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Abstract. Our research goal is to investigate whether previous findings and meth-
ods in the area of tutorial dialogue can be generalized across dialogue corpora that
differ in domain (mechanics versus electricity in physics), modality (spoken ver-
sus typed), and tutor type (computer versus human). We first present methods for
unifying our prior coding and analysis methods. We then show that many of our
prior findings regarding student dialogue behaviors and learning not only gener-
alize across corpora, but that our methodology yields additional new findings. Fi-
nally, we show that natural language processing can be used to automate some of
these analyses.
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1. Introduction

One major difference between human tutors and current computer tutors is that only hu-
man tutors participate in unrestricted natural language dialogue with students. The de-
velopment of automated tutorial dialogue systems has thus emerged as an important re-
search topic in the field of intelligent tutoring systems. Researchers have hypothesized
that giving computer tutors the ability to engage in natural language dialogue is one ap-
proach for potentially closing the current performance gap between human and computer
tutors, with respect to increasing student learning.

Unfortunately, building a tutorial dialogue system is not at all straightforward. Re-
cent work has begun to try to empirically determine how to make such tutorial dialogue
systems more effective, by examining how specific student and tutor dialogue behaviors
correlate with learning (e.g., [1,2,3]). In our own prior work, for example, we analyzed
dialogue behaviors and learning using corpora of computer and human tutoring spoken
dialogues in the conceptual mechanics domain [4,5], as well as human tutoring typed di-
alogues in the electricity domain [6]. However, because researchers – including ourselves
in these prior projects - differ with respect to both how they code their dialogue data, and
how they statistically analyze it, it is often difficult to evaluate the generality of specific
findings. The goal of our current work is to determine whether our prior findings and
methods can be generalized across our two sets of previously collected corpora, given
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their differing dialogue modalities (spoken versus typed), tutoring domains (mechanics
versus electricity in physics), and tutor types (computer versus human).

Section 2 describes our corpora and prior results. Section 3 maps our existing stu-
dent dialogue annotations to a common representation, and examines the use of natu-
ral language processing to automatically create the annotations. Section 4 presents our
method for statistically analyzing the uniformly coded data, then uses this method to
develop predictive models of learning. Section 5 discusses our results, which suggest
that findings and methods can be generalized across tutorial dialogue systems, and that
automatically created annotations can yield similar results as those created by humans.

2. Dialogue Corpora and Prior Results

Our spoken tutoring data is in the domain of conceptual mechanics and consists of a
corpus of 100 dialogues from 20 students interacting with the ITSPOKE computer tutor.
ITSPOKE (Intelligent Tutoring SPOKEn dialogue system) is a speech-enabled version of
the text-based Why2-Atlas [7] system. The data was collected during a study comparing
spoken versus typed human and computer tutoring [4].

Our corpus of typed tutoring data is in the domain of basic electricity and electronics,
and consists of 60 dialogues from 30 students interacting with one of three human tutors.
This corpus is being used to inform the design of the BEETLE (Basic Electricity and
Electronics Tutorial Learning Environment) tutorial dialogue system. The corpus was
collected during a study comparing the use of different forms of tutor questions (open-
ended versus short answer versus multiple choice) [6].

When collecting both corpora, students were given a multiple-choice pretest before
tutoring, followed by a (non-identical) multiple-choice posttest after tutoring. These tests
were used to compute measures of student learning such as learning gain. Also, both
corpora were automatically or manually annotated with respect to a variety of tagsets.
These tagsets were used to construct quantitative measures of tutor and student dialogue
behaviors, which were then examined for correlations with learning. For our current
generalization study, we focus only on annotations of student dialogue behaviors that
yielded significant correlations with learning in prior ITSPOKE and/or BEETLE studies.

Unit tags were used to automatically compute simple counts of linguistically mean-
ingful units such as number of Words or Turns. While various measures of dialogue in-
teractivity based on such tags (e.g., the percentage of dialogue produced by the student)
positively correlated with learning in BEETLE [8], similar measures of student language
production did not correlate with learning in ITSPOKE [4].

Content tags were used to identify dialogue containing information relevant to the
domain topic. In ITSPOKE, a lexical item was automatically tagged as a DomainConcept
whenever it was in an online physics glossary; measures based on these tags (e.g., number
of content words, number of content-rich turns) positively correlated with learning [9].
In BEETLE, a human annotator partitioned all dialogue into a set of non-overlapping
segments tagged as either Content, Management, Metacognition, or Social; the amount
of dialogue in the content category positively correlated with learning [8].

Several dimensions underlying a number of theories regarding how student events
lead to learning have been manually annotated in both corpora. In BEETLE, student con-
tributions were tagged along a set of five dimensions identified in the DeMAND Cod-



ing System [10].1 For example, student statements were coded for Depth (Yes, No) and
Novelty (New, Old, Other), with novelty shown to be positively correlated with learn-
ing [8]. Two other DeMAND dimensions (Accuracy and Doubt) will be described below.
In ITSPOKE, student “Answers” were coded as Shallow, Deep, Novel, and a number of
correlations identified. In computer tutoring the presence of student turns that displayed
reasoning positively correlated with learning, while in human tutoring the introduction
of a new concept positively correlated with learning [5].

Accuracy with respect to the tutoring topic has also been annotated. ITSPOKE data
has been tagged as either Correct, Incorrect, PartiallyCorrect, or Can’tAnswer. Although
this tagging was done automatically by ITSPOKE, accuracy was later manually tagged
by a paid annotator to remove noise. BEETLE dialogue was tagged as Correct, Incorrect,
SomeErrors or SomeMissing; this tagging was done by the human tutor in real time.
Accuracy was shown to be positively predictive of learning in BEETLE [8], but did not
correlate with learning in ITSPOKE [12].

Finally, tags relating to student affects/attitudes have been manually annotated. BEE-
TLE has been annotated with respect to signs of Doubt (Yes, No), and doubt was used
in conjunction with accuracy to show that “impasses” (wrong, or right but uncertain)
negatively correlated with learning [10]. ITSPOKE has been annotated with respect to
“Certainness” (Certain, Uncertain, Neutral, Mixed) and “Frustration” (Frustrated, Non-
Frustrated), with neutral student dialogue negatively correlated with learning [12].

3. Creating a Common Research Framework

The results summarized in the prior section suggest that in tutorial dialogue the quality of
student responses is particularly predictive of learning. Of particular note are our results
regarding domain content and novelty, as positive correlations with learning were found
for both ITSPOKE and BEETLE corpora. However, because the specific annotations,
measures of learning, and statistical approaches used to obtain our prior results some-
times differed, it is difficult to know whether the findings that seemingly generalized are
actually the same. Furthermore, additional findings might also have generalized, if the
corpora had been analyzed more uniformly.

To create such uniformity, the first stage of our research involves mapping related
but non-identical aspects of our annotation schemes to identical tagsets, or to common
higher level theoretical constructs. We take the first approach to automatically and uni-
formly retag our corpora with respect to units and domain content. We take the second
approach for the DeMAND tag dimensions described above, using the theoretical con-
structs and the dimensions-to-construct mappings proposed by [10] as our starting point.
A similar approach has been used by the dialogue community, e.g., the DAMSL tagset of
dialogue acts (www.cs.rochester.edu/research/speech/damsl/) was developed to provide
a common abstraction that enabled sharing of task-oriented dialogue corpora, but that
remained compatible with the original tagsets used to annotate such corpora.

With respect to unit tags, our current study focuses only on annotating words,
which are automatically identified using a tokenization program. While word tokeniza-
tion might seem straightforward (e.g., determine word boundaries using whitespace), it

1These dimensions were hypothesized to be sufficient for describing and differentiating five student-oriented
theoretical constructs which could influence tutoring system design [10], e.g. impasses [11].



is actually more complex (e.g., contractions can be counted as one word or two). The
original BEETLE and ITSPOKE tokenizers in fact made different decisions regarding
contractions and several other issues. For our current work, we agreed on a set of uniform
conventions, implemented a new word tokenizer, then retokenized the corpora.

With respect to content tags, as in our prior ITSPOKE work [9], we automatically tag
words corresponding to domain-specific concepts using an online list of dictionary en-
tries from Eric Weisstein’s World of Physics (http://scienceworld.wolfram.com/physics).
While content tagging in BEETLE had previously been done manually, in our current
study we instead use this dictionary to automatically tag both the ITSPOKE and BEE-
TLE corpora. This allows us to better determine whether content results do indeed gener-
alize across ITSPOKE and BEETLE, and to examine whether our prior BEETLE results
change after moving from manual to automatic tags. In addition, since a glossary tailored
to the electricity domain was available for BEETLE, we use this glossary to create a
second content tagging of the BEETLE data. This allows us to examine whether results
change when using a generic versus a specialized domain dictionary.

In our prior work, a word was tagged as a domain concept if there was a correspond-
ing single word entry in the online dictionary. Because of this simple approach, some
domain words in our corpus (e.g., “vectors”, “frictional”) were not tagged as content,
because they did not exactly match the relevant dictionary entry (e.g., “vector”, “fric-
tional force”). To allow matches with both the singular-noun word forms as well as the
multi-word entries in our dictionary, we now preprocess both our corpora and our dictio-
nary using natural language processing. We first perform word tokenization, as described
above. Next, we use a stop word list to eliminate high-frequency words, because tokeniz-
ing a dictionary entry like “Newton’s Law of Cooling” adds the stop word “of” to the
domain dictionary. Finally, we use stemming to map various morphological variants of
a word to a common stem. However, while stemming enables words from a corpus like
“forces” to correctly match a dictionary entry like “force”, stemming often introduces
other types of incorrect matches. To examine whether stemming adds value in our exper-
iments, we create content tags both with and without our stemming preprocessor. We use
the Natural Language Toolkit (NLTK, http://www.nltk.org), a suite of software modules
for analyzing text with Python, to implement our stemmer and other preprocessors.

For our remaining tags (representing the DeMAND dimensions depth, novelty, ac-
curacy, and doubt), we map the existing BEETLE and ITSPOKE tags and tag values to
learning theory constructs, using the dimensions-to-construct mappings in Table 1. The
first and second columns list the subset of constructs and BEETLE mappings from [10]
that are relevant to the current study; the third column lists a new set of ITSPOKE map-
pings needed for the current study, given the related but non-identical ITSPOKE tagsets
for the DeMAND dimensions. The first two rows of the table show that two common
theoretical learning constructs for analyzing student contributions, namely the applica-
tion of cognitive effort (e.g., [13]) and the construction of new knowledge (e.g., [14]),
map directly onto the depth and novelty tagging dimensions, respectively. In contrast,
the last two rows show that two other constructs, namely student impasses (contributions
that are either expressed with uncertainty but are correct, or contributions that are wrong)
(e.g., [11]) and accountable talk (contributions that both involve effort and are correct)
(e.g, [15]) instead involve mapping particular tag values from multiple dimensions.2

2A more elaborated ITSPOKE mapping, where certainness also plays a role for incorrect answers, and
different types of impasses are ranked by severity, is presented in [16].



Table 1. Mapping of Original Tags and Values to Learning Theory Constructs

Construct BEETLE ITSPOKE
Effort Depth=Yes Answer=Deep
Constructive Novelty=New Answer=Novel
Impasses (Doubt=Yes (Certainness=(Uncertain ∨ Mixed)

& Accuracy=(Correct ∨ SomeMissing)) & Accuracy=Correct)
∨ (Accuracy = Incorrect ∨ SomeErrors) ∨ (Accuracy = Incorrect ∨ PartiallyCorr)

Accountable Depth=Yes Answer=Deep & Accuracy=Correct
& (Accuracy=Correct ∨ SomeMissing)

Finally, to support this mapping of our original annotations3 and to also ensure the
equivalence of all further data analysis, we ported the ITSPOKE data and annotations
into the format required by the NITE XML Toolkit (NXT, www.ltg.ed.ac.uk/NITE),
which was already used for the BEETLE corpus. NXT comes with a query language and
set of command line utilities that cover many of the analyses we require, including the
ability to find dialogue contributions matching complex constraints involving tags and
their values such as those in Table 1. Our use of NXT, supplemented by common pro-
cedures for using NLTK, Excel, SPSS, and a set of unix shell scripts, enabled the use of
exactly the same software for all of the data analysis described next.4

4. Results: Predicting Learning from Student Dialogue Behaviors

Besides annotation differences, it has also been difficult for the tutorial dialogue commu-
nity to compare the results of prior studies due to the use of different dependent and in-
dependent measures. Our current work always uses posttest score as the dependent mea-
sure, and includes pretest score among the independent measures to account for learn-
ing gain. A uniform set of additional independent measures for characterizing student
dialogue is derived from the annotations described in the prior section.

Our first measures derive from both the word and content annotations. For each stu-
dent, we count both the total number of student words (SWords), as well as the total
number of words tagged as content using the same online physics dictionary (SPhysics-
DictWords), across all dialogues with a student. For the BEETLE corpus only, we also
compute content using two alternative methods. First, we use the BEETLE-specific glos-
sary rather than the common physics dictionary to tag domain content words (SBeetle-
GlossWords). Second, we use the manually annotated segments of contentful talk to
tag student words as content words (SManualContentWords). Finally, we normalize
all raw counts by dividing by the total number of (student and tutor) Words, across all
dialogues with a student.

Table 2 shows the results of using partial correlations to examine the relationship
between posttest and each of these independent measures, after first regressing out the
correlation with pretest. Correlations that are statistically significant (p < .05) are high-
lighted in bold. The first row shows that in BEETLE, students on average contributed
44% of the words when conversing with a (human) tutor. Furthermore, this percent-
age showed a trend (p < .1) to positively correlate with learning (R=.34, p=.08). In IT-

3Inter-coder reliability was evaluated for the original annotations, but not yet for the mapped constructs.
4However, the output of the automatic tokenizer was hand-corrected for BEETLE, but not for ITSPOKE.



Table 2. Partial Correlations with Posttest (controlled for Pretest)

Measure BEETLE (n=30) ITSPOKE (n=20)

Mean R p Mean R p

SWords/Words .44 .34 .08 .04 .17 .48

SPhysicsDictWords/Words (not stemmed) .05 .22 .26 .01 .60 .01
SBeetleGlossWords/Words (not stemmed) .20 .38 .04 NA NA NA
SManualContentWords/Words .38 .43 .02 NA NA NA

SPhysicsDictWords/Words (stemmed) .09 .25 .20 .02 .28 .24
SBeetleGlossWords/Words (stemmed) .21 .38 .04 NA NA NA

SPOKE, students contributed only 4% of the words in the dialogues with the ITSPOKE
(computer) tutor. Although there is also a positive correlation with learning, it is weaker
and not significant at even a trend level. Note that the proportion of student talk is much
lower in ITSPOKE than in BEETLE, which we believe reflects the use of computer rather
than human tutoring,5 as well as other differences (spoken versus typed, mechanics ver-
sus electricity and other curriculum differences, student population, etc.).

Despite these differences, when only student content words are counted, there are
significant positive correlations with learning in both corpora. The second row shows that
when the same online dictionary is used, the correlation is only significant for ITSPOKE
(R=.6, p=.01). This is not surprising given that the dictionary is designed for the “World
of Physics”. The next two rows show that with a more appropriate dictionary the corre-
lation is also significant in BEETLE (R=.38, p=.04), and becomes even stronger when
content words are derived via manual rather than automated methods (R=.43, p=.02).
The use of the BEETLE-specific glossary increases the percentage of content words from
5% to 20%, while the use of the manual annotations almost doubles this percentage. Fi-
nally, the last two rows show that while adding a stemming preprocessor also increases
the percentage of student content words in both corpora, the significant correlation with
learning does not improve in BEETLE, and even loses significance in ITSPOKE.

Our next set of measures derive from the dimensions-to-construct mappings shown
in Table 1. We first count the number of student contributions that match each of the four
learning theory constructs (Effort, Constructive, Impasses, Accountable), across all
dialogues with a student. We also count the number of contributions that match certain
value combinations for the original dimensions; although similar to our original studies,
we now achieve more uniformity across corpora by using the tag value correspondences
identified by our construct mappings. For example, a new accuracy measure Right (stu-
dent contributions that are correct even if incomplete) counts contributions that match the
accuracy values specified in the second conjunct in the Accountable mapping in Table 1,
for each original tagset. Finally, as with the word and content measures, we normalize
each of the raw counts to create percentage measures, e.g. %Effort.

Table 3 shows the results of using multivariate linear regression to predict posttest
score (the dependent measure) from pretest and these two sets of additional independent
measures (constructs and dimensions). The two models shown, and all included parame-
ters (determined automatically using stepwise regression in SPSS), are significant at p <
.05. The first row shows the included parameters when the set of independent measures
includes pretest and the percentage of student contributions matching each of the four

5When students interacted with a human tutor, they contributed over 21% of the words in the dialogues [4].



Table 3. Regressions with Posttest

Measures BEETLE (n=30) ITSPOKE (n=20)

Predictors R2 p Predictors R2 p

Pretest, Constructs %Impasses (-) .22 .01 %Accountable (+), %Effort (-) .50 .01

Pretest, Tags %Right (+) .46 .00 %Right (+) .23 .03

learning constructs. In BEETLE, the best model contains only the single predictor %Im-
passes, which is negatively predictive of learning (R2=.22, p=.01). In ITSPOKE, a com-
bination of two different parameters best predicts learning (R2=.50, p <.01). Interest-
ingly, while accountable talk (%Accountable) positively predicts learning, student effort
(%Effort) is negatively correlated. The second row shows the automatically included
parameters when the independent measures are now pretest and percentage of student
contributions matching specific values of the four DeMAND dimensions (e.g., defining
Right as Accuracy=(Correct∨SomeMissing) in Beetle). The same model is learned for
both corpora: the more accurate the student (%Right), the higher the posttest score.

While the results in the first row suggest that different constructs best predict learn-
ing for BEETLE and ITSPOKE (at least using the stepwise procedure), we were inter-
ested in knowing whether the predictors identified for one corpus would nonetheless still
be predictive of learning in the other corpus. To examine this, we use the stepwise param-
eter selection mechanism to select predictors providing the best model fit for one corpus,
then test the utility of this selection by fitting a new linear model containing only these
selected parameters to the other corpus. Performing a regression on the BEETLE data
using only the parameters selected for ITSPOKE (%Accountable and %Effort) yields
a model that is marginally significant overall (R2=.18, p < .07), with both predictors
(%Accountable (+) and %Effort (-)) remaining individually significant (p <.03).

5. Discussion and Future Work

Our study has increased our understanding of whether and how prior research findings
generalize across multiple tutorial dialogue corpora. We first presented methods for uni-
formly annotating and statistically analyzing two previously collected corpora in con-
ceptual physics domains: the BEETLE typed human tutoring corpus for electricity and
electronics, and the ITSPOKE spoken computer tutoring corpus for qualitative mechan-
ics. We then reexamined our previous findings regarding student dialogue and learning,
to see how they might change once the measures and statistical methods were merged.

Replicating our original findings, we again find that in both corpora, the more con-
tentful a student’s dialogue contributions are, the more students learn. In addition, our
results suggest that simple natural language processing techniques can be used to auto-
matically annotate content, with little performance degradation compared to the use of
manual annotation, at least in BEETLE. Our ITSPOKE and BEETLE comparisons, in
turn, highlight the importance of using appropriate domain dictionaries.

We also find that with similar coding and analysis, several new results emerge across
corpora. While originally student accuracy positively correlates with learning only in
BEETLE, once we define the same correctness measure (including both correct utter-
ances and partially correct utterances with no errors), this correlation now holds in IT-
SPOKE as well. Finally, a new ITSPOKE analysis in terms of learning constructs shows



that both accountable talk and student effort are together predictive of learning; further-
more, the predictive utility of this parameter selection generalizes to BEETLE.

We are currently examining whether our prior results regarding tutor behaviors (e.g.,
questioning [5] and restating [6]) also generalize across our corpora, and plan to extend
our automatic content tagging to use more sophisticated natural processing techniques.
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