
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



  i 

GENETICS OF MUSCLE AND MEAT 

QUALITY IN CHICKEN  

 

 

 

IMRAN ZAHOOR 

D. V. M.  
M. Phil (Poultry Production) 

 

University of Edinburgh 

Thesis Submitted in the fulfilment of the degree of 

Doctor of Philosophy 

 

 

2013 



 

 

Table o

 

Preface .

Acknowl

Abstract

Chapter 1

1.1  P

1.2  G

1.3  A

1.3

1.3

1.4  M

1.4
 

1.5  H

1.5
pro

1.6  E

1.7  R

1.8  M

1.8

1.8

1.9  S
meat q

1.10 

Chapter 2 
Experimen

2.1  I

2.2  M

2.2

2.2

2.3  R

of Conten

..................

ledgemen

t .................

….Introduc

Poultry Indu

Genetic Sele

Anatomy an

  Type.1

  Creat.2

Modern broi

  Effec.1
13 

Heat Stress 

  Role .1
duction of R

Effect of Ac

Role of catio

Meat Qualit

  Gene.1

  Effec.2

Strategies to
quality in ch

Objective

.... Measure
nt ...............

ntroduction

Materials an

  Reari.1

  Statis.2

Results .......

nts 

..................

ts ..............

..................

ction ...........

ustry ...........

ection and M

nd Physiolog

s of Skeleta

tine Kinase

ilers and su

ct of pre-slau

and muscle

of Heat-Str
Reactive Ox

cute Heat St

ons in musc

y ................

etic selection

ct of pre-slau

o minimize t
hicken .........

s of the Pro

ement of Ph
..................

n .................

nd Methods

ing of birds 

stical analys

..................

...................

...................

...................

...................

...................

Modern Bro

gy of Musc

al Muscle F

..................

usceptibility

ughter stres

e damage in 

ress in ampl
xygen Spec

tress on Hea

cle damage 

...................

n and meat 

ughter stres

the effects o
...................

oject ............

hysiological
...................

...................

..................

and data co

sis ..............

...................

...................

...................

...................

...................

............... Er

oiler Industr

les ..............

ibres ..........

...................

to pre-slau

ss condition

broiler chic

lifying musc
ies..............

at Shock Pr

in broiler ...

...................

quality .......

ss on meat q

of heat-stres
...................

...................

l Parameters
...................

...................

...................

ollection .....

...................

...................

...................

...................

...................

...................

rror! Book

ry ................

...................

...................

...................

ghter stress

ns on physio

cken ...........

cle damage 
...................

otein 70 (H

...................

...................

...................

quality ........

ss on muscl
...................

...................

s and Samp
...................

...................

...................

...................

...................

...................

..................

..................

..................

..................

kmark not d

..................

..................

..................

..................

sors ............

ological para

..................

through 
..................

Hsp 70) .......

..................

..................

..................

..................

le damage a
..................

..................

pling for Mic
..................

..................

..................

..................

..................

..................

ii 

.......... vi 

....... xiii 

....... xvii 

........... 1 

defined. 

........... 3 

........... 6 

........... 6 

......... 10 

......... 12 

ameters

......... 15 

......... 16 

......... 19 

......... 23 

......... 25 

......... 27 

......... 31 

and 
......... 34 

......... 36 

croarray 
......... 40 

......... 41 

......... 44 

......... 44 

......... 46 

......... 46 



 

 

2.3

2.3

2.4  D

2.5  C

Chapter 3 

3.1  I

3.2  O

3.3  M

3.3

3.3

3.3

3.4  R

3.4
inte

3.4
gen

3.5  D

3.6  C

Chapter 4 
and Layer

4.1  I

4.2  M

4.2

4.2

4.2

4.3  R

4.3

4.3

4.3

4.4  D

4.4

4.4

  Body.1

  Body.2

Discussion .

Conclusion .

Microarray

ntroduction

Objectives ..

Materials an

  Reari.1

.2  Tissu

.3  Micro

Results .......

  Categ.1
eractions on

  Diffe.2
nes significa

Discussion .

Conclusion .

Bioinforma
rs in respons

ntroduction

Material and

  Clust.1

  Pathw.2

  Selec.3

Results .......

  Selec.1

  Selec.2

  Selec.3

Discussion .

  Clust.1

  Pathw.2

y Temperatu

y Weight .....

..................

..................

y Data Analy

n .................

..................

nd Methods

ing of Birds

ue sample co

oarray Slide

..................

gorisation o
n the basis o

erent compa
ant for intera

..................

..................

atics Analys
se to Acute 

n .................

d Methods ..

ter analysis 

ways and Ne

ction of Can

..................

cted clusters

cted Pathwa

ction of Can

..................

ters from Bi

ways and ne

ure ..............

...................

...................

...................

lyses ...........

...................

...................

..................

s .................

ollection an

es ...............

...................

of candidate
of their biolo

arisons (with
action ........

...................

...................

ses of Gene
Heat Stress

...................

...................

in BioLayo

etworks ana

ndidate Gen

...................

s from BioL

ays and Netw

ndidate gene

...................

iolayout Ex

etworks for 

...................

...................

...................

...................

...................

...................

...................

...................

...................

nd data recor

...................

...................

genes from
ogical funct

hin and betw
...................

...................

...................

e Expression
s .................

...................

...................

out ..............

alysis in IPA

nes ...............

...................

Layout analy

work from I

es................

...................

xpress analy

Biolayout a

...................

...................

...................

...................

...................

...................

...................

...................

...................

rding ..........

...................

...................

m significant
tions ...........

ween breed 
...................

...................

...................

n Difference
...................

...................

...................

...................

A ................

...................

...................

ysis ............

IPA analysi

...................

...................

sis ..............

analysed gen

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

t breed x tre
..................

and treatme
..................

..................

..................

es between 
..................

..................

..................

..................

..................

..................

..................

..................

is ...............

..................

..................

..................

enes in IPA 

iii 

......... 46 

......... 47 

......... 49 

......... 50 

......... 51 

......... 52 

......... 53 

......... 56 

......... 56 

......... 56 

......... 56 

......... 60 

eatment 
......... 62 

ent) of 
......... 64 

......... 66 

......... 73 

Broilers 
......... 74 

......... 75 

......... 77 

......... 78 

......... 79 

......... 81 

......... 81 

......... 81 

......... 85 

....... 111 

....... 116 

....... 116 

....... 116 



 

 

4.4

4.4

4.5  C

Chapter 5 
chicken ...

5.1  I

5.2  O

5.3  M

5.3

5.3

5.3

5.3

5.3

5.3

5.4  R

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.5  D

5.5

5.5

5.6  C

Chapter 6 
quality in 

6.1  I

6.2  O

  Pathw.3

  Selec.4

Conclusion .

.... SNP gen
..................

ntroduction

Objectives ..

Material and

  Husb.1

  Physi.2

  Pheno.3

  Selec.4

  Geno.5

  Statis.6

Results .......

  Creat.1

  Breas.2

  Breas.3

  Breas.4

  Thigh.5

  Thigh.6

  Thigh.7

  Initia.8

  Ultim.9

Discussion .

  Musc.1

  Meat.2

Conclusion .

...... The rol
broiler chic

ntroduction

Objectives ..

way and net

ction of gene

..................

notyping of 
..................

n .................

..................

d Methods ..

bandry and P

ical parame

otypic data 

ction of SNP

otyping of S

stical analys

..................

tine Kinase 

st muscle lig

st muscle re

st muscle ye

h muscle lig

h muscle red

h muscle ye

al pH (pHi) .

mate pH (pH

..................

cle quality tr

quality trai

..................

e of low am
cken ...........

n .................

..................

twork analy

es for furthe

...................

candidate g
...................

...................

...................

...................

Phenotypic 

eter studied .

collection ..

Ps ...............

SNPs ...........

ses ..............

...................

(CK) .........

ghtness (B*

edness (B*a

ellowness (B

ghtness (T*L

dness (T*a)

ellowness (T

...................

Hu) ..............

...................

rait .............

its ...............

...................

mbient temp
...................

...................

...................

ysis of Biola

er investiga

...................

genes for mu
...................

...................

...................

...................

data ...........

...................

...................

...................

...................

...................

...................

...................

*L)..............

a) ................

B*b) ..........

L) ..............

) .................

T*b) ...........

...................

...................

...................

...................

...................

...................

perature on p
...................

...................

...................

ayout filtere

ation............

...................

uscle and m
...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

productivity
...................

...................

...................

ed genes in I

..................

..................

meat quality 
..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

y, muscle, a
..................

..................

..................

iv 

IPA 125 

....... 126 

....... 130 

traits in 
....... 132 

....... 133 

....... 135 

....... 137 

....... 137 

....... 140 

....... 140 

....... 140 

....... 141 

....... 141 

....... 143 

....... 143 

....... 143 

....... 144 

....... 144 

....... 145 

....... 145 

....... 146 

....... 146 

....... 146 

....... 155 

....... 155 

....... 156 

....... 169 

and meat 
....... 170 

....... 171 

....... 172 



 

 

6.3  M

6.3

6.3

6.3

6.3

6.4  R

6.5  D

6.6  C

Chapter Su

7.1  I

7.2  C

7.3  C

7.4  C

7.5  C

7.6  C

7.7  C

7.8  I

Reference

 

 

Materials an

  Anim.1

  Musc.2

  Meat.3

  Expe.4

Results .......

Discussion .

Conclusion .

ummary an

ntroduction

Chapter 2 ...

Chapter 3 ...

Chapter 4 ...

Chapter 5 ...

Chapter 6 ...

Conclusion .

mplications

es…………

nd Methods

mal Husband

cle quality ..

Quality .....

rimental de

..................

..................

..................

nd Conclusio

n .................

..................

..................

..................

..................

..................

..................

s and Limita

……………

 

..................

dry and Sam

...................

...................

esign ...........

...................

...................

...................

on...............

...................

...................

...................

...................

...................

...................

...................

ations .........

……………

...................

mpling ........

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

……………

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

……………

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

……………

v 

....... 174 

....... 175 

....... 177 

....... 177 

....... 179 

....... 180 

....... 184 

....... 187 

....... 189 

....... 190 

....... 190 

....... 191 

....... 192 

....... 195 

....... 200 

....... 202 

....... 202 

……189 



 

  vi 

List of Figures 

Figure 1-1 The different levels of organisation of skeletal muscle.. ............................ 8 

Figure 1-2 The chemical structures of the creatine kinase molecule (right) and its 

phosphorelated counterpart phosphocreatine (left) (Clark 1996). ............................. 10 

Figure 1-3 A model of Heat Shock Factor (HSF) regulation. . .................................. 22 

Figure 1-4: A brief work flow diagram of thesis chapters. Detailed description along 

with the parts of the flow diagram is given in the relevant chapters.......................... 38 

Figure 2-1 Work Flow Diagram of Chapter 2 . .......................................................... 43 

Figure 3-1 Work Flow Diagram of Chapter 3 . .......................................................... 55 

Figure 3-2 Number of overlapping genes in different up and down regulated 

categories of the significant genes (P<0.05) for the breed x treatment interaction ... 65 

Figure 4-1 Work flow diagram of Chapter 4.  ........................................................... 77 

Figure 4-2  Mean expression values of genes, (significant at P<0.05, Chapter 3) (y-

axis) in comparisons of Breed x Treatment interactions (x-axis), for Categories I-VI. 

. ................................................................................................................................... 84 

Figure 4-3 Selected networks (1, 7, 9) from Category I analysis. Red colour genes 

are up-regulated and those in green colour are down-regulated. The following three 

networks are linked to each other by a single gene ‘Programmed Cell Death 6 

Interacting Protein’ (PDCD6IP) that is involved in cell death and is up-regulated in 

these 3 networks. ........................................................................................................ 88 



 

  vii 

Figure 4-4 Merging networks 4 and 6. Red colour genes are up-regulated and those 

in green colour are down-regulated. The following two networks are linked to each 

other by a single gene, FKBP3. They are involved in connective tissue and muscular 

disorders. .................................................................................................................... 91 

Figure 4-5 Selected networks (1, 5) from Category II Analysis. Networks are linked 

through a common gene, S1PR1. Red colour genes are up-regulated and those in 

green colour are down-regulated. ............................................................................... 95 

Figure 4-6 Selected networks (3, 4) from Category II analysis. Networks are linked 

through a common gene, USP9X. Red colour genes are up-regulated and those in 

green colour are the down-regulated. ......................................................................... 96 

Figure 4-7 Selected networks (1 & 5) from Category III analysis. These two 

networks are linked together through, a common gene, NDUFS1 involved in electron 

transport chain and ATP production in mitochondrial respiratory chain complex I. 

Red colour genes up-regulated and those in green colour are the down-regulated. .. 99 

Figure 4-8  Selected networks from IPA analysis of Biolayout filtered genes. Red 

colour genes are up-regulated and those in green colour are down-regulated. ........ 108 

Figure 4-9 Merging networks 17 & 24 from IPA analysis of Biolayout filtered genes. 

These networks are linked to each other by a common gene COX6A1 that activates 

the COX family of genes. Red colour genes are up-regulated and those in green 

colour are down-regulated........................................................................................ 109 



 

  viii 

Figure 4-10 Merging networks 7 & 25 from IPA analysis of Biolayout filtered genes. 

These two networks are linked to each other by a single gene SH3BP1. Red colour 

genes are up-regulated and those in green colour are down-regulated. ................... 110 

Figure 4-11 fMLP signalling pathway in neutrophils. This figure was created by 

using the tools of Path Designer of Ingenuity Pathway Analysis (IPA®). Red colour 

genes are up-regulated.............................................................................................. 128 

Figure 4-12 Granzyme B signalling pathway. This figure was created by using the 

tools of Path Designer of Ingenuity Pathway Analysis (IPA®). Red colour genes are 

up-regulated.  ........................................................................................................... 129 

Figure 5-1 Work Flow Diagram of Chapter 5.. ........................................................ 136 

Figure 6-1 Work flow diagram of Chapter 6 ........................................................... 174 

Figure 6-2 Histopathological examination of pectoral muscles ............................... 183 

 

  



 

  ix 

List of Tables 

Table 2-1 Breed x Treatment interaction of body temperature (oC) of male line 

(Ross-308) and White Leghorn layer birds at 6 weeks of age  (P<0.001, 

SED=0.1030) .............................................................................................................. 48 

Table 2-2 Breed x Sex interaction for average body weight (g) of male line (Ross-

308) and White Leghorn layer birds at 6 weeks of age  (P<0.001, SED=69.1) ........ 48 

Table 3-1 Numbers of significant genes (P<0.05) for treatment, breed, and breed x 

treatment interaction................................................................................................... 61 

Table 3-2 Categories of significant genes for breed x treatment interaction (P<0.05) 

on the basis of their biological functions ................................................................... 63 

Table 4-1 Selected pathways from Category I cluster analysis ................................. 86 

Table 4-2 Selected pathways from Category II cluster analysis ................................ 93 

Table 4-3 Selected pathways from Category III cluster analysis ............................... 98 

Table 4-4 Selected pathways from Category IV cluster analysis ............................ 101 

Table 4-5 Selected pathways from Category V cluster analysis .............................. 103 

Table 4-6 Details of selected pathways from Category VI analysis ........................ 105 

Table 4-7 Selected pathways from IPA analysis of Biolayout filtered genes .......... 107 

Table 4-8 Final list of selected genes ....................................................................... 113 



 

  x 

Table 5-1 Genetic line (Breed), Category, Source and number of birds used for the 

collection of phenotypic trait data (Sandercock et al. 2009a; Sandercock et al. 

2009b). ..................................................................................................................... 139 

Table 5-2 Results for individual SNPs in a model including breed type ................. 148 

Table 5-3 Results for joint SNPs analyses following backward elimination, including 

breed-type ................................................................................................................. 152 

Table 6-1 Temperature and relative humidity (RH) requirements for conventional 

and low temperature treatments at different ages .................................................... 176 

Table 6-2 Body weight, Feed intake, Mortality (%) and Ascitic birds (%) in 

conventional and low temperature treatments.......................................................... 180 

Table 6-3 Meat quality parameters for conventional and low temperature treatments

 .................................................................................................................................. 181 

Table 6-4 Results of Histopathological examination of broiler breast muscles....... 182 

  



 

  xi 

List of Appendices 

Appendix 1.1……………………………………………………………. 232 

Appendix 2.1……………………………………………………………. 237 

Appendix 2.2……………………………………………………………. 239 

Appendix 2.3……………………………………………………………. 242 

Appendix 2.4 …………………………………………………………… 243 

Appendix 3.1……………………………………………………………. 254 

Appendix 3.2……………………………………………………………. 255 

Appendix 3.3……………………………………………………………. 257 

Appendix 4.1……………………………………………………………. 258 

Appendix 4.2……………………………………………………………. 260 

Appendix 4.3……………………………………………………………. 262 

Appendix 4.4……………………………………………………………. 264 

Appendix 4.5…………………………………………………………… 265 

Appendix 4.6……………………………………………………………. 266 

Appendix 4.7……………………………………………………………. 267 

Appendix 4.8……………………………………………………………. 269 

Appendix 4.9……………………………………………………………. 271 

Appendix 4.10…………………………………………………………… 273 

Appendix 4.11…………………………………………………………… 274 

Appendix 4.12…………………………………………………………… 276 

  



 

  xii 

Preface 

 

The work contained within this thesis is my own and has not been done in 

collaboration, except where otherwise stated.  The text does not exceed 70,000 

words.  No part of this thesis has been submitted to any other university in 

application for a higher degree. 

 

 

Imran Zahoor 

 

  



 

  xiii 

Acknowledgements 

In the name of ALLAH, the Most Gracious and the Most Merciful 

Alhamdu’LILLAH, all praises to ALLAH for the strengths and His blessing in 

completing this thesis. 

I would like to express my sincere gratitude to my Principle Supervisor Dr. Paul 

Hocking for his very precious and endless support in my PhD research, in terms of 

his guidance, practical approach, impressing vision, patience, motivation, 

enthusiasm, and immense knowledge and valuable insights. His guidance helped me 

in all the time of research and writing of this thesis. I could not have imagined 

having a better advisor and mentor for my PhD study. I am also grateful to my 

second supervisor Dr. DJ de Koning for his insightful contribution, invaluable 

guidance, critique and support to accomplish my work. As a whole, my supervisors 

helped and guided me a lot at each and every step of my studies. I am feeling myself 

proud and lucky in being their student. 

I am grateful to Mr. Graeme Robertson for his help in laboratory work, data 

collection, sampling the birds, and processing of samples. I am also thankful to the 

Roslin Institute Poultry Unit staff for their support in rearing the birds and 

phenotypic data collection; especially, Mrs. Kim Bernard for her help in operating 

the environmentally control chambers and sampling the birds. 

I am thankful to Mr. Dave Waddington for his inputs and guidance in finalising the 

experimental design and randomisation of control environment chambers and 



 

  xiv 

sampling. Similarly, I am grateful to Mr. Richard Talbot for his help in the 

randomisation of tissue samples before RNA extraction. I am also thankful to Miss. 

Alison Downing for her help and guidance in measuring the quality of RNA samples 

and execution of the microarray experiment in the lab. 

I think I cannot say enough thanks to Mrs. Caroline MacCorquodale for her 

invaluable help and guidance in microarray data analysis. I am also very thankful to 

Prof. Tom Freeman for his kind guidance and help about the analysis of gene 

expression data in BioLayout3D, and I am also obliged to Dr. Neil McDerment, for 

his guidance in the selection of gene clusters for further analysis. 

 Similarly, I am very grateful to Mr. Mick Watson for his guidance and help about 

the pathways and networks analyses in Ingenuity Pathway Analysis, by sparing time 

out of his terribly busy schedule. I cannot forget the guidance of Dr. DJ deKoning 

and Mick Watson about the selection of candidate genes that went a long way to help 

and bringing the project to an excellent end. I am also very thankful to Dr. Pete 

Kaiser for his guidance about the avian immune cells and their role in different 

stressful conditions. 

I am also thankful to Prof. Rob Gous for his help by sending the data and results of 

his modelling work on broiler chicken. I think it would be unfair if I do not say 

thanks to Prof. Malcolm Mitchell for his priceless inputs and guidance in this project 

as a whole, from start to end. I am also thankful to Dr. Vicky MacRae and Dr. Dale 

Sandercock for their inputs in this project and publishing a great amount of relevant 



 

  xv 

work that helped me a lot, not only in understanding the physiology of muscle 

development and functions and pathophysiology of various ante-mortem stressors 

especially heat-stress, but also helping me in selecting and short-listing the list of 

candidate genes for further experimental work.  

I am very grateful to Dr. Ian Dunn and Dr. Atia Basheer for their guidance about the 

selection of single nucleotide polymorphisms (SNPs) marker for subsequent studies. 

Similarly, I am also grateful to Dr. Pip Beard for her guidance in studying the 

histopathology of broiler skeletal muscles, and also thankful to Mr. Bob Fleming for 

his guidance in operating the different types of microscopes. 

I am very grateful to my funding agency, Higher Education Commission of Pakistan 

and University of Veterinary and Animal Sciences, Lahore, Pakistan for sponsoring 

me to study at The Roslin Institute, University of Edinburgh. As a whole I am 

thankful to the Roslin Institute, one of the world’s leading institutes, for its overall 

support. I am impressed by the values, etiquettes, and the cooperative minds of 

peoples working at the Roslin Institute. It was a matter of honour and pride for me to 

study in The Roslin Institute and University of Edinburgh; a major centre of genetics 

and genomics, not only in Europe but in the world. 

Most importantly, I unreservedly give my heartfelt applause to my family specially, 

who paid the price of supporting me emotionally and I can’t thank them enough for 

the patience but I feel honoured by their special love which persisted and saw me to 

the end.  



 

  xvi 

Dedication 

I dedicate my thesis to my country, Islamic Republic of Pakistan. 



 

  xvii 

Abstract 

Skeletal muscles in broilers are generally characterised by pathological muscle 

damage, indicated by greater plasma creatine kinase (CK) activity, higher incidence 

of haemorrhages, lighter and less coloured breast muscles, compared with layers and 

traditional breeds of chicken. Muscle damage is further exacerbated by exposure to 

stressful conditions such as high ambient temperatures which results in a further 

decrease in the quality of broiler meat and leads to the production of pale, soft and 

exudative (PSE) meat. This growing incidence of poor quality poultry meat is 

causing substantial losses to the meat industry. However, in contrast to pork the 

genetics of poor muscle and meat quality in chicken is unknown.  The present 

project was conducted to identify the underlying genetics of this low quality meat by 

using heat-stress as a tool to amplify muscle damage and expression of the relevant 

genes. Whole-genome expression studies in broiler and layer breast muscles were 

conducted before and after heat-stress and some phenotypic data were also recorded. 

From the gene expression studies, 2213 differentially expressed genes (P<0.05) were 

found. About 700 of these genes had no gene ontology (GO) terms associated with 

them for biological process or function. The significant gene set was analysed in 

BioLayout Express and interesting clusters of the genes, based on their positive 

correlation with each other, were selected for further investigation. Genes were 

grouped together in 6 different categories or clusters, on the basis of their expression 

pattern. The genes in the selected clusters were analysed in Ingenuity Pathway 

Analysis (IPA) software, for each category separately, and relevant biological 

pathways and networks for those genes were studied. Similarly, the genes filtered out 
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by BioLayout Express at a Pearson threshold of 0.80 were also analysed in IPA 

separately and interesting pathways and networks were selected. From the pathways 

and networks analyses of these genes, it was discovered that genes involved in 

inflammatory, cell death, oxidative stress and tissue damage related functions were 

up-regulated in control broilers compared with control and similar to heat-stressed 

layers. After exposure to heat-stress the expression levels of these genes were further 

increased in broilers. These results led us to develop the hypothesis that breast 

muscles in broilers are under stress-related damage even under the normal rearing 

conditions. This hypothesis was tested by rearing the broilers birds at 

normal/conventional and comparatively low ambient temperature and its effects on 

breast muscle quality and meat quality were studied. Significant improvement of 

breast muscle redness was observed. Additionally substantial numerical 

improvements for other meat and muscle quality traits like breast muscle lightness 

and histopathology were observed. From the key positions of interesting significant 

pathways and networks, candidate genes were selected for further investigation. In 

total, 25 candidate genes were selected for SNP genotyping: 19 genes were selected 

from the interesting pathways and networks and 6 genes were selected on the basis 

of their GO terms. For each gene 4-5 SNPs were selected, where possible, that were 

present in exons and promoter regions of the candidate genes. The selected SNPs 

were genotyped for muscle and meat quality traits in 34 breeds of chicken and 

significant causative SNPs for each trait including plasma CK activity, pHi and pHu 

for breast muscles, colour (L*, a*, and b*)  traits for breast and thigh muscles were 

found. These SNPs were responsible for explaining a moderate to high (15-55%) 
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percentage of phenotypic variance for these traits. To our knowledge this is the first 

study in which gene-expression in chicken breast muscle was conducted in response 

to heat-stress and additionally, for the first time, a set of novel SNPs for all of these 

traits were identified. Some of the significant causative SNPs were lying in the 

protein coding sequences and some were present in the promoter regions of the 

candidate genes.  
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1.1 Poultry Industry 

Poultry are a major source of providing high-quality protein to people around the 

globe, at consistently low prices. The poultry industry is also one of the world’s 

fastest growing industries, in spite of a number of constraints such as rising feed 

prices, diseases like avian influenza (bird flu), and a number of management and 

environmental stress factors such as catching, crating, transportation, cold stress and 

especially heat stress in the tropical and sub-tropical parts of the world. 

Between 1995 and 2005, there was a remarkable increase in the consumption and 

production, globally, of poultry products such as (percentage increase) chicken meat 

(53%), turkey meat (13%), duck meat (67%), goose meat (53%), chicken eggs 

(39%), and other eggs (27%). The top ranking countries with the largest increases for 

chicken meat production were India (217%), Brazil (112%), and China (67%); the 

increases for the USA and Europe were 38% and 30% respectively during this period 

(Scanes 2007).  

The total world poultry meat production was less than 5 kg per capita in 1965, and it 

has grown to more than 13 kg per capita in 2006. In 2006 the world poultry meat 

production was 81 Million tons (Mt), the major portion of which (70 Mt) was 

produced by broiler chickens. The production of 71 Mt of chicken meat needs a crop 

of at least 40 billion broilers, per year. Comparative production statistics also show a 

higher growth rate for the poultry sector (53% for poultry meat),  compared with 

other areas/sectors of meat production (Scanes 2007; McKay 2009). 
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1.2 Genetic Selection and Modern Broiler Industry 

In the broiler industry, about 3% annual improvement in the efficiency of meat 

production has been observed, as a result of genetic selection for growth, body 

composition, feed efficiency, reproduction, health and welfare-related traits 

(Havenstein et al. 2003; McKay 2009). Genetic selection has resulted in reducing 1 

day per generation in the market age of commercial broilers, between 1970 to 1990 

(Anthony, 1998). In the 1940s, broiler birds took about 16 weeks to reach 2.0-2.5 kg 

body weight and in 1990s, modern broiler strains attained the same weight in less 

than 40 days (Griffin and Goddard, 1994; McKay 2009). Toyomizu et al., (2011) 

investigated the effects of feed conversion efficiency on mitochondrial bioenergetics 

(oxidative phosphorylation) in skeletal muscle mitochondria of both types (broiler 

and layer) chickens.  It was reported that mitochondria of meat-type chickens 

showed greater efficiency of oxidative phosphorylation than layers. This greater 

efficiency of oxidative phosphorylation may partially be responsible for higher feed 

efficiency in meat type chicken. 

Genetic selection for meat-related traits in broiler chicken has had deleterious effects 

on health, welfare and their ability to cope with different stresses (Sandercock et al. 

2006; MacRae et al. 2007; Sandercock et al. 2009a). Additionally, this genetic 

selection has resulted in a greater incidence of spontaneous and stress-induced 

skeletal muscles abnormalities in broilers (MacRae et al. 2007; Sandercock et al. 

2009b).  
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The increased body weights of modern broilers are due to increased muscle yield, 

particularly of the Pectoralis major (Pm) breast muscle. The increase in muscle size 

of present day broiler birds may be due to the hypertrophy of their muscle fibre sizes 

(MacRae et al. 2007; Zheng et al. 2009). MacRae, et al., (2006) compared the 

skeletal muscle fibre growth and growth related myopathy in broiler and layer 

chicken. It was reported that the fibre size of Pm muscle was 1.5 times greater in 

commercial broilers (65.9 mm) and great-grand (GGP) parent lines of broiler 

chicken (59.8 mm) than in layer birds (38.1 mm), at 25 weeks of age. It was also 

found that growth of the Pm fibres was greater than those of the Biceps femoris (Bf) 

muscle in the broiler and GGP birds; fibre growth of the Pm and Bf muscle was not 

much different in layer birds. However, in all lines connective tissue contents were 

generally higher in the Bf than in the Pm. Muscle fibres in commercial broilers and 

turkeys are characterised by their larger diameter  compared with their unselected 

counterparts at the same age (Mills et al. 1998; Mills et al. 2000). It is possible that 

there is a certain limit for the maximum size of the muscle fibres beyond which 

fibres cannot safely grow due to the greater diffusion distances for oxygen, nutrients 

and metabolic wastes (Mills et al. 1998; MacRae et al. 2006). However, it has also 

been hypothesised that growth of the connective tissue in skeletal muscle does not 

keep pace with muscle fibre radial growth and the fibres outgrow the supporting 

connective tissue, leading to muscle damage or myopathy in poultry selected for 

meat production (Mitchell 1999; Kranen et al. 2000; Sandercock et al. 2006). 

Connective tissue content in Pm muscle of broilers are much lower compared with 

Bf muscle of broilers at 5 weeks of age. These might be negative consequences of 
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genetic selection for lean breast meat in broilers (MacRae et al. 2006). Thigh 

muscles are mainly comprised of the type I, oxidative fibres that need oxygen for 

their metabolism. This might be the reason for their comparatively lower diameter 

compare with breast muscles so that oxygen can diffuse properly for their normal 

functioning. On the other hand, the fast, glycolytic type IIb muscle fibres of the 

breast muscles are used for high-force transient movements. As these myofibers are 

metabolic in nature they may be more responsive to genetic selection for increased 

fibre size and ultimately lead to larger breast muscles (Goldspink 1996; Hughes & 

Schiaffino 1999). 

In broiler chickens and turkeys these improvements in productive performance may 

be associated with some detrimental effects not only upon skeletal muscles but also 

on meat quality. Sandercock et al., (2009) studied meat quality parameters in 34 

broiler, layer and traditional lines of chicken at 8 weeks of age. They observed that 

breast muscles from broilers were lighter in colour and less red and yellow compared 

with breast muscles of layers and traditional lines. It was also found that initial pH 

(pHi) and final pH (pHu) were lower in broiler breast muscles compared with layer 

and traditional breeds and the rate of pH decline was also faster in broilers. They 

argued that the reason for the low ante-mortem and post-mortem muscle pH and 

greater rate of fall in pH might be the higher level of cations (Na+ and Ca+2) in 

broiler muscles. 
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1.3  Anatomy and Physiology of Muscles 

There are rod-like structures in the muscle fibre, which are about 1 µm in diameter 

and are called myofibrils. These myofibrils are the structural units of the myofibre 

which in turn are units of the muscle. Myofibrils are made up of protein filaments 

which are arranged in units called sarcomeres. Sarcomeres consist of two types of 

myosin filaments, thick filaments and actin, thin filaments. Actin filaments are 

attached to the Z-discs, that form the boundaries of the sarcomere, and myosin 

filaments are in the centre of the sarcomere, as shown in Figure 1.1 (b). Each myosin 

molecule consists of two heavy chains and myosin cross-bridges. These cross-

bridges are finally attached with actin filaments and pull them towards the centre of 

the sarcomere during the process of muscle contraction, so that each sarcomere 

shortens and generates force. This process of shortening and contraction is mediated 

by ATP (Goldspink 1996).  

The heads of myosin cross-bridges, having an actin-binding site and an ATPase site, 

are attached to the myosin molecule by a lever arm. The two light chains, one 

essential and the other an alkaline light chain of myosin molecules are attached with 

each lever arm. These light chains are involved in effective transduction of the force. 

Different types of muscles, i.e. fast and slow skeletal muscle and cardiac and smooth 

muscle, have different types of light chains (Goldspink 1964; Goldspink 1996). 

1.3.1 Types of Skeletal Muscle Fibres 

There are three main types of skeletal muscle fibres, Type I, Type IIa, and Type IIb. 
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Type I muscle fibres are known as slow oxidative fibres. In these myofibers, the 

myosin hydrolyses ATP very slowly resulting in a slow contraction of the muscle 

fibre and generation of less force. This characteristic makes these fibres more 

suitable for producing slow repetitive movements and sustaining isometric force 

(Goldspink 1984). Type IIa fibres are also known as fast, oxidative, glycolytic fibres. 

They are suitable for producing high power for a longer period of time. Type IIb 

fibres are known as fast, glycolytic fibres. Their speciality is to produce high power 

output but for a shorter time period than type IIa fibres. Myosin and other contractile 

proteins of type II fibres have the ability to hydrolyse the ATP very quickly so they 

can produce a fast cross-bridge cycle and develop force rapidly. But the reason for 

the difference in these two types of fibre is that the type IIa fibres have more 

mitochondria and a more oxidative metabolism, and as a consequence these muscle 

fibres are able to produce a high power output for a remarkably long duration. At the 

start of any activity, slow fibres become activated and when demand for power is not 

fulfilled by these fibres the fast type II fibres are activated to generate more force 

and muscle contraction (Goldspink 1996).  
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Figure 1-1 The different levels of organisation of skeletal muscle. (a) 
Section through the belly of the muscle showing bundles of striated 
muscle fibres. Within each fibre there are many myofibrils which are 
the contractile elements and which are also striated. (Goldspink 1996). 
(b) An electronmicrographic reconstruction showing the thick (myosin) 
and thin (actin) filaments organised in units called sarcomeres. The 
release of calcium from the sarcoplasmic reticulum activates the 
myosin cross-bridges which are the independent force generators that 
move the thin filaments (Goldspink 1996). (c) The molecular 
organisation of the thick and thin filaments. The thin filaments are 
decorated by the regulatory proteins, the tropomyosin/troponin 
complex. When activated by calcium the tropomyosin is pulled to one 
side, exposing active sites on the filament to which the myosin cross-
bridge attach. The cross-bridges are part of the double myosin heavy 
chain molecules. Part of the myosin heavy chain is the rod structure 
which is embedded in the thick filament (Goldspink 1996). 
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Generally, at the end of embryogenesis the final numbers of muscle fibres are fixed 

in the body.  Myogenic precursor cells originating from somites first give rise to 

myoblasts that undergo further proliferation and migrate to their final locations and 

finally fuse into multinucleated myotubes, which finally differentiate into mature 

muscle fibres. Muscle growth after birth is achieved by increase in fibre size, which 

is the consequence of satellite cells fusing to existing fibres (Smith 1963). Mature 

muscle fibres exhibit a remarkable plasticity, in response to external stimuli or 

disease. Physical exercise and mechanical loading are capable of producing a 

significant increase in muscle mass by muscle fibre hypertrophy (Lumini et al. 2008; 

Radak et al. 2008).  

The molecular mechanisms controlling the divergent muscle growth rates and 

muscle mass in broiler and layer chicken were studied by Zheng et al (2009) during 

different developmental stages by a microarray hybridization experiment. They 

identified 543 differentially expressed genes. It was also reported that divergent 

muscle growth rates of the two chicken lines was controlled by differential 

regulation of slow-type muscle gene expression, satellite cell proliferation and 

differentiation, protein degradation rate and by genes involved in different metabolic 

pathways. The correlation of expression profiles of differentially expressed genes 

with growth rates of broilers and layers, reflect their involvement in regulating 

muscle growth during development. Complicated molecular networks controlling the 

regulation of chicken muscle growth were found.   
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In vertebrate tissues, at least four subunit isoforms of CK are expressed in a tissue-

specific manner: two 'cytosolic' forms, MM-CK (muscles) and BB-CK (brain), and 

two mitochondrial Mi-CK isoforms (mitochondrial) (Wallimann et al. 1998; 

Wallimann et al. 2011). M-CK and B-CK subunits combine to give the three typical 

dimeric 'cytosolic' MM-CK, MB-CK and BB-CK isoenzymes identified as skeletal 

muscle, cardiac muscle and brain types, respectively, due to their apparent 

distribution among these tissues. Interestingly, during muscle cell differentiation in 

vitro and in vivo, a developmental transition from BB-CK via the transitory MB-CK 

hybrid to the MM-CK homodimer has been observed (Wallimann et al. 1998).  

The intracellular compartmentalisation of these major isoenzymes of CK and the 

more recently described isoforms and subtypes promotes the functional coupling of 

the production and consumption of energy and the integration and control of cellular 

metabolism.  Isoenzyme activity and profiles of CK in human plasma or serum 

samples are used as an important diagnostic technique in a number of pathologies 

including myopathies and dystrophies, myocardial infarction, lesions of the central 

nervous system and neoplastia (Chiu et al. 2009; LaFramboise et al. 2009; 

Sandercock et al. 2009a; Xu et al. 2009). The diagnostic interpretation is based upon 

the assumption that the relatively tissue-specific and distinguishable isoenzymes 

would be released in response to cellular damage and result in characteristic blood 

profiles.  In a number of avian species, the changes in total plasma CK activity 

which occur in response to various pathologies, acute heat stress and transportation 

(Mitchell & Carlisle 1992) have been reported but without reference to the 
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associated isoenzyme profiles. Although the MM-CK and BB-CK isoenzymes in the 

skeletal and nervous tissues of birds may be analogous to those identified in 

mammals, it has been suggested that the CK-M monomer is not expressed in post 

embryonic avian cardiac muscle and that as a result the MB-CK dimer does not 

appear in this tissue, which contains only BB-CK (Mitchell & Sandercock 1995a). 

The relative distribution of the activities of the isoenzymes of CK in the plasma of 

birds may therefore differ markedly from that described in mammals, in both normal 

and diseased or stressed individuals. Muscle isoenzyme (MM-CK) is the 

predominant form in plasma (99 per cent), and an increase in its plasma activity in 

response to acute heat stress is a consequence of muscle damage. Thus 

measurements of plasma CK activities in poultry are a useful tool to measure the 

extent and nature of muscle damage induced by different treatments, environments 

and challenges (Mitchell and Sandercock 1995). 

1.4  Modern broilers and susceptibility to pre-

slaughter stressors 

Stressful conditions including acute exposure to elevated ambient temperature or 

crating, and transportation lead to increased plasma activity of the intracellular 

muscle enzyme, creatine kinase in chicken (Mitchell & Sandercock 1995b; 

Sandercock et al. 2001; Sandercock et al. 2006; Nadaf et al. 2007b; Zulkifli et al. 

2009). It was considered that the release of CK from muscles to the extracellular 

fluid and plasma is due to alterations in the integrity of the skeletal muscle cell 

membrane, which lead to the deleterious effects of stress upon skeletal muscle 
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structure and functions (Mitchell & Sandercock 1995b). This increase in plasma CK 

activities can be considered as a useful indicator of “physiological stress”(Mitchell et 

al. 1994). Genetic selection in broilers that has increased body weight is also 

associated with a higher concentration of cations and CK activities, lower initial and 

final muscle pH and to paler, and less red meat (Sandercock et al. 2009a). Variations 

in these attributes of the muscle are important commercially and are related to 

aspects of muscle and meat quality (see below).  

1.4.1 Effect of pre-slaughter stress conditions on physiological 

parameters 

Pre-slaughter stress conditions like catching, crating, transportation and exposure to 

high ambient temperature are known to have harmful effects on bird health, 

production and welfare. Stressful stimuli elicit a series of consequences such as an 

increase in plasma corticosterone concentrations (which ultimately increase plasma 

glucose), a high heterophil : lymphocyte ratio and higher plasma activities of some 

enzymes like lactate dehydrogenase (LDH) and CK, good indicators of muscle 

damage and stress (Sandercock et al. 2006). Effects of heat stress are more severe in 

their extent as compared to the effects of other stressors. In addition to these effects, 

heat stress causes hyperthermia, hypocapnic alkalosis (due to panting), disturbances 

in acid-base balance, changes in electrolytes levels, and heat-stress-induced 

myopathy (Mitchell et al. 1994; Sandercock et al. 2001).  
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Mitchell and Sandercock, (1995) studied the effects of acute heat stress on the 

plasma profile of creatine kinase isoenzymes in broiler chicken. They subjected the 

broilers to acute heat stress (32.6°C and 94%RH) for 90 minutes and observed an 

increase of 2.8°C in deep body temperature and 24% increase in plasma CK activity. 

They further reported that the comparatively greater increase in the plasma level of 

MM-CK isoenzyme may be due to a higher proportion of muscles in the body or to a 

higher sensitivity of muscles to higher ambient temperatures, effects that may be 

related to limited sarcolemmal integrity (Mitchell & Sandercock 1995b; Sandercock 

et al. 2009a). 

High environmental temperature causes a decrease in breast muscle glycogen level, 

but increases plasma concentrations of glucose and albumin. Crating broilers at high 

temperature also increases the impact of heat stress, indicated by increases in 

heterophil: lymphocytes (H:L ratio), an indicator of heat stress. Crating temperature 

has no effect on tonic immobility (TI) duration, a measure of fearfulness, and TI has 

no relationship with meat quality (Aksit et al. 2006). High ambient temperature 

during rearing and crating reduces the moisture content of broiler breast muscles and 

glycaemia and glycolytic potential of thigh muscle (Debut et al. 2005). 

Yalcin et al., (2004) investigated the age-related effects of catching, crating, and 

transportation at different seasons on body temperature and physiological blood 

parameters in broiler chickens. They reported that increases in age, (mainly due to 

the associated increases in body mass) have positive effects on physiological 

responses of birds to pre-slaughter stress conditions. Crating caused the highest 
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increase in rectal temperature, in parallel with stocking density, as compared to 

catching and transportation. It was also found that young broilers (<42 d of age) 

were more susceptible to transportation stress, whereas crating appeared to be a 

major stressor in older birds (>49 d of age).  

Debut et al., (2009) studied the effects of shackling and acute heat stress on 

behavioural and physiological responses in a slow-growing line, ‘French Label 

Rouge’, (SGL), a fast-growing standard line (FGL) and a heavy line (HL). Birds 

were slaughtered at the same body weight and exposed to three pre-slaughter 

treatments, shackling for 2 minutes, exposure to high ambient temperature at 35°C 

and 60%  humidity for 3.5 h and then shackled for 2 min or only shackling for 10 

seconds before stunning (Control). They found higher plasma corticosterone levels 

in treated groups as compared to controls, irrespective of genotype. The struggling 

activity on the shackle line was much higher in SGL birds compared with FGL and 

HL. They also reported that wing flapping duration has negatively correlated with 

blood pH and bicarbonate concentration but positively correlated with the lactate 

contents of breast muscles. Finally, they concluded that pre-slaughter acute heat 

stress and shackling were important stressors for all types of broilers.  

1.5  Heat Stress and muscle damage in broiler 

chicken 

Although there are numerous pre-slaughter stressors, as mentioned above, heat stress 

is the most detrimental for the bird’s physiology, welfare and meat quality. Birds are 
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“heat stressed” if they have difficulty in achieving a balance between body heat 

production and body heat loss (Ali et al. 2008). In the ‘thermoneutral zone’, birds 

can lose heat at a controlled rate using normal behaviour. When the environmental 

temperature rises above the thermoneutral zone, the bird experiences a stress 

condition (Kranen et al. 1998), which can generate acute hyperthermia, the 

production of reactive oxygen species (ROS) that are involved in creating muscle 

damage, along with a reduction in food consumption, lower growth rate, and 

increased mortality (Khan et al. 2011).  

1.5.1 Role of Heat-Stress in amplifying muscle damage through 

production of Reactive Oxygen Species 

Acute heat stress was suggested to be an environmental factor responsible for 

stimulating ROS production (Zuo et al. 2000; Mujahid et al. 2007c) because of 

similarities in gene expression patterns observed following heat stress compared with 

that following exposure to oxidative stress (Salo 1991). Zuo et al. (2000) used laser 

scan confocal microscopy with ethidium fluorescence as a probe for intracellular 

ROS and found that heat stress stimulated intracellular and extracellular ROS 

production, particularly superoxide (O+2) formation, in mouse diaphragm muscle. 

However, there is no direct evidence for the source(s) of ROS production in animals 

exposed to heat stress. Given that the mitochondria serve as the principal source of 

ROS in cells, it is likely that in heat-treated animals ROS are mainly produced in the 

skeletal muscle mitochondria. It is known that heat stress perturbs the balance 

between the production of free radicals of oxygen and their elimination by the 
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antioxidant systems of the body (Lin et al. 2006; Lin et al. 2008). In addition to this, 

heat stress is known to negatively affect the capability of the antioxidant system to 

cope with the overproduction of ROS (Lin et al. 2008). In meat type chickens, heat 

stress enhanced superoxide production in skeletal muscle mitochondria compared 

with laying chickens (Mujahid et al. 2005). In broilers, this increase in superoxide 

production is associated with heat-induced increments in rectal and muscle 

temperatures, leading to significant body weight loss (Mujahid et al. 2005).  

Percentage increases of superoxide production in the presence of carboxyatractylate, 

a specific inhibitor of adenine nucleotide translocator (ANT), were the same for 

skeletal muscle mitochondria from meat-type and laying-type chickens from the 

control or heat-treated group. This indicates the irrelevance of ANT in the regulation 

of reactive oxygen species flux under heat stress conditions (Mujahid et al. 2005; 

Mujahid et al. 2006; Mujahid et al. 2007a). In another study, Mujahid et al., (2007) 

used 3-week-old male broiler chickens and exposed them to acute heat stress (34oC 

for 18 h) while thermo-neutral conditions (25oC) were given to control chickens. 

They isolated skeletal muscle subsarcolemmal mitochondria to study mitochondrial 

malondialdehyde (MDA) and protein carbonyl groups. It was finally reported that in 

heat-stressed chickens, mitochondrial MDA was 2.7 fold higher, and 82 

mitochondrial proteins were oxidized compared with that of control chickens. These 

results indicated that increased mitochondrial ROS production leads to oxidative 

damage to mitochondrial lipids and proteins. 
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In a similar study Mujahid et al., (2006) observed that oxidative stress in heat-treated 

broilers was coupled with the down-regulation of avian uncoupling protein (avUCP) 

in broiler skeletal muscles. The results indicate that the overproduction of ROS by 

mitochondria can be minimised by the appropriate expression of avUCP in broiler 

muscles. This anti-oxidant property of avUCP could be helpful in reducing the 

negative effects of heat-stress on muscle function and metabolism (Mujahid et al. 

2007a). Azad et al. (2010) studied the effects of chronic heat-stress on performance 

and oxidative damage in different strains of chicken. They observed that exposure of 

broilers to chronic heat-stress resulted in greater depression of growth, than layer 

chickens, due to greater oxidative stress in broilers. But it was also reported that the 

extent of oxidative stress was not as severe as in the case of acute heat-stress.  

Although chronic heat stress was involved in lipid peroxidation and the MDA level 

was augmented in broiler breast muscles it was also observed that mtDNA copy 

number was not affected by chronic heat exposure (Azad et al. 2010a). Similarly, it 

was also reported that gene expression and the protein content of uncoupling protein 

(avUCP) are generally lower in skeletal muscle mitochondria of meat-type than 

laying-type chickens (Toyomizu et al. 2011). 

Normally there is a defence system in the body against the oxidative stress that 

comprises both enzymatic and non-enzymatic antioxidants. These antioxidants 

normally scavenge free radicals of oxygen and maintain a stable redox state. 

Superoxide dismutase (SOD) and glutathione peroxidise (GPx) are the enzymes 

mainly involved in antioxidant functions in the body. Superoxide dismutase 
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catalyzes the conversion of O2 (superoxide) to hydrogen peroxide (H2O2), which is 

then reduced to water by some scavenging enzymes (such as catalase and glutathione 

peroxidase) (Finkel & Holbrook 2000; Chang et al. 2007). Chronic heat stress 

resulted in a significant increase in the activity of both SOD and catalase enzymes, 

but no significant change was observed in the activity of GPx (Azad et al. 2010a; 

Azad et al. 2010b). Thus, these finding suggest that during the phase of chronic heat 

stress, the antioxidant scavenging system is built up and activated to some extent 

which might be responsible for reducing the extent of oxidative stress and ultimate 

damage to the muscles (Azad et al. 2010a).  

1.6 Effect of Acute Heat Stress on Heat Shock Protein 

70 (Hsp 70) 

Exposure of organisms to different thermal and non-thermal stressors, for example 

exposure to heavy metals, oxidants, toxins, bacterial and viral infections (Morimoto 

1993) and feed deprivation, reduce the synthesis of most proteins, but at the same 

time rapid increases in the synthesis of a group of highly conserved proteins, known 

as heat shock proteins (HSP), have been observed (Al-Aqil & Zulkifli 2009). The 

most important functions of HSP is to protect organisms from the toxic effect of 

heating (Katoh et al. 2004). HSPs play crucial roles in protein synthesis, transport, 

protein folding and unfolding (Salo 1991) and the refolding of damaged proteins 

(Zhen et al. 2006). 
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In the synthesis of HSP, a transcription factor known as heat shock factor (HSF) in 

eukaryotic cells is involved in transcriptional activation of heat shock genes. In 

normal circumstances (unstressed cells), HSF is distributed in both the cytoplasm 

and nucleus in a monomeric form, which is inactive and has no DNA binding 

activity. In response to heat stress and other physiological stresses, HSF molecules 

unite and assemble into a trimer and accumulate within the nucleus (Morimoto 

1993). Activation and binding of HSF to the heat shock element (HSE), a specific 

DNA recognition sequence located in the 5-flanking sequences of heat shock-

responsive genes, is completed very quickly upon exposure to high temperature. This 

binding between HSF and DNA does not always correlate with transcriptional 

activity, which suggests the presence of multiple steps in the activation process. HSF 

also undergoes a stress-dependent phosphorylation that may affect its activity. 

Prolonged exposure of cells to intermediate heat shock temperature (42oC), or on 

returning to physiological temperature (37oC) results in attenuation of the heat shock 

transcriptional response; this attenuation leads to the conversion of the active 

trimeric form of HSF to the inactive monomeric form, and finally a return to the 

normal subcellular distribution. However, prolonged exposure to elevated 

temperature (43oC) results in sustained transcription of the heat shock genes 

(Fujimoto & Nakai 2010; Hao et al. 2012; Yuan et al. 2012) and prolonged HSF 

DNA binding activity, as shown in Figure 1.3 (Morimoto 1993). Of the many 

expressed HSPs, those with a molecular weight of approximately 70 kDa appear to 

be most closely associated with heat tolerance. It is also reported that the heat shock 

response occurs in a large number of tissues. Amongst all members of the 70 kDa 
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family, the one that has attracted most attention is heat shock protein 70  (Hsp 70) 

(Yu et al. 2008). 

Yu and Bao (2008) studied the expression and localization of heat shock protein 70 

(Hsp 70) and its mRNA in the heart, liver, and kidney of broiler chicken exposed to 

acute thermal challenge (37°C) for various times. During the exposure to heat stress, 

the heart, liver and kidney of broiler chickens exhibited maximum expression of Hsp 

70 mRNA after a 2 hour heat stress. A significant increase in the level of Hsp 70 was 

observed after 2, 3 and 5 hours of exposure to high temperature in the heart, liver and 

kidneys, respectively, indicating the variations in stress-induced responses of 

different tissues. 
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Figure 1-3 A model of Heat Shock Factor (HSF) regulation. In the 
unstressed cell, HSF is maintained in a monomeric, non-DNA binding 
form through its interactions with hsp70. Upon heat shock or other 
forms of stress, HSF assembles into a trimer, binds to specific 
sequence elements in heat shock gene promoters (3), and becomes 
phosphorylated (4). Transcriptional activation of the heat shock genes 
leads to increased levels of hsp70 and to formation of an HSF-hsp70 
complex. Finally, HSF dissociates from the DNA and is eventually 
converted to non-DNA-binding monomers (Morimoto 1993). 

 

Zulkifli et al. (2009) investigated the effects of acute heat stress and crating on blood 

parameters and Hsp 70 expression in broiler chickens differing in their fear levels. 

They subjected the birds to either crating or heat challenge (34°C) for 3 hours and 

observed raised levels of heterophil/lymphocyte ratios in both low fear (LF) and high 

fear (HF) birds whereas plasma corticosterone concentrations were higher in HF than 
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LF broilers. There was no difference in Hsp 70 before heat stress between the two 

groups but after exposure to heat stress (3 h) a greater response was observed for the 

HF as compared to the LF group.  

Effects of housing systems and early age feed restriction on Hsp 70 expression and 

blood parameters in broiler chickens were studied by Al-Aqil and Zulkifili (2009). 

The birds were subjected to crating and transportation for 6 h on day 42 and birds 

raised in open-sided house and feed restricted had smaller increases in 

heterophil:lymphocyte ratios and plasma corticosterone concentrations  than those in 

a controlled environment and fed ad-libitum. Greater expression of Hsp 70 was 

observed for the open housed birds after transportation than control housed birds, 

and similarly the feed restricted birds exhibited greater Hsp 70 expression than ad-

libitum fed birds. Finally, they concluded that the increased tolerance to transport 

stress in open housed and feed restricted chicks may be associated with greater Hsp 

70 expression (Zulkifli et al. 2009). 

1.7  Role of cations in muscle damage in broiler 

Calcium ions (Ca2+) have an important role in skeletal muscle functions. A 

physiological increase in mycoplasma free Ca2+ affects numerous cellular processes 

(e.g., excitation-contraction coupling). Sustained and unchecked increases in 

myoplasma Ca2+ activate several degenerative processes within the cell, which cause 

cellular damage in skeletal muscles (Duncan and Jackson, 1987; Jackson, 1993).  

Raised intracellular calcium inhibited mitochondrial oxidative phosphorylation and 
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increased lactate production. The CK efflux from skeletal muscle cells in these 

situations is known to be a result of disruption in sarcolemmal integrity, caused by 

increase in mycoplasma Ca2+ (Sandercock and Mitchell, 1998; Sandercock et al., 

2001).  A raised level of myocellular sodium concentration causes an increase in the 

mycoplasma Ca2+ concentration, which then leads to alterations in sarcolemmal 

integrity and efflux of CK.  The Na+-induced increase in myocellular calcium may 

be mediated via direct extracellular Ca2+ entry or redistribution from internal Ca2+ 

stores (Sandercock & Mitchell 2004).   

Raised intracellular calcium may induce metabolic disturbances and cellular damage 

including changes in membrane integrity by a number of mechanisms and mediators 

(Mitchell, 1999). One such mediator, causing alteration in sarcolemmal integrity 

may be the activation of the Ca2+-dependent membrane associated enzyme 

phospholipase A2 (PLA2) (Jackson, 1993; Jackson et al., 1984). An increase in 

intracellular Ca2+ leads to the activation of PLA2 enzyme (Mitchell et al. 1994; 

Sandercock & Mitchell 2003) which ultimately results in hydrolysis of lipid, present 

in cell membrane, and generation of pro-inflammatory intermediates such as 

prostaglandins, thromboxanes, and membrane-damaging lysophospholipids (Kramer 

and Sharp, 1997). Inhibition of phospholipase activity decrease the protein loss from 

metabolically inhibited mouse skeletal muscle (Jackson et al. 1984).  

The role of Ca2+-activated PLA2 in the mechanism of skeletal muscle damage in 

broiler chickens was investigated by Sandercock and Mitchell  (2003) in vitro using 

a novel, synthetic, PLA2-specific inhibitor Ro31. They found that treatment with the 
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specific Ca2+-ionophore resulted in a 72% increase (P< 0.05) in muscle 45Ca2+ 

accumulation, which led to a 7.6-fold increase (P< 0.001) in muscle CK efflux. 

However, incubation of ionophore treated muscles with Ro31 (50 μM) resulted in a 

45% reduction (P< 0.001) in CK efflux, but no effect on 45Ca2+acumulation was 

observed.  

Disturbances in cellular sodium (Na+) homeostasis are considered to be involved in 

the development of cellular damage, mainly by interacting with Ca+2 ions.  

Depending on the Na+ gradient, the membrane-localized Na+/Ca2+ exchange pump 

can cause translocation of  Na+ and Ca2+ in opposite directions (Sandercock & 

Mitchell 2004). Mitchell and Sandercock, (1994) studied myotoxicity by monensin 

(a polyether carboxylic-ionophore antibiotic) and its relationship with monensin-

induced sodium influx and calcium accumulation in skeletal muscle cells. They 

concluded that monensin myotoxicity is mediated by disturbances in intracellular 

calcium and sodium homeostatic levels subsequent to enhanced sodium entry, 

possibly through sodium-calcium exchange and disruption of sarcolemmal integrity 

due to lipid degradation. They also reported a high positive correlation (r2=0.91) 

between CK efflux and intracellular calcium concentrations. 

1.8  Meat Quality 

The quality of poultry meat can be divided into several attributes, namely the sensory 

(colour, tenderness, flavour, juiciness) and the physical (muscle yield, water-holding 

capacity, and cooking loss) attributes of meat. These quality criteria vary with 
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growth rate and body composition and are mainly determined by post-mortem 

metabolism and its effect on the colour and water-holding capacity of the product 

(Duclos et al. 2007). 

The rate and the extent of decrease in pH have a strong effect on both organoleptic 

and technological parameters of meat quality. After slaughtering, the muscles have 

to rely on the anaerobic glycolytic pathway to use the intramuscular glycogen stores 

for ATP regeneration, which leads to the accumulation of lactic acid and protons. In 

this way, the acidification process depends mainly upon the amount of glycogen 

stores (estimated by the glycolytic potential) and the rate of the glycolysis (Duclos et 

al. 2007). 

In the chicken, normal pH values at 15 min post-slaughter (pH15) are around 6.2 to 

6.5, and normal ultimate pH (pHu) values are around 5.8 (Fletcher 1999). If the pH15 

value is less than 6.0, when the muscles are still warm, the proteins are subjected to 

denaturation, which leads to poor water-holding capacity and decolouration of the 

meat. These types of meats are often characterised as pale, soft and exudative (PSE) 

meats and have poor technological yield (Owens et al. 2009). Although PSE meats, 

in the raw form, exhibit a soft texture, after cooking they tend to be less tender, due 

to excessive exudation (McKee & Sams 1997). Acid muscles are characterized by a 

low ultimate pH (pHu < 5.7), which induces structural changes in the muscles with a 

decrease in the technological processing ability. Artificially acidifying turkey meat 

induces a destruction of the myofibrillar network, which also induces a marked 

decrease in water-holding capacity. On the other hand, muscle with high ultimate pH 
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also show defects in their colour, texture, and water-holding capacity. Muscles with 

high pHu are considered as dark, firm, and dry (DFD) and show enhanced water-

holding capacities, and an increased sensitivity for microbial development (Barbut 

1997).  

1.8.1 Genetic selection and meat quality 

Genetic selection has an important role in controlling meat quality represented by a 

number of meat related traits such as pH15, pHu, lightness (L*), redness (a*), 

yellowness (b*), drip loss (water retention ability), thawing and cooking loss, and 

tenderness. It is generally considered that genetic selection for growth-related traits 

is associated with some negative effects on meat quality in broiler chicken. 

Sandercock et al., (2009) measured meat quality parameters in broilers, layers and 

traditional breeds in a multi-strain experiment. They observed that the breast muscles 

from broiler lines were lighter and less red and had greater haemorrhages compared 

with breast muscles of layer and traditional breeds, which were similar. Moreover, 

moderate (total) heritability estimates (averaging 0.3), were found for the above 

mentioned traits. Glycogen reserves of the breast muscles are highly heritable (h2 

=0.43) and a strong negative correlation (-0.97) was measured between pHu and 

glycolytic potential that suggests a common genetic control for these traits; breast 

weight was negatively correlated with glycogen reserves and had a positive 

correlation with fibres size (0.76) and pHu (0.84) (Le Bihan-Duval et al. 2008a).  
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Genetic parameters of meat characteristics and their correlation with growth and 

body composition were studied by Le Bihan-Duval et al. (2007) in an experimental 

broiler line. They found that colour parameters of meat were the most heritable traits, 

with a heritability range from 0.50 to 0.57; the estimated heritability for drip loss 

(DL) was 0.39 and for the pH of the meat (ranging from 0.35 to 0.49). They also 

reported extremely low estimates for the genetic correlation between pH15 and extent 

of decline of final pH suggesting that they are controlled by different genes. In 

contrast,  the very high negative correlation of pHu with lightness (-0.91) and water 

holding capacity (-0.83) suggests relevant selection criteria for better quality meat 

(Aksit et al. 2006; Chabault et al. 2012); it has been reported that remarkable 

improvement in meat quality can be achieved by using pHu as a selection criteria in 

future breeding programmes (Chabault et al. 2012). Similarly the negative genetic 

correlation of breast muscle weight with L* values, tenderness and a negative 

correlation between pHu and L* values have been reported by Yalcin et al. (2005). 

However, there are quite a few reports in the literature which conflict with these 

findings. Le Bihan-Duval et al. (2001) reported that genetic selection for growth-

related traits in chicken was not found associated in having adverse effect on breast 

meat quality; though it has caused a decrease in colour intensity of breast meat. 

Consistent with this Berri et al., (2007) investigated the effects of selection for 

improved body composition on quality of broiler meat and reported that selection has 

resulted in higher protein but lower moisture contents and pigment in breast meat, 

leading to paler colour of breast fillet. A lower rate of fall and extent of pHu decline 
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was found in the selected line, as compared to the respective control, due to 

decreased glycolytic potential. They also rejected the hypothesis that selection for 

improved body composition has negative effects on meat quality. These results are in 

agreement with the finding by Le Bihan-Duval et al. (2007) who found a poor 

genetic correlation of body weight and breast meat yield with pH at 15 min and 24 

hours post-mortem, indicating that improvements in body weight are not related to 

any decrease in meat quality. In another study, Berri et al., (2005b) reported that 

faster growing birds are more suitable for further processing in terms of their low 

water holding capacity, texture, and tenderness. 

 However, in contrast with these reports Le Bihan-Duval et al., (1999) found that 

genetic selection for body weight resulted in paler (less red and yellow) meat in 

selected lines of chicken compared with the control lines. Berri et al., (2001) also 

reported that selection for increase growth rate and body weight resulted in 

decreased haem pigments of breast muscles and to a less red and more pale colour.  

Genetic selection is also considered to be associated with muscle defects such as 

focal myopathy and susceptibility to heat-stress induced myopathy in meat-type 

birds compared with egg-type birds which may be related to the greater diameter of 

myofibres in broilers. Genetic selection for increased embryonic muscle fibre 

numbers, rather than for increased radial fibre growth, could help in improving 

growth potential and in preventing muscle damage (MacRae et al. 2007).  
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In recent years several quantitative trait loci (QTLs) for traits related to meat quality 

have been reported. Nadaf et al., (2007) identified some QTLs for meat quality traits 

by crossing two divergently selected lines for body weight and abdominal fat (fast 

growing line × slow growing line). The fast growing line showed low values for 

pH15, pHu, redness and yellowness of breast meat but higher values for lightness 

compared with the slow growing line. They found 5 significant QTLs, 2 QTLs for 

pH15, on linkage groups GGA1 and GGA2, 1 for drip loss on GGA1, 1 for redness 

and 1 for yellowness of breast meat, both on GGA11. In addition to this, they also 

found 4 suggestive QTLs for yellowness, pH15, pHu and drip loss (DL) on linkage 

groups GGA1, GGA4, GGA12 and GGA14, respectively.  

The refinement of the yellowness QTL, on chromosome 11, along with the 

combination of gene expression QTL technique led to the identification of a 

candidate gene BCMO1, encoding β-carotene 15 (Le Bihan-Duval et al. 2011). 

Moreover, it was also found that 2 single nucleotide polymorphisms (SNP) in the 

promoter region were responsible for a 3-fold increase in the expression of BCMO1 

gene causing a substantial difference in the meat yellow colour, by altering the 

carotenoid contents of the breast meat (Le Bihan-Duval et al. 2011). 

However, it has also been reported that there is a significant amount of variation in 

the colour of breast filets in the different broiler lines. Keeping in view the economic 

importance of these meat quality traits, their moderately high heritability estimates 

and the rapidly increasing body of literature about meat quality traits, it seems 

logical  that genetic selection could be helpful in reducing the variability of these 
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traits among different lines of broiler leading improved  meat quality (Sandercock et 

al. 2009b).  

1.8.2 Effect of pre-slaughter stress on meat quality 

Ante-mortem stressors like exposure to high temperature, catching, crating, 

transportation, and struggling on the shackle lines are major stressful factors 

affecting (negatively) the physiology and meat quality of chickens, especially broiler 

birds (Petracci et al. 2001). Crating, transportation and heat stress are associated with 

an increase in rectal temperature, plasma uric acid  and glucose concentrations, 

heterophil: lymphocyte ratio and creatine kinase activities, especially in older birds 

(perhaps due to higher body mass) (Yalçin et al. 2004) but transportation has more 

adverse effects in younger birds (Yalcin et al. 2005). Crating and transportation of 

broiler chickens, prior to slaughter, resulted in an increase in plasma corticosterone 

concentration and also affected thigh meat colour, but no effect was found on breast 

meat quality (Kannan et al. 1997b). The stress, whether induced hormonally (by 

ACTH) or by exposure to elevated temperature, causes losses in the form of 

decreased meat yield and poor meat quality (Tankson et al. 2001).  

Acute heat stress caused greater reduction in thigh muscle quality compared with 

breast muscle, especially in fast growing lines of chicken (Debut et al. 2005). This 

reduction in meat quality is attributed to lower final pH, paler meat and lower 

cooking yield of thigh muscles. Breast (glycolytic), muscle on the other hand, were 

more susceptible to bird activity on the shackle line, such as wing flapping. High 
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bird activity led to more rapid fall in pH due to accelerated post mortem glycolysis, 

which suggest that breast meat quality of fast growing birds should be better 

compared with slow growing birds, due to their increased struggling during 

slaughtering (Debut et al. 2003; Debut et al. 2005). In contrast to this, Nadaf et al.,  

(2007a)  reported that fast growing birds were more active on the shackle line that 

might exacerbate the effects of heat-stress and lead to pale, soft, and exudative 

(PSE)-type meat in broilers. Struggling of the birds on the shackle line has a strong 

negative relationship with pH at 15 min post-slaughter of the breast muscles.  The 

decline in pH15 also has a moderate negative correlation with the glycolytic potential 

of breast muscles. High glycolytic potential is associated with lower pHu, higher L* 

and drip loss (Berri et al. 2005a). Shackling time increased the plasma corticosterone 

concentration and also affected the colour of the breast fillet (Kannan et al. 1997a).  

In addition to shackling stress, there are some other stressors which are known to be 

involved in significantly reducing meat quality. High ante-mortem temperature is 

more detrimental to chicken meat quality than low ante-mortem holding temperature. 

Exposure of broiler birds to acute heat stress causes hyperthermia, respiratory 

alkalosis, disturbances in acid/base balance and reduction in muscle membrane 

integrity, indicated by higher plasma CK activities (Sandercock et al. 2001; 

Sandercock et al. 2006). An increase in the age of birds increases the magnitude of 

these adverse effects by changing the metabolism of breast muscles, indicated by 

lower pHi (immediately after slaughter), higher water loss and more haemorrhages in 

breast muscles (Sandercock et al. 2001). Haemorrhage severity is not related to 
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growth rate and body weight, and there are multi-factorial causes of haemorrhages 

(Kranen et al. 1998). 

Petracci et al., (2001) studied the effects of ante-mortem holding temperatures on 

live shrink losses, processing yields, and breast meat quality in broiler chickens, at 

six weeks of age.  Before slaughtering birds were held at three different temperatures 

25°C, 29.5°C, and 34°C for 12 hours and it was found that birds held at 34°C 

exhibited significantly greater live shrink losses and lower processed carcass yield. 

After 2 and 24 h post-mortem, the breast meat was removed in order to determine 

meat pH, R-value (an estimate of status of rigor mortis), sarcomere length, meat 

colour (lightness, redness, and yellowness), cooked yield, and tenderness (shear 

force). They reported higher redness, yellowness and R-values but lower cooked 

meat yield and shear value for the breast meat harvested at 2 h post-mortem, for the 

birds held at 25°C, whereas breast meat removed 24 h after slaughter, exhibited 

higher pH, R-values, and redness at the same temperature conditions. Pre-slaughter 

holding of broiler birds at high temperature increased live shrink losses and reduced 

breast meat quality (Holm & Fletcher 1997).  

Pale, soft, exudative meat is a growing challenge for the poultry industry.  It is the 

result of rapid post-mortem pH decline and loss of protein functionality, which is 

due to accelerated post-mortem glycolysis especially when carcass temperatures are 

still high  (Owens et al. 2000; Petracci et al. 2009). It has been reported that meat 

with low pH (initial and ultimate), excessive water loss, and more light/pale colour 

represent from 5 to 40% of the total meat production of the poultry industry and its 
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incidence increased with the increase ambient temperature to which birds were 

exposed (Petracci et al. 2009). It has also been estimated that due to the rising 

incidence of PSE meat, a single turkey processing plant could be losing $2 to 4 

million per year, resulting in a loss in excess of $200 million by the turkey industry 

alone in the USA (Owens et al. 2009). No evidence of the genetic basis for the PSE 

syndrome has been found for the turkey or broiler chicken. PSE meat in poultry 

presents the same characteristics as those described for pigs like very pale colour, 

higher tenderness and poor water-holding capacity (Remignon & Le Bihan-Duval 

2003) but is not thought to be affected by the ryanodine receptor, as in case of pig 

(Prof M.A. Mitchell, personal communication).  

1.9  Strategies to minimize the effects of heat-stress 

on muscle damage and meat quality in chicken 

It is considered that heat-stress results in production of ROS in skeletal muscle 

mitochondria which ultimately leads to muscle damage and reductions in meat 

quality in chicken. Vitamin C (ascorbic acid) and vitamin E (α-tocopherol) are  well 

known for their  antioxidant role  (Nain et al. 2008) and they also act synergistically 

in the body (Sahin et al. 2002). Due to this property they are commonly used as feed 

supplements in diets of human and many animal species to reduce oxidative stress 

and inflammation induced damaged to tissues (Huey et al. 2008).  Vitamins C, α-

tocopherol and dantrolene sodium are also involved in reducing the stress-induced 

increase in creatine kinase efflux and calcium accumulation, and ultimately muscle 

damage. It is proposed that α-tocopherol may offer a valuable protective role against 
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stress-induced skeletal muscle damage in broiler chickens (Mitchell et al. 1994; 

Sandercock & Mitchell 1998; Mitchell 1999).  

Voljc et al., (2011) investigated the effects of different levels of vitamin E 

supplementation and bioactivity of different isomers of α-tocopherol in broiler diets 

on oxidative stress and oxidative stability of broiler meat. Different groups of 

broilers were fed high fat diets with or without supplementation of vitamin E to 

contain in total 85 or 200 IU of vitamin E. DNA damage and MDA level in plasma, 

liver and breast muscles were measured to determine the extent of oxidative stress in 

vivo.  MDA levels were also measured in fresh, stored, and heat-treated breast meat 

to determine the oxidative stability of the meat. It was concluded that concentrations 

of both isomers of vitamin E were not sufficient to prevent all deleterious effects of 

lipid peroxidation on muscle physiology in vivo and on breast meat. Therefore, 

higher levels of vitamin E supplementation were proposed to ensure the good 

stability of meat lipids especially after heat treatment. Supplementation of vitamin E 

and vitamin C resulted in substantial decreases in serum levels of glucose, 

cholesterol and ACTH (adrenal corticotrophin hormone), an indicator of stress in the 

body. It also significantly reduced the MDA level in serum of layer chickens reared 

under high ambient temperature (Sahin et al. 2002). 

Huey et al., (2008) studied the effects of vitamin E supplementation on the 

expression of pro-inflammatory cytokines in mouse skeletal muscles challenged by 

inflammation causing substances. They reported that vitamin E resulted in reduced 

oxidation of proteins and the extent of inflammatory response (production of 

inflammatory cytokines) was also decreased. Chang et al., (2007) also demonstrated 



Chapter 1 Introduction 

  36 

that vitamin E supplementation augmented the activity of naturally occurring 

antioxidant enzymes in the body like SOD in the skeletal muscle to reduce oxidative 

stress. However, it was also reported that high doses of vitamin E supplementation 

are related to some negative effects and can increase mortality (McGinley et al. 

2009). Similarly, Mujahid et al., (2009) reported that an olive-oil supplemented diet 

resulted in augmented expression of avUCP in skeletal muscle mitochondria and 

resulted in reduced oxidative stress induced muscle damage.  Vitamin C, vitamin E, 

dantrolene sodium and olive-oil are known to have some anti-stress and anti-oxidant 

effects on skeletal muscles of heat-stressed broiler birds but are not ideal and 

sustainable solutions of the problem. It is not always possible to supplement broiler 

feed with these ingredients and even if these supplements have been added to broiler 

diet then, in addition to increasing the cost of production, they might not prevent 

muscle damage and improve meat quality in all cases.  

1.10 Objectives of the Project 

The presence of higher incidence of muscle damage in meat-type chicken and its 

further exacerbation in response to various  pre-slaughter stressors especially acute 

heat-stress suggest that genetic selection for growth-related traits has resulted in 

reducing the muscle and meat quality of broilers. Therefore, in the present project, it 

was decided to use heat stress as a tool to further amplify the expression of the genes 

involved in muscle pathology and to help identify candidate genes. The candidate 

genes were subsequently used to select a list of genetic markers (SNPs), responsible 

for causing this pathology and affecting meat quality, which could be used in future 
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breeding programmes to ameliorate muscle damage and improve meat quality in 

chicken. An outline of the thesis chapters is given in Figure 1-4.
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2.1 Introduction 

Modern broilers are characterised by their faster growth rate and better feed 

conversion ratio (FCR) compared with layers and traditional breeds. As a result of 

genetic selection for growth-related traits the current broiler strains show at least a 

three-fold improvement in their growth rate and FCR relative to broilers fifty years 

ago. Current broilers can reach a body weight of 3 kg at market age but fifty years 

ago broilers could only achieve one fifth of this on the same feed (Havenstein et al. 

2003). The increase in body weight of modern broilers is attributed mainly to the 

growth of breast muscles, pectoralis muscles (Pm), and to some extent to the thigh 

muscles, bicep femoris (Bf) (MacRae et al. 2006; Sandercock et al. 2009b). 

However, skeletal muscles of modern broilers are characterised by higher levels of 

pathological muscle damage indicated by their higher plasma creatine kinase activity 

compared with their genetic predecessors and egg-type chickens (Mitchell et al. 

1994; Sandercock et al. 2009a; Sandercock et al. 2009b).  

There is a higher incidence of spontaneous and stress-induced myopathies in broiler 

skeletal muscles (Mitchell et al. 1999a; MacRae et al. 2007), which may partly be 

due to the greater diameter of muscle fibres so that the cells are unable to  absorb 

sufficient oxygen and nutrients from blood and similarly are unable to get rid of their 

waste products. This muscle damage is further exacerbated by different pre-slaughter 

stressors like catching, crating, shackling and heat stress; of these stressors, heat-

stress is the one which can be controlled most readily in an experimental setting. 

Therefore, it was decided to use heat-stress as a tool to amplify the muscle pathology 

together with gene expression profiling in order to identify the genes underlying 
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these changes. Some pilot projects were run before starting the actual project in order 

to optimise the protocol for the final experiment (Details in Appendix-1.1) and an 

outline of the steps described in this chapter is presented in Figure 2-1. 
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Figure 2-1 Work Flow Diagram of Chapter 2 showing the experimental 
outline, with 4 chambers for exposing the birds to 2 treatments 
randomly on alternative days. Each chamber had 4 crates, each holding 
2 birds of each breed and sex (4 x 2). RNA samples extracted from the 
breast muscles were used in the microarray experiment.  
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2.2 Materials and Methods 

2.2.1 2.2.1 Rearing of birds and data collection 

In this experiment, 80 broiler chicks (male line Ross-308, from a commercial 

hatchery) half male and half female, and 74 layer chicks (White Leghorn), hatched at 

the Poultry Unit, The Roslin Institute, were obtained. For the first two weeks, birds 

were randomly reared in groups of 20 birds per pen; broiler birds were reared with 

the different sexes in separate pens but layer birds were reared in mixed sex groups. 

At the end of week 2, layer birds that had been genotyped for gender (the sexing 

protocol is detailed in Appendix-2.2) were separated into pens by sex in a completely 

randomised design. Birds were reared to 6 weeks of age, fed on a layer starter diet on 

an ad libitum basis, and given a daily photoperiod of 16 hours light and 8 hours 

darkness. 

Feed intake and body weight of the birds were measured on a weekly basis. After six 

weeks half the birds were subjected to heat stress and the other half to “cool” normal 

conditions as described below over 4 days from 42 to 46 days of age. 

There were 16 pens in total, each with 8-10 birds; 4 pens were randomly selected on 

each day and the birds were transferred into controlled environment chambers. There 

were 4 chambers in total and out of these, 2 chambers were used for the heat 

treatments (32°C, 75% RH) and 2 for the control (21°C, 50% RH) on each day. 

Treatments were randomised to chambers on 4 successive days (Appendix-2.1, 

Table-1). Each chamber had 4 crates, each containing 2 birds (from the same pen) 
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each line and sex and the order of the pairs (crates) in each room was also 

randomised (Appendix-2.1, Table-2) crates were at the same floor level (on a 

wooden pallet). 

About 30 minutes before the birds were transferred to the chambers, the relevant 

chamber was turned on so that it could get to the required temperature and humidity 

before birds were placed into the chamber for 2 hours. Each chamber was turned on 

and populated with birds with an interval of 45 min between successive chambers to 

allow for sampling the birds placed in the former chamber at the end of the treatment 

period. In this way, 32 birds were subjected to treatments on each of the 4 days and 

in total 128 birds were used in the experiment. 

After completing the 2 h treatment, birds were taken out and their rectal temperatures 

were measured using a thermistor probe (Model 612-849; RS Components Limited., 

Corby, Northants, UK). A blood sample (2 ml) was taken from the brachial vein of 

each bird, using a sterilised and disposable 5 ml syringe, for subsequent determining 

plasma creatine kinase (CK) activity. Birds were euthanised by an intravenous 

injection of sodium pentobarbitone into the wing vein. The birds were deemed dead 

when there was cessation of visible respiratory movements and then birds were 

weighed. Two tissue samples each with a weight of 100-120 mg were taken from left 

pectoral muscle of each bird for subsequent RNA extraction.   

For RNA extraction, samples were randomised prior to extraction and 8 of the 

randomised samples were used in one extraction. The protocol for RNA extraction is 

outlined in Appendix-2.3. After extracting the RNA for all of the 128 birds, the 
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concentrations of RNA solutions of the broiler males (to be used on the microarray) 

were determined using the Nanodrop procedure. The RNA samples were subjected 

to a Quality Control test (Appendix-2.4). The RNA samples were diluted to have the 

same concentration (50 ng/μl) and 20 μl aliquots from each sample were used for 

pooling the samples, in pairs, on the basis of same day, chamber and crate.  

2.2.2 Statistical analysis 

The experiment (comparing two breeds at the same age) was a 2 × 2 × 2 factorial 

design (breed × sex × treatment), with day/chambers/crates as blocking factors. 

Standard analysis of variance methods were used to analyse the data, with body 

temperature and body weight as the Y-variate (one by one), using GenStat 

(http://www.vsn-intl.com/genstat/). 

2.3  Results 

The data were analysed in GenStat with ANOVA using a balanced design with Day, 

Chamber and Crate as strata and testing for breed (broiler, layer) sex (male, female) 

and treatment (control, heat stressed) as fixed effects as well as their interactions. 

The assay for creatine kinase activity did not provide reliable results and the data are 

not presented. 

2.3.1 Body Temperature 

An increase in body temperature was recorded at the end of experiment for the heat 

stressed birds (H) that was greater in the broilers than in the layers. The body 
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temperatures of broiler and layer birds in the Control treatment (C) were 40.9°C and 

42.0°C respectively while in the High Temperature treatment (H) they were 43.5°C 

and 42.3°C. 

Exposure to a high thermal load significantly (P<0.001) increased the deep body 

temperature in birds of both breeds. Body temperature showed a significant 

(P<0.001) interaction between breed and treatment (Table 2.1) but other interactions 

(breed x sex) were not significant.  

2.3.2 Body Weight 

Average body weight of broiler and layer birds at 6 weeks of age showed significant 

(P<0.001) Breed x Sex interaction and other interactions (Breed x Treatment) were 

not significant. Average body weight of broiler and layer birds respectively were 

4384 g (M) and 3694 g (F) and 693 g (M) and 559 g (F) at 6 weeks of age. By 

running ANOVA after log transformation, the breed x sex interaction was no longer 

significant, indicating that this interaction was due to a scale effect. 
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Table 2-1 Breed x Treatment interaction of body temperature (oC) of 
male line (Ross-308) and White Leghorn layer birds at 6 weeks of age  
(P<0.001, SED=0.1030) 

 

Treatment Breed 

 Broiler  Layer  

Control 40.931 41.975 

Heat Treated 43.556 42.312 

   

   

Table 2-2 Breed x Sex interaction for average body weight (g) of male 
line (Ross-308) and White Leghorn layer birds at 6 weeks of age  
(P<0.001, SED=69.1) 

 

   

 

  

Sex Breed 

 Broiler Layer 

Female 3694 559 

Male 4384     693 
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2.4 Discussion 

Body temperature for broilers in the control treatment was 1.04°C less than that of 

layer birds. After exposure to acute heat stress there was a significant increase in 

deep body temperature of about 2.63°C in broiler and 0.34°C in layers. The post 

heat-stress body temperature of broiler birds was 1.244°C higher than layer birds. 

These results confirm that genetic selection for broiler traits has decreased the ability 

of broiler birds to cope with the acute thermal challenge that may ultimately lead to 

detrimental consequences for normal body function and can also result in poor 

muscle and meat quality and be associated with adverse effects on their welfare. A 

lower body temperature in broilers compared with layers, in the control treatment, 

has not been observed before and may indicate that the broilers have a lower basal 

metabolic rate. Alternatively the layer may have been more active than the broilers 

as the latter could not move around freely in the crates. However, Debut et al., 

(2005) studied the physiological responses to shackling and heat-stress in 3 lines 

(slow-growing (SGL), fast-growing line (FGL) and a heavy line (HL) of chicken for 

Breed, Treatment, Breed x Treatment. In agreement with us, they reported that 

muscle (breast and thigh muscles) temperature in SGL was significantly higher 

compared with FGL and HL. 

Results of the present study are in agreement with the findings of Sandercock et al. 

(2001) who observed a significant increase in deep body temperature in broiler birds 

at 35 and 65 days of age compared with layers. Consistent with this, Mitchell and 

Sandercock (1995b) also observed similar results by exposing the birds to a high 

thermal load of 32.6°C and relative humidity 94%. This induced a highly significant 
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increase in deep body temperature of 2.8°C (P<0.001) which was accompanied by a 

24 per cent increase (P<0.05) in total plasma CK activity, indicating the 

susceptibility of broilers to heat-stress and also the role of heat-stress in inducing 

muscle damage. 

However, the results for body weight show that programmes of genetic selection for 

different quantitative traits (meat and egg-related traits) in these two types of chicken 

has been very successful in terms of its divergent effect not only on body weight and 

also in increasing the susceptibility to different ante-mortem stressors such as heat 

stress.  

2.5 Conclusion 

These results confirmed that broilers are more susceptible to heat stress compared 

with layers. RNA samples obtained in this chapter from heat stress and control 

broilers and layers were used for the Microarray Experiment (Chapter 3).
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Chapter 3 Microarray Data Analyses 
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3.1 Introduction 

Gene expression analysis has been a subject matter of interest to biologists over the 

past few decades to investigate the involvement of genes of interest under certain 

given conditions. Gene expression of a given set of genes is the measurement of the 

transcription level, transformation of DNA sequence information into RNA 

sequences, for that set of genes. Over the past years, different techniques have been 

employed to study gene expression including northern blot, real-time quantitative 

RT-PCR for a few genes of interest; the advent of microarray technology has made it 

possible to simultaneously monitor the genome-wide expression levels of genes, in a 

given tissue or organ at a given time point. 

The major purpose of designing and using a whole-genome array is to detect the 

differentially expressed genes (DEGs), in relevant tissue types and treatments in any 

given organism, by statistical analysis, and to measure the extent of expression of 

these genes. A microarray slide (also commonly known as a gene chip, DNA chip, or 

biochip) is a glass slide or silicon chip that has a collection of microscopic DNA 

spots (single strand DNA fragments or probes) attached to a solid surface (Leung & 

Carvalieri 2003). The number of DNA probes varies from a few thousand in the 

early cDNA arrays to over a hundred thousand in modern oligonucleotide arrays. 

(Baird 2010).  

There are two types of microarray, one-colour (Affymetrix) and two-colour 

microarray. The sample/target cDNA is labelled with a fluorescent dye or an 
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antibody that binds to a dye. In two colour microarrays, two dyes, a red (Cy5) and a 

green (Cy3) dye are used, whereas in Affymetrix chips an antibody to biotin is used 

(Baird 2010).  The intensity of the scanned measurement shows the result of the 

competitive hybridization between the two samples.  

The layout of Affymetrix chips is more complex than a spotted array or cDNA array. 

On average there are 11 probe pairs for each gene and this set of 11 probe pairs is 

called a probe set for that gene. Each probe pair consists of one perfect match 

oligonucleotide (PM) and a mismatch oligonucleotide (MM). Both of these probes 

are 25-mer in their length. The mismatch probe differs from the perfect match probe 

by a single base substitution in the centre (13th bp) (Jiang et al. 2008a). Probe 

sequences are chosen from the consensus sequence for that gene in publically 

available databases (Robert et al. 1999). The aim of the mismatch probe is to 

determine the background and non-specific hybridization that contributes to the 

signal measured for the perfect match probe. 

3.2 Objectives 

From the review of the relevant literature (Chapter 1) it is clear that many 

physiological mediators are involved in the responses to heat stress including various 

ions, enzymes, ROS etc. It was, therefore, decided to use microarray technology to 

get a comprehensive picture of gene expression in broiler breast muscles, in response 

to heat-stress, in order to help identify the gene candidates for muscle quality and 
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subsequent meat characteristics. An outline of the experimental procedures described 

in this chapter is presented in Figure 3-1. 
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Figure 3-1 Work Flow Diagram of Chapter 3 showing steps of 
microarray data processing and normalisation and their subsequent 
analyses. 
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3.3 Materials and Methods 

3.3.1 Rearing of Birds 

In total 128 birds were reared, that were equally divided into two breeds and two 

sexes (2 x 2 x 32). For the microarray experiment only male birds were used (32 

broiler males and 32 layer males).  Details of rearing and treating the birds are 

described in Chapter 2 section 2.2.1.  

3.3.2 Tissue sample collection and data recording 

Details of tissue sample collection and data recording are given in Chapter 2, section 

2.2.1. After the extraction of RNA from the breast muscle samples, the concentration 

of RNA samples were measured, by using the Nanodrop, and they were diluted with 

deionised and RNAase free water to the final concentration in 50µl for each sample 

individually (details in section 2.2.2). Finally, the RNA samples for the 32 broiler 

male and 32 layer males were pooled on the basis of their treatment, day (sampling 

time), chamber and crate to give 8 replicates of each treatment (breed x treatment).  

3.3.3 Microarray Slides 

The Affymetrix chicken array chips (38.5K) employed in the current experiment 

were comprised of over 38,000 probe sets representing 32,773 transcripts 

corresponding to over 28,000 chicken genes. This Chicken Genome Array also 

contains 689 probe sets for detecting 684 transcripts from 17 avian viruses. In this 
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array 11 pairs of probes were used per gene and all of them were 25-mer in length. 

For hybridization controls three types of biotin (bioB, bioC, bioD from Escherichia 

coli) were used. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), beta-

actin and GAPDH were used as control genes in the assay. The detection sensitivity 

of this array was 1:100,000 (AffymetrixDatasheet 2009), meaning that it can detect 1 

molecule out of 100,000 molecules (http://users.soe.ucsc.edu/~sugnet/microarray). 

The microarray hybridisation was completed by Miss Alison Downing in the 

ArkGenomics laboratory from the RNA samples provided by the author. 

The mRNA was converted to complementary RNA (cRNA) and labelled with biotin. 

The biotinylated cRNA was fragmented prior to hybridisation. After hybridisation 

the arrays were washed, stained and scanned to visualise the spots (Appendix-2.4). 

After scanning, all of the 32 microarray slides were translated to so-called Cel files. 

The 32 Cel files were processed in GenStat to obtain expression values in 4 batches 

8 slides/batch. Each batch contained slides from birds treated on the same day. The 

Robust Multichip Average (RMA) algorithm (Irizarry et al. 2003) was used to 

extract the gene expression data. RMA combines the intensity values from the CEL 

files and the chip information from a CDF file. 

This processing method (RMA), which is also called probe level model, only uses 

perfect match (PM) information and transforms these values according to a kernel 

density estimate of the PM distribution. The processing procedure of RMA 

comprises 3 steps: i) Background correction, ii) Quantile normalization, and iii) 

Summarisation. Finally, the program computed the expression values against each 
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probe on every slide and summarises the expression value for every gene on every 

slide. These steps are explained briefly in Appendix 3-1.  

After processing the Cel files, RMA returned a spreadsheet with 4 columns (Slides, 

Probes, Expression, SE) and 308,280 rows for each set of 8 slides, having expression 

and standard error (SE) for all the 38,535 genes against each slide. All of the 32 

slides were filtered for expression levels greater than 1 which resulted in the 

reduction of the number of probes from 38,535 to 19,038 on each slide. The detailed 

procedure is outlined in Appendix-3.3. Filtered data were used to create a new 

combined spreadsheet for all the 32 slides. 

Another spreadsheet was created within GenStat with 32 rows (one row for each 

slide) and 5 columns containing information on the category of each slide, the slide 

identification, the treatment, day and chamber. The slide, treatment, breed, day and 

chamber were used as factors in an ANOVA (Appendix-3.1). 

The normalised data were analysed by using Microarray One-Channel ANOVA. 

Breed x treatment was used as the treatment structure and the hierarchical structure 

day/chamber/breed was used as the blocking factor.  From these ANOVA results the 

false discovery rate (FDR) was calculated for the three probability values for the 

effects of treatment, breed and their interaction, respectively. FDR was calculated 

using the Mixture Model within GenStat. Maximum iteration cycles were set to 300 

in the FDR calculation. Significant genes showing a breed x treatment interaction (P-

value <0.05) were used for subsequent investigation.  The gene ontology terms (GO 
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terms) for this significant set of genes were downloaded from the NetAffx Analysis 

Centre of Affymetrix (www.affymetrix.com). 
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3.4 Results 

A total of 19,038 genes were statistically analysed in GenStat. From the ANOVA 

analysis 1,873 genes were significant (P< 0.05) for treatment (heat stress vs control); 

10,731 genes were significant for the breed comparison (broiler vs layer); and 2,213 

genes were significant for the breed x treatment interaction, as shown in Table 3.1. 

The results for the interaction showed that 93 genes were significant at P<0.001, 635 

at P<0.01 and 2,213 at P<0.05 levels of significance respectively. The false 

discovery rate (FDR) for 2,213 statistically significant genes (P<0.05) was less than 

31.5% (Appendix-3.2). While the FDR for the significant genes for treatment was 

44% at P<0.05 of significance and for the significant genes for the breeds was 3% at 

P<0.05 level of significance. 
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Table 3-1 Numbers of significant genes (P<0.05) for treatment, breed, 
and breed x treatment interaction 

Level of 
significance  

Treatment (Heat-
stress vs 
Control) 

Breed (Broiler 
vs Layer) 

Breed x 
Treatment 
interaction 

0.001 107 5,208 93 

0.01 617 8,182 635 

0.05 1922 10,733 2,213 

 

The main objective of this study was to identify the genes involved in muscle 

damage in broilers that was further exacerbated by exposure to acute heat stress.  

Layers have no detectable muscle damage and exhibit greater resistance to heat 

stress compared with broilers. So, from the microarray results, the genes significant 

for ‘breed x treatment’ interaction were selected for further investigation in order to 

explore the genetics and comparative genetic differences between these two types of 

chickens for muscle damage with and without exposure to heat-stress. 
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3.4.1 Categorisation of candidate genes from significant breed x 

treatment interactions on the basis of their biological 

functions 

Genes significant for the breed x treatment interaction were further divided into 

different categories on the basis of the biological functions in which they are 

involved. The total number (2,213) of differentially expressed genes was classified 

into 12 different categories, as shown in Table 3-2. More than half (1,321) of the 

genes had no Gene Ontology (GO) term for biological process or function. These 

genes are present in two major categories, i) 567 genes that have no known function 

and ii) 754 genes that are not involved in any biological process on the basis of their 

GO terms. The results indicate that there are a substantial number of genes which are 

involved in pathogenesis of heat-stress induced muscle damage and response to heat-

stress but their function are not currently known. 
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Table 3-2 Categories of significant genes for breed x treatment 
interaction (P<0.05) on the basis of their biological functions 

Group List of Categories No. of 
genes 

1 New transcripts (previously unidentified genes) 567 

2 Genes with no GO term for biological functions 754 

3 Signal transduction 130 

4 Stress-related response, inflammatory, apoptotic and 

proteolytic functions 

116 

5 Inter and intra-cellular transport of substances and muscle 

contraction 

128 

6 Metabolic process  121 

7 Protein phosphorylation, dephosphorylation, and folding 92 

      8 Transcription and translation 136 

      9 RNA processing and metabolism 25 

10 Cytoskeleton organization and polymerization of filaments 23 

    11 DNA repair and metabolism 34 

    12 Genes involved in cellular proliferation, development- 

related functions and biosynthesis of various biological 

substances 

82 
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3.4.2 Different comparisons (within and between breed and 

treatment) of genes significant for interaction  

The selected 2,213 genes (significant for interaction) were further divided into up- 

and down-regulated categories for various comparisons within and between breed 

and treatment, that is, broiler heat-stress (BH) vs broiler control (BC); layer heat-

stress (LH) vs layer control (LC); BC vs LC; BC vs LH; BH vs LC; and BH vs LH). 

The results showed that a large number of genes which were up and down regulated 

in various comparisons overlapped with each other, as shown in Figure 3-2.   
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Figure 3-2 Number of overlapping genes in different up and down 
regulated categories of the significant genes (P<0.05) for the breed x 
treatment interaction 

 

 

A Down regulated genes in BC vs LC  

B  Down regulated genes in LH vs LC  

C Up regulated genes in BH vs BC  

D Up regulated genes in LH vs LC 

E  Down regulated genes in BH vs BC 

F  Up regulated genes in BC vs LC 

G Up regulated genes in BH vs LH 
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3.5 Discussion 

In the present study data were normalised by using RMA due to its robustness and 

superiority in terms of bias, variance, the ability to detect differential expression 

levels, and to produce reproducible and reliable results compared with other 

commonly used algorithms (Irizarry et al. 2003; Millenaar et al. 2006). The choice 

of processing methods has a significant impact on the results of microarray data 

analyses, therefore, the selection of the processing methods should be made 

according to the specific questions and needs of the projects (Shedden et al. 2005; 

Jiang et al. 2008a). The quantile normalisation methods (RMA, GCRMA-EB, 

GCRMA-MLE, PDNN) are superior and faster compared to other methods e.g. 

contrast methods and non-linear methods (Bolstad et al. 2003).  

After normalisation and background correction the data were filtered for expression 

levels greater than 1 which resulted in the reduction in the number of genes from 

38,535 to 19,038. It is generally observed that large numbers of genes on an array are 

either not expressed or expressed at very low levels or at such levels that are of no 

biological significance. Usually in any given tissue only 30–40% of the genes are 

expressed at array detectable levels under any given condition (Lu et al. 2011). In 

modern GeneChips, tens of thousands of genes are represented on each array and the 

number of true null hypotheses is very large. In these situations, multiple testing 

corrections are needed in order to reduce the number of false positives, to control 

False Discovery Rate (FDR) and to increase power (Hackstadt & Hess 2009). Due to 

this reason the data in this study were filtered out on the basis of overall expression 
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signals to remove the non-informative genes and reduce the number of null 

hypotheses. In filtering by signals, the genes having low signal/expression values 

(closer to background) are filtered out to reduce the noise and increase power. 

Finally, the genes that passed the filter were analysed leading to lower FDR and 

better power (van Iterson et al. 2010) in a two-stage approach (Bourgon et al. 2010). 

MAS detection (or Present/Absent) calls for Affymetrix arrays, the overall 

mean/signals and the variance are the commonly used filter statistics for microarray 

data. These filters are also known as non-specific filters because they are used across 

all samples by ignoring the treatment. Non-specific filters are preferably used to 

avoid the treatment bias and subsequent interference with down-stream statistical 

analyses (Bourgon et al. 2010) and a non-specific filter was chosen to remove the 

uninformative set of genes in the present study.  

For the breed x treatment interaction, 93, 635 and 2,213 number of genes were 

differentially expressed at significant levels P<0.001, P<0.01 and P<0.05 

respectively. All the statistically significant genes (2,213) were significant at a false 

discovery rate (FDR) less than 31.5%. 

From the ANOVA results, out of a total of 19,038 genes, 5,208, 8,182 and 10,733 

genes were significant at P<0.001, P<0.01 and P<0.05 levels of significance 

respectively, for the breed comparison. These results indicate that there were big 

differences between broilers and layers. On the other hand, comparatively few 

significant genes (107, 617 and 1,922 at P< 0.001, P<0.01 and P<0.05, respectively) 

were differentially expressed in the treatment comparison indicating that the 
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differences in gene expression of treated and control birds were not as high as the 

breed differences. The reasons for this may be that the birds were exposed to 32°C 

temperature and 75% relative humidity for 2 hours and this duration might not be 

sufficient to elicit the expression of a greater number of genes. However, it has been 

observed that during transportation of birds from farm to processing plant, which 

typically takes about two hours, broilers may suffer substantial heat-stress that 

ultimately leads to significant reduction in meat quality of broiler chickens (Petracci 

et al. 2006; Petracci et al. 2009). It was also in agreement with our finding from the 

phenotypic data of the present study showing that heat-stress resulted in 2.63°C 

increase in the body temperature of broilers and 0.34°C increase in the body 

temperature of layers, within just two hours. Alternatively, it is possible that there 

are a comparatively small number of genes which are involved in the heat stress 

response in breast muscles compared to the number of genes involved in the breed 

difference. 

Lu et al., (2011) reported that of all the genes present on any given array only a 

small percentage (<10%) of differentially expressed genes are true positives in a 

typical experiment. In the present study, 19,038 genes were analysed in total and we 

found 2,213 genes significant (P<0.05) for the breed x treatment interaction which 

are about 11.6% of the analysed genes and is in agreement with the finding reported 

by Lu et al., (2011).  

These 2,213 genes were further split into up and down-regulated genes for various 

comparisons. It is very interesting that out of 1,361 up-regulated genes in BH 
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compared with BC and 1,416 down-regulated genes in LH compared with LC, 1,316 

genes were shared. In agreement with this, out of the 852 down-regulated genes in 

BH and 793 up-regulated genes in LH (compared with their respective controls) 753 

genes were shared. These results show that these two types of chicken are almost 

opposite to each other in their heat-stress-induced gene expression. 

Of the 1,444 genes that were up-regulated in the BH vs LH comparison, 1,180 were 

also represented in the 1,361 up-regulated genes from the BH vs BC comparison. 

Interestingly, out of the 1,416 down-regulated genes in the LH vs LC and 1,241 

down-regulated genes in the BC vs LC comparisons, 1,026 genes were down-

regulated in both. These results indicate that gene expression in breast muscles of BC 

and LH was similar. This was further confirmed by the presence of 753 common 

genes, among the total of 793 up-regulated genes in the LH vs LC comparison and 

852 down-regulated genes in the BH vs BC comparison. 

In the current study, gene expression results are different in broilers and layers in 

their response to heat stress, even though there was a significant increase (0.340C) in 

the body temperature of layers, suggests that there are different biological 

mechanisms which are initiated by heat stress in broilers and layers. Given that 

broilers are more susceptible to heat stress, as indicated by the body temperature 

data, down regulation of those genes in LH compared with LC which are up-

regulated in BH (compared with their control counterpart) is surprising and merit 

further exploration.  
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The 2,213 differentially expressed genes in the interaction term were divided into 

different categories on the bases of their functions and biological processes in which 

they are involved. A total of 567 transcripts had no gene symbol and no gene name 

i.e. these are genes that are not yet characterised and they comprised 25.6% of the 

total number of significant genes. It indicates that there are many genes which are 

involved in heat-stress induced response in chicken skeletal muscle that have not 

been identified and merit further investigation. Similarly the largest group of genes, 

representing about 34% of the 2,213 significant genes, were found to have no GO 

term for biological function against them which indicates that these genes are not 

well-annotated as to their function at the time  the GO terms for this gene set were 

retrieved (in March, 2012) from NetAffx Analysis Centre of Affymetrix.  

Other major categories of genes were involved in various biological functions. About 

5% of genes were directly involved in oxidative stress, stress response, 

inflammation, apoptosis, proteolytic functions and tissue damage, consistent with 

muscle pathology caused by heat-stress. Similarly 6% (129) of the total of 2,213 

significant genes were involved in signal transduction and of these about 62% were 

directly involved in G-protein signalling, through the G-protein coupled receptor 

(GPCR) protein signalling pathways and small GTPase mediated signal transduction. 

GPCR are present in the cell membrane and upon activation by extracellular stimulus 

they transduce these signals to G-proteins (Brady & Limbird 2002; Krumins & 

Gilman 2006). G-proteins then transduce these signals to downstream genes and 

control various biological processes including oxidative stress, inflammation, muscle 

contraction, glycogen metabolism, biosynthesis of protein and cell proliferation, and 



Chapter 3 Microarray Data Analyses 

  71 

the concentrations of intracellular ions by coordinating the signals between GPCR, 

some enzymes and voltage-gated ion channels (Ashton et al. 2003; Amir et al. 2006; 

Allen et al. 2007; Lattin et al. 2007; Sprang et al. 2007; Baker et al. 2008).  It 

indicates that in addition to the genes (Group 4, Table 3-2 ) involved in 

inflammatory and cell death related functions directly, the genes (Group 3, Table 3-

2) involved in signal transduction are also involved indirectly in similar functions 

(Kuehn & Gilfillan 2007; Dietrich & Horvath 2010; Dagda et al. 2011; Jeon et al. 

2011; Deng et al. 2012) and additionally they are also involved in controlling the 

intracellular levels of ions (Grieco et al. 2005; Currie 2010). In this study, a large 

proportion (5.73%) of significant genes was involved in inter- and intra-cellular 

transport of various substances, mainly ions (cations), and were ultimately involved 

in muscle contraction and muscle damage-related functions (Allen 2004; Allen et al. 

2010; Buraei & Yang 2010). Genes involved in cellular proliferation, development-

related functions and biosynthesis of various biological substances represented 3.7% 

of the significant genes. It is proposed that these genes might be involved in tissue 

repair and maintenance related functions to minimise the deleterious effects of heat 

stress. Additionally, it is also suggested that about 1.5% of significant genes that 

were present in the DNA damage repairing category, might be involved in repair of 

heat-stress associated pathology.  

Protein folding and modification, mainly by phosphorylation, was also a major 

category representing 4.2% of genes. These genes are involved in carrying out 

various biological functions and a variety of biochemical reactions in the body 
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(Hebert & Molinari 2007).  In addition, about 6% of the genes were involved in 

metabolic and redox functions. Stress is known to accelerate the metabolic rate, 

mainly through carbohydrate metabolism, to produce greater amounts of energy and 

to facilitate a ‘fight or flight’ responses (Kaiser et al. 2009; Shini & Kaiser 2009; 

Shini et al. 2009).  Other categories include RNA processing and metabolism, 

cytoskeleton organization and polymerization of filaments which comprised 25 and 

33 genes respectively and represent 2.6% of the total number of significant genes. 

Genes involved in the RNA processing category may be related to transcription and 

translation (Group 8, Table 3-2). However, the cytoskeleton is known to be 

responsible for cell shape, motility and its involvement in cell division (Maekawa et 

al. 1999; Krupp et al. 2006). Hence, it is suggested that genes present in this group 

(Group 10, Table 3-2) might be involved in the movement and division of leukocytes 

such as heterophils and macrophages. Therefore, it is likely that these genes serve as 

a secondary mediator of the genes present in categories 3, 4 and 5 to shape the stress 

and inflammatory response to heat stress induced muscle damage. Out of these 

significant genes, 49 are expressed in mitochondria. This reflects the fact that that 

the mitochondrion is the major organelle in the cell that is affected by heat-stress in 

skeletal muscles and leads to oxidative stress and triggering cell death. Similar to 

this, about 200 genes are those that directly affect the cell membrane. The results 

suggest that damage to mitochondria and the cell membrane are potentially 

important components of heat-stress induced pathogenesis in chicken breast muscles.  
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Taken together, these results suggest a picture of stress responses, inflammation and 

oxidative stress and tissue damage. However, as tens to hundreds of genes were 

present in each of these categories the selection of true candidate genes is difficult. 

The major objective of this study was to identify the candidate genes involved in 

muscle damage in broilers that is further exacerbated by exposure to acute-heat-

stress. In order to select an accurate and reliable set of genes for further 

investigation, it was decided to use different bioinformatics tools to sift out the 

relevant clusters and pathways and identify suitable candidate genes by exploring 

underlying biological mechanism. 

3.6 Conclusion 

1. The present study is the first study of its kind in which genome-wide 

expression levels were studied in the breast muscles of heat-stressed chicken. 

2. A reasonable number of differentially expressed genes were found.  

3. A large set of differentially expressed genes were found having no gene 

symbol and no associated GO term indicating that  the functions of these 

genes are not yet characterised. 
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4.1 Introduction 

The use of high throughput technology has made it possible to monitor the 

expression of tens of thousands of genes simultaneously, in a given tissue or organ at 

a given time point; which is in turn useful in identifying differentially expressed 

genes under the effect of any specific treatment (Whitworth 2010). However, it is 

often difficult to assign biological significance to a large number of genes that are 

implicated in an experimental comparison. This problem can be solved when the 

number of differentially expressed genes are organised via hierarchical clustering 

methods (Lim et al. 2007). In the current study, BioLayout Express3D and Ingenuity 

Pathways Analysis (IPA) software were used to detect underlying patterns in the 

gene expression data. 

BioLayout Express3D is a network visualization tool (BioLayout Java 1,2) used to 

visualize and manipulate graphs of different types of biological information 

generated from gene expression and protein data sets (Theocharidis et al. 2009). It 

visualizes and analyses the correlation between high dimensional data points, and 

also gives a view of clustering and analysis of large network graphs in two and three 

dimensional space, derived primarily from biological data (Freeman et al. 2007; 

Theocharidis et al. 2009). 

Ingenuity Pathways Analysis (IPA) is a commercial bioinformatics application used 

to explore biological pathways and provide biological process information for a 

given set of genes. IPA can simultaneously compute multiple networks of pathways 
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using the Ingenuity Pathways Knowledge Base, which contains over 1 million 

findings extracted from peer-reviewed journal articles. These functional relationships 

such as gene regulation, protein-protein interactions, post-translational modifications 

and drug-target interactions are displayed on the following website 

(http://www.ingenuity.com/).  

In this study, differentially expressed genes (P<0.05) from the microarray 

experiments (Chapter 3) were first analysed in BioLayout Express3D to identify the 

clusters of the genes having positive correlations with each other. IPA was used to 

identify biological pathways and networks among the genes clustered by BioLayout 

to narrow down the number of differentially expressed genes on the basis of 

biological significance. On the basis of these pathways potential candidate genes for 

meat quality, differentially expressed as a result of heat stress, were selected. An 

outline of the structure of the chapter is presented in Figure 4-1. 
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Figure 4-1 Work flow diagram of Chapter 4. In this chapter significant 
genes from the Microarray experiment (Chapter 3) were analysed in 
Biolayout Express and Ingenuity Pathway analysis. Finally candidate 
genes were selected from the significant pathway and networks. Some 
candidate genes were also selected on the basis of their Go terms. 
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4.2 Material and Methods 

This Chapter is based on the results of the microarray experiment that is described in 

Chapter 3. The genes that were significant at P< 0.05 for the breed x treatment 

interaction were used for post-microarray bioinformatics analyses. As described in 

the previous chapter the main objective of this study was to identify the candidate 

genes responsible for muscle damage in broilers that is exacerbated by heat-stress 

compared with layers that have no incidence of muscle damage and a greater 

resistance to heat-stress. 

4.2.1 Cluster analysis in BioLayout 

A single input file was developed for the combined data set in tab delimited text 

format, with Probe Ids in the left most column, followed by their respective P-

values, GO terms and expression values for all of the slides. The annotations for 

these genes were downloaded from the NetAffx analysis centre of Affymetrix 

(http://www.affymetrix.com/analysis/index.affx). There were 32 slides in total, 8 

slides for broiler control (BC), 8 for broiler heat-stress (BH), 8 for layer control 

(LC), and 8 for layer heat-stress (LH). As the RMA was used to get the expression 

values and were log2 transformed, the expression values were unlogged. The input 

file was loaded into BioLayout Express and a 0.80 Pearson correlation threshold 

was selected. The resulting 1,147 genes were only those which had a positive 

correlation >0.80 as the genes having a low or negative correlation with other genes 

were filtered out. 
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Clusters were viewed in the Class Viewer, after running the Markov Clustering 

Algorithm (MCL). For cluster size, a minimum threshold of 4 genes per cluster was 

selected to limit the size of the smallest clusters (Theocharidis et al. 2009). Clusters 

were selected for further study on the basis of their respective graphs, showing 

clear differences in the expression pattern (up and down-regulation) of the genes 

for different treatments and breeds. It was observed that these clusters could be 

grouped in different categories on the basis of similarities of their graph patterns 

with each other. Hence, the clusters that showed a very similar type of expression 

graph were grouped into 6 categories.  

Finally the gene expression data for all clusters belonging to the same category 

were combined into a single Excel sheet that was used to calculate the differential 

expression values of the genes for different breed x treatment interactions (BC, BH, 

LC, and LH) for that category; in order to make the input files for analysis in IPA. 

Finally those input files (with expression values) were used for the pathways and 

network analysis in IPA.  

4.2.2 Pathways and Networks analysis in IPA 

Out of the total 2,213 genes (P<0.05), 1,147 genes were analysed and clustered by 

Biolayout Express at a Pearson correlation threshold of 0.80. The genes in each 

category were analysed in the Ingenuity Pathway Analysis (IPA) to determine their 

respective pathways and networks. IPA analyses the submitted gene lists by using 

Fisher’s exact Test identify biological functions and pathways that are enriched in 

the data set. Genes were analysed in IPA by using ‘Core Analysis’ and they were 
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mapped against all the ‘Tissues and Cell Lines’ available in Ingenuity Pathway 

Analysis Knowledge Base (IPAKB). IPAKB has millions of findings extracted from 

peer-reviewed journals, books and other publically available databases. Because the 

IPA has the information mainly about mammals (Human, Mouse and Rat) in its 

Knowledge Base, the submitted gene lists were mapped against all the species and 

some information (different in avian) was changed in the significant pathways and 

networks e.g. Neutrophil to Heterophil. For network generation, a threshold of 35 

molecules per network and 25 networks per analysis was selected; both direct and 

indirect relationships of molecules were considered for the network generation. After 

uploading the input file it was saved in IPA and instantly subdivided into 4 sub-

datasets, (i) All IDs (having all the genes from the input file), (ii) Mapped IDs (genes 

that were successfully matched to their respective molecules), (iii) Unmapped IDs 

(genes which failed to map to genes available in IPAKB), and (iv) Analysis-ready 

IDs (genes able to proceed in pathways and networks analysis). 

Gene sets of all the categories were analysed separately in IPA by using the 

methodology described above and significant pathways (P<0.05) and networks were 

selected, as shown in the Table 4.1 – Table 4.6. Similarly, the 1,066 genes filtered 

out by Biolayout Express were also analysed in IPA, by using the same procedure, to 

determine the interesting significant pathways and networks for this gene set, as 

shown in Table 4.7.  
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4.2.3 Selection of Candidate Genes 

1. Genes were selected from all the categories on the basis of their key positions 

in the selected pathways and networks. In Pathways, priority was given to those 

genes that were present in the upstream and switching on/off the down-stream 

molecules through their signalling cascades.  

2. In networks, the focus was on genes that were common in two or more 

networks and therefore involved in switching on more than one network at a 

time.  

3. Genes which could not be mapped in IPA but were interesting on the basis of 

their GO terms were also selected, to address the particular questions of the 

present study.   

4.3 Results  

4.3.1 Selected clusters from BioLayout analysis 

There were 54 clusters in total and 21 of them were selected on the basis of their 

clear expression patterns, as shown below, while other clusters in which the 

expression pattern was not clear were rejected. The 21 selected clusters included a 

total of 509 genes. The selected clusters could be grouped into 6 distinct categories 

depending on their specific graph patterns, based on the expression values of the 

genes.    
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Category I The expression values of genes in this category were higher in broilers 

than layers. Heat-stress resulted in a further increase in expression levels for broiler 

but a decrease in layers, compared to their respective controls (Figure 4-2). In total, 

285 genes were present in clusters 01, 13, 14, 16, 18, 21, 31 and 41 grouped in 

category I. 

Category II The expression level of genes in this category were higher for broilers 

than layers under control temperatures. After heat-stress expression levels were 

decreased in broilers compared with BC and conversely, increased in layers as 

compared to LC (Figure 4-2). Cluster 02 and 46 were part of this category, 

comprising 93 genes in total. 

Category III Expression values of these genes were higher for layers than broilers 

in control but heat-stress resulted in a further increase in these expression levels in 

layers but a decrease for broilers compared with their control (Figure 4-2). Clusters 

03, 06, 37 were present in this category, comprising 74 genes in total.  

Category IV In this category, control layers had the highest expression compared 

with other groups. Heat-stress resulted in a decrease in gene expression levels in 

layers but an increase in broilers (Figure 4-2). There were 23 genes, in total, 

present in clusters 12, 20, 22 and 54 grouped in this category.  

Category V Expression levels were highest in broiler controls but heat-stress 

resulted in a decrease in their expression and an increase in layers (Figure 4-2). In 

total, 10 genes in clusters 19 and 36 were present in this category.   
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Category VI Expression values for control layers were greater than respective 

broilers. After treatment the expressions of these genes were increased in broilers but 

decreased in layers (Figure 4-2). Clusters 07, 24 were grouped in this category 

having 18 genes in total (12 and 6 genes respectively). 
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Figure 4-2  Mean expression values of genes, (significant at P<0.05, Chapter 3) (y-axis) in comparisons of Breed x 
Treatment interactions (x-axis), for Categories I-VI. Each graph has 4 bars and each bar represents one group (BC, BH, 
LC, and LH). The expression values of each bar are the mean of the expression values of the genes, present in that 
cluster, over the 8 microarray slides for each group.  
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4.3.2  Selected Pathways and Network from IPA analysis 

4.3.2.1 Pathways and Network from the analysis of category I genes 

Among the 286 Category-I genes, 194 genes could be mapped to the corresponding 

identifiers. These 194 mapped genes included 14 duplicates that were removed. The 

analysis of the 180 unique genes revealed 35 significant (P<0.05) pathways and 23 

networks in total. Out of these results, 9 interesting pathways were selected (Table 4-

1) and similarly 5 networks were selected (Figure 4-3), on the basis of their 

relevance to skeletal muscles (functions, metabolism and damage). A complete list 

of significant pathways is given in Appendix 4-1. The score of each network is based 

on a P-value calculation, which determines the likelihood that the occurrence of 

Network Eligible Molecules in any given network is by random chance. (The score 

is the negative exponent of the right-tailed Fisher's exact test result 

(http://www.ingenuity.com).   

It can be seen that all of the selected pathways and networks were related to stress 

response, inflammation, oxidative stress, cellular damage, connective tissue disorder, 

and skeletal and muscular disorder. Hence, the results suggest that stress and 

inflammation related tissue damage and muscular disorders are greater in broilers 

than layers, and further exacerbated by heat-stress in broilers.  
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Table 4-1 Selected pathways from Category I cluster analysis 

Sr. No. Pathway titles P-value1 Ratio2 Functions and diseases 

1.  Fcγ Receptor-

mediated 

Phagocytosis in 

Macrophages and 

Monocytes 

0.000022 0.078 Inflammatory response 

(Caveggion et al. 2003); 

Cellular immune response 

(Kedzierska et al. 2002); 

Phagocytosis(Lee et al. 2007) 

2.  fMLP Signalling in 

Neutrophils 

0.000057 0.062 Involved in inflammatory 

diseases (Lehmann et al. 2008); 

cause degranulation and 

production of tissue-destructive 

oxygen-derived free radicals 

(Omori et al. 2008).  

3.  CCR5 Signalling in 

Macrophages 

0.0067 0.043 Inflammation; Calcium influx; 

activation of PYK2;  

4.  CD28 signalling in 

T Helper Cells 

0.0107 0.038 Cellular immune response 

(Appleman et al. 2002) 

 CCR3 Signalling in 

Eosinophils 

0.0186 0.039 Inflammation, tissue damage 

by release of reactive oxygen 

species (ROS) and toxic 

granule proteins (Borchers et 

al. 2002). Connective tissue 

diseases of unknown origin 

(Pease 2006). 

5.  α-Adregnergic 

signalling 

0.0228 0.038 Stress response, 

glycogenolysis; rise in 

intracellular Ca2+ (Stojkov et 

al. 2012) 

6.   NRF2-mediated 0.0282 0.031 transactivates detoxifying and 
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Oxidative Stress 

Response 

antioxidant enzymes, such as 

heme oxygenase and 

superoxide dismutase 

(Dhakshinamoorthy et al. 

2005) 

7.   VEGF Signalling 0.0326 0.04 mediator of hypoxia-induced 

angiogenesis, proliferation of 

endothelial cells (Karkkainen 

& Petrova 2000) 

8.   Role of MAPK 

Signalling in the 

Pathogenesis of 

Influenza 

0.0374 0.046 Apoptosis, production of 

prostaglandin E2 (Lu et al. 

2010) 

9.  Chemokine 

signalling 

0.0472 0.041 Inflammatory response (Lee et 

al. 2003) 

1. P-value: Shows the strength of the association between a specific pathway and 
the uploaded dataset. Small P values suggest that the probability of a spurious 
association between the data and this pathway is unlikely 
(http://ingenuity.force.com/ipa/). 

2. Ratio: The number of genes in a given pathway divided by total number of genes 
that make up that pathway (http://ingenuity.force.com/ipa/). 
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4.3.2.2 Pathways and networks from the analysis of category II genes 

Out of the 93 genes in Category II, 75 were successfully mapped to their respective 

genes. Out of the 75 mapped genes, 1 was a duplicate. The analysis of the remaining 

74 genes revealed 40 significant pathways (P<0.05) and 7 networks. A complete list 

of significant pathways is given in Appendix 4-2. Out of these results, 13 interesting 

pathways and 4 networks were selected on the basis of their relevance to the skeletal 

muscles physiology and pathology. Details of these pathways and networks are 

provided in Table 4.2 and Figure 4.4. These pathways and networks were up 

regulated in LH vs LC. In contrast to gene expression in broilers (category-I), most 

of the pathways and networks were related to cellular development, anti-apoptotic, 

anti-inflammatory and anti-stress related functions. The pathways and networks that 

were related to inflammation, stress and tissue-damage related functions are few. 

This is in agreement to the phenotypic data of the present study in which there was 

only a 0.34°C increase in the body temperature of layers after heat-stress but the 

increment in broilers was 2.56°C. 
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Table 4-2 Selected pathways from Category II cluster analysis 

Sr. 
No. 

Pathway titles P-value1 Ratio2 Functions and disease 

1. Ceramide 

Signalling 

0.0007 0.046 Apoptosis; Cell cycle regulation; 

Inflammatory response (Oh et al. 

2006; Woodcock 2006) 

2. Regulation of 

eIF4 and p70S6K 

signalling 

0.0024 0.03 Cellular growth and development; 

Protein synthesis (Cao et al. 2006) 

3. p70S6K 

signalling 

0.0036 0.031 Cellular development; Protein 

synthesis (Karlsson et al. 2004) 

4. EIF2 signalling 0.0097 0.03 Protein synthesis (Jivotovskaya et 

al. 2006) 

5. HMGB1 

signalling 

0.0119 0.03 Inflammatory response,; Cellular 

immune response; Cytokine 

signalling; Proliferation of vessel-

associated stem cells; Muscle tissue 

regeneration (Yang et al. 2005b; 

Park et al. 2006; Holmlund et al. 

2007) 

6. Sphingosine-1-

phosphate 

signalling 

0.0172 0.025 Inhibition of caspases mediated 

apoptosis; Angiogenesis; 

Development and functions of 

cardiovascular system (Kono et al. 

2004; Chalfant & Spiegel 2005; 

Alemany et al. 2007; Liu et al. 

2012). 

7. Role of 

PI3K/AKT 

0.0172 0.021 Involve in protein synthesis and 

angiogenesis and inhibition of 
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1. P-value: Shows the strength of the association between a specific pathway and 
the uploaded dataset. Small P values suggest that the probability of a spurious 
association between the data and this pathway is unlikely 
(http://ingenuity.force.com/ipa/). 

2. Ratio: The number of genes in a given pathway divided by total number of genes 
that make up that pathway (http://ingenuity.force.com/ipa/). 

 

 

 

Signalling apoptosis (Garcia-Echeverria & 

Sellers 2008; Lu et al. 2010). 

8.  Relaxin 

Signalling 

0.0258 0.019 Inhibition of histamine release 

(Hossain et al. 2008); Connective 

tissue remodelling; Stimulation of 

angiogenesis; Modulation of blood 

pressure (Frost & Lang 2008) 

9. CNTF signalling 0.029 0.036 Enhance cell survival; Prevent 

degeneration of skeletal muscle cells 

(Yokogami et al. 2000; Grant 2008). 

10. Role of MAPK 

Signalling in the 

Pathogenesis of 

Influenza 

0.0333 0.031 Cell death; Inflammatory response; 

production of prostaglandin E2 (Lu 

et al. 2010). 

11. Chemokine 

signalling 

0.0395 0.027 Inflammatory response (Jaeschke & 

Hasegawa 2006; Hamal et al. 2010) 

12. Production of 

Nitric Oxide and 

Reactive Oxygen 

Species in 

Macrophages 

0.0447 0.016 Cellular immune response; 

Production of NO and ROS in 

macrophages; Free radical 

scavenging (Vila-del Sol et al. 2007; 

Zhou et al. 2008). 
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4.3.2.3 Pathways and Network from the analysis of category III genes 

In this category, 66 genes were analysed, out of which 9 were filtered out and 2 were 

duplicates. The differential expression values of these genes ranged from -0.176 to 

20.347 in LH vs LC comparison. Analysis of these genes in IPA revealed 3 

significant (P<0.05) pathways (Table 4-3) and 9 networks. A complete list of 

significant pathways is given in Appendix 4-3. Out of the total of 9 networks, 2 

networks were selected (Figure 4-5) on the basis of their biological importance. The 

expression values of these genes were greater in layers than control and treated 

broilers but after exposure to heat-stress their expression levels were further 

increased in layers. The pathways and networks from this category were related to 

anti-apoptotic, anti-oxidant, anti-inflammatory and energy production related 

functions. 
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Table 4-3 Selected pathways from Category III cluster analysis 

Sr. No. Pathway titles  P-value1 Ratio2 Functions and diseases 

1. Estrogen receptor 
signalling 

0.0378 0.015 Anti-oxidant functions, anti-
apoptotic activities, anti-
stress activity (Willoughby 
& Wilborn 2006; Chen et al. 
2008; Enns & Tiidus 2008). 

2. Oxidative 
Phosphorylation  

0.0468 0.013 Energy production 
(Toyomizu et al. 2011; 
Szendroedi et al. 2012) 

1. P-value: Shows the strength of the association between a specific pathway and 
the uploaded dataset. Small P values suggest that the probability of a spurious 
association between the data and this pathway is unlikely 
(http://ingenuity.force.com/ipa/). 

2. Ratio: The number of genes in a given pathway divided by total number of genes 
that make up that pathway (http://ingenuity.force.com/ipa/). 
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4.3.2.4 Pathways and networks from the analysis of Category IV genes 

The 4 clusters in this category had 23 genes in total. On their analysis in IPA, 13 

genes were successfully mapped but 10 genes failed to map. From the results of this 

category, 9 relevant pathways were selected (Table 4-4) but no network of particular 

interest was found. A complete list of significant pathways is given in Appendix 4-4. 

The expression values of these genes increased in broilers after heat-stress but 

decreased in layers. Out of these 9 pathways, 5 were directly involve in stress, 

inflammatory and tissue damage related functions but the rest of them were involved 

in compensatory functions (anti-oxidant and wound healing etc.) to alleviate the 

negative effects of tissue damage related pathways. 
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Table 4-4 Selected pathways from Category IV cluster analysis 

Sr. No. Pathway 
Titles 

P-value1 Ratio
2 

Functions and Diseases 

1.  Melatonin 

signalling 

0.000498 0.026 Scavenges oxygen-centred free 

radicals, especially the highly toxic 

hydroxyl radical (Masana & 

Dubocovich 2001). Also involved in 

the production of ROS. 

2.  α-Adrenergic 

Signalling 

0.000791 0.019 Stress response; glycogenolysis; 

elevation of intracellular Ca2+ 

(Stojkov et al. 2012) 

3.  G Beta 

Gamma 

Signalling  

0.000828 0.017 Control calcium signalling and 

Protein Kinase A signalling 

pathways in its down-stream effects 

(Ivanina et al. 2000; Qin et al. 

2000). 

4.  Corticotropin 

Releasing 

Hormone 

Signalling 

0.00124 0.015 Stress response and secretion of 

glucocorticoids; cell death. Activate 

PKC -dependent and calcium-

activated pathways respectively 

(Post et al. 2003; Thaxton et al. 

2005; Mujahid & Furuse 2008) . 

5.  P2Y Purigenic 

Receptor 

Signalling 

0.00140 0.015 Angiogenesis; wound healing; 

cellular proliferation; ions transport 

(Datta et al. 1999; Burnstock 2002; 

Sak et al. 2003). 

6.  Protein Kinase 

A Signalling 

0.0094 0.006 Raised level of intracellular Ca2+; 

Proteasomal degradation; 

Glycolysis; Lipolysis (Seino & 

Shibasaki 2005; Wehrens et al. 

2006) 

7.  FcγRIIB 

Signalling in B 

0.0202 0.017 Hypersensitivity Response; 

Inflammatory Response (Gardai et 
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Lymphocytes al. 2002; Yamasaki & Saito 2008) 

8.  CCR5 

Signalling in 

Macrophages 

0.0383 0.011 Inflammatory response; Cytokine 

signalling; Cellular immune 

response (Balistreri et al. 2007; 

Shini et al. 2010a; Shini et al. 

2010b) 

9.  Chemokine 

signalling 

0.0343 0.014 Inflammatory response; intracellular 

calcium release; production of 

reactive oxygen species (ROS) and 

changes in actin polymerization 

(Shini et al. 2010a; Shini et al. 

2010b; Sun & Ye 2012; Viejo-

Borbolla et al. 2012). 

10.  Phospholipid 

degradation 

0.0367 0.011 Production of PLA2; Phospholipid 

degradation (Ren et al. 2010; 

Schwartz & Reaven 2012). 

1. P-value: Shows the strength of the association between a specific pathway and 
the uploaded dataset. Small P values suggest that the probability of a spurious 
association between the data and this pathway is unlikely 
(http://ingenuity.force.com/ipa/). 

2. Ratio: The number of genes in a given pathway divided by total number of genes 
that make up that pathway (http://ingenuity.force.com/ipa/). 

 

4.3.2.5 Pathways and networks from the analysis of Category V genes 

There were 10 genes in total in this category of which 8 could be mapped to 7 unique 

genes.  Their analysis in IPA revealed 9 pathways significant at P<0.05 (Table 4-5) 

and 4 networks. Out of these results 5 significant pathways were selected but no 

network was considered interesting for further analysis. A complete list of significant 

pathways is given in Appendix 4-5. 
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Table 4-5 Selected pathways from Category V cluster analysis 

Sr. 

No. 

Pathway 

titles 

P-

value1 

Ratio2 Functions and diseases 

1. MIF-mediated 

Glucocorticoid 

Regulation 

0.015 0.024 Counter-regulation of the anti-

inflammatory effects of 

glucocorticoids; Cellular immune 

response; Organismal injuries and 

abnormalities (Daun & Cannon 2000; 

Roger et al. 2001; Calandra & Roger 

2003). 

2. MIF 

Regulation of 

Innate 

Immunity 

0.020 0.020 Proliferation and trafficking of immune 

cells; Cellular immune response 

(Ohkawara et al. 2006; Santos et al. 

2008). 

3. Eicosanoid 

Signalling 

0.024 0.013 Inflammation; vascular permeability, 

and allergic reaction (Nagata et al. 

2002; Spik et al. 2005).  

4. Role of MAPK 

Signalling in 

the 

pathogenesis of 

Influenza 

0.033 0.015 Oxidative stress and apoptosis through 

production of prostaglandin E2 (Lu et 

al. 2010). 

 

5. Phospholipid 

Degradation 

0.039 0.011 PLA2, Phospholipid Degradation (Ren 

et al. 2010; Schwartz & Reaven 2012). 

1. P-value: Shows the strength of the association between a specific pathway and 
the uploaded dataset. Small P values suggest that the probability of a spurious 
association between the data and this pathway is unlikely 
(http://ingenuity.force.com/ipa/). 

2. Ratio: The number of genes in a given pathway divided by total number of genes 
that make up that pathway (http://ingenuity.force.com/ipa/). 
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4.3.2.6 Pathways and Network from the analysis of category VI genes 

There were 18 genes in total in this category and on their analysis in IPA 16 genes 

were successfully mapped. The analysis of the 16 mapped genes returned 7 

significant (P<0.05) pathways and 4 networks. Out of these results, 3 relevant 

pathways were selected (Table 4-6) but no network was found that was relevant to 

muscle damage. These pathways were involved in cell death, inflammatory and 

immune response, cellular development and haematopoiesis. The results suggest that 

these pathways were mainly involved in tissue damage and to some extent in repair 

and maintenance of the damaged tissues. Their expressions were highest in BH but 

conversely their expressions were decreased in LH.  A complete list of significant 

pathways is given in Appendix 4-6. 
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Table 4-6 Details of selected pathways from Category VI analysis 

Sr. 
No. 

Pathway titles  P-value Ratio Functions and diseases 

1. Role of JAK1, 

JAK2 and TYK2 

in Interferon 

Signalling 

0.0221 0.037 Cytokine Signalling; Haematological 

System Development and Function; 

Haematopoiesis (Simoncic et al. 

2002; Yang et al. 2005a) 

2. Interferon 

Signalling 

0.0312 0.028 Inflammatory Response; Cellular 

immune response; Cytokine 

signalling; Organismal Injury and 

Abnormalities  (Flammer et al. 2010; 

Y et al. 2010) 

3. TNFR1 

Signalling 

0.0438 0.019 Apoptosis; Cytokine signalling 

(Varfolomeev & Ashkenazi 2004) 

1. P-value: Shows the strength of the association between a specific pathway and 
the uploaded dataset. Small P values suggest that the probability of a spurious 
association between the data and this pathway is unlikely 
(http://ingenuity.force.com/ipa/). 

2. Ratio: The number of genes in a given pathway divided by total number of genes 
that make up that pathway (http://ingenuity.force.com/ipa/). 

  



Chapter 4 Bioinformatics Analyses of Gene Expression Difference between Broilers and Layers in 
response to Acute heat stress 

  106 

4.3.2.7 Pathways and networks from the analysis of Biolayout filtered 

genes 

In the analysis of 2,213 significant genes in BioLayout Express, only 1,147 genes 

could pass the correlation threshold of 0.80. These genes were analysed and grouped 

together in different clusters depending upon their positive correlation with each 

other. However, the remaining genes (1,066) which did not meet this correlation 

threshold were filtered out by BioLayout Express and separately analysed in IPA. In 

their analysis in IPA 644 were successfully mapped but 422 genes failed to map. 

From these 644 successfully mapped genes 37 were duplicates. The analysis of the 

remaining 607 genes in IPA revealed 32 significant pathways (P<0.05) and 25 

networks. From these results, 8 relevant pathways (Table 4-7) and 5 networks 

(Figure 4-6) were selected for further exploration. A complete list of significant 

pathways is given in Appendix 4-7. 
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Table 4-7 Selected pathways from IPA analysis of Biolayout filtered 
genes 

1. P-value: Shows the strength of the association between a specific pathway and the 
uploaded dataset. Small P values suggest that the probability of a spurious 
association between the data and this pathway is unlikely 
(http://ingenuity.force.com/ipa/). 
2. Ratio: The number of genes in a given pathway divided by total number of genes 
that make up that pathway (http://ingenuity.force.com/ipa/).  

Sr. 
No. 

Pathway titles P-value Ratio Functions and diseases 

1 Granzyme B 

signalling 

0.00021 0.312 Oxidative stress; Cell death; 

Cellular immune response (Bots 

& Medema 2006; Jiang et al. 

2008b) 

2 Toll-like Receptor 0.00225 0.127 Apoptosis (Barton & Medzhitov 

2003; Ding et al. 2010) 

3 Type I Diabetes 

Mellitus Signaling 

2.35E00 8.26E-02 Tissue damage and muscle 

weakness (Rolo & Palmeira 

2006) 

4 Cytotoxic T 

lymphocyte 

mediated apoptosis 

of target cells 

0.00457 

 

0.058 Cell death (Pinkoski et al. 2001) 

Jiang et al. 2008b) 

5 Apoptosis 

signalling 

0.00746 0.094 Apoptosis (Kim et al. 2005; 

Kuwano et al. 2005) 

6 Role of MAPK 

signalling in the 

pathogenesis of 

influenza 

0.00911 

 

0.106 Oxidative stress; Apoptosis (Lu 

et al. 2010). 

7 Lymphotoxin β 

receptor signalling 

0.0175 0.098 Cell death (Kuai et al. 2003; 

You et al. 2006) 

8 IL-1 signalling  0.075 Inflammation (Yang et al. 2010; 

Sigala et al. 2011; Shi et al. 

2012) 
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4.3.3 Selection of Candidate genes 

Genes were selected from all the categories on the basis of their key positions in the 

selected pathways and networks. Genes which could not be mapped in IPA but were 

interesting on the basis of their GO terms were also examined.  

In total, 24 genes were selected,  10 genes from pathway analysis of Category I, II, 

IV, and VI, 5 from Pathway analysis of Biolayout filtered genes, 6 on the basis of 

their GO terms,  2 from Network analysis of biolayout filtered genes and 1 from 

network analysis of category I  (Table 4-8).  

In Category I pathway analysis, MAPK14, GNB5, GNG2, HRAS, PTGS2 were 

selected while PLCG2, PRKAG2 and IFNAR2 were selected from Category IV and 

VI pathway analysis.  From Category II pathway analysis, AKT1 and MAP2K1 were 

selected (Table 4-8). All of these genes were present in the upstream positions in 

different pathways and switched on/off the down-stream genes through their 

signalling cascades. The selection of genes from the pathways is explained in detail 

below under section 4.4.4. However, the PDCD6IP gene was selected from network 

analysis of category I genes (Table 4-8). It connected the 3 networks (1, 7, & 9, 

Figure 4-3) all of which were involved in cell death and skeletal and muscular 

disorders. This gene activates several genes (Appendix 4-12) including the Caspase 

family of genes involved in cell death and tissue damage (Yeretssian et al. 2008; 

Wang & Youle 2009; Alway 2010). 

From Pathway analysis of Biolayout filtered genes, ENDOG, LMNB2, CASP2, 

CASP3 and APAF1 were selected.  However, COX6A1 and MTFR1 genes were 
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selected from Network analysis of biolayout filtered genes. The COX6A1 gene 

linked networks 17 and 24 that are involved in skeletal and muscular system 

development and functions, energy production and tissue damage related functions. 

This gene was up-regulated in both of these networks and activates the members of 

cytochrome C oxidase (COX) family (Figure 4-9) which are involved in 

mitochondrial dysfunction. CALM, HDAC4, PDCD6, CYP27A1, BCL2L1 and 

BCL10 genes were selected on the basis of their GO terms for biological functions. 
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Table 4-8 Final list of selected genes  

Sr. 
No 

Category1 Gene 
Symbol 

Entrez gene 
name 

Functions Cellular 
position 

1 GO terms CALM Calmoudlin Cell death; 
chemokine 
expression (Chen et 
al. 2012) 

Cytoplasm 

2 Cat. 1 Path. 
Analysis 

MAPK1
4 

mitogen-
activated protein 
kinase 14 

Inflammatory 
response; cell death 
(Kyriakis & Avruch 
2001; Fukao 2004) 

Cytosol and 
mitochondr
ia 

3 Cat. 1 Path. 
Analysis 

GNB5 guanine 
nucleotide 
binding protein 
(G protein), beta 
5 

G-protein coupled 
receptor signalling 
pathway (Thodeti et 
al. 2000; Wing et 
al. 2001) 

Plasma 
membrane 

4 Cat. 1 Path. 
Analysis 

GNG2 guanine 
nucleotide 
binding protein 
(G protein), 
gamma 2 

G-protein coupled 
receptor signalling 
pathway (Braun & 
Kelsall 2001; 
Yavropoulou & 
Yovos 2007; 
Teicher & Fricker 
2010) 

Plasma 
membrane 

5 Cat. 1 Path. 
Analysis 

HRAS v-Ha-ras Harvey 
rat sarcoma viral 
oncogene 
homolog 

Chemotaxis; 
apoptosis (Slack et 
al. 1999) 

Plasma 
membrane 

6 Cat. 4 Path. 
Analysis 

PLCG2 phospholipase 
C, gamma 2 

Elevation in 
intracellular Ca2+; 
apoptosis 
(Yamaoka et al. 
2011) 

Cytosol; 
plasma 
membrane 

7 Cat. 4 Path. 
Analysis 

PRKAG
2 

protein kinase, 
AMP-activated, 
gamma 2 non-
catalytic subunit 

Response to stress; 
regulation of 
glycolysis and 
intracellular cation 
level (Reiken et al. 
2003) 

cytoplasm 

8 Cat. 2 Path. 
Analysis 

AKT1 v-akt murine 
thymoma viral 
oncogene 

Inflammatory 
response; apoptotic 
and also anti-

Cytoplasm 
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homolog 1 apoptotic role 
(Majewski et al. 
2004; Powell & 
Delgoffe 2010) 

9 Cat. 2 Path. 
Analysis 

MAP2K
1 

mitogen-
activated protein 
kinase kinase 1 

Cellular 
proliferation and 
differentiation; 
response to 
oxidative stress; 
regulation of 
transcription (Hu et 
al. 2004; Ahmad et 
al. 2011) 

Cytoplasm, 
mitochondr
ia, plasma 
membrane 

10 Cat. 6 Path. 
Analysis 

IFNAR2 interferon 
(alpha, beta and 
omega) receptor 
2 

type I interferon-
mediated signaling 
pathway (LaFleur 
et al. 2001) 

Plasma 
membrane 

11 Path. 
analysis of 
BL filtered 
genes 

ENDOG endonuclease G Cell death (Li et al. 
2001) 

Cytoplasm 

12 Path. 
analysis of 
BL filtered 
genes 

LMNB2 lamin B2 Cell death (Gottlieb 
2001; Iredale 2001) 

Nucleus 

13 Path. 
analysis of 
BL filtered 
genes 

APAF1 apoptotic 
peptidase 
activating factor 
1 

Cell death (Gogada 
et al. 2011) 

Cytoplasm, 
golgi 
apparatus 

14 GO terms BCL2L1 BCL2-like 1 Oxidative stress; 
stress response 
(Gross et al. 1999; 
McClintock et al. 
2002) 

Mitochondr
ia; 
cytoplasm 

15 GO terms CKMT1 creatine kinase, 
mitochondrial 
1B 

Indicator of muscle 
damage; involve in 
energy production 
(Steeghs et al. 
1997; Ryu et al. 
2005) 

Mitochondr
ia 

16 Cat. 1 Path. 
Analysis 

PTGS2 prostaglandin-
endoperoxide 

Heat hyperalgesia; 
synthesis of 

Cytoplasm  
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synthase 2 prostaglandin; 
inflammatory 
response (Dinarello 
1996; Inglis et al. 
2007) 

17 GO term MTFR1 mitochondrial 
fission regulator 
1 

Mitochondrial 
fission 

Mitochondr
ia 

18 GO term PDCD6 programmed 
cell death 6 

Apoptosis (Jang et 
al. 2002) 

Cytoplasm 

19 GO term BCL10 B-cell 
CLL/lymphoma 
10 

Cell death (Cregan 
et al. 2004) 

Cytoplasm, 
lysosome 

20 Network 
analysis of 
BL filtered 
genes 

HDAC4 histone 
deacetylase 4 

Inflammatory 
response; muscle 
contraction by Ca2+ 
signalling 
(Kawabata et al. 
2010; Joosten et al. 
2011) 

Nucleus 
 

21 Network 
analysis of 
BL filtered 
genes 

COX6A
1 

cytochrome c 
oxidase subunit 
VIa polypeptide 
1 

Energy production 
(Fornuskova et al. 
2010; Larsen et al. 
2011) 

Mitochondr
ial inner 
membrane 

22 Network 
analysis of 
category I 
gene 

PDCD6I
P 
 

programmed 
cell death 6 
interacting 
protein 

Cell death (Mahul-
Mellier et al. 
2006a) 

Cellular 
membrane; 
cytoplasm 

23 Path. 
analysis of 
BL filtered 
genes 

CASP2 caspase 2, 
apoptosis-
related cysteine 
peptidase 

Cell death Cytoplasm 

24 Path. 
analysis of 
BL filtered 
genes 

CASP3 caspase 3, 
apoptosis-
related cysteine 
peptidase 

Cell death Cytoplasm 

 

1 BL = Biolayout, Path. = Pathway, Cat. = Category 
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4.4 Discussion  

4.4.1 Clusters from Biolayout Express analysis 

In total, 21 clusters were selected on the basis of their expression patterns and they 

were grouped into 6 categories due to the similarity of their expression patterns 

(graphs). This analysed set of genes was differentially expressed (P<0.05) for the 

Breed x Treat interaction from the microarray experiment (Chapter 3). Therefore, 

their occurrence in different (expression patterns) clusters is logical because heat-

stress is known to affect the bird’s physiology and create muscle damage, by 

disturbing various biological mechanisms of body, described in Chapter 1 

(Introduction).  These findings were also in agreement with our gene expression 

results, Chapter 3 (section 3.4.1), showing the presence of differentially expressed 

genes in relatively few categories, on the basis of their biological functions.  

Additionally, our results present some further categories that were previously not 

known, presenting a comprehensive picture of pathogenesis and pathology created 

by heat-stress. 

4.4.2 Pathways and networks for Biolayout analysed genes in IPA  

4.4.2.1 Category I 

Pathways 

For all the genes present in these clusters the expression levels of control broilers 

were higher than control layers. Heat-stress resulted in further increases in the 

expression of these genes in broilers. In this category, α-Adrenergic signalling (Table 

4-1) that is involved in glycogenolysis in stressful conditions to provide energy for 
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muscle contraction was observed to be up regulated. However, it has been reported 

that stress hormones are known to alter the activities of immune cells, and lead to the 

production of various pro-inflammatory cytokines and chemokines (Shini et al. 

2010a; Shini et al. 2010b).  

In agreement with these findings there were several chemokine pathways in this 

category that were involved in cytokine signalling, tissue damage and related 

functions (Table 4-1). These pathways include, Fcγ Receptor-mediated Phagocytosis 

in Macrophages and Monocytes, fMLP signalling in Neutrophils (Heterophil in 

chicken), CCR3 Signalling in Eosinophil, CCR5 Signalling in Macrophages, Role of 

MAPK Signalling in the Pathogenesis of Influenza, and Chemokine Signalling. They 

are involved in inflammatory responses (Hendey & Maxfield 1993; Lawson & 

Maxfield 1995; Sabri et al. 1998; Masiero et al. 1999; Garcia-Rodriguez & Rao 

2000; Renieri et al. 2008), oxidative stress (Elsner et al. 1998; Kim et al. 2008), 

increase in intracellular calcium and apoptosis, connective tissue disorders, 

degranulation, phagocytosis and tissue damage. Similarly, the CD28 signalling in T 

Helper Cells pathway is involved in activation and regulation of cellular immune 

responses. Up-regulation of these pathways in control broilers indicate that breast 

muscles in broilers are under stress-related muscle damage that is further 

exacerbated by exposure to heat-stress.  

However, the VEGF (vascular endothelial growth factor) signalling pathway, that 

was up-regulated, is also a significant mediator of hypoxia-induced angiogenesis and 

is usually up-regulated in hypoxia-like situations. Up-regulation of this pathway, in 

control broilers compared with layers, suggests that even in control conditions 

broiler muscle cells were under hypoxic-stress. The reason for this may lie in the 

greater muscle fibre size and inadequate capillary supply, that are in turn considered 
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to induce metabolic stress due to the larger diffusion distances for nutrients, 

metabolites and waste products (MacRae et al. 2006). Up-regulation of this pathway 

in control broilers explains the up-regulation of inflammation and cell death related 

pathways in this category. This is in agreement with the published reports that 

thermal insult leads to oxidative and muscle damage, indicated by higher plasma 

creatine kinase activity of heat-stressed broilers  (Mitchell & Sandercock 1995b; 

Mujahid et al. 2005; Mujahid et al. 2006; Mujahid et al. 2007c). In agreement with 

these results, the NRF2-mediated Oxidative Stress Response pathway, which was 

up-regulated, is involved in the anti-oxidant functions of the body (Frost & Lang 

2005; Vaarmann et al. 2008; Alamdari et al. 2010). The up- regulation of this 

pathway in broilers might represent a protective measure to minimise the damaging 

effects of heat-stress. 

Networks 

Out of 23 networks, 5 networks were selected (Figure 4-3 & 4-4 & Appendix 4-8), 

on the basis of their relevance to the particular interest of the study. Networks 1, 7, 

and 9 were involved in skeletal and muscular disorders, inflammatory and cell death 

related functions. They were linked to each other by a single gene ‘Programmed Cell 

Death 6 Interacting Protein’ (PDCD6IP) that was up-regulated in these 3 pathways 

(Figure 4-3). Protein from the PDCD6IP gene binds to the product of PDCD6 genes 

and initiates apoptosis in a calcium-dependent manner in skeletal muscles (Baietti et 

al. 2012; Bongiovanni et al. 2012). Furthermore, PDCD6IP affects (switching 

on/off) the ‘Caspase’ family of proteases (Figure 4-3) and is well-known for having 

a role in causing cell death/apoptosis (Alway 2010; Stegh & DePinho 2011; Teng et 

al. 2011). Additionally, this gene (PDCD6IP) is also involved in affecting the 
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‘Cytochrome C gene’ (Figure 4-3) which reflects its role in oxidative stress and cell 

death, ultimately leading to tissue damage.  

Similarly, networks 4 and 6 were involved in inflammation, connective tissue and 

muscular disorders. These two pathways are linked through the ‘Fk506 Binding 

Protein 3’ (FKBP3) gene (Appendix 4-8). These findings are in agreement with the 

reports that connective tissues cannot keep pace with muscle fibre radial growth and, 

as a result, muscle fibre outgrows its support mechanisms and leads to myopathy-

like conditions (Swatland 1990; Kranen et al. 2000).  These results show that 

pathways and networks for this category were involved in tissue damage and related 

functions. 

4.4.2.2 Category II 

Pathways 

 In this category, 12 significant pathways were selected out (Table 4-2) of which 5 

pathways (Ceramide signalling, HMGB1 signalling, Production of Nitric oxide and 

Reactive Oxygen Species in Macrophage, Role of MAPK signalling in the 

Pathogenesis  of Influenza, and Chemokine signalling) were involved in 

inflammatory responses, (Abramson & Yazici 2006), oxidative stress (Aoi et al. 

2004), elevation in intracellular Ca2+ levels, cellular immune response, cell death 

(Nencioni et al. 2009) and skeletal muscle damage (Yasuo & Yamamoto 2001; 

Andrea Cutrullis et al. 2009; Dinler et al. 2010).  Except for these, all other 

pathways in this category were involved in protein synthesis, angiogenesis, anti-

inflammatory and anti-oxidant activities. The expression values in this category of 

clusters were highest in BC and were decreased after heat-stress. Up-regulation of 



Chapter 4 Bioinformatics Analyses of Gene Expression Difference between Broilers and Layers in 
response to Acute heat stress 

  120 

protein synthesis and angiogenic pathways in BC is logical in the sense that broilers 

are meat-type birds and have many-fold greater growth rates and body mass than 

layers (Griffin & Goddard 1994). But exposure to heat-stress resulted in down-

regulation of these pathways in broilers consistent with the negative effects of heat-

stress on growth-related traits (Khan et al. 2011). Conversely, these pathways 

(inflammatory and anti-inflammatory) were up-regulated in layers after thermal 

stress.  The up-regulation of inflammatory pathways might be due to deleterious 

effects of heat-stress and up-regulation of anti-inflammatory and survival-related 

pathways might be to protect the body from detrimental effects of HS. However, 

these results are in agreement with the physiological data (body temperature) from 

the present study where the increase in the layers’ body temperatures was much 

lower compared with broilers. Consistent with this, Sandercock et al. (2006) 

reported that the effects of heat-stress on body temperature, and plasma creatine 

kinase values in layers were much less compared with broilers. Similarly,  Mujahid 

et al. (2007b) have also observed that the extent of heat-stress induced oxidative 

stress in layer skeletal muscles was much less compared with broilers. Our data 

shows that the reason for this lower level of muscle damage in layers might be the 

up-regulation of the anti-inflammatory, anti-oxidant, and protein synthesis related 

pathways.  

Networks 

In agreement with the results of pathways analysis, 3 of the selected 4 networks were 

involved in cellular growth and proliferation, and skeletal and muscular system 

development and functions (Appendix 4-9). The results indicate that these networks 

might be involved in tissue repair and regeneration related functions and hence 
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reduce the damaging effects of heat-stress in layers. However, only one network was 

involved in cell death, and inflammatory response, suggesting that the extent of 

muscle damage in layer muscle on exposure to thermal challenge is limited, 

consistent with the phenotypic data and available literature.  

4.4.2.3 Category III 

Pathways: In this category the expression values of the genes were substantially 

greater for layers than broilers in control conditions and heat-stress resulted in 

further increases in layers but decreases in broilers. From the pathway analysis of 

this category only 3 pathways were significant, of which two (Table 4-3), Estrogen 

Receptor Signalling and Oxidative Phosphorylation were selected (Lannigan 2003; 

Padron et al. 2007). The Estrogen Receptor signalling pathway is mainly related to 

anti-oxidant, anti-stress and anti-apoptotic and a myo-protective role in various 

physiological and pathological conditions like oxidative stress and raised 

intracellular level of cations (MacRae et al. 2006). It is very likely that heat-stress 

induced up-regulation of this pathway in layers was a protective measure of the body 

to minimise the oxidative stress. However, the reason for the up-regulation of this 

pathway in LC is logical in the sense that layers are selected for egg and 

reproductive traits and hence have greater expression of estrogen and related genes. 

Ultimately, layers can lay more than 320 eggs in one production cycle (52 weeks) 

whereas broiler hens lay less than 200 eggs in a production cycle of 40 weeks. The 

reason for this lower expression of estrogen in broilers might be due to the negative 

correlation between growth-related traits and reproductive traits (egg numbers).  
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The Oxidative Phosphorylation pathway is involved in metabolism and energy 

production (Dumas et al. 2011; Szendroedi et al. 2012). The up-regulation of the 

Oxidative Phosphorylation pathway in layers compared with broilers, in control 

and stress conditions has not been reported previously, to our knowledge. The up-

regulation of this pathway shows that layers have comparatively higher metabolic 

rate than broilers, which might be the reason for their higher body temperature 

under control conditions in this study. Hypoxia is known to decrease the efficiency 

of oxidative phosphorylation (Cerretelli & Gelfi 2011) and, therefore, the down-

regulation of this pathway in broilers could be due to hypoxia-like conditions in 

skeletal muscles. In contrast to our finding, Toyomizu et al., (2011) reported that 

broiler skeletal muscles had greater efficiency of oxidative phosphorylation 

compared with layers. But they compared these two types of chicken between 14-

28 days of age when their body weights were about 1 kg and 0.2 kg for broilers and 

layers respectively. The greater efficiency of oxidative phosphorylation in broilers 

at that age is a logical outcome of selection for rapid growth. In the present study 

broilers were at 6 weeks of age were about 4 kg heavier and the occurrence of an 

hypoxia-like situation in their muscles is consistent with a greater muscle to 

capillary ratio and greater diffusion distances for nutrients and metabolic wastes 

(MacRae et al. 2006). Consistent with this conclusion, in category I some 

angiogenic pathways, like VEGF signalling, involved in the hypoxia-induced 

angiogenesis were up-regulated in broilers. 

Networks 

 In the analysis of this category of genes 9 networks were analysed. Out of these, 

two networks, 1 and 5 (Figure 4-5), were selected on the basis of their relevance to 

the particular objective (muscle damage) of the study. These two networks were 
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involved in cell death, energy production and genetic disorders and were linked to 

each other through a common gene, ‘NADH dehydrogenase (ubiquinone) Fe-S 

protein 1’ (NDUFS1) (Table 4-3 and Appendix 4-10). This gene is present in 

(inner) mitochondrial membranes and is involved in the electron transport chain 

and ATP production in mitochondrial respiratory chain complex I (Iuso et al. 2006; 

Than et al. 2011). This gene is also involved in a mitochondrial dysfunction 

pathway and could lead to an accelerated rate of cell death in certain pathological 

situations (Ricci et al. 2004).  

4.4.2.4 Category IV  

Pathways: The up-regulation of Corticotropin Releasing Hormone Signalling and 

α-Adrenergic Signalling pathways in BH compared with BC (similar to Category I) 

shows that BH were more stressed than BC. In addition to these pathways, the G 

Beta Gamma Signalling pathway that is involved in the activation of Calcium 

Signalling and Protein Kinase A Signalling pathways in its downstream effects was 

also up-regulated (Table 4.4). In both of these pathways, PKA and PLC genes were 

up-regulated and are involved in increasing intracellular Ca2+ levels by mediating 

the release of Ca2+ from cellular stores (endoplasmic reticulum and sarcoplasmic 

reticulum) by switching on the RyR (calcium release channel of skeletal muscles 

sarcoplasmic reticulum) and IP3R genes in their down-stream signalling cascades.  

Ziober et al. (2010) have reported an association between a SNP in the RyR1 gene 

and PSE-type meat in broilers. In contrast to this, it has also been reported that 

these Ca2+ release channels are normal in broilers and there is no defect in their 

structure and function (Malcolm Mitchell, person communication). Hence, up-

regulation of PKA gene is responsible for greater expression of RyR gene and 
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ultimately higher levels of Ca2+ in broiler skeletal muscles that might be involved 

in altering muscle cell function and reduced meat quality (Sandercock et al. 2009a).  

Among other pathways, FcγRIIB Signalling in B Lymphocytes, CCR5 Signalling 

in Macrophages, Chemokine Signalling and Phospholipid Degradation pathways 

are involved in inflammatory and allergic response, oxidative stress, elevation in 

intracellular. Ca2+ level and lipid degradation (Table 4.7), mediated by the 

phopholipase A2 (PLA2) enzyme (Nishizuka 1992; Ren et al. 2010). These 

pathways were up-regulated in BH compared with BC, as in Category I, and are 

associated with muscle pathology in broiler breast muscles. Previous findings have 

shown that oxidative stress, raised intracellular Ca2+ level and poor sarcolemmal 

integrity have synergistic effects on muscle damage in combination with heat-stress 

in broilers (Mitchell & Sandercock 1995b; Mitchell et al. 1999a; Sandercock & 

Mitchell 1999; Sandercock et al. 2001; Mujahid et al. 2005; Sandercock et al. 

2006; Mujahid et al. 2009).  

4.4.2.5 Category V 

Pathways: All of the 5 pathways in this category were involved in inflammation, 

vascular permeability, production of ROS and prostaglandin and, ultimately, cell 

death (Table 4-5) (Mitchell et al. 1999b; Alway 2010; Proskuryakov & Gabai 2010; 

Fukui et al. 2012; Tian et al. 2012). These pathways were up regulated in LH 

compared with LC, but were down regulated in BH compared with BC. The up-

regulation of these inflammatory and cell death related pathways are logical in the 

sense that heat-stress is known to be involved in causing some oxidative stress and 

muscle damage in layers, though its extent is lower compared with broilers 

(Sandercock et al. 2006; Mujahid et al. 2007b). In agreement with these reports, our 
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results show that some inflammatory and apoptotic pathways in category V and 

some pathways in category II, were up-regulated in LH compared with LC. 

However, the reasons for the down-regulation of these pathways in BH might be that 

genetic selection for different quantitative traits has made these two types of chicken 

very diverse in terms of their response to various stressors.  

4.4.2.6 Category VI 

Pathways: In this category, 3 pathways were selected (Table 4-6) on the basis of 

their relevance to the skeletal muscles. Interferon Signalling and TNFR1 Signalling 

are involved in cytokine signalling, inflammation and cell death. The third pathway, 

Role of JAK1, JAK2, and TYK2 in Interferon Signalling are also involved in 

cytokine signalling but mainly in wound healing and tissue regeneration (Flammer et 

al. 2010). These pathways were up-regulated in BH compared with BC, in 

agreement with category I and IV, indicating that heat-stressed broilers have higher 

muscle damage compared with BC, LC and LH. However, these pathways were 

down-regulated in LH compared with LC. The reason for this might again be the 

same as mentioned under Category IV that more substantial up-regulation of 

survival-related pathways has resulted in decreasing the damaging effects in LH 

(Dogra et al. 2006).  

4.4.3 Pathway and network analysis of Biolayout filtered genes in 

IPA 

Pathways: In this group, 8 interesting pathways were selected on the basis of their 

relevance to tissue damage mainly caused by oxidative stress and accelerated rate of 
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cell death (Table 4-7); they were up-regulated in BH compared with BC, and in 

broilers compared with layers. They were all related to oxidative stress, cell death 

and tissue damage. The results are in agreement with available reports in chickens 

showing that heat-stress is involved in causing muscle damage in broilers that is 

mediated by oxidative stress (Sandercock & Mitchell 1999; Sandercock et al. 2001; 

MacRae et al. 2006; Sandercock et al. 2006).  

 

Networks: In this group of genes, 5 networks were selected (Figures 4-7, 4-8, 4-9) 

from the list of networks. All of the genes were involved in tissue damage, and 

skeletal and muscular disorders, consistent with the pathways results. Networks 17 

and 24 were involved in skeletal and muscular system development and functions, 

energy production and tissue damage (Appendix 4-11). These two networks were 

linked to each other through a common gene, COX6A1, up-regulated in both 

pathways and involved in the activation of the cytochrome C oxidase (COX) family 

of genes which are involved in mitochondrial dysfunction. Similarly, networks 7 and 

25 were involved in cell cycle, cancer and genetic disorders and linked together by a 

single gene, SH3BP4 (Appendix 4-11). These results show that breast muscles in 

broilers are subject to stress related damage that is further exacerbated on exposure 

to heat-stress (Mitchell & Sandercock 1995b; Sandercock & Mitchell 2001; 

Sandercock et al. 2006).  

4.4.4 Selection of genes for further investigation  

For subsequent studies (SNP genotyping) genes were selected from key positions of 

the selected pathways and networks. Priority was given to those genes which were 

present on the upstream position in the pathways and networks and switching on/off 
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the down-stream genes.  From the following pathways, fMLP signalling in 

Neutrophil (Figure 4-7),  Gβ (GNB5), Gγ (GNG2) and HRAS genes were selected 

that are involved in switching on the down-stream genes and ultimately resulting in 

raised intracellular level of Ca2+, proteasomal degradation and enhanced expression 

of chemokine genes.  
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In addition to these pathways, genes were also selected from the identified networks. 

Priority was given to those genes that were common in two or more networks and 

hence, involved in initiating more than one network. Genes which could not be 

mapped in IPA but were interesting on the basis of their GO terms were also 

selected, to address the particular questions of the present study (CKMT1, MTFRI, 

and PDCD6, Table 4-8). The biological functions of the selected genes in relation to 

muscle and meat quality are discussed in detail in Chapter 5. 

4.5 Conclusion 

1. By using the bioinformatics tools described in this study the gene list was 

reduced from more than 2,200 to only 18 genes, affecting a large number of 

other genes in down-stream signalling pathways. An additional 6 genes were 

selected on the basis of their GO terms for biological functions. 

2. The results not only confirm most of the previous findings on muscle damage 

in broilers and in birds subjected to heat stress but also present novel insights 

into the genetics and pathogenesis of heat-stress induced muscle damage by 

reporting a large number of previously unknown pathways and networks. 

3. Genetic selection for growth and reproductive traits has not only resulted in 

changing the body size and shape of these two types of chicken but has also 

made broilers and layers very different in terms of their response to stressors. 

4. The results also show that broilers are not only under metabolic stress but 

genetic selection has made them more susceptible to heat stress compared 

with layers. 

5. It is expected that these pathways and networks will be the subject of interest 

and contribute to unravelling some underlying biological mechanisms to 
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control or minimise the effects of thermal stress in chickens and improve 

muscle and meat quality in broilers. 



 

  132 

Chapter 5 SNP genotyping of candidate genes for 

muscle and meat quality traits in chicken 
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5.1 Introduction 

During the past few decades substantial progress has been made through the 

application of molecular genetics in the identification of chromosomal regions, using 

microsatellite markers, that affect traits of economic importance in animals 

(Andersson 2001). These genomic regions (quantitative trait loci, QTL) are usually 

very large, containing hundreds of genes and it was difficult to narrow down the 

region due to the requirement for a large number of animals/individuals and DNA 

markers. To date, (August 2012) 3,442 QTL for 286 traits have been reported in 172 

publications in chicken, according to the statistics of animal genome QTL database 

(http://www.animalgenome.org) showing that genetic markers have been the subject 

of huge interest to discover genomic regions affecting quantitative traits (Fulton 

2012).  

Similarly, Marker Assisted Selection (MAS) has been widely used to assist in the 

selection of superior individuals, at an early age, in commercial breeding 

programmes (Fulton 2012). Nevertheless, there are several constraints in the 

application of MAS technology in commercial breeding that limited its use in 

practical breeding. These limitations include the  presence of negative correlations 

between traits of interest and additionally requirements for huge amounts of capital 

and labour to develop and maintain crosses and data recording (Dekkers 2007) and 

lack of association between marker allele and phenotypic trait after a few generations 

(Fulton 2012). 

The sequencing of the chicken genome and discovery and availability of about 2.8 

million SNPs in the public domain in 2004 revolutionised the poultry breeding 
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industry and suddenly transformed it into the genomic era (Burt & White 2007) and 

made whole genome selection possible. The application of whole-genome selection 

in breeding programmes has made it possible to select the elite individuals on 

genomic information and lead to sustainable improvements in subsequent 

generations. In addition to these benefits it has also resulted in decreasing the 

number of animals selected for breeding, reducing the number of progeny to be 

phenotyped, and the identification of superior animal at very early age and thus 

decreasing the generation interval (Meuwissen et al. 2001; Fulton 2012). It is 

considered that most (up to 90%) of the genetic differences between individuals are 

explained by SNPs and, therefore, they are recognised as most preferable/desirable 

markers to use in breeding programmes. However, SNPs found within the exonic 

regions of DNA are of major interest because they can change the protein structure 

and its biological functions (Salem et al. 2012).  

The arrival of SNP genotyping technology has made it possible to discover reliable 

genetic markers responsible for controlling different phenotypic traits in individuals 

(Dekkers 2012). Additionally, synergistic combination of this technology with 

modern statistical tools has enabled geneticists to predict the magnitude of 

phenotypic variance caused by SNPs and also to design breeding programs with 

better precision and accuracy.  

Through these developments genomic information has started to be used in poultry 

breeding programmes by different breeding companies, as indicated by the 

development of SNP chips by poultry breeders and commercial companies (Fulton 

2012). However, it is essential that these SNPs should be associated with the 
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different phenotypic traits of interest.  These new advances will lead the poultry 

breeders to apply genomic selection to enhance the accuracy of their programmes, 

especially for the traits where it is very hard to get the phenotypic data such as 

muscle and meat quality traits. These SNPs markers would be helpful in selecting 

superior birds for the trait of interest and also to update the existing SNP chips. An 

outline of the experimental procedures described in this chapter is presented in 

Figure 5-1. 

5.2 Objectives 

1. To identify SNP markers for muscle damage and meat quality traits in 

chicken. 

 

 

  



Chapter 5    SNP genotyping of Candidate genes for muscle and meat quality traits in chicken 

  136 

Figure 5-1 Work Flow Diagram of Chapter 5. In this chapter SNPs were 
selected from the candidate genes selected in Chapter 4. Those SNPs 
were tested for muscle and meat quality traits in 34 breeds of chicken. 
Association of polymorphic SNPs were found with muscle and meat 
quality phenotypes by using several regression analyses. Finally, 
variance explained by significant SNPs for these traits were calculated. 
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5.3 Material and Methods 

5.3.1 Husbandry and Phenotypic data  

The data and traits were from previously published work as follows (Sandercock et 

al. 2009a; Sandercock et al. 2009b).  

“In total more than 900 day-old chicks belonging to 34 lines (12 broiler, 12 layer, 

and 10 traditional) were obtained from 8 different sources (Table 5.1). The birds 

belonging to commercial lines, broilers (B), layers (L) and the traditional J-line 

(Brown Leghorn) were vent-sexed at the time of hatch and the males were housed in 

4 large pens. Birds belonging to the remaining T lines were sexed by using a DNA 

method (Griffiths et al., 1998).  

Birds from the commercial lines and the J-line were the offspring of at least 4 sires 

and 8 dams. While the other T line birds were the progeny of 2 males but the number 

of hens is not specified (the total number of sires was 125). The birds were randomly 

allocated to different pens, however, it was made sure that there was equal 

representation of each sire in each pen and chicks were identified with their unique 

wing band number for each bird. 

The birds were provided with ad libitum access to water and feed; birds were offered 

a commercial broiler starter diet from 0 to 5 week and a commercial finisher diet 

from 5 to 10 week. A constant photoperiod of 16L:8D was maintained throughout 

the experiment and light intensity averaged 10 lux at the height of the head of the 

bird. The experiment was conducted under a United Kingdom Government Home 
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Office-approved license after review by the Institute’s Animal Welfare and Ethics 

Committee”.  
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Table 5-1 Genetic line (Breed), Category, Source and number of birds 
used for the collection of phenotypic trait data (Sandercock et al. 2009a; 
Sandercock et al. 2009b). 

Line     Category1 Source2 No. of birds 

Araucana  T 1 4 
Barnevelder T 1 4 
Brown Leghorn T 1 4 
Buff Orpington T 1 4 
Friesian Fowl T 1 4 
Ixworth T 2 4 
J-line T 3 4 
Maran T 1 4 
White Dorking T 1 4 
White Sussex T 2 4 
Broiler 1 B 6 4 
Broiler 2 B 6 4 
Broiler 3 B 6 4 
Broiler 4 B 6 4 
Broiler 5 B 7 4 
Broiler 6 B 7 4 
Broiler 7 B 7 4 
Broiler 8 B 7 4 
Broiler 9 B 8 4 
Broiler 10 B 8 4 
Broiler 11 B 8 4 
Broiler 12 B 8 4 
Layer 1 L 4 4 
Layer 2 L 4 4 
Layer 3 L 4 4 
Layer 4 L 4 4 
Layer 5 L 4 4 
Layer 6 L 4 4 
Layer 7  L 5 4 
Layer 8 L 5 4 
Layer 9 L 5 4 
Layer 10 L 5 4 
Layer 11 L 5 4 
Layer 12 L 5 4 

1T = Traditional line; L = Commercial layer line; B = Broiler line 
2Lines sharing the same number came from the same breeder (T lines) or commercial 
breeding company (B and L lines) 
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5.3.2 Physical traits studied 

In this study, muscle and meat quality traits were studied. Plasma creatine kinase 

activities were used as a measure of muscle quality. While for the meat quality, pH 

and colour traits (lightness, redness, and yellowness) of breast and thigh muscle were 

studied.  

5.3.3 Phenotypic data collection  

Plasma creatine kinase (CK) levels were measured at 6 and 10 week of age, on 4 

birds from each line (at least 1 progeny of each sire) by (Sandercock et al. 2009a; 

Sandercock et al. 2009b) . In the case of meat quality, colour traits lightness (B*L), 

redness (B*a), and yellowness (B*b) were measured form the ventral side of the 

right breast fillet using reflectance colorimetry [Minolta CR-300, CIELab, Minolta 

(UK) Ltd., Milton Keynes, UK]. The left breast fillet was used to measure initial and 

ultimate pH (pHi and pHu) by (Sandercock et al. 2009a; Sandercock et al. 2009b). 

Data for colour traits for thigh muscles (T*L), redness (T*a), and yellowness (T*b) 

was also collected in the same study by (Sandercock et al. 2009a; Sandercock et al. 

2009b). 

5.3.4 Selection of SNPs 

SNPs were selected in the candidate genes, selected from pathways and networks 

analysis of Biolayout analysed (Category I-VI) and Biolayout filtered out genes 

separately (Chapter 4, section 4.3). SNPs were selected from the Ensembl genome 

browser using ‘Biomart’ option for the Broiler and Layer 
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(http://www.ensembl.org/biomart) in comparison with Red Jungle Fowl. SNP were 

also selected in the promoter regions of these genes.  

For each gene, 4-5 SNPs were selected on average and preference was given to those 

SNPs present in exons. In total, 100 widely spaced SNPs were selected for 

genotyping. 

5.3.5 Genotyping of SNPs 

All of the 100 selected SNPs, from the candidate genes, were tested in 136 birds 

belonging to 34 breeds (4 birds/breed) mentioned in Table 5-1. These SNPs were 

genotyped by Kbioscience by using the KASPTM technology. The KASP technology 

is a PCR-based assay that enables highly accurate bi-allelic scoring of SNPs across a 

wide range of genomic DNA samples (http://www.lgcgenomics.com/kasp-

genotyping-reagents). Out of these 100 SNPs, 89 SNPs were subsequently found to 

be polymorphic.  

5.3.6 Statistical analyses 

All of these 89 polymorphic SNPs markers were analysed against 9 traits including 

CK, breast muscle lightness, breast muscle redness, breast muscle yellowness, thigh 

muscle lightness, thigh muscle redness, thigh muscle yellowness and initial and 

ultimate pH (pHi and pHu). Analyses were conducted in GenStat 

(www.vsni.co.uk/software/genstat/) using the Regression procedure which analysed 

the data using a randomized block model with SNP and CAT (broiler, layer or 

traditional) as fixed effects and Pen as the random effect separately for each gene. 

After running this analysis results were obtained for the following 3 steps (i) SNP 



Chapter 5    SNP genotyping of Candidate genes for muscle and meat quality traits in chicken 

  142 

ignoring category (ii) SNP eliminating category (iii) SNP x Category. From these 

analyses, results for the SNP eliminating category were only used for subsequent 

analysis in order to eliminate the effects of CAT and to identify the minimal set of 

SNPS affecting each trait. 

In the second step, multiple SNPs significant for one gene were further analysed 

jointly using the ‘RSEARCH procedure’ of Generalised Linear Model (GLM). In 

this procedure, the ‘Backward Elimination’ method was used to obtain the most 

significant SNP (from the fitted model) for that gene. In this step, the term 

‘Pen+CAT’ was included in the model (Reduced model) whereas the terms 

‘Pen+CAT+SNP1+SNP2----+SNPn was used as the free formula (Full model).  

In the third step, all the significant SNPs across all the genes, (including the most 

significant SNP from the ‘Backward Elimination’ step) for one phenotypic trait were 

analysed jointly using the ‘Backward Elimination’ method of RSEARCH procedure 

to obtain the most significant subset of SNPs from the fitted model for that trait. 

‘Pen+CAT’ was used in the FORCED formula (Reduced model) whereas term 

‘Pen+CAT+SNP1+SNP2----+SNPn was used as the free formula (Full model). 

Finally, the SNPs returned by the GenStat as ‘Final Model’ were used to estimate the 

variance explained by these SNPs jointly, by using the FIT method of GLM. In this 

step the term ‘Pen+CAT’ was fitted and its effects on variance was estimated and 

then the model ‘Pen+CAT+SNP1+SNP2+----------+SNPn’ was fitted and its effect 

on variance was estimated (Table 5-3). Finally, the effects of SNPs on residual 

variance was measured by using the following formula 
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= [(Res. variance without SNPs – Res. variance with SNPs) / Res. variance without 

SNPs)] x 100. 

5.4 Results 

The 86 polymorphic SNPs markers in or close to 24 genes present on 14 different 

chromosomes were genotyped in 34 different breeds (12 Layers, 12 broilers, 10 

traditional) and tested for associations against each of the 9 traits. After running the 

several regression analyses (section 5.3.6) and by using stringent criteria the 

following SNPs were found to be most strongly associated with the traits of interest 

and the P-values mentioned below under different traits are from the last (3rd 

regression analysis).  

5.4.1 Creatine Kinase (CK) 

For creatine kinase 2 SNPs, rs14604079 in HDAC4 on chromosome 7 and 

rs14216459 in gene PDCD6 on chromosome 2 were the most significant (P<0.05) 

SNPs affecting this trait (Table 5.3). These two SNPs jointly explained 15% of 

residual variance among the breeds (Table 5.3). The SNP rs14604079 was present in 

5th exon of HDAC4 gene and was a synonymous mutation while the rs14216459 was 

present in the down-stream region of the PDCD6 gene. 

5.4.2 Breast muscle lightness (B*L) 

In total, 7 SNPs were significantly (P<0.001) associated with this trait and together 

they explained 48% of the variation for breast muscle lightness (B*L). These SNPs 

include rs14330673 in the intronic region of CALM gene on chromosome 3, a 
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synonymous SNP rs15093639 in the PDCD6IP gene on chromosome 2, rs13803200 

in the intronic region of the MTFR1 gene present on chromosome 2, a non-

synonymous mutation rs14868825 in the IFNAR2 gene on chromosome 1, 

rs13704016 in the MAP2K1 gene on chromosome 10 and two synonymous SNPs, 

rs14027061 and rs14702610, in the coding sequence of the PLCG2 gene on 

chromosome 11 were found most strongly associated with the for B*L (Table 5.2 

and 5.3). 

5.4.3 Breast muscle redness (B*a) 

In the case of breast muscle redness, 4 SNPs were significantly (P<0.001) associated 

with B*a and together they explained the 28% of the residual variance (Table 5.2 

and 5.3) for this trait. These SNPs include an intronic SNP rs14645300 in the BCL10 

gene on chromosome 8, a synonymous SNP rs10727941 in the CALM gene on 

chromosome 3, rs15031083 in the upstream promoter of ENDOG gene on 

chromosome 17, and rs15126679 present in exon-intron junction of the PDCD6 gene 

on chromosome 2. 

5.4.4 Breast muscle yellowness (B*b) 

For breast muscle yellowness 3 SNPs were significantly (P=0.038) associated with 

the trait. These SNPs include rs10726982 in the upstream promoter of ENDOG gene 

on chromosome 17, rs13535756 at the intron-exon junction of PRKAG2 gene on 

chromosome 2, and a SNP rs14416824 also present almost the junction of intron and 

exon in SLC26A11 gene on chromosome 18 respectively. These 3 SNPs were jointly 
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responsible for explaining 20% of the residual variance (Table 5.2 and 5.3) for this 

trait. 

5.4.5 Thigh muscle lightness (T*L) 

Eight SNPs were strongly (P=0.001) associated with thigh muscle lightness and 

jointly they explained 45% of the residual variance for this trait among broilers, 

layers and traditional breeds (Table 5.2 and 5.3). These variations include two 

intronic SNPs, rs13803200 and rs14695299, in the MTFR1 gene on chromosome 2, 

two intronic SNPs, rs14330673 and rs14330679, in the CALM gene on chromosome 

3, an intronic SNP rs14604083 in the HDAC4 gene on chromosome 7, an intronic 

variation rs13704016 in the MAP2K1 gene on chromosome 10, a synonymous SNP 

rs14702610 in the PLCG2 gene on chromosome 11 and similarly one synonymous 

SNP rs14305263 in the LMNB2 gene on chromosome 28.  

5.4.6 Thigh muscle redness (T*a) 

 In the case of T*a three SNPs were found significantly associated (P=0.002) with 

this trait. These SNPs include an intronic SNP rs15671752 in HRAS gene on 

chromosome 5, rs14695299 in the upstream/promoter region of MTFR1 gene on 

chromosome 2, and one intronic SNP rs13591700 in AKT1 gene on chromosome 5 

(Table 5.2 and 5.3). These 3 SNPs jointly explained the 19% of the residual variance 

for the T*a trait. 
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5.4.7 Thigh muscle yellowness (T*b) 

A total of 6 SNPs including an intronic SNP rs14330679 in CALM gene on 

chromosome 3, an intronic SNP rs13595564 in CYP27A1 gene on chromosome 7, 

rs14604080 present almost at the intron-exon junction in HDAC4 gene on 

chromosome 7, a synonymous SNP rs14027066 in PLCG2 gene on chromosome 11, 

similarly one synonymous SNP rs14416825 in SLC26A11 gene on chromosome 18,  

and one synonymous SNP rs14305263 in LMNB2 gene on chromosome 28 showed 

significant (P<0.001)  association with thigh muscle yellowness (Table 5.2 and 5.3). 

These SNPs explained 46% of residual variance for thigh muscle yellowness. 

5.4.8 Initial pH (pHi) 

For pHi, 5 SNPs namely rs15305228 at the intron-exon junction in CALM gene on 

chromosome 3, rs13803200 almost at the intron-exon junction in MTFR1 gene on 

chromosome 2, rs15031083 in the promoter region of ENDOG gene on chromosome 

17, rs15126679 at the intron-exon junction in PDCD6 gene on chromosome 2, and 

rs13535812 in the intronic region of PRKAG2 gene on chromosome 2 were 

associated with the trait (P<0.001). These 5 significant SNPs jointly explained 41% 

of the residual variance for pHi. 

5.4.9 Ultimate pH (pHu) 

Seven SNPs, were very strongly (P<0.001) associated with ultimate pH (pHu) (Table 

5.2 and 5.3).  These 7 significant SNPs jointly explained the 55% of residual 

variance for pHu. These SNPs were an intronic SNP rs14645300 in BCL10 gene on 
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chromosome 8, a SNP rs15177275 in the intronic region of BCL2L1 gene on 

chromosome 20, rs14615869 in the intronic region of CYP27A1 gene on 

chromosome 7, rs15031083 in the promoter region of ENDOG gene on chromosome 

7, a synonymous SNP rs14946390 in GNB5 on chromosome 10, similarly one 

synonymous SNP rs14305263 in LMNB2 gene on chromosome 28, and rs14695299 

in the intronic regions of MTFR1 gene on chromosome 2. 
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Table 5-2 Results for individual SNPs in a model including breed type 

Category Gene Name SNP Id Position CHR CK B*L B*a B*b T*L T*a T*b pHi pHu 

Cat 2 Pathway 
 

AKT1 
 

rs13591699 Upstream 5 NS NS NS NS NS NS NS NS NS 

rs13591700 Intronic 5 NS NS NS NS NS ** NS NS NS 

rs14548962 Upstream 5 NS NS NS NS NS NS NS NS NS 

rs14548963 Upstream 5 NS NS NS NS NS NS NS NS NS 

Biolayout filtered 
 

APAF1 
 

rs13651273 Upstream 1 N.S. N.S. N.S. NS N.S. N.S. N.S. N.S. N.S. 

rs13861269 Upstream 1 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs13861271 Upstream 1 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs13861273 Upstream 1 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs13861293 Upstream 1 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

Biolay fil. Path 
 

BCL10 
 

rs14645300 Intronic 8  * NS ** NS NS NS NS NS *** 

rs14645301 Intronic 8 NS NS NS NS NS NS NS NS NS 

rs15917771 Intronic 8 NS NS NS NS NS NS NS NS NS 

GO term 
 

BCL2L1 
 

rs14278113 Intronic 20 * NS NS NS NS NS NS NS * 

rs15177274 Intronic 20 ** NS * NS NS NS NS NS * 

rs15177275 Intronic 20 NS NS NS NS NS NS NS NS * 

rs15177278 Intronic 20 NS NS NS NS NS NS NS NS NS 

Cat 1 Pathway 
 

CALM 
 

rs10727941 Synonymous 3 * NS *** NS NS NS NS NS NS 

rs14330673 Intron 3 NS * NS NS ** NS NS *** NS 

rs14330679 Intron 3 NS NS NS NS * NS * *** * 

rs14330680 Upstream 3 * NS * NS NS NS NS NS NS 

rs15305228 Edge of exon 3 NS NS NS NS NS NS NS *** NS 

GO term CKMT1 rs14955550 Intronic 10 NS NS NS NS ** NS NS NS NS 

rs14955553 Intronic 10 NS * NS NS NS NS NS NS NS 

rs14955554 Upstream 10 NS * NS NS NS NS NS NS NS 

Cat 3 COX6A1 rs15024046 Upstream 15 * NS NS NS NS NS NS NS *** 
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  rs15024047 Upstream 15 NS NS NS NS NS NS NS NS NS 

GO term 
 

CYP27A1 
 

rs13595564 Intronic 7 NS NS NS NS NS NS * * NS 

rs13595565 Intronic 7 NS NS NS NS NS NS NS NS NS 

rs13595566 Intronic 7 NS NS NS NS NS NS NS NS NS 

 rs14615869 Intronic 7 * NS NS NS 0.052 NS NS NS ** 

Biolay fil. Path 
 

ENDOG 
 

rs10726982 Promoter/coding 17 NS NS NS * NS NS NS NS NS 

rs15031083 Promoter 17 NS NS ** NS 0.056 NS * *** *** 

rs15031084 Intronic 17 NS NS NS NS NS NS NS NS NS 

Cat 1 Pathway 
 

GNB5 
 

rs14004719 Intronic 10 NS NS NS NS * NS NS NS NS 

rs14004720 Intronic 10 NS NS NS NS * NS NS NS NS 

rs14004752 Synonymous 10 NS NS NS NS NS NS NS NS NS 

rs14946390 Synonymous 10 NS NS NS NS * * NS NS NS 

Cat 1 Pathway 
 

GNG2 
 

rs13594872 Upstream 5 * NS NS NS NS NS NS 0.053 NS 

rs13594873 Upstream 5 * NS NS NS * NS NS ** NS 

rs14556386 Upstream 5 * NS NS NS *** NS NS * NS 

rs14556387 Upstream 5 NS NS NS NS NS NS NS NS NS 

rs15746863 Intronic 5 ** NS NS NS * NS NS ** NS 

Cat 1 Network analysis 
 

HDAC4 
 

rs14604079 Synonymous 7 *** NS * NS NS NS NS NS NS 

rs14604080 Edge of exon 7 NS NS NS * NS NS 0.056 NS NS 

rs14604082 Upstream 7 NS NS NS NS NS NS NS NS NS 

rs14604083 Intron 7 NS NS NS NS * NS NS NS NS 

rs14604084 Upstream 7 NS NS NS NS NS NS NS NS NS 

Cat 1 Pathway 
 

HRAS 
 

rs15671745 Intronic 5 NS NS NS NS NS NS NS NS NS 

rs15671750 Intronic 5 NS NS NS NS NS NS NS NS NS 

rs15671752 Upstream 5 NS NS NS NS NS * NS NS NS 

rs15671757 Intronic 5 * NS NS NS NS NS NS NS NS 

Cat 6 
 

IFNAR2 
 

rs14868816 5 Prime_UTR 1 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs14868817 Intronic 1 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
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rs14868825 Non-synonymous 1 N.S. ** N.S. N.S. N.S. N.S. N.S. N.S. * 

Biolay fil. Path LMNB2 rs14305263 Synonymous 28 NS NS * * ** 0.053 * NS 0.054

Cat 2 Pathway 
 

MAP2K1 
 

rs13704016 Intronic 10 NS ** NS NS ** NS NS NS NS 

rs14013207 Intronic 10 * NS NS NS NS NS NS NS NS 

rs14953751 Intronic 10 NS NS NS NS * NS NS NS NS 

rs14953769 Synonymous 10 NS NS NS NS NS NS NS NS NS 

Cat 1 Pathway 
 

MAPK14 
 

rs13724831 Intronic 26 NS NS NS NS NS NS NS ** NS 

rs14416336 Upstream 26 NS NS NS NS NS NS NS *** NS 

rs14416337 Intronic 26 NS NS NS NS NS NS NS NS NS 

GO term 
 

MTFR1 
 

rs13803200 Edge of exon 2 N.S. ** ** N.S. * * N.S. ** 0.053

rs14695294 Synonymous 2 NS N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs14695299 Intronic 2 N.S. N.S. 0.055 N.S. * ** N.S. N.S. 0.053

GO term 
 

PDCD6 
 

rs14216459 Intron 2 * N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs15126679 Edge of exon 2 NS N.S. * N.S. N.S. 0.052 N.S. * N.S. 

rs15126686 Downstream 2 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

Cat 1 Network analysis 
 

PDCD6IP 
 

rs14174893 Intronic 2 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs14174902 Intronic 2 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs15093639 Synonymous 2 NS * N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

Cat 4 Path 
 

PLCG2 
 

rs14027061 Synonymous 11 NS ** NS * NS NS NS NS NS 

rs14027066 Synonymous 11 NS NS NS * * NS * NS NS 

rs14702610 Synonymous 11 * ** NS NS * NS NS NS *** 

Cat 4 
 

PRKAG2 
 

rs13535756 Edge of exon 2 * N.S. * * N.S. N.S. N.S. N.S. N.S. 

rs13535812 Intronic 2 N.S. N.S. N.S. N.S. N.S. N.S. N.S. ** N.S. 

rs13535831 Upstream 2 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

rs14133173 Upstream 2 NS N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

Cat 4 Path PTGS2 rs15910128 Intronic 8 NS NS NS NS NS NS NS NS NS 

  rs15910130 3 prime UTR 8 NS NS NS NS * NS NS NS NS 
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GO term 
 

SLC26A11 
 

rs14416822 Upstream 18 NS NS NS * * NS NS NS NS 

rs14416824 Edge of exon 18 NS NS NS ** ** NS ** NS NS 

rs14416825 Synonymous 18 *** NS NS NS NS NS *** 0.053 NS 

rs15469299 Promoter 18 NS *** NS NS NS NS NS NS NS 
 

              

***       Significant at P<0.001 

  **        Significant at P<0.01  

   *         Significant at P<0.05 

  NS       Non significant 
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 Table 5-3 Results for joint SNPs analyses following backward elimination, including breed-type 

Gene Name SNP Id CH CK B*L B*a B*b T*L T*a T*b pHi pHu 
AKT1 
 

rs13591699 
rs13591700 

5 
--- --- --- --- --- rs13591700 --- --- --- 

BCL10 
 

rs14645300 
rs14645301 
rs15917771 

8 
--- --- rs14645300 --- --- --- --- --- rs14645300 

BCL2L1 
 

rs14278113 
rs15177274 
rs15177275 
rs15177278 

20 

--- --- --- --- --- --- --- --- rs15177275 

CALM 
 

rs10727941 
rs14330673 
rs14330679 
rs14330680 
rs15305228 

3 

--- rs14330673 rs10727941 --- 
rs14330673 
rs14330679 

--- rs14330679 rs15305228 --- 

CKMT1 
 

rs14955550 
rs14955553 
rs14955554 

10 
--- --- --- --- --- --- --- --- --- 

COX6A1 
 

rs15024046 
rs15024047 

15 
--- --- --- --- --- --- --- --- --- 

CYP27A1 
 

rs13595564 
rs13595565 
rs13595566 
rs14615869 

7 

--- --- --- --- --- --- rs13595564 --- rs14615869 

ENDOG 
 

rs10726982 
rs15031083 
rs15031084 

17 
--- --- rs15031083 rs10726982 --- --- --- rs15031083 rs15031083 

GNB5 
 

rs14004719 
rs14004720 
rs14004752 
rs14946390 

10 

--- --- --- --- --- --- --- --- rs14946390 

GNG2 
 

rs13594872 
rs13594873 
rs14556386 

5 
--- --- --- --- --- --- --- --- --- 
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rs14556387 
rs15746863 

HDAC4 
 

rs14604079 
rs14604080 
rs14604082 
rs14604083 
rs14604084 

7 

rs14604079 
 

--- --- --- rs14604083 --- rs14604080 --- --- 

HRAS 
 

rs15671745 
rs15671750 
rs15671752 
rs15671757 

5 

--- --- --- --- --- rs15671752 --- --- --- 

IFNAR2 
 

rs14868816 
rs14868817 
rs14868825 

1 
--- rs14868825 --- --- --- --- --- --- --- 

LMNB2 rs14305263 28 --- --- --- --- rs14305263 --- rs14305263 --- rs14305263 
MAP2K1 
 

rs13704016 
rs14013207 
rs14953751 
rs14953769 

10 

--- rs13704016 --- --- rs13704016 --- --- --- --- 

MAPK14 
 

rs13724831 
rs14416336 
rs14416337 

26 
--- --- --- --- --- --- --- --- --- 

MTFR1 rs13803200 
rs14695294 
rs14695299 

2 
 rs13803200   

rs13803200 
rs14695299 

rs14695299  rs13803200 rs14695299 

PDCD6 
 

rs14216459 
rs15126679 
rs15126686 

2 
rs14216459 --- rs15126679     rs15126679  

PDCD6IP 
 

rs14174893 
rs14174902 
rs15093639 

2 
--- rs15093639 --- --- --- --- --- --- --- 

PLCG2 
 

rs14027061 
rs14027066 
rs14702610 

11 
 

rs14027061 
rs14702610

--- --- rs14702610  rs14027066 --- --- 

PRKAG2 
 

rs13535756 
rs13535812 

2 
--- --- --- rs13535756 --- --- --- rs13535812 --- 
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rs13535831 
rs14133173 

PTGS2 
 

rs15910128 
rs15910130 

 
--- --- --- --- --- --- --- --- --- 

SLC26A11 rs14416822 
rs14416824 
rs14416825 
rs15469299 

18 

--- --- --- rs14416824 --- --- rs14416825 --- --- 

% of variance 
explained by 
the SNPs 
jointly1 

  

15 48 28 20 45 19 46 41 55 
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5.5 Discussion 

Several regression analyses were run using very stringent criteria to evaluate the 

association of SNPs with variation in the 9 phenotypic traits. Finally, a number of 

SNPs were found that very strongly associated with the traits of interest and 

responsible for explaining a substantial amount of variation in these traits. It is worth 

mentioning that all of these SNPs are novel and have not been reported to date for 

their association with any trait in chicken. However, the data in the current study do 

not provide enough evidence of a causal relationship between a SNP and these traits; 

hence, more investigation is recommended to confirm if there is any causal 

relationship between any of the identified SNP and a muscle or meat quality trait. 

5.5.1 Muscle quality traits 

5.5.1.1 Creatine Kinase 

For creatine kinase 2 SNPs, a synonymous SNP rs14604079 in the HDAC4 gene and 

an intronic SNP rs14216459 in the PDCD6 gene were the most strongly associated 

(P<0.05) SNPs for this trait (Table 5.3). The presence of significant SNPs in the 

HDAC4 and PDCD6 genes for creatine kinase shows the association of these genes 

in breast muscle metabolism and damage in chicken. Though the HDAC4 gene is 

known to have a crucial role in regulating the genes involved in muscle metabolism, 

functions and development in human (Du et al. 2008a; Choi et al. 2012); it is the 

first time that any SNP affecting muscle damage in this gene has been identified in 

chicken. Consistent with this, McGee and Hargreaves (2010) reported that inhibition 

of HDAC4 could be an effective therapeutic tool in treating various metabolic 
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diseases like insulin resistance, obesity, and Type 2 diabetes. In agreement with this 

Du et al. (2008b) reported that HDAC4 inhibited the differentiation of skeletal 

muscle cells in response to its stimulation by Protein Kinase A (PKA). These finding 

were further confirmed by Chen et al. (2006) who discovered micro-RNAs 

(microRNA-1) that could promote myogenesis by reducing/inhibiting the effects of 

the HDAC4 gene on skeletal muscle genes. It seems likely that this synonymous 

variation/mutation has enhanced the effect of HDAC4 on muscle damage in chicken, 

possibly by its association with some other variations which could not be 

checked/studied in this experiment, and segregating together. 

Similarly, though the PDCD6 gene is known for its role in cell death and tissue 

damage, no SNP has been reported in this gene for its association with any muscle 

and meat quality trait, to date. However, in agreement to our results Rho et al. (2012) 

have reported that the PDCD6 gene is not only involve in promoting cell death but it 

also suppress the angiogenesis, stimulated by vascular endothelial growth factor 

(VEGF), and protein synthesis. Consistent with this Park et al. (2012) reported that 

PDCD6 further augments the rate of cell death caused by TNF-alpha mediated by 

NFkB. 

5.5.2 Meat quality traits 

5.5.2.1 Breast muscle lightness (B*L) 

In total, 7 SNPs were significantly associated with breast muscle lightness (B*L) and 

they jointly explained 48% variation for this trait (Table 5.2 & 5.3). An intronic 

mutation rs13803200 in the MTFR1 gene was found significantly associated with the 

trait. To date, no SNP in the MTFR1 gene in any species has been associated with 
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any trait and this is the first time that a SNP from this gene has been found 

associated with breast muscle lightness. Gu et al. (2009) have described the MTFR1 

gene as a candidate gene for muscle strength and athletic-performance traits in 

thoroughbred horses. Whereas,  Monticone et al. (2007) have reported that the 

MTFR1 gene has an anti-oxidant role and protects the tissues against oxidative stress 

which is in agreement with its role in enhancing muscle strength because oxidative 

stress causes tissue damage and weakness of the muscles (Yoda et al. 2010). 

However, the SNP reported in the present study might be involved (associated) in 

compromising the anti-oxidant function of this gene. Nevertheless, this SNP and 

gene merit further exploration to discover its actual role for this trait.  

Similarly, a novel synonymous mutation rs15093639 in the PDCD6IP/Alix gene has 

been found associated with B*L. However, Strappazzon et al. (2010) have reported 

that Alix in combination with ALG2 (apoptosis-linked gene-2) is involved in Ca2+ 

induced activation of the caspases 9 gene which in turn is involved in causing cell 

death. In our case, this gene was up-regulated in heat stressed broilers compared with 

broiler controls, and in broilers compared with layers, suggesting a greater rate of 

cell death in broilers than layers (see chapter 4). Secondly, this gene linked the three 

networks (Network 1, 7, & 9) (see section 4.3.2.1) all of which were involved in cell 

death, and in genetic and muscular disorders (Appendix 4-8).  Consistent with this, 

Mahul-Mellier et al. (2006b) have also showed that the Alix gene is involved in 

promoting cell death.  

Similarly, one intronic mutation, rs14330673, in the CALM gene on chromosome 3 

was also found to be significantly associated with this trait. The calmodulin (CALM) 
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gene is known to be involved in controlling the intracellular Ca2+ level by regulating 

the activity of ryanodine receptors (RyR) (Chen et al. 1997). Al-Shanti and Stewart 

(2009) have reported the involvement of CALM in various neuromuscular disorders 

like Huntington’s disease, and Parkinson disease characterised by greater muscle 

contraction and cell death. The intronic mutation rs13704016 in the MAP2K1 gene 

reported in the present study is novel and, to date, no SNP in this gene has been 

reported to have an association with any trait in any farm animal species. However, 

the literature shows that it is involved in repressing the differentiation of muscles 

cells.  Consistent with this, Fubini and Hubbard (2003) have reported that oxidative 

stress resulted in the activation of the MAP2K1 gene which led to up-regulation of 

inflammatory cytokines (TNF-alpha, IL-1) and finally cell death. It shows that the 

MAP2K1 gene was also involved in promoting cell death and hence, affecting B*L 

in chicken. 

A non-synonymous mutation (A/G) rs14868825 in the IFNAR2 gene was 

associated (P<0.001) with B*L. This mutation was involved in changing the amino 

acid asparagine to aspartic acid, both of which belong to hydrophilic class of amino 

acids. However, the biological significance of the association of this non-

synonymous mutation with B*L is not known and merits further exploration. 

A mutation in IFNAR2 has been reported to be associated with multiple sclerosis in 

human (Leyva et al. 2005). Similarly, 2 synonymous SNP, rs14027061 and 

rs14702610 in the coding regions of the PLCG2 gene were found significantly 

associated with B*L. The PLCG2 gene is known to be involved in various auto-

inflammatory and immune disorders (Bergholdt et al. 2012; Ombrello et al. 2012), 
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hence it might be speculated that these SNPs are involved in causing the 

inflammatory reaction and tissue damage in the present experiment. Consistent with 

this, mutations in this gene in mouse have been reported to cause immune disorders, 

inflammatory arthritis, and metabolic problems, mediated by increased uptake of 

extracellular Ca2+ (Yu et al. 2005; Abe et al. 2011). Therefore, it is speculated that 

synonymous SNP discovered in this gene in the present study could be a marker for 

inflammation and tissue damage, by raising intracellular level of Ca2+, and this 

hypothesis was further supported by Sandercock et al. (2009a) who reported that 

modern broilers have higher levels of Ca2+ and other cations in their plasma and 

skeletal muscles compared with layers and traditional breeds.  Consistent with this, 

SNPs in 3 genes (PDCD6IP, CALM and PLCG2) might also be involved in affecting 

B*L by promoting cell death and tissue damage mainly through excessive uptake of 

extracellular Ca2+ (Lee et al. 2005; Abe et al. 2011; Huang et al. 2011; Kramerova et 

al. 2012; Ombrello et al. 2012; Zhou et al. 2012). 

5.5.2.2 Breast muscle redness (B*a) 

Four SNPs, rs14645300, rs10727941, rs15031083, and rs15126679 belonging to the 

BCL10, CALM, ENDOG and PDCD6 genes respectively were found significantly 

associated with breast muscle redness (B*a) (Table 5.2 & 5.3). These SNPs jointly 

explained 28% of the residual variance for this trait. The BCL10 gene is a 

transcription regulator that mainly regulates the apoptotic process within the cell by 

regulating the activation of cysteine-type endopeptidase activator (members of 

caspases family). However, a SNP in 3’ UTR of the BCL10 gene in pork has been 

reported to be significantly associated with immune cell, red blood cell count and 
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haemoglobin level in blood (Huang et al. 2010). Consistent with these, it has also 

been reported that a SNP in BCL10 gene is associated with tumorigenesis in human 

(Hayashi et al. 2009) showing that it is involved in enhancing angiogenesis, blood 

supply and proliferation of blood vessels. It is likely that the SNP in BCL10 gene in 

present study is involved in the similar type of functions. However, this gene was 

down-regulated in broilers compared with layers (Chapter 3 and 4) which is in 

agreement with the hypoxia-like situation of broiler breast muscles possibly due to 

insufficient capillary supply (MacRae et al. 2006). This hypoxia-like state also 

suggests that there is a lack of myoglobin, responsible for imparting red colour to 

meat and also transportation of oxygen in muscles. This hypoxia-like situation 

further leads to the further production of ROS from the affected cells (Solaini et al. 

2010) and can cause more tissue damage. Similarly, CALM gene was also involved 

in apoptotic functions, as discussed under the B*L (section 5.5.2.1) and hence, may 

lead to tissue damage and affect the colour of meat.  

A SNP rs15031083 in the promoter region of the ENDOG gene was found 

significantly associated with B*a. Though ENDOG is a nuclear gene, its protein 

localises in mitochondria and is involved in controlling mitochondrial biogenesis, 

respiration and metabolism (Yakovlev & Faden 2004).  McDermott-Roe et al. 

(2011) found an insertion in exon 1 of this gene as a primary cause of cardiac 

hypertrophy and abnormal heart function mediated by mitochondrial depletion and 

impaired functions. Consistent with these results, we also found some up-regulated 

pathways and networks involved in cardiac hypertrophy, and oxidative stress. It is 

commonly considered that the cardiac hypertrophy is involved in heart failure and 

sudden death syndrome. However, keeping in view the association of variation in 
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ENDOG gene with cardiac hypertrophy, it might be speculated that the discussed 

variation/mutation in the ENDOG gene might also be involved in sudden death 

syndrome in broilers; a major problem of modern broilers. The SNP rs15126679 in 

the PDCD6 gene was present close to an exon-intron junction and might be involved 

in splicing and also in augmenting the anti-angiogenic role of this gene (section 

5.5.2.2) (Rho et al. 2012); hence will trigger hypoxia-like situation, and cell death 

leading to pale and less red meat colour. 

 Taken together, all of these 4 SNPs are likely to be involved in oxidative stress, cell 

death and anti-angiogenic functions.   

5.5.2.3 Breast muscle yellowness (B*b) 

Three SNPs, rs13535756 in PRKAG2, rs10726982 in ENDOG and rs14416824 in 

SLC26A11 gene, were found strongly associated with B*b.  These 3 SNPs jointly 

explained 20% of the residual variance for this trait (Table 5.3).  

All of these 3 SNPs are novel and have been reported here for the first time. The 

SNP (rs10726982) in the ENDOG gene was present in the promoter region and  

likely to be involved in causing oxidative stress and cell death through impaired 

mitochondrial functions, possibly by altering the expression of this gene, as 

discussed under the B*a in section 5.5.2.2. To date, no SNP association in the 

SLC26A11 gene have been reported, however, the few published reports about the 

function of this gene show that it is involved in the transport of various anions, 

mainly sulphate and chloride and in facilitating acid secretion in collecting ducts 

(Vincourt et al. 2003; Kere 2006). The SNP rs14416824 in the SLC26A11 gene was 
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present very close to the coding sequence and might be involved in mRNA splicing. 

However, the physiological relation of this variation/mutation to B*b is not known 

and merits further investigation.  

Similarly, rs13535756 SNP in the PRKAG2 gene was also present close to an exon-

intron junction and hence, might be involved in RNA splicing. However, some 

mutations in the PRKAG2 gene in humans are known to have associations with 

diabetes and hypertrophic cardiac myopathy (Jablonski et al. 2010; Kim et al. 2012; 

Wang et al. 2012). Diabetes is responsible for causing muscle weakness mediated 

mainly by oxidative stress and reduced glucose uptake. It suggests that oxidative 

stress is involved in causing muscle damage and might be involved in affecting the 

yellowness of meat. This hypothesis was further supported by Choi et al. (2010) who 

supplemented the broiler diet with some anti-oxidants (garlic powder and alpha-

tocopherol) and observed significant improvement for redness and yellowness of 

meat.  

5.5.2.4 Thigh muscle lightness (T*L) 

In case of T*L, after all 3 regression analysis (section 5.3.6), 8 SNPs were found to 

be strongly associated (P=0.001) with this trait. These 8 SNP markers jointly 

explained 45% of the residual variance for this trait among broilers, layers and 

traditional breeds (Table 5.3). The SNPs found in the CALM, MTFR1, MAP2K1, 

and PLCG2 genes were also found significant for B*L and it is very likely that they 

might be affecting the thigh muscle lightness in a similar manner as they were for 

B*L (section 5.5.2.1). Similarly, the SNP in the HDAC4 gene might also be 
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involved in accelerating cell death and tissue damage (Du et al. 2008a; Choi et al. 

2012), as discussed under the CK trait (section 5.5.1.1).  

The synonymous SNP rs14305263 in the LMNB2 gene has also been reported for 

the first time for its association with any trait in chicken. Munoz-Alarcon et al. 

(2007) have reported that a mutation in the LMNB2 gene in Drosophila caused 

muscle defects and surviving adults were unable to fly but could walk like aged flies. 

It shows that this variation in the LMNB2 gene might be involved in causing muscle 

weakness in broiler which also resulted in increasing the lightness of thigh muscle. 

The weakness of leg muscle in broiler is also consistent with the higher incidence of 

lameness in them. 

5.5.2.5 Thigh muscle redness (T*a) 

For thigh muscle redness (section 5.3.6), after using all the regression analyses 

(section 5.3.6), 3 SNP, rs15671752 in HRAS, rs14695299 in MTFR1, and 

rs13591700 in AKT1 gene were found most strongly associated (P=0.002) with T*a 

and were responsible for explaining 19% of residual variance for the trait. Several 

SNPs in the HRAS gene have been reported for their involvement in causing cancer 

and Castello syndrome in human (Wright et al. 2011; Burkitt-Wright et al. 2012; 

Maemoto et al. 2012) but, to date, no HRAS SNP in chicken is known to have 

association with any trait. However, the HRAS gene is involved in growth and 

proliferation of endothelial and haematopoietic cells (Meadows et al. 2001; Sykes & 

Kamps 2001). It was also up-regulated in broilers compared with layers in the gene 

expression experiment (Chapter 3 and 4). It seems likely that this variation was 

involved in increasing the blood supply to broiler thigh muscles in agreement with 
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the findings of Sandercock et al. (2009a) who observed that broiler thigh muscles 

had greater redness compared with layers.  

However, no SNP in the AKT1 gene has been found to be associated with any trait 

in chicken. However, AKT1 gene is known to have a role in skeletal muscle growth 

and differentiation (Wilson & Rotwein 2007). Thus its association with muscle 

redness is consistent with the findings of Hu et al. (2012) who demonstrated that 

AKT1 is involved in enhancing the blood supply to muscles (Takahashi et al. 2002). 

A novel intronic mutation, rs14695299 in the MTFR1 gene, was also found 

associated with thigh muscle redness. As discussed in section 5.5.2.1 (B*L), Gu et 

al. (2009) have reported a role for the MTFR1 gene in rendering strength to skeletal 

muscles in horses; hence it might be involved in increasing the blood supply 

(haemoglobin) and ultimately redness of skeletal muscles and meat.  

5.5.2.6 Thigh muscle yellowness (T*b) 

In total 6 SNPs, rs14330679 in CALM, rs13595564 in CYP27A1, rs14604080 in 

HDAC4, rs14027066 in PLCG2, rs14416825 in SLC26A11 and rs14305263 in 

LMNB2 were found strongly associated (P<0.001) with this trait after running all the 

described regression analysis (section 5.3.6). These 6 significant SNPs were 

responsible for jointly explaining the 46% of the residual variance for thigh muscle 

yellowness. 

As discussed under CK and B*L (section 5.5.1.1 and 5.5.2.1), it is speculated that 

the significant SNPs in CALM and HDAC4 genes might be involved in triggering 

cell death possibly through a raised intracellular Ca2+ level. They might be involved 
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in decreasing the yellowness of broiler muscle by increasing the rate of cell death 

and subsequent tissue damage. One novel synonymous mutation rs14416825 in the 

coding sequence of the SLC26A11 gene was significantly associated with T*b. This 

gene is involved in the transport of various anions like sulphate and chloride 

(Vincourt et al. 2003), which might be involved in giving yellow colour possibly by 

reacting with other cations, as discussed under the B*b (section 5.5.2.3). 

Similarly, an intronic variation rs13595564 in the CYP27A1 gene was found 

significantly associated with T*b. CYP27A1 gene is known for its role in the 

conversion of cholesterol in the bile (Suh et al. 2012). Several mutations in this gene 

have been reported that are known to be associated with lipid storage disease in 

human. However, it could be hypothesised that this SNP might be involved in 

affecting the cholesterol/fat level in broiler thigh muscles, and had subsequently 

resulted in lower T*b. This hypothesis is further supported by data from Zhang et al. 

(2010) who studied the effects of dietary Acetyl-L-Carnitine (ALC) on meat quality 

in broilers and observed that addition of ALC resulted in a significant decrease in 

cholesterol and fat percentage and this decrease in fat% subsequently lowered thigh 

muscles yellowness (T*b).  Alternatively, low fat contents in broiler thigh muscle 

could be linked to a synonymous mutation, rs14305263 in the LMNB2 gene in the 

present study, as the mutations in this gene have been reported to reduce the fat 

content from extremities and subcutaneous tissues. However, mutations in LMNB2 

have also been reported to negatively affect the muscle strength and ability to walk 

(Munoz-Alarcon et al. 2007). This is also consistent with the performance of modern 

broilers that are characterised by a higher incidence of leg problems and lameness. 
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5.5.2.7 Initial pH (pHi) 

In the case of pHi 5 SNPs, rs15305228 in CALM, rs13803200 in MTFR1, 

rs15031083 in the promoter of ENDOG, rs15126679 in PDCD6, and rs13535812 in 

PRKAG2 were significant (Table 5.3) and jointly explained 41% of the residual 

variance for pHi.  

As discussed above, the CALM and PDCD6 genes are involved in causing cell death 

mediated through excessive uptake of extracellular Ca2+ (Rho et al. 2012). However, 

mutations in ENDOG have been reported to be associated with mitochondrial 

depletion and abnormal functions that leads to oxidative stress (McDermott-Roe et 

al. 2011; Zhang et al. 2011).  Furthermore, the expression of ENDOG was greater in 

broiler controls compared with layers and the expression was further increased by 

heat-stress in broilers (chapter 4), suggesting that broilers are under greater oxidative 

stress compared with layers. Similarly, MTFR1 is also involved in anti-oxidant 

functions and the intronic SNP rs13803200 in the MTFR1gene was present very 

close to the coding sequence. 

Similarly, mutations in the PRKAG2 gene have been reported to affect the glycogen 

reserve of cells and are associated with the incidence of type 2 diabetes in humans 

(Jablonski et al. 2010; Nouira et al. 2010) which is characterised by higher blood 

glucose levels. Additionally the SNPs present in CALM, ENDOG, MTFR1 and 

PDCD6 genes might be involved in causing oxidative stress and tissue damage that 

could further lead to an increase in blood glucose level.  Hence, it could be 

hypothesised that synergistic combination of stress and raised blood glucose levels 

result in lowering the initial pH in broilers breast meat.  
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5.5.2.8 Ultimate pH (pHu) 

For pHu, 7 SNPs were strongly associated and explaining 55% of the residual 

variance for this trait (Table 5.3).  Out of these 7 SNPs, one intronic mutation, 

rs14645300 in the BCL10 gene, was associated with pHu. As discussed under the 

B*a (section 5.5.2.2), the BCL10 gene is involved in triggering the rate of cell death 

mediated by immune cells infiltration. However, one novel intronic mutation 

rs14695299 in the MTFR1 gene was significantly associated with pHu, as discussed 

in section 5.5.2.1 this gene is involved in muscle strength and athletic performance 

(Gu et al. 2009). Hence, it could be hypothesised that this gene might be involved in 

the storage of glycogen in skeletal muscle and thus involved in affecting pHu. 

Similarly, one mutation rs15031083 in the promoter region of the ENDOG gene was 

significantly associated with pHu, similar to B*a and pHi as discussed in sections 

5.5.2.2 and 5.5.2.7, this mutation could be involved in enhancing the expression of 

the gene and augmenting the degree of oxidative stress. One intronic variation 

rs14615869 in the CYP27A1 gene was significantly associated with pHu. As 

discussed under B*b (section 5.5.2.6) the CYP27A1 gene is involved in lipid storage 

diseases and can affect the concentrations of circulating triglyceride in broilers. 

Rohrer et al. (2012) have reported a mutation in PRKAG3 for its association with 

pH, colour, and water holding capacity of pork meat. PRKAG3 is located next to the 

CYP27A1 gene down-stream on chromosome 7 but on the reverse strand. It is also 

likely that mutations in the ENDOG gene have synergistic effects with the 

CYP27A1 gene because proteins encoded by both genes localise in mitochondria. 

Hence, damaged mitochondria would also affect the functions of CYP27A1.  
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One novel synonymous SNP, rs14946390, in the coding sequence of the GNB5 gene 

was significantly associated with pHu. Gerard and Gerard (1994) have reported that 

the protein of this gene along with the other members of heterotrimeric G  family 

protein is involved in increasing the production of diacylglycerol which leads to 

production and accumulation of lipids and fat in the body. Similarly, a synonymous 

SNP rs14305263 in the LMNB2 gene was also associated with pHu. Consistent with 

our result, Hegele et al. (2006) have also discovered causative mutations in the 

LMNB2 gene responsible for the acquired partial lipodystrophy (APD) in human, 

characterised by the loss of subcutaneous fat around the trunk and extremities but 

accumulation of fat in head and thorax. However, affected individuals are highly 

prone to diabetes and hypertriglyceridemia. Hence both of these SNPs were involved 

in increasing the lipid contents in the body. In agreement with this Sirri et al. (2011) 

have reported that fast growing chicken had higher level of lipids and mono-

unsaturated fatty acids and lower level of poly unsaturated fatty acid (PUFA) 

compared with slow and medium growing birds that might be the factor, partly, for 

the low pH of muscles of fast growing birds. But the association of these SNPs with 

meat pHu needs further investigation to identify their actual biological relationship 

with pHu. 

Similarly, one novel SNP (rs15177275) in the intron of BCL2L1 gene was 

significant. The BCL2L1 gene is involved in anti-apoptotic functions in the body. In 

our previous experiments (Chapter 3 and 4) this gene was down-regulated in heat-

stressed broiler (BH) compared with control broiler (BC), indicating greater rate of 

cell death in BH than BC. However, the biological association of this intronic SNP 

in the BCL2L1 gene with the ultimate pH merits further investigation. 
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Hence, out of these 7 SNPs, 3 of them were directly associated with cell death and 

tissue damage related effects. However, the other 4 SNPs were involved in raising 

the blood cholesterol level. Both of these effects, oxidative stress and 

hypercholesterolemia could lead to insulin resistance (type 2 diabetes) and ultimately 

higher blood glucose level that might be involved in decreasing the pHu in broilers. 

5.6 Conclusion  

1. A set of novel SNPs associated with effects on muscle and meat quality traits 

have been identified in chicken.  

2. These SNPs are responsible for explaining a substantially large proportion of 

the phenotypic variation for these traits in different breeds of chicken. 
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6.1 Introduction 

Genetic selection for weight-related traits in chicken has resulted in tremendous 

improvement in these traits, as a result of which modern broilers can achieve more 

than 2.5 kg body weight in 6 weeks or about 5-times more than the broilers available 

50 years ago (Havenstein et al. 2003). These improvements in broiler traits are also 

considered to be associated with some detrimental effects on bird health, skeletal 

muscle integrity and metabolism, meat quality and welfare-related traits. It is 

increasingly recognised that genetic selection has resulted in a decrease in the ability 

of meat-type chicken to cope with different stressors (Mitchell & Sandercock 1995b; 

Sandercock & Mitchell 1999; Sandercock et al. 2009a).  

In the results of our gene expression and bioinformatics studies described in chapters 

3 and 4 it was observed that genes involved in inflammation, cell death, and other 

stress-related functions were up-regulated in broiler breast muscles compared with 

layer muscles from both treatments. These gene expression and bioinformatics 

results indicate that skeletal muscles in modern broilers are under stress-related 

damage and they also showed a substantial overlap of differentially expressed genes 

between control broilers and heat-stressed layers, and also in the significant 

canonical pathways and biological networks for these birds.  This stress could be 

physiological or genetic in origin or a combination of both metabolic stress and 

genetic susceptibility to cope with these stressors.  

The increase in the carcass weight of modern broilers is mainly due to the increase in 

relative size of pectoral muscles which in turn is due to the greater diameter of their 

myofibres. However, it is also recognised that due to the hypertrophy of myofibres 
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the muscle area to capillary ratio has been increased. Consequently, the birds are 

unable to properly get rid of their metabolic wastes and to take up sufficient oxygen, 

due to which meat-type chickens are under metabolic stress (MacRae et al. 2006; 

MacRae et al. 2007). This stress is further exacerbated during the challenge by ante-

mortem stressors like catching, crating, shackling and transport-related heat stress. 

But heat-stress has more profound effects because it further reduces the ability of the 

bird to get rid of excessive metabolic heat, leads to the  production of more 

metabolic waste by accelerating the metabolic rate, and leads to skeletal muscle 

damage, reduced meat quality and ultimately PSE-like meat (Debut et al. 2003; 

Owens et al. 2009; Ziober et al. 2010).   

Furthermore, a large number of up- and down-regulated genes were found to be 

overlapping between control broiler and heat-stressed layer (Chapter 3). Hence, our 

gene expression and bioinformatics results led us to develop a hypothesis that breast 

muscles in broilers are in stress-related damage at conventional rearing temperatures. 

Therefore, it was decided to test this hypothesis by rearing the broilers at low 

ambient temperature and monitor its effect on meat quality. An outline of the 

experimental procedures described in this chapter is presented in Figure 6-1. 

6.2 Objectives 

This experiment was designed to evaluate the hypothesis that the muscle damage in 

broiler at conventional temperatures can be reduced by rearing them at a lower 

ambient temperature. So, the major objectives of the following experiment were  

1) To confirm whether broilers are under metabolic stress that is physiological or 

genetic in origin or a combination of both. 
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2) To improve muscle and meat quality, and the welfare of meat-type chickens by 

developing management options to minimise metabolic stress. 
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6.3 Materials and Methods 

6.3.1 Animal Husbandry and Sampling 

In total 100 day old broiler males chicks (Ross-308) were obtained from a 

commercial hatchery. The chicks were hatched from the eggs laid by hens that were 

29 weeks old and were feather-sexed at hatch. The chicks were randomised to 4 

climate chambers that were further subdivided into 4 pens. Each pen was comprised 

of approximately 2 m2 area (1 x 2 m) and holding 6-7 birds. Wood shavings were 

used as litter and a 3-inch thick layer of litter was spread in each pen. During the first 

2 days, the light to dark hour ratio was 22:2 and then it was reduced to 20:4 for all of 

the remaining period, until the end of the 6th week. During this period birds were 

given ad-libitum access to feed and water. During the first 3 weeks the birds were 

given broiler starter crumb and during the last 3 week they were offered broiler 

finisher pellets. Birds were reared under 2 climatic conditions, hot (conventionally 

normal) and cool, as outlined in the Table 6-1. The low temperature was based on 

criteria determined by Prof. R. Gous by simulation of a broiler growth model 

(personal communication). Treatments were randomly allocated to the 4 climate 

chambers. Data were collected for production parameters (body weight, feed intake, 

ascitic and mortality rate), muscle quality (histopathology) and meat quality (pH, 

colour and drip loss). 
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Table 6-1 Temperature and relative humidity (RH) requirements for 
conventional and low temperature treatments at different ages  

Age 
Days 

Conventional temperature Low temperature 
Temp (oC) RH (%) Temp(oC) RH (%) 

0 30 70 30 70 
3 28 70 28 70 
6 27 60 27 60 
9 26 60 26 60 
12 25 60 25 60 
15 24 60 24 60 
18 23 60 22 60 
21 22 60 20.5 60 
24 21 60 18.5 60 
27 21 60 17 60 
30 21 60 15 60 
33 21 60 15 60 
36 21 60 15 60 
39 21 60 15 60 
42 21 60 15 60 

Temp = Temperature 

RH = Relative humidity 

 

On day 41, the rectal temperature was measured and a 2 ml blood sample was taken 

from every bird. For measuring the rectal temperature a thermistor probe (Model 

612-849; RS Components Limited., Corby, Northants, UK) was inserted 5 cm into 

the rectum and maintained in position until the digital readout displayed a constant 

value. Blood samples (2 ml) were obtained by venepuncture of the brachial vein 

using a 5.0 ml syringe, fitted with a 25 guage, 5/8 inch needle. Each blood sample 

was transferred to a 2 ml blood collection tube containing 50 units Li-heparin 

anticoagulant and placed on ice. The samples were centrifuged at 1500g for 5 

minutes. The plasma supernatant was pipette into duplicate plasma tubes and 

immediately frozen at -20oC, pending analysis.  

On day 42 the birds were euthanized using an intravenous injection of sodium 

pentabarbitone and weighed. The left breast fillet was used for measuring meat 
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quality parameters at 15 min and 24 hours after death. The right breast fillet was 

used to provide a tissue sample for histopathology. 

6.3.2 Muscle quality 

Muscle quality was monitored by studying the histopathology of breast muscles. 

6.3.2.1 Histopathology 

A slice of Pectoralis major muscle was cut and immediately fixed in 10% buffered 

neutral formalin (BNF). Approximately 2 cm muscle samples were taken from 

standardised regions of left Pectoralis major muscle. The muscle sections were 

stained with Haematoxylin and Eosin (H&E) by using the standard procedure for H 

& E staining. For histopathological examination, slides of both treatments were 

grouped into 4 categories; mild, moderate, high and severe on the basis of number of 

damaged and necrotic myofibres and the presence of inflammatory cells (mainly 

macrophages and heterophills). 

6.3.3 Meat Quality 

The following meat quality parameters were measured: pH, colour, and extruded 

water loss. 

6.3.3.1 pH  

Muscle samples (10 g) were collected form left breast muscle to determine pHi and 

pHu. Samples were stored in plastic bags at -800C until ready for analysis to prevent 

glycolysis. Semi-frozen breast muscle samples were homogenised (1:10 wt/vol) in 
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ice-chilled buffer (4°C) containing 5 mM sodium iodoacetate and 150 mMpotassium 

chloride (KCl) adjusted to pH 7.0 (Sandercock et al. 2009a). The pH was measured 

15 min (pHi) and 24 hr (pHu) post-mortem from mixture of muscle homogenates by 

employing a combination pH electrodes (Model FC200 Hanna Instruments, Leighton 

Buzzard, UK) (Sandercock et al. 2009a). 

6.3.3.2 Colour  

The lightness (L*), redness (a*), and yellowness (b*) of the Pectoralis major muscle 

were evaluated using reflectance colorimetery (Minolta CR-300, CIELab, Minolta 

(UK) Ltd., Milton Keynes, UK).  The colorimeter was calibrated using the standard 

white board supplied with the instrument (Minolta CR 400, Minolta GmbH) before 

measurements began. For each carcass, colour values were made at 15 min and 24 h 

postmortem (PM) respectively on the left breast muscle. Each of these values was an 

average of 2 measurements, one at the proximal/cranial side of the fillet and the 

other at the caudal/distal side (Berri et al. 2007). After killing the bird and removal 

of skin the carcass was allowed to stay at room temperature for the initial readings 

(L*i, a*i, and b*i) and the carcasses were stored overnight at 4oC. After 24hr the 

ultimate colour values (L*u, a*u, and b*u) were recorded by the same procedure.  

6.3.3.3 Extruded water loss 

After 24 hours storage at 4°C a 1x1x1 cm cube of meat was cut from the breast fillet 

and was weighed before compressing. This cube was placed in between two 

Whatmann filter papers # 1 (with a diameter of 12.5cm)  with  two wooden discs 

each with a diameter of about 15 inch positioned below and above the cube and a 

piston was lowered onto the sample/wooden disc at a rate of 100 mm/min. A 
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maximum load of 400N was applied to the sample for 15 seconds. The cube was 

again weighed and the extruded water loss was calculated as 

= [(Pre-weight – Post-weight)/Pre-weight)] x 100          (Petracci et al. 2012). 

6.3.4 Experimental design 

The experiment was 2 x 2 x 4 design, with 2 treatments and 2 chambers per 

treatment and 4 pens in each chamber. Treatment was used as fixed model and 

chamber/pen was used as blocking structure for all the variates (traits). Data were 

analysed by using general analysis of variance (ANOVA) in GenStat 

(www.vsni.co.uk/software/genstat). Data for ascites were analysed by using Chi-

square test. 
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6.4 Results 

Body weight and feed intake for both treatments were similar at the end of 6 weeks 

(Table 6-2). However, the number of ascitic birds from the conventional treatment 

was double that of the low temperature treatment.  

Table 6-2 Body weight, Feed intake, Mortality (%) and Ascitic birds (%) 
in conventional and low temperature treatments 

Trait Conventional 
temperature 

Low 
temperature 

SED Significance 

Total no. of birds 50 50   

Body weight (g) 3559 3492 139 NS 

Feed intake (g) 6050 6190 170 NS 

Ascitic birds (%) 12 6 0.13 NS 

Mortality (%) 6 6  NS 

 
SED = SE of a difference between 2 category means.  
N.S. = Non-significant 
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There were numerical improvements in most of meat quality parameters in the low 

temperature treatment compared with conventionally reared birds. However, a 

significant improvement in ultimate redness (a*u) was observed (Table 6-3).  

Table 6-3 Meat quality parameters for conventional and low 
temperature treatments 

Trait Conventional 
temperature 

Low 
temperature

SED Significance 

pHi 6.76 6.74 0.138 NS 

L*i 58.33 56.99 0.791 NS 

a*i 12.91 13.66 0.625 NS 

b*i 8.59 7.56 0.501   NS 

pHu 5.95 6.00 0.036 NS 

L*u 54.20 52.35 0.703 NS 

a*u 16.06 17.88 0.392 * 

b*u 12.67 11.82 0.293 NS 

Drip loss 24.68 24.19 0.210 NS 

SED = SE of a difference between 2 category means.  
*P< 0.05;  N.S. = Non-significant 
These data were collected from 40 birds of each treatment. 
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Histopathological examination revealed little difference in muscle quality of broilers 

reared at low compared with conventional temperatures (Table 6.4). 

Table 6-4 Results of Histopathological examination of broiler breast 
muscles 

Trait Conventional 
temperature 

Low temperature 

Mild 2 4 

Moderate 3 2 

High 2 1 

Severe 1 1 

In total 16 birds (8/treatment) were used for histopathological examination of breast 
muscles.
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6.5 Discussion 

The present study was conducted to evaluate the hypothesis that broiler breast 

muscles are under stress-related damage under conventional temperatures which 

underlies poor meat quality.  

In the meat quality parameters, a significant (P<0.03) improvement in the ultimate 

redness (a*u) of breast muscles for the cool treatment was observed (Table 6-3). 

Similarly, though non-significant, a substantial decrease in the breast muscle 

lightness of low temperature birds was observed. Although this improvement in 

lightness was not statistically significant (P< 0.098), due to the limited number of 

chambers in this experiment, there was a reasonably big difference between the 

treatments means (Table 6-4). In the present study the mean lightness (L*) values for 

conventional and cool treatments were 54.20 and 52.35 respectively, showing that 

breast meat from cool treatment was comparatively darker. These results are also in 

agreement with the reports that lightness and drip loss are mainly controlled by the 

variations in pHu (Berri et al. 2001; Le Bihan-Duval et al. 2008b) because, although 

non-significant, some numerical (0.4) improvements in breast muscle pH of low 

temperature birds were observed.   

The difference in histopathological examination in both treatments showed that there 

was some non-significant improvement that favoured the broilers reared at low 

temperature (Table 6-4) (Figure 6-2). Comparatively more damaged and necrotic 

myofibres were observed from the tissues of conventionally treated birds compared 

with low temperature (Figure 6-2). It was also observed that there was more 

infiltration of heterophils, macrophages, and monocytes in conventionally treated 
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birds (Figure 6-2). Consistent with our results, Aksit et al. (2006) reported that heat-

stress increased the heterophil : lymphocyte ratio, an indicator of stress, in broilers. 

This higher activity of heterophils and macrophages in breast muscles of 

conventionally treated birds indicates that they were subject to stress-related damage 

and in turn associated with decreasing pH and increasing lightness (L*) of the breast 

muscles (Aksit et al. 2006).  

The pathological changes observed in breast muscle of broilers were of poly-phasic 

nature, as it can be seen in the Figure 6-2 (3 slides in top row) the presence of some 

congested myofibres which start to decrease in width compared with other 

myofibres. Similarly the presence of greater numbers of inflammatory cells around 

these shrinking muscle fibres, and ultimate disappearance of these fibres from their 

place leaving a gap show that these changes did not occur suddenly but took a 

progressive course over a few days before cell death (Challa & Chan 2010; Geiger-

Maor et al. 2012). The microscopic examination of muscle tissues revealed that 

affected myofibres were first changing into more red and then they were getting 

some irregular shapes with some angular edges and there was comparatively greater 

number of inflammatory cells around them. Finally, there was death of affected 

fibres and they were gradually engulfed by the macrophages. Some myofibres had 

nearly disappeared leaving a circular white area in their place with a large number of 

macrophages and heterophils.  

Surprisingly, for the production traits, both groups had similar feed intakes and body 

weights. Because intensive genetic selection for growth-related traits has increased 

the appetite in broilers to its full extent (Richards 2003) it may not be affected by 

mild stressors (Mohammadrezaei & Toghyani 2011). When, in the 5th week, the 
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temperature was reduced to 15°C the birds started to huddle indicating that they were 

under some cold stress. Additionally, there was a strong draught in the chambers 

from the fans which may have resulted in decreasing the ambient temperature 

experienced by the birds as a “wind-chill” effect. This apparent cold stress in these 

birds may also explain the slightly lower weight gain and higher feed intake in these 

birds.  

It was observed that birds in the  conventional treatment were sitting and lying down 

on the floor mainly under the fans most of the time with their wings and legs 

outstretched, perhaps as an attempt to dissipate their body heat. Conversely the birds 

in the cool treatment chambers spent most of the time away from the fans. The 

difference in the body temperatures of both treatments was also non-significant but a 

numerical decrease (0.15°C) in the body temperature of low temperature birds was 

recorded. The reason for this difference in body temperature may be the presence of 

strong draught in the chambers which might have resulted in decreasing the 

temperature to some extent in conventionally treated chambers. Ultimately, this 

draught might have resulted in decreasing the difference in body temperature in both 

groups. In addition to the muscle damage in this study, we found that almost all the 

deaths during the 4-6 weeks of age were due to ascites and their number was the 

same in both treatments during the 6th week, 3 birds in each treatment. During the 

measurement of meat quality traits 3 more birds in the conventional treatment were 

found ascitic (in total 6 ascitic birds were found in the conventional group and 3 in 

the low temperature group). The presence of ascitic birds in both groups might be 

due to insufficient supply of oxygen to skeletal muscles, most likely due to greater 

muscle size and ultimately increased muscle to capillary ratio (MacRae et al. 2006; 
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Berri et al. 2007). In agreement with this, some angiogenic pathways like VEGF 

signalling were also up-regulated, in our previous study (chapter 4) in control and 

heat-stressed broilers compared with layers. Consistent with this, Sandercock et al. 

(2006) have reported higher values of pvCO2 and lower blood pHv compared with 

egg-type chickens at thermoneutral temperatures. In the present experiments about 

10% of the birds were ascitic which is in agreement with the findings of De Smit et 

al. (2005) who reported that ascites could increase mortality rate up to 25% in 

commercial flocks that mainly occurred between 5 and 6 weeks of age.  

6.6 Conclusion 

Taken together, these results show that some improvements in muscle and meat 

quality could be made by simply rearing broilers at comparatively lower ambient 

temperatures. However, this may not be feasible or economical viable although it 

may result in reducing the production cost, by minimising the heating cost especially 

in temperate countries.  

Although numerical improvements in most of the parameters were observed they 

were statistically non-significant showing that the experiment should be repeated. 

Nevertheless the relative lack of improvement confirms that muscle pathologies are 

not primarily because of the difficulty of dissipating heat but rather a consequence of 

metabolic changes leading to a hypoxia-like situation in broiler muscle in agreement 

with the bioinformatics results for chapters 2-5. Finally, on the basis of our results 

we conclude that meat quality traits are complex and it is very likely that our results 

(genetics and environment/management) will help to resolve the issue of poor 
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muscle and meat quality by eventually providing genetic markers for selection to 

improve muscle and meat quality.  
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Chapter 7 Summary and Conclusion 



 

  190 

7.1 Introduction 

The current project was conducted to identify the genes for muscle and meat quality 

traits in chicken. There is a growing incidence of muscle pathology and subsequently 

poor meat quality in broilers which can reach up to 40% within a flock depending on 

various factors like season, transportation, management and handling (Petracci et al. 

2009). This poor quality meat, also known as PSE-type meat, is often characterised 

as meat having low pHu, higher lightness (L*), low redness and yellowness (a*, b*), 

poor water holding capacity, and higher cooking losses.  Poor quality poultry meat 

and PSE-type meat is a cause of economic losses to processing plants and meat 

industry and the genetic basis of these issues are unknown.   

7.2 Chapter 2  

By exposing the broilers and layers to heat-stress, 32°C temperature and 75% RH, 

for 2 h a significant (P<0.001) rise in body temperature was observed, compared 

with control birds at 21°C and 50% RH. It was also found that the increase in the 

body temperature of broilers was more substantial (2.63°C) compared with layers 

(0.34°C), showing the greater susceptibility of broilers to heat-stress. The greater 

increase in body temperature in broilers may be due to their different anatomy, body 

size and mass, physiology and metabolism, compared with layers. Broilers and 

layers are types of chicken but they are the result of genetic selection for different 

quantitative traits (growth- and egg-related traits respectively) for more than half a 

century. It could be argued that the shape, size and anatomy of broilers bodies has 

made it difficult for them to dissipate heat. Alternatively, it is also possible that 

intensive genetic selection for different phenotypic traits has resulted in making 
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these two types of chicken quite different in terms of their response and 

susceptibility to ante-mortem stressors by the DNA sequence variations responsible 

for their respective production traits, although they both share the same genetic 

predecessor (traditional breeds and ultimately the red jungle fowl). In fact, the 

underlying cause for the different shape, size, physiology and metabolism of broiler 

is also their different genetics.  

It was also discovered (for the first time) that broilers exhibited lower body 

temperature than layers in control conditions of this experiment, which has not been 

reported earlier, to our knowledge. It could be argued that layers were more active in 

their crates and that broiler could not move around due to their bigger size. However, 

the exact reason for this low temperature in not clear. Given that body temperature is 

related to the body metabolism of fast growing birds, broilers have greater feed 

intake and greater growth rate compared with layers and hence, their body 

temperature should not be lower than layers.  

7.3 Chapter 3 

Genome-wide expression studies were conducted by using the breast muscle RNA 

samples of broilers and layers, treated and sampled in the previous experiment 

(Chapter 2), discussed in section 7.2. A total of 2,213 differentially expressed genes 

were significant (P<0.05) for breed x treatment interaction. The gene ontology (GO) 

terms analysis for this gene set revealed that 567 (25.6%) transcripts had no Gene 

Symbol, and no GO terms against them for biological process/functions indicating 

that these genes are not yet characterised. However, from the remaining genes about 

754 (34%) genes (having a Gene Symbol) were those for which there was no GO 
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term.  It suggests that there are a large number of potential genes that are likely to be 

involved in the pathogenesis of heat-stress induced muscle damage in chicken that 

need further exploration. The remaining genes were apparently involved, directly or 

indirectly, in creating the pathology in breast muscles caused by heat-stress. 

However, it was also observed that a substantially large number of up and down-

regulated genes in various comparisons were overlapping in BC and LH, suggesting 

that both of them were sharing the similar type of gene expression profile in their 

breast muscles. Alternatively, it could be argued that their breast muscles were 

suffering from, more or less, the same type of stress, on the basis of their expression 

pattern.  

7.4 Chapter 4 

The significant gene (2,213) set was analysed in BioLayout Express at 0.80 Pearson 

thresholds which resulted in the filtering out of 1,066 genes. Given that BioLayout 

Express only take into account the positive correlations; it could be asserted that 

these 1,066 genes were those that were not having a strong positive correlation with 

any of the other genes. The interesting clusters for the analysed gene set were 

selected for further subsequent investigation. It was observed that these clusters 

could be grouped into 6 different categories, on the basis of their clear expression 

pattern. The genes in the selected clusters were analysed in IPA, for each category 

separately, and interesting biological pathways and networks were selected. 

Similarly, the 1,066 genes filtered out by BioLayout Express were also analysed in 

IPA separately, and interesting pathways and networks were selected for them, to 
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select the most appropriate gene candidates, because we were not interested only in 

the genes that were positively correlated. 

From the pathways and networks analyses of BioLayout analysed genes, it was 

discovered that genes involved in inflammation, stress response, oxidative stress, cell 

death, and tissue damage related functions were present in the Category I, IV, V, VI, 

and partly in category II. Out of these categories, pathways and networks from the 3 

categories (I, IV, and VI) were up-regulated in BH compared with LC and LH. 

However, the expression levels of the genes present in Category I were even higher 

in BC compared with layers and they were further up-regulated after heat-stress. 

These pathways and networks of this category were all related to stress response, 

hypoxia, and inflammation. Whereas, in the case of layers, categories II and V were 

up-regulated and category V (with only 5 pathways) was the only category that was 

solely related to inflammation, cell death and tissue damage functions. In Category II 

some pathways and networks were related to inflammation and oxidative stress but, 

at the same time, others were related in the anti-apoptotic, cellular growth and 

development, protein synthesis and tissue repair related functions that might be a 

protective measure of the body to minimise the deleterious effects of heat-stress.  

Category III had only 2 significant pathways (oestrogen receptor signalling and 

oxidative phosphorylation) that were up-regulated in LC but on response to heat-

stress they were further up-regulated compared with broilers. The reason for the up-

regulation of oestrogen receptor signalling pathway in layers might be that they are 

selected for egg and reproductive traits and have greater improvements in these traits 

compared with broilers. However, the up-regulation of this pathway in LH might be 
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a protective attempt of the body due to an anti-stress and anti-oxidant role of 

oestrogen. Hence, the further up-regulation of oestrogen-receptor signalling pathway 

in LH also explains the down-regulation of some stress, inflammation, and apoptotic 

pathways in LH compared with LC. This increased role of oestrogen to combat stress 

and its subsequent damaging effects of stress is also in agreement to the published 

literature reporting a decrease in egg production in layers on exposure to heat-stress. 

However, though the expression of oestrogen-related genes were up-regulated in 

layers on exposure to HS but a fall in the rate of egg production might be due to the 

greater role or activity of oestrogen in its anti-stress and anti-oxidant activity rather 

than its role in egg production. However, the further down-regulation of this pathway 

in BH suggests an involvement in the susceptibility of broilers to heat-stress, and this 

has not been reported earlier, to our knowledge. 

The down-regulation of the oxidative phosphorylation pathway in BC compared 

with layers might be due to a hypoxia-like situation in broiler muscles. The further 

down-regulation of this pathway in BH might be due to the inability of the body to 

meet the increasing oxygen demand of the body to obtain nutrients and to eliminate 

metabolic waste to protect the cells. Alternatively, the down-regulation of this 

pathway in BC might be a protective measure of the body to produce less metabolic 

heat and was further down-regulated in broilers on exposure to thermal load, as a 

measure to minimise the effect of heat-stress. 

The IPA analysis of BioLayout filtered genes revealed several pathways and 

networks that were related to oxidative stress, cell death, metabolism/diabetes, 

inflammatory and anti-angiogenic functions. They were up-regulated in broilers 
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compared with layers, and also in BH compared with BC. Interestingly, it was 

observed that though these genes were filtered out by BioLayout they were involved 

in oxidative stress and cell death related functions. The reason for which might be 

that all of these genes, filtered and un-filtered (analysed) by BioLayout were 

differentially expressed genes in response to heat-stress. Finally from the key 

positions of selected significant pathways and networks, genes were selected for 

SNP genotyping. In total, 24 candidate genes were selected and out of them 18 genes 

were from pathways and networks and the remaining 6 were selected on the basis of 

their GO terms. 

These results show that broilers are not only under stress in control conditions 

compared with layers but are also more susceptible to heat-stress, that is further 

augmented to a greater extent, than in layers. These gene expression and 

bioinformatics results are also in agreement with the phenotypic data in which heat-

stress resulted in a substantial increase (2.63°C) in the body temperature in broilers 

but only moderate (0.34°C) in layers compared with their respective controls.  

On the basis of gene expression response from breast muscles, it was also concluded 

that broiler and layers were not only quiet different, in terms of their response to 

heat-stress, but they are nearly opposite to each other. 

7.5 Chapter 5 

All the SNPs reported in the current study are novel and none of them have been 

reported earlier for having association with any trait in chicken. For the muscle 

quality trait (CK), a synonymous mutation rs14604079 in the HDAC4 gene and 
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rs14216459 down-stream of the PDCD6 gene were strongly associated with CK and 

they jointly explained 15% of residual variance for the trait. Both of these genes are 

known to have well established roles in cell death and tissue damage. However, 

PDCD6 is also involved in inhibiting angiogenesis and in augmenting the cell death 

caused by other genes.  

For breast muscle lightness (B*L) 7 SNPs were strongly associated and jointly 

explained 48% of residual variance for the trait. CALM and PDCD6IP are involved 

in causing cell death mediated by excessive uptake of extra-cellular Ca2+ and PLCG2 

is involved in various inflammatory and immune disorders mediated by the 

excessive intake of Ca2+. However, it could be argued that SNPs in the PDCD6IP 

and PLCG2 genes might have been involved in enhancing the function of these 

genes and causing cell death possibly through their associations with some other 

genes or SNPs not tested in the present study. The MTFR1 gene is involved in anti-

oxidant functions and rs13803200 SNP was present at the junction of an exon and 

intron. Hence, it could be hypothesised that this mutation might have resulted in loss 

of the function in this gene, possibly by affecting gene splicing, and resulting in 

oxidative stress, muscle weakness and increased lightness. 

In the case of breast muscle redness (B*a), 4 SNPs were significant and responsible 

for jointly explaining 28% of residual variance for this trait. The BCL10 gene is 

involved in angiogenesis-related functions and in enhancing the production of red 

blood cells and haemoglobin. It is speculated that the intronic mutation might have 

resulted in the decreased role for this gene possibly by interacting through some 

other gene. The exact mechanism by which this mutation affects B*a is not known. 
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The rs15126679 mutation in PDCD6 gene was very close to the exon and might be 

involved in splicing and an enhanced expression of this gene in broilers, and be 

involved in cell death and anti-angiogenic activities. CALM is involved in causing 

cell damage mediated by excessive uptake of extracellular Ca2+ and presence of a 

synonymous mutation rs10727941 might have resulted in greater tissue damage and 

increasing lightness. SNP in the promoter region of ENDOG might have resulted in 

reduction of its expression and, ultimately, a decrease in energy production and an 

increase in the degree of oxidative stress. With the exception of BCL10 all of these 

genes were up-regulated in broilers and may underlie broiler muscle damage 

whereas the down-regulation of BCL10 might have resulted in a decrease in B*a in 

broilers.  

In the case of breast muscle yellowness (B*b) only 3 SNPs rs13535756, rs10726982 

and rs14416824 were identified and they jointly explained 20% of residual variance 

for this trait. PRKAG2 gene had been reported to be involved in diabetes and muscle 

weakness caused by oxidative stress. Similarly, the ENDOG gene is also involved in 

mitochondrial depletion and enhancing oxidative stress, whereas SLC26A11 is 

involve in the transportation of anions like chloride and sulphate. It is speculated that 

these SNPs might have resulted in greater muscle damage by enhancing oxidative 

stress. But the role of anions and exact mechanism responsible for decreasing breast 

muscle yellowness is not known.  

For the thigh muscle lightness (T*L), 8 SNPs jointly explained the 45% of residual 

variance. The SNPs found on CALM, MTFR1, MAP2K1, and PLCG2 and HDAC4 

gene might be involved in affecting the thigh muscle lightness in a similar manner 
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(by excessive uptake of extracellular Ca2+, oxidative stress, and cell death) as they 

were for B*L. Mutations in LMNB2 have been reported to cause weakness of leg 

muscle, therefore, it is speculated that the synonymous mutation observed in the 

present study might also be associated with leg muscle weakness and subsequently 

increased muscle lightness. In agreement with this, modern broilers are unable to 

walk properly, and additionally have a higher incidence of leg problems. 

In thigh muscle redness, 3 SNP explained 19% of residual variance for this trait. 

HRAS is involved in growth and proliferation of endothelial and haematopoietic 

cells (Meadows et al. 2001; Sykes & Kamps 2001) whereas  AKT1 (up-regulated in 

layers compared with broilers) is also involve in increasing the blood supply to 

muscles (Takahashi et al. 2002). MTFR1 gene is known for its role in muscle 

strength and anti-oxidant activity and the mutation in this gene might have resulted 

in the impaired function of this gene in broilers that leads to lower redness of thigh 

muscles.  

For the thigh muscle yellowness, in total 6 SNPs were jointly responsible for 

explaining the 46% of residual variance for the trait. Broilers exhibit significantly 

lower T*b compared with layers and traditional breeds (Sandercock et al. 2009a). 

SNPs in CALM, HDAC4, and PLCG2 might be involved in excessive Ca2+ uptake 

and cell damage whereas mutations in LMNB2 have also been reported to affect fat 

contents and muscle weakness. Similarly, the mutation in CYP27A1 is known to 

cause some lipid storage diseases. However, SLC26A11 is involved in transportation 

of anions but, to date, no mutation in this gene has been reported for its association 

with any trait. These results suggest that these mutations are involved in decreasing 
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yellowness by causing tissue damage and also by increasing the lipid contents of 

thigh muscles in broilers. 

In the case of pHi 5 SNPs explained 41% of the residual variance for the trait. 

Mutations in PRKAG2 gene are involved in converting glycogen to glucose and 

hence raising the blood glucose level. Mutations in the promoter of ENDOG might 

have resulted in the impaired expression of this gene and hence leading to greater 

oxidative stress.  Similarly the MTFR1 gene is involved in alleviation of oxidative 

stress and the SNP in this gene might have resulted in the decreased function of this 

gene. Similarly, SNPs in PDCD6 and CALM gene are involved in cell death and 

tissue damage by excessive uptake of Ca2+. The data in the present study do not 

show whether any of these SNPs is causal in its effects or not and merit further 

investigation. But it is very likely these variations in DNA sequences are associated 

with stress like responses through their association with some other sequence 

variation and hence further promote the conversion of glycogen to glucose that may 

lead to the lower pHi in broilers. 

For pHu 7 SNPs were found significantly jointly explained 55% of residual variance 

for this trait.  MTFR1 and BCL2L1 genes are involved in imparting the functional 

strength to muscles by increasing the glycogen reserves of the body. 

However, as discussed above, a mutation in the ENDOG had been reported to cause 

mitochondrial depletion, oxidative stress, lower oxidative phosphorylation, and 

hence greater blood glucose level. SNPs in BCL10 were associated with stress-

related functions and tissue damage in the body. GNB5, LMNB2, and CYP27A1 

were involved in augmenting the levels of saturated fatty acids and lipids. Finally, 
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higher levels of blood glucose due to stress (possibly mitochondrial depletion) and 

very likely insulin deficiency (section 5.6.2.8), along with the greater levels of lipids 

in broilers, might be involved in leading to lower ultimate pH that also increases the 

lightness of broiler meat and results in PSE-like meat.  

7.6 Chapter 6 

The hypothesis that broiler breast muscles are under stress-related damage at 

conventional rearing temperature was tested by rearing the broilers under lower 

ambient and at control temperatures. By rearing the broilers at lower temperature, a 

significant (P<0.05) improvement in breast muscle redness (a*) was observed. 

Statistically non-significant but substantial improvement in breast muscle lightness 

(L*) (P<0.09) and muscle quality from the histopathological examination were 

observed from low temperature reared birds. Similarly, non-significant numerical 

improvements in body temperature, pHi, pHu and drip loss were observed and this 

experiment should be repeated to confirm these observations.  

Interestingly, it was also observed that feed intake and body weight for both 

treatments were similar. The reason for this might be that intensive genetic selection 

for growth-related traits has pushed the hunger up to such an extent that it is not 

affected by mild stressors. Additionally, the mortality % from the ascites in both 

treatments was also similar. However, the difference in the plasma level of acute 

phase protein (APP) in both treatments was non-significant. From the analysis of 

behavioural response, it was observed that the birds from the hot (conventional) 

treatment spent most of their time by sitting exactly under the fan that might reduce 

the difference in the observed parameters between the treatments. It was also 
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observed that there was strong draught within the chambers that might have resulted 

in some decrease in the internal temperature; which was beneficial for 

conventionally treated birds but harmful for those in the lower temperature, because, 

cold-stress is also known to cause muscle damage mediated by oxidative stress. It 

could be that the draught caused some stress on the low temperature treated birds and 

reduced the differences in the observed traits. However, it is suggested that perhaps 

further improvements in the observed traits could be achieved if it could be 

replicated by rearing the birds at 16-17°C and without and draught/wind chill effect.   

These results shows that broiler breast muscles are under stress related damage at 

conventional rearing temperatures which was further increased under hot climatic 

conditions leading to poor quality meat (Bianchi et al. 2007). But, at the same time, 

the up-regulation of hypoxia related pathways in BC and BH compared with layers, 

and the presence of ascitic birds in the conventional treatment show that broilers also 

experience hypoxic-stress. This is likely to have a synergistic effect in combination 

with heat-stress and, therefore, further decrease broiler muscle and meat quality.  

The method of rearing at the optimum (comparatively low) ambient temperatures 

may not be practical or economically feasible commercially but requires further 

investigation. It is unlikely that poor muscle and meat quality will be eliminated by 

this procedure and a primary genetic basis, as outlined in this thesis, is clearly 

important 
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7.7 Conclusion 

Taken together, our results suggest that broilers are suffering from a metabolic 

syndrome characterised by higher blood glucose (due to insufficiency of insulin), 

hypoxic status of tissues, higher levels of cations (Ca2+), and higher levels of lipids 

and cardiac myopathy (hypertrophy). Finally, this metabolic syndrome responsible 

underlies higher muscle pathology, poor muscle and meat quality and greater 

mortality due to higher incidence of ascites and stroke in modern broilers compared 

with layers and traditional breeds. 

We have successfully identified a number of genes that underlie differences in 

muscle and meat quality that can now be taken forward for further proof and 

confirmation of an involvement in muscle function. Furthermore we have identified 

a number of SNP that may be associated or linked to genetic changes responsible for 

these relationships. Lastly, SNP may be examined for their role in selecting broilers 

for improved meat quality. 

However, data in the present study do not provide enough evidence regarding the 

causal relationship between SNP and traits under study and, therefore, more 

investigation is recommended to confirm their association with muscle and meat 

quality traits.  

7.8 Implications and Limitations 

1. It is very likely that this SNP set would be incorporated into the available 

SNP chips for chicken. 
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2. It is hoped that this set of novel SNPs, explaining substantial phenotypic 

variance, would help poultry breeders to select the elite birds to produce the 

future generations of broilers with better muscle and meat quality attributes 

and help the poultry meat industry to reduce their losses due to poor muscle 

and meat quality. 

3. Rearing broilers at comparatively low ambient temperature may provide 

some relief and improvement in meat quality, and help to reduce the heating 

cost in commercial broiler farming, especially in temperate countries. 

However, further research is needed to confirm this relationship.  

4. These SNPs were validated previously and are currently available in the 

public domain and were genotyped in 34 breeds of chicken. However, it is 

recommended that they should be tested for association with muscle and 

meat quality traits in commercial pedigree selection populations.  
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APPENDIXES 

Appendix-1.1 

Pilot Projects 

Pilot projects were run with the following aims. 

1. To check proper working (validation) of control environment chambers. 

2. To develop experimental protocols and assays. 

3. To satisfy the Home Office demands for the project licence and with the aim of 

getting a personal license.  

4. To check the response of AIL birds (developed in Roslin Institute) to acute heat 

stress. 

 

Pilot Experiment 1a 

 

In this experiment, 24 six-week old AIL birds (developed and maintained at Roslin 

Institute), half male and half female, were taken. Birds were reared for 6 weeks and 

fed layer starter diet on ad-lib basis and given a photoperiod of 14 h light and 10 h 

darkness. These six week old birds were divided into two groups, each group 

contained 6 male and 6 female and one group was subjected to heat stress and other 

was treated as control. Two environment control chambers were used in this 

experiment, one for the heat stress (36oC/75%RH) and the second for the control 

(21oC/50%RH) treatments. There were 6 male and 6 female AIL birds in each 

chamber and they were placed on the floor littered wih wood shavings. Birds were 

placed in the chambers for 2 hours only. After completing the 2 hr treatment period 

the birds were taken out and their rectal temperatures were measured. For measuring 

the rectal temperature a thermistor probe was inserted 5 cm into the rectum and 

maintained in position until the digital readout displayed a constant value. 

Blood samples (2 ml) were obtained by venepuncture of the brachial vein using a 2.0 

ml syringe, fitted with a 25 gauge, 5/8 inch needle. Each blood sample was 

transferred to a 5 ml blood collection tube containing 50 units Li-heparin anti-
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coagulant and placed on ice. The samples were centrifuged at 1500g for 5 minutes. 

The plasma supernatant was pipetted into plasma tubes and immediately frozen at -

20°C, pending analysis. Birds were euthanized using an intravenous injection of 

sodium pentabarbitone. The birds were deemed dead when there was cessation of 

visible respiratory movements and then birds were weighed in the groups.  

 

Pilot Experiment 1b 

In this experiment, 24 nine-week old AIL birds (developed and maintained at Roslin 

Institute), half male and half female, were taken.  Birds were from the same hatch of 

which 6 week old birds were used in the Pilot project A1. These nine week old birds 

were divided into two groups, each with 6 male and 6 female and one group was 

subjected to heat stress and other was treated as control. The rest of the procedures 

used in this experiment were the same as described above for Pilot 1a.  

 

 

Pilot Experiment 2 (a,b) 

In this experiment, 50 broiler chicks (Ross-308 broiler), half male and half female, 

were taken and reared in pens (started on 02-12-08 and ended on 16-01-2009). Birds 

were reared for 6 weeks and fed broiler starter and grower diet on ad-lib basis and 

with 16 hours light intervals and 8 hour darkness.  

After six weeks, birds were divided into two groups each with 24 birds at 42 days of 

age. The first group was treated on  day 1 and experiment was named as Pilot C1 and 

the second group on day 2 (Pilot C2). Sampling in each Pilot experiment was done 

by putting half of the birds in heat stress and the other half in cold/normal 

conditions. This procedure for the sampling was completed at 43 days of age. 

Two chambers were used during each day, one for the heat stress (36°C/75%RH) 

and second for the control (21°C/50%RH) treatments. There were 6 male and 6 

female broiler birds in each chamber and they were placed on the littered floor for 2 

hours. 

After completing the 2 hr treatment the birds were taken out and their rectal 

temperature was measured. For measuring the rectal temperature a thermistor probe 
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was inserted 5 cm into the rectum and maintained in position until the digital readout 

displayed a constant value. 

The rest of the protocol used is the same as described above, in the case of Pilot 1a. 

The only difference in this trial is that after killing and weighing of birds, tissue 

samples (approximately 100 mg) for RNA extraction were taken from deep pectoral 

breast muscles of each bird.  

 

STATISTICAL ANALYSIS 

Pilot 1(a,b), was a 2 × 2 factorial design  with 2 treatment (Control and Heat stress ) 

and 2 sex (Female and Male). A similar design was used in Pilot 2 experiment.  

 

Results and Discussion for the Pilot experiments 

Pilot experiment 1a (birds at 6 weeks of age) and 1b (birds at 9 week of 

age) 

Birds of AIL layers were subjected to Control and acute heat stress conditions at 6 

weeks of age (pilot 1a) and at 9 weeks of age (pilot 1b). Mean environmental 

temperature and RH % for control were 21°C and 50% and for heat stressed were 

32°C and 75% for. The data was analysed with in Genstat with ANOVA for testing 

sex and treatment as fixed effects as well as their interaction. The results for rectal 

temperature of pilot experiment 1a are presented in Table-1 and results body 

temperature and body weight of pilot experiment 1b are presented in Table-2 and 

Table-3.  

It was observed that heat stressed condition (32°C and 75% RH) has significant 

(P<0.001) effect in increasing deep body temperature of AIL layers at 6 (Table 1) 

and 9 weeks of age (Table 2). At 6 weeks of age, an increase of 1.23°C was observed 

after heat exposure in AIL birds but at 9 week of age, a 0.7°C increase was recorded. 

A lower increase in the rectal body temperature of AIL birds at both ages suggests 

that these birds are more close to layer birds as layers are comparatively less 

sensitive to heat stress compared to broilers at the same age . This argument that AIL 

birds are more like layers is further confirmed by their low body weight at the same 

age as compared to broiler (Sandercock et al. 2009).  
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Treatments showed non-significant effects on body weight of birds at 9 weeks of age 

but there were significant associations / effects of sex (P<0.001) on body weight of 

birds at 9 weeks of age. Average body weight of male birds was 1541g that was 

significantly (P<0.001) higher than female body weight 1258 g. 

 

Table 1: Mean body temperature of AIL layer at 6 week of age 

Treatment Body temp,°C P-value 

Control 41.708 <.001 
Heat Stress 42.942 
S.E.D 0.18  

 

Table-2 Mean body Temperature of AIL layer at 9 week of age 

Treatment Body temp,°C P-value 

Control 41.92 <.001 
Heat stress 42.62 
S.E.D 0.207  

 

Table-3 Mean Body weight of AIL layer at 9 weeks of age 

Gender Body weight, g P-value 

Female 1258 <.001 
Male 1541 
S.E.D 79.8  
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Pilot experiment 2(a & b) Ross-308 broiler 

Birds of broiler (Ross-308) were subjected to Control and acute heat stress 

conditions at 6 weeks of age. Mean environmental temperature and RH % for control 

were 21°C and 50% and for heat stressed were 32°C and 75% RH. The data for body 

temperature and body weight were analysed within Genstat with ANOVA using a 

balanced design for testing sex and treatment as fixed effects as well as their 

interaction.  

It was observed that there was a significant effect of Acute heat stress (32°C and 

75% RH) on deep body temperature of birds (Table-4).  Body temperature of broilers 

in the Control treatment was 41.33°C while in the High Temperature treatment it 

was 43.29°C.  No effect of Sex and Sex X treatment interaction was observed in this 

case.   

For body weight, male body weight (2319 g) was significantly (P<0.001) higher than 

female body weight (2084 g) (Table 5). Treatments and ‘Treatment x Sex’ 

interaction showed non-significant effects on body weight of broiler birds. 

A greater increase in body temperature after exposure to acute thermal load indicates 

that broiler birds are more susceptible to heat stress as compared to AIL (Pilot 1 a, b) 

and layer birds (final experiment) at the same age. However, broiler birds are about 

three times heavier than layers and AIL birds at the same age which indicates that 

genetic selection for growth related traits in meat- type chicken have made the 

broiler birds more susceptible to heat stress, by limiting their thermo-regulatory 

responses on exposure to thermal challenge. 

Table-4 Mean body temperature of broiler (Ross-308) at 6 weeks of age 

Treatment Body temp,°C P-value 

Control 41.44 <0.001 
Heat Stress 43.27 
S.E.D 0.251  

 

Table 5 Mean Body weight of broiler (Ross-308) at 6 weeks of age 

Gender Body weight, g P-value 

Female 2084 <0.001 
Male 2326 
S.E.D 66.0  
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Appendix-2.1 

Table-1 Randomisation of treatment to chamber 

Day Chamber Treatment Order Time on Birds in Birds out

1 1 C 3 0930 1015 1215 

1 2 H 2 0845 0915 1115 

1 3 H 1 0800 0830 1030 

1 4 C 4 1015 1045 1245 

2 1 C 2 0845 0915 1115 

2 2 C 1 0800 0830 1030 

2 3 H 3 0930 1015 1215 

2 4 H 4 1015 1045 1245 

3 1 H 3 0930 1015 1215 

3 2 C 2 0845 0915 1115 

3 3 H 1 0800 0830 1030 

3 4 C 4 1015 1045 1245 

4 1 H 1 0800 0830 1030 

4 2 C 3 0930 1015 1215 

4 3 C 2 1015 1045 1245 

4 4 H 4 0845 0915 1115 
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Table-2 Randomisation of crates in chambers 

Day Chamber Location (from door) Pen 
1 2 3 4 

Monday 1 BM BF LF LM 3 

 2 LF BF LM BM 7 

 3 BM LF LM BF 16 

 4 LF BF BM LM 17 

Tuesday 1 LM LF BM BF 2 

 2 BM BF LM LF 8 

 3 BF LM BM LF 11 

 4 LF LM BM BF 12 

Wednesday 1 BF LM LF BM 6 

 2 LF BM LM BF 9 

 3 LM BF BM LF 10 

 4 LF LM BM BF 15 

Thursday 1 LM BM BF LF 4 

 2 BM LM LF BF 5 

 3 LM BF LF BM 13 

 4 LM BM BF LF 14 
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Appendix-2.2 

Sexing layer chicks by PCR 

Wing vein (brachial vein) of the birds was pierced by using 25 gauge needle and a 

drop of blood was collected by using the pasture pipette as a capillary. Blood was 

allowed to flow from pipette onto the CloneSaver Card in an even way, made sure by 

moving the pipette within the circle being filled. Bird No was recorded in the 

corresponding grid square and the card was air dried for few minutes. 

Punch Preparation  

From each circle, a piece of 1.2 mm was punched out using the Harris punch and put 

into the corresponding well of 96 well plate, used for the PCR. 150 µl of FTA Wash 

solution was added and allowed to incubate for 10 minutes at room temperature and 

then aspirated off solution to waste using a multi-channel pipette. This washing step 

was done twice (i.e. three times in total). Plate was allowed to incubate for 5 minutes 

at room temperature, with 150 µl of 1x TE solution in each well which was then 

aspirated off. This step was repeated, and finally all the liquid was aspirated off. 

Punches were allowed to air dry completely overnight, and then used in PCR, as 

DNA samples. 

Table-3 PCR Solution Preparation for sexing chicks 

Reagents Per Sample 1 x 96 well plate 

W3 primer (10pm/ µl) 0.4 40 

W5 primer (10pm/ µl)          0.4 µl 40µl 

R1 primer (10pm/ µl)           0.5 µl 50 µl 

R2 primer (10pm/ µl)           0.5 µl 50 µl 

10 x NTP                              1.5 µl 150 µl 

10 x Buffer  (w/o Mg)          1.5 µl 150 µl 

Mg2+ (2mM final)                1.2 µl 120 µl 

5 x BB/Sucrose*                   3.0 µl 300 µl 
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DMSO                                  0.75 µl 75 µl 

Taq                                        0.075 µl 7.5 µl 

H2O                                      5.175 µl 517.5 µl 

Purified FTA Punch   

i.e. Total per well = 15 µl 

*5 x BB/Sucrose = 16.5% (w/v) Sucrose + Bromophenol Blue. 

Taq and corresponding buffer and Mg2+ from Abgene. 

 

Primer Sequence 

           W3   5’  GAA ATG AAT TAT TTT CTG GCG AC 3’ 

           W5   5’  CCC AAA TAT AAC ACG CTT CAC T   3’ 

           R1   5’  AGC TCT TTC TCG ATT CCG TG         3’ 

           R2   5’  GGG TAG ACA CAA GCT GAG CC       3’ 

PCR Conditions 

     (i)  94oC           2 minutes 

     (ii) 94oC         10 seconds 

     (iii)54oC         15 seconds 

     (iv)72oC         20 seconds 

      repeat steps (ii)– (iv) (x 30 in total) 

      Final extension at 72oC for 5 minutes and then finish. 

PCR products were loaded directly onto gel. 

 

Gel preparation 

The gel was prepared by dissolving 2% Agarose in TAE buffer, solution was heated 

in microwave until it became transparent. After cooling the solution 2 µl of ethidium 

bromide per 100 ml of Agarose was added and mixed. Then gel was poured into a 

casting bench, with appropriate combs in it, and allowed to solidify. After that gel 

was placed into the tank containing TAE buffer and combs were removed. Finally, 

PCR products were loaded into the wells, in the gel, and gel was run under 100v for 
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20 minutes. 

Images of the gels are presented in the following two figures. 

 

Images of DNA after sexing PCR (Left to Right) 

 

 

(Double band is showing male bird and single band is showing female bird) 
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Appendix-2.3 

RNA Extraction Protocol 

For RNA extraction, samples were randomised prior to extraction and so 8 of 

randomised samples were used in one extraction. RNA was extracted by using the 

following protocol. 

Homogenisation 

100 mg of frozen (at -80°C) breast tissue samples were placed in the beaded tubes, 

on ice, and then 1ml of Tri-reagent was added in each tube and after ensuring the lids 

are on lightly samples were placed in the FastPrep FP 120 for agitation, at the speed 

of 6m/s for 40 seconds. 

Phase Separation 

After incubating, the tubes for 5 minutes at room temperature, 0.2ml BCP was added 

in each tube followed by vigorous manual shaking for 15 seconds. The tubes were 

then set in the centrifuge machine at 12000 x g for 15 minutes at room temperature, 

after incubation for 3 minutes at 15 - 30ºC. Then the upper aqueous phase was added 

into new RNase free tubes, by using P 200. 

RNA precipitation 

500 μl of isopropyl alcohol was added into each tube and then tubes were incubated 

for 10 minutes at 2-8°C (on ice). Tubes were centrifuged at 15000 x g for 30 minutes 

at room temperature at the end of centrifugation RNA precipitate to form a pellet on 

the bottom of the tube. 

RNA Wash 

Supernatant was discarded and the pellet was washed with 1 ml of 75% ethanol. 

After vortexing the samples were again subjected to centrifugation at the speed of 

11000 x g for 30 minutes at room temperature. After washing twice, the supernatant 

was discarded and RNA pellet was air dried for 10 minutes. 

Redissolving the RNA 

Finally the pellet was resuspended in 50 μl of RNase free water and tube was put at 

room temperature for 10 minutes and at the end after labelling with new labels, tubes 

were stored at -80°C. 
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Appendix-2.4 

ARK-Genomics Quality Control Protocol  

TITLE: Affymetrix Fragmentation, Hybridisation and Staining of 3’ IVT 

Express Labelled arrays 

SCOPE: This SOP should be used when using the Affymetrix 3’ IVT Express labelling kit 

which replaced the one and two cycle labelling kits in 2008.  Any projects 

requiring data comparisons with samples labelled using the one or two cycle kits 

should NOT use this labelling method but stick to the older methods. 

Purpose 

This describes the assay procedures recommended for eukaryotic target labelling in 

expression analysis using Affymetrix GeneChip 3’ brand probe arrays.  Projects 

requiring comparison with samples labelled using the one or two cycle amplification 

methods should not use this method but remain with the older methods.  All new 

projects should use this labelling protocol which requires significantly less starting 

material. 

Equipment/Reagents 

GeneChip 3’ IVT Express Kit – 10 reactions  (Affymetrix - P/N 901228), 30 

reactions (Affymetrix – P/N 901229) 

***NB If planning on using the kit for Human, Mouse or Rat GeneChips there 

is an additional cost saving by buying a bundle of labelling kit and the 

appropriate number of arrays. Check the Affymetrix website for details*** 

SOP IGF114.00 - Numbering System used for Affymetrix GeneChip arrays in 

the ARK Genomics laboratory. 

SOP IGF152.00 – 3’ IVT Express Labelling 

SOP IGF141.00 – Sample Entry for Affymetrix Experiments using Command 

Console. 
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Principle 

The 3’ IVT Express kit improves on the Affymetrix One and Two Cycle 

amplification kits with lower input total RNA requirements, streamlined workflow 

using Mastermix and magnetic bead aRNA purification for high recovery and ease of 

use.  The biotinylated aRNA targets produced are, fragmented prior to hybridisation 

to Affymetrix GeneChip 3’ Expression arrays.  After hybridisation the arrays are 

washed, stained and scanned to visualise the results. 

Procedure 

Fragmentation 

Assemble the aRNA fragmentation mixture according to the table below.  Refer to 

the specific probe array package insert for information on the array format. 

Component 49/64 Format 100 Format 169/400 

Format 

aRNA 15ug (1 to 32ul) 12ug (1 to 

23.6ul) 

7.5ug (1 to 

16ul) 

5xFragmentation 

Buffer 

8ul 6.4ul 4ul 

Nuclease free water Up to 40ul Up to 30ul Up to 20ul 

Total 40ul 30ul 20ul 

 

4.1.1 Run the XPRSF protocol on the Dyad PCR machine.  This incubates the 

fragmentation reaction at 94C for 35 minutes before holding at 4C.  Store at -80C 

or place on ice and continue with setting up the hybridisations. 

Hybridisations of aRNA to Affymetrix 3’ GeneChips 

** It is imperative that frozen stocks of 20x GeneChip Eukaryotic Hybridisation 

Controls are heated to 65C for 5 minutes to completely resuspend the aRNA before 

aliquating ** 
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4.2.1 Remove the arrays from the fridge and allow them to equilibrate to room 

temperature prior to use.  If the rubber septa are not equilibrated to room 

temperature, they may be prone to cracking, which can lead to leaks.   

4.2.2 Remove the arrays from their packets and number them according to the 

numbering system described in SOP IGF 114.00.  Enter the samples into Command 

Console as described in SOP IGF 141.00. 

4.2.3 Please refer to the tables below for the necessary amount of aRNA required 

for the appropriate array format.  If you are unsure of your array format consult the 

insert sheet which is included in the box with the arrays. 

Array Volume 

49 Format (Standard) 200ul 

64 Format 200ul 

100 Format (Midi) 130ul 

169 Format (Mini) 80ul 

400 Format (Micro) 80ul 

 

4.2.4 Prepare a mastermix for the hybridisation buffer (minus the fragmented aRNA) 

according to the table above.  Allow extra volume for pipetting errors. 

4.2.5 Pipette the appropriate volume of hybridisation buffer mastermix into 

individual screw capped microfuge tubes.  To these tubes add the appropriate 

amount of fragmented aRNA.  Mix by vortexing and centrifuge briefly to return the 

contents of the tube to the bottom. 

4.2.6 Once equilibrated, wet the probe arrays by filling with 1x Hybridisation Buffer.  

The appropriate fill volume can be found in the first table above.  Place a P10 tip in 

Septa 1 (see figure below) to provide venting of air from the hybridisation chamber.  

Then pipette the 1x hybridisation buffer in through Septa 2, tilt the chip at an angle 

so that the Septa 1 is highest and Septa 2 is directly beneath it.  Be careful not to 

waggle the tip while inserted into the septa since this will increase the chances of 

leaks during the hybridisation.  Once full, tap the chip on all sides to ensure small air 

bubbles do not prevent the array to be properly wetted.  Place the arrays in racks in 
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the Hybridisation Oven at 45ºC for at least 10 minutes while the hybridisation 

cocktails are prepared. 

Hybridisation Cocktail for Single Probe Array 

Component Array Format Final Dilution 

49/64 100  169/400  

Fragmented aRNA 12.5ug 

(33.3ul) 

10ug 

(26.7ul) 

5ug 

(13.3ul) 

0.05 ug/ul 

Control Oligo B2 (3nM) 4.2ul 3.3ul 1.7ul 50pM 

20x Hyb Controls (bioB, 

bioC, bioD, cre) 

12.5ul 10ul 5ul 1.5, 5, 25 & 100pM 

respectively 

2x Hyb Mix 125ul 100ul 50ul 1x 

DMSO 25ul 20ul 10ul 10% 

Herring Sperm DNA 

(10mg/ml) 

2.5ul 2ul 1ul 0.1mg/ml 

BSA (50mg/ml) 2.5ul 2ul 1ul 0.5mg/ml 

Water 45ul 36ul 18ul  

Total 250ul 200ul 100ul  

Master mix Vol to add 216.7ul 173.3ul 86.7ul  
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4.3.7 Heat the tubes containing the hybridisation cocktails at 99C for 5 minutes in a 

heated block. 

4.2.8. Transfer the hybridisation cocktails to the 45C hybridisation oven for 5 

minutes, placing the tubes on the bottom of the oven. 

4.3.9. After incubation for 5 minutes, spin the hybridisation cocktails at maximum 

speed in a centrifuge for 5 minutes.  This will remove any insoluble material from 

the hybridisation mixture. 

4.3.10. The probe arrays will now have been incubated for over 10 minutes in the 

hybridisation oven.  Remove the buffer from the probe array cartridge and fill the 

appropriate volume of hybridisation cocktail (see the table above).  Avoid any 

insoluble material at the bottom of the tube. 

4.3.11. Place the probe arrays in the hybridisation oven, set to 45C.  Avoid stress to 

the motor by loading the arrays in a balanced configuration around the axis.  Rotate 

at 60rpm and hybridise for 16 hours. 

         Washing and Staining the GeneChip Arrays 

4.4.1 After 16 hours of hybridisation, remove the hybridisation cocktail to a labelled 

microfuge tube.  Fill the probe array with the appropriate volume of Wash Buffer A, 

as detailed in the first table in 4.2.3.  If necessary the probe array can be stored at 

4°C until required, equilibrate the probe array to room temperature before washing 

and staining. 

N.B. The hybridisation cocktails can be stored at -80C and can be reused if required. 

4.4.2 Log in to the Affymetrix computer and start Affymetrix Launcher, this starts 

the Command Console software.  Double click AGCC Fluidics Control. 

4.4.3 In the Step 2 box, ensure the List All Protocols radio button is checked.  

Choose Prime_450 from the drop down list of protocols.  If all modules are to be 

used then click the Check/Uncheck All Stations and Modules buttons at the top of 

the screen, else choose the individual modules which you wish to use.  Check in IGF 

Visitors\AFFY\Affy Chip Useage to see which module was used last and start with 

the next one in sequence.   
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4.4.4 Ensure that bottles of Wash Buffer A, Wash Buffer B, water and waste are in 

position at the side of the Fluidics Stations and that the waste bottle is empty.   

4.4.4 In Step 3 box in the AGCC Fluidics Control window, click the Copy to 

Selected Modules button. Click Run All at the top right of the window and follow 

the instructions on the fluidics stations themselves. 

4.4.5 Prepare the staining reagents according to the tables below.  NOTE: 

Streptavidin Phycoerythrin (SAPE) should be stored in the dark at 4°C, either foil 

wrapped or in an amber tube.  Remove the SAPE from the fridge and tap the tube to 

mix well before preparing the stain solution.  Make up a mastermix for all the chips 

to be stained on the day, allowing a little extra for pipetting errors.  Only eight chips 

can be processed at one time on the Fluidics Stations, leave the remaining SAPE and 

Antibody mixes on ice in the dark until ready to use.  Do not freeze the SAPE.  

Always prepare the SAPE stain solution fresh on the day of use. 

SAPE Solution Mix – per chip. 

Components Volume Final Concentration 

2x Stain Buffer 600ul 1x 

50mg/ml BSA 48ul 2mg/ml 

1mg/ml SAPE 12ul 10ug/ml 

Water 540ul  

Total Volume 1200ul  

 

Antibody Solution Mix – per Chip 

Components Volume Final Concentration 

2x Stain Buffer 300ul 1x 

50mg/ml BSA 24ul 2mg/ml 

10mg/ml Goat IgG Stock 6ul 0.1mg/ml 

0.5mg/ml biotinylated antibody 3.6ul 3ug/ml 

Water 266.4ul  

Total Volume 600ul  
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4.4.6. Mix the reagents for the SAPE solution well and place into two 1.5ml 

microfuge tubes containing 600ul each.  These are used for positions 1 and 3 on the 

fluidics stations. 

4.4.7. Mix the reagents for the antibody solution well and place 600ul in a 1.5ml 

microfuge tube.  This is used in position 2 of the fluidics stations.  

4.4.8 Rack up the tubes containing SAPE and Antibody Solutions for one round of 

use on the Fluidics Station (maximum eight chips) and transfer, along with the chips 

themselves, to the Fluidics Station. 

4.5.3 Transfer 30ul of IVT Master Mix to each (30ul) double-stranded cDNA 

sample.  Mix thoroughly by gentle vortexing and centrifuge briefly to return the 

contents of the tube/plate to the bottom. 

4.5.4 Once assembled place in the Dyad PCR block and run one of the two protocols 

listed in the table below, depending on the amount of input Total RNA in the 

reaction. 

RNA Amount IVT Incubation Time PCR Program 

50 – 250ng 16 hours IVT16 

500ng 4 hours IVT4 

 

***NOTE: Optimal RNA input amount and IVT incubation time are sample type 

dependant and should be determined empirically,   It is recommended to keep input 

amount and IVT incubation time consistent within a given experiment*** 

4.5.5 Once the incubation is complete the PCR programs will hold at 4°C.  Place the 

cRNA on ice briefly before proceeding with cRNA purification or freeze 

immediately at -20°C for overnight storage.  

**STOPPING POINT IF REQUIRED** 

cRNA Purification 

Components of the GeneChip IVT Express Kit, box 1 are used for this step. 
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After synthesis, the cRNA is purified to remove enzymes, salts and unincorporated 

nucleotides.  Photos of the cRNA purification process can be found at the end of this 

section. 

4.6.1 Aliquot the appropriate amount of the aRNA elution solution (50ul per samples 

plus ~10% excess)  

4.6.2 At room temperature, assemble the aRNA Binding Mix in a nuclease free tube 

for all the samples in the experiment, plus an extra half reaction to cover pipetting 

error, following the instructions in the table below. 

Component Amount 

RNA Binding Beads* 10ul 

aRNA Binding Buffer Concentrate 50ul 

* Mix the RNA Binding Beads by vortexing before dispensing.   

4.6.3 Add 60ul aRNA Binding Mix to each sample and transfer to a well of the U 

Bottom plate supplied with the cleanup kit, mix by pipetting up and down several 

times.  ***Ensure you have a record of which sample went in which well of the 

plate.*** 

4.6.4 Add 120ul of 100% ethanol to each sample, mix by pipetting up and down 

several times. 

4.6.5 Transfer the plate to the Heidolph Titramax 1000 Shaker in ARK Genomics 

big lab.  Set the shaker speed to 450rpm and shake for 2 minutes.  The aRNA in the 

sample will bind to the RNA Binding Beads during this incubation. 

4.6.5  Move the plate to the magnetic stand (QIAGEN Biorobot Magattract stand) 

and capture the magnetic beads for 7 minutes.   When capture is complete, the 

mixture becomes transparent and the RNA Binding beads will form pellets against 

the magnets in the magnetic stand.  See pictures at the end of this document. 

4.6.6. Carefully aspirate and discard the supernatant without disturbing the magnetic 

beads; remove the plate from the magnetic stand. 

*** ENSURE THE ETHANOL HAS BEEN ADDED TO THE BOTTLE OF 

aRNA WASH SOLUTION CONCENTRATE BEFORE USING IT*** 
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4.6.7 Add 100ul aRNA Wash solution (check that ethanol added to bottle) to each 

sample and transfer to the Illumina shaker in Lab620.  Shake at 800rpm for one 

minute. 

**NOTE: the RNA Binding Beads may not fully disperse during this step; this 

is expected and will not affect RNA purity or yield.  See pictures at the end of 

this document*** 

4.6.8 Move plate to the magnetic stand and capture the magnetic beads for 7 

minutes. 

4.6.9 Carefully aspirate and discard the supernatant without disturbing the RNA  

Binding Beads and remove the plate from the magnetic stand. 

4.6.10 Repeat steps 4.6.7 to 4.6.9 to wash a second time with 100ul of aRNA Wash 

Solution. 

4.6.11 Move the plate to the Illumina shaker and shake the plate at 1100rpm for 1 

minute to evaporate residual ethanol from the beads. 

4.6.12 Elute the purified aRNA from the RNA Binding Beads by adding 50ul 

preheated (55°C) aRNA Elution Solution to each sample.  Transfer the plate to the 

Illumina shaker. 

4.6.13 Shake the plate for 3 minutes at 1100rpm. Then check to make sure the RNA 

Binding Beads are fully dispersed.  If they are not, continue shaking until the beads 

are dispersed – it is recommended to switch the pulse option on during the second 

shake if there has been a problem with the bead dispersal. 

4.6.14 Once the beads are fully dispersed transfer the plate to the magnetic stand and 

capture the RNA Binding Beads for 7 minutes. 

4.6.15  Transfer the supernatant, which contains the eluted aRNA, to a nuclease-free 

microfuge tube.  Store at -80°C or place on ice and proceed with quantitation, QC 

and fragmentation (SOP IGF153.00). 
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APPENDIX-3.1 

Experimental design of Microarray 

ST! Filename Treat! Breed! Day! Chamber!
BH 129 Heat-stressed B 1 3 
BH 130 Heat-stressed B 1 2 
BH 131 Heat-stressed B 2 3 
BH 132 Heat-stressed B 2 4 
BH 133 Heat-stressed B 3 3 
BH 134 Heat-stressed B 3 1 
BH 135 Heat-stressed B 4 1 
BH 136 Heat-stressed B 4 4 
BC 137 Control B 1 1 
BC 138 Control B 1 4 
BC 139 Control B 2 2 
BC 140 Control B 2 1 
BC 141 Control B 3 2 
BC 142 Control B 3 4 
BC 143 Control B 4 3 
BC 144 Control B 4 2 
LH 145 Heat-stressed L 1 3 
LH 146 Heat-stressed L 1 2 
LC 147 Control L 1 1 
LC 148 Control L 1 4 
LC 149 Control L 2 2 
LC 150 Control L 2 1 
LH 151 Heat-stressed L 2 3 
LH 152 Heat-stressed L 2 4 
LH 153 Heat-stressed L 3 3 
LC 154 Control L 3 2 
LH 155 Heat-stressed L 3 1 
LC 156 Control L 3 4 
LH 157 Heat-stressed L 4 1 
LC 158 Control L 4 3 
LC 159 Control L 4 2 
LH 160 Heat-stressed L 4 4 

BH = Broiler Heat-stressed 
BC = Broiler control 
LH = Layer Heat-stressed 
LC = Layer control 
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Concentration of RNA samples (used in Microarray experiment) 

Heat stressed 
male 

RNA 
Conc. 

Pools Control male RNA 
Conc. 

Pools 

344 121 2247 344_129 344 034 2288 344_137 
344 105 1536 344 065 2534 
344 017 3168 344_130 344 074 63 344_138 
344 009 2829 344 082 3395 
344 036 1367 344_131 344 043 1531 344_139 
344 075 947 344 099 2425 
344 068 2396 344_132 344 051 2772 344_140 
344 116 1755 344 003 2365 
344 093 2220 344_133 344 062 2559 344_141 
344 085 2631 344 029 1516 
344 006 1443 344_134 344 126 3100 344_142 
344 102 890 344 022 3146 
344 063 2309 344_135 344 016 2441 344_143 
344 031 1695 344 112 2124 
344 055 2112 344_136 344 120 2273 344_144 

344_048 2014 344_096 513 
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Appendix-3.3 

Data Filtration 

32 slides were converted to expressions in four different batches because GenStat 

was unable to convert the 32 Cel files (Affymetrix chicken array, 38.5K) into 

expression files in a single go, on a 32-bit computer. So 4 spreadsheets each having 8 

slides were developed, 4 broiler slides (2 heat-stressed and 2 control) and four layer 

slides (2 heat-stressed and 2 control), on the basis of days i.e. birds treated on day 1 

was included in spreadsheet one and birds treated on day 2 were included in second 

spreadsheet and so on for 3rd and 4th day treated birds. Each of the 4 spreadsheets 

was split into 8 sub-sheets on the basis of slides individually. Each subsequent sub-

sheet had 4 (Slide number, Probe ID, Expression and SE) and 38,535 rows, one for 

each probe. Each of these sub-sheets (one for each slide) was saved in Excel format. 

Ultimately, data from all of these 32 files were copied, one by one, and pasted to 

develop a single file containing expressions and SE data for each slide.  

In this Microsoft Excel file, the Probe IDs of all of the 38,535 probes were pasted in 

column 1, in the same format as returned by GenStat, and their respective expression 

on each slides were pasted in next columns in left to right direction, expression and 

SE of 129 slide, in extreme left, next to Probe Ids and then next two columns for the 

data of 130 slide and so on until the last slide, 160. So in this way, new excel file had 

38,535 rows and 65 columns, one for Probe Ids and two columns for each slide, as 

mentioned above. In 66th column highest value ‘Max value’ for each row (R et al.) 

was calculated by using the formula for ‘Max’, provided in Microsoft excel. Hence, 

data were filtered on the basis of ‘Max’ values. The rows (Probes) having their Max 

values less than or equal to 1 were filtered which resulted in the reduction of probes 

(rows) from 38,535 to 19,038 for each slide. The filtered excel sheet was used to 

create a new filtered spreadsheet, having 4 columns, Slide number, Probe Ids, 

Expression and SE. Data for the each filtered slide were pasted in ascending order 

i.e. 129 at the top and 160 at the end. Finally this spreadsheet was saved in M. Excel 

and imported into GenStat, and columns Slide number and Probe Ids were converted 

to ‘Factor’. 
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Appendix 4-1 

Pathway Analysis of Category I 

Ingenuity Canonical Pathways  -log(p-value) Ratio 

Fcγ Receptor-mediated Phagocytosis in Macrophages 
and Monocytes 4.65E00 7.84E-02 

fMLP Signaling in Neutrophils 4.24E00 6.25E-02 

Clathrin-mediated Endocytosis Signaling 3.51E00 5.23E-02 

Ephrin Receptor Signaling 3.28E00 4.52E-02 

Regulation of Actin-based Motility by Rho 3.07E00 6.59E-02 

Integrin Signaling 2.96E00 4.31E-02 

Actin Cytoskeleton Signaling 2.87E00 3.78E-02 

Cdc42 Signaling 2.58E00 3.45E-02 

Rac Signaling 2.58E00 4.88E-02 

RhoA Signaling 2.58E00 5.36E-02 

Axonal Guidance Signaling 2.4E00 2.78E-02 

Germ Cell-Sertoli Cell Junction Signaling 2.31E00 4.19E-02 

CCR5 Signaling in Macrophages 2.17E00 4.26E-02 

G Protein Signaling Mediated by Tubby 2.16E00 7.32E-02 

FAK Signaling 2.05E00 4.9E-02 

CD28 Signaling in T Helper Cells 1.97E00 3.79E-02 

Agrin Interactions at Neuromuscular Junction 1.79E00 5.8E-02 

CCR3 Signaling in Eosinophils 1.73E00 3.94E-02 

Mechanisms of Viral Exit from Host Cells 1.71E00 6.67E-02 

α-Adrenergic Signaling 1.64E00 3.81E-02 

Crosstalk between Dendritic Cells and Natural Killer Cells 1.64E00 3.09E-02 

NRF2-mediated Oxidative Stress Response 1.55E00 3.11E-02 

Virus Entry via Endocytic Pathways 1.51E00 4E-02 

Breast Cancer Regulation by Stathmin1 1.51E00 2.88E-02 

Cholecystokinin/Gastrin-mediated Signaling 1.49E00 3.77E-02 

VEGF Signaling 1.49E00 4.04E-02 

Leukocyte Extravasation Signaling 1.48E00 3.02E-02 

Role of MAPK Signaling in the Pathogenesis of Influenza 1.43E00 4.62E-02 

Selenoamino Acid Metabolism 1.34E00 2.94E-02 
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Chemokine Signaling 1.33E00 4.05E-02 

Cellular Effects of Sildenafil (Viagra) 1.32E00 2.65E-02 

Caveolar-mediated Endocytosis Signaling 1.3E00 3.53E-02 

Corticotropin Releasing Hormone Signaling 1.3E00 2.99E-02 
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Appendix 4-2 

Pathway Analysis of Category II 

Ingenuity Canonical Pathways  -log(p-value) Ratio 

Ceramide Signaling 3.15E00 4.6E-02 

Role of PI3K/AKT Signaling in the Pathogenesis of Influenza 2.89E00 4.05E-02 

Regulation of eIF4 and p70S6K Signaling 2.61E00 3.03E-02 

p70S6K Signaling 2.45E00 3.08E-02 

Non-Small Cell Lung Cancer Signaling 2.34E00 3.8E-02 

Renal Cell Carcinoma Signaling 2.13E00 4.05E-02 

RANK Signaling in Osteoclasts 2.07E00 3.16E-02 

EIF2 Signaling 2.01E00 2.97E-02 

HMGB1 Signaling 1.92E00 3E-02 

Chronic Myeloid Leukemia Signaling 1.92E00 2.86E-02 

Glioma Signaling 1.91E00 2.68E-02 

Role of PKR in Interferon Induction and Antiviral Response 1.82E00 4.35E-02 

Sphingosine-1-phosphate Signaling 1.76E00 2.52E-02 

PI3K/AKT Signaling 1.76E00 2.14E-02 

P2Y Purigenic Receptor Signaling Pathway 1.71E00 2.22E-02 

Melanoma Signaling 1.7E00 4.35E-02 

Synaptic Long Term Depression 1.59E00 2.05E-02 

Relaxin Signaling 1.59E00 1.9E-02 

IL-2 Signaling 1.56E00 3.45E-02 

CNTF Signaling 1.54E00 3.64E-02 

Molecular Mechanisms of Cancer 1.54E00 1.33E-02 

IL-15 Signaling 1.48E00 2.94E-02 

Endometrial Cancer Signaling 1.48E00 3.51E-02 

Role of MAPK Signaling in the Pathogenesis of Influenza 1.48E00 3.08E-02 

Role of NFAT in Regulation of the Immune Response 1.46E00 1.5E-02 

IL-17A Signaling in Airway Cells 1.44E00 2.78E-02 

Chemokine Signaling 1.4E00 2.7E-02 

Melatonin Signaling 1.39E00 2.6E-02 

GM-CSF Signaling 1.39E00 2.99E-02 

Glioblastoma Multiforme Signaling 1.38E00 1.83E-02 
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JAK/Stat Signaling 1.37E00 3.12E-02 

Erythropoietin Signaling 1.35E00 2.56E-02 

Production of Nitric Oxide and Reactive Oxygen Species in 
Macrophages 1.35E00 1.6E-02 

Neurotrophin/TRK Signaling 1.34E00 2.6E-02 

CXCR4 Signaling 1.31E00 1.78E-02 

FLT3 Signaling in Hematopoietic Progenitor Cells 1.3E00 2.7E-02 

Small Cell Lung Cancer Signaling 1.3E00 2.25E-02 

IL-3 Signaling 1.29E00 2.7E-02 

IL-17 Signaling 1.29E00 2.7E-02 

Acute Myeloid Leukemia Signaling 1.29E00 2.44E-02 
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Appendix 4-3 

Pathway Analysis of Category III 

Ingenuity Canonical Pathways  -log(p-value) Ratio 

Estrogen Receptor Signaling 1.42E00 1.47E-02 

Inositol Phosphate Metabolism 1.37E00 1.12E-02 

Oxidative Phosphorylation 1.33E00 1.26E-02 

Glycosphingolipid Biosynthesis - Globoseries 1.28E00 2.56E-02 

Pentose Phosphate Pathway 1.13E00 1.22E-02 

Docosahexaenoic Acid (DHA) Signaling 1.04E00 2.04E-02 

Galactose Metabolism 9.76E-01 9.43E-03 

TNFR1 Signaling 9.59E-01 1.89E-02 

Colorectal Cancer Metastasis Signaling 9.47E-01 7.78E-03 

Assembly of RNA Polymerase II Complex 9.42E-01 1.79E-02 

CD27 Signaling in Lymphocytes 9.34E-01 1.75E-02 

Semaphorin Signaling in Neurons 9.26E-01 1.92E-02 

Lymphotoxin β Receptor Signaling 9.1E-01 1.64E-02 

Protein Ubiquitination Pathway 8.81E-01 7.3E-03 

Glutathione Metabolism 8.81E-01 1.11E-02 

Glucocorticoid Receptor Signaling 8.79E-01 6.78E-03 

Purine Metabolism 8.71E-01 5.12E-03 

Induction of Apoptosis by HIV1 8.68E-01 1.52E-02 

IL-15 Signaling 8.54E-01 1.47E-02 

GM-CSF Signaling 8.54E-01 1.49E-02 

Angiopoietin Signaling 8.35E-01 1.35E-02 

Agrin Interactions at Neuromuscular Junction 8.17E-01 1.45E-02 

Ubiquinone Biosynthesis 8.17E-01 8.93E-03 

Renal Cell Carcinoma Signaling 8.06E-01 1.35E-02 

Starch and Sucrose Metabolism 8.06E-01 5.92E-03 

Small Cell Lung Cancer Signaling 8E-01 1.12E-02 

OX40 Signaling Pathway 7.48E-01 1.11E-02 

Regulation of Actin-based Motility by Rho 7.34E-01 1.1E-02 

FAK Signaling 7.2E-01 9.8E-03 

VEGF Signaling 7.2E-01 1.01E-02 
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PAK Signaling 7.11E-01 9.35E-03 

Apoptosis Signaling 7.11E-01 1.04E-02 

Glycolysis/Gluconeogenesis 7.07E-01 7.46E-03 

Molecular Mechanisms of Cancer 7.05E-01 5.31E-03 

p53 Signaling 6.94E-01 1.04E-02 

Chronic Myeloid Leukemia Signaling 6.9E-01 9.52E-03 

Amyotrophic Lateral Sclerosis Signaling 6.7E-01 8.4E-03 

Nicotinate and Nicotinamide Metabolism 6.7E-01 7.41E-03 

Natural Killer Cell Signaling 6.54E-01 9.09E-03 

Rac Signaling 6.51E-01 8.13E-03 

Pancreatic Adenocarcinoma Signaling 6.43E-01 8.4E-03 

Renin-Angiotensin Signaling 6.4E-01 8.06E-03 

PTEN Signaling 6.36E-01 8.06E-03 

Role of Tissue Factor in Cancer 6.33E-01 8.77E-03 

Metabolism of Xenobiotics by Cytochrome P450 6.12E-01 5.08E-03 

CCR3 Signaling in Eosinophils 6.12E-01 7.87E-03 

PI3K/AKT Signaling 6E-01 7.14E-03 

GNRH Signaling 5.87E-01 6.9E-03 

Mitochondrial Dysfunction 5.55E-01 5.71E-03 

B Cell Receptor Signaling 5.29E-01 6.41E-03 

CXCR4 Signaling 5.07E-01 5.92E-03 

Cdc42 Signaling 4.98E-01 5.75E-03 

Germ Cell-Sertoli Cell Junction Signaling 4.95E-01 5.99E-03 

Wnt/β-catenin Signaling 4.69E-01 5.75E-03 

Ephrin Receptor Signaling 4.65E-01 5.03E-03 

IL-8 Signaling 4.63E-01 5.18E-03 

ERK/MAPK Signaling 4.42E-01 4.9E-03 

Integrin Signaling 4.17E-01 4.78E-03 

Actin Cytoskeleton Signaling 3.92E-01 4.2E-03 

Huntington's Disease Signaling 3.84E-01 4.2E-03 

Axonal Guidance Signaling 2.1E-01 2.31E-03 
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Appendix 4-4 

Pathway Analysis of Category IV 

Ingenuity Canonical Pathways  -log(p-value) Ratio 

Melatonin Signaling 3.3E00 2.6E-02 

Leptin Signaling in Obesity 3.25E00 2.44E-02 

Melanocyte Development and Pigmentation Signaling 3.13E00 2.2E-02 

α-Adrenergic Signaling 3.1E00 1.9E-02 

G Beta Gamma Signaling 3.08E00 1.71E-02 

Glioma Signaling 3.03E00 1.79E-02 

Neuropathic Pain Signaling In Dorsal Horn Neurons 2.98E00 1.85E-02 

Renin-Angiotensin Signaling 2.92E00 1.61E-02 

Corticotropin Releasing Hormone Signaling 2.91E00 1.49E-02 

P2Y Purigenic Receptor Signaling Pathway 2.85E00 1.48E-02 

Cellular Effects of Sildenafil (Viagra) 2.75E00 1.32E-02 

Ovarian Cancer Signaling 2.74E00 1.41E-02 

 

  



 

  265 

Appendix 4-5 

Pathway Analysis of Category V 

Ingenuity Canonical Pathways  -log(p-value) Ratio 

Glycerophospholipid Metabolism 2.78E00 1.12E-02 

MIF-mediated Glucocorticoid Regulation 1.82E00 2.38E-02 

MIF Regulation of Innate Immunity 1.7E00 2E-02 

Linoleic Acid Metabolism 1.68E00 9.43E-03 

Eicosanoid Signaling 1.62E00 1.32E-02 

Role of MAPK Signaling in the Pathogenesis of Influenza 1.49E00 1.54E-02 

Atherosclerosis Signaling 1.46E00 9.35E-03 

Arachidonic Acid Metabolism 1.45E00 4.93E-03 

Phospholipid Degradation 1.41E00 1.08E-02 

p38 MAPK Signaling 1.27E00 9.43E-03 

Fc Epsilon RI Signaling 1.25E00 9.01E-03 
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Appendix 4-6 

Pathway Analysis of Category VI 

Ingenuity Canonical Pathways  -log(p-value) Ratio 

Purine Metabolism 2.76E00 7.67E-03 

Assembly of RNA Polymerase I Complex 2.08E00 7.69E-02 

Role of JAK1, JAK2 and TYK2 in Interferon Signaling 1.65E00 3.7E-02 

Interferon Signaling 1.51E00 2.78E-02 

TNFR1 Signaling 1.36E00 1.89E-02 

Chondroitin Sulfate Biosynthesis 1.35E00 1.56E-02 

Phototransduction Pathway 1.32E00 1.54E-02 
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Appendix 4-7 

Pathway Analysis of Biolayout Filtered genes 

Ingenuity Canonical Pathways  -log(p-value) Ratio 

Granzyme B Signaling 3.68E00 3.12E-01 

Tumoricidal Function of Hepatic Natural Killer Cells 2.95E00 2.08E-01 

Toll-like Receptor Signaling 2.65E00 1.27E-01 

Type I Diabetes Mellitus Signaling 2.35E00 8.26E-02 

Cytotoxic T Lymphocyte-mediated Apoptosis of Target 
Cells 2.34E00 5.81E-02 

Neurotrophin/TRK Signaling 2.21E00 1.04E-01 

Parkinson's Signaling 2.17E00 2.22E-01 

Regulation of eIF4 and p70S6K Signaling 2.17E00 7.26E-02 

Apoptosis Signaling 2.13E00 9.38E-02 

Role of MAPK Signaling in the Pathogenesis of Influenza 2.04E00 1.06E-01 

PI3K/AKT Signaling 1.88E00 7.14E-02 

Retinoic acid Mediated Apoptosis Signaling 1.84E00 7.35E-02 

Role of PKR in Interferon Induction and Antiviral 
Response 1.77E00 1.09E-01 

Lymphotoxin β Receptor Signaling 1.76E00 9.84E-02 

IL-2 Signaling 1.76E00 1.03E-01 

Erythropoietin Signaling 1.73E00 8.97E-02 

Non-Small Cell Lung Cancer Signaling 1.73E00 8.86E-02 

AMPK Signaling 1.65E00 6.55E-02 

Inhibition of Angiogenesis by TSP1 1.64E00 1.28E-01 

Regulation of IL-2 Expression in Activated and Anergic T 
Lymphocytes 1.6E00 7.87E-02 

PI3K Signaling in B Lymphocytes 1.58E00 6.99E-02 

Allograft Rejection Signaling 1.55E00 3.12E-02 

Endometrial Cancer Signaling 1.55E00 1.05E-01 

IL-1 Signaling 1.54E00 7.48E-02 

Insulin Receptor Signaling 1.46E00 7.14E-02 

PTEN Signaling 1.44E00 7.26E-02 

CD27 Signaling in Lymphocytes 1.42E00 8.77E-02 

Wnt/β-catenin Signaling 1.38E00 6.9E-02 
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Myc Mediated Apoptosis Signaling 1.38E00 9.84E-02 

PKCθ Signaling in T Lymphocytes 1.34E00 5.63E-02 

ERK5 Signaling 1.34E00 9.38E-02 

Nur77 Signaling in T Lymphocytes 1.29E00 6.35E-02 
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Appendix 4-8 

Selected Network from category I cluster analysis 

ID Genes in Network Score Focus 
Genes 

Top 
Functions 

1 14-3-3, ABLIM2, AKAP13, Arp2/3, 
ARPC4, ARPC1A, ARPC1B, BAK1, 
BARX2, Calcineurin protein(s), 
CALD1, CAMK4, CaMKII, Caspase, 
CHRNG, CIB1, Cytochrome c, DMD, 
F Actin, LONP2, LSP1, LTBP1, 
MEF2, MYOG, NCAM1, Nfat 
(family), NFkB (complex), PDCD6IP, 
PLEKHO1, SCLY, SH3GL1, 
SH3KBP1, SRP72, ST8SIA4, TNNI1

42 25 Genetic 
Disorder, 
Skeletal and 
Muscular 
Disorders 

4 ACTR3, ADCY, AHR, Akt, AQP1, 
ARL6IP5, Ck2, E2f, FKBP3, FSH, 
hCG, Histone h3, Histone h4, HSF2, 
Hsp70, Hsp90, HSPG2, IL1, Insulin, 
Lh, NAP1L1, NCL, NUCB2, P38 
MAPK, PHLDA2, PMEPA1, PTMA, 
Rb, RNA polymerase II, SMARCA5, 
SPATS2L, STMN1, Tgf beta, 
THBS2, Vegf 

27 17 Connective 
Tissue 
Disorders, 
Inflammatory 
Disease, 
Skeletal and 
Muscular 
Disorders 

6 AP2M1, APP, ARID1A, AS3MT, 
COL12A1, CTNNA2, CTNNA3, 
CTNNB1, DAB2, DSTN, EGFR, 
FKBP3, GDI2, GNMT, GRB2, Grb2-
Shc1-Sos, GSR, H3F3C, IGF2BP1, 
LDB2, LMO4, Lrrfip1, MYC, NR3C1, 
OAZ1, POLR1B, PXDN, RPL41, 
SARDH, SERPINI1, SIM1, 
SMARCD1, SMARCD2, SNIP1, 
TRIM45 

20 14 Hair and Skin 
Development 
and Function, 
Cell Morphology 

 

7 ACTN4, ALDH6A1, C12orf51, 
CCAR1, CDT1, CHAF1B, CLIC4, 
Cofilin, CXCR1, EGFL6, EPHA3, 
GLIPR1, Grb2-Shc1-Sos, Histone 
H1,IL-2R, KPNA1, KRT10, LRWD1, 
NEU2, PDCD6IP, PDLIM4, 
PHACTR1, PP1 protein complex 

19 13 Cell Death, Cell 
Cycle 



 

  270 

group, PPP1R14C, PTBP1, PTEN, 
SEL1L, SHC1, SPTAN1, SRC, 
SURF4, TP53, TUBB4, YWHAZ, 
ZFP36L1 

9 ADRB, AKR1D1, ARCN1, ARRDC1, 
ARRDC2, ARRDC3, ASB2, ATG7, 
AVPR2, FLCN, FNIP1, GMPPA, 
GNB2L1, IPO5, MAP1LC3A, MPP6, 
PDCD6IP, PLEC, RORA, SEC61A1, 
SERPINH1, SLC25A24, SLC41A2, 
SLC9A6, TCEB1, TGFB1, TLR5, 
TOM1, TSC22D1, UBB, Ubb, 
Ubiquitin, WDFY3, ZC3H12A, 
ZNF768 

18 12 Cell 
Morphology, 
Infection 
Mechanism, 
Neurological 
Disease 

 

Bold  Overlapping genes from submitted list. 
Bold Red Genes, from submitted list, common in two or more networks 
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Appendix 4-9 

Selected Network from the analysis of category II genes 

ID Genes in Network Score Focus 
Genes 

Top 
Functions 

 
1 

 
AKT1, Akt, AQP3, CDK6, COPS2, 
CUL2, CUL3,  DBT, DHX15, 
ERK1/2, FSH, G protein alphai, 
GNAI1, GPS1, HBP1, Hsp90, IKK 
(complex), Jnk, KIF5B, Lh, 
MAP2K1, Mapk, MFN2, MTF1, 
NFkB (complex), P38 MAPK, 
Pdgf(complex), PGAM5, PTP4A1, 
Ras, S1PR1, TAB2, TRIP11, Vegf, 
ZFAND5 

 
45 

 
21 

 
Cell Cycle,  
Cardiovascular 
System 
Development 
and Function 

 
3 

 
AGL, CXCR4, DNTT, EIF2C3, 
EIF2C4, EPDR1, GOLGA2, GRB2, 
HEATR3, IRF8, MAX, MYC, 
NCOR1, NHLRC1, NR0B1, 
NR1D2, NR2F1, PSD, PTPN4, 
RNF10, RNF114, SCT, SENP6, 
SP1, SRY, TNRC6B, UBC, 
UBQLN4, UIMC1, USP16, USP9X, 
WDR44, XPO7, ZDHHC3, ZFR 
 

 
28 

 
14 

 
Gene 
Expression, 
Cellular 
Development 

4 AFG3L2, ALPP/ALPPL2, Ampa 
Receptor, ATG16L1, ATM, 
CCDC6, CNOT1, DAPK1, DAXX, 
ERBB2, H19, IKBKG, JUN, 
KIAA0368, MAPK6, MTHFR, 
MUC4, NPTN, NR2C2, NUAK1, 
NUP210, PAK3, PPP2R2A, 
PSME4, RAD23B, RNF7, SHMT1, 
TGFB1, TNFRSF10A, 
TNFRSF10B, TNFRSF1A, TOP1, 
TRPC1, USP34, USP9X 
 

23 12 Cell Death, 
Inflammatory 
Response, 
Cancer 

5 AXL, BIRC5, BRPF1, CCNE1, 
CFLAR, DYRK1A, ERK,GTP, 
Histoneh3, HSPD1, ING5, ITGAL, 
KDM3A, LRP, MAP3K10, MAPK6, 
MUC4, MYST3, NCOA2, NF1, 

10 6 Skeletal and 
Muscular 
System 
Development 
and Function, 
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NF2, NFE2L2, PI3K (complex), 
PIGK, PTPRF, RAB21, RAB1A, 
RABGEF1, Raf, RANBP9, 
S100A7, S1PR1, Sos, TNFSF10, 
ULBP2 
 

Cancer 

Bold  Overlapping genes from submitted list. 
Bold Red Genes, from submitted list, common in two or more networks 
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Appendix 4-10 

Selected Network from the analysis of category III genes 

Bold  Overlapping genes from submitted list 
Bold Red Genes, from submitted list, common in two or more networks 
 
 
 

 

 

  

ID Genes in Network Score Focus 
Genes 

Top Functions 
and Diseases 

 
1 

 
ASB15, ASB3/GPR75-ASB3, 
BCCIP, BRIP1, CNKSR2, EXO1, 
FAM82A2, HNF4A, IPO8, 
KIAA0415, MOV10, NDUFS1, 
PAK1, PAK3, PCBD1, PGM1, 
PMS1, POLR1C, POLRMT, 
PRPF31, RBM15, RNF40, 
RPRD1B, SLC25A32, SNX27, 
SRP19, TFB2M, TUT1, UBA5, 
USP5, USP13, USP15, USP46, 
USP9Y, YWHAB 
 

 
33 

15  
Cell Morphology, 
Genetic Disorder 
 

2 Akt, ATP5A1, ATP5B, ATPAF1, 
BCL2L1, C16orf70, C2orf56, 
Calcineurin protein(s), CMYA5, 
CNKSR2, DIDO1, DLG4, dopamine, 
GFI1B, GRIN2B, GRIN2C, HTT, 
iron, KIF17, MED9, MED31, 
MON1A, NDUFS1, NDUFS3, 
NDUFS4, NDUFS5, NDUFV2, 
PAK1, RG9MTD1, RPA2, SEC24B, 
testosterone, TLN1, TPMT, TTLL11 
 

29 14 Cell Death, 

Energy 

Production 
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Appendix 4-11 

Selected Network from IPA analysis of BioLayout filtered genes 

ID Genes in Network Score Focus 
Genes 

Top 
Functions 

 
4 

 
Akt, ARFGAP1, ATE1, BNIP2, 
CDON, CLK2, CLK3, DAB2IP, Fcer1, 
Gm-csf, GTPASE, GUSB, Ifn, IFN 
alpha/beta, Ikk(family), INPP5E, 
IRAK2, IRAK4, IRAK, IRF5, Lrrfip1, 
MRC1, MYD88, NFkB (family), 
RAB3GAP2, RGS5, RGS14, 
RNF219, RPTOR, SH2B2, SNX13, 
SOCS1, TIRAP, Tlr, TTC4 
 

 
35 

 
25 

 
Inflammatory 
Response,  
Organismal 
Injury and 
 Abnormalities 
 

7 20s proteasome, 26s Proteasome,  
Alpha tubulin, ARRDC1, ASB2, 
CDKL2, Clathrin, Cyclin B, DNM1L, 
Dynamin, EIF3E, EPS15, FOXO3, Gi-
coupled receptor, HIRA, Ikb, ITSN2, 
Mapk, NFKBIA, NFU1, Proteasome 
PA700/20s, PSMA1, PSMB3, 
PSMB7, PSMD1, RAB8B, RAD18, 
REV1, SH3BP4, SMARCE1, 
STAT5a/b, TP53BP1, TXNRD2, 
Ubiquitin, USP8 
 

31 23 Cell Cycle, 
Cellular 
Assembly and 
Organization 

17 60S ribosomal subunit, ADAMTS13, 
Ca2+, CAD, Calcineurin A, CEP57, 
CORO1C, COX6A1, DUSP1, Egln1, 
EIF4A1, F2,FGA, FKBP7, LAMP1, 
LMNB2, Mlc, MYC, MYO1B, Myosin, 
NME2, PHLDA3, POLR2A, PPID, 
PPIF, RPL13, RPL38, RPS12, 
SLC25A19, SRP14, STIM2, TMSB4, 
TRAK1, Tropomyosin, XPO5 

16 16 Skeletal and 
Muscular 
System 
Development 
and Function 

24 AEBP1, COX15, COX6A1, CREBBP, 
CUL5, Cytochrome c oxidase, 
EPHX2, Ferritin, FNBP4, HTT, 
MED31, MT-CO3, MYOD1, NFATC4, 

13 13 Tissue damage, 
Energy 
Production 
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Bold  Overlapping genes from submitted list 
Bold Red Genes, from submitted list, common in two or more networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NFKB1, NfkB1-RelA, ORAI2, PDE8A, 
PIAS4, PKHD1, PLIN4, PNPT1, 
PPARG, PRMT2, PTGR2, SCN4B, 
SRGAP1, TAB1, TMCC2, TMED8, 
TMEM66, TPR, Tsc22d3, UCP1, 
ZFP36 
 

25 AMDHD2, ARAF, BSPRY, CHAF1A, 
EARS2, EIF4G1, ENDOV, EPRS, 
ETS1, FAN1, glutamate-tRNA ligase, 
HDAC9, IARS, LARP1, LCLAT1, 
MET, miR-155 (human,  mouse), 
MITF, NFKB2, NHEJ1, POLR2D,  
POU2F1, QARS, QDPR, RAI14, 
RPS6KA1, SH3BP4, TCF7L2, TFE3, 
TH1L, TSR1, XRCC5, YWHAZ 

13 12 Developmental 
Disorder, 
Genetic 
Disorder 
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