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Abstract 

Hex is one of the earliest markers of anterior-posterior asymmetry in vertebrates. 

It is a homeodomain transcription factor expressed in different endoderm tissues during 

embryogenesis that regulates early lineage specification and may have important 

additional roles in progenitor populations in the blood, skin and liver. The aim of my PhD 

is to understand the significance of Hex expression, sub-cellular localization and 

molecular function during development. 

To this end I have generated an extremely sensitive reporter cell line that unveils a 

new domain of Hex expression in embryonic stem (ES) cells. The introduction of a cDNA 

encoding a tagged version of Hex upstream of an internal ribosomal entry site and a 

variant of the Yellow Fluorescent Protein, Venus, into the first exon of Hex, has revealed 

a heterogeneous expression pattern among ES cell cultures. Manipulation of Fgf 

signalling alters the percentage of venus positive cells and suggests that this subpopulation 

maybe fated to become primitive endoderm, the earliest domain of Hex expression in the 

mouse embryo. Although there is an equivalence of Oct314 in both venus positive and 

negative subpopulations, Nanog and venus appear mutually exclusive. Indeed, forced 

expression of Nanog, which is a negative regulator of primitive endoderm, reduces venus 

positivity. Microarray and quantitative PCR analyses show an enrichment of primitive 

endoderm specific genes in venus positive ES cells while markers of pluripotency are 

comparatively reduced. While clonal density plating of these subpopulations demonstrate 

interconvertability, venus positive ES cells have a reduced ability for clonal growth and 

contribution to the embryo in chimera analyses. 

Based on these experiments in ES cells, I also attempt to overexpress Hex in ES 

cell cultures. Establishment of stable clones overexpressing Hex in ES and other cell 

types is difficult, suggesting intolerance. Construction of an inducible system to 

characterize the phenotype of ectopic Hex expression in ES cells reveals the onset of 

apoptosis upon induction by a mechanism that depends on its ability to bind DNA. These 

observations reflect previous studies which suggest that Hex is a key regulator in 

maintaining a balance between immediate early cell lineage decisions and proliferation. 

These studies suggest that Hex maybe an important marker of early cell fate decisions, but 

is probably not the primary mediator of early blastocyst/ES cell asymmetry. 
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Chapter 1 

General Introduction 



The goal of developmental biology is to gain an understanding of how a group of 

indifferent cells, arising from the first few divisions after fertilisation, can expand 

and organise themselves into the diverse array of tissues and organs that are seen in 

the adult. The dramatic cell movements following these initial cell divisions are 

called gastrulation, giving rise to the three fundamental germ layers, ectoderm, 

mesoderm and endoderm. The inner most layer, the endoderm, gives rise to all gut 

tissue and associated organs. The ectoderm generates the nervous system and the 

epidermis. Between these two, the mesoderm develops into connective tissue, the 

cardiovascular system, the muscles, bones and kidneys. 

Recent advances in embryological and molecular techniques have shed light on how 

cells communicate and influence each other in order to adopt certain fates in a 

spatial-temporal context. Pioneering work by Spemann and Mangold (1924) 

demonstrated how a particular group of cells in the gastrulating amphibian embryo 

can serve as an organising tissue, generating a second axis when grafted into ectopic 

regions of a second embryo. Similar organising tissue has been found in zebrafish, 

chick, rabbit and mouse indicating a basic conserved developmental mechanism 

between vertebrates. 

The mouse is the organism of choice when coming to study development in 

mammals given the wealth of genetic knowledge available and the relatively short 

turnover rate of breeding. 

1.1 Early mouse development 

After entry of the sperm into the egg two polar bodies arising from the first and 

second meiotic divisions are ejected from the cell on the opposite side and remain 

attached following subsequent cell divisions. These divisions, known as cleavage, 

continue to a 16 cell stage where the cells compact together to produce a morula. At 

the 32 cell stage (blastulation) two mutually exclusive populations arise, those 

around the outside comprise the trophoectoderm which give rise to the trophoblast 
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and extraembryonic ectoderm (ExE) and those on the inside, the inner cell mass 

(1CM), form the embryo and extraembryonic endoderm and mesoderm. At day 4.5 

the implanting blastocyst forms a third layer on the underside of the 1CM. This tissue 

is the primitive endoderm (or hypoblast) and gives rise to parietal and visceral 

endoderm (VE) which envelops the remainder of the 1CM is known as the epiblast. 

The epiblast forms the embryo proper as well as extraembryonic mesoderm. 

Following continued growth of the polar frophoectoderm the epiblast and 

surrounding VE are pushed to the distal end of the conceptus (distal VE (DVE)) and 

at the same time a cavity within the epiblast is formed giving rise to a cup shape. To 

this point the conceptus is bilaterally symmetrical but by day 6.5 the first 

morphological sign of asymmetry becomes apparent on the future posterior side with 

the emergence of the primitive streak. This marks the beginning of gastrulation. The 

streak extends towards the distal end of the embryo culminating in an organising 

structure called the node. The node is considered to be the mammalian equivalent to 

the amphibian organiser. Epiblast cells involuting into the streak and emerging 

through the node become the axial mesendoderm comprising the future midline 

mesoderm (prechordal and notochord plates) and the anterior endoderm (foregut 

endoderm). The axial mesendoderm extends anteriorly replacing the yE, on the 

opposite side to the streak, to underlie the anterior ectoderm. Posterior to the node, 

paraxial and lateral plate mesoderm emerge from different levels of the streak 

(Beddington and Robertson, 1999). Figure 1.1 depicts the stages of mouse 

development from conception to the beginning of gastrulation. 

1.2 Organising centres of the mouse embryo 

As in the frog, the mouse node has been shown to induce a second axis following 

heterotopic transplantation experiments. However, unlike grafts with the amphibian 

organiser, the node does not induce as full axis as it lacks forebrain (Beddington, 

1994). Interestingly, as a follow-up to the original amphibian organiser experiments, 
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Fig. 1.1 Early development of mouse. 

a, Schematic diagram depicting the first 7.5 days of munne development. The upper 

box shows the developmental stages prior to uterine implantation. The lower box 

represents those stage after implantation. Taken from Beddington and Robertson, 

1999. b,c & d, Expression domain of Hex in the primitive endoderm at E4.5 (b), the 

distall tip visceral endoderm at E5.5 (C), and the AVE (arrows) and EGO 

(arrowhead) at E70 (d). Taken from Thomas et al. 1998. 
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it was shown that only transplantation of the early and not the late organiser could 

induce the full axis in Xenopus (Spemann 1931). Thus, the organiser appeared to 

contain stage dependent separable head and trunk inducing activities. However, in 

mouse, even the precursor tissue of the node, known as the anterior primitive streak 

or Early Gastrula Organiser (EGO), cannot induce a full axis upon transplantation 

(Tam and Steiner, 1999). As with the original node grafts, the forebrain is missing 

indicating that in mouse, neither the node nor its precursors are sufficient to be head 

organisers (Beddington, 1994). 

The asymmetric expression of a number of mouse homologues of "head organizer," 

genes from other species in the anterior domain of the extra-embryonic visceral 

endoderm point to a requirement of the VE surrounding the epiblast in contributing 

to forebrain development. At day 5.5, a full day before gastrulation begins, gene 

expression analysis has shown the presence of HE-i antigen (Rosenquist and Martin, 

1995), Cerberus related ](Belo et al., 1997), Hex (Thomas et al., 1998), and 01x2 

(Ang et al., 1996) on the anterior side in the yE. This asymmetric expression marks 

the anterior VE (AVE) and analysis of Hex expression has shown that this population 

is derived from the distal tip of the embryo (Thomas et al., 1998). The anterior 

movement of distal tip cells to become the AVE precedes the formation of the 

primitive streak and therefore defines the first signs of anterior-posterior asymmetry 

in mouse (Kimura et al., 2000; Srinivas et al., 2004). Moreover, both embryological 

and genetic ablation experiments suggest that the AVE and DVE, functions as an 

anterior organizing centre. Thus, removal of the tissue results in the loss of forebrain 

tissue as judged by loss of the anterior neural marker, Hesxl (Thomas and 

Beddington, 1996). Genetic ablation of key determinants in chimeric mice has 

confirmed the necessity of the AVE in forebrain development. This technique 

involves production of embryos where the extraembryonic tissues (including the VE) 

are of a particular genotype, different from that of the injected epiblast cells which 

give rise to the definitive germ layers. The transcription factors Otx2 (Rhinn et al., 

1998), FoxA2 (Dufort et al., 1998) and Lim] (Shawlot et al., 1999) have been shown 

to be required in the VE for correct forebrain specification. These results indicate 

that this extraembryonic tissue is required to establish anterior identity in the neural 

5 



plate. However, despite this requirement for the AVE, its inductive activity in 

heterotrophic grafting experiments is not like the original Spemman experiments. 

Thus the AVE has some neural inducing activity but only in combination with the 

EGO and anterior epiblast can it give rise to the expression of anterior neural genes 

in grafting experiments (Tam and Steiner, 1999). Taken together, these results 

suggest that, in mouse, a single separate head organiser does not exist. Rather, 

synergistic activities between the AVE and EGO are necessary for initiation of 

anterior neural induction. These results are also consistent with data from further 

chimera studies that suggest that the activity of key early transcription factors such as 

Otx2, are required for the initiation of forebrain identity in the AVE, but are also 

required for the maintenance and further development of this region, in a second 

anterior signalling centre derived from the node, the anterior definitive endoderm 

(ADE). Interestingly, during gastrulation the ADE migrates anteriorly pushing the 

VE away from the embryo, but maintaining a similar signalling centre for the 

establishment of the anterior neural plate (Martinez-Barbera and Beddington, 2001). 

Genetic evidence supporting the dual role for two anterior signalling centres in the 

production of the anterior neural plate has been demonstrated by the analysis of 

mutant mice. In fi-catenin and Wnt3 deficient embryos the EGO is not formed as 

seen by the lack of mesoderm and the posterior markers Goosecoid and Brachyuty. 

Despite correct patterning of the AVE, which remains distal in the case of the 8- 

catenin mutant, the anterior side of the epiblast fails to form head structures 

(Huelsken et al., 2000; Liu et al., 1999). Embryos lacking FgJ8 or cripto have a 

properly formed EGO and AVE. However, the AVE in both cases also fails to rotate 

and this results in the expansion of forebrain markers at the distal tip, indicating that 

the AVE has an essential role in initial anterior specification (Ding et al., 1998; Sun 

et al., 1999). Taken together, these results show that in mammals head organizing 

activity has multiple components separated in space and time, the AVE induced prior 

to gastrulation and never contributing to the embryo proper, the EGO, situated on the 

posterior side of the embryo, then gives rise to a second signalling centre, the ADE, 

that will migrate anteriorly and replace the AVE. 



The role of the AVE in establishing the anterior character was demonstrated by 

chimeric and tissue explant analysis of 01x2 which indicated that this gene is 

required in the VE for AVE movement and for the suppression of posterior markers 

(Kimura et al., 2000; Perea-Gomez et al., 2001a). Likewise, Liml:FoxA2 double 

mutant mice show ectopic expression of posterior epiblast markers (Perea-Gomez et 

al., 1999). These genes are also required in the VE and it is proposed that they 

control the expression of inhibitors that restrict activity of posterior signals in order 

to impart anterior identity onto the overlying anterior ectoderm (Perea-Gomez et al., 

2001b). 

Many of the same genes that are expressed in the AVE are also expressed later in the 

ADE including, Hex, Lim], FoxA2, Otx2, Cerl and Lefty] (Perea-Gomez et al., 

2002; Rodriguez et al., 2001). 

1.3 Anterior-posterior axis formation in mouse 

Anterior-posterior axis formation occurs before and during gastrulation. It involves 

the interaction of various signalling pathways and the establishment of different 

localised gene expression areas in the mouse embryo. Generally, anterior cues are 

established at one end of the embryo which suppresses the extension of posterior 

signals from the opposite end. These effects occur simultaneously, where each end of 

the axis reinforces its own status while limiting that of the other. As discussed in the 

previous section, the patterning of the neural axis in mouse requires multiple 

signalling centres including the AVE, posterior epiblast, and ADE. Here we discuss 

the molecular basis for axis induction. 

1.4 TGF-P signalling 

1.4.1 Role in Mesoderm Induction 
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The induction of the early axes' is difficult to separate from embryonic induction, the 

process by which key signalling pathways induce the formation of mesoderm and 

definitive endoderm. One of the key signalling molecules governing the 

establishment and action of the AVE and ADE in anterior-posterior patterning is 

Nodal, which as the name implies, was identified based on an insertional mutation 

that exhibited a failure in node formation and problems in mesoderm induction 

(Conlon et al., 1994). This member of the transforming growth factor-beta (TGF-f) 

family of ligands has a highly dynamic pattern of expression in the developing 

embryo. Expression is found prior to gastrulation in the proximal epiblast that then 

becomes progressively restricted towards the posterior side of the embryo. It is also 

expressed at low levels through out the visceral endoderm. By late gastrulation 

expression is confined to the node (Conlon et al., 1994). Nodal related homologues 

have been found in Xenopus, zebrafish and chick (Feldman et al., 1998; Levin et al., 

1995; Smith et al., 1995). Mice homozygous for a mutation in mouse Nodal gene fail 

to form a primitive streak and lack evidence of mesoderm (Conlon et al., 1994). 

Likewise,- combined mutation of two Nodal related genes in zebrafish Cyclops and 

Squint, fail to form mesoderm (Feldman et al., 1998). A similar phenotype is seen in 

Xenopus when approaches are employed to specifically inhibit Nodal signalling 

(Agius et al., 2000). Additionally ectopic expression studies in zebrafish and 

Xenopus have shown that Nodal related factors can induce the formation of 

mesoderm (Jones et al., 1995; Toyama et al., 1995). Together these results show that 

among vertebrates Nodal signalling is required for mesoderm induction at the start of 

gastrulation. 

Interestingly, while Nodal was initially identified by genetics in mouse, functional 

studies examining the role of TGF-P signalling in embryonic induction had focused 

on activin, the first molecule with mesoderm inducing activities to be identified 

(Smith et al., 1990). Activin signalling occurs by the binding to type II 

serine/threonine kinase receptors ActR1IA and ActRIIB which phosphorylate the 

type I receptor, ActRIB. This in turn phosphorylates the receptor mediated Smad 

molecules, Smad2 and Smad3. Upon phosphorylation, these R-Smad molecules 

combine with the co-Smad, Smad4 and the FAST family of forkhead transcription 



factors to mediate expression of downstream genes (Schier and Shen, 2000). Genetic 

evidence has shown that Nodal is thought to act through the same signalling pathway 

as Activin. Smad2 and ActRIB deficient mice show similar gastrulation defects to 

those which occur in Nodal mutants (Gu et al., 1998; Heyer et al., 1999; Waldrip et 

al., 1998). In Xenopus and zebrafish, overexpression of Nodal and Activin have 

similar effects in the production of mesoderm (Jones et al., 1995; Rebagliati et al., 

1998). Furthermore, more recent biochemical analysis has shown that Nodal 

signalling is mediated by both Smad2 and Smad3 (Kumar et al., 2001). Unlike other 

TGF-f signalling, Nodal signalling has been shown to require the presence of 

additional cofactors (Kumar et al., 2001). Cripto deficient mice phenocopy aspects of 

the Nodal mutant in the failure to produce a primitive streak and embryonic 

mesoderm (Ding et al., 1998). Figure 1.2 summarizes the main components of the 

TGF-13/Nodal pathway as well as those for the Wnt and FGF pathways discussed 

later. 

1.4.2 Role in Anterior Induction 

Further mutational analysis in mouse of Nodal and downstream signalling factors has 

also begun to tease out the means by which Nodal specifically regulates axis 

formation independently from its role in mesoderm induction. The anterior 

movement of distal tip cells to become the AVE immediately precedes a shift in 

expression of Brachyury from the proximal epiblast to the posterior side. Therefore a 

pre-existing proximal-distal (P-D) axis is converted into an anterior-posterior one 

(Beddington and Robertson, 1999). Interestingly, embryos mutant for components in 

the Nodal pathway display P-D defects including the absence proximal marker 

expression in the extra-embryonic ectoderm (ExE) and proximal VE such as Bmp4 

and Eomes (Arnold et al., 2008; Ben-Haim et al., 2006; Brennan et al., 2001). 

Moreover, embryos lacking Smad2 phenocopy the VE defects in Nodal mutants such 

that the AVE is not specified and there is an expansion of proximal-posterior genes 

(Brennan et al., 2001; Waidrip et al., 1998). Therefore Nodal and its downstream 
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Fig. 1.2 Major Signalling Pathways during Embryonic Development. 

Schematic diagram summarizing TGF 0 (Nodal/Activin and BMP), canonical Wnt and 

Fgf pathways. Binding of Nodal or Activin to type I and type II receptors leads to the 

phosphorylation of the R-Smads, Smad2 and Smad3 which can then associate with 

the co-Smad, Smad4. This complex can then translocate to the nucleus to affect 

transcription of downstream targets. BMP signalling occurs similarly but uses the R-

Smads, Smadi, Smad5 and Smad8. Binding of Wnts to the Frizzled/LRP receptors 

activated the Dishevelled protein which leads to the ubiquitination and degredation of 

the f3 -Catenin disruption complex. Genetic ablation of any members of this 

disruption complex leads to free /3-Catenin which can translocate to the nucleus 

where it can bind to members of the Tcf/LEF family of transcription factors and lead 

to activation of downstream targets. One of the effects of Fgf binding to its receptors 

is the activation of the Raf/Ras/MekIErk pathway. Upon ligand binding, receptors are 

dimerized, leading to a series of sequential phosphorylation events by a cascade of 

kinases. Phosphorylation of Raf at the cytolpiasmic side of the membrane is 

mediated by the Grb2 protein (not shown). The result is the translocation of phospho-

Erk (shown as Mapk-P) to the nucleus which can then affect transcription of 

downstream targets. Taken from the review by David Kimelman. Nature Reviews 

Genetics 7, 360-372 (May 2006) 
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effecter, Smad2, are responsible for maintaining a P-D polarity that is essential to the 

establishment of the subsequent A-P polarity. 

Interestingly, not only is Nodal required for the induction of these anterior signalling 

centres, it also behaves in a dose dependent morphogen, with the highest level of 

signalling inducing anterior identity (Lewis and Tam, 2006). The study of 

mechanisms in which these levels can be achieved has shown that Nodal has a 

positive autoregulatory loop. Analysis of the ASE enhancer element in the Nodal 

gene has shown that the downstream mediator Smad2, in conjunction with the 

forkhead protein FoxHi (FAST I), bind to this site and promote production of Nodal 

in the AVE (Norris et al., 2002). Additionally, various studies into the reduction of 

Nodal and its downstream effectors Smad2 and Smad3 through this autoregulatory 

loop have demonstrated a second requirement for high activity of this signalling 

pathway in the specification of the ADE during gastrulation (Dunn et al., 2005; Dunn 

et al., 2004; Lowe et al., 2001; Lu and Robertson, 2004; Norris et al., 2002; 

Tremblay et al., 2000; Vincent et al., 2003). Reduced signalling in these mutants lead 

to incorrect specification of the ADE and resulted in forebrain truncations despite 

normal AVE activity. Thus, the highest levels of Nodal signalling are required for the 

induction of definitive endoderm and, in particular, the most anterior definitive 

endoderm, the ADE. 

While Nodal signalling is important for the establishment of AVE patterning and the 

highest levels of Nodal signalling for the establishment of ADE, these centres also 

express Nodal antagonists Cerberus related] (Cerl) and Lefty] (Yamamoto et al., 

2004). Indeed compound mutants of these two antagonists lead to the development of 

an ectopic primitive streak (Perea-Gomez et al., 2002). Thus these signalling centres 

may promote anterior identity by antagonizing the signals that continue to mediate 

poster mesoderm induction throughout gastrulation. Evidence Nodal antagonists 

promote anterior identity is demonstrated by ectopic head induction following 

injection of Cerberus into Xenopus (Bouwmeester et al., 1996). Given that both 

Cerl and Lefty] expression are lost in either Nodal or Smad2 mutant mice, they 

appear to be downstream targets of this pathway (Brennan et al., 2001). So why does 

11 



this highly Nodal responsive tissue express these secreted antagonists? Perhaps these 

secreted antagonists are required to insulate the anterior epiblast from the mesoderm 

inducing properties of Nodal produced in the primitive streak region, thus allowing 

to undergo the early stages of neural differentiation. 

Thus, evidence from this important signalling pathway demonstrates that the 

establishment of anterior-posterior axis in mouse embryos is a complicated process 

in which different levels of Nodal and its downstream effectors perform different 

roles which culminate in donating both posterior identity (formation of mesoderm 

and primitive streak at the posterior end) and anterior identity (formation of the 

AVE to initiate anterior character by suppressing mesoderm and subsequent 

specification of the ADE to reinforce these initial cues). Interestingly, the Hex null 

mouse shares many similar defects to those seen with the reduced Nodal signalling 

mutants and both genes thought to regulate each others expression (see later). 

1.5 Wnt Signalling 

A second important pathway involved in the establishment of anterior-posterior 

identity in different vertebrates during gastrulation is the canonical Writ pathway. 

There are around fifteen different Writ genes expressed in various embryonic and 

adult tissues (Cadigan and Nusse, 1997). The first of which to be characterised, 

Wntl, was identified as a proto-oncogene activated by integration of the mouse 

mammary tumour virus and was identified as the orthologue to the drosophila gene 

wingless (Nusse and Varmus, 1992). The are a number of pathways downstream of 

Writ ligands, however, the predominant pathway regulating axis formation is know 

as canonical. 

In the canonical Writ pathway, the absence of a Wnt signal leads to the formation of 

a complex between the downstream mediator, 13-catenin together with Axin and the 

tumour suppressor gene product adenomatous polyposis coli (APC). These proteins 

act as scaffolds for 13-catenin which allows its phosphorylation by Gsk313 resulting in 

12 



ubiquitination and degradation. Upon binding of a Wnt ligand to Frizzled receptors 

and the low density lipoprotein receptor-related protein coreceptors LRP5 and LRP6, 

Dishevelled becomes activated which leads to the destruction of the APC/axinlGskB 

complex resulting in free hypophosphorylated 0-catenin which can freely translocate 

into the nucleus. -catenin in the nucleus can then act with members of the Lef/Tcf 

transcription factors to activate gene transcription (Hue!sken and Behrens, 2002). In 

the absence of 3-catenin, of the Lef/Tcf proteins are able to bind to Groucho-related 

co-repressors and therefore exhibit an inhibitory affect on target genes (Brantjes et 

al., 2001). Thus, with the complexity of this pathway, mutations in any of the 

components can lead to gain or loss of Wnt activity. Loss of function mutants in any 

Wnt ligand, frizzledlLRP receptors, Ji-catenin or Left Tcf genes would lead to a 

reduction in signal, whereas mutations in the APC, Axin or Gsk3/3 would lead to 

constitutive activation. 

As with Nodal signalling, the Wnt pathway is crucial for the induction of mesoderm. 

Mutation of the mouse Wnt3 gene results in embryos completely lacking the 

primitive streak (Liu et al., 1999). Conversely, overexpression of chick Wnt8C in 

mouse leads to an ectopic primitive streak but fails to induce a complete a full second 

axis containing anterior structures (Popperl et al., 1997). While genes of the AVE are 

normally expressed in Wnt3-1- mice, mutation of the downstream effecter 13-catenin 

results in the inability of the AVE to rotate correctly concomitant with the absence of 

some markers normally expressed there such as Hex (Hue!sken et al., 2000). These 

data suggest that while Wnt3 affects axis formation by influencing the formation of 

the primitive streak, the downstream effecter 13-catenin may have an additional 

earlier effect on induction and migration of the early AVE (Kimura-Yoshida et al., 

2005). 

Interestingly, when 3-catenin is constitutively activated throughout the embryo (as 

opposed to only in the visceral endoderm) in the APCmin mice, ectopic primitive 

streak is formed and AVE lost. Thus, APC-/- mutant embryos ectopically express 

markers of the primitive streak and epithelial-mesenchyme transition such as T, 

Eomes and S nail while expression of the distal VE such as Hex and Cerl are absent 
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(Chazaud and Rossant, 2006). Together these reports show that Writ signalling is 

important in axis specification and can act in a context dependent fashion to specify 

both anterior and posterior fates. 

Interestingly, as with Nodal signalling, inhibitors of Writ signalling such as Dickkopf 

(Dkkl) and the secreted frizzled related proteins 5 and 8 (Sfrp5 and Sfrp8) are found 

to be expressed in both the AVE and ADE tissues (Finley et al., 2003; Glinka et al., 

1998; Lu et al., 2004). Indeed, mutation of Dkkl shows severe anterior truncations in 

mutant mice suggesting that inhibition of Wnt signalling plays a role in anterior 

specification during development (Mukhopadhyay et al., 2001). This supports the 

general notion that the function of the AVE/ADE is to produce secreted antagonists 

that can insulate the anterior neural plate from the mesoderm inducing signals found 

at the posterior side of the embryo. 

Together these data show that TGF-13 and Wnt signalling are important for 

establishing anterior-posterior asymmetry and that both the AVE and ADE are 

important tissues for ensuring anterior character. The homeobox transcription factor 

Hex is also expressed in both of these organising centres and has recently been 

shown to be both induced by and modulate the TGF-3 and Wnt pathways (Zamparini 

et al., 2006). 

1.6 The Homeobox gene Hex 

Hex (haematopoietically gxpressed homeobo), also known as Prh (proline rich 

homeodomain), was first identified in screens to isolate novel homeobox genes in 

haematopoietic and primary transformed cell lines in chicken, mouse and human 

(Bedford et al., 1993; Crompton et al., 1992; Hromas et al., 1993). Homologues have 

also been found in rat, zebrafish and Xenopus (Newman et al., 1997; Tanaka et al., 

1999; Yatskievych et al., 1999). The mouse and human genes have been mapped to 

chromosomes 10 and 19, respectively (Ghosh et al., 1999; Hromas et al., 1993). Its 

location in the genomes of both mouse and human lies outside regions occupied by 

clustered homeobox (HOX) genes, therefore making it a divergent or orphan 
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homeobox gene. The mouse Hex gene spans 5.75 kb and consisting of four exons, 

the central two of which encode the homeodomain (Ghosh et al., 1999). The protein 

contains an N-terminal proline rich region and a C-terminal acidic region which 

flank the homeodomain region (Crompton et al., 1992). The homeodomain shares 

46% identity with that of the Drosophila Antennapedia gene (Bedford et al., 1993). 

1.6.1 Expression of Hex during Early Development 

During development, Hex is initially expressed in the primitive endoderm underlying 

the 1CM at day 4.5dpc. By day 5.5 it becomes restricted to a small population of cells 

at the very distal tip of the VE and these cells begin to move towards the future 

anterior side to become the AVE a full day prior to emergence of the primitive 

streak. A second site of Hex expression is detected in the anterior most part of the 

axial mesendoderm (ADE) emerging from the distal end of the primitive streak. This 

site of expression moves in an anterior direction as the axial mesendoderm extends to 

merge with and replace the AVE (Thomas et al., 1998). In other vertebrates, 

Xenopus, chick and zebrafish, Hex is also expressed in analogous anterior 

endodermal tissues in (Ho et al., 1999; Jones et al., 1999; Yatskievych et al., 1999). 

By headfold and early somite stages, Hex expression has expanded within the 

endoderm to encompass the descendents of the ADE, the ventral foregut endoderm 

(Thomas et al., 1998). By day 10, Hex is found in the P pharyngeal pouch from 

which the thymus originates, the endodermal cells of the liver that are invading the 

septum transversum, the pancreatic bud, the thyroid and gall-bladder primordium 

(Bogue et al., 2000). In addition to Hex's expression in the endoderm, it is also 

expressed in the nascent blood islands and transiently in endothelial precursors. This 

endothelial precursor expression is also conserved in other vertebrate models (Ho et 

al., 1999; Thomas et al., 1998; Yatskievych et al., 1999). 

In the adult mouse, Hex is expressed in lung, liver, thyroid and the myelomonocytic 

and B cell lineages of the haematopoietic system (Bogue et al., 2000; Crompton et 

al., 1992; Keng et al., 1998; Keng et al., 2000; Manfioletti et al., 1995). It is not 
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expressed in T-lymphocytes and downregulation of Hex is essential for normal 

development of this lineage (Mack et al., 2002). 

Given the expression of Hex in several progenitor populations in blood, a number of 

studies have looked at the role of Hex in proliferation and/or differentiation. 

Overexpression of Hex in Xenopus and zebrafish leads to an increase in vascular 

endothelial cells (Liao et al., 2000; Newman et al., 1997) and misexpression in 

mouse haematopoietic precursors lead to neoplastic transformation (Mack et al., 

2002). In mouse Hex is downregulated in terminally differentiated B cells suggesting 

a role in their development (Manfioletti et al., 1995). Other overexpression studies in 

various endothelial and haematopoeitic cell lines were indicative of a negative effect 

of Hex on the proliferation or maturation of these lineages (George et al., 2003; 

Jayaraman et al., 2000; Mack et al., 2002; Nakagawa et al., 2003; Ying et al., 2002). 

This inhibitory effect on proliferation was also observed in cell types representative 

of vascular-endothelium and early haematopoeitic progenitors in embryoid body 

differentiation from muriné ES cells, while neuronal fate was unaffected (Kubo et al., 

2005). 

1.6.2 Loss of function Hex phenotypes in mouse 

Models for the means by which Hex acts on lineage specification in embryonic 

progenitor populations need to be assessed alongside the Hex mutant phenotypes. 

The Hex knockout mouse is devoid of liver, thyroid and the majority of mutants also 

display varying degrees of forebrain truncations (Martinez Barbera et al., 2000). 

With result, no embryos survive to birth. In Hex' mice the AVE is patterned 

normally as seen by Cerl, Lim] and FoxA2 expression. Examination of these same 

genes at late streak stages shows a loss of Cerl in the ADE and prechordal plate 

while Lim] and FoxA2 are increased in the node. These results indicate that the AVE 

functions normally in these mutants but there is a defect in the anterior axial 

mesendoderm tissues (the ADE and prechordal plate but not notochord). Forebrain 

defects arise after day 7.5 and range from none to severe truncations rostral to the 
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zona limitans intrathalamica (ZLI). The restriction of these truncations are proposed 

to be reflective of the restriction of the phenotype observed in the axial mesendoderm 

(Martinez-Barbera and Beddington, 2001). Chimeric experiments using Hex ES 

cells with a wild type blastocysts showed similar forebrain defects indicating a 

requirement for Hex in the definitive endoderm (Martinez Barbera et al., 2000) and 

supporting the notion that Hex is not required in the AVE. This was the first concrete 

evidence that a signal from the ADE is required for correct forebrain patterning. The 

mouse Hex gene has been knocked out by another group (Keng et al., 2000). Their 

mice also display liver defects but interestingly none show any forebrain defects. 

Analysis of the liver defect shows initial hepatic gene expression but a failure in 

localised endoderm proliferation leads to poor liver bud formation (Bort et al., 2004). 

In the same study Hex is shown to control the specification of ventral pancreas 

formation by an indirect mechanism; by allowing a subset of endoderm cells to grow 

past the inhibitory effects of the cardiac mesoderm. The role of Hex during anterior 

endoderm development may be at the morphogenetic level rather than directly 

specifying tissue-specific genes. 

1.6.3 Control of Hex Expression 

While Hex may not be required during the earliest events in lineage specification, it 

is clearly expressed there. Different enhancer elements that govern Hex expression 

have been identified upstream of the first exon and within the first and third introns. 

That present in the third intron controls the expression of Hex in the AVE and ADE 

(Rodriguez et al., 2001). In Xenopus and zebrafish, Nodal related signals (Osada and 

Wright, 1999; Zorn et al., 1999) and WntII3-catenin (Ho et al., 1999; Zorn et al., 

1999) signals have been implicated in Hex regulation. Ji-catenin mutants in mouse 

result in a loss of Hex expression (Huelsken et al., 2000). Similarly in Smad2 mutant 

mouse embryos, Hex is lost in both the AVE and ADE (Heyer et al., 1999; Vincent et 

al., 2003). Sequence analysis of the AVE/ADE enhancer reveals the presence of a 

LEF/Tcf binding site. This is the DNA binding element of the Wnt/13-catenin 
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pathway. Also present in this enhancer are 6 SIP  binding sites. SIP  is shown to be 

a partner for Smad2 (Rodriguez et al., 2001; Verschueren et al., 1999). Taken 

together, these results would imply that Hex is downstream of the Wnt and Nodal 

signalling pathways. Indeed, the forebrain defects as a result of unspecified ADE 

seen in Hex mutants are reminiscent of those seen with reduced Nodal levels in the 

epiblast (as discussed above). During late gastrulation BMP signalling in chick and 

mouse overlap with Hex expression in the ventral foregut and it has been shown in 

chick that BMP signalling regulates Hex (Zhang et al., 2002). 

Studies in vitro also indicate the influence of endoderm specific transcription factors 

in the regulation of Hex. Both Gata4 and FoxA2 have been shown to upregulate Hex 

expression (Denson et al., 2000b). It is thought that these factors act to permit 

chromatin accessibility to other transcription factors such as Bmp2 that is necessary 

for Hex expression during later development in chick (Zhang et al., 2004). 

Such an observation of control by the primitive endoderm marker, Gata4, may also 

have implications for the expression of Hex in this tissue (see later). 

1.6.4 Targets of Hex 

To understand the means by which Hex regulates early cell fate decisions it is 

essential to understand the network downstream of Hex. Generally, homeodomain 

proteins recognise DNA sequences containing the core tetranucleotide ATTA 

(TAAT on the complementary strand) (Gehring, 1996). A Hex target sequence was 

defined by binding site selection as 5' -ATTAA-3' and this interaction are dependent 

on the homeodomain (Brickman et al., 2000; Crompton et al., 1992; Guiral et al., 

2001; Pellizzari et al., 2000; Tanaka et al., 1999) 

Several studies have examined modulation of expression by Hex. Hex represses the 

activity of the mouse thyroglobulin promoter in transient transfection assays 

(Pellizzari et al., 2000). Using similar methods, Hex represses luciferase production 
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from the Xenopus Goosecoid promoter, one of the first genes to be expressed in the 

organiser. An Antimorphic Hex protein (Hex-XVP2), consisting of Hex tethered to 

two domains of the potent minimum VP 16 activation domain module interspaced 

with the flexible hinge sequence from bacteriaphage lambda repressor (Brickman et 

al., 2000). This and work by others has shown that the proline rich domain plays a 

role in the repressive activities of Hex (Brickman et al., 2000; Guiral et al., 2001; 

Tanaka et al., 1999). Indeed, this domain has been shown to bind to a co-repressive 

protein, Tlel, hence providing a mechanism by which Hex represses transcription 

(Swingler et al., 2004). In mouse and rat, it has been argued that Hex can activate the 

sodium-dependent bile acid cotransporter gene promoter in hepatocytes and that this 

activity is conferred by the C-terminal acidic region (Denson et al., 2000a; 

Kasamatsu et al., 2004). However, these data is solely based on low level luciferase 

assays and to date there is no clear evidence that Hex can activate transcription. 

Xenopus Hex has been shown to be expressed in two centres equivalent to the AVE 

and ADE in mouse, and knock down of Hex in these centres points to a conserved 

role for these centres in anterior development (Smithers and Jones, 2002). The use of 

the Hex-?.VP2 molecule has shown that Cerberus is indirectly upregulated by Hex 

while markers of the organiser, Goosecoid and Chordin are downregulated 

(Brickman et al., 2000). These results show that Hex promotes anterior identity by 

suppressing the posteriorising effects of the organiser. This is consistent with the 

findings in the Hex mutants that Cerl is lost, while axial mesendoderm (pan 

organizer markers, FoxA2 and Shh are expanded). 

Recently in our lab it has been shown in Xenopus and ES cells that Hex promotes the 

early Wnt signals that are required for axis formation while at a later stage it inhibits 

the posteriorising effects of continued Nodal signalling (Zamparini et al., 2006). 

Given the coexpression of Hex, Cerl and Lefty] in the AVE and ADE in mouse, and 

the role of Hex in Xenopus, it is thought that Hex might also play a role in repressing 

the effects of Nodal signalling. Despite being expressed in the ADE where high 

levels of Nodal are required, Hex might be acting on the autoregulatory loop of 

Nodal in order to define a boundary of anterior most endoderm. 
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Taken together, these data have shown that Hex appears to have many roles during 

development, including: haematopoeitic and endothelial proliferation; anterior-

posterior axis formation by influencing Nodal and Wnt signalling; and development 

of the liver and thyroid in later development. While these studies have suggested a 

role for Hex in influencing anterior character through lineage specification of 

endoderm, it remains unclear whether Hex plays an important role in the earliest cell 

fate decisions involved in establishing the anterior axis. Chapter 4 of this thesis 

addresses the significance of early Hex expression in the primitive endoderm, while 

chapter 5 attempts to examine the consequences of ectopic Hex expression for early 

cell fate decision in embryonic stem (ES) cells. 

1.7 Embryonic Stem Cells 

1.7.1 Molecular basis for pluripotency and self-renewal 

ES cells are an in vitro cell line derived from the inner cell mass (1CM) of the early 

embryo (Evans and Kaufman, 1981; Martin, 1981). In mouse they are defined 

functionally as a karyotypically normal immortal cell line that can give rise to all the 

can give rise to all the future lineages of the conceptus (Smith, 2001). They have the 

ability to self-renew under defined culture conditions indefinitely while retaining the 

capacity to differentiate in vitro or contribute to embryonic lineages upon injection 

into blastocysts. Importantly, they can be genetically manipulated by ablation of 

specific genes or introduction of a gene of interest into specific loci. Thus, such 

changes to the genome of ES cells can be propagated through the germ line of mice 

and therefore allow analysis of the effects of these genetic alterations in vivo. 

The molecular basis for ES cell self-renewal relies on both extrinsic and intrinsic 

factors to suppress differentiation and maintain pluripotency. Conventional culturing 

conditions rely on the presence of serum and a feeder layer of fibroblasts. The key 

components supplied by these complex and undefined culture supports have been 
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identified. Fractionation of media conditioned by fibroblasts revealed that the active 

component produced by feeders and promoting self-renewal as leukaemia inhibitory 

factor (LIF) (Smith et al., 1988). Upon binding of LIF to its receptor gp130, 

dimerization occurs resulting in STAT3 dependent transcription. Indeed, constitutive 

activation of STAT3 permits ES cell self-renewal in the absence of LIF (Matsuda et 

al., 1999). Attempts to grow cells under serum free conditions revealed that members 

of the bone morphogenic protein family (BMP4 and BMP2) could support ES cell 

growth and renewal in the absence of serum (Ying et al., 2003). BMP signalling acts 

by stimulating members of the inhibitors of differentiation (Id) family resulting in a 

block to neural commitment (Ruzinova and Benezra, 2003). 

In addition to the extrinsic requirements, expression of the three transcription factors 

Oct314, Sox2 and Nanog is crucial for the pluripotent state (Chambers and Smith, 

2004). Oct314 is a POU domain homeobox transcription factor that is specifically 

expressed in all pluripotent cells during mouse embryogenesis. Heterodimerization 

with the HMG-box factor Sox2 leads to control of downstream targets containing an 

octamer binding motif such as Fgf4 (ATGCAAAT) (Ambrosetti et al., 1997; Avilion 

et al., 2003). Oct314 deficient mouse embryos fail to develop beyond the blastocyst 

stage due to the lack of pluripotent 1CM, showing an absolute critical role in vivo 

(Nichols et al., 1998). Reduction of Oct314 transcription in vitro leads to the 

differentiation of ES cells to a trophectodermal (Niwa et al., 2000) or primitive 

endoderm (Hay et al., 2004; Morrison and Brickman, 2006) fate, while its 

overexpression to levels greater than 50% causes cells to progress into mesoderm 

and endoderm precursor state reminiscent of epilast stage embryos (Morrison and 

Brickman, 2006) . These reports demonstrate the nature of Oct314 as a master 

regulator of the pluripotent state. The third of this 'trinity' is Nanog, a homeodomain 

transcription factor that confers LIF independent self-renewal upon its 

overexpression in ES cells (Chambers et al., 2003; Mitsui et al., 2003). As with 

Oct314 and Sox2, Nanog is also expressed in the early blastocyst, however it is 

downregulated at an earlier stage of development prior to implantation (Hart et al., 

2004). Attempts to derive Nanog null mice fail at an early stage whereby the epiblast 

is not formed correctly and extraembryonic tissue predominates (Mitsui et al., 2003). 
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This and other in vivo and in vitro studies have implied a role for Nanog in 

repressing the emergence of a primitive endoderm fate by inhibiting Gata6 

transcription in 1CM and ES cells (Chazaud et al., 2006; Hamazaki et al., 2006). 

Recently, numerous attempts to unveil the complexity of transcriptional networks 

involved in pluripotency of both mouse and human ES cells have demonstrated 

combinatorial occupancy of target promoters by Oct314, Sox2 and Nanog. Indeed the 

binding of these transcription factors to their own and each others promoters reveals 

both feed-forward and autoregulatory circuitry and suggests a role for other genes in 

contributing the pluripotent state (Boyer et al., 2005; Chickarmane et al., 2006; Kim 

et al., 2008; Loh et al., 2006). Indeed, in both mouse and human contexts, forced 

expression of Oct314 and Sox2 together with K1f4 and c-Myc can reprogram 

fibroblasts to become induced pluripotent cells (iPS cells), the quality of which is 

enhanced by selection of cells that express high levels of Nanog (Maherali et al., 

2007; Okita et al., 2007; Park et al., 2008; Takahashi et al., 2007; Yu et al., 2007). 

While mouse and human ES cells share some common features with regard to the 

expression of Oct314, Sox2 and Nanog, they require very different culturing 

conditions in order to permit self-renewal. LIF is not sufficient maintain human ES 

cells and BMPs cause rapid differentiation. Instead, a balance between TGF-f and 

BMP signalling in combination with the presence of basic Fgf is necessary for their 

propagation in serum free conditions (James et al., 2005; Vallier et al., 2005; Xu et 

al., 2005). 

Recently, a new class of ES cell-like cells have been isolated from the epiblast of 

postimplantation mouse embryos (E6.5). These Epiblast Stem Cells (EpiSCs) share 

culturing requirements and gene expression profiles more similar to human ES cells 

than their murine counterpart (Brons et al., 2007; Tesar et al., 2007). These 

differences between mouse ES cells and EpiSCs are reflective of their developmental 

origin. While EpiSCs inefficiently colonize the developing embryo following 

blastocyst injection, this restricted character may prove beneficial for directing 

22 



unidirectional commitment during in vitro differentiation protocols, an 

accomplishment difficult to achieve with ES cells. 

Current work in Austin Smith's lab has demonstrated a redundancy for traditional 

mouse ES cell culturing conditions, whereby LIF and BMP signalling are 

dispensable (Ying et al., 2008). FGF signalling normally provokes the tendency of 

ES cells to differentiate and this appears dependent on the Erki and Erk2 branch of 

the FGF pathway (Kunath et al., 2007). Suppression of this pathway with various 

chemical inhibitors permits ES cell growth, albeit inefficiently. There is also 

accumulating evidence implying a role for Wnt signalling in maintaining the 

pluripotent state. Thus, inhibitors of Gsk3f3 that lead to activation of the canonical 

Wnt pathway have been shown to support both human and mouse ES cell self 

renewal (Sato et al., 2004). The stimulation of the canonical Wnt signalling alongside 

antagonists of the FGF pathway overcomes the efficiency problems of maintaining 

pluripotency by FGF suppression alone when culturing ES cells without LIF and 

serum (Ying et al., 2008). As these studies were done in a completely defined 

system, it can be concluded that the inhibition of FGF signalling appears to be a 

dominant mechanisms for regulating self renewal. In conjunction with the induction 

of 13-catenin, this pathway is able to completely support ES cells and that BMP and 

Lif signalling maybe acting on a cell state downstream or epistatic to these principle 

cues. 

1.7.2 Heterogeneity of ES cells 

While ES cells can be described based on morphology, the presence of cell surface 

markers such as SSEA1 and PECAM, as well as expression of the key transcription 

factors such as Oct314, Sox2, Nanog and all the ECATs, they are defined based on 

the retrospective function (Chambers and Smith, 2004; Cui et al., 2004; Mitsui et al., 

2003). Thus, a culture of cells from the early embryo can be referred to as ES cells if 

some component of that culture is capable of continually producing cells that are able 

to differentiate into all the lineages of the conceptus. Upon injection into the 
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blastocyst only a small number ever contribute to the embryo raising the question of 

functional equivalence among ES cells. Quantification of the number of founder ES 

cells, suggest only around 20% of the injected cells actually contribute at all and yet 

the majority of ES cell cultures are Oct314 and SSEA1 positive (Wang and Jaenisch, 

2004). Thus as with other adult stem cell populations, ES cells are not clearly 

defined based on marker expression, but rather a fraction of cells that contain 

functional cell types. 

So what determines the functionalality of an ES cell? While well maintained 

undifferentiated ES cell colonies generally express Oct314, Sox2 and SSEA1 

relatively homogenously, certain pluripotency factors appear to be expressed in a 

sub-population of the culture. Thus, ES cells are known to express Nanog and Rex] 

heterogeneously (Chambers et al., 2007; Singh et al., 2007; Toyooka et al., 2008). 

This heterogeneity does not appear to reflect spontaneous differentiation, but rather it 

reflects a range of gene expression levels in morphologically homogenous colonies 

or cultures. Moreover, this heterogeneity is also reversible. As a result, one might 

ask whether this heterogeneity of gene expression has functional significance. 

Chapter four of my thesis in part addresses this issue. 

ES cells are derived from 1CM cells. In embryonic development, 1CM cells of the 

expanded blastocyst stage can contribute to the primitive endoderm as well as the 

fetus (Chazaud et al., 2006; Gardner, 1985a), however, a day later, the pluripotent 

cells of the 5th  day blastocyst (now referred to as primitive ectoderm) are then unable 

to form primitive endoderm (Gardner, 1982; Gardner, 1985a; Gardner and Rossant, 

1979). Primitive endoderm cells of the pen-implantation blastocyst (E4.5-E5.0) are 

restricted to their own lineage by colonizing the visceral and mostly parietal 

endoderm in chimera experiments (Gardner, 1982; Gardner, 1985b; Hogan and Tilly, 

1981). While derived from the early 1CM, ES cells are thought to behave like 

primitive ectoderm when injected into blastocyst, i.e. they predominantly contribute 

to the definitive germs layers of the embryo but can not contribute to the primitive 

endoderm (Rossant, 2008). However, careful inspection of the literature suggests 

they can also colonize the descendants of the primitive endoderm lineage following 
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blastocyst injection and might therefore be considered the equivalent to early 1CM 

cells (Beddington and Robertson, 1989). In vitro, ES cells can generate primitive 

endoderm like cells by the removal of LIF or by the overexpression of Oct314, which 

leads to a moderate upregulation of Gata4 (Niwa et al., 2000), a transcription factor 

restricted to primitive endoderm derived lineages of the early embryo (Arceci et al., 

1993). Indeed, forced expression of Gata4 or the related upstream factor, Gata6, 

results in primitive endoderm differentiation leading to terminal differentiation of 

this lineage to parietal endoderm (Fujikura et al., 2002). Indeed, this phenotypic 

change results in a morphological similarity to etraembryonic endoderm (Xen) cells 

that are derived from the primitive endoderm and display many characteristics of 

parietal endoderm. Interestingly, ES cell cultures appear to contain a basal level of 

Gata4 and Gata6 expression, suggesting background levels of primitive endoderm 

gene expression (Fujikura et al., 2002; Koutsourakis et al., 1999). Thus, expression 

of lacZ from the Gata6 locus is reported to have a heterogeneous expression pattern 

in ES cell clones that maybe suggestive of a subpopulation with tendencies towards 

the primitive endoderm fate. Another marker of the primitive endoderm as seen by in 

situ hybridisation in E4.5 embryos is the homeobox transcription factor Hex 

(Chazaud et al., 2006; Thomas et al., 1998) and like the GATA factors, low level 

Hex transcripts are also detectable in ES cell cultures (Kubo et al., 2004). 

1.7.3 Expression of Hex in ES cells 

In this thesis, I look at the consequences of Hex expression in ES cell culture. In 

chapter 3 I describe the construction of a unique set of reagents that allows me to 

both follow and induce Hex expression in ES cell culture. In chapter 4 I describe 

some exciting findings I have made using one of these reagents and focusing on the 

functional significance of ES cell heterogeneity. Here I used a translational amplifier 

coupled to a bright (Venus) fluorescent protein to give a read out of extremely low 

levels of Hex expression in ES cells. This fluorescent read but of transcriptional 

noise in ES cells suggests the morphologically normal undifferentiated ES cells may 

fall into at least three classes. The Venus' positive sub-fraction of these colonies 
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expresses relatively higher levels of many specific primitive endoderm markers such 

as Gata6 and reduced levels of a wide array of pluripotency markers. However, both 

Venus positive and negative cells express equivalent levels of the ES cell marker 

Oct314. FGF signalling can be used to manipulate the level of the Venus positive 

population and overexpression of Nanog, greatly reduces it. Clonal analysis shows 

that these populations interconvert efficiently in vitro, while when placed back into 

the blastocyst, only the Venus negative population is able to efficiently contribute to 

the somatic lineages in chimeras. Taken together, these data suggest that low level 

transcriptional noise defines several interconvertable states in ES cell cultures and 

that these states have functional significance for the mechanism by which these cell 

maintain pluripotency. Additionally, genes downstream of TGF3/NodaI signalling as 

well as components of the Wnt pathway appear to be associated with the Venus 

positive population. 

Given the association of primitive endoderm marker expression with Venus (Hex) 

positive cells, there may be a 'pre-primitive endoderm' subpopulation existing in ES 

cell cultures. In chapter 5 of this thesis I attempt to force the expression of Hex in ES 

cells in order to look for a phenotypic change similar to that observed with Gata4 

and Gata6 overexpression (Fujikura et al., 2002). While low levels of Hex do not 

induce any morphological change, high level expression produced from an inducible 

system lead to apoptosis. 
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Chapter 2 

Materials and Methods 
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2.1 Cloning 

2.1.1 Restriction Digests 

1 tg of DNA was incubated in a 20j.il reaction with 2tl of appropriate digest buffer 

and ipi (usually 10 units) for 3 hours at 37°C. All restriction enzymes were from 

New England Biolabs or Roche Diagnostics. 

2.1.2 Dephosphorylation of DNA 

At the end of restriction digestion of cloning vectors, 1 il (10 units) of Calf Intestinal 

Phosphatase (CIP) (New England Biolabs) was added to the reaction and incubation 

at 37°C was continued for 30 minutes. This ensured removal of 5' phosphates from 

DNA ends preventing recircularization. 

2.1.3 Ligation of DNA fragments 

Generally, ligation of purified insert and cloning vector fragments took place in a 3:1 

ratio. Ligation reaction were performed in a 20p.1 volume at r.t. for 10 minutes using 

the Quick Ligation Kit (New England Biolabs) by adding 10tl of 2x Quick Ligation 

buffer and 1 p (2,000 units) of Quick ligase enzyme. 

2.1.4 Plasmid transformation 

For subcloning, around 10 ng of DNA was transformed into DH5a •  subcloning 

efficiency chemically competent Escherichia coil (E.coli) (Invitrogen). For cloning, 

5pJ of ligation reaction were transformed into One Shot TOP1O chemically 

competent E. coli (Invitrogen). For generation of contructs greater than 10kb those 

containing loxP sites, 5p1 of ligation reaction were transformed into MAX Effiency 
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Stb12 competent cells (Invitrogen) to prevent undesired recombination events. In 

each case, the transformation procedure was carried out according to the 

manufacturers instructions. Transformants were plated out on LB agar plates 

containing eiither 50jig/ml kanamycin or 1 00tg1ml ampicillin (according to resistant 

gene present on each vector) and incubated overnight at 37 °C or (30°C for Stb12 

cells). 

2.1.5 Preparation of plasmid DNA 

For small scale preparation, a single bacterial colony was inoculated and grown 

overnight at 37 °C in 3 ml of LB, or at 30 °C in TB (for Stb12 cells), containing 

100tg/ml of ampicillin or 50 .tg/ml kanamycin. 1.5 ml of was collected by 

centrigugation and plasmid DNA was extracted using the Qiagen Mini-prep Kit 

(Qiagen) to extract DNA according to the manufacturer's instructions. 

For large scale preparation, a single bacterial colony was inoculated into 100 ml of 

LB or TB containing lOOp.g/ml of ampicillin or 50tg/m1 kanamycin and shaken 

overnight at 37 °C or at 30 °C. the Qiagen Maxi-prep kit (Qiagen) was used to extract 

DNA according to the maufacturer's instructions. 

2.2 General Molecular Biology 

2.2.1 Preparation of Genomic DNA 

Genomic DNA was extracted from approximately 1x10 6  ES cells using the DNeasy 

Blood & Tissue Kit (Qiagen) according to the manufacturer's instructions. 

2.2.2 Preparation of RNA 
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RNA was extracted from usually lxi 06  ES cells (or differentiated derivatives) grown 

in culture or following separation by Flow Cytometry. Extraction was performed 

using the RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions. 

During this protocol a step of DNase 1 treatment for 15 minutes at r.t. was carried out 

to prevent contamination of downstream rtPCR reactions by residual genomic DNA. 

2.2.3 Purification of DNA 

For small scale nucleic acid clean-up of enzymatic reactions, samples were purified 

through QlAquick Gel Extraction Kit columns, or through QIAquick PCR 

Purification Kit colunms (following PCR reactions) according to manufacturer's 

instructions (Qiagen). 

For large scale clean-up, phenol/chloroformlisoamyl-alcohol (Sigma) was added in a 

1:1 volume ratio to enzymatic reaction and mixed thoroughly. After 5 minutes of 

centrifugation in a microfuge at 13,000 r.p.m., the upper aqueous phase was 

transferred to a fresh eppendorf tube. DNA was precipitated from the aqueous phase 

by adding 1:10 volume of 3M NaOAc and 2 volumes of 100% EtOH and incubation 

at -20°C for 30 minutes. Following centrifugation for 30 minutes at 13,000 r.p.m. the 

DNA pellet was washed in 70% EtOH, dried and resuspended in nuclease free water 

(Ambion). 

2.2.4 Agarose gel electrophoresis of DNA 

1% agarose gels were prepared in 1 X TAE solution containing ethdium bromide 

(0.5ig/ml)(Sigrna). DNA samples containing lx loading buffer solution were loaded 

onto gels and electrophoresis in an electrolyte of 1 X TAE. Voltage chosen depended 

on distance between electrodes: thus, 5-8Volts/cm. DNA was visualised using UV 

light and the size was estimated using a 1kb ladder (Invitrogen). 
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2.2.5 Purification of DNA fragments from agarose gels 

DNA bands of interest were excised from gels using a scalpel under UV light. 

Purification DNA was carried out using the QlAquick Gel Extraction Kit (Qiagen) 

following the manufacture's instructions. 

2.2.6 Quantification of Nucleic acids 

1 .Sj.il samples od DNA or RNA were directly pipeted onto a Nanodrop 

spectrophotemeter (Thermo Scientific) to measure concentration (A260 reading of 1 

= 40ng/pi for RNA and 50ng/t1 for DNA) and to judge purity (expected A260/A280 

ratio is 2.0 if nucleic acid is clean). 

2.2.7 Reverse transcription of mRNA 

Reverse transcription of mRNA was carried out using the Superscript II RNaseH-

Reverse Transcriptase system (Invitrogen). Briefly, 1 xg of total RNA was incubated 

for 5 minutes at 65°C with 1il of 1iM random primers and 1J21 of 10mM dNTPs. 4 

tl of first strand synthesis buffer together with lj.tl 0.1M Dithiothreitol and 10 units 

of RNaseOut solution, were added together with nuclease free water to a total 

volume of 1 9tl. 1 tl of Superscript II enzyme or 1 tl of water was then added and the 

mix was incubated at 50°C for 50 minutes. Resultant cDNAs were then treated with 

10 units .RNaseH for 20 minutes at 37°C. Following heat inactivation at 70°C for 10 

minutes cDNA samples were diluted 1:5 and stored for PCR analysis. 

2.2.8 Polymerase Chain Reaction 
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Diagnostic polymerase chain reaction (PCR) was carried out using Taq DNA 

Polymerase (Qiagen) together with 200tM (each) of dNTPS, 0.5p.M each primer 

(forward and reverse), in 1 X PCR buffer with 0.5units of Taq together with lOOng 

(for genomic PCR) or ing (amplification from plasmid DNA) or 5.11 (of 1:5 dilution 

of cDNA reaction for rtPCR) of template DNA in a total volume of 50t1. Cycling 

conditions were carried out according to manufacturer's instructions with annealing 

temperature varying depending on Tin of primers. 

For preparative PCR, Phusion High Fidelity DNA Polymerase (Finnzymes) was used 

to amplify sequences in order to minimise potential mutational events. 

Concentrations of components in a reaction were similar to those for diagnostic PCR. 

2.2.9 TOPO cloning of PCR products 

PCR products amplified were cloned using the TOPO TA or ZeroBlunt TOPO (for 

Phusion generated amplicons) cloning Kits according to the manufacturer's 

instructions. Products cloned were those with restriction sites incorporated onto the 

ends of primers. Additionally, as template controls for quantitative PCR, ORFs of 

various genes were ampified by rtPCR were cloned. Primers used to amplify each 

gene ORF were those also used for quantitative rtPCR measurement of those genes 

(see below). 

2.2.10 Quantitative rtPCR 

Primers for quantitative rtPCR (qPCR) were designed using the Universal 

ProbeLibrary (UPL) Assay Design Centre (Roche, see: https://www.roche-applied-

science.comlsis/rtper/upl/acenter.j  sp?id=03 0000) . Primers were designed to span an 

intron to ensure reduced likelyhood of amplification from residual genomic DNA. 

All primers are chosen to have an anneling temperature of 60°C For each set of 

primers designed, a specific probe from a mouse UPL set (Roche) was suggested to 
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be used. This set consists of around 165 8mer or 9mer probes which together offer 

coverage of the entire mouse transcriptome. In this system measurement of increase 

of fluorescence release from UPL probes reflects production of de novo amplicons. 

In combination with gene specific primers, amplicon specific UPL probes ensure a 

further level of specificity. This reduces the chance of artifact measurement to an 

extremely low probability. 3tl of diluted cDNA, together with 5tl LightCycler480 

Probes Master mix (Roche) and 1 p1 of each primer (1 Opmol each) were used for each 

reaction. Additionally, 0.1 p.1 of specific probes from a Mouse UPL set were used for 

each amplicon. Cycling using the standard UPL default conditions took place in a 

LightCycler480 (Roche). All reactions were done in triplicate to ensure against 

pipetting errors. Estimation of copy number readout during qPCR was made possible 

by inclusion of a dilution series of known amounts control plasmid DNA containing 

an ORF relating to the gene of interest. 

Some qPCR was performed using the SyberGreen System (Roche). This system 

does not use the UPL probes but measures the incorporation of SyberGreen into de 

novo DNA. Similar quantities of cDNA and primers were used for this method A 

dilution series of standards was also included. Below are the list of primers (shown 

as 5' to 3')used for qPCR: 

Gene Forward Primer Reverse Primer UPL probe number 

Tbp ggggagctgtgatgtgaagt ccaggaaataattctggctca 11 

Hex ctacacgcacgccctactc cagaggtcgctggaggaa 50 

Cerberus gactgtgcccttcaaccag agcagtgggagcagaagc 105 

Gata6 ggtctctacagcaagatgaatgg tggcacaggacagtccaag 40 

0ct314 gttggagaaggtggaaccaa ctccttctgcagggctttc 95 . 

Nanog cctccagcagatgcaagaa gcttgcacttcatcctttgg 25 

Rex 1 gatgcacaacgatccagattl tggaaattagaacgtacatcctccaa 18 

K1f4 tgcagtcacaagtcccctct gaccttcttcccctctttgg 82 

Actin gtgggccgctctaggcaccaa ctctttgatgtcacgcacgatttc n/a 

Bf, 1 r ggtggectgaatgacatctt gcatacagcgggactcccacg n/a 
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Quantitative analysis was performed with the assoiciated LightCycler software such 

that cycle crossing point values were translated into absolute copy numbers. Copy 

number values obtained for the housekeeping genes Tbp or Actin were used to 

normalise the values obtained for the gene of interest. 

2.2.11 Sequencing of DNA 

Sequencing of DNA was performed using the Big-Dye Terminator Cycle Sequencing 

kit. Purified plasmid DNA (400ng) or purified amplicon DNA following genomic 

PCR (1 OOng) was sent together with 1 p.1 sequencing primers (concentration of 

1 .6pmol/p.l) to the sequencing service at Edinburgh University (Ashworth buikding). 

Sequence analysis was performed using Lasergene v7.0 software (DNASTAR, 

Madison, USA). 

2.2.12 Southern Analysis 

Digested genomic DNA was subjected to electrophoresis o/n in 0.6% agarose gels. 

Gels were first treated in denaturing solution (1.5 M NaCl, 0.5 M NaOH) for 30 

minutes followed by treatment in neutralising solution (1.5 M NaCl, 0.5 M Tris-HC1, 

pH5.5) for a further 30 minutes. Blotting onto HyBcind membrane (Amersham) was 

achieved by solution by capillary transfer in lox SSC (20X stock, 3 M NaCl, 0.3 M 

sodium citrate, 1 mM EDTA) 0/n. 

Membranes were baked at 120°C for 1 hour to ensure crosslinking, followed by 

prehybridisation for 2 hours at 65°C in Hybridisation solution (5X SSC, 5X 

Denhardt's solution (100X solution, 2% (w/v) BSA, 2% (w/v) Ficoll, 2% (w/v) 

polyvinylpyrrolidone), 0.5% SDS). 
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Probes used for southern analysis were generated by PCR amplification of 5' and 3' 

Hex genomic genomic regions and Venus sequence (as an internal probe). Primers 

(shown as 5' to 3') used were as follows: 

5' external probe; F ccccttatctttcccttgg, R cagttgaagggaatgcacct 

3' external probe; F cctttcatccagtgggagag, R ctgccccttcaacatgaaat 

Internal probe; F cacatgaagcagcacgactt, R gaactccagcaggaccatgt 

Products from the above amplifications were cleaned by column purification (as 

described above). 25ng of purified DNA were labelled using the MegaPrime 

labelling kit (Amersham) together with 50tCi of 32Pa-dCTP (Amersham) according 

to the manufacturer's instructions. Labelled probes were cleaned through G-50 

sepharose size exlcusion columns (Amersham), denatured at 100°C for 5 minutes 

before adding to the hybridisation solution. Following hybridisation 0/n at 65°C, 

membranes were washed in 2% SSC, 0.1% SDS solution until counts were reduce to 

around 20 c.p.m. Membranes were then exposed to autoradiography film (Kodak). 

2.2.13 Extraction of Protein and Western Analysis 

Protein was prepared from approximately 1x10 6  ES cells by boiling in 30 p.1 Laemlli 

buffer (BioRad) for 20 minutes. Following centrifugation to remove cell debris, 30p.1 

samples were loaded onto precast NuPAGE Novex 10% Bis-Tris Gels (Invitrogen). 

Following electrophoresis at 200 volts for 45 minutes, protein was tranferred 

electrophoretically onto ECL membranes at 360mA constant current for 1 hour. 

Membranes were blocked for 1 hour at 4°C in 1 X TBS solution (25mM Tris, pH 7.4, 

3.0mM KC1, 140mM NaC1 and 0.05% Tween 20) containing 3% BSA. Antibodies 

were then added at a dilution according to manufacuter's instructions for o/n 

incubation at 4°C. Antibodies used were as follows: Rabbit anti caspase 3 (NEB, 

9662), Rabbit anti GFP (Invitrogen, A6455), Mouse anti a Tubulin (Santa Cruz, sc-

5286), Strepavidin-HRP (Cambridge BioSciences). Membranes were washed in 

TBST solution and incubated with HRP-conjugated secondary antibodies (anti 
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mouse and rabbit, Cambridge Biosciences) in blocking solution for 1 hour at r.t. 

Detection was performed with ECL kit (Pierce) according to manufacturer's 

instructions. 

2.2.14 Precipitation of Bio-tagged proteins 

1x106  ES cells were collected and lysed with lysis buffer (Pierce) containing 

protease inhibitors (Roche). Lysates were bound to M-280 Dynabeads (Invitrogen) in 

solution according to reported method (de Boer et al., 2003). Following several 

washing steps, bound proteins were released by boiling in Laemmli buffer and 

subjected to western analysis with anti-GFP antibody or Strepstavidin-HRP. 

2.2.15 Site Directed Mutagenesis 

Site directed mutagenesis on vector pTLC BioHex (see Chapter 5.9) was carried out 

using the QuickChange XL Site Directed Mutagenesis Kit (Stratagene) according to 

the manufacturer's instructions. The following pairs of mutagenic oligonucleotides 

were used for the generation of two different mutants: 

pTLC BioHex Ebm, 

5' tgcgcccacgccggcggcgcagcccgctca 3' 

5' gtgagcgggctgcgccgccggcgtgggcgc 3' 

pTLC BioHexDbm, 

5' tcagtgagagacaggtcaaaacctggtttgcggctcgccgagctaaatg 3' 

5' catttagctcggcgagccgcaaaccaggttttgacctgtctctcactg 3' 

2.2.16 Other Oligos used for cloning 

Biotin tag sequence oligos (see Chapter 3.1) 

5' -TCGAGGCCACCATGGCTGGTGGCCTGAATGACATCTTTGAGGCCC 

AGAAGATCGAGTGGCATGAGAACCTGTACTI'CCAGGGAGCCGG 3' 
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5' AATTCCGGCTCCCTGGAAGTCCAGGTTCTCATGCCACTCGATCTT 

CTGGGCCTCAAAGATGTCATTCAGGCCACCAGCCATGGTGGCC- 3' 

Cloning of Hex ORF (see Chapter 3.1) 

5'-GCGTCGACTATGCAGTTCCCGCACCCGGGG-3' 

5-TACCGGTCCTCCTCCTCCTCCAGCATTAAAGTAGCCTTT-3' 

Cloning of Inducible pTLC vectors (see Chapter 3.6) 

5'- GTFAATTAAGCCACCATGGCTGGTGGC-3' 

5'-GGCTAGCTTAGGCTCCCTGGAAGTACAG-3' 

5 '-GGCTAGCTTATCCAGCATTAAAGTAGCC-3' 

Modification of Bio tag sequence for targeting vector (see Chapter 3.7) 

5' -ATTATTAAGATGGCTGGTGGCCTGAAT-3' 

2.2.17 Constructs 

pEGFPN1 (Clontech); pNEB193 (New England Biolabs); pGTIV2 (by William 

Stanford); pCAGSIH and pCAGSIP (by Hitoshi Niwa); pCAG-Hex (ME204) (by 

Osmany Larralde/Josh Brickman); p3-catPCAGSIP (a gift from Austin Smith's lab); 

pCAGSNan-IP (a gift from Ian Chamber's lab); Hex targeting vector, pTlpA (a gift 

from S. Srinivas and T. Rodriguez); TOPFlash and FOPFlash reporters (Upstate 

Biotechnology); pSP64T-XB (J. Brickman lab); pRL-SV40 Renilla (Promega). 

pBirA (a gift from Ita Costello). 

2.3Xenopus Experiments 

2.3.1 RNA for Xenopus injections 

Transcription of RNA was performed in: 5p1 lox transcription buffer (Ambion); 6.il 

lOOnM DTT (Promega); 5p1 each of rATP (10mM), rCTP (10mM) , rUTP (10mM) 

and rGTP (1mM), 2.5pJ RNasin (Promega), and 6 tl nuclease free water. Incubation 

occurred at 37°C for 10 minutes. Following centrigugation to collect reaction 
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atbottom of the tube, the following components were added: 3 jtl of 1 jig! j.il linearised 

DNA plasmid template, 5p1 of 5mM RNA Cap structure analog (New England 

Biolabs) and 2.5jtl of appropriate RNA polymerase (Ambion). Reaction was 

incubated for 30 minutes at 37°C upon which 2.5 10mM rGTP was added and the 

reaction continued for 1 further hour. 50tl of nuclease free water and 5tl RQ1 

RNase free DNase iwere added and incubated for 30 minutes at r.t. RNA was 

purified using Chroma Spin 100 columns (Clontech). 

2.3.2 Injection of RNA 

RNA was kindly injected into single dorso-vegetal cells of 4 cell stage embryos by 

Andrea Zamparini in our lab (Thank you Andrea). 

2.3.3 X-gal staining and analysis of embryos 

Following injections, embryo were washed in 1 X PBS (80mM sodium phosphate, 

15mM potassium phosphate, 27mM KC1 and 1.37M NaCl) and then fixed in fixing 

solution (1 X PBS, 2mM MgC12, 5mM EGTA, 15% paraformaldehyde, 0.2% 

Glutaradehyde, 0.02% NP-40) and observed for phenotypic change. To confirm the 

site of injection of I3Gal RNA, embryos were then stained in X-Gal staining solution 

(5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 2 mM MgCI, 0.01% 

sodium deoxycholate, 0.02% Nonidet P-40 (NP-40) in PBS) o/n at r.t. Embryos were 

washed twice in PBS before fixing in MEMFA solution (0.1 M MOPS, pH 7.4, 2mM 

EGTA, 1mM MgSO4, 4% paraformaldehyde) for 1 hour at r.t. 

2.4 Cell culture 

2.4.1 Cell Lines 
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The following Mouse ES cells lines were used in this study: CGR8 and R26CreErt2 

E14Tg2a (Austin Smith's lab), R26BirA E14Tg2a (Driegen et al., 2005), Hex-

Redstar (HRS) (Morisson et al., in press). Additionally, Human Embryonic Kidney 

(HEK293T) and p19 Embryonal Carcinoma (EC) cells were kindly supplied by 

Austin Smith's lab. IM8A1 Extraembryonic endoderm (Xen) cells, were kindly 

supplied by Tilo Kunath. 

2.4.2 Cell culture conditions and maintenance 

ES Cells were cultured on 0.1% gelatin flasks or plates (IWAKI) in Glasgow 

modified Eagle's medium (Gibco) containing, non-essential amino-acids, glutamine 

and sodium pyruvate, 0l.mM mercaptoethanol and 10% Fetal Calf Serum (FCS) 

together with LIF. For long term storage, cells were stored in the above media 

supplemented with 10% DMSO in liquid nitrogen. Culturing occurred at 37°C and 

7% CO2. Xen cells were cultured similalrly as were HEK293 and P19 EC cells with 

the exception that no LIF was used. 

Cells were passaged by removal in 0.1% trypsin solution or Cell Dissociation buffer 

(Gibco). Trypsonised cells were pelleted by centrifugation at 1200 rpm for 3 

minutes. Following a single wash in PBS, cells were pelleted again and resuspended 

in fresh media. Around one fifth of the cells were plated into pre-gelatinised flasks. 

Generally, all cell lines were successively passaged every 3-4 days, with media 

changes every 48 hours.. 

2.4.3 Transient transfection of DNA into HEK293 cells 

To quickly monitor fluorescence expression of various vectors following their 

construction, vector DNA was transfected into HEK293 cells using 

Lipofectamine2000 (Invitrogen) according to the manufacturer's instructions. 

Following 48 hours of culture, cells were visualised by fluorescence microscopy. 
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For TOPFlashIFOPFlash assay (Upstate Biotechnology), HEK293 cells were plated 

into 24 well plates at a density of 2x10 5  cells/mi. Following growth for 24 hours, 

cells were transfected using Lipofectamine 2000 with the following vectors: 1 Ong 

each of TOPFlash or FOPFlash reporter, 10 ng of internal control plasmid pRL-

SV40-Renilla to gether with a total of 1 OOng test vectors. Total DNA was adjusted to 

900ng with pBSK (Bluescript) for each transfction. 48 hours after transfection, cells 

were collected and monitored for luciferase activity (from both reporter and control 

vectors) using the Dual Luciferase Reporter Assay System (Promega) according to 

the manufacturer's instructions. Exceptions were 1 0tl of lysate (instead of 201.tl) and 

50tl each of Luciferase Assay Reagent II (LAR II) and STOP and Glo Reagent 

(instead of 100tl). 

2.4.4 Transfection of Cells for gene targetting or stable integration 

Prior to electroporation, ES cells were grown to approach confluency (2.0-10 x 10).  

Cells were collected using trypsin, washed twice in PBS and resuspended in 800il of 

PBS. 1 00tg of linearized DNA was transferred to an electroporation cuvette 

(BioRad) together with the cells. Cells/DNA mixture was left at RT for 3 minutes. 

Electroporation waas carried out with a BioRad GenePulser using the following 

settings: Capacitance, 3 j.iF; Voltage, 800V; and time constant, 0.1 seconds. Cells 

were transferred into prewarmed media before plating at a density of 5x105 cells per 

pre-gelatinised 10cm dish. Following o/n incubation, appropriate antibiotics were 

added to select for transfectants. After 2 weeks growth, single surviving colonies 

were physically removed and transferred into individual wells of a pre-gelatinised 96 

well plates. Expansion of clones was achieved by successful passaging into wells of 

greaater size. - 

2.4.5 Differentiation of ES cells to ADE 
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Aggregate suspension cultures were achieved by plating cells at a density of 5000 

cells per ml in 10cm bacterial petri dishes (Sterllin). Cells were plated in lOmi 

standard ES cell media with serum (as above) but without LIF. Following 2 days 

growth, embryoid bodies were collected and resuspended in 8m1 N21327 Culticell 

media (Stem Cell Sciences) with or without 20ng4tl Activin and cultured for a 

further 2 days upon which cells were changed to the same media conditions. 

Embryoid bodies were usually collected at day 7 of the diferentiation protocol. 

2.4.6 Immunocytochemistry 

Cells grown in 12 well plates were washed 2 X in PBS before fixation in 4% 

paraformaldehyde. Cells were -then permeabilised in PBST (1 X PBS, 0.1% Triton X 

(Sigma)). Blocking was performed by adding 1% Bovine serum albumin (Sigma) in 

PBST solution to the fixed cells for 30 minutes at r.t. Primary antibodies were added 

at a dilution of 1:1000, and incubation continued 0/n at 4°C. Following 3 X 10 

minute washes in PBST, A1exa568 conjugated secondary antibodies diluted (1:1000) 

in block solution were added to the cells and incubation took place at r.t. for 1 hour. 

Also included at this step was DAPI solution (1:1000). Finally, cells were washed 3 

times, then stored in PBS. Primary antibodies used were: mouse anti-Oct3/4 (Santa 

Cruz) and rabbit anti-Nanog peptide specific antibodies (a75+35, a kind gift from Ian 

Chamber's lab). Secondary conjugated antibodies (A1exa568) against mouse and 

rabbit were obtained from Invitrogen. 

2.4.7 Fluorescence Activated Cell Sorting (FAC5) 

ES cells or embryoid bodies were collected into Cell Dissociation Buffer (Gibco) and 

incubated at 37°C for 10 minutes. Single cells suspension was achieved by gentle 

repeated pipetting. Following washes in PBS, cells were resuspended in 500tl FACs 

buffer (1 X PBS, 10% FCS) and 7AAD solution (BD Pharmingen, 5t 1/1x10 6  cells) 

which marks dead cells. Analysis of fluorescence took place in a FACSCalibur flow 
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cytometer (BD Biosciences). Dotplots were generated using CeliQuest software (BD 

Biosciences). 

In the case of additional labelling of specific cell surface proteins, primary antibodies 

were added at a dilution of 1:1000 to cells resuspended in FACs buffer. Incubation 

took place for 10 minutes on ice. Following 3 washes in FACs buffer, cells were 

resuspended in frsh FACs buffer containing appropriate conjugated antibody at a 

dilution of 1:1000 and incubated as before. After 3 washes in FACs buffer, cells 

were finally resuspended in 500il FACs buffer and analysed as above. 

For collection of populations, cells were prepared similarly and subjected to flow 

cytometry using the MoFlo MLS high speed sorting aparatus (DakoCytomation). 

Cells were collected in FACs buffer and stored on ice for further analysis. 

2.5 Mouse Experiments 

2.5.1 Mouse Embryo Analysis 

Embryos were dissected in Dulbecco's modified Eagle's medium (DMEM) 

containing 10mM sodium Hepes buffer (pH 7.4) and 5% fetal bovine serum using a 

dissection microscope. Visualisation was performed using a Zeiss Axiovert 

fluorescence microscope for bright and YFP fields. 

X-gal staining of embryos occurred as follows. Embryos were washed in PBS 

solution (80mM sodium phosphate, 15mM potassium phosphate, 27mM KC1 and 

1.37M NaCl) then fixed with X-gal fix solution (1 X PBS, 2mM MgC12, 5mM 

EGTA, 15 paraformaldehyde, 0.2% Glutaradehyde, 0.02% NP-40) at 4°C for 20 

minutes. Following 3 X 20 minute washes in PBS they were then stained with X-gal 

staining solution (5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 2 

mM MgCI, 0.01% sodium deoycho1ate, 0.02% Nonidet P-40 (NP-40) in PBS) o/n 
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in the dark at r.t. Following 3 X 5 minute washes in PBS, stained embryos were then 

fixed in 4% paraformaldehyde. 

2.5.2 Generation of chimeras 

Chimera mouse generation was performed by morula aggregation with or injection of 

ES cells into host blastocysts. Injected or aggregated blastocysts were then tranferred 

into psuedopregnant recipient mothers. All methods and husbandry of animals were 

performed by Jan Ure (Transgenic mouse service, ISCR, University of Edinburgh) 

and Carolyn Manson (Animal House facilty, ISCR, University of Edinburgh). 

2.5.3 Histology 

Embryos were fixed in 4% paraformaldehyde for 30 minutes to 2hr at 4°C before 

embedding. Tissue was then sunk in 30%sucrose/PBS, frozen in Tissue Teck, and 

sections were cut in a cryostat. Sections were collected on Polysine microscope 

slides (VWR International), air-dried for 30 minutes to lhr, and stored at -20°C until 

used. 

2.6 Microarray analysis 

RNA prepared from FACS sorted populations was sent to collaborators, Minoru Ko 

and Alexei Sharov at the NIH in Baltimore. Biological and technical replicates for 

each population were hybridised to NIA Mouse 44K Microarray v2.1 (Carter et al., 

2005). Pairwise comparisons were performed by A. Sharov using standard statistical 

conditions (FDR<0.05, > 1.5-fold expression levels) to unveil genes upregulated or 

downregulated between the populations. Log intensity plots for each gene were 

created to find pattern matches between those of similar tissue origin. 

43 



Chapter 3 

Generation and Analyses of DNA Constructs 
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Introduction 

The aim of my PhD was to generate materials to follow Hex expression at both the 

transcript level and at the protein level and if possible to characterize Hex function in 

specific cell types and sub-cellular domains. In the long run this might extend to the 

identification of cell type specific transcription factor targets and Hex associated 

complexes. 

The strategy I chose to follow Hex protein and as a potential platform for further 

biochemistry employed in vivo biotinylation as a means to tag the Hex protein. To 

accomplish this, I used BirA system developed by deBoer and colleagues. This 

system involves the expression of bacterial BirA ligase in mammalian cells and leads 

to the in vivo biotinylation of a protein of interest that is fused to a small (23aa) 

artificial peptide tag. The resulting biotinylated protein has an affinity for 

streptavidin several orders of magnitude stronger than that existing in any epitope-

antibody interaction and can therefore be isolated with a great degree of specificity 

(de Boer et al., 2003). This technique has been successfully employed in chromatin 

immunoprecipitation (ChIP) procedures to identify the DNA target sequences bound 

by several biotinylated transcription factors that are important in ES cell self-renewal 

(Kim et al., 2008). Additionally, this system has been used to examine in vivo 

protein-protein interactions for the transcription factors GA TA] and Nanog 

(Rodriguez et al., 2005; Wang et al., 2006). Recently, an ES cell line (R26BirA) has 

been produced with the bacterial BirA ligase gene inserted into the ROSA26 

allowing its ubiquitous expression in mice derived from this line (Driegen et al., 

2005; Zambrowicz et al., 1997). Expression of a bio-tagged Hex (BioHex) protein in 

these cells would ensure its biotinylation whether they are maintained under self-

renewing conditions, allowed to differentiate in vitro or used to generate mice. Thus 

these cell lines can be used to follow Hex protein localization during ES cell 

differentiation or in embryonic development and for biochemical techniques such as 

ChIP and protein-protein interaction studies in specific cell types, both in vivo and in 

vitro. 
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While the BirA tag is useful of for biochemical techniques, it does not give a real 

time, live cell read out of Hex expression. The ability to use flow cytometry to 

purify populations of cells expressing BioHex would allow downstream functional 

analysis more straight foreword. To this end, cloning strategies were designed to 

allow co-expression of a fluorescent reporter with BioHex. These included the 

construction of BioHexGFP fusion proteins as well as the incorporation of internal 

ribosomal entry site (IRES) (Chappell et al., 2000; Mountford et al., 1994) to 

generate bicistronic messages in which the fluorescent protein would be expressed at 

the same time as BioHex. Fluorescent reporters included dsred2, EGFP or the YFP 

variant Venus (Nagai et al., 2002; Shaner et al., 2005). This chapter will describe the 

generation and analysis of a set of BioHex constructs with the aim of either 

expressing it at physiological levels from the Hex locus following a knock-in strategy 

(chapter 4) or overexpressing the protein in ES cells (chapter 5). 

3.1 Generation of Bi0HexGFP cDNA. 

An oligonucleotide linker with X7w1 and EcoRI overhangs containing a Kozak 

sequence and coding for the biotinylation tag was introduced into the multiple 

cloning site of pEGFP (Fig. 3.1a,b). This produced pBioGFP in which the 

biotinylation tag was N-terminal to and in frame with the EGFP sequence. Mouse 

Hex cDNA was amplified with Sail and AgeI ends and cloned into the respective 

sites of pBioGFP to give pBioHexGFP such that all three elements were in frame. In 

order to reduce the chance of steric hindrance of Hex by GFP in the context of a 

fusion protein five additional glycine residues were included at the end of the Hex 

cDNA sequence (Fig. 3.1b). Following the sequencing of pBioHexGFP to check the 

reading frame had been maintained during the PCR and cloning steps (data not 

shown) both plasmids were transiently transfected into HEK293 cells to check for 

GFP expression (Fig. 3.1c). Both pBioGFP and pBioHexGFP showed green 

fluorescence suggesting intact ORFs in each case. 
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Fig. 3.1 Cloning of a Biotinylation Tag with the mouse Hex cDNA sequence. 

a, Map of pEGFPN1. b, An oligonucleotide linker coding for the 23 aa biotinylation 

tag was inserted into the Xhol and EcoRl sites of pEGFP-N1, upstream of and in 

frame with the EGFP sequence to give pBi0GFP. The asterisk denotes the lysine 

residue that becomes biotinylated in the presence of E. coli BirA ligase. Mouse Hex 

cDNA was amplified and inserted between the tag and EGFP sequences such that 

all three were in frame to give pBioHexGFP. c, Following transient transfection into 

HEK293 cells, GFP expression from pBi0GFP, pBioHexGFP and the parental 

pEGFPN1 plasmid was monitored after 48 hours by fluorescence microscopy. E 

EcoRl, S = Sail. Scale bars represent 50pm. 
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3.2 BioHexGFP Displays Wild-Type Activity In Vivo. 

It has been shown previously that overexpression of murine Hex cDNA (mHex) on 

the dorsal side of Xenopus embryos leads either to mild axial distortions or a more 

extreme phenotype in which both anterior and posterior structures are affected 

(Brickman et al., 2000). As a means to check that the BioHexGFP protein could 

display wild-type activity, its RNA was injected into Xenopus embryos to see if the 

mutant phenotypes could be recapitulated. 

In order to generate BioHexGFP RNA it was first necessary to subclone the Xho/Not 

fragment of pBioHexGFP into a variant of the pSp64T vector to give pBHGSp6 (Fig. 

3.2a,b). Following in vitro transcription, 250pg of BioHexGFP RNA was injected 

into single dorso-vegetal blastomeres of 4-cell stage embryos. 13-Gal RNA (1 6Opg) 

was co-injected as a lineage tracer. Control sibling embryos were injected with wild-

type mHex and 13-Gal RNA for comparison or 13-Gal RNA alone. Following 

conditions that allow gastrulation, embryos were left to grow to stage 37 and then 

stained for 13-Gal activity. Figure 3.2c shows that the numbers of mild and severe 

embryos generated from the overexpression of wild-type mHex or BioHexGFP RNA 

were comparable. BioHexGFP RNA did not produce any other phenotype. This 

result would suggest that the Hex protein in the context of a fusion with a 

biotinylation tag and GFP displays wild type activity. 

3.3 Generation and analysis of a Bi0HexGFP overexpression construct 

with a hygromycin selectable marker. 

(i) Subcloning of BioHex GFP into the expression vector pCAGSIH. 

To achieve stable expression of BioHexGFP, the Xho/Not fragment of pBioHexGFP 

was subcloned into pCAGSIH vector. This vector contains a strong CAG promoter 

which contains the chicken 13-actin promoter and cytomegalovirus enhancer, 13-actin 
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d 	
Normal 	 Mild 	 Severe 

Fig. 3.2 Overexpression of BioHexGFP or Hex produces similar phenotypes in 

Xenopus. 

a, Map of the expression vector pSp64T-XB (previously modified from pSp64T). b, 

The Xhol/NotI fragment of pBioHexGFP was cloned into the corresponding sites of 

pSp64T-XB in to generate pBHGsp6. c, Single dorso-vegetal injections of four cell 

stage blastulae were carried out with either mHex (250pg) or Bi0HexGFP (250pg) 

RNA. 200pg of n-Gal RNA was coinjected as a lineage tracer. Injection with f'-Gal 

alone produced normal embryos only whereas Hex or BioHexGFP generated similar 

numbers of mild or severe phenotypes. Embryos were fixed and stained for 13-Gal 

activity at stage 37. d, Examples of normal, mild and severe phenotypes. 
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intron and bovine f-globin poly-adenylation signal (Niwa et al., 1991). This cloning 

produced pBHGiH in which BioHexGFP was expressed as a fusion transcript with 

an encephalomyocarditis virus (ECMV) IRES sequence and a hygromycin resistance 

gene (Fig. 3.3a,b). To serve as a control for downstream experiments, a variant of 

pBHGiH was produced, pBHiGiH, which contained an added ECMV internal 

ribosome entry site (IRES) sequence between BioHex and GFP, ensuring their 

separation during translation (Fig. 3.3b). As a Hex negative control the Xho/Not 

fragment of pBioGFP was also subcloned into the pCAGSIH vector to give pBGiH 

(Fig.3.3b). 

Expression of hygromycin constructs in HEK293 cells. 

All three hygromycin constructs were transiently transfected into HEK293 cells to 

check for GFP expression by fluorescence microscopy. Both pBGiH and pBHGiH 

showed strong fluorescence whereas pBHiGiH was weaker, probably due to a 

translation gradient effect of the IRES element (Fig 3.3c) (Hobbs et al., 1998). 

pBHG1H and pBH1GiH enhance 13-catenin transcriptional activity in vitro. 

Previous work in our lab has shown, that Hex can enhance 13-catenin induced 

activation of a reporter construct containing reiterated Tcf binding sites (the DNA 

binding components of the canonical Wnt pathway) (Zamparini et al., 2006). 

Therefore, to check that pBHGiH and pBHiGiH could display wild-type Hex activity 

in vitro, reporter constructs containing either Tcf binding sites (TopFlash) or mutated 

versions of these sites (FopFlash) were cotransfected into HEK293 cells with the 

indicated constructs (Fig. 3.3d,e). 13-catenin increased the expression level of the 

TopFlash reporter almost 30 fold in the presence of an empty vector containing the 

CAG promoter. This induction was amplified a further 3-fold (to a total of 80 to 90 

fold stimulation compared to the absence of b-cat) when the plasmid expressing b-cat 

was co-transfected with plasmids expressing the different Hex derivatives; CAGHex 
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Fig. 3.3 Cloning, expression and functional analysis of pBHGIH. 

a, Map of pCAGSIH. b, The Xhol/Notl fragments of pBi0GFP and pBioHexGFP were 

cloned into the pCAGSIH expression vector to give pBG1H and pBHGiH, respectively. 

A third CAG IRES Hygro construct, pBHiGiH, was generated by cloning an amplified 

IRES sequence into the Agel site of pBHGiH. c, Following transient transfection into 

HEK293 cells, GFP expression from pBGiH, pBHGiH and pBHiGiH was monitored 

after 48 hours by fluorescence microscopy. Scale bars represent 50pm. d, Diagram 

depicting the reporter constructs used in a luciferase assay to determine the 

functionality of pBHGIH. e, A reporter construct containing reiterated Tcf binding sites 

(TOPflash) or mutated versions of these sites (FOPflash) was transfected into 

HEK293 cells with the indicated constructs (bOng of each). In the presence of a 

mutated version of 3-catenin (stabilised 3-catenin), the two bio-tagged Hex constructs 

(pBHGiH and pBHIGiH) and wild-type Hex (CAG Hex) comparably increase the 

activity of TOPflash beyond that obtained from an empty vector with a CAG promoter 

(CAG). The control vector, pBGiP does not amplify this signal. 
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(wild-type), pBHGiH or pBHiGiI-I. This result was specific for the TopFlash 

reporter as no activity was seen with FopFlash. Amplification of -catenin induced 

activation was not seen with the control vector, pBGiH. These results indicated that 

the modified Hex proteins expressed from pBHGiH and pBHiGiH displayed wild-

type activity in vitro and supports the result of the observed wild-type effect of 

BioHexGFP in Xenopus. 

3.4 Generation and analysis of a Bi0HexGFP overexpression construct 

with a puromycin selectable marker. 

(I) Subcloning of B1oHexGFP into the expression vector pCAGSIP 

The expression vector pCAGSIP is similar to pCAGSIH aside from the presence of a 

gene conferring resistance to puromycin rather than hygromycin. The Xho/Not 

fragments of the three hygromycin constructs were subcloned into pCAGSIP to give, 

pBGiP, pBHGiP and pBHiGiP (Fig. 3.4a,b). 

Expression of puromycin constructs in HEK293 cells. 

All three puromycin constructs were transiently transfected into HEK293 cells to 

check for GFP expression. Both pBGiP and pBHGiP showed strong fluorescence 

whereas pBHiGiP was weaker, again probably due to a translation gradient effect of 

the IRES element (Fig. 3.4c). 

pBHGiP and pBHiGiP enhance 13-catenin transcriptional activity in vitro. 

As with the hygromycin constructs, the three puromycin constructs were tested for 

Hex function using the TopFlash assay (Fig. 3.4d). Again, the two Hex containing 

vectors, pBHGiP and pBHiGiP, and wild type Hex expressed proteins that 

comparably enhanced 13-catenin induced activation of the TopFlash reporter. This 

effect was specific to the TopFlash reporter as no effect was seen with FopFlash. The 
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Fig. 3.4 Cloning, expression and functional analysis of pBHGIP. 

a, Map of pCAGSIP. b, The Xhol/Notl fragments of pBGiH, pBHGiH and pBHiGiH 

were cloned into the pCAGSIP expression vector to give pBGiP, pBHGiP and 

pBHiGiP, respectively. c, Following transient transfection into HEK293 cells, GFP 

expression from pBGiP, pBHGiP and pBHiGiP was monitored after 48 hours by 

fluorescence microscopy. Scale bars represent 50pm d, A reporter construct 

containing reiterated Tcf binding sites (TOPflash) or mutated versions of these sites 

(FOPflash) was transfected into HEK293T cells with the indicated constructs (bOng 

of each). In the presence of a mutated version of 3-catenin (stabilised -catenin), the 

two BioHex constructs (pBHGiP and pBHiGiP) and wild-type Hex (CAG-Hex) 

comparably increase the activity of TOPflash beyond that obtained from an empty 

vector with a CAG promoter (CAG). The control vector, pBGiP does not amplify this 

signal. 
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Hex negative vector, pBGiP did not enhance f3-catenin induced activation of 

TopFlash. These results indicated that pBHGiP and pBHiGiP displayed wild-type 

activity in vitro. 

3.5 Western analysis of pBHGiH and pBHGiP. 

To confirm that BioHexGFP is indeed an intact fusion protein when expressed from 

either CAG driven vector, western analysis with an anti-GFP antibody was carried 

out on lysates of HEK293 cells that had been transiently transfected with the 

hygromycin and puromycin constructs (Fig. 3.5). Both Hex negative control 

constructs, pBGiH and pBGiP, produced a band corresponding to a predicted size of 

31 kda for a BioGFP fusion protein. Both BioHexGFP constructs, pBHGiH and 

pBHGiP, produced a band corresponding to the predicted size of 61 kda for a fusion 

protein. pBHiGiH and pBHiGiP which contained an IRES element between Hex and 

GFP should have produced a band of the same size as that obtained with the positive 

control pEGFPN 1. Only a very faint band can be seen for pBHiGiH and a slightly 

stronger one for pBHiGiP, reflecting the faint GFP fluorescence seen in figures 3.3c 

and 3.4c. 

3.6 Generation and analysis of a BioHex inducible overexpression 

vector. 

A third set of CAG driven overexpression vectors bearing a bio-tagged Hex cDNA 

was generated in order to permit its inducible expression. The parental vector used 

(pTLC, a kind gift from John Hall) consisted of a foxed DsRed IRES Puromycin 

stop cassette upstream of IRES-GFP. Expression from this vector would generate 

both a red fluorescent marker of expression as well as conferring resistance to 

puromycin. In this way, puro resistant colonies can be screened for high levels of 

homogenous expression prior to using lines for studies of inducible Hex over 

expression (chapter 5). Only upon the removal of the foxed DsRed IRES puromycin 
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Fig. 3.5 Western Analysis of pBHGiH and pBHGiP. 

Equal quantities (4pg) of pBHGiH, pBHGiP or the control constructs (pBGiH, 

pBHiGiH, pBGiP, pBHiGiP) were transiently transfected into HEK293 cells. 48 hours 

after transfection, lysates were analysed by western blotting with an anti-GFP 

antibody. As a positive control, cells were transfected with the vector pEGFP-N1. 

Non-transfected cells were included as a negative control. The predicted sizes for 

GFP, Bio-tagged GFP and BioHex-GFP are 27kda, 31kda and 61kda, respectively. 
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stop cassette in the presence of Crc recombinase (Cre), expression of the downstream 

components would be permitted. The presence of Pacl and NheI restriction sites 

between the removable cassette and IRES-GFP allowed the insertion of a eDNA of 

interest. 

(I) Cloning of BioHex into pTLC. 

Primers with PacT and NheI ends were used to amplify either the Bio-tagged 

sequence or the Bio-tagged Hex cDNA from pBioHexGFP. Each amplicon was 

cloned into the respective sites of pTLC generating pTLC Bio and pTLC BioHex, 

respectively (Fig. 3.6a,b). 

Expression of pTLC BioHex in HEK293 cells. 

Both pTLC Bio and pTLC BioHex were transiently transfected into HEK293 cells in 

the presence or absence of a vector expressing Cre from a CAG promoter. Both 

inducible vectors when transfected alone produced strong red fluorescence, while 

GFP could not be seen. However, when co-transfected with Crc each produced a 

marked reduction of red fluorescence while strong GFP fluorescence became 

apparent (Fig. 3.6c,d) 

pTLC BioHex in the presence of Cre enhances 13-catenin transcriptional 

activity in vitro. 

To test the function of Hex in the context of the TLC inducible overexpression 

vector, pTLC BioHex was co-transfected with a CAG driven Cre vector into 

HEK293 cells alongside b-catenin and the TopFlash reporter. While co-transfection 

of pTLC Bio (with out the Hex insert) had no effect on b-catenin activity, co-

transfection of Cre, alongside pTLC BioHex has a similar affect on b-catenin activity 

as did co-transfection of the parent CAG-hex expression plasmid (Fig. 3.6e). This 
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Fig. 3.6 Cloning, expression and functional analysis of pTLC BioHex. 

a, Map of the inducible overexpression vector pTLC. b, The bio-tagged Hex cDNA 

sequence or the bio-tagged sequence alone was amplified from pBioHexGFP with 

primers containing Pacl and Nhel restriction sites. Resultant digested products were 

cloned into the corresponding sites of pTLC to give pTLC Bio and pTLC BioHex. 

Following transient transfection into HEK293 cells expression was monitored after 48 

hours by fluorescence microscopy. c, pTLC Bio was transfected alone or with a Cre 

expressing vector. d, pTLC BioHex was transfected alone or with a Cre expressing 

vector. Bright field, red filter and green filter photographs are shown for each 

transfection. Scale bars represent 50pm. e, A reporter construct containing reiterated 

Tcf binding sites (TOPflash) or mutated versions of these sites (FOPflash) was 

transfected into HEK293T cells with the indicated constructs (bOng of each). In the 

presence of a mutated version of f3-catenin (stabilised 13-catenin), wild-type Hex 

(CAG Hex) and pTLC BioHex + Cre comparably increase the activity of TOPflash 

beyond that obtained from an empty vector with a CAG promoter (CAG). The control 

vector, pBGiP + Cre does not amplify this signal. 
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result indicated that pTLC BioHex in the presence of Crc displays wild-type Hex 

activity. 

3.7 Cloning strategies to generate knock-in targeting vectors to 

introduce BioHex cONA into the Hex Locus. 

Several cloning steps were undertaken to introduce BioHex cDNA together with a 

selection cassette into a targeting vector containing homologous sequences to the 

Hex locus, pTlPa, as detailed in figure 3.7. Two different targeting vectors were 

produced containing either BioHexGFP (pTl BHG) or BioHex-IRES-Venus (pTl 

BHIV) cDNA ligated into PacT and AscI restriction sites positioned 27nt downstream 

of the ATG sequence of exon 1. Sequencing was performed to confirm that the ATG 

of the Biotin tag in each targeting vector was in frame with the upstream ATG (Data 

not shown). The selection cassette used consisted of LoxP sites flanking a CMV 

promoter upstream of a cDNA coding for a fusion protein conferring hygromycin 

resistance and gancyclovir sensitivity (HyTK). This would allow positive selection of 

clones containing the targeting vectors, and subsequent selection against clones still 

containing the cassette following Cre recombinase addition. 

The second targeting vector, pTl BHIV, was designed to include a fluorescent 

reporter in conjunction with an IRE  sequence downstream of the BioHex cDNA. 

An IRES Venus cassette was used from the gene trap vector pGTIV2 which has been 

shown to act as an efficient reporter of expression in undifferentiated and 

differentiated cultures (Tanaka and Stanford, personal communication). The sensitive 

nature of this cassette is due to the presence of an artificial sequence composed of 

tandem repeats of a 9nt gtx segment which has been shown to confer enhanced IRES 

activity (Chappell et al., 2000) in addition to the YFP variant, Venus, which is 

reported to be brighter than GFP (Nagai et al., 2002). 

3.8 Expression and Function of BioHex IRES Venus in Hek293T cells. 
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Fig. 3.7 Cloning scheme for targeting BioHex to the Hex locus. 

A series of cloning steps was performed in order to introduce BioHex cDNA into a 

targeting vector containing homologous regions to the Hex locus (f). Oligonucleotide 

linker sequences were introduced into the Xhol and AflIl sites of pBioHexGFP (a) in 

order to create Pacl and BamHl sites (b). The Pad, BamHl fragment of vector b was 

cloned into the respective sited of pNEB193 (c). A BamHl fragment containing a 

foxed CMV HygroTk cassette was introduced into the BamHl site of vector c (d). A 

variant of vector d was produced by swapping the EGFP sequence with an Agel, 

Notl cassette containing an IRES upstream of cDNA coding for the EYFP variant, 

Venus (e). The Pad, Ascl fragments of vectors d and e were cloned into the 

respective sites of the targeting vector (f) to give pTl BHG (g) and pTl BHIV (h), 

respectively. B = BamHl, E = EcoRl, S = Sail 
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The BioHex in the context of the targeting vector has additional coding sequence 

derived from the first exon of Hex and the insertion of the tag. This sequence is 

depicted in Figure X and could alter Hex activity. Before targeting was initiated I 

checked that a Hex protein with this sequence could be expressed and function 

normally. To this end I first introduced BHIV cDNA into an expression vector with 

a CMV promoter (Fig. 3.8a). Then, an oligonucleotide linker coding for the first 27nt 

of Hex exon 1 was ligated into the Pacl site between the CMV promoter and BioHex 

sequence to produce pBHIV (Fig. 3.8b). 

Transient transfection experiments of pBHIV in HEK293T cells were carried out to 

monitor expression of the IRES Venus reporter by fluorescence microscopy (Fig. 

3.8c) and function of Hex by employing the TopFlash assay (Fig. 3.8d). Venus 

expression was easily detectable after 48 hours and Hex function appeared almost 

identical to that of wild-type Hex. 

In order to test the detection and imnunoprecipitation of BioHex by streptavidin, 

HEK293T cells were transiently transfected with pBHIV and cultured for 48 hours. 

Equal quantities of cell lysate from transfected cells were subjected to western 

analysis with streptavidin-HRP or immunoprecipitation with streptavidin coated 

magnetic beads (Dynabeads). A band of the expected size (42 kD) for the BioHex 

protein was observed in the input lane (Fig. 3.8e(i)). Background bands could be 

accounted for by the fact that there are other endogenously biotinylated proteins 

present in mammalian cells (de Boer et al., 2003). The BioHex protein in this context 

appeared to be efficiently precipitated with Dynabeads (bound fraction) with no 

BioHex protein evident in the unbound fraction (Fig. 3.8(u)). 

Discussion 

This chapter has described the generation of various constructs containing BioHex 

cDNA in conjunction with a fluorescent reporter. Expression analyses in HEK293 

cells were used to monitor the integrity of Hex function and viability of the reporter 
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Fig. 3.8 Expression and function of BioHex IRES Venus in HEK293 cells. 

In order to test the expression and function of the BioHex IRES Venus element in 

transient transfection experiments with a CMV promoter, the Pad, Not[ fragment of 

'vector e' was cloned into the respective sites of 'vector b' (Fig. 3.7b,e) to give pbHlV 

(a). An oligonucleotide sequence coding for the first 27nt of Hex exoni with Pad 

ends was cloned into the Pacl site of pbHlV to give pBHIV (b). The vector pBHIV 

was used in transient transfection experiments to check the expression and function 

of BioHex IRES Venus. c, Following transfection into HEK293 cells, expression of 

pBHIV was monitored after 48 hours by fluorescence microscopy. Scale bars 

represent 50pm. d, The Topflash assay was performed with the indicated constructs 

(bOng of each) in HEK293T cells. In the presence of stabilised 13-catenin, pBHIV 

and wild-type Hex (pmHex) comparably increase the activity of TOPflash beyond 

that obtained from an empty vector with a CMV promoter (pCS2). e, Following 

transient transfection of pBHIV into HEK293 cells, equal quantities of cell lysate 

were used for western analysis (i) or for precipitation with streptavidin beads and 

western analysis (ii). I = input, B = bound, U = unbound. B = BamHl, E = EcoRl, S = 

Sail 
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for each construct. The following chapters will describe the use of these constructs to 

monitor physiological expression (chapter 4) or for studies of the consequence of 

stable overexpression (chapter 5). Clearly the original design of these tools was 

intended for more extensive biochemistry although the focus of this thesis has 

centred on key observations made using the targeted line described in figure 4.1. In 

the future, either I or someone else in the lab will continue with the biochemistry and 

this chapter is designed to not only introduce the reagents used in Chapter 4 and 5, 

but provide a complete catalogue of all the tools I constructed, even those that do not 

feature prominently in this thesis. 



Chapter 4 

Physiological Expression of Hex in mouse ES cells 
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Introduction 

The expression of BioHex in conjunction with a fluorescent reporter from the Hex 

locus would provide the means to generate physiological levels of biotinylated 

protein for in vivo localisation and identification of direct targets and protein 

partners. This approach would ensure that wild-type levels of Hex were expressed 

and therefore provide confidence in the interpretation of results from downstream 

experiments as being truly representative of function and location. Expression of the 

triple fusion BioI-IexGFP eDNA from the Hex locus would provide the additional 

ability to look at sub-cellular localisation at various stages of early mouse 

development, providing further clues to the role of this transcription factor. Such 

knowledge might help generate an understanding of why it is the lack of Hex 

expression in the ADE and not extraembryonic tissues that gives rise to the observed 

phenotypes seen in the null embryo (Martinez Barbera et al., 2000). For biochemical 

analysis, a screen for downstream targets and partners could be performed directly 

from the Hex expression domains of mouse embryos following the isolation of Bio-

tagged Hex proteins. 

Additionally, such a cell line would prove a useful substrate for an in vitro 

differentiation protocol developed in our laboratory which can direct ES cells to form 

a population representing the ADE (Morrison et al. in preparation). 

Identification of targets and protein partners from these methods in which BioHex is 

expressed at natural levels would reduce the chances of artefacts due to 

overexpression and/or misexpression, thus providing an insight into its function in 

vivo. 

Two targeting vectors with homologous arms to the Hex locus were generated 

containing BioHex cDNA, pTl BHG and pTl BHIV (Fig. 3.7g,h). pTl BHG was 

based on a triple fusion cDNA of BioHexGFP and the second, pTl Buy, contained 

an IRES Venus sequence downstream of BioHex. Thus, each targeting vector would 
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introduce BioHex into the Hex locus together with a fluorescent reporter expressed 

either as a fusion with BioHex or bicistronically from an IRES sequence. 

This chapter will report on the successful use of pTl BHIV to target BioHex to the 

Hex locus and the subsequent analyses of the resultant BHIV cell line. I will show 

that Venus reporter expression from the. targeted allele reflects true transcriptional 

activity from the Hex locus and the existence of a subpopulation of Venus positive 

self-renewing ES cells. Manipulation of FGF signalling and Nanog expression 

together with gene expression analysis suggest that this population of cells may 

represent pre-fated precursors of the primitive endoderm. While both Venus positive 

and negative cells can interconvert and both are positive for ES cell markers 0ct314 

and SSEA1, the former have a restricted ability for clonal growth and embryo 

contribution. 

4.1 Electroporation of pTl BHIV into R2613irA cells. 

pT 1 BHIV was linearized with FspI and electroporated into R26birA ES cells which 

were then cultured in media containing 20Oig/m1 of hygromycin for 14 days. 

Surviving clones were expanded to isolate genomic DNA for Southern analysis with 

various probes in order to check for correct targeting to the Hex locus. Figure 4.1 

depicts the strategy for targeting pTl BHIV to the Hex locus and the resultant 

Southern analyses from hygromycin resistant clones. Two external probes revealed 

successful integration in the locus as defined by the presence of targeted bands of the 

expected sizes (Fig. 4.1 b,d). Use of an internal probe which recognizes the Venus 

sequence showed the presence of only 1 integration event with pTl BHIV (Fig. 

4.1 c). These results, show the successful targeting of pT 1 BHIV to the Hex locus with 

no additional integration events into other loci. 
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Fig. 4.1 Targeting of BioHex IRES Venus to the Hex locus. 

a, Schematic representation of the gene targeting strategy to introduce BioHex 

IRES Venus (BHIV) to the Hex locus. pT1BHIV was designed such that the ATG of 

BHIV cDNA was downstream and in frame with the ATG of exon 1. A CMV driven 

HyTK cassette was introduced to allow for positive and negative selection. 

Following electroporation into R26 BirA cells and selection in hygromycin 

(200pg/ml), surviving clones were expanded and isolated genomic DNA was 

subjected to Southern analyses. Numbered bars represent the probes used for 

Southern analysis. b, Genomic DNA digested with EcoRV was hybridised with 

probe 1 revealing WT (11.3 kb) or targeted (9.3 kb) bands. c, Genomic DNA 

digested with EcoRV and hybridised to probe 2 shows the expected size (9.3 kb) for 

a single integration event only into the Hex locus. d, Genomic DNA digested with 

Scal was hybridised with probe 3 revealing WT (17.5 kb) or targeted bands (11.5 

kb). C = digested genomic DNA from unelectroporated R26 BirA cells. 
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4.2 Selection cassette removal and karyotypic analysis of BHIV clones. 

Three positive clones showing a correct targeting event were expanded and 

electroporated with a CAG driven Cre plasmid in order to remove the foxed 

selection cassette. Following two days in culture, cells were plated at clonal density 

and cultured with gancyclovir for 14- days. Gancyclovir resistant (GancR)  clones were 

expanded for genomic DNA extraction and PCR analysis to confirm removal of the 

selection cassette (Fig.4.2a). Chromosome spreads were prepared from GancR  clones 

to check for 'karyotypic integrity (Fig. 4.2b). Forty chromosomes were seen for each 

of the three clones expanded. 

4.3 Sequencing of BHIV clones. 

To check the integrity of the reading frame between the ATG of exon 1 of Hex and 

the ATG at the beginning of the BioHex cDNA, genomic DNA from BHIV' clones 

was subjected to PCR and sequence analysis. Primers were chosen to amplify this 

region specifically from the targeted allele. Figure 4.3 shows partial resultant 

sequence from isolated PCR products. An intact ORF was present between the 

endogenous ATG of exon 1 and the beginning of the biotinylation tag sequence 

running into the downstream Hex cDNA. 

4.4 Production and analysis of chimeric mice with BHIV clones. 

ES cells from BHIV clones 5.1 and 16.1 were used to generate chimeric mouse 

embryos by aggregation with Fl C57B16 host morulae. Following transfer of 

aggregates into pseudo-pregnant mice, embryos were isolated at E9.5 for analysis by 

fluorescence microscopy. Approximately 50% of recovered embryos from each 

clone displayed green fluorescence indicative of contribution. The pattern of Venus 

expression in embryos resembled that of Hex seen from previous studies in embryos 
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Fig. 4.2 Removal of selection cassette and karyotypic analysis of BHIV clones. 

Three BHIV clones were electroporated with a Cre expressing plasmid in order 

remove the CMV driven HyTK selection cassette from the targeted Hex locus. 

Following selection in gancyclovir surviving (GancR)  clones were expanded and 

genomic DNA was isolated for PCR analysis. a, Primers specific for the hygromycin 

resistance gene were used to confirm the removal of the selection cassette from 

GancR clones . A control PCR using primers specific to the Hex promoter region 

indicates genomic DNA from all samples can be amplified. b, Chromosome spreads 

were prepared from semi-confluent cultures of GancR  BHIV clones for karyotype 

analysis. Forty chromosomes were observed for each clone. C = control parental 

genomic DNA, W = water. 
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Fig. 4.3 Sequencing of BHIV clones. 

PCR was performed on genomic DNA from three BHIV clones with the indicated 

primers, Pf and 4r. Products of the expected size for amplification from the targeted 

allele were obtained for each of the clones tested. DNA from unelectroporated 

R26BirA cells and pTl BHIV was included as negative and positive controls, 

respectively. The resultant products were purified and sequenced. The schematic 

diagram shows sequence obtained spanning the ATG region of Hex confirming an 

intact ORE continuing into the BHIV cDNA. 
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at the same developmental stage by in situ hybridisation (Thomas et al., 1998) or by 

means of a GFP-transgenic BAC reporter (Rodriguez et al., 2001) (Fig. 4.4). 

4.5 In Vitro differentiation of BHIV clones. 

Previous work in our laboratory has produced a reporter cell line in which a variant 

of DsRed, Redstar, was knocked into the Hex locus. This Hex-Redstareporter line 

(HRS) has been used to establish in vitro differentiation protocols that generate 20-

30% of cells expressing the Redstar protein. It has been shown that this population 

expresses genes of the ADE and does not express markers of neuroectoderm or those 

that are unique to mesoderm (Morisson et al., in press). BHIV clones were subjected 

to the 7 day protocol outlined in figure 4.5a in which ES cells are allowed to 

differentiate in non-adherent cultures in the presence of activin A, an agonist of 

TGF-f3/Nodal signalling. HRS and parental R26BirA cells were included in the 

experiment as positive and negative controls, respectively. Resultant EBs, grown in 

the presence or absence of activin A, were dissociated and subjected to FACs 

analysis to measure the emergence of fluorescent cells. As expected for the HRS line, 

22% cells were positive for red fluorescence, an effect that was activin specific. Each 

of the two BHIV clones showed high percentages of green fluoresce even in the 

absence of activin, however these percentages were 10-15% greater in the presence 

of activin (Fig. 4.5b). 

The high background fluorescence observed with the BHIV clones in the absence of 

activin was surprising due to the lack of redstar positive cells seen in the HRS line 

under the same conditions. This difference could be explained by the choice of 

fluorescent reporter used in the BI-IIV line. The use of Venus has been reported to 

have similar high background fluorescence in conjunction with a Sox17 reporter 

construct in mouse embryos (Sherwood et al., 2007). Additionally, the IRES element 

positioned between BioHex and Venus is known to be extremely efficient at driving 

translation bicistronically due to the presence of repeated gtx sequences 
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Fig. 4.4 Chimera analysis of BHIV cells 

ES cells from BHIV clones 5.1 and 16.1 were aggregated with Fl host morulae for 

chimera analysis. Following transfer into psuedo-pregnant mice, embryos were 

obtained at E9.5 and observed with fluorescence microscopy. a, Whole mount in situ 

hybridisation analysis at E9.5 showing Hex expression in the thyroid (black 

arrowhead), liver primordia (white arrowhead), intersomitic vessels (white arrows) 

and roof of the dorsal aorta (black arrow) (Thomas et.al . 1998). b, Transgenic 

expression of GFP under the control of the Hex promoter of a simliar stage embryo 

reflects that seen for Hex in a (Rodriguez et. al. 2001). C, BHIV chimera produced 

from clone 5.1 showing expression of Venus in the thyroid (black arrow), intersomitic 

vessels (white arrowheads), the dorsal aorta region (white arrow) and liver 

primordium (black arrowhead). d, BHIV chimera produced from clone 16.1 showing 

similar regions of Venus expression. 
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Fig. 4.5 In vitro differentiation of BHIV cells. 

BHIV clones were cultured during in vitro differentiation to generate embryoid bodies 

(EBs) using a protocol shown to promote the appearance of cells expressing genes 

indicative of definitive endoderm (Morrison et al., in preparation). The Hex Redstar 

(HRS) reporter line and control R2613irA cells were cultured as positive and negative 

controls, respectively, a, schematic representation of the differentiation protocol. 

Each line was cultured in the presence (+) or absence of activin. b, At day 7, EB5 

were dissociated and analysed by FACs to measure the presence of red or green 

fluorescent cells. The Y axis represents the FL2 channel which was set to measure 

DsRed fluorescence in order to monitor Hex expression from the HRS line. The X 

axis represents the FL3 channel set to measure Venus fluorescence from the BHIV 

line. c, RNA was collected from 3 BHIV clones cultured with activin for cDNA 

synthesis and PCR analysis with the indicated primers to detect the presence of 

BioHex mRNA. 
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(Chappell et al., 2000). Despite this observation, the presence of activin always 

yielded 10-15% more Venus positive cells during this differentiation procedure. 

To confirm the expression of BHIV mRNA, rtPCR was performed on RNA from 

activin treated samples. Primers specific to different regions of BHIV successfully 

detected expression of this cDNA in three different clones (Fig. 4.5c). 

4.6 Time course of activin specific fluorescence induction and definitive 

endoderm marker expression. 

A time course experiment was undertaken using the in vitro differentiation protocol 

to examine in greater detail the emergence of fluorescent cells and definitive 

endoderm marker expression in the BHIV line. EBs grown in the presence or 

absence of activin were collected at days 6, 7 and 8 for FACs and qPCR analysis. 

Figure 4.6a shows the additional percentage of fluorescent cells obtained with activin 

compared to the same samples untreated. For the HRS line and 2 BHIV clones, the 

peak of fluorescence induction using this protocol was seen at day 7. Quantitative 

PCR analysis with primers specific to Hex and Cerberus showed a similar pattern of 

expression among BHIV clones, the HRS line and the parental R26BirA cells (Fig. 

4.6b). Expression levels of both genes were seen to be at a similar level to 

undifferentiated ES cells at each time point for samples cultured without activin. In 

the presence of activin, Hex and Cerberus mRNA levels were highest at day 6 in all 

cell lines. The difference in time for highest fluorescence induction and Hex gene 

expression can be explained by the lag in time for translation and folding of the 

fluorescent proteins. These results indicate that, in the presence of activin BHIV 

clones are able to differentiate to form a population of cells expressing anterior 

endoderm markers and that the increase in Venus expression during this time reflects 

this. 

Despite the successful expected physiological expression levels of BioHex cDNA 

from the Hex locus in this ADE cell-type, detection of the BioHex protein proved to 
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Fig. 4.6 Time course of activin specific fluorescence induction and definitive endoderm marker 

expression. 

In vitro differentiation of 2 BHIV clones in parallel with the HRS reporter line and the 

R26 BirA parental line was carried out in the presence (+A) or absence of activin. 

EBs were collected at days 6, 7 and 8 and fluorescence was determined by FACs 

analysis. a, The graph displays the additional percentage of fluorescent cells 

obtained in samples treated with activin compared to the same samples untreated. 

b, EB5 were collected at days 6, 7 and 8 and RNA was isolated for cDNA synthesis. 

Quantitative PCR using the UPL system was carried out to measure the expression 

levels of the definitive endoderm markers Hex and Cerberus at each time point 

alongside undifferentiated cells (ES) for each cell line ;  Hex and Cerberus levels 

were normalised to TBP levels for each sample. Normalised levels are related to the 

undifferentiated R26 BirA sample for each PCR. 
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be problematic. One possible reason for this is the naturally occurring modest 

transcriptional activity at this genomic region. Despite the 50 fold induction of Hex 

from ES cell levels to those of day 7 embryoid bodies in the presence of activin, the 

absolute copy numbers were much less than those obtained for the gene Cerberus 

during this procedure. Additionally, a higher turn-over rate for the BioHex protein 

than that for Venus could have lessened the ability for detection further still. It is 

possible that with improved differentiation procedures in the future, more efficient 

production of anterior endoderm cells in culture will provide the opportunity to 

detect and utilise the BioHex protein expressed from the Hex locus in order to 

undertake target and partner screening. 

4.7 Expression of Venus in undifferentiated cultures 

Observation of BHIV clones under self-renewing conditions revealed detectable 

Venus fluorescence by microscopy in some but not all cells. FACs analysis of 

cultures confirmed this green fluorescence and staining with an anti-SSEA1 antibody 

demonstrated that most of the Venus positive and negative cells were 

undifferentiated ES cells (Fig. 4.7). This result was somewhat surprising as Hex is 

not expressed in the embryo until the formation of the primitive endoderm at E4.5 

(Chazaud et al., 2006; Mesnard et al., 2006; Thomas et al., 1998; Torres-Padilla et 

al., 2007). 

4.8 BHIV expression reflects endogenous noise from the Hex locus. 

The detectable expression of Venus in ES cells of BHIV clones raised the concern of 

possible misexpression since Hex is expressed minimally under self-renewing 

conditions (Kubo et al., 2004; Kunath et al., 2005). Additionally, the HRS reporter 

line does not display red fluorescence when cultured similarly. To address whether 

this effect was due to either aberrant expression of BHIV cDNA from the targeted 

allele or the highly sensitive nature of IRES Venus as a reporter, qPCR was 
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Fig. 4.7 Expression of Venus in a subpopulation of SSEA 1 positive BHIV cells under 

self-renewing conditions. 

R26 BirA parental cells and BHIV clones maintained under self-renewing conditions 

were observed by fluorescence microscopy. Venus expression could be observed in 

a sub-population of ES cells from the BHIV clones. FACs analysis for each line is 

shown in which cells were stained for the presence of the cell surface protein SSEA-

1. Percentages for each quadrant are shown. Scale bars represent 25pm. Control 

plots for SSEA-1 staining are shown as insets. 
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undertaken to measure transcript levels of BHIV mRNA. Primers were chosen to 

amplify either total Hex mRNA (endogenous Hex and BHIV mRNA) or BHIV 

mRNA only. Figure 4.8 shows the results of the qPCR in which the variation of total 

Hex mRNA among BHIV clones is closely reflected by the BHIV mRNA levels. 

Additionally, BHIV levels never exceeded those for total Hex in the parental 

R2613irA line or wild-type Cgr8 ES cells. These results would indicate that the 

detectable expression of Venus seen under self-renewing conditions is not as a result 

of misexpression from the targeted allele but rather it is due to the highly sensitive 

nature of the IRES Venus sequence as a reporter. 

4.9 Venus expression co-localizes with Oct4 but not with Nanog. 

To verify the presence of Venus in undifferentiated cultures, BHIV clones were 

stained with antibodies specific to the pluripotency markers, Oct4 or Nanog. While 

Oct4 appeared to be expressed in all ES cells from BHIV clones and the parental 

R2613irA line, Nanog expression was more heterogeneous (Fig. 4.9a,bc,d). This 

observation of Nanog heterogeneity in ES cells is in agreement with other studies 

(Chambers et al., 2007; Singh et al., 2007). Venus expression from BHIV clones 

could be detected in Oct4 positive cells, however, it tended to be mutually exclusive 

with Nanog expression (Fig. 4.9c,d). Interestingly, some ES cells showed neither 

Venus nor Nanog expression, suggesting the possibility of multiple subpopulations 

existing under self-renewing conditions. 

4.10 Gene expression analysis of Venus positive and negative 

subpopulations. 

In order to examine the differences existing between Venus positive and negative 

cells, BHIV clones were subjected to flow cytometry to segregate the 

subpopulations. Cells were stained with an anti-SSEA1 antibody so that any 

spontaneous differentiated cells, which occur naturally in culture, were 
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Fig. 4.8 Venus expression reflects endogenous noise at the Hex locus among 

different BHIV clones. 

RNA and cDNA was prepared from self-renewing cultures of three SHIV clones, 

parental R26 BirA cells and CgrB cells. qPCR analysis was carried out using Syber 

Green to monitor levels of mRNA derived from both targeted and untargeted alleles 

of Hex (if, 2r) or targeted allele only (Bf, ir). The schematic diagram depicts the 

different primers used. Values for each primer set used were normalised to the actin 

value obtained for each sample. 
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Fig. 4.9 Immunocytochemistry of BHIV clones under self renewing conditions. 

Two BHIV clones and R26BirA parental cells cultured under self-renewing conditions 

were fixed and immunostained to observe the presence of Oct4 and Nanog proteins. 

Primary antibodies specific to Oct4 and Nanog were detected using Alexa 568 

conjugated secondary antidodies. Fixed HEK293 cells were immunostained in 

parallel as a non-ES cell control. a, R26BirA cells. b, HEK293 cells. c, BHIV 5.1. d, 

BHIV 16.1. Green/Bright field, Red/Bright field and mixed Green/Red field images 

are shown for each cell line and each antibody. Scale bar represents 50pm. 
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eliminatedfrom the sorting procedure (Fig.4.1Oa). RNA was isolated from each 

fraction and following cDNA synthesis, qPCR was carried out using the Roche UPL 

system. Comparison of Hex mRNA levels between the two subpopulations showed 

an average of 60% less in the Venus negative fractions than in the positive fractions 

from two different clones. These differences were seen to be greater still with 

another marker of primitive endoderm. Gata6, segregating with the Venus positive 

fraction (Fig. 4.1Ob). 

Markers for pluripotency were next examined by qPCR on the same samples. 

Expression of Nanog, K114 and Rexi was seen to be highest in the Venus negative 

fractions, averaging at least 50% more than in the positive fractions. Levels of 

0c1314, on the other hand were on average equivalent between the two populations 

(Fig. 4.10c). These data suggest that Venus positive ES cells in BHIV clones 

represent a subpopulation pertaining to primitive endoderm in character and possibly 

a precursor of this lineage. 

4.11 Microarray Analysis of BHIV subpopulations 

Two different BHIV clones (5.1 and 16.1) growing under standard self-renewing 

conditions were subjected to flow cytometry to separate four different fractions based 

on Venus (V) and SSEAI (S) expression. RNA was isolated from the following 

fractions of both clones: V-.S+; V+,S+; V-,S-; V+,S- and samples were prepared in 

duplicate (a total of four replicates from each fraction, two technical and two 

biological). In collaboration with Minoru Ko and Alexei Sharov at the NIH in 

Baltimore, samples were hybridised to the NIA Mouse 44K Microarray v2.1 (Carter 

et al., 2005). Pairwise comparisons were performed using standard statistical 

conditions (FDR<0.05, > 1.5-fold expression levels) to unveil genes upregulated or 

downregulated between the Venus positive and negative cells of the SSEAI+ 

fraction (Fig. 4.11 a). As can be seen, very few genes have expression level 

differences between the V- and V+ subpopulations of the SSEAI+ fraction (ES cells) 

C. 



Fig. 4.10 Gene expression analysis of BHIV subpopulations. 

BHIV clones cultured under self renewing conditions were subjected to flow 

cytometry to separate venus positive and negative subpopulations. a, BHIV clones 

were labelled with an anti-SSEA 1 antibody in order to select SSEA 1 positive cells 

from the subpopulations. Purity check percentages are shown for both Venus 

negative, SSEA 1 positive and Venus positive, SSEA 1 positive fractions collected 

for RNA extraction and cDNA synthesis. b, qPCR analysis was performed with the 

UPL system to compare transcript levels of the primitive endoderm markers, Hex 

and Gata6, in the separated subpopulations derived from 2 BHIV clones. c, qPCR 

was carried out on the same samples to compare transcript levels of the 

pluripotency markers, Nanog, KIM, Rexi and Oct4. Venus positive fractions are 

represented as green bars and venus negative, black bars. Transcript levels were 

normalised to the TBP value obtained for each sample. Normalised values are 

related to that obtained for the venus positive fraction derived from each clone. 

M. 
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Fig. 4.11 Microarray analysis of BHIV clones 

BHIV clones cultured under self renewing conditions were subjected to flow 

cytometry to separate four populations based on Venus (V) and SSEA1 (S) 

positivity. RNA was isolated from the following fractions: V-,S+; V+,S+; V-,S-; V+,S-

and hybridised to a Universal mouse expression array, carried out at the laboratory 

of Genetics, NIH, Baltimore in collaboration with M. Ko and colleagues. Pair-wise 

comparisons (FDR<0.05, > 1.5-fold expression levels) were performed between a, 

Venus positive and negative cells in the SSEA1+ fraction and b, Venus positive and 

negative cells in the SSEA1- fraction. Plots are shown comparing mean log 

intensity values for each gene probe among the four RNA samples. Error bars 

represent standard deviation between technical (duplicate RNA samples) and 

biological (two different clones) replicates for each fraction (a total of four replicates). 

Plots are arranged in groups representing: c, pluripotency genes; d, primitive 

endoderm genes; e, mesoderm genes; f, neurectoderm genes; g, neural inhibition 

genes; and h, ICM/Epiblast genes. 
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with only 200 genes more highly expressed in the V+ cells and 160 more in the V-

cells. As expected, the SSEA 1 negative fraction showed greater differences between 

V- and V+ cells (Fig. 4.11 b). Based on the expression of endoderm associated genes, 

this appears to reflect the fact that V+, S- cells are further differentiated than the V+, 

S+ fraction and this would be consistent with the notion that SSEA is a marker of an 

1CM like state. However, the exact cell typed defined by this marker is not always 

clear (see below). 

Histogram plots were created for selected genes representing tissues of different 

developmental origin. Log intensity values are shown of each gene for each of the 

four populations. Error bars represent the standard deviation between the four 

replicates for each of the four samples. Analysis of 16 different 'superpluripotency' 

and gonad related genes all showed a strikingly consistent pattern of underexpression 

in V+ cells (Fig. 4.11 c). This result is in agreement with the immunohistochemical 

and quantitative PCR results shown above in which Hex expression is mutually 

exclusive of Nanog and other pluripotency genes. As SSEA1 negative cells are 

thought to represent spontaneously differentiated cells in culture, it was surprising 

that the expression values of these pluripotency genes appeared similar between the 

V-,S+ and V-,S- fractions. This suggest 'that the V-,S- fraction maybe more 

'pluripotent' in nature, while on the other hand, V+,S- cells maybe considered 

differentiated further still by comparison. Additionally, SSEA1 and Nanog have both 

been shown to display heterogeneous expression pattern in ES cells which do not 

necessarily overlap (Singh et al., 2007). 

To affirm whether Venus positive cells pertain a primitive endoderm character as 

seen above with quantitative PCR, eight primitive endoderm genes were analysed. 

Again a consistent pattern can be seen whereby all these genes are expressed at 

higher levels in V+ cells (Fig. 4.11 d). Differences are seen to be greater in the 

SSEA1 negative fraction, with the highest values for all genes belonging to the 

V+,S- subpopulation. Thus, while Hex positive ES cells (V+,S+) express slightly 

higher levels of primitive endoderm genes, the Hex positive spontaneously 

differentiated population (V+,S-) may be further differentiated toward this lineage. 
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Genes representative of other lineages were analysed also. No consistent pattern 

could be discerned among genes associated with mesoderm, haematopoietic or 

endothelial origin (Fig. 4.11 e). This would suggest that Venus positive cells are not 

differentiating toward (or tending to differentiate toward) these lineages. While genes 

of the neurectoderm lineage were not significantly different between the fractions, 

slightly less expression appears consistently in the Venus positive cells, particularly 

the V+,S- subpopulation (Fig. 4.11 f). Interestingly, two genes associated with the 

inhibition of the neurectoderm lineage , Id] and 1d2, show consistent higher 

expression in Venus positive cells (Fig. 4.11 g). These data would suggest that Venus 

positive cells have no tendency towards this lineage either and may in fact harbour 

characteristics inhibitory to its existence. Finally, analysis of Oct3/4 and Sox2 show 

that there is little if no difference of expression between the V- and V+ cells of the 

SSEA1+ fraction (Fig. 4.1 lh). As suggested above, the V+,S- subpopulation appears 

to be the most differentiated, while the V-,S- subpopulation may still have 

pluripotent character. 

Taken together the microarray analysis demonstrates that Venus positive cells, are 

specifically enriched for genes of the primitive endoderm lineage while they 

underexpress pluripotency genes. This data is in agreement with the possibility that a 

'pre-primitive endoderm' subpopulation exists among Oct314 and SSEA1 positive 

ES cells. 

Additionally, gene ontology analysis performed by A. Sharov revealed that Venus 

positive cells were enriched in genes downstream of both Nodal/Tgf-b and 

components of Writ signalling (Table 4.1). 

4.12 A Nanog binding site exists in a highly conserved region of Hex 

intron I 
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TFGB/Nodal related genes 

Anxa3, Tagln, Krt18, Krtlg, Krt8, Gsn, Vim, Capn2, Anxal, Cavi, 
Prss23, Mmp14, Hmga2, Egfr, Ghr, 1d2, Rhoc, Actal, Acta2, lgf2, 
Wnt9a, Foxci, Fosl2, lnhba 

Wnt related genes 

Wntga, Wnt7a, Wnt2b, Wnt4, Wispi, Dkkl 

Table 4.1 Gene ontology of Venus positive ES cells. 

Gene ontology analysis of the microarray experiment described in section 4.11 was 

performed by A. Sharov at the NIH. Examination of Venus positive ES cells showed 

an enrichment of genes activated by TGFB/Nodal signalling as well as genes 

related to the Wnt pathway. 
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It has been shown previously that the mosaic expression patterns of Nanog and 

Gata6 in the 1CM of E3.5 blastocysts are mutually exclusive of one another 

(Chazaud et al., 2006). Additionally, an attempt to derive Nanog null mice lead to 

embryos consisting of disorganised extraembryonic tissue at the expense of epiblast 

(Mitsui et al., 2003) while in an in vitro study, constitutive overexpression of Nanog 

repressed Gata6 and other markers of primitive endoderm (Hamazaki et al., 2004). It 

was therefore interesting to ask whether Nanog may also . controlling the 

expression of Hex. 

Recent analysis of Oct3/4, Sox2 and Nanog binding regions in the Human genome 

identified a binding site in the first intron of the HEX gene occupied by all three 

transcription factors (Boyer et al., 2005). This region lies within an area of intron 1 

that is also bound by Ets and GATA factors important for haematopoietic 

specification (Donaldson et al., 2005). Therefore, to address whether binding to this 

region is important in an evolutionary conserved context., analysis of the Human 

HEX gene was performed using the Blast-like Alignment Tool (Genome 

Bioinformatics, UCSC. http://genome.ucsc.edu/) . This binding region positioned at 

+1098 from the transcription start site was highly conserved among all mammals, 

chick and Xenopus (Fig. 4.12). 

4.13 Overexpression of Nanog reduces Venus expression in BHIV cells 

To examine whether the Venus expression seen in BHIV cells might be regulated by 

Nanog, a CAG driven Nanog IRES Puro cDNA was introduced into BHIV clone 

16.1 by electroporation. Alternatively, cells were electroporated with a CAG driven 

stuffer sequence upstream of IRES Puro to control for the electroporation and 

selection processes. Clones derived from each construct following selection in 

2.ig/ml of puromycin were isolated for further analyses. 

Initial studies of the role of Nanog have shown that its overexpression in ES cells 

resulted in an ability to maintain the undifferentiated state in the absence of LIF 
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Fig. 4.12 Conservation of Oct4/Sox2 and Nanog binding site in intron 1 of the 

human HEX gene 

Based on the study of combinatorial genomic site occupancy by Oct4JSox2/Nanog 

using genome wide ChIP analysis, a region positioned at +1098 from the 

transcription start site of the human HHEX gene was identified (Boyer et al. 2005). 

Using the Blast-Like Alignment Tool (Blat) (Genome Bioinformatics, UCSC. 

http://genome.ucsc.edu/ ), this site was seen to be highly conserved among many 

species. 
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(Chambers et al., 2003; Mitsui et al., 2003). Therefore, to verify overexpression in 

BHIV cells, clonal transfectants derived from Nanog or Control transgenes were 

subjected to culturing under selection and in the absence of LIF for 7 days. Control 

clones showed obvious signs of differentiation while those containing the Nanog 

transgene remained morphologically similar to ES cells (Fig. 4.13a). Western 

analysis on the same clones cultured under selection in the presence of LIF 

confirmed increased Nanog protein levels in those harbouring the transgene (Fig. 

4.13b). 

Measurement of Venus levels by FACs in Nanog overexpressing BHIV clones 

revealed an average decrease of fluorescent cells from 35 to 12% when compared to 

parental untransfected BHIV cells or those expressing the control transgene (Fig. 

4.13c). This data suggests that Nanog represses Hex expression in ES cell cultures 

potentially through similar mechanisms used to reduce other primitive endoderm 

markers. The following experiments address this possibility. 

4.14 Manipulation of FGF signalling alters the levels of Venus 

Expression 

Previous analyses have demonstrated that FGF signalling through the Grb2/Mek 

pathway is necessary for primitive endoderm specification. Grb2 null embryos fail to 

form primitive endoderm concomitant with an upregulation of Nanog expression in 

the 1CM (Chazaud et al., 2006). Additionally, in vitro studies have shown that ES 

cells cultured with the FGFR inhibitor SU5402 lead to a similar dual effect of Nanog 

upregulation and a reduced ability to form primitive endoderm (Hamazaki et al., 

2006). 

To test whether a block to FGF signalling could lead to a reduction in Hex, 

expression of Venus was monitored in two different BHIV clones that were cultured 

for 48 hours under self-renewing conditions in the presence of the FGFR inhibitor 

PD 173074 (Mohammadi et al., 1998) or vehicle (DMSO). In addition, a Soxl-GFP 
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Fig. 4.13 Venus expression is reduced in Nanog overexpressing BHIV cells. 

BHIV cells overexpressing Nanog were derived by electroporatiori of a vector 

containing the Nanog cDNA downstream of a CAG promoter and selection in 

puromycin (2pgIml). Control clones were derived by electroporation of a similar 

construct but with stuffer DNA in place of the Nanog cDNA. a, Puromycin resistant 

clones derived from Control and Nanog vectors were cultured for 7 days in the 

absence of LIF. ES  cells were still evident in the Nanog overexpressing clones. b, 

Lysates were obtained from control and nanog clones together with the BHIV 

parental cells grown under self-renewing conditions. Western analysis was 

performed on the lysates with antibodies specific to nanog or a -tubulin. c, Venus 

expression in Nanog overexpressing, control and parental BHIV cells cultured under 

self-renewing conditions was monitored by fluorescence microscopy and d, FACs 

analysis. Green and bright field images are shown for each cell line plated at clonal 

density. For FACs analysis, ES cells were labelled with an anti SSEA 1 antibody. 

Percentages for each quadrant are shown. Control plots for SSEA 1 staining are 

shown as insets. Scale bars represent 50pm. 
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knock-in line, marking early neural fate decisions, was cultured similarly as a non 

primitive endoderm reporter control (Ying et al., 2003). Quantitative PCR analysis of 

isolated RNA from PD 173074 treated clones revealed an expected increase of Nanog 

expression with a slight decrease in Gata6 levels compared to untreated samples 

(Fig.4. 1 4a). The percentages of Venus expressing cells in BHIV clones was reduced 

by 10-15% in the presence of PD173074 while fluorescence from the Soxl-GFP 

reporter line was unchanged (Fig. 4.14b). This result indicates that blockage of FGF 

signalling leads to a reduction in numbers of a Hex expressing subpopulation while 

favouring a more pluripotent phenotype reflected by the increase of Nanog mRNA 

levels. 

In a complimentary manner, FGF signalling through the Grb2/Mek pathway can be 

potentiated by the phosphatase inhibitor sodium vanadate leading to increased 

primitive endoderm formation in aggregate cultures as a consequence of Nanog 

repression (Hamazaki et al., 2006). BHIV clones were allowed to aggregate for 48 

hours on gelatin-free dishes in the presence of LIF and 50jiM of sodium vanadate or 

LIF alone. Measurement of RNA levels by qPCR showed a reduction of Nanog and a 

concomitant increase of Gata6 in BHIV clones cultured with sodium vanadate (Fig. 

4.14c). Analysis  by FACs of the same clones revealed an average increase of 25% in 

the number of cells displaying Venus fluorescence compared to untreated aggregated 

samples. Sodium vanadate did not increase the number of fluorescent cells from the 

Sox l-GFP reporter line (Fig 4.14d). 

These data confirm the previous findings that potentiation of the FGF pathway leads 

to a decrease in Nanog resulting in the upregulation of the primitive endoderm 

marker Gata6 and that the increase in Venus positive cells in BHIV clones reflects 

this. 

4.15 Reversibility of Venus positive and negative subpopulatioñs 
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Fig. 4.14 Manipulation of FGF signalling alters levels of Venus expression. 

BHIV clones and R26BIrA parental cells were cultured under self-renewing 

conditions in the presence or absence of the FGF receptor inhibitor PD173074 

(lOnM) for 48 hours. A Soxl-GFP cell line was included in the experiment in order to 

monitor expression of early neural fate. a, Treated and untreated BHIV clones were 

harvested for RNA extraction and cDNA synthesis. qPCR analysis using the UPL 

system was carried out to compare the transcript levels of Nanog and Gata6. 

Transcript levels were normalised to the TBP value obtained for each sample. 

Normalised values are related to the untreated sample for each clone. b, FACs 

analysis of untreated and treated cultures of R26BirA, Soxl-GFP, BHIV 5.1 and 

BHIV 16.1 cells are shown. c, BHIV clones and R26BirA parental cells were cultured 

on non-gelatin coated plates, allowing formation of ES cell aggregates in the 

presence (Agg + Na 3VO4  ) or absence (Agg) of 50 pM sodium vanadate. Again, a 

Soxl-GFP cell line was included as a non primitive endoderm reporter. c, Treated 

and untreated BHIV clones were harvested for RNA extraction and cDNA synthesis. 

qPCR analysis using the UPL system was carried out to compare the transcript 

levels of Nanog and Gata6. Transcript levels were normalised to the TBP value 

obtained for each sample. Normalised values are related to the untreated sample for 

each clone. d, FACs analysis of untreated and treated cultures of R26BirA, Soxi-

GFP, BHIV 5.1 and BHIV 16.1 cells are shown. 
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Fig. 4.15 Reversibility of Venus positive and negative populations. 

BHIV cells cultured under self renewing conditions were subjected to flow cytometry 

to separate venus positive and negative subpopulations. a, BHIV 16.1 was labelled 

with an anti-SSEA 1 antibody in order to select SSEA 1 positive cells from the 

subpopulations. Purity check percentages are shown for both Venus negative, 

SSEA 1 positive and Venus positive, SSEA 1 positive fractions obtained for clonal 

density and single cell plating. b, Representative clones produced from each fraction 

plated at clonal density (100 cells/ml). Scale bar represents 50pm. c, Numbers of 

clones produced from clonal density plating. d, FACs analysis of clones produced 

from each fraction plated at single cell density. Representative data is shown for 

clones derived from venus positive and negative fractions together with unsorted 

BHIV 16.1 cells and R26BirA parental cells. e, Following culture under self-renewing 

conditions for 24 hours, cells from each fraction were stained for SSEA 1 and 

subjected to FAGs analysis. Control plots for SSEA I staining are shown as insets. 
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To examine whether Venus positive and negative subpopulations were restricted to 

generating cells of their own kind de novo, each fraction was purified by flow 

cytometry and grown in culture (Fig. 4.15a). SSEA 1 positive cells of each purified 

fraction were plated at clonal density and at a single cell level. Clonal density plating 

of each population of sorted cells produced colonies with heterogeneous Venus 

expression, indicating reversibility (Fig 4.15b). Over three times more clones from 

the Venus negative cells than positive cells were produced suggesting an enhanced 

ability to permit clonal growth in the former subpopulation (Fig. 4.1 5c). 

Additionally, clones derived from single cell plating of the sorted fractions showed 

similar proportion of fluorescence as unsorted parental cells after 10 days growth 

(Fig. 4.1 5d). The ability of single BHIV cells to generate both subpopulations 

confirms clonality of the line, ruling out the possibility of two different cell types 

existing together as a mixed clone. 

FACs analysis of Venus negative cells plated after flow cytometry separation 

revealed the emergence of Venus positive cells within 24 hours. Conversely, Venus 

positive cells cultured for the same duration lead to a similar proportion of cells that 

interconverted. This result demonstrates that oscillations in Hex expression occur 

rapidly (Fig. 4.15e). 

4.16 Fetal contribution potential of Venus positive and negative cells 

To test the ability of each subpopulation to contribute to the embryo, each was 

separated by flow cytometry and SSEA1 positive cells of each fraction were injected 

into ROSA26 lacZ blastocysts. In this experiment the ES cell contribution should be 

negative for 3-galactosidase contribution (Fig. 4.16a). Analysis of chimeric embryos 

revealed Venus fluorescence in those generated from both V+ and V- cells (Fig. 

4.16b,c). Following staining for lacZ expression embryos were observed for 

contribution. The level of contribution appeared much greater in embryos generated 

from the Venus negative cells (Fig. 4.16d). No difference in contribution to specific 

lineages could be seen in transverse cryostat sections (Fig. 4.16e). Analysis of all the 
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Fig. 4.16 Chimera and contribution potential analysis of venus positive and negative 

subpopulations. 

BHIV cells cultured under self renewing conditions were subjected to flow cytometry 

to separate venus positive and negative subpopulations. Cells were stained for 

SSEA-1 prior to sorting to select the ES cells from each population a, Schematic 

diagram showing the strategy to generate chimeric mice by injection of the sorted 

populations using R261-acZ host blastocysts. Sorted cells were injected 1 hour after 

flow cytometry. Images are shown of representative chimeras produced from each 

population, b, bright field and c, green filter images showing venus expression. d, X-

gal staining of all embryos produced from each sorted population was carried out to 

judge the contribution potential of injected cells. e, Transverse cryostat sections of X-

gal stained embryos indicated in d. f, Total number of embryos analysed for each 

population indicating the percentage which showed contribution from injected cells 

(presence of white areas). Scale bars in d = 600pm. 
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chimeric embryos showed that the Venus positive cells contributed to only 29% of 

injected blastocsyts (n19) compared with 71% in the case of the Venus negative 

cells (n=24) (Fig. 4.161). Interestingly, the reduced ability of the V+S+ population to 

generate ES cell colonies in vitro (see Fig. 4.1 5c) appeared to be reflected in the 

reduced likelihood of chimera contribution by this population in vivo. 

While these results may have shed some light on the contribution potential of each 

fraction to definitive tissues of the embryo, the experimental design is not ideal due 

to the requirement for a 'negative result' to prove a positive point. Lack of 13-

galactosidase may either indicate positive contribution of injected cells or simply a 

failure of the staining procedure to faithfully penetrate all cells of the embryo 

equally. Thus, to address this issue, the BHIV cell line is currently being modified to 

constitutively express f3-galactosidase such that the injected cells will stain blue in a 

wild-type host. The staining of f3-galactosidase would be independent of Venus 

expression and therefore contribution from each fraction to the embryo may be more 

confidently judged. 

While the above experiment can give an idea as to the pluripotent potential of Venus 

positive and negative cells, analysis of embryos at an earlier time point may shine 

light on the reasons for apparent reduced embryonic contribution of the latter cell 

type. Given that a component of murine ES cell cultures can contribute to the 

primitive endoderm lineage upon injection into host blastocysts (Beddington and 

RObertson, 1989), it might be hypothesised that Venus positive self-renewing ES 

cells may represent this component. To test this hypothesis it will be necessary to 

examine the location of injected Venus positive and negative ES cells by 13-

galactosidase expression in day 6.5 embryos. If Venus positive cells truly represent 

that component which can contribute to the primitive endoderm, they should be 

located in the parietal endoderm. Additionally it might be expected that the Venus 

negative cells would very rarely if ever at all be found there. This work is currently 

underway. 
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4.17 Discussion 

In this chapter I have described the generation of the highly sensitive BHIV Hex 

reporter cell line that maintains wild type levels of Hex while giving a highly 

sensitive read out from the locus. The use of a translationally amplified IRES Venus 

cassette allowed the identification of cells expressing Hex and thus facilitating 

downstream analyses. It has been demonstrated previously that this particular IRES, 

which contains reiterated get sequences, acts as a translational amplifier for 

downstream genes, and behaves up to 60 times more efficiently than conventional 

ECMV IRESs (Chappell et al., 2000). Additionally, gene trap vectors containing this 

novel IRES sequence driving translation of Venus act as sensitively as those with 

LacZ (Tanaka et al., 2008). Quantitative PCR analysis of BHIV clones demonstrated 

that expression from the transgenic allele was reflecting normal Hex transcriptional 

activity, thus suggesting that observed 'background' Venus expression was due to 

the sensitivity of the IRES Venus reporter rather than its misexpression from the 

targeted locus. Extensive Southern analyses ruled out the possibility of incorrect or 

additional integration events of the transgene. 

Generation of mouse chimeras with BHIV cells revealed strong expression of Venus 

in regions previously reported to express Hex, namely, the liver, the thyroid area, the 

dorsal aorta and the intersomitic vessels (Rodriguez et al., 2001; Thomas et al., 

1998). That an increase of Hex expression could be reflected by an increase of Venus 

was revealed by a cell culture protocol developed in our lab to promote the in vitro 

differentiation of ES cells to an ADE fate (Morrison et al., in press). Induced 

expression of definitive endoderm markers with Activin during this protocol 

coincided with an increase of fluorescence in BHIV clones to a level similar to that 

obtained by a second Hex reporter cell line (HRS). Together these data confirmed 

that Venus expression in the BHIV line faithfully reflected transcriptional activity 

from the Hex locus. 

The observed heterogeneous expression of Venus in undifferentiated ES cell cultures 

suggested the existence of multiple ES cell subpopulations potentially differing in 

119 



character from one another. The presence of SSEA1 and Oct3/4 together with 

morphological examination confirmed that the majority of the self-renewing Venus 

positive and negative cells were indeed ES cell in nature. Such heterogeneity among 

ES cells has been reported by other groups using reporter cell lines for the 

pluripotency genes Nanog and Rex] (Chambers et al., 2007; Singh et al., 2007; 

Toyooka et al., 2008). These studies demonstrated that undifferentiated ES cells are 

in fluctuation between different states of either super-pluripotency or an increased 

propensity to differentiate and that these states may represent an in vitro equivalent 

to the transition from 1CM to epiblast/primitive ectoderm in the mouse embryo. It 

was interesting then that some ES cells appeared to be enriched for Hex, a gene 

whose earliest domain of expression has been found to be the primitive endoderm of 

4.5 pen-implantation embryos (Chazaud et al., 2006; Mesnard et al., 2006; Thomas 

et al., 1998; Torres-Padilla et al., 2007). Due to the developmental origin of ES cells 

and their contribution potential when injected back into blastocysts, it seemed 

plausible that the Venus positive cells may constitute a population existing under 

self-renewing conditions that is predisposed to become primitive endoderm. ES cells 

are derived from the 1CM of implanting blastocysts, at a time when the 

developmental choice of some 1CM cells is to become primitive endoderm. Indeed, 

when either early 1CM cells or ES cells are injected into blastocysts, they can 

contribute, albeit infrequently, to the primitive endoderm lineage (Beddington and 

Robertson, 1989; Gardner, 1985). Additionally, ES cells can readily differentiate into 

primitive endoderm in vitro (Keller, 2005; Niwa et al., 2000). So, could Venus 

positive cells constitute yet another subpopulation of ES cells existing alongside 

those previously observed with Nanog and Rex]? 

To examine the relationship of the ES cell heterogeneity observed here with that of 

previous reports, Nanog expression was monitored in BHIV clones. Interestingly, 

Hex and Nanog expression appeared mutually exclusive of one another. This 

relationship appeared similar to that observed in 1CM cells of E3.5 embryos between 

Nanog and another primitive marker, Gata6, (Chazaud et al., 2006). Interestingly, 

some ES cells appeared negative for either Venus or Nanog expression suggesting 

the existence of a third population. It is tempting to speculate that these cells may be 
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representatives of the early primitive ectoderm, previously reported to exist among 

ES cells (Toyooka et al., 2008). Given the early developmental choices of an 1CM 

cell in the embryo, i.e. to become the epiblastlprimitive ectoderm or the primitive 

endoderm, it would not be surprising that populations with such tendencies might 

exist together with an earlier 1CM-like state enriched for Nanog among self-renewing 

ES cell cultures. 

Gene expression analysis between Venus positive and negative ES cells revealed an 

enrichment of primitive endoderm and pluripotency genes in these populations, 

respectively. Pluripotency genes analysed were those that have previously been 

reported to be associated with Nanog and Rex] (Chambers et al., 2007; Mitsui et al., 

2003; Toyooka et al., 2008). Genes of other lineages such as mesoderm, 

haematopoietic or neurectoderm showed no pattern of enrichment for either cell type. 

Of note, Venus positive non-ES cells (i.e. spontaneously differentiated cells, negative 

for SSEA1) showed an even greater enrichment for primitive endoderm gene 

expression, suggesting that these cells were further differentiated toward this 

particular lineage. Importantly, levels of Oct314 and Sox2 were not much different 

between Venus positive and negative cells of the SSEA1 positive fraction, 

underpinning the fact that both these subpopulations are pluripotent in nature. 

Interestingly, previous work in our lab examining gene expression changes following 

the misexpression of Hex from the ROSA26 locus, suggested that two of the 

pluripotency markers enriched in Venus negative cells of this study are targets of 

Hex, namely NrOb] and K1J2 (Zamparini et al., 2006). 

Additionally, gene ontology analysis of the microarray data show that Venus positive 

ES cells are enriched for genes whose expression lies downstream of Nodal/TGF 

signalling as well as an enrichment of genes involved in the Wnt pathway. It is 

interesting that these pathways which are important for establishing A-P polarity of 

the pre-gastrulation embryo may have an additional role at an earlier stage in 

determining transcriptional noise fluctuations among ES cells that could dictate the 

decision between self-renewal and immediate early differentiation toward primitive 

endoderm (see chapter 6 for further discussion). 
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Previous work on Nanog in ES cells and mouse embryos has pointed to role for this 

transcription factor in repressing the emergence of the primitive endoderm 

(Chambers et al., 2003; Chazaud et al., 2006; Hamazaki et al., 2006; Hamazaki et al., 

2004; Mitsui et al., 2003). Increased expression of Nanog either by forced expression 

of a Nanog transgene or inhibition of FGF signalling, resulted in a decrease of the 

Hex positive population. Conversely, inhibition of Nanog expression by stimulation 

of FGF signalling by treatment with sodium vanadate lead to an increase of Hex 

expressing cells concomitant with upregulation of Gata6. While the agent used in 

this particular experiment acts as a general phosphatase inhibitor and might therefore 

have additional effects on other pathways, it has been shown previously that such 

treatment specifically potentiates the MEK/ERK branch of the FGF pathway 

(Hamazaki et al., 2006). 

As with Nanog and Rex] reporter cell lines, subpopulations reported here also 

showed the ability to interconvert to one another following clonal and single cell 

plating. Interestingly, the dynamics of this interconversion were fast, whereby Venus 

positive ES cells were evident just 24 hours after plating purified Venus negative 

cells. 

Nanog negative ES cells display a reduced capacity for clonal growth and Rex] 

negative cells have a reduced ability to contribute to embryonic tissues thus 

suggesting differing developmental capabilities of ES cells (Chambers et al., 2007; 

Toyooka et al., 2008). Examination of populations in the BHIV line also showed 

differing functional potential whereby the Venus positive ES cells showed a reduced 

capacity for clonal growth in culture and a reduced likelihood to contribute to 

embryonic lineages. The primitive endoderm character of these ES cells may mean 

that they are not at an ideal neutral ground state to provide optimal clonal growth or 

be poised to differentiate into other lineages. It is important to note however that 

Venus positive ES cells do have these capabilities, just at reduced level. Thus, some 

of these cells may have the capability to return from their transient primitive 

endoderm direction back to a state similar to that of Venus negative cells. It will be 
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interesting to examine whether Venus positive ES cells are fated to the primitive 

endoderm lineage in early embryos. Work is currently underway to address this 

issue. 

In the next chapter I discuss the consequences of overexpressing Hex in ES and other 

cell types. 
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Chapter 5 

Overexpression of Hex in ES cells 
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Introduction 

As Hex is both an early marker of A-P axis formation and also a potential marker of 

the hemangioblast a number of studies have probed its function by gain of function 

experiments. Previous reports on the overexpression of Hex in various systems have 

shed some insights into a number of potential activities. Most molecular data 

suggests that Hex can act as a transcriptional repressor (Brickman et al., 2000; 

Pellizzari et al., 2000; Tanaka et al., 1999; Zamparini et al., 2006) and a number of 

studies have indicated that Hex maybe an inhibitor of differentiation by the 

repression of lineage specific promoters (Brickman et al., 2000; Zamparini et al., 

2006). Thus, overexpression of Hex in Xenopus can affect the developmental 

potential of different germ layers and cell lineages. Inhibition of dorsal mesoderm 

formation has been demonstrated by the suppression of organiser genes such as 

Goosecoid and Chordin (Brickman et al., 2000; Zamparini et al., 2006). In vitro 

analysis in ES cell derived differentiation cultures has also indicated a role as a 

suppressor of mesoderm derivatives in EB cultures (Kubo et al., 2005). Indeed, 

studies in these and other systems have shown that Hex may play a similar role later 

in haematopoietic differentiation. Hex is expressed in and is an important regulator of 

mesoderm derived haematopoietic and endothelial lineages. While overexpression of 

Hex in Xenopus and zebrafish suggests a positive role for vascular-endothelial 

lineage development (Liao et al., 2000; Newman et al., 1997), studies in various 

endothelial and haematopoietic cell lines were indicative of a negative effect on the 

proliferation or maturation of these lineages (George et al., 2003; Jayaraman et al., 

2000; Mack et al., 2002; Nakagawa et al., 2003; Ying et al., 2002). This inhibitory 

effect on proliferation was also observed in cell types representative of vascular-

endothelium and early haematopoietic progenitors in suspension ES cell derived 

suspension cultures overexpressing Hex, while neurectodermal differentiation was 

unaffected (Kubo et al., 2005). As with the above examples, this maybe due to the 

repression of either cell or cell cycle specific promoters. However, at least with 

respect to aspects of cell cycle regulation, the effect of Hex may not be 

transcriptional as it can inhibit proliferation in promonocytic cell lines via an 

interaction with the eIF4e component of the ribosome (Topisirovic et al., 2003). 
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Forced expression of Hex in Xenopus has also been shown to play a positive role in 

promoting anterior endoderm (Brickman et al., 2000; Jones et al., 1999; Zamparini et 

al., 2006; Zorn et al., 1999). While these studies have suggested a mechanism for 

promoting anterior character to endoderm through direct interaction of Nodal and 

Wnt signalling components, it is unknown whether these would be direct targets of 

Hex in endoderm of the mouse embryo or in endoderm derived from differentiation 

of murine ES cells. 

Consistent with a role in promoting anterior endoderm specification, loss of function 

analysis in Xenopus by injection of morpholino sequences specific to XHex lead to 

anterior truncations (Jones et al., 1999) and a null mutant in mouse has shown that 

Hex is required in the anterior definitive endoderm for correct anterior development 

of the forebrain and endoderm derived organs such as the thyroid and liver (Martinez 

Barbera et al., 2000). Similarly as mentioned above in zebrafish, ectopic expression 

of Hex can lead to the induction endothelial precursors, and loss of function models 

in zebrafish and mouse display defects in endothelial specification. In the endoderm 

the regulation of Hex regulates lineage specification through transcriptional 

regulation of signalling pathway components. How much of the ability of Hex to 

promote lineage specification is accounted for by this and how extensive Hex 

dependent transcriptional networks relay remain to be shown. Moreover, whether 

Hex can influence gene expression in these contexts is unknown. 

Thus, a number of lines of evidence suggest that Hex can both act to promote and 

inhibit lineage specification. The evidence presented in chapter 4 of this thesis 

suggests that Hex is a very early marker of endoderm specification. In this chapter I 

use the reagents described in chapter 3 to address whether Hex misexpression has 

any impact on ES cell culture under self renewing conditions. While there is no 

evidence for this activity in Hex null ES cells (Guo et al., 2003; Kubo et al., 2005), 

the heterogeneous expression patterns described in Chapter 4 are very provocative. 

Additionally, the overexpression in ES cells of other transcription factors important 

in primitive endoderm formation lead to a change in morphology to resemble this 
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lineage (Fujikura et al., 2002). In this chapter I show that I could not observe any 

such effect, but rather that misexpression of Hex at high levels induces transcription 

dependent apoptosis in ES cell culture and that low level expression has no apparent 

phenotype. These studies have also allowed me to make a number of interesting 

observations about ES cell selection strategies and the levels of gene expression they 

can be used to achieve. 

5.1 Generation of stable lines that stably over express Hex 

I attempted to use two different selection strategies to generate ES cells that 

constitutively express Hex. In all experiments the expression levels obtained by 

these strategies were determined with a control vector which expressed only GFP 

(Chapter 3, Figures 3.3b and 3.4b). 

5.1 a Electroporation of hygromycin constructs into R26birA ES cells 

To generate stable clones, the three hygromycin constructs (see Fig. 3.3) were 

linearised with FspI and electroporated in R26birA cells. Following selection for 12 

days in 200tg/ml of hygromycin, clones generated from each construct were counted 

and visualised for GFP fluorescence. Table 5.1 shows the average number of clones 

obtained from two independent electroporation experiments and the total number 

subsequently expanded and analysed for GFP fluorescence by FACs analysis. In 

each of the two electroporations equal numbers of clones were obtained from the 

three constructs, however, none could be seen to be GFP positive using fluorescence 

microscopy (data not shown). Twenty clones generated from each construct were 

further analysed by FACs for the presence of GFP but again none of these were 

positive (Fig. 5.1a). The lack of detectable fluorescence by microscopy or FACs may 

be explained by the stringency of the hygromycin selection. If low expression of 

hygromycin phosphotransferase is required for antibiotic resistance, then its use to 
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Table 5.1a Summary of stable clones produced from 100 pg of pBGiH, pBHGiH or 

pBHiGiH in R26birA cells following selection in hygromycin (200pg/ml). The numbers 

relate to two independent electroporation experiments. 
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Fig. 5.1a Fluorescence analysis of hygromycin resistant stable clones. 

Clones produced from electroporation of pBGiH, pBHGiH and pBHiGiH in R26birA 

cells were analysed by FACs for GFP expression. Representative data of clones 

produced from each construct are shown including unelectroporated R26birA cells. 
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select for high expression would not be efficient. Thus, obtaining high level 

expressers might require extensive screening of large numbers of colonies. 

Previous work in our lab using a similar system of CAG driven Hex under hygro 

selection has shown that transcript levels were similar to those obtained from 

expression of Hex from the ROSA26 locus (Zamparini et al., 2006). Each of these 

previously generated lines had no apparent phenotype. Expression analysis of Hex 

from the ROSA26 locus showed no upregulation of primitive endoderm genes. It was 

decided therfore to attempt a higher level of expression using a different selection 

system. 

To overcome this problem, the use of a more stringent selection system was 

considered to favour higher and therefore detectable levels of GFP which should 

reflect higher levels of Hex. Selection with puromycin is known to have advantages 

over other drugs such as G418 and hygromycin: it acts quickly to kill non-transfected 

cells within 48 hours reducing the problem of colony overgrowth during selection, it 

is active at low concentrations (1-10tg) and it is inexpensive (de la Luna and Ortin. 

1992). Thus, subcloning of the Bio-tagged variants of the hygromycin constructs into 

a similar vector harbouring puromycin resistance was undertaken in an attempt to 

derive stable clones with higher expression (Fig. 3.4). 

5.1b Electroporation of puromycin constructs into R26birA ES cells 

The three puromycin constructs (see Fig. 3.4) were linearised with ScaI and 

electroporated into R26birA cells. Following 12 days in selection with 2ig/ml of 

puromycin, clones generated from each construct were counted and visualised for 

GFP fluorescence. Table 5.2 shows the average number of clones obtained from two 

independent electroporation experiments and the total number subsequently 

expanded and analysed for GFP fluorescence by FACs analysis. While each 

electroporation generated many clones from the control construct pBGiP, very few 

were obtained from the two Hex containing constructs, pBHGiP and pBHiGiP. These 
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Fig. 5.1b Fluorescence analysis of puromycin resistant stable clones. 

(i), Clones produced from electroporation of pBGiP, pBHGiP and pBH1GiP in 

R26birA cells were analysed by fluorescence microscopy for GFP expression. 

Representative photos of clones produced from each construct are shown. (ii), 

FACs analysis of the same clones together with unelectroporated R26birA cells. 

Percentages positive for GFP are shown. 
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results differ from those obtained with the Hygro selection and suggested that if Puro 

does indeed drive high levels of Hex expression, this might in someway be 

detrimental to ES cell colony growth. 

To compare the levels of expression in the puro selected clones to those obtained 

with hygro, GFP was examined by both flow cytometry and fluorescence 

microscopy. Of the clones transfected with the control vector, pBGiP, at least fifty 

percent of the colonies obtained were fluorescent whereas none of those transfected 

with a control vector under hygro selection were found to GFP positive (Compare 

Table 5. la with Table 5. lb and Fig 5. lb(i)). However, of the clones derived from 

transfection with either pBHGIP or pBHiGiH, none were seen to fluoresce. Seven of 

the Hex negative control clones along with five and two clones generated from 

pBHGiP and BHiGiP, respectively, were further expanded and analysed by FACs. 

Six of the seven control clones were positive for GFP to differing degrees, however, 

none of the Hex containing clones were positive (Fig. 5. lb(ii)). 

5.1c Western Analysis of hygromycin and puromycin resistant clones 

In order to further compare differences between hygro and puro selected clones, 

western analysis was undertaken using an anti-GFP antibody on a selection of these 

lines. Two pBHGiH and two pBHGiP clones together with three of the Hex negative 

pBGiP clones were chosen to reflect the range of GFP expression as seen by 

microscopy and FACs analysis. Figure 5.3 shows the results of this western blot. A 

band of the expected size for BioGFP was seen in each of the three pBGiP lanes. The 

intensities of these bands reflected the percentages of GFP in these clones as detected 

by FACs. No band could be detected in the two pBHGiP lanes, however, a very faint 

band of the expected (64 kD) size for BioHexGFP was seen in both pBHGiH lanes. 

Taken together the data obtained from the hygromycin and puromycin resistant 

clones suggest that only low levels of Hex expression are tolerated by ES cells. The 

absence of detectable GFP fluorescence in clones derived from all four BioHex 
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Fig. 5.1c Western Analysis of hygromycin and puronlycin resistant clones. 

Two pBHGiH clones, two pBHGiP clones and three Hex negative pBGiP clones 

were lysed and equivalent amounts for each were subjected to SDS-PAGE. 

Lysates from Un-electroporated R26birA cells and HEK293 cells transiently 

transfected with pEGFP-N1 were loaded as negative and positive controls for GFP, 

respectively. Western analysis was performed with an anti-GFP followed by an 

anti-a Tubulin antibody . Numbers under each sample indicate the GFP 

percentage for each clone obtained by FACs analysis. Arrow indicates the 

expected size for BioHexGFP fusion protein. Arrow indicates the position of 

BioHexGFP protein. 
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containing constructs appears to reflect this. To examine the possibility that this is an 

ES cell specific effect, we attempted misexpression coupled to puro selection in other 

cell types. 

5.2 Electroporation of puromycin constructs in other cell types 

To establish stable clones expressing BioHex, different cell types were chosen to 

represent different tissues during embryonic developmental stages downstream of 

that represented by ES cells, namely the 1CM. These were Xen cells and P19 

embryonal carcinoma (EC) cells which are derived from the extraembryonic 

endoderm, and the epiblast of the mouse embryo, respectively (Kunath et al., 2005; 

Riego et al., 1995; van der Heyden and Defize, 2003). Additionally, the HepG2 cell 

line derived from a human hepatocarcinoma was chosen due to high expression of 

Hex in the developing liver primordium (Knowles et al., 1980; Thomas et al., 1998). 

Due to the higher efficiency observed with puromycin selection, the three puromycin 

constructs were electroporated into these three cell types. Table 5.2 summarizes the 

total numbers of colonies produced in each cell line from each construct following 

selection in puromycin. The numbers of clones obtained from these electroporations 

are extremely similar to what was obtained in ES cells. Again, the overexpression of 

Hex appears to select against the growth in these cell types also. None of the few 

clones derived from the two BioHex constructs could be seen to fluoresce, however, 

clones produced in these cell-types from the Hex-negative control construct, pBGiP, 

could be seen to fluoresce (Fig. 5.2 and data not shown). 

Taken together these data suggest that expression of Hex in ES, Xen, P19 EC or 

HepG2 cell lines results in a block to cell growth. 
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IM8A1, Xen 
(% fluorescent) 

P19, EC 
(% fluorescent) 

HepG2 
(% fluorescent) 

pBG1P 89(75) 140 (50) 210 (50) 

pBHGiP 2 (0) 1 (0) 1 (0) 

pBH1GiP 2 (0) 4 (0) 0 (0) 

Table 5.2 Production of Stable clones expressing pBGiP, pBHGiP and pBHiGiP in 

IM8A1 Xen, Pig EC and HepG2 cells. Numbers reflect the total number of clones 

produced for each construct after selection in puromycin (2pgIml). Numbers in 

parentheses indicate the percentage of clones seen to fluoresce by microscopy. 

Fig. 5.2 Expression of puromycin resistant stable clones in IM8A1 Xen cells. 

Clones produced from electroporation of pBGIP, pBHG1P and pBHiGiP in IM8A1 Xen cells 

were analysed by fluorescence microscopy. Representative clones of pBGiP, pBHGiP and 

BHiGiP are shown. 
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5.3 Inducible expression of BioHex 

A number of transcription factors can be expressed in ES cells using an IRES puro 

selection cassette (Chambers et al., 2003; Mountford et al., 1994). As a tet inducible 

system for Hex expression in ES cells had been previously established (Kubo et al., 

2005), an inducible system was chosen to address the failure to obtain high levels. 

This system would also be useful for downstream biochemical applications. I chose 

to use an inducible system that coupled a fluorescent reporter to Puro selection, so 

that I could derive cells that would be predicted to be high expressers. Induction 

would then be accomplished by a Cre-mediated recombination in the construct to 

bring the Hex cDNA under the promoter that had previously been driving Puro. 

Stable clones were derived using the pTLC BioHex construct (see Chapter 3.6) in an 

ES cell line constitutively expressing Cre recombinase as a fusion with a modified 

ligand binding domain of the estrogen receptor (CreERt2), from the ROSA26 locus 

(RC cells). Upon the addition of 4-hydroxytamoxifen (40HT), CreERt2 translocates 

into the nucleus and can then excise the upstream selection cassette that is flanked by 

loxP site, thus allowing expression of the downstream BioHex IRES GFP cDNA. 

pTLC BioHex or the control construct, pTLC Bio were electroporated with into RC 

cells together with a CAG driven BirA ligase expression construct harbouring a 

blastocidin resistance gene (pBirA). Colonies .were derived following selection in 

2j.tg/ml of puromycin and 5tg/ml of blastocidin for 10 days. Table 5.3 summarises 

the total number of clones derived from pTLC Bio and pTLC BioHex, the 

percentages of colonies seen to display DsRed fluorescence by microscopy, and the 

subsequent numbers analysed by FACs. Three clones derived from each construct, 

which displayed strong DsRed fluorescence were chosen for 40HT treatment. Figure 

5.3a shows a fluorescence change from red to green following 40HT treatment of 

TLC Bio (control) and TLC BioHex clones. Bright field images show an unhealthy, 

rounded-up phenotype only in the induced BioHex. The absence of this phenotype in 

the 40HT treated control suggests a BioHex specific effect. FACs analysis of the 

same samples confirmed the switch from DsRed to GFP expression (Fig. 5.3b). 

135 



C') 

- 

Co

IT  

CD 

0 

'1 

R26CreErt2 

0,05 0.00 

E  

0.05 

R2  

i 0  161 1? 10 3  10 
GF P 

TLC Bio 13 

88 47 1.59 

R4 

0.01  

R2 
CD 

10 
i 

10 10 0 10 
OF P 

TLC BioHex 15 

8761 —  0.11 

R4 
R3 

-rJ 

CD 4 
R2 

0,00 ,  

( 
10 0  101 

102 
 

10 
10  

OF P 

TLC Bio 13 + 40HT 

9.29 

53 R4 

1 52 1.52 

R2 . 

100 10 1 	102  
OF P 

TLC BioHex 15 + 40HT 

19.70 9.69 

R4 

401 

R2 

100 i 2 	i 	io 
GE P 

Fig. 5.3 Fluorescence analysis of TLC clones incubated with 40HT 

TLC clones were incubated for 12 hours alone or with 500nM 40HT. Following the 

removal of 40HT clones were cultured for a further 36 hours before analysis by 

fluorescence microscopy and FACs a, Red, Green and bright field images shown for 

representative TLC Bio and TLC BioHex clones cultured alone or with 40HT. b, 

FACs analysis of the same clones. The plot for unelectroporated R26CreERT2 cells 

is shown. 
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Average 	 % Fluorescent 	Total No. Analysed by FACS 
No. Clones Obtained 	By microscopy 	(numbers positive for DsRed) 

pTLC Bio 80 	 75 	 6 (5) 

pTLC BioHex 90 	 75 	 6 (6) 

Table 5.3 Summary of stable clones produced from pTLC Bio and pTLC BioHex in 

R26CreErt2 cells following selection in puromycin (2g/ml). 
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5.4 Expression of BioHex mRNA and protein following 40HT induction. 

The presence of GFP in 40HT treated clones suggests the successful induction of the 

BioHex IRES-GFP transcript due to the removal of the upstream DsRed IRES-Puro 

selection cassette. To check the integrity at the 5 prime end of BioHex IRES-GFP 

mRNA, rtPCR analysis was performed on isolated RNA from 40HT treated clones 

over a time course of three days (Fig. 5.4a). Bands of increasing intensity correlated 

with incubation time following 40HT treatment as seen in a representative pTLC 

BioHex clone (Fig. 5.4b). 

Lysates were prepared from untreated and 40HT treated TLC Bio and TLC BioHex 

clones and subjected to SDS-PAGE. Western analysis using streptavidin-HRP 

showed the presence of a band of the predicted size for BioHex protein in the 

induced TLC BioHex sample (Fig. 5.4c). This result also indicated the successful 

biotinylation of the BioHex protein from the stable expression of the BirA ligase 

enzyme. 

Taken together these data suggest that the observed phenotype following 40HT 

treatment of TLC BioHex clones is due to induction of BioHex protein. 

5.5 Induced expression of BioHex leads to cell death and caspase-3 

truncation. 

The unhealthy phenotype associated with induced overexpression of BioHex protein 

reflected the possibility of cell toxicity due to this transcription factor. There is also 

precedent in the literature that Hex expression can induce apoptosis and this would 

seem a reasonable explanation for the phenotypes observed (Topisirovic et al., 2003). 

Indeed, when cultured up to 96 hours after 40HT treatment, few if any surviving 

cells could be seen. To test whether ectopic expression of Hex induced apoptosis I 

examined Caspase3 expression following Hex induction and compared this to a 
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Fig. 5.4 Inducible expression of BioHex mRNA and protein in TLC BioHex clones. 

TLC BioHex clones were incubated alone or for various times with 500nM 40HT. 

RNA was extracted at the end of each time point followed by cDNA synthesis. a, 

Schematic representation of the primers used for the detection of BioHex mRNA. b, 

r-tPCR analysis was performed on cDNA synthesized from RNA extracted at the 

indicated timepoints (shown in hours) from a representative TLC BioHex clone. 

Primers Bf and 1 r were used for the detection of BioHex mRNA. Actin primers were 

used as a control for the presence of cDNA. c, Western analysis on lysate from the 

48 hour time point following 40HT treatment on the same pTLC BioHex clone and a 

conntrol pTLC Bio clone. Lysates were subjected to SIDS-PAGE and western 

analysis was performed using Strepavidin-HRP or an anti-a tubulin antibody. The 

predicted size of the BioHex protein is 42kD. 
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known inducer of apopotosis, namely cyclohexamide (Borner et al., 1995). TLC 

BioHex and control TLC Bio clones were treated with either 40HT or 1 mM 

cycloheximide (CHX). Figure 5.5a shows the morphology of TLC BioHex and TLC 

Bio clones cultured alone or treated with either 40HT or CHX. While incubation of 

control lines with 40HT had no effect, similar treatment of Hex inducible lines lead 

to a morphology resembling that induced by CHX suggesting that they are indeed 

undergoing apoptosis. Importantly, treatment of cultures with either CHX or 4-OHT 

leads to the induction of a faster migrating fragment of Caspase-3, indicative of 

apoptosis (Fernandes-Alnemri et al., 1994). Figure 5.5b shows a western blot of 

clones incubated alone, with 40HT or with CHX and probed with an Anti-Caspase3 

antibody. In both the CHX treated and 4-OHT Hex inducible cultures the truncated 

1 9kD and I 7kD caspase-3 species are clearly present and are absent in all uninduced, 

or samples not containing the inducible transgene. This finding suggests that ectopic 

expression of Hex induces apoptosis in ES cell culture. 

In addition to its role as a transcription factor. Hex inhibits proliferation and 

transformation by interfering with eIf4E-dependent mRNA transport of cyclin Dl 

(Topisirovic et al., 2003). Thus one explanation for Hex's ability to induce this 

apoptotic phenotype may have to do with acute interference of the cell cycle which 

could trigger a cascade leading to apoptosis. Alternatively, high levels of Hex protein 

may lead to exaggerated alteration of gene expression levels of its targets or off-

targets to an intolerable extent. 

5.6 Generation and functional analysis of pTLC BioHex mutants. 

To examine whether Hex induced apoptosis was due to either cell cycle interference 

through interaction with eIF4e or as a consequence of aberrant transcription 

regulation through DNA binding, mutations in the Hex sequence of the pTLC 

BioHex construct were generated by site-directed mutagenesis (Fig. 5.6a). 

Substitution of residues 23 and 24 of Hex from leucine-leucine to alanine-alanine has 

been shown to negate binding to elF4e (Topisirovic et al., 2003). Glutamine and 
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Fig. 5.5 Induced expression of BioHex leads to cell death and caspase-3 truncation. 

TLC Bio and TLC BioHex clones were incubated alone, with 500nM 40HT or 1mM 

CHX for 12 hours. Following the removal of 40HT or CHX, clones were cultured for 

a further 36 hours before analysis. A, Bright field images of representative TLC Bio 

and TLC BioHex clones. b, Lysates prepared from treated and untreated clones 

were subjected to SDS-PAGE and western analysis was performed using an anti-

caspase 3 antibody or streptavidin-HRP. Arrows indicate positions of full length (35 

kD) and truncated (21 + 17 kD) caspase 3 proteins. Analysis with steptavidin-HRP 

reveals the presence of the BioHex protein in the TLC BioHex clone incubated with 

4OHT. 
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Fig. 5.6 Generation and function of BioHex mutants in pTLC BioHex. 

Site directed mutagenesis was performed on the construct pTLC BioHex in order to 

generate an elF4e binding mutant (Ebm) or a DNA binding mutant (Dbm). a, 

Schematic representation of the amino acid changes made to generate either pTLC 

BioHex Ebm or pTLC BioHex Dbm. b, The Topflash assay was performed with the 

indicated constructs (bOng of each) in HEK293T cells. In the presence of stabilised 

3-catenin, pTLC BioHex + Cre, pTLC BioHex Ebrn + Cre and wild-type Hex (CAG-

Hex) comparably increase the activity of TOPflash beyond that obtained from an 

empty vector with a CAG promoter (CAG). The control vector pTLC Bio + Cre and 

pTLC BioHex Dbm + Cre do not amplify this signal. 
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asparagine residues at positions 50 and 51 of the Hex homeodomain and other 

homeodomain transcription factors are responsible for binding to its core recognition 

sequence (Crompton et al., 1992; Gehring et al., 1994). Thus, substitution of these 

two hydrophilic residues to hydrophobic alanines would be predicted to interfere 

with DNA binding. 

Before establishing stable clones with the mutant forms of the pTLC BioHex 

construct, they were subjected to the TopFlash assay to test for Hex function (Fig. 

5.6b). The elf4e binding mutant (Ebm) lead to a similar amplification of 13-catenin 

induced transcription as unmutated BioHex. However, this function of Hex was not 

seen with the DNA binding mutant (Dbm) suggesting the successful interruption of 

transcription regulation through DNA binding. 

5.7 Hex induced apoptosis is due to DNA binding. 

The Ebm or Dbm Hex mutant constructs were electroporated into RC cells together 

with pBirA and selection was carried as described above. Equal numbers of clones 

were produced for each construct with the majority of colonies displaying strong red 

fluorescence. Ebm and Dbm clones were expanded and exposed to 4011T. After 48 

hours of culturing, Ebm clones displayed a shift from red to green fluorescence and 

the morphology resembled the cell death phenotype seen with wild-type pTLC 

BioHex clones ( Fig. 5.7a). Dbm clones on the other hand did not show signs of cell 

death concomitant with the fluorescence change (Fig. 5.7b). 

Western analysis was performed on lysates from 40HT treated wild type TLC 

BioHex and mutant clones to confirm the expression of BioHex proteins. In each 

case a band corresponding to the expected size for a full length BioHex protein was 

observed (Fig. 5.7c). Use of an anti-Caspase3 antibody revealed the presence of 

truncated Caspase3 proteins in the 40HT treated TLC BioHex and TLC BioHexEbm 

samples. This marker for apoptosis was not observed in the 40HT treated Dbm 

sample which is in agreement with the lack of cell death phenotype from this mutant. 
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Fig. 5.7 Apoptosis due to induced BioHex is a result of DNA binding. 

TLC BioHex mutant clones were incubated for 12 hours alone or with 500nM 40HT. 

Following the removal of 40HT clones were cultured for a further 36 hours before 

analysis by fluorescence microscopy. a, Representative clone derived from pTLC 

BioHex Ebm showing a switch from red to green fluorescence and cell death upon 

addition of 40HT. b, Representative clone derived from pTLC BioHex Dbm showing 

a switch from red to green fluorescence upon induction by 40HT, however, cell 

death is not observed. c,TLC BioHex and TLC BioHex mutant clones were 

incubated for 12 hours alone or with 500nM 40HT. Following the removal of 40HT 

clones were cultured for a further 36 hours before analysis by western blotting. The 

induction of BioHex and BioHex mutant proteins by 40HT is shown by analysis with 

streptavidin HRP. A concomitant appearance of truncated caspase 3 proteins (21 

and 17kD) is seen with induction of BioHex and BioHex Ebm but not with BioHex 

Dbm. Truncated and full length (35kD) caspase 3 proteins were detected with an 

anti-caspase 3 antibody. 

144 



a 

-:. 

TLC BioHex 
Dbm 1 

Rl  TLC BioHex 
E b m 1 

_______ 

•• 	 •

LC BioHex i 

brn1±40HT 

1 
e*I.  

.6 
C) 	C) 	C) 

AZV 

- + 	- ± - + 40HT 

37 - 	 - - 

19— 	
1Anti-Caspase 3 

17 

V 	 I  
50- 

- StrepHRP 
37— 	 I 

Lei  

C 

145 



5.8 Discussion 

This chapter has described attempts to overexpress BioHex proteins in ES and other 

cell types. While small changes of Hex expression appear to mark alterations in early 

lineage choices as seen in chapter 4, these levels of Hex expression produce no overt 

phenotype in ES cells. However, when Hex is expressed at high levels it is not 

possible to establish cell lines and this appears to be due to the onset of apoptosis 

upon its induction. I have also shown that this observed cell death is due to the 

ability of Hex to bind DNA. This would suggest that the observed apoptosis is due 

either to misregulation of transcription by Hex or by steric hindrance due to the over-

occupation at promoter sequences utilised by other transcription factors. 

It has been shown that overexpression of Hex in a promonocytic cell line leads to G 1 

arrest by interfering with the transport of cyclin D mRNA by elf4e (Topisirovic et 

al., 2003). Although such interference with the cell cycle could lead to the apoptosis 

seen with BioHex in this study, overexpression of a mutant of Hex unable to bind to 

eIF4e but with normal transcriptional activity did not present this phenotype. 

While various studies have shown that Hex function can be reliant on the N-terminal 

region for repressive activity (Guiral et al., 2001; Tanaka et al., 1999) and the C-

terminal domain for activation of transcription (Kasamatsu et al., 2004), the affects 

of Hex overexpression Xenopus, ES cell cultures, haematopoietic cells and dermal 

fibroblasts are disrupted by mutation of the homeodomain (Brickman et al., 2000; 

Guiral et al., 2001; Obinata et al., 2002). 

Screening for targets of Hex in an ES cells system lead to the identification of Nodal 

which is known to be important for the maintenance of human and mouse ES cell 

cultures (Brickman et al., 2000; James et al., 2005; Ogawa et al., 2007). Therefore, 

high levels of Hex could lead to an intolerable degree of Nodal repression resulting 

in cell death. However, it was not shown here whether Hex induced apoptosis was 

due to the misregulation of its targets or through promiscuous binding to non-specific 

sequences as a consequence of the high levels. Due to the similarity of recognition 
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sequences between different homoedomain proteins, at increased levels, Hex may 

bind to and influence transcription at sites occupied by other HOX transcription 

factors, particularly of the Antennopedia class, to which Hex is closely related 

(Crompton et al., 1992; Gehring et al., 1994). It has been previously reported that 

Hex can bind to and alter transcription of simple promoter sequences containing only 

the TATA box sequence in vitro (Guiral et al., 2001) and thus, at high levels, Hex 

may compete with the TATA box-binding protein to repress transcription, an effect 

seen with Engrailed (Ohkuma et al., 1990). Thus, at high levels, Hex may occupy 

and therefore influence promoter sequences globally in addition to altering 

expression of its natural targets. 

Another possible mechanism of induced apoptosis by Hex overexpression maybe 

through transcriptional squelching. Hex can impart transcriptional repression via its 

proline rich domain, at least in part, by interaction with co-repressors like Tlel 

(Swingler et al., 2004). Inappropriate sequestering of such binding partners due to 

abnormally high concentrations of Hex may thus prove deleterious to a cell's 

survival. However, this would have to depend on DNA binding or an intact 

recognition helix and as I have shown, a point mutation in this region abolishes the 

effect. 

In conclusion this work has demonstrated that ES cells expressing high levels of Hex 

undergo apoptosis. The inducible expression of Hex may prove useful for future 

biochemical analysis of BioHex protein following differentiation procedures which 

may generate cell-types allowing such high levels. Additionally, the ES cell lines 

with lower and therefore tolerable overexpression levels of Hex as seen with those 

under hygro selection could provide further insights into the work seen in Chapter 4. 

Therefore it would be interesting to see if the level of Nanog or the proportion of 

cells expressing Nanog is lowered in the line overexpressing Hex under hygro 

selection. 
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Chapter 6 

Final Discussion 
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The work I have described in this thesis has uncovered some key findings into the 

significance of expression of the homeodomain transcription factor Hex. The use of a 

sensitive reporter line has uncovered a novel domain for its expression in ES cell 

cultures and has raised important questions into the heterogeneous nature of 

apparently uncommitted ES cells. While ES cells remain pluripotent in appropriate 

culturing conditions, they also harbour the ability to differentiate into many lineages 

in vitro and in vivo. Heterogeneity described here complements the previous findings 

by others that multiple subpopulations exist as Oct3/4 positive ES cells that differ in 

their gene expression patterns and functional abilities (Chambers et al., 2007; Singh 

et al., 2007; Toyooka et al., 2008). Such fluctuations between the ranges of 

multilineage potential states have recently been reported in the haematopoietic 

system (Huang et al., 2007). In this work a considerable number of lineage specific 

genes were found to be promiscuously expressed in bipotential precursors, such that 

this metastable state is always primed for differentiation to either direction. The 

chance upregulation of opposing lineage specific transcription factors in different 

cells of bipotent origin may then be translated into a mutual inhibition and self-

reinforcing program that ensures progression of each population to a terminally 

differentiated stable state (Chang et al., 2008; Huang et al., 2007). 

The existence of a pluripotent ground state for ES cells appear to be made possible 

by transcription factor duels between Oct314 and Cdx2 in determining a choice 

between 1CM or trophectoderm (placental), while expression of Nanog appears to 

buffer cells against endogenous FGF/Erk signalling that leads to a primitive 

endoderm fate (Chazaud et al., 2006; Niwa et al., 2005). Thus, the uncommitted state 

is the result of many gene regulatory networks that cancel each other out such that 

the breaks are put on these differentiation-prone cells. 

Stochastic events leading to determined cell fates are also seen in the 1CM and this is 

particularly evident in a self—enhancement lateral inhibition (SELl) mechanism as 

seen by the expression of the downstream antagonist of Nodal signalling, namely, 

Lefty] (Dietrich and Hiiragi, 2007; Takaoka et al., 2007). This mechanism proposes 

that Lefty] expression fluctuates in cells of the 1CM such that the one or two cells 
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that happen to be expressing slightly higher levels are able to maintain this signal 

while the others lose it. This stochastic choice is then converted into asymmetric 

localisation within the primitive endoderm that is eventually translated as an 

expression domain just anterior to the DVE at E5.5 following cavitation. Therefore, 

heterogeneous expression of Lefty] may later determine the A-P axis of the mouse 

embryo. It is of particular interest then that another primitive endoderm marker that 

is also reported to be a downstream antagonist of Nodal, namely Hex, should display 

a heterogenous pattern of expression in ES cells as observed here (Rodriguez et al., 

2001; Zamparini et al., 2006). Microarray analysis in this thesis shows an enrichment 

of primitive endoderm and genes downstream of TGFI3/Nodal signalling in the Hex 

positive population. It could be that Nodal, which is required for pluripotency in 

mouse ES cells may also dictate transcriptional noise events in downstream primitive 

endoderm genes, priming them for their later and eventual asymmetric expression 

(Ogawa et al., 2007). In the 1CM at E3.5, stimulation of the ERK branch of the FGF 

pathway is required for the downregulation of Nanog and thus allowing the 

emergence of the primitive endoderm, as seen with Gata6 (Chazaud et al., 2006). It 

appears that Hex is also regulated by Nanog, as seen in this thesis, while Lefty] has 

been reported to activate Erk pathway which would lead to suppresion of Nanog 

(Hamazaki et al., 2006; Ulloa et al., 2001). Thus, an additional or complemetary 

mechanism of primitive endoderm specification may also exist by virtue of Nodal 

signalling, downstream components of which may reinforce this fate by suppression 

of Nanog. Finally, it is interesting that a heterogeneous expression pattern for Gata6 

also appears to exist in undifferentiated ES cell cultures as judged by LacZ 

expression from this locus (Koutsourakis et al., 1999). 

It will be interesting to see whether the pattern of Venus expression seen in ES cells 

is reflected in the 1CM at E3.5 in mice that will eventually be derived from the BHIV 

line. 

While the Hex negative subpopulation appeared to be enriched for super- 

pluripotency and gonad related genes, components of Writ signalling appeared to 

associate with Venus positive fraction. This finding was curious since stimulation of 
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the Writ pathway, through Gsk313 inhibiton, promotes self-renewal of mouse and 

human ES cells (Sato et al., 2004). However, Hex has been previously reported to 

stimulate canonical Wnt signalling in ES cells and Xenopus indirectly by interfereing 

with an inhibitor of this pathway, namely 71e4 (Zamparini et al., 2006). Previous 

reports on Writ stimulation alone either by use of Gsk313 inhibitors or the 

constituitive expression of the Wnt] inhibits neural differentiation (Aubert et al., 

2002; Ying et al., 2008). It was therefore interesting that two inhibitors of the 

neurectoderm lineage, Id] and 1d2 (Ying et al., 2003), were also enriched in the 

Venus positive population. Additionally, the Writ antagonist, Dick!, is present in this 

population. This secreted factor lies downstream of Wnt signalling and is reported to 

act as a guidance cue in the movement of the AVE and therefore mediates A-P axis 

polarization in the pre-gastrula mouse embryo (Kimura-Yoshida et al., 2005). It will 

be intersting to monitor the effects of either Wnt stimulation or antagonism on Venus 

expression of the BHIV line. 

Previous work in our lab has revealed that Hex misexpression from the ROSA26 

locus lead to the downregulation of to of the pluripotency markers NrObl and K1f2 

(Zamparini et al., 2006). Interesetingly, these same pluripotency markers were 

identified together with many others in the Venus negative fraction supporting the 

idea that they could potentially be targets. Thus, it will be valuable to examine 

whether Hex has a role in the suppression other such pluripotency markers. The 

generation of a constituitive low level Hex expression cell line (see Chapter 5.1 a) 

will help to address such question for future work. Additionally, upon further 

optimisation, the cell lines reported in this thesis will become useful substrates for 

biochemical anlaysis and the identification of protein partners targets of Hex. 
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