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Abstract 
 
 

The notion of platform based design is considered as a viable solution to boost the 

design productivity by favouring reuse design methodology.  With the scaling down of 

device feature size and scaling up of design complexity, throughput limitations, signal 

integrity and signal latency are becoming a bottleneck in future communication centric 

System-on-Chip (SoC) design. This has given birth to communication centric platform 

based designs.  

 

Development of heterogeneous multi-core architectures has caused the on-chip 

communication medium tailored for a specific application domain to deal with multi-

domain traffic patterns. This makes the current application specific communication centric 

platforms unsuitable for future SoC architectures.  

 

The work presented in this thesis, endeavours to explore the current 

communication media to establish the expectations from future on-chip interconnects. A 

novel communication centric platform based design flow is proposed, which consists of 

four communication centric platforms that are based on shared global bus, hierarchical 

bus, crossbars and a novel hybrid communication medium. Developed with a smart 

platform controller, the platforms support Open Core Protocol (OCP) socket standard, 

allowing cores to integrate in a plug and play fashion without the need to reprogram the 

pre-verified platforms. This drastically reduces the design time of SoC architectures. Each 

communication centric platform has different throughput, area and power characteristics, 

thus, depending on the design constraints, processing cores can be integrated to the most 

appropriate communication platform to realise the desired SoC architecture.   

 

A novel hybrid communication medium is also developed in this thesis, which 

combines the advantages of two different types of communication media in a single SoC 

architecture. The hybrid communication medium consists of crossbar matrix  and shared 

bus medium . Simulation results and implementation of WiMAX receiver as a real-life 

example shows a 65% increase in data throughput than shared bus based communication 

medium, 13% decrease in area and 11% decrease in power than crossbar based 

communication medium.  

 



 

8 
 

In order to automate the generation of SoC architectures with optimised 

communication architectures, a tool called SOCCAD (SoC Communication architecture 

development) is developed. Components needed for the realisation of the given application 

can be selected from the tool’s in-built library. Offering an optimised communication 

centric placement, the tool generates the complete SystemC code for the system with 

different interconnect architectures, along with its power and area characteristics. The 

generated SystemC code can be used for quick simulation and coupled with efficient test 

benches can be used for quick verification. 

 

Network-on-Chip (NoC) is considered as a solution to the communication 

bottleneck in future SoC architectures with data throughput requirements of over 10GB/s. 

It aims to provide low power, efficient link utilisation, reduced data contention and 

reduced area on silicon. Current on-chip networks, developed with fixed architectural 

parameters, do not utilise the available resources efficiently. To increase this efficiency, a 

novel dynamically reconfigurable NoC (drNoC) is developed in this thesis. The proposed 

drNoC reconfigures itself in terms of switching, routing and packet size with the changing 

communication requirements of the system at run time, thus utilising the maximum 

available channel bandwidth. In order to increase the applicability of drNoC, the network 

interface is designed to support OCP socket standard. This makes drNoC a highly re-

useable communication framework, qualifying it as a communication centric platform for 

high data intensive SoC architectures. Simulation results show a 32% increase in data 

throughput and 22-35% decrease in network delay when compared with a traditional NoC 

with fixed parameters. 

 

 

 
 
 
 



 

9 
 

 

Table of Contents 

 
Chapter 1 INTRODUCTION ................................................................... 17 

1.1 Motivation ................................................................................ 17 
1.2 Author’s contribution ............................................................... 18 
1.3 Roadmap of thesis .................................................................... 20 
1.4 Summary ................................................................................. 21 

 
Chapter 2 LITERATURE REVIEW – Communication Centric Platforms .. 22 

2.1 Introduction ............................................................................. 22 
2.2 Basics of On-chip Communication ........................................... 24 
2.3 Bus Based On-Chip Communication ........................................ 26 

2.3.1 Shared Bus based communication architectures ................ 27 
2.3.2 Commercially developed shared buses ............................... 30 

2.4 Hierarchical bus ...................................................................... 33 
2.5 Communication centric platform .............................................. 34 

2.5.1 IBM CoreConnect ............................................................... 35 
2.5.2 ARM AMBA ........................................................................ 37 
2.5.3 Palmchip CoreFrame .......................................................... 38 
2.5.4 Sonic’s Silicon Backplane ................................................... 39 

2.6 Bus Features Overview ............................................................. 40 
2.7 Performance Metrics ................................................................ 41 
2.8 Summary ................................................................................. 42 

 
Chapter 3 LITERATURE REVIEW – Network on Chip ............................. 44 

3.1 Network on chip ....................................................................... 44 
3.2 Basic Concept of NoC ............................................................... 44 
3.3 Physical Layer .......................................................................... 46 
3.4 Architecture & Control ............................................................. 46 

3.4.1. Data Link Layer ................................................................. 47 
3.4.2 Network Layer .................................................................... 47 

3.4.2.1 Routing in NoC ............................................................. 49 
3.4.2.2 Contention Awareness .................................................. 51 

3.4.3 Transport Layer ................................................................. 52 
3.4.3.1 Network flow Control .................................................... 52 



 

10 
 

3.5 NoC as Communication Centric Platforms ................................ 53 
3.6 Development History ................................................................ 53 
3.7 Advantages of NoC ................................................................... 55 
3.8 Analysis of NoC ........................................................................ 56 
3.9 Summary ................................................................................. 57 

 
Chapter 4 Proposed Communication Centric Platforms ......................... 58 

4.1 Introduction ............................................................................. 58 
4.2 Proposed Communication Centric Platform ............................... 59 

4.2.1 Platform Controller ............................................................ 61 
4.2.2 Interfacing ......................................................................... 63 
4.2.3 Communication media ....................................................... 63 

4.3 System Level Modelling ............................................................ 66 
4.3.1 Proposed Modelling Level ................................................... 67 
4.3.2 Programming Language Choice .......................................... 69 

4.4 Proposed Communication Centric Platform modelling ............... 69 
4.5 Simulation Results ................................................................... 73 

4.5.1 Verification of Bus based platform ...................................... 73 
4.5.2 Verification of crossbar based platform ............................... 76 
4.5.3 Verification of Hierarchical and hybrid platforms ................ 79 
4.5.4 Throughput comparison ..................................................... 81 
4.5.5 Explanation of Results ....................................................... 90 

4.6 Real World Example ................................................................. 91 
4.7 Summary ................................................................................. 95 

 
Chapter 5 SOCCAD Tool ....................................................................... 96 

5.1 Introduction ............................................................................. 96 
5.2 Current SoC architecture development tools ............................. 96 
5.3 SOCCAD Tool ........................................................................... 98 
5.4 Tool Design Flow ...................................................................... 99 
5.5 Tool Demonstration with Real life example ............................. 105 
5.6 Summary ............................................................................... 108 

 
Chapter 6 Dynamically Reconfigurable NoC ........................................ 109 

6.1 Introduction ........................................................................... 109 
6.2 Proposed dynamically reconfigurable NoC .............................. 110 
6.3 Network architecture and Control ........................................... 111 

6.3.1 Transport Layer ............................................................... 112 
6.3.2 Network Layer .................................................................. 113 



 

11 
 

5.3.2.1 Routing Algorithm for packet switching ....................... 114 
6.3.3 Data Link layer ................................................................ 115 
6.3.4 Physical Layer .................................................................. 116 

6.4 SystemC Modelling of drNoC .................................................. 116 
6.5 Network Analysis ................................................................... 120 
6.6 Explanation of Simulations .................................................... 130 
6.7 Summary ............................................................................... 131 

 
Chapter 7 Conclusion and Future Work .............................................. 132 

7.1 Introduction ........................................................................... 132 
7.2 Summary of Thesis ................................................................ 132 
7.3 Summary of achievements ..................................................... 134 
7.4 Conclusions ........................................................................... 135 
7.5 Future Work .......................................................................... 136 

 
References .......................................................................................... 138 

 
 
 



 

12 
 

 

List of Figures 
 
Figure 2-1 Global bus architecture with an arbiter [KYE-001] .......................................... 27 

Figure 2-2 Global bus architecture with registers [KYE-001] ............................................ 28 

Figure 2-3 Global bus architecture with Bi-FIFO [KYE-001]............................................ 29 

Figure 2-4 Crossbar Switch Bus Architecture [KYE-001] ................................................. 30 

Figure 2-5 Avalon bus based system [ALT-002] ................................................................ 30 

Figure 2-6 Wishbone interconnections [AYA-001] ............................................................ 31 

Figure 2-7 PI (Peripheral interconnect) bus architecture [MIL-001] .................................. 32 

Figure 2-8 The AMULETH3H System [BAI-001] ............................................................. 33 

Figure 2-9 CoreConnect platform architecture [IBM-001] ................................................. 35 

Figure 2-10 AMBA platform architecture [ARM-001] ...................................................... 37 

Figure 2-11 CoreFrame platform architecture [PAL-001] .................................................. 38 

Figure 2-12 SiliconBackplane platform architecture [SON-001] ....................................... 39 

Figure 3-1 Basic NoC architecture ..................................................................................... 45 

Figure 3-2 Orthogonal Topology – (Mesh and Torus networks) ........................................ 48 

Figure 3-3 The Octagon Topology ..................................................................................... 49 

Figure 3-4 Indirect Network Topologies ............................................................................ 49 

Figure 4-1 Block diagram of Proposed Platforms .............................................................. 60 

Figure 4-2 Working of proposed communication-centric platforms .................................. 61 

Figure 4-3 Port address assignment in the proposed platforms .......................................... 62 

Figure 4-4 Bus Based Platform ........................................................................................... 64 

Figure 4-5 Crossbar Based Platform ................................................................................... 64 

Figure 4-6 Hybrid communication medium based Platform .............................................. 65 

Figure 4-7 Hierarchical bus based Platform ....................................................................... 66 

Figure 4-8 A system showing the proposed modelling level .............................................. 68 

Figure 4-9 Generic model of the proposed platform ........................................................... 69 

Figure 4-10 Connection establishment steps ...................................................................... 71 

Figure 4-11 FSM of arbiter for bus/crossbar ...................................................................... 72 

Figure 4-12 Bridge between two communication media .................................................... 72 

Figure 4-13 FSM of arbiter for hierarchical bus/hybrid communication media ................. 73 

Figure 4-14 Scenario 1 - one master core communicating with one slave core ................. 73 

Figure 4-15 Bus scenario 1 Transaction behaviour ............................................................ 74 

Figure 4-16 Scenario 2 - two master cores communicating with one slave core ................ 75 

Figure 4-17 Bus scenario 2 Transaction behaviour ............................................................ 75 



 

13 
 

Figure 4-18 Scenario 3 - two master cores communicating with two different slave cores 76 

Figure 4-19 Scenario 1 - two master cores communicating with one slave core ................ 77 

Figure 4-20 Crossbar scenario 1 transaction behaviour ...................................................... 77 

Figure 4-21 Scenario 2 - two master cores communicating with two different slave cores 78 

Figure 4-22 Crossbar scenario 2 transaction behaviour ...................................................... 79 

Figure 4-23 verification of communication across bridge .................................................. 79 

Figure 4-24 Hierarchical bus transaction behaviour ........................................................... 80 

Figure 4-25 Placement of cores for simulations ................................................................. 81 

Figure 4-26 Scenario 1 - Simulation results ....................................................................... 83 

Figure 4-27 Scenario 2 - Simulation results ....................................................................... 85 

Figure 4-28  Scenario 3 - Simulation results ...................................................................... 86 

Figure 4-29 Scenario 4 - Simulation results ....................................................................... 88 

Figure 4-30 Scenario 5 - Simulation results ....................................................................... 89 

Figure 4-31 Delayed start-up deadlines of different communication media ....................... 90 

Figure 4-32  Block diagram of WiMAX reciever ............................................................... 92 

Figure 4-33 Communication links in the WiMAX receiver ............................................... 93 

Figure 4-34 Impact of Communication Centric System-on-Chip Design on WiMAX ...... 94 

Figure 4-35 Impact of Communication Centric System-on-Chip Design on WiMAX Power 

and Area Consumption ....................................................................................................... 94 

Figure 5-1 Interface of the SOCCAD tool .......................................................................... 99 

Figure 5-2 Design Flow of SOCCAD tool ....................................................................... 100 

Figure 5-3 Example of a CTG .......................................................................................... 101 

Figure 5-4 Simplification of CTG for shared bus ............................................................. 101 

Figure 5-5 Simplification of CTG for Hierarchical bus .................................................... 102 

Figure 5-6 Simplification of CTG for Hybrid medium ..................................................... 102 

Figure 5-7 Example 2 CTG............................................................................................... 103 

Figure 5-8 Simplification of Example 2 CTG for Shared bus .......................................... 103 

Figure 5-9 Simplification of Example 2 CTG for Hierarchical bus ................................. 104 

Figure 5-10 Simplification of Example 2 CTG for Hybrid media .................................... 104 

Figure 5-11 SOCCAD communication input interface and respective CTG .................... 105 

Figure 5-12 Shared bus and Crossbar based media implementation by SOCCAD tool ... 106 

Figure 5-13 Simplified CTG for hierarchical bus and SOCCAD implementation of system

 .......................................................................................................................................... 106 

Figure 5-14 Simplified CTG for hybrid media and SOCCAD implementation of system

 .......................................................................................................................................... 107 

Figure 5-15 Power & Area results of system generated by SOCCAD tool ...................... 107 

Figure 5-16 Overall SystemC code generated by SOCCAD tool ..................................... 108 



 

14 
 

Figure 6-1drNoC data packet structure ............................................................................. 113 

Figure 6-2 change of packet switching to circuit switching between node 6 and 11 ........ 114 

Figure 6-3 Eight neighbours and ports of a router ............................................................ 115 

Figure 6-4 Conceptual model of drNoC Router with OCP interface ................................ 117 

Figure 6-5 FSM showing basic NoC flow ........................................................................ 118 

Figure 6-6 FSM showing drNoC flow .............................................................................. 119 

Figure 6-7 Simulated 4x4 2D Mesh network .................................................................... 121 

Figure 6-8 Scenario 1: Network delay results ................................................................... 122 

Figure 6-9 Scenario 2 - Path formation in drNoC ............................................................. 123 

Figure 6-10 Scenario 2 - Network delay results ............................................................... 123 

Figure 6-11 Scenario 3 - Path formation in drNoC ........................................................... 124 

Figure 6-12 Scenario 3 - Network delay results ............................................................... 125 

Figure 6-13 Scenario 4- Path formation in drNoC ............................................................ 126 

Figure 6-14 Scenario 4 – Percentage Increase in data throughput and decrease in average 

network delay. ................................................................................................................... 127 

Figure 6-15 Effect of drNoC path formation on rest of the network ................................ 127 

Figure 6-16 Effect of network load shifting on time ........................................................ 128 

Figure 6-17 Scenario 5- comparison of routing algorithms on drNoC ............................. 130 

 

 



 

15 
 

 

List of Tables 
 
Table 2-1 SoC Bus Features Overview ............................................................................... 40 

Table 3-1 Micro Network Stack [BEN-002]....................................................................... 45 

Table 4-1 Platform interface signals ................................................................................... 70 

Table 4-2 Scenario 1 - Experimental setup ......................................................................... 82 

Table 4-3 Scenario 2 - master-slave pairs with expected start times .................................. 84 

Table 4-4 Scenario 3 - master-slave pairs with expected start times .................................. 86 

Table 4-5 Scenario 4 - master-slave pairs with expected start times .................................. 88 

Table 4-6 Scenario 5 - master-slave pairs ........................................................................... 89 

Table 6-1 Smart Network Stack ........................................................................................ 111 

Table 6-2 Available channel for message routing ............................................................ 115 

Table 6-3 Scenario 1: Resource configuration .................................................................. 121 

Table 6-4 Scenario 2: Resource configuration .................................................................. 122 

Table 6-5 Scenario 3: Resource configuration .................................................................. 124 

Table 6-6 Scenario 4: Resource configuration .................................................................. 126 

Table 6-7  Scenario 5: Resource configuration ................................................................. 129 

 

 



 

16 
 

 

Acronyms and Abbreviations 
 
 
APB   Advanced Peripheral Bus 

ASB   Advanced System Bus 

ASIC  Application Specific Integrated Circuit 

CPU  Central Processing Unit 

CTG  Communication Task Graph 

DCR  Device Control Register  

DMA  Direct Memory Controller 

DRAM  Dynamic Random Access Memory 

drNoC     Dynamically Reconfigurable NoC 

EDA  Electronic Design Automation 

FIFO   First In First Out 

FPGA  Field Programmable Gate Array 

GALS   Globally Asynchronous Locally Synchronous 

GPIO  General Purpose Input Output 

HW  Hardware 

NoC   Network-on-Chip 

OCP   Open Core Protocol 

OPB  On-Chip Peripheral Bus  

PCB  Printed Circuit Board 

PIO  Parallel Input Output 

PLB  Processor Local Bus  

QoS  Quality of Service 

SJF  Shortest Job First 

SoC  System-on-Chip 

SW  Software 

TDMA   Division Multiple Access 

TLM  Transaction Level Modelling 

UART  Universal Asynchronous Receiver/Transmitter 

VC   Virtual Component 

VLIW  Very Long Instruction Word  

VSIA   Virtual Socket Interface Alliance 



 

17 
 

 

Chapter 1                

INTRODUCTION 
 
 
 

1.1  Motivation 
 

According to International Technology Roadmap for Semiconductors, by the end 

of this decade, System-on-Chips (SoCs), using 50-nm will grow to 4 billion transistors 

running at 10GHz [ITR–001]. Such growth will be driven by design methodologies 

supporting component reuse in plug and play fashion. Most quality of service (QoS) 

matrices will revolve around performance and reliability measures and on-chip 

interconnections will be the limiting factor for performance and energy consumption 

[BEN-001]. 

 

In today’s electronic industry, time to market is one factor that greatly determines 

the success of the developed product. Re-use design methodologies and ease of integration 

are seen as the way forward to reduce this time to market constraint. Reconfiguration has 

not only emerged as an efficient way of development of low power architectures for multi-

standard applications but also plays an important part in the reuse design paradigm. 

 

The definition of a "system" in "system on a chip" has expanded to cover multiple 

processors, embedded DRAM, flash memory, application specific hardware accelerators 

and (Radio Frequency) RF components. This has created a situation where there is a 

mixture of traffic types utilising the on-chip communication media. The communication 

network that was traditionally handcrafted to a particular traffic type and constraints has to 

cope with additional burden now and proves to be a limiting factor in achieving the 

required performance from the present SoC. This is shifting the design paradigm from 

computation centric to communication centric design flow.  

 

Due to escalating costs associated with design, verification, manufacture and 

testing of deep sub-micron chips, it is becoming economically infeasible to build highly 

customised application specific systems. The notion of platform based design is seen as a 
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way to tackle this problem. Platform refers to systems consisting of largely pre-designed 

and verified hardware and software components that can be targeted towards multiple 

applications, in order to amortise the high cost of platform development over larger 

markets. Different platform based designs have emerged in the last few years, however, 

most of the commercially developed platforms support companies’ own products and thus, 

do not provide the facility to easily integrate third party components into the pre-verified 

platform. 

 

System modelling and electronic design automation (EDA) tools go hand in hand 

in today’s semiconductor industry. With Multi-core SoC being a major part of electronics 

used in safety critical systems, quick system simulation for verification purposes poses a 

new challenge for the system designers. Current application specific integrated circuit 

(ASIC) or conventional field programmable gate array (FPGA) centric design 

methodologies are unable to cope with the development requirement of present day 

sophisticated SoC architectures. Especially with the added reconfigurable component 

integration in system, there is an urgent need for design methodologies and tools that are 

able to deal with different types of reconfigurable SoC fabrics targeting future 

reconfigurable SoC architectures.  

 

1.2  Author’s contribution 
 
 

The aim of this thesis is to propose an on-chip communication framework for 

future high throughput intensive applications and to develop a design methodology for 

rapid SoC development. The work presented in this thesis targets three crucial areas of 

SoC design methodology: development of communication media for future heterogeneous 

multi-core systems, development of communication centric platforms for plug and play 

integration of components (reconfigurable, fixed and processor based) to facilitate ease of 

design reuse, and thirdly, development of a tool to automate the generation of SoC 

architectures with optimised communication media, focussing on custom reconfigurable 

cores. 

 

Work carried out in the field of on-chip communication varies from bus based 

systems to complex Network-on-Chip (NoC) architectures. Along with the advantages of a 

certain communication medium are its drawbacks; no work is done where two different 

communication structures with different power and throughput characteristics co-exist in 

single SoC. In this thesis, a novel hybrid communication medium is presented that 



Chapter 1: Introduction 

19 
 

combines the advantages of a bus based communication system with a crossbar based 

communication system and thus both the bus and crossbar co-exist in the same SoC 

[AHM-001]. 

NoC is considered to be a solution to the communication demands of future multi-

core systems. NoC is generated by choosing a network topology, one of the routing and 

switching schemes and finding an optimal packet size. However, along with the 

advantages of any communication parameter in NoC, follows its disadvantages and a 

compromise has to be reached when choosing these network parameters. This thesis 

presents a dynamically reconfigurable NoC (drNoC) that eliminates this compromised 

choice of network parameters and dynamically chooses the best parameter in terms of 

routing, switching and packet size for the optimised network performance. The proposed 

drNoC incorporates an Open Core Protocol (OCP) based interface allowing components to 

be integrated in a plug and play fashion [AHM-002] [AHM-003] [AHM-004]. 

 

As mentioned above, platform based design has emerged as an efficient way for 

rapid development of SoC architectures. This thesis also presents a novel communication 

centric platform based design flow for future SoC architectures. The proposed platforms 

have built in controllers, thus making the heterogeneous cores (reconfigurable, fixed, 

processor based) integrated in a plug and play fashion. This eliminates the need of the 

dedicated system controller to be integrated or programmed when integrating processing 

cores to the platform. Four platforms have been developed with different communication 

media including the hybrid concept mentioned above.  Unlike traditional platform based 

designs, the novelty of the proposed platform lie in its ability to produce SoC architecture 

in truly plug and play fashion with an optimised communication media [AHM-005]. 

 

Lastly, bringing the above mentioned work together, a tool called SOCCAD is 

developed to automate the development of SoC architectures. The novelty of the 

SOCCAD tool lies in its ability to automate development of SoC architectures integrating 

custom reconfigurable cores and with optimised communication media. SOCCAD tool has 

a built-in component library that not only holds SystemC models of communication media 

but also includes custom reconfigurable cores, processor cores and other peripheral 

components required to generate complete system architecture for quick simulation and 

verification.  [AHM-006] [AHM-007] [AHM-008] [AHM-009] [AHM-010] [AHM-

011].  
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1.3  Roadmap of thesis 
 
 

This remaining of this thesis is divided into six chapters and is organised as 

follows: 

 

• Chapter 2 gives an overview of traditional communication media and 

communication centric platforms. It introduces the concept of shared 

communication media and gives an overview of commercially available shared 

and hierarchical buses. The communication centric platform based approach is 

then described and performance matrices related to on-chip communication media 

is listed to conclude the chapter. 

 

• Chapter 3 details the concepts of NoC communication and how it tackles the 

drawbacks in traditional bus based communication media. This chapter also 

identifies the expectations from future packet based on-chip communication 

network and lists performance matrices relating to NoC. 

 

• Chapter 4 presents two important things, firstly, a hybrid communication medium 

is presented and secondly the proposed communication centric platforms have 

been discussed. For the purpose of effective on-chip communication, four 

platforms have been developed. This chapter also details the systemC based 

communication centric modelling of the proposed platforms and discusses their 

simulation results. The developed platforms are also evaluated with the help of 

real life example. 

 

• Chapter 5 presents the developed SOCCAD tool, highlights the communication 

centric placement and explains the automated generation of communication 

centric SoC architectures utilising the developed communication centric platforms. 

 

• Chapter 6 presents drNoC, which is developed for SoC architectures with 

communication requirements of over 10GB/s and explains its architecture and 

implementation.  Simulation results are then listed to demonstrate the 

effectiveness of proposed drNoC in high data throughput applications. 
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• Chapter 7 presents a summary of all the previous chapters reiterating the main 

contributions by the author. It also identifies topics for future research and 

development. 

 

1.4  Summary 
 
 

On-chip communication is a crucial research area and with the SoC design 

methodology shifting to communication centric design flow, there is a need for 

development of new communication architectures to cater for the increasing throughput 

requirements while providing the required QoS in a reduced design time. This thesis 

presents two novel communication media, a hybrid communication architecture and a 

dynamically reconfigurable NoC for future high data intensive multi-core architectures. 

This thesis also presents novel communication centric platform based approach and a tool 

for automated generation of SoC architectures that aims at rapid development of SoC 

architectures.  The next chapter gives an overview of traditional communication media and 

commercially developed communication centric platforms. 
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Chapter 2                 

LITERATURE REVIEW 

Communication Centric Platform Based Designs 
 

2.1  Introduction 
 

This chapter gives an insight of communication centric platform based design. It 

starts with the definition of term platform and the origin of platform based design. Current 

on-chip communication media are discussed followed by literature review of 

communication centric platforms. 

 

During recent years, platform based design, also known as the configure and 

execute approach is emerging as a powerful SoC design methodology for rapid 

development of SoC devices.  The term “platform” is defined differently by researchers, 

semiconductor industries and tool vendors. 

 

Sangiovanni-Vincentelli [SAN-001] defines an SoC platform as a "layer of 

abstraction with two views." The upper view allows an application to be developed 

without referring to the lower levels of abstraction. Meanwhile, the lower view is a set of 

rules that classify a set of components belonging to the platform. 

 

The Virtual Socket Interface Alliance's (VSIA) [VIS-001] platform-based design 

development group defines an SoC platform as "a library of virtual components and an 

architectural framework, consisting of a set of integrated and pre-qualified software and 

hardware virtual components (VCs), models, EDA and software tools, libraries and 

methodology, to support rapid product development through architectural exploration, 

integration and verification." 

 

Automotive industry pioneered the platform concept in the early 1980s by 

standardising a common platform across several makes and models. By developing several 

platforms and sub-platforms, for example, the chassis platform, the interior platform, and 
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the electrical platform etc., the manufacturer was able to outsource significant segments of 

automotive hardware, thus reducing production cost and design cycle and improving 

design quality.  

 

The semiconductor industry embraced the concept of platform based design to 

cope with the rising pressure of time to market, design and manufacture costs. Platform 

based designs have been classified into different kinds.  

 

The first kind is called a “full application platform” in which users design full 

applications on top of hardware and software architectures. Such platforms usually are 

accompanied by software to support compilation, debugging, simulation and emulation. 

This speeds up the time to market and gives the designer an advantage of having a working 

chip, running at real speeds and executing in real environment.  

 

Some Industrial examples of full application platform include Philip’s Nexperia 

including a 32 bit MIPS RISC CPU, a 32 bit VLIW Trimedia processor and three levels of 

internal buses [PHI-001], Texas Instrument’s OMAP multimedia platform including a 

DSP, an enhanced ARM processor and an inter-processor communication mechanism 

[TEX -001], and ARM’s PrimeXsys wireless platform including ARM 926EJ-S processor 

core, java acceleration, a multi-layer AMBA bus and a selection of peripherals [ARM-

002].  

 

The second type of platform, which is not very common in academic based 

research, is a “processor centric platform”. As the name suggests, in processor based 

platforms only the processor is reconfigurable but it does not make the whole system. 

Industrial examples include Improv Systems [IMP-001], ARC [ARC-001] and Tensilica's 

Xtensa [TEN-001]. 

 

The third type is a “communication centric platform” which provides an 

interconnect architecture but does not provide a processor or a full application. Example 

includes IBM CoreConnect [IBM-001], ARM’s AMBA [ARM-001] Sonic’s silicon 

backplane [SON-001] and Palmchip’s CoreFrame architecture [PAL-001].  

 

Finally there is a “fully programmable platform” consisting typically of FPGA 

logic and a processor core. Examples from industry are Altera’s Excalibur [ALT-001], 

Xilinx Virtex Pro [XIL-001] and Quick Logic’s PolarPro [QUI-001]. 
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Due to the importance of communication in the future SoC designs, this chapter 

focuses on the communication centric platform based designs. In the following sections, 

the basics of on-chip communication is discussed followed by a literature review of 

traditional SoC communication including bus based, crossbars, hierarchical bus and finally 

it moves towards the development of communication centric platforms.  

 

2.2  Basics of On‐chip Communication 
 
 

As mentioned earlier, performance of a multi-core SoC is not only determined by 

the capacity of the processing elements (e.g. CPU speed, cache size, etc.), but it is also 

limited by the interconnect network. Design and optimization of such interconnect network 

are critical for system performance. In designing communication architecture for SoC, 

certain factors have to be considered [LAH-001]: 

 

Appropriate Topology: The topology refers to the way SoC components are connected. It 

can be in the form of single shared architecture, dedicated communication channels or 

more complex architectures such as hierarchical buses, token ring or crossbars.  

 

Communication Protocols: The protocol specifies the manner in which communication 

across the channel takes place. Communication protocols deal with the different types of 

resource management algorithms used for determination of access right to the shared 

communication channels. Static-priority, time division multiple access (TDMA), token 

passing, lottery and code division multiple access (CDMA) are some of the existing 

communication protocols employed in on-chip communication.  

 

Architectural Parameters: Parameters like bus widths, burst transfer size, priorities etc are 

also to be defined for the communication channels and associated protocols. Performance 

of communication media depends highly on these parameters. 

 

Clocking: Clocking can be synchronous or asynchronous. If a single clock is used for the 

communication medium and its connected cores, the system is referred to as a synchronous 

system. Asynchronous system in contrast, has no global clock and timing is managed 

locally. Communication medium synchronisation occurs with the help of handshaking 

protocol that uses request-acknowledgement signals to ensure that data transfer is 

completed successfully. Handshaking is also used in synchronous systems for a data 
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transaction consisting of several data transfers. To favour low power, globally 

asynchronous, locally synchronous approach is used [BAI-001].  

 

Asynchronous buses are typically slower than synchronous buses because of the 

additional overhead of the handshaking protocol. However, in high data throughput 

devices, the delays introduced by handshaking are negligible. When slower devices take 

part in transfers, a wait signal is used to stretch the transfer for several clock cycles. Split 

transfer is used in slower devices where a read operation is split into two read operations 

and the bus is released in the middle. Thus, bus is not reserved for the whole operation and 

can be utilised by other devices for communication.  Pipelined bus transfers are also used 

to obtain higher clock frequencies.  In pipelined transfer, address is send on the first cycle 

for it to be decoded following by the data on following cycles. It is also possible to have 

the data of last transfer interleaved with the address of next transfer. 

 

Interconnect interfacing: For rapid creation and integration of interoperable Virtual 

components (VCs), different interfacing standards have been developed for industry. OCP 

and VCI are the two most recognised standards in the semiconductor industry and research 

community.  

 

OCP: OCP [OCP-001] is a complete socket standard that facilitates component 

reusability by providing a configurable interface to on-chip communication sub system. A 

socket is universal and is targeted for use in virtually any application, while an interface is 

targeted at a single unique application, where all of the arbitration logic and interface 

circuitry is defined for that particular application.  

 

SoC designer can select signals from the OCP configurations needed for data, 

control and test requirements. Defining a core interface using the OCP provides a complete 

description for system integration. Basic OCP includes only data flow signals and is based 

on simple request and acknowledge protocol. However, the optional extensions support 

more functionality in control, verification and testing. Beside the basic OCP version, there 

are four extensions: simple extension, complex extension, sideband extension and debug 

and test interface extension. Simple extension and complex extension support burst 

transactions and pipelined write operations. Sideband extension supports user-defined 

signals and asynchronous reset. 

 

 VCI: The Virtual Component Interface (VCI) [VIS-001] specifies a request-

response protocol for on-chip communication. As an interface, the VCI can be used as a 
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point-to-point connection between two units called the initiator and the target (Master and 

Slave in case of OCP), where the initiator issues a request and the target responds. VCI 

defines this protocol for the transfer of requests, responses, contents and for coding of 

these requests and responses. 

 

VCI has three complexity levels: peripheral VCI (PVCI), basic VCI (BVCI), and 

advanced VCI (AVCI). PVCI provides a simple interface for applications that do not need 

all the functionality of BVCI. Two main signals are defined in PVCI for handshaking: 

VAL (signal sent by initiator to inform the presence of valid values in its interface) and 

ACK (target response signal indicating the end of successful communication).  

 

BVCI has a powerful set of rules. Communication in BVCI interface happens 

between the Initiator and the target. Contents are transferred separately under the control 

of a handshake protocol i.e. the request and response messages are completely 

independent. The use of two communication channels is defined in the BVCI standard.  

 

The AVCI is a superset of the BVCI and adds more sophisticated features such as 

threads to support high-performance applications. In the AVCI, requests may be tagged 

with identifiers, which allow such requests and request threads to be interleaved and 

responses to arrive in a different order.  

 

In a paper published by Porto et al. [POR-001] comparing PVCI, BVCI and OCP 

interfaces, it is concluded that BVCI results in the highest area utilisation, while PVCI 

interfaces occupies the lowest area. OCP interface area lies in between the PVCI and 

BVCI. When analysing the operation frequency, PVCI and OCP exhibit very similar 

results, however, due to a complex communication protocol, BVCI interface has a lower 

performance. Thus, for low area and high performance, OCP interface is considered as a 

better option. 

 

2.3  Bus Based On‐Chip Communication 
 
 

Buses have been deployed for communication since the beginning of circuit 

design and made their way to SoC due to their well understood concepts, their 

compatibility with most of the available node processors, the area taken on the chip and 

the low latency after the arbiter has granted control.  
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Most of the recent designs of on-chip buses borrow their ideas from standard 

printed circuit board (PCB) buses. The bus architecture for SoC differs from PCB buses 

because SoC has faster transfer rate due to shorter propagation delays and no restrictions 

on number of pins due to packaging or signalling constraints. 

 

Structurally, on-chip buses can be divided into Shared and Hierarchical buses. In 

hierarchical buses, two or more buses are connected via bridges. In most of the cases, the 

bus is divided into master and slave buses, with the master bus connecting the high speed 

devices and the slave bus acting as slave to the bridge and connecting low speed devices 

(discussed in section 2.4). 

 

2.3.1  Shared Bus based communication architectures 
 
 

A Global bus is the simplest example of shared communication architecture and is 

commonly found in many commercial SoCs [KYE-001]. All the processing cores are 

connected to a single global bus via interface. Bus access is granted on basis of different 

bus access protocols.  

 

 
Figure 2-1 Global bus architecture with an arbiter [KYE-001] 

 

The global bus can serve only one processing core at one time. A simple bus 

allocation mechanism can be in form of an arbiter that allocates the global bus to the 

processor core requesting to initiate communication. Figure 2-1 shows the global bus 

architecture where one global bus is shared by the processing cores and an arbiter is 

employed for granting bus access. Bus access can be granted in first come, first serve also 

known as first in, first out (FIFO), time sharing or by priority based allocation. Data ready 
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flags are employed in one of the local processor memory (for example SRAM_D in the 

figure 2-1) by the processing core in pipelined operation to indicate that its operation is 

complete and data is available for next core to read and use. The data ready flag in 

SRAM_D is continuously checked by the processing cores for the appropriate data ready 

flag value to become available. 

 
Figure 2-2 Global bus architecture with registers [KYE-001] 

 
Another bus allocation mechanism employed consists of a set of two registers 

DONE_OP and DONE_RV. A flag is set in these registers after the data transfer or data 

receipt between the processing cores. Figure 2-2 shows the bus architecture with registers 

employed for bus allocation. Any processing core can access the memory of upper 

adjacent core through the segmented global bus. Bus bridges are employed to allow 

different processors to access data memory. For communication between processor_A and 

processor_B in the figure 2-2, the processor_A writes to local memory SRAM_A, the 

address decoder makes BB_1 connects to SRAM_A. The bus bridges BB_2 and BB_8 

block the access to SRAM_A from any other processor.  Handshaking is done by setting 

DONE_OP_B at the completion of its operation by processor_A. Processor_B resets 

DONE_OP_B and reads SRAM_A. When the processor_B finishes reading from 

SRAM_A, it sets DONE_RV_B. At this stage, processor_A then resets DONE_RV_B to 

zero and begins processing the next packet. 

 

Bi-FIFOs in global bus architectures can also be employed for exchange of data 

between the communicating cores. Figure 2-3 shows a global bus architecture where data 

is exchanged through the Bi-FIFOs located between the cores. Bi-FIFOs can be accessed 

by two ports, an upper_zz port and a lower_xx port. Threshold value is defined by the user 

to indicate the status of the Bi-FIFO, a high threshold value indicates that the Bi-FIFO is 

full while a low threshold indicates that the Bi-FIFO is empty. After the completion of the 
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assigned operation, data is pushed to Bi-FIFO until the data reaches the high threshold, at 

which stage an interrupt signal is generated for the adjacent core to indicate data 

availability. An interrupt signal is generated to the next core when the data in a Bi-FIFO 

reached the high threshold. The interrupted core reads the data from the Bi-FIFO until the 

data of the Bi-FIFO reaches the low threshold. For synchronisation through handshaking, 

two flag registers are used. These registers are located in the “REGISTERS” block in the 

Figure 2-3 along with the threshold registers. 

 

 
Figure 2-3 Global bus architecture with Bi-FIFO [KYE-001] 

 
Although, system performance is heavily dependent on the application running on 

the system, the bus architecture with an arbiter outperforms the segmented bus 

architectures due to the performance difference arising from synchronisation protocols. In 

the segmented bus architecture with registers for data transfer, there is a gap during the 

read and write time in the current processing core. However, bus architecture with Bi-

FIFO shows the best performance for an algorithm that has many local variables, small 

loops and strong data dependency between functions because they can sequentially process 

functions with fast memory pointer increments between processors [KYE-001]. 

 

A crossbar switch bus architecture connects multiple inputs to multiple outputs in 

a matrix manner. Figure 2-4 shows a crossbar switch bus architecture. Inputs and outputs 

are connected through the cross wires and junction switches. All the input paths and output 

paths have the same bus width and operation frequency. The bus width is kept same so any 

input path can be connected to output path. With this simple and regular structure, the 

crossbar switch provides simultaneous multiple connections between its inputs and 

outputs. When competition for the same shared resource occurs, an arbiter resolves this 

situation based on any of the arbitration techniques like FIFO, time shared etc.  
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Figure 2-4 Crossbar Switch Bus Architecture [KYE-001] 

 

2.3.2 Commercially developed shared buses 
 

There are many shared bus architectures developed commercially, with most of 

the architectures developed to support the company’s own cores. These bus architectures, 

share the same basic concepts, however, different performance tuning schemes are used to 

make them unique. 

 

 

 
 

Figure 2-5 Avalon bus based system [ALT-002] 
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Developed by Altera, Avalon is a parameterised bus architecture mainly used for 

developing SoC architectures based on Nios processor [ALT-002]. Capable of transferring 

one data item 8-,-16-, 32-, 64-, or 128-bits wide, Avalon has a set of predefined signal 

types which can be used to connect the cores to its synchronous interface.  Multiple bus 

master support is provided by Avalon along with complete specification for port 

connections and timing by which components communicate. Masters and slaves interact 

with each other based on a technique called slave-side (distributed) arbitration. Figure 2-5 

shows an Avalon bus based system. 

 
Data-path multiplexing, address decoding, wait state generation, dynamic bus 

sizing, interrupt priority assignment, latent transfer capabilities, and streaming read and 

write capabilities are some of the features provided by the Avalon bus for its attached 

peripherals. SOPC Builder is an exclusive Quartus II software tool that automatically 

generates the Avalon bus architecture to support the Nios based systems getting 

developed. 

 
 

. 

Figure 2-6 Wishbone interconnections [AYA-001] 

 
 

Wishbone is an open source bus architecture developed by Silicore Corporation 

[WIS-001].  Wishbone defines different interfaces for master and slave cores [AYA-001]. 

Support is also provided for different types of bus transactions, such as read/write, 

blocking/unblocking access. In applications where two buses should exist, two separated 

Wishbone interfaces can be created for slow and fast transactions. 
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Different types of interconnect topologies (Figure 2-6) are supported by Wishbone 

including: a point-to-point connection for direct connection of two participants that 

transfer data according to some handshake protocol, a dataflow interconnection for linear 

systolic array architectures used in implementation of DSP algorithms, a shared bus for 

multi core SoCs organized around single system bus and a crossbar switch interconnection 

used in multi core SoCs where more than one master can simultaneously access several 

different slaves.  

 

 
 

 
Figure 2-7 PI (Peripheral interconnect) bus architecture [MIL-001] 

 
 

Peripheral Interconnect (PI) bus is an open standard published as part of a 

European project OMI (Open Microprocessor Initiative framework) in which several 

semiconductor companies (Advanced RISC Machines, Philips Semiconductors, 

SGSTHOMSON Microelectronics, Siemens, TEMIC/MATRA MHS) worked together to 

develop a bus architecture for use in modular, highly integrated SoC designs. For SoC 

design purpose PI bus System Toolkit is developed and synthesis scripts for different 

ASIC and FPGA technologies are also available [MIL-001]. 

 

PI bus is a synchronous bus with processor independent implementation and 

design. Address and Data bus is scalable up to 32 bits supporting 8-, 16-, and 32- bit data 

access. A broad range of transfer types from single to multiple data transfers is supported 

by PI bus along with multi-master capabilities (Figure 2-7).  
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Figure 2-8 The AMULETH3H System [BAI-001] 

 

Unlike the above mentioned examples of buses, MARBLE (Manchester 

Asynchronous Bus for Low Energy) is a fully asynchronous bus developed at the 

Manchester University [BAI-001]. The novelty of MARBLE lies in its clock-less 

operation and use of split-transactions for every transfer. Split-transfer architecture allows 

transfers between different initiators and targets to be interleaved without the need for 

retries, thus giving low energy operation and low latency. 

 

In order to implement split transaction architecture, the MARBLE bus consists of two 

asynchronous multipoint channels. One of these channels carries the command from the 

Master to the slave. The other multipoint channel carries a response from the slave to the 

master, along with the read or write data in the appropriate direction.  

 

Figure 2-8 shows the AMULET3H system with MARBLE bus as interconnect media 

connecting CPU core and DMA controller to RAM, ROM, and other peripherals.  

 

2.4  Hierarchical bus 
 
 

Despite the advantages of buses, the bus based architecture will not meet the 

increased communication requirement because the bandwidth of a bus is shared by all the 

attached devices and it is simply not sufficient [KEU-001]. Also every unit attached adds 

parasitic capacitance; therefore electrical performance degrades with growth. To overcome 

this problem, the concept of hierarchical bus originated. 
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SoC components are placed at the appropriate level in the hierarchy according to the 

performance level they require. Low performance SoC components are placed on lower 

performance buses, which are bridged to the higher performance buses so as not to burden 

the higher performance SoC components. Hierarchical buses provide an increase in data 

throughput over the shared buses due to decreased load per bus and the potential for 

transactions to proceed in parallel on different buses [LAH-002]. 

 

Examples of hierarchical bus include CoreConnect by IBM [IBM-001] and AMBA 

by ARM [ARM-001].  These examples are explained in the section 2.5.1 and 2.5.2 

respectively.  

 

2.5  Communication centric platform 
 
 

Communication-centric platform is a bottom-up approach for SoC development. A 

bottom-up approach is bringing together individual modules to form the required bigger 

system. Communication centric platforms can be classified as SoC integration platforms 

where the main focus is on the hardware blocks to integrate and interact with each other 

efficiently [YOO-001]. In SoC integration the interface standards are important to simplify 

the development of complex systems and reduce the need to design glue logic that 

potentially degrades the performance of the system.  

 

As mentioned earlier in this chapter, a communication centric platform only provides 

a verified interconnect architecture. Processor and other modules like memories and 

application specific cores etc. have to be added by designer to realise the complete SoC. 

This means that a communication centric platform can be used for different application 

domains.   

  

Communication centric platforms developed commercially generally come with a 

standard bus interface and mostly provide hierarchical bus topology due to the reasons 

mentioned in section 2.4. Below are some of the commercially developed communication 

centric platforms. 
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2.5.1 IBM CoreConnect 
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Figure 2-9 CoreConnect platform architecture [IBM-001] 

 

The CoreConnect bus architecture is developed by IBM to ease the integration and 

reuse of processor, system, and peripheral cores within standard product and custom SoC 

designs. CoreConnect serves as a foundation for the IBM Blue Logic IP collaboration 

program, which fosters close working relationships between IBM and select third party 

providers to facilitate customer utilisation of IP cores. 

 

The IBM CoreConnect architecture provides three buses for interconnecting cores, 

library macros, and custom logic [IBM-001]. 

 

• Processor Local Bus (PLB) 

• On-Chip Peripheral Bus (OPB) 

• Device Control Register (DCR) Bus 

 

The PLB and OPB buses provide the primary means of data flow among macro 

elements. Because these two buses have different structures and control signals, individual 

macros are designed to interface to either the PLB or the OPB. Usually the PLB 

interconnects high-bandwidth devices such as processor cores, external memory interfaces 

and DMA controllers. 
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Processor Local Bus 

 

PLB provides high bandwidth data paths for the attached cores. PLB supports up 

to 16 masters, providing four priority levels for implementation of various arbitration 

schemes. Any number of slave devices can be attached to PLB, however, the number of 

masters and slaves attached to a PLB directly affects the maximum attainable PLB bus 

clock rate. This is because larger systems tend to have increased bus wire load and a 

longer delay in arbitrating among multiple masters and slaves. 

 

PLB provides support for 16-, 32- and 128- bit data transfers and is extendable to 

256-bit data buses. For bus arbitration, a bus arbitration and control unit is also 

incorporated in PLB to manage the address and data flow through PLB. Separate address 

and data buses are present that allow simultaneous transfer requests. The PLB arbitrates 

among these requests and directs the address, data and control signals from the granted 

master to the slave bus. The slave response is then routed from the slave bus back to the 

appropriate master. 

 

On-Chip Peripheral Bus 

 

In order to reduce capacitive load on the PLB, a secondary bus OPB is used. OPB 

supports multiple masters. Peripherals suitable for attachment to the OPB include serial 

ports, parallel ports, UARTs, GPIO, timers and other low-bandwidth devices. 

 

As part of the IBM Blue Logic cores program, all OPB core peripherals directly 

attach to OPB. The OPB provides a fully synchronous protocol with separate 32-bit 

address and data buses and supports for multiple OPB bus masters. 

 

Device Control Register Bus 

 

 DCR is a fully synchronous bus typically implemented as a distributed 

multiplexer. Lower performance status and configuration registers are typically read and 

written through the DCR Bus. The DCR provides a maximum throughput of one read or 

write transfer every two cycles to provide the required connectivity while minimizing 

silicon usage. 
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2.5.2 ARM AMBA 
 
 

 
 

Figure 2-10 AMBA platform architecture [ARM-001] 

 
AMBA is ARM’s hierarchical bus designed to support the ARM processor cores.  

AMBA defines a multilevel bussing system, with a system bus and a lower-level 

peripheral bus [ARM-001].  

 

• AMBA High-Speed Bus (AHB) or  Advanced System Bus (ASB) and 

• Advanced Peripheral Bus (APB).  

The two buses are linked via a bridge that serves as the master to the peripheral 

bus slave devices. The system bus can be one of the two defined buses AHB or ASB. The 

peripheral bus, called APB for the Advanced Peripheral Bus, is a simpler, lower-speed, 

low-power bus for slower devices. 

 

Advanced High-Speed Bus 

 

The AHB takes on many characteristics of a standard plug-in bus. It's a multi 

master bus where all bus operations are initiated by bus masters. The master-generated 

address is decoded by a central address decoder that provides a select signal to the 

addressed bus slave unit. The bus master can "lock" the bus, reserving it with the central 

arbiter for a series of locked transfers. 

 

AHB supports 32, 64, 128, and  256 bit data paths and  32 bit address bus and can 

be configured for Pipelined and split transactions  
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  Advanced System Bus 

 

Like the AHB, the ASB is a pipelined, multi master bus that supports bursting. It 

is a simpler bus and does not support split transactions. Like AHB, it enables a master to 

reserve the bus. ASB supports 32 bit data paths and 32 bit address bus.  

 

Advanced Peripheral Bus 

 

Designed to support low-speed peripherals such as universal asynchronous 

receivers/transmitters (UARTs), keypads, and programmed inputs/outputs (PIOs), the APB 

is a simple peripheral bus. All bus devices are slaves to the master, the bridge to the AHB, 

or ASB system bus. This is a static bus that provides a simple address, with latched 

address and control signals for easy interfacing.  As a simple bus, the APB supports 8, 16 

and 32 bit data bus and 32 bit address bus. 

 

2.5.3 Palmchip CoreFrame 
 

 
 

Figure 2-11 CoreFrame platform architecture [PAL-001] 

 
The CoreFrame developed by PalmChip is low power, high performance on chip 

interconnect architecture that provides a platform for components to be integrated for rapid 

development of SoC architectures [PAL-001]. 
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It can also be viewed as a system of independent parallel buses rather than a 

hierarchy of buses. The two most important buses are PalmBus and the MBus. The 

PalmBus is designed for low speed accesses from the CPU core to peripheral blocks. The 

MBus is designed for high speed accesses to shared memory from the CPU core and 

peripheral blocks. There is also a CPU bus that is used to connect CPU to PalmBus via 

palm-bus controller and to MBus through a cache or a bridge. 

 

Channels are used to interface between the MBus and the Memory subsystem. The 

channel handles all interfacing between the peripheral and the MBus. Use of channels 

makes it easier to integrate peripherals that require DMA as many system issues including 

pipelining, memory addressing, arbitration and endianness do not have to be dealt by the 

peripheral. Address control is performed by simply passing the address from the channel 

interface to the MBus. The simplicity of the Channel interface makes the task of 

integrating peripheral blocks from multiple sources becomes much simpler. The channel 

library also includes verification stimuli and test benches [PAL-002]. 

 

2.5.4 Sonic’s Silicon Backplane 
 
 

 
 

Figure 2-12 SiliconBackplane platform architecture [SON-001] 

 
 

SiliconBackplane [SON-001] is an on-chip bus framework that connects 

processing cores in SoC. It is based on OCP bus interface protocol thus it does not require 

additional design work or glue logic to integrate cores to the platform. Sonics has also 

added a multicast feature that allows designers to send data to multiple slaves. The multi-
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backplane feature allows designers to create a hierarchical subsystem each with an 

independent clock frequency and data path width. The sub systems can be connected in 

tree or fully connected topologies to isolate local data flows, improving total system 

bandwidth while reducing SoC area and power consumption [SAN-002]. 

 

To overcome shortcomings of bus based communications, a temporal solution is 

proposed by Sonics [WIN-001]. Sonics decouples communication from computing and 

introduces a communication subsystem that can be tuned to the required bandwidth.  

Rather than using a fixed interface standard, an optimised interconnect interface targeted 

for the desired application is used. To decouple communication from computation, FIFO 

buffer and burst transfer of data is introduced by grouping the related transfers into bursts. 

The decoupling of computation-intensive data is effective for best-case performance but 

shows poor performance in satisfying real-time deadlines. TDMA is used to transfer the 

data across a higher-bandwidth channel with minimal buffering, and higher-level protocols 

are adopted to select the receiving device. The result is highly efficient interleaved 

transfers.  [WIN-001] 

 

2.6  Bus Features Overview  
Table 2-1 SoC Bus Features Overview 

Name Structure Uni/Bi-
directional 

Shared/point-
to-point 

connections 

Synchronous 
/asynchronous 

Multiple 
clock 

domain 

Transfer 

AMBA Hierarchical Uni-directional Shared Synchronous N/A Split/Pipelined 
Transfer 

Avalon  Shared Bi-directional point-to-point Synchronous Multiple 
clock 

domain 

Pipelined 
Transfer 

CoreConnect Hierarchical Uni-directional Shared Synchronous N/A Pipelined 
Transfer 

CoreFrame Hierarchical Uni-directional point-to-point Synchronous Multiple 
clock 

domain 

N/A 

MARBLE Shared Bi-directional Shared Asynchronous Multiple 
clock 

domain 

Split/Pipelined 
Transfer 

PI Bus Shared Bi-directional Shared Synchronous - Split Transfer 
 

Silicon 
Backplane 

Shared N/A Shared Synchronous Multiple 
clock 

domain 

Pipelined 
Transfer 

Wishbone Hierarchical Uni/bi-
directional 

Shared Synchronous Multiple 
clock 

domain 

N/A 

 
The main features of the SoC buses mentioned in section 2.3 and 2.5 are 

summarised in Table 2-1. The features analysed include network topology features like 

structure, shared or point to point connections, clocking and data transfer type. 
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In section 2.3, some commercially developed shared buses were introduced. An 

important issue to consider in dealing with a communication medium is its scalability. 

Scalability of a communication medium refers to its capability to deal with an increase in 

data throughput requirement caused by addition of new resources. Although, shared buses 

are simpler than hierarchical buses, they have a drawback when it comes to scalability and 

suffer from poor resource sharing in time domain leading to high contention or resource 

utilisation.  Hierarchical buses solve the problem of scalability and resource sharing to 

some extent but will still prove to be bottleneck in future high throughput SoC 

architectures.   

 

Uni- directional buses are believed to be faster than bi- directional buses however; 

bi-directional signal lines save routing resources. Tri-state buffers are used in 

implementation of bi-directional lines that are not suitable for ASIC design due to 

difficulties in control and testing. Apart from AMBA, CoreConnect and CoreFrame most 

of the buses use uni-directional lines. Wishbone supports both uni- and bi-directional lines 

[SAL-001]. 

 

Apart from MARBLE Bus, all the buses are synchronous in nature. MARBLE bus 

employs globally asynchronous locally synchronous clocking that save power 

consumption as different modules can run at reduced frequencies irrespective of other 

modules in system. This comes at a cost of increased system complexity [APT-001]. 

 

PI Bus is the only bus that supports only split transfer. All the other buses support 

both split and pipelined transfer. Using pipelined transfer, higher clock frequencies can be 

obtained. On the other hand split transfer has the advantage that bus is not reserved for the 

whole operation by one bus master allowing other cores to utilise the bus efficiently.  

 
 
2.7  Performance Metrics 
 
 

Data throughput plays an important part in establishing the suitability of a bus to 

be used as communication media for a particular SoC. Another important performance 

metric is the latency of a transfer. Latency is the time taken to execute a transaction across 

the bus. It has two components, firstly the time it takes to access the bus, which depends 

on bus protocol and utilisation and secondly, the time it takes to transfer the data, which is 

directly determined by the protocol of the bus and bus width.  Time is usually measured in 

clock cycles. 
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Bus bandwidth, also referred to as data throughput is the maximum capacity for 

data transfer as a function time and is given by:  

 

Bandwidthbus = Widthbus x Clock‐frequencybus     …………… Equation 2.1         

 

Bus width is specified in bits and the clock-frequency in megahertz then bandwidth is 

measured in megabits per second.  

 

From Equation 2.1, it can be seen that clock frequency plays an important role in 

available bandwidth.  In a system with a fixed bandwidth, a rise in bus clock frequency 

implies a shorter bus clock cycle period. e.g. a bus with clock frequency of 100 MHz has a 

bus clock cycle duration of 10 ns, whereas a bus with a higher clock frequency of 500 

MHz has a bus clock cycle of only 2 ns [PAS-001]. 

 

Entering into the DSM era has got new challenges for on-chip buses. Buses are 

implemented as long metal lines on a silicon wafer and data is transferred using 

electromagnetic waves that have a finite speed limit. These metal lines do not decrease in 

size in proportion to the decreasing logic components. This results in relatively longer 

communication lengths between logic components. Moreover, with increasing clock 

frequencies, the distance that can be covered by a signal on the bus in a single clock has 

been reduced and it can take multiple cycles to send a signal across a chip. This increase in 

signal propagation time has serious consequences for the performance and correct 

functioning of the SoC design. 

 

In order to tackle this signal propagation problem, hierarchical or split bus 

communication architecture are employed that partition the long bus lines into shorter 

ones, separated by bridges or tri-state buffer structures. This breakdown makes it possible 

for signal to transverse a bus segment in a single clock cycle and with hierarchical buses 

this separation allows different buses to operate at different bus clock frequencies.  

 

2.8  Summary 
 
 

This chapter introduced the basics of on-chip communication. A literature review 

has been done with respect to shared and hierarchical buses and concept of communication 
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centric platform based design is introduced. Various commercially developed shared and 

hierarchical buses are reviewed and their architectural characteristics are listed.  

 

Reviewing the buses brings us to the conclusion that most bus properties are 

similar with only a few exceptions of performance tuning parameters. In order to realise a 

bus, a designer would use either shared/hierarchical topology (depending on the 

application domain), synchronous, uni-directional lines. The data transfer can use 

pipelining or split transactions with handshaking. Dynamic arbitration is effective but 

complex in nature when it comes to implementation. The increase in complexity brings 

with it an increased area and power penalty. If this overhead is justified, support for 

multiple clock domains, dynamic reconfiguration and asynchronous clocking can be 

included to implement an optimised bus architecture. Coupled with an interfacing standard 

to ease the process of integration, a communication platform can be developed.  

 

The main aim of this chapter was to establish the current trends in communication 

centric platforms and to establish the requirements for future communication centric 

platforms. It can be concluded that current communication centric platforms provide full 

framework  for communication but take a hierarchical bus based approach which might 

not be the ideal communication medium for the different application domains. In addition 

to this, the time spent on customisation and modifying third party cores to integrate with 

the platform is considerably high. A proposed solution for future communication centric 

platform is suggested in chapter 4. 

 

It is believed that bus based communication system will not satisfy the 

performance requirements of future multi-core SoCs [JAR-001]. To tackle this problem, 

notion of NoC is introduced. The next Chapter deals with the origin of NoC and 

establishes the connections between NoC and platform based designs. 
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Chapter 3                 

LITERATURE REVIEW  

NOC as Communication Centric Platform 
 

 

3.1  Network on chip 
 

With the scaling down of device feature size and scaling up of design complexity, 

throughput limitations, signal integrity and signal latency are becoming a bottleneck in 

future communication centric SoC design. For future on-chip communication, a new 

communication medium is needed. This communication medium should aim to provide 

low power, utilise link efficiently, reduce contention and occupy less area on silicon [JAR-

001]. 

 

NoC is considered to be the solution to this communication bottleneck. This chapter 

focuses on the NoC as an emerging communication medium. It starts with the basic 

concepts of NoC. NoC layered approach and NoC as an ideal candidate for future 

communication centric platform is then discussed. This is followed by a review of work 

done in the field of NoC. To conclude the chapter performance metrics of NoC are 

described. 

 

3.2  Basic Concept of NoC 
 
 

The basic concepts and techniques of NoC are built upon the successful and well 

established computer networking domain. However, NoC differs from the traditional 

network because of local proximity of attached cores and because NoCs are more 

predictable at design time. The main idea is to have the processing core abstracted as a 

node, and the nodes are interconnected by the micro network that can provide scalable and 

concurrent point to point or point to many connection. Figure 3-1 shows an example of a 

basic NoC architecture. 16 network routers are connected in a 4x4 2D Mesh topology. 
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Routers also serve as an interface for the modules to be attached. A module can be a 

general purpose processor, a DSP or a memory sub-system. Instead of routing design-

specific global on-chip wires, the communication between modules occur through routing 

packets via interface provided by routers. 

 

 

 
Figure 3-1 Basic NoC architecture 

 
 

NoC communication is controlled by protocols also referred to as a micro network 

stack”. It is designed in layers and is an adaptation of OSI seven layers scheme [WAR-

001]. The micro network stack is composed of five layers, application, transport, network, 

data link, and physical layer as shown in table below [BEN-002]. 

 
 

Table 3-1 Micro Network Stack [BEN-002] 

 
Software 

 
Application Layer 

Architecture 
& Control 

Transport Layer 
Network Layer 

Data Link Layer 
Physical Wiring 

 
 

As mentioned earlier in section 2.2, there are certain factors that have to be 

considered when designing effective on-chip communication architecture.  The micro 

network stack caters for all those factors. In order to understand the working of NoC each 

layer is discussed below. 
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3.3  Physical Layer 
 

The physical layer deals with the physical characteristics of the medium that 

connects the switches and resources with each other. The physical implementation of a 

communication channel is in the form of wires and the physical layer deals with the 

voltage levels, lengths and width of wires, signal timings, and number of wires connecting 

the switches, etc.  

 

The Physical layer in NoC differs from board level and large scale networks as on-

chip networks have abundant wiring resource. Dally [DAL-001] in his paper argued that 

on a small 3mm×3mm tile from a 12mm×12mm chip in 0.1µm CMOS with 0.5µm wire 

pitch, there can be up to 6,000 wires on each metal layer crossing each edge of a tile. This 

means that the designer can trade off wiring resources for network performance. 

 

In future the wiring layers can and will exceed 10 levels, with global wires on the 

top metal layer. Wire widths will increase with wiring levels, with wires at the top level 

being wider than lower level wires [THE-001]. The advantage of having increased width 

wires is of low resistance and the advantage of having increased spacing between them is 

reduced capacitance.  

 

The critical challenge for NoC is to provide adequate QoS with a limited energy 

budget. One of the QoS requirements is the reliability of the communication media. The 

most common sources of on-chip noise are crosstalk, power supply noise, electromagnetic 

interference and inter-symbol interference etc [BEN-003][SYL-001][BAK-001]. 

 

3.4  Architecture & Control 

 
The architecture and control of the network is taken care of by the data link layer, 

network layer and transport layer. The data link layer ensures reliable communication over 

the physical layer, which requires error correction and detection. If the information is 

corrupt it will be left for upper layers to deal with.  

 

The network layer deals with switching and routing aspects of the packetised data. 

Switching is the type of connection (packet switching or circuit switching) and routing is 

the path followed (predicted by the routing algorithms). 
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The transport layer provides the initial establishment of communication channels, 

the transfer of data and the final release of the channels. For data transfer it interfaces with 

the network layer to ensure an error free virtual point to point connection. Unlike the 

transport layer of the OSI model, this layer in NoC also deals with decomposition of data 

into packets at the source and their assembly at the destination. Packet size is application 

specific in SoC. 

3.4.1.  Data Link Layer 
 
 

As described above, the data link layer abstracts the physical layer and treats it as 

a medium with a non-zero probability of errors in the transmitted bit stream. This 

probability of errors is increasing with the technology scaling down.  Thus, the data link 

layer serves the job of increasing the reliability of the physical layer up to the minimum 

required level. It also serves to regulate the access to shared medium network where the 

contention for a communication channel is possible. 

 

 The two schemes that can be implemented for error detection and error correction 

can be classified into error detection with retransmission and error correction using the 

information transmitted in packet for data correction. Error correction/detection requires 

an encoder/decoder pair at the channel’s end. Error detection is the first stage in both the 

schemes; however the difference occurs when data has to be retransmitted in the first case 

which has a price in terms of latency. The hardware overhead in this case is negligible as it 

only requires one extra bit of information per flit of data transfer. In latter case, the 

decoder is more complex because of correction circuitry.  

 

 There are several error detecting and correcting codes [WAR-001][BER-

001][LIN-001]. When choosing the right error correcting code, latency and energy 

consumption are very important design parameters. Generally, in NoC, error detection or 

error correction schemes are rarely used because of the limited resources, except for very-

high-speed links. 

3.4.2 Network Layer  
 

The network layer is responsible for the transfer of packets across multiple links or 

across multiple networks. Design issues of the network layer include the topology 

construction, routing scheme and arbitration policy for congestion control.  
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 Before proceeding to the switching and routing aspects of the packets, it is 

important to look at network topologies and types of network that require the use of 

network layer. Due to different performance requirements, many different network 

topologies are designed. Networks can be categorised into two categories; direct and 

indirect networks [DUA-001].   

 

In direct networks, processing cores are connected directly with each other by the 

network and routing is performed by the node for transmission of data. For example, 

orthogonal and octagonal topology.  Orthogonal topology of connecting nodes is widely 

used in parallel computing platforms. The nodes are connected in k-ary n-dimensional 

mesh or k-ary n-dimensional torus formations. Due to the regularity of the network, the 

interconnect length between nodes is uniform [DAL-002]. Figure 3-2 shows a 4-ary 2-dim 

mesh and torus formation.  

 

    
Figure 3-2 Orthogonal Topology – (Mesh and Torus networks) 

 

 

Octagon topology is another example of direct network topology where eight 

processors are connected by an octagonal ring and three diameters. Figure 3-3 shows 

formation of an octagonal topology. It can be seen from the figure that within the local 

ring, the delays between any two node processors are no more than two stages and within 

the neighbouring rings, the delays are no more than three stages. By using one node 

processor more octagons can be added in the network making octagon network highly 

scalable [KAR-001].       
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Figure 3-3 The Octagon Topology 

 

In an Indirect network (Figure 3-4), Processing cores are connected by one or 

more intermediate node switches that perform the routing functions as well. A simple 

example can be of a crossbar network, in an N×N crossbar network N input ports are 

connected with N output ports. Any of the N input ports can be connected to any of the N 

output ports by a node switch on the corresponding cross-point. Buffers can be placed at 

inputs, outputs or at the cross-points of interconnection matrix. If buffers are placed at the 

cross-points of the interconnection matrix, a butterfly switch fabric is formed. A butterfly 

switch may require a large increase in the complexity of the switching element, as each 

cross point now requires memory [JON-001]. 

 
Figure 3-4 Indirect Network Topologies 

 

3.4.2.1  Routing in NoC 
 
 

For maximum system performance, a routing algorithm should have high 

throughput and should provide low latency message delivery, avoidance of deadlocks, 

live-locks, starvation, and ability to work well under various traffic patterns [FEL-001].   
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Network routing algorithms are classified in two types, deterministic and adaptive 

[MCK-001]. In deterministic routing algorithms, transfer path is determined in advance by 

the router, based on the source and the destination address. Deterministic routing is simple 

to implement, provides low packet transfer latency when there is no congestion, but data 

throughput decreases with increasing packet injection rate [RIJ-001].  

 

XY routing is a popular deterministic routing algorithm [ZHO-001]. The message 

is divided into a sequence of fixed-size units of data, called flits. Flits are first routed in the 

X direction, until reaching the YTarget coordinate, and afterwards in the Y direction. If some 

network hop is in use by another packet, the flit remains blocked in the switch until the 

path is released.  

 

In adaptive routing algorithms, each packet’s transfer path is calculated based on 

current network conditions [NIL-001][BEN-004]. When network congestion occurs, a 

better path is calculated to avoid congested links. Adaptive algorithms improve the 

packet’s latency and throughput at cost of a more complex router implementation. 

 

Store-and-forward, virtual cut through and wormhole are popular adaptive routing 

techniques. With store-and-forward, the message latency is the product of the number of 

hops taken and the sum of the average queuing delay and transmission time of the message 

per hop [BER-001], this implies that if a b-flit message transverse a path of length d, and is 

never delayed, then it will reach its destination in bd steps (assuming it is getting 

transmitted by each channel in each hop).  

 

Virtual cut through routing differs from store-and-forward routing as it forwards 

the packet to the next node before it is entirely received by the current router. This reduces 

the buffer size and store-and-forward delays. However in case the next router is not 

available, then the whole packet has to be stored in buffer of current router. 

 

In the wormhole routing technique [DAL-003], a message is divided into flits. If a 

communication channel transmits the first flit of a message, it must transmit all the 

remaining flits of the same message before transmitting flits of another message. In this 

method, the message latency is proportional to the sum of the number of cycles spent in 

waiting for suitable channels to route message flits, number of hops, and message length. 

In the example above with a b-flit message transverse a path of length d, the first flit does 

not wait for the rest of the message. It therefore arrives at its destination after d steps, and 

the last flit of the message arrives after d+b-1 steps. The difference in time is due to a 
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better utilisation of network edges by the wormhole router. In addition to reduced latency, 

wormhole routing also has the advantage that it can be implemented with small and fast 

switches. 

 

Wormhole routing performance is prone to deadlock and live-lock issues [SHI-

001]. A deadlock occurs when a message waits for an event that will never happen; a live-

lock keeps a message moving indefinitely but not letting it reach the destination. To solve 

this problem, dimension-order-routing [DUA-002][WUJ-001] in which packets are routed 

in only one dimension till they reach the destination row, and then switch to other 

dimension until the destination, is used or virtual channel approach [DUA-002][DAL-004] 

is used in which one physical channel is split into several virtual channels. However, using 

virtual channel require the use of more buffer space. Store-and-forward routing is not very 

successful in NoC due to the fact that it requires buffer spaces in router for storage of 

packet thus increasing the area and also increases energy consumption due to extra 

switching involved. 

 

Live-lock occurs when a packet is running in a circular motion around its 

destination. Hot potato routing [FEI-001] can be considered as an example of live-lock. 

Hot potato routing is based on the assumption that every switch (router) has equal number 

of input and output channels. Thus when contention occurs and the desired channel is not 

available, the packet instead of waiting is routed to the other channel. Proper deflection 

rules can be defined to avoid live-lock problem.  Significant research is carried out in the 

field of network routing. Analysis of routing algorithms can be found in [GLA-001][DUA-

002][CHI-001][SHI-001]. 

 

3.4.2.2 Contention Awareness 
 
 

In order to decrease the switch buffer size and to efficiently route packets, 

contention awareness can be used. Since NoC can take advantage of dedicated control 

wires, the state of neighbouring router can be exchanged to help the routers make 

switching decisions to route the data packets to the links with less contention [NIL-001]. 

Section 3.4.3.1 explains the concept of contention in NoCs and suggests methods for 

contention free communication. 
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3.4.3 Transport Layer 
 
 

The transport layer performs packetisation and de-packetisation of messages at 

source and destination respectively. The size of the packets has a direct impact on both 

performance and energy consumption. The optimal packet length for performance may 

differ from the optimal packet length from an energy standpoint [BEN-001]. The transport 

layer also deals with the network flow control. 

 

3.4.3.1  Network flow Control 
 
 

NoC performance greatly depends on an effective network flow control 

mechanism. Network flow control is responsible for the correct delivery of packets. This 

involves coordination between the sender and receiver and effective contention resolution. 

Contention can cause packets to get blocked, stalled, detoured or simply dropped. Thus, 

the presence of a flow control mechanism is important for the efficient bandwidth 

utilization. 

    

A flow control mechanism can be divided into buffer-less flow control and 

buffered flow control [DAL-005].  As the name indicates, buffer-less flow control does not 

rely on switch buffers. Due to the absence of buffers in the switch, packets cannot be 

stored and thus packets contend for bandwidth. Arbitration is generally employed to deal 

with contention between contending packets. 

   

End-to-end flow control algorithms is used in buffer-less flow control that 

conserves the number of packets in the network by regulating the packet injection rate at 

the source.  End-to-end algorithms are generally not employed in NoC due to the large 

overhead associated with sending the feedback information and the instability that can 

occur if there is unpredictable delay in feedback loop [UNI-001]. 

 

In buffered flow control, blocked packets are stored in switch buffers while they 

wait for the access to the network resources. Store-and-forward, virtual cut-through and 

wormhole switching techniques adopt buffered flow control. Link-level flow control 

mechanisms, in which the buffer availability information is propagated between switches, 

are used in buffered flow control.  
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Credit-based, on/off, and ack/nack are three common types of link-level flow 

control techniques [DAL-005]. Since packet injection rate is not monitored and flow 

control relies on propagation of congestion information back to the source, packets can 

cause  congestion in the network if the information is not processed efficiently. 

  

3.5   NoC as Communication Centric Platforms  
 

The NoC layered approach discussed in this chapter has the advantage that it 

decomposes the communication problem into more manageable components at different 

hierarchical layers. Each layer has different functionality implemented independently from 

other layers. Adding a new function to a layer only requires modifying the functionality of 

one layer and reusing the functionalities of other layers to generate a new NoC 

architecture.  

 

As mentioned in previous chapter, developing a programmable, reconfigurable and 

scalable communication platform is essential for SoC designs. NoC serves as a 

communication and integration platform providing hardware communication architecture 

and interfaces for integrating hardware cores.  NoC also favours architecture level reuse 

which makes it an ideal candidate for an efficient communication centric platform.  

 

As a platform, NoC provides well-defined interfaces for application programming 

and component integration. In order to connect commercially developed hardware cores, 

interfacing standards like OCP [OCP-001] or VCI [VIS-001] should be supported. On the 

other hand interfaces should be provided for integrating hardware logic via a 

communication adapter and for programming embedded software. 

 

3.6  Development History 
 
 
 NoC has been under the spotlight since it was first introduced and many research 

groups are working on different aspects of NoC design. In 2000 Hemani et. al. [HEM-001] 

proposed a packet switched architecture with switches surrounded by six resources and 

connected to 6 neighbouring switches. The architecture was called Honeycomb due to the 

hexagon based pattern of switches and resources. The concept of packet switching re-

appeared in other consecutive approaches but the topology simplified in most proposals to 

a mesh of resources and switches [GUE-001]. 
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In 2001, W. Dally and B. Towels [DAL-001] proposed replacing global wiring 

with a general purpose on chip interconnection network with an area overhead of 6.6%. A 

12mm×12mm chip in 0.1µm CMOS technology was developed. Dally concluded that 

there can be up to 6,000 wires on each metal layer crossing each edge of a 

tile(3mm×3mm). It is quite easy to achieve over 24,000 ‘pins’ crossing the four edges of a 

tile. By effectively choosing the network topology these abundant wiring resources can be 

converted into bandwidth.  

 

L. Benini [BEN-002] proposed a layered design methodology in 2002 borrowing 

models, techniques and tools from the network design field and applying them to SoC 

design. Several open problems at various layers of the communication stack were 

addressed and a basic strategy was given to effectively tackle them for energy efficient 

design. Xpipes compiler was also presented as a tool for automatically instantiating an 

application specific NoC for heterogeneous multi-processor SoCs.  

 

S. Kumar [SHA-001][SUN-001] constructed a model of NoC using a public 

domain network simulator NS-2 and evaluated design options for a specific NoC 

architecture which has a two dimensional mesh of switches. S. Kumar analysed the series 

of simulation results to determine the relationship between buffer size in switch, 

communication load, packet delay and packet drop probability. The results are useful for 

the design of an appropriate switch for the NoC. 

 

Shin et al. [SHI-002] proposed a hybrid switching scheme that dynamically 

combines both virtual cut-through and wormhole switching to provide higher achievable 

throughput values compared to wormhole switching alone. J. Hu [MAR-001] proposed a 

smart NoC, which combines the advantages of both deterministic and adaptive routing 

schemes in a NoC environment. 

 

NoC is relatively a new concept but it has been rapidly accepted in academia with 

much industrial interest in it. A comprehensive survey on current research and practices of 

NoC can be found in [BJE-001]. 
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3.7  Advantages of NoC 
 
 
NoC offers certain advantages over the traditional bus based and crossbar communication 

media, especially due to its layered approach, 

 

Scalability: In a bus based communication, the number of modules attached is limited by 

the bandwidth available. However, NoC does not have such problem and integration of an 

additional module means introduction of a router to the network that scales up the network 

bandwidth. 

 

 Throughput: The bandwidth of a bus is shared by all the attached devices and it is simply 

not sufficient for future SoC with throughput requirement of over 10 GB/s. In NoC, 

throughput is dependent on the actual physical transport media and can be realised by 

allocating several physical links for a logical path. Because the switch fabric does not store 

transaction state, throughput simply scales with the operating frequency, number and 

width of switches and links between them. 

 

Optimization: The layered structure of NoC offers the advantage of separate 

optimizations of transaction and physical layers. The transaction layer is mostly influenced 

by application requirements, while the physical layer is mostly influenced by Silicon 

process characteristics.  

 

Quality of Service:  QoS defines the level of commitment for packet delivery. This can be 

in the form of correctness of the result, completion of the transaction or on the 

performance [GOO-001]. On-chip message delivery and can be achieved through different 

means at different levels. For example, packet integrity can be ensured not only by error-

correction at the link layer but also by re-transmission at the upper layers.  NoC offers a 

far better QoS then traditional on-chip interconnects. 

 

Verification: The layering approach presents an ideal case for communication system 

verification, tackling one layer at one time.  

 

Customisation: User-specific information can be easily added to packets and transported 

between routers. Custom-designed NoC units make use of such information broadening 

the application domain for NoC products. 
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In designing a communication medium for an SoC architecture, latency constraint 

is an important issue to consider. Thus, adaptation of concepts from data communication 

networks that tend to be focused on bandwidth related QoS requires a constant focus on 

appropriate trade-offs. 

 

3.8   Analysis of NoC 
 

As mentioned in section 2.7, throughput and latency plays an important part when 
determining the suitability of a communication media for any application domain. This is 
becoming more important with the future SoC moving to a communication centric 
approach.  

 
In NoC, throughput signifies the maximum value of the traffic that a network can 

handle. It is related to the peak data rate sustainable by the system. Throughput in a packet 
based on-chip system can be given by: 

 
 

ݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ
ሺܶ݀݁ݐ݈݁݌݉݋ܥ ݏݐ݁݇ܿܽܲ ݈ܽݐ݋ሻݔ ሺ݄ݐ݃݊݁ܮ ݁݃ܽݏݏ݁ܯሻ

ሺܰ݋. ሻ݁݉݅ܶ ݈ܽݐ݋ሺܶ ݔሻݏ݁ݎ݋ܥ ݂݋
 

 
 
Where,  

Total messages completed refers to the number of whole messages that 
successfully arrive at their destination. 

 
Message length is measured in flits,  

 
Number of Cores is the number of functional processing cores involved in the 
communication,  

 
and Total time is the time (in clock cycles) that elapses between the occurrence of 
the first message generation and the last message reception.  
 

 
Thus, message throughput is measured as the fraction of the maximum load that 

the network is capable of physically handling. Accordingly, throughput is measured in 
flits/cycle/core. 
  

Latency is defined as the time elapsed between the occurrence of a message 
header injection into the network at the source node and the occurrence of a tail flit 
reception at the destination node. Latency depends heavily on the routing algorithm. 

 
In the case of store-and-forward routing, where network nodes receive an entire 

packet before forwarding it to the next node. Both link bandwidth and buffers are allocated 
at the packet-level. Assuming no contention, the latency is given by, 

 
 

ݕܿ݊݁ݐܽܮ ൌ   ൬
.݋ܰ ݏݐ݈݅ܨ ݂݋

݄ݐ݀݅ݓ݀݊ܽܤ ݇݊݅ܮ
൅ ൰݁݀݋݊ ݎ݁݌ ݕ݈ܽ݁ܦ ݃݊݅ݐݑ݋ܴ   ൈ .݋݊   ݏ݌݋݄ ݂݋
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Where,  

Number of hops is the number of hops from the source node to the destination 
node. 

 
In case of virtual cut through, a network node does not wait for the reception of an 

entire packet. It receives a portion of the packet and then forwards it to the next router, 
provided the buffer space in the next switch is available. In case of blocking, the entire 
packet is shunted into the allocated buffers. Assuming no contention and that the packet is 
forwarded as soon as possible, Latency is reduced to,  
 

ݕܿ݊݁ݐܽܮ ൌ  
.݋ܰ ݏݐ݈݅ܨ ݂݋

݄ݐ݀݅ݓ݀݊ܽܤ ݇݊݅ܮ
 ൅   ݁݀݋݊ ݎ݁݌ ݕ݈ܽ݁ܦ ݃݊݅ݐݑ݋ܴ  ൈ .݋݊    ݏ݌݋݄ ݂݋

 
 
 In wormhole routing, due to the pipelined transmission, Latency is same as that for 
virtual cut through routing. 
 

3.9  Summary 
 
 

This chapter introduced the basics of NoC communication and describes the 

layered structure of NoC. In order to develop an effective NoC architecture, a suitable 

topology, effective switching and routing scheme and flow control mechanism has to be 

considered. One of the main reasons for this research was to evaluate the suitability of 

NoC for communication centric platform based designs. It can be concluded that NoC 

provides a complete framework for effective on-chip communication architecture and a 

complete platform for integrating hardware cores. Coupled with an interfacing standard, 

NoC is an ideal candidate for an efficient communication centric platform. 

   

Review of current NoC architectures highlights a major design drawback. The 

architectural parameters that greatly affect NoC performance are fixed at design time. In a 

future multi-core SoC architecture, this can result in inefficient utilisation of resources 

affecting the overall system performance and power. To tackle this problem, a dynamically 

reconfigurable NoC is proposed in chapter 6. 
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Chapter 4                 

Proposed Communication Centric Platforms 
 

 
4.1 Introduction  
 

In chapter 2, a review of current on-chip communication and current 

communication centric platforms was presented. In today’s electronic industry, time to 

market is one factor that greatly determines the success of the developed product. Re-use 

design methodologies and ease of integration is seen as the way forward to reduce this 

time to market constraint.  

 

Reconfiguration has not only emerged as an efficient way of development of low 

power architectures for multi-standard applications but also plays an important part in the 

reuse design paradigm.  Moore’s law is driving the integration of many cores in a single 

chip. This has enabled mixing of various traffic types in the same SoC design. These 

traffic types, although very different in nature must now share interconnect resources that 

were handcrafted to the particular traffic in the past.  

 

When talking about integration of cores, interconnect interface plays an important 

role when making decision about choice of communication media. Following an 

industrially accepted interface standard makes it easy for designers to integrate the 

developed cores and greatly reduces the design time. 

 

Taking the platform based approach for ease of integration in future SoC 

architectures, a communication centric platform based approach is proposed. Four 

different communication platforms are developed consisting of a traditional bus based, 

crossbar based, hierarchical bus based and a novel hybrid communication medium based.  

 

A platform is taken as a framework where the components, be it fixed, 

reconfigurable, processor cores or memory blocks etc. can be integrated in plug-and-play 

fashion[AHM-005]. Looking at the fact that different types of communication media are 
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effective for different application domains, the proposed communication centric platforms 

offer different communication media to cater for constraints like throughput, power and 

area in different application domains. For ease of integration and reduced design time, an 

OCP based socket approach is taken when designing the interfaces for the platforms.  

  

A novel hybrid communication architecture is integrated in the platform. The 

hybrid communication medium combines the advantages of bus based and crossbar based 

communication media in one SoC. The co-existence of crossbars and a shared bus in the 

architecture, allows the designer to attain better throughput and power characteristics if the 

cores are optimally placed on the communication system [AHM-001]. 

 

This chapter begins with an introduction to the proposed platform based design 

[AHM-005], the proposed novel hybrid communication media is discussed, followed by 

the modelling of developed platforms [AHM-001]. A detailed analysis of implemented 

platforms is presented and its effectiveness is shown by a real life example [AHM-007] 

[AHM-009] [AHM-011]. 

 

4.2 Proposed Communication Centric Platform 
 
 

As opposed to the traditional approach of platform based designs, discussed in 

chapter 2, where the flexibility of a platform instance, i.e. its capability of supporting 

different applications, is provided by programmable components, such as microprocessor 

or by reconfigurable logic blocks such as FPGAs. The proposed platforms have a built in 

controller that facilitate the integration of components in truly plug and play fashion that 

do not require any programming after the components are integrated in the system.  

 

The proposed platforms can be divided into three major parts as shown in Figure 

4-1: Platform controller, interfacing and integrated Communication medium (global bus, 

crossbar, hierarchical bus and a hybrid medium).  

 

The components and their implementation will be discussed later in this chapter. 

However, before proceeding further, let us consider an example to demonstrate the novelty 

of the proposed platforms. We want to develop a platform with 20 integrated cores, 

including a micro processor (e.g. a RISC based ARM processor), memory modules, 

UART, fixed processing cores and hardware accelerators. For simplicity, let us also 

assume that they support the interface needed to integrate them to the platform. The 
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platform has integrated ports where the cores can be integrated in a plug-and-play fashion. 

Each port has an address that is used by the platform controller for referencing the 

connected cores. Not every core integrated needs to communicate with every other core. 

This simplifies controller’s job and thus only the integrated core has to be notified of the 

address of the cores it would communicate with (discussed in details later in this section). 

Not having to modify the pre-verified platforms means that the system designer does not 

have to re-compile and verify the functionality of platform after integration of cores. 

 

 

 
Figure 4-1 Block diagram of Proposed Platforms 

 

 

 The flow chart in Figure 4-2 shows the steps involved in the development and 

working of a system generated using the proposed platform based designs based on shared 

communication medium. The cores are integrated with the platform via the provided ports 

and the communication initiators (Master cores) are notified of the target cores they will be 

engaged in communication with (Slave cores).  The system controller then resets the 

communication media and the cores connected by sending a reset signal. The system is 

now ready to work. The communication controller listens to request for data transmission 

from master cores. On receipt of a data transmit request, controller checks channel and 

slave availability and if available, it connects the master with the slave. During this 

communication, controller keeps a check on requests from other masters. Once the data 

transaction is completed, the controller closes that connection and declares the channel to 

be available for use by other cores. At this stage any pending master requests are dealt 

with by the controller. In the absence of any master request, controller goes back to 

waiting for request from any master. This system continues to operate till it is shut down 

or reset manually. 
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Figure 4-2 Working of proposed communication-centric platforms 

 

4.2.1  Platform Controller  
 

The platform controller is one of the most important parts of the platform and is 

responsible for assigning addresses to the attached cores, dealing with requests and grant 

signals and arbitration i.e. allocation of communication media to the core that requests 

communication. One of the important features of developed platforms is their reusable 

design and ability to deal with reconfigurable cores. This makes the platform controller 

design highly complex. 

 

The platform controller can be divided into two parts as per its function: the 

system controller provides the reset control and power management framework for the 

SoC; the communication controller deals with the communication aspects of the platform. 

The communication controller is really a core in itself and handles the following functions: 

 

• Establish communication sessions between communicating cores. 
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• Manage data communication over communication links by controlling the flow of 

data. 

• Monitor data transmission request requests from master cores. 

• Buffer incoming data transmission requests from master cores. 

• Data arbitration. 

Address assignment - As mentioned earlier, the proposed platforms support core 

integration in plug-and-play fashion and is designed for reuse. One of controller features 

supporting this is the address assignment. Ports are developed in the platform design for 

the integration of processing cores. Each port has an address that is used by the controller 

for communication and control. 4 bits are used in the developed prototype platforms in 

order to facilitate the integration of 16 cores in the system. Figure 4-3 shows a generic 

structure of platform with address assigned to ports. 

 

0000 0001 0010 0011

1000 1001 1010 1011

0111

1111

Controller Communication Media

 
 

Figure 4-3 Port address assignment in the proposed platforms 

 
Arbitration - Arbitration is performed by the controller. Control signals deal with 

the communication between the cores and the controller. Resource allocation can be done 

by any of the following methods; FIFO (First in, First Out), Round robin, Shortest Job 

First (SJF) and Priority based. 

 

In FIFO, shared communication media is assigned based on order of requests. It is 

the simplest of allocation algorithm but is non pre-emptive, i.e. access cannot be blocked 

once granted and data transfer is complete, causing short jobs to get stuck behind the long 

jobs. Round robin on the other hand, releases the communication media from long running 

tasks based on timer interrupts so short jobs can get fair share of communication media. 

However, if the time slice is too long, scheduling degrades to FIFO and, if the time slice is 

too short, then the throughput suffers. In order to tackle this, the shortest-job-first 

algorithm was proposed where, whichever tasks requires the bus for the least time is 

granted the access first. It is ideal for short jobs and there is only a small performance 

degradation for long jobs. Another option is for priority based allocation where each 

request has priority associated and the task with highest priority gets the access first. 
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Although the pre-emptive scheduling algorithms promise to offer better 

performance they have a great disadvantage when employed for communication media 

access. When a task being pre-empted, the process is forced to leave its running state and 

get blocked. However during communication, this can cause starvation which is not the 

ideal case for communication media. Also for jobs of equal size, FIFO scheduling 

algorithm proves to be the best option. Thus for the prototype platforms, FIFO based 

arbitration is used. 

 

4.2.2 Interfacing  
 

To allow for wider connectivity, all the created platform ports are given a standard 

socket interface. A socket is universal and is targeted for use in virtually any application, 

while a bus interfaces e.g. AMBA, is targeted at a unique application, where all of the 

arbitration logic and interface circuitry is defined for that particular application. 

Consequently, with the change in application design, all of the arbitration logic and 

interface circuitry needs to be taken apart and re-designed for the new application. 

However, a socket can be targeted for any given application. This promotes design reuse 

and also aids the verification problem. OCP [OCP-001] is chosen as the socket standard in 

the proposed designs. 

 

4.2.3 Communication media  
 

The communication media considered in the developed platforms include bus 

based, crossbars, hierarchical and hybrid media. This section lists the basic concept of the 

communication media in platform. Details will be discussed in the implementation section. 

Buses have been deployed for communication since the beginning of circuit design and 

made their way in SoC due to their well understood concepts, their compatibility with 

most of the available node processors, the area taken on the chip and the zero latency after 

the arbiter has granted control. In the Global Bus architecture, a single bus is shared by all 

the components in a system. An arbiter is used to grant access of the bus to the core. The 

access is granted in FIFO manner. Bus bandwidth is parameterisable, so depending on the 

application, the bus architecture can be configured to meet the desired requirements. 

Figure 4-4 shows the bus based platform providing interface for 8 cores. 
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Figure 4-4 Bus Based Platform 

 
The second implementation scenario considered is using a crossbar switch. A 

crossbar switch is capable of channelling data between any two core modules that are 

attached to it up to its maximum number of ports. The paths set up between cores can be 

fixed for some duration or changed when desired and each core-to-core path (going 

through the switch) is usually fixed for some period.  

 

Crossbar switch fabric offers a major advantage over shared buses, as the traffic 

between any two modules connected via crossbar increases, it does not affect traffic 

between other modules. In addition to offering more flexibility, a crossbar switch 

environment offers more scalability in terms of integration of cores than a bus 

environment [WIJ-001]. 

 

 

 
Figure 4-5 Crossbar Based Platform 

 

As with a bus based platform, a crossbar based platform is parameterisable The 

Figure 4-5 shows crossbar implemented platform. FIFO arbitration is used in the designed 

platform. The simplest arbitration performed is in the case of bus based, where access is 

granted to the core that requests for it first. Once the communication is ended, bus access 
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is granted to the other cores. During the communication, if any other core requests bus 

access, the request is stored in the request buffer and bus access is granted on basis of first 

come first serve to the next in line core. Arbitration in crossbar is based on the same 

principle as the bus, apart from the difference that the presence of bus matrix in crossbar 

medium requires arbitration of each channel separately. Hence, arbitration is done for four 

channels in the prototype. 

 

Chapter 2 and 3 list a lot of work carried out in the field of on-chip communication 

from bus based systems to complex NoCs. However no work is done where two different 

communication structures with different power and throughputs co-exist in same SoC. The 

term “hybrid communication” is so far limited to existence of two different topologies in a 

same communication medium. E.g. in [HUA-001] a hybrid interconnect structure has been 

proposed which takes advantages of both mesh and tree topologies. As part of this thesis, a 

hybrid communication medium is developed combining the advantages of bus based 

systems with crossbar based systems, thus, both the bus and crossbar co-exist in a single 

system [AHM-001].  

 

The third scenario considered is a hybrid structure that utilises crossbars and a 

global bus in one SoC. As previously investigated in [AHM-001] and by R. Huang and R. 

Vemuri [HUA-001] it can be concluded that hybrid interconnect can significantly reduce 

the routing area and achieve high performance.  The aim of a hybrid communication 

medium based platform is to exploit the advantages of hybrid interconnects in a system 

and utilise its effectiveness for reconfigurable SoC architectures. Figure 4-6 shows the 

hybrid platform architecture. Implementation, simulation results of hybrid medium and its 

comparison with traditional communication media is shown later in the chapter. 

 

 
Figure 4-6 Hybrid communication medium based Platform 
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The fourth scenario considered is a hierarchical structure where two buses are 

combined by a bridge. It is based on the concept of the AMBA bus [ARM-001]. The 

advantage of this placement lies in the availability of two buses that can be used at 

different speeds by different masters. The bridge acts as a way to communicate between 

the two buses. A hierarchical bus based platform is shown in Figure 4-7. 

 

The arbiter in hierarchical bus and hybrid medium can be divided into two parts, 

each part dealing with one section i.e. in case of hierarchical bus, one section of bus is 

dealt with by one part of arbiter and other section by the other arbiter part, similarly, In 

case of hybrid, arbitration in crossbar and bus section is dealt separately. However, if 

communication is requested between the cores that exist on the different sections, then the 

part of arbiter dealing with the section of communication media where the requester exists 

checks with the arbiter part dealing with the other section through the bridge, to check the 

availability of the requested core/medium for connection establishment (discussed in 

section 4.4). 

 
Figure 4-7 Hierarchical bus based Platform 

 

4.3 System Level Modelling 
 

Conventionally, functional verification follows the RTL coding stage in the 

system design process. The design errors exposed at this stage can cause changes to the 

architecture and hence, causing re-coding the RTL. This iterative process may repeat 

several times before the design can be considered safe. To tackle this time consuming task, 

higher level of abstractions called system level modelling is used [KEU-001].   

 

In system level modelling, higher level modelling languages like c/c++ [RAH-

001], systemC [GRO-001], specC [GAJ-001] or SystemVerilog [HAN-001] gives an 
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estimate of system characteristics early in design flow. Communication architecture 

exploration can be performed at several different levels of abstraction.  

 

Register-Transfer Level: RTL also referred to as cycle accurate modelling is the 

lowest level of modelling and can be classified as RTL model. In RTL models system 

components and the communication architecture characteristics are captured at a cycle and 

pin accurate level. It can be argued that RTL cannot be classified as modelling but it will 

be unfair to leave it out of the modelling paradigm. These models offer only a little 

speedup over the RTL models [YIM-001].  

 

Transfer level:  Transfer level systems area characterised by cycle true behaviour. 

They behave the same as the corresponding RTL system and follow the communication 

protocol fully. The behaviour inside component need not be scheduled at every cycle 

boundary which allows rapid system prototyping and considerable simulation speedup 

over RTL. It can be argued that the transfer level functionality can be achieved in RTL, 

however, transfer level offers a simpler netlist, i.e. only a single wire for the whole 

communication interface. Its main uses are to model cycle accurate test benches, cycle 

accurate performance simulation and for comparison with RTL. 

 

Transaction Level: These models make use of high level interface functions with 

a few signals to maintain bus cycle accuracy, for example, read/write interface functions. 

These are timed but not cycle accurate and the implemented system is event driven. The 

simpler interface reduces modelling effort and the function call semantics resulting in fast 

simulation speeds [PAS-002].  

 

Message Layer: Message Layer Models are very high level bit accurate models 

that replace the high level specifics with functions like read() and write (). These models 

are un-timed and the system implemented is event driven. Message Layer models are 

extremely fast to simulate and can be used to gain a very high level estimate of data traffic 

between components for communication system exploration. This level is also useful for 

algorithmic performance, behaviour and control statistics.  

 

4.3.1 Proposed Modelling Level 
 

In order to analyse performance and to help identify bottlenecks, a new modelling 

abstraction has been proposed for communication centric platform modelling. The 
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proposed modelling layer lies between transfer level and transaction level providing cycle 

accurate models compatible with read() write() function and signals to maintain bus cycle 

accuracy. Clock cycle accuracy allows accurate communication space exploration and 

modelling at the boundary of the transaction layer provides faster simulation times. 

 

 
Figure 4-8 A system showing the proposed modelling level 

 

The system thus implemented follows a specific communication protocol in order 

to explore its characteristics and for system verification. In order to increase the 

compatibility of proposed platforms an OCP socket based standard is adopted.  

 

Data Interface - The data transfer supports passing along pointers as well as explicitly 

transferring the data to the channel. The channel contains a pointer that is shared between 

the master and the slave. The data pointer is set to the internal buffer in the master that is 

transmitting the data. In case of read request, the pointer is pointed to the buffer in the 

slave. In case of the data copy method, the data has to be copied to and from the channel.  

A mixture of both is also possible where one copies and other points to the buffer in during 

the same initiated communication. 

 

Control interface – The control interface is needed for the synchronisation and sequencing 

mechanism used with the data interface to complete the transaction. The control flow is 

monitored closely by the controller.  As it is cycle driven, the control signals can only be 

called at clock edges. The channel is implemented as clocked and stores state information 

between clock cycles. Some of the synchronisation mechanisms supported include, 

 

• A request mechanism that the master core has data available to transmit. 

• A response notification that the slave core has data for the master core. 

• An acknowledgement that the master core has processed the data. 
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• Acknowledgement that the slave core has processed the data. 

• Flag to show that the slave/master core is busy in some other transaction. 

 

4.3.2 Programming Language Choice  
 

As mentioned above, many high level modelling languages have appeared on the 

SoC design canvas in the past decade e.g. SystemC, SpecC, SystemVerilog etc. systemC is 

chosen as a preferred modelling language in the proposed platform based designs. 

SystemC is a set of library routines and macros implemented in C++ which makes it 

possible to simulate concurrent processes, each described by ordinary C++ syntax. Getting 

its basis from C++, SystemC offers object oriented design partitioning and template 

classes making it not only a hardware description language but a simulation kernel for 

rapid simulation of SoC architectures [OSC-001]. SystemC supports TLM, HW/SW co-

design providing grounds for SoC architectural analysis and optimization. Modelling in 

systemC gives the high configurability needed to address issues like ports, arbitration, 

address management and control signals e.g. request and response etc. 

 

4.4 Proposed Communication Centric Platform modelling 
 
 

As mentioned above, there are three main parts of the platform: platform 

controller, communication media and interfaces. In this section, the implementation of 

each of these sections will be discussed. Figure 4-9 shows a generic model of the proposed 

platform highlighting its three important parts. 

 

 
Figure 4-9 Generic model of the proposed platform 
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In Figure 4-9 a cross section of the platform with a master and slave core 

connected to the platform controller and communication media through the interface is 

shown. The OCP socket standard is used as interface to make the integration of a broad 

range of components easier in the platform. The Clock signal is sent to the master and 

slave through the interface thus making a single clock to the platform distributed to all the 

components of the system. The platform controller works differently for different 

communication media, however, the overall design concepts remain the same. 

 

The proposed platforms follow OCP signals; there are three important type of 

signals for a master core, the data flow that can be 8-, 16- , 32- and 64- bit, the address 

signal (replaced by data valid Signal in slave core)  and the control signals. Table 2 

outlines the signal API. Signal names have been changed to keep the design simple to 

understand. Signals starting with “m” and “s” are originating or destined for master and 

slave cores respectively. The character “x” in the signal name refers to the master or slave 

port connected to the core. For example, the signal “m_req_x” refers to the signal from 

master connected to port “x” of the platform. 

 
 

Table 4-1 Platform interface signals 

M_req_x                 : Request signal from Master to the controller. Possible signals are , 
M_REQUEST : Master requesting bus access           
REQ_END       : Master informing controller about end of  communication channel. 

M_addr_x              : address of slave . possible signals are  
      SLAVE_1   : Slave 1 address  
      SLAVE_2   : Slave 2 address 
      SLAVE_3   : Slave 3 address 
      SLAVE_4   : Slave 4 address 

ADD_AVAIL          : LSB of m_addr_x
Clk                         : clock signal. 
reset                       : reset the controller. 
M_x_out_control    :Control signal from master to slave 
M_x_databus         :Databus between master and slave
S_x_out_control     :Control signal from slave to master
S_x_databus           :name of data bus signal for slave
S_status_x              : status of slave, possible signals are
      S_FREE           : slave available for communication 
      S_BUSY           : slave busy in communication  

M_ack_x            : signals from controller to master.(replies of “req” above”. Possible 
signals are, 
      REQ_ACK   : request acknowledge 
      ADD_ACK   : address is received  
      ACK_GRANT  : bus is available for communication 

M_x_in_control      : Control signal from slave to master
S_x_in_control       : Control signal from master to slave
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Figure 4-10 outlines the step by step procedure involved in the establishment of 

connection between a master and slave core. Master first requests the controller to check 

the availability of the slave device. Once the slave is free and ready to communicate, the 

arbiter gives control back to the master to directly communicate with the slave. Just to 

clarify, the term master refers to communication initiators and slaves are the target devices 

that can not initiate communication.  

 

After the connection is established between master and slave, control signals are 

directly exchanged between the two cores. Once the master is done with reading/writing 

data to the slave, it sends an “end communication” signal to the arbiter, which then 

releases the communication medium and sets the status of slave available to accept 

communication. 

 

 
 

Figure 4-10 Connection establishment steps 

 
In order to implement a cycle accurate model of the platform, an FSM based 

approach is taken. Signals are monitored at every clock cycle to determine the next state of 

the FSM. Figure 4-11 shows the FSM used for arbitration of bus and crossbar based 

communication media. Arbitration is FIFO based and the controller keeps track of the 

requests while it is dealing with one request. These requests are stored in a request buffer. 

Once the arbiter is done dealing with the current request (i.e. at the end of 

communication), it checks the request buffer for a pending transaction request, in the case 

of an empty buffer, the arbiter starts monitoring the REQ signals from master cores. 
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Figure 4-11 FSM of arbiter for bus/crossbar 

 

In the case of hierarchical bus and hybrid communication, the platform controller 

can be thought of as composed of two parts. One controller to deal with one bus and 

second controller to deal with other bus in case of hierarchical bus based media. In case of 

hybrid media, one controller deals with the bus part and second with the crossbar part. 

However, when a master requests to communicate with the slave located on the other bus 

or on the second communication media in case of hybrid, then the bridge approach is used. 

The concept of bridge is shown in the Figure 4-12.   

 

 
Figure 4-12 Bridge between two communication media 

 

The bridge acts as a slave on the bus where the master is requesting to transmit the 

data and acts as a master device on the communication part where the slave exists. This 

simplifies the process of bus allocation process. Once the access is granted, the bridge 

simply transfers the control signals and connects the data communication lines. The 

arbitration flow diagram is shown in the Figure 4-13. The arbitration works in a similar 
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fashion as in the case of shared bus and crossbar based media apart from the difference 

when a master requests for communication with a slave across the bridge.  

 

 
Figure 4-13 FSM of arbiter for hierarchical bus/hybrid communication media 

 

4.5 Simulation Results 
 

Before simulating the developed platforms for throughput comparisons, 

simulations were first carried out to verify the transaction behaviour of the developed 

communication media. The section below lists the test scenarios and the working of the 

platforms under simulated traffic. 

4.5.1 Verification of Bus based platform 
 
Scenario 1: one master core communicating with one slave core 

 

 
Figure 4-14 Scenario 1 - one master core communicating with one slave core 
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In order to verify the bus system, the first scenario considered was of one master 

core trying to communicate with one slave core. Figure 4-14 shows the scenario where 

master 1 is communicating with slave 2. The result of this simulation and other 

simulations in this section are obtained as a binary file and later displayed as timing graph. 

 

 

Figure 4-15 Bus scenario 1 Transaction behaviour 

  

The simulation begins by asserting the reset signal manually; this resets the 

platform controller, master, slave and the communication media. Whenever a master 

requests to get access to the communication medium, it has to send a REQ signal to the 

controller. The controller acknowledges the REQ signal by sending an ACK signal back. 

Master then sends the ADD available signal and sends the address of target (slave) core. 

Controller checks the slave status, as slave is free; controller sets slave and master status to 

busy establishing the communication between them. Connection establishment means, 

connecting master and slave data buses to shared bus and connecting master and slave 

control signals.  

  

Scenario 2: two master cores communicating with one slave core 

 

The second scenario considered is of two bus masters trying to communicate with 

one Slave core. In the Figure 4-16, master 1 and master 2 want to communicate with slave 

2. In case of more than one request for a shared medium, the controller has to do more than 

one task when granting access of shared resource to a master.  
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Figure 4-16 Scenario 2 - two master cores communicating with one slave core 

 

• Keep note of the first master that requested. 

• Check to see if slave device requested is free. 

• Keep track of all the other requests that the controller receives while processing 

the request of the one already getting dealt with. 

• Monitor the communication in progress to end.  

• Once the communication medium is free, the controller than takes the next request 

in the FIFO buffer and grants access to the master provided the requested slave is 

free. 

 
Figure 4-17 Bus scenario 2 Transaction behaviour 

 
Figure 4-17 shows the result of simulation in case of scenario 2, Master 1 requests 

to communicate with slave 2, as the slave status is set to be available; the controller grants 



Chapter 4: Proposed Communication Centric Platforms 
 

76 
 

shared bus access to master 1 for communication with slave 2. While the controller is 

dealing with master 1 request, master 2 sends a request for transmission of data as well. 

Being a shared medium, only one core can transmit data at any one time, thus, the 

controller acknowledges the requests of master 2, however, a wait signal is sent to master 

2 setting its status to waiting. Once the communication of master 1 has ended, the 

controller changes the status of slave back to being available and checks for the target 

address from master 2. In the scenario considered, it is slave 2, thus, the controller grants 

bus access to master 2 and sets master 2 and slave 2 statuses to busy. 

 

Scenario 3: 2 master cores communicating with 2 different Slave core 

 

 
Figure 4-18 Scenario 3 - two master cores communicating with two different slave cores 

 
In the third scenario, two master cores request for bus access to communicate with 

two different slave cores (see Figure 4-18). Assuming the request order of scenario 2, 

master 1 will get bus access first and master 2 will have to wait till the shared bus is free to 

be used for communication by master 2. Although this scenario looks different from 

scenario 2, however, as it is a shared bus based platform, access can only be allocated to 

one core at one time. Thus the system reacts the same way and shows similar transaction 

behaviour. 

 

4.5.2 Verification of crossbar based platform 
 
 
Scenario 1: Two master communicating with one slave core 

 
In case of a 4x4 crossbar switch, the controller has four buses to allocate for 

communication. This makes the task of the controller more complex than for the simple 

shared bus medium. In case of only one master requesting to transmit data to a slave, the 

controller acts in the same way as in case of scenario 1 of bus based system.  
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Figure 4-19 Scenario 1 - two master cores communicating with one slave core 

 

When more than one master requests communication medium access, it becomes 

more complicated.  First scenario considered in case of crossbar was of two master 

devices, master 1 and master 2 requesting to communicate with slave 2. Figure 4-19 shows 

the particular scenario. Although, the controller has possibility of allocating different buses 

to masters, due to the slave being the same, resource allocation depends entirely on the 

status of slave 2. 

 

 
Figure 4-20 Crossbar scenario 1 transaction behaviour 
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The transaction behaviour in Figure 4-20 shows the scenario under consideration. 

The controller receives master 1 request for communication first, thus the crossbar path is 

allocated to master 1 for communication with slave 2. The controller in crossbar platforms 

differs in working from that of bus based platforms since in crossbar there are three 

remaining communication paths that the controller can allocate for communication. 

However, in this particular scenario, master 2 requests for slave 2. Status of slave 2 is set 

to busy as it is in communication with master 1. Thus, status of master 2 is set to waiting 

till the slave 2 status becomes available.  

 

Scenario 2: two master communicating with two slave cores 

 

 
Figure 4-21 Scenario 2 - two master cores communicating with two different slave cores 

 
Crossbar connection can also be thought of as point to point links between the 

cores in the system. In order to verify working of crossbar when two different masters 

request to communicate with two different slaves. A scenario is considered where, master 

1 requests to communicate with slave 2 and master 2 requests to communicate to slave 1 

(Figure 4-21). In this particular scenario, the controller can allocate the crossbar resources 

to both the masters for communication. 

 

Figure 4-22 shows the signals involved in scenario 2. Master 1 requests to transmit 

data to slave 2 and as slave 2 status is set to be available, the controller allocates a path to 

master 1 to communicate with slave 2 core. In during this transaction, master 2 requests 

controller for access to slave 1. Again as the slave 1 status is set to be available, controller 

allocates a path to master 2. The crossbar platform controller monitors requests from all 

the masters, and monitors all the communication in progress simultaneously making its 

design more complex in nature.  
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Figure 4-22 Crossbar scenario 2 transaction behaviour 

 

4.5.3 Verification of Hierarchical and hybrid platforms 
 
 

 
 

Figure 4-23 verification of communication across bridge 
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In case of hierarchical bus and hybrid communication media, if the 

communication request is for a slave core present locally i.e. on the same bus in case of 

hierarchical bus based platform and on either the same bus, or on crossbar fabric in case of 

hybrid media based platform, then the controller acts the same way as the above explained 

bus based and crossbar based platform scenarios. However, when the slave core requested 

by the master is not located locally then communication via a bridge takes place. 

 

In order to verify the working of the bridge, an example of hierarchical bus is 

taken. The bridge design is same for both hierarchical bus based platform and hybrid 

media based platform. In the scenario considered, master 1 located on Bus_1 requests its 

local controller for access to slave 3 located on Bus_2. Figure 4-23 shows the considered 

scenario.  

 

As mentioned in section 4.4 of this thesis, communication in this scenario has to 

go via the bridge. The bridge acts as a slave on bus_1 for master 1. Thus the controller 1 

(master 1 local controller) will establish communication between master 1 and bridge. 

Bridge acts as a master on Bus_2 and requests the controller 2 (slave 2 local controller) for 

slave 2 access. Once the access has been granted, the bridge signals back to master 1 and 

sets the status of both master 1 and slave 3 to busy. Figure 4-24 shows the transaction 

behaviour of the considered scenario.  In case the slave 3 is busy, the bridge will be set to 

waiting stage, which will be propagated back to master 1, setting its status to waiting as 

well. 

 
Figure 4-24 Hierarchical bus transaction behaviour 
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4.5.4 Throughput comparison 
 

In order to further analyse the developed platforms, a series of simulations is 

carried out. The aims of simulations are to study the throughput characteristics of the 

developed platforms, to explore effect of data injection rate on the different 

communication media and to explore their ability to meet the timing constraints in form of 

delay to start the communication. 

 

A system of four masters and four slave cores is considered.  The placement of 

cores on the four developed platforms is shown in Figure 4-25. Different master-slave 

combinations are used in simulations to identify the strengths and weaknesses of the 

implemented platforms.  Just to re-iterate, master cores are traffic generators that can 

produce different type of traffic patterns including the control signals to communicate with 

the controller. The Slave cores only accept and acknowledge the data. At this stage it is 

assumed that reading and writing data in a slave core takes the same time. Traffic patterns 

and master-slave pairs are described in the relevant experimental scenarios. 

 

 
Figure 4-25 Placement of cores for simulations 
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Average throughput is calculated by using the equation [LAH-001], 

 

ݐݑ݌݄݃ݑ݋ݎ݄ݐ ݁݃ܽݎ݁ݒܣ ൌ ሺܾ݁ݖ݅ݏ ݀ݎ݋ݓ ݏݑ  ൈ ሻ ݕܿ݊݁ݑݍ݁ݎ݂ ݇ܿ݋݈ܿ  ൈ ሺ 
.݋ܰ ݐ݅݉ݏ݊ܽݎݐ ݋ݐ ݏ݀ݎ݋ݓ ݂݋

ݏ݈݁ܿݕܿ ݐ݅ܽݓ ൅  ሻݏ݈݁ܿݕܿ ݊݋݅ݏݏ݅݉ݏ݊ܽݎݐ

 

Where, wait cycle is the number of clock cycles between the assertion of the REQ 

signal by a master core and the access granted signal by controller. Bus word size is 2 

bytes or 16-bits and a clock frequency of 100 MHz is considered in simulations. 

Simulations are performed on 16-bit bus width. 

 

Scenario 1: One master communicating with one slave core 

 

The main aim of the first scenario is to evaluate the performance of the 

communication system when only one master core is communicating. The data packet 

generator is programmed to generate a traffic pattern where traffic bursts of 20 words are 

used. Two bursts per case are used at an interval of 20 clock cycles or 200 ns. 

Experimental setup of master-slave pairs are shown in Table 4-2. For hierarchical bus and 

hybrid medium based platforms, more than one simulation was conducted to study the 

effect of locality on communication parameters. In the case of hierarchical and hybrid 

medium, the simulations are also carried out to see the performance when both cores are 

connected on same communication medium i.e. master-slave pair on crossbar part and 

master-slave pair on bus part of the hybrid medium.   

  

Table 4-2 Scenario 1 - Experimental setup 

 Platform Type Initiator Target  

Case 1 Shared bus  Master 1 Slave 4  

Case 2 Crossbar Master 1 Slave 4  

Case 3 Hierarchical Master 1 Slave 2 Both cores on same bus 

Case 4 Hierarchical Master 1 Slave 4 Cores on different buses 

Case 5 Hybrid Master 4 Slave 4 Both cores on bus part 

Case 6 Hybrid Master 1 Slave 2 Both cores on crossbar part

Case 7 Hybrid Master 1 Slave 4 Cores on different media 
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Figure 4-26 shows the average throughput of the master-slave cases considered in 

this experiment. It can be seen that without any contention on the communication channels 

and only one master-slave pair communicating on the platform, the throughput values are 

in the same range apart from the cases when master-slave pair do not exist locally and 

bridge is used i.e. in case of hierarchical and hybrid communication medium. Even then 

the throughput difference between the two cases is negligible for high data rate 

communicating cores.    

    

 

Figure 4-26 Scenario 1 - Simulation results 

  

It can be seen from the figure 4-26 that the case 1, case 3 and case 5 gives the 

exact average throughput, this is because of the existence of both the master and the slave 

on shared bus medium, thus, handshaking (connection establishment) takes the same 

number of clock cycles. Similarly, the case 2 and case 6 gives the same results due to the 

master and the slave being on crossbar matrix. The decrease in average throughput in 

crossbar cases is due to the additional clock cycles utilised by the controller (arbiter) in 

handshaking. 

 

In the case 4 and case 7, communication takes place via the bridge that connects 

the two different parts of the communication medium. To access the bridge, the master on 

the requester part of communication medium has to go through the handshaking stage. 

Once the connection with the bridge is established, the bridge acts as a master on the 

requested part of communication medium and goes through the handshaking stage again to 

gain access to the slave core. This additional effort causes loss of precious time, thus, 

degrading the average throughput of the communication medium. This scenario is a very 

simple example and shows that if only two cores are communicating without any other 
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core competing for the communication medium, the different communication platforms act 

the same way as emulating a basic point to point link. 

 

Scenario 2: Multiple masters with multiple slaves  

 

 The master-slave pairs are simulated for three different time interval patterns (data 

injection rate). The time interval patterns are the start times for the master cores to initiate 

communication. At the start time, the master core sends a request to gain access of 

communication channel. if the communication medium is available, the communication 

between the master and the slave core starts. However, if the channel is busy, the master 

core has to wait till the communication medium becomes available.  Master-slave pairs 

and their start times under the three time patterns are shown in Table 4-3. 

 

Table 4-3 Scenario 2 - master-slave pairs with expected start times 

 Initiator Target Start time  for 

Time Pattern 1 

Start time for 

Time Pattern 2 

Start time for 

Time Pattern 3 

Link 1 Master 1 Slave 2 0 ns 0 ns 0 ns 

Link 2 Master 3 Slave 3 0 ns 0 ns 0ns 

Link 3 Master 1 Slave 4 100 ns after end 

of Link 1 

200 ns after end 

of Link 1 

300 ns after end 

of Link 1 

Link 4 Master 3 Slave 1 100 ns after end 

of Link 2 

200 ns after end 

of Link 2 

300 ns after end 

of Link 2 

 

The aim of this simulation is to study the average throughput of different 

communication media under different data injection rate. Data injection rate can be 

thought of as traffic load and is simulated by starting communication between links at 

different timings. In order to model realistic traffic pattern, the cores are made to request 

for data transmission in a random order. 

 

Figure 4-27 displays the average throughput obtained by the four platforms under 

the three time patterns. It can be seen that crossbar based platform achieves the highest 

throughput under all the time patterns, followed by hybrid communication medium. This is 

due to the parallelism in communication system provided by crossbar medium, which 

allows the cores to communicate simultaneously. 
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In this simulation, the shared bus based platform unexpectedly outperformed the 

hierarchical bus based platform under time pattern 2 and time pattern 3. The hierarchical 

bus with two communication channels available was expected to achieve better throughput 

results than a shared medium. This performance downgrade can be narrowed down to the 

placement of the cores,i.e. their locality. The communication via the bridge in case of the 

hierarchical bus adds the additional handshaking overhead causing the decrease in average 

throughput. This will be further investigated in the following simulations.     

 

 

Figure 4-27 Scenario 2 - Simulation results 

 
Scenario 3: Multiple masters with multiple slaves – scenario 2 with changed 

communication order 

In order to further investigate the causes of degradation in performance of the 

hierarchical bus in scenario 2, the master-slave pair from scenario 2 was considered with 

the order of link 2 and link 4 switched. The master 3 is made to communicate with the 

slave 1 at the expected start time of 0 ns followed by the master 3 communicating with the 

slave 3 after the time delays as specified in the Table 4-4. 
 

Figure 4-28 shows the simulation results for scenario 3. It can be seen that the 

performance of both hybrid medium and hierarchical bus has degraded. The performance 

of shared bus and crossbar medium remains the same as in scenario 2 and outperforms the 

hierarchical bus and hybrid medium. There are two important factors that cause this 

performance degradation.  
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Table 4-4 Scenario 3 - master-slave pairs with expected start times 
 Initiator Target Start time  for 

Time Pattern 1 

Start time for 

Time Pattern 2 

Start time for 

Time Pattern 3 

Link 1 Master 1 Slave 2 0 ns 0 ns 0 ns 

Link 2 Master 3 Slave 1 0 ns 0 ns 0ns 

Link 3 Master 1 Slave 4 100 ns after end 

of Link 1 

200 ns after end 

of Link 1 

300 ns after end 

of Link 1 

Link 4 Master 3 Slave 3 100 ns after end 

of Link 2 

200 ns after end 

of Link 2 

300 ns after end 

of Link 2 

  

As discussed in scenario 2, the first factor is the locality of the master and the 

slave core on the communication medium. In case of the hierarchical and the hybrid 

medium, both the master and the slave cores have to communicate through the bridge 

which adds a handshaking overhead in terms of clock cycles. Secondly, the data injection 

rate (referred to as the time pattern in Table 4-4), which dictates the start of 

communication between the two cores, affects the availability of the communication 

channel. In case of the hierarchical and the hybrid medium, due to the placement of the 

cores, the bridge has to be used for communication between all the master-slave pairs. 

Thus, for a communication link to be established, it has to wait for prior communication 

between the cores to end. This causes a decrease in average throughput of the hierarchical 

and the hybrid communication medium. 

 

 

Figure 4-28  Scenario 3 - Simulation results 
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In order to further elaborate it, let us consider the communication scenario of time 

pattern 1. In case of a shared medium, after the initial platform reset, communication 

between the master 1 and the slave 2 begins, followed by the master 3 and the slave 1. 

Both these communication links should have been established at 0 ns, but due to the 

shared communication medium, only one link was established making other to wait. This 

delays the establishment of link 3 and link 4. In case of the crossbar medium, link 1, link 

2, link 3 and link 4 start communication at the desired time due to the existence of parallel 

communication channels. The hierarchical bus medium and the hybrid medium also 

provide parallel communication channels, however, the cores are located at different parts 

of the communication medium, thus, and the bridge has to be used when establishing the 

communication path. The communication medium acts like a shared medium allowing 

only one communication path to be established via the bridge. The addition of 

handshaking overhead in connection establishment through the bridge causes the average 

throughput of hierarchical and hybrid medium to be less than that of the shared bus 

medium.  

 

Scenario 4: Multiple masters with multiple slaves – optimised communication order 

for throughput 

  

In scenario 2 and scenario 3, locality of the communication cores and the affect of 

traffic patterns were explored. It was discovered that the traffic patterns indirectly affects 

the availability of communication medium. Thus, depending on the locality of the 

communicating cores on the communication medium, traffic patterns influence the overall 

average data throughput. 

 

The hierarchical bus and the hybrid communication medium provide parallelism in 

communication, however, it was seen in the above scenarios that they were outperformed 

by the shared bus medium. In order to find a scenario where all the communication 

medium are getting effectively utilised, the master-slave pairs used in scenario 3 are 

considered with changed communication order.  

 

In this scenario, master 1 communicates with slave 4 and master 3 communicates 

with slave 1 at 0 ns (beginning of simulation). At the end of communication between these 

links, master 1 and master 3 communicate with slave 2 and slave 3 respectively after the 

time delays specified in table 4-5. 
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 Table 4-5 Scenario 4 - master-slave pairs with expected start times 

 Initiator Target Start time  for 

Time Pattern 1 

Start time for 

Time Pattern 2 

Start time for 

Time Pattern 3 

Link 1 Master 1 Slave 4 0 ns 0 ns 0 ns 

Link 2 Master 3 Slave 1 0 ns 0 ns 0ns 

Link 3 Master 1 Slave 2 100 ns after end 

of Link 1 

200 ns after end 

of Link 1 

300 ns after end 

of Link 1 

Link 4 Master 3 Slave 3 100 ns after end 

of Link 2 

200 ns after end 

of Link 2 

300 ns after end 

of Link 2 

 

  

Figure 4-29 shows the results of this simulation. It can be seen that both hybrid 

and hierarchical communication medium shows an increase in average data throughput. 

Average throughput of shared bus and crossbar still remains the same as in scenario 3. The 

hierarchal bus and hybrid medium also outperforms the shared bus. However, the crossbar 

medium still gives the best average throughput. 

 

This simulation shows that for an optimised utilisation of resources, placement and 

communication order of the connected cores play an important role. Just by re-

arrangement of communication order, the performance of the hierarchical bus is increased 

by 33%.  

 

 

Figure 4-29 Scenario 4 - Simulation results 
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Scenario 5: Multiple masters with multiple slaves – fully simulated platform 

 
In order to analyse the performance of the proposed platforms under a high data 

throughput scenario, all four masters were made to communicate with the slaves in a burst 

pattern. Each master-slave pair transmits two bursts of 20 word data at an interval of 400 

ns between the bursts. The arrangement of cores on platforms is left the same as per 

previous scenarios. Table 4-6 show the master-slave pairs involved in communication. 

 
    Table 4-6 Scenario 5 - master-slave pairs 
 

 Master 

(initiator) 

Slave 

(target) 

Link 1 Master 1 Slave 4 

Link 2 Master 2 Slave 1 

Link 3 Master 3 Slave 2 

Link 4 Master 4 Slave 3 

  

Figure 4-30 shows the simulation results of scenario 5. It can be seen that as per 

last simulations, the crossbar still outperformed its counterparts followed by the hybrid 

communication medium. The shared bus performed better than the hierarchical bus. This 

brings us to an important conclusion about the proposed hybrid communication medium. 

The hybrid medium performed better than the hierarchical bus in all but one case. Thus 

combining the advantages of two different communication media has given us a medium 

with performance better than the shared and hierarchical bus based medium. 

 

 
 

Figure 4-30 Scenario 5 - Simulation results 
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In the simulation results performed, the master cores were expected to initiate 

communication at a given time. During the simulations, it was found that these deadlines 

were seldom missed showing the degradation in QoS performance of the platform. In order 

to compare the delayed start-ups by different communication media, the missed deadlines 

were counted from scenario 2, 3, 4 and 5.  

 

 
 

Figure 4-31 Delayed start-up deadlines of different communication media 

  

Figure 4-31 displays the results of the comparison. It can be seen that the crossbar 

based platform missed the least deadlines followed by the hybrid medium. Shared bus 

performed the worst by missing the most start-up deadlines. This is due to the 

simultaneous availability of the links in the case of crossbar medium. Communicating 

cores didn’t have to wait for prior communication channels to be available to start 

communication, thus, not missing the start-up deadlines. The hierarchical bus performed 

better than the shared bus in average. However, under certain scenarios discussed above, 

when the communicating cores were placed on different part of bus medium and the bridge 

had to be used, the hierarchical bus performed similar to a shared communication medium.  

 

4.5.5 Explanation of Results 
 

The main aim of the simulations was to analyse the throughput characteristics of 

the developed platforms and to explore the factors affecting the throughput. From the 

simulations, it can be concluded that under no data contention on the interconnect 

architecture; all four types of communication media depict similar performance as 

dedicated point-to-point link. However, with the increase in traffic load, the platforms 

show different characteristics. Crossbar communication medium provides the best 
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performance in terms of data throughput and on-time delivery of data. The performance of 

shared communication medium degrades with the increase in number of communicating 

cores. Due to the availability of only one link shared by all the connecting cores, one 

master-slave pair can effectively communicate with each other at any one time thus, 

causing other masters to wait till controller grants them bus access resulting in missing the 

start-up deadlines. 

 

Analysing hierarchical and hybrid communication medium reveals the importance 

of placement of cores on the communication medium. By exploiting locality, and thus 

limiting the communication through the bridge, performance of the hierarchical and hybrid 

platforms is greatly improved. The hybrid communication medium gives a compromised 

performance between bus based (shared/hierarchical) and crossbar based platform.   

 

Most of the communication centric platforms discussed in chapter 2 offer a 

hierarchical bus approach, as shown by simulation results of the proposed platforms; the 

hierarchical bus does not provide an optimal solution when employed for high data 

intensive multi-core architectures. As seen above by the simulation results, the crossbar 

based platform gives the best performance, this is in accordance with the conclusion of bus 

comparison conducted in [KYE-001]. This increased performance comes at a cost of 

increased area, power and design complexity (implementation results in section 4.6).  

 

The shared bus implemented in the proposed platform follows FIFO arbitration. 

The performance of the shared medium can be improved by using priority based or even 

time sharing arbitration, by using pipelined transactions and even using asynchronous 

channels (chapter 2), but if the above mentioned performance tuning is carried out in the 

other types of implemented platforms, the performance is likely to improve proportionally. 

Thus, in order to prove the hypothesis of having the need of different communication 

centric platforms for future multi-core architectures, the platforms were developed without 

any performance enhancement technique. 

  

4.6  Real World Example 
 

 
To evaluate the proposed platforms and SystemC communication models, 

WiMAX (Worldwide Interoperability for Microwave Access) is chosen as a real world 

application for demonstration purposes. The WiMAX technology, based on the IEEE 

802.16-2004 Air Interface Standard, is rapidly proving itself as a technology that will play 
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a key role in fixed broadband wireless metropolitan area networks [WIM-001]. The 

scalable architecture, high data throughput and low cost deployment make Mobile 

WiMAX a leading solution for wireless broadband services. 

 

The physical layer of WiMAX provides the wireless means of transmitting raw 

bits among devices. At present, the WiMAX standard has been implemented on DSP or 

ASIC technologies such as the WiMAX solution based on the Freescale MSC8 126 DSP 

[FRE-001] and Intel NetStructure WiMAX Baseband Card [INT-001]. However, as part of 

an embedded system, the WiMAX application demands a stricter low power requirements 

and more frequent updates since the standard keeps changing. In DSP and ASIC 

implementations, achieving high performance and power efficiency is not possible and a 

compromise has to be reached.  

 

In the WiMAX physical layer, apart from the usual functions such as 

randomization, forward error correction (FEC), interleaving, and mapping to QPSK and 

QAM symbols, the standard also specifies optional multiple antenna techniques. This 

includes space time coding (STC), beam forming using adaptive antennas schemes, and 

multiple input multiple output (MIMO) techniques which achieve higher data rates. The 

OFDM modulation/ demodulation is usually implemented by performing FFT and inverse 

FFT on the data signal. 

 
 

 
 

Figure 4-32  Block diagram of WiMAX reciever 

 

Consequently, FFT and Viterbi are considered in this work to be modelled in 

SystemC as hardware accelerators which are compute intensive modules in WiMAX 

computing chain. The WiMAX application runs as a software core on the ARM7 [ARM-

003] processor. Figure 4-32 shows the block diagram of a WiMAX receiver. The 

reconfigurable FFT encoder and a Viterbi decoder modelled in systemC are integrated into 
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the WiMAX chain thus co-simulating modules from different levels of abstraction (Viterbi 

and FFT in SystemC and WiMAX running as software of ARM7). Figure 4.33 shows the 

communication links in the WiMAX receiver. 

 

 
Figure 4-33 Communication links in the WiMAX receiver 

 
To investigate power and area characteristics of the main blocks of WiMAX 

receiver, RTL-version of these blocks are used. A 0.13 micron technology library is used 

for ASIC synthesis. Gate level simulation is carried out and Synopsys design compiler is 

used to calculate power and area results. Functionality evaluation was performed through 

the complete model. This is demonstrated as received bit rate performance of the overall 

receiver.  

 

Figure 4-34 demonstrates impact of communication infrastructures on the 

WiMAX application for a range of FFT sizes: 128-2048 points. The implemented 

reconfigurable Viterbi module decodes for different constraint lengths (K=3, K=5, and 

K=7). Since, in Mobile WiMAX [IEE-001], the FFT size of OFDM part is scalable from 

128 to 2,048. A Configuration Mode is defined; 

 

݁݀݋ܯ ݊݋݅ݐܽݎݑ݂݃݅݊݋ܥ  ൌ ܶܨܨሺ݃݋ܮ  െ ሻ݁ݖ݅ܵ ൅ ቀ  ଵ
௏௜௧௘௥௕௜ି௖௢ௗ௘ି௥௔௧௘ 

 ቁ െ 8.    

 

An interesting result is that the used code rate has nearly no influence on the 

hardware complexity of the Viterbi decoder structure, just one more code word has to be 

added in the same clock cycle. Therefore all metric values have to be increased by one bit. 

However, when it is increased considerably, its effect on area, power and timing issues 

becomes of notable importance.  
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Figure 4-34 Impact of Communication Centric System-on-Chip Design on WiMAX 

 

The received bit-rate performance of the overall WiMAX receiver is measured 

with various communication platforms, as shown in Figure 4-34. It can be seen that the 

crossbar based implementation gives the best bit-rate, followed by hybrid communication 

medium. This result is in accordance with the results obtained by simulations in 4.5.4, by 

providing simultaneous links for cores to communicate a higher throughput is achieved. 

Figure 4-35 illustrates the change in power and area by different communication media. It 

can be seen that we get the least power when global bus is employed as a communication 

medium. This is because in bus based system only one core is effectively communicating 

with any other core in the system at any given time. Also the bus arbiter is simple in 

operation and also occupies less area on silicon. This however, comes at a cost of least 

data throughput. Hierarchical bus performance and power/area results are between hybrid 

and bus based implementations. 

 

   
Figure 4-35 Impact of Communication Centric System-on-Chip Design on WiMAX Power and 

Area Consumption 

 
A compromise has to be reached between power, area and performance figures 

when choosing the best performer. The crossbar did provide high throughput but it is not 
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area and power efficient. The bus based implementation provided the best power and area 

performance but is not efficient when it comes to the throughput. This brings us to a 

conclusion that there should be a communication media that provides a compromised data 

throughput, power and area figures between the global shared bus based and the crossbar 

based implementations. This is the concept behind a hybrid medium implementation. From 

the above results, it can be seen that the hybrid medium provides reduced power and area 

figures when compared to the crossbar based implementation. Hybrid medium also 

provide better throughput characteristics than the hierarchical bus and shared bus based 

platforms. The increase in power of hybrid medium is due to the increase in switching 

needed for communication between the cores not connected locally i.e. exist on different 

channels. The increased area in the hybrid medium is because of the bridge 

implementation and complex controller functionality. In hybrid medium implementation, 

placement of cores play an important part in the throughput and power characteristics.  

High communicating cores can be placed together on crossbar part to exploit the 

advantages of crossbar matrix, and by placing low communicating cores on a shared bus; 

we get the advantage of quicker bus access. In short we can conclude that hybrid medium 

provides a good trade-off between power, area and performance. 

4.7 Summary 
  

This chapter took the notion of platform based design and a novel communication 

centric platform based design methodology was proposed. Four different communication 

centric platforms are developed each with different throughput, area and power 

characteristics. Thus, for any given application, the platform most suited to the design 

constraints is used for that application. The proposed platforms are designed with a socket 

based approach so cores can be integrated in these pre-verified platforms in plug and play 

fashion without the need of communication controller programming. 

The concept of hybrid communication medium is also introduced in this chapter, 

two different types of communication media co-exist in a system, combining advantages 

of both communication media. A high level modelling strategy is proposed and the 

proposed platforms are modelled for quick verification and simulations. Simulation results 

and implementation of WiMAX receiver using the developed platforms demonstrates the 

effectiveness of the proposed platform approach. 
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Chapter 5                 

SOCCAD Tool 
 
 
5.1  Introduction 
 

The present day consumer electronic market is heavily driven by time to market 

constraints. As mentioned earlier in chapter 2, platform based design approach is seen as a 

way to rapidly develop SoC architectures by exploiting the concept of component re-use. 

Looking at the fact that SoC design methodologies are moving to a communication centric 

design flow, in chapter 4, four communication centric platforms were developed.  Each of 

the developed platforms has different area, power and throughput characteristics 

associated with them, making them suitable for different types of applications.  

 

Bringing together the communication centric platforms, systemC communication 

models and systemC reconfigurable cores model [AHM-006][AHM-007][AHM-

008][AHM-009][AHM-010][AHM-011], a tool has been developed that generates the 

complete SoC architecture with optimised communication media for reduced power and 

area characteristics. This chapter deals with the development of the tool for automated 

generation of SoC architectures targeting custom reconfigurable cores.  

 

This chapter begins with a brief introduction of some existing SoC generation 

tools developed commercially and by reputable research institutes. The proposed 

SOCCAD (SoC communication architecture development) tool is then discussed followed 

by the design flow and finally the demonstration of the developed tool. 

 

5.2  Current SoC architecture development tools 
 
 

New tools are emerging in the market to provide designers the capability to 

rapidly create SoC architectures. These tools allow the designers to specify the whole 

system design using drag and drop and graphical user interface. Most of the commercially 
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prepared tools target company’s own products and thus integration of third party 

components still remains a time consuming job. Targeting at different level of 

programming, some tools work at systemC level and some at low level HDL levels, while 

some translate high level programming languages into HDL files. 

 

System Vision™ by Mentor graphics [MEN-001], coreAssembler™ and Galaxy™ 

Design Platform by Synoposis [SYN-001][SYN-002], Platform Architect by CoWare 

[COW-001], Xtensa Xplorer by Tensilica [TEN-002], Nx-Bilder by Philips [PHI-002] and 

SonicsStudio by Sonic Inc. [SON-002]  are just some of the industry leading tools in this 

area that provide the designers the capability to rapidly create SoC architectures by 

allowing faster design exploration. Aimed at system architects, platform and processing 

core developers, most of these tools are based on high level language environments that 

allows embedded software developers to validate their software on a model of the silicon. 

 

Catering for the need of reconfigurable architectures and the importance of 

communication centric designs, research institutes have come up with several SoC 

communication network generation and reconfigurable architecture development.  

Carrabina et al.  have given a good review of bus centric architecture generation tools in 

their paper bus-centric architecture generation tools [CAR-001]. 

 

Jalabert et al. proposed an advanced NoC architecture called Xpipes and proposed 

a tool called XpipesCompiler, targeting high performance and reliable communication for 

on-chip multi-processors. It consists of a library of soft macros (switches, network 

interfaces and links) that are composable and tuneable at run time so that domain specific 

heterogeneous architectures can be instantiated and synthesised. The proposed 

XpipesCompiler tool automatically instantiates a customised NoC from the library of 

network components [JAL-001]. 

 

CHAIN (Chip Area Interconnect) is a delay insensitive SoC interconnect created by 

AMULET group at Manchester University [APT-001]. It uses GALS methodology to 

connect devices together. A CHAIN network is claimed to reduce power due to power 

being dictated by traffic load and not by clock rate. CHAINworks™ is tool suite by Silistix 

(a spin-out of the University of Manchester) that is used for design and synthesis of 

CHAIN fabrics [SIL-001].  

 

Dealing with the automated generation of application specific architecture for a 

heterogeneous multi-processor system on chip, Lyonnard et al. presented a design flow 
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where architectural parameters are first extracted from a high-level system specification. 

These parameters are first used to create communication network instances. For each 

module, a node processor instance is then created with an interface to integrate with the 

communication network, thus, developing a cycle accurate MPSoC architecture. [LYO-

001]   

 

Platune was proposed by T. Givargis and F. Vahid as a framework for 

performance and power tuning of SoC platform. Platune is used to simulate an embedded 

application that is mapped onto the SoC platform and output performance and power 

metrics for any configuration of the SoC platform. Thus, it can be used as a tool to aid the 

system designer in selecting appropriate architectural parameter values, for a given 

application that is to be mapped on the parameterized SoC platform, in order to meet 

performance and power goals. [GIV-001].  

 

5.3  SOCCAD Tool 
 

The third design challenge addressed in this thesis is the automated generation of 

complete multi-core architectures. A tool called SOCCAD has been developed. The main 

aim of the SOCCAD tool is to automate the development of multi-core architectures, 

incorporating custom reconfigurable components, conventional RISC based processors, 

hardware accelerators and memory blocks etc. Depending on the application required, 

components can be chosen from a built in library. The tool automatically generates the 

communication media and gives area and power figures for implementations with different 

communication media. The best solution based on power and area can also be generated 

by the tool. 

 

SystemC models of communication centric platforms, described in chapter 4, 

along with systemC models of custom reconfigurable and fixed cores implemented as part 

of the SOCCAD project are used as the base unit for the tool. The tool comprises a library 

of the four communication centric platforms (explained in chapter 4) and processing cores, 

memories etc. An interface of the prototype SOCCAD tool is shown in Figure 5-1. 
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Figure 5-1 Interface of the SOCCAD tool 

 

 The components needed to implement the system are chosen from the drop down 

menu captioned “MASTER” and “SLAVE”.  If the components needed for the required 

multi-core architecture is not available in library, transaction level modelling needs to be 

done for that component. After the selection of components, their connections need to be 

established. This is done by selecting the components that are supposed to communicate 

with the integrated Master components (shown in Figure 5-1). 

 

The tool gives options of “possible solutions” where it shows the implemented 

system with different communication platforms and also displays the area and power 

characteristics. The “Best Solution” option displays the system with lowest power and area 

characteristic and “Comparison” option displays the information of all the generated 

Systems with different communication architectures.  

 

The “Show Code” option displays the systemC code of the required component 

and “Generate Code” option displays the systemC code for the complete SoC architecture 

ready to be simulated.  The “comparison” option also generates an excel file of area/power 

characteristics of system that can be used for analysis purposes. 

 

5.4  Tool Design Flow 
 

Figure 5-2 shows the design flow of the developed SOCCAD design 

methodology. It can be divided into three main parts: 
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• Modelling of processing cores and communication platforms 

• Automated communication centric placement of cores on communication centric 

platforms 

• Generation of complete systemC code for system verification 

 

 
 

Figure 5-2 Design Flow of SOCCAD tool 

 

As mentioned earlier, the tool incorporates a library of SystemC components 

including the communication centric platform described in chapter 4, reconfigurable cores 

[AHM-006][AHM-007][AHM-008][AHM-009][AHM-010][AHM-011], fixed cores, 

RISC based processors and memory blocks. The components in the library are also 

implemented in hardware to extract realistic power and area characteristics.  

 

With the increasing number of cores being integrated on a single chip, 

communication media is fast becoming a major design bottleneck. As concluded in chapter 

4, the placement of cores on communication platforms heavily affects system 

performance. In a traditional communication architecture design flow, components are 
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manually placed in the SoC designs and their effects are analysed untill an ideal placement 

scenario is reached. In order to solve this problem, an automated communication centric 

placement of components is proposed.  

 

In the proposed communication centric placement, a communication task graph 

(CTG) is used. A CTG G’ = G’(T,D)  is a directed acyclic graph, where each vertex 

represents a computational module. Each directed arc between modules characterises 

either data or control dependencies.  

 

 
 

Figure 5-3 Example of a CTG 

 

CTG simplifies the process of mapping components to communication media by 

dividing the components on basis of their dependencies. CTG can then be simplified to 

realise shared bus based, hierarchical bus based or hybrid communication medium. Figure 

5-3 shows an example of a CTG with M1, M2, M3, M4 as the masters or communication 

initiators and S1, S2, S3 and S4 as the slave components. 

 

 

 
 

Figure 5-4 Simplification of CTG for shared bus 

 

In the shared bus based communication medium, one global bus is shared by all 

the attached components. The CTG in Figure 5-3 translates to a shared bus mapping 
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shown in Figure 5-4. It can be seen that the components shared by more than one 

component are placed closer to them. Simplified bus is a rather trivial example of using 

CTG. However, considering the same example implemented for a hierarchical bus, we 

have now two shared buses connected together via a bridge. Correct placement of cores in 

this scenario is more significant for system performance e.g. S1 only communicate with 

M1 so making it communicate through the bridge will cause it to wait for the availability 

of bridge and thus will affect the performance of component M1. Figure 5-5 shows the 

hierarchical bus implementation of the CTG in Figure 5.3. 

 
 

Figure 5-5 Simplification of CTG for Hierarchical bus 

 

When considering the hybrid communication architecture, as the designer has two 

different communication media with different number of components attached to each 

part, and communicating to each other through the bridge, the use of CTG becomes even 

more desirable. Considering the above example, since each of M2, M4 needs to 

communicate with S2, S4, and S3. They are all placed on the crossbar part of the hybrid 

media, and M1, M3 and S1 are placed on the bus based part of the hybrid medium. This 

also reduces the communication through the bridge. For example, just having placed S3 

instead of S1 in Figure 5-6 below, M1 and M4 have to wait for bridge availability for any 

communication they waiting on from S1 and S3 respectively causing the overall system 

performance to decrease. 

 

 
 

Figure 5-6 Simplification of CTG for Hybrid medium 
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In order to increase the complexity of the above discussed CTG and to see its 

effect on communication media mapping, consider an additional link between S3 and M2. 

This additional link changes the shape of CTG, and M2 is now connected to three slave 

components S2, S3 and S4. This affects the placement of M2 and M4 on the 

communication media. Figure 5-7 shows the CTG graph where M1 is connected to S1 and 

S2, M2 connected to S2, S3 and S4. M4 connected to S3 and S4 and finally M3 connected 

to S3. 

 

 
 

Figure 5-7 Example 2 CTG 

 

Figure 5-8 shows the placement of the CTG of Figure 5-7 on a shared bus. The 

shared bus placement looks similar to the previously discussed scenario due to the 

communication medium being a single shared bus. However, for this scenario, shared 

communication medium will be highly inefficient for system performance due to the 

components having to wait for the bus access to communicate with the required 

components.  

 

 

 
 

Figure 5-8 Simplification of Example 2 CTG for Shared bus 

 

The difference in component placement becomes visible when dealing with the 

hierarchical bus and hybrid bus.  Since M4 communicates with S4 and S3, and M2 

communicates with S4, S3 and S2, when dividing the bus to accommodate equal number 
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of cores, M2, M4, S4 and S3 are placed on one bus and M1, M3, S2 and S1 placed on the 

other bus. The bridge is accessed only when M2 wants to communicate with S2 and M3 

wants to communicate with S3. On the other hand, M1 can communicate freely with S1 

and S2. Figure 5-9 shows the placement on hierarchical bus. 

 

 
 

Figure 5-9 Simplification of Example 2 CTG for Hierarchical bus 

   

The same system, when implemented on hybrid system displays an ideal 

placement scenario where all the main communication components are placed on the 

crossbar section. This placement drastically reduces the communication through the bridge 

making the overall system performance more efficient. The bridge is only used when M3 

wants to communicate with S3. Figure 5-10 below shows the placement figure of hybrid 

communication medium. 

 

 
 

Figure 5-10 Simplification of Example 2 CTG for Hybrid media 
 

The generation of systemC code for the whole system becomes rather a trivial task 

after the placement has been done and it has been established which component is 

connected to which interface block on the platform. This is due to the interface being 

based on the OCP socket standard. A high level systemC file is created by the tool with all 
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the components integrated. Thus, simply by compiling the code the designer can simulate 

the system and by using efficient test benches verify the implemented functionality. 

5.5  Tool Demonstration with Real life example 
 

In order to demonstrate the working of the SOCCAD tool, let us consider an 

example of a system incorporating ARM, Leon, Viterbi and FFT as master cores. 

Reconfigurable Viterbi selected is of constraint length 9 and FFT size is of 2048-points. 

The slave cores selected from tool drop down menu are FIR filter, two memory modules 

MEM_A and MEM_B and a UART.  First step after the selection of cores to be integrated 

is to establish the connections between the master and slave components. The checkboxes 

on the SOCCAD tool interface are used to input the communication dependencies. The 

communication input interface and the respective CTG is shown in Figure 5-11. 

  

             
 

Figure 5-11 SOCCAD communication input interface and respective CTG 

 

     As seen in the CTG in Figure 5-11, all components have two cores connected to 

them apart from the UART, which is only connected to Viterbi. Figure 5-12 shows the 

shared bus and crossbar based communication media generated by the tool.  
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Figure 5-12 Shared bus and Crossbar based media implementation by SOCCAD tool 

 

As mentioned in section 4.5.4, when implementing a hierarchical bus based 

system, the placement plays an important role. The placement graph obtained from the 

CTG and the system generated by the SOCCD tool for hierarchical implementation is 

shown in Figure 5-13. The aim of placement is to minimize communication through the 

bridge. Hence, Viterbi, ARM, UART and MEM_A are placed on one bus and Leon, FFT, 

MEM_B and FIR on the other bus. The only time when communication through the bridge 

takes place is when the ARM processor has to communicate to MEM_B. 

 

 

   
 

Figure 5-13 Simplified CTG for hierarchical bus and SOCCAD implementation of system 

 

The system when implemented for hybrid medium, shows the ARM processor 

moved to the crossbar part of the platform. However, the communication through the 

bridge is still done by the ARM when it is communicating with MEM_A. Figure 5-14 
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shows the CTG simplified for the hybrid communication medium and the corresponding 

hybrid medium based system generated by the SOCCAD tool. 

 

   
 

Figure 5-14 Simplified CTG for hybrid media and SOCCAD implementation of system 

 

 An important feature of SOCCAD tool is to display total power and area of the 

generated system for different communication media platforms. Figure 5-15 shows the 

SOCCAD tool, displaying the Power and Area figures for the generated system. It can be 

seen that the shared bus based system provides the lowest area implementation while 

hybrid media based implementation provides the lowest system power. Crossbar 

implementation yields the highest system power making it unsuitable for a low power 

implementation of the system under consideration.  

 

 
 

Figure 5-15 Power & Area results of system generated by SOCCAD tool 
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In chapter 4, it was concluded that the crossbar provides the best throughput 

followed by the hybrid medium. Thus in order to achieve the compromise solution, a 

hybrid medium based system with second best performance figure and lowest power figure 

comes out as an attractive solution for low power and high throughput system. However, 

for a system with area constraints, hybrid communication medium will tender unsuitable, 

and choice has to be made between a crossbar and hierarchical bus based platform. 

 

 For system verification, overall systemC code is required. SOCCAD tool provides 

an option for the generation of systemC code thus facilitating the rapid simulation and 

verification of system. Figure 5-16 shows the top level systemC file generated by 

SOCCAD tool. 

 

 
Figure 5-16 Overall SystemC code generated by SOCCAD tool 

 

5.6  Summary 
 

 
In this chapter the SOCCAD tool was introduced. SOCCAD tool is developed to 

automate the generation of complete systemC code of the system for quick simulation and 

verification. The communication centric platforms developed in chapter 4 along with 

systemC models of reconfigurable cores, RISC processors, memory modules etc. are 

added in the tool’s library. Based on the application, components can be integrated from 

the library. SOCCAD tool generates the system for different communication centric 

platforms and gives power and area calculations for comparison purposes. SystemC code 

for the complete system can be automatically generated by SOCCAD tool either on low 

power constraint or low area constraint.  
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Chapter 6                 

Dynamically Reconfigurable NoC 
 
 
6.1  Introduction 
 
 

SoC opens up the feasibility of a wide range of applications making use of 

massive parallel processing and tightly interdependent processes, some adhering to real-

time requirements, bringing into focus new complex aspects of the underlying 

communication structure [BJE-001]. Traditional bus based communication medium will 

prove to be a bottleneck in achieving the high processing requirements in future SoC, 

especially with the on-chip communication requirements rising over 9 GB/s.  NoC is 

considered as a solution to this communication bottleneck. 

 

In chapter 2, the concept of NoC and a review of current NoC architectures was 

introduced. The NoC architecture is generated by choosing a network topology, one of the 

routing and switching schemes and fixing a packet size. Many different NoC architectures 

have been proposed in the past few years, as described in chapter 2. Network parameters 

like topology, routing algorithm, switching scheme and packet size are set at the 

generation time, mostly to deal with the worst case communication scenario. However, in 

the real world, the cores connected are not utilising all the available bandwidth, and some 

cores utilise more bandwidth then others. This results in some of the allocated resources 

being not fully utilised, causing waste of resources. In an invited paper by [ATI-001], it is 

suggested that 74% improvement in power can be achieved by using an application 

specific NoC against the traditional NoC approach.  

 

       In this chapter a dynamically reconfigurable NoC (drNoC) architecture is 

proposed as a high data throughput communication centric platform for future multi-core 

systems [AHM-002][AHM-003][AHM-004]. Exploiting the notion of reconfigurability, 

the proposed drNoC allocates the resources and parameters suitable for the desired 

application domain at run time, thus, not having to deal with effects of unfavourable 
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selection of parameters. In order to develop a generic multi-domain communication centric 

platform, the proposed NoC has been given a socket based approach as per the platforms 

in chapter 4 to allow for ease of integration. 

 

This chapter begins with the description of the proposed drNoC. The description 

of different layers and the router design is then explained. The layered structure makes it 

easy for designers to understand the different aspects of the proposed architectures. 

Simulation results are finally discussed to establish the effectiveness of the proposed 

network. 

 

6.2  Proposed dynamically reconfigurable NoC 
 

Keeping in view the success of busses and increased communication requirements 

in multi-core SoC, a dynamically reconfigurable NoC (drNoC) has been proposed that 

combines the advantages of bus based systems and the advantages of NoC. The network 

changes its characteristics with the changing communication requirements of the system. 

The design inspiration comes from the fact that different cores connected in a system have 

different bandwidth requirements. e.g., in an advanced PDA with 3G communication 

capabilities, the on-chip communication can vary depending on the user application, thus a 

network with fixed communication design parameters is not the optimal solution in terms 

of power and data throughput.  

 

The allocation of network resources depends on network topology, switching and 

routing decisions. Packet size also affects the network performance both in data 

throughput and overall system energy consumption [BEN-001]. In the proposed design, 

the network configures itself in terms of its routing, switching and packet size to maintain 

the QoS requirement of the system.  

 

This intelligent network has its kernel in the form of a micro network stack called 

smart network stack (SNS) of the node processor. Depending on the data about to be 

transferred, the SNS makes the decisions about the packet size, switching and routing, 

required for the data and includes this information in packet header. This information is 

read by the router and packets are processed as desired. Thus, in the case of a processing 

core with high bandwidth requirements, packet size would be increased, also switching 

would change from packet switching to circuit switching. These changes increase data 

throughput and decrease the switching power and timing delays. Distributed control of a 
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network has the advantage that if a single node failure occurs, the network continues to 

perform its functions.  

 

The router is the main building block of the network. It serves two main functions. 

Firstly, it acts as the interface between the core and network. To allow for heterogeneous 

component integration, the router is built with a bus like interface based on OCP socket 

standard which allows cores to integrate with less effort. Secondly, the router routes the 

data packets and control signals to the right path. 

 

SNS is a modified version of the micro network stack proposed by L. Benini 

[BEN-002]. The SNS is composed of five layers, application, transport, network, data link, 

and physical layer (shown in Table 6-1). 

 

Table 6-1 Smart Network Stack 

Software Application Layer

Architecture

& Control 
Transport Layer

Network Layer 
Data Link Layer 

Physical Wiring

 

  

The application layer provides the user interface to the communication system. 

Thus the applications running on the processor core does not have to worry about the 

complex communication network facilitating its communication with other applications 

connected to other nodes. 

 

 

6.3 Network architecture and Control 
 

The network architecture refers to the topology and physical organization of the 

interconnect network. The protocols specify the use of these network resources during 

system operation. Network control is taken care of by transport, network and data link 

layer.  
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6.3.1 Transport Layer 
      

Unlike the bus based system, the data transported over NoC is in the form of small 

packets. This packetisation of data is dealt with by the transport layer. All packets have 

same format, “packet header” followed by the “payload”. Packet header carries 

information necessary for the routing of packets to its destination. 

       

Some important subfields of the packet header include: 
 

Type: Indicates the start of packet and specifies if the packet is a broadcast packet (meant 

for all connected cores) or is meant for only a specific destination. 

 

Destination Address: Indicates the destination address. In case of broadcast packets, the 

destination bits are not read by the router for routing the packets. 

 

Switching Type: Instructs the router to switch between packet switching and circuit 

switching (set by the Network Layer).  

 

Packet type: Specifies if it’s a data packet, acknowledgment of received packet, or request 

for retransmission in case of not received or receipt with error packet. 

 

Source Address: Source address is read by the destination node and is used in replying to 

the packets. 

 

Dataoffset: This indicates where the data begins in the packet. It can also be referred to as 

the sequence number of packet useful in assembly of data from the received packets at the 

destination. 

 

Checksum: Used for error detection.  

 

            Header bits are followed by the payload. The size of the payload depends on the 

type of data transmitted. As mentioned earlier, the size of packet changes for different 

types of communication. Three types of data thresholds are defined, normal, medium and 

high. Normal threshold refers to any communication where data throughput is under 100 

Kbits/sec e.g. interrupt handling etc., high data threshold refers to any communication 

above 10Mbits/sec e.g. CPU cache to main memory, compressed or uncompressed video. 

Medium data threshold is referred to as any communication between these two thresholds. 
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In the prototype, these values are fixed. However, data threshold values can be added by 

users when defining the network parameters.  Figure 6-1 shows a conceptual data packet 

structure. 

 

  

 
Figure 6-1drNoC data packet structure 

 

6.3.2 Network Layer 
 

      The network layer deals with switching and routing aspects of the packetised data. 

Switching can be packet switching and circuit switching. If only a small amount of data is 

to be transmitted, then setting up a circuit to transfer data is inefficient. Thus, the network 

layer transmits data by packet switching. The advantage of packet switching is that the 

network is only used when there is information to be sent, also a single path can be used 

by packets from different sources at the same time thus utilising bandwidth more 

effectively.  

 

In the proposed network, circuit and packet switching co-exist in the same network 

and only the paths needed for high data throughput are converted to circuit switching, the 

rest of the network keeps working on packet switching and excludes the circuit switched 

paths from their routing decision. The decision to change switching depends on the 

amount of data to be transmitted. A data threshold value defined in section 6.2 is used to 

determine the type of switching for a specific path. This is also coupled with an increase in 

the packet size by transport layer for maximum data throughput. The routers are notified 

about the decision by the “switching type” in data packet header. Thus the routers in the 

path modify themselves for the new switching type. The circuit switched path formed 

between the two nodes can be looked upon as an existence of bus as the two 

communicating cores are connected via a dedicated path for the length of data 

transmission. Figure 6-2 shows the formation of a circuit switching path between node 6 

and 11. Once the circuit switched path is established, it appears invisible to neighbouring 

nodes and cannot be used as part of their packet switching. 
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Figure 6-2 change of packet switching to circuit switching between node 6 and 11 

   

5.3.2.1 Routing Algorithm for packet switching 
 

Routing is performed in the proposed drNoC based on concept of wormhole 

routing. As mentioned in sub-section 3.4.2.1, wormhole routing is prone to live-lock and 

dead-lock. Three virtual channels per port are employed in the proposed design in order to 

deal with live-lock and dead-lock situations.  The proposed adaptive routing algorithm 

works in two steps: 

 

Step I: Output paths are selected for control flits by choosing the most profitable 

channel from the available free channels. Profitable paths correspond to ones that will take 

the packet closest to its destination. The path, once established by the control flit, is 

utilised by the data flits since it is based on wormhole routing.  If all channels are busy or 

there is a faulty neighbouring router, the packet is stored in the buffer. The packets 

following the blocked/stored packets are stopped at the destination by a backward signal 

from router to source. 

 

Step II:  Once the output channel is available for routing, packets are injected 

from the buffer or the processing core into the network. If the channel is not available, 

packets are kept stored in the buffer. This process is repeated for all the packets in the 

buffer before any other packet can be injected into that channel. Once the entire packet 

from buffer is sent, packets from other incoming ports are injected into the network. 

 
To explain the routing further, consider the network in Figure 6-3. Router “R” has 

eight neighbours represented by a, b, c, d, e, f, g. Router communicates with its neighbours 

through its input ports Wi1, Ei1, Ni1 and Si1 and output ports Wi2, Ei2, Ni2 and Si2 . Let the 

virtual channels be VC1, VC2, and VC3. Each router tests the state of its neighbours to 

establish the availability of channel.  
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Figure 6-3 Eight neighbours and ports of a router 

 
The message routings according to the current router R (xs , ys) and the destination 

(xd , yd) are divided into four types: WE, EW, SN and NS routings, where WE (from west 

to east) routing is taken if xs < xd, EW (from east to west) routing if xs > xd, NS (from 

north to south) routing if xs = xd and ys < yd, and SN (from south to north) routing if xs = xd 

and ys > yd.  In presence of an unblocked outgoing channel, the router directs the header 

flit on the shortest path according to Table 6-2. However, if the output channel is busy, 

then router checks for path with penalty of two more packet hops. In absence of even 

router’s second choice of output channel, the packet is stored in the buffer till the shortest 

path or the second choice path becomes available.    

 

Table 6-2 Available channel for message routing 

Routing Type Channels available

WE routing  In VC1

EW routing  In VC1 or VC2

SN routing  In VC1, VC2 or VC3

NS routing In VC1, VC2 or VC3

 

 

6.3.3 Data Link layer 
 
      As mentioned earlier, the data link layer abstracts the physical layer and treats it as a 

medium with a non-zero probability of errors in the transmitted bit stream. Error correction 

with retransmission is employed in the proposed network to keep silicon cost low. A 

checksum is calculated (one's complement sum of all 16 bit words in the header and 
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payload) at the transmitter and the checksum bit is sent with the packet to the receiver 

where the checksum is calculated again and compared with transmitted checksum to detect 

any error. At the present stage of network implementation, the checksum is implemented 

but is not used in the simulations due to the processing overhead associated with it. 

 

6.3.4 Physical Layer 
 

Keeping in view the abundance of wiring resources, separate wires are used for 

control signals and data transfer. Using separate wires for control signals facilitates 

transmission of information between routers to avoid network congestion. More details of 

signals are discussed in next section. 

 

6.4  SystemC Modelling of drNoC 
 

The proposed systemC modelling level described in section 4.3.1 is applied to 

drNoC. The router is the main building block of NoC. It acts as an interface point of the 

processing cores to the system. In the proposed design, each router is connected to four 

neighbouring routers and the interfaced core. The proposed NoC is also given a bus-like 

interface as mentioned above, which helps to eliminate the use of wrappers and any 

component designed to be integrated to a bus based platform can be integrated in the 

proposed NoC in plug and play fashion. The proposed router can be divided into four 

components (shown in Figure 6-4): 

 

 The Input Controller that manages the routing table also known as look-up-table 

(LUT) and determines the fate of arrived packets after header inspection. The input 

controller of a router is connected to the input controller of its neighbouring routers. This 

connection is to update routing tables and pass control signals. Thus when a router is 

instructed to change mode to circuit switching, it informs its neighbours to exclude the 

specified path from their routing tables, and remembers the path established till it receives 

the end of transmission packet. This passage of control signal to neighbouring routers 

makes it possible to avoid the need for big buffers to store the packets as once a packet is 

blocked, a control signal is sent backwards till it reaches the source to stop packet 

injection. The input controller checks the arrived packets at each input port in a round 

robin pattern to establish the output path. 
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Input Port that is the point of entry of the incoming packet, it has a buffer to store 

one packet that is getting inspected for its header contents.  Information extracted from an 

incoming packet includes its destination address and type of switching.  

 

 An Interface module has been added to deal with the packetisation of data. Each 

router has one interface module and is present at the port where the component is 

connected to the router. Its main function involves dealing with handshaking with the 

connected component and once data has arrived, packet assembly with the correct 

destination and source address. De-packetisation of packet is also done by interface 

module. The layered SMS responsible for control of the dynamically reconfigurable NoC 

is implemented in the interface module. 

 

Finally the Switching Logic that connects the input ports to the output ports 

depending on the instructions from the Input Controller.  

 

 The implementation of the system started with modelling a basic NoC router and 

adding the reconfigurable features into the system. The modelled basic NoC also served in 

evaluating the performance of the system.  

 

 
 

Figure 6-4 Conceptual model of drNoC Router with OCP interface 

 
The node is implemented as an FSM with different states representing different 

tasks carried out by the interface node or router. Figure 6-5 shows the FSM of the first 

stage of implementation where a simple router is designed. At the start, the router waits for 

a packet to arrive at its input nodes. On packet arrival the destination address is read by the 
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input controller. The LUT is then checked to determine the output port for the packet. 

Every packet can be routed to any of the four output ports, with each route carrying a 

penalty in terms of packet hop or packet delay. The entries in LUT are according to the 

routing algorithm explained in 6.3.2.1. 

 

 
Figure 6-5 FSM showing basic NoC flow 

 

 If the output port is available for transmission of packet, the packet is routed to the 

neighbouring router connected to that port, otherwise, the packet is stored in the buffer and 

a control signal is sent to the packet source to stop data production. The first packet is sent 

to determine the path and is called a control packet. Once a complete path is discovered, 

the following packets (data packets) follow the same route. 

  

After implementation of the basic structure of NoC router, the novel features of 

the proposed NoC router were added in the model. Figure 6-6 shows the FSM of the 

proposed drNoC router. It starts like the normal NoC waiting on packet arrival. However, 

once the packet has arrived and its address is decoded, the router checks the data threshold 

set in the packet. Data threshold is the option included in the proposed drNoC that 

determines the packet size, switching and routing of the packet and is described in section 

6.3.1. 

 

 The input controller, after establishing an output channel, acts on the data 

threshold and sends control signal to neighbouring routers about the routing/switching 

information. If the core is connected through the OCP socket, all the features of SMS are 

performed by the router. However, in case the packets are being generated by the 



Chapter 6: Dynamically Reconfigurable NoC 
 

119 
 

connected core, issues like packetisation, routing, threshold decisions are made by the 

core.  

 

 
 

Figure 6-6 FSM showing drNoC flow 

 

 When implementing the complete NoC system, different topologies are considered 

on the basis of degree, maximum distance between two nodes, average distance between 

nodes and wire cost. 2D-mesh is the most simple 2D network structure consisting of a grid 

of horizontal and vertical lines with nodes placed at their intersections. 2D Mesh is 

considered as a preferred topology for NoC architectures due to its simple addressing 

scheme and predictable inter-node delay. Zhong [ZHO-002] argues that torus theoretically 

outperforms the 2D-mesh. However due to the complexity involved in keeping the wire 

lengths the same, the minor performance improvement of torus can be neglected compared 

to the profit of placement optimization. Network properties for 16 node 2D mesh can be 

given by [BIJ-001]; 

 

Degree = 3-5 

Average Distance = ଶ
ଷ
 √ܰ = 2.6 

Wire Cost = 2൫ ܰ െ √ܰ ൯ = 24 

 

A prototype router design is implemented in Verilog. Each input port has a fixed 

link width of 32 bits. When analysed under 0.18µm technology, router area is found to be 
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66362.3 µm2, this area is without the implementation of OCP adapter interface. Area of 

drNoC is considerably higher than a router for the circuit switched presented by [PHI-

002], but when compared with the 32-bit link router for packet switched network in [KIM-

001], it is found to be only 0.9% more in area. This increase is area is due to the complex 

circuitry involved in the implementation of smart network stack.  

 

6.5 Network Analysis 
 

 

SystemC modelling, introduced in section 4.3.1, is employed to model a network 

with 16 nodes. The aim of these simulations is to investigate the effect of dynamic 

reconfiguration of network parameters on the proposed drNoC. Network delay and data 

throughput is taken for different simulation scenarios to evaluate the proposed drNoC. 

Traditional NoC is taken as the one with fixed network parameters i.e. switching is packet 

switching, routing is adaptive (section 6.3.2.1), packet size is fixed. Clock frequency in 

these simulations is taken to be 100MHz.  

 

Network delay is taken as the round-trip delay for a data packet within the 

network. Network delay comprises the sum of transmission delays and queuing delays 

experienced by a packet travelling through the collection of routers. Delay has huge impact 

on the processing capabilities of the concerned processing element waiting on data from 

the other processing core. Data throughput on the other hand is taken as the amount of data 

transferred from one processing core to another through the network over a particular 

period of time. 

 

In the simulations the terms normal, medium and high data throughput refers to 

the data threshold defined in section 6.3.1. Thus, in order to mimic this traffic pattern, 

normal data threshold traffic will be simulated as a small transaction of data injected to the 

network at a rate of 60 packets/sec or 9.6 Kbits/sec. In the case of medium data threshold 

packets are injected at a rate of 5000 packets/sec or 800 Kbits/sec. In case of high data 

threshold, packets are injected at a rate of 65000 packets/sec or 10.4 Mbits/sec.   Another 

difference between high data threshold and medium data threshold is the way data is 

injected. Medium data threshold follows a bursty traffic burst where data will be injected 

for only a small period of time, while, high data threshold refers to continuous data getting 

injected in the network. Data packet size is taken as 160 bits. The 4x4 network used for 

simulation is shown in Figure 6-7. A 16 core size for NoC is a realistic simulation for near 
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future applications. Different master-slave pairs considered are mentioned in different 

simulation scenarios. 

 

 
Figure 6-7 Simulated 4x4 2D Mesh network 

 
Scenario 1: Network delay - Traditional NoC vs. drNoC - no contention in the 

network 

  

The aim of this simulation is to monitor the network delay when there is no 

contention in the network i.e. routers/channels are only utilised for one master-pair 

communication. Table 6-3 lists the mater-slave pair scenario considered. 6 cores (3 master-

slave pairs) are involved in communication. Link 1 and Link 2 are medium data threshold 

links i.e. the packet injection will be bursty. Link 3 is high data threshold link and will be 

injecting packets continuously, hence the reason, the total number of packets is not 

specified. The simulation is run for 20 seconds.  

  

Table 6-3 Scenario 1: Resource configuration 

 Source Destination Traffic Type No. of Packets 

Link 1 2,3 3,4 Medium 80000 

Link 2 1,3 3,2 Medium 50000 

Link 3 1,1 4,2 High Continuous  

   

 Figure 6-8 shows the communicating cores and the simulation results. Under the 

medium data threshold, the links perform the same way. However, under high data 
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threshold, network delay is decreased by 35.7% when drNoC is used. As mentioned above, 

network delay is the sum of transmission delay and queuing delay. In the case of Link 1 

and link 2, the difference in network delay is due to the number of intermediate nodes 

involved.  

 

     
Figure 6-8 Scenario 1: Network delay results 

 

 

Scenario 2: Network delay - Traditional NoC vs. drNoC - in network with contention 

 
Table 6-4 Scenario 2: Resource configuration 

 Source Destination Traffic Type No. of Packets 

Link 1 1,3 2,4 Medium 80000 

Link 2 1,2 3,2 High Continuous 

Link 3 1,1 3,4 High Continuous  

 
The aim of this simulation is to monitor the network delay in network with 

resource contention. Table 6-4 lists the mater-slave pair scenario considered. 6 cores (3 

master-slave pair) are involved in communication. Link 1 is medium data threshold links 

i.e. the packet injection will be bursty. Link 2 and Link 3 are high data threshold link and 

will be injecting packets continuously, hence the reason, total number of packets are not 

specified. The simulation is run for 30 seconds. Contention is taken as the sharing of router 

(3,2) by the data packets of Link 2 and Link 3.  
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Figure 6-9 Scenario 2 - Path formation in drNoC 

 
Figure 6-9 shows the formation of two circuit switched paths in the network. In 

the case of traditional NoC, Link 3 takes the shortest possible route with the least resource 

contention. Link 2 takes the shortest possible route. Both these routes share a common 

router (3,2). On the establishment of circuit switched network by Link 2, the router (3,2) 

becomes invisible to the other network and hence Link 3 takes a two hop penalty forming 

a new route. As Link 3 carries high threshold data, a circuit switched path is formed 

between (1,1) and (3,4).   
 

 
Figure 6-10 Scenario 2 - Network delay results  

 
 Figure 6-10 shows the simulation results of scenario 2. The network delay is 

decreased by 22% in Link 3, and 37% in Link 2. As per the last scenario, the difference in 

delay decrease ratio is due to the number of intermediate nodes involved.  
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Scenario 3: Network delay - Traditional NoC vs. drNoC – Fully simulated network  

  
Table 6-5 Scenario 3: Resource configuration 

 Source Destination Traffic 

Type 

No. of Packets 

Link 1 1,1 3,3 Medium 50000 

Link 2 2,1 4,2 Medium 100000 

Link 3 3,1 2,4 High Continuous 

Link 4 4,1 2,3 High Continuous 

Link 5 1,2 1,4 High Continuous 

Link 6 2,2 4,3 Medium 150000 

Link 7 3,2 3,4 Medium 200000 

Link 8 1,3 4,4 Normal 200 

  
In order to analyse network delay in a complicated fully simulated network, eight 

master-slave pairs are made to communicate with different type of data thresholds. Table 

6-5 lists the master-slave pairs. This network was simulated for 60 seconds. 

 

 
Figure 6-11 Scenario 3 - Path formation in drNoC 

 

The aim of this simulation is to analyse network delay in an environment where 

the proposed drNoC is not able to perform effectively due to its limitations. Figure 6-11 

shows the paths that were established in the considered master-slave scenario. Due to the 

locality of master-slaves pairs, it became impossible for drNoC to form circuit switching 
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paths in the high data threshold links. There was one circuit switched path formed in Link 

5, however, it was formed after the communication ended in Link 8. The other two high 

data threshold links; Link 3 and Link 4, are forced to continue communication as packet 

switched due to not being able to establish a path that is not used for any other 

communication. Even after the medium data threshold links ended communication, due to 

Link 4 having no alternative path to route its data, Link 3 was forced to communicate as 

packet switched network.  

 

 
Figure 6-12 Scenario 3 - Network delay results 

 

Figure 6-12 displays the network delay results of the simulation. Unlike the 

previous scenarios, disappointingly, network delay of Link 1, Link 2, Link 3 and Link 6 

increased. This is due to the additional burden on the routers by re-routing of Link 1 

packets due to formation of a circuit switched path by Link 5. drNoC did decrease the 

network delay by 17.7 % for Link5, but overall, there is a 2.7 % increase in network delay. 

This situation can be avoided by communication centric placement of cores in the network. 

 
Scenario 4: Throughput comparison - Traditional NoC vs. drNoC  

   

  The aim of this simulation is to compare the throughput and network delay of a 

fully simulated drNoC with that of traditionally implemented NoC with fixed parameters 

as mentioned above. A network with master-slave pairs as listed in Table 6-6 is simulated 

for 120 seconds. 
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Table 6-6 Scenario 4: Resource configuration 

 Source Destination Traffic 

Type 

No. of Packets 

Link 1 1,1 1,4 High Continuous 

Link 2 2,1 4,2 Medium 100000 

Link 3 3,1 2,4 High Continuous 

Link 4 4,1 4,4 High Continuous 

Link 5 1,2 3,2 Medium 500000 

Link 6 2,2 4,3 Medium 200000 

Link 7 3,3 3,4 Medium 300000 

Link 8 1,3 2,3 Normal 2000 

  
  

Figure 6-13 shows the formation of circuit switching paths once the medium 

threshold links have ended communication. Figure 6-14 shows the percentage increase in 

throughput and percentage decrease in average network delay. It can be seen that over a 

period of 100 seconds, throughput is increased by 32%, and network delay is decreased by 

37%. 

 

  
Figure 6-13 Scenario 4- Path formation in drNoC 

 
    Data throughput is taken as the amount of data transferred from one processing 

core to another through the network in a particular time. Increase in throughout in the 

simulation is due to the establishment of three circuit switched paths once the medium data 

threshold links have completed transactions. Most of the medium data threshold links 

ended communication after 60 seconds, hence achieving the peak in data throughput curve 

around that time. After the paths were established, the high threshold data getting 
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communicated by drNoC increased as the traditional was still using packet switching. The 

same applies in case of network delay. 

 

 

Figure 6-14 Scenario 4 – Percentage Increase in data throughput and decrease in average 
network delay. 

 
         As mentioned in scenario 3, when changing one part of the drNoC, the load from 

that part is shifted to the packet switched part of the network. Figure 6-15 shows the effect 

on data throughput of the links by load shifted to normal data threshold and medium data 

threshold links. 

 

 It is noticed that the links can accommodate a 39% increase of shifted load without 

any degradation to data throughput in case of normal data threshold links and 23% in case 

of medium data threshold links. An interesting thing to note is the increase in data 

throughput of the links when the network load is shifted. The decrease in data throughput 

of the links is compensated for by the increase in delivery time for that certain link.  

 

 
Figure 6-15 Effect of drNoC path formation on rest of the network 
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           Figure 6-16 shows the increase in time required to accommodate the decrease in 

throughput due to network load shifted.  In the case of a normal data throughput link, the 

delivery time increase by 2% in case of 60% increase in network load causing a 30% 

decrease in data throughput for that link. In the case of medium data threshold links the 

delivery time is increased by 3.3% to accommodate the 60% increase in network load that 

caused a 33% decrease in data throughput for the medium data threshold link. Increase in 

delivery time affects the QoS requirement of the system. One way to deal with this is to 

eliminate the cause of decreased data throughput of these links by proper placement of 

cores so the formation of paths for high data threshold links does not affect the medium 

and normal data threshold links. 

 

 
Figure 6-16 Effect of network load shifting on time 

 

Scenario 5: Suitability of routing algorithm 

 

In order to monitor the effectiveness of the proposed drNoC routing algorithm 

versus traditional wormhole and XY routing algorithms, a simulation was carried out 

under mixed traffic pattern and different master-slave pairs communicating at different 

times. Table 6-7 lists the resource configuration for this simulation. Unlike the scenarios 

above, the continuous nodes were made to stop and start after some time in order to check 

the adaptability of the routing algorithm. 
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Table 6-7  Scenario 5: Resource configuration 

 Source Destination Traffic 

Type 

No. of Packets Start Time 

(second) 

Link 1 1,1 1,4 Medium 30000 0 

Link 2 2,1 4,2 Medium 100000 0 

Link 3 3,1 2,4 High Continuous 100 

Link 4 4,1 4,4 High Continuous 30-45  

Link 5 1,2 3,2 Medium 50000 0 

Link 6 2,2 4,3 Medium 20000 0 

Link 7 3,3 3,4 Medium 30000 45 

Link 8 1,3 2,3 Normal 2000 60 

Link 9 2,2 3,4 Medium 100000 60 

Link 10 2,1 2,3 Medium 80000 0 

Link 11 3,3 4,2 High Continuous 100 

 
 

Figure 6-17 shows the comparison of routing algorithms. It can be seen that by 

employing XY routing, which is deterministic in nature, the reliability of network, in terms 

of delivery of packets has decreased. However, wormhole routing increased in delivered 

packets (decrease of non-delieverd packets in the Figure 6-17). On the other hand, the 

proposed drNoC routing algorithm which is based on wormhole routing but with virtual 

channels, the percentage of delivered packets is higher than that of womhole routing. This 

is due to the highly adaptive nature and the use of virtual channels as a guard against 

livelocks and deadlocks. On the change of a link to circuit switching due to a high data 

threshold link, it appears invisible to the rest of the network. Thus, routing that is 

deterministic in nature cannot cope with the traffic. Comparing the graph with the resource 

configuration table, whenever a circuit switched link is formed, the percentage of 

undelivered packets increases. Leading up to a maximum of 50% when network is left 

only with high data threshold links. 
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Figure 6-17 Scenario 5- comparison of routing algorithms on drNoC 

 
 
6.6  Explanation of Simulations 
 
 The aim of these simulations was to establish the effectvieness of proposed drNoC 

for data intensive applications. For comparison reasons, a traditional NoC was first 

implemented in systemC based on the concepts of NoC architecture proposed by [BEN-

002] and [SUN-001]. In these application specific architectures, the architectural 

parameters, switching, routing and packet size is fixed at design time. This approach is 

effective for SoC architectures of a particular application domain, but for future SoC 

architctures with the existence of multi-domain traffic on the communication network, this 

will result in a waste of resources and valuable bandwidth. 

 

 In the proposed drNoC, the switching, routing and packet size in the network 

changes depending on the traffic getting transmitted, thus, allowing effective utilisation of 

available bandwidth. As seen in the simulation results, the proposed drNoC outperforms 

the traditional approach of fixed parameters. With the formation of a circuit switched path, 

the network load is shifted to the packet switched links. The advantage of this load shifting 

is the optimal utilisation of link bandwidth, but it also comes at a cost of affecting the 

performance of packet switched links if the load increases over 23% in the case of medium 

data threshold links (data throughput requirement between 100Kbits/sec to 10Mbits/sec) 

and  over 39% in normal data threshold links (data throughput requirement under 

100Kbits/sec).  
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 Analysing the network delays in a fully simulated network reveals the importance 

of placement of cores on the network. Due to the formation of circuit switched links, it 

appears invisible to the remaining routers i.e. these links cannot be used for switching data 

packets of other communicating cores. Formation of circuit switching paths only occurs if 

there is an alternative path available for the other data on the network. Thus, as seen in the 

simulations, if the placement of cores on network is not done effectively, this can cause 

degradation of the overall performance (scenario 3 in section 6.5).  

   

 With the abundance of wiring resources in SoC, the control signal mechanism 

implemented for adaptive routing does not require a big overhead in resources. However, 

the formation of different data paths (circuit switching/packet switching) carry with them 

an overhead in terms of latency, which again, is negligible in high data intensive links. The 

only significant overhead is in terms of area of the router, especially with support for OCP 

socket standard. However, the advantages of drNoC exceed its disadvantages. 

 
6.7  Summary 
 

In this chapter a dynamically reconfigurable NoC was proposed. In a traditional 

NoC design, the architectural parameters, like, switching, routing and packet size are 

fixed. With communication in future heterogeneous SoC architectures, especially with 

reconfigurable cores, this will prove highly in-efficient due to the network resources not 

getting utilised effectively, causing wastage of bandwidth. The proposed drNoC 

endeavours to solve this problem, by dynamically reconfiguring its nodes to match the 

required bandwidth. On-chip traffic from high data throughput links is shifted to links with 

low data throughput and a circuit switched path is formed for the high data throughput 

links. Simulation results have shown the effectiveness of this approach in cases where 

cores are placed according to their throughput requirement. 

 

The router in drNoC, that also acts as an interface point for integration of cores, is 

given an OCP socket based interface, allowing cores to be integrated without having the 

need for wrappers. This makes drNoC a very attractive communication centric platform 

for future high data throughput applications. The increase in area is compensated by the 

increase in bandwidth provided by drNoC. 
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Chapter 7                 

Conclusion and Future Work 
 
 

7.1  Introduction 
 

 

The focus of this thesis has been to investigate the on-chip communication 

architectures suitable for future high data intensive multi-core architectures. Particular 

emphasis has been given to communication centric platform based designs ranging from 

shared bus based to complex on-chip packet based networks. This has paved the path to 

establish the requirements for future interconnect architectures.   

 

This chapter begins with the summary of material presented in each chapter of this 

thesis. This is followed by conclusions drawn from the work presented and evaluates the 

extent to which the desired aim of this thesis has been accomplished. Finally, areas of 

future work are outlined. 

 

7.2  Summary of Thesis 
 

 

 In today’s electronic industry, rapid development of SoC architectures plays an 

important role in the success of the product. Platform based designs favour design re-use 

and are seen as an efficient way to reduce design time.  

 
With the latest DSM technologies, designers not only have to keep in mind the 

data throughput, but low power and reduced area is of prime importance as well. 

Communication media are becoming a bottleneck in developing high throughput, low 

power heterogeneous SoC architectures, especially when targeting custom reconfigurable 

cores.  In recent years, many on-chip interconnect architectures have emerged to deal with 

this communication bottleneck. Many commercial communication centric platforms have 

also emerged, addressing communication issue as well as the issues of design reuse.  
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Chapter 2 introduced the concept of a platform based design approach that led to 

the emergence of communication centric platform based designs. It discusses the basics of 

on-chip communication and gives an overview of evolution from a simple shared bus to 

commercially developed communication framework, which aims to reduce the SoC design 

time under the area, power and throughput constraints.  Chapter 2 also lists the 

architectural parameters that are developed to improve the interconnect performance in the 

DSM era. 

 

NoC is seen as a solution to the communication bottleneck arising from the scaling 

down of device size and scaling up of design complexity. Chapter 3 gives an overview of 

the concept of NoC. It explains the layered approach taken in designing NoC by discussing 

different design aspects of the different layers and the architectural tuning parameters 

associated with them. Chapter 3 also summarises the current work done by different 

researchers in the field of NoC.  

 

Four different communication centric platform based designs, shared bus based, 

crossbar based, hierarchical bus based and hybrid communication medium based are 

proposed to deal with the different communication requirements of different application 

domains. Chapter 4 describes the developed platforms. The steps taken to develop a 

platform architecture where components, i.e. reconfigurable cores, RISC based processors, 

fixed cores, memory modules etc. can be integrated in a plug and play fashion without the 

need of programming the verified communication centric platforms, was discussed in this 

chapter. Chapter 4 also introduced the novel concept of hybrid communication medium 

where two different interconnect architectures co-exist to realise the complete 

communication architecture of the system. The modelling strategy taken in the 

development of systemC models of these platforms are also described in Chapter 4, along 

with the simulation results and porting a real life example of WiMAX on the proposed 

platforms. 

 

A tool called SOCCAD is proposed to automate the development of SoC 

architectures. Chapter 5 gives an overview of some of the tools developed by research 

institutes and by industry to ease the process of SoC architecture development and quick 

simulation. It describes how communication centric platforms, proposed in chapter 4 are 

used to automate the development process. Automated communication centric placement 

of cores is then discussed. The steps involved in the development and working of the tool 

are described and demonstrated by a real life example. 
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Chapter 6 describes the proposed dynamically reconfigurable packet based on-

chip network called drNoC. The novelty of the proposed NoC architecture lies in its ability 

to reconfigure itself with the changing communication requirements of the system. It 

describes the layered approach taken to realise the architecture and control of drNoC, 

focusing on the parameters like switching, routing, topology etc. Chapter 6 also argues 

how drNoC can be an ideal candidate for a communication centric platform. It lists the 

steps involved in systemC modelling of the drNoC and the simulations carried out to 

analyse the proposed dynamically reconfigurable network. 

 

7.3  Summary of achievements 
 
 

The main achievements of this work is the development of four communication 

centric platforms, development of hybrid communication medium where two different 

interconnect architecture co-exist in a system and development of dynamically 

reconfigurable NoC architecture. The four communication centric platforms include, 

shared bus based, crossbar based, hierarchical based and hybrid communication medium 

based. As demonstrated by simulation results in section 4.5.4 and the real life example of 

WiMAX in section 4.6, each developed platform has different throughput, area and power 

characteristics, thus making them suitable for different application domains. An OCP 

socket based approach is taken when designing the interface for platform. The platforms 

have built in controller dealing with the addressing, communication and control of the 

integrated cores in the platform. This has a benefit that cores (reconfigurable, processors, 

memory modules etc.) can be integrated in a plug-an-play fashion without the need of 

reprogramming the controller. 

 
The proposed hybrid communication medium combines the advantages of both 

crossbar medium (high throughput) and shared bus based medium (low power). 

Simulation results and implementation of WiMAX receiver as a real-life example shows a 

65% increase in data throughput than shared bus based communication medium, 13% 

decrease in area and 11% decrease in power than crossbar based communication medium. 

As concluded in chapter 4, this proves to be a good compromise for applications with 

power and throughput constraints. 

 

In chapter 4, it was also concluded that placement of cores on the communication 

platform plays an important role in the overall communication media performance. To 
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automate the generation of SoC architectures with optimised communication media centric 

placement of cores, a tool called SOCCAD is developed. The cores needed to implement 

the required SoC architecture can be chosen from the library, the SOCCAD tool 

automatically generates the communication architecture with optimised placement of 

cores. The tool also gives overall power and area figures of the system implementation 

with different communication platforms for comparison reasons. Finally, the tool can 

generate the overall systemC code for the system to allow quick simulation and 

verification. 

 

The proposed drNoC changes its characteristics with the changing communication 

requirements of the system. As demonstrated in section 6.5, the reconfigurable 

characteristics have the advantage of low network delay thus prove to be suitable for high 

data intensive applications. The proposed drNoC has also been given an OCP socket based 

interface to allow for cores to be integrated into drNoC with ease. This makes the proposed 

drNoC a suitable candidate for the communication centric platforms. Simulation results 

have shown a 32% increase in data throughput and 22-35% decrease in network delay 

when compared with a traditional NoC with fixed parameters. 

 

7.4  Conclusions 

As mentioned earlier, the aim of the thesis was to review the current on-chip 

communication architectures and to establish the requirements for future on-chip 

communication medium.  

 

In during this process, a thorough review of traditional shared bus based 

communication medium was conducted. Shared bus based medium provides a low power 

communication architecture and occupy less area on silicon. However, it has its limitation 

when it comes to data throughput. To tackle this problem, the concept of hierarchical bus 

originated. SoC components are placed at appropriate level in the hierarchy according to 

the performance level they require. A bridge is use to connect the parallel buses. 

Hierarchical buses provide an increase in data throughput over the shared buses due to 

decreased load per bus and the potential for transactions to proceed in parallel on different 

buses.  

Crossbar switch bus architecture connects multiple inputs to multiple outputs in a 

matrix manner. The crossbar switch provides simultaneous multiple connections between 

its inputs and outputs. It provides the highest data throughput amongst the other bus based 
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architectures at a cost of highest power and occupies the highest area on silicon. In order to 

find a compromise between the two extremes (shared bus and crossbar), a hybrid 

communication medium is developed in this thesis that provides better throughput than 

shared and hierarchical bus and lower power and area than crossbar based communication 

architectures.  

 

Hybrid communication medium provides a shared bus and a crossbar matrix 

integrated together via a bridge. Analysis of hybrid medium and hierarchical bus has 

revealed the importance of placement of cores on the communication medium. A tool 

called SOCCAD has been developed that deals with the automated generation of SoC 

architectures. The SOCCAD tool provides a communication centric placement of cores on 

the communication medium for optimal utilisation of the interconnect architecture.  

 

In future data intensive application, with data throughput requirements of over 

9GB/s, bus based communication architectures will not suffice. A notion of NoC is 

considered as a viable solution to provide the required performance. A research into 

current NoC architecture was also conducted as part of this thesis. Developed with fixed 

architectural parameters like packet size, switching and routing, current NoC architectures 

do not utilise the network resources efficiently.  

 

A NoC architecture is developed to overcome the short comings of the current 

NoC architectures. The developed drNoC, dynamically reconfigures its characteristics to 

utilise the network resources efficiently and to provide an increased QoS requirement in 

terms of data throughput. Simulation results have shown its effectiveness when simulated 

under different traffic patterns expected from future applications.  

 

7.5 Future Work 
 

This thesis has endeavoured to provide a rigorous investigation in the field of 

future on-chip communication and it opens doors for future research and development.  

 

The communication centric platforms are developed to prove the hypothesis that 

having different communication media platforms can facilitate the development of SoC 

architectures optimised for different application domains. This could not be achieved by 

utilising the commercially available single communication medium based platforms since 

a compromise has to be reached in terms of throughput, power and area.  
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The developed platforms need to be further optimised in terms of their 

architectural parameters e.g.  GALS clocking, pipelining, handshaking and different 

arbitration schemes to mention a few.  The concept of hybrid medium can be further 

exploited by combining more communication architectures e.g. hierarchical bus with 

crossbars. Similarly, drNoC can be further improved by doing research in clocking 

strategies, optimising routing schemes, optimising the hardware implementation for area 

etc. For making the developed architectures more reliable, research is needed in QoS 

aspects, thorough testing and verification methodologies are also to be investigated.  

 

In terms of development aspects, the SOCCAD tool can be improved by including 

more components in the library, including the tool’s ability to implement the SoC 

architecture for more communication architectures like drNoC, employing advanced 

placement algorithms e.g. genetic algorithms for optimised placement of the cores on the 

platform. Giving the SOCCAD tool drag and drop features and the ability to find the best 

SoC architecture on basis of their throughput is also to be developed.  

 

There is a need for benchmarking software for analysing the developed drNoC. 

Unfortunately, at present, there isn’t any benchmarking tool for NoC that can test the 

performance of drNoC under realistic traffic patterns. Thus, development of such bench 

mark is also intended in future. 

 

In short, combining the communication centric platforms and drNoC with the 

current communication media optimizing schemes can help develop optimised 

interconnects for future multi-core SoC architectures. 
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