

Communication Centric Platforms for Future

High Data Intensive Applications

Balal Ahmad

Thesis submitted for the degree of Doctor of Philosophy.

The University of Edinburgh

March 2009

Declaration Of Originality

I declare that this thesis is my original work except where stated

Student Name: Balal Ahmad

Signed: _____________________

Date: ________________________

ACKNOWLEDGMENTS

Pursuing a PhD has been a long and rather unique journey in my life. I would like to

take this opportunity to express my gratitude to those who helped me through this journey.

The first person I would like to thank is my supervisor Professor Tughrul Arslan. I

have been very fortunate to have Prof. Arslan as my supervisor. I am very grateful to him

for giving me a chance to pursue my PhD in Edinburgh University. Without his valuable

guidance and support this work would not have been possible. Many thanks Prof. Arslan

for everything.

Having had a chance to work on SOCCAD project also brought me in contact with Dr

Ali Ahmadinia. I have thoroughly enjoyed working with him. His technical advice and

precise suggestions during my PhD are whole heartily appreciated.

I would also like to thank Dr. Ahmet Erdogan who always was available when I

needed his advice. I extend a sincere thanks to all members of System Level Integration

Group at Edinburgh University for their support and motivation.

I would especially like to thank my cousin Major Majid for his helpful suggestions

throughout my University life. I won’t be where I am now without his helpful advice and

support.

Living at Edinburgh has been a pleasant experience and would not have been possible

without the moments I shared with Wahiba, Sadie, Moynaa, Mikhail, Alyas and Omar.

Thanks for helping me keep my sanity.

Very special thanks to my parents and their prayers which have supported me

throughout my life.

“Tell your heart that the fear of suffering is worse than the

suffering itself. And that no heart has ever suffered when it goes in

search of its dreams.”

___The Alchemist by Paulo Coelho

Publications

Refereed Conferences

On Dynamically Reconfigurable Network on Chip

“Dynamically Reconfigurable NoC with Bus Based Interface for Ease of
Integration and Reduced Design Time” – Balal Ahmad, Ali Ahmadinia, Tughrul
Arslan. In Proceedings of IEEE NASA/ESA Conference on Adaptive Hardware
and Systems (AHS 2008), 22-25 June 2008. European Space Agency, Noordwijk,
Netherlands. Pages: 309-314

 “Architecture of a Dynamically Reconfigurable NoC for Adaptive Reconfigurable
MPSoC” – Balal Ahmad, A. T. Erdogan, S. Khawam. In Proceedings of IEEE
NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2006), 15-18
June 2006. Istanbul, Turkey. Pages: 405- 411.

“Dynamically Reconfigurable NoC for Reconfigurable MPSoC” - Balal Ahmad,
Tughrul Arslan. In the proceedings of IEEE 2005 Custom Integrated Circuits
(CICC 2005), 18-21 September 2005. San Jose, USA. Pages: 277-280.

On Communication Centric Platforms and systemC modelling

“SystemC-based Reconfigurable IP Modelling for System-on-Chip Design” – Ali
Ahmadinia, Balal Ahmad, A T Erdogan, Ahmet T, Tughrul Arslan. In Proceedings
of IEEE NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2008
) ,22-25 June 2008. European Space Agency, Noordwijk, Netherlands. Pages: 362-
367

 “SystemC-based Custom Reconfigurable IP Cores for Wireless Applications” -
Ali Ahmadinia, Balal Ahmad, Ahmet Erdogan, Tughrul Arslan. In the Proceedings
of Engineering of Reconfigurable Systems and Algorithms (ERSA 2008), 14-17
July 2008. Las Vegas , USA.

 “High-Level Power Estimation for Multi-Standard Wireless Systems.”- Ali
Ahmadinia, Balal Ahmad, Tughrul Arslan. In Proceedings of IEEE Computer
Society Annual Symposium on VLSI (ISVLSI 2008), 7-9 April, 2008.
Montpellier, France, pp. 275-280.

 “Communication Centric Modelling of System on Chip Devices Targeting Multi-
Standard Telecommunication Applications” - Ali Ahmadinia, Balal Ahmad, and
Tughrul Arslan. In Proceedings of IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 7-9 April, 2008. Montpellier, France, pp. 209-214.

 “Communication Centric Platform Based Designs for Future MPSoC” – Balal
Ahmad, Ali Ahmadinia, Tughrul Arslan. 6th International Bhurban Conference on
Applied Sciences and Technology, 2008. January 2009, CESAT, Pakistan.

 “Hybrid Communication Media for Adaptive SoC Architectures” - Balal Ahmad,
Ali Ahmadinia, and Tughrul Arslan. In Proceedings of NASA/ESA Conference on

Adaptive Hardware and Systems (AHS 2007), 5-8 August 2007. Edinburgh, U. K.,
pp. 373-378,.

“System Level Reconfigurable FFT Architecture for System-on-Chip Design.” -
Ali Ahmadinia, Balal Ahmad, and Tughrul Arslan. In Proceedings of NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2007), 5-8 August 2007.
Edinburgh, U. K., pp. 169-175.

“System-level Modelling and Analysis of Embedded Reconfigurable Cores for
Wireless Systems.” – Ali Ahmadnia, Balal Ahmad, Tughrul Arslan. - In
Proceedings of International Conference on Field-Programmable Logic and
Applications (FPL 2007). 27-29 August 2007. Amsterdam, Netherlands, pp. 757-
760.

7

Abstract

The notion of platform based design is considered as a viable solution to boost the

design productivity by favouring reuse design methodology. With the scaling down of

device feature size and scaling up of design complexity, throughput limitations, signal

integrity and signal latency are becoming a bottleneck in future communication centric

System-on-Chip (SoC) design. This has given birth to communication centric platform

based designs.

Development of heterogeneous multi-core architectures has caused the on-chip

communication medium tailored for a specific application domain to deal with multi-

domain traffic patterns. This makes the current application specific communication centric

platforms unsuitable for future SoC architectures.

The work presented in this thesis, endeavours to explore the current

communication media to establish the expectations from future on-chip interconnects. A

novel communication centric platform based design flow is proposed, which consists of

four communication centric platforms that are based on shared global bus, hierarchical

bus, crossbars and a novel hybrid communication medium. Developed with a smart

platform controller, the platforms support Open Core Protocol (OCP) socket standard,

allowing cores to integrate in a plug and play fashion without the need to reprogram the

pre-verified platforms. This drastically reduces the design time of SoC architectures. Each

communication centric platform has different throughput, area and power characteristics,

thus, depending on the design constraints, processing cores can be integrated to the most

appropriate communication platform to realise the desired SoC architecture.

A novel hybrid communication medium is also developed in this thesis, which

combines the advantages of two different types of communication media in a single SoC

architecture. The hybrid communication medium consists of crossbar matrix and shared

bus medium . Simulation results and implementation of WiMAX receiver as a real-life

example shows a 65% increase in data throughput than shared bus based communication

medium, 13% decrease in area and 11% decrease in power than crossbar based

communication medium.

8

In order to automate the generation of SoC architectures with optimised

communication architectures, a tool called SOCCAD (SoC Communication architecture

development) is developed. Components needed for the realisation of the given application

can be selected from the tool’s in-built library. Offering an optimised communication

centric placement, the tool generates the complete SystemC code for the system with

different interconnect architectures, along with its power and area characteristics. The

generated SystemC code can be used for quick simulation and coupled with efficient test

benches can be used for quick verification.

Network-on-Chip (NoC) is considered as a solution to the communication

bottleneck in future SoC architectures with data throughput requirements of over 10GB/s.

It aims to provide low power, efficient link utilisation, reduced data contention and

reduced area on silicon. Current on-chip networks, developed with fixed architectural

parameters, do not utilise the available resources efficiently. To increase this efficiency, a

novel dynamically reconfigurable NoC (drNoC) is developed in this thesis. The proposed

drNoC reconfigures itself in terms of switching, routing and packet size with the changing

communication requirements of the system at run time, thus utilising the maximum

available channel bandwidth. In order to increase the applicability of drNoC, the network

interface is designed to support OCP socket standard. This makes drNoC a highly re-

useable communication framework, qualifying it as a communication centric platform for

high data intensive SoC architectures. Simulation results show a 32% increase in data

throughput and 22-35% decrease in network delay when compared with a traditional NoC

with fixed parameters.

9

Table of Contents

Chapter 1 INTRODUCTION ... 17

1.1 Motivation .. 17
1.2 Author’s contribution ... 18
1.3 Roadmap of thesis .. 20
1.4 Summary ... 21

Chapter 2 LITERATURE REVIEW – Communication Centric Platforms .. 22

2.1 Introduction ... 22
2.2 Basics of On-chip Communication ... 24
2.3 Bus Based On-Chip Communication .. 26

2.3.1 Shared Bus based communication architectures 27
2.3.2 Commercially developed shared buses 30

2.4 Hierarchical bus .. 33
2.5 Communication centric platform .. 34

2.5.1 IBM CoreConnect ... 35
2.5.2 ARM AMBA .. 37
2.5.3 Palmchip CoreFrame .. 38
2.5.4 Sonic’s Silicon Backplane ... 39

2.6 Bus Features Overview ... 40
2.7 Performance Metrics .. 41
2.8 Summary ... 42

Chapter 3 LITERATURE REVIEW – Network on Chip 44

3.1 Network on chip ... 44
3.2 Basic Concept of NoC ... 44
3.3 Physical Layer .. 46
3.4 Architecture & Control ... 46

3.4.1. Data Link Layer ... 47
3.4.2 Network Layer .. 47

3.4.2.1 Routing in NoC ... 49
3.4.2.2 Contention Awareness .. 51

3.4.3 Transport Layer ... 52
3.4.3.1 Network flow Control .. 52

10

3.5 NoC as Communication Centric Platforms 53
3.6 Development History .. 53
3.7 Advantages of NoC ... 55
3.8 Analysis of NoC .. 56
3.9 Summary ... 57

Chapter 4 Proposed Communication Centric Platforms 58

4.1 Introduction ... 58
4.2 Proposed Communication Centric Platform 59

4.2.1 Platform Controller .. 61
4.2.2 Interfacing ... 63
4.2.3 Communication media ... 63

4.3 System Level Modelling .. 66
4.3.1 Proposed Modelling Level ... 67
4.3.2 Programming Language Choice .. 69

4.4 Proposed Communication Centric Platform modelling 69
4.5 Simulation Results ... 73

4.5.1 Verification of Bus based platform 73
4.5.2 Verification of crossbar based platform 76
4.5.3 Verification of Hierarchical and hybrid platforms 79
4.5.4 Throughput comparison ... 81
4.5.5 Explanation of Results ... 90

4.6 Real World Example ... 91
4.7 Summary ... 95

Chapter 5 SOCCAD Tool ... 96

5.1 Introduction ... 96
5.2 Current SoC architecture development tools 96
5.3 SOCCAD Tool ... 98
5.4 Tool Design Flow .. 99
5.5 Tool Demonstration with Real life example 105
5.6 Summary ... 108

Chapter 6 Dynamically Reconfigurable NoC .. 109

6.1 Introduction ... 109
6.2 Proposed dynamically reconfigurable NoC 110
6.3 Network architecture and Control ... 111

6.3.1 Transport Layer ... 112
6.3.2 Network Layer .. 113

11

5.3.2.1 Routing Algorithm for packet switching 114
6.3.3 Data Link layer .. 115
6.3.4 Physical Layer .. 116

6.4 SystemC Modelling of drNoC .. 116
6.5 Network Analysis ... 120
6.6 Explanation of Simulations .. 130
6.7 Summary ... 131

Chapter 7 Conclusion and Future Work .. 132

7.1 Introduction ... 132
7.2 Summary of Thesis .. 132
7.3 Summary of achievements ... 134
7.4 Conclusions ... 135
7.5 Future Work .. 136

References .. 138

12

List of Figures

Figure 2-1 Global bus architecture with an arbiter [KYE-001] .. 27

Figure 2-2 Global bus architecture with registers [KYE-001] .. 28

Figure 2-3 Global bus architecture with Bi-FIFO [KYE-001].. 29

Figure 2-4 Crossbar Switch Bus Architecture [KYE-001] ... 30

Figure 2-5 Avalon bus based system [ALT-002] .. 30

Figure 2-6 Wishbone interconnections [AYA-001] .. 31

Figure 2-7 PI (Peripheral interconnect) bus architecture [MIL-001] 32

Figure 2-8 The AMULETH3H System [BAI-001] ... 33

Figure 2-9 CoreConnect platform architecture [IBM-001] ... 35

Figure 2-10 AMBA platform architecture [ARM-001] .. 37

Figure 2-11 CoreFrame platform architecture [PAL-001] .. 38

Figure 2-12 SiliconBackplane platform architecture [SON-001] 39

Figure 3-1 Basic NoC architecture ... 45

Figure 3-2 Orthogonal Topology – (Mesh and Torus networks) .. 48

Figure 3-3 The Octagon Topology ... 49

Figure 3-4 Indirect Network Topologies .. 49

Figure 4-1 Block diagram of Proposed Platforms .. 60

Figure 4-2 Working of proposed communication-centric platforms 61

Figure 4-3 Port address assignment in the proposed platforms .. 62

Figure 4-4 Bus Based Platform ... 64

Figure 4-5 Crossbar Based Platform ... 64

Figure 4-6 Hybrid communication medium based Platform .. 65

Figure 4-7 Hierarchical bus based Platform ... 66

Figure 4-8 A system showing the proposed modelling level .. 68

Figure 4-9 Generic model of the proposed platform ... 69

Figure 4-10 Connection establishment steps .. 71

Figure 4-11 FSM of arbiter for bus/crossbar .. 72

Figure 4-12 Bridge between two communication media .. 72

Figure 4-13 FSM of arbiter for hierarchical bus/hybrid communication media 73

Figure 4-14 Scenario 1 - one master core communicating with one slave core 73

Figure 4-15 Bus scenario 1 Transaction behaviour .. 74

Figure 4-16 Scenario 2 - two master cores communicating with one slave core 75

Figure 4-17 Bus scenario 2 Transaction behaviour .. 75

13

Figure 4-18 Scenario 3 - two master cores communicating with two different slave cores 76

Figure 4-19 Scenario 1 - two master cores communicating with one slave core 77

Figure 4-20 Crossbar scenario 1 transaction behaviour .. 77

Figure 4-21 Scenario 2 - two master cores communicating with two different slave cores 78

Figure 4-22 Crossbar scenario 2 transaction behaviour .. 79

Figure 4-23 verification of communication across bridge .. 79

Figure 4-24 Hierarchical bus transaction behaviour ... 80

Figure 4-25 Placement of cores for simulations ... 81

Figure 4-26 Scenario 1 - Simulation results ... 83

Figure 4-27 Scenario 2 - Simulation results ... 85

Figure 4-28 Scenario 3 - Simulation results .. 86

Figure 4-29 Scenario 4 - Simulation results ... 88

Figure 4-30 Scenario 5 - Simulation results ... 89

Figure 4-31 Delayed start-up deadlines of different communication media 90

Figure 4-32 Block diagram of WiMAX reciever ... 92

Figure 4-33 Communication links in the WiMAX receiver ... 93

Figure 4-34 Impact of Communication Centric System-on-Chip Design on WiMAX 94

Figure 4-35 Impact of Communication Centric System-on-Chip Design on WiMAX Power

and Area Consumption ... 94

Figure 5-1 Interface of the SOCCAD tool .. 99

Figure 5-2 Design Flow of SOCCAD tool ... 100

Figure 5-3 Example of a CTG .. 101

Figure 5-4 Simplification of CTG for shared bus ... 101

Figure 5-5 Simplification of CTG for Hierarchical bus .. 102

Figure 5-6 Simplification of CTG for Hybrid medium ... 102

Figure 5-7 Example 2 CTG... 103

Figure 5-8 Simplification of Example 2 CTG for Shared bus .. 103

Figure 5-9 Simplification of Example 2 CTG for Hierarchical bus 104

Figure 5-10 Simplification of Example 2 CTG for Hybrid media 104

Figure 5-11 SOCCAD communication input interface and respective CTG 105

Figure 5-12 Shared bus and Crossbar based media implementation by SOCCAD tool ... 106

Figure 5-13 Simplified CTG for hierarchical bus and SOCCAD implementation of system

 .. 106

Figure 5-14 Simplified CTG for hybrid media and SOCCAD implementation of system

 .. 107

Figure 5-15 Power & Area results of system generated by SOCCAD tool 107

Figure 5-16 Overall SystemC code generated by SOCCAD tool 108

14

Figure 6-1drNoC data packet structure ... 113

Figure 6-2 change of packet switching to circuit switching between node 6 and 11 114

Figure 6-3 Eight neighbours and ports of a router .. 115

Figure 6-4 Conceptual model of drNoC Router with OCP interface 117

Figure 6-5 FSM showing basic NoC flow .. 118

Figure 6-6 FSM showing drNoC flow .. 119

Figure 6-7 Simulated 4x4 2D Mesh network .. 121

Figure 6-8 Scenario 1: Network delay results ... 122

Figure 6-9 Scenario 2 - Path formation in drNoC ... 123

Figure 6-10 Scenario 2 - Network delay results ... 123

Figure 6-11 Scenario 3 - Path formation in drNoC ... 124

Figure 6-12 Scenario 3 - Network delay results ... 125

Figure 6-13 Scenario 4- Path formation in drNoC .. 126

Figure 6-14 Scenario 4 – Percentage Increase in data throughput and decrease in average

network delay. ... 127

Figure 6-15 Effect of drNoC path formation on rest of the network 127

Figure 6-16 Effect of network load shifting on time .. 128

Figure 6-17 Scenario 5- comparison of routing algorithms on drNoC 130

15

List of Tables

Table 2-1 SoC Bus Features Overview ... 40

Table 3-1 Micro Network Stack [BEN-002]... 45

Table 4-1 Platform interface signals ... 70

Table 4-2 Scenario 1 - Experimental setup ... 82

Table 4-3 Scenario 2 - master-slave pairs with expected start times 84

Table 4-4 Scenario 3 - master-slave pairs with expected start times 86

Table 4-5 Scenario 4 - master-slave pairs with expected start times 88

Table 4-6 Scenario 5 - master-slave pairs ... 89

Table 6-1 Smart Network Stack .. 111

Table 6-2 Available channel for message routing .. 115

Table 6-3 Scenario 1: Resource configuration .. 121

Table 6-4 Scenario 2: Resource configuration .. 122

Table 6-5 Scenario 3: Resource configuration .. 124

Table 6-6 Scenario 4: Resource configuration .. 126

Table 6-7 Scenario 5: Resource configuration ... 129

16

Acronyms and Abbreviations

APB Advanced Peripheral Bus

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

CTG Communication Task Graph

DCR Device Control Register

DMA Direct Memory Controller

DRAM Dynamic Random Access Memory

drNoC Dynamically Reconfigurable NoC

EDA Electronic Design Automation

FIFO First In First Out

FPGA Field Programmable Gate Array

GALS Globally Asynchronous Locally Synchronous

GPIO General Purpose Input Output

HW Hardware

NoC Network-on-Chip

OCP Open Core Protocol

OPB On-Chip Peripheral Bus

PCB Printed Circuit Board

PIO Parallel Input Output

PLB Processor Local Bus

QoS Quality of Service

SJF Shortest Job First

SoC System-on-Chip

SW Software

TDMA Division Multiple Access

TLM Transaction Level Modelling

UART Universal Asynchronous Receiver/Transmitter

VC Virtual Component

VLIW Very Long Instruction Word

VSIA Virtual Socket Interface Alliance

17

Chapter 1

INTRODUCTION

1.1 Motivation

According to International Technology Roadmap for Semiconductors, by the end

of this decade, System-on-Chips (SoCs), using 50-nm will grow to 4 billion transistors

running at 10GHz [ITR–001]. Such growth will be driven by design methodologies

supporting component reuse in plug and play fashion. Most quality of service (QoS)

matrices will revolve around performance and reliability measures and on-chip

interconnections will be the limiting factor for performance and energy consumption

[BEN-001].

In today’s electronic industry, time to market is one factor that greatly determines

the success of the developed product. Re-use design methodologies and ease of integration

are seen as the way forward to reduce this time to market constraint. Reconfiguration has

not only emerged as an efficient way of development of low power architectures for multi-

standard applications but also plays an important part in the reuse design paradigm.

The definition of a "system" in "system on a chip" has expanded to cover multiple

processors, embedded DRAM, flash memory, application specific hardware accelerators

and (Radio Frequency) RF components. This has created a situation where there is a

mixture of traffic types utilising the on-chip communication media. The communication

network that was traditionally handcrafted to a particular traffic type and constraints has to

cope with additional burden now and proves to be a limiting factor in achieving the

required performance from the present SoC. This is shifting the design paradigm from

computation centric to communication centric design flow.

Due to escalating costs associated with design, verification, manufacture and

testing of deep sub-micron chips, it is becoming economically infeasible to build highly

customised application specific systems. The notion of platform based design is seen as a

Chapter 1: Introduction

18

way to tackle this problem. Platform refers to systems consisting of largely pre-designed

and verified hardware and software components that can be targeted towards multiple

applications, in order to amortise the high cost of platform development over larger

markets. Different platform based designs have emerged in the last few years, however,

most of the commercially developed platforms support companies’ own products and thus,

do not provide the facility to easily integrate third party components into the pre-verified

platform.

System modelling and electronic design automation (EDA) tools go hand in hand

in today’s semiconductor industry. With Multi-core SoC being a major part of electronics

used in safety critical systems, quick system simulation for verification purposes poses a

new challenge for the system designers. Current application specific integrated circuit

(ASIC) or conventional field programmable gate array (FPGA) centric design

methodologies are unable to cope with the development requirement of present day

sophisticated SoC architectures. Especially with the added reconfigurable component

integration in system, there is an urgent need for design methodologies and tools that are

able to deal with different types of reconfigurable SoC fabrics targeting future

reconfigurable SoC architectures.

1.2 Author’s contribution

The aim of this thesis is to propose an on-chip communication framework for

future high throughput intensive applications and to develop a design methodology for

rapid SoC development. The work presented in this thesis targets three crucial areas of

SoC design methodology: development of communication media for future heterogeneous

multi-core systems, development of communication centric platforms for plug and play

integration of components (reconfigurable, fixed and processor based) to facilitate ease of

design reuse, and thirdly, development of a tool to automate the generation of SoC

architectures with optimised communication media, focussing on custom reconfigurable

cores.

Work carried out in the field of on-chip communication varies from bus based

systems to complex Network-on-Chip (NoC) architectures. Along with the advantages of a

certain communication medium are its drawbacks; no work is done where two different

communication structures with different power and throughput characteristics co-exist in

single SoC. In this thesis, a novel hybrid communication medium is presented that

Chapter 1: Introduction

19

combines the advantages of a bus based communication system with a crossbar based

communication system and thus both the bus and crossbar co-exist in the same SoC

[AHM-001].

NoC is considered to be a solution to the communication demands of future multi-

core systems. NoC is generated by choosing a network topology, one of the routing and

switching schemes and finding an optimal packet size. However, along with the

advantages of any communication parameter in NoC, follows its disadvantages and a

compromise has to be reached when choosing these network parameters. This thesis

presents a dynamically reconfigurable NoC (drNoC) that eliminates this compromised

choice of network parameters and dynamically chooses the best parameter in terms of

routing, switching and packet size for the optimised network performance. The proposed

drNoC incorporates an Open Core Protocol (OCP) based interface allowing components to

be integrated in a plug and play fashion [AHM-002] [AHM-003] [AHM-004].

As mentioned above, platform based design has emerged as an efficient way for

rapid development of SoC architectures. This thesis also presents a novel communication

centric platform based design flow for future SoC architectures. The proposed platforms

have built in controllers, thus making the heterogeneous cores (reconfigurable, fixed,

processor based) integrated in a plug and play fashion. This eliminates the need of the

dedicated system controller to be integrated or programmed when integrating processing

cores to the platform. Four platforms have been developed with different communication

media including the hybrid concept mentioned above. Unlike traditional platform based

designs, the novelty of the proposed platform lie in its ability to produce SoC architecture

in truly plug and play fashion with an optimised communication media [AHM-005].

Lastly, bringing the above mentioned work together, a tool called SOCCAD is

developed to automate the development of SoC architectures. The novelty of the

SOCCAD tool lies in its ability to automate development of SoC architectures integrating

custom reconfigurable cores and with optimised communication media. SOCCAD tool has

a built-in component library that not only holds SystemC models of communication media

but also includes custom reconfigurable cores, processor cores and other peripheral

components required to generate complete system architecture for quick simulation and

verification. [AHM-006] [AHM-007] [AHM-008] [AHM-009] [AHM-010] [AHM-

011].

Chapter 1: Introduction

20

1.3 Roadmap of thesis

This remaining of this thesis is divided into six chapters and is organised as

follows:

• Chapter 2 gives an overview of traditional communication media and

communication centric platforms. It introduces the concept of shared

communication media and gives an overview of commercially available shared

and hierarchical buses. The communication centric platform based approach is

then described and performance matrices related to on-chip communication media

is listed to conclude the chapter.

• Chapter 3 details the concepts of NoC communication and how it tackles the

drawbacks in traditional bus based communication media. This chapter also

identifies the expectations from future packet based on-chip communication

network and lists performance matrices relating to NoC.

• Chapter 4 presents two important things, firstly, a hybrid communication medium

is presented and secondly the proposed communication centric platforms have

been discussed. For the purpose of effective on-chip communication, four

platforms have been developed. This chapter also details the systemC based

communication centric modelling of the proposed platforms and discusses their

simulation results. The developed platforms are also evaluated with the help of

real life example.

• Chapter 5 presents the developed SOCCAD tool, highlights the communication

centric placement and explains the automated generation of communication

centric SoC architectures utilising the developed communication centric platforms.

• Chapter 6 presents drNoC, which is developed for SoC architectures with

communication requirements of over 10GB/s and explains its architecture and

implementation. Simulation results are then listed to demonstrate the

effectiveness of proposed drNoC in high data throughput applications.

Chapter 1: Introduction

21

• Chapter 7 presents a summary of all the previous chapters reiterating the main

contributions by the author. It also identifies topics for future research and

development.

1.4 Summary

On-chip communication is a crucial research area and with the SoC design

methodology shifting to communication centric design flow, there is a need for

development of new communication architectures to cater for the increasing throughput

requirements while providing the required QoS in a reduced design time. This thesis

presents two novel communication media, a hybrid communication architecture and a

dynamically reconfigurable NoC for future high data intensive multi-core architectures.

This thesis also presents novel communication centric platform based approach and a tool

for automated generation of SoC architectures that aims at rapid development of SoC

architectures. The next chapter gives an overview of traditional communication media and

commercially developed communication centric platforms.

22

Chapter 2

LITERATURE REVIEW

Communication Centric Platform Based Designs

2.1 Introduction

This chapter gives an insight of communication centric platform based design. It

starts with the definition of term platform and the origin of platform based design. Current

on-chip communication media are discussed followed by literature review of

communication centric platforms.

During recent years, platform based design, also known as the configure and

execute approach is emerging as a powerful SoC design methodology for rapid

development of SoC devices. The term “platform” is defined differently by researchers,

semiconductor industries and tool vendors.

Sangiovanni-Vincentelli [SAN-001] defines an SoC platform as a "layer of

abstraction with two views." The upper view allows an application to be developed

without referring to the lower levels of abstraction. Meanwhile, the lower view is a set of

rules that classify a set of components belonging to the platform.

The Virtual Socket Interface Alliance's (VSIA) [VIS-001] platform-based design

development group defines an SoC platform as "a library of virtual components and an

architectural framework, consisting of a set of integrated and pre-qualified software and

hardware virtual components (VCs), models, EDA and software tools, libraries and

methodology, to support rapid product development through architectural exploration,

integration and verification."

Automotive industry pioneered the platform concept in the early 1980s by

standardising a common platform across several makes and models. By developing several

platforms and sub-platforms, for example, the chassis platform, the interior platform, and

Chapter 2: Literature Review – Communication Centric Platforms

23

the electrical platform etc., the manufacturer was able to outsource significant segments of

automotive hardware, thus reducing production cost and design cycle and improving

design quality.

The semiconductor industry embraced the concept of platform based design to

cope with the rising pressure of time to market, design and manufacture costs. Platform

based designs have been classified into different kinds.

The first kind is called a “full application platform” in which users design full

applications on top of hardware and software architectures. Such platforms usually are

accompanied by software to support compilation, debugging, simulation and emulation.

This speeds up the time to market and gives the designer an advantage of having a working

chip, running at real speeds and executing in real environment.

Some Industrial examples of full application platform include Philip’s Nexperia

including a 32 bit MIPS RISC CPU, a 32 bit VLIW Trimedia processor and three levels of

internal buses [PHI-001], Texas Instrument’s OMAP multimedia platform including a

DSP, an enhanced ARM processor and an inter-processor communication mechanism

[TEX -001], and ARM’s PrimeXsys wireless platform including ARM 926EJ-S processor

core, java acceleration, a multi-layer AMBA bus and a selection of peripherals [ARM-

002].

The second type of platform, which is not very common in academic based

research, is a “processor centric platform”. As the name suggests, in processor based

platforms only the processor is reconfigurable but it does not make the whole system.

Industrial examples include Improv Systems [IMP-001], ARC [ARC-001] and Tensilica's

Xtensa [TEN-001].

The third type is a “communication centric platform” which provides an

interconnect architecture but does not provide a processor or a full application. Example

includes IBM CoreConnect [IBM-001], ARM’s AMBA [ARM-001] Sonic’s silicon

backplane [SON-001] and Palmchip’s CoreFrame architecture [PAL-001].

Finally there is a “fully programmable platform” consisting typically of FPGA

logic and a processor core. Examples from industry are Altera’s Excalibur [ALT-001],

Xilinx Virtex Pro [XIL-001] and Quick Logic’s PolarPro [QUI-001].

Chapter 2: Literature Review – Communication Centric Platforms

24

Due to the importance of communication in the future SoC designs, this chapter

focuses on the communication centric platform based designs. In the following sections,

the basics of on-chip communication is discussed followed by a literature review of

traditional SoC communication including bus based, crossbars, hierarchical bus and finally

it moves towards the development of communication centric platforms.

2.2 Basics of On‐chip Communication

As mentioned earlier, performance of a multi-core SoC is not only determined by

the capacity of the processing elements (e.g. CPU speed, cache size, etc.), but it is also

limited by the interconnect network. Design and optimization of such interconnect network

are critical for system performance. In designing communication architecture for SoC,

certain factors have to be considered [LAH-001]:

Appropriate Topology: The topology refers to the way SoC components are connected. It

can be in the form of single shared architecture, dedicated communication channels or

more complex architectures such as hierarchical buses, token ring or crossbars.

Communication Protocols: The protocol specifies the manner in which communication

across the channel takes place. Communication protocols deal with the different types of

resource management algorithms used for determination of access right to the shared

communication channels. Static-priority, time division multiple access (TDMA), token

passing, lottery and code division multiple access (CDMA) are some of the existing

communication protocols employed in on-chip communication.

Architectural Parameters: Parameters like bus widths, burst transfer size, priorities etc are

also to be defined for the communication channels and associated protocols. Performance

of communication media depends highly on these parameters.

Clocking: Clocking can be synchronous or asynchronous. If a single clock is used for the

communication medium and its connected cores, the system is referred to as a synchronous

system. Asynchronous system in contrast, has no global clock and timing is managed

locally. Communication medium synchronisation occurs with the help of handshaking

protocol that uses request-acknowledgement signals to ensure that data transfer is

completed successfully. Handshaking is also used in synchronous systems for a data

Chapter 2: Literature Review – Communication Centric Platforms

25

transaction consisting of several data transfers. To favour low power, globally

asynchronous, locally synchronous approach is used [BAI-001].

Asynchronous buses are typically slower than synchronous buses because of the

additional overhead of the handshaking protocol. However, in high data throughput

devices, the delays introduced by handshaking are negligible. When slower devices take

part in transfers, a wait signal is used to stretch the transfer for several clock cycles. Split

transfer is used in slower devices where a read operation is split into two read operations

and the bus is released in the middle. Thus, bus is not reserved for the whole operation and

can be utilised by other devices for communication. Pipelined bus transfers are also used

to obtain higher clock frequencies. In pipelined transfer, address is send on the first cycle

for it to be decoded following by the data on following cycles. It is also possible to have

the data of last transfer interleaved with the address of next transfer.

Interconnect interfacing: For rapid creation and integration of interoperable Virtual

components (VCs), different interfacing standards have been developed for industry. OCP

and VCI are the two most recognised standards in the semiconductor industry and research

community.

OCP: OCP [OCP-001] is a complete socket standard that facilitates component

reusability by providing a configurable interface to on-chip communication sub system. A

socket is universal and is targeted for use in virtually any application, while an interface is

targeted at a single unique application, where all of the arbitration logic and interface

circuitry is defined for that particular application.

SoC designer can select signals from the OCP configurations needed for data,

control and test requirements. Defining a core interface using the OCP provides a complete

description for system integration. Basic OCP includes only data flow signals and is based

on simple request and acknowledge protocol. However, the optional extensions support

more functionality in control, verification and testing. Beside the basic OCP version, there

are four extensions: simple extension, complex extension, sideband extension and debug

and test interface extension. Simple extension and complex extension support burst

transactions and pipelined write operations. Sideband extension supports user-defined

signals and asynchronous reset.

 VCI: The Virtual Component Interface (VCI) [VIS-001] specifies a request-

response protocol for on-chip communication. As an interface, the VCI can be used as a

Chapter 2: Literature Review – Communication Centric Platforms

26

point-to-point connection between two units called the initiator and the target (Master and

Slave in case of OCP), where the initiator issues a request and the target responds. VCI

defines this protocol for the transfer of requests, responses, contents and for coding of

these requests and responses.

VCI has three complexity levels: peripheral VCI (PVCI), basic VCI (BVCI), and

advanced VCI (AVCI). PVCI provides a simple interface for applications that do not need

all the functionality of BVCI. Two main signals are defined in PVCI for handshaking:

VAL (signal sent by initiator to inform the presence of valid values in its interface) and

ACK (target response signal indicating the end of successful communication).

BVCI has a powerful set of rules. Communication in BVCI interface happens

between the Initiator and the target. Contents are transferred separately under the control

of a handshake protocol i.e. the request and response messages are completely

independent. The use of two communication channels is defined in the BVCI standard.

The AVCI is a superset of the BVCI and adds more sophisticated features such as

threads to support high-performance applications. In the AVCI, requests may be tagged

with identifiers, which allow such requests and request threads to be interleaved and

responses to arrive in a different order.

In a paper published by Porto et al. [POR-001] comparing PVCI, BVCI and OCP

interfaces, it is concluded that BVCI results in the highest area utilisation, while PVCI

interfaces occupies the lowest area. OCP interface area lies in between the PVCI and

BVCI. When analysing the operation frequency, PVCI and OCP exhibit very similar

results, however, due to a complex communication protocol, BVCI interface has a lower

performance. Thus, for low area and high performance, OCP interface is considered as a

better option.

2.3 Bus Based On‐Chip Communication

Buses have been deployed for communication since the beginning of circuit

design and made their way to SoC due to their well understood concepts, their

compatibility with most of the available node processors, the area taken on the chip and

the low latency after the arbiter has granted control.

Chapter 2: Literature Review – Communication Centric Platforms

27

Most of the recent designs of on-chip buses borrow their ideas from standard

printed circuit board (PCB) buses. The bus architecture for SoC differs from PCB buses

because SoC has faster transfer rate due to shorter propagation delays and no restrictions

on number of pins due to packaging or signalling constraints.

Structurally, on-chip buses can be divided into Shared and Hierarchical buses. In

hierarchical buses, two or more buses are connected via bridges. In most of the cases, the

bus is divided into master and slave buses, with the master bus connecting the high speed

devices and the slave bus acting as slave to the bridge and connecting low speed devices

(discussed in section 2.4).

2.3.1 Shared Bus based communication architectures

A Global bus is the simplest example of shared communication architecture and is

commonly found in many commercial SoCs [KYE-001]. All the processing cores are

connected to a single global bus via interface. Bus access is granted on basis of different

bus access protocols.

Figure 2-1 Global bus architecture with an arbiter [KYE-001]

The global bus can serve only one processing core at one time. A simple bus

allocation mechanism can be in form of an arbiter that allocates the global bus to the

processor core requesting to initiate communication. Figure 2-1 shows the global bus

architecture where one global bus is shared by the processing cores and an arbiter is

employed for granting bus access. Bus access can be granted in first come, first serve also

known as first in, first out (FIFO), time sharing or by priority based allocation. Data ready

Chapter 2: Literature Review – Communication Centric Platforms

28

flags are employed in one of the local processor memory (for example SRAM_D in the

figure 2-1) by the processing core in pipelined operation to indicate that its operation is

complete and data is available for next core to read and use. The data ready flag in

SRAM_D is continuously checked by the processing cores for the appropriate data ready

flag value to become available.

Figure 2-2 Global bus architecture with registers [KYE-001]

Another bus allocation mechanism employed consists of a set of two registers

DONE_OP and DONE_RV. A flag is set in these registers after the data transfer or data

receipt between the processing cores. Figure 2-2 shows the bus architecture with registers

employed for bus allocation. Any processing core can access the memory of upper

adjacent core through the segmented global bus. Bus bridges are employed to allow

different processors to access data memory. For communication between processor_A and

processor_B in the figure 2-2, the processor_A writes to local memory SRAM_A, the

address decoder makes BB_1 connects to SRAM_A. The bus bridges BB_2 and BB_8

block the access to SRAM_A from any other processor. Handshaking is done by setting

DONE_OP_B at the completion of its operation by processor_A. Processor_B resets

DONE_OP_B and reads SRAM_A. When the processor_B finishes reading from

SRAM_A, it sets DONE_RV_B. At this stage, processor_A then resets DONE_RV_B to

zero and begins processing the next packet.

Bi-FIFOs in global bus architectures can also be employed for exchange of data

between the communicating cores. Figure 2-3 shows a global bus architecture where data

is exchanged through the Bi-FIFOs located between the cores. Bi-FIFOs can be accessed

by two ports, an upper_zz port and a lower_xx port. Threshold value is defined by the user

to indicate the status of the Bi-FIFO, a high threshold value indicates that the Bi-FIFO is

full while a low threshold indicates that the Bi-FIFO is empty. After the completion of the

Chapter 2: Literature Review – Communication Centric Platforms

29

assigned operation, data is pushed to Bi-FIFO until the data reaches the high threshold, at

which stage an interrupt signal is generated for the adjacent core to indicate data

availability. An interrupt signal is generated to the next core when the data in a Bi-FIFO

reached the high threshold. The interrupted core reads the data from the Bi-FIFO until the

data of the Bi-FIFO reaches the low threshold. For synchronisation through handshaking,

two flag registers are used. These registers are located in the “REGISTERS” block in the

Figure 2-3 along with the threshold registers.

Figure 2-3 Global bus architecture with Bi-FIFO [KYE-001]

Although, system performance is heavily dependent on the application running on

the system, the bus architecture with an arbiter outperforms the segmented bus

architectures due to the performance difference arising from synchronisation protocols. In

the segmented bus architecture with registers for data transfer, there is a gap during the

read and write time in the current processing core. However, bus architecture with Bi-

FIFO shows the best performance for an algorithm that has many local variables, small

loops and strong data dependency between functions because they can sequentially process

functions with fast memory pointer increments between processors [KYE-001].

A crossbar switch bus architecture connects multiple inputs to multiple outputs in

a matrix manner. Figure 2-4 shows a crossbar switch bus architecture. Inputs and outputs

are connected through the cross wires and junction switches. All the input paths and output

paths have the same bus width and operation frequency. The bus width is kept same so any

input path can be connected to output path. With this simple and regular structure, the

crossbar switch provides simultaneous multiple connections between its inputs and

outputs. When competition for the same shared resource occurs, an arbiter resolves this

situation based on any of the arbitration techniques like FIFO, time shared etc.

Chapter 2: Literature Review – Communication Centric Platforms

30

Figure 2-4 Crossbar Switch Bus Architecture [KYE-001]

2.3.2 Commercially developed shared buses

There are many shared bus architectures developed commercially, with most of

the architectures developed to support the company’s own cores. These bus architectures,

share the same basic concepts, however, different performance tuning schemes are used to

make them unique.

Figure 2-5 Avalon bus based system [ALT-002]

Chapter 2: Literature Review – Communication Centric Platforms

31

Developed by Altera, Avalon is a parameterised bus architecture mainly used for

developing SoC architectures based on Nios processor [ALT-002]. Capable of transferring

one data item 8-,-16-, 32-, 64-, or 128-bits wide, Avalon has a set of predefined signal

types which can be used to connect the cores to its synchronous interface. Multiple bus

master support is provided by Avalon along with complete specification for port

connections and timing by which components communicate. Masters and slaves interact

with each other based on a technique called slave-side (distributed) arbitration. Figure 2-5

shows an Avalon bus based system.

Data-path multiplexing, address decoding, wait state generation, dynamic bus

sizing, interrupt priority assignment, latent transfer capabilities, and streaming read and

write capabilities are some of the features provided by the Avalon bus for its attached

peripherals. SOPC Builder is an exclusive Quartus II software tool that automatically

generates the Avalon bus architecture to support the Nios based systems getting

developed.

.

Figure 2-6 Wishbone interconnections [AYA-001]

Wishbone is an open source bus architecture developed by Silicore Corporation

[WIS-001]. Wishbone defines different interfaces for master and slave cores [AYA-001].

Support is also provided for different types of bus transactions, such as read/write,

blocking/unblocking access. In applications where two buses should exist, two separated

Wishbone interfaces can be created for slow and fast transactions.

Chapter 2: Literature Review – Communication Centric Platforms

32

Different types of interconnect topologies (Figure 2-6) are supported by Wishbone

including: a point-to-point connection for direct connection of two participants that

transfer data according to some handshake protocol, a dataflow interconnection for linear

systolic array architectures used in implementation of DSP algorithms, a shared bus for

multi core SoCs organized around single system bus and a crossbar switch interconnection

used in multi core SoCs where more than one master can simultaneously access several

different slaves.

Figure 2-7 PI (Peripheral interconnect) bus architecture [MIL-001]

Peripheral Interconnect (PI) bus is an open standard published as part of a

European project OMI (Open Microprocessor Initiative framework) in which several

semiconductor companies (Advanced RISC Machines, Philips Semiconductors,

SGSTHOMSON Microelectronics, Siemens, TEMIC/MATRA MHS) worked together to

develop a bus architecture for use in modular, highly integrated SoC designs. For SoC

design purpose PI bus System Toolkit is developed and synthesis scripts for different

ASIC and FPGA technologies are also available [MIL-001].

PI bus is a synchronous bus with processor independent implementation and

design. Address and Data bus is scalable up to 32 bits supporting 8-, 16-, and 32- bit data

access. A broad range of transfer types from single to multiple data transfers is supported

by PI bus along with multi-master capabilities (Figure 2-7).

Chapter 2: Literature Review – Communication Centric Platforms

33

Bus Control

Address
Decoding

Arbitration

DMA
controller

Control
Registers

Synchronous
Peripheral

Bridge

I/O Peripherals

Bridge Bridge

RAM

CPU
Test

Interface
Control

ROM

Test

Address

Data

Chip
Select

DRAM
Control

Marble Bus

Figure 2-8 The AMULETH3H System [BAI-001]

Unlike the above mentioned examples of buses, MARBLE (Manchester

Asynchronous Bus for Low Energy) is a fully asynchronous bus developed at the

Manchester University [BAI-001]. The novelty of MARBLE lies in its clock-less

operation and use of split-transactions for every transfer. Split-transfer architecture allows

transfers between different initiators and targets to be interleaved without the need for

retries, thus giving low energy operation and low latency.

In order to implement split transaction architecture, the MARBLE bus consists of two

asynchronous multipoint channels. One of these channels carries the command from the

Master to the slave. The other multipoint channel carries a response from the slave to the

master, along with the read or write data in the appropriate direction.

Figure 2-8 shows the AMULET3H system with MARBLE bus as interconnect media

connecting CPU core and DMA controller to RAM, ROM, and other peripherals.

2.4 Hierarchical bus

Despite the advantages of buses, the bus based architecture will not meet the

increased communication requirement because the bandwidth of a bus is shared by all the

attached devices and it is simply not sufficient [KEU-001]. Also every unit attached adds

parasitic capacitance; therefore electrical performance degrades with growth. To overcome

this problem, the concept of hierarchical bus originated.

Chapter 2: Literature Review – Communication Centric Platforms

34

SoC components are placed at the appropriate level in the hierarchy according to the

performance level they require. Low performance SoC components are placed on lower

performance buses, which are bridged to the higher performance buses so as not to burden

the higher performance SoC components. Hierarchical buses provide an increase in data

throughput over the shared buses due to decreased load per bus and the potential for

transactions to proceed in parallel on different buses [LAH-002].

Examples of hierarchical bus include CoreConnect by IBM [IBM-001] and AMBA

by ARM [ARM-001]. These examples are explained in the section 2.5.1 and 2.5.2

respectively.

2.5 Communication centric platform

Communication-centric platform is a bottom-up approach for SoC development. A

bottom-up approach is bringing together individual modules to form the required bigger

system. Communication centric platforms can be classified as SoC integration platforms

where the main focus is on the hardware blocks to integrate and interact with each other

efficiently [YOO-001]. In SoC integration the interface standards are important to simplify

the development of complex systems and reduce the need to design glue logic that

potentially degrades the performance of the system.

As mentioned earlier in this chapter, a communication centric platform only provides

a verified interconnect architecture. Processor and other modules like memories and

application specific cores etc. have to be added by designer to realise the complete SoC.

This means that a communication centric platform can be used for different application

domains.

Communication centric platforms developed commercially generally come with a

standard bus interface and mostly provide hierarchical bus topology due to the reasons

mentioned in section 2.4. Below are some of the commercially developed communication

centric platforms.

Chapter 2: Literature Review – Communication Centric Platforms

35

2.5.1 IBM CoreConnect

Processor Local Bus (PLB) 128-bit

On-Chip Peripheral Bus (OPB) 32-bit

Interrupt
Controller

OPB
Bridge

DMA Controller MAL
10/100 Ethernet

Reset Clock
Control Power

Mgmt

Custom
Logic

SRAM
Controller

PCI-X
Bridge

PC133/DDR133
SDRAM Controller

PLB
Arbiter

PPC440
CPU

Inst Data

FPU
OPB

Arbiter

SRAM/ROM
Peripheral
Controller

External
Bus Master
Controller I2C UART USB GPIO

SRAM

Device Control
Register Bus

Figure 2-9 CoreConnect platform architecture [IBM-001]

The CoreConnect bus architecture is developed by IBM to ease the integration and

reuse of processor, system, and peripheral cores within standard product and custom SoC

designs. CoreConnect serves as a foundation for the IBM Blue Logic IP collaboration

program, which fosters close working relationships between IBM and select third party

providers to facilitate customer utilisation of IP cores.

The IBM CoreConnect architecture provides three buses for interconnecting cores,

library macros, and custom logic [IBM-001].

• Processor Local Bus (PLB)

• On-Chip Peripheral Bus (OPB)

• Device Control Register (DCR) Bus

The PLB and OPB buses provide the primary means of data flow among macro

elements. Because these two buses have different structures and control signals, individual

macros are designed to interface to either the PLB or the OPB. Usually the PLB

interconnects high-bandwidth devices such as processor cores, external memory interfaces

and DMA controllers.

Chapter 2: Literature Review – Communication Centric Platforms

36

Processor Local Bus

PLB provides high bandwidth data paths for the attached cores. PLB supports up

to 16 masters, providing four priority levels for implementation of various arbitration

schemes. Any number of slave devices can be attached to PLB, however, the number of

masters and slaves attached to a PLB directly affects the maximum attainable PLB bus

clock rate. This is because larger systems tend to have increased bus wire load and a

longer delay in arbitrating among multiple masters and slaves.

PLB provides support for 16-, 32- and 128- bit data transfers and is extendable to

256-bit data buses. For bus arbitration, a bus arbitration and control unit is also

incorporated in PLB to manage the address and data flow through PLB. Separate address

and data buses are present that allow simultaneous transfer requests. The PLB arbitrates

among these requests and directs the address, data and control signals from the granted

master to the slave bus. The slave response is then routed from the slave bus back to the

appropriate master.

On-Chip Peripheral Bus

In order to reduce capacitive load on the PLB, a secondary bus OPB is used. OPB

supports multiple masters. Peripherals suitable for attachment to the OPB include serial

ports, parallel ports, UARTs, GPIO, timers and other low-bandwidth devices.

As part of the IBM Blue Logic cores program, all OPB core peripherals directly

attach to OPB. The OPB provides a fully synchronous protocol with separate 32-bit

address and data buses and supports for multiple OPB bus masters.

Device Control Register Bus

 DCR is a fully synchronous bus typically implemented as a distributed

multiplexer. Lower performance status and configuration registers are typically read and

written through the DCR Bus. The DCR provides a maximum throughput of one read or

write transfer every two cycles to provide the required connectivity while minimizing

silicon usage.

Chapter 2: Literature Review – Communication Centric Platforms

37

2.5.2 ARM AMBA

Figure 2-10 AMBA platform architecture [ARM-001]

AMBA is ARM’s hierarchical bus designed to support the ARM processor cores.

AMBA defines a multilevel bussing system, with a system bus and a lower-level

peripheral bus [ARM-001].

• AMBA High-Speed Bus (AHB) or Advanced System Bus (ASB) and

• Advanced Peripheral Bus (APB).

The two buses are linked via a bridge that serves as the master to the peripheral

bus slave devices. The system bus can be one of the two defined buses AHB or ASB. The

peripheral bus, called APB for the Advanced Peripheral Bus, is a simpler, lower-speed,

low-power bus for slower devices.

Advanced High-Speed Bus

The AHB takes on many characteristics of a standard plug-in bus. It's a multi

master bus where all bus operations are initiated by bus masters. The master-generated

address is decoded by a central address decoder that provides a select signal to the

addressed bus slave unit. The bus master can "lock" the bus, reserving it with the central

arbiter for a series of locked transfers.

AHB supports 32, 64, 128, and 256 bit data paths and 32 bit address bus and can

be configured for Pipelined and split transactions

Chapter 2: Literature Review – Communication Centric Platforms

38

 Advanced System Bus

Like the AHB, the ASB is a pipelined, multi master bus that supports bursting. It

is a simpler bus and does not support split transactions. Like AHB, it enables a master to

reserve the bus. ASB supports 32 bit data paths and 32 bit address bus.

Advanced Peripheral Bus

Designed to support low-speed peripherals such as universal asynchronous

receivers/transmitters (UARTs), keypads, and programmed inputs/outputs (PIOs), the APB

is a simple peripheral bus. All bus devices are slaves to the master, the bridge to the AHB,

or ASB system bus. This is a static bus that provides a simple address, with latched

address and control signals for easy interfacing. As a simple bus, the APB supports 8, 16

and 32 bit data bus and 32 bit address bus.

2.5.3 Palmchip CoreFrame

Figure 2-11 CoreFrame platform architecture [PAL-001]

The CoreFrame developed by PalmChip is low power, high performance on chip

interconnect architecture that provides a platform for components to be integrated for rapid

development of SoC architectures [PAL-001].

Chapter 2: Literature Review – Communication Centric Platforms

39

It can also be viewed as a system of independent parallel buses rather than a

hierarchy of buses. The two most important buses are PalmBus and the MBus. The

PalmBus is designed for low speed accesses from the CPU core to peripheral blocks. The

MBus is designed for high speed accesses to shared memory from the CPU core and

peripheral blocks. There is also a CPU bus that is used to connect CPU to PalmBus via

palm-bus controller and to MBus through a cache or a bridge.

Channels are used to interface between the MBus and the Memory subsystem. The

channel handles all interfacing between the peripheral and the MBus. Use of channels

makes it easier to integrate peripherals that require DMA as many system issues including

pipelining, memory addressing, arbitration and endianness do not have to be dealt by the

peripheral. Address control is performed by simply passing the address from the channel

interface to the MBus. The simplicity of the Channel interface makes the task of

integrating peripheral blocks from multiple sources becomes much simpler. The channel

library also includes verification stimuli and test benches [PAL-002].

2.5.4 Sonic’s Silicon Backplane

Figure 2-12 SiliconBackplane platform architecture [SON-001]

SiliconBackplane [SON-001] is an on-chip bus framework that connects

processing cores in SoC. It is based on OCP bus interface protocol thus it does not require

additional design work or glue logic to integrate cores to the platform. Sonics has also

added a multicast feature that allows designers to send data to multiple slaves. The multi-

Chapter 2: Literature Review – Communication Centric Platforms

40

backplane feature allows designers to create a hierarchical subsystem each with an

independent clock frequency and data path width. The sub systems can be connected in

tree or fully connected topologies to isolate local data flows, improving total system

bandwidth while reducing SoC area and power consumption [SAN-002].

To overcome shortcomings of bus based communications, a temporal solution is

proposed by Sonics [WIN-001]. Sonics decouples communication from computing and

introduces a communication subsystem that can be tuned to the required bandwidth.

Rather than using a fixed interface standard, an optimised interconnect interface targeted

for the desired application is used. To decouple communication from computation, FIFO

buffer and burst transfer of data is introduced by grouping the related transfers into bursts.

The decoupling of computation-intensive data is effective for best-case performance but

shows poor performance in satisfying real-time deadlines. TDMA is used to transfer the

data across a higher-bandwidth channel with minimal buffering, and higher-level protocols

are adopted to select the receiving device. The result is highly efficient interleaved

transfers. [WIN-001]

2.6 Bus Features Overview
Table 2-1 SoC Bus Features Overview

Name Structure Uni/Bi-
directional

Shared/point-
to-point

connections

Synchronous
/asynchronous

Multiple
clock

domain

Transfer

AMBA Hierarchical Uni-directional Shared Synchronous N/A Split/Pipelined
Transfer

Avalon Shared Bi-directional point-to-point Synchronous Multiple
clock

domain

Pipelined
Transfer

CoreConnect Hierarchical Uni-directional Shared Synchronous N/A Pipelined
Transfer

CoreFrame Hierarchical Uni-directional point-to-point Synchronous Multiple
clock

domain

N/A

MARBLE Shared Bi-directional Shared Asynchronous Multiple
clock

domain

Split/Pipelined
Transfer

PI Bus Shared Bi-directional Shared Synchronous - Split Transfer

Silicon
Backplane

Shared N/A Shared Synchronous Multiple
clock

domain

Pipelined
Transfer

Wishbone Hierarchical Uni/bi-
directional

Shared Synchronous Multiple
clock

domain

N/A

The main features of the SoC buses mentioned in section 2.3 and 2.5 are

summarised in Table 2-1. The features analysed include network topology features like

structure, shared or point to point connections, clocking and data transfer type.

Chapter 2: Literature Review – Communication Centric Platforms

41

In section 2.3, some commercially developed shared buses were introduced. An

important issue to consider in dealing with a communication medium is its scalability.

Scalability of a communication medium refers to its capability to deal with an increase in

data throughput requirement caused by addition of new resources. Although, shared buses

are simpler than hierarchical buses, they have a drawback when it comes to scalability and

suffer from poor resource sharing in time domain leading to high contention or resource

utilisation. Hierarchical buses solve the problem of scalability and resource sharing to

some extent but will still prove to be bottleneck in future high throughput SoC

architectures.

Uni- directional buses are believed to be faster than bi- directional buses however;

bi-directional signal lines save routing resources. Tri-state buffers are used in

implementation of bi-directional lines that are not suitable for ASIC design due to

difficulties in control and testing. Apart from AMBA, CoreConnect and CoreFrame most

of the buses use uni-directional lines. Wishbone supports both uni- and bi-directional lines

[SAL-001].

Apart from MARBLE Bus, all the buses are synchronous in nature. MARBLE bus

employs globally asynchronous locally synchronous clocking that save power

consumption as different modules can run at reduced frequencies irrespective of other

modules in system. This comes at a cost of increased system complexity [APT-001].

PI Bus is the only bus that supports only split transfer. All the other buses support

both split and pipelined transfer. Using pipelined transfer, higher clock frequencies can be

obtained. On the other hand split transfer has the advantage that bus is not reserved for the

whole operation by one bus master allowing other cores to utilise the bus efficiently.

2.7 Performance Metrics

Data throughput plays an important part in establishing the suitability of a bus to

be used as communication media for a particular SoC. Another important performance

metric is the latency of a transfer. Latency is the time taken to execute a transaction across

the bus. It has two components, firstly the time it takes to access the bus, which depends

on bus protocol and utilisation and secondly, the time it takes to transfer the data, which is

directly determined by the protocol of the bus and bus width. Time is usually measured in

clock cycles.

Chapter 2: Literature Review – Communication Centric Platforms

42

Bus bandwidth, also referred to as data throughput is the maximum capacity for

data transfer as a function time and is given by:

Bandwidthbus = Widthbus x Clock‐frequencybus …………… Equation 2.1

Bus width is specified in bits and the clock-frequency in megahertz then bandwidth is

measured in megabits per second.

From Equation 2.1, it can be seen that clock frequency plays an important role in

available bandwidth. In a system with a fixed bandwidth, a rise in bus clock frequency

implies a shorter bus clock cycle period. e.g. a bus with clock frequency of 100 MHz has a

bus clock cycle duration of 10 ns, whereas a bus with a higher clock frequency of 500

MHz has a bus clock cycle of only 2 ns [PAS-001].

Entering into the DSM era has got new challenges for on-chip buses. Buses are

implemented as long metal lines on a silicon wafer and data is transferred using

electromagnetic waves that have a finite speed limit. These metal lines do not decrease in

size in proportion to the decreasing logic components. This results in relatively longer

communication lengths between logic components. Moreover, with increasing clock

frequencies, the distance that can be covered by a signal on the bus in a single clock has

been reduced and it can take multiple cycles to send a signal across a chip. This increase in

signal propagation time has serious consequences for the performance and correct

functioning of the SoC design.

In order to tackle this signal propagation problem, hierarchical or split bus

communication architecture are employed that partition the long bus lines into shorter

ones, separated by bridges or tri-state buffer structures. This breakdown makes it possible

for signal to transverse a bus segment in a single clock cycle and with hierarchical buses

this separation allows different buses to operate at different bus clock frequencies.

2.8 Summary

This chapter introduced the basics of on-chip communication. A literature review

has been done with respect to shared and hierarchical buses and concept of communication

Chapter 2: Literature Review – Communication Centric Platforms

43

centric platform based design is introduced. Various commercially developed shared and

hierarchical buses are reviewed and their architectural characteristics are listed.

Reviewing the buses brings us to the conclusion that most bus properties are

similar with only a few exceptions of performance tuning parameters. In order to realise a

bus, a designer would use either shared/hierarchical topology (depending on the

application domain), synchronous, uni-directional lines. The data transfer can use

pipelining or split transactions with handshaking. Dynamic arbitration is effective but

complex in nature when it comes to implementation. The increase in complexity brings

with it an increased area and power penalty. If this overhead is justified, support for

multiple clock domains, dynamic reconfiguration and asynchronous clocking can be

included to implement an optimised bus architecture. Coupled with an interfacing standard

to ease the process of integration, a communication platform can be developed.

The main aim of this chapter was to establish the current trends in communication

centric platforms and to establish the requirements for future communication centric

platforms. It can be concluded that current communication centric platforms provide full

framework for communication but take a hierarchical bus based approach which might

not be the ideal communication medium for the different application domains. In addition

to this, the time spent on customisation and modifying third party cores to integrate with

the platform is considerably high. A proposed solution for future communication centric

platform is suggested in chapter 4.

It is believed that bus based communication system will not satisfy the

performance requirements of future multi-core SoCs [JAR-001]. To tackle this problem,

notion of NoC is introduced. The next Chapter deals with the origin of NoC and

establishes the connections between NoC and platform based designs.

44

Chapter 3

LITERATURE REVIEW

NOC as Communication Centric Platform

3.1 Network on chip

With the scaling down of device feature size and scaling up of design complexity,

throughput limitations, signal integrity and signal latency are becoming a bottleneck in

future communication centric SoC design. For future on-chip communication, a new

communication medium is needed. This communication medium should aim to provide

low power, utilise link efficiently, reduce contention and occupy less area on silicon [JAR-

001].

NoC is considered to be the solution to this communication bottleneck. This chapter

focuses on the NoC as an emerging communication medium. It starts with the basic

concepts of NoC. NoC layered approach and NoC as an ideal candidate for future

communication centric platform is then discussed. This is followed by a review of work

done in the field of NoC. To conclude the chapter performance metrics of NoC are

described.

3.2 Basic Concept of NoC

The basic concepts and techniques of NoC are built upon the successful and well

established computer networking domain. However, NoC differs from the traditional

network because of local proximity of attached cores and because NoCs are more

predictable at design time. The main idea is to have the processing core abstracted as a

node, and the nodes are interconnected by the micro network that can provide scalable and

concurrent point to point or point to many connection. Figure 3-1 shows an example of a

basic NoC architecture. 16 network routers are connected in a 4x4 2D Mesh topology.

Chapter 3: Literature Review – Network on Chip

45

Routers also serve as an interface for the modules to be attached. A module can be a

general purpose processor, a DSP or a memory sub-system. Instead of routing design-

specific global on-chip wires, the communication between modules occur through routing

packets via interface provided by routers.

Figure 3-1 Basic NoC architecture

NoC communication is controlled by protocols also referred to as a micro network

stack”. It is designed in layers and is an adaptation of OSI seven layers scheme [WAR-

001]. The micro network stack is composed of five layers, application, transport, network,

data link, and physical layer as shown in table below [BEN-002].

Table 3-1 Micro Network Stack [BEN-002]

Software

Application Layer

Architecture
& Control

Transport Layer
Network Layer

Data Link Layer
Physical Wiring

As mentioned earlier in section 2.2, there are certain factors that have to be

considered when designing effective on-chip communication architecture. The micro

network stack caters for all those factors. In order to understand the working of NoC each

layer is discussed below.

Chapter 3: Literature Review – Network on Chip

46

3.3 Physical Layer

The physical layer deals with the physical characteristics of the medium that

connects the switches and resources with each other. The physical implementation of a

communication channel is in the form of wires and the physical layer deals with the

voltage levels, lengths and width of wires, signal timings, and number of wires connecting

the switches, etc.

The Physical layer in NoC differs from board level and large scale networks as on-

chip networks have abundant wiring resource. Dally [DAL-001] in his paper argued that

on a small 3mm×3mm tile from a 12mm×12mm chip in 0.1µm CMOS with 0.5µm wire

pitch, there can be up to 6,000 wires on each metal layer crossing each edge of a tile. This

means that the designer can trade off wiring resources for network performance.

In future the wiring layers can and will exceed 10 levels, with global wires on the

top metal layer. Wire widths will increase with wiring levels, with wires at the top level

being wider than lower level wires [THE-001]. The advantage of having increased width

wires is of low resistance and the advantage of having increased spacing between them is

reduced capacitance.

The critical challenge for NoC is to provide adequate QoS with a limited energy

budget. One of the QoS requirements is the reliability of the communication media. The

most common sources of on-chip noise are crosstalk, power supply noise, electromagnetic

interference and inter-symbol interference etc [BEN-003][SYL-001][BAK-001].

3.4 Architecture & Control

The architecture and control of the network is taken care of by the data link layer,

network layer and transport layer. The data link layer ensures reliable communication over

the physical layer, which requires error correction and detection. If the information is

corrupt it will be left for upper layers to deal with.

The network layer deals with switching and routing aspects of the packetised data.

Switching is the type of connection (packet switching or circuit switching) and routing is

the path followed (predicted by the routing algorithms).

Chapter 3: Literature Review – Network on Chip

47

The transport layer provides the initial establishment of communication channels,

the transfer of data and the final release of the channels. For data transfer it interfaces with

the network layer to ensure an error free virtual point to point connection. Unlike the

transport layer of the OSI model, this layer in NoC also deals with decomposition of data

into packets at the source and their assembly at the destination. Packet size is application

specific in SoC.

3.4.1. Data Link Layer

As described above, the data link layer abstracts the physical layer and treats it as

a medium with a non-zero probability of errors in the transmitted bit stream. This

probability of errors is increasing with the technology scaling down. Thus, the data link

layer serves the job of increasing the reliability of the physical layer up to the minimum

required level. It also serves to regulate the access to shared medium network where the

contention for a communication channel is possible.

 The two schemes that can be implemented for error detection and error correction

can be classified into error detection with retransmission and error correction using the

information transmitted in packet for data correction. Error correction/detection requires

an encoder/decoder pair at the channel’s end. Error detection is the first stage in both the

schemes; however the difference occurs when data has to be retransmitted in the first case

which has a price in terms of latency. The hardware overhead in this case is negligible as it

only requires one extra bit of information per flit of data transfer. In latter case, the

decoder is more complex because of correction circuitry.

 There are several error detecting and correcting codes [WAR-001][BER-

001][LIN-001]. When choosing the right error correcting code, latency and energy

consumption are very important design parameters. Generally, in NoC, error detection or

error correction schemes are rarely used because of the limited resources, except for very-

high-speed links.

3.4.2 Network Layer

The network layer is responsible for the transfer of packets across multiple links or

across multiple networks. Design issues of the network layer include the topology

construction, routing scheme and arbitration policy for congestion control.

Chapter 3: Literature Review – Network on Chip

48

 Before proceeding to the switching and routing aspects of the packets, it is

important to look at network topologies and types of network that require the use of

network layer. Due to different performance requirements, many different network

topologies are designed. Networks can be categorised into two categories; direct and

indirect networks [DUA-001].

In direct networks, processing cores are connected directly with each other by the

network and routing is performed by the node for transmission of data. For example,

orthogonal and octagonal topology. Orthogonal topology of connecting nodes is widely

used in parallel computing platforms. The nodes are connected in k-ary n-dimensional

mesh or k-ary n-dimensional torus formations. Due to the regularity of the network, the

interconnect length between nodes is uniform [DAL-002]. Figure 3-2 shows a 4-ary 2-dim

mesh and torus formation.

Figure 3-2 Orthogonal Topology – (Mesh and Torus networks)

Octagon topology is another example of direct network topology where eight

processors are connected by an octagonal ring and three diameters. Figure 3-3 shows

formation of an octagonal topology. It can be seen from the figure that within the local

ring, the delays between any two node processors are no more than two stages and within

the neighbouring rings, the delays are no more than three stages. By using one node

processor more octagons can be added in the network making octagon network highly

scalable [KAR-001].

Chapter 3: Literature Review – Network on Chip

49

Figure 3-3 The Octagon Topology

In an Indirect network (Figure 3-4), Processing cores are connected by one or

more intermediate node switches that perform the routing functions as well. A simple

example can be of a crossbar network, in an N×N crossbar network N input ports are

connected with N output ports. Any of the N input ports can be connected to any of the N

output ports by a node switch on the corresponding cross-point. Buffers can be placed at

inputs, outputs or at the cross-points of interconnection matrix. If buffers are placed at the

cross-points of the interconnection matrix, a butterfly switch fabric is formed. A butterfly

switch may require a large increase in the complexity of the switching element, as each

cross point now requires memory [JON-001].

Figure 3-4 Indirect Network Topologies

3.4.2.1 Routing in NoC

For maximum system performance, a routing algorithm should have high

throughput and should provide low latency message delivery, avoidance of deadlocks,

live-locks, starvation, and ability to work well under various traffic patterns [FEL-001].

Chapter 3: Literature Review – Network on Chip

50

Network routing algorithms are classified in two types, deterministic and adaptive

[MCK-001]. In deterministic routing algorithms, transfer path is determined in advance by

the router, based on the source and the destination address. Deterministic routing is simple

to implement, provides low packet transfer latency when there is no congestion, but data

throughput decreases with increasing packet injection rate [RIJ-001].

XY routing is a popular deterministic routing algorithm [ZHO-001]. The message

is divided into a sequence of fixed-size units of data, called flits. Flits are first routed in the

X direction, until reaching the YTarget coordinate, and afterwards in the Y direction. If some

network hop is in use by another packet, the flit remains blocked in the switch until the

path is released.

In adaptive routing algorithms, each packet’s transfer path is calculated based on

current network conditions [NIL-001][BEN-004]. When network congestion occurs, a

better path is calculated to avoid congested links. Adaptive algorithms improve the

packet’s latency and throughput at cost of a more complex router implementation.

Store-and-forward, virtual cut through and wormhole are popular adaptive routing

techniques. With store-and-forward, the message latency is the product of the number of

hops taken and the sum of the average queuing delay and transmission time of the message

per hop [BER-001], this implies that if a b-flit message transverse a path of length d, and is

never delayed, then it will reach its destination in bd steps (assuming it is getting

transmitted by each channel in each hop).

Virtual cut through routing differs from store-and-forward routing as it forwards

the packet to the next node before it is entirely received by the current router. This reduces

the buffer size and store-and-forward delays. However in case the next router is not

available, then the whole packet has to be stored in buffer of current router.

In the wormhole routing technique [DAL-003], a message is divided into flits. If a

communication channel transmits the first flit of a message, it must transmit all the

remaining flits of the same message before transmitting flits of another message. In this

method, the message latency is proportional to the sum of the number of cycles spent in

waiting for suitable channels to route message flits, number of hops, and message length.

In the example above with a b-flit message transverse a path of length d, the first flit does

not wait for the rest of the message. It therefore arrives at its destination after d steps, and

the last flit of the message arrives after d+b-1 steps. The difference in time is due to a

Chapter 3: Literature Review – Network on Chip

51

better utilisation of network edges by the wormhole router. In addition to reduced latency,

wormhole routing also has the advantage that it can be implemented with small and fast

switches.

Wormhole routing performance is prone to deadlock and live-lock issues [SHI-

001]. A deadlock occurs when a message waits for an event that will never happen; a live-

lock keeps a message moving indefinitely but not letting it reach the destination. To solve

this problem, dimension-order-routing [DUA-002][WUJ-001] in which packets are routed

in only one dimension till they reach the destination row, and then switch to other

dimension until the destination, is used or virtual channel approach [DUA-002][DAL-004]

is used in which one physical channel is split into several virtual channels. However, using

virtual channel require the use of more buffer space. Store-and-forward routing is not very

successful in NoC due to the fact that it requires buffer spaces in router for storage of

packet thus increasing the area and also increases energy consumption due to extra

switching involved.

Live-lock occurs when a packet is running in a circular motion around its

destination. Hot potato routing [FEI-001] can be considered as an example of live-lock.

Hot potato routing is based on the assumption that every switch (router) has equal number

of input and output channels. Thus when contention occurs and the desired channel is not

available, the packet instead of waiting is routed to the other channel. Proper deflection

rules can be defined to avoid live-lock problem. Significant research is carried out in the

field of network routing. Analysis of routing algorithms can be found in [GLA-001][DUA-

002][CHI-001][SHI-001].

3.4.2.2 Contention Awareness

In order to decrease the switch buffer size and to efficiently route packets,

contention awareness can be used. Since NoC can take advantage of dedicated control

wires, the state of neighbouring router can be exchanged to help the routers make

switching decisions to route the data packets to the links with less contention [NIL-001].

Section 3.4.3.1 explains the concept of contention in NoCs and suggests methods for

contention free communication.

Chapter 3: Literature Review – Network on Chip

52

3.4.3 Transport Layer

The transport layer performs packetisation and de-packetisation of messages at

source and destination respectively. The size of the packets has a direct impact on both

performance and energy consumption. The optimal packet length for performance may

differ from the optimal packet length from an energy standpoint [BEN-001]. The transport

layer also deals with the network flow control.

3.4.3.1 Network flow Control

NoC performance greatly depends on an effective network flow control

mechanism. Network flow control is responsible for the correct delivery of packets. This

involves coordination between the sender and receiver and effective contention resolution.

Contention can cause packets to get blocked, stalled, detoured or simply dropped. Thus,

the presence of a flow control mechanism is important for the efficient bandwidth

utilization.

A flow control mechanism can be divided into buffer-less flow control and

buffered flow control [DAL-005]. As the name indicates, buffer-less flow control does not

rely on switch buffers. Due to the absence of buffers in the switch, packets cannot be

stored and thus packets contend for bandwidth. Arbitration is generally employed to deal

with contention between contending packets.

End-to-end flow control algorithms is used in buffer-less flow control that

conserves the number of packets in the network by regulating the packet injection rate at

the source. End-to-end algorithms are generally not employed in NoC due to the large

overhead associated with sending the feedback information and the instability that can

occur if there is unpredictable delay in feedback loop [UNI-001].

In buffered flow control, blocked packets are stored in switch buffers while they

wait for the access to the network resources. Store-and-forward, virtual cut-through and

wormhole switching techniques adopt buffered flow control. Link-level flow control

mechanisms, in which the buffer availability information is propagated between switches,

are used in buffered flow control.

Chapter 3: Literature Review – Network on Chip

53

Credit-based, on/off, and ack/nack are three common types of link-level flow

control techniques [DAL-005]. Since packet injection rate is not monitored and flow

control relies on propagation of congestion information back to the source, packets can

cause congestion in the network if the information is not processed efficiently.

3.5 NoC as Communication Centric Platforms

The NoC layered approach discussed in this chapter has the advantage that it

decomposes the communication problem into more manageable components at different

hierarchical layers. Each layer has different functionality implemented independently from

other layers. Adding a new function to a layer only requires modifying the functionality of

one layer and reusing the functionalities of other layers to generate a new NoC

architecture.

As mentioned in previous chapter, developing a programmable, reconfigurable and

scalable communication platform is essential for SoC designs. NoC serves as a

communication and integration platform providing hardware communication architecture

and interfaces for integrating hardware cores. NoC also favours architecture level reuse

which makes it an ideal candidate for an efficient communication centric platform.

As a platform, NoC provides well-defined interfaces for application programming

and component integration. In order to connect commercially developed hardware cores,

interfacing standards like OCP [OCP-001] or VCI [VIS-001] should be supported. On the

other hand interfaces should be provided for integrating hardware logic via a

communication adapter and for programming embedded software.

3.6 Development History

 NoC has been under the spotlight since it was first introduced and many research

groups are working on different aspects of NoC design. In 2000 Hemani et. al. [HEM-001]

proposed a packet switched architecture with switches surrounded by six resources and

connected to 6 neighbouring switches. The architecture was called Honeycomb due to the

hexagon based pattern of switches and resources. The concept of packet switching re-

appeared in other consecutive approaches but the topology simplified in most proposals to

a mesh of resources and switches [GUE-001].

Chapter 3: Literature Review – Network on Chip

54

In 2001, W. Dally and B. Towels [DAL-001] proposed replacing global wiring

with a general purpose on chip interconnection network with an area overhead of 6.6%. A

12mm×12mm chip in 0.1µm CMOS technology was developed. Dally concluded that

there can be up to 6,000 wires on each metal layer crossing each edge of a

tile(3mm×3mm). It is quite easy to achieve over 24,000 ‘pins’ crossing the four edges of a

tile. By effectively choosing the network topology these abundant wiring resources can be

converted into bandwidth.

L. Benini [BEN-002] proposed a layered design methodology in 2002 borrowing

models, techniques and tools from the network design field and applying them to SoC

design. Several open problems at various layers of the communication stack were

addressed and a basic strategy was given to effectively tackle them for energy efficient

design. Xpipes compiler was also presented as a tool for automatically instantiating an

application specific NoC for heterogeneous multi-processor SoCs.

S. Kumar [SHA-001][SUN-001] constructed a model of NoC using a public

domain network simulator NS-2 and evaluated design options for a specific NoC

architecture which has a two dimensional mesh of switches. S. Kumar analysed the series

of simulation results to determine the relationship between buffer size in switch,

communication load, packet delay and packet drop probability. The results are useful for

the design of an appropriate switch for the NoC.

Shin et al. [SHI-002] proposed a hybrid switching scheme that dynamically

combines both virtual cut-through and wormhole switching to provide higher achievable

throughput values compared to wormhole switching alone. J. Hu [MAR-001] proposed a

smart NoC, which combines the advantages of both deterministic and adaptive routing

schemes in a NoC environment.

NoC is relatively a new concept but it has been rapidly accepted in academia with

much industrial interest in it. A comprehensive survey on current research and practices of

NoC can be found in [BJE-001].

Chapter 3: Literature Review – Network on Chip

55

3.7 Advantages of NoC

NoC offers certain advantages over the traditional bus based and crossbar communication

media, especially due to its layered approach,

Scalability: In a bus based communication, the number of modules attached is limited by

the bandwidth available. However, NoC does not have such problem and integration of an

additional module means introduction of a router to the network that scales up the network

bandwidth.

 Throughput: The bandwidth of a bus is shared by all the attached devices and it is simply

not sufficient for future SoC with throughput requirement of over 10 GB/s. In NoC,

throughput is dependent on the actual physical transport media and can be realised by

allocating several physical links for a logical path. Because the switch fabric does not store

transaction state, throughput simply scales with the operating frequency, number and

width of switches and links between them.

Optimization: The layered structure of NoC offers the advantage of separate

optimizations of transaction and physical layers. The transaction layer is mostly influenced

by application requirements, while the physical layer is mostly influenced by Silicon

process characteristics.

Quality of Service: QoS defines the level of commitment for packet delivery. This can be

in the form of correctness of the result, completion of the transaction or on the

performance [GOO-001]. On-chip message delivery and can be achieved through different

means at different levels. For example, packet integrity can be ensured not only by error-

correction at the link layer but also by re-transmission at the upper layers. NoC offers a

far better QoS then traditional on-chip interconnects.

Verification: The layering approach presents an ideal case for communication system

verification, tackling one layer at one time.

Customisation: User-specific information can be easily added to packets and transported

between routers. Custom-designed NoC units make use of such information broadening

the application domain for NoC products.

Chapter 3: Literature Review – Network on Chip

56

In designing a communication medium for an SoC architecture, latency constraint

is an important issue to consider. Thus, adaptation of concepts from data communication

networks that tend to be focused on bandwidth related QoS requires a constant focus on

appropriate trade-offs.

3.8 Analysis of NoC

As mentioned in section 2.7, throughput and latency plays an important part when
determining the suitability of a communication media for any application domain. This is
becoming more important with the future SoC moving to a communication centric
approach.

In NoC, throughput signifies the maximum value of the traffic that a network can

handle. It is related to the peak data rate sustainable by the system. Throughput in a packet
based on-chip system can be given by:

ݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ
ሺܶ݀݁ݐ݈݁݌݉݋ܥ ݏݐ݁݇ܿܽܲ ݈ܽݐ݋ሻݔ ሺ݄ݐ݃݊݁ܮ ݁݃ܽݏݏ݁ܯሻ

ሺܰ݋. ሻ݁݉݅ܶ ݈ܽݐ݋ሺܶ ݔሻݏ݁ݎ݋ܥ ݂݋

Where,

Total messages completed refers to the number of whole messages that
successfully arrive at their destination.

Message length is measured in flits,

Number of Cores is the number of functional processing cores involved in the
communication,

and Total time is the time (in clock cycles) that elapses between the occurrence of
the first message generation and the last message reception.

Thus, message throughput is measured as the fraction of the maximum load that

the network is capable of physically handling. Accordingly, throughput is measured in
flits/cycle/core.

Latency is defined as the time elapsed between the occurrence of a message
header injection into the network at the source node and the occurrence of a tail flit
reception at the destination node. Latency depends heavily on the routing algorithm.

In the case of store-and-forward routing, where network nodes receive an entire

packet before forwarding it to the next node. Both link bandwidth and buffers are allocated
at the packet-level. Assuming no contention, the latency is given by,

ݕܿ݊݁ݐܽܮ ൌ ൬
.݋ܰ ݏݐ݈݅ܨ ݂݋

݄ݐ݀݅ݓ݀݊ܽܤ ݇݊݅ܮ
൅ ൰݁݀݋݊ ݎ݁݌ ݕ݈ܽ݁ܦ ݃݊݅ݐݑ݋ܴ ൈ .݋݊ ݏ݌݋݄ ݂݋

Chapter 3: Literature Review – Network on Chip

57

Where,

Number of hops is the number of hops from the source node to the destination
node.

In case of virtual cut through, a network node does not wait for the reception of an

entire packet. It receives a portion of the packet and then forwards it to the next router,
provided the buffer space in the next switch is available. In case of blocking, the entire
packet is shunted into the allocated buffers. Assuming no contention and that the packet is
forwarded as soon as possible, Latency is reduced to,

ݕܿ݊݁ݐܽܮ ൌ
.݋ܰ ݏݐ݈݅ܨ ݂݋

݄ݐ݀݅ݓ݀݊ܽܤ ݇݊݅ܮ
 ൅ ݁݀݋݊ ݎ݁݌ ݕ݈ܽ݁ܦ ݃݊݅ݐݑ݋ܴ ൈ .݋݊ ݏ݌݋݄ ݂݋

 In wormhole routing, due to the pipelined transmission, Latency is same as that for
virtual cut through routing.

3.9 Summary

This chapter introduced the basics of NoC communication and describes the

layered structure of NoC. In order to develop an effective NoC architecture, a suitable

topology, effective switching and routing scheme and flow control mechanism has to be

considered. One of the main reasons for this research was to evaluate the suitability of

NoC for communication centric platform based designs. It can be concluded that NoC

provides a complete framework for effective on-chip communication architecture and a

complete platform for integrating hardware cores. Coupled with an interfacing standard,

NoC is an ideal candidate for an efficient communication centric platform.

Review of current NoC architectures highlights a major design drawback. The

architectural parameters that greatly affect NoC performance are fixed at design time. In a

future multi-core SoC architecture, this can result in inefficient utilisation of resources

affecting the overall system performance and power. To tackle this problem, a dynamically

reconfigurable NoC is proposed in chapter 6.

58

Chapter 4

Proposed Communication Centric Platforms

4.1 Introduction

In chapter 2, a review of current on-chip communication and current

communication centric platforms was presented. In today’s electronic industry, time to

market is one factor that greatly determines the success of the developed product. Re-use

design methodologies and ease of integration is seen as the way forward to reduce this

time to market constraint.

Reconfiguration has not only emerged as an efficient way of development of low

power architectures for multi-standard applications but also plays an important part in the

reuse design paradigm. Moore’s law is driving the integration of many cores in a single

chip. This has enabled mixing of various traffic types in the same SoC design. These

traffic types, although very different in nature must now share interconnect resources that

were handcrafted to the particular traffic in the past.

When talking about integration of cores, interconnect interface plays an important

role when making decision about choice of communication media. Following an

industrially accepted interface standard makes it easy for designers to integrate the

developed cores and greatly reduces the design time.

Taking the platform based approach for ease of integration in future SoC

architectures, a communication centric platform based approach is proposed. Four

different communication platforms are developed consisting of a traditional bus based,

crossbar based, hierarchical bus based and a novel hybrid communication medium based.

A platform is taken as a framework where the components, be it fixed,

reconfigurable, processor cores or memory blocks etc. can be integrated in plug-and-play

fashion[AHM-005]. Looking at the fact that different types of communication media are

Chapter 4: Proposed Communication Centric Platforms

59

effective for different application domains, the proposed communication centric platforms

offer different communication media to cater for constraints like throughput, power and

area in different application domains. For ease of integration and reduced design time, an

OCP based socket approach is taken when designing the interfaces for the platforms.

A novel hybrid communication architecture is integrated in the platform. The

hybrid communication medium combines the advantages of bus based and crossbar based

communication media in one SoC. The co-existence of crossbars and a shared bus in the

architecture, allows the designer to attain better throughput and power characteristics if the

cores are optimally placed on the communication system [AHM-001].

This chapter begins with an introduction to the proposed platform based design

[AHM-005], the proposed novel hybrid communication media is discussed, followed by

the modelling of developed platforms [AHM-001]. A detailed analysis of implemented

platforms is presented and its effectiveness is shown by a real life example [AHM-007]

[AHM-009] [AHM-011].

4.2 Proposed Communication Centric Platform

As opposed to the traditional approach of platform based designs, discussed in

chapter 2, where the flexibility of a platform instance, i.e. its capability of supporting

different applications, is provided by programmable components, such as microprocessor

or by reconfigurable logic blocks such as FPGAs. The proposed platforms have a built in

controller that facilitate the integration of components in truly plug and play fashion that

do not require any programming after the components are integrated in the system.

The proposed platforms can be divided into three major parts as shown in Figure

4-1: Platform controller, interfacing and integrated Communication medium (global bus,

crossbar, hierarchical bus and a hybrid medium).

The components and their implementation will be discussed later in this chapter.

However, before proceeding further, let us consider an example to demonstrate the novelty

of the proposed platforms. We want to develop a platform with 20 integrated cores,

including a micro processor (e.g. a RISC based ARM processor), memory modules,

UART, fixed processing cores and hardware accelerators. For simplicity, let us also

assume that they support the interface needed to integrate them to the platform. The

Chapter 4: Proposed Communication Centric Platforms

60

platform has integrated ports where the cores can be integrated in a plug-and-play fashion.

Each port has an address that is used by the platform controller for referencing the

connected cores. Not every core integrated needs to communicate with every other core.

This simplifies controller’s job and thus only the integrated core has to be notified of the

address of the cores it would communicate with (discussed in details later in this section).

Not having to modify the pre-verified platforms means that the system designer does not

have to re-compile and verify the functionality of platform after integration of cores.

Figure 4-1 Block diagram of Proposed Platforms

 The flow chart in Figure 4-2 shows the steps involved in the development and

working of a system generated using the proposed platform based designs based on shared

communication medium. The cores are integrated with the platform via the provided ports

and the communication initiators (Master cores) are notified of the target cores they will be

engaged in communication with (Slave cores). The system controller then resets the

communication media and the cores connected by sending a reset signal. The system is

now ready to work. The communication controller listens to request for data transmission

from master cores. On receipt of a data transmit request, controller checks channel and

slave availability and if available, it connects the master with the slave. During this

communication, controller keeps a check on requests from other masters. Once the data

transaction is completed, the controller closes that connection and declares the channel to

be available for use by other cores. At this stage any pending master requests are dealt

with by the controller. In the absence of any master request, controller goes back to

waiting for request from any master. This system continues to operate till it is shut down

or reset manually.

Chapter 4: Proposed Communication Centric Platforms

61

Figure 4-2 Working of proposed communication-centric platforms

4.2.1 Platform Controller

The platform controller is one of the most important parts of the platform and is

responsible for assigning addresses to the attached cores, dealing with requests and grant

signals and arbitration i.e. allocation of communication media to the core that requests

communication. One of the important features of developed platforms is their reusable

design and ability to deal with reconfigurable cores. This makes the platform controller

design highly complex.

The platform controller can be divided into two parts as per its function: the

system controller provides the reset control and power management framework for the

SoC; the communication controller deals with the communication aspects of the platform.

The communication controller is really a core in itself and handles the following functions:

• Establish communication sessions between communicating cores.

Chapter 4: Proposed Communication Centric Platforms

62

• Manage data communication over communication links by controlling the flow of

data.

• Monitor data transmission request requests from master cores.

• Buffer incoming data transmission requests from master cores.

• Data arbitration.

Address assignment - As mentioned earlier, the proposed platforms support core

integration in plug-and-play fashion and is designed for reuse. One of controller features

supporting this is the address assignment. Ports are developed in the platform design for

the integration of processing cores. Each port has an address that is used by the controller

for communication and control. 4 bits are used in the developed prototype platforms in

order to facilitate the integration of 16 cores in the system. Figure 4-3 shows a generic

structure of platform with address assigned to ports.

0000 0001 0010 0011

1000 1001 1010 1011

0111

1111

Controller Communication Media

Figure 4-3 Port address assignment in the proposed platforms

Arbitration - Arbitration is performed by the controller. Control signals deal with

the communication between the cores and the controller. Resource allocation can be done

by any of the following methods; FIFO (First in, First Out), Round robin, Shortest Job

First (SJF) and Priority based.

In FIFO, shared communication media is assigned based on order of requests. It is

the simplest of allocation algorithm but is non pre-emptive, i.e. access cannot be blocked

once granted and data transfer is complete, causing short jobs to get stuck behind the long

jobs. Round robin on the other hand, releases the communication media from long running

tasks based on timer interrupts so short jobs can get fair share of communication media.

However, if the time slice is too long, scheduling degrades to FIFO and, if the time slice is

too short, then the throughput suffers. In order to tackle this, the shortest-job-first

algorithm was proposed where, whichever tasks requires the bus for the least time is

granted the access first. It is ideal for short jobs and there is only a small performance

degradation for long jobs. Another option is for priority based allocation where each

request has priority associated and the task with highest priority gets the access first.

Chapter 4: Proposed Communication Centric Platforms

63

Although the pre-emptive scheduling algorithms promise to offer better

performance they have a great disadvantage when employed for communication media

access. When a task being pre-empted, the process is forced to leave its running state and

get blocked. However during communication, this can cause starvation which is not the

ideal case for communication media. Also for jobs of equal size, FIFO scheduling

algorithm proves to be the best option. Thus for the prototype platforms, FIFO based

arbitration is used.

4.2.2 Interfacing

To allow for wider connectivity, all the created platform ports are given a standard

socket interface. A socket is universal and is targeted for use in virtually any application,

while a bus interfaces e.g. AMBA, is targeted at a unique application, where all of the

arbitration logic and interface circuitry is defined for that particular application.

Consequently, with the change in application design, all of the arbitration logic and

interface circuitry needs to be taken apart and re-designed for the new application.

However, a socket can be targeted for any given application. This promotes design reuse

and also aids the verification problem. OCP [OCP-001] is chosen as the socket standard in

the proposed designs.

4.2.3 Communication media

The communication media considered in the developed platforms include bus

based, crossbars, hierarchical and hybrid media. This section lists the basic concept of the

communication media in platform. Details will be discussed in the implementation section.

Buses have been deployed for communication since the beginning of circuit design and

made their way in SoC due to their well understood concepts, their compatibility with

most of the available node processors, the area taken on the chip and the zero latency after

the arbiter has granted control. In the Global Bus architecture, a single bus is shared by all

the components in a system. An arbiter is used to grant access of the bus to the core. The

access is granted in FIFO manner. Bus bandwidth is parameterisable, so depending on the

application, the bus architecture can be configured to meet the desired requirements.

Figure 4-4 shows the bus based platform providing interface for 8 cores.

Chapter 4: Proposed Communication Centric Platforms

64

Figure 4-4 Bus Based Platform

The second implementation scenario considered is using a crossbar switch. A

crossbar switch is capable of channelling data between any two core modules that are

attached to it up to its maximum number of ports. The paths set up between cores can be

fixed for some duration or changed when desired and each core-to-core path (going

through the switch) is usually fixed for some period.

Crossbar switch fabric offers a major advantage over shared buses, as the traffic

between any two modules connected via crossbar increases, it does not affect traffic

between other modules. In addition to offering more flexibility, a crossbar switch

environment offers more scalability in terms of integration of cores than a bus

environment [WIJ-001].

Figure 4-5 Crossbar Based Platform

As with a bus based platform, a crossbar based platform is parameterisable The

Figure 4-5 shows crossbar implemented platform. FIFO arbitration is used in the designed

platform. The simplest arbitration performed is in the case of bus based, where access is

granted to the core that requests for it first. Once the communication is ended, bus access

Chapter 4: Proposed Communication Centric Platforms

65

is granted to the other cores. During the communication, if any other core requests bus

access, the request is stored in the request buffer and bus access is granted on basis of first

come first serve to the next in line core. Arbitration in crossbar is based on the same

principle as the bus, apart from the difference that the presence of bus matrix in crossbar

medium requires arbitration of each channel separately. Hence, arbitration is done for four

channels in the prototype.

Chapter 2 and 3 list a lot of work carried out in the field of on-chip communication

from bus based systems to complex NoCs. However no work is done where two different

communication structures with different power and throughputs co-exist in same SoC. The

term “hybrid communication” is so far limited to existence of two different topologies in a

same communication medium. E.g. in [HUA-001] a hybrid interconnect structure has been

proposed which takes advantages of both mesh and tree topologies. As part of this thesis, a

hybrid communication medium is developed combining the advantages of bus based

systems with crossbar based systems, thus, both the bus and crossbar co-exist in a single

system [AHM-001].

The third scenario considered is a hybrid structure that utilises crossbars and a

global bus in one SoC. As previously investigated in [AHM-001] and by R. Huang and R.

Vemuri [HUA-001] it can be concluded that hybrid interconnect can significantly reduce

the routing area and achieve high performance. The aim of a hybrid communication

medium based platform is to exploit the advantages of hybrid interconnects in a system

and utilise its effectiveness for reconfigurable SoC architectures. Figure 4-6 shows the

hybrid platform architecture. Implementation, simulation results of hybrid medium and its

comparison with traditional communication media is shown later in the chapter.

Figure 4-6 Hybrid communication medium based Platform

Chapter 4: Proposed Communication Centric Platforms

66

The fourth scenario considered is a hierarchical structure where two buses are

combined by a bridge. It is based on the concept of the AMBA bus [ARM-001]. The

advantage of this placement lies in the availability of two buses that can be used at

different speeds by different masters. The bridge acts as a way to communicate between

the two buses. A hierarchical bus based platform is shown in Figure 4-7.

The arbiter in hierarchical bus and hybrid medium can be divided into two parts,

each part dealing with one section i.e. in case of hierarchical bus, one section of bus is

dealt with by one part of arbiter and other section by the other arbiter part, similarly, In

case of hybrid, arbitration in crossbar and bus section is dealt separately. However, if

communication is requested between the cores that exist on the different sections, then the

part of arbiter dealing with the section of communication media where the requester exists

checks with the arbiter part dealing with the other section through the bridge, to check the

availability of the requested core/medium for connection establishment (discussed in

section 4.4).

Figure 4-7 Hierarchical bus based Platform

4.3 System Level Modelling

Conventionally, functional verification follows the RTL coding stage in the

system design process. The design errors exposed at this stage can cause changes to the

architecture and hence, causing re-coding the RTL. This iterative process may repeat

several times before the design can be considered safe. To tackle this time consuming task,

higher level of abstractions called system level modelling is used [KEU-001].

In system level modelling, higher level modelling languages like c/c++ [RAH-

001], systemC [GRO-001], specC [GAJ-001] or SystemVerilog [HAN-001] gives an

Chapter 4: Proposed Communication Centric Platforms

67

estimate of system characteristics early in design flow. Communication architecture

exploration can be performed at several different levels of abstraction.

Register-Transfer Level: RTL also referred to as cycle accurate modelling is the

lowest level of modelling and can be classified as RTL model. In RTL models system

components and the communication architecture characteristics are captured at a cycle and

pin accurate level. It can be argued that RTL cannot be classified as modelling but it will

be unfair to leave it out of the modelling paradigm. These models offer only a little

speedup over the RTL models [YIM-001].

Transfer level: Transfer level systems area characterised by cycle true behaviour.

They behave the same as the corresponding RTL system and follow the communication

protocol fully. The behaviour inside component need not be scheduled at every cycle

boundary which allows rapid system prototyping and considerable simulation speedup

over RTL. It can be argued that the transfer level functionality can be achieved in RTL,

however, transfer level offers a simpler netlist, i.e. only a single wire for the whole

communication interface. Its main uses are to model cycle accurate test benches, cycle

accurate performance simulation and for comparison with RTL.

Transaction Level: These models make use of high level interface functions with

a few signals to maintain bus cycle accuracy, for example, read/write interface functions.

These are timed but not cycle accurate and the implemented system is event driven. The

simpler interface reduces modelling effort and the function call semantics resulting in fast

simulation speeds [PAS-002].

Message Layer: Message Layer Models are very high level bit accurate models

that replace the high level specifics with functions like read() and write (). These models

are un-timed and the system implemented is event driven. Message Layer models are

extremely fast to simulate and can be used to gain a very high level estimate of data traffic

between components for communication system exploration. This level is also useful for

algorithmic performance, behaviour and control statistics.

4.3.1 Proposed Modelling Level

In order to analyse performance and to help identify bottlenecks, a new modelling

abstraction has been proposed for communication centric platform modelling. The

Chapter 4: Proposed Communication Centric Platforms

68

proposed modelling layer lies between transfer level and transaction level providing cycle

accurate models compatible with read() write() function and signals to maintain bus cycle

accuracy. Clock cycle accuracy allows accurate communication space exploration and

modelling at the boundary of the transaction layer provides faster simulation times.

Figure 4-8 A system showing the proposed modelling level

The system thus implemented follows a specific communication protocol in order

to explore its characteristics and for system verification. In order to increase the

compatibility of proposed platforms an OCP socket based standard is adopted.

Data Interface - The data transfer supports passing along pointers as well as explicitly

transferring the data to the channel. The channel contains a pointer that is shared between

the master and the slave. The data pointer is set to the internal buffer in the master that is

transmitting the data. In case of read request, the pointer is pointed to the buffer in the

slave. In case of the data copy method, the data has to be copied to and from the channel.

A mixture of both is also possible where one copies and other points to the buffer in during

the same initiated communication.

Control interface – The control interface is needed for the synchronisation and sequencing

mechanism used with the data interface to complete the transaction. The control flow is

monitored closely by the controller. As it is cycle driven, the control signals can only be

called at clock edges. The channel is implemented as clocked and stores state information

between clock cycles. Some of the synchronisation mechanisms supported include,

• A request mechanism that the master core has data available to transmit.

• A response notification that the slave core has data for the master core.

• An acknowledgement that the master core has processed the data.

Chapter 4: Proposed Communication Centric Platforms

69

• Acknowledgement that the slave core has processed the data.

• Flag to show that the slave/master core is busy in some other transaction.

4.3.2 Programming Language Choice

As mentioned above, many high level modelling languages have appeared on the

SoC design canvas in the past decade e.g. SystemC, SpecC, SystemVerilog etc. systemC is

chosen as a preferred modelling language in the proposed platform based designs.

SystemC is a set of library routines and macros implemented in C++ which makes it

possible to simulate concurrent processes, each described by ordinary C++ syntax. Getting

its basis from C++, SystemC offers object oriented design partitioning and template

classes making it not only a hardware description language but a simulation kernel for

rapid simulation of SoC architectures [OSC-001]. SystemC supports TLM, HW/SW co-

design providing grounds for SoC architectural analysis and optimization. Modelling in

systemC gives the high configurability needed to address issues like ports, arbitration,

address management and control signals e.g. request and response etc.

4.4 Proposed Communication Centric Platform modelling

As mentioned above, there are three main parts of the platform: platform

controller, communication media and interfaces. In this section, the implementation of

each of these sections will be discussed. Figure 4-9 shows a generic model of the proposed

platform highlighting its three important parts.

Figure 4-9 Generic model of the proposed platform

Chapter 4: Proposed Communication Centric Platforms

70

In Figure 4-9 a cross section of the platform with a master and slave core

connected to the platform controller and communication media through the interface is

shown. The OCP socket standard is used as interface to make the integration of a broad

range of components easier in the platform. The Clock signal is sent to the master and

slave through the interface thus making a single clock to the platform distributed to all the

components of the system. The platform controller works differently for different

communication media, however, the overall design concepts remain the same.

The proposed platforms follow OCP signals; there are three important type of

signals for a master core, the data flow that can be 8-, 16- , 32- and 64- bit, the address

signal (replaced by data valid Signal in slave core) and the control signals. Table 2

outlines the signal API. Signal names have been changed to keep the design simple to

understand. Signals starting with “m” and “s” are originating or destined for master and

slave cores respectively. The character “x” in the signal name refers to the master or slave

port connected to the core. For example, the signal “m_req_x” refers to the signal from

master connected to port “x” of the platform.

Table 4-1 Platform interface signals

M_req_x : Request signal from Master to the controller. Possible signals are ,
M_REQUEST : Master requesting bus access
REQ_END : Master informing controller about end of communication channel.

M_addr_x : address of slave . possible signals are
 SLAVE_1 : Slave 1 address
 SLAVE_2 : Slave 2 address
 SLAVE_3 : Slave 3 address
 SLAVE_4 : Slave 4 address

ADD_AVAIL : LSB of m_addr_x
Clk : clock signal.
reset : reset the controller.
M_x_out_control :Control signal from master to slave
M_x_databus :Databus between master and slave
S_x_out_control :Control signal from slave to master
S_x_databus :name of data bus signal for slave
S_status_x : status of slave, possible signals are
 S_FREE : slave available for communication
 S_BUSY : slave busy in communication

M_ack_x : signals from controller to master.(replies of “req” above”. Possible
signals are,
 REQ_ACK : request acknowledge
 ADD_ACK : address is received
 ACK_GRANT : bus is available for communication

M_x_in_control : Control signal from slave to master
S_x_in_control : Control signal from master to slave

Chapter 4: Proposed Communication Centric Platforms

71

Figure 4-10 outlines the step by step procedure involved in the establishment of

connection between a master and slave core. Master first requests the controller to check

the availability of the slave device. Once the slave is free and ready to communicate, the

arbiter gives control back to the master to directly communicate with the slave. Just to

clarify, the term master refers to communication initiators and slaves are the target devices

that can not initiate communication.

After the connection is established between master and slave, control signals are

directly exchanged between the two cores. Once the master is done with reading/writing

data to the slave, it sends an “end communication” signal to the arbiter, which then

releases the communication medium and sets the status of slave available to accept

communication.

Figure 4-10 Connection establishment steps

In order to implement a cycle accurate model of the platform, an FSM based

approach is taken. Signals are monitored at every clock cycle to determine the next state of

the FSM. Figure 4-11 shows the FSM used for arbitration of bus and crossbar based

communication media. Arbitration is FIFO based and the controller keeps track of the

requests while it is dealing with one request. These requests are stored in a request buffer.

Once the arbiter is done dealing with the current request (i.e. at the end of

communication), it checks the request buffer for a pending transaction request, in the case

of an empty buffer, the arbiter starts monitoring the REQ signals from master cores.

Chapter 4: Proposed Communication Centric Platforms

72

Figure 4-11 FSM of arbiter for bus/crossbar

In the case of hierarchical bus and hybrid communication, the platform controller

can be thought of as composed of two parts. One controller to deal with one bus and

second controller to deal with other bus in case of hierarchical bus based media. In case of

hybrid media, one controller deals with the bus part and second with the crossbar part.

However, when a master requests to communicate with the slave located on the other bus

or on the second communication media in case of hybrid, then the bridge approach is used.

The concept of bridge is shown in the Figure 4-12.

Figure 4-12 Bridge between two communication media

The bridge acts as a slave on the bus where the master is requesting to transmit the

data and acts as a master device on the communication part where the slave exists. This

simplifies the process of bus allocation process. Once the access is granted, the bridge

simply transfers the control signals and connects the data communication lines. The

arbitration flow diagram is shown in the Figure 4-13. The arbitration works in a similar

Chapter 4: Proposed Communication Centric Platforms

73

fashion as in the case of shared bus and crossbar based media apart from the difference

when a master requests for communication with a slave across the bridge.

Figure 4-13 FSM of arbiter for hierarchical bus/hybrid communication media

4.5 Simulation Results

Before simulating the developed platforms for throughput comparisons,

simulations were first carried out to verify the transaction behaviour of the developed

communication media. The section below lists the test scenarios and the working of the

platforms under simulated traffic.

4.5.1 Verification of Bus based platform

Scenario 1: one master core communicating with one slave core

Figure 4-14 Scenario 1 - one master core communicating with one slave core

Chapter 4: Proposed Communication Centric Platforms

74

In order to verify the bus system, the first scenario considered was of one master

core trying to communicate with one slave core. Figure 4-14 shows the scenario where

master 1 is communicating with slave 2. The result of this simulation and other

simulations in this section are obtained as a binary file and later displayed as timing graph.

Figure 4-15 Bus scenario 1 Transaction behaviour

The simulation begins by asserting the reset signal manually; this resets the

platform controller, master, slave and the communication media. Whenever a master

requests to get access to the communication medium, it has to send a REQ signal to the

controller. The controller acknowledges the REQ signal by sending an ACK signal back.

Master then sends the ADD available signal and sends the address of target (slave) core.

Controller checks the slave status, as slave is free; controller sets slave and master status to

busy establishing the communication between them. Connection establishment means,

connecting master and slave data buses to shared bus and connecting master and slave

control signals.

Scenario 2: two master cores communicating with one slave core

The second scenario considered is of two bus masters trying to communicate with

one Slave core. In the Figure 4-16, master 1 and master 2 want to communicate with slave

2. In case of more than one request for a shared medium, the controller has to do more than

one task when granting access of shared resource to a master.

Chapter 4: Proposed Communication Centric Platforms

75

Figure 4-16 Scenario 2 - two master cores communicating with one slave core

• Keep note of the first master that requested.

• Check to see if slave device requested is free.

• Keep track of all the other requests that the controller receives while processing

the request of the one already getting dealt with.

• Monitor the communication in progress to end.

• Once the communication medium is free, the controller than takes the next request

in the FIFO buffer and grants access to the master provided the requested slave is

free.

Figure 4-17 Bus scenario 2 Transaction behaviour

Figure 4-17 shows the result of simulation in case of scenario 2, Master 1 requests

to communicate with slave 2, as the slave status is set to be available; the controller grants

Chapter 4: Proposed Communication Centric Platforms

76

shared bus access to master 1 for communication with slave 2. While the controller is

dealing with master 1 request, master 2 sends a request for transmission of data as well.

Being a shared medium, only one core can transmit data at any one time, thus, the

controller acknowledges the requests of master 2, however, a wait signal is sent to master

2 setting its status to waiting. Once the communication of master 1 has ended, the

controller changes the status of slave back to being available and checks for the target

address from master 2. In the scenario considered, it is slave 2, thus, the controller grants

bus access to master 2 and sets master 2 and slave 2 statuses to busy.

Scenario 3: 2 master cores communicating with 2 different Slave core

Figure 4-18 Scenario 3 - two master cores communicating with two different slave cores

In the third scenario, two master cores request for bus access to communicate with

two different slave cores (see Figure 4-18). Assuming the request order of scenario 2,

master 1 will get bus access first and master 2 will have to wait till the shared bus is free to

be used for communication by master 2. Although this scenario looks different from

scenario 2, however, as it is a shared bus based platform, access can only be allocated to

one core at one time. Thus the system reacts the same way and shows similar transaction

behaviour.

4.5.2 Verification of crossbar based platform

Scenario 1: Two master communicating with one slave core

In case of a 4x4 crossbar switch, the controller has four buses to allocate for

communication. This makes the task of the controller more complex than for the simple

shared bus medium. In case of only one master requesting to transmit data to a slave, the

controller acts in the same way as in case of scenario 1 of bus based system.

Chapter 4: Proposed Communication Centric Platforms

77

Figure 4-19 Scenario 1 - two master cores communicating with one slave core

When more than one master requests communication medium access, it becomes

more complicated. First scenario considered in case of crossbar was of two master

devices, master 1 and master 2 requesting to communicate with slave 2. Figure 4-19 shows

the particular scenario. Although, the controller has possibility of allocating different buses

to masters, due to the slave being the same, resource allocation depends entirely on the

status of slave 2.

Figure 4-20 Crossbar scenario 1 transaction behaviour

Chapter 4: Proposed Communication Centric Platforms

78

The transaction behaviour in Figure 4-20 shows the scenario under consideration.

The controller receives master 1 request for communication first, thus the crossbar path is

allocated to master 1 for communication with slave 2. The controller in crossbar platforms

differs in working from that of bus based platforms since in crossbar there are three

remaining communication paths that the controller can allocate for communication.

However, in this particular scenario, master 2 requests for slave 2. Status of slave 2 is set

to busy as it is in communication with master 1. Thus, status of master 2 is set to waiting

till the slave 2 status becomes available.

Scenario 2: two master communicating with two slave cores

Figure 4-21 Scenario 2 - two master cores communicating with two different slave cores

Crossbar connection can also be thought of as point to point links between the

cores in the system. In order to verify working of crossbar when two different masters

request to communicate with two different slaves. A scenario is considered where, master

1 requests to communicate with slave 2 and master 2 requests to communicate to slave 1

(Figure 4-21). In this particular scenario, the controller can allocate the crossbar resources

to both the masters for communication.

Figure 4-22 shows the signals involved in scenario 2. Master 1 requests to transmit

data to slave 2 and as slave 2 status is set to be available, the controller allocates a path to

master 1 to communicate with slave 2 core. In during this transaction, master 2 requests

controller for access to slave 1. Again as the slave 1 status is set to be available, controller

allocates a path to master 2. The crossbar platform controller monitors requests from all

the masters, and monitors all the communication in progress simultaneously making its

design more complex in nature.

Chapter 4: Proposed Communication Centric Platforms

79

Figure 4-22 Crossbar scenario 2 transaction behaviour

4.5.3 Verification of Hierarchical and hybrid platforms

Figure 4-23 verification of communication across bridge

Chapter 4: Proposed Communication Centric Platforms

80

In case of hierarchical bus and hybrid communication media, if the

communication request is for a slave core present locally i.e. on the same bus in case of

hierarchical bus based platform and on either the same bus, or on crossbar fabric in case of

hybrid media based platform, then the controller acts the same way as the above explained

bus based and crossbar based platform scenarios. However, when the slave core requested

by the master is not located locally then communication via a bridge takes place.

In order to verify the working of the bridge, an example of hierarchical bus is

taken. The bridge design is same for both hierarchical bus based platform and hybrid

media based platform. In the scenario considered, master 1 located on Bus_1 requests its

local controller for access to slave 3 located on Bus_2. Figure 4-23 shows the considered

scenario.

As mentioned in section 4.4 of this thesis, communication in this scenario has to

go via the bridge. The bridge acts as a slave on bus_1 for master 1. Thus the controller 1

(master 1 local controller) will establish communication between master 1 and bridge.

Bridge acts as a master on Bus_2 and requests the controller 2 (slave 2 local controller) for

slave 2 access. Once the access has been granted, the bridge signals back to master 1 and

sets the status of both master 1 and slave 3 to busy. Figure 4-24 shows the transaction

behaviour of the considered scenario. In case the slave 3 is busy, the bridge will be set to

waiting stage, which will be propagated back to master 1, setting its status to waiting as

well.

Figure 4-24 Hierarchical bus transaction behaviour

Chapter 4: Proposed Communication Centric Platforms

81

4.5.4 Throughput comparison

In order to further analyse the developed platforms, a series of simulations is

carried out. The aims of simulations are to study the throughput characteristics of the

developed platforms, to explore effect of data injection rate on the different

communication media and to explore their ability to meet the timing constraints in form of

delay to start the communication.

A system of four masters and four slave cores is considered. The placement of

cores on the four developed platforms is shown in Figure 4-25. Different master-slave

combinations are used in simulations to identify the strengths and weaknesses of the

implemented platforms. Just to re-iterate, master cores are traffic generators that can

produce different type of traffic patterns including the control signals to communicate with

the controller. The Slave cores only accept and acknowledge the data. At this stage it is

assumed that reading and writing data in a slave core takes the same time. Traffic patterns

and master-slave pairs are described in the relevant experimental scenarios.

Figure 4-25 Placement of cores for simulations

Chapter 4: Proposed Communication Centric Platforms

82

Average throughput is calculated by using the equation [LAH-001],

ݐݑ݌݄݃ݑ݋ݎ݄ݐ ݁݃ܽݎ݁ݒܣ ൌ ሺܾ݁ݖ݅ݏ ݀ݎ݋ݓ ݏݑ ൈ ሻ ݕܿ݊݁ݑݍ݁ݎ݂ ݇ܿ݋݈ܿ ൈ ሺ
.݋ܰ ݐ݅݉ݏ݊ܽݎݐ ݋ݐ ݏ݀ݎ݋ݓ ݂݋

ݏ݈݁ܿݕܿ ݐ݅ܽݓ ൅ ሻݏ݈݁ܿݕܿ ݊݋݅ݏݏ݅݉ݏ݊ܽݎݐ

Where, wait cycle is the number of clock cycles between the assertion of the REQ

signal by a master core and the access granted signal by controller. Bus word size is 2

bytes or 16-bits and a clock frequency of 100 MHz is considered in simulations.

Simulations are performed on 16-bit bus width.

Scenario 1: One master communicating with one slave core

The main aim of the first scenario is to evaluate the performance of the

communication system when only one master core is communicating. The data packet

generator is programmed to generate a traffic pattern where traffic bursts of 20 words are

used. Two bursts per case are used at an interval of 20 clock cycles or 200 ns.

Experimental setup of master-slave pairs are shown in Table 4-2. For hierarchical bus and

hybrid medium based platforms, more than one simulation was conducted to study the

effect of locality on communication parameters. In the case of hierarchical and hybrid

medium, the simulations are also carried out to see the performance when both cores are

connected on same communication medium i.e. master-slave pair on crossbar part and

master-slave pair on bus part of the hybrid medium.

Table 4-2 Scenario 1 - Experimental setup

 Platform Type Initiator Target

Case 1 Shared bus Master 1 Slave 4

Case 2 Crossbar Master 1 Slave 4

Case 3 Hierarchical Master 1 Slave 2 Both cores on same bus

Case 4 Hierarchical Master 1 Slave 4 Cores on different buses

Case 5 Hybrid Master 4 Slave 4 Both cores on bus part

Case 6 Hybrid Master 1 Slave 2 Both cores on crossbar part

Case 7 Hybrid Master 1 Slave 4 Cores on different media

Chapter 4: Proposed Communication Centric Platforms

83

Figure 4-26 shows the average throughput of the master-slave cases considered in

this experiment. It can be seen that without any contention on the communication channels

and only one master-slave pair communicating on the platform, the throughput values are

in the same range apart from the cases when master-slave pair do not exist locally and

bridge is used i.e. in case of hierarchical and hybrid communication medium. Even then

the throughput difference between the two cases is negligible for high data rate

communicating cores.

Figure 4-26 Scenario 1 - Simulation results

It can be seen from the figure 4-26 that the case 1, case 3 and case 5 gives the

exact average throughput, this is because of the existence of both the master and the slave

on shared bus medium, thus, handshaking (connection establishment) takes the same

number of clock cycles. Similarly, the case 2 and case 6 gives the same results due to the

master and the slave being on crossbar matrix. The decrease in average throughput in

crossbar cases is due to the additional clock cycles utilised by the controller (arbiter) in

handshaking.

In the case 4 and case 7, communication takes place via the bridge that connects

the two different parts of the communication medium. To access the bridge, the master on

the requester part of communication medium has to go through the handshaking stage.

Once the connection with the bridge is established, the bridge acts as a master on the

requested part of communication medium and goes through the handshaking stage again to

gain access to the slave core. This additional effort causes loss of precious time, thus,

degrading the average throughput of the communication medium. This scenario is a very

simple example and shows that if only two cores are communicating without any other

0
20
40
60
80

100
120
140
160
180

case 1 case 2 case 3 case 4 case 5 case 6 case 7

A
ve
ra
ge
 T
hr
ou

gh
pu

t (
M

by
te

s/
se

c)

Communication Medium

Chapter 4: Proposed Communication Centric Platforms

84

core competing for the communication medium, the different communication platforms act

the same way as emulating a basic point to point link.

Scenario 2: Multiple masters with multiple slaves

 The master-slave pairs are simulated for three different time interval patterns (data

injection rate). The time interval patterns are the start times for the master cores to initiate

communication. At the start time, the master core sends a request to gain access of

communication channel. if the communication medium is available, the communication

between the master and the slave core starts. However, if the channel is busy, the master

core has to wait till the communication medium becomes available. Master-slave pairs

and their start times under the three time patterns are shown in Table 4-3.

Table 4-3 Scenario 2 - master-slave pairs with expected start times

 Initiator Target Start time for

Time Pattern 1

Start time for

Time Pattern 2

Start time for

Time Pattern 3

Link 1 Master 1 Slave 2 0 ns 0 ns 0 ns

Link 2 Master 3 Slave 3 0 ns 0 ns 0ns

Link 3 Master 1 Slave 4 100 ns after end

of Link 1

200 ns after end

of Link 1

300 ns after end

of Link 1

Link 4 Master 3 Slave 1 100 ns after end

of Link 2

200 ns after end

of Link 2

300 ns after end

of Link 2

The aim of this simulation is to study the average throughput of different

communication media under different data injection rate. Data injection rate can be

thought of as traffic load and is simulated by starting communication between links at

different timings. In order to model realistic traffic pattern, the cores are made to request

for data transmission in a random order.

Figure 4-27 displays the average throughput obtained by the four platforms under

the three time patterns. It can be seen that crossbar based platform achieves the highest

throughput under all the time patterns, followed by hybrid communication medium. This is

due to the parallelism in communication system provided by crossbar medium, which

allows the cores to communicate simultaneously.

Chapter 4: Proposed Communication Centric Platforms

85

In this simulation, the shared bus based platform unexpectedly outperformed the

hierarchical bus based platform under time pattern 2 and time pattern 3. The hierarchical

bus with two communication channels available was expected to achieve better throughput

results than a shared medium. This performance downgrade can be narrowed down to the

placement of the cores,i.e. their locality. The communication via the bridge in case of the

hierarchical bus adds the additional handshaking overhead causing the decrease in average

throughput. This will be further investigated in the following simulations.

Figure 4-27 Scenario 2 - Simulation results

Scenario 3: Multiple masters with multiple slaves – scenario 2 with changed

communication order

In order to further investigate the causes of degradation in performance of the

hierarchical bus in scenario 2, the master-slave pair from scenario 2 was considered with

the order of link 2 and link 4 switched. The master 3 is made to communicate with the

slave 1 at the expected start time of 0 ns followed by the master 3 communicating with the

slave 3 after the time delays as specified in the Table 4-4.

Figure 4-28 shows the simulation results for scenario 3. It can be seen that the

performance of both hybrid medium and hierarchical bus has degraded. The performance

of shared bus and crossbar medium remains the same as in scenario 2 and outperforms the

hierarchical bus and hybrid medium. There are two important factors that cause this

performance degradation.

0

50

100

150

200

250

300

Shared bus Crossbar Hierarchical bus Hybrid mediumA
ve
ra
ge

 T
hr
ou

gh
pu

t (
M
by
te
s/
se
c)

Communication medium

Time Pattern 1 Time Pattern 2 Time Pattern 3

Chapter 4: Proposed Communication Centric Platforms

86

Table 4-4 Scenario 3 - master-slave pairs with expected start times
 Initiator Target Start time for

Time Pattern 1

Start time for

Time Pattern 2

Start time for

Time Pattern 3

Link 1 Master 1 Slave 2 0 ns 0 ns 0 ns

Link 2 Master 3 Slave 1 0 ns 0 ns 0ns

Link 3 Master 1 Slave 4 100 ns after end

of Link 1

200 ns after end

of Link 1

300 ns after end

of Link 1

Link 4 Master 3 Slave 3 100 ns after end

of Link 2

200 ns after end

of Link 2

300 ns after end

of Link 2

As discussed in scenario 2, the first factor is the locality of the master and the

slave core on the communication medium. In case of the hierarchical and the hybrid

medium, both the master and the slave cores have to communicate through the bridge

which adds a handshaking overhead in terms of clock cycles. Secondly, the data injection

rate (referred to as the time pattern in Table 4-4), which dictates the start of

communication between the two cores, affects the availability of the communication

channel. In case of the hierarchical and the hybrid medium, due to the placement of the

cores, the bridge has to be used for communication between all the master-slave pairs.

Thus, for a communication link to be established, it has to wait for prior communication

between the cores to end. This causes a decrease in average throughput of the hierarchical

and the hybrid communication medium.

Figure 4-28 Scenario 3 - Simulation results

0

50

100

150

200

250

300

Shared bus Crossbar Hierarchical bus Hybrid medium

A
ve
ra
ge

 T
hr
ou

gh
pu

t (
M
by
te
s/
se
c)

Communication Medium

Time Pattern 1 Time Pattern 2 Time Pattern 3

Chapter 4: Proposed Communication Centric Platforms

87

In order to further elaborate it, let us consider the communication scenario of time

pattern 1. In case of a shared medium, after the initial platform reset, communication

between the master 1 and the slave 2 begins, followed by the master 3 and the slave 1.

Both these communication links should have been established at 0 ns, but due to the

shared communication medium, only one link was established making other to wait. This

delays the establishment of link 3 and link 4. In case of the crossbar medium, link 1, link

2, link 3 and link 4 start communication at the desired time due to the existence of parallel

communication channels. The hierarchical bus medium and the hybrid medium also

provide parallel communication channels, however, the cores are located at different parts

of the communication medium, thus, and the bridge has to be used when establishing the

communication path. The communication medium acts like a shared medium allowing

only one communication path to be established via the bridge. The addition of

handshaking overhead in connection establishment through the bridge causes the average

throughput of hierarchical and hybrid medium to be less than that of the shared bus

medium.

Scenario 4: Multiple masters with multiple slaves – optimised communication order

for throughput

In scenario 2 and scenario 3, locality of the communication cores and the affect of

traffic patterns were explored. It was discovered that the traffic patterns indirectly affects

the availability of communication medium. Thus, depending on the locality of the

communicating cores on the communication medium, traffic patterns influence the overall

average data throughput.

The hierarchical bus and the hybrid communication medium provide parallelism in

communication, however, it was seen in the above scenarios that they were outperformed

by the shared bus medium. In order to find a scenario where all the communication

medium are getting effectively utilised, the master-slave pairs used in scenario 3 are

considered with changed communication order.

In this scenario, master 1 communicates with slave 4 and master 3 communicates

with slave 1 at 0 ns (beginning of simulation). At the end of communication between these

links, master 1 and master 3 communicate with slave 2 and slave 3 respectively after the

time delays specified in table 4-5.

Chapter 4: Proposed Communication Centric Platforms

88

 Table 4-5 Scenario 4 - master-slave pairs with expected start times

 Initiator Target Start time for

Time Pattern 1

Start time for

Time Pattern 2

Start time for

Time Pattern 3

Link 1 Master 1 Slave 4 0 ns 0 ns 0 ns

Link 2 Master 3 Slave 1 0 ns 0 ns 0ns

Link 3 Master 1 Slave 2 100 ns after end

of Link 1

200 ns after end

of Link 1

300 ns after end

of Link 1

Link 4 Master 3 Slave 3 100 ns after end

of Link 2

200 ns after end

of Link 2

300 ns after end

of Link 2

Figure 4-29 shows the results of this simulation. It can be seen that both hybrid

and hierarchical communication medium shows an increase in average data throughput.

Average throughput of shared bus and crossbar still remains the same as in scenario 3. The

hierarchal bus and hybrid medium also outperforms the shared bus. However, the crossbar

medium still gives the best average throughput.

This simulation shows that for an optimised utilisation of resources, placement and

communication order of the connected cores play an important role. Just by re-

arrangement of communication order, the performance of the hierarchical bus is increased

by 33%.

Figure 4-29 Scenario 4 - Simulation results

0

50

100

150

200

250

300

Shared bus Crossbar Hierarchical bus Hybrid medium

A
ve
ra
ge

 T
hr
ou

gh
pu

t (
M
by
te
s/
se
c)

Communication Medium

Time Pattern 1 Time Pattern 2 Time Pattern 3

Chapter 4: Proposed Communication Centric Platforms

89

Scenario 5: Multiple masters with multiple slaves – fully simulated platform

In order to analyse the performance of the proposed platforms under a high data

throughput scenario, all four masters were made to communicate with the slaves in a burst

pattern. Each master-slave pair transmits two bursts of 20 word data at an interval of 400

ns between the bursts. The arrangement of cores on platforms is left the same as per

previous scenarios. Table 4-6 show the master-slave pairs involved in communication.

 Table 4-6 Scenario 5 - master-slave pairs

 Master

(initiator)

Slave

(target)

Link 1 Master 1 Slave 4

Link 2 Master 2 Slave 1

Link 3 Master 3 Slave 2

Link 4 Master 4 Slave 3

Figure 4-30 shows the simulation results of scenario 5. It can be seen that as per

last simulations, the crossbar still outperformed its counterparts followed by the hybrid

communication medium. The shared bus performed better than the hierarchical bus. This

brings us to an important conclusion about the proposed hybrid communication medium.

The hybrid medium performed better than the hierarchical bus in all but one case. Thus

combining the advantages of two different communication media has given us a medium

with performance better than the shared and hierarchical bus based medium.

Figure 4-30 Scenario 5 - Simulation results

0

50

100

150

200

250

300

350

Shared bus Crossbar Hierarchical bus Hybrid medium

A
ve
ra
ge

 T
hr
ou

gh
pu

t (
M
by
te
s/
se
c)

Communication Medium

Chapter 4: Proposed Communication Centric Platforms

90

In the simulation results performed, the master cores were expected to initiate

communication at a given time. During the simulations, it was found that these deadlines

were seldom missed showing the degradation in QoS performance of the platform. In order

to compare the delayed start-ups by different communication media, the missed deadlines

were counted from scenario 2, 3, 4 and 5.

Figure 4-31 Delayed start-up deadlines of different communication media

Figure 4-31 displays the results of the comparison. It can be seen that the crossbar

based platform missed the least deadlines followed by the hybrid medium. Shared bus

performed the worst by missing the most start-up deadlines. This is due to the

simultaneous availability of the links in the case of crossbar medium. Communicating

cores didn’t have to wait for prior communication channels to be available to start

communication, thus, not missing the start-up deadlines. The hierarchical bus performed

better than the shared bus in average. However, under certain scenarios discussed above,

when the communicating cores were placed on different part of bus medium and the bridge

had to be used, the hierarchical bus performed similar to a shared communication medium.

4.5.5 Explanation of Results

The main aim of the simulations was to analyse the throughput characteristics of

the developed platforms and to explore the factors affecting the throughput. From the

simulations, it can be concluded that under no data contention on the interconnect

architecture; all four types of communication media depict similar performance as

dedicated point-to-point link. However, with the increase in traffic load, the platforms

show different characteristics. Crossbar communication medium provides the best

0

5

10

15

20

25

30

35

Shared bus Crossbar Hierarchical bus Hybrid medium

N
um

be
r o

f m
is
se
d
de

ad
lin

es

Communication medium

Chapter 4: Proposed Communication Centric Platforms

91

performance in terms of data throughput and on-time delivery of data. The performance of

shared communication medium degrades with the increase in number of communicating

cores. Due to the availability of only one link shared by all the connecting cores, one

master-slave pair can effectively communicate with each other at any one time thus,

causing other masters to wait till controller grants them bus access resulting in missing the

start-up deadlines.

Analysing hierarchical and hybrid communication medium reveals the importance

of placement of cores on the communication medium. By exploiting locality, and thus

limiting the communication through the bridge, performance of the hierarchical and hybrid

platforms is greatly improved. The hybrid communication medium gives a compromised

performance between bus based (shared/hierarchical) and crossbar based platform.

Most of the communication centric platforms discussed in chapter 2 offer a

hierarchical bus approach, as shown by simulation results of the proposed platforms; the

hierarchical bus does not provide an optimal solution when employed for high data

intensive multi-core architectures. As seen above by the simulation results, the crossbar

based platform gives the best performance, this is in accordance with the conclusion of bus

comparison conducted in [KYE-001]. This increased performance comes at a cost of

increased area, power and design complexity (implementation results in section 4.6).

The shared bus implemented in the proposed platform follows FIFO arbitration.

The performance of the shared medium can be improved by using priority based or even

time sharing arbitration, by using pipelined transactions and even using asynchronous

channels (chapter 2), but if the above mentioned performance tuning is carried out in the

other types of implemented platforms, the performance is likely to improve proportionally.

Thus, in order to prove the hypothesis of having the need of different communication

centric platforms for future multi-core architectures, the platforms were developed without

any performance enhancement technique.

4.6 Real World Example

To evaluate the proposed platforms and SystemC communication models,

WiMAX (Worldwide Interoperability for Microwave Access) is chosen as a real world

application for demonstration purposes. The WiMAX technology, based on the IEEE

802.16-2004 Air Interface Standard, is rapidly proving itself as a technology that will play

Chapter 4: Proposed Communication Centric Platforms

92

a key role in fixed broadband wireless metropolitan area networks [WIM-001]. The

scalable architecture, high data throughput and low cost deployment make Mobile

WiMAX a leading solution for wireless broadband services.

The physical layer of WiMAX provides the wireless means of transmitting raw

bits among devices. At present, the WiMAX standard has been implemented on DSP or

ASIC technologies such as the WiMAX solution based on the Freescale MSC8 126 DSP

[FRE-001] and Intel NetStructure WiMAX Baseband Card [INT-001]. However, as part of

an embedded system, the WiMAX application demands a stricter low power requirements

and more frequent updates since the standard keeps changing. In DSP and ASIC

implementations, achieving high performance and power efficiency is not possible and a

compromise has to be reached.

In the WiMAX physical layer, apart from the usual functions such as

randomization, forward error correction (FEC), interleaving, and mapping to QPSK and

QAM symbols, the standard also specifies optional multiple antenna techniques. This

includes space time coding (STC), beam forming using adaptive antennas schemes, and

multiple input multiple output (MIMO) techniques which achieve higher data rates. The

OFDM modulation/ demodulation is usually implemented by performing FFT and inverse

FFT on the data signal.

Figure 4-32 Block diagram of WiMAX reciever

Consequently, FFT and Viterbi are considered in this work to be modelled in

SystemC as hardware accelerators which are compute intensive modules in WiMAX

computing chain. The WiMAX application runs as a software core on the ARM7 [ARM-

003] processor. Figure 4-32 shows the block diagram of a WiMAX receiver. The

reconfigurable FFT encoder and a Viterbi decoder modelled in systemC are integrated into

Chapter 4: Proposed Communication Centric Platforms

93

the WiMAX chain thus co-simulating modules from different levels of abstraction (Viterbi

and FFT in SystemC and WiMAX running as software of ARM7). Figure 4.33 shows the

communication links in the WiMAX receiver.

Figure 4-33 Communication links in the WiMAX receiver

To investigate power and area characteristics of the main blocks of WiMAX

receiver, RTL-version of these blocks are used. A 0.13 micron technology library is used

for ASIC synthesis. Gate level simulation is carried out and Synopsys design compiler is

used to calculate power and area results. Functionality evaluation was performed through

the complete model. This is demonstrated as received bit rate performance of the overall

receiver.

Figure 4-34 demonstrates impact of communication infrastructures on the

WiMAX application for a range of FFT sizes: 128-2048 points. The implemented

reconfigurable Viterbi module decodes for different constraint lengths (K=3, K=5, and

K=7). Since, in Mobile WiMAX [IEE-001], the FFT size of OFDM part is scalable from

128 to 2,048. A Configuration Mode is defined;

݁݀݋ܯ ݊݋݅ݐܽݎݑ݂݃݅݊݋ܥ ൌ ܶܨܨሺ݃݋ܮ െ ሻ݁ݖ݅ܵ ൅ ቀ ଵ
௏௜௧௘௥௕௜ି௖௢ௗ௘ି௥௔௧௘

 ቁ െ 8.

An interesting result is that the used code rate has nearly no influence on the

hardware complexity of the Viterbi decoder structure, just one more code word has to be

added in the same clock cycle. Therefore all metric values have to be increased by one bit.

However, when it is increased considerably, its effect on area, power and timing issues

becomes of notable importance.

Chapter 4: Proposed Communication Centric Platforms

94

Figure 4-34 Impact of Communication Centric System-on-Chip Design on WiMAX

The received bit-rate performance of the overall WiMAX receiver is measured

with various communication platforms, as shown in Figure 4-34. It can be seen that the

crossbar based implementation gives the best bit-rate, followed by hybrid communication

medium. This result is in accordance with the results obtained by simulations in 4.5.4, by

providing simultaneous links for cores to communicate a higher throughput is achieved.

Figure 4-35 illustrates the change in power and area by different communication media. It

can be seen that we get the least power when global bus is employed as a communication

medium. This is because in bus based system only one core is effectively communicating

with any other core in the system at any given time. Also the bus arbiter is simple in

operation and also occupies less area on silicon. This however, comes at a cost of least

data throughput. Hierarchical bus performance and power/area results are between hybrid

and bus based implementations.

Figure 4-35 Impact of Communication Centric System-on-Chip Design on WiMAX Power and

Area Consumption

A compromise has to be reached between power, area and performance figures

when choosing the best performer. The crossbar did provide high throughput but it is not

Chapter 4: Proposed Communication Centric Platforms

95

area and power efficient. The bus based implementation provided the best power and area

performance but is not efficient when it comes to the throughput. This brings us to a

conclusion that there should be a communication media that provides a compromised data

throughput, power and area figures between the global shared bus based and the crossbar

based implementations. This is the concept behind a hybrid medium implementation. From

the above results, it can be seen that the hybrid medium provides reduced power and area

figures when compared to the crossbar based implementation. Hybrid medium also

provide better throughput characteristics than the hierarchical bus and shared bus based

platforms. The increase in power of hybrid medium is due to the increase in switching

needed for communication between the cores not connected locally i.e. exist on different

channels. The increased area in the hybrid medium is because of the bridge

implementation and complex controller functionality. In hybrid medium implementation,

placement of cores play an important part in the throughput and power characteristics.

High communicating cores can be placed together on crossbar part to exploit the

advantages of crossbar matrix, and by placing low communicating cores on a shared bus;

we get the advantage of quicker bus access. In short we can conclude that hybrid medium

provides a good trade-off between power, area and performance.

4.7 Summary

This chapter took the notion of platform based design and a novel communication

centric platform based design methodology was proposed. Four different communication

centric platforms are developed each with different throughput, area and power

characteristics. Thus, for any given application, the platform most suited to the design

constraints is used for that application. The proposed platforms are designed with a socket

based approach so cores can be integrated in these pre-verified platforms in plug and play

fashion without the need of communication controller programming.

The concept of hybrid communication medium is also introduced in this chapter,

two different types of communication media co-exist in a system, combining advantages

of both communication media. A high level modelling strategy is proposed and the

proposed platforms are modelled for quick verification and simulations. Simulation results

and implementation of WiMAX receiver using the developed platforms demonstrates the

effectiveness of the proposed platform approach.

96

Chapter 5

SOCCAD Tool

5.1 Introduction

The present day consumer electronic market is heavily driven by time to market

constraints. As mentioned earlier in chapter 2, platform based design approach is seen as a

way to rapidly develop SoC architectures by exploiting the concept of component re-use.

Looking at the fact that SoC design methodologies are moving to a communication centric

design flow, in chapter 4, four communication centric platforms were developed. Each of

the developed platforms has different area, power and throughput characteristics

associated with them, making them suitable for different types of applications.

Bringing together the communication centric platforms, systemC communication

models and systemC reconfigurable cores model [AHM-006][AHM-007][AHM-

008][AHM-009][AHM-010][AHM-011], a tool has been developed that generates the

complete SoC architecture with optimised communication media for reduced power and

area characteristics. This chapter deals with the development of the tool for automated

generation of SoC architectures targeting custom reconfigurable cores.

This chapter begins with a brief introduction of some existing SoC generation

tools developed commercially and by reputable research institutes. The proposed

SOCCAD (SoC communication architecture development) tool is then discussed followed

by the design flow and finally the demonstration of the developed tool.

5.2 Current SoC architecture development tools

New tools are emerging in the market to provide designers the capability to

rapidly create SoC architectures. These tools allow the designers to specify the whole

system design using drag and drop and graphical user interface. Most of the commercially

Chapter 5: SOCCAD Tool

97

prepared tools target company’s own products and thus integration of third party

components still remains a time consuming job. Targeting at different level of

programming, some tools work at systemC level and some at low level HDL levels, while

some translate high level programming languages into HDL files.

System Vision™ by Mentor graphics [MEN-001], coreAssembler™ and Galaxy™

Design Platform by Synoposis [SYN-001][SYN-002], Platform Architect by CoWare

[COW-001], Xtensa Xplorer by Tensilica [TEN-002], Nx-Bilder by Philips [PHI-002] and

SonicsStudio by Sonic Inc. [SON-002] are just some of the industry leading tools in this

area that provide the designers the capability to rapidly create SoC architectures by

allowing faster design exploration. Aimed at system architects, platform and processing

core developers, most of these tools are based on high level language environments that

allows embedded software developers to validate their software on a model of the silicon.

Catering for the need of reconfigurable architectures and the importance of

communication centric designs, research institutes have come up with several SoC

communication network generation and reconfigurable architecture development.

Carrabina et al. have given a good review of bus centric architecture generation tools in

their paper bus-centric architecture generation tools [CAR-001].

Jalabert et al. proposed an advanced NoC architecture called Xpipes and proposed

a tool called XpipesCompiler, targeting high performance and reliable communication for

on-chip multi-processors. It consists of a library of soft macros (switches, network

interfaces and links) that are composable and tuneable at run time so that domain specific

heterogeneous architectures can be instantiated and synthesised. The proposed

XpipesCompiler tool automatically instantiates a customised NoC from the library of

network components [JAL-001].

CHAIN (Chip Area Interconnect) is a delay insensitive SoC interconnect created by

AMULET group at Manchester University [APT-001]. It uses GALS methodology to

connect devices together. A CHAIN network is claimed to reduce power due to power

being dictated by traffic load and not by clock rate. CHAINworks™ is tool suite by Silistix

(a spin-out of the University of Manchester) that is used for design and synthesis of

CHAIN fabrics [SIL-001].

Dealing with the automated generation of application specific architecture for a

heterogeneous multi-processor system on chip, Lyonnard et al. presented a design flow

Chapter 5: SOCCAD Tool

98

where architectural parameters are first extracted from a high-level system specification.

These parameters are first used to create communication network instances. For each

module, a node processor instance is then created with an interface to integrate with the

communication network, thus, developing a cycle accurate MPSoC architecture. [LYO-

001]

Platune was proposed by T. Givargis and F. Vahid as a framework for

performance and power tuning of SoC platform. Platune is used to simulate an embedded

application that is mapped onto the SoC platform and output performance and power

metrics for any configuration of the SoC platform. Thus, it can be used as a tool to aid the

system designer in selecting appropriate architectural parameter values, for a given

application that is to be mapped on the parameterized SoC platform, in order to meet

performance and power goals. [GIV-001].

5.3 SOCCAD Tool

The third design challenge addressed in this thesis is the automated generation of

complete multi-core architectures. A tool called SOCCAD has been developed. The main

aim of the SOCCAD tool is to automate the development of multi-core architectures,

incorporating custom reconfigurable components, conventional RISC based processors,

hardware accelerators and memory blocks etc. Depending on the application required,

components can be chosen from a built in library. The tool automatically generates the

communication media and gives area and power figures for implementations with different

communication media. The best solution based on power and area can also be generated

by the tool.

SystemC models of communication centric platforms, described in chapter 4,

along with systemC models of custom reconfigurable and fixed cores implemented as part

of the SOCCAD project are used as the base unit for the tool. The tool comprises a library

of the four communication centric platforms (explained in chapter 4) and processing cores,

memories etc. An interface of the prototype SOCCAD tool is shown in Figure 5-1.

Chapter 5: SOCCAD Tool

99

Figure 5-1 Interface of the SOCCAD tool

 The components needed to implement the system are chosen from the drop down

menu captioned “MASTER” and “SLAVE”. If the components needed for the required

multi-core architecture is not available in library, transaction level modelling needs to be

done for that component. After the selection of components, their connections need to be

established. This is done by selecting the components that are supposed to communicate

with the integrated Master components (shown in Figure 5-1).

The tool gives options of “possible solutions” where it shows the implemented

system with different communication platforms and also displays the area and power

characteristics. The “Best Solution” option displays the system with lowest power and area

characteristic and “Comparison” option displays the information of all the generated

Systems with different communication architectures.

The “Show Code” option displays the systemC code of the required component

and “Generate Code” option displays the systemC code for the complete SoC architecture

ready to be simulated. The “comparison” option also generates an excel file of area/power

characteristics of system that can be used for analysis purposes.

5.4 Tool Design Flow

Figure 5-2 shows the design flow of the developed SOCCAD design

methodology. It can be divided into three main parts:

Chapter 5: SOCCAD Tool

100

• Modelling of processing cores and communication platforms

• Automated communication centric placement of cores on communication centric

platforms

• Generation of complete systemC code for system verification

Figure 5-2 Design Flow of SOCCAD tool

As mentioned earlier, the tool incorporates a library of SystemC components

including the communication centric platform described in chapter 4, reconfigurable cores

[AHM-006][AHM-007][AHM-008][AHM-009][AHM-010][AHM-011], fixed cores,

RISC based processors and memory blocks. The components in the library are also

implemented in hardware to extract realistic power and area characteristics.

With the increasing number of cores being integrated on a single chip,

communication media is fast becoming a major design bottleneck. As concluded in chapter

4, the placement of cores on communication platforms heavily affects system

performance. In a traditional communication architecture design flow, components are

Chapter 5: SOCCAD Tool

101

manually placed in the SoC designs and their effects are analysed untill an ideal placement

scenario is reached. In order to solve this problem, an automated communication centric

placement of components is proposed.

In the proposed communication centric placement, a communication task graph

(CTG) is used. A CTG G’ = G’(T,D) is a directed acyclic graph, where each vertex

represents a computational module. Each directed arc between modules characterises

either data or control dependencies.

Figure 5-3 Example of a CTG

CTG simplifies the process of mapping components to communication media by

dividing the components on basis of their dependencies. CTG can then be simplified to

realise shared bus based, hierarchical bus based or hybrid communication medium. Figure

5-3 shows an example of a CTG with M1, M2, M3, M4 as the masters or communication

initiators and S1, S2, S3 and S4 as the slave components.

Figure 5-4 Simplification of CTG for shared bus

In the shared bus based communication medium, one global bus is shared by all

the attached components. The CTG in Figure 5-3 translates to a shared bus mapping

Chapter 5: SOCCAD Tool

102

shown in Figure 5-4. It can be seen that the components shared by more than one

component are placed closer to them. Simplified bus is a rather trivial example of using

CTG. However, considering the same example implemented for a hierarchical bus, we

have now two shared buses connected together via a bridge. Correct placement of cores in

this scenario is more significant for system performance e.g. S1 only communicate with

M1 so making it communicate through the bridge will cause it to wait for the availability

of bridge and thus will affect the performance of component M1. Figure 5-5 shows the

hierarchical bus implementation of the CTG in Figure 5.3.

Figure 5-5 Simplification of CTG for Hierarchical bus

When considering the hybrid communication architecture, as the designer has two

different communication media with different number of components attached to each

part, and communicating to each other through the bridge, the use of CTG becomes even

more desirable. Considering the above example, since each of M2, M4 needs to

communicate with S2, S4, and S3. They are all placed on the crossbar part of the hybrid

media, and M1, M3 and S1 are placed on the bus based part of the hybrid medium. This

also reduces the communication through the bridge. For example, just having placed S3

instead of S1 in Figure 5-6 below, M1 and M4 have to wait for bridge availability for any

communication they waiting on from S1 and S3 respectively causing the overall system

performance to decrease.

Figure 5-6 Simplification of CTG for Hybrid medium

Chapter 5: SOCCAD Tool

103

In order to increase the complexity of the above discussed CTG and to see its

effect on communication media mapping, consider an additional link between S3 and M2.

This additional link changes the shape of CTG, and M2 is now connected to three slave

components S2, S3 and S4. This affects the placement of M2 and M4 on the

communication media. Figure 5-7 shows the CTG graph where M1 is connected to S1 and

S2, M2 connected to S2, S3 and S4. M4 connected to S3 and S4 and finally M3 connected

to S3.

Figure 5-7 Example 2 CTG

Figure 5-8 shows the placement of the CTG of Figure 5-7 on a shared bus. The

shared bus placement looks similar to the previously discussed scenario due to the

communication medium being a single shared bus. However, for this scenario, shared

communication medium will be highly inefficient for system performance due to the

components having to wait for the bus access to communicate with the required

components.

Figure 5-8 Simplification of Example 2 CTG for Shared bus

The difference in component placement becomes visible when dealing with the

hierarchical bus and hybrid bus. Since M4 communicates with S4 and S3, and M2

communicates with S4, S3 and S2, when dividing the bus to accommodate equal number

Chapter 5: SOCCAD Tool

104

of cores, M2, M4, S4 and S3 are placed on one bus and M1, M3, S2 and S1 placed on the

other bus. The bridge is accessed only when M2 wants to communicate with S2 and M3

wants to communicate with S3. On the other hand, M1 can communicate freely with S1

and S2. Figure 5-9 shows the placement on hierarchical bus.

Figure 5-9 Simplification of Example 2 CTG for Hierarchical bus

The same system, when implemented on hybrid system displays an ideal

placement scenario where all the main communication components are placed on the

crossbar section. This placement drastically reduces the communication through the bridge

making the overall system performance more efficient. The bridge is only used when M3

wants to communicate with S3. Figure 5-10 below shows the placement figure of hybrid

communication medium.

Figure 5-10 Simplification of Example 2 CTG for Hybrid media

The generation of systemC code for the whole system becomes rather a trivial task

after the placement has been done and it has been established which component is

connected to which interface block on the platform. This is due to the interface being

based on the OCP socket standard. A high level systemC file is created by the tool with all

Chapter 5: SOCCAD Tool

105

the components integrated. Thus, simply by compiling the code the designer can simulate

the system and by using efficient test benches verify the implemented functionality.

5.5 Tool Demonstration with Real life example

In order to demonstrate the working of the SOCCAD tool, let us consider an

example of a system incorporating ARM, Leon, Viterbi and FFT as master cores.

Reconfigurable Viterbi selected is of constraint length 9 and FFT size is of 2048-points.

The slave cores selected from tool drop down menu are FIR filter, two memory modules

MEM_A and MEM_B and a UART. First step after the selection of cores to be integrated

is to establish the connections between the master and slave components. The checkboxes

on the SOCCAD tool interface are used to input the communication dependencies. The

communication input interface and the respective CTG is shown in Figure 5-11.

Figure 5-11 SOCCAD communication input interface and respective CTG

 As seen in the CTG in Figure 5-11, all components have two cores connected to

them apart from the UART, which is only connected to Viterbi. Figure 5-12 shows the

shared bus and crossbar based communication media generated by the tool.

Chapter 5: SOCCAD Tool

106

Figure 5-12 Shared bus and Crossbar based media implementation by SOCCAD tool

As mentioned in section 4.5.4, when implementing a hierarchical bus based

system, the placement plays an important role. The placement graph obtained from the

CTG and the system generated by the SOCCD tool for hierarchical implementation is

shown in Figure 5-13. The aim of placement is to minimize communication through the

bridge. Hence, Viterbi, ARM, UART and MEM_A are placed on one bus and Leon, FFT,

MEM_B and FIR on the other bus. The only time when communication through the bridge

takes place is when the ARM processor has to communicate to MEM_B.

Figure 5-13 Simplified CTG for hierarchical bus and SOCCAD implementation of system

The system when implemented for hybrid medium, shows the ARM processor

moved to the crossbar part of the platform. However, the communication through the

bridge is still done by the ARM when it is communicating with MEM_A. Figure 5-14

Chapter 5: SOCCAD Tool

107

shows the CTG simplified for the hybrid communication medium and the corresponding

hybrid medium based system generated by the SOCCAD tool.

Figure 5-14 Simplified CTG for hybrid media and SOCCAD implementation of system

 An important feature of SOCCAD tool is to display total power and area of the

generated system for different communication media platforms. Figure 5-15 shows the

SOCCAD tool, displaying the Power and Area figures for the generated system. It can be

seen that the shared bus based system provides the lowest area implementation while

hybrid media based implementation provides the lowest system power. Crossbar

implementation yields the highest system power making it unsuitable for a low power

implementation of the system under consideration.

Figure 5-15 Power & Area results of system generated by SOCCAD tool

Chapter 5: SOCCAD Tool

108

In chapter 4, it was concluded that the crossbar provides the best throughput

followed by the hybrid medium. Thus in order to achieve the compromise solution, a

hybrid medium based system with second best performance figure and lowest power figure

comes out as an attractive solution for low power and high throughput system. However,

for a system with area constraints, hybrid communication medium will tender unsuitable,

and choice has to be made between a crossbar and hierarchical bus based platform.

 For system verification, overall systemC code is required. SOCCAD tool provides

an option for the generation of systemC code thus facilitating the rapid simulation and

verification of system. Figure 5-16 shows the top level systemC file generated by

SOCCAD tool.

Figure 5-16 Overall SystemC code generated by SOCCAD tool

5.6 Summary

In this chapter the SOCCAD tool was introduced. SOCCAD tool is developed to

automate the generation of complete systemC code of the system for quick simulation and

verification. The communication centric platforms developed in chapter 4 along with

systemC models of reconfigurable cores, RISC processors, memory modules etc. are

added in the tool’s library. Based on the application, components can be integrated from

the library. SOCCAD tool generates the system for different communication centric

platforms and gives power and area calculations for comparison purposes. SystemC code

for the complete system can be automatically generated by SOCCAD tool either on low

power constraint or low area constraint.

109

Chapter 6

Dynamically Reconfigurable NoC

6.1 Introduction

SoC opens up the feasibility of a wide range of applications making use of

massive parallel processing and tightly interdependent processes, some adhering to real-

time requirements, bringing into focus new complex aspects of the underlying

communication structure [BJE-001]. Traditional bus based communication medium will

prove to be a bottleneck in achieving the high processing requirements in future SoC,

especially with the on-chip communication requirements rising over 9 GB/s. NoC is

considered as a solution to this communication bottleneck.

In chapter 2, the concept of NoC and a review of current NoC architectures was

introduced. The NoC architecture is generated by choosing a network topology, one of the

routing and switching schemes and fixing a packet size. Many different NoC architectures

have been proposed in the past few years, as described in chapter 2. Network parameters

like topology, routing algorithm, switching scheme and packet size are set at the

generation time, mostly to deal with the worst case communication scenario. However, in

the real world, the cores connected are not utilising all the available bandwidth, and some

cores utilise more bandwidth then others. This results in some of the allocated resources

being not fully utilised, causing waste of resources. In an invited paper by [ATI-001], it is

suggested that 74% improvement in power can be achieved by using an application

specific NoC against the traditional NoC approach.

 In this chapter a dynamically reconfigurable NoC (drNoC) architecture is

proposed as a high data throughput communication centric platform for future multi-core

systems [AHM-002][AHM-003][AHM-004]. Exploiting the notion of reconfigurability,

the proposed drNoC allocates the resources and parameters suitable for the desired

application domain at run time, thus, not having to deal with effects of unfavourable

Chapter 6: Dynamically Reconfigurable NoC

110

selection of parameters. In order to develop a generic multi-domain communication centric

platform, the proposed NoC has been given a socket based approach as per the platforms

in chapter 4 to allow for ease of integration.

This chapter begins with the description of the proposed drNoC. The description

of different layers and the router design is then explained. The layered structure makes it

easy for designers to understand the different aspects of the proposed architectures.

Simulation results are finally discussed to establish the effectiveness of the proposed

network.

6.2 Proposed dynamically reconfigurable NoC

Keeping in view the success of busses and increased communication requirements

in multi-core SoC, a dynamically reconfigurable NoC (drNoC) has been proposed that

combines the advantages of bus based systems and the advantages of NoC. The network

changes its characteristics with the changing communication requirements of the system.

The design inspiration comes from the fact that different cores connected in a system have

different bandwidth requirements. e.g., in an advanced PDA with 3G communication

capabilities, the on-chip communication can vary depending on the user application, thus a

network with fixed communication design parameters is not the optimal solution in terms

of power and data throughput.

The allocation of network resources depends on network topology, switching and

routing decisions. Packet size also affects the network performance both in data

throughput and overall system energy consumption [BEN-001]. In the proposed design,

the network configures itself in terms of its routing, switching and packet size to maintain

the QoS requirement of the system.

This intelligent network has its kernel in the form of a micro network stack called

smart network stack (SNS) of the node processor. Depending on the data about to be

transferred, the SNS makes the decisions about the packet size, switching and routing,

required for the data and includes this information in packet header. This information is

read by the router and packets are processed as desired. Thus, in the case of a processing

core with high bandwidth requirements, packet size would be increased, also switching

would change from packet switching to circuit switching. These changes increase data

throughput and decrease the switching power and timing delays. Distributed control of a

Chapter 6: Dynamically Reconfigurable NoC

111

network has the advantage that if a single node failure occurs, the network continues to

perform its functions.

The router is the main building block of the network. It serves two main functions.

Firstly, it acts as the interface between the core and network. To allow for heterogeneous

component integration, the router is built with a bus like interface based on OCP socket

standard which allows cores to integrate with less effort. Secondly, the router routes the

data packets and control signals to the right path.

SNS is a modified version of the micro network stack proposed by L. Benini

[BEN-002]. The SNS is composed of five layers, application, transport, network, data link,

and physical layer (shown in Table 6-1).

Table 6-1 Smart Network Stack

Software Application Layer

Architecture

& Control
Transport Layer

Network Layer
Data Link Layer

Physical Wiring

The application layer provides the user interface to the communication system.

Thus the applications running on the processor core does not have to worry about the

complex communication network facilitating its communication with other applications

connected to other nodes.

6.3 Network architecture and Control

The network architecture refers to the topology and physical organization of the

interconnect network. The protocols specify the use of these network resources during

system operation. Network control is taken care of by transport, network and data link

layer.

Chapter 6: Dynamically Reconfigurable NoC

112

6.3.1 Transport Layer

Unlike the bus based system, the data transported over NoC is in the form of small

packets. This packetisation of data is dealt with by the transport layer. All packets have

same format, “packet header” followed by the “payload”. Packet header carries

information necessary for the routing of packets to its destination.

Some important subfields of the packet header include:

Type: Indicates the start of packet and specifies if the packet is a broadcast packet (meant

for all connected cores) or is meant for only a specific destination.

Destination Address: Indicates the destination address. In case of broadcast packets, the

destination bits are not read by the router for routing the packets.

Switching Type: Instructs the router to switch between packet switching and circuit

switching (set by the Network Layer).

Packet type: Specifies if it’s a data packet, acknowledgment of received packet, or request

for retransmission in case of not received or receipt with error packet.

Source Address: Source address is read by the destination node and is used in replying to

the packets.

Dataoffset: This indicates where the data begins in the packet. It can also be referred to as

the sequence number of packet useful in assembly of data from the received packets at the

destination.

Checksum: Used for error detection.

 Header bits are followed by the payload. The size of the payload depends on the

type of data transmitted. As mentioned earlier, the size of packet changes for different

types of communication. Three types of data thresholds are defined, normal, medium and

high. Normal threshold refers to any communication where data throughput is under 100

Kbits/sec e.g. interrupt handling etc., high data threshold refers to any communication

above 10Mbits/sec e.g. CPU cache to main memory, compressed or uncompressed video.

Medium data threshold is referred to as any communication between these two thresholds.

Chapter 6: Dynamically Reconfigurable NoC

113

In the prototype, these values are fixed. However, data threshold values can be added by

users when defining the network parameters. Figure 6-1 shows a conceptual data packet

structure.

Figure 6-1drNoC data packet structure

6.3.2 Network Layer

 The network layer deals with switching and routing aspects of the packetised data.

Switching can be packet switching and circuit switching. If only a small amount of data is

to be transmitted, then setting up a circuit to transfer data is inefficient. Thus, the network

layer transmits data by packet switching. The advantage of packet switching is that the

network is only used when there is information to be sent, also a single path can be used

by packets from different sources at the same time thus utilising bandwidth more

effectively.

In the proposed network, circuit and packet switching co-exist in the same network

and only the paths needed for high data throughput are converted to circuit switching, the

rest of the network keeps working on packet switching and excludes the circuit switched

paths from their routing decision. The decision to change switching depends on the

amount of data to be transmitted. A data threshold value defined in section 6.2 is used to

determine the type of switching for a specific path. This is also coupled with an increase in

the packet size by transport layer for maximum data throughput. The routers are notified

about the decision by the “switching type” in data packet header. Thus the routers in the

path modify themselves for the new switching type. The circuit switched path formed

between the two nodes can be looked upon as an existence of bus as the two

communicating cores are connected via a dedicated path for the length of data

transmission. Figure 6-2 shows the formation of a circuit switching path between node 6

and 11. Once the circuit switched path is established, it appears invisible to neighbouring

nodes and cannot be used as part of their packet switching.

Chapter 6: Dynamically Reconfigurable NoC

114

0

4

8

1

5

9

2

6

3

7

10 11

12 13 14 15

0

4

8

1

5

9

2

6

3

7

10 11

12 13 14 15

Figure 6-2 change of packet switching to circuit switching between node 6 and 11

5.3.2.1 Routing Algorithm for packet switching

Routing is performed in the proposed drNoC based on concept of wormhole

routing. As mentioned in sub-section 3.4.2.1, wormhole routing is prone to live-lock and

dead-lock. Three virtual channels per port are employed in the proposed design in order to

deal with live-lock and dead-lock situations. The proposed adaptive routing algorithm

works in two steps:

Step I: Output paths are selected for control flits by choosing the most profitable

channel from the available free channels. Profitable paths correspond to ones that will take

the packet closest to its destination. The path, once established by the control flit, is

utilised by the data flits since it is based on wormhole routing. If all channels are busy or

there is a faulty neighbouring router, the packet is stored in the buffer. The packets

following the blocked/stored packets are stopped at the destination by a backward signal

from router to source.

Step II: Once the output channel is available for routing, packets are injected

from the buffer or the processing core into the network. If the channel is not available,

packets are kept stored in the buffer. This process is repeated for all the packets in the

buffer before any other packet can be injected into that channel. Once the entire packet

from buffer is sent, packets from other incoming ports are injected into the network.

To explain the routing further, consider the network in Figure 6-3. Router “R” has

eight neighbours represented by a, b, c, d, e, f, g. Router communicates with its neighbours

through its input ports Wi1, Ei1, Ni1 and Si1 and output ports Wi2, Ei2, Ni2 and Si2 . Let the

virtual channels be VC1, VC2, and VC3. Each router tests the state of its neighbours to

establish the availability of channel.

Chapter 6: Dynamically Reconfigurable NoC

115

Figure 6-3 Eight neighbours and ports of a router

The message routings according to the current router R (xs , ys) and the destination

(xd , yd) are divided into four types: WE, EW, SN and NS routings, where WE (from west

to east) routing is taken if xs < xd, EW (from east to west) routing if xs > xd, NS (from

north to south) routing if xs = xd and ys < yd, and SN (from south to north) routing if xs = xd

and ys > yd. In presence of an unblocked outgoing channel, the router directs the header

flit on the shortest path according to Table 6-2. However, if the output channel is busy,

then router checks for path with penalty of two more packet hops. In absence of even

router’s second choice of output channel, the packet is stored in the buffer till the shortest

path or the second choice path becomes available.

Table 6-2 Available channel for message routing

Routing Type Channels available

WE routing In VC1

EW routing In VC1 or VC2

SN routing In VC1, VC2 or VC3

NS routing In VC1, VC2 or VC3

6.3.3 Data Link layer

 As mentioned earlier, the data link layer abstracts the physical layer and treats it as a

medium with a non-zero probability of errors in the transmitted bit stream. Error correction

with retransmission is employed in the proposed network to keep silicon cost low. A

checksum is calculated (one's complement sum of all 16 bit words in the header and

Chapter 6: Dynamically Reconfigurable NoC

116

payload) at the transmitter and the checksum bit is sent with the packet to the receiver

where the checksum is calculated again and compared with transmitted checksum to detect

any error. At the present stage of network implementation, the checksum is implemented

but is not used in the simulations due to the processing overhead associated with it.

6.3.4 Physical Layer

Keeping in view the abundance of wiring resources, separate wires are used for

control signals and data transfer. Using separate wires for control signals facilitates

transmission of information between routers to avoid network congestion. More details of

signals are discussed in next section.

6.4 SystemC Modelling of drNoC

The proposed systemC modelling level described in section 4.3.1 is applied to

drNoC. The router is the main building block of NoC. It acts as an interface point of the

processing cores to the system. In the proposed design, each router is connected to four

neighbouring routers and the interfaced core. The proposed NoC is also given a bus-like

interface as mentioned above, which helps to eliminate the use of wrappers and any

component designed to be integrated to a bus based platform can be integrated in the

proposed NoC in plug and play fashion. The proposed router can be divided into four

components (shown in Figure 6-4):

 The Input Controller that manages the routing table also known as look-up-table

(LUT) and determines the fate of arrived packets after header inspection. The input

controller of a router is connected to the input controller of its neighbouring routers. This

connection is to update routing tables and pass control signals. Thus when a router is

instructed to change mode to circuit switching, it informs its neighbours to exclude the

specified path from their routing tables, and remembers the path established till it receives

the end of transmission packet. This passage of control signal to neighbouring routers

makes it possible to avoid the need for big buffers to store the packets as once a packet is

blocked, a control signal is sent backwards till it reaches the source to stop packet

injection. The input controller checks the arrived packets at each input port in a round

robin pattern to establish the output path.

Chapter 6: Dynamically Reconfigurable NoC

117

Input Port that is the point of entry of the incoming packet, it has a buffer to store

one packet that is getting inspected for its header contents. Information extracted from an

incoming packet includes its destination address and type of switching.

 An Interface module has been added to deal with the packetisation of data. Each

router has one interface module and is present at the port where the component is

connected to the router. Its main function involves dealing with handshaking with the

connected component and once data has arrived, packet assembly with the correct

destination and source address. De-packetisation of packet is also done by interface

module. The layered SMS responsible for control of the dynamically reconfigurable NoC

is implemented in the interface module.

Finally the Switching Logic that connects the input ports to the output ports

depending on the instructions from the Input Controller.

 The implementation of the system started with modelling a basic NoC router and

adding the reconfigurable features into the system. The modelled basic NoC also served in

evaluating the performance of the system.

Figure 6-4 Conceptual model of drNoC Router with OCP interface

The node is implemented as an FSM with different states representing different

tasks carried out by the interface node or router. Figure 6-5 shows the FSM of the first

stage of implementation where a simple router is designed. At the start, the router waits for

a packet to arrive at its input nodes. On packet arrival the destination address is read by the

Chapter 6: Dynamically Reconfigurable NoC

118

input controller. The LUT is then checked to determine the output port for the packet.

Every packet can be routed to any of the four output ports, with each route carrying a

penalty in terms of packet hop or packet delay. The entries in LUT are according to the

routing algorithm explained in 6.3.2.1.

Figure 6-5 FSM showing basic NoC flow

 If the output port is available for transmission of packet, the packet is routed to the

neighbouring router connected to that port, otherwise, the packet is stored in the buffer and

a control signal is sent to the packet source to stop data production. The first packet is sent

to determine the path and is called a control packet. Once a complete path is discovered,

the following packets (data packets) follow the same route.

After implementation of the basic structure of NoC router, the novel features of

the proposed NoC router were added in the model. Figure 6-6 shows the FSM of the

proposed drNoC router. It starts like the normal NoC waiting on packet arrival. However,

once the packet has arrived and its address is decoded, the router checks the data threshold

set in the packet. Data threshold is the option included in the proposed drNoC that

determines the packet size, switching and routing of the packet and is described in section

6.3.1.

 The input controller, after establishing an output channel, acts on the data

threshold and sends control signal to neighbouring routers about the routing/switching

information. If the core is connected through the OCP socket, all the features of SMS are

performed by the router. However, in case the packets are being generated by the

Chapter 6: Dynamically Reconfigurable NoC

119

connected core, issues like packetisation, routing, threshold decisions are made by the

core.

Figure 6-6 FSM showing drNoC flow

 When implementing the complete NoC system, different topologies are considered

on the basis of degree, maximum distance between two nodes, average distance between

nodes and wire cost. 2D-mesh is the most simple 2D network structure consisting of a grid

of horizontal and vertical lines with nodes placed at their intersections. 2D Mesh is

considered as a preferred topology for NoC architectures due to its simple addressing

scheme and predictable inter-node delay. Zhong [ZHO-002] argues that torus theoretically

outperforms the 2D-mesh. However due to the complexity involved in keeping the wire

lengths the same, the minor performance improvement of torus can be neglected compared

to the profit of placement optimization. Network properties for 16 node 2D mesh can be

given by [BIJ-001];

Degree = 3-5

Average Distance = ଶ
ଷ
 √ܰ = 2.6

Wire Cost = 2൫ ܰ െ √ܰ ൯ = 24

A prototype router design is implemented in Verilog. Each input port has a fixed

link width of 32 bits. When analysed under 0.18µm technology, router area is found to be

Chapter 6: Dynamically Reconfigurable NoC

120

66362.3 µm2, this area is without the implementation of OCP adapter interface. Area of

drNoC is considerably higher than a router for the circuit switched presented by [PHI-

002], but when compared with the 32-bit link router for packet switched network in [KIM-

001], it is found to be only 0.9% more in area. This increase is area is due to the complex

circuitry involved in the implementation of smart network stack.

6.5 Network Analysis

SystemC modelling, introduced in section 4.3.1, is employed to model a network

with 16 nodes. The aim of these simulations is to investigate the effect of dynamic

reconfiguration of network parameters on the proposed drNoC. Network delay and data

throughput is taken for different simulation scenarios to evaluate the proposed drNoC.

Traditional NoC is taken as the one with fixed network parameters i.e. switching is packet

switching, routing is adaptive (section 6.3.2.1), packet size is fixed. Clock frequency in

these simulations is taken to be 100MHz.

Network delay is taken as the round-trip delay for a data packet within the

network. Network delay comprises the sum of transmission delays and queuing delays

experienced by a packet travelling through the collection of routers. Delay has huge impact

on the processing capabilities of the concerned processing element waiting on data from

the other processing core. Data throughput on the other hand is taken as the amount of data

transferred from one processing core to another through the network over a particular

period of time.

In the simulations the terms normal, medium and high data throughput refers to

the data threshold defined in section 6.3.1. Thus, in order to mimic this traffic pattern,

normal data threshold traffic will be simulated as a small transaction of data injected to the

network at a rate of 60 packets/sec or 9.6 Kbits/sec. In the case of medium data threshold

packets are injected at a rate of 5000 packets/sec or 800 Kbits/sec. In case of high data

threshold, packets are injected at a rate of 65000 packets/sec or 10.4 Mbits/sec. Another

difference between high data threshold and medium data threshold is the way data is

injected. Medium data threshold follows a bursty traffic burst where data will be injected

for only a small period of time, while, high data threshold refers to continuous data getting

injected in the network. Data packet size is taken as 160 bits. The 4x4 network used for

simulation is shown in Figure 6-7. A 16 core size for NoC is a realistic simulation for near

Chapter 6: Dynamically Reconfigurable NoC

121

future applications. Different master-slave pairs considered are mentioned in different

simulation scenarios.

Figure 6-7 Simulated 4x4 2D Mesh network

Scenario 1: Network delay - Traditional NoC vs. drNoC - no contention in the

network

The aim of this simulation is to monitor the network delay when there is no

contention in the network i.e. routers/channels are only utilised for one master-pair

communication. Table 6-3 lists the mater-slave pair scenario considered. 6 cores (3 master-

slave pairs) are involved in communication. Link 1 and Link 2 are medium data threshold

links i.e. the packet injection will be bursty. Link 3 is high data threshold link and will be

injecting packets continuously, hence the reason, the total number of packets is not

specified. The simulation is run for 20 seconds.

Table 6-3 Scenario 1: Resource configuration

 Source Destination Traffic Type No. of Packets

Link 1 2,3 3,4 Medium 80000

Link 2 1,3 3,2 Medium 50000

Link 3 1,1 4,2 High Continuous

 Figure 6-8 shows the communicating cores and the simulation results. Under the

medium data threshold, the links perform the same way. However, under high data

Chapter 6: Dynamically Reconfigurable NoC

122

threshold, network delay is decreased by 35.7% when drNoC is used. As mentioned above,

network delay is the sum of transmission delay and queuing delay. In the case of Link 1

and link 2, the difference in network delay is due to the number of intermediate nodes

involved.

Figure 6-8 Scenario 1: Network delay results

Scenario 2: Network delay - Traditional NoC vs. drNoC - in network with contention

Table 6-4 Scenario 2: Resource configuration

 Source Destination Traffic Type No. of Packets

Link 1 1,3 2,4 Medium 80000

Link 2 1,2 3,2 High Continuous

Link 3 1,1 3,4 High Continuous

The aim of this simulation is to monitor the network delay in network with

resource contention. Table 6-4 lists the mater-slave pair scenario considered. 6 cores (3

master-slave pair) are involved in communication. Link 1 is medium data threshold links

i.e. the packet injection will be bursty. Link 2 and Link 3 are high data threshold link and

will be injecting packets continuously, hence the reason, total number of packets are not

specified. The simulation is run for 30 seconds. Contention is taken as the sharing of router

(3,2) by the data packets of Link 2 and Link 3.

0

2

4

6

8

10

12

14

16

Traditional NoC drNoC
N

et
w

or
k

D
el

ay
 (n

s)

Network Type

Link 1 Link 2 Link 3

Chapter 6: Dynamically Reconfigurable NoC

123

Figure 6-9 Scenario 2 - Path formation in drNoC

Figure 6-9 shows the formation of two circuit switched paths in the network. In

the case of traditional NoC, Link 3 takes the shortest possible route with the least resource

contention. Link 2 takes the shortest possible route. Both these routes share a common

router (3,2). On the establishment of circuit switched network by Link 2, the router (3,2)

becomes invisible to the other network and hence Link 3 takes a two hop penalty forming

a new route. As Link 3 carries high threshold data, a circuit switched path is formed

between (1,1) and (3,4).

Figure 6-10 Scenario 2 - Network delay results

 Figure 6-10 shows the simulation results of scenario 2. The network delay is

decreased by 22% in Link 3, and 37% in Link 2. As per the last scenario, the difference in

delay decrease ratio is due to the number of intermediate nodes involved.

0

2

4

6

8

10

12

14

16

18

Traditional NoC drNoC

N
et
w
or
k
D
el
ay
 (n

s)

Network type

Link1 Link 2 Link 3

Chapter 6: Dynamically Reconfigurable NoC

124

Scenario 3: Network delay - Traditional NoC vs. drNoC – Fully simulated network

Table 6-5 Scenario 3: Resource configuration

 Source Destination Traffic

Type

No. of Packets

Link 1 1,1 3,3 Medium 50000

Link 2 2,1 4,2 Medium 100000

Link 3 3,1 2,4 High Continuous

Link 4 4,1 2,3 High Continuous

Link 5 1,2 1,4 High Continuous

Link 6 2,2 4,3 Medium 150000

Link 7 3,2 3,4 Medium 200000

Link 8 1,3 4,4 Normal 200

In order to analyse network delay in a complicated fully simulated network, eight

master-slave pairs are made to communicate with different type of data thresholds. Table

6-5 lists the master-slave pairs. This network was simulated for 60 seconds.

Figure 6-11 Scenario 3 - Path formation in drNoC

The aim of this simulation is to analyse network delay in an environment where

the proposed drNoC is not able to perform effectively due to its limitations. Figure 6-11

shows the paths that were established in the considered master-slave scenario. Due to the

locality of master-slaves pairs, it became impossible for drNoC to form circuit switching

Chapter 6: Dynamically Reconfigurable NoC

125

paths in the high data threshold links. There was one circuit switched path formed in Link

5, however, it was formed after the communication ended in Link 8. The other two high

data threshold links; Link 3 and Link 4, are forced to continue communication as packet

switched due to not being able to establish a path that is not used for any other

communication. Even after the medium data threshold links ended communication, due to

Link 4 having no alternative path to route its data, Link 3 was forced to communicate as

packet switched network.

Figure 6-12 Scenario 3 - Network delay results

Figure 6-12 displays the network delay results of the simulation. Unlike the

previous scenarios, disappointingly, network delay of Link 1, Link 2, Link 3 and Link 6

increased. This is due to the additional burden on the routers by re-routing of Link 1

packets due to formation of a circuit switched path by Link 5. drNoC did decrease the

network delay by 17.7 % for Link5, but overall, there is a 2.7 % increase in network delay.

This situation can be avoided by communication centric placement of cores in the network.

Scenario 4: Throughput comparison - Traditional NoC vs. drNoC

 The aim of this simulation is to compare the throughput and network delay of a

fully simulated drNoC with that of traditionally implemented NoC with fixed parameters

as mentioned above. A network with master-slave pairs as listed in Table 6-6 is simulated

for 120 seconds.

0

2

4

6

8

10

12

14

Traditional NoC drNoC

N
et
w
or
k
de

la
y
(n
s)

Network type

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8

Chapter 6: Dynamically Reconfigurable NoC

126

Table 6-6 Scenario 4: Resource configuration

 Source Destination Traffic

Type

No. of Packets

Link 1 1,1 1,4 High Continuous

Link 2 2,1 4,2 Medium 100000

Link 3 3,1 2,4 High Continuous

Link 4 4,1 4,4 High Continuous

Link 5 1,2 3,2 Medium 500000

Link 6 2,2 4,3 Medium 200000

Link 7 3,3 3,4 Medium 300000

Link 8 1,3 2,3 Normal 2000

Figure 6-13 shows the formation of circuit switching paths once the medium

threshold links have ended communication. Figure 6-14 shows the percentage increase in

throughput and percentage decrease in average network delay. It can be seen that over a

period of 100 seconds, throughput is increased by 32%, and network delay is decreased by

37%.

Figure 6-13 Scenario 4- Path formation in drNoC

 Data throughput is taken as the amount of data transferred from one processing

core to another through the network in a particular time. Increase in throughout in the

simulation is due to the establishment of three circuit switched paths once the medium data

threshold links have completed transactions. Most of the medium data threshold links

ended communication after 60 seconds, hence achieving the peak in data throughput curve

around that time. After the paths were established, the high threshold data getting

Chapter 6: Dynamically Reconfigurable NoC

127

communicated by drNoC increased as the traditional was still using packet switching. The

same applies in case of network delay.

Figure 6-14 Scenario 4 – Percentage Increase in data throughput and decrease in average
network delay.

 As mentioned in scenario 3, when changing one part of the drNoC, the load from

that part is shifted to the packet switched part of the network. Figure 6-15 shows the effect

on data throughput of the links by load shifted to normal data threshold and medium data

threshold links.

 It is noticed that the links can accommodate a 39% increase of shifted load without

any degradation to data throughput in case of normal data threshold links and 23% in case

of medium data threshold links. An interesting thing to note is the increase in data

throughput of the links when the network load is shifted. The decrease in data throughput

of the links is compensated for by the increase in delivery time for that certain link.

Figure 6-15 Effect of drNoC path formation on rest of the network

0

5

10

15

20

25

30

35

0 50 100 150

Pe
rc
en

ta
ge

 In
cr
ea
se
 (%

)

Time (seconds)

Throughput

0

5

10

15

20

25

30

35

40

0 50 100 150

Pe
rc
en

ta
ge

 D
ec
re
as
e
(%

)

Time (seconds)

Average Network Delay

‐50

‐40

‐30

‐20

‐10

0

10

20

0 10 20 30 40 50 60 70

Th
ro
ug
hp

ut
 (%

)

Network Load Shifted (%)

Normal Data Threshold Links Medium Data Threshold Links

Chapter 6: Dynamically Reconfigurable NoC

128

 Figure 6-16 shows the increase in time required to accommodate the decrease in

throughput due to network load shifted. In the case of a normal data throughput link, the

delivery time increase by 2% in case of 60% increase in network load causing a 30%

decrease in data throughput for that link. In the case of medium data threshold links the

delivery time is increased by 3.3% to accommodate the 60% increase in network load that

caused a 33% decrease in data throughput for the medium data threshold link. Increase in

delivery time affects the QoS requirement of the system. One way to deal with this is to

eliminate the cause of decreased data throughput of these links by proper placement of

cores so the formation of paths for high data threshold links does not affect the medium

and normal data threshold links.

Figure 6-16 Effect of network load shifting on time

Scenario 5: Suitability of routing algorithm

In order to monitor the effectiveness of the proposed drNoC routing algorithm

versus traditional wormhole and XY routing algorithms, a simulation was carried out

under mixed traffic pattern and different master-slave pairs communicating at different

times. Table 6-7 lists the resource configuration for this simulation. Unlike the scenarios

above, the continuous nodes were made to stop and start after some time in order to check

the adaptability of the routing algorithm.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70

Ti
m
e
(%

)

Network Load shifted (%)

Normal Data Threshold Links
Medium Data Threshold Links

Chapter 6: Dynamically Reconfigurable NoC

129

Table 6-7 Scenario 5: Resource configuration

 Source Destination Traffic

Type

No. of Packets Start Time

(second)

Link 1 1,1 1,4 Medium 30000 0

Link 2 2,1 4,2 Medium 100000 0

Link 3 3,1 2,4 High Continuous 100

Link 4 4,1 4,4 High Continuous 30-45

Link 5 1,2 3,2 Medium 50000 0

Link 6 2,2 4,3 Medium 20000 0

Link 7 3,3 3,4 Medium 30000 45

Link 8 1,3 2,3 Normal 2000 60

Link 9 2,2 3,4 Medium 100000 60

Link 10 2,1 2,3 Medium 80000 0

Link 11 3,3 4,2 High Continuous 100

Figure 6-17 shows the comparison of routing algorithms. It can be seen that by

employing XY routing, which is deterministic in nature, the reliability of network, in terms

of delivery of packets has decreased. However, wormhole routing increased in delivered

packets (decrease of non-delieverd packets in the Figure 6-17). On the other hand, the

proposed drNoC routing algorithm which is based on wormhole routing but with virtual

channels, the percentage of delivered packets is higher than that of womhole routing. This

is due to the highly adaptive nature and the use of virtual channels as a guard against

livelocks and deadlocks. On the change of a link to circuit switching due to a high data

threshold link, it appears invisible to the rest of the network. Thus, routing that is

deterministic in nature cannot cope with the traffic. Comparing the graph with the resource

configuration table, whenever a circuit switched link is formed, the percentage of

undelivered packets increases. Leading up to a maximum of 50% when network is left

only with high data threshold links.

Chapter 6: Dynamically Reconfigurable NoC

130

Figure 6-17 Scenario 5- comparison of routing algorithms on drNoC

6.6 Explanation of Simulations

 The aim of these simulations was to establish the effectvieness of proposed drNoC

for data intensive applications. For comparison reasons, a traditional NoC was first

implemented in systemC based on the concepts of NoC architecture proposed by [BEN-

002] and [SUN-001]. In these application specific architectures, the architectural

parameters, switching, routing and packet size is fixed at design time. This approach is

effective for SoC architectures of a particular application domain, but for future SoC

architctures with the existence of multi-domain traffic on the communication network, this

will result in a waste of resources and valuable bandwidth.

 In the proposed drNoC, the switching, routing and packet size in the network

changes depending on the traffic getting transmitted, thus, allowing effective utilisation of

available bandwidth. As seen in the simulation results, the proposed drNoC outperforms

the traditional approach of fixed parameters. With the formation of a circuit switched path,

the network load is shifted to the packet switched links. The advantage of this load shifting

is the optimal utilisation of link bandwidth, but it also comes at a cost of affecting the

performance of packet switched links if the load increases over 23% in the case of medium

data threshold links (data throughput requirement between 100Kbits/sec to 10Mbits/sec)

and over 39% in normal data threshold links (data throughput requirement under

100Kbits/sec).

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

U
nd

el
iv
er
ed

 P
ac
ke
ts
 (%

)

Time (seconds)

XY routing Wormhole routing Proposed drNoC routing

Chapter 6: Dynamically Reconfigurable NoC

131

 Analysing the network delays in a fully simulated network reveals the importance

of placement of cores on the network. Due to the formation of circuit switched links, it

appears invisible to the remaining routers i.e. these links cannot be used for switching data

packets of other communicating cores. Formation of circuit switching paths only occurs if

there is an alternative path available for the other data on the network. Thus, as seen in the

simulations, if the placement of cores on network is not done effectively, this can cause

degradation of the overall performance (scenario 3 in section 6.5).

 With the abundance of wiring resources in SoC, the control signal mechanism

implemented for adaptive routing does not require a big overhead in resources. However,

the formation of different data paths (circuit switching/packet switching) carry with them

an overhead in terms of latency, which again, is negligible in high data intensive links. The

only significant overhead is in terms of area of the router, especially with support for OCP

socket standard. However, the advantages of drNoC exceed its disadvantages.

6.7 Summary

In this chapter a dynamically reconfigurable NoC was proposed. In a traditional

NoC design, the architectural parameters, like, switching, routing and packet size are

fixed. With communication in future heterogeneous SoC architectures, especially with

reconfigurable cores, this will prove highly in-efficient due to the network resources not

getting utilised effectively, causing wastage of bandwidth. The proposed drNoC

endeavours to solve this problem, by dynamically reconfiguring its nodes to match the

required bandwidth. On-chip traffic from high data throughput links is shifted to links with

low data throughput and a circuit switched path is formed for the high data throughput

links. Simulation results have shown the effectiveness of this approach in cases where

cores are placed according to their throughput requirement.

The router in drNoC, that also acts as an interface point for integration of cores, is

given an OCP socket based interface, allowing cores to be integrated without having the

need for wrappers. This makes drNoC a very attractive communication centric platform

for future high data throughput applications. The increase in area is compensated by the

increase in bandwidth provided by drNoC.

132

Chapter 7

Conclusion and Future Work

7.1 Introduction

The focus of this thesis has been to investigate the on-chip communication

architectures suitable for future high data intensive multi-core architectures. Particular

emphasis has been given to communication centric platform based designs ranging from

shared bus based to complex on-chip packet based networks. This has paved the path to

establish the requirements for future interconnect architectures.

This chapter begins with the summary of material presented in each chapter of this

thesis. This is followed by conclusions drawn from the work presented and evaluates the

extent to which the desired aim of this thesis has been accomplished. Finally, areas of

future work are outlined.

7.2 Summary of Thesis

 In today’s electronic industry, rapid development of SoC architectures plays an

important role in the success of the product. Platform based designs favour design re-use

and are seen as an efficient way to reduce design time.

With the latest DSM technologies, designers not only have to keep in mind the

data throughput, but low power and reduced area is of prime importance as well.

Communication media are becoming a bottleneck in developing high throughput, low

power heterogeneous SoC architectures, especially when targeting custom reconfigurable

cores. In recent years, many on-chip interconnect architectures have emerged to deal with

this communication bottleneck. Many commercial communication centric platforms have

also emerged, addressing communication issue as well as the issues of design reuse.

Chapter 7: Conclusion and Future Work

133

Chapter 2 introduced the concept of a platform based design approach that led to

the emergence of communication centric platform based designs. It discusses the basics of

on-chip communication and gives an overview of evolution from a simple shared bus to

commercially developed communication framework, which aims to reduce the SoC design

time under the area, power and throughput constraints. Chapter 2 also lists the

architectural parameters that are developed to improve the interconnect performance in the

DSM era.

NoC is seen as a solution to the communication bottleneck arising from the scaling

down of device size and scaling up of design complexity. Chapter 3 gives an overview of

the concept of NoC. It explains the layered approach taken in designing NoC by discussing

different design aspects of the different layers and the architectural tuning parameters

associated with them. Chapter 3 also summarises the current work done by different

researchers in the field of NoC.

Four different communication centric platform based designs, shared bus based,

crossbar based, hierarchical bus based and hybrid communication medium based are

proposed to deal with the different communication requirements of different application

domains. Chapter 4 describes the developed platforms. The steps taken to develop a

platform architecture where components, i.e. reconfigurable cores, RISC based processors,

fixed cores, memory modules etc. can be integrated in a plug and play fashion without the

need of programming the verified communication centric platforms, was discussed in this

chapter. Chapter 4 also introduced the novel concept of hybrid communication medium

where two different interconnect architectures co-exist to realise the complete

communication architecture of the system. The modelling strategy taken in the

development of systemC models of these platforms are also described in Chapter 4, along

with the simulation results and porting a real life example of WiMAX on the proposed

platforms.

A tool called SOCCAD is proposed to automate the development of SoC

architectures. Chapter 5 gives an overview of some of the tools developed by research

institutes and by industry to ease the process of SoC architecture development and quick

simulation. It describes how communication centric platforms, proposed in chapter 4 are

used to automate the development process. Automated communication centric placement

of cores is then discussed. The steps involved in the development and working of the tool

are described and demonstrated by a real life example.

Chapter 7: Conclusion and Future Work

134

Chapter 6 describes the proposed dynamically reconfigurable packet based on-

chip network called drNoC. The novelty of the proposed NoC architecture lies in its ability

to reconfigure itself with the changing communication requirements of the system. It

describes the layered approach taken to realise the architecture and control of drNoC,

focusing on the parameters like switching, routing, topology etc. Chapter 6 also argues

how drNoC can be an ideal candidate for a communication centric platform. It lists the

steps involved in systemC modelling of the drNoC and the simulations carried out to

analyse the proposed dynamically reconfigurable network.

7.3 Summary of achievements

The main achievements of this work is the development of four communication

centric platforms, development of hybrid communication medium where two different

interconnect architecture co-exist in a system and development of dynamically

reconfigurable NoC architecture. The four communication centric platforms include,

shared bus based, crossbar based, hierarchical based and hybrid communication medium

based. As demonstrated by simulation results in section 4.5.4 and the real life example of

WiMAX in section 4.6, each developed platform has different throughput, area and power

characteristics, thus making them suitable for different application domains. An OCP

socket based approach is taken when designing the interface for platform. The platforms

have built in controller dealing with the addressing, communication and control of the

integrated cores in the platform. This has a benefit that cores (reconfigurable, processors,

memory modules etc.) can be integrated in a plug-an-play fashion without the need of

reprogramming the controller.

The proposed hybrid communication medium combines the advantages of both

crossbar medium (high throughput) and shared bus based medium (low power).

Simulation results and implementation of WiMAX receiver as a real-life example shows a

65% increase in data throughput than shared bus based communication medium, 13%

decrease in area and 11% decrease in power than crossbar based communication medium.

As concluded in chapter 4, this proves to be a good compromise for applications with

power and throughput constraints.

In chapter 4, it was also concluded that placement of cores on the communication

platform plays an important role in the overall communication media performance. To

Chapter 7: Conclusion and Future Work

135

automate the generation of SoC architectures with optimised communication media centric

placement of cores, a tool called SOCCAD is developed. The cores needed to implement

the required SoC architecture can be chosen from the library, the SOCCAD tool

automatically generates the communication architecture with optimised placement of

cores. The tool also gives overall power and area figures of the system implementation

with different communication platforms for comparison reasons. Finally, the tool can

generate the overall systemC code for the system to allow quick simulation and

verification.

The proposed drNoC changes its characteristics with the changing communication

requirements of the system. As demonstrated in section 6.5, the reconfigurable

characteristics have the advantage of low network delay thus prove to be suitable for high

data intensive applications. The proposed drNoC has also been given an OCP socket based

interface to allow for cores to be integrated into drNoC with ease. This makes the proposed

drNoC a suitable candidate for the communication centric platforms. Simulation results

have shown a 32% increase in data throughput and 22-35% decrease in network delay

when compared with a traditional NoC with fixed parameters.

7.4 Conclusions

As mentioned earlier, the aim of the thesis was to review the current on-chip

communication architectures and to establish the requirements for future on-chip

communication medium.

In during this process, a thorough review of traditional shared bus based

communication medium was conducted. Shared bus based medium provides a low power

communication architecture and occupy less area on silicon. However, it has its limitation

when it comes to data throughput. To tackle this problem, the concept of hierarchical bus

originated. SoC components are placed at appropriate level in the hierarchy according to

the performance level they require. A bridge is use to connect the parallel buses.

Hierarchical buses provide an increase in data throughput over the shared buses due to

decreased load per bus and the potential for transactions to proceed in parallel on different

buses.

Crossbar switch bus architecture connects multiple inputs to multiple outputs in a

matrix manner. The crossbar switch provides simultaneous multiple connections between

its inputs and outputs. It provides the highest data throughput amongst the other bus based

Chapter 7: Conclusion and Future Work

136

architectures at a cost of highest power and occupies the highest area on silicon. In order to

find a compromise between the two extremes (shared bus and crossbar), a hybrid

communication medium is developed in this thesis that provides better throughput than

shared and hierarchical bus and lower power and area than crossbar based communication

architectures.

Hybrid communication medium provides a shared bus and a crossbar matrix

integrated together via a bridge. Analysis of hybrid medium and hierarchical bus has

revealed the importance of placement of cores on the communication medium. A tool

called SOCCAD has been developed that deals with the automated generation of SoC

architectures. The SOCCAD tool provides a communication centric placement of cores on

the communication medium for optimal utilisation of the interconnect architecture.

In future data intensive application, with data throughput requirements of over

9GB/s, bus based communication architectures will not suffice. A notion of NoC is

considered as a viable solution to provide the required performance. A research into

current NoC architecture was also conducted as part of this thesis. Developed with fixed

architectural parameters like packet size, switching and routing, current NoC architectures

do not utilise the network resources efficiently.

A NoC architecture is developed to overcome the short comings of the current

NoC architectures. The developed drNoC, dynamically reconfigures its characteristics to

utilise the network resources efficiently and to provide an increased QoS requirement in

terms of data throughput. Simulation results have shown its effectiveness when simulated

under different traffic patterns expected from future applications.

7.5 Future Work

This thesis has endeavoured to provide a rigorous investigation in the field of

future on-chip communication and it opens doors for future research and development.

The communication centric platforms are developed to prove the hypothesis that

having different communication media platforms can facilitate the development of SoC

architectures optimised for different application domains. This could not be achieved by

utilising the commercially available single communication medium based platforms since

a compromise has to be reached in terms of throughput, power and area.

Chapter 7: Conclusion and Future Work

137

The developed platforms need to be further optimised in terms of their

architectural parameters e.g. GALS clocking, pipelining, handshaking and different

arbitration schemes to mention a few. The concept of hybrid medium can be further

exploited by combining more communication architectures e.g. hierarchical bus with

crossbars. Similarly, drNoC can be further improved by doing research in clocking

strategies, optimising routing schemes, optimising the hardware implementation for area

etc. For making the developed architectures more reliable, research is needed in QoS

aspects, thorough testing and verification methodologies are also to be investigated.

In terms of development aspects, the SOCCAD tool can be improved by including

more components in the library, including the tool’s ability to implement the SoC

architecture for more communication architectures like drNoC, employing advanced

placement algorithms e.g. genetic algorithms for optimised placement of the cores on the

platform. Giving the SOCCAD tool drag and drop features and the ability to find the best

SoC architecture on basis of their throughput is also to be developed.

There is a need for benchmarking software for analysing the developed drNoC.

Unfortunately, at present, there isn’t any benchmarking tool for NoC that can test the

performance of drNoC under realistic traffic patterns. Thus, development of such bench

mark is also intended in future.

In short, combining the communication centric platforms and drNoC with the

current communication media optimizing schemes can help develop optimised

interconnects for future multi-core SoC architectures.

138

References

[AHM-001] Balal Ahmad, Ali Ahmadinia, and Tughrul Arslan, “Hybrid

Communication Media for Adaptive SoC Architectures”. Proceedings

of NASA/ESA Conference on Adaptive Hardware and Systems (AHS

2007), 5-8 August 2007. Edinburgh, U. K., pp. 373-378.

[AHM-002] Balal Ahmad, Tughrul Arslan, “Dynamically Reconfigurable NoC for

Reconfigurable MPSoC”, Proceedings of IEEE 2005 Custom

Integrated Circuits (CICC 2005), 18-21 September 2005. San Jose,

USA. Pages: 277-280.

[AHM-003] Balal Ahmad, A. T. Erdogan, S. Khawam, “Architecture of a

Dynamically Reconfigurable NoC for Adaptive Reconfigurable

MPSoC”. Proceedings of IEEE NASA/ESA Conference on Adaptive

Hardware and Systems (AHS 2006), 15-18 June 2006. Istanbul,

Turkey. Pages: 405- 411.

[AHM-004] Balal Ahmad, Ali Ahmadinia, Tughrul Arslan, “Dynamically

Reconfigurable NoC with Bus Based Interface for Ease of Integration

and Reduced Design Time”. Proceedings of IEEE NASA/ESA

Conference on Adaptive Hardware and Systems (AHS 2008), 22-25

June 2008. European Space Agency, Noordwijk, Netherlands. Pages:

309-314

[AHM-005] Balal Ahmad, Ali Ahmadinia, Tughrul Arslan, “Communication

Centric Platform Based Designs for Future MPSoC”. 6th International

Bhurban Conference on Applied Sciences and Technology 2008.

January 09. CESAT, Pakistan

[AHM-006] Ali Ahmadinia, Balal Ahmad, A T Erdogan, Ahmet T, Tughrul Arslan,

“SystemC-based Reconfigurable IP Modelling for System-on-Chip

Design”. Proceedings of IEEE NASA/ESA Conference on Adaptive

References

139

Hardware and Systems (AHS 2008) ,22-25 June 2008. European

Space Agency, Noordwijk, Netherlands. Pages: 362-367

[AHM-007] Ali Ahmadinia, Balal Ahmad, Ahmet Erdogan, Tughrul Arslan,

“SystemC-based Custom Reconfigurable IP Cores for Wireless

Applications”. Proceedings of Engineering of Reconfigurable Systems

and Algorithms (ERSA 2008), 14-17 July 2008. Las Vegas , USA.

[AHM-008] Ali Ahmadinia, Balal Ahmad, Tughrul Arslan, “High-Level Power

Estimation for Multi-Standard Wireless Systems.”. Proceedings of

IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2008),

7-9 April, 2008. Montpellier, France, pp. 275-280.

[AHM-009] Ali Ahmadinia, Balal Ahmad, and Tughrul Arslan, “Communication

Centric Modelling of System on Chip Devices Targeting Multi-

Standard Telecommunication Applications”. Proceedings of IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), 7-9 April,

2008. Montpellier, France, pp. 209-214.

[AHM-010] Ali Ahmadinia, Balal Ahmad, and Tughrul Arslan, “System Level

Reconfigurable FFT Architecture for System-on-Chip Design.”,

Proceedings of NASA/ESA Conference on Adaptive Hardware and

Systems (AHS 2007), 5-8 August 2007. Edinburgh, U. K., pp. 169-175.

[AHM-011] Ali Ahmadinia, Balal Ahmad, Tughrul Arslan, “System-level

Modelling and Analysis of Embedded Reconfigurable Cores for

Wireless Systems.”. Proceedings of International Conference on Field-

Programmable Logic and Applications (FPL 2007). 27-29 August

2007. Amsterdam, Netherlands, pp. 757-760.

[ALT-001] Altera's Excalibur, www.altera.com/products/devices/excalibur/exc-

index.html

[ALT-002] Altera Avalon interface specification. Altera corporation.

http://www.altera.com

[APT-001] APT Research group, http://intranet.cs.man.ac.uk/apt/publications/

[APT-001] The Advanced Processor Technologies group at Manchester University

http://intranet.cs.man.ac.uk/apt/projects/processors/amulet/

References

140

[ARC-001] ARC International www.arccores.com

[ARM-001] AMBA System Architecture -

www.arm.com/products/solutions/AMBAHomePage.html

[ARM-002] ARMS PrimeXsys: www.electronicstalk.com/news/ank/ank000.html

[ARM-003] ARM. ARM7 TDMI Datasheet. ARM. http://www.arm.com.

[ATI-001] David Atienza, Federico Angiolini, Srinivasan Muralia, Antonio

Pullinid, Luca Benini, Giovanni De Micheli,"Network-on-Chip design

and synthesis outlook", The VLSI journal, Received 26 November

2007; received in revised form 23 December 2007; accepted 27

December 2007

[AYA-001] J. Ayala, M. Lopez-Vellejo, D.Bertozzi, and L. Benini, “State-of-the-

art soc communication architectures,” in Embedded Systems

Handbook, R. Zurawski, Ed. Boca Raton: CRC Press, 2006, pp. 20.1–

20.22.

[BAI-001] William J. Bainbridge- PhD Thesis, "Asynchronous System-on-Chip

Interconnect",http://intranet.cs.man.ac.uk/apt/publications/thesis/bainbr

idge00_phd.php

[BAK-001] Bakoglu, H.B. “Circuits, Interconnects and Packaging for VLSI”.

MA:Addison-Wesley, 1990

[BEN-001] Luca Benini, Giovanni De Micheli, "Powering Networks on Chips:

Energy-Efficient and Reliable Interconnect Design for SoCs,"

ISSS,pp.33-38, Proceedings of the 14th international symposium on

Systems synthesis (ISSS '01), 2001

[BEN-002] Luca Benini, Giovanmi De Micheli,"Networks on chip: a new

paradigm for systems on chip design"In Proceedings of Conference on

Design, Automation and Test in Europe 2002.

[BEN-003] Luca benini, Giovanni De Micheli , “Energy Reliability Trade off for

NoCs”, A. Jantsch and H. Tenhunen, Network on Chip, 107 – 129.

References

141

[BEN-004] T.T. Ye, L. Benini, G. De Micheli, “Packetization and routing analysis

of on chip multiprocessor networks”, Journal of Systems Architecture,

vol. 50, 2004, pp. 81-104.

[BER-001] D. Bertsekas, R. Gallager, “Data Networks”. Prentice Hall, 1991.

[BIJ-001] Bas Bijlsma, "Asynchronous Network-on-Chip Architecture

Performance Analysis",Master’s thesis, Department of Electrical

Engineering, Faculty of Electrical Engineering, Mathematics and

Computer Science, Delft University of Technology.September 2004-

September 2005.

[BJE-001] T. Bjerregaard and S. Mahadevan. “A survey of research and practices

network-on-chip”. ACM Computing Survey, 38(1):1–54, 2006.

[CAR-001] Jordi Carrabina et al "Bus-centric SoC Architecture Generation Tools",

found at

http://cephis.uab.es/resources/pdf/papers/GSPX_2004_UltraWizard.pdf

[CHA-001] Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew

McNelly, Lee Todd, “Surviving the SOC Revolution”, p. 71, Kluwer

Academic Publishers, Boston, 1999.

[CHI-001] A.A. Chien and J.H. Kim, “Planar-adaptive routing: Low-cost adaptive

networks for multiprocessors,” Proc. 19th Ann. Int’l Symp. Computer

Architecture, pp. 268–277, May 1992.

[COW-001] CoWare Platform Architecture,

www.coware.com/products/platformarchitect.php

[DAL-001] Dally W. and Towles B., “Route packets, not wires: Onchip

interconnection networks”. ProcDAC 2001, June 18-22, 2001, Las

Vegas, Nevada, USA.

[DAL-002] W. J. Dally, “Performance Analysis of a k-ary n-cube Interconnect

Networks” ,. IEEE Transactions on Computers, June 1990, pp. 775-

785.

[DAL-003] W. J. Dally, “ Virtual channel flow control”. IEEE Trans on parallel

and Distributed Systems, 3(2):194-205 Mar. 1992.

References

142

[DAL-004] W. J. Dally, H. Aoki, “Deadlock -free adaptive routing in

multicomputer networks using virtual channels”, IEEE Trans. on

Parallel and Distributed Systems, April 1993.

[DAL-005] W. J. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufman Publishers, 2004.

[DUA-001] J.Duato, S. Yalamanchili, L. Ni, “Interconnection Networks, an

Engineering Approach”, IEEE Computer society press, 1997.

[DUA-002] J. Duato, “ A necessary and sufficient condition for deadlock free

adaptive routing in wormhole networks,” Proc. Int’l Conf parallel

processing, Aug 1994.

[FEI-001] U. Feige, P. Raghavan, “Exact analysis of hot-potato routing”,

Proceedings of the 33rd Annual Symposium on Foundations of

Computer Science, October 1992.

[FEL-001] S. A. Felperin, L. Gravano, G. Pifarre and J. Sanz, “Routing

Techniques for massively parallel communication”, IEEE proceedings,

79(4):488-503, 1991.

[FRE-001] Freescale Semiconductor. Implementing WiMAX PHY Processing

Using the Freescale MSC8126 Multi-Core DSP. Freescale

Semiconductor. http://www.freescale.com.

[GAJ-001] D. Gajski et al., “SpecC: Specification Language and Methodology”,

Kluwer Academic Publishers, 2000

[GIV-001] T. Givargis,F. Vahid,"Platune: a tuning framework for system-on-a-

chip platforms"IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Volume 21, Issue 11, Nov 2002 Pages:

1317 - 1327

[GLA-001] C.J Glass and L.M. Ni, “ Fault tolerant wormhole routing in meshes”,

Proc. IEEE 23rd Int’l Symp. Fault tolerant Computing pp. 240-249,

1993.

[GOO-001] K. Goossens, J. Dielissen, J. Meerbergen, P. Poplavko, A. R˘adulescu,

E. Rijpkema, E. Waterlander, and P. Wielage. Networks on Chip,

References

143

chapter Guaranteeing The Quality of Services. Kluwer Academic

Publisher, 2003.

[GRO-001] T. Grötker, S. Liao, G. Martin, S. Swan. “System Design with

SystemC”. Kluwer Academic Publishers, 2002

[GUE-001] P. Guerrier and A. Greiner. A generic architecture for on-chip

packetswitched interconnections. In Proceedings of the Design,

Automation and Test in Europe Conference, pages 250–256, March

2000.

[HAN-001] Han Ke; Deng Zhongliang; Shu Qiong,"Verification of AMBA Bus

Model Using SystemVerilog" 8th International Conference on Volume

Electronic Measurement and Instruments, 2007. Issue , Aug. 16 2007-

July 18 2007 Page(s):1-776 - 1-780

[HEM-001] Ahmed Hemani, Axel Jantsch, Shashi Kumar, Adam Postula, Johnny

Öberg, Mikael Millberg, Dan Lindqvist."Network on a Chip: An

architecture for billion transistor era" Proceeding of the IEEE NorChip

Conference, November 2000.

[HUA-001] Huang, R.; Vemuri, R., Analysis and evaluation of a hybrid

interconnect structure for FPGAs. Computer Aided Design, 2004.

ICCAD-2004. IEEE/ACM International Conference on 7-11 Nov. 2004

Page(s):595 - 601

[IBM-001] The CoreConnect™ Bus Architecture , white paper - http://www-

01.ibm.com/chips/techlib/techlib.nsf/productfamilies/CoreConnect_Bu

s_Architecture

[IEE-001] IEEE 802.16e: Air interface for fixed and mobile broadband wireless

access systems. 2005. http://standards.ieee.org/getieee802/802.16.html

[IMP-001] Improv Systems www.improvsys.com

[INT-001] Intel Corporation. Intel NetStructure WiMAX Baseband Card Product

Brief. Intel Corporation. http://www.intel.com.

[ITR–001] International Technology Roadmap for Semiconductors web site

http://public.itrs.net.

References

144

[JAL-001] A. Jalabert, S. Murali, L Benini, G. De Micheli "×pipesCompiler: a

tool for instantiating application specific networks on

chip".Proceedings of Design, Automation and Test in Europe

Conference and Exhibition, 2004. Volume 2, Issue , 16-20 Feb. 2004.

Pages: 884 - 889.

[JAR-001] Jari Nurmi, Hannu Tenhunen, Jouni Isoaho, Axel Jantsch,

"Interconnect-centric Design for Advanced SoC and NoC", Published

by Springer, 2004.

[JON-001] H. Jonathan Chao, Necdet Uzun, “An ATM Routing and

Concentration Chip for a Scalable Multicast ATM Switch,” IEEE

Journal of solid state circuits, Vol. 32, No. 6, June 1997, pp. 816-828.

[KAR-001] F. Karim, A. Nguyen, S. Dey, “On-chip Communication Architecture

for OC-768 Network Processors” Proceedings of 38th Design

Automation Conference, June 2001.

[KEU-001] K. Keutzer, “ Chip level assembly (and not integration of synthesis and

physical) is the key to DSM Design”, Proceeding of the ACM/IEEE

International Workshop on Timing Issues in the specification and

Synthesis of Digital Systems, March 1999.

[KEU-002] K. Keutzer et al. “System-level design: Orthogonalization of concerns

and platform-based design,” In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Dec. 2000

[KIM-001] Daewook Kim, Manho Kim and Gerald E. Sobelman,"Design of a

High-Performance Scalable CDMA Router for On-Chip Switched

Networks" nternational SoC Design Conference,October 20-21,

2005,Korea.

[KYE-001] Kyeong Keol Ryu, Eung Shin, V. J Mooney, "A comparison of five

different multiprocessor SoC bus architectures" Proceedings of

Euromicro Symposium on Digital Systems, Design, 2001.page(s): 202-

209.Warsaw, Poland.

[LAH-001] Lahiri, K.; Raghunathan, A.; Dey, S.”Evaluation of the traffic-

performance characteristics ofsystem-on-chip communication

architectures” Fourteenth International Conference on VLSI Design,

References

145

2001.Volume , Issue , 2001 Page(s):29 – 35

 [LAH-002] K.Lahiri, S. Dey, A. Raghunathan, Design of Communication

Architectures for High-Performance and Energy-Efficient System-on-

Chips, in Multiprocessor Systems-on-Chips , Morgan Kaufmann,

September 2004. pp. 187–222.

[LIN-001] S.Lin and D.J Costello. “ Error Control Coding : Fundamentals and

applications”. Prentice Hall Inc.,1983.

[LYO-001] D. Lyonnard,S. Yoo, A. Baghdadi,A.A. Jerraya,"Automatic generation

of application-specific architectures for heterogeneous multiprocessor

system-on-chip" Proceedings of Design Automation Conference,

2001.pages: 518- 523.

[MAR-001] J. Hu and R. Marculescu, “DyAD - Smart Routing for Networks-on-

Chip”, DAC 2004, June 2004,San Diego, California, USA.

[MCK-001] L. M. Ni and P. K. McKinley, “A survey of wormhole routing

techniques in direct networks”, computer, vol. 26, 1993, pp. 62-76.

[MEN-001] SystemVision by Mentor Graphics,

www.mentor.com/products/sm/system_integration_simulation_analysis

/systemvision/

[MIL-001] Milica Mitic and Mile Stojceev,"An overview of on-chip

buses",published in book "Digital Systems and Applications" Published

by CRC Press, 2007.

[NIL-001] E. Nilsson, M. Millberg, J. Oberg, A. Jantsch ,“Load distribution with

the proximity congestion awareness in a network on chip”, DATE

2003, pp 1126-1127.

[OCP-001] Open Core Protocol Specifications,

http://www.ocpip.org/socket/ocpspec/

[OSC-001] Open SystemC Initiative (OSCI) - http://www.systemc.org

[PAL-001] Palmchip Corporation, www.palmchip.com

References

146

[PAL-002] Palmchip, overview of coreframe architecture, white paper. Palmchip

Corporation. http://www.palmchip.com

[PAS-001] Sudeep Pasricha, Nikil Dutt, "On-Chip Communication Architectures:

System on Chip Interconnect", Published by Morgan Kaufmann, 2008

[PAS-002] Sudeep Pasricha, Nikil Dutt, Mohamed Ben-Romdhane, " Using TLM

for Exploring Bus-based SoC Communication

Architectures",Proceedings of the16th International Conference on

Application-Specific Systems, Architecture and Processors (ASAP’05)

[PHI-001] Philips nexperia : www.nxp.com/products/nexperia/

[PHI-002] Nx-builder by Philips, http://www.design-

reuse.com/articles/9769/philips-semiconductors-next-generation-

architectural-ip-reuse-developments-for-soc-integration.html

[PHI-003] Pham Phi-Hung,Y. Kumar,Kim Chulwoo,"High Performance and Area-

Efficient Circuit-Switched Network on Chip Design", The sixth IEEE

International Conference on Computer and Information Technology,

2006. CIT apos;06.Pages:243 - 243

[POR-001] PORTO, Marcelo S.; SILVA, Thaísa L. da.; PORTO; Roger E. C.;

GÜNTZEL, José Luís; AGOSTINI, Luciano. “Design and Comparison

between PVCI, BVCI and OCP Hardware Reuse Interfaces Mapped to

FPGA.” In: STUDENT FORUM ON MICROELECTRONICS, 3.

aceito para apresentação oral e publicação nos anais. Available online

at http://minerva.ufpel.edu.br/~guntzel/publicacoes.html.

[QUI-001] Quick Logic, http://www.quicklogic.com/

[RAH-001] Rahul Bhatt, Giovanni De Micheli,Daniel D. Gajski,Christopher K.

Lennard,Stan Liao,John Sanguinetti,Patrick Schaumont, Rajesh K.

Gupta and Kaushik Roy.“System-on-Chip Specification and Modeling

Using C++: Challenges and Opportunities”, In IEEE D&T May/ June

2001

[RIJ-001] E. Rijpkema et al., “Tradeoffs in the design of a router with both

guaranteed and best effort services for network on chip”, IEE

Proceedings : Computers and Digital Techniques, vol. 150, 2003, pp

References

147

294-302.

[SAL-001] E. Salminen, V. Lahtinen, K. Kuusilinna, and T. Hämäläinen,

"Overview of bus-based system-on-chip interconnections," in ISCAS,

vol. 2, Scottsdale, AZ, 2002, pp. 372-375.

[SAN-001] Alberto Sangiovanni-Vincentelli and Grant Martin, A Vision for

Embedded Systems: Platform-Based Design and Software

Methodology, IEEE Design and Test of Computers, Volume 18,

Number 6, November-December, 2001, pp. 23-33.

[SAN-002] Michael Santarini, "Sonics boosts silicon backplane IP network; ARM

lands licensing pair”

www.eetimes.com/news/design/columns/core_competency/showArticl

e.jhtml?articleID=17407787

[SHA-001] Shashi Kumar, et. al, "A Network on Chip Architecture and Design

Methodology", IEEEComputer Society Annual Symposium on VLSI,

Pittsburgh,Pennsylvania, USA, April 2002.

[SHI-001] C.C. Su and K.G. Shin, “Adaptive Fault tolerant dead lock free routing

in meshes and hypercubes”, IEEE Trans. Computers, 45(6): 666-683.

June 1996.

[SHI-002] K. G. Shin and S. W. Daniel. Analysis and implementation of hybrid

switching.IEEE Tran. on Computers, 1996.

[SIL-001] Silistix - http://www.silistix.com/chainworks.php

[SON-001] Sonics network technical overview. Sonics inc. www.sonicsinc.com

[SON-002] Sonic Studio by Sonic Inc. ,

http://www.sonicsinc.com/sonicsstudio.htm

[SUN-001] Yi-Ran Sun, Shashi Kumar, Axel Jantsch,"Simulation and Evaluation

for a Network on Chip Architecture Using Ns-2",NOrChip 2002

[SYL-001] Sylvester D. and Hu C. “Analytical modelling and characterization of

deep submicron interconnect”. Proceedings of the IEEE, May 2001.

[SYN-001] Design ware - coreAssembler by synopsis,

References

148

www.synopsys.com/products/designware/ipreuse_tools.html?BAC-

HP&Link=Product_Pulldwn_Home

[SYN-002] Galaxy Design Platform by synopsis,

www.synopsys.com/products/solutions/galaxy_platform.html

[TEN-001] Tensilica Technologies www.tensilica.com

[TEN-002] Xtensa Xplorer by Tensilica ,

www.tensilica.com/products/devtools/hw_dev/sw_xplorer.htm

[TEX -001] TI OMAP

www.mistralsoftware.com/html/company/partners/ti_omap_center.htm

[THE-001] T. Theis, “The future of Interconnection Technology,” IBM Journal of

Research and Development, Vol. 44, No. 3, May 2000, pp. 379-390.

[UMI-001] Umit Y. Ogras and Radu Marculescu,"Prediction-based Flow Control

for Network-on-Chip Traffic"DAC 2006, July 24-28, 2006, San

Francisco, California, USA.

[VIS-001] Virtual Socket Interface Alliance's http://www.vsia.org/

[WAR-001] J. Walrand, P. Varaiya, “High-Performance Communication

Networks”. Morgan Kaufman, 2000.

[WIJ-001] Wijetunga, P.,"High-performance crossbar design for system-on-chip"

The 3rd IEEE International Workshop on System-on-Chip for Real-

Time Applications, 2003. Proceedings, 30 June-2 July 2003

Page(s):138 – 143.

[WIM-001] WiMAX Forum http://www.wimaxforum.org/home/

[WIN-001] D. Wingard and A. Kurosawa, “Integration Architecture for System-on-

a-Chip Design,” IEEE Custom Integrated Circuits Conference 1998,

pp. 85-88.

[WIS-001] Wishbone system-on-chip interconnection architecture for portable IP

cores, revision: B.3. http://www.opencores.org/

projects.cgi/web/wishbone/wishbone

References

149

[WUJ-001] J. Wu, “A deterministic fault-tolerant and deadlock-free routing

protocol in 2-D meshes based on odd-even turn model” Proceedings of

the 16th international conference on Supercomputing, 2002.

[XIL-001] Xilinx Virtex, http://www.xilinx.com/products/devices.htm

[YIM-001] Joon-Seo Yim et al. “A C-Based RTL Design Verification

Methodology for Complex Microprocessor”, In Proc of DAC, 1997

[YOO-001] Hoi-Jun Yoo, Kangmin Lee, Jun Kyong Kim, "Low-Power NoC for

High-Performance SoC Design" Published by CRC Press, 2008.

[ZHO -002] M. Zhong, “Evaluation of deflection-routed on-chip networks,”

Master’sthesis, KTH, Stockholm, Sweden, June 2005.

[ZHO-001] J.P. Zhou and F.C.M. Lau, “Fault-tolerant wormhole routing in 2D

meshes,” Proc. 2000 International Symposium on Parallel

Architectures, Algorithms and Networks, Dec. 2000.

