses the solver infrastructure of CAnDL and retains the same high-level program structure.

However, it extends the language and modifies the syntax to be more convenient for large-scale

specifications, replacing uncommon Unicode characters. Table 5.1 shows syntax differences.*

CAnDL IDL

∧, ∨ and, or

include Spec({A}->{B},
{C}->{D})@{E}

inherits Spec with {A} as {B}
and {C} as {D} at {E}

{A}={B}, {A} 6={B} {A} is [not] equal to {B}

domination({A},{B}) {A} control flow dominates {B}

opcode{A} = store {A} is store instruction

{A} ∈ {B}.args {A} has data flow to {B}

Table 5.1: The Idiom Detection Language (IDL) is derived from CAnDL. However, it uses a
more descriptive syntax, without uncommon Unicode characters such as “∧”, “∨”, “∈”, and “ 6=”.

*The complete grammar file that was used to generate the parser of the IDL compiler is in Appendix C.

92 Chapter 5. Automatic Parallelisation of Reductions and Histograms

5.3.2.1 Kernel Functions as Generalised Domination

Complex Reduction and Histogram Computations can be expressed as a higher-order function.

This means that the computational idiom is not just parameterised with numerical values, such

as array dimensions, but contains kernel functions as parameters. To enable the capture of such

higher-order functions in IDL, additional constraint expressions are required that go beyond

what CAnDL provided. Specifically, IDL adds another atomic constraint based on generalised

graph domination, as previously described in Definition 2.15, using the following syntax:

all flow from variable_tuple or any origin to any of variable_tuple

passes through at least one of variable_tuple

The syntax of this atomic constraint is quite descriptive, but some details require explanation.

Firstly, “flow” in this constraint does not only capture data flow. To cover kernel functions with

non-trivial control flow, the underlying graph on which this constraint operates is formed as an

extension of the data flow graph DFG∗F . In addition to the data flow edges, it has an edge from

each branch instruction to every instruction within all its targeted basic blocks. This encodes

control dependence information and also guarantees that all relevant control flow is retained

when flushing the graph in reverse direction from the result of a computation. This is needed

for identifying the required instructions to implement a kernel as a separate function.

Secondly, as opposed to the control flow graph that is typically considered for dominance

relationships, the resulting graph has no single “origin”. Aside from the control entry, all non-

pure function calls and reads from memory are considered graph origins.

Figure 5.3 demonstrates the significance of this definition. At the top is an SSA pseudocode

representation of the complex reduction and histogram calculation from Listing 5.2, annotated

in the right column with all the dependencies described above. It is now possible to check the

validity of the kernel function that is used within the loop for the reduction on “sx” as follows:

1 all flow from {loop_carried[0..3]} or any origin
2 to any of {sx’’} passes through at least one of
3 {sx,t2,t5,precursor,backedge,outside[0..N]}}

This use of the new atomic constraint requires several additional conditions: “precursor” and

“backedge” should be determined and “outside[0..N]” should contain all origins that lie

outside the SESE region within which the kernel functions is considered. Furthermore, the

array “loop_carried” needs to be constrained to contain all loop-carried Φ-instructions.

With this setup, it is straightforward to check that the constraint is satisfied. Control flow

can only reach sx′′ via the precursor at line 1 and the back edge at line 28. The other relevant

graph origins for this example are the load instructions at lines 6,9,18 and the explicitly added

Φ-instructions. The three of these that can reach sx′′ through the graph are explicitly killed as

generalised dominators “sx”, “t2”, and “t5”.

5.3. Recognising CReHCs 93

Block Operation Dependencies

entry 1: goto loop outside the considered region

loop

2: i←Φ(entry : 0, loop : i′) loop carried data flow
3: sx←Φ(entry : 0.0, loop : sx′′) loop carried data flow
4: sy←Φ(entry : 0.0, loop : sy′′) loop carried data flow
5: t1← 2 · i control(1, 28), data(2)
6: t2← load x[t1] origin of data flow
7: t3← 2.0 · t2−1.0 control(1, 28), data(6)
8: t4← 2 · i+1 control(1, 28), data(2)
9: t5← load x[t4] origin of data flow

10: t6← 2.0 · t5−1.0 control(1, 28), data(9)
11: t7← t3 · t3 + t6 · t6 control(1, 28), data(7, 10)
12: t8← t7 ≤ 1.0 control(1, 28), data(11)
13: if t8 goto i f block else uncond control(1, 28), data(12)

ifblock

14: t9← sqrt(−2.0 · log(t7)/t7) control(13), data(11)
15: t10← t3 ∗ t9 control(13), data(7, 14)
16: t11← t6 · t9 control(13), data(10, 14)
17: l←MAX(f abs(t10), f abs(t11)) control(13), data(15, 16)
18: t12← load q[l] origin of data flow
19: t13← t12 +1 control(13), data(18)
20: store q[l]← t13 control(13), data(19)
21: sx′← sx+ t10 control(13), data(3, 15)
22: sy′← sy+ t11 control(13), data(4, 16)
23: goto uncond control(13)

uncond

24: sx′′←Φ(loop : sx, i f block : sx′) control(13, 23), data(3, 21)
25: sy′′←Φ(loop : sy, i f block : sy′) control(13, 23), data(4, 22)
26: i′← i+1 control(13, 23), data(2)
27: t14← i′ < NK control(13, 23), data(26)
28: if t14 goto loop else exit outside the considered region

function kernel(sx, t2, t5)

entry

t3← 2.0 · t2−1.0
t6← 2.0 · t5−1.0
t7← t3 · t3 + t6 · t6
t8← t7 ≤ 1.0
if t8 goto i f block else uncond

ifblock

t9← sqrt(−2.0 · log(t7)/t7)
t10← t3 · t9
sx′← sx+ t10
goto uncond

uncond sx′′←Φ(entry : sx, i f block : sx′)
return sx′′

Figure 5.3: A kernel function is identified within the SSA pseudocode at the top (cf. Listing 5.2):
The value of sx′′ is calculated in the SESE region spanning lines 2–27 as a pure function of only
sx, t2, and t5. This is determined by starting from sx′′ (blue) and following the dependencies on
the right, checking that all paths end in the predetermined function arguments sx, t1 and t5 (red).
The kernel function can then be extracted and valid SSA reconstructed, as shown at the bottom.

94 Chapter 5. Automatic Parallelisation of Reductions and Histograms

1 Constraint KernelFunction

2 (collect i 4 ({entries[i]} has control

3 flow to {scope.begin}) and

4 collect i 24 (inherits LocalConst

5 with {scope} as {scope}

6 at {outside[i]} and

7 {outside[i].value}

8 is not a numeric constant and

9 {outside[i].value} has data

10 flow to {outside[i].use} and

11 {scope.begin} control flow

12 dominates {outside[i].use}) and

13 collect i 8 ({loop_carried[i].update} reaches

14 phi node {loop_carried[i].value}

15 from {scope.end} and

16 {scope.begin} control flow

17 dominates {loop_carried[i].value}) and

18 all flow from {loop_carried[0..8].value} or any origin

19 to any of {result} passes through at least one of

20 {inputs[0..32],entries[0..4],outside[0..24].value})

21 End

1 Constraint ScalarPart

2 ({kernel.result} reaches phi node

3 {old_value} from {loop.end} and

4 inherits ScopeValue

5 with {loop} as {scope}

6 and {old_value} as {value} and

7 {kernel.result} has data flow to {final_value} and

8 {loop.end} strictly control flow

9 dominates {final_value} and

10 inherits KernelFunction

11 with {loop} as {scope} at {kernel} and

12 inherits Concat(N1=31,N2=1)

13 with {read_values} as {in1}

14 and {old_value} as {in2}

15 and {kernel.inputs} as {out})

16 End

Listing 5.5: IDL specifications of a kernel function and a scalar reduction within a CReHC: In
“ScalarPart”, the kernel function operates in a loop. Its input “kernel.inputs” is composed
of “read_values” and the reduction value of the previous iteration, concatenated with “Concat”.

5.3. Recognising CReHCs 95

5.3.2.2 Expressing Kernel Functions in IDL

Listing 5.5 encapsulates kernel functions as an IDL constraint specification in the top half. The

specification is built around the previously introduced generalised graph domination constraint,

which is invoked at lines 18–20. The arrays that are used in these final lines of the specification

are filled with several collect-all statements at lines 2–17. Lines 2–3 collect all the entry points

of the control flow. In the previous example, these were “precursor” and “backedge”. All

values from outside the scope that are used within the scope are collected at lines 4–12. These

values can be considered the closure of the kernel function. Finally, lines 13–17 collect all the

loop-carried Φ-instructions, which only exist in case the scope is a loop.

The bottom of Listing 5.5 shows the IDL specification of a scalar reduction component

within a CReHC loop. This IDL specification is built around a kernel function, incorporating

the specification at lines 10–11. The arguments to this kernel are set using the “Concat”

specification at lines 12–15. This kernel function is connected with a loop-carried Φ-instruction

at lines 2–6. Finally, lines 7–9 make sure that the reduction value eventually leaves the loop,

excluding loop-carried iterators that are only used within the loop.

Listing 5.6 shows how histogram reductions are specified similarly. Two kernel functions

calculate the index of the bin in the histogram (lines 7–9) and the updated value of its contents

(lines 10–15). The histogram update in each iteration may be conditional, as expressed with

“ConditionalReadModifyWrite” in lines 2–6. Crucially, the kernel functions use the scope

of the loop and already restrict this conditional to only depend on the allowed values.

1 Constraint HistoPart
2 (inherits ConditionalReadModifyWrite
3 with {loop} as {scope}
4 and {idx_kernel.result} as {address}
5 and {val_kernel.result} as {new_value}
6 at {update} and
7 inherits KernelFunction
8 with {loop} as {scope}
9 and {read_values} as {inputs} at {idx_kernel} and

10 inherits KernelFunction
11 with {loop} as {scope} at {val_kernel} and
12 inherits Concat(N1=31,N2=1)
13 with {read_values} as {in1}
14 and {update.old_value} as {in2}
15 and {val_kernel.inputs} as {out})
16 End

Listing 5.6: IDL specification of a histogram reduction in a Complex Reduction and Histogram
Computation: Two kernel functions are present. Lines 7–9 calculate the index into the histogram
array, lines 10–11 generate the updated value. The read-modify-write step may be conditional.

96 Chapter 5. Automatic Parallelisation of Reductions and Histograms

5.3.3 Specification of CReHCs in IDL

Listing 5.7 shows how the previously described IDL specifications can be assembled to define

the class of Complex Reduction and Histogram Computations.*

Such computations are always encapsulated by a single for-loop, as stipulated at line 2.

Lines 3–7 specify that input values “read_values” are read from one or several input arrays,

according to the specification “VectorRead”. These values are then passed at lines 12,17 to

the “HistoPart” and “ScalarPart” invocations. Note that the seemingly redundant variable

name assignments prevent prefixing with “histo[k]” and “scalar[k]”, respectively.

Lines 19–24 make sure that there are no array writes aside from the histogram updates.

Furthermore, lines 27–28 eliminate the possibility of effectful function calls within the loop.

Together, these constraints rule out any unwanted side effects of the loop.

Lines 25–26 enforce that the loop contains at least one reduction or histogram computation.

This is guaranteed indirectly because the two compared variables can only be the same if they

are both unused.

5.4 Code Generation for CReHCs

Parallel code generation immediately follows the CAnDL-generated detection pass. It uses the

detected constraint solutions to reimplement the corresponding loops with divide-and-conquer

parallelism based on POSIX Threads.

For each Complex Reduction and Histogram Computation loop that is found, the relevant

input arrays and closure variables are taken from the solution. They are packed into a data

structure together with any histogram arrays and the iteration space boundaries.

A new function is generated that takes this data structure as its only parameter. Depending

on the number of processors and recursion depth, the function decides whether to bisect its

workload recursively. If not, the loop is executed as before, using the arguments in the structure.

Otherwise, the function uses “pthread_create” to offload half of its workload onto another

thread. For this, it copies its parameter array, replacing histogram arrays with newly allocated

copies. After both threads finished their work, the copy is merged with the original histogram

element-wise and then deallocated.

In general, determining the size of the histogram at compile time is not possible with

static methods. All the branched-off threads, therefore, use dynamic boundary checking and

reallocate the histogram array when necessary. This on-demand enlargement introduces some

overhead but proved acceptable for many benchmark programs. The exceptions to this were

“IS” and “histo”, where the reduction arrays were large and the algorithmic intensity of the

reduction operators low. For these two programs, the reduction array sizes had to be predefined

*The complete IDL code for this section is in Appendix D.

5.4. Code Generation for CReHCs 97

1 Constraint ComplexReductionsAndHistograms

2 (inherits For at {loop} and

3 collect k 32 (inherits VectorRead

4 with {loop.iterator} as {input_index}

5 and {read_values[k]} as {value}

6 and {loop} as {scope}

7 at {read[k]}) and

8 collect k 2 (inherits HistoPart

9 with {loop.begin} as {begin}

10 and {read} as {read}

11 and {loop} as {loop}

12 and {read_values} as {read_values}

13 at {histo[k]}) and

14 collect k 2 (inherits ScalarPart

15 with {loop.begin} as {begin}

16 and {loop} as {loop}

17 and {read_values} as {read_values}

18 at {scalar[k]}) and

19 collect i 2 ({stores[i]} is store instruction and

20 inherits ScopeValue

21 with {loop} as {scope}

22 and {stores[i]} as {value}) and

23 {stores[0..2]} is the same set as

24 {histo[0..2].update.store_instr} and

25 {scalar[0].kernel.result} is not the

26 same as {histo[0].update.store_instr} and

27 inherits SideEffectFreeCalls

28 with {loop} as {scope})

29 End

Listing 5.7: Complex Reduction and Histogram Computations (CReHCs) as IDL specification:
The idiom comprises histogram (lines 8–13) and scalar (lines 14–18) reductions contained in
a for-loop (line 2). These computations accumulate the values from the input array (lines 3–7).
Additional conditions guarantee the absence of any further side effects in the loop (lines 19–28).

manually. As shown in the results section, this approach was sufficient to achieve significant

speedups on the “IS” benchmark. However, the “histo” program achieved no parallel speedup

despite this improvement.

Optimal code generation was not the main focus of this research, and more sophisticated

methods for the parallelisation of reductions could be incorporated for better speedup results.

98 Chapter 5. Automatic Parallelisation of Reductions and Histograms

5.5 Experimental Setup

5.5.1 Benchmarks and Platform

The prototype idiom detection pass was applied to C versions of the NAS Parallel Benchmarks

(NPB) [139], which were developed by the NASA Advanced Supercomputing Division (NAS).

Specifically, the Seoul National University (SNU NPB) implementation by Seo et al. [140]

was used, containing the original 8 NAS benchmarks plus 2 of the more recent unstructured

components “UA” and “DC”.

The approach was also evaluated on all of the Parboil [150] and Rodinia [142] benchmark

programs. In total, this constitutes 40 programs of varying complexity, shown in Table 5.2.

The “Embarrassingly Parallel” program in NPB, for instance, is a single file of 324 lines of

code. By contrast, the source code of “Leukocyte” in Rodinia is distributed over more than 50

files. For each of the individual benchmark programs, the total number of scalar and histogram

reductions found was captured.

To determine runtime coverage and performance, all of the benchmarks were evaluated on

the same platform. This was a 64-core machine with 4 AMD Opteron 6376 processors and one

terabyte of RAM.

5.5.2 Competing Approaches

To provide a useful comparison, the IDL approach was evaluated against two state-of-the-art

competitors. The first is a recently-published approach that transforms reductions within the

polyhedral framework; the second is a mature industrial compiler.

Polly-Reduction Doerfert et al. [30] developed a compiler analysis and transformation tool

that detects reductions within code captured by the polyhedral model. This system augments

Polly, an LLVM-based polyhedral compiler [26]. The polyhedral model is powerful when

applicable, and Polly being based on LLVM IR allows for comparison of IDL against another

approach that uses the same compiler infrastructure.

The sequential benchmark programs were compiled by version 3.9 of the Clang compiler,

built with the Polly-enabled LLVM. The SCoPs that Polly detected with the compiler options

“-O3 -mllvm -polly -mllvm -polly-export” were considered. Any Polly-based method

only works within these SCoPs. Therefore, this gives an upper bound for the “Polly-Reduction”

method. Reductions within the SCoPS were then manually identified. Any reduction within

a SCoP was counted as a hit for “Polly-Reduction”. This gives an optimistic estimate as to

what coverage a polyhedral-based approach to reduction operations, such as the one presented

in Doerfert et al. [30], can achieve.

5.5. Experimental Setup 99

NPB

BT Block Tridiagonal Solver
CG Conjugate Gradient
DC Data Cube Operator
EP Embarrassingly Parallel Marsaglia Polar Method
FT Fast Fourier Transform
IS Small Integer Bucket Sort

LU Lower-Upper Symmetric Gauss-Seidel Solver
MG MultiGrid Approximation
SP Scalar Pentadiagonal Solver

UA Unstructured Adaptive Mesh

Parboil

bfs Breadth-First Search
cutcp Distance-Cutoff Coulombic Potential
histo Saturating Histogram
lbm Lattice-Boltzmann Method Fluid Dynamics

mri-gridding Magnetic Resonance Imaging - Gridding
mri-q Magnetic Resonance Imaging - Q

sad Sum of Absolute Differences (part of MPEG encoding)
sgemm Dense Matrix-Matrix Multiply

spmv Sparse-Matrix Dense-Vector Multiplication
stencil Iterative 3D Jacobi Stencil

tpacf Two Point Angular Correlation Function

Rodinia

backprop Back Propagation
bfs Breadth-First Search

b+tree Database B+Tree Search
cfd Computational Fluid Dynamics Solver

heartwall Mouse Heart Tracking on Ultrasound Images
hotspot 2D Transient Thermal Differential Equation Solver

hotspot3D 3D Transient Thermal Differential Equation Solver
kmeans K-Means Clustering Algorithm
lavaMD N-Body Simulation of Particles in 3D Space

leukocyte In Vivo Video Microscopy Leukocyte Tracking
lud Lower-Upper Matrix Decomposition

mummergpu Local DNA Sequence Alignment
myocyte Heart Muscle Cell Simulation

nn K-Nearest Neighbors from an Unstructured Data Set
nw Needleman-Wunsch Optimization for DNA Alignments

particlefilter Object Location Estimator for Noisy Measurements
pathfinder Find Minimal Cost Path through 2D Graph

srad Speckle Reducing Anisotropic Diffusion
streamcluster Clustering Algorithm from Parsec

Table 5.2: Overview of the 40 programs used for evaluation, grouped into three suites

ICC The Intel C/C++ compiler is a mature tool that incorporates auto-parallelisation and

vectorisation. Rather than the polyhedral model, it uses simpler data dependence models as its

fundamental analysis method. However, it is a very mature product with industry support.

For this evaluation, the benchmarks were compiled with the “-parallel -qopt-report”

options. This generated optimisation reports. ICC does not explicitly report reductions, but any

reduction that was within a loop that ICC considered to be parallelisable was counted. This also

included in the detection results all those loops that ICC considered possible but inefficient.

100 Chapter 5. Automatic Parallelisation of Reductions and Histograms

5.6 Results

This section first presents the number of reductions found by the various different schemes.

This is followed by an analysis of how significant each reduction was. Finally, the performance

impact of the IDL-based parallelisation method was evaluated.

5.6.1 Discovery

The detection schemes were applied to the three benchmark suites, with the results shown in

Figures 5.4 to 5.6. Across all the benchmark programs, the IDL specification captured a total

of 90 reductions: 84 scalar reductions and 6 histogram reductions.

Discovered by IDL There were scalar reductions detected in nearly all of the individual NPB

programs, with “UA” having the highest number at 11. Scalar reductions were less prevalent

in Parboil with only 3 out of 11 benchmarks containing any. Furthermore, these were unevenly

distributed: out of a total of 9 scalar reductions across all Parboil programs, 7 were in “cutcp”.

The Rodinia benchmark collection contained many more identifiable reductions than Parboil.

The IDL solver detected scalar reductions in 15 out of the 19 benchmarks, with 9 reductions in

the “particlefilter” program alone.

Every reduction captured by the other two competing approaches was also identified by the

IDL solver. However, there were some regions that could be classified as reductions manually,

but that did not adhere to the used IDL specification, and thus remained unrecognised. This was

generally the case when the reduction loop was not the innermost loop, as is the case for the

example in Listing 5.8. The three outer loops of this code section from the “SP” benchmark

are reduction loops, but this is obfuscated by the innermost loop. None of the competing

approaches were able to detect this reduction either.

1 for (k = 1; k <= nz2; k++) {
2 for (j = 1; j <= ny2; j++) {
3 for (i = 1; i <= nx2; i++) {
4 for (m = 0; m < 5; m++) {
5 add = rhs[k][j][i][m];
6 rms[m] = rms[m] + add*add;
7 }
8 }
9 }

10 }

Listing 5.8: Some reductions were missed by all detection approaches. In this loop from “SP”,
the outer loops are reduction loops, accumulating into scalar variables “rms[0]”,. . . ,“rms[4]”,
but the innermost loop is not a reduction, and it is therefore not captured by the IDL specification.

5.6. Results 101

BT CG DC EP FT IS LU MG SP UA
0

2

4

6

8

10

12

2

9

6

4

0

5

0
1

2

11IDL histogram reductions
IDL scalar reductions
ICC reductions
Polly reductions

Figure 5.4: Reductions and histograms detected by the three competing approaches in NPB:
Most programs contain scalar reductions, of which IDL consistently recognised more than ICC.
Only IDL detected histograms. Most of the benchmarks were unsuitable for analysis with Polly.

bfs cutcp
histo lbm

mri-g
ridding

mri-q sad
sgemm

spmv
stencil

tpacf
0

2

4

6

8

0

7

1
0 0 0

1 1
0 0

1

IDL histogram reductions
IDL scalar reductions
ICC reductions
Polly reductions

Figure 5.5: Reductions and histograms detected by the three competing methods in Parboil:
In half of the benchmark components, no scheme detected any reductions. Nevertheless, IDL
identified two histograms in “histo” and “tpacf”, and was not outperformed on scalar reductions.

ba
ck

pr
op bf
s

b+
tre

e
cf

d
he

ar
tw

al
l

ho
tsp

ot
ho

tsp
ot

3D
km

ea
ns

la
va

M
D

le
uk

oc
yt

e
lu

d
m

um
m

er
gp

u
m

yo
cy

te nn nw
pa

rti
cl

efi
lte

r
pa

th
fin

de
r

sr
ad

str
ea

m
cl

us
te

r

0

2

4

6

8

10

2

0

2

0

3

1
2

5

1
2

3

1
2

1
0

9

0

2
3

IDL histogram reductions
IDL scalar reductions
ICC reductions
Polly reductions

Figure 5.6: Reductions and histograms detected by the 3 competing approaches in Rodinia:
Most programs contained scalar reductions. ICC matched by IDL only on “heartwall” and “srad”.

102 Chapter 5. Automatic Parallelisation of Reductions and Histograms

Histogram reductions were rarer than scalar reductions. However, the IDL solver was able

to detect 3 in NAS, 2 in Parboil, and 1 in Rodinia. All of them eventually updated the bin value

with an addition, but some contained complex expressions in the kernel function to compute the

addend, as previously seen in Listing 5.2 for the “EP” program. Another interesting example

was “tpacf” from the Parboil benchmarks. In this histogram reduction, the histogram index

kernel function contained a binary search. At the other extreme, the performance bottleneck of

“IS” was a plain histogram without any complications:

1 for(i=0; i<NUM_KEYS; i++)
2 key_buff_ptr[key_buff_ptr2[i]]++;

Polly-Reduction The Polly compiler captured only four relevant code regions across all

benchmark programs that contained a single scalar reduction each. These are in “BT” and “SP”

from the NAS Parallel Benchmarks, “sgemm” from the Parboil Benchmarks, and “leukocte”

from Rodinia. As expected, all loops that contain histogram computations were unsuitable for

polyhedral analysis with Polly. Indirect memory access forms an integral part of any histogram

computation but violates assumptions of the polyhedral model.

Aside from the fundamental limitation for histogram computations, Polly struggled with

the more complex codebases of Rodinia and Parboil. This was not always due to fundamental

limitations of the polyhedral model. Instead, it was often because of loop iteration boundaries

that Polly could not statically determine and the use of flat array structures.

Figures 5.7 to 5.9 show the number of Static Control Parts (SCoPs) that Polly finds across

the 40 individual programs. Detecting such SCoPs is the first part of any polyhedral analysis.

As program code outside of SCoPs is left untouched by Polly, this provides an upper bound

for the detection of reductions. In 23 of the 40 benchmarks, Polly found no SCoPs at all. This

corresponded to 40% of NPB, 63.6% of the Parboil Benchmarks and 63.2% of Rodinia.

The majority of the SCoPs that Polly detected were in stencil computations. The stencil-

based programs “LU”, “BT”, “SP” and “MG” in the NAS Parallel Benchmarks alone accounted

for 37 of the 62 SCoPs that were found across all benchmarks (59.6%).

ICC The Intel C/C++ compiler was more successful than Polly at recognising reductions. It

detected 25 out of 37 reductions in NPB, 3 out of 9 in Parboil and 23 out of 38 in Rodinia.

However, these were all scalar reductions; no histograms were identified.

ICC was more robust and did not require SCoPs as a precondition for its analysis. On the

well-structured NAS benchmarks, it performed well but failed to detect any reductions in “IS”.

Surprisingly, it also did not detect reductions in “SP”, while Polly did. On closer inspection,

this is again due to a deep perfectly nested loop where the reduction iterator is in the middle of

the loop nest.

5.6. Results 103

BT CG DC EP FT IS LU MG SP UA
0
2
4
6
8

10
12
14
16
18 reduction SCoPs

other SCoPs

Figure 5.7: Static Control Parts (SCoPs) identified by Polly in NPB: Six of the programs had
code regions that were representable in the polyhedral model; two of them contained reductions.

bfs cutcp
histo lbm

mri-g
ridding

mri-q sad
sgemm

spmv
stencil

tpacf
0

1

2

3

4

5 reduction SCoPs
other SCoPs

Figure 5.8: Static Control Parts (SCoPs) identified by Polly in Parboil: Most of the programs
were unsuitable for Polly, only the reduction of the matrix multiplication in “sgemm” was captured.

ba
ck

pr
op bf
s

b+
tre

e
cf

d
he

ar
tw

al
l

ho
tsp

ot
ho

tsp
ot

3D
km

ea
ns

la
va

M
D

le
uk

oc
yt

e
lu

d
m

um
m

er
gp

u
m

yo
cy

te nn nw
pa

rti
cl

efi
lte

r
pa

th
fin

de
r

sr
ad

str
ea

m
cl

us
te

r

0

1

2

3

4

5 reduction SCoPs
other SCoPs

Figure 5.9: Static Control Parts (SCoPs) identified by Polly in Rodinia: Seven programs had
code regions that were representable in the polyhedral model, but only one captured a reduction.

104 Chapter 5. Automatic Parallelisation of Reductions and Histograms

On the less well-structured Parboil benchmarks, ICC failed to detect many of the scalar

reductions in “cutcp”. This was because these reductions use the functions “fmin” and “fmax”,

which our system recognised as pure, but ICC did not. Finally, ICC recognised many of the

scalar reductions in Rodinia but was outperformed on six of the programs, with IDL finding one

additional reduction in each of them. It is clear that ICC did not attempt to detect histograms,

as it missed all instances of them.

5.6.2 Runtime Coverage

Detecting large numbers of reductions is encouraging but does not address whether or not such

detection is useful. To measure the potential impact, each program was profiled, examining the

time spent in the different types of reduction loops. These measurements from these profiling

runs are shown in Figures 5.10 and 5.11.

The two different classes of reductions behaved very differently. While there were many

more scalar reductions than histogram reductions in total, histogram reductions were much

more likely to constitute performance bottlenecks. In the benchmark programs that contained

histogram reductions, they accounted for an average of 68% of the runtime.

Scalar reductions, on the other hand, were generally irrelevant to program runtime, with

the one exception of the “sgemm” benchmark. Initial profiling already showed that none of the

scalar reductions in Rodinia were significant. Therefore, precise measurements were omitted

and are not shown in Figure 5.11.

It is evident that exploiting reduction parallelism for performance gains was promising only

for histogram reductions. While the “sgemm” program was bottlenecked by a scalar reduction

– the dot product inside the matrix multiplication – treating this loop as an arbitrary reduction

was unlikely to yield optimal results. Instead, Chapter 6 shows how to accelerate this with a

more targeted approach.

5.6.3 Performance

The speedup that was achieved by exploiting reduction parallelism on histograms is detailed

in Figure 5.12. This was only evaluated for benchmarks with significant runtime coverage of

reductions. The speedup from the IDL-based exploiting of reduction parallelism is compared

against the manually optimised parallel benchmark versions that were shipped by the original

implementors. The baseline is the sequential version of the respective benchmark program.

The IDL-based approach achieved 62% speedup on “EP” over the whole program. This

was limited by the runtime coverage of the histogram. Following Amdahl’s Law [151, 152],

parallelisation on 48 cores has a theoretical limit of 1/((1− 46%) + 46%/48)− 1 = 82%

speedup. The manually implemented parallel version, on the other hand, exploits outer-loop

parallelism and outperforms the reduction-based method.

5.6. Results 105

B
T

C
G

D
C E
P

FT IS L
U

M
G SP U
A

0.2
0.4
0.6
0.8

1

scalar reductions
histogram reductions

bf
s

cu
tc

p
hi

sto lb
m

m
ri-

gr
id

di
ng

m
ri-

q
sa

d
sg

em
m

sp
m

v
ste

nc
il

tp
ac

f

0.2
0.4
0.6
0.8
1

scalar reductions
histogram reductions

Figure 5.10: Runtime coverage of reductions in NPB and Parboil: Five of the programs spent a
significant portion of their runtime performing Complex Reduction and Histogram Computations.
Four of the five histograms were performance bottlenecks, but only one of the scalar reductions.

ba
ck

pr
op bf
s

b+
tre

e
cf

d
he

ar
tw

al
l

ho
tsp

ot
ho

tsp
ot

3D
km

ea
ns

la
va

M
D

le
uk

oc
yt

e
lu

d
m

um
m

er
gp

u
m

yo
cy

te nn nw
pa

rti
cl

efi
lte

r
pa

th
fin

de
r

sr
ad

str
ea

m
cl

us
te

r

0.2

0.4

0.6

0.8

1 histogram reductions

Figure 5.11: Runtime coverage of reductions in Rodinia: Scalar and histogram reductions had
a performance impact only on “kmeans”, which spent almost the entire runtime on a histogram.

EP IS histo tpacfkmeans
1
2

5
10
20

50
100
200

sp
ee

du
p

vs
se

qu
en

tia
lb

as
el

in
e

manual parallel version
reduction parallelism

Figure 5.12: Speedup achieved with histogram parallelism on a logarithmic scale: Only “histo”
did not profit from IDL-based parallelisation due to large data size and low arithmetic intensity.

106 Chapter 5. Automatic Parallelisation of Reductions and Histograms

On the “IS” benchmark, the IDL-based parallelisation results in 2.9× speedup, compared

to 6.3× speedup of the manual parallel version. This discrepancy comes from the fact that

the manual parallel version relies on knowledge about the distribution of the histogram keys at

runtime that is not available to the IDL-based code transformation. As the keys are uniformly

distributed, they can be efficiently sorted into even-sized bins before executing the actual

histogram. This avoids the overhead of array privatisation. A smarter code generation approach

for IDL could narrow this gap.

The “histo” benchmark of Parboil uses an unusually large amount of bins for the histogram.

The array privatisation prevents any parallel speedup in the program. Interestingly, the parallel

version that is provided by the implementers is also inefficient and achieves no speedup against

sequential on our system. This suggests that there is no significant parallelisation potential

available in the program.

The IDL-based reduction parallelism achieved an almost linear speedup of 35.7× on the

“tpacf” program. The manual parallel version, which was provided by the original benchmark

implementers as a reference to evaluate against, was implemented poorly with a critical section.

This resulted in a slowdown compared to sequential execution on our highly parallel machine.

5.7 Conclusions

The chapter developed a new compiler-based approach to recognising a broad generalisation of

reductions during compilation automatically. This detection was made possible by a constraint

formulation in the Idiom Detection Language (IDL), an extension of the Compiler Analysis

Description Language (CAnDL) from the previous chapter. Representing Complex Reduction

and Histogram Computations (CReHCs) in this declarative language kept the specification

separate from detection considerations, providing a modular and extendable approach to idiom

recognition. Reduction parallelism in recognised CReHC loops was exploited by privatising

the reduction variables and arrays.

This approach proved robust during the evaluation on C/C++ versions of three well-known

benchmark suites: NPB, Parboil, and Rodinia. It detected more scalar reductions than other

approaches and was alone in being able to detect computationally intense histogram reductions.

Such reductions were shown to give significant performance improvements.

Outlook This chapter introduced a computational idiom in detail and provided the Idiom

Detection Language (IDL) with the required tools to recognise this idiom during compilation.

Chapter 6 uses similar methods to recognise a range of other common algorithmic structures,

together resulting in significant coverage of benchmark bottlenecks.

Chapter 6

Heterogeneous Acceleration via

Computational Idioms*

The previous chapter introduced a computational idiom – Complex Reduction and Histogram

Computations (CReHCs) – and showed how the Idiom Detection Language (IDL) enabled

its discovery and automatic parallelisation. This chapter takes a broader view of automatic

idiom recognition and also includes common linear algebra computations and stencil codes.

Instead of implementing bespoke parallelisation passes, this chapter follows the vision laid out

in the introduction: the detected idioms are translated into stronger models, and external code

generators are then used to leverage the implied domain knowledge.

To facilitate this, the chapter takes abstract algorithmic concepts that are conventionally

explored outside the context of compiler analysis – computational idioms – and formalises

them as IDL specifications. This enables detection and manipulation in optimising compilers.

Heterogeneous acceleration serves as the motivation for this effort. As many scientific codes

are structured around idiomatic performance bottlenecks, efforts that focus on computational

idioms can greatly improve performance, especially on accelerators that were designed with

such computations in mind. The focus is therefore on calculations that are well-supported by

accelerators and their software ecosystems: linear algebra, stencil codes and CReHCs.

The IDL specifications were used for a prototype compiler that automatically detects the

idioms and uses them to circumvent standard code generation via libraries and domain-specific

languages: BLAS implementations, cuSPARSE, clSPARSE, Halide, Lift. This functionality

is directly accessible from a modified version of the widely used Clang C/C++ compiler. The

evaluation could, therefore, be performed on the well-established benchmark suites NAS and

Parboil. 60 idiom instances were detected. In those cases where idioms were a significant part

of the sequential execution time, the generated heterogeneous code achieved 1.26× to over

20× speedup on integrated and external GPUs.

*This chapter is based on published research: Ginsbach et al. [3].

107

108 Chapter 6. Heterogeneous Acceleration via Computational Idioms

6.1 Introduction

Heterogeneous accelerators provide the potential for superior performance. However, realising

this potential in practice is difficult and requires significant programmer effort. Programs have

to be partially rewritten to target heterogeneous systems, using a diverse range of broad and

narrow interfaces. General-purpose languages such as OpenCL [153] provide some portability

across heterogeneous devices, but the achieved performance often disappoints [154]. Despite

the functional portability, rewrites are required in practice to achieve competitive performance.

Optimised numerical libraries provide more reliable performance, but they are more specialised

and often provided by hardware vendors without portability in mind [16, 15, 105, 106]. More

narrow domain-specific languages (DSLs) have been proposed by Ragan-Kelley et al. [11],

Franchetti et al. [155], Rompf and Odersky [156], among others in attempts to deliver both

portability and performance.

Hardware is becoming increasingly heterogeneous, most recently with the development of

deep neural network accelerators such as the Google TPU [20]. This means that library or DSL

based programming is likely to become far more common. The problems with this trend that

arise due to the aforementioned tradeoffs are evident. Firstly, application developers have to

learn multiple specialised DSLs and vendor-specific libraries if they want good performance.

Secondly, they have to rewrite their existing applications to use them. Thirdly, this ties code

into ecosystems that might soon become obsolete. Accelerator DSLs are quickly evolving, and

the adoption and long-term support of academic projects remain unclear. This situation is a

severe impediment to the wide-spread efficient exploitation of heterogeneous hardware.

The ideal would be a compiler that automatically maps existing code to heterogeneous

hardware, with full performance, and requiring no directions from the application programmer.

While this remains an ambitious goal for the general case, this chapter presents a system that

approximates such a general-purpose solution by utilising expertise that is already available

and encapsulated in existing backend interfaces. Instead of implementing code generation for

each heterogeneous accelerator, the system maps user code to heterogeneous hardware via

existing libraries and domain-specific languages, effectively outsourcing the code generation

to hardware and domain specialists.

The approach is based on detecting specific computational idioms in application code that

correspond to the functionality of existing interfaces – libraries and DSLs – for heterogeneous

acceleration. In addition to the Complex Reduction and Histogram Computations (CReHCs)

introduced in Chapter 5, the focus is on sparse and dense linear algebra, as well as stencils. The

covered idioms are a reflection of both the most relevant program bottlenecks and the available

interfaces. Some computational idioms were more widely supported than others, potentially

pointing to gaps in the accelerator landscape. Nonetheless, at least one backend existed per

idiom. The Idiom Detection Language (IDL) then enabled the automatic detection of idioms.

6.1. Introduction 109

Once detected, the idioms were translated into the matching DSL or replaced with an available

library call. The optimised DSL output code, or the pre-built optimised library, was then linked

into the original program.

The libraries cuSPARSE, clSPARSE, cuBLAS, clBLAS for sparse and dense linear algebra

and the DSLs Halide [11] and Lift [157] were used as backends in the evaluation. The Lift

language is a data-parallel functional language that supports generalised reductions as well as

stencils and linear algebra. The wide range of backends allowed the freedom to target many

APIs per idiom and pick the implementation that best suited the target platform.

New computational idioms could easily be added thanks to the flexibility of IDL. This

also provides a powerful means of determining whether a proposed heterogeneous interface

matches existing code, without touching the core compiler. The idioms addressed in this paper

were expressed in less than 500 lines of IDL code. The approach was also highly robust, was

applied to the entire NPB and Parboil benchmark suites and was evaluated on three platforms.

This chapter presents a novel approach that

• uses the Idiom Detection Language (IDL) for detecting idiomatic code sections that can

be accelerated by domain-specific backends;

• implements several common computational idioms in IDL to automatically discover

opportunities for accelerator exploitation;

• efficiently translates and maps the detected idioms to APIs for heterogeneous systems.

The work most similar in approach discovers stencil computations and maps them to the

Halide DSL for acceleration. The Helium tool [44] recovers stencils from image-processing

binaries. This requires large-scale dynamic analysis of binary traces and replacing them with

Halide calls. This was significantly extended by Kamil et al. [45], detecting stencils in Fortran

code. The focus of that work was on inferring post invariants based on syntax-guided synthesis

in translation to Halide. However, it used a narrow approach to code snippet selection and relied

on well-structured Fortran with occasional user annotations. The IDL approach is distinct in

its use of an external programming language for the flexibility of describing arbitrary idioms.

This allows an unbounded set of idioms to be considered and is not restricted to stencils.

To summarise, this chapter presents an automatic approach that discovers idioms in legacy

code and maps them to heterogeneous platforms via libraries and DSLs. The tool was applied

to 21 C/C++ programs from the NPB and Parboil benchmark suites, where it detected more

reductions, stencils, matrix multiplications and sparse matrix-vector computations than existing

schemes. For the programs where idioms dominate execution time, accelerator code was

generated and evaluated on 3 platforms: a multi-core CPU, an integrated APU, and an external

GPU. Overall, 60 idioms were detected, which dominated execution time in 10 programs.

Speedup results for the accelerated code ranged from 1.26× to over 20×.

110 Chapter 6. Heterogeneous Acceleration via Computational Idioms

6.2 Overview

The approach is automatic and was implemented inside the LLVM compiler infrastructure.

It takes arbitrary sequential C/C++ programs as input. Using the Clang compiler, the input

source code is compiled into a Static Single Assignment (SSA) intermediate representation

(LLVM IR). In this representation, the specified idioms are identified and replaced with calls to

specific APIs. Finally, the code generated by the LLVM compiler and the output of the idiom

specific code generators/libraries are linked together into a binary, producing an optimised

program. LLVM was chosen as it is the best supported SSA-based compiler. The methodology

could easily be transferred to other infrastructures, such as GCC.

6.2.1 Compiler Flow

Figure 6.1 gives a detailed overview of the compiler flow that underlies the approach of this

chapter. The grey box at the bottom left is the IDL-enabled compiler. It takes two programs as

inputs: the first is the source code of the user program, the second specifies the computational

idioms that are to be detected. The same idioms can be discovered in many user programs.

Therefore, the IDL program does not have to change from one run to the next.

The source code of the user program at the top left is compiled into optimised LLVM IR

code. The idiom description is parsed and represented internally as a C++ object, as previously

described in Chapter 2, Section 2.4.3. The solver takes the optimised LLVM IR code and

the internal C++ representation of the constraint formula as inputs. It uses backtracking to

recognises all idiomatic parts in the user program.

The recognised idioms and the LLVM IR code are then passed on to the transformation

phase of the system. This phase extracts the idiomatic code sections from the user program and

reformulates them for appropriate heterogeneous backends. For libraries, this means replacing

the code covered by the idiom with a library call.

For DSL interfaces, the process is a little more involved. The user code captured by idioms

is extracted and replaced with function calls to shim interfaces. The extracted code features are

translated into the appropriate DSL. External DSL compilers are responsible for optimising this

DSL code and generating library objects that implement the required function interfaces. The

translation to DSL mainly involves representing the kernel functions. Idioms without kernel

functions correspond to fixed DSL programs and require no additional work. The generated

code is linked with the object code from the user program.

Determining the best heterogeneous API to target for a given platform, and the best of

several overlapping idioms to exploit, will become an essential consideration as the number of

idioms and APIs grows. For the results in this chapter, all applicable libraries and DSLs were

evaluated, and the best-performing versions selected after profiling.

6.2. Overview 111

C/C++ IDL

optimized
LLVM IR

Input
Program

Idiom
Description

Constraint
Formula

Constraints
Solver

Code extraction

LLVM IR +
lib call

Binary

lib
object

lib
object

Vendor Libraries

Domain Specific
Code Generators

LLVM IR +
DSL code

Figure 6.1: Workflow of the IDL acceleration system: The IDL solver recognises idiomatic loops
in the optimised LLVM IR of user programs. These loops are extracted and replaced with shim
function calls. Domain-specific code generators implement these calls as library objects, or
they are taken directly from pre-generated vendor libraries (for idioms without kernel functions).

112 Chapter 6. Heterogeneous Acceleration via Computational Idioms

6.2.2 Accelerating Sparse Linear Algebra

Sparse linear algebra is central to many scientific codes and increasingly important as a basis

for graph algorithms and data analytics [158], but it contains indirect data accesses that limit

compiler optimisation. Instead of relying on tooling support, programmers use numerical

libraries that are hand-optimised and target accelerator hardware. This reliance on libraries

comes at a cost, however, as it ties programs into vendor-specific software ecosystems and

results in non-portable code. The IDL approach offers an alternative by recognising sparse

linear algebra kernels in compiler intermediate representation and incorporating the domain-

specific backends without source code changes.

The code at the top of Listing 6.1 is the performance bottleneck of the “Conjugate Gradient”

program from the NAS Parallel Benchmarks, with the corresponding LLVM IR code shown

underneath. This bottleneck loop implements a standard operation from sparse linear algebra,

namely the multiplication of a sparse matrix in Compressed Sparse Row (CSR) format with

a dense vector. This computation is supported on accelerator hardware, using well-optimised

libraries such as cuSPARSE and clSPARSE. However, compilers are unable to recognise and

accelerate the computation automatically.

The structure of this sparse linear algebra computation has several features that make it

unsuitable for most established compiler optimisations. Firstly, the iteration domain of the

nested loop is memory-dependent (line 3). Secondly, there is indirect memory access (line 4).

This makes the iteration domain of the loop nest non-polyhedral and the access structure to

memory non-affine. Under these conditions, not only do simple data dependence models fail,

but so do sophisticated analyses based on the polyhedral model.

IDL can express this sparse idiom, as derived in Section 6.3, Figure 6.3. The “Conjugate

Gradient” LLVM IR code, together with the “SPMV_CSR” IDL specification, are input to the

constraint solver, which outputs a constraint solution, as shown in Figure 6.2. In the solution,

different values from the LLVM IR have been assigned to all IDL variables in the “SPMV_CSR”

specification.

Listing 6.2 shows how this solution is used to generate a call to a cuSPARSE procedure.

The individual solution variables are inserted into the “cusparseDcsrmv” code template as

function arguments. The original code is then cut out and replaced with this function call. In

practice, this involved a shim function that manages the device context and memory transfers

from and to the GPU. Finally, the cuSPARSE library was linked with the object code produced

by the Clang compiler, resulting in a speedup of 17× on a GPU as described in more detail in

Section 6.8.

Central to this approach is the ability to detect computational idioms reliably. The next

section derives in detail the formulation of sparse and dense linear algebra, as well as stencils,

in the Idiom Detection Language.

6.2. Overview 113

1 for (j = 0; j < m; j++) {
2 d = 0.0;
3 for (k = rowstr [j]; k < rowstr[j+1]; k++)
4 d = d + a[k]*z[colidx[k]];
5 r[j] = d; }

1 ; <label>:2:
2 %j = phi i64 [%j_next , %12], [0, %1]
3 %j_cond = icmp slt i64 %j, %m
4 br i1 %j_cond , label %3, label %13

5 ; <label>:3:
6 %4 = getelementptr i32, i32* %rowstr, i64 %j
7 %5 = load i32, i32* %4
8 %j_next = add nuw nsw i64 %j, 1
9 %6 = getelementptr i32, i32* %rowstr, i64 %j_next

10 %7 = load i32, i32* %6
11 %k_begin = sext i32 %5 to i64
12 %k_end = sext i32 %7 to i64
13 br label %8

14 ; <label>:8:
15 %k = phi i64 [%k_next , %9], [%k_begin , %dnext]
16 %d = phi double [0.0, %3], [%d_next , %9]
17 %k_cond = icmp slt i64 %iv, %k_end
18 br i1 %k_cond , label %9, label %12

19 ; <label>:9:
20 %a_addr = getelementptr double, double* %a, i64 %k
21 %a_load = load double, double* %a_addr
22 %cix_addr = getelementptr i32, i32* %colidx, i64 %k
23 %cix_load = load i32, i32* %cix_addr
24 %10 = sext i32 %cix_load to i64
25 %z_addr = getelementptr double, double* %z, i64 %10
26 %z_load = load double, double* %z_addr
27 %11 = fmul double %a_load , %z_load
28 %d_next = fadd double %d, %11
29 %k_next = add nsw i64 %k, 1
30 br label %8

31 ; <label>:12:
32 %r_addr = getelementptr double, double* %r, i64 %j
33 store double %d, double* %r_addr
34 br label %2

Listing 6.1: Sparse matrix-vector product shown in C at the top, and in LLVM IR at the bottom

⇓ ⇓ ⇓Idiom Detection with IDL Program in Figure 6.3

IDL Variable Name Assigned Value

outer_loop.iterator %j
inner_loop.iter_begin %k_begin
inner_loop.iter_end %k_end
inner_loop.iterator %k
inner_loop.src1 (≈ val.value) %z
col_ind.value %cix_load
inner_loop.src2 (≈ vector.value) %a_load

IDL Variable Name Assigned Value

output.address %r_addr
outer_loop.iter_begin 0
outer_loop.iter_end %m
val.base_pointer %a
col_ind.base_pointer %colidx
vector.base_pointer %z
.

Figure 6.2: Solution to “SPMV_CSR”: Fitting LLVM IR values were assigned to all IDL variables.

⇓ ⇓ ⇓Code Generation: Insert Arguments, Replace Code

1 cusparseDcsrmv(context ,
2 CUSPARSE_OPERATION_NON_TRANSPOSE , m, n,
3 rowstr[m+1]-rowstr[0], &gpu_1 , descr , gpu_a,
4 gpu_rowstr, gpu_colidx, gpu_z, &gpu_0 , gpu_r);

Listing 6.2: GPU acceleration: Solution values are used to call “cusparseDcsrmv” backend.

114 Chapter 6. Heterogeneous Acceleration via Computational Idioms

6.3 Specification of Idioms in IDL

The specification of computational idioms in IDL requires careful handling of the arising

complexity, using the modularity features that the language provides. Control flow constructs,

memory access patterns, and additional data flow constraints are defined independently and

then combined to form the complete specifications. This section extends upon the previously

defined building blocks from Chapters 4 and 5.

6.3.1 Sparse Linear Algebra

The most frequently used performance-critical sparse linear algebra routines are variations on

the multiplication of a sparse matrix with a dense vector (SPMV). Capturing the many different

memory access patterns is crucial for these sparse linear algebra routines. On the other hand,

the control flow is very rigid.

Listing 6.3 shows the basic skeleton of the SPMV idiom: there are two for-loops, the

“outer_loop” and the “inner_loop”. Naturally, “outer_loop” contains “inner_loop”

(lines 4–7). The outer loop is a standard for-loop (line 2), while the inner loop is a for-loop

contains a generalised dot product (line 3). Specifically, the “DotProductFor” specification

requires that the loop contains a scalar reduction variable that is incremented by the result of a

floating-point multiplication of two values “src1” and “src2” in every iteration. This skeleton

is completed depending on the sparse matrix format, defining the specific computations and

data flow that yields “src1” and “src2”.

6.3.1.1 Compressed Sparse Row

The Compressed Sparse Row (CSR) format is one of the most widely used formats for sparse

matrices [159]. An example matrix stored in CSR format is shown at the top of Figure 6.3. The

5×5 matrix at the top left is stored in the three separate arrays at the top right: “val”, “col_ind”,

and “row_ptr”.

All non-zero entries of the matrix are stored in a flat array “val” in a row-by-row order. The

“col_ind” array stores the column position for each value. Finally, the “row_ptr” array stores

the beginning of each row of the matrix as an offset into the other two arrays. The number of

rows in the matrix is given directly by the length of the “row_ptr” array minus one. However,

the number of columns is not explicitly stored.

The middle row of Figure 6.3 shows the corresponding SPMV computation in pseudocode.

Finally, the bottom of the figure shows the continuation of the “SPMV” specification for CSR

matrices in IDL. This continuation is immediately derived by walking through the pseudocode

expressions and emitting “inherits” directives to the corresponding IDL subprograms.

6.3. Specification of Idioms in IDL 115

1 Constraint SPMV
2 (inherits For at {outer_loop} and
3 inherits DotProductFor at {inner_loop} and
4 {outer_loop.begin} strictly
5 control flow dominates {inner_loop.begin} and
6 {outer_loop.end} strictly
7 control flow post dominates {inner_loop.end} and
8 ...

Listing 6.3: Skeleton of the sparse matrix-vector product (SPMV) constraint specification in IDL:
The precise sparse access patterns are specific to chosen storage formats for sparse matrices.

val =
[
1 1 2 2 -1 3 2 2 -1 1

]
col_ind =

[
0 2 1 3 1 2 3 3 2 4

]
row_ptr =

[
0 2 4 7 8 10

]
����������	
��
�����

�����������	
���	����
���

��������������
�
��������������	
���	��������������

��� �!

7 ... # Set top-level expression: output[<1>]= <2> * <3> stack=(1,2,3)
8 inherits VectorStore # 1: output[i] stack=(2,3)
9 with {outer_loop} as {scope}

10 and {outer_loop.iterator} as {input_index} at {output} and
11 inherits VectorRead # 2: val[j] stack=(3)
12 with {outer_loop} as {scope}
13 and {inner_loop.src1} as {value}#<-case <2>
14 and {inner_loop.iterator} as {input_index} at {val} and
15 inherits VectorRead # 3: vector[col_ind[<4>]] stack=(4)
16 with {outer_loop} as {scope}
17 and {inner_loop.src2} as {value}#<-case <3>
18 and {col_ind.value} as {input_index} at {vector} and
19 inherits VectorRead # 4: col_ind[j] stack=()
20 with {outer_loop} as {scope}
21 and {inner_loop.iterator} as {input_index} at {col_ind} and
22 inherits ReadForLoopRanges
23 with {outer_loop} as {scope}
24 and {inner_loop} as {for}
25 and {outer_loop.iterator} as {input_index} at {row_ptr})
26 End

Figure 6.3: Compressed Sparse Row in IDL: The top section of the figure shows the different
arrays involved. The pseudocode in the middle of the figure informs the completion of Listing 6.3
at the bottom. Walking through the expressions and emitting IDL code one-by-one is sufficient.

116 Chapter 6. Heterogeneous Acceleration via Computational Idioms

6.3.1.2 Jagged Diagonal Storage

For Jagged Diagonal Storage (JDS) [160], the rows of the matrix are permuted such that the

number of nonzeros per row decreases. The permutation is stored in a vector “perm”, the

number of nonzeros per row in “nzcnt”. The nonzero entries are then stored in an array “val”

in the following order: the first nonzero entry in each row, then the second nonzero entry in

each row and so on. The array “col_ind” stores the column for each of the values and “jd_ptr”

stores offsets into “val” and “col_idx”.

Figure 6.4 demonstrates this format on the example sparse matrix from Figure 6.3, and

derives the corresponding IDL code for the “SPMV_JDS” idiom underneath. Note that the sparse

matrix in this example is shown after the permutation operation that JDS requires.

6.3.2 Dense Linear Algebra

Describing dense linear algebra does not require storage format consideration aside from the

simple row-major and column-major distinction. The generalised matrix multiplication idiom

is shown in Listing 6.4. The control flow is captured by three nested for-loops. Inside these

loops, the memory access is characterised by three matrix accesses, each with a different subset

of the loop iterators. The corresponding “MatrixRead” and “MatrixWrite” idioms model

generic access to matrices, allowing strides and transpositions. The floating-point calculations

in the inner loop are encapsulated by the “DotProductForAlphaBeta” idiom. This extends

the “DotProductFor” specification with the linear combination that is part of the generalised

matrix multiplication idiom (C← αAB+βC).

1 Constraint GEMM
2 (inherits ForNest(N=3) and
3 inherits MatrixStore
4 with {iterator[0]} as {col}
5 and {iterator[1]} as {row}
6 and {begin} as {begin} at {output} and
7 inherits MatrixRead
8 with {iterator[0]} as {col}
9 and {iterator[2]} as {row}

10 and {begin} as {begin} at {input1} and
11 inherits MatrixRead
12 with {iterator[1]} as {col}
13 and {iterator[2]} as {row}
14 and {begin} as {begin} at {input2} and
15 inherits DotProductForAlphaBeta
16 with {loop[2]} as {loop}
17 and {input1.value} as {src1}
18 and {input2.value} as {src2}
19 and {output.address} as {update_address})
20 End

Listing 6.4: IDL specification of the generalised dense matrix-vector multiplication (GEMM)

6.3. Specification of Idioms in IDL 117

perm =
[
1 2 0 4 3

]
val =

[
-1 1 2 -1 2 3 1 2 1 2

]
col_ind =

[
1 0 1 2 3 2 2 3 4 3

]
jd_ptr =

[
0 5 9 10

]
nzcnt =

[
3 2 2 2 1

]
����������	
��
�����

�����������	
���	����
���

��������������������
�
�����	
���	����������

��� �!

7 ... # Set top-level expression: output[<1>] = <2> * <3> stack=(1,2,3)

8 inherits VectorStore # 1: output[perm[<4>]] stack=(4,2,3)

9 with {outer_loop} as {scope}

10 and {perm.value} as {input_index} at {output} and

11 inherits VectorRead # 4: perm[i] stack=(2,3)

12 with {outer_loop} as {scope}

13 and {outer_loop.iterator} as {input_index} at {perm} and

14 inherits VectorRead # 2: val[(tmp1)=<5>] stack=(5,3)

15 with {outer_loop} as {scope}

16 and {inner_loop.src1} as {value}#<-case <2>

17 and {tmp1.value} as {input_index} at {val} and

18 inherits Addition # 5: (tmp1)=jd_ptr[<6>]+i stack=(6,3)

19 with {jd_ptr.value} as {input}

20 and {outer_loop.iterator} as {addend} at {tmp1} and

21 inherits VectorRead # 6: jd_ptr[i] stack=(3)

22 with {outer_loop} as {scope}

23 and {inner_loop.iterator} as {input_index} at {jd_ptr} and

24 inherits VectorRead # 3: vector[<7>] stack=(7)

25 with {outer_loop} as {scope}

26 and {inner_loop.src2} as {value}#<-case <3>

27 and {col_ind.value} as {input_index} at {vector} and

28 inherits VectorRead # 7: col_ind[(tmp1)=<5>] stack=()

29 with {outer_loop} as {scope}

30 and {tmp1.value} as {input_index} at {col_ind} and

31 inherits ReadForLoopIterations

32 with {outer_loop} as {scope}

33 and {inner_loop} as {for}

34 and {outer_loop.iterator} as {input_index} at {read_range}

Figure 6.4: Jagged Diagonal Storage in IDL: The top section of the figure shows the different
arrays involved. The pseudocode in the middle of the figure informs the completion of Listing 6.3
at the bottom. Walking through the expressions and emitting IDL code one-by-one is sufficient.

118 Chapter 6. Heterogeneous Acceleration via Computational Idioms

1 Constraint Stencil
2 (inherits ForNest and
3 inherits PermMultidStore
4 with {iterator} as {input}
5 and {begin} as {begin} at {write} and
6 collect i 32
7 (inherits StencilRead
8 with {write.input_index} as {input}
9 and {kernel.inputs[i]} as {value}

10 and {begin} as {begin} at {reads[i]}) and
11 {kernel.output} is first argument of {write.store} and
12 inherits KernelFunction
13 with {loop[0]} as {scope} at {kernel})
14 End

Listing 6.5: IDL specification of a basic stencil computation

6.3.3 Stencils

Listing 6.5 shows the base version of the stencil idiom. Stencils consist of a loop nest with

multi-dimensional memory access (lines 3–5) to store the updated cell value. The updated

value is computed by a kernel function (lines 12–13) using several values that are constrained

by “StencilRead” (lines 6–10), which specifies multi-dimensional array access with only

constant offsets in all dimensions.

6.4 Comparison to Syntactic Matching

The idiom descriptions may at first appear to be shallow syntactic pattern matching, but the

approach is intrinsically more powerful. Because it operates on the IR level, the solver can

detect idioms that are written in a superficially distinct style but are semantically equivalent.

For example, Listing 6.6 shows two syntactically distinct programs, which nevertheless

are both implementations of general matrix multiplication. The solver – using Listing 6.4 –

discovers that both of these loop nests are instances of GEMM and can be replaced with the

same API call.

The reverse is also true: the solver distinguishes syntactically identical but semantically

distinct programs. Listing 6.7 shows such an example. The loop nest in lines 7–11 appears

to compute a standard GEMM, but in fact, the matrices are not stored contiguously, and

acceleration with standard libraries is impossible.

There are limitations to this semantic matching. In particular, the use of low-level manual

optimisations that circumvent the usual intermediate representation, e.g. SIMD intrinsics, may

distort the algorithms beyond recognition. In practice, this is rarely encountered.

6.4. Comparison to Syntactic Matching 119

1 for (int mm = 0; mm < m; ++mm) {

2 for (int nn = 0; nn < n; ++nn) {

3 float c = 0.0f;

4 for (int i = 0; i < k; ++i) {

5 float a = A[mm + i * lda];

6 float b = B[nn + i * ldb];

7 c += a * b;

8 }

9 C[mm+nn*ldc] =

10 C[mm+nn*ldc] * beta + alpha * c;

11 }

12 }

1 double M1[1000][1000];

2 double M2[1000][1000];

3 double M2[1000][1000];

4

5 //...

6

7 for(int i = 0; i < 1000; i++)

8 for(int j = 0; j < 1000; j++) {

9 M3[i][j] = 0.0f;

10 for(int k = 0; k < 1000; k++)

11 M3[i][j]+=M1[i][k]*M2[k][j]; }

Listing 6.6: Two matching instances of “GEMM”: Although both loop nests are implemented
very differently, they both match the same IDL specification and can be accelerated identically.

1 double *M1[1000];

2 double *M2[1000];

3 double *M2[1000];

4

5 //...

6

7 for(int i = 0; i < 1000; i++)

8 for(int j = 0; j < 1000; j++) {

9 M3[i][j] = 0.0f;

10 for(int k = 0; k < 1000; k++)

11 M3[i][j]+=M1[i][k]*M2[k][j]; }

Listing 6.7: This C program that does not match “GEMM”. Although the loop syntax is identical to
the matching example from Listing 6.6, the different types of the matrices prevent detection. This
is desirable: Established backends are incompatible with such non-contiguous memory layout.

120 Chapter 6. Heterogeneous Acceleration via Computational Idioms

6.5 Targeting Heterogeneous Backends

After idiom detection, user programs must be transformed to exploit the relevant APIs. Two

types of heterogeneous APIs were targeted: libraries and domain-specific languages with their

optimising compilers.

6.5.1 Domain-Specific Libraries

Libraries provide narrow interfaces but are often highly optimised. For example, the cuBLAS

library is only suitable for a limited set of dense linear algebra operations and only works

on Nvidia GPUs, but its implementation provides outstanding performance. For sparse linear

algebra, the vendor-provided cuSPARSE, clSPARSE, and Intel MKL libraries were used. For

dense BLAS routines, the available backends were cuBLAS, clBLAS, CLBlast, and MKL.

6.5.2 Domain-Specific Code Generators

Domain-Specific Languages provide wider interfaces than libraries and allow problems to be

expressed as compositions of dedicated language constructs. Most importantly, this allows

DSLs to capture kernel functions of idioms that are higher-order functions, e.g. stencils and

reductions. The domain-specific optimising compiler then specialises the program for the target

hardware.

The end result is a library object, which can then be treated identically to pre-generated

vendor libraries. For this research, domain-specific code generators are, therefore, effectively

used as on-demand library generators. The evaluation used Halide and Lift as domain-specific

code generators.

Halide Ragan-Kelley et al. [11] introduced a language and optimising compiler targeted at

image processing applications. Optimised code is generated for CPUs as well as GPUs. Halide

separates the functional description of the problem from the description of the implementation.

This involves a separate execution schedule. This separation allows retargeting of Halide

programs to different platforms without touching the core program. Some of the stencil and

linear algebra idioms were translated into Halide. However, stencils involving control flow in

their kernel were not expressible in Halide and excluded for this backend.

Lift Steuwer et al. [109] introduced an optimising code generator based on rewrite rules [157,

161]. The Lift language consists of functional parallel patterns such as “map” and “reduce”

that express a range of parallel applications. Stencil idioms, complex reductions and linear

algebra idioms were translated to Lift.

6.6. Translating Computational Idioms 121

6.6 Translating Computational Idioms

This section describes how the detected idioms are mapped to the previously described library

APIs and domain-specific languages. The two types of APIs (library interfaces and domain-

specific languages) are treated individually.

6.6.1 Domain-Specific Libraries

For library call interfaces, the original code is removed, and an appropriate function call is

inserted. The solution that is generated by the solver using the IDL program contains both the

IR instructions to remove as well as the arguments that are to be used for the function call.

For example, in the case of the “GEMM” program that was shown in Listing 6.4, the original

code is removed by deleting the IR instruction at “output.store_instr” explicitly, which

captures the store instruction of the “MatrixStore” subprogram. The remaining cleanup

is left to the standard dead code elimination pass. The arguments that specify the matrix

dimensions are taken from “ForNest” in combination with the stride and offset determined

by “MatrixRead” and “MatrixWrite”.

The mapping of solution variables to the arguments of the generated function call needs to

be implemented individually for each backend, as it cannot be described using IDL itself. Once

the code is replaced, LLVM continues with code generation as usual.

6.6.2 Domain-Specific Code Generators

For domain-specific code generators, the situation is a bit more involved than for libraries.

Stencils and Complex Reduction and Histogram Computations are higher-order functions,

containing kernel functions or reduction operators that have to be represented for the DSL.

For each combination of idiom and DSL, there is a parameterised skeleton program. This

skeleton is then specialised for the appropriate data types and numeric parameters as well as

the kernel function or reduction operator.

Numerical parameters are picked from the constraint solution in the same way as previously

described for library call interfaces. Also, from the constraint solution, the loop body that

contains the kernel function or reduction operator is accessible, as well as the input values and

the result value used. This information is enough to cut out the kernel function, which is then

used to generate code appropriate for the DSL backends.

Halide is a language embedded in C++. It requires a syntax tree of the kernel functions

that built using a class hierarchy. However, Halide does not support control flow in the kernel

functions, making code generation easier than for Lift in practice. The relevant kernel functions

contain only a few LLVM IR instructions, which are easily assembled into Halide expressions.

122 Chapter 6. Heterogeneous Acceleration via Computational Idioms

Lift expects stencil kernels or reduction operators to be sequential C code with a specific

function interface, which it requires for generating valid OpenCL code. As the kernel functions

are only directly available as LLVM IR code from the constraint solution, the implementation

of a rudimentary LLVM IR-to-C backend was necessary to generate input for the Lift compiler.

1 float mult(float x, float y) { return x*y; }
2 float add(float x, float y) { return x+y; }
3

4 gemm_in_lift(A, B, C, alpha , beta) {
5 map(fun(a_row , c_row) {
6 map(fun(b_col , c) {
7 map(fun(ab){ add(mult(alpha , ab), mult(beta , c))},
8 reduce(add , 0.0f, map(mult , zip(a_row , b_col))))
9 }, zip(transpose(B), c_row))

10 }, zip(A, C))
11 }

Listing 6.8: GEMM in Lift is expressed with the higher-order functions “zip”, “map”, “reduce”.

Example After code for the DSLs was generated, it is passed to the DSL code generator.

Listing 6.8 shows an example of the Lift code generated for GEMM (“gemm_in_lift”).

It performs a dot product (expressed in line 8 using the Lift skeletons “zip”, “map”, and

“reduce”) for each row of the first matrix (“a_row”) and column of the second (“b_col”).

This code is compiled by Lift into optimised OpenCL code.

6.6.3 Pointer Aliasing

Since idiom detection works statically, pointer aliasing cannot be ruled out conclusively, which

can make transformations unsound. For dense linear algebra, this is easily solved with simple

runtime checks for non-overlapping memory. In case of any detected aliasing, the program

falls back to the naive implementation.

However, for sparse linear algebra, this is not as straightforward. While aliasing can still

be ruled out by dynamic checks, this involves additional overhead, as the indices of the indirect

array access need to be monitored. This overhead can be amortised over multiple calls if the

indirection array remains unchanged, which was the case for the programs involved in the

evaluation.

Such techniques to rule out aliasing are important, but orthogonal to the detection and

transformation methods that are the focus of this chapter. In practice, aliasing did not cause

problems on any of the benchmark programs. However, detailed feedback was provided in the

form of transformation reports that give the user control over the program modifications and

allow the explicit disabling of the approach in uncertain cases.

6.7. Experimental Setup 123

NPB

BT Block Tridiagonal Solver
CG Conjugate Gradient
DC Data Cube Operator
EP Embarrassingly Parallel Marsaglia Polar Method
FT Fast Fourier Transform
IS Small Integer Bucket Sort

LU Lower-Upper Symmetric Gauss-Seidel Solver
MG MultiGrid Approximation
SP Scalar Pentadiagonal Solver

UA Unstructured Adaptive Mesh

Parboil

bfs Breadth-First Search
cutcp Distance-Cutoff Coulombic Potential
histo Saturating Histogram
lbm Lattice-Boltzmann Method Fluid Dynamics

mri-gridding Magnetic Resonance Imaging - Gridding
mri-q Magnetic Resonance Imaging - Q

sad Sum of Absolute Differences (part of MPEG encoding)
sgemm Dense Matrix-Matrix Multiply

spmv Sparse-Matrix Dense-Vector Multiplication
stencil Iterative 3D Jacobi Stencil

tpacf Two Point Angular Correlation Function

Table 6.1: Overview of the 21 programs used for evaluation, grouped into two suites

6.7 Experimental Setup

Benchmarks The approach was applied to all of the sequential C/C++ programs of the NAS

Parallel Benchmarks, in the versions provided by Seoul National University (SNU NPB) [140].

Additionally, the Parboil benchmarks [150] were used, giving 21 evaluation programs in total.

Platform and Evaluation The evaluation platform used an AMD A10-7850K APU with a

Radeon R7 integrated GPU (driver version 1912.5) and an Nvidia GTX Titan X external GPU

(driver version 375.66). Execution times were measured as the median over ten runs.

Alternative Detection Approaches There were no readily available compilers performing

idiom detection to compare against. Instead, two parallelising compilers were considered. The

evaluation examined the ability to parallelise idiomatic code, without considering whether the

idioms were recognised. Section 5.5.2 provided a detailed discussion of both competing tools:

Polly and ICC. Therefore, they are only presented briefly here. It should be borne in mind that

the competing compilers aim for parallelisation, not idiom detection itself.

Polly is an LLVM-based polyhedral compiler. The SCoPs that Polly detected with the

options “-O3 -mllvm -polly -mllvm -polly-export” were collected during compilation.

When Polly captured a SCoP with an idiom, it was counted as an idiom detection. This gives

an optimistic estimate as to what idiom coverage a polyhedral based approach can achieve.

The Intel C++ Compiler (ICC) is a mature industry strength compiler that performs auto-

parallelisation. All loops that were emitted as parallelisable by “-parallel -qopt-report”

and that contained idioms were counted as idiom detections.

124 Chapter 6. Heterogeneous Acceleration via Computational Idioms

6.8 Results

The approach was evaluated in several steps. First, the number of detected idioms and their

distribution over the benchmark programs was established. During this analysis, the runtime

of the IDL-enabled Clang compiler was measured, and the compile time overhead of the solver

over standard compilation evaluated. Next, the runtime coverage of the idioms was determined

for each benchmark program to see where exploitation might be beneficial.

Where runtime coverage was substantial, speedups over the sequential C code are reported.

Detailed results are given for the performance of each targeted backend interface. Finally, the

evaluation included comparisons to the handwritten OpenMP and OpenCL implementations

that were provided with the benchmark suites as reference implementations. These versions

provide suitable estimates for the upper bound of available performance.

6.8.1 Idiom Detection

Figure 6.5 shows the different idioms detected across all the individual benchmark programs.

IDL detected both scalar and histogram reductions, as well as stencils, dense matrix operations

and sparse matrix-vector multiplication. 16 of the 21 programs contained computational idioms

that IDL was able to identify. The most frequently occurring idiom was the scalar reduction,

present in 10 of the programs. Five of the benchmarks contained histograms; three contained

stencils; two contained SPMV; and only a single program calculated GEMM.

Table 6.2 summarises the number of computational idioms found by IDL, Polly, and ICC.

Polly found three scalar reductions and five stencils, and also detected the GEMM operation

as a generic SCoP. This was counted as a detected idiom, although Polly was unable to apply

any domain-specific knowledge from linear algebra. ICC only recognised scalar reductions,

but was much more successful at it than Polly, detecting a total of 28 instances.

Other approaches than IDL did not detect any histogram loops or sparse matrix operations.

IDL detected 60 idioms overall with the impact on the compilation times shown in Table 6.3.

On average, the compilation times were increased by 82%. This compilation overhead was due

to the solver and could be reduced further by optimising its implementation.

6.8.2 Runtime Coverage

To determine if the detected idioms were impactful, Figure 6.6 shows the percentage of runtime

spent in the detected computational idiom for each benchmark program. This data shows that

either the detected idioms have a low runtime contribution or they dominate almost the entire

execution. EP is the only exception with∼50% runtime coverage. Heterogeneous acceleration

was evaluated on the ten programs that spend a significant amount of time in the detected

idioms. Only these can reasonably expect a performance gain.

6.8. Results 125

BT CG DC EP FT IS LU MG SP UA bfs cutcp histo lbm mri−g mri−q sad sgemm spmv stencil tpacf

0

2

4

6

8

10

#
 D

e
te

c
te

d
 I

d
io

m
s

Idiom Type Scalar Reduction Histogram Reduction Stencil Matrix Operations Sparse Matrix Operations

Figure 6.5: The different computational idioms found across the benchmark programs: Scalar
reductions were the most common, with 10 out of 21 programs containing some. Other idioms
were found in 1–5 programs each. Only five of the benchmarks contained no idiomatic code.

BT CG DC EP FT IS LU MG SP UA bfs cutcp histo lbm mri−g mri−q sad sgemm spmv stencil tpacf

0

25

50

75

100

R
u
n
ti
m

e
 C

o
ve

ra
g
e
 (

%
)

Figure 6.6: Runtime coverage: 10 of the 21 programs have idiomatic performance bottlenecks.

Scalar

Reduction

Histogram

Reduction

Stencil Matrix Op. Sparse

Matrix Op.

Polly 3 — 5 1 —

ICC 28 — — — —

IDL 45 5 6 1 3

Table 6.2: Comparison of the number of idiom instances detected by IDL, ICC, and Polly: ICC
detected 60% of IDL’s reductions, but no other idioms. Polly focused mostly on stencil programs,
but detected only 3 scalars. Both idioms with indirect memory access were exclusive to IDL.

BT CG DC EP FT IS LU MG SP UA bfs cutcp

without IDL 1.9 0.5 1.0 0.3 0.6 0.3 1.9 0.8 1.6 2.7 0.4 0.4

with IDL 4.0 0.8 1.6 0.6 1.2 0.5 3.9 4.5 3.2 7.3 0.5 0.6

overhead in % 116 77 57 77 93 62 103 484 97 169 30 65

histo lbm mri-g mri-q sad sgemm spmv stencil tpacf

without IDL 0.2 0.3 0.2 0.2 0.4 0.6 0.3 0.2 0.2

with IDL 0.2 0.6 0.4 0.3 0.6 0.7 0.7 0.2 0.4

overhead in % 35 87 100 52 58 24 115 36 54

Table 6.3: Compile time cost of IDL solver in seconds: Compilation took 82% longer on average.

126 Chapter 6. Heterogeneous Acceleration via Computational Idioms

CG EP IS MG histo lbm sgemm spmv stencil tpacf

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

CPU
iGPU

GPU
CPU

iGPU
GPU

 0

 1

 2

 0

 10

 20

 30

 0

 10

 20

 30

 40

 50

 0

 50

100

150

200

250

 0

 10

 20

 30

 0

 1

 0

 1

 2

 0

 1

 2

 3

 4

 0

 1

 0

 5

 10

 15
S

p
e

e
d

u
p

 v
s
.

S
e

q
u

e
n

ti
a

l

Figure 6.7: Speedup over sequential: Results for the best-performing backend on each platform
are shown. The red bars indicate a manual modification for minimising redundant data transfers.

0.25 0.00 0.07 0.02

CG EP IS MG histo lbm sgemm spmv stencil tpacf

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

IDL
O

penCL

O
penM

P

1

10

100

1000

S
p

e
e

d
u

p
 v

s
.

S
e

q
u

e
n

ti
a

l

Figure 6.8: IDL versus manual expert parallelisation: Speedup over the sequential baseline was
measured for IDL (selecting best performing backend; red bars) and the handwritten reference
OpenCL and OpenMP implementations (provided by the benchmark developers; yellow bars).

6.8.3 Performance Results

Speedup over Sequential Figure 6.7 shows the end-to-end speedup obtained by accelerating

idioms via heterogeneous APIs on a CPU, an integrated GPU, an external GPU, respectively.

All of the results include data transfer overhead to and from the GPUs, where required. This

overhead was intrinsic to the external GPU, which operates on distinct physical memory. The

integrated GPU, on the other hand, only incurred this cost when APIs enforced additional data

copies. Each bar shows the best-performing API for the given platform; Table 6.4 provides

detailed results also for the other API backends.

Moderate speedups were obtained for five of the benchmarks, from 1.26× for “histo” up to

4.5× for ‘IS”. Besides “MG”, all of these benchmarks had a scalar or histogram reduction as

their performance bottleneck. Interestingly, it emerges that for different benchmarks, different

hardware was beneficial. For “tpcaf”, the CPU was the best platform, beating the GPU, for

which the data transfer time dominated; for “MG” and “histo”, the integrated GPU struck

the right balance between computational power and avoiding data movement to the external

GPU; and for “EP” and “IS”, the data transfer to the GPU was amortised by its superior raw

performance. The results emphasise the significance of flexible heterogeneous code generation.

Committing to any one of the three hardware platforms in the source code would have always

resulted in less-than-optimal performance for at least some of the programs.

For five of the benchmarks, IDL enabled significantly higher performance gains, from

17× for “CG” and up to over 275× for “sgemm”. These benchmarks were computationally

expensive, and the external GPU was always the fastest architecture by a considerable margin.

6.8. Results 127

C
PU

iG
PU

G
PU

M
K

L
lib

SP
M

V
H

al
id

e
cl

B
L

A
S

C
L

B
la

st
L

if
t

cl
SP

A
R

SE
lib

SP
M

V
cl

B
L

A
S

C
L

B
la

st
L

if
t

cu
SP

A
R

SE
lib

SP
M

V
cu

B
L

A
S

L
if

t

C
G

1
5
0
4
.
2
1

—
—

—
—

—
6
4
4
.
0
2

—
—

—
—

1
1
3
.
5
1

—
—

—

E
P

—
—

—
—

—
3
2
7
6
2
.
5
0

—
—

—
—

3
0
9
8
3
.
4
0

—
—

—
2
4
6
8
0
.
7
0

IS
—

—
4
2
6
.
9
5

—
—

17
65

.6
1

—
—

—
—

5
4
7
.
2
8

—
—

—
9
9
.
9
5

M
G

—
—

—
—

—
4
6
9
9
.
6
3

—
—

—
—

1
4
3
9
.
5
8

—
—

—
2
2
1
1
.
5
6

hi
st

o
—

—
—

—
—

2
7
.
4
2

—
—

—
—

1
7
.
2
0

—
—

—
1
9
.
5
4

lb
m

—
—

—
—

—
6
4
5
7
.
9
3

—
—

—
—

5
3
3
5
.
0
9

—
—

—
5
9
0
.
6
0

sg
em

m
5
3
.
5
0

—
—

16
61

.7
5

66
0.

44
13

39
.1

5
—

—
1
4
.
7
3

19
.0

3
15

.0
4

—
—

5
.
9
9

7.
87

sp
m

v
—

2
1
8
.
1
7

—
—

—
—

—
1
0
2
.
2
3
3

—
—

—
—

1
8
.
4
3
7

—
—

st
en

ci
l

—
—

5
7
6
0
.
8
1

—
—

21
95

1.
80

—
—

—
—

2
2
6
1
.
4
8

—
—

—
2
7
9
.
3
8

tp
ac

f
—

—
—

—
—

1
9
2
7
6
.
4
0

—
—

—
—

6
1
1
1
1
.
9
0

—
—

—
2
3
3
5
8
.
2
0

Ta
bl

e
6.

4:
D

et
ai

le
d

pe
rfo

rm
an

ce
re

su
lts

fo
re

ac
h

he
te

ro
ge

ne
ou

s
ba

ck
en

d
in

te
rfa

ce
:T

he
ru

nt
im

e
of

ea
ch

be
nc

hm
ar

k
pr

og
ra

m
w

as
m

ea
su

re
d

in
m

ill
is

ec
on

ds
fo

r
ev

er
y

co
m

pa
tib

le
co

m
bi

na
tio

n
on

ea
ch

of
th

e
th

re
e

pl
at

fo
rm

s.
Th

e
fa

st
es

ti
m

pl
em

en
ta

tio
ns

pe
r

be
nc

hm
ar

k
an

d
ta

rg
et

ha
rd

w
ar

e
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

128 Chapter 6. Heterogeneous Acceleration via Computational Idioms

The red highlighting in Figure 6.7 indicates an important runtime optimisation: Redundant

data transfers for the iterative “CG”, “lbm”, “spmv” and “stencil” benchmarks were manually

eliminated. All of these benchmarks executed computations inside a for-loop, and did not

require access to the data on the CPU between iterations. A straightforward lazy copying

technique was manually applied by flagging memory objects to avoid redundant transfers,

similar to work by Jablin et al. [162]. This runtime optimisation was crucial for achieving

high performance on some of the benchmark programs.

API Performance Comparison Table 6.4 shows a breakdown of the performance of each API

on each program and platform. Not all APIs target all platforms, e.g. cuSPARSE only targets

NVIDIA GPUs. The version of Halide that was used for this evaluation failed to generate

valid GPU code for any of the benchmarks. Therefore, only the CPU platform was evaluated

with Halide. The best-performing backend is highlighted in bold in the table entries. None

of the previously existing backends supported “SPMV-JDS, which was detected in the “spmv”

benchmark. The libSPMV library was implemented as an ad-hoc solution to this, providing

straightforward parallelisation of the idiom.

On the multi-core CPU, Intel MKL gave the best linear algebra performance, outperforming

the other libraries and Lift. Halide achieved good performance for the NPB “IS” and Parboil

“stencil” benchmarks on the CPU, outperforming Lift due to its more advanced vectorisation

capabilities. In programs that were dominated by scalar reductions, Lift performed well.

On the internal GPU, clBLAS provided a better matrix multiplication implementation than

CLBlast and Lift. On the external GPUs, library backends provided the best linear algebra

implementations, while Lift performed well on stencils and reductions.

Speedup vs Handwritten Parallel Implementations Figure 6.8 shows the performance of

the IDL approach compared to handwritten reference OpenMP and OpenCL implementations.

For some of the benchmarks, the parallel versions were significantly modified beyond the

reach of automation and used entirely different algorithms. For benchmarks where the parallel

reference implementation did not make profound algorithmic changes (“CG”, “histo”, “lbm”,

“sgemm”, “spmv”, “stencil”), IDL enabled comparable – or better – performance. On four of

the benchmarks (“EP”, “IS”, “MG”, “tpacf”) it was more beneficial to parallelise the entire

application, which is beyond the scope of this work.

The handwritten versions of “sgemm” and “stencil’ were outperformed by IDL. This was

due to implementation flaws; a loop interchange already improved performance by almost 20×.

Summary 60 idioms were detected across the benchmark suites, and significant performance

improvements were achieved by targeting different heterogeneous APIs for those benchmarks

where idioms dominate execution time.

6.9. Conclusions 129

6.9 Conclusions

This chapter developed an approach for automatically detecting a broad class of computational

idioms during compilation. These idioms are supported by existing numerical libraries and

domain-specific languages that implement code generation for heterogeneous accelerators.

Once detected, the idiomatic loops are replaced by function calls to code generated by these

external tools.

The detection approach is based on the declarative Idiom Detection Language (IDL) that

identifies program subsets that adhere to idiom specifications with a constraint solver. The

evaluation showed that the ability of IDL to cover irregular idioms improved significantly over

the state-of-the-art implemented by Polly and ICC. Of the 10 benchmark applications where

IDL captured the majority of execution time as idiomatic, more than half implemented idioms

with indirect memory accesses. The incorporation of specialised code generators for idiomatic

code enabled reliable performance gains: speedups were achieved on all 10 programs. This

shows that idiom detection is a promising path to heterogeneous acceleration.

Chapter 7

Conclusions

This thesis introduced a constraint programming methodology that operates on SSA compiler

intermediate representation. The Compiler Analysis Description Language (CAnDL) and the

extended Idiom Detection Language (IDL) were developed, and implemented in the LLVM

framework. This made the constraint programming method available for program analysis.

Several computational idioms were specified using CAnDL and IDL, enabling automatic

recognition of adhering user code sections during compilation. The well-studied kernels among

these idioms were stencils and varied forms of sparse and dense linear algebra. Complementing

these established kernels, Complex Reduction and Histogram Computations (CReHCs) were

introduced as a new grouping of calculations. The evaluation on the established benchmark

suites NPB and Parboil demonstrated that all of these computational idioms covered significant

performance bottlenecks.

Recognising these computational idioms enabled generic compilers to apply idiom-specific

optimising transformations, which are traditionally available only within domain-specific tools.

Such transformations included the automatic parallelisation of programs that were inaccessible

to previous analysis approaches.

Given this background, the idiom detection was performed on sequential C/C++ programs,

achieving automatic heterogeneous parallelisation. Idiomatic loops in the code were redirected

to domain-specific code generators. These specialised tools leveraged the domain knowledge

that is available for code in restrictive idioms. This approach was applicable to 10 of the 21

benchmark programs from NPB and Parboil, resulting in speedups between 1.26× and 275×
over the sequential baseline versions.

In summary, this thesis demonstrated that computational idioms are a suitable interface

to heterogeneous acceleration, and developed approaches for automatically recognising them.

The main contributions are the methodology of constraint programming on SSA intermediate

representation, the design and implementation of CAnDL and IDL, and the identification of

generalised reductions as a significant class of benchmark bottlenecks.

131

132 Chapter 7. Conclusions

7.1 Contributions

Constraint Programming on Compiler Intermediate Representation Chapter 2 introduced

constraint programming on SSA form intermediate code. Using a characterisation of the static

structure of SSA programs, SSA constraint problems were defined. These are formulas that

impose restrictions on compiler intermediate code, turning the detection of adhering program

parts into a constraint satisfiability problem. This thesis derived efficient algorithms for solving

SSA constraint problems and discussed significant classes of constraint formulas, reflecting

compiler analysis methods such as data flow and dominance relationships.

The constraint programming methodology was derived starting from algebraic formulation

through to developing the implementation in C++. It applies to any SSA compiler intermediate

representation and is suitable for a wide range of analysis problems.

Specification Languages Chapters 4 and 5 designed and implemented two novel declarative

specification languages: CAnDL (Compiler Analysis Description Language) and its extension

IDL (Idiom Detection Langauge). These languages make the constraint programming method

available in the LLVM framework. This enables constraint programming on the intermediate

code of user programs during compilation with the Clang C/C++ compiler.

Complex Reduction and Histogram Computations Complex Reduction and Histogram

Computations (CReHCs) were introduced in Chapter 5 as a computational idiom. CReHCs are

a generalisation of the well-understood scalar reduction, that additionally covers the indirect

array accesses typically found in histogram calculations. This type of loop was not previously

studied, but this thesis showed that shared parallelisation opportunities exist. Moreover, an

evaluation on established benchmark suites demonstrated that several performance bottlenecks

in each of NPB, Parboil, and Rodinia are, in fact, CReHCs.

Specification of Computational Idioms Chapters 4 to 6 specified a range of computational

idioms in CAnDL and IDL. These included stencils, different forms of sparse and dense linear

algebra, polyhedral Static Control Parts (SCoPs), and CReHCs. The constraint formulations

enabled the automatic recognition of high-level algorithmic structure during compilation. This

enabled generic compilers to apply domain-specific reasoning.

Heterogeneous Acceleration Pipeline Chapter 6 implemented a heterogeneous acceleration

pipeline. The user code sections recognised by IDL specifications were redirected to domain-

specific code generators for heterogeneous accelerator hardware. The evaluation demonstrated

significant heterogeneous parallelisation speedups on established benchmark programs.

7.2. Critical Analysis 133

7.2 Critical Analysis

The approaches of this thesis were built on the derivation of Chapter 2 and evaluated in

several scenarios on C/C++ program code. Despite the effort of bridging between the algebraic

formulation and the application in real-world scenarios, the work remains a prototype, and

several issues need to be addressed before it becomes viable for productive use. Importantly,

this includes questions about the prevalence of idiomatic code, the affordability of significant

compile time overhead, and the ability to compensate for limitations of the underlying solver

technology.

Universality of Computational Idioms Computational idioms were specified in Chapters 5

and 6 and evaluated successfully on a range of established benchmark collections. However,

the NPB and Parboil collections are both from areas of scientific computing. It remains unclear

how generally applicable these idioms are on codebases from other domains. Similar concerns

are faced by competing approaches, including the polyhedral model.

More generally, it is unclear how much code in large-scale applications could be captured

as “idiomatic” even with a more extensive set of idioms. Even some benchmark programs

within NPB and Parboil contain idiosyncratic computations that are unlikely to reoccur in other

contexts. An example is the “sad” program that computes the “Sum of Absolute Differences”

algorithm used by the reference H.264 video encoder.

Compile Time Cost The compile time cost of idiom detection was evaluated in Chapter 6,

showing that overheads between 35% and 115% occurred across the benchmark programs.

Given that the approach is built on constraint satisfiability methods, this is a reassuring result, as

the compile times remain within one order of magnitude. Nonetheless, from the perspective of

compiler optimisations, this might be a prohibitive cost. Moreover, the compile time overhead

is unevenly distributed, with disproportionately longer solver times on large functions and

especially on code sections that are near misses to satisfying the specifications.

Bounded Number of Solver Variables The specification languages were restricted by the

solver to a finite number of variables in the underlying constraint problems. Moreover, each

additional variable incurred a slight overhead, introducing a tradeoff between solver speed

and the generality of the specifications. This caused upper bounds for the number of features

within many idiom specifications: The definition of CReHCs only allowed a maximum of two

histograms, stencils only allowed a neighbourhood of up to 32 elements, and so on.

Similar shortcomings are well-known in other research disciplines using solvers, and some

techniques for resolving them have been suggested by Krings and Leuschel [163] in the context

of constraint logic programming.

134 Chapter 7. Conclusions

7.3 Future Work

Directions for future work include the specification of more computational idioms, usability

improvements of the specification languages, and the application of dynamic analysis and

machine learning to complement the static analysis. Moreover, constraint specifications could

eventually be generated from examples, eliminating the difficulty of writing them manually.

Complementing Dynamic and Machine Learning Approaches The static methods in this

thesis could be enhanced with dynamic approaches and machine learning. Such methods would

naturally complement the entirely static reasoning of constraint programming, but were outside

the scope of this work.

Dynamic profiling could preselect candidate hot loops, drastically reducing the compile

time overhead. More advanced dynamic analysis could collect program features to be fed into

machine learning algorithms. The use of neural networks to guide compiler optimisations has

been successfully studied in the relevant literature [164].

Dynamic methods are also suitable for automating the efficient memory transfers required

between cooperating hardware in heterogeneous computing, and to rule out pointer aliasing.

Unbounded Number of Variables Related research disciplines found ways around some

limitations of their underlying solvers. For example, Bounded Model Checking [165] uses SAT

solvers and involves the unrolling of loops to generate formulas. In order to fit the underlying

solver, this requires the introduction of a certain finite iteration limit k. However, the checking

process can be repeated with increasing values for k, successively ruling out possible violations.

The same approach could be applied to constraint solving on SSA. The solver would be

invoked repeatedly with a gradually increasing number of variables. When no collect constraint

exceeds variable capacity anymore, the process would be terminated. This would ensure that

small solutions are found without unnecessary overhead, yet solutions requiring many variables

would not be discarded entirely. No upper limits for collect statements would be required with

this scheme.

Pointer-Chasing Idioms The ability to recognise sparse linear algebra sets the methods of

this work apart from previous approaches. Going beyond a single data access indirection, IDL

could be used to capture data access patterns that involve pointer chases. This would allow it

to analyse graph operations, such as depth-first graph traversal and the PageRank algorithm.

Parboil implements the breadth-first search program “bfs” that could be accelerated this way.

Moreover, IDL could detect iterations over lists, and the insertion and removal of list items,

extending work by Manilov et al. [97]. Such patterns are not usually performance-critical, but

this would be another step toward an understanding of dynamic data structures in compilers.

7.3. Future Work 135

Higher-level Specification Languages Compared to previous approaches, the specification

languages CAnDL and IDL simplify the implementation of compiler analysis functionality and

enable the detection of more sophisticated idiomatic structures. Nonetheless, knowledge of the

compiler internals is still required to write correct specifications. Furthermore, the precise

extent to which the customisation of the specification languages to LLVM IR was necessary

has not been explored thoroughly.

Future work could investigate languages that abstract away the compiler-specific nature of

CAnDL and IDL, providing an improved programming experience. The pseudocode and the

corresponding specifications in Figures 6.3 and 6.4 suggest how this could be achieved. They

show that for restricted domains (e.g. SPMV), generating IDL from high-level expressions is

straightforward.

Phase-Ordering for Normalisation The presented methods for constraint programming on

LLVM IR relied on preceding optimisation passes for the normalisation of the intermediate

code generated from user programs. The relationship between normalisation and optimisation

in compiler transformation passes poses interesting research questions.

To allow the specification of idioms on predictable intermediate code structures, the solver

was invoked after the Clang optimisation pipeline. Optimisations such as loop-independent

code motion helped eliminate the artefacts of superficial implementation decisions by mapping

many different input programs onto the same optimised intermediate code.

While this approach was effective in practice, the existing LLVM optimisation passes

were not designed for this purpose. Instead, they aim to maximise runtime performance and

minimise code size. Incidentally, these two goals often coincide with normalising behaviour.

However, there are clear exceptions to this rule. The outcome of loop unrolling introduces

unpredictability, as the decision to unroll is based on opaque heuristics and threshold values

that depend on command-line options. Similarly, threshold values for loop unswitching interact

with the loop inversion transformation in obfuscating ways. The surrounding conditionals of

inverted loops within loop nests are sometimes – but not always – propagated out. Finally,

strength reduction changes the opcodes of instructions in special cases.

These challenges were resolved pragmatically in this research. High threshold values were

set, some optimisations were disabled (loop unrolling, vectorisation), and others were partially

reversed (strength reduction).

Instead of pruning the “-Os” or “-O2” presets, future work could establish special-purpose

normalisation compilers by re-evaluating the phase-ordering from scratch. According to a new

metric, individual compiler optimisations could be evaluated on a spectrum from “distorting” to

“normalising”. The highly-scoring passes would then selected for a dedicated phase-ordering

for intermediate code normalisation.

136 Chapter 7. Conclusions

Generating Specifications from Examples The automatic generation of specifications from

examples is another direction for follow-up research. Initial attempts were successful [166].

Using a graph-matching algorithm that operates on SSA code, implementation variations of

the same idiom were overlayed, exposing the common structure. This was guided by a quality

metric for the matching. Code structures that were shared between the examples were turned

into constraints, and features that were unique to specific samples were discarded.

Suitable quality metrics for graph-matching are critical to the success of this approach and

could eventually be tuned with machine learning approaches, such as neural networks. The

manually implemented idioms from this thesis would provide suitable training data.

Eventually, the manual curation of example codes that group together into computational

idioms could become redundant. Automatic profiling of large quantities of code would allow

for the automatic identification of all the relevant hot loops. These loops could then be grouped

into computational idioms by an automatic clustering algorithm using a distance metric. The

success score for the previously discussed graph-matching approach would be a suitable basis

for deriving such a metric for the distance between different candidate loops.

7.4 Summary

This chapter gave a brief overview of the thesis, outlining the development of the approaches

and putting the achieved results into context. The core contributions of this work were listed

individually in a dedicated section. Furthermore, the critical analysis discussed implementation

issues and brought attention to details that could profit from further evaluation.

Interesting challenges remain for future work. The suggested topics include improvements

of the basic methodology for constraint programming, enhanced usability of the specification

languages, and the application to novel domains.

Bibliography

[1] Philip Ginsbach, Lewis Crawford, and Michael F. P. O’Boyle. CAnDL: A Domain

Specific Language for Compiler Analysis. In Proceedings of the 27th International

Conference on Compiler Construction, CC ’18, pages 151–162, New York, NY, USA,

2018. ACM. ISBN 978-1-4503-5644-2. doi: 10.1145/3178372.3179515. URL http:

//doi.acm.org/10.1145/3178372.3179515.

[2] Philip Ginsbach and Michael F. P. O’Boyle. Discovery and Exploitation of General

Reductions: A Constraint Based Approach. In Proceedings of the 2017 International

Symposium on Code Generation and Optimization, CGO ’17, pages 269–280,

Piscataway, NJ, USA, 2017. IEEE Press. ISBN 978-1-5090-4931-8. URL http:

//dl.acm.org/citation.cfm?id=3049832.3049862.

[3] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Christophe Dubach,

and Michael F. P. O’Boyle. Automatic Matching of Legacy Code to Heterogeneous

APIs: An Idiomatic Approach. In Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’18, pages 139–153, New York, NY, USA, 2018. ACM. ISBN 978-1-

4503-4911-6. doi: 10.1145/3173162.3173182. URL http://doi.acm.org/10.1145/

3173162.3173182.

[4] G. E. Moore. Cramming more components onto integrated circuits, reprinted from

electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits

Society Newsletter, 11(3):33–35, Sep. 2006. doi: 10.1109/N-SSC.2006.4785860.

[5] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design

of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-

State Circuits, 9(5):256–268, Oct 1974. doi: 10.1109/JSSC.1974.1050511.

[6] G. D. Hutcheson. Moore’s law, lithography, and how optics drive the semiconductor

industry. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference

Series, volume 10583 of Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, page 1058303, Mar 2018. doi: 10.1117/12.2308299.

137

http://doi.acm.org/10.1145/3178372.3179515
http://doi.acm.org/10.1145/3178372.3179515
http://dl.acm.org/citation.cfm?id=3049832.3049862
http://dl.acm.org/citation.cfm?id=3049832.3049862
http://doi.acm.org/10.1145/3173162.3173182
http://doi.acm.org/10.1145/3173162.3173182

138 Bibliography

[7] D. Patterson. 50 years of computer architecture: From the mainframe cpu to the domain-

specific tpu and the open risc-v instruction set. In 2018 IEEE International Solid - State

Circuits Conference - (ISSCC), pages 27–31, Feb 2018. doi: 10.1109/ISSCC.2018.

8310168.

[8] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark silicon

and the end of multicore scaling. In 2011 38th Annual International Symposium on

Computer Architecture (ISCA), pages 365–376, June 2011.

[9] Thomas N. Theis and H.-S. Philip Wong. The end of moore’s law: A new beginning for

information technology. Computing in Science Engineering, 19(2):41–50, Mar 2017.

doi: 10.1109/MCSE.2017.29.

[10] H. Andrade and I. Crnkovic. A review on software architectures for heterogeneous

platforms. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC), pages

209–218, Dec 2018. doi: 10.1109/APSEC.2018.00035.

[11] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,

and Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism,

locality, and recomputation in image processing pipelines. In Proceedings of the 34th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’13, pages 519–530, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2014-

6. doi: 10.1145/2491956.2462176. URL http://doi.acm.org/10.1145/2491956.

2462176.

[12] L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg

Henry, Michael Heroux, Linda Kaufman, Andrew Lumsdaine, Antoine Petitet, Roland

Pozo, Karin Remington, and R. Clint Whaley. An updated set of basic linear algebra

subprograms (blas). ACM Trans. Math. Softw., 28(2):135–151, June 2002. ISSN 0098-

3500. doi: 10.1145/567806.567807. URL http://doi.acm.org/10.1145/567806.

567807.

[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra

subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, September

1979. ISSN 0098-3500. doi: 10.1145/355841.355847. URL http://doi.acm.org/

10.1145/355841.355847.

[14] Intel. Math Kernel Library, 2003. URL https://software.intel.com/en-us/

intel-mkl.

[15] Nvidia. cuBLAS, 2012. URL http://developer.nvidia.com/cublas.

http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/567806.567807
http://doi.acm.org/10.1145/567806.567807
http://doi.acm.org/10.1145/355841.355847
http://doi.acm.org/10.1145/355841.355847
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
http://developer.nvidia.com/cublas

Bibliography 139

[16] AMD. clBLAS, 2013. URL https://github.com/clMathLibraries/clBLAS.

[17] Arm. Performance Libraries, 2017. URL https://developer.arm.com/tools-and-

software/server-and-hpc/arm-architecture-tools/arm-performance-libra

ries.

[18] Qualcomm. Math Library, 2017. URL https://developer.qualcomm.com/

software/qualcomm-math-library.

[19] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. Augem: Automatically

generate high performance dense linear algebra kernels on x86 cpus. In Proceedings

of the International Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’13, pages 25:1–25:12, New York, NY, USA, 2013. ACM. ISBN

978-1-4503-2378-9. doi: 10.1145/2503210.2503219. URL http://doi.acm.org/10.

1145/2503210.2503219.

[20] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,

Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William

Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan

Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,

Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James

Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon

MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana

Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,

Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy

Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay

Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-

datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th

Annual International Symposium on Computer Architecture, ISCA 2017, Toronto, ON,

Canada, June 24-28, 2017, pages 1–12, 2017. doi: 10.1145/3079856.3080246. URL

http://doi.acm.org/10.1145/3079856.3080246.

[21] Niall Murphy, Timothy Jones, and Robert Mullins. Limits of dependence analysis

for automatic parallelization. In Proceedings of the 18th International Workshop on

Compilers for Parallel Computing, CPC 2015, 2015.

[22] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and David A. Padua.

An evaluation of vectorizing compilers. In Proceedings of the 2011 International

https://github.com/clMathLibraries/clBLAS
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-performance-libraries
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-performance-libraries
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-performance-libraries
https://developer.qualcomm.com/software/qualcomm-math-library
https://developer.qualcomm.com/software/qualcomm-math-library
http://doi.acm.org/10.1145/2503210.2503219
http://doi.acm.org/10.1145/2503210.2503219
http://doi.acm.org/10.1145/3079856.3080246

140 Bibliography

Conference on Parallel Architectures and Compilation Techniques, PACT ’11, pages

372–382, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-

4566-0. doi: 10.1109/PACT.2011.68. URL https://doi.org/10.1109/PACT.2011.

68.

[23] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: A Functional Data-

parallel IR for High-performance GPU Code Generation. In Proceedings of the 2017

International Symposium on Code Generation and Optimization, CGO ’17, pages 74–

85, Piscataway, NJ, USA, 2017. IEEE Press. ISBN 978-1-5090-4931-8. URL http:

//dl.acm.org/citation.cfm?id=3049832.3049841.

[24] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey

Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensible

framework for program autotuning. In Proceedings of the 23rd International Conference

on Parallel Architectures and Compilation, PACT ’14, pages 303–316, New York, NY,

USA, 2014. ACM. ISBN 978-1-4503-2809-8. doi: 10.1145/2628071.2628092. URL

http://doi.acm.org/10.1145/2628071.2628092.

[25] Thomas L. Falch and Anne C. Elster. Machine learning based auto-tuning for enhanced

opencl performance portability. In Proceedings of the 2015 IEEE International Parallel

and Distributed Processing Symposium Workshop, IPDPSW ’15, pages 1231–1240,

Washington, DC, USA, 2015. IEEE Computer Society. ISBN 978-1-4673-7684-6. doi:

10.1109/IPDPSW.2015.85. URL https://doi.org/10.1109/IPDPSW.2015.85.

[26] Tobias Grosser, Armin Größlinger, and Christian Lengauer. Polly - performing

polyhedral optimizations on a low-level intermediate representation. Parallel Processing

Letters, 22(4), 2012. URL http://dblp.uni-trier.de/db/journals/ppl/ppl22.

html#GrosserGL12.

[27] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The organization of

computations for uniform recurrence equations. J. ACM, 14(3):563–590, July 1967.

ISSN 0004-5411. doi: 10.1145/321406.321418. URL http://doi.acm.org/10.

1145/321406.321418.

[28] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric

Bastoul. The polyhedral model is more widely applicable than you think. In

International Conference on Compiler Construction, pages 283–303. Springer, 2010.

[29] Simon Moll, Johannes Doerfert, and Sebastian Hack. Input space splitting for opencl. In

Proceedings of the 25th International Conference on Compiler Construction, CC 2016,

https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1109/PACT.2011.68
http://dl.acm.org/citation.cfm?id=3049832.3049841
http://dl.acm.org/citation.cfm?id=3049832.3049841
http://doi.acm.org/10.1145/2628071.2628092
https://doi.org/10.1109/IPDPSW.2015.85
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
http://doi.acm.org/10.1145/321406.321418
http://doi.acm.org/10.1145/321406.321418

Bibliography 141

pages 251–260, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4241-4. doi: 10.

1145/2892208.2892217. URL http://doi.acm.org/10.1145/2892208.2892217.

[30] Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa. Polly’s polyhedral

scheduling in the presence of reductions. CoRR, abs/1505.07716, 2015. URL http:

//arxiv.org/abs/1505.07716.

[31] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant

computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’88, pages 12–27, New York, NY,

USA, 1988. ACM. ISBN 0-89791-252-7. doi: 10.1145/73560.73562. URL http:

//doi.acm.org/10.1145/73560.73562.

[32] Linda Torczon and Keith Cooper. Engineering A Compiler. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2nd edition, 2011. ISBN 012088478X.

[33] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In Code Generation and Optimization, 2004. CGO 2004.

International Symposium on, pages 75–86. IEEE, 2004.

[34] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–

158, New York, NY, USA, 1971. ACM. doi: 10.1145/800157.805047. URL http:

//doi.acm.org/10.1145/800157.805047.

[35] Jan V. Leeuwen. Handbook of Theoretical Computer Science: Algorithms and

Complexity. MIT Press, Cambridge, MA, USA, 1990. ISBN 0262220385.

[36] Alexander Aiken. Introduction to set constraint-based program analysis. Sci. Comput.

Program., 35(2-3):79–111, November 1999. doi: 10.1016/S0167-6423(99)00007-6.

URL http://dx.doi.org/10.1016/S0167-6423(99)00007-6.

[37] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program analysis

as constraint solving. In Proceedings of the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’08, pages 281–292, New

York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2. doi: 10.1145/1375581.

1375616. URL http://doi.acm.org/10.1145/1375581.1375616.

[38] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving optimizations correct using

parameterized program equivalence. SIGPLAN Not., 44(6):327–337, June 2009. ISSN

0362-1340. doi: 10.1145/1543135.1542513. URL http://doi.acm.org/10.1145/

1543135.1542513.

http://doi.acm.org/10.1145/2892208.2892217
http://arxiv.org/abs/1505.07716
http://arxiv.org/abs/1505.07716
http://doi.acm.org/10.1145/73560.73562
http://doi.acm.org/10.1145/73560.73562
http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://dx.doi.org/10.1016/S0167-6423(99)00007-6
http://doi.acm.org/10.1145/1375581.1375616
http://doi.acm.org/10.1145/1543135.1542513
http://doi.acm.org/10.1145/1543135.1542513

142 Bibliography

[39] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.

Formalizing the llvm intermediate representation for verified program transformations.

In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’12, pages 427–440, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.2103709. URL http:

//doi.acm.org/10.1145/2103656.2103709.

[40] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably

correct peephole optimizations with alive. In Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’15, pages

22–32, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3468-6. doi: 10.1145/

2737924.2737965. URL http://doi.acm.org/10.1145/2737924.2737965.

[41] Andres Nötzli and Fraser Brown. LifeJacket: Verifying precise floating-point

optimizations in llvm. In Proceedings of the 5th ACM SIGPLAN International Workshop

on State Of the Art in Program Analysis, SOAP 2016, pages 24–29, New York, NY,

USA, 2016. ACM. ISBN 978-1-4503-4385-5. doi: 10.1145/2931021.2931024. URL

http://doi.acm.org/10.1145/2931021.2931024.

[42] David Menendez, Santosh Nagarakatte, and Aarti Gupta. Alive-FP: Automated

Verification of Floating Point Based Peephole Optimizations in LLVM, pages 317–

337. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. ISBN 978-3-662-

53413-7. doi: 10.1007/978-3-662-53413-7_16. URL https://doi.org/10.1007/

978-3-662-53413-7_16.

[43] David Menendez and Santosh Nagarakatte. Alive-infer: Data-driven precondition

inference for peephole optimizations in llvm. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2017, pages

49–63, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4988-8. doi: 10.1145/

3062341.3062372. URL http://doi.acm.org/10.1145/3062341.3062372.

[44] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan Ragan-Kelley,

Sylvain Paris, Qin Zhao, and Saman Amarasinghe. Helium: Lifting high-performance

stencil kernels from stripped x86 binaries to Halide DSL code. In Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’15, pages 391–402, New York, NY, USA, 2015. ACM. ISBN

978-1-4503-3468-6. doi: 10.1145/2737924.2737974. URL http://doi.acm.org/10.

1145/2737924.2737974.

[45] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. Verified

lifting of stencil computations. In Proceedings of the 37th ACM SIGPLAN Conference

http://doi.acm.org/10.1145/2103656.2103709
http://doi.acm.org/10.1145/2103656.2103709
http://doi.acm.org/10.1145/2737924.2737965
http://doi.acm.org/10.1145/2931021.2931024
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-662-53413-7_16
http://doi.acm.org/10.1145/3062341.3062372
http://doi.acm.org/10.1145/2737924.2737974
http://doi.acm.org/10.1145/2737924.2737974

Bibliography 143

on Programming Language Design and Implementation, PLDI ’16, pages 711–726,

New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.

2908117. URL http://doi.acm.org/10.1145/2908080.2908117.

[46] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. Verified peephole

optimizations for compcert. In Proceedings of the 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’16, pages 448–461,

New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.

2908109. URL http://doi.acm.org/10.1145/2908080.2908109.

[47] Daniel Kästner, Ulrich Wünsche, Jörg Barrho, Marc Schlickling, Bernhard Schommer,

Michael Schmidt, Christian Ferdinand, Xavier Leroy, and Sandrine Blazy. CompCert:

Practical experience on integrating and qualifying a formally verified optimizing

compiler. In ERTS 2018: Embedded Real Time Software and Systems. SEE, January

2018. URL http://xavierleroy.org/publi/erts2018_compcert.pdf.

[48] Alain Colmerauer and Philippe Roussel. The birth of prolog. In The Second ACM

SIGPLAN Conference on History of Programming Languages, HOPL-II, pages 37–52,

New York, NY, USA, 1993. ACM. ISBN 0-89791-570-4. doi: 10.1145/154766.155362.

URL http://doi.acm.org/10.1145/154766.155362.

[49] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured english query

language. In Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on

Data Description, Access and Control, SIGFIDET ’74, pages 249–264, New York, NY,

USA, 1974. ACM. doi: 10.1145/800296.811515. URL http://doi.acm.org/10.

1145/800296.811515.

[50] Mark A. Linton. Queries and Views of Programs Using a Relational Database System.

PhD thesis, EECS Department, University of California, Berkeley, Dec 1983. URL

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/5296.html.

[51] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter Kreps. The design and

implementation of ingres. ACM Trans. Database Syst., 1(3):189–222, September 1976.

ISSN 0362-5915. doi: 10.1145/320473.320476. URL http://doi.acm.org/10.

1145/320473.320476.

[52] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest: Scalable source code

queries with datalog. In Proceedings of the 20th European Conference on Object-

Oriented Programming, ECOOP’06, pages 2–27, Berlin, Heidelberg, 2006. Springer-

Verlag. ISBN 3-540-35726-2, 978-3-540-35726-1. doi: 10.1007/11785477_2. URL

http://dx.doi.org/10.1007/11785477_2.

http://doi.acm.org/10.1145/2908080.2908117
http://doi.acm.org/10.1145/2908080.2908109
http://xavierleroy.org/publi/erts2018_compcert.pdf
http://doi.acm.org/10.1145/154766.155362
http://doi.acm.org/10.1145/800296.811515
http://doi.acm.org/10.1145/800296.811515
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/5296.html
http://doi.acm.org/10.1145/320473.320476
http://doi.acm.org/10.1145/320473.320476
http://dx.doi.org/10.1007/11785477_2

144 Bibliography

[53] Florian Martin. Pag – an efficient program analyzer generator. International Journal on

Software Tools for Technology Transfer, 2(1):46–67, Nov 1998. ISSN 1433-2779. doi:

10.1007/s100090050017. URL https://doi.org/10.1007/s100090050017.

[54] Karina Olmos and Eelco Visser. Composing source-to-source data-flow transformations

with rewriting strategies and dependent dynamic rewrite rules. In Proceedings of

the 14th International Conference on Compiler Construction, CC’05, pages 204–

220, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-25411-0, 978-3-540-

25411-9. doi: 10.1007/978-3-540-31985-6_14. URL http://dx.doi.org/10.1007/

978-3-540-31985-6_14.

[55] Peter Lipps, Ulrich Möncke, and Reinhard Wilhelm. OPTRAN - A language/system

for the specification of program transformations: System overview and experiences,

pages 52–65. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989. ISBN 978-3-

540-46200-2. doi: 10.1007/3-540-51364-7_4. URL https://doi.org/10.1007/

3-540-51364-7_4.

[56] Uwe Aßmann. How to uniformly specify program analysis and transformation with

graph rewrite systems, pages 121–135. Springer Berlin Heidelberg, Berlin, Heidelberg,

1996. ISBN 978-3-540-49939-8. doi: 10.1007/3-540-61053-7_57. URL https://

doi.org/10.1007/3-540-61053-7_57.

[57] Uwe Assmann. Optimix - a tool for rewriting and optimizing programs. In Handbook

of Graph Grammars and Computing by Graph Transformation. Volume 2: Applications,

Languages and Tools, pages 307–318. World Scientific, 1998.

[58] Martin Alt, Uwe Aßmann, and Hans van Someren. Cosy compiler phase embedding

with the CoSy compiler model, pages 278–293. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1994. ISBN 978-3-540-48371-7. doi: 10.1007/3-540-57877-3_19. URL

https://doi.org/10.1007/3-540-57877-3_19.

[59] Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. Compiler-Assisted Test

Acceleration on GPUs for Embedded Software, pages 35–45. ACM, 7 2017. ISBN

978-1-4503-5076-1. doi: 10.1145/3092703.3092720.

[60] Jeremiah James Willcock, Andrew Lumsdaine, and Daniel J. Quinlan. Reusable, generic

program analyses and transformations. In Proceedings of the Eighth International

Conference on Generative Programming and Component Engineering, GPCE ’09, pages

5–14, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-494-2. doi: 10.1145/

1621607.1621611. URL http://doi.acm.org/10.1145/1621607.1621611.

https://doi.org/10.1007/s100090050017
http://dx.doi.org/10.1007/978-3-540-31985-6_14
http://dx.doi.org/10.1007/978-3-540-31985-6_14
https://doi.org/10.1007/3-540-51364-7_4
https://doi.org/10.1007/3-540-51364-7_4
https://doi.org/10.1007/3-540-61053-7_57
https://doi.org/10.1007/3-540-61053-7_57
https://doi.org/10.1007/3-540-57877-3_19
http://doi.acm.org/10.1145/1621607.1621611

Bibliography 145

[61] Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring code improving

transformations. ACM Trans. Program. Lang. Syst., 19(6):1053–1084, November 1997.

ISSN 0164-0925. doi: 10.1145/267959.267960. URL http://doi.acm.org/10.

1145/267959.267960.

[62] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated soundness

proofs for dataflow analyses and transformations via local rules. In Proceedings of the

32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’05, pages 364–377, New York, NY, USA, 2005. ACM. ISBN 1-58113-830-

X. doi: 10.1145/1040305.1040335. URL http://doi.acm.org/10.1145/1040305.

1040335.

[63] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical

automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 29th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’08, pages 101–113, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-

2. doi: 10.1145/1375581.1375595. URL http://doi.acm.org/10.1145/1375581.

1375595.

[64] Tobias Grosser and Torsten Hoefler. Polly-ACC: Transparent compilation to

heterogeneous hardware. In Proceedings of the the 30th International Conference on

Supercomputing (ICS’16), 06 2016.

[65] Johannes Doerfert, Tobias Grosser, and Sebastian Hack. Optimistic loop optimization.

In Proceedings of the 2017 International Symposium on Code Generation and

Optimization, CGO ’17, pages 292–304, Piscataway, NJ, USA, 2017. IEEE Press.

ISBN 978-1-5090-4931-8. URL http://dl.acm.org/citation.cfm?id=3049832.

3049864.

[66] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian

Tenllado, and Francky Catthoor. Polyhedral parallel code generation for cuda. ACM

Trans. Archit. Code Optim., 9(4):54:1–54:23, January 2013. ISSN 1544-3566. doi: 10.

1145/2400682.2400713. URL http://doi.acm.org/10.1145/2400682.2400713.

[67] Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In In Second

International Workshop on Polyhedral Compilation Techniques (IMPACT’12, 2012.

[68] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-

CUDA code generation for affine programs. In Proceedings of the 19th Joint European

Conference on Theory and Practice of Software, International Conference on Compiler

http://doi.acm.org/10.1145/267959.267960
http://doi.acm.org/10.1145/267959.267960
http://doi.acm.org/10.1145/1040305.1040335
http://doi.acm.org/10.1145/1040305.1040335
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
http://dl.acm.org/citation.cfm?id=3049832.3049864
http://dl.acm.org/citation.cfm?id=3049832.3049864
http://doi.acm.org/10.1145/2400682.2400713

146 Bibliography

Construction, CC’10/ETAPS’10, pages 244–263, Berlin, Heidelberg, 2010. Springer-

Verlag. ISBN 3-642-11969-7, 978-3-642-11969-9. doi: 10.1007/978-3-642-11970-5_

14. URL http://dx.doi.org/10.1007/978-3-642-11970-5_14.

[69] Riyadh Baghdadi, Albert Cohen, Tobias Grosser, Sven Verdoolaege, Anton Lokhmotov,

Javed Absar, Sven Van Haastregt, Alexey Kravets, and Alastair Donaldson. PENCIL

Language Specification. Research Report RR-8706, INRIA, May 2015. URL https:

//hal.inria.fr/hal-01154812.

[70] Jie Zhao, Michael Kruse, and Albert Cohen. A polyhedral compilation framework for

loops with dynamic data-dependent bounds. In Proceedings of the 27th International

Conference on Compiler Construction, CC 2018, pages 14–24, New York, NY, USA,

2018. ACM. ISBN 978-1-4503-5644-2. doi: 10.1145/3178372.3179509. URL http:

//doi.acm.org/10.1145/3178372.3179509.

[71] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,

Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman

Amarasinghe. Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code.

In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation

and Optimization, CGO 2019, pages 193–205, Piscataway, NJ, USA, 2019. IEEE Press.

ISBN 978-1-7281-1436-1. URL http://dl.acm.org/citation.cfm?id=3314872.

3314896.

[72] Huihui Zhang, Anand Venkat, and Mary Hall. Compiler transformation to generate

hybrid sparse computations. In Proceedings of the Sixth Workshop on Irregular

Applications: Architectures and Algorithms, IA3’16, pages 34–41, Piscataway, NJ,

USA, 2016. IEEE Press. ISBN 978-1-5090-3867-1. doi: 10.1109/IA3.2016.11. URL

https://doi.org/10.1109/IA3.2016.11.

[73] Pierre Jouvelot and Babak Dehbonei. A unified semantic approach for the vectorization

and parallelization of generalized reductions. In Proceedings of the 3rd international

conference on Supercomputing, pages 186–194. ACM, 1989.

[74] Xavier Redon and Paul Feautrier. Scheduling reductions. In Proceedings of the 8th

international conference on Supercomputing, pages 117–125. ACM, 1994.

[75] Lam Chi-Chung, P Sadayappan, and Rephael Wenger. On optimizing a class of multi-

dimensional loops with reduction for parallel execution. Parallel Processing Letters, 7

(02):157–168, 1997.

[76] Gautam Gupta and Sanjay V Rajopadhye. Simplifying reductions. In POPL, volume 6,

pages 30–41, 2006.

http://dx.doi.org/10.1007/978-3-642-11970-5_14
https://hal.inria.fr/hal-01154812
https://hal.inria.fr/hal-01154812
http://doi.acm.org/10.1145/3178372.3179509
http://doi.acm.org/10.1145/3178372.3179509
http://dl.acm.org/citation.cfm?id=3314872.3314896
http://dl.acm.org/citation.cfm?id=3314872.3314896
https://doi.org/10.1109/IA3.2016.11

Bibliography 147

[77] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fabrice Rastello,

J. Ramanujam, and P. Sadayappan. A framework for enhancing data reuse via associative

reordering. In Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, pages 65–76, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.2594342. URL http:

//doi.acm.org/10.1145/2594291.2594342.

[78] Bill Pottenger and Rudolf Eigenmann. Idiom recognition in the polaris parallelizing

compiler. In Proceedings of the 9th international conference on Supercomputing, pages

444–448. ACM, 1995.

[79] Toshio Suganuma, Hideaki Komatsu, and Toshio Nakatani. Detection and global

optimization of reduction operations for distributed parallel machines. In Proceedings

of the 10th international conference on Supercomputing, pages 18–25. ACM, 1996.

[80] Allan L Fisher and Anwar M Ghuloum. Parallelizing complex scans and reductions. In

ACM SIGPLAN Notices, volume 29, pages 135–146. ACM, 1994.

[81] Lawrence Rauchwerger and David A Padua. The LRPD test: Speculative run-

time parallelization of loops with privatization and reduction parallelization. IEEE

Transactions on Parallel and Distributed Systems, 10(2):160–180, 1999.

[82] E. Gutiérrez, O. Plata, and E. L. Zapata. A compiler method for the parallel execution of

irregular reductions in scalable shared memory multiprocessors. In Proceedings of the

14th International Conference on Supercomputing, ICS ’00, pages 78–87, New York,

NY, USA, 2000. ACM. ISBN 1-58113-270-0. doi: 10.1145/335231.335239. URL

http://doi.acm.org/10.1145/335231.335239.

[83] Eladio Gutiérrez, O Plata, and Emilio L Zapata. Optimization techniques for parallel

irregular reductions. Journal of systems architecture, 49(3):63–74, 2003.

[84] Eladio Gutiérrez, Oscar Plata, and Emilio L Zapata. An analytical model of locality-

based parallel irregular reductions. Parallel Computing, 34(3):133–157, 2008.

[85] Hao Yu and Lawrence Rauchwerger. An adaptive algorithm selection framework for

reduction parallelization. IEEE Transactions on Parallel and Distributed Systems, 17

(10):1084–1096, 2006.

[86] Vignesh T Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal. Compiler and

runtime support for enabling generalized reduction computations on heterogeneous

parallel configurations. In Proceedings of the 24th ACM international conference on

supercomputing, pages 137–146. ACM, 2010.

http://doi.acm.org/10.1145/2594291.2594342
http://doi.acm.org/10.1145/2594291.2594342
http://doi.acm.org/10.1145/335231.335239

148 Bibliography

[87] X. Huo, V. Ravi, and G. Agrawal. Porting irregular reductions on heterogeneous CPU-

GPU configurations. In Proceedings of the 18th IEEE International Conference on High

Performance Computing, 2011.

[88] D. Das and Peng Wu. Experiences of using a dependence profiler to assist parallelization

for multi-cores. In 2010 IEEE International Symposium on Parallel Distributed

Processing, Workshops and Phd Forum (IPDPSW), pages 1–8, April 2010. doi:

10.1109/IPDPSW.2010.5470884.

[89] Minjang Kim. Dynamic program analysis algorithms to assist parallelization. PhD

thesis, Georgia Institute of Technology, 2012.

[90] Steven J Deitz, Bradford L Chamberlain, and Lawrence Snyder. High-level language

support for user-defined reductions. The Journal of Supercomputing, 23(1):23–37, 2002.

[91] Michael Kruse Chandan Reddy and Albert Cohen. Reduction drawing: Language

constructs and polyhedral compilation for reductions on GPUs. In Proceedings of the

25rd International Conference on Parallel Architectures and Compilation, PACT ’16,

2016.

[92] Miguel Angel Aguilar and Rainer Leupers. Unified identification of multiple forms of

parallelism in embedded applications. In 2015 International Conference on Parallel

Architecture and Compilation (PACT), pages 482–483. IEEE, 2015.

[93] Liang Han, Wei Liu, and James M. Tuck. Speculative parallelization of partial reduction

variables. In Proceedings of the 8th Annual IEEE/ACM International Symposium on

Code Generation and Optimization, CGO ’10, pages 141–150, New York, NY, USA,

2010. ACM. ISBN 978-1-60558-635-9. doi: 10.1145/1772954.1772975. URL http:

//doi.acm.org/10.1145/1772954.1772975.

[94] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August.

Speculative separation for privatization and reductions. In Proceedings of the 33rd

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’12, pages 359–370, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1205-

9. doi: 10.1145/2254064.2254107. URL http://doi.acm.org/10.1145/2254064.

2254107.

[95] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P. O’Boyle. Towards a

holistic approach to auto-parallelization: Integrating profile-driven parallelism detection

and machine-learning based mapping. In Proceedings of the 30th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’09, pages

http://doi.acm.org/10.1145/1772954.1772975
http://doi.acm.org/10.1145/1772954.1772975
http://doi.acm.org/10.1145/2254064.2254107
http://doi.acm.org/10.1145/2254064.2254107

Bibliography 149

177–187, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1. doi: 10.1145/

1542476.1542496. URL http://doi.acm.org/10.1145/1542476.1542496.

[96] Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael F. P. O’boyle.

Integrating profile-driven parallelism detection and machine-learning-based mapping.

ACM Trans. Archit. Code Optim., 11(1):2:1–2:26, February 2014. ISSN 1544-3566.

doi: 10.1145/2579561. URL http://doi.acm.org/10.1145/2579561.

[97] Stanislav Manilov, Christos Vasiladiotis, and Björn Franke. Generalized profile-guided

iterator recognition. In Proceedings of the 27th International Conference on Compiler

Construction, CC 2018, pages 185–195, New York, NY, USA, 2018. ACM. ISBN 978-1-

4503-5644-2. doi: 10.1145/3178372.3179511. URL http://doi.acm.org/10.1145/

3178372.3179511.

[98] Yuan Wen and Michael F.P. O’Boyle. Merge or separate?: Multi-job scheduling for

opencl kernels on cpu/gpu platforms. In Proceedings of the General Purpose GPUs,

GPGPU-10, pages 22–31, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4915-

4. doi: 10.1145/3038228.3038235. URL http://doi.acm.org/10.1145/3038228.

3038235.

[99] Y. Wen, Z. Wang, and M. F. P. O’Boyle. Smart multi-task scheduling for opencl

programs on cpu/gpu heterogeneous platforms. In 2014 21st International Conference

on High Performance Computing (HiPC), pages 1–10, Dec 2014. doi: 10.1109/HiPC.

2014.7116910.

[100] William F. Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. Active

learning accelerated automatic heuristic construction for parallel program mapping.

In Proceedings of the 23rd International Conference on Parallel Architectures and

Compilation, PACT ’14, pages 481–482, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2809-8. doi: 10.1145/2628071.2628128. URL http://doi.acm.org/10.

1145/2628071.2628128.

[101] Erik Tomusk, Christophe Dubach, and Michael O’boyle. Selecting heterogeneous cores

for diversity. ACM Trans. Archit. Code Optim., 13(4):49:1–49:25, December 2016. ISSN

1544-3566. doi: 10.1145/3014165. URL http://doi.acm.org/10.1145/3014165.

[102] Linnan Wang, Wei Wu, Zenglin Xu, Jianxiong Xiao, and Yi Yang. Blasx: A

high performance level-3 blas library for heterogeneous multi-gpu computing. In

Proceedings of the 2016 International Conference on Supercomputing, ICS ’16, pages

20:1–20:11, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4361-9. doi: 10.

1145/2925426.2926256. URL http://doi.acm.org/10.1145/2925426.2926256.

http://doi.acm.org/10.1145/1542476.1542496
http://doi.acm.org/10.1145/2579561
http://doi.acm.org/10.1145/3178372.3179511
http://doi.acm.org/10.1145/3178372.3179511
http://doi.acm.org/10.1145/3038228.3038235
http://doi.acm.org/10.1145/3038228.3038235
http://doi.acm.org/10.1145/2628071.2628128
http://doi.acm.org/10.1145/2628071.2628128
http://doi.acm.org/10.1145/3014165
http://doi.acm.org/10.1145/2925426.2926256

150 Bibliography

[103] Ana Moreton-Fernandez, Eduardo Rodriguez-Gutiez, Arturo Gonzalez-Escribano, and

Diego R. Llanos. Supporting the xeon phi coprocessor in a heterogeneous programming

model. In Francisco F. Rivera, Tomás F. Pena, and José C. Cabaleiro, editors, Euro-

Par 2017: Parallel Processing, pages 457–469, Cham, 2017. Springer International

Publishing. ISBN 978-3-319-64203-1.

[104] Ana Moreton-Fernandez, Arturo Gonzalez-Escribano, and Diego Ferraris. Multi-device

controllers: A library to simplify parallel heterogeneous programming. International

Journal of Parallel Programming, 12 2017.

[105] NVIDIA. NVIDIA CUDA Sparse Matrix library (cuSPARSE). https://developer.

nvidia.com/cusparse, 2010.

[106] AMD. clSPARSE. https://github.com/clMathLibraries/clSPARSE, 2015.

[107] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R. Beard,

and David I. August. Automatic cpu-gpu communication management and optimization.

SIGPLAN Not., 46(6):142–151, June 2011. ISSN 0362-1340. doi: 10.1145/1993316.

1993516. URL http://doi.acm.org/10.1145/1993316.1993516.

[108] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. Openmp to gpgpu: A compiler

framework for automatic translation and optimization. SIGPLAN Not., 44(4):101–110,

February 2009. ISSN 0362-1340. doi: 10.1145/1594835.1504194. URL http://doi.

acm.org/10.1145/1594835.1504194.

[109] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Generating

performance portable code using rewrite rules: From high-level functional expressions

to high-performance OpenCL code. SIGPLAN Not., 50(9):205–217, August 2015. ISSN

0362-1340. doi: 10.1145/2858949.2784754. URL http://doi.acm.org/10.1145/

2858949.2784754.

[110] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Matrix multiplication

beyond auto-tuning: Rewrite-based gpu code generation. In Proceedings of the

International Conference on Compilers, Architectures and Synthesis for Embedded

Systems, CASES ’16, pages 15:1–15:10, New York, NY, USA, 2016. ACM. ISBN

978-1-4503-4482-1. doi: 10.1145/2968455.2968521. URL http://doi.acm.org/10.

1145/2968455.2968521.

[111] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe

Dubach. High performance stencil code generation with lift. In Proceedings of the

2018 International Symposium on Code Generation and Optimization, CGO 2018,

https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://github.com/clMathLibraries/clSPARSE
http://doi.acm.org/10.1145/1993316.1993516
http://doi.acm.org/10.1145/1594835.1504194
http://doi.acm.org/10.1145/1594835.1504194
http://doi.acm.org/10.1145/2858949.2784754
http://doi.acm.org/10.1145/2858949.2784754
http://doi.acm.org/10.1145/2968455.2968521
http://doi.acm.org/10.1145/2968455.2968521

Bibliography 151

pages 100–112, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5617-6. doi:

10.1145/3168824. URL http://doi.acm.org/10.1145/3168824.

[112] Federico Pizzuti, Michel Steuwer, and Christophe Dubach. Position-dependent arrays

and their application for high performance code generation. In Proceedings of the

8th ACM SIGPLAN International Workshop on Functional High-Performance and

Numerical Computing, FHPNC 2019, pages 14–26, New York, NY, USA, 2019. ACM.

ISBN 978-1-4503-6814-8. doi: 10.1145/3331553.3342614. URL http://doi.acm.

org/10.1145/3331553.3342614.

[113] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod

Grover. Accelerating haskell array codes with multicore GPUs. In Proceedings of the

Sixth Workshop on Declarative Aspects of Multicore Programming, DAMP ’11, pages

3–14, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0486-3. doi: 10.1145/

1926354.1926358. URL http://doi.acm.org/10.1145/1926354.1926358.

[114] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lippmeier.

Optimising purely functional GPU programs. In Proceedings of the 18th ACM SIGPLAN

International Conference on Functional Programming, ICFP ’13, pages 49–60, New

York, NY, USA, 2013. ACM. ISBN 978-1-4503-2326-0. doi: 10.1145/2500365.

2500595. URL http://doi.acm.org/10.1145/2500365.2500595.

[115] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead: Compiling an

embedded data parallel language. Technical Report UCB/EECS-2010-124, EECS

Department, University of California, Berkeley, Sep 2010. URL http://www2.eecs.

berkeley.edu/Pubs/TechRpts/2010/EECS-2010-124.html.

[116] Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Susnea.

NOVA: A functional language for data parallelism. In Proceedings of ACM

SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array

Programming, ARRAY’14, pages 8:8–8:13, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2937-8. doi: 10.1145/2627373.2627375. URL http://doi.acm.org/10.

1145/2627373.2627375.

[117] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi,

Martin Odersky, and Kunle Olukotun. Delite: A compiler architecture for performance-

oriented embedded domain-specific languages. ACM TECS, 13(4s), 2014.

[118] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,

and Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism,

http://doi.acm.org/10.1145/3168824
http://doi.acm.org/10.1145/3331553.3342614
http://doi.acm.org/10.1145/3331553.3342614
http://doi.acm.org/10.1145/1926354.1926358
http://doi.acm.org/10.1145/2500365.2500595
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-124.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-124.html
http://doi.acm.org/10.1145/2627373.2627375
http://doi.acm.org/10.1145/2627373.2627375

152 Bibliography

locality, and recomputation in image processing pipelines. SIGPLAN Not., 48(6):519–

530, June 2013. ISSN 0362-1340. doi: 10.1145/2499370.2462176. URL http://doi.

acm.org/10.1145/2499370.2462176.

[119] Patricia Suriana, Andrew Adams, and Shoaib Kamil. Parallel associative reductions

in halide. In Proceedings of the 2017 International Symposium on Code Generation

and Optimization, CGO ’17, pages 281–291, Piscataway, NJ, USA, 2017. IEEE Press.

ISBN 978-1-5090-4931-8. URL http://dl.acm.org/citation.cfm?id=3049832.

3049863.

[120] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and

Kayvon Fatahalian. Automatically scheduling halide image processing pipelines. ACM

Trans. Graph., 35(4):83:1–83:11, July 2016. ISSN 0730-0301. doi: 10.1145/2897824.

2925952. URL http://doi.acm.org/10.1145/2897824.2925952.

[121] Vladimir Kiriansky, Yunming Zhang, and Saman Amarasinghe. Optimizing indirect

memory references with milk. In Proceedings of the 2016 International Conference

on Parallel Architectures and Compilation, PACT ’16, pages 299–312, New York, NY,

USA, 2016. ACM. ISBN 978-1-4503-4121-9. doi: 10.1145/2967938.2967948. URL

http://doi.acm.org/10.1145/2967938.2967948.

[122] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis,

Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and

Kunle Olukotun. Spatial: A language and compiler for application accelerators. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2018, pages 296–311, New York, NY, USA, 2018. ACM.

ISBN 978-1-4503-5698-5. doi: 10.1145/3192366.3192379. URL http://doi.acm.

org/10.1145/3192366.3192379.

[123] Daniele G. Spampinato and Markus Püschel. A basic linear algebra compiler. In

Proceedings of Annual IEEE/ACM International Symposium on Code Generation and

Optimization, CGO ’14, pages 23:23–23:32, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2670-4. doi: 10.1145/2581122.2544155. URL http://doi.acm.org/10.

1145/2581122.2544155.

[124] Daniele G. Spampinato and Markus Püschel. A basic linear algebra compiler for

structured matrices. In Proceedings of the 2016 International Symposium on Code

Generation and Optimization, CGO ’16, pages 117–127, New York, NY, USA, 2016.

ACM. ISBN 978-1-4503-3778-6. doi: 10.1145/2854038.2854060. URL http:

//doi.acm.org/10.1145/2854038.2854060.

http://doi.acm.org/10.1145/2499370.2462176
http://doi.acm.org/10.1145/2499370.2462176
http://dl.acm.org/citation.cfm?id=3049832.3049863
http://dl.acm.org/citation.cfm?id=3049832.3049863
http://doi.acm.org/10.1145/2897824.2925952
http://doi.acm.org/10.1145/2967938.2967948
http://doi.acm.org/10.1145/3192366.3192379
http://doi.acm.org/10.1145/3192366.3192379
http://doi.acm.org/10.1145/2581122.2544155
http://doi.acm.org/10.1145/2581122.2544155
http://doi.acm.org/10.1145/2854038.2854060
http://doi.acm.org/10.1145/2854038.2854060

Bibliography 153

[125] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and

Saman Amarasinghe. Petabricks: A language and compiler for algorithmic choice. In

Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’09, pages 38–49, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-392-1. doi: 10.1145/1542476.1542481. URL http://doi.acm.org/10.

1145/1542476.1542481.

[126] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley, and Saman P.

Amarasinghe. Portable performance on heterogeneous architectures. In ASPLOS, pages

431–444. ACM, 2013.

[127] Saurav Muralidharan, Amit Roy, Mary W. Hall, Michael Garland, and Piyush Rai.

Architecture-adaptive code variant tuning. In ASPLOS, pages 325–338. ACM, 2016.

[128] J. Hughes. Why functional programming matters. Comput. J., 32(2):98–107, April

1989. ISSN 0010-4620. doi: 10.1093/comjnl/32.2.98. URL http://dx.doi.org/10.

1093/comjnl/32.2.98.

[129] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi: 10.

1145/1327452.1327492. URL http://doi.acm.org/10.1145/1327452.1327492.

[130] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry

Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,

Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel computing

research: A view from berkeley. Technical report, TECHNICAL REPORT, UC

BERKELEY, 2006.

[131] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.

MIT Press, Cambridge, MA, USA, 1991. ISBN 0-262-53086-4.

[132] Murray Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal

parallel programming. Parallel Comput., 30(3):389–406, March 2004. ISSN 0167-

8191. doi: 10.1016/j.parco.2003.12.002. URL http://dx.doi.org/10.1016/j.

parco.2003.12.002.

[133] M. Leyton and J. M. Piquer. Skandium: Multi-core programming with algorithmic

skeletons. In 2010 18th Euromicro Conference on Parallel, Distributed and Network-

based Processing, pages 289–296, Feb 2010. doi: 10.1109/PDP.2010.26.

[134] Rita Loogen, Yolanda Ortega-mallén, and Ricardo Peña marí. Parallel functional

programming in eden. J. Funct. Program., 15(3):431–475, May 2005. ISSN 0956-

http://doi.acm.org/10.1145/1542476.1542481
http://doi.acm.org/10.1145/1542476.1542481
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1093/comjnl/32.2.98
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1016/j.parco.2003.12.002
http://dx.doi.org/10.1016/j.parco.2003.12.002

154 Bibliography

7968. doi: 10.1017/S0956796805005526. URL http://dx.doi.org/10.1017/

S0956796805005526.

[135] M. Steuwer, P. Kegel, and S. Gorlatch. Skelcl - a portable skeleton library for high-level

gpu programming. In Parallel and Distributed Processing Workshops and Phd Forum

(IPDPSW), 2011 IEEE International Symposium on, pages 1176–1182, May 2011. doi:

10.1109/IPDPS.2011.269.

[136] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, first edition, 2007. ISBN 9780596514808.

[137] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs

in c compilers. SIGPLAN Not., 46(6):283–294, June 2011. ISSN 0362-1340. doi: 10.

1145/1993316.1993532. URL http://doi.acm.org/10.1145/1993316.1993532.

[138] R. Cytron, M. Hind, and W. Hsieh. Automatic generation of dag parallelism. In

Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design

and Implementation, PLDI ’89, pages 54–68, New York, NY, USA, 1989. ACM. ISBN

0-89791-306-X. doi: 10.1145/73141.74823. URL http://doi.acm.org/10.1145/

73141.74823.

[139] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks. In

Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing

’91, pages 158–165, New York, NY, USA, 1991. ACM. ISBN 0-89791-459-7. doi:

10.1145/125826.125925. URL http://doi.acm.org/10.1145/125826.125925.

[140] Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance characterization of the nas

parallel benchmarks in opencl. In Workload Characterization (IISWC), 2011 IEEE

International Symposium on, pages 137–148. IEEE, 2011.

[141] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser

Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised benchmark suite

for scientific and commercial throughput computing. Center for Reliable and High-

Performance Computing, 127, 2012.

[142] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha

Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In

Proceedings of the 2009 IEEE International Symposium on Workload Characterization

(IISWC), IISWC ’09, pages 44–54, Washington, DC, USA, 2009. IEEE Computer

http://dx.doi.org/10.1017/S0956796805005526
http://dx.doi.org/10.1017/S0956796805005526
http://doi.acm.org/10.1145/1993316.1993532
http://doi.acm.org/10.1145/73141.74823
http://doi.acm.org/10.1145/73141.74823
http://doi.acm.org/10.1145/125826.125925

Bibliography 155

Society. ISBN 978-1-4244-5156-2. doi: 10.1109/IISWC.2009.5306797. URL http:

//dx.doi.org/10.1109/IISWC.2009.5306797.

[143] Nvidia. NVCC, 2007. URL https://developer.nvidia.com/cuda-llvm-compi

ler.

[144] LunarG. LunarGLASS, 2015. URL https://lunarg.com/shadercompiler-

technologies/lunarglass.

[145] Kishonti. Gfxbench 4.0, 2016. URL https://gfxbench.com.

[146] Randi J. Rost, Bill Licea-Kane, Dan Ginsburg, John M. Kessenich, Barthold Lichtenbelt,

Hugh Malan, and Mike Weiblen. OpenGL Shading Language. Addison-Wesley

Professional, 3rd edition, 2009. ISBN 0321637631, 9780321637635.

[147] Louis-Noel Pouchet. Polybench v2.0, 2011. URL http://web.cse.ohio-state.

edu/~pouchet.2/software/polybench.

[148] Walid Abdala Rfaei Jradi, Hugo A. D. do Nascimento, and Wellington Martins. A fast

and generic gpu-based parallel reduction implementation. CoRR, abs/1710.07358, 2017.

URL http://arxiv.org/abs/1710.07358.

[149] David J Kuck, Robert H Kuhn, David A Padua, Bruce Leasure, and Michael Wolfe.

Dependence graphs and compiler optimizations. In Proceedings of the 8th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 207–

218. ACM, 1981.

[150] John Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser

Anssari, Daniel Geng, Wen-Mei Liu, and Wen-mei Hwu. Parboil: A Revised Benchmark

Suite for Scientific and Commercial Throughput Computing. IMPACT Technical Report,

2018.

[151] Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

doi: 10.1145/1465482.1465560. URL http://doi.acm.org/10.1145/1465482.

1465560.

[152] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Computer,

41(7):33–38, July 2008. ISSN 0018-9162. doi: 10.1109/MC.2008.209. URL https:

//doi.org/10.1109/MC.2008.209.

[153] Nvidia. Nvidia OpenCL best practices guide, 2011.

http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1109/IISWC.2009.5306797
https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/cuda-llvm-compiler
https://lunarg.com/shadercompiler-technologies/lunarglass
https://lunarg.com/shadercompiler-technologies/lunarglass
https://gfxbench.com
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench
http://arxiv.org/abs/1710.07358
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/MC.2008.209

156 Bibliography

[154] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: A compiler

framework for automatic translation and optimization. SIGPLAN Not., 44(4):101–110,

February 2009. ISSN 0362-1340. doi: 10.1145/1594835.1504194. URL http://doi.

acm.org/10.1145/1594835.1504194.

[155] Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and Markus Püschel. Operator

language: A program generation framework for fast kernels. In IFIP TC 2 Working

Conference on Domain-Specific Languages. Springer, 2009.

[156] Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic approach

to runtime code generation and compiled DSLs. Commun. ACM, 55(6), 2012.

[157] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: a functional data-

parallel IR for high-performance GPU code generation. In CGO, pages 74–85. ACM,

2017.

[158] Jeremy Kepner, David A. Bader, Aydin Buluç, John R. Gilbert, Timothy G. Mattson,

and Henning Meyerhenke. Graphs, matrices, and the graphblas: Seven good reasons. In

ICCS, 2015.

[159] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, second edition, 2003. doi: 10.1137/1.9780898718003. URL https:

//epubs.siam.org/doi/abs/10.1137/1.9780898718003.

[160] Y. Saad. Krylov subspace methods on supercomputers. SIAM Journal on Scientific and

Statistical Computing, 10(6):1200–1232, 1989. doi: 10.1137/0910073. URL https:

//doi.org/10.1137/0910073.

[161] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe

Dubach. High performance stencil code generation with Lift. In CGO. ACM, 2018.

[162] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.

Beard, and David I. August. Automatic CPU-GPU communication management and

optimization. In PLDI, 2011.

[163] Sebastian Krings and Michael Leuschel. Constraint logic programming over infinite

domains with an application to proof. Electronic Proceedings in Theoretical Computer

Science, 234:73–87, 12 2016. doi: 10.4204/EPTCS.234.6.

[164] Zheng Wang and Michael F. P. O’Boyle. Machine learning in compiler optimization.

Proceedings of the IEEE, 106(11):1879–1901, 2018. doi: 10.1109/JPROC.2018.

2817118. URL https://doi.org/10.1109/JPROC.2018.2817118.

http://doi.acm.org/10.1145/1594835.1504194
http://doi.acm.org/10.1145/1594835.1504194
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
https://doi.org/10.1137/0910073
https://doi.org/10.1137/0910073
https://doi.org/10.1109/JPROC.2018.2817118

Bibliography 157

[165] Edmund Clarke, Armin Biere, Richard Raimi, Yunshan Zhu, and Yunshan Zhu.

Bounded model checking using satisfiability solving. Form. Methods Syst. Des., 19

(1):7–34, July 2001. ISSN 0925-9856. doi: 10.1023/A:1011276507260. URL

https://doi.org/10.1023/A:1011276507260.

[166] Bruce Collie, Philip Ginsbach, and Michael F. P. O’Boyle. Type-Directed Program

Synthesis and Constraint Generation for Library Portability. In 28th International

Conference on Parallel Architectures and Compilation Techniques, PACT 2019, Seattle,

WA, USA, September 23-26, 2019, pages 55–67, 2019. doi: 10.1109/PACT.2019.00013.

URL https://doi.org/10.1109/PACT.2019.00013.

https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1109/PACT.2019.00013

Appendix A

Full Grammar of CAnDL

Listing A.1: Verbatim display of the grammar file that was used to generate the CAnDL parser:
The file is in a custom version of Backus–Naur form. In the parse tree, all expressions that start
with “@” are automatically expanded. The character “#” marks the top-level language construct.
Any expression that does not ultimately become part of this construct constitutes a syntax error.

1 # ::= <specification>
2

3 specification ::= Constraint <s> <@formula> End
4

5 @formula ::= <atom> | <conjunction> | <disjunction>
6 | <rename> | <collect> | <if> | <default> | <@nested>
7

8 conjunction ::= ’(’ <@formula> ∧ <@formula>
9 { ∧ <@formula> } ’)’

10

11 disjunction ::= ’(’ <@formula> ∨ <@formula>
12 { ∨ <@formula> } ’)’
13

14 rename ::= (<conRange> | <disRange> | <include> | <for>)
15 [’(’ <@variable> -> <@variable>
16 { , <@variable> -> <@variable> } ’)’]
17 [@ <@variable>]
18

19 include ::= include <s> [’[’ <s> = <@index>
20 { , <s> = <@index> } ’]’]
21

22 conRange ::= <@formula> foreach <s> = <@index> .. <@index>
23 disRange ::= <@formula> forany <s> = <@index> .. <@index>
24 for ::= <@formula> for <s> = <@index>
25

26 collect ::= collect <s> <n> <@formula>
27

28 if ::= if <@index> = <@index> then <@formula>
29 else <@formula> endif
30

31 default ::= <@formula> for <s> = <@index>
32 if not otherwise specified

159

160 Appendix A. Full Grammar of CAnDL

34 @nested ::= ’(’ <@formula> ’)’
35

36 atom ::= <IntegerType> | <FloatType>
37 | <VectorType> | <PointerType>
38 | <Unused> | <IntZero> | <FloatZero>
39 | <Constant> | <Preexecution> | <Argument> | <Instruction>
40 | <Same> | <Distinct>
41 | <DFGEdge> | <CFGEdge> | <CDGEdge> | <PDGEdge>
42 | <FirstOperand> | <SecondOperand>
43 | <ThirdOperand> | <FourthOperand>
44 | <FirstSuccessor> | <SecondSuccessor>
45 | <ThirdSuccessor> | <FourthSuccessor>
46 | <Dominate> | <DominateStrict>
47 | <Postdom> | <PostdomStrict> | <Blocked>
48 | <IncomingValue> | <FunctionAttribute>
49 | <Opcode> | <SameSets>
50

51 IntegerType ::= data_type <@variable> = integer
52 FloatType ::= data_type <@variable> = float
53 VectorType ::= data_type <@variable> = vector
54 PointerType ::= data_type <@variable> = pointer
55

56 Unused ::= <@variable> is unused
57 Opcode ::= opcode <@variable> = <s>
58

59 IntZero ::= <@variable> is integer zero
60 FloatZero ::= <@variable> is floating point zero
61

62 Constant ::= ir_type <@variable> = constant
63 Preexecution ::= ir_type <@variable> = preexecution
64 Argument ::= ir_type <@variable> = argument
65 Instruction ::= ir_type <@variable> = instruction
66

67 Same ::= <@variable> = <@variable>
68 Distinct ::= <@variable> 6= <@variable>
69

70 DFGEdge ::= <@variable> ∈ <@variable> . args
71 CFGEdge ::= <@variable> ∈ <@variable> . successors
72 CDGEdge ::= <@variable> has control dominance to <@variable>
73 PDGEdge ::= <@variable> has dependence edge to <@variable>
74

75 FirstOperand ::= <@variable> =
76 <@variable> . args ’[’ 0 ’]’
77 SecondOperand ::= <@variable> =
78 <@variable> . args ’[’ 1 ’]’
79 ThirdOperand ::= <@variable> =
80 <@variable> . args ’[’ 2 ’]’
81 FourthOperand ::= <@variable> =
82 <@variable> . args ’[’ 3 ’]’

161

84 FirstSuccessor ::= <@variable> =
85 <@variable> . successors ’[’ 0 ’]’
86 SecondSuccessor ::= <@variable> =
87 <@variable> . successors ’[’ 1 ’]’
88 ThirdSuccessor ::= <@variable> =
89 <@variable> . successors ’[’ 2 ’]’
90 FourthSuccessor ::= <@variable> =
91 <@variable> . successors ’[’ 3 ’]’
92

93 Dominate ::= domination
94 ’(’ <@variable> , <@variable> ’)’
95 Postdom ::= post_domination
96 ’(’ <@variable> , <@variable> ’)’
97 DominateStrict ::= strict_domination
98 ’(’ <@variable> , <@variable> ’)’
99 PostdomStrict ::= strict_post_domination

100 ’(’ <@variable> , <@variable> ’)’
101

102 IncomingValue ::= <@variable> -> <@variable> Φ <@variable>
103

104 Blocked ::= all control flow from <@variable> to <@variable>
105 passes through <@variable>
106

107 FunctionAttribute ::= <@variable> has attribute pure
108

109 SameSets ::= <@variable> is the same set as <@variable>
110

111 @variable ::= <slottuple> | ’{’ <@openslot> ’}’
112

113 slottuple ::= ’{’ <@openslot> , <@openslot>
114 { , <@openslot> } ’}’
115

116 @openslot ::= <slotmember> | <slotindex> | <slotrange>
117 | <slottuple> | <slotbase>
118

119 slotbase ::= <s>
120 slotmember ::= <@openslot> . <s>
121 slotindex ::= <@openslot> ’[’ <@index> ’]’
122 slotrange ::= <@openslot> ’[’ <@index> .. <@index> ’]’
123

124 @index ::= <basevar> | <baseconst>
125 | <addvar> | <addconst> | <subvar> | <subconst>
126

127 basevar ::= <s>
128 baseconst ::= <n>
129 addvar ::= <@index> + <s>
130 addconst ::= <@index> + <n>
131 subvar ::= <@index> - <s>
132 subconst ::= <@index> - <n>

Appendix B

Polyhedral Code Sections in CAnDL

Listing B.1: Constraint specification in CAnDL of Scalar Control Parts (SCoPs): These regular
loop nests enable polyhedral transformations to be applied, due to their structured control flow,
side effect free function calls, and well-behaved memory access that is affine in loop iterators.
The entire CAnDL code is displayed, including the relevant parts of the CAnDL standard library.

1 Constraint SCoP
2 (include For @ {loop}
3 ∧ include StructuredControlFlow({loop}->{scope}) @ {control}
4 ∧ {inputs[0]} = {loop.iterator}
5 ∧ {inputs[i]} = {control.loop[i-1].iterator} foreach i=1..10
6 ∧ include AffineControlFlow({loop}->{scope},
7 {inputs}->{inputs}) @ {control}
8 ∧ include AffineMemAccesses({loop}->{scope},
9 {inputs}->{inputs}) @ {accesses}

10 ∧ include SideEffectFreeCalls({loop}->{scope}) @ {effects})
11 End
12
13 Constraint StructuredControlFlow
14 (collect i 20 (opcode{branch[i].value} = branch
15 ∧ {branch[i].target1} =
16 {branch[i].value}.successors[0]
17 ∧ {branch[i].target2} =
18 {branch[i].value}.successors[1]
19 ∧ include ScopeValue({scope}->{scope},
20 {branch[i].value}->{value}))
21 ∧ collect i 10 (include For @ {loop[i]}
22 ∧ domination({scope.begin},
23 {loop[i].begin})
24 ∧ strict_post_domination({scope.end},
25 {loop[i].end}))
26 ∧ collect i 10 (include IfBlock @ {ifblock[i]}
27 ∧ domination({scope.begin},
28 {ifblock[i].precursor})
29 ∧ strict_post_domination({scope.end},
30 {ifblock[i].successor}))
31 ∧ {loop[0..10].end,ifblock[0..10].precursor}
32 is the same set as {branch[0..20].value})
33 End

163

164 Appendix B. Polyhedral Code Sections in CAnDL

35 Constraint AffineControlFlow
36 (include AffineCalc[M=10,N=1](
37 {scope}->{scope},
38 {loop[i].iter_begin}->{value},
39 {inputs}->{input})
40 @ {forloop_affine_begin[i]} foreach i=0..10
41 ∧ include AffineCalc[M=10,N=1](
42 {scope}->{scope},
43 {loop[i].iter_end}->{value},
44 {inputs}->{input})
45 @ {forloop_affine_end[i]} foreach i=0..10
46 ∧ include AffineCalc[M=10,N=1](
47 {scope}->{scope},
48 {ifblock[i].compare_left}->{value},
49 {inputs}->{input})
50 @ {ifblock_affine_left[i]} foreach i=0..10
51 ∧ include AffineCalc[M=10,N=1](
52 {scope}->{scope},
53 {ifblock[i].compare_right}->{value},
54 {inputs}->{input})
55 @ {ifblock_affine_right[i]} foreach i=0..10)
56 End
57

58 Constraint AffineMemAccesses
59 (collect x 20 (include MemoryAccess({scope}->{scope})
60 @ {newaccess[x]}
61 ∧ opcode{newaccess[x].pointer} = gep
62 ∧ domination({scope.begin},
63 {newaccess[x].pointer})
64 ∧ {newaffine[x].value} =
65 {newaccess[x].pointer}.args[1])
66 ∧ collect x 20 (include MemoryAccess({scope}->{scope})
67 @ {newaccess[x]}
68 ∧ opcode{newaccess[x].pointer} = gep
69 ∧ domination({scope.begin},
70 {newaccess[x].pointer})
71 ∧ {newaffine[x].value} =
72 {newaccess[x].pointer}.args[1]
73 ∧ include AffineCalc[M=10,N=6](
74 {scope}->{scope},
75 {inputs}->{input})
76 @ {newaffine[x]}))
77 End
78

79 Constraint SideEffectFreeCalls
80 (collect i 20 (opcode{callsite[i]} = call
81 ∧ include ScopeValue({callsite[i]}->{value}))
82 ∧ collect i 20 (opcode{callsite[i]} = call
83 ∧ include ScopeValue({callsite[i]}->{value})
84 ∧ {function[i]} = {callsite[i]}.args[0]
85 ∧ {function[i]} has attribute pure))
86 End

165

88 Constraint For
89 (include Loop
90 ∧ {increment} -> {body.end} Φ {iterator}
91 ∧ {increment} ∈ {comparison}.args
92 ∧ opcode{comparison} = icmp
93 ∧ {comparison} ∈ {end}.args
94 ∧ {increment} ∈ {iterator}.args
95 ∧ opcode{increment} = add
96 ∧ {iterator} ∈ {increment}.args
97 ∧ {iter_end} ∈ {comparison}.args
98 ∧ include LocalConst({begin}->{scope.begin},
99 {iter_end}->{value})

100 ∧ {iter_begin} ∈ {iterator}.args
101 ∧ include LocalConst({begin}->{scope.begin},
102 {iter_begin}->{value})
103 ∧ {iter_step} ∈ {increment}.args
104 ∧ include LocalConst({begin}->{scope.begin},
105 {iter_step}->{value}))
106 End
107

108 Constraint Loop
109 (include SESE
110 ∧ {begin} ∈ {end}.successors)
111 End
112

113 Constraint SESE
114 (opcode{precursor} = branch
115 ∧ {begin} ∈ {precursor}.successors
116 ∧ opcode{end} = branch
117 ∧ {successor} ∈ {end}.successors
118 ∧ domination({begin}, {end})
119 ∧ post_domination({end}, {begin})
120 ∧ strict_domination({precursor}, {begin})
121 ∧ strict_post_domination({successor}, {end})
122 ∧ all control flow from {begin} to {precursor}
123 passes through {end}
124 ∧ all control flow from {successor} to {end}
125 passes through {begin})
126 End
127

128 Constraint IfBlock
129 (include PotentialSESE({truebegin}->{begin},
130 {trueend}->{end})
131 ∧ {truebegin} = {precursor}.successors[0]
132 ∧ {falsebegin} = {precursor}.successors[1]
133 ∧ include PotentialSESE({falsebegin}->{begin},
134 {falseend}->{end})
135 ∧ {trueend} 6= {falseend}
136 ∧ {condition} = {precursor}.args[0]
137 ∧ opcode{condition} = icmp
138 ∧ {compare_left} = {condition}.args[0]
139 ∧ {compare_right} = {condition}.args[1])
140 End

166 Appendix B. Polyhedral Code Sections in CAnDL

142 Constraint AffineCalc
143 if N=0 then
144 (((include LocalConst
145 ∨ ({value} is unused
146 ∧ ir_type{scope.begin} = instruction))
147 ∧ (data_type{input[j]} = integer
148 ∨ {input[j]} is unused) foreach j=0..M)
149 ∨ (({value} = {input[i]}
150 ∧ ir_type{scope.begin} = instruction
151 ∧ (data_type{input[j]} = integer
152 ∨ {input[j]} is unused) foreach j=0..M)
153 forany i=0..M))
154 else
155 (((include AffineCalc[M=M,N=0]
156 ∧ {l.value} is unused
157 ∧ {r.value} is unused)
158 ∨ ((((opcode{value} = add
159 ∨ opcode{value} = sub)
160 ∧ {l.value} = {value}.args[0]
161 ∧ {r.value} = {value}.args[1])
162 ∨ (opcode{value} = select
163 ∧ {l.value} = {value}.args[1]
164 ∧ {r.value} = {value}.args[2])
165 ∨ (opcode{value} = mul
166 ∧ include ArgumentsPermuted({l.value}->{src1},
167 {r.value}->{src2},
168 {value}->{dst})
169 ∧ ir_type{l.value} = preexecution
170 ∧ ir_type{r.value} = instruction))
171 ∧ ir_type{scope.begin} = instruction
172 ∧ domination({scope.begin}, {value})
173 ∧ (data_type{input[j]} = integer
174 ∨ {input[j]} is unused) foreach j=0..M))
175 ∧ include AffineCalc[M=M,N=N-1]({input}->{input},
176 {scope}->{scope}) @ {l}
177 ∧ include AffineCalc[M=M,N=N-1]({input}->{input},
178 {scope}->{scope}) @ {r})
179 endif
180 End
181

182 Constraint ArgumentsPermuted
183 (({src1} = {dst}.args[0]
184 ∧ {src2} = {dst}.args[1])
185 ∨ ({src2} = {dst}.args[0]
186 ∧ {src1} = {dst}.args[1]))
187 End
188

189 Constraint LocalConst
190 ((ir_type{scope.begin} = instruction
191 ∧ ir_type{value} = preexecution)
192 ∨ strict_domination({value}, {scope.begin}))
193 End

167

195 Constraint MemoryAccess
196 (((opcode{access} = store
197 ∧ {pointer} = {access}.args[1])
198 ∨ (opcode{access} = load
199 ∧ {pointer} = {access}.args[0]))
200 ∧ domination({scope.begin}, {access})
201 ∧ post_domination({scope.end}, {access}))
202 End
203

204 Constraint ScopeValue
205 (domination({scope.begin}, {value})
206 ∧ strict_post_domination({scope.end}, {value}))
207 End
208

209 Constraint PotentialSESE
210 (opcode{precursor} = branch
211 ∧ {begin} ∈ {precursor}.successors
212 ∧ opcode{end} = branch
213 ∧ {successor} ∈ {end}.successors
214 ∧ ((domination({begin}, {end})
215 ∧ post_domination({end}, {begin})
216 ∧ all control flow from {begin} to {precursor}
217 passes through {end}
218 ∧ all control flow from {successor} to {end}
219 passes through {begin})
220 ∨ ({begin} = {end}
221 ∧ {begin} ∈ {precursor}.successors
222 ∧ {successor} ∈ {end}.successors)
223 ∨ ({precursor} = {end}
224 ∧ {begin} = {successor})))
225 End

Appendix C

Full Grammar of IDL

Listing C.1: Verbatim display of the grammar file that was used to generate the parser for IDL:
The file is in a custom version of Backus–Naur form. In the parse tree, all expressions that start
with “@” are automatically expanded. The character “#” marks the top-level language construct.
Any expression that does not ultimately become part of this construct constitutes a syntax error.

1 # ::= <specification>
2

3 specification ::= Constraint <s> <@formula> End
4

5 @formula ::= <atom> | <conjunction> | <disjunction>
6 | <rename> | <collect> | <if> | <default> | <@nested>
7

8 conjunction ::= ’(’ <@formula> and <@formula>
9 { and <@formula> } ’)’

10

11 disjunction ::= ’(’ <@formula> or <@formula>
12 { or <@formula> } ’)’
13

14 rename ::= (<conRange> | <disRange> | <include> | <for>)
15 [with <@variable> as <@variable>
16 { and <@variable> as <@variable> }]
17 [at <@variable>]
18

19 include ::= inherits <s> [’(’ <s> = <@index>
20 { , <s> = <@index> } ’)’]
21

22 conRange ::= <@formula> for all <s> = <@index> .. <@index>
23 disRange ::= <@formula> for some <s> = <@index> .. <@index>
24 for ::= <@formula> for <s> = <@index>
25

26 collect ::= collect <s> <n> <@formula>
27

28 if ::= if <@index> = <@index> then <@formula>
29 else <@formula> endif
30

31 default ::= <@formula> for <s> = <@index>
32 if not otherwise specified

169

170 Appendix C. Full Grammar of IDL

34 @nested ::= ’(’ <@formula> ’)’
35

36 atom ::= <IntegerType> | <FloatType>
37 | <VectorType> | <PointerType>
38 | <Unused> | <IntZero> | <FloatZero>
39 | <Constant> | <Preexecution> | <Argument> | <Instruction>
40 | <Same> | <Distinct>
41 | <DFGEdge> | <CFGEdge> | <CDGEdge> | <PDGEdge>
42 | <FirstOperand> | <SecondOperand>
43 | <ThirdOperand> | <FourthOperand>
44 | <FirstSuccessor> | <SecondSuccessor>
45 | <ThirdSuccessor> | <FourthSuccessor>
46 | <Dominate> | <DominateStrict>
47 | <Postdom> | <PostdomStrict> | <Blocked>
48 | <IncomingValue> | <FunctionAttribute>
49 | <Opcode> | <SameSets>
50 | <GeneralizedDominance> | <NotNumericConstant> | <Block>
51

52 IntegerType ::= <@variable> is an integer
53 FloatType ::= <@variable> is a float
54 VectorType ::= <@variable> is a vector
55 PointerType ::= <@variable> is a pointer
56

57 Unused ::= <@variable> is unused
58 Opcode ::= <@variable> is <s> instruction
59

60 IntZero ::= <@variable> is integer zero
61 FloatZero ::= <@variable> is floating point zero
62

63 Constant ::= <@variable> is a constant
64 Preexecution ::= <@variable> is preexecution
65 Argument ::= <@variable> is an argument
66 Instruction ::= <@variable> is instruction
67 NotNumericConstant ::= <@variable> is not a numeric constant
68

69 Same ::= <@variable> is the same as <@variable>
70 Distinct ::= <@variable> is not the same as <@variable>
71 Block ::= <@variable> spans block to <@variable>
72

73 DFGEdge ::= <@variable> has data flow to <@variable>
74 CFGEdge ::= <@variable> has control flow to <@variable>
75 CDGEdge ::= <@variable> has control dominance to <@variable>
76 PDGEdge ::= <@variable> has dependence edge to <@variable>
77

78 FirstOperand ::= <@variable> is first
79 argument of <@variable>
80 SecondOperand ::= <@variable> is second
81 argument of <@variable>
82 ThirdOperand ::= <@variable> is third
83 argument of <@variable>
84 FourthOperand ::= <@variable> is fourth
85 argument of <@variable>

171

87 FirstSuccessor ::= <@variable> is first
88 successor of <@variable>
89 SecondSuccessor ::= <@variable> is second
90 successor of <@variable>
91 ThirdSuccessor ::= <@variable> is third
92 successor of <@variable>
93 FourthSuccessor ::= <@variable> is fourth
94 successor of <@variable>
95

96 Dominate ::= <@variable> control flow
97 dominates <@variable>
98 Postdom ::= <@variable> control flow
99 post dominates <@variable>

100 DominateStrict ::= <@variable> strictly control flow
101 dominates <@variable>
102 PostdomStrict ::= <@variable> strictly control flow
103 post dominates <@variable>
104

105 IncomingValue ::= <@variable> reaches phi node
106 <@variable> from <@variable>
107

108 Blocked ::= all control flow from <@variable> to <@variable>
109 passes through <@variable>
110

111 FunctionAttribute ::= <@variable> has attribute pure
112

113 SameSets ::= <@variable> is the same set as <@variable>
114

115 GeneralizedDominance ::= all flow from <@variable> or any
116 origin to any of <@variable> passes
117 through at least one of <@variable>
118

119 @variable ::= <slottuple> | ’{’ <@openslot> ’}’
120

121 slottuple ::= ’{’ <@openslot> , <@openslot>
122 { , <@openslot> } ’}’
123

124 @openslot ::= <slotmember> | <slotindex> | <slotrange>
125 | <slottuple> | <slotbase>
126

127 slotbase ::= <s>
128 slotmember ::= <@openslot> . <s>
129 slotindex ::= <@openslot> ’[’ <@index> ’]’
130 slotrange ::= <@openslot> ’[’ <@index> .. <@index> ’]’
131

132 @index ::= <basevar> | <baseconst>
133 | <addvar> | <addconst> | <subvar> | <subconst>
134

135 basevar ::= <s>
136 baseconst ::= <n>
137 addvar ::= <@index> + <s>
138 addconst ::= <@index> + <n>
139 subvar ::= <@index> - <s>
140 subconst ::= <@index> - <n>

Appendix D

Complex Reductions and Histograms

in IDL

Listing D.1: Constraint specification of Complex Reduction and Histogram Computations in IDL:
The complete code is displayed with all dependencies, including the relevant definitions from the
IDL standard library, which is derived in part from the CAnDL standard library as in Appendix B.

1 Constraint ComplexReductionsAndHistograms
2 (inherits For at {loop} and
3 collect k 32 (inherits VectorRead
4 with {loop.iterator} as {input_index}
5 and {read_values[k]} as {value}
6 and {loop} as {scope}
7 at {read[k]}) and
8 collect k 2 (inherits HistoPart
9 with {loop.begin} as {begin}

10 and {read} as {read}
11 and {loop} as {loop}
12 and {read_values} as {read_values}
13 at {histo[k]}) and
14 collect k 2 (inherits ScalarPart
15 with {loop.begin} as {begin}
16 and {loop} as {loop}
17 and {read_values} as {read_values}
18 at {scalar[k]}) and
19 collect i 2 ({stores[i]} is store instruction and
20 inherits ScopeValue
21 with {loop} as {scope}
22 and {stores[i]} as {value}) and
23 {stores[0..2]} is the same set as
24 {histo[0..2].update.store_instr} and
25 {scalar[0].kernel.result} is not the
26 same as {histo[0].update.store_instr} and
27 inherits SideEffectFreeCalls
28 with {loop} as {scope})
29 End

173

174 Appendix D. Complex Reductions and Histograms in IDL

31 Constraint VectorRead
32 ({value} is load instruction and
33 {address} is first argument of {value} and
34 {base_pointer} is first argument of {address} and
35 inherits LocalConst
36 with {base_pointer} as {value} and
37 {final_index} is second argument of {address} and
38 (({final_index} is add instruction and
39 inherits ArgumentsPermuted
40 with {final_index} as {dst}
41 and {strided_index} as {src1}
42 and {offset} as {src2} and
43 inherits LocalConst
44 with {offset} as {value} and
45 {strided_index} is mul instruction and
46 inherits ArgumentsPermuted
47 with {strided_index} as {dst}
48 and {input_index} as {src1}
49 and {stride} as {src2} and
50 inherits LocalConst
51 with {stride} as {value}) or
52 ({final_index} is mul instruction and
53 inherits ArgumentsPermuted
54 with {final_index} as {dst}
55 and {input_index} as {src1}
56 and {stride} as {src2} and
57 inherits LocalConst
58 with {stride} as {value} and
59 {strided_index} is the same as {final_index} and
60 {offset} is unused) or
61 ({final_index} is the same as {input_index} and
62 {strided_index} is the same as {final_index} and
63 {offset} is unused and
64 {stride} is unused and
65 {scope.begin} is instruction)))
66 End
67

68 Constraint ScalarPart
69 ({kernel.result} reaches phi node
70 {old_value} from {loop.end} and
71 inherits ScopeValue
72 with {loop} as {scope}
73 and {old_value} as {value} and
74 {kernel.result} has data flow to {final_value} and
75 {loop.end} strictly control flow
76 dominates {final_value} and
77 inherits KernelFunction
78 with {loop} as {scope} at {kernel} and
79 inherits Concat(N1=31,N2=1)
80 with {read_values} as {in1}
81 and {old_value} as {in2}
82 and {kernel.inputs} as {out})
83 End

175

85 Constraint HistoPart
86 (inherits ConditionalReadModifyWrite
87 with {loop} as {scope}
88 and {idx_kernel.result} as {address}
89 and {val_kernel.result} as {new_value}
90 at {update} and
91 inherits KernelFunction
92 with {loop} as {scope}
93 and {read_values} as {inputs} at {idx_kernel} and
94 inherits KernelFunction
95 with {loop} as {scope} at {val_kernel} and
96 inherits Concat(N1=31,N2=1)
97 with {read_values} as {in1}
98 and {update.old_value} as {in2}
99 and {val_kernel.inputs} as {out})

100 End
101

102 Constraint ConditionalReadModifyWrite
103 ({store_instr} is store instruction and
104 inherits MaxOnceInScope
105 with {scope} as {scope}
106 and {store_instr} as {value} at {maxonce} and
107 {address} is second argument of {store_instr} and
108 {address} is gep instruction and
109 {address} is first argument of {old_value} and
110 {old_value} is load instruction and
111 {new_value} is first argument of {store_instr})
112 End
113

114 Constraint MaxOnceInScope
115 (inherits ScopeValue and
116 {value} has control flow to {value_after} and
117 all control flow from {value_after} to
118 {value} passes through {scope.end} and
119 all control flow from {value_after} to
120 {value} passes through {scope.begin})
121 End
122

123 Constraint ScopeValue
124 ({scope.begin} control flow dominates {value} and
125 {scope.end} strictly control flow post dominates {value})
126 End
127

128 Constraint SideEffectFreeCalls
129 (collect i 20 ({callsite[i]} is call instruction and
130 inherits ScopeValue
131 with {callsite[i]} as {value}) and
132 collect i 20 ({callsite[i]} is call instruction and
133 inherits ScopeValue
134 with {callsite[i]} as {value} and
135 {function[i]} is first
136 argument of {callsite[i]} and
137 {function[i]} has attribute pure))
138 End

176 Appendix D. Complex Reductions and Histograms in IDL

140 Constraint For
141 (inherits Loop and
142 {increment} reaches phi node {iterator} from {end} and
143 {increment} is first argument of {comparison} and
144 {comparison} is icmp instruction and
145 {comparison} is first argument of {end} and
146 {increment} is add instruction and
147 {iterator} is first argument of {increment} and
148 {iter_end} is second argument of {comparison} and
149 inherits LocalConst
150 with {begin} as {scope.begin}
151 and {iter_end} as {value} and
152 {iter_begin} reaches phi node
153 {iterator} from {precursor} and
154 inherits LocalConst
155 with {begin} as {scope.begin}
156 and {iter_begin} as {value} and
157 {iter_step} is second argument of {increment} and
158 inherits LocalConst
159 with {begin} as {scope.begin}
160 and {iter_step} as {value})
161 End
162

163 Constraint Loop
164 (inherits SESE and
165 {end} has control flow to {begin})
166 End
167

168 Constraint SESE
169 ({precursor} is branch instruction and
170 {precursor} has control flow to {begin} and
171 {end} is branch instruction and
172 {end} has control flow to {successor} and
173 {begin} control flow dominates {end} and
174 {end} control flow post dominates {begin} and
175 {precursor} strictly control flow dominates {begin} and
176 {successor} strictly control flow post dominates {end} and
177 all control flow from {begin} to {precursor}
178 passes through {end} and
179 all control flow from {successor} to {end}
180 passes through {begin})
181 End
182

183 Constraint LocalConst
184 (({scope.begin} is instruction and
185 {value} is preexecution) or
186 {value} strictly control flow dominates {scope.begin})
187 End

177

189 Constraint KernelFunction
190 (collect i 4 ({entries[i]} has control
191 flow to {scope.begin}) and
192 collect i 24 (inherits LocalConst
193 with {scope} as {scope}
194 at {outside[i]} and
195 {outside[i].value}
196 is not a numeric constant and
197 {outside[i].value} has data
198 flow to {outside[i].use} and
199 {scope.begin} control flow
200 dominates {outside[i].use}) and
201 collect i 8 ({loop_carried[i].update} reaches
202 phi node {loop_carried[i].value}
203 from {scope.end} and
204 {scope.begin} control flow
205 dominates {loop_carried[i].value}) and
206 all flow from {loop_carried[0..8].value} or any origin
207 to any of {result} passes through at least one of
208 {inputs[0..32],entries[0..4],outside[0..24].value})
209 End
210

211 Constraint ArgumentsPermuted
212 (({src1} is first argument of {dst} and
213 {src2} is second argument of {dst}) or
214 ({src2} is first argument of {dst} and
215 {src1} is second argument of {dst}))
216 End
217

218 Constraint Concat
219 (if N1=1 then
220 {out[0]} is the same as {in1}
221 else
222 {out[i]} is the same as {in1[i]} for all i=0..N1
223 endif and
224 if N2=1 then
225 {out[N1+0]} is the same as {in2}
226 else
227 {out[N1+i]} is the same as {in2[i]} for all i=0..N1
228 endif and
229 if N3=1 then
230 {out[N1+N2+0]} is the same as {in3}
231 else
232 {out[N1+N2+i]} is the same as {in3[i]} for all i=0..N3
233 endif)
234 for N2=0 if not otherwise specified
235 for N3=0 if not otherwise specified
236 End

	List of Symbols and Notation
	Introduction
	The Emergence of Heterogeneous Computing
	Via Multi-Processing to Heterogeneity

	The Diminished Role of Traditional Compilers
	Libraries and Domain-Specific Languages
	The Consequences of the Decline of Compilers

	Host Compilers and Kernel Compilers
	The Spectrum of Specialisation

	Moving on the Spectrum of Specialisation
	Contributions of this Thesis

	Structure of this Thesis
	Summary

	Constraint Programming on Static Single Assignment Code
	Background
	Static Single Assignment Form
	SSA Emerges During Compilation

	Deriving the SSA Model
	Data Flow and Control Flow
	Identifying Remaining Structure
	Putting the SSA Model Together
	Additional Notation
	The LLVM Compiler Framework
	LLVM IR Example

	Constraint Programming on the SSA Model
	SSA Constraint Problem Example

	Solving SSA Constraint Problems
	The Structure of SSA Constraint Problems
	Backtracking Example
	Implementation, Data Structures and Complexity
	Additional SSA Constraint Problems
	Satifiability Modulo Theory

	Summary

	Related Work
	Constraint Programming and Specification Languages
	Constraint Programming for Program Analysis
	Declarative Programming Languages for Program Analysis

	Compiler Analysis and Auto-Parallelisation
	Compilation with the Polyhedral Model
	Reduction Parallelism
	Dynamic Analysis Approaches

	Heterogeneous Computing
	Libraries
	Domain-Specific Languages

	Computational Idioms
	Higher-Order Functions
	Berkeley Parallel Dwarfs
	Algorithmic Skeletons

	The Compiler Analysis Description Language
	Introduction
	Motivating Example
	Language Specification
	Top-Level Structure of CAnDL Programs
	Atomic Constraints
	Range Constraints
	Modularity
	Expressing Larger Structures

	Implementation
	Normalisation of LLVM IR
	The CAnDL Compiler
	Developer Tools

	Case Studies
	Case Study 1: Simple Optimisations
	Case Study 2: Graphics Shader Optimisations
	Case Study 3: Detection of Polyhedral SCoPs

	Conclusions

	Automatic Parallelisation of Reductions and Histograms
	Introduction
	Motivation
	Recognising CReHCs
	Constraint-Based Formulation
	The Idiom Detection Language
	Specification of CReHCs in IDL

	Code Generation for CReHCs
	Experimental Setup
	Benchmarks and Platform
	Competing Approaches

	Results
	Discovery
	Runtime Coverage
	Performance

	Conclusions

	Heterogeneous Acceleration via Computational Idioms
	Introduction
	Overview
	Compiler Flow
	Accelerating Sparse Linear Algebra

	Specification of Idioms in IDL
	Sparse Linear Algebra
	Dense Linear Algebra
	Stencils

	Comparison to Syntactic Matching
	Targeting Heterogeneous Backends
	Domain-Specific Libraries
	Domain-Specific Code Generators

	Translating Computational Idioms
	Domain-Specific Libraries
	Domain-Specific Code Generators
	Pointer Aliasing

	Experimental Setup
	Results
	Idiom Detection
	Runtime Coverage
	Performance Results

	Conclusions

	Conclusions
	Contributions
	Critical Analysis
	Future Work
	Summary

	Bibliography
	Full Grammar of CAnDL
	Polyhedral Code Sections in CAnDL
	Full Grammar of IDL
	Complex Reductions and Histograms in IDL

