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Abstract

We study the decidability and complexity of verification problems for infinite-state systems.

A fundamental question in formal verification is if the behaviour of one process is repro-

ducible by another. This inclusion problem can be studied for various models of computation

and behavioural preorders. It is generally intractable or even undecidable already for very

limited computational models.

The aim of this work is to clarify the status of the decidability and complexity of some

well-known inclusion problems for suitably restricted computational models. In particular, we

address the problems of checking strong and weak simulation and trace inclusion for processes

definable by one-counter automata (OCA), that consist of a finite control and a single counter

ranging over the non-negative integers. We take special interest of the subclass of one-counter

nets (OCNs), that cannot fully test the counter for zero and which is subsumed both by push-

down automata and Petri nets / vector addition systems.

Our new results include the PSPACE-completeness of strong and weak simulation, and the

undecidability of trace inclusion for OCNs. Moreover, we consider semantic preorders between

OCA/OCN and finite systems and close some gaps regarding their complexity. Finally, we

study deterministic processes, for which simulation and trace inclusion coincide.
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Chapter 1

Introduction

Verification is the branch of theoretical computer science that studies mathematical formalisms

and methods for arguing about the correctness of processes. The fundamental problem is to

show that a given system satisfies the requirements imposed by a given specification.

Several formalisms for the description of processes/algorithms have been proposed, includ-

ing Turing Machines, the λ-calculus, random access machines or counter automata [22, 41] .

A major result in the theory of computation is that these models are equivalent in the sense that

they are all capable of expressing the same input-output functions, and therefore of solving

the same problems. This yields a meaningful definition of what it means for a function to be

computable and for a problem to be decidable. Moreover, we can derive solid measures to

compare the computational complexity of decidable problems in terms of the time and space

requirements on these abstract machines [42, 4]. The downside is that all non-trivial proper-

ties of algorithms represented in any of these universal models are themselves undecidable. In

particular, a fully automatic verification of arbitrary computer programs is theoretically impos-

sible.

However, one can regain decidability of the verification problem by sufficiently restricting

the formalisms used to model processes and specifications. This leads to a trade-off between

the expressiveness of the model of computation and the specification on the one hand, and the

decidability/complexity of the resulting verification problem on the other. A lot of research

has been carried out towards charting the border of decidability and the complexity of different

verification problems. This dissertation continues this line of research.

Traditionally, there are two approaches to automatic verification: model checking and

equivalence checking. In model checking, the specification is given as a temporal logic for-

mula, and verifying a process amounts to checking if it satisfies the formula. Logics of various

expressibility have been proposed that highlight different aspects, i.e. are more or less suit-

able to express certain properties. Popular examples include linear-temporal logic (LTL) [52],

that can express safety and liveness properties, computation-tree logic (CTL) [10], that allows

1



Chapter 1. Introduction 2

to make assertions about the branching structure of processes and the µ-calculus [32, 8], that

subsumes the previous two and introduces fixpoint operators to argue about recursion.

In the equivalence checking approach, both implementation and specification are given as

processes. The idea is that the specification is a simplified or schematic description of the

intended behaviour. Verification amounts to checking if these two processes are semantically

equivalent. This can be interpreted as asking if two programs are the realization of the same

algorithm and equal up to irrelevant implementation details. One can consider different notions

of equivalence, corresponding to different degrees of abstraction [14]. Among the semantic

equivalences, bisimulation [5, 43, 40] stands out as the most well understood, mathematically

elegant and in many cases, practically tractable notion.

A natural variation of the equivalence checking approach is to consider partial orders in-

stead of equivalences: one asks if one process subsumes another process, i.e., can to some

extend reproduce its behaviour. Naturally, for any partial order on processes there is a cor-

responding equivalence defined by mutual inclusion. From the perspective of program ver-

ification, this allows to specify a range of tolerable behaviour by independently checking if

a process subsumes some under-specification, that captures the necessary “good” behaviour,

and moreover is subsumed by an over-specification that limits the acceptable “bad” behaviour.

Another motivation for partial order checking is that one can, instead of reasoning about a pro-

gram that involves a mathematically “unnatural” description or data-structure, replace it with

one that is easier to deal with and then show that the replacement subsumes the original. In

order to exclude certain bad behaviour in the original process it then suffices to demonstrate

the correctness of the replacement.

Most verification problems can be phrased in terms of logic games played between two

players. The idea was pioneered by Andrzej Ehrenfeucht in the 1960s, who used games to for-

malize “elementary equivalence” on logical structures, as introduced earlier by Roland Fraïssé.

In model theory, these back-and-forth games are used as method to determine the expressive

power of logical theories. Similar games now enjoy widespread popularity as an intuitive char-

acterization of various model checking and equivalence checking problems [49]. In this setting,

one player tries to defend some assertion and the goal of the opponent is to convince him oth-

erwise. Different verification problems can be considered by varying the rules of the game,

i.e., the winning condition and the way the players can move. In order to find out if a property

holds, one can equivalently look for a solution of the corresponding logic game. The question

reduces to effectively constructing a winning strategy for one of the players, that prescribes a

way of playing that ensures a win, regardless of the opponent’s choices. A finite representation

of such a winning strategy then serves as a certificate for the truth or falsity of the property in

question.
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For systems with only finitely many distinguishable configurations, most interesting veri-

fication problems are decidable by exhaustive search. One still has to deal with the so called

“state-space explosion”, the fact that generally, the number of different configurations is expo-

nential in the description of a process. But although arguing about large finite systems might

be difficult in practice, it is at least theoretically possible to check all possible configurations

individually.

On the other hand, many interesting computational models are capable of describing infinite-

state systems: processes with infinitely many possible configurations. This is desirable if one

wants to model unbounded recursion or data structures, or use real numbers to model contin-

uous time or probabilities. Some formalisms are even capable of defining infinitely-branching

processes, that can jump from one configuration to one of infinitely many different successor

configurations. This can be useful for modelling unbounded resource reloading or uncertain

environments of a reactive process. Unlike for finite systems, verification by exhaustive search

is not an option for these models and one has to study their structural properties in order to find

necessary and sufficient criteria for correctness.

In this thesis we study inclusion problems for one-counter automata (OCAs) and their sub-

class one-counter nets (OCNs). These are very limited computational models for infinite-state

systems. As the name suggests, one-counter automata are a restriction of (Minski) counter

machines [41]. They consist of a finite-state control and a single counter, that can store an un-

bounded non-negative integer value. Transitions can only increment or decrement the counter

by one and the counter can be tested for zero, which means that a particular step can depend

on the current counter value being exactly zero. OCAs correspond to the classical model of

pushdown automata from the theory of formal languages, where the stack alphabet is unary.

One-counter nets are OCAs that cannot fully test their counter for zero in the sense that an

empty counter can only restrict possible moves. This model is subsumed not only by OCAs

and hence pushdown automata, but also by vector addition systems with states (VASS) and

Petri nets [12], which are widely used models of concurrent computation. One-counter nets

correspond to 1-dimensional VASS or Petri nets with at most one unbounded place.

We study the computational complexity of semantic preorders between OCAs, OCNs, and

finite systems. Specifically, we are interested in the standard notions of strong and weak simu-

lation and trace inclusion. The main technical contributions in this work are the following.

1. Checking strong simulation for OCNs is PSPACE-complete. Moreover, we show that a

semilinear representation of the largest simulation is effectively computable for a given

pair of OCNs and that the size of this representation is exponential in the number of

control states of the input-nets.

2. Weak simulation is PSPACE-complete for OCNs. In particular, one can represent the
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largest weak simulation relation for a given pair of OCNs in terms of strong simulation

for a pair of only polynomially bigger OCNs. An exponential-sized semilinear represen-

tation of weak simulation is therefore also computable.

3. Strong and weak simulation between OCNs and finite systems are P-complete in both

directions.

4. Trace inclusion between OCNs is undecidable.

5. Trace inclusion between a OCNs and a deterministic OCNs is NL-complete. This con-

trasts our undecidability result for trace inclusion between two (nondeterministic) OCNs,

as well as the known undecidability of trace inclusion for deterministic OCAs [50].

6. Trace inclusion between finite systems and OCNs, as well as trace universality of OCNs

are decidable and Ackermann-complete. This contrasts the known undecidability of trace

universality for OCAs and the NL-upper bound for the deterministic case. In particular,

we show that these problems are not primitive recursive, but lie exactly at level ω of

the so called fast-growing hierarchy. We also show Ackermannian lower bounds on the

length of shortest witnesses for non-universality.

The remainder of this thesis is structured as follows. In Chapter 2, we introduce the nec-

essary background on semantic preorder checking. We define counter machines and recall

labelled transition systems (LTS), that serve as operational semantics for various computa-

tional models and thus formally capture the behaviour of processes. Relative to a given LTS,

we define trace inclusion and simulation, as well as their weak variants and discuss their char-

acterizations in terms of approximants and games.

In Chapter 3, we discuss one-counter automata and nets in more detail. We provide a

complete characterization of shortest paths in OCAs and derive a NL-complexity upper bound

for checking reachability. We then introduce some common notation and properties of semantic

preorders between processes of two OCAs. In particular, we show that one can always assume

w.l.o.g., that the given OCAs are in a certain normal form when checking any of the partial

orders considered in this thesis. We discuss the consequences of the monotonicity of steps in

OCNs and finally, recall the idea of presenting binary relations on OCA-processes as finitely

many black/white colourings of the grid N2. This allows to study geometric properties of such

relations.

Chapter 4 is devoted to strong simulation preorder. It was known before that checking

simulation is undecidable for OCAs [30] and decidable for OCNs [2, 29]. We focus here on

the complexity of the problem and show a PSPACE upper bound that matches the known lower

bound. For this, we provide a new and constructive proof of the so called Belt Theorem, a
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geometric property of the maximal simulation between two OCNs, that underpins a previous

argument for decidability. In our proof, we analyse a finitary abstraction of the usual simulation

games, and show how to transfer winning strategies for both players between these games.

This yields polynomial bounds for important parameters in the description of the maximal

simulation according to the Belt Theorem. Based on this, and the locality of strong simulation,

we derive a nondeterministic procedure for checking simulation that requires only polynomial

space and an exponential-sized semilinear description of the whole relation.

Chapter 5 is about weak simulation. We show that for OCNs, one can effectively reduce

weak to strong simulation. The main difficulty one has to overcome is that the players in

the corresponding games now move on infinitely branching systems, so one cannot finitely

approximate weak simulation from above using standard weak simulation approximants. This

means that there can be pairs of processes that are not in weak simulation but for which no

finite winning strategies in the game exist.

To solve this problem, we first reduce weak simulation for OCNs to strong simulation for a

generalized model that symbolically captures the infinite branching capability. Then, we show

that the resulting strong simulation relation can be finitely approximated using customized

approximants that essentially count the number of infinite-branching steps in a play of the

game. We show that 1) these approximants always converge to simulation at a polynomially

bounded level, and 2) that the individual approximant relations are themselves expressible in

terms of strong simulation over suitably modified OCNs. As a byproduct, we get that the

standard weak simulation approximants converge at level ω2, but not earlier in general.

A closer analysis of the reduction reveals that the constructed OCNs are only polynomially

larger than the given input nets, which implies that the PSPACE upper bound for checking

inclusion as well as the EXPSPACE-bound on the size of a representation of the whole relation

can be transferred from strong to weak simulation.

At the end of this chapter we consider strong and weak simulation between OCA/OCN and

finite systems.

In Chapter 6 we study trace inclusion. First, we compare it to the classical notion of

language inclusion from formal language theory. The respective problems are inter-reducible

for OCAs, regardless of the acceptence criteria. For OCNs, this is only true for languages

defined by acceptance with final state, due to the lack of zero-tests. We recall the negative

results of Valiant [50] regarding the language inclusion problem of OCAs. In particular, we

get that trace inclusion is undecidable between deterministic OCAs, and trace universality is

undecidable for OCAs. We then continue to show that even for (nondeterministic) OCNs, trace

inclusion is undecidable. Next, we turn to the trace universality problem for OCNs, which

was already known to be decidable [25] and show that this problem is in fact Ackermannian,

i.e., not primitive recursive. We conclude by showing how to construct Ackermannian lower
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bounds for the length of shortest witnesses for non-universality.

Finally, in Chapter 7, we look at deterministic systems, for which trace inclusion and

simulation coincide. Inclusion between DOCA is undecidable in general [50], but it turns out

that for deterministic one-counter nets (DOCNs), trace inclusion is not only decidable but has

surprisingly low complexity. We show that this problem is NL-complete, even with binary

encoded initial counter values as part of the input. We then apply our technique to the trace

inclusion problems between DOCAs and DOCNs (and vice versa), where one of the given

processes is allowed to have zero-testing transitions.



Chapter 2

Preliminaries

When comparing the behaviour of processes we are mainly interested if two given processes

are semantically equivalent or if one subsumes the other. These equivalence and inclusion

problems allow two degrees of freedom. Firstly, different formalisms can be used to define

processes and secondly, different notions of equivalence or inclusion can be used to compare

them. In this section we will clarify what exactly is meant by “a process” and introduce the

notions of process equivalence and inclusion considered in further sections.

Following Milner [40], we interpret processes as nodes of transition graphs generated by

some suitable rewriting system. Semantic notions of equivalence or inclusion are then just

preorders (reflexive and transitive binary relations) on the set of nodes, i.e. processes. We refer

to [14] for a classification of semantic preorders and to [9, 48, 34] for surveys providing a

recent and high level view of the status quo of infinite-state verification.

We write Z, N and Q for the sets of integers, non-negative integers and rational numbers

respectively. For a set A let A∗ denote the set of finite sequences (or words) over A. We write

ε ∈ A∗ \ A for the empty word, |w | ∈ N for the length of word w ∈ A∗ and wi = ww . . .w for its

i-fold concatenation.

2.1 Models of Computation

The unifying perspective on computational models is that they all have operational semantics

defined as directed, edge-labelled graphs called transition systems. A process is a node in such

a transition graph, and its behaviour is interpreted as the tree of possible unfoldings.

Definition 2.1. A labelled transition system (LTS) is described by a triple (V,Act,−−→) where

• V is a (possibly infinite) set of states or processes,

• Act is a finite set of action labels, or actions for short,

• −−→ ⊆ (V ×Act×V ) is the labelled transition relation.

7
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We use the infix notation α
a−−→ β instead of writing (α,a, β) ∈ −−→ and say there is an a-step

from α to β. The transition relation is inductively extended to words over Act in the natural

way: We let α
ε−−→ α for all α ∈ V and

wa−−−−→ =
w−−−→ ◦ a−−→ for any word w ∈ Act∗ and action

a ∈ Act. For k ∈ N, we write α −−→k β if α
w−−−→ β for some word w of length |w | = k. The

transitive and reflexive closure of −−→ is −−→∗ =
⋃

k ∈N −−→k . We say β is reachable from α if

α −−→∗ β, that is, if some w ∈ Act∗ exists with α
w−−−→ β.

For a given state α ∈ V and action a ∈ Act, the sets of a-predecessors and a-successors of

α are defined as Prea (α) = {β | β a−−→ α} and Posta (α) = {β | α a−−→ β}, respectively. The

branching degree of a process α is the maximal cardinality of any set Posta (β), where β is

reachable from α. A process with branching degree 1 is called deterministic. It is image-finite

or finitely-branching if it has a finite branching degree and infinitely-branching otherwise. The

branching degree of a LTS is the maximal degree over its processes and it is called determinis-

tic, image-finite or infinitely-branching if its degree is 1, finite or infinite, respectively.

we want to reason about, or simply execute, a computer program, it needs to be finitely rep-

resented. Well known universal formalisms include Turing machines, (parallel) random-access

machines, and the λ-calculus. In this thesis we focus on (restrictions of) counter machines

[41], that extend a finite-state control by a number of counters that range over the naturals, and

which can be incremented, decremented and tested for zero.

Definition 2.2. A k-counter machine (k-CM) consists of a finite-state control and k counters,

each capable of storing an unbounded non-negative integer.

Formally, a k-CM is a tupleM = (Q,Act,δ) where Q is a finite set of control states, Act a

finite alphabet of actions and δ a transition relation of the form δ ⊆ Q×Act×OP×Q, where

OP = {inci,deci,ifzi | 0 < i ≤ k} are the possible operations on the counters. A configuration

(q,c1,c2,. . . ,ck ) ∈ Q×Nk ofM consists of a state and a valuation of the counters. M induces

a transition system with states V = Q×Nk and steps

(q,c1,c2,. . . ,ck )
a−−−−→ (q′,c′1,c

′
2,. . . ,c

′
k ) (2.1)

iff there is a transition (q,a,op,q′) ∈ δ and the following are satisfied.

• If op = inci then c′i = ci + 1 and c′j = cj for all j , i.

• If op = deci then c′i = ci −1 ≥ 0 and c′j = cj for all j , i.

• If op = ifzi then c′i = ci = 0 and c′j = cj for all j , i.

A k-CM is deterministic if it induces a deterministic LTS. A path in the LTS induced byM is

sometimes referred to as a run ofM.
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Remark 2.3. According to this definition, each k-CM step that is not due to a zero-testing

transition (those with operation ifzi), changes the value of exactly one counter. It is however not

difficult to simulate steps of a more general type of machine, that can change multiple counters

in a single step or change control state but not the counter values, with a fixed sequence of

ordinary CM steps. We choose to consider the two resulting machines as implementing the

same algorithm and therefore essentially equivalent1.

It is a well-known fact that deterministic 2-CMs are already Turing-complete and have an

undecidable halting problem. Most of the undecidability results we later obtain are shown by

reduction from this problem.

Theorem 2.4 ([41]). It is undecidable if (qinit,0,0) −−→∗ (qhalt,0,0) holds for a given determin-

istic 2-CM with two designated initial and halting states qinit and qhalt.

Since counter machines allow explicit zero-testing transitions that make steps dependent

on a particular counter being zero, it is also undecidable if there exist values a1,a2,b1,b2 ∈ N
such that (qinit,a1,a2) −−→∗ (qhalt,b1,b2) holds. This problem is sometimes referred to as the

control state reachability problem.

In light of this undecidability result, it becomes clear that one needs to restrict counter

machines in order to get less expressive models that still allows for decidable verification prob-

lems. Naturally, different restrictions will highlight different features and are therefore more or

less suitable to model particular behaviour of systems.

We will consider two natural restrictions. The first one is to allow at most one counter.

The resulting model is called one-counter automata (OCAs) and corresponds to the classical

notion of pushdown automata with the restriction that the stack alphabet is unary. If we use

OCAs to define languages, accepting for instance by final state, then the language of a OCA is

therefore context-free. This in particular means that OCAs are not Turing-complete. We will

see in Section 3.1 that the reachability problem for OCAs is decidable and even NL-complete.

The second restriction we focus on is to disallow explicit zero-testing transitions The re-

sulting model is called vector addition systems with states, and is equivalent to vector addition

systems (without finite-state control) and Petri nets, which are widely used to model concurrent

processes.

Definition 2.5. An n-dimensional vector addition system with states (VASS) is represented

by a triple (Q,Act,δ). Here, Q is a finite set of control states, Act is a finite set of action

labels and δ ⊆ Q×Act×Q× {−1,0,1}n is a finite transition relation. It induces an infinite-state

labelled transition system over the stateset Q×Nn where (p,C)
a−−→ (p′,C + D) iff there is some

(p,a,p′,D) ∈ δ and C + D ∈ Nn .

1We can be more precise and say that for any process of the original machine there is a process in the constructed
CM that is weakly simulation equivalent, i.e., the pair is in mutural weak simulation (Definition 2.20).
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An important property of vector addition systems with states is that the induced steps are

monotone with respect to the counter values: If (p,C)
a−−→ (p′,C ′) then also (p,C + E)

a−−→
(p′,C ′+ E) for any vector E ∈ Nn .

We will take special notice of a model called one-counter nets (OCNs), which are subsumed

both by vector addition systems and one-counter automata. One-counter nets are OCAs without

the ability to test the counter for zero or equivalently, 1-dimensional VASSs. One-counter nets

are arguably one of the simplest models of discrete infinite-state systems.

2.2 Behavioural Preorders

Various notions of process equivalence and inclusion have been used for verification. The

most common and well-understood equivalences are bisimulation, simulation equivalence and

trace equality. A popular “catalogue” of semantic equivalences on processes is [14], where the

relations mentioned above and variations are compared.

Formally, a semantic equivalence or inclusion relation is a preorder on the states of a given

labelled transition system. This thesis focusses on inclusions, specifically on strong and weak

simulation preorder and trace inclusion. We will now introduce these relations relative to some

global LTS (V,Act,−−→).

2.2.1 Trace Inclusion

Trace inclusion asks if the set of traces, all emittable sequences of actions of one process is

included in that of another.

Definition 2.6. The word w ∈ Act∗ is a trace of process α ∈ V if α
w−−−→ β for some β ∈ V . We

write T (α) ⊆ Act∗ for the set of traces of α and α ⊆ β iff T (α) ⊆ T (β) for two processes α

and β.

Whether or not trace inclusion holds between two processes is a global condition in the

sense that it does not depend at all on their branching structure.

For the purpose of verification, where one wants to check the consistency of a concrete

implementation with respect to some abstract specification, this is a desirable property. After

all, in this scenario we are only interested if the implementation is correct and not in the actual

implementation details.

However, it turns out that for many computational models, checking trace inclusion is

expensive if at all decidable. For instance, classic results from the theory of formal languages

are that language/trace inclusion are PSPACE-complete for nondeterministic finite automata

(NFA) and undecidable for pushdown automata. We will later show (in Chapter 6), that trace

inclusion is already undecidable for one-counter nets.
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2.2.2 Simulation Preorder

A more fine-grained notion of inclusion is simulation preorder [39, 43], which also takes the

branching structure of the two given processes into account. For a process to simulate another,

it is not sufficient to have at least the same set of traces. Rather, it must be able to stepwise

preserve being simulation larger. The standard co-inductive definition of simulation is the

following.

Definition 2.7. A simulation is a relation R ⊆ V ×V over the states of a LTS (V,Act,−−→), such

that for every pair (α,α′) ∈ R,

∀(α
a−−→ β) ∃(α′

a−−→ β′) (β, β′) ∈ R. (2.2)

Simulations are closed under union, so there exists a unique maximal relation that satisfies the

simulation condition (2.2). This maximal simulation is called simulation preorder or simply

the simulation and written as �.

By induction on the length of possible traces we see that simulation implies trace inclusion.

The following classical example shows that the converse is not always true.

Example 2.8. The processes α0 and β0 depicted below satisfy T (α0) = T (β0) = {ε,a,ab,ac}
and therefore α0 ⊆ β0 ⊆ α0.

α0

α1

α2 α3

a

b c

β0

β1 β2

β3 β4

a a

b c

Further, β0 � α0 can be witnessed by the relation {(β0,α0),(β1,α1),(β2,α1),(β3,α2),(β4,α3)},
which is a simulation (but not the maximal one). In the other direction we see that neither β1

nor β2 simulate α1 and therefore also α0 6� β0.

In the absence of nondeterministic choice one can easily verify that trace inclusion ⊆ sat-

isfies the simulation condition, so simulation preorder and trace inclusion coincide. This is

already the case if only the supposedly larger process on the right is deterministic. Moreover,

checking non-inclusion α * β for an arbitrary process α and a deterministic process β can be

seen as a reachability problem in the synchronous product of α and β.

Approximants

There is an alternative inductive characterization of simulation by refinement, as the (transfi-

nite) limit of a strictly decreasing sequence of approximant relations.
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We write Ord for the set of ordinal numbers, which is well-ordered by ≤ and write ω for

the first limit ordinal. In particular it holds that n < ω < ω+ 1 for all n ∈ N. We refer to [36]

for more background on ordinal arithmetic.

Definition 2.9. Consider the function F : 2V×V → 2V×V on relations of processes where

(α,α′) ∈ F (R) ⇐⇒ ∀(α
a−−→ β) ∃(α′

a−−→ β′) (β, β′) ∈ R. (2.3)

Based on this refinement function F , we inductively define a sequence of ordinal-indexed

simulation approximants: The approximant at level 0 is �0 = V ×V , the full relation. For

successors, let �ι+1= F (�ι ) and for limit ordinals λ, define �λ=
⋂
ι<λ �ι .

Note that every simulation R ∈ V 2 is a post-fixed point of F : It holds that F (R) ⊇ R.

Moreover, F satisfies R ⊆ R′ =⇒ F (R) ⊆ F (R′) for any two relations R,R′ ⊆ V ×V , i.e., F
is an order-preserving function on the powerset lattice (2V×V ,⊆). A straightforward application

of a fixed point theorem due to Knaster and Tarski yields that the maximal simulation is exactly

the limit of the sequence of simulation approximants.

Theorem 2.10.
⋂
ι∈Ord �ι = �.

This means there is some smallest ordinal κ ∈ Ord called convergence index that satisfies

�κ = � and therefore, �ι ) �ι+1 for all ι < κ and �κ = �ι for all κ ≤ ι. Further, for any two

processes α 6� α′, there is some index ι < κ with α 6�ι α′. We recall a standard result that for

image-finite systems, the sequence of approximants converges at level ω, the first limit ordinal.

Theorem 2.11. For image-finite LTS it holds that �ω = �.

Proof. It suffices to show that �ω ⊆ � because � ⊆ �α holds for every α ∈ Ord by Theo-

rem 2.10. Assume the converse. Then there are processes α,α′ ∈ V such that α �ω α′ but

α 6�ω+1 α
′. This means in particular that α �

n+1 α
′ holds for every n ∈ N and so, for every

α
a−−→ β and n ∈ N, some step α′

a−−→ β′n exists with α′ �n β′n . Since we assumed an image-

finite LTS, there are only finitely many different a-successors β′n of α′ and therefore some β′

exists with β′ = βn for infinitely many indices n. Therefore, α′ �n β′ holds for every n ∈ N
which means that α′ �ω β′. Since the initial step α

a−−→ β was chosen arbitrarily we conclude

α �ω+1 α
′, which contradicts our initial assumption. �

Remark 2.12. The argument above only uses that the supposedly bigger process α′ on the

right has finite branching degree. Therefore, α 6� α′ immediately implies α 6�n α′ for some

n ∈ N if α′ is finitely branching. Also, in this case non-simulation at any level i ∈ N, i.e., the

relations 6�i are at least semi-decidable because α 6�i α′ can be witnessed by a finite tree of

height i. Consequently, non-simulation is semi-decidable if the supposedly bigger process is

finitely branching.
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Remark 2.13. Refinement functions other than F may be used to approximate simulation pre-

order. Similar to Milner’s original definition of bisimulation approximants, one can for instance

define the refinement function F ′ such that (α,α′) ∈ F ′ iff Equation (2.5) holds for all action

sequences a ∈ Act∗. The resulting approximants �′ι then satisfy � ⊆ �′ι ⊆ �ι for every ordi-

nal ι, and thus still converge to �, but faster, i.e. at some lower level. In this case, the first

approximant �′1 coincides with trace inclusion ⊆.

2.2.2.1 Simulation Games

Simulation can be interpreted as an interactive, two-player game played between Spoiler, who

wants to establish non-simulation and Duplicator, who wants to frustrate this.

Definition 2.14. A simulation game is played in rounds between the two players Spoiler and

Duplicator, where the latter tries to stepwise match the moves of the former.

A play is a finite or infinite sequence of game positions, which are pairs of processes. If a

finite play (α0,α
′
0),(α1,α

′
1),. . . ,(αi ,α

′
i ) is not already winning for one of the players, the next

pair (αi+1,α
′
i+1) is determined by a round of choices:

1. Spoiler chooses a step αi
a−−→ αi+1.

2. Duplicator responds by picking an equally labelled transition α′i
a−−→ α′

i+1.

If one of the players cannot move then the other wins, and Duplicator wins every infinite play.

A strategy is a set of rules that tells a player how to move. A player plays according to

a strategy if all his moves obey the rules of the strategy. A strategy is winning from (α,α′)

if every play that starts in (α,α′) and which is played according to that strategy is winning.

Finally, we say that a player wins the simulation game from (α,α′) if there is some winning

strategy for this player from position (α,α′).

In game-theoretic terms, simulation games are zero-sum games of perfect information.

This means that there are no draws and that both players are aware of the global configuration

of the game as well as their opponent’s choices.

In any game, the set of plays is a prefix-closed set of finite or infinite sequences of game

positions and a strategy is a function from this set to the set of possible moves. For certain types

of games, including the simulation games considered here, a player only needs to know the last

position of a play: If there is any winning strategy at all, then there is also one that depends

only on the last position. These strategies are called history-free or memoryless. A strategy for

Spoiler in the simulation game can therefore be seen as a partial function σ : (V ×V )→ (−−→),

from pairs of processes to −−→, the steps of the underlying transition system. Correspondingly,

a strategy for Duplicator is a partial function σ : (V ×V× −−→) → (−−→), that prescribes a

response for the current position and Spoiler’s move. Strategies can equivalently be represented
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as trees, where each node represents a position of the simulation game and encodes a particular

move that is to be used. The descendants of a node then correspond to all possible next moves of

the opponent. Notice that each branch in a tree that represents a winning strategy for Duplicator

must either be infinite or end in a position where Spoiler is deadlocked. Conversely, every

winning strategy for Spoiler corresponds to a tree in which every branch is finite. However,

strategy trees for Spoiler may still have infinite degree because some game position could allow

infinitely many different moves of Duplicator if the underlying system is infinitely-branching.

We see that one round of the simulation game directly corresponds to the simulation con-

dition of Equation (2.2). Spoiler (∀) can stepwise demonstrate that the condition is not an

invariant if the initial pair of processes is indeed not in simulation. Conversely, any simulation

that contains the initial pair of processes prescribes a winning strategy for Duplicator in the

simulation game.

Proposition 2.15. For any two processes α,α′ ∈ V, Duplicator has a winning strategy in the

simulation game from position (α,α′) if and only if α � α′.

Since each round of a simulation game corresponds to one application of the refinement

function F in the definition of simulation approximants, Spoiler can win the simulation game

in at most i rounds iff the initial pair (α,α′) fails at approximant level i, that is, if α 6�i α′. An

alternative formulation of this is provided by the approximant games below, in which ordinals

are built explicitly into positions. Such games will prove useful in Chapter 5.

Recall that if Spoiler wins, then she can enforce that every round brings her strictly closer

to some directly winning position. If the current pair fails to be in simulation for some limit

ordinal, then Spoiler can enforce that her opponent picks some arbitrary high, but still strictly

smaller level.

Definition 2.16. A simulation approximant game is played in rounds between Spoiler and Du-

plicator. Game positions are triples (α,α′, ι) ∈ (V ×V ×Ord), where α and α′ are configurations

of Spoiler and Duplicator, respectively, and ι is some ordinal.

A play is a finite sequence (α0,α
′
0, ι0),(α1,α

′
1, ι1),. . . ,(αk ,α

′
k
, ιk ) of positions with ιi+1 < ιi

for all 0 ≤ i < k. The next position is determined by a round of choices: First Spoiler chooses

a strictly smaller next ordinal ιi+1 < ιi and a step αi
a−−→ αi+1. Then, Duplicator responds by

picking a step α′i
a−−→ α′

i+1 with the same action label a. If one of the players cannot move, the

other wins.

As in simulation games, we say a player wins the approximant game from (α,α′, ι) if he

has a winning strategy from this position, i.e., can enforce a win.

The intuition is that whenever Spoiler chooses a next ordinal ι and moves to some configu-

ration α, she claims that she can win the remaining game from position (α,α′, ι) regardless of
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her opponents response α′. Observe that Spoiler loses every approximant game from a position

with ordinal counter equal to 0 because she cannot pick a strictly smaller ordinal.

Proposition 2.17. For any two processes α,α′ ∈ V and any ι ∈ Ord, Duplicator wins the ap-

proximant game from (α,α′, ι) if and only if α �ι α′.

2.2.3 Weak Variants

The idea of a weak semantics is to distinguish observable from internal, non-observable be-

haviour of processes. In weak trace inclusion or simulation, one process subsumes another

already if it can mimic its observable behaviour. Because of this relaxed condition, the respec-

tive weak preorders are less discriminative and thus larger relations than their ordinary, strong

counterparts.

Formally, we assume a dedicated action label τ ∈ Act that is used to model internal steps.

Based on this, we define a weak step relation ===⇒ that abstracts from τ-labelled actions.

Definition 2.18. Let L = (V,Act,−−→) be a LTS and τ ∈ Act a special “silent” action. The weak

step relation ===⇒ ⊆ (V ×Act×V ) is defined by
τ

===⇒ =
τ−−→∗ and for a , τ,

a
===⇒ =

τ−−→∗ ◦ a−−→ ◦ τ−−→∗

We extend ===⇒ to sequences of actions inductively: for the empty word ε <Act, let
ε

===⇒ = IdV ,

that is, α
ε

===⇒ α for any α ∈ V . For non-empty sequences define
aw

===⇒ =
a

===⇒ ◦ w
===⇒ for a ∈ Act

and w ∈ Act∗.

We will call the relations
a−−→ strong steps if we explicitly want to distinguish them from the

weak steps defined above. Weak steps are more general than strong steps: For every w ∈ Act∗

it holds that
w−−−→ ⊆ w

===⇒. By the weak closure of a system (V,Act,−−→) we mean the system

(V,Act,===⇒) over the same states and actions but where strong steps are replaced by weak

ones. We now define weak trace inclusion and simulation. Intuitively, these notions are defined

just as their strong counterparts, but the supposedly bigger process on the right is replaced by

its weak closure.

Definition 2.19. A word w ∈Act∗ is a weak trace of process α ∈ V iff α
w

===⇒ β for some β ∈ V .

Weak trace inclusion (j) is the relation that holds for processes α, β ∈ V iff every strong trace

of α is a weak trace of β.

In the same spirit, we define weak simulation preorder, weak simulation approximants and

the corresponding weak simulation (approximant) games, in which Duplicator moves along

weak steps.
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Definition 2.20. A binary relation R ⊆ (V ×V ) is a weak simulation if for every (α,α′) ∈ R,

and a ∈ Act holds that

∀(α
a−−→ β) ∃(α′

a
===⇒ β′) (β, β′) ∈ R. (2.4)

Weak simulations are closed under union, so there exists a unique maximal relation �, called

weak simulation preorder, that satisfies the weak simulation condition (2.4).

Weak simulation can be characterized in terms of weak simulation games, between Spoiler

and Duplicator. In a round from position (α,α′) ∈ V 2, Spoiler chooses a next step α
a−−→ β,

and then Duplicator chooses an equally labelled weak step α′
a

===⇒ β′ in response. If one of

the players cannot move then the other wins and Duplicator wins every infinite play. We have

α � α′ iff Duplicator has a winning strategy in the weak simulation game that starts from

(α,α′).

Lastly, weak simulation approximants are ordinal indexed relations �ι that are the result of

refining V ×V (transfinitely often) using the refinement functionW , where for all R ⊆ V ×V ,

(α,α′) ∈W (R) ⇐⇒ ∀(α
a−−→ β) ∃(α′

a
===⇒ β′) (β, β′) ∈ R. (2.5)

The sequence of weak simulation approximants decreases with increasing index and converges

to weak simulation. Analogously to Theorem 2.10, it holds that
⋂
ι∈Ord �ι = � and thus �κ = �

for some convergence ordinal κ ∈ Ord.

The fact that we use an “asymmetric” definition for weak simulation, in which every strong

(possibly τ-labelled) step needs to be matched by a corresponding weak step, is pure con-

venience. One can alternatively define a “symmetric” notion of weak simulation, where the

condition of Equation (2.4) is replaced by

∀(α
a

===⇒ β) ∃(α′
a

===⇒ β′) (β, β′) ∈ R. (2.6)

The resulting maximal weak simulation �′ then directly corresponds to strong simulation in

the weak closure of the LTS. It is however not hard to show that this notion coincides with the

original, “asymmetric” notion of Definition 2.20.

Indeed, since Equation (2.6) is more restrictive than the original weak simulation condition

in Equation (2.4), �′ ⊆ � holds trivially. For the converse, notice that � satisfies the new

condition Equation (2.6): assume that α � α′ and α
a

===⇒ α′. By definition of weak steps, this

is due to a finite sequence α = α0
τ−−→ α1

τ−−→ α2
τ−−→ · · · τ−−→ αl = α′ if a = τ, or

α = α0
τ−−→ α1

τ−−→ α2
τ−−→ · · · τ−−→ αk

a−−→ αk+1
τ−−→ αk+2

τ−−→ · · · τ−−→ αl−1
τ−−→ αl = α′

otherwise. In both cases, an induction on l, using the weak simulation condition Equation (2.4),

shows the existence of a corresponding sequence βi−1 ===⇒ βi , where αi � βi holds for every
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1 ≤ i ≤ l. In particular, since the original sequence contained at most one symbol a , τ, it holds

that β
a

===⇒ βl and α′ � βl , which proves the claim.

A similar argument can be used to show that weak trace inclusion coincides with its “sym-

metric” variant that demands that every weak trace of the one process is a weak trace of the

other. In the rest of this thesis we use only the “asymmetric” variants of weak trace inclusion

and simulation, as defined in Definitions 2.6 and 2.20.

The additional difficulty with checking weak instead of strong simulation is that abstracting

from internal actions potentially introduces infinite branching. The weak closure of a system

may not be finitely-branching even if the original system is. In such a case, approximants are

not guaranteed to converge at level ω and a negative semi-decision procedure as mentioned in

Remark 2.12 can therefore not be taken for granted.

Example 2.21. The infinite LTS depicted below has a finite branching degree. So, by Theo-

rem 2.11, strong simulation approximants converge at level ω. In particular, we have α 6�1 β0

because β0 lacks direct a-successors. Moreover, for every i ∈ N it holds that α �i γi but

α 6�
i+1 γi , because γi can do exactly i many a-steps.

α

a

β0 β1 β2 . . .

γ0 γ1 γ2 . . .

τ τ τ

τ τ τ
a a a

The weak closure of this system is infinitely-branching. For every index i ∈ N there is a weak

step β0
a

===⇒ γi induced by β0
τ−−→i+1 βi+1

τ−−→ γi+1
a−−→ γi . Similar to the strong case, α �i γi

and α 6�
i+1 γi for every i ∈ N because no process γi has access to (can reach a configuration

that enables) τ-labelled steps. However, since there is a weak step β0
a

===⇒ γi for every i ∈ N,

we have α �i β0 and therefore α �ω β0 by definition of weak simulation approximants at the

limit ω.

In a weak simulation game from position (α, β0), Spoiler plays the only available strat-

egy and simply loops on label a. In the first round, this forces Duplicator to move to some

process γi , which will deadlock after another i rounds. Therefore, Duplicator’s first response

determines how many further rounds he survives. This means that α 6� ω+1 β0 because Spoiler

wins the explicit weak simulation approximantion game from position (α, β0,ω+ 1). For this

particular system, weak simulation approximants indeed converge at level ω+ 1.

2.3 Decision Problems

We defined strong and weak trace inclusion and simulation relative to a single global LTS,

representing the operational semantics of some computational model. If we want to compare
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processes of different systems, we can consider the respective preorder defined for their disjoint

union.

Definition 2.22. Let v be some semantic preorder andM andM ′ be computational models

inducing LTS over state-sets V and V ′, respectively. We write vM,M′ for the relation v with re-

spect toM,M ′, which is v as defined for the disjoint union of their induced LTS and projected

into V ×V ′.

If X and Y abbreviate classes of computational models, we write X v Y for the decision

problem that asks if x v y holds for given processes x and y definable in X and Y respectively.

For instance, OCA � VASS denotes the problem of checking strong simulation between

processes of a one-counter automaton (a 1-CM) and a vector addition system with states:

Input: 1) A OCAM = (Q,Act,δ) together with a process (q,c) ∈ Q×N,

2) A n-dimensional VASSM ′ = (Q′,Act,δ′) and a process (q′,c′) ∈ Q′×Nn

Question: (q,n) �M,M′ (q′,c′) ?

This particular problem turns out to be undecidable [1]. For decidable inclusion problems

we can ask what the exact complexity is, i.e., how much time and space relative to the size of

the given input one needs to solve it.

We assume familiarity with standard notions of computational complexity. We will write

NL, P, NP and PSPACE, for the classes of problems decidable in nondeterministic logarithmic

space, deterministic and nondeterministic polynomial time and polynomial space respectively.
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One-Counter Systems: Basic Results
and Notation

One-counter automata (OCAs) are counter machines with only one counter. They correspond

to the subclass of pushdown automata with a unary stack alphabet. One-counter nets (OCNs)

are 1-dimensional VASSs. They form a subclass of OCAs where the counter cannot be fully

tested for zero, because transitions enabled at counter value zero are also enabled at nonzero

values.

We now introduce a more convenient notation for one-counter systems in order to keep the

presentation clear. In Section 3.1 we characterize shortest paths in one-counter systems and

derive and NL upper complexity bound for checking reachability. In Section 3.2 we consider

the particularities of checking preorders between one-counter processes.

Definition 3.1. A one-counter automaton A = (Q,Act,δ,δ0) is given by finite sets of control

states Q, action labels Act, transitions δ ⊆ Q ×Act× {−1,0,1} ×Q and zero-test transitions

δ0 ⊆ Q×Act×{0,1}×Q. It induces an infinite-state labelled transition system over the state set

Q×N, whose elements will be written as pm where p ∈ Q and m ∈ N. The transition relation

−−→ = −−→+ ∪ −−→0 is partitioned into positive and zero-testing steps. For all states p,p′ ∈ Q

and m,m′ ∈ N these are defined by

1. pm
a−−→+ p′m′ ⇐⇒ (p,a,(m′−m),p′) ∈ δ and

2. pm
a−−→0 p′m′ ⇐⇒ (p,a,m′,p′) ∈ δ0 and m = 0.

Such an automaton is called a one-counter net if δ0 = ∅, i.e., if the automaton cannot test if the

counter is equal to 0. It is deterministic if for every p ∈ Q and a ∈ Act, there is at most one

(p,a,d,q) ∈ δ, at most one (p,a,d,q) ∈ δ0 and moreover, if (p,a,d,p′) ∈ δ0 and (p,a,d ′,p′′) ∈ δ,

then d ′ = −1.

19
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When defining a OCN we will omit δ0 and simply define the net as triple N = (Q,Act,δ).

Abusing notation, we moreover write pm
t−−→ qn if a transition t = (p,a,d,q) ∈ δ∪ δ0 justifies

a step pm
a−−→ qn.

Remark 3.2. Unlike the 1-CM from Definition 2.2 (Page 8), the notion of OCA defined here

allows zero-testing steps that set the counter to 1. This is purely for convenience and does not

increase the expressivity of the model (due to the presence of a finite control) and has no impact

on the decidability/complexity of the problems considered here.

Example 3.3. We make use of the usual graphical notation for automata to draw OCA. We

draw an edge q
a,d−−−−→ r for normal a-labelled transitions with effect d and use double arrow tips

for zero-testing transitions. If not explicitly stated, the effect of a transition is d = 0. The picture

below shows the automata A =({q,r },{a},{(q,a,0,r),(r,a,−1,q)},∅), which is a OCN, on the

left and A ′ = ({s},{a,b}, {(s,a,−1,s),(s,b,−1,s)}, {(s,b,0,s)}) on the right. Both systems are

deterministic.

q r

a

a,−1
s

a,−1

b,−1
b

3.1 Paths in One-Counter Automata

Definition 3.4. Let A = (Q,Act,δ,δ0) be a OCA. For a transition t = (p,a,d,p′) ∈ δ∪ δ0 we

write source(t) = p and target(t) = p′ for the source and target states, λ(t) = a for its label and

∆(t) = d for its effect on the counter.

A path (of length k) in A is a sequence π = p0t1p1t2p2 . . . pk−1tk pk where all pi ∈ Q and

ti ∈ δ∪ δ0 and for every 1 ≤ i ≤ k, pi−1 = source(ti ) and target(ti ) = pi . The source and target

of π are p0 and pk , respectively. Its label is λ(π) = λ(t1)λ(t2) . . . λ(tk ) ∈ Act∗ and its effect is

the cumulative effect of its transitions:

∆(π) =

k∑
i=1

∆(ti ) (3.1)

A path π as above is positive if it makes only positive steps, i.e., ti ∈ δ \ δ0 for all 1 ≤ i ≤ k.

It is a cycle if p0 = pk and a simple cycle if it is a cycle and moreover, no proper subpath is

itself a cycle.

A path in A defines a (possibly empty) set of paths in the LTS induced by A. We say π is

enabled in configuration pm if it prescribes a valid path from state pm in the transition system of

A, i.e., if there are natual numbers m0,m1,. . . ,mk such that p0m0 = pm and pi−1mi−1
ti−−−→ pimi

for all 1 ≤ i ≤ k. In this case we write p0m0
π−−→ pkmk and say π is a run or path of A from

p0m0 to pkmk . Note that mk = m0 +∆(π).
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If a path inA is not positive (contains at least one zero-testing transition), then it defines at

most one run of A. On the other hand, a positive path π in A defines infinitely many positive

runs of A and there is a minimal sufficient counter value Γ(π) that enables it. This guard of

π can be defined as the minimal m ∈ N such that no prefix of π has an effect less than −m.

Writing iπ for the prefix of path π of length i, the guard of π is given as

Γ(π) = −min{∆(iπ) | 0 ≤ i ≤ k}. (3.2)

Note that there are different paths of length 0 because the initial state forms part of a path.

Any zero-length path π has effect and guard ∆(π) = Γ(π) = 0. Surely, both the effect and the

guard of any path are bounded by its length. The next lemmas characterize shortest runs of

one-counter automata. We fix a OCA A = (Q,Act,δ,δ0) with K = |Q | ∈ N states.

Lemma 3.5. Let π be a shortest run from p0m0 to pkmk . Then,

1. All configurations pimi along π have counter values mi ≤ max{m0,mk }+ (K −1)K.

2. |π | < (max{m0,mk }+ (K −1)K ) ·K.

Proof. Let π = p0m0 −−→ p1m1 −−→ . . . −−→ pkmk be a shortest run from p0m0 to pkmk and

consider the set U = {mi | 0 ≤ i ≤ k, mi ≥ max{m0,mk }} of counter values visited by π which

are greater or equal to max{m0,mk }. Pick an index x such that mx ∈ U is maximal. For each

value m ∈U we can mark the largest index 0 ≤ l (m) ≤ x and the smallest index x ≥ f (m) ≥ k

such that ml (m) = m f (m) = m. These indices guarantee that along the subpath from index l (m)

to f (m), the counter value does not drop below m.

Due to the minimality assumption, π cannot repeat any configurations, as otherwise the

intermediate path could be removed. This means in particular that pl (m) , pf (m) for every

m ∈ U \ {mx }. Furthermore, no two values z,y ∈ U with z < y ≤ mx can satisfy pl (z) = pl (y)

and pf (y) = pf (z) as otherwise it would be possible to remove the nonempty paths from pl (z)

to pl (y) and from pf (y) to pf (z) and obtain a valid path from p0m0 to pkmk that is shorter than

π (see Figure 3.1). This leaves exactly (K − 1)K assignments of pairs (pf (m),pl (m)) ∈ Q2 to

values m ∈ U \ {mx }, that are consistent with the above constraints. We conclude that |U | ≤
(K −1)K + 1 and since max{m0,mk } ∈U, this completes the proof of the first claim.

For the second claim observe that by point 1, all counter values visited along π must be

smaller than or equal to max{m0,mk }+ (K −1)K . Since π does not repeat any configurations,

it can visit at most (max{m0,mk }+ (K −1)K ) ·K distinct configurations. �

Lemma 3.6. Let π = p0m0 −−→ p1m1 −−→ . . . −−→ pkmk be a shortest positive run. Then,

1. max{m0,mk }+ (K −1)K ≥ mi ≥ min{m0,mk ,(K −1)K } for all 0 ≤ i ≤ k,

2. |π | < ((K −1)K + |m0−mk |+ min{m0,mk ,(K −1)K }+ 1) ·K.
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Figure 3.1: The change in counter value along a path of a OCA, starting in m0 and ending in mk .

Left: If the maximal visited value mx is above max{m0,mk }+ (K −1)K , one can safely remove

subpaths from f (y) to f (z) and from l (z) to l (y) for some values z < y < mx . Right: the shape

of a shortest non-positive path. If m0,mk > K2, the positive prefix and suffix visiting only values

> K2 mostly repeat one most effective cycle.

Proof. The first inequality we simply repeat the argument from Lemma 3.5, point 1, that

bounds the set U = {mi | 0 ≤ i ≤ k, mi ≥ max{m0,mk }}. For the second inequality observe

that since π is positive, none of its steps depend on the counter being exactly 0. This means

that one can once again repeat the previous argument to show that the set D of counter val-

ues ≤ min{m0,mk } visited along π has no more than (K − 1)K + 1 elements. However, since

the counter cannot drop below 0, we have |D | ≤ min{m0 + 1,mk + 1,(K − 1)K + 1}) and as

min{m0,mk } ∈ D, the minimal counter value on the whole path is thus greater or equal to

min{m0,mk ,(K −1)K }. This completes the proof of the first claim.

For the second claim notice that all counter values visited along the path are in U∪{mi | m0 <

mi < mk } ∪D, which has no more than

n = ((K −1)K + 1) + (|m0−mk | −1) + (min{m0,mk ,(K −1)K }+ 1)

many elements. It follows that shortest positive paths visit no more than n · K many distinct

configurations, which also bounds their length and thus completes the proof. �

Lemma 3.5 in particular implies that shortest paths connecting two configurations with

counter values m0,mk < K2 are shorter than 2K3 − K2. Using Lemma 3.6 we can bound a

shortest positive path from p0m0 to pkmk by 3K3−2K2 +K , if the difference |m0−mk | between

initial and final counter value does not exceed K2. The next lemma characterizes the possibly

long positive minimal paths from p0m0 to pkmk for the remaining case where the difference

|m0−mk | > K2 and moreover, min{m0,mk } ≥ K2. Roughtly, it states that in this case, a minimal

path mainly iterates one most effective simple cycle. It is a slight generalization of Lemma 2

in [51].
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Lemma 3.7. Assume there is a positive path pm
π−−→+ qn where |m−n| ≥ K2 and min{m,n} ≥

K2. Then there is a positive path pm
π′−−−→+ qn of minimal length which is of the form π′ =

π0Clπ1 where C is a simple cycle, ∆(C) · (n−m) > 0 and |π0π1 | ≤ K2.

Proof. Note that the condition ∆(C) · (n−m) > 0 only states that the effect of cycle C cannot be

0 and iterating C moves the counter in the “right direction”: C decreases the counter if m > n

and increases if m < n. We prove the claim for the case m ≥ n+ K2, the other case (m ≤ n−K2)

is analogous.

Assume a path pm
π−−→+ qn of minimal length. Since m− n ≥ K2, π must contain a simple

cycle C with ∆(C) < 0. Define the efficiency of a cycle C to be (−∆(C)/|C |). We decompose π

into π = π0Cπ1 where C is a simple cycle with maximal efficiency and let d = −∆(C). Surely,

0 < d < K because C is a simple cycle. At least d steps along C have effect −1 and the total

effect of the remaining steps is 0. Thus, no prefix of C has effect < 1
2 ( |C | − d).

Consider a path π′0Cπ′1 that is the result of removing, from π, a set S = {C1,C2,. . . ,Ck }
of disjoint cycles (not necessarily simple ones), with maximal total length such that d evenly

devides its overall effect
∑

1≤i≤k ∆(Ci ). We claim that |π′0π′1 | ≤ K2.

First, observe that the path π′0π
′
1 contains at least l = |π′0π′1 |/K simple cycles {C ′1,C ′2,. . . ,C ′l }.

If l ≥ d, then for some non-empty subset S′ ⊆ {C ′1,C ′2,. . . ,C ′l }, we have that
∑

c∈S′∆(c) = 0

mod d. But this contradicts the maximality of the initial set S of cycles removed from π. We

derive that |π′0π′1 |/K < d and thus |π′0π′1 | < d ·K ≤ K2.

Since the set S satisfies
∑

C ∈S ∆(C) = 0 mod d, there exists some value r ∈ N such that

∆(π′0π
′
1) = ∆(π0π1)−rd = ∆(π0π1) +r∆(C). This means that the effect of path π′ = π′0Cr+1π′1

equals that of the original path π. To see why π′ is enabled in pm, observe that the counter

cannot drop below

min{n,m} − |∆(π′0π
′
1) | − ( |C | − d)/2 ≥ min{n,m} − d ·K − ( |K | − d)/2 (3.3)

which is non-negative because d ≤ K and we assumed that min{m,n} ≥ K2. Since π′ was

obtained from the minimal path π only by replacing cycles by others with greater or equal

efficiency, π′ must also be a shortest path. �

Theorem 3.8. The reachability problem for OCA is NL-complete. More specifically, there is a

nondeterministic algorithm that, given a OCA A = (Q,Act,−−→) and configurations pm,qm ∈
Q×N decides if pm −−→∗ qn in O(log(|Q |) + log2(m + n)) space.

Proof. NL hardness already holds for reachability in finite graphs. For the upper bound, we

solve three subproblems and show that their solutions can be combined to solve the overall

problem. For each subproblem we show that if a witness exists, then there is a small certificate

that can be guessed and verified in logarithmic space.
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Subproblem 1. Fix some bound c ∈N and consider the subproblem of checking pm −−→∗ qn

for instances with counter values m,n < c. If there is a path pm
ρ−−→ qn, then we can assume by

point 2 of Lemma 3.5 (page 21), ρ is no longer than (c−1) ·K + K3−K2. Recall that the length

of a path bounds the effect it has on the counter. The binary representation of ∆(ρ) therefore

requires only log(|ρ|) < log((c− 1) · K + K3 −K2) space. In this case, one can simply guess

the witness stepwise, explicitly memorize its (binary encoded) effect and in the end verify that

indeed n = m +∆(ρ) holds.

Subproblem 2. Consider instances where the difference between initial and terminal counter

values is |m − n| < K2. Is there a positive path pm
ρ−−→+ qn? If such a path exists, then by

Lemma 3.6 (page 21), there is also one which is no longer than 3K3−2K2 + K . As in the first

case, one can guess and verify a short witness.

Subproblem 3. Consider instances where |m− n| ≥ K2 and moreover, min{m,n} ≥ K2. Is

there a positive path pm
ρ−−→+ qn? If the answer is yes, then we know by Lemma 3.7 that a

witness exists that can be decomposed into ρ = π0Clπ1, where C is a simple cycle (and thus

has effect −K < ∆(C) < K), and the total effect of the prefix and suffix is ∆(π0π1) < K2. It

suffices to stepwise guess π0,C and π1, memorize their effects and verify that there exists l ∈ N
such that m +∆(π0π1) +∆(C) · l = n. This check can be implemented deterministically in

log(m +∆(π0π1) +∆(C)) space (see also Lemma 7.13 on page 106 for details).

Finally, let us consider the unrestricted problem. The idea is that if a witness exists, then

there is one that can be decomposed (see Figure 3.1 on page 22) into smaller paths that can

be individually verified. We can first check if the initial and terminating counter values satisfy

the preconditions for subproblem 2 or 3, and conclude “yes” if one of these subroutines finds

a (positive) witness. Otherwise, if pm
ρ−−→ qn holds but so far, no witness is detected, then

there must be one witnessing path along which the counter drops below K2. We can guess

a first position rl with counter value l = K2 on this path and verify (using subroutine 3) that

pm −−→∗+ rl. Further, if the terminal counter value n is below K4, we can use subroutine 1 to

directly check if rl −−→∗ qn. Otherwise, if n ≥ K4, we can again decompose the path rl
π−−→ qn

into rl −−→∗ sk −−→∗+ qn, where sk is the last position with counter value k = K2. We can then

individually verify, using subroutines 1 and 3 respectively, that rl −−→∗ sk and sk −−→∗+ qn. �

3.2 Two-Player Games on One-Counter Systems

We saw that strong and weak simulation can be interpreted as two player, turn-based (weak)

simulation games. Other relations can be characterized by similar games with slightly modified

rules. Trace inclusion for instance can be seen as a simulation game in which Spoiler must first

announce a finite sequence of actions (the witness), and then the game is played such that

Spoiler moves as prescribed by this sequence, i.e., if the chosen witness is a1a2 . . . ak then she
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must make an ai labelled step in the ith round (and automatically loses in round k + 1).

All these inclusion games are “single-sided” in the sense that each player is assigned one

process (side) and during any unfolding of the game can only move from their respective side.

This means that a player cannot gain from making a move that restricts the further behaviour

of the process, for instance by moving to a deadlock1. Conversely, Duplicator surely wins any

sensibly defined inclusion game from two identical processes or if his process is universal,

i.e., has self-loops for every possible action. This is a useful observation if one wants to show

lower complexity bounds using the defenders forcing technique (cf. [34]): Duplicator might

“threaten” to move to a universal (or syntactically equal) process in the next round unless

Spoiler moves in some specific way. This technique has been used for example in [47] to show

a PSPACE lower bound for simulation on OCN.

So far, the above is not at all specific to games played on one-counter systems. If we only

consider inclusion relations and their corresponding games on OCA, we can make further as-

sumptions. We now introduce some common notions and notation for inclusion games played

on one-counter systems.

3.2.1 Normal Form Assumption

We prove a simple normal-form theorem (Lemma 3.10) for inclusion games on OCAs, that

essentially states that Spoiler can only win if she forces Duplicator to empty his counter.

Definition 3.9. A OCAA = (Q,Act,δ,δ0) is complete if for every state p ∈ Q and every action

a ∈ Act, there exists at least one transition (p,a,d,p′) ∈ δ. A is non-blocking if none of its

processes is a deadlock, i.e., if for every state p ∈Q either there is some transition (p,a,d,p′) ∈ δ
with d ∈ {0,1} or there are transitions (p,a,−1,q) ∈ δ and (p,b,d,r) ∈ δ0.

A pair A,A ′ of OCAs is defined to be in normal form if A is deterministic and non-

blocking, and A ′ is complete.

Lemma 3.10. For any two OCAs A = (Q,Act,δ,δ0) and A ′ = (Q′,Act′,δ′,δ′0), one can con-

struct a pair B,B ′ of OCAs in normal form with state sets Q and S ⊇ Q′, respectively, such

that for all (q,n,q′,n′) ∈ Q×N×Q′×N and for every v ∈ {�,�,⊆} it holds that

qn v q′n′ w.r.t. A,A ′ ⇐⇒ qn v q′n′ w.r.t. B,B ′. (3.4)

Moreover, the reduction uses constant space and B ′ is deterministic if the original automaton

A ′ is deterministic.

Proof. IfA is not already deterministic, we can make it so by uniquely re-labeling all its tran-

sitions t by actions at and adding corresponding transitions (p′,at ,d ′,q′) to the other system

1 This is not the case in games corresponding to equivalences like bisimulation [40, 49], in which Spoiler is
allowed to start a round from a side of her choice. There, Spoiler could actually win by moving one process to a
deadlock.
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A ′ for any existing (p′,λ(t),d ′,q′). So assume A is already deterministic and pick a new ac-

tion label $ < Act. We turnA into a non-blocking net B by adding $-labelled cycles with effect

0 to all states: B = (Q,Act∪ {$},δ,δ0) with δ = δ∪ {(s,$,0,s) | s ∈ Q}. To compensate for this,

we add $-cycles to all states of A ′ in the same way. To complete the second net, add a sink

state L (for “losing”), which has counter-decreasing cycles for all actions, and connect all states

without outgoing a-transitions to L by a-labelled transitions. B ′ = (Q′∪ {L},Act∪ {$},δ′,δ′0)

where

δ′ = {(p,a,d,q) ∈ δ′ | a ∈ Act}
∪ {(s,$,0,s) | s ∈ Q′}
∪ {(s,a,0,L) | s ∈ Q′, a ∈ Act, ¬∃(s,a,d,s′) ∈ δ′)}
∪ {(L,a,−1,L | a ∈ Act∪ {$}}.

Assume Spoiler, playing on A, wins the (weak) simulation game against Duplicator play-

ing on A ′. In the game on B and B ′, Spoiler can move according to a winning strategy in the

original game and thus force a play ending in a position (pm,p′m′) that is immediately winning

in the game on A and A ′, i.e., pm
a−−→ rl but p′m′ 6a−−→ for some action a. In case p′m′ 6a−−→

because δ′∪ δ′0 does not contain a-labelled transitions that originate in p′, the game on B,B ′
continues in the position rl,Lm′, which is clearly winning for Spoiler because she can exhaust

her opponent’s counter and win using finitely many $-moves.

Conversely, if Duplicator wins the (weak) simulation game on A and A ′ this means that

each play is either infinite or ends in a position pm,p′m′ where pm 6a−−→ for all actions a. In

the game on B and B ′, the latter case means that Spoiler has no choice but to make $-moves

indefinitely, which is losing for her.

The above argument justifies the correctness of the construction for strong and weak simu-

lation. Considering trace inclusion, we see that if a word w of length k witnesses non-inclusion

qn * q′n′ w.r.t. A,A ′ then surely w$k+n′+1 witnesses non-inclusion qn * q′n′ w.r.t. B,B ′. To

see this, observe that in this case any path π in B ′ that starts in state q′ and with λ(π) = w must

end in state L. This means any such path takes the initial configuration q′n′ to some configura-

tion Ln′′ where n′′ ≤ n′+ k. Conversely, if qn * q′n′ w.r.t. B,B ′ then, as $ labelled steps only

affect processes with control state L, a shortest witness must be of the form w = w′$k where

w′ does not contain actions $. This means that w′ witnesses qn * q′n′ w.r.t. A,A ′. �

Example 3.11. If we normalize the systems A,A ′ from Example 3.3 on page 20 according

to the construction in the proof of Lemma 3.10, we derive the one-counter nets B and B ′ with

state sets {q,r } and {s,L}, respectively, as depicted below. Notice that the b-labelled transitions

of the original automatonA ′ are not caried over, since the action b ∈ Act′ \Act does not occur

in A.
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Remark 3.12. Note that the construction above does not work for weak trace inclusion j. This

can be seen for the systems A = q
a−−→ q vs. A ′ = q′

τ,+1−−−−−→ q′. It holds that q0 " q′0 because

q′0 6a===⇒. However, in any complete OCA B ′ ⊇ A ′ over alphabet Act ⊇ {a}, the process q′0

is weakly trace universal: Because of the silent, counter increasing self loop from q′ and the

completeness-assumption, there must be a state L such that q′0
a

===⇒ Ln for any action a and

value n ≥ 1. Now any w ∈ Act∗ shorter than n is a weak trace of Ln because B ′ is complete.

We will later show (in Chapter 7) that weak trace inclusion between DOCN and weak trace

universality of DOCAs are in fact undecidable.

Lemma 3.10 allows us to focus on instances of the (weak) simulation or trace inclusion

problems where the given systems are normalized. In particular, we may assume that the

systems are such that both players win “purely”, if at all: Spoiler cannot get stuck and only

loses infinite plays. Moreover, Duplicator can only be stuck (and lose the game) if his counter

equals zero. Therefore, every branch in any winning strategy for Spoiler ends in a position

where Duplicator has counter value 0.

3.2.2 Monotonicity

We already mentioned the undecidability of simulation for OCA. However, simulation is de-

cidable for the subclass of one-counter nets, as we will see in Chapter 4. Ultimately, what

makes the problem decidable for OCN is the monotonicity of steps, derived from vector addi-

tion systems.

A OCN N = (Q,Act,δ) has no zero-testing transitions by definition. This means a step

pm
a−−→ qn in a OCN must be due to some transition (p,a,d,q) ∈ δ with d = n−m. The same

transition then justifies a step p(m + l)
a−−→ q(n + l) for any number l ∈ N. We thus observe that

for all OCN processes pm and l ∈ N,

pm � p(m + l) (3.5)

because Duplicator can mimic the behaviour of Spoiler’s process to win the simulation game.

Seen as a function, this “copycat” strategy is simply the identity. Seen as a tree, it has the

property that every node is of the form [qn,q(n + l)], where q ∈ Q and n ∈ N. Equation (3.5)

implies that on OCNs, all preorders that are coarser than �, the maximal strong simulation, are

monotonic in the following sense.

Lemma 3.13 (Monotonicity). Let pm be a OCN process, s an arbitrary process and v be any

transitive relation that subsumes strong simulation �. Then, for every n ≥ m,
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1. pm 6v s implies pn 6v s, and

2. s v pm implies s v pn.

Proof. By Equation (3.5) we have pm � pn and thus pm v pn. The claim directly follows from

this observation and the transitivity of v. �

Remark 3.14. This holds in particular for v being strong or weak simulation, trace inclusion

or any relation vα that approximates one of them from above.

The following is a direct consequence of Lemma 3.13 that we state here only because we

are particularly interested in games played between two OCN processes.

Corollary 3.15. Let pm and p′m′ be two OCN processes and v be any transitive relation that

subsumes stong simulation. Then pm v p′m′ implies pn v p′n′ for all n ≤ m and m′ ≤ n′.

3.2.3 Colourings

We will use a geometric interpretation of relations between processes of one-counter systems

in terms of colourings of planes, that is due to Jančar (see for instance [27]).

Any relation R between the processes of OCA A with states Q and A ′ with states Q′ is a

subset R ⊆ Q×N×Q′×N. We interpret R as 2-colouring of K = |Q×Q′ | Euclidean planes,

one for each pair of control states (q,q′) ∈ Q ×Q′. Every point (n,n′) ∈ N2 in the plane for

(q,q′) ∈ Q×Q′ is coloured white if qn R q′n′ and black otherwise.

Example 3.16. Consider trace inclusion ⊆ with respect to systems A and A ′ from Exam-

ple 3.11 on page 26. Because A ′ is deterministic and contains no τ-labelled transitions, trace

inclusion ⊆ actually coincides with strong and weak simulation and weak trace inclusion.

The traces of a process qn of A are all words in {a,$}∗ with no more than 2n + 1 many a-

letters. The traces of process sn′ ofA ′ are exactly all words in {a,$}∗ with at most n′ letters a.

We thus get qn ⊆ sn′ iff n′ ≥ 2n + 1. Similarly, we see that rn ⊆ sn′ iff n′ ≥ 2n. The colouring

of ⊆ relative toA,A ′ is shown below for the planes for (q,s) on the left and (r,s) on the right.
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The colourings of the planes for (s,L) and (r,L) are completely black, because qn * Ln′ and

rn * Ln′ for all values n,n′ ∈ N as witnessed by $n′+1.
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3.2.4 Product Graphs

When we consider simulation (and other) games played on LTS induced by one-counter sys-

tems, it is convenient to identify individual plays with paths in the synchronous product of the

two given OCA. In later constructions we will in particular be interested in the effects of cyclic

paths in this product.

Definition 3.17. The product graph of two OCAs A = (Q,Act,δ,δ0) and A ′ = (Q′,Act,δ′,δ′0)

is the finite, edge-labelled graph with nodes V = Q×Q′ and transitions E ⊆ (δ∪ δ0)× (δ′∪ δ′0)

where E contains any pair of transitions of A and A ′ with the same label:

(t,t ′) ∈ E ⇐⇒ λ(t) = λ(t ′). (3.6)

A path in the product is a sequence Π = v0T1v1T2v2 . . . vk−1Tkvk where for all i ≤ k, vi ∈ V

and Ti = (ti ,t ′i ) ∈ E such that π = t1t2 . . . tk and π′ = t ′1t ′2 . . . t
′
k

are paths in A and A ′ respec-

tively. A path is positive if it does not contain any zero-testing transitions, i.e., Ti ∈ (δ× δ′) for

all 1 ≤ i ≤ k.

The path Π is enabled in (pm,p′m′) if both π is enabled in pm and π′ is enabled in p′m′. In

this case we write (pm,p′m′)
Π−−−→ (qn,q′n′) to mean that both pm

π−−→ qn and p′m′
π′−−−→ q′n′.

We write T ∈ Π if T = Ti for some index 1 ≤ i ≤ k. The source, and target of paths in OCA

are lifted to paths in products in a natural way: We define source(Π) = (source(π),source(π′)),

target(Π) = (target(π),target(π′)). We write∆(Π) =∆(π) and Γ(Π) = Γ(π) as well as∆′(Π) =

∆(π′) and Γ′(Π) = Γ(π′) for the effect and guard of Π on the counter ofA andA ′ respectively.

A nonempty path Π is a cycle if source(T1) = target(Tk ). It is a simple cycle or loop if it

is a cycle but none of its proper subpaths is a cycle. A lasso is a path that contains a cycle

while none of its strict prefixes does. That is, a path Π as above is a lasso if there exists l ≤ k

such that target(Tk ) = source(Tl ) and for all 1 ≤ i ≤ j < k, target(Tj ) , source(Ti ). A lasso Π

naturally splits into prefix(Π) = v0T1v1T2 . . .Tl−1vl and cycle(Π) = vlTlvl+1Tl+1 . . .Tkvk .

Example 3.18. The product of the systems B and B ′ from Example 3.11 (page 26) has nodes

V = {(q,s),(r,s),(q,L),(r,L)} and transitions

E = { ((q,a,0,r),(s,a,−1,s)), ((q,a,0,r),(L,a,−1,L)), ((r,a,−1,q),(s,a,−1,s)),

((r,a,−1,q),(L,a,−1,L)), ((q,$,0,q),(s,$,0,s)), ((q,$,0,q),(L,$,−1,L)),

((r,$,0,r),(s,$,0,s)), ((r,$,0,r),(L,$,−1,L)) }

and is drawn below.

q, s r, s

a,0,−1

a,−1,−1
$,0,0 $,0,0 q,L r,L

a,0,−1

a,−1,−1
$,0,−1 $,0,−1



Chapter 3. One-Counter Systems: Basic Results and Notation 30

If we let T1 = ((q,a,0,r),(s,a,−1,s)) and T2 = ((r,a,−1,q),(s,a,−1,s)), then the path Π =

(q,s)T1(r,s)T2(q,s) is a lasso where prefix(Π) is the empty path from (q,s) and cycle(Π)

is Π itself. Π defines paths π = q
a,0−−−−→ r

a,−1−−−−−→ q and π′ = s
a,−1−−−−−→ s

a,−1−−−−−→ s in B and B ′,
respectively. Note that both π and π′ are cycles but only π is a simple cycle. The effects of Π

are ∆(Π) = −1 and ∆′(Π) = −2.
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Strong Simulation

Jančar, Moller, and Sawa [30] showed the undecidability of strong simulation between OCA

processes by reduction from the halting problem of 2-Counter Minsky Machines. We focus on

one-counter nets, for which the decidability of simulation for OCN was established by Abdulla

and Čerāns [2]. Jančar, Moller, and Sawa [29, 30] provided a simplified proof of this result

using a geometric argument. In [27], they showed that for a fixed pair of nets, the maximal

simulation � is in fact semilinear and its description can be effectively computed. Srba [47]

provided a PSPACE lower bound for checking simulation between OCN processes as well as

for the problems OCA � NFA and NFA � OCA by reduction from the emptiness problem for

alternating finite automata over a unary alphabet [21, 31].

Abdulla and Čerāns [2] showed that, above a certain level, the maximal simulation relation

between two OCNs has a regular structure. An important parameter for this structure is the

ratio of the respective counter values of the two given processes. They show the existence of

winning strategies for a player from positions where his counter value exceeds some offset plus

the counter value of his opponent multiplied by some predetermined factor called the quality.

These qualities are different for every pair of control states and are derived from the structure

of the nets.

In [29], this is made explicit by the Belt Theorem, a geometric statement about the colour-

ings of the simulation preorder over a fixed pair of OCN. For a pair of OCN with sets of control

states Q and Q′, we interpret � as 2-colouring of |Q×Q′ | planes of naturals, one for each pair

of control states (q,q′) ∈Q×Q′. A point (n,n′) ∈N2 in the plane for (q,q′) ∈Q×Q′ is coloured

black if qn 6� q′n′ and white otherwise. The Belt Theorem states that each such plane can be

cut into segments by two parallel lines such that the colouring of � in the outer two segments

is constant; see Figure 4.1. Let us make this statement precise.

Definition 4.1. A vector (ρ, ρ′) ∈ R×R is called positive if ρ ≥ 0, ρ′ ≥ 0 and (ρ, ρ′) , (0,0).

Its direction is the set R+ · (ρ, ρ′) = {(r · ρ,r · ρ′) : r ∈ R+} of points that lie on the half-line

defined by (ρ, ρ′) from the origin. For a positive vector (ρ, ρ′) and a number c ∈ N we say that

31
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Duplicator n′

Spoiler n

(ρ, ρ′)

c

�

�

Figure 4.1: A belt with slope ρ/ρ′. The dashed half-line indicates the direction of the vector

(ρ, ρ′).

the point (n,n′) ∈ Z×Z is c-above (ρ, ρ′) if there exists some point (r,r ′) ∈ R+ · (ρ, ρ′) in the

direction of (ρ, ρ′) such that

n < r − c and n′ > r ′+ c. (4.1)

Symmetrically, (n,n′) is c-below (ρ, ρ′) if there is a point (r,r ′) ∈ R+ · (ρ, ρ′) with

n > r + c and n′ < r ′− c. (4.2)

Theorem 4.2 (Belt Theorem). For every two one-counter nets N and N ′ with sets of states Q

and Q′, respectively, there is a bound c ∈ N such that for every pair (q,q′) ∈ Q×Q′ of states

there is a positive vector (ρ, ρ′) such that

1. if (n,n′) is c-above (ρ, ρ′) then qn � q′n′, and

2. if (n,n′) is c-below (ρ, ρ′) then qn 6� q′n′.

Notice that a point (n,n′) ∈N2 is c-below the positive vector (0,1) iff n > c and that no point

in N2 is c-above this vector. In the particular case of a pair of states (p,p′) with pm 6� p′m′ for

all m,m′ ∈ N, the vertical vector (ρ, ρ′) = (0,1) satisfies the claim of the Belt Theorem.

Using this theorem one can easily show that strong simulation is semilinear and therefore

decidable for OCN processes. The non-trivial part of the colouring of � is contained in a

linear belt with fixed width. If one considers sufficiently many cuts (consisting of points on

a horizontal line) through a belt then eventually the complete colouring of two such cuts and

their one-neighbourhood must be the same. Due to the locality of the simulation condition,

we observe that if the colouring of a belt up to the first repetition of a cut does not violate

the simulation condition, then the same is true for the derived colouring that replicates the

part between the two equal cuts indefinitely. One concludes that whenever qn � q′n′ holds,
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this is witnessed by a semilinear simulation which can be described by the finite colouring of a

sufficiently big initial rectangle and some repetitive colouring within each belt. By enumerating

and locally verifying semilinear colourings, one derives a positive semi-decision procedure.

Non-simulation is semi-decidable using the standard approximation approach (cf. Remark 2.12

on page 12).

In [27], it is shown how to approximate the exact semilinear colouring of strong simulation

for a fixed pair of OCN. The argument is again based on the locality of the simulation condition

and the Belt Theorem.

However, the sole existence of certain coefficients c and ratios (ρ, ρ′) in the claim of the

Belt Theorem is not sufficient to derive an upper complexity bound for the strong simulation

problem. Unfortunately, neither the proof of the Belt Theorem in [29] nor the proof of the

corresponding lemmas in [2] directly provide bounds for these coefficients.

In the remainder of this section, we provide a new constructive proof of Theorem 4.2 that

allows us to derive polynomial bounds on the coefficients of all belts. The proof is based on the

analysis of symbolic slope games which are finite games played directly on the control graphs

of the nets. We show (as Lemmas 4.9 and 4.10) that given a sufficiently high excess of counter

values, both players can re-use winning strategies for the slope game also in the simulation

game.

In Section 4.1 we discuss slope games and in Section 4.2 prove the strategy transfer lem-

mas. Section 4.3 contains the proof of the Belt Theorem. In Section 4.4 we formalize the

notion of locality of simulation as a geometric property of the colouring and precisely state

what we mean by locally verifying a semilinear candidate relation. Finally, in Section 4.5, we

show that the largest simulation for two OCN is an effectively constructable semilinear relation

that can be explicitly represented in space exponential in the sizes of the input nets. We derive

a PSPACE decision procedure for OCN � OCN based on this characterization.

4.1 Slope Games

We fix two one-counter nets N = (Q,Act,δ) and N ′ = (Q′,Act,δ′). We are interested in the

strong simulation � relative to these systems. By Lemma 3.10 (page 25), we can assume

without loss of generality thatN ,N ′ are in normal form (Definition 3.9) and it is thus Spoiler’s

objective to exhaust her opponent’s counter. Intuitively, her local goal is to maximize the ratio

n/n′ between the counter values along a play.

Consider the product graph of N and N ′ (Definition 3.17) and let K = |Q ×Q′ | be the

number of states in this product. If we ignore the actual counter values, any play of the simula-

tion game starting in two processes of N and N ′ respectively, describes a path in this product

graph. Moreover, after at most K rounds, a pair of control states is revisited, which means the
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corresponding path in the product is a lasso.

The effects of cycles in the product will play a central role in our further construction. The

intuition is that if a play of a simulation game describes a lasso then both players “agree” on

the chosen cycle. Repeating this cycle will change the ratio of the counter values towards its

effect.

To formalize this intuition, we define a finitary slope game which proceeds in phases. In

each phase, the players alternatingly move on the control graphs of their original nets, ignoring

the counter, and thereby determine the next lasso that occurs. After such a phase, a winning

condition is evaluated that compares the effect of the chosen lasso’s cycle with that of previous

phases. Now either one player immediately wins or the effect of the last cycle was strictly

smaller than all previous ones and the next phase starts. The number of different effects of

simple cycles thus bounds the maximal length of a game.

Definition 4.3. Let (ρ, ρ′) and (α,α′) be two vectors in R×R and consider the clockwise

oriented angle from (ρ, ρ′) to (α,α′) with respect to the origin (0,0). We say that (α,α′) is

behind (ρ, ρ′) if this oriented angle is strictly between 0◦ and 180◦. See Figure 4.2 for an

illustration.

Positive vectors may be naturally ordered: We will call (ρ, ρ′) steeper than (α,α′), written

(α,α′) ≺ (ρ, ρ′), if (α,α′) is behind (ρ, ρ′).

(ρ, ρ′)

(α,α′)

(β, β′)

(δ, δ′)

Figure 4.2: Vectors (α,α′) and (β, β′) are be-

hind (ρ, ρ′), but (δ,δ′) is not.

Duplicator
wins Game

continues

Spoiler wins

(ρ, ρ′)

Figure 4.3: Evaluating the winning condition

in position (π,(ρ, ρ′)) after a phase of the

slope game.

Notice that the property of one vector being behind another only depends on their direc-

tions. The following simple lemma will be useful in the sequel.

Lemma 4.4. Let (ρ, ρ′) be a positive vector and c,m,n ∈ N.

1. If (n,n′) is c-below (ρ, ρ′) then (n,n′) + (α,α′) is c-below (ρ, ρ′) for any vector (α,α′)

which is behind (ρ, ρ′).
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2. If (n,n′) is c-above (ρ, ρ′) then (n,n′) + (α,α′) is c-above (ρ, ρ′) for any vector (α,α′)

which is not behind (ρ, ρ′).

Definition 4.5. A slope game is a strictly alternating two player game played on a pair N ,N ′
of one-counter nets in normal form. The game positions are pairs (π,(ρ, ρ′)), where π is an

acyclic path in the product graph of N and N ′, and (ρ, ρ′) is a positive vector called slope.

The game is divided into phases, each starting with a path π = (q0,q′0) of length 0. Until a

phase ends, the game proceeds in rounds like a simulation game, but the players pick transition

rules instead of transitions: in a position (π,(ρ, ρ′)) where π ends in states (q,q′), Spoiler

chooses a transition rule t = (q
a,d−−−−→ p), then Duplicator responds with a transition rule t ′ =

(q′
a,d−−−−→ p′). If the extended path π′ = π(t,t ′) is still not a lasso, the next round continues

from the updated position (π′,(ρ, ρ′)); otherwise the phase ends with outcome (π′,(ρ, ρ′)).

The slope (ρ, ρ′) does not restrict the possible moves of either player, nor changes during a

phase. We thus speak of the slope of a phase.

If a round ends in position (π,(ρ, ρ′)) where π is a lasso, then the winning condition is eval-

uated. We distinguish three non-intersecting cases depending on how the effect ∆(cycle(π)) =

(α,α′) of the lasso’s cycle relates to (ρ, ρ′):

1. If (α,α′) is not behind (ρ, ρ′), Duplicator wins immediately.

2. If (α,α′) is behind (ρ, ρ′) but not positive, Spoiler wins immediately.

3. If (α,α′) is behind (ρ, ρ′) and positive, the game continues with a new phase from po-

sition (π′,(α,α′)), where π′ = target(π) is the path of length 0 consisting of the pair of

ending states of π.

Figure 4.3 on page 34 illustrates the winning condition. Note that if there is no immediate

winner it is guaranteed that (α,α′) is a positive vector that is behind the slope (ρ, ρ′) of the last

phase. The number of different positive vectors that derive from the effects of simple cycles

thus bounds the maximal length of a game.

The connection between the slope and simulation games is that the outcome of a slope

game from initial position ((q,q′),(ρ, ρ′)) determines how the initial slope (ρ, ρ′) relates to the

belt in the plane for (q,q′) in the simulation relation. Roughly speaking, if (ρ, ρ′) is less steep

than the belt then Spoiler wins; if (ρ, ρ′) is steeper then Duplicator wins.

Consider a simulation game in which the ratio n/n′ of the counter values of Spoiler and

Duplicator is the same as the ratio ρ/ρ′, i.e., suppose (n,n′) is contained in the direction of

(ρ, ρ′). Suppose also that the values (n,n′) are sufficiently large. By monotonicity, we know

that the steeper the slope (ρ, ρ′), the better for Duplicator. Hence if the effect (α,α′) of some

cycle is behind (ρ, ρ′) and positive, then it is beneficial for Spoiler to repeat this cycle. With
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more and more repetitions, the ratio of the counter values will get arbitrarily close to (α,α′).

On the other hand, if (α,α′) is behind (ρ, ρ′) but not positive then Spoiler wins by repeating

the cycle until the Duplicator’s counter decreases to 0. Finally, if the effect of the cycle is not

behind (ρ, ρ′) then repeating this cycle leads to Duplicator’s win.

The next lemma follows from the observation that in slope games, the slope of a phase

must be strictly less steep than those of all previous phases.

Lemma 4.6. For a fixed pair N ,N ′ of OCNs in normal form,

1. any slope game ends after at most (K + 1)2 phases, and

2. slope games are effectively solvable in PSPACE.

Proof. After every phase, the slope (ρ, ρ′) is equal to the effect of a simple cycle, which must

be a positive vector. Thus the absolute values of both numbers ρ and ρ′ are bounded by K =

|Q×Q′ |. It follows that the total number of different possible values for (ρ, ρ′), and therefore

the maximal number of phases played, is at most (K + 1)2. Point 2 is a direct consequence as

one can find and verify winning strategies by an exhaustive search. �

Definition 4.7. Consider all the non-zero effects (α,α′) of all simple cycles together with their

opposite vectors (−α,−α′) and denote the set of all these vectors by V . Call two positive

vectors (ρ, ρ′) and (σ,σ′) equivalent if for all (α,α′) ∈ V ,

(α,α′) is behind (ρ, ρ′) ⇐⇒ (α,α′) is behind (σ,σ′). (4.3)

In other words, equivalent vectors lie in the same angle determined by a pair of vectors

from V that are neighbours angle-wise. We claim that equivalent slopes have the same winner

in the slope game:

Lemma 4.8. If (ρ, ρ′) and (σ,σ′) are equivalent then the same player wins the slope game

from ((q,q′),(ρ, ρ′)) and ((q,q′),(σ,σ′)).

Proof. A winning strategy in the slope game from ((q,q′),(ρ, ρ′)) may be literally used in the

slope game from ((q,q′),(σ,σ′)). This holds because the assumption that (ρ, ρ′) and (σ,σ′)

are equivalent implies that all possible outcomes of the initial phase of the slope game are

evaluated equally. �

4.2 Strategy Transfer

Consider one phase of a slope game, starting from a position (π,(ρ, ρ′)). The phase ends with

a lasso whose cycle effect (α,α′) satisfies exactly one of three conditions, as examined by

the evaluating function. Accordingly, depending on its initial position, every phase falls into

exactly one of three disjoint cases:
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1. Spoiler has a strategy to win the slope game immediately,

2. Duplicator has a strategy to win the slope game immediately or

3. neither Spoiler nor Duplicator have a strategy to win immediately.

In case 1. or 2. we call the phase final, and in case 3. we call it non-final. The non-final phases

are the most interesting ones as there, both Spoiler and Duplicator have a strategy to either win

immediately or continue the slope game, i.e., to avoid an immediate loss.

Both in final and non-final phases, a strategy for Spoiler or Duplicator is a tree as described

below. For the definition of strategy trees we need to consider not only Spoiler’s positions

(π,(ρ, ρ′)) but also Duplicator’s positions, the intermediate positions within a single round.

These intermediate positions may be modelled as triples (π,(ρ, ρ′),t) where t is a transition

rule in N from the last state of π. Observe that the bipartite directed graph, with positions of

a phase as vertices and edges determined by the single-move relation, is actually a tree, call

it T . Thus a Spoiler-strategy, i.e. a subgraph of T containing exactly one successor of every

Spoiler’s position and all successors of every Duplicator’s position, is a tree as well; and so is

any strategy for Duplicator.

Such a strategy (tree) in the slope game naturally splits into segments, each segment being

a strategy (tree) in one phase. The segments themselves are also arranged into a tree, which

we call a segment tree. Regardless of which player wins a slope game, according to the above

observations, this player’s winning strategy contains segments of two kinds:

• non-leaf segments are strategies to either win immediately or continue the Slope Game

(these are strategies for non-final phases);

• leaf segments are strategies to win the slope game immediately (these are strategies in

final phases).

By the segment depth of a strategy we mean the depth of its segment tree. By point 1 of

Lemma 4.6 (page 36), we know that a slope game ends after at most dmax = (K + 1)2 phases.

Consequently, the segment depths of strategies are at most dmax as well.

Let C be the maximal length of a simple cycle in the product graph, i.e., the maximal length

of any acyclic path plus 1. We claim that this value is sufficient for the claim of Theorem 4.2.

In particular, the following two Lemmas 4.9 and 4.10 state that if a player wins the slope game,

an excess of counter value of C is sufficient to be able to safely “replay” a winning strategy in

the simulation game.

Lemma 4.9. If Spoiler has a winning strategy in the slope game from position ((p,p′),(ρ, ρ′))

then Spoiler wins the simulation game from every position (pm,p′m′) which is C-below (ρ, ρ′).
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Proof. A position in the slope game contains a positive vector (ρ, ρ′), while a position in the

simulation game contains a pair (m,m′) ∈ N×N of counter values, that can also be interpreted

as a positive vector. The crucial idea of the proof is to consider the segments of the supposed

winning strategy in the slope game separately. Each such segment is a strategy for one phase

and as such, describes how to move in the simulation game until the next lasso is observed.

Afterwards, Spoiler can chose to continue playing according to the next lower segment, or

“roll back” the cycle and continue playing according to the current segment. By the rules of

the slope game we observe that after sufficiently many such rollbacks the difference between

the ratio m/m′ of the actual counters and the slope of the next lower segment is negligible, i.e.,

these vectors are equivalent in the sense of Definition 4.7 on page 36. Then, Spoiler can safely

continue to play according to the next lower segment.

To safely play such a strategy in the simulation game, Spoiler needs to ensure that her own

counter does not decrease too much as that could restrict her ability to move. We observe

however, that any partial play that “stays in some segment” can be decomposed into a single

acyclic prefix plus a number of cycles. Such a play therefore preserves the invariant that all

visited points are below the slope of the phase. In particular, this means that Spoiler’s counter

is always ≥ 0.

Formally, the proof of Lemma 4.9 proceeds by induction on the segment depth d of the

assumed winning strategy in the slope game.

Case d = 1. This means that Spoiler has a strategy to win the slope game in the first phase,

and hence to enforce that the effect of all cycles is behind (ρ, ρ′) but not positive. Denote this

strategy by σ. In the simulation game Spoiler will re-use this strategy as we describe below. At

every position (qn,q′n′) in the simulation game Spoiler keeps a record of the corresponding

position (π,(ρ, ρ′)) in the slope game enforcing the invariant that (q,q′) are the ending states

of the path π.

From the initial position (pm,p′m′) with corresponding position ((p,p′),(ρ, ρ′)), Spoiler

starts playing the simulation game according to σ, until the path in the corresponding position

of the slope game say π1, describes a lasso (this must happen after at most C rounds). Thus π1

splits into:

π1 = α1 β1 (4.4)

where the suffix β1 is a cycle. Let (a1,a′1) = (∆(α1),∆′(α1)) and (b1,b′1) = (∆(β),∆′(β1)) be

the effects of α1 and β1, respectively. The current values of counters are clearly

m + a1 + b1 and m′+ a′1 + b′1 (4.5)

assuming that the play did not end by now with Spoiler’s win. As the length of path π1 is

at most C and (m,m′) is assumed to be C-below (ρ, ρ′), we know that all positions visited
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by now in the simulation game were below (ρ, ρ′). In particular, Spoiler’s counter value was

surely non-negative by now.

Now Spoiler “rolls back” the cycle β1, namely changes the corresponding position in the

slope game from (π1,(ρ, ρ′)) to (α1,(ρ, ρ′)) and continues playing according to σ. The play

continues until Spoiler wins or the path in the corresponding position of the slope game say

π2, is a lasso again. Again, we split the path into an acyclic prefix and a cycle:

π2 = α2 β2. (4.6)

Denote the respective effects by (a2,a′2) and (b2,b′2). A crucial but simple observation is that,

assuming that the play did not end by now with Spoiler’s win, the current values of counters

are now

m + a2 + b1 + b2 and m′+ a′2 + b′1 + b′2, (4.7)

i.e. the effect (a1,a′1) of the prefix α1 of the previous lasso does not contribute any more. As

(b1,b′1) is behind (ρ, ρ′) we may apply Lemma 4.4 (page 34) to (b1,b′1) with c = 0 in order

to deduce, similarly as before, that all positions by now were below (ρ, ρ′). Now Spoiler

rolls back β2 by establishing (α2,(ρ, ρ′)) as the new corresponding position in the slope game.

Continuing in this way, after k rollbacks the counter values are:

n = m + ak + (b1 + b2 + . . .+ bk−1) + bk and

n′ = m′+ a′k + (b′1 + b′2 + . . .+ b′k−1) + b′k ,
(4.8)

assuming that Spoiler did not win earlier. All the effect-vectors (bi ,b′i ) and thus also the sum

(b1 + b2 + . . . + bk−1,b′1 + b′2 + . . .+ b′k−1) (4.9)

are behind (ρ, ρ′), hence similarly as before all positions by now have been below (ρ, ρ′), by

Lemma 4.4 applied to the vector (4.9) above. This in particular means that Spoiler’s counter

remains non-negative. However, as by assumption all observed cycles come from a final seg-

ment in her slope game strategy, the vector (4.9) cannot be positive for any k. Thus, every

rollback strictly decreases Duplicator’s counter value. We conclude that after sufficiently many

rollbacks, Duplicator’s counter must drop below 0 and hence Spoiler eventually wins.

Case d > 1. By assumption, Spoiler has a strategy with segment depth d to win the slope

game. As before, we prescribe a strategy for her in the simulation game that will re-use her

slope game strategy using rollbacks.

Spoiler plays according to the initial segment of this strategy, that allows her to win or at

least guarantee that the effect of the first observed lasso’s cycle is less steep than (ρ, ρ′). After

some rollbacks, the counter values will be of the form:

n = m + a + (b1 + . . .+ bl ) + (c1 + . . .+ ck ) and

n′ = m′+ a′+ (b′1 + . . .+ b′l ) + (c′1 + . . .+ c′k ),
(4.10)
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where the absolute values of a and a′ are at most C, the vectors (ci ,c′i ) are behind (ρ, ρ′) and

positive, and the vectors (bi ,b′i ) are behind (ρ, ρ′) and non-positive. We apply Lemma 4.4 and

obtain that all the positions so far have been below (ρ, ρ′).

In general Spoiler has no power to choose whether the effect of the cycle at the next rollback

is positive or not. However, if from some point on all effects are non-positive then Duplicator’s

counter eventually drops below 0 and Spoiler wins. Thus w.l.o.g. we focus on positions in the

simulation game immediately after a rollback of a cycle with positive effect. Using the notation

from (4.10), suppose (ck ,c′k ) is the effect of the last rolled back cycle. We need the following

claim in order to apply the induction assumption:

Claim 1. After sufficiently many rollbacks the vector (n,n′) of counter values in the simulation

game is C-below some vector (γ,γ′) which is equivalent to the positive effect (ck ,c′k ) of the

last rolled back cycle.

Proof. By an easy geometric argument. Ignore vectors (bi ,b′i ) as they preserve being C-below

all positive vectors less steep than (ρ, ρ′). If Duplicator wants to falsify the condition, he

would need to increase the steepness of the rolled back cycle infinitely often, which is clearly

impossible as there are only finitely many simple cycles. �

Let (qn,q′n′) be a position of the simulation game satisfying the claim. We know that

Spoiler has a winning strategy in the slope game from ((q,q′),(ck ,c′k )), of segment depth at

most d − 1. Because (ck ,c′k ) is equivalent to (γ,γ′), we can apply Lemma 4.8 (page 36) and

know that the same strategy is winning in the slope game from ((q,q′),(γ,γ′)). By the in-

duction assumption we conclude that Spoiler wins the simulation game from (qn,q′n′), which

completes the proof of Lemma 4.9. �

Lemma 4.10. Suppose Duplicator has a winning strategy in the slope game from a position

((p,p′),(ρ, ρ′)). Then Duplicator wins the simulation game from every position (pm,p′m′)

which is C-above (ρ, ρ′).

Proof. We will again build on the concept of rollbacks. There are two cases, depending on the

segment height d of Duplicator’s supposed winning strategy in the slope game.

Case d = 1. Duplicator wins the slope game immediately after the first phase. Then he

can enforce that the effects (∆(β),∆′(β)) of the cycles β of all observed lassos are not behind

(ρ, ρ′). Let π be an arbitrary play of the simulation game, in which Duplicator uses rollbacks to

play according to the segment of this slope game strategy. The effects of π can be decomposed

as

∆(π) = ∆(α) +∆(β1 β2 . . . βk )

∆′(π) = ∆′(α) +∆′(β1 β2 . . . βk )
(4.11)
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where α is some acyclic path and βi are simple cycles with effect-vector not behind (ρ, ρ′).

Because the initial pair of counter values (m,m′) is C-above (ρ, ρ′) and |α | ≤ C, we know that

(m,m′) + (∆(α),∆′(α)) is above (ρ, ρ′). Moreover, as all the effects of all βi are not behind

(ρ, ρ′), their sum
∑

i≤k (∆(βi ),∆′(βi )) is also not behind (ρ, ρ′). Using part 2 of Lemma 4.4

we get that (n,n′) = (m,m′) + (∆(π),∆′(π)) is still above (ρ, ρ′). This in particular means that

Duplicator’s counter value n′ remains non-negative. Since π was arbitrary, this shows that

Duplicator can prevent his counter from ever decreasing below 0 and thus enforce an infinite

play and win.

Case d > 1. We prescribe a winning strategy for Duplicator in the simulation game that

is based on the assumed winning strategy σ in the slope game. Intuitively, Duplicator plays

according to σ until a leaf-segment is reached and then continues to play according to this

segment using rollbacks. Since dmax = (K + 1)2 bounds the maximal number of segments in σ

and every path in a segment is no longer than C, we know that an offset of dmax ·C is sufficient

to ensure that some position in a bottom segment can be reached. From then on, all visited

points must be above the slope of this segment, as in the previous case.

We can accelerate this strategy, allowing forward jumps: Duplicator starts to play according

to the initial segment ofσ at height d. At any given position in a segment at height h, Duplicator

first checks if the same pair of control states appears in a segment at a lower height h′ < h. If

such a position exists, Duplicator continues to play from there, otherwise he plays as prescribed

by the current position. See Figure 4.4 on page 42 for an illustration.

If Duplicator plays as described above, he guarantees that no control states are repeated

unless he is already in a leaf segment. Let π be some play of the simulation game in which

Duplicator plays as above. This play must have the form π = γδ, where γ is some short acyclic

prefix that contains all moves played according to non-leaf segments and δ is an unfolding of

some leaf segment T .

Because Duplicator uses forward jumps as soon as possible, we know that no pair of states

visited in the prefix γ can be contained in T . Moreover, as T itself is a winning strategy in the

slope game for some slope (ϕ,ϕ′), we know that the effect of the suffix δ, and therefore also

that of the whole path π, can be decomposed as in Equation (4.11), where again, α is some

acyclic path and the effects of all cycles βi (and their sum) are not behind (ϕ,ϕ′). We can now

make the same estimation as in the previous case.

The initial point of counter values (m,m′) is C-above (ρ, ρ′) and thus also C-above (ϕ,ϕ′)

because (ϕ,ϕ′) ≺ (ρ, ρ′). Since α is acyclic it cannot be longer than C, which means that

(m,m′) + (∆(α),∆′(α)) is above (ϕ,ϕ′). Knowing that (∆(β1 β2 . . . βk ),∆′(β1 β2 . . . βk )) is not

behind (ϕ,ϕ′), we can one more time apply part 2 of Lemma 4.4 and derive that (n,n′) =

(m,m′) + (∆(π),∆′(π)) is still above (ϕ,ϕ′) and therefore that Duplicator’s counter value n′
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Figure 4.4: A strategy for Duplicator in the slope game is turned into a strategy in the simulation

game by inserting forward jumps (red) and rollbacks (green). The green, yellow and red seg-

ments have height 1, the grey and blue segments have height 1 and 2 respectively. Nodes with

the same labeling indicate positions with the same pair of control states.

remained non-negative.

Just as in the first case, we observe that the play π was arbitrarily chosen (by Spoiler). The

prescribed strategy therefore allows Duplicator to maintain a non-negative counter value and

hence to ensure an infinite play. �

4.3 Proof of the Belt Theorem

Assume a pair N ,N ′ of OCNs in normal form and fix the value C ∈ N from Lemmas 4.9

and 4.10. It is the maximal length of a simple cycle in the product graph of the nets N and

N ′. For two states q ∈ Q and q′ ∈ Q′ we will determine the ratio (ρ, ρ′) that, together with C,

characterizes the belt of the plane (q,q′). First observe the following monotonicity property of

the slope game.

Lemma 4.11. If Spoiler wins the slope game from a position ((q,q′),(ρ, ρ′)) and (α,α′) ≺
(ρ, ρ′) then Spoiler also wins the slope game from ((q,q′),(α,α′)).

Proof. Assume that Spoiler wins from the position ((q,q′),(ρ, ρ′)) while Duplicator wins from

((q,q′),(α,α′)), for some slope (α,α′) ≺ (ρ, ρ′). This means that a point (n,n′) ∈ N×N exists

which is both C-above (α,α′) and C-below (ρ, ρ′). Applying both Lemmas 4.9 and 4.10
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immediately yields a contradiction. �

Equivalently, if Duplicator wins the slope game from ((q,q′),(ρ, ρ′)) and (α,α′) is steeper

than (ρ, ρ′) then he also wins from ((q,q′),(α,α′)). We conclude that for every pair (q,q′) of

states, there is a boundary slope (β, β′) ∈ R×R such that

1. Spoiler wins the slope game from ((q,q′),(α,α′)) for every (α,α′) ≺ (β, β′);

2. Duplicator wins the slope game from ((q,q′),(α,α′)) for every (α,α′) � (β, β′).

Note that we claim nothing about the winner from the position ((q,q′),(β, β′)) itself. Ap-

plying Lemmas 4.9 and 4.10 we see that this boundary slope (β, β′) satisfies the claims 1 and 2

of Theorem 4.2. Indeed, consider a pair (n,n′) ∈ N×N of counter values. If (n,n′) is C-below

(β, β′), then there is certainly a vector (α,α′) less steep than (β, β′) such that (n,n′) is C-below

(α,α′). By point 1 above, Spoiler wins the slope game from ((q,q′),(α,α′)). By Lemma 4.9,

Spoiler wins the simulation game from (qn,q′n′). Analogously, one can use point 2 above

together with Lemma 4.10 to show the second condition of Theorem 4.2. This concludes the

proof of the Belt Theorem. �

We recall Definition 4.7 (page 36) of equivalent vectors, that is based on the set V , of ratios

of simple cycles and their opposite vectors. Two vectors are equivalent if they are behind the

same vectors from V . Lemma 4.8 states that the outcome of a slope game from a fixed pair of

states is the same for equivalent initial slopes.

By Lemma 4.8, a boundary slope (β, β′) as used in the proof above must correspond to

a slope contained in V . Indeed, otherwise (β, β′) must be between two vectors (γ,γ′) and

(δ,δ′) of V and there is some (α,α′) satisfying (γ,γ′) ≺ (β, β′) ≺ (α,α′) ≺ (δ,δ′), and which

is equivalent to (γ,γ′). By Lemma 4.8, the outcome of a slope game for (γ,γ′) or (α,α′) is the

same, contradicting that (β, β′) is a boundary.

We conclude that the slope (β, β′) of any belt must be the effect of a simple cycle of the

product graph. Such paths are no longer than C and because along a path of length C the counter

values cannot change by more than C, we get that β, β′ ≤ C as well. Below we explicitly state

the stronger version of the Belt Theorem that includes the derived bounds for future reference.

Theorem 4.12 (Belt Theorem). LetN andN ′ be two OCNs in normal form, with sets of states

Q and Q′ respectively and let C ≤ |Q×Q′ | ∈ N be the maximal length of an acyclic path in the

product graph of N and N ′. Then for every pair (q,q′) ∈ Q×Q′ of states there is a positive

vector (ρ, ρ′) such that

1. if (n,n′) is C-above (ρ, ρ′) then qn � q′n′,

2. if (n,n′) is C-below (ρ, ρ′) then qn 6� q′n′,

3. ρ, ρ′ ≤ C.
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4.4 Locality

We mentioned before that simulation enjoys a certain locality property due to the simulation

condition. Intuitively, the outcomes of all possible successor positions after one round of the

simulation game determine the outcome of the game. For OCAs, this can be stated as a precise

geometric property. Whether or not one process simulates another is completely determined

by their control states and the colouring of its surrounding pairs.

Definition 4.13. Let R ⊆ (Q×N×Q′×N) be some relation on the configurations of two OCA

with statesets Q and Q′ respectively. The R-neighbourhood of (m,m′) ∈ N2 is the function

NH (m,m′)
R : (Q×Q′× {−1,0,1} × {−1,0,1})→ {0,1,⊥} with

NH (m,m′)
R (q,q′,l,l ′) =




1, if (qm + l,q′m′+ l ′) ∈ R

0, if (qm + l,q′m′+ l ′) ∈ (Q×N×Q′×N) \ R

⊥, if (qm + l,q′m′+ l ′) < (Q×N×Q′×N)

(4.12)

The R-neighbourhood of (m,m′) determines the colouring of R on all points surrounding

(m,m′). Observe that there are at most 3 |Q×Q′ | ·3·3 different neighbourhoods. The ⊥-values

ensure that if two points (m,m′) and (n,n′) in N2 have the same neighbourhood, then they have

the same relative position to the axes, i.e., m = 0 ⇐⇒ n = 0 and m′ = 0 ⇐⇒ n′ = 0.

We can now precisely state what we mean with the locality of simulation on OCA.

Lemma 4.14 (Locality). Consider a pair (p,p′) ∈ (Q×Q′) of states and naturals m,m′,n,n′ ∈
N. If the �-neighbourhoods of (m,m′) and (n,n′) agree on every (q,q′,l,l ′) , (p,p′,0,0), then

they also agree on (p,p′,0,0), i.e., pm � p′m′ ⇐⇒ pn � p′n′.

Proof. Assume otherwise and let pm � p′m′ but pn 6� p′n′ and consider an optimal initial

winning Spoiler-move pn
a−−→ qn + l in the simulation game from (pn,p′n′). For the move

pm
a−−→ qm + l in the game from (pm,p′m′), Duplicator has a response p′m′

a−−→ q′m′ + l ′

such that qm + l � q′m′ + l ′. Due to the optimality of Spoiler’s initial move we know that

(q,q′,l,l ′) = (p,p′,0,0) and therefore that NH (m,m′)
� (q,q′,l,l ′) = 1 = NH (n,n′)

� (q,q′,l,l ′). In

particular, this means that qn + l � q′n′+ l ′. Using the analogous response p′n′
a−−→ q′n′+ l ′

to Spoiler’s initial move in the game from (pn,p′n′), Duplicator can ensure that the game

continues from position (qn + l,q′n′+ l), which is winning for him.

We contradicted the existence of an optimal initial Spoiler-move in the simulation game

from (pn,p′n′). This shows that indeed pn � p′n′ holds, which contradicts our assumption. �

Since the simulation condition for a pair of processes depends only on their neighbourhood,

we can locally verify that some finite colouring is not self-contradictory. Moreover, if a relation
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on the configurations of two OCA is not a simulation, then this is witnessed locally by some

inconsistent neighbourhood.

Lemma 4.15. A relation R ⊆ (Q×N×Q′×N) is a simulation if for every (pm,p′m′) ∈ R there

exists (n,n′) ∈ N2 with NH (m,m′)
R = NH (n,n′)

� .

Proof. The condition immediately implies that R satisfies the simulation condition. �

4.5 Upper Bounds

As before, we fix two OCN N and N ′ in normal form, with sets of control states Q and Q′,

respectively and let C ≤ |Q×Q′ | be the maximal length of an acyclic path in their product, as

used in Theorem 4.12.

For convenience, we will write (pm,p′m′) + k · (n,n′) to mean (p(m + k · n),p′(m′+ k · n′))

for any (p,p′) ∈ (Q×Q′) and m,m′,n,n′,k ∈ N. Similarly, for a relation R ⊆ (Q×N×Q′×N)

we write R + k · (n,n′) = {(pm,p′m′) + k · (n,n′) | (pm,p′m′) ∈ R}.

Definition 4.16. The slope of a pair (p,p′) ∈ Q ×Q′ of control states, is the positive vector

slope(p,p′) = (ρ, ρ′) satisfying the claim of the Belt Theorem. The belt with slope (ρ, ρ′) is

the set of points (n,n′) ∈ N2 which are neither C-above nor C-below (ρ, ρ′). The extended belt

is the relation belt(p,p′) ⊆ (Q×N×Q′×N) that contains (qn,q′n′) iff (n,n′) is in the belt with

slope slope(p,p′).

Recall that simulation preorder on the configurations with control states p and p′ is trivial

outside of belt(p,p′): it contains all pairs (pm,p′m′) s.t. (m,m′) is C-above slope(p,p′), and

contains no pairs (pm,p′m′) where (m,m′) is C-below slope(p,p′). We show (Lemma 4.18)

that the non-trivial part

�p,p′ = � ∩ belt(p,p′)

is repetitive in the sense defined in Definition 4.17 below. Essentially, one can cut through

the belt at two levels n1,n2 ∈ N such that the colouring of belt(p,p′) above level n2 repeats

the (finite) colouring between n1 and n2 indefinitely. This implies that �p,p′ and hence also

� are semilinear, and each �p,p′ can be represented by the finite colouring up to level n2.

This is already enough to decide strong simulation, and to compute a representation of the

maximal simulation, since one can enumerate candidate relations R ⊆ (Q×N×Q′×N) that are

represented in this way and check that they satisfy the simulation condition.

Due to the polynomial bounds on the width and the slopes of belts provided by Theo-

rem 4.12, we can further bound the cut-levels n1,n2 and thus the representation of periodic

candidate relations, exponentially in the size of the input nets. The crucial idea for deciding
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OCN � OCN in PSPACE is that one can stepwise guess and locally verify the colouring of a

(extended) belt by shifting a polynomially bounded window along the belt.

By Theorem 4.12, we know that coefficients ρ and ρ′ of any slope slope(p,p′) = (ρ, ρ′) are

bounded by C. Consequently, there are at most C2 different slopes and belts and apart from

vertical and horizontal slopes (those with ρ = 0 or ρ′ = 0 respectively), the maximally and

minimally steep (cf. Definition 4.3 on page 34) possible slopes are (1,C) and (C,1) respectively.

We can therefore find polynomially bounded l0,l ′0 ∈ N such that belts are pairwise disjoint

outside the initial rectangle L0 between corners (0,0) and (l0,l ′0). For technical convenience

we assume w.l.o.g. that only horizontal belts (those with slope(p,p′) = (n,0) for some n) cross

the vertical border of L0. This can always be achieved by extending L0, if necessary.

By our definition of belts, shifting a point along the vector slope(p,p′) preserves member-

ship in belt(p,p′), i.e., for every (qn,q′n′) ∈ (Q×N×Q′×N),

(qn,q′n′) ∈ belt(p,p′) ⇐⇒ (qn,q′n′) + k · slope(p,p′) ∈ belt(p,p′). (4.13)

This is why we restrict our focus to multiples of vectors slope(p,p′).

Definition 4.17. Fix a pair (p,p′) ∈ Q ×Q′ and j,k ∈ N and let l0,l ′0 ∈ N define the initial

rectangle L0 discussed above. We write rect(p,p′, j) for the rectangle between corners (0,0)

and (l0,l ′0) + j · slope(p,p′). A subset R ⊆ belt(p,p′) is called ( j,k)-ultimately-periodic if for

all (n,n′) ∈ N2 \rect(p,p′, j) and every (q,q′) ∈ (Q×Q′),

(qn,q′n′) ∈ R ⇐⇒ (qn,q′n′) + k · slope(p,p′) ∈ R. (4.14)

One can represent a ( j,k)-ultimately-periodic set R by the two numbers n′1 = l ′0 + j · ρ′ and

n′2 = n′1 + k · ρ′ and two finite sets

{(qn,q′n′) ∈ R | n′ ≤ n′1} and {(qn,q′n′) ∈ R | n′1 ≤ n′ < n′2}. (4.15)

This in particular means that R is semilinear, where the subsets above form the basis and period

respectively. We continue to show that the non-trivial part �p,p′ of the colouring of simulation

is such a ( j,k)-ultimately periodic set for every pair (p,p′) of states.

Lemma 4.18. For every pair (p,p′) ∈ Q ×Q′, the set �p,p′ is ( j,k)-ultimately periodic for

some j,k ∈ N exponentially bounded in C.

Proof. Fix states p,p′ and let (ρ, ρ′) = slope(p,p′). W.l.o.g. suppose that slope(p,p′) is positive

and belt(p,p′) therefore intersects the horizontal border of L0 (if the belt is horizontal and

intersects the vertical border of L0 the proof is analogous).

By a cross-section at level n′ we mean the set of all points in belt(p,p′) on a horizontal line

at that level, i.e., {(qn,qn′) ∈ belt(p,p′) | n ∈ N}. We say that two cross-sections s1 and s2 are

equal if one of them is obtained by a shift of the other by a multiple of slope(p,p′) = (ρ, ρ′)
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Figure 4.5: The initial rectangle L0 (blue) and two belts. Outside L0, the colouring of a belt

consists of some exponentially bounded block (red), and another exponentially bounded non-

trivial block (green) which repeats ad infinitum along the rest of the belt.

and moreover, the �-neighbourhoods of any two corresponding points are the same. Formally,

we require that for some k ∈ N,

1. s2 = s1 + k · (ρ, ρ′)

2. NH (m,m′)
� = NH (n,n′)

� for any (qn,q′n′) ∈ s1 and (m,m′) = (n,n′) + k · slope(p,p′).

Notice that there are at most 2K ·W pairwise different colourings for any cross-section, where

K = |Q ×Q′ | and W is the maximal width of a belt. By our definition of neighbourhoods,

two cross-sections are equal only if their colouring agrees and the same is true for the (pairs

of) cross-sections directly above and below. This means that in total, there are no more than

ρ′ ·2K ·W ·3 pairwise different cross-sections for a given belt.

We choose two equal cross-sections at levels n′1 and n′2 respectively, such that n′1 = l ′0 + j · ρ′
and n′2 = n′1 + k · ρ′ for some j,k ∈ N. That is, we demand that l ′0 < n′1 < n′2 and the respective

offsets are divisible by the vertical offset ρ′ of slope(p,p′). By our observation above it is safe

to assume that both j and k are bounded exponentially in C.

Based on n′1 and n′2, we decompose �p,p′ into finite segments. To this end, first extend n′1
and n′2 to an infinite progression n′1,n

′
2,n
′
3,. . . where n′

i+1 = n′i + k · ρ′ for i ≥ 1. Now let A be

the restriction of �p,p′ to the area below n′1 and for any i ≥ 1, let Pi be the restriction of �p,p′
to the area between n′i and ni+1 (see Figure 4.5):

A = {(qn,qn′) ∈ �p,p′ : n′ < n′1} Pi = {(qn,qn′) ∈ �p,p′ : n′i ≤ n′ < n′i+1}.

We now show that

�p,p′ = A ∪ P∗1 , where P∗1 =
⋃
i∈N

(P1 + i · k · (ρ, ρ′)). (4.16)



Chapter 4. Strong Simulation 48

That is, apart from the initial fragment A, the colouring of �p,p′ is actually an infinite repetition

of a finite colouring P1 along the belt: Pi+1 = Pi + k · slope(p,p′). This implies the claim of the

lemma, since A∪P∗1 is clearly ( j,k)-ultimately periodic. The proof of Equation (4.16) strongly

relies on the locality of the simulation condition (Lemma 4.15 on page 45).

For the first inclusion (A ∪ P∗1 ⊆ �p,p′) we show that the relation

R = (� \ �p,p′) ∪ ( A∪ P∗1 ) (4.17)

obtained from � by replacing �p,p′ with A ∪ P∗1 , is a simulation. Recall that n′1 and n′2 were

chosen sufficiently high (above the initial rectangle L0) such that any two different belts are

disjoint. This means that the R-neighbourhood of any point in Pi for some i > 1 is the same

as the R-neighbourhood and hence also the �-neighbourhood of the corresponding point in P1.

By Lemma 4.15, this means that R is a simulation and since � is the largest simulation, the

claimed inclusion follows.

It remains to show the other inclusion (A ∪ P∗1 ⊇ �p,p′). Assume the contrary. We already

know that A ∪ P∗1 ⊆ �p,p′, so we must have P1 + i · k · slope(p,p′) ( Pi for some i > 1. Since

Pi ⊆ �p,p′ is part of the colouring of simulation �, it is clearly locally consistent. This means

if we replace P1 with the colouring according to Pi , we again derive a consistent colouring.

Formally, we let P = Pi · i · (−k) · slope(p,p′) and replace �p,p′ with A∪P∗ in the colouring of

�. Similar to the first case, the resulting relation

(� \ �p,p′) ∪ (A∪P∗) (4.18)

is a simulation due to the locality of the simulation condition. This implies that P1 ( P ⊆ �p,p′,
which means that there exists some point (qn,q′n′) ∈ �p,p′ \ P1 with n′1 ≤ n′ < n′2. This

contradicts the definition of P1 as the set of points (qn,q′n′) in �p,p′ with n′1 ≤ n′ < n′2. �

Lemma 4.18 implies that the largest strong simulation � is not only semilinear, but the finite

union of ( j,k)-ultimately periodic sets, for exponentially bounded j,k. It therefore admits an

EXPSPACE representation that consists, for every pair of states (p,p′), of:

• a polynomially bounded vector (ρ, ρ′) = slope(p,p′)

• exponentially bounded natural numbers n′1,n
′
2 ∈ N

• two exponentially bounded relations:

aperiodic = {(qn,q′n′) ∈ � | n′ ≤ n′1}
periodic = {(qn,q′n′) ∈ � | n′1 ≤ n′ < n′2}

Assume w.l.o.g. that in descriptions of the above form, the coefficients n′1 and n′2 are the

same for all pairs (p,p′) with the same slope(p,p′). This is a safe assumption as the least

common multiples of the respective values are still exponentially bounded.
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The above characterization immediately leads to a naïve EXPSPACE-decision procedure

for simulation OCN � OCN, between processes of OCNs in normal form: Guess the descrip-

tion of a candidate relation R for the simulation relation, verify that it is a simulation and check

if it contains the input pair of configurations.

Checking whether the input pair is in the (semilinear) relation R is trivial. To verify that

the relation R is a simulation, one needs to check the simulation condition for every pair of

configurations (qn,q′n′) in R. But due to the particular periodic structure of the candidate

relation and the locality of simulation (Lemma 4.14 on page 44), it suffices to locally verify the

finite initial and periodic parts for every pair of control states.

A PSPACE procedure. The naïve algorithm outlined above may easily be turned into a

PSPACE algorithm by a window shifting trick. Instead of guessing the complete exponential-

size description upfront, we start by guessing the polynomially bounded relation inside L0 and

verifying it locally. Next, the procedure stepwise guesses parts of the relations aperiodic and

later periodic, inside a polynomially bounded rectangle window through the belt and shifts this

window along the belt, checking the simulation condition for all contained points along the

way. Since the simulation condition is local, everything outside this window may be forgotten,

save for the first repetitive window that is used as a certificate for successfully having guessed

a consistent periodic set, once it repeats. By Lemma 4.18, this repetition needs to occur after

an exponentially bounded number of shifts. Therefore, polynomial space is sufficient to store

a binary counter that counts the number of shifts and allows to terminate unsuccessfully once

the limit is reached.

We summarise our findings as the theorem below.

Theorem 4.19. Checking strong simulation preorder between two OCNs is in PSPACE. More-

over, the largest simulation relation is semilinear and can be represented in space exponential

in the number of states of the input nets.

In Section 5.4 we will be particularly interested in identifying and computing the exact

width of vertical belts. We conclude this section by showing that this can be done in polynomial

space.

Let us write suf (q,q′) for the least value n ∈N such that qn 6� q′n′ for every n′ ∈N andω if

no such value n exists. In terms of the simulation game, this is the minimal initial counter value

that is sufficient for Spoiler to win against any initial value for Duplicator if we fix the initial

states to q and q′. Observe that suf (q,q′) = ω iff the belt for the plane (q,q′) is not vertical.

The following is an easy consequence of Theorem 4.19, because one can check the simu-

lation problem for selected positions.

Lemma 4.20. Given OCNsN andN ′ in normal form, with state-sets Q and Q′. For any given

pair (q,q′) ∈ Q×Q′ of states, the value suf (q,q′) can be computed in PSPACE. Moreover, if
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suf (q,q′) , ω, then it is bounded by C, the maximal length of an acyclic path in the product of

N and N ′.

Proof. By Theorem 4.12, we can bound the coefficients of the slopes of all belts polynomially.

In particular, we know that if (ρ, ρ′) is the slope of some belt then ρ and ρ′ are both non-

negative and no bigger than C ≤ |Q×Q′ |. The steepest possible such slope that is not vertical

(i.e., with ρ > 0) is thus given by the vector (α,α′) = (1,C).

To check if suf (q,q′) = ω we can pick a point (n,n′) that is both C-above (α,α′) and C-

below of (α,α′) and check if qn � q′n′ holds. For instance, n = C + 1 and n′ = 2(C + 1)2 ·C is

surely such a point. If suf (q,q′) = ω, then the belt for (q,q′) is vertical and by Theorem 4.12,

point 2, we have qn 6� q′n′. Otherwise, the belt is not vertical and has slope (ρ, ρ′) ≺ (α,α′).

Then by point 1 of Theorem 4.12, we must have qn � q′n′.

To compute suf (q,q′) ∈ N for a vertical belt recall that by point 1 of Theorem 4.12, qn 6�
q′n′ for all points with n > C. Clearly, this means that suf (q,q′) is bounded by C ≤ |Q ×
Q′ |. By Lemma 4.18, the colouring on this belt must be repetitive from some exponentially

bounded level n′0 onwards. By monotonicity, this means that the colouring of the belt must

have stabilized at this level already, so that for all n′ ≥ n′0, we have qn � q′n′ iff n < suf (q,q′).

We can now iteratively check the colour of the point (n,n′0) for decreasing values n ∈ N,

starting with C. By Theorem 4.19, this can surely be done in polynomial space. The value

suf (q,q′) must be the largest considered n < C where qn 6� q′n′0 still holds. �
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Weak Simulation

Weak and strong simulation preorder are known to be undecidable for one-counter automata.

This holds even for deterministic systems, or if one of the systems is fixed [50, 30].

For one-counter nets, we have shown weak simulation to be decidable [20] and PSPACE-

complete [19]. In this section we give a unified presentation of the argument for its decidability

and the subsequent improvement to PSPACE.

The main obstacle is that, with respect to weak steps, Duplicator’s system is infinitely-

branching. This implies that non-simulation does not necessarily manifest itself locally, i.e.,

normal weak simulation approximants do not necessarily converge at level ω.

Example 5.1. Consider the simple process A a , that can only loop on action a, and the

OCN depicted below. Notice that the disjoint union of A and the LTS induced by this net is

isomorphic to the one of Example 2.21 on page 17.

C

a,−1

B

τ,+1

τ

We see that A �n Cn and A 6�
n+1 Cn hold for every n ∈ N. Moreover, there is a weak step

B0
a

===⇒ Cn for every n ∈ N and therefore A �ω B0. Still, it holds that A 6� ω+1 B0 because

there is no weak a-step from B0 to a process α that satisfies A �ω α. It follows that �ω ,

�ω+1. We will later show (as Theorem 5.18 on page 65) that convergence of weak simulation

approximants on OCN can only be guaranteed at level ω2.

We resolve this problem in two steps. First, the weak simulation problem between OCN

is reduced to a strong simulation problem between OCN and a slightly generalized model that

we call ω-Nets, and that symbolically captures infinite branching. In ω-Nets, there exist ded-

icated transitions with symbolic effect ω, which allow to arbitrarily increase the counter in

a single step. Secondly, this new strong simulation problem is solved using a novel kind of

51
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approximant sequence, that is derived from the representation of Duplicator’s system. It is

shown that this sequence converges at a finite index and that individual approximant relations

are effectively computable semilinear sets. In particular, knowing the representation of the

approximant at level k, one can characterize the approximant at the next level k + 1 in terms

of strong simulation over suitably modified OCN, which is an effectively computable semi-

linear set by Theorem 4.19 (page 49). A description of the weak simulation preorder � can

therefore be computed by successively computing the approximant relations and stopping once

convergence is detected. This procedure is effective because the semilinear approximants are

guaranteed to converge to � at some finite level and equality is decidable for semilinear sets.

The remainder of the section is organized as follows. In Section 5.1, ω-Nets are intro-

duced and the reduction theorem (Theorem 5.3) is proved. In Section 5.2 we introduce and

discuss approximants and show that they indeed converge towards simulation at some finite

level. The main iterative construction to compute representations of approximants is described

in Section 5.3. Afterwards, in Section 5.4, we make a closer analysis of the complexity of this

procedure. In Section 5.5 we discuss the subproblems of weak simulation where one process

is finite.

5.1 ω-Nets

Definition 5.2. An ω-net N = (Q,Act,δ) is given by a finite set of control states Q, a finite set

of actions Act and transitions δ ⊆ Q×Act× {−1,0,1,ω} ×Q. It induces a transition system over

the state set Q×N that allows a step pm
a−−→ qn if either (p,a,d,q) ∈ δ and n = m + d ∈ N or if

(p,a,ω,q) ∈ δ and n > m.

A path in N is a sequence π = p0t1p1t2 . . . tk pk such that ti = (pi−1,ai ,di ,pi ) for every

1 ≤ i ≤ k. We write λ(π) = a1a2 . . . ak ∈ Act∗ for the sequence of actions it induces and |π | = k

for its length. The effect ∆(π) of such a path is the minimum of ω and
∑

1≤i≤k di . Its guard is

Γ(π) = −min{∆(iπ) | i ≤ k}, where iπ denotes the prefix p0t1p1t2 . . . tipi of π of length i.

Observe that the effect of a path isω iff it contains at least oneω-transition and is otherwise

bounded by the length of the path. Moreover, the guard of a path π equals the guard of its

longest prefix without ω-transitions and therefore satisfies 0 ≤ Γ(π) ≤ |π |.
Every one-counter net is an ω-net without ω-transitions. Unlike one-counter nets, ω-nets

can yield infinitely branching transition systems, since each ω-transition (p,a,ω,q) introduces

steps pm
a−−→ qn for any two naturals n > m. We observe that, just like one-counter nets, ω-nets

are monotone in the sense of Lemma 3.13 (page 27):

pm
a−−→ qn implies p(m + d)

a−−→ q(n + d) for all d ∈ N. (5.1)

This means that pm � p′m′ implies pn � p′n′ for n ≤ m, n′ ≥ m′. The following theorem

justifies our focus on strong simulation games where Duplicator plays on an ω-net process.



Chapter 5. Weak Simulation 53

Theorem 5.3. Checking weak simulation between two OCN processes can be reduced to check-

ing strong simulation between a one-counter net process and an ω-net process. Formally, for

two OCNsN and N ′ with state sets Q and Q′, respectively, one can construct a OCNM with

states M ⊇ Q and an ω-netM ′ with states M ′ ⊇ Q′ such that for each pair q,q′ ∈ Q×Q′ of

original control states, any n,n′ ∈ N and ordinal α the following hold.

1. qn � q′n′ w.r.t. N ,N ′ iff qn � q′n′ w.r.t.M,M ′.

2. If qn �α q′n′ w.r.t. N ,N ′ then qn �α q′n′ w.r.t.M,M ′.

Moreover, the sizes ofM andM ′ are polynomial in the sizes of the original nets N and N ′.

The idea of the proof is to look for counter-increasing cyclic paths via τ-labelled transitions

in the control graph of N ′ and to introduce ω-transitions accordingly. For any path that reads

a single visible action and visits a ‘generator’ state that is part of a silent cycle with positive

effect, we add an ω-transition. For all of the finitely many non-cyclic paths that read a single

visible action we introduce direct transitions.

The remainder of this section is devoted to proving Theorem 5.3. All further definitions

in this section are only relevant locally. Formally, the proof of Theorem 5.3 will be done

in two steps. First (Lemma 5.7), we reduce weak simulation for one-counter nets to strong

simulation between a one-counter net and yet another auxiliary model called guarded ω-nets.

These differ from ω-nets in that each transition may change the counter by more than one

and is explicitly guarded by an integer, i.e. it can only be applied if the current counter value

exceeds the guard attached to it. In the second step (Lemma 5.8) we normalize the effects of

all transitions to {−1,0,1,ω} and eliminate all integer guards and thereby construct an ordinary

ω-net for Duplicator.

Definition 5.4. A guarded ω-net N = (Q,Act,δ) is given by finite sets Q and Act of states and

actions, and a transition relation δ ⊆ Q×Act×N×Z∪ {ω} ×Q. It defines a transition system

over the state set Q×N where pm
a−−→ qn iff there is a transition (p,a,g,d,q) ∈ δ with

1. m ≥ g and

2. n = m + d ∈ N or d = ω and n > m.

Specifically, N is an ω-net if g = 0 and d ∈ {−1,0,1,ω} for all transitions (p,a,g,d,q) ∈ δ.

The next construction establishes the connection between weak similarity of one-counter nets

and strong similarity between OCN and guarded ω-net processes. In order to avoid confusion

we write −−→N and ===⇒N for (weak) steps in the system N .

Lemma 5.5. For any OCN N = (Q,Act,δ) one can effectively construct a guarded ω-net G =

(Q,Act,γ) such that for all a ∈ Act,
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1. whenever pm
a

===⇒N qn, there is some l ≥ n such that pm
a−−→G ql

2. whenever pm
a−−→G qn, there is some l ≥ n such that pm

a
===⇒N ql.

Proof. The idea of the proof is to introduce direct transitions from one state to another for any

path between them that reads exactly one visible action and does not contain silent cycles.

For two states s,t of N , let D(s,t) be the set of direct (i.e., acyclic) paths from s to t and

let SD(s,t) denote the subset of silent direct paths SD(s,t) = {π ∈ D(s,t) | λ(π) ∈ {τ}∗} from s

to t. Every path in D(s,t) has acyclic prefixes only and is therefore bounded in length by |Q |.
Hence D(s,t) and SD(s,t) are finite and effectively computable for all pairs (s,t).

Using this notation, we define the transitions in G as follows. G contains a transition

(p,a,Γ(π),∆(π),q) for each path π = π1(s,a,d,s′)π2 where π1 ∈ SD(p,s) and π2 ∈ SD(s′,q).

This carries over all transitions of N , including the ones with label a = τ ∈ Act, because the

empty path is in SD(s,s) for all states s. Moreover, introduce ω-transitions in case N allows

paths π1,π2 as above to contain direct cycles with positive effect on the counter: If there is a

path π = π′1π
′′
1 π
′′′
1 (s,a,d,s′)π2 with

1. π′1 ∈ SD(p,t), π′′1 ∈ SD(t,t) and π′′′1 ∈ SD(t,s)

2. ∆(π′′1 ) > 0

for some t ∈ Q, then G contains a transition (p,a,Γ(π′1π
′′
1 ),ω,q). Similarly, if for some t ∈ Q,

there is a path π = π1(s,a,d,s′)π′2π
′′
2 π
′′′
2 that satisfies

1. π1 ∈ SD(p,s),π′2 ∈ SD(s′,t), π′′2 ∈ SD(t,t) and π′′′2 ∈ SD(t,q)

2. ∆(π′′2 ) > 0

add a transition (p,a,g,ω,q) with guard g = Γ(π1(s,a,d,s′)π′2π
′′
2 ). If there is an a-labelled

path from p to q that contains a silent and direct cycle with positive effect, G has an a-labelled

ω-transition from p to q with the guard derived from that path.

To prove the first part of the claim, assume pm
a

===⇒N qn. By definition of weak steps,

there must be a path π = π1(s,a,d,s′)π2 with λ(π1),λ(π2) ∈ {τ}∗. Suppose both π1 and π2 do

not contain cycles with positive effect. Then there must be paths π′1 ∈ SD(p,s),π′2 ∈ SD(s′,q)

with Γ(π′i ) ≤ Γ(πi ) and ∆(π′i ) ≥ ∆(πi ) for i ∈ {1,2} that can be obtained from π1 and π2 by

removing all simple cycles with effects less or equal 0. So G contains a transition (p,a,g′,d ′,q)

for some g′ ≤ m and d ′ ≥ n−m and hence pm
a−−→G qn′ for n′ = m + d ′ ≥ n. Alternatively,

either π1 or π2 contains a cycle with positive effect. Note that for any such path, another

path with lower or equal guard exists that connects the same states and contains only one

such counter-increasing simple cycle: If π1 contains a simple cycle with positive effect, there

is a path π̄1 = π′1π
′′
1 π
′′′
1 from p to s, where π′1,π

′′ and π′′′1 are direct and ∆(π′′1 ) > 0 for the

cycle π′′1 ∈ SD(t,t) for some state t. In this case, G contains an ω-transition (p,a,g,ω,q) with
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g = Γ(π′1π
′′
1 ). Similarly, if π2 contains a counter-increasing cycle, there is a π̄2 = π′2π

′′
2 π
′′′
2 , with

π′2 ∈ SD(s′,t),π′′2 ∈ SD(t,t),π′′′2 ∈ SD(t,q) and ∆(π′′2 ) > 0. This means there is a transition

(p,a,g,ω,q) in G with g = Γ(π1(s,a,d,s′)π′2π
′′
2 ). In both cases, g ≤ Γ(π) ≤ m and therefore

pm
a−−→G qi for all i ≥ m.

For the second part of the claim, assume pm
a−−→G qn. This must be the result of a transition

(p,a,g,d,q) in G for some g ≤ m. In case d ,ω, there is a path π from p to q with ∆(π) = n−m,

λ(π) ∈ {τ}∗{a}{τ}∗ and Γ(π) = g that witnesses the weak step pm
a

===⇒N qn in N . Otherwise,

if d = ω, there must be a path π = π11π12π13(s,a,d,s′)π21π22π23 from p to q in N where

Γ(π) ≤ m, all πi j are silent and direct and one of π12 and π22 is a cycle with strictly positive

effect. This implies that one can “pump” the value of the counter higher than any given value.

Specifically, there are naturals k and j such that the path π′ = π11π
k
12π13(s,a,d,s′)π21π

j
22π23

from p to q satisfies Γ(π′) ≤ Γ(π) ≤ m and ∆(π′) ≥ m− n. Now π′ witnesses the weak step

pm
a

===⇒N qn′ in N for an l ≥ n. �

Remark 5.6. Observe that no transition of the net G as constructed above has a guard larger

than |Q | ∗3 + 1, nor any finite effect > 2|Q |+ 1.

Lemma 5.7. For a one-counter net N ′ one can effectively construct a guarded ω-net G′ over

the same set of states, s.t. for any OCN N and any two configurations pm,p′m′ of N and N ′
resp.,

pm � p′m′ w.r.t. N ,N ′ ⇐⇒ pm � p′m′ w.r.t. N ,G′. (5.2)

Proof. Consider the construction from the proof of Lemma 5.5. Let �N ,N ′ be the largest weak

simulation w.r.t. N ,N ′ and �N ,G′ be the largest strong simulation w.r.t. N ,G′.
For the “if” direction we show that �N ,G′ is a weak simulation w.r.t. N ,N ′. Assume

pm �N ,G′ p′m′ and pm
a−−→N qn. That means there is a step p′m′

a−−→G′ q′n′ for some n′ ∈ N
so that qn �N ,G′ q′n′. By Lemma 5.5 part 2, p′m′

a
===⇒N q′l for some l ≥ n′. Since simulation

is monotonic (point 2 of Lemma 3.13), we know that also qn �N ,G′ q′l. Similarly, for the

“only if” direction, one can use the first claim of Lemma 5.5 to check that �N ,N ′ is a strong

simulation w.r.t. N ,G′. �

Lemma 5.8. For a one-counter net N and a guarded ω-net G′ with state sets Q and Q′ one

can effectively construct a one-counter net M and an ω-net M ′ with state sets M ⊇ Q and

M ′ ⊇ Q′ respectively, such that for any two configurations qn,q′n′ of N and G′,

qn � q′n′ w.r.t. N ,G′ ⇐⇒ qn � q′n′ w.r.t.M,M ′. (5.3)

Proof. We first observe (see also Remark 5.6) that for any transition of the guarded ω-net G′,
the values of its guard is bounded by some constant. The same holds for all finite effects. Let

Γ(G′) be the maximal guard and ∆(G′) be the maximal absolute finite effect of any transition

of G′.
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The idea of this construction is to simulate one round of the game N vs. G′ in k =

2Γ(G′) +∆(G′) + 1 rounds of a simulation game M vs. M ′. We will replace original steps

of both players by sequences of k steps in the new game, which is long enough to verify if the

guard of Duplicator’s move is satisfied and adjust the counter using transitions with effects in

{−1,0,+1,ω} only.

We use one fresh symbol b <Act and let the new alphabet be Âct = Act∪{b}. We transform

the net N = (Q,Act,δ) to the netM = (M,Âct, µ) as follows:

M = Q∪ {pi | 1 ≤ i < k,p ∈ Q} (5.4)

µ = {p a,d−−−−→ qk | p a,d−−−−→ q ∈ δ} (5.5)

∪ {pi b,0−−−−→ pi−1 | 1 < i < k} (5.6)

∪ {p1
b,0−−−−→ q}. (5.7)

We see that

pm
a−−→N qn ⇐⇒ pm

a−−→M qk−1n
bk−2

−−−−−→M q1n
b−−→M qn. (5.8)

Now we transform the guarded ω-net G′ = (Q′,Act,δ′) to the ω-net M ′ = (M ′,Âct, µ′).

Every original transition will be replaced by a sequence of k steps that test if the current counter

value exceeds the guard and adjust the counter accordingly. The new netM ′ has all states of

G′ plus a chain of k new states for each original transition.

M ′ = Q′∪ {ti | 0 ≤ i < k,t ∈ δ′}. (5.9)

For every transition t = (p,a,g,d,q) in G′, we add the following transitions toM ′. First, to test

the guard:

p
a,0−−−−→ tk−1, (5.10)

ti
b,−1−−−−−→ ti−1, for k −g < i < k (5.11)

ti
b,+1−−−−−→ ti−1, for k −2g < i < k −g. (5.12)

Now we add transitions to adjust the counter according to d ∈ N∪ {ω}. In case 0 ≤ d < ω we

add

ti
b,+1−−−−−→ ti−1, for k −2g− |d | < i < k −2g (5.13)

ti
b,0−−−−→ ti−1, for 0 ≤ i < k −2g− d. (5.14)

In case d < 0 we add

ti
b,−1−−−−−→ ti−1, for k −2g− |d | < i < k −2g (5.15)

ti
b,0−−−−→ ti−1, for 0 ≤ i < k −2g+ d. (5.16)
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In case d = ω we add

ti
b,ω−−−−→ ti−1, for i = k −2g (5.17)

ti
b,0−−−−→ ti−1, for 0 ≤ i < k −2g. (5.18)

Finally, we allow a move to the new state:

t0
b,0−−−−→ q. (5.19)

Observe that every transition in the constructed net M ′ has effect in {−1,0,+1,ω}. M ′ is

therefore an ordinary ω-net. It is straightforward to see that

pm
a−−→G′ qn ⇐⇒ pm

abk−1

−−−−−−→M′ qn. (5.20)

The claim (5.3) now follows from Equations (5.8) and (5.20). �

Theorem 5.3 now follows from Lemmas 5.7 and 5.8. In particular for the second claim of

Theorem 5.3, observe that by the construction above, one round of a weak simulation game

w.r.t. N ,G′ is simulated by k rounds of a simulation game w.r.t.M,M ′. Therefore, if Spoiler

has a strategy to win the simulation game relative to M,M ′ in α rounds then she can derive

strategies to win the games relative toN ,G′ and toN ,N ′ in no more than α rounds. Hence, if

qn 6�α q′n′ w.r.t.M,M ′ then qn 6� α q′n′ w.r.t. N ,N ′.

5.2 Approximants

The basic idea of our procedure for checking simulation between a OCN and an ω-net, and

therefore weak simulation between two OCN, is to stepwise compute semilinear overapprox-

imations �i ⊇ �. For such a procedure to be effective, it is crucial that these approximants

converge to � at some finite level, i.e., �
k

= �
k+1 = � for some k < ω. Unfortunately, the usual

simulation approximants do not have this property, as Example 5.1 (page 51) shows.

We overcome this difficulty by generalizing the notion of �α simulation approximants in

the case of simulation between one-counter andω-net processes. This yields approximants that

indeed converge at a finite level for any pair of nets.

First we define approximants �βα in two (ordinal) dimensions. From the game perspective

the subscript α indicates the number of rounds Duplicator can survive and the superscript β

denotes the number of ω-steps Spoiler needs to allow. For example, qn �2
5 q′n′ if Duplicator

can guarantee that no play of the simulation game from position (qn,q′n′) that contains < 2

ω-steps is losing for him in fewer than 6 rounds. If not stated otherwise we assume that N =

(Q,Act,δ) is a one-counter net and N ′ = (Q′,Act,δ′) is an ω-net.
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Definition 5.9. For ordinals α and β, the approximant �βα is inductively defined as follows. Let

�0
α = �β0 = Q×N×Q′×N, the full relation. For successor ordinals α+1, β+1 let pm �β+1

α+1 p′m′

iff for all pm
a−−→ qn there is a step p′m′

a−−→ q′n′ such that either

1. (p′,a,ω,q′) ∈ δ′, m′ < n′ and qn �βα q′n′, or

2. (p′,a,d,q′) ∈ δ′, n′ = m′+ d ∈ N and qn �β+1
α q′n′.

For limit ordinals λ we define �λα =
⋂
β<λ �βα and �βλ =

⋂
α<λ �βα . Finally,

�β =
⋂
α∈Ord

�βα �α =
⋂
β∈Ord

�βα . (5.21)

Notice that the approximant �β+1
α+1 above is defined in terms of both �β+1

α and �βα . The first

condition in its definition asks that if a response is due to an ω-transition then the resulting pair

of processes need to be related by the approximant with reduced superscript β. The second

condition is for the case where a response is due to an ordinary transition.

The approximants �α correspond to the usual notion of simulation approximants and �β
is a special notion derived from the syntactic peculiarity of ω-transitions present in the game

on one-counter vs. ω-nets.

Example 5.10. Consider the net that consists of a single a-labelled loop in state A and the

ω-net with transitions B
a,ω−−−−→ C

a,−1−−−−−→ C only. This is a variant of the system of Example 5.1

on page 51, but now we are interested in strong simulation. We see that for any m,n ∈ N,

Am �n Cn
n+1 6� Am. Moreover, Am �ω Bn but Am 6�ω+1 Bn and Am �1 Bn but Am 6�2

ω+1 Bn

and therefore Am 6�2 Bn.

We will further use a game characterization of these approximants, similar to the simulation

games that characterize strong simulation.

Intuitively, �i is given by a parameterized simulation game that keeps track of how often

Duplicator uses ω-labelled transitions and in which Duplicator immediately wins if he plays

such a step the ith time. It is easy to see that this game favours Duplicator due to the additional

winning condition. Hence, ∀i ∈ N, �i ⊇ �i+1. With growing index i, this advantage becomes

less important and the game increasingly resembles a standard simulation game.

Definition 5.11. An approximant game is played in rounds between Spoiler and Duplicator.

Game positions are quadruples (pm,p′m′,α, β) where pm,p′m′ are configurations of N and

N ′ respectively, and α, β are ordinals called step- and ω-counter. In each round that starts in

(pm,p′m′,α, β):

• Spoiler chooses two ordinals α̂ < α and β̂ < β,

• Spoiler makes a step pm
a−−→ qn,
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• Duplicator responds by making a step p′m′
a−−→ q′n′ using some transition t.

If t was an ω-transition the game continues from position (qn,q′n′,α̂, β̂), Otherwise the next

round starts at (qn,q′n′,α̂, β) (in this case Spoiler’s choice of β̂ becomes irrelevant). If a player

cannot move then the other player wins and if α or β becomes 0, Duplicator wins.

Lemma 5.12. If Duplicator wins the approximant game from (pm,p′m′,α, β) then he also wins

the game from (pm,p′m′,α̂, β̂) for any α̂ ≤ α and β̂ ≤ β.

Proof. If Duplicator has a winning strategy in the game from (pm,p′m′,α, β) then he can use

the same strategy in the game from (pm,p′m′,α̂, β̂) and maintain the invariant that the pair of

ordinals in the game configuration is pointwise smaller than the pair in the original game. Thus

Duplicator wins from (pm,p′m′,α̂, β̂). �

Lemma 5.13 (Game Characterization). Duplicator has a strategy to win the approximant game

that starts in (pm,p′m′,α, β) iff pm �βα p′m′.

Proof. We say a pair (α, β) ∈ Ord2 of ordinals dominates another such pair (α′, β′) iff α′ ≤ α,

β′ ≤ β and (α′, β′) , (α, β). Both directions of the claim are now shown by well-founded

induction on pairs of ordinals: If the claim holds for all pairs (α′, β′) that are dominated by

(α, β) then it also holds for (α, β).

For the “if” direction we assume pm �βα p′m′ and show that Duplicator wins the game from

(pm,p′m′,α, β). In the base case of α = 0 or β = 0 Duplicator directly wins by definition. By

induction hypothesis we assume that the claim is true for all pairs dominated by (α, β). Spoiler

starts a round by picking ordinals α̂ < α and β̂ < β and moves pm
a−−→ qn. We distinguish two

cases, depending on whether β is a limit or successor ordinal.

Case 1. β is a successor ordinal. By Lemma 5.12, we can safely assume that β̂ = β−1. By

our assumption pm �βα p′m′ and Definition 5.9, there must be a response p′m′
a−−→ q′n′ that

is either due to an ω-transition and then qn � β̂
α̂

q′n′ or due to an ordinary transition, in which

case we have qn �β
α̂

q′n′. In both cases, we know by the induction hypothesis that Duplicator

wins from this next position and thus also from the initial position.

Case 2. β is a limit ordinal. By pm �βα p′m′ and Definition 5.9, we obtain pm �γα
p′m′ for all γ < β. If α is a successor ordinal then, by Lemma 5.12, we can safely assume

that α̂ = α − 1. Otherwise, if α is a limit ordinal, then, by Definition 5.9, we have pm �γ
α

p′m′ for all α < α and in particular pm �γ
α̂+1 p′m′. So in either case we obtain

pm �γ
α̂+1 p′m′ for all γ < β. (5.22)

If there is some ω-transition that allows a response p′m′
a−−→ω q′n′ that satisfies qn � β̂

α̂
q′n′,

then Duplicator picks this response and we can use the induction hypothesis to conclude that he

wins the game from the next position. Otherwise, if no suchω-transition exists, Equation (5.22)
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implies that for every γ < β there is a response to some q′n′ that uses a non-ω-transition t(γ)

and that satisfies qn �γ
α̂

q′n′. Since β is a limit ordinal, there exist infinitely many γ < β. By

the pigeonhole principle, there must be one transition that occurs as t(γ) for infinitely many γ,

because there are only finitely many transitions in the net. Therefore, a response that uses this

particular transition satisfies qn �β
α̂

q′n′. If Duplicator uses this response, the game continues

from position (qn,q′n′,α̂, β) and he wins by induction hypothesis.

For the “only if” direction we show that pm 6�βα p′m′ implies that Spoiler has a winning

strategy in the approximant game from (pm,p′m′,α, β). In the base case of α = 0 or β = 0

the implication holds trivially since the premise is false. By induction hypothesis, we assume

that the implication is true for all pairs dominated by (α, β). Observe that if α or β are limit

ordinals then (by Definition 5.9) there are successors β̂ ≤ β and α̂ ≤ α s.t. pm 6� β̂
α̂

p′m′. So

without loss of generality we can assume that α and β are successors. By the definition of

approximants there must be a move pm
a−−→ qn such that

• for every response p′m′
a−−→ω q′n′ that uses some ω-transition we have qn 6�β−1

α−1 q′n′,

• for every response p′m′
a−−→ q′n′ via some normal transition it holds that qn 6�β

α−1 q′n′.

So if Spoiler chooses α̂ = α− 1, β̂ = β − 1 and moves pm
a−−→ qn then any possible response

by Duplicator will take the game to a position (qn,q′n′,γ,α̂) for some γ ≤ β. By induction

hypothesis Spoiler wins the game. �

Lemma 5.14. For all ordinals α, β the following properties hold.

1. pm �βα p′m′ implies pn �βα p′n′ for all n ≤ m and n′ ≥ m′

2. If α̂ ≥ α and β̂ ≥ β then � β̂
α̂
⊆ �βα .

3. There are ordinals CA,CB such that �CA = �CA+1 and �CB = �CB+1.

4. � =
⋂
α �α =

⋂
β �β

The first point states that individual approximants are monotonic with respect to the counter

values. Points 2-4 imply that both �α and �β yield non-increasing sequences of approximants

that converge towards simulation. As Example 5.10 on page 58 shows, the approximants �α
do not converge at finite levels, and not even at level ω, i.e., CA > ω in general. We will later

show (in Lemma 5.16) that the approximants �β converge at a finite level, i.e., CB is strictly

below ω for any pair of nets, and further bound CB in Section 5.4 to obtain an exact complexity

upper bound.

Proof. 1 . By Lemma 5.13, it suffices to observe that Duplicator can reuse a winning strategy in

the approximant game from (pm,p′m′,α, β) to win the game from (pn,p′n′,α, β) for naturals

n ≤ m and n′ ≥ m′.
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2 . If pm � β̂
α̂

p′m′ then, by Lemma 5.13, Duplicator wins the approximant game from posi-

tion (pm,p′m′, β̂,α̂). By Lemma 5.12 he can also win the approximant game from (pm,p′m′, β,α).

Thus pm �βα p′m′ by Lemma 5.13.

3 . By point 2) we see that with increasing ordinal index α the approximant relations �α
form a decreasing sequence of relations, thus they stabilize for some ordinal CA. The existence

of a convergence ordinal for �CB follows analogously.

4 . First we observe that
⋂
α �α =

⋂
α
⋂
β �βα =

⋂
β
⋂
α �βα =

⋂
β �β . It remains to show

that � =
⋂
α �α . In order to show � ⊇ ⋂α �α , we use CA from point 3) and rewrite the right

side of the inclusion to
⋂
α �α = �CA = �CA+1. From Definition 5.9 we get that �α = �γα for

γ ≥ α and therefore �CA+1
CA+1 =�CA+1 =�CA =�CA

CA . This means �CA
CA =
⋂
α �α must be a simulation

relation and hence a subset of �.

To show � ⊆⋂α �α , we prove by induction that � ⊆ �α holds for all ordinals α. The base

case α = 0 is trivial. For the induction step we prove the equivalent property 6�α ⊆ 6� . There are

two cases.

In the first case, α = γ+ 1 is a successor ordinal. If pm 6�γ+1 p′m′ then pm 6�γ+1
γ+1 p′m′ and

therefore, by Lemma 5.13, Spoiler wins the approximant game from (pm,p′m′,γ + 1,γ + 1).

Let pm
a−−→ qn be an optimal initial move by Spoiler. Now either there is no valid response

and thus Spoiler immediately wins in the simulation game; or for every Duplicator response

p′m′
a−−→ q′n′ that uses an ω-step, we have qn 6�γγ q′n′ and for every response that does not use

an ω move, we have qn 6�γ+1
γ q′n′. Either way, we get qn 6�γ q′n′ and by induction hypothesis,

qn 6� q′n′. By Lemma 5.13, we obtain that Spoiler wins the simulation game from (qn,q′n′)

and thus from (pm,p′m′). Therefore pm 6� p′m′, as required.

In the second case, α is a limit ordinal. Then pm 6�α p′m′ implies pm 6�γ p′m′ for some

γ < α and therefore pm 6� p′m′ by induction hypothesis. �

The following lemma shows a certain uniformity property of the simulation game. Beyond

some fixed bound, an increased counter value of Spoiler can be neutralized by an increased

counter value of Duplicator, thus enabling Duplicator to survive at least as many rounds in the

game as before. This lemma is necessary for the proof of Lemma 5.16, which guarantees the

existence of a finite bound for the convergence level CB.

Lemma 5.15. For any one-counter net N = (Q,Act,δ) and ω-net N ′ = (Q′Act,δ′) there is a

fixed bound c ∈ N s.t. for all states (p,p′) ∈ Q×Q′, naturals n > m > c and ordinals α:

∀m′. (pm �α p′m′ =⇒ ∃n′. pn �α p′n′) (5.23)

Proof. It suffices to show the existence of a local bound c that satisfies (5.23) for any given pair

of states, since we can simply take the global c to be the maximal such bound over all finitely

many pairs. Let CA be the convergence ordinal provided by Lemma 5.14, point 3 and consider
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a fixed pair (p,p′) ∈ (Q×Q′) of states. For m,m′ ∈ N, we define the following (sequences of)

ordinals.

I (m,m′) = the largest ordinal α with pm �α p′m′ or CA

if no such α exists,

I (m) = the increasing sequence of ordinals I (m,m′)m′≥0,

S(m) = sup{I (m)}.

Observe that I (m,m′) can be presented as an infinite matrix where I (m) is a column and

S(m) is the limit of the sequence of elements of column I (m) looking upwards. Informally,

S(m) = limi→∞I (m,i).

p′
p m n

m′

n′

I (m,m′) I (n,m′)

I (m,n′) I (n,n′)

≤

≥

≤
≥

S(m)

≤
S(n)

≤

≥

≥

≥

≥

By Lemma 5.14 (point 1), we derive that for any m ≤ n ∈ N and m′ ≤ n′ ∈ N

I (m,n′) ≥ I (m,m′) ≥ I (n,m′) (5.24)

and because of the second inequality, also that S(m) ≥ S(n). So the ordinal sequence S(m)m≥0

of suprema must be non-increasing and by the well-ordering of the ordinals there is a smallest

index k ∈ N at which this sequence stabilizes:

∀l > k . S(l) = S(k). (5.25)

We split the remainder of this proof into three cases depending on whether I (k) and I (l) for

some l > k have maximal elements. In each case we show the existence of a bound c that

satisfies requirement (5.23).

Case 1. For all l ≥ k and m′ ∈ N it holds that I (l,m′) < S(l), i.e., no I (l) has a maximal

element. In this case c := k satisfies the requirement (5.23). To see this, take n > m > c = k

and pm �α p′m′. Then, by our assumption, α < S(m) and S(m) = S(n) = S(k). Therefore

α < S(n), which means that there must exist an n′ ∈ N s.t. pn �α p′n′, as required.

Case 2. For all l ≥ k there is a n′
l
∈ N such that I (l,n′

l
) = S(l), i.e., all I (l) have maximal

element S(l) = S(k). Again c := k satisfies the requirement (5.23). Given n > m > c = k and
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pm �α p′m′ we let n′ := n′n and obtain I (n,n′) = S(n) = S(k) ≥ α and thus pn �α qn′, as

required.

Case 3. If none of the two cases above holds then there must exist some l > k s.t. the

sequences I (k),. . . ,I (l − 1) each have a maximal element and for i > l the sequence I (i) has

no maximal element. To see this, consider sequences I (m) and I (n) with n > m ≥ k. If I (n)

has a maximal element then so must I (m), by Equation (5.24) and S(m) = S(n) = S(k). Given

this, we repeat the argument for the first case, with c := l and again satisfy the requirement

(5.23). �

Lemma 5.16. Consider strong simulation � between a OCN N = (Q,Act,δ) and an ω-net

N ′ = (Q′,Act,δ′). There exists a constant CB ∈ N such that � =�CB.

Proof. We assume the contrary and derive a contradiction. By Lemma 5.14, part 4, the in-

clusion � ⊆ �β always holds for every ordinal β. Thus, if there is no CB ∈ N with � = �CB,

then for every finite β ∈ N there are processes p0m0 and p′0m′0 such that p0m0 �β p′0m′0 but

p0m0 6� p′0m′0. In particular, this holds for the special case of β = |Q×Q′ |(c + 1), where c is

the constant given by Lemma 5.15, which we consider in the rest of this proof.

Since p′0m′0 does not simulate p0m0, we can assume a winning strategy for Spoiler in the

simulation game which is optimal in the sense that it guarantees that the simulation level αi –

the largest ordinal with pimi �αi
p′im

′
i – strictly decreases along rounds of any play. By mono-

tonicity (Lemma 5.14, part 1), we can thus infer that whenever a pair of control states repeats

along a play, then Duplicator’s counter must have decreased or Spoiler’s counter must have in-

creased: Along any partial play (p0m0,p′0m′0)(t0,t ′0)(p1m1,p′1m′1)(tt ,t ′1) . . . (pkmk ,p′km′
k
) with

(pi ,p′i ) = (pk ,p′k ) for some i < k, we have mi < mk or m′i > m′
k
. By a similar argument we can

assume that Duplicator also plays optimally, in the sense that he uses ω-transitions to increase

his counter to higher values than in previous situations with the same pair of control states. By

combining this with the previously stated property that the sequence of αi strictly decreases

we obtain the following:

If (pi ,p′i ) = (pk ,p′k ) and t ′i−1,t
′
k−1 ∈ δ′ω then mi < mk . (5.26)

Here δ′ω denotes the set of transitions with symbolic effect ω in Duplicator’s net N ′.
Although Duplicator loses the simulation game between p0m0 and p′0m′0, our assumption

p0m0 �β p′0m′0 with β = |Q ×Q′ |(c + 1) means that Duplicator can ensure that no play with

fewer than β ω-transitions is losing for him, regardless of Spoiler’s strategy. So we can safely

assume that there is a play in Spoiler’s supposed optimal winning strategy along which Du-

plicator makes use of ω-transitions β times. Let π = (p0m0,p′0m′0)(t0,t ′0)(p1m1,p′1m′1)(tt ,t ′1)

. . . (pkmk ,p′km′
k
) be such a play.

Our choice of β = |Q×Q′ |(c +1) guarantees that some pair (p,p′) of control states repeats

at least c + 1 times directly after Duplicator making an ω-step. Thus there are indices i(1) <
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i(2) < · · · < i(c + 1) < k s.t. for all 1 ≤ j ≤ c + 1 we have (pi ( j ),p′i ( j )) = (p,p′) and t ′
i ( j ) ∈ δω .

By observation (5.26) and m0 ≥ 0 we obtain that mi (x) ≥ x for all x with 0 ≤ x ≤ c + 1. In

particular, c ≤ mi (c) < mi (c+1), that is, both of Spoiler’s counter values after the last two such

repetitions must lie above c. This allows us to apply Lemma 5.15 to derive a contradiction.

Let α be the simulation level before this repetition: α is the largest ordinal that satisfies

pmi (c) �α p′m′
i (c). Since mi (c+1) > mi (c) > c, Lemma 5.15 ensures the existence of a natural

n′ s.t. pmi (c+1) �α p′n′. Because Duplicator used an ω-transition in his last response leading

to the repetition of states there must be a partial play π′ in which both players make the same

moves as in π except that Duplicator chooses m′
i (c+1) to be n′. Now in this play we observe

that the simulation level did in fact not strictly decrease as this last repetition of control states

shows: We have pmi (c) �α p′m′
i (c) 6�α+1 pmi (c) and pmi (c+1) �α p′m′

i (c+1), which contradicts

the assumed optimality of Spoiler’s strategy. �

To conclude this section on approximants, we show that ordinary weak simulation approx-

imants �α indeed converge at level ω2 for any pair of OCNs.

Lemma 5.17. For relations between a OCN and an ω-net, we have �ωi ⊆ �i for every i ∈ N.

Proof. By induction on i. The base case of i = 0 is trivial, since �0 is the full relation. We prove

the inductive step by assuming the contrary and deriving a contradiction. Let pm �ωi p′m′ and

pm 6�i p′m′ for some i > 0. Then there exists some ordinal α s.t. pm 6�iα p′m′. Without

restriction let α be the least ordinal satisfying this condition. If α ≤ ωi then we trivially have a

contradiction. Now we consider the case α > ωi. By pm 6�iα p′m′ and Lemma 5.13, Spoiler has

a winning strategy in the approximant game from position (pm,p′m′,α,i). Without restriction

we assume that Spoiler plays optimally, i.e., wins as quickly as possible. Thus this game

must reach some position (qn,q′n′, β + 1,i) where β ≥ ωi is a limit ordinal, such that Spoiler

can win from (qn,q′n′, β+ 1,i) but not from (qn,q′n′, β,i). I.e., qn 6�i
β+1 q′n′, but qn �iβ q′n′.

Consider Spoiler’s move qn
a−−→ rl according to her optimal winning strategy in the game from

position (qn,q′n′, β+ 1,i). Since qn �iβ q′n′ and β is a limit ordinal, for every ordinal γk < β,

Duplicator must have some countermove q′n′
a−−→ r ′

k
l ′
k

s.t. rl � j
γk r ′

k
l ′
k
, where j = i − 1 if the

move was due to an ω-transition and j = i otherwise. In particular, supk {γk } = β. However,

since Spoiler’s move qn
a−−→ rl was according to an optimal winning strategy from position

(qn,q′n′, β + 1,i), we have that rl 6� j
β r ′

k
l ′
k
. Therefore, there must be infinitely many different

responses q′n′
a−−→ r ′

k
l ′
k
. Infinitely many of these countermoves must be due to anω-transition,

because apart from these the system is finitely branching. Thus for every ordinal γ < β there

is some Duplicator countermove q′n′
a−−→ r ′

k
l ′
k

which is due to an ω-transition s.t. rl �i−1
γk

r ′
k
l ′
k

where γk ≥ γ (note the i − 1 index due to the ω-transition). In particular, we can choose

γ = ω(i − 1), because i > 0 and β ≥ ωi. Then we have rl �i−1
ω (i−1) r ′

k
l ′
k
, but rl 6�i−1

β r ′
k
l ′
k
.

However, from rl �i−1
ω (i−1) r ′

k
l ′
k

and the induction hypothesis, we obtain rl �i−1 r ′
k
l ′
k

and in
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particular rl �i−1
β r ′

k
l ′
k
. Contradiction. �

Theorem 5.18. Weak simulation approximants on OCN converge at level ω2, but not earlier

in general.

Proof. First we show that �
ω2 is contained in � for OCN. Let pm and p′m′ be processes of

OCN N and N ′, respectively, and letM andM ′ be the derived OCN and ω-net from Theo-

rem 5.3 (page 53). Assume pm �
ω2 p′m′ w.r.t. N ,N ′. By point 2) of Theorem 5.3 we con-

clude that pm �
ω2 p′m′ w.r.t.M,M ′. In particular we have pm �ω ·CB p′m′ w.r.t.M,M ′, for

the level CB ∈ N from Lemma 5.16. From Lemma 5.17 we obtain pm �CB p′m′ w.r.t.M,M ′.

Lemma 5.16 then yields pm � p′m′ w.r.t. M,M ′. Finally, by Theorem 5.3, we obtain that

pm � p′m′ w.r.t. N ,N ′.
To see that ω2 is needed in general, consider the following class of examples, that are the

result of extending the net from Example 5.1 on page 51. Let N be the simple OCN that

consists only of the self-loop A
a,0−−−−→ A. For every k ∈ N and all 1 ≤ i ≤ k, the OCN N ′

k
has

transitions (Ci ,a,−1,Ci ), (Bi ,τ,0,Ci ) (Bi ,τ,1,Bi ), and (Ci+1,τ,0,Bi ). We see that A �
ω ·k Bk0,

but A 6� Bk0 w.r.t. N ,N ′
k
. So, for every k ∈ N there are OCNs for which �

ω ·k, � . �

5.3 Effective Semilinearity

In order to show the decidability of simulation between one-counter nets and ω-Nets we prove

a stronger claim, namely that the largest simulation relation is a semilinear set and one can

effectively compute its description. To prove this claim for a fixed pair of nets, we consider

approximants �k and show (by repeated reduction to strong simulation over OCN and using

Theorem 4.19) that in fact �k is effectively semilinear for every level k ∈ N. To be precise, we

show the following lemma.

Lemma 5.19. For any one-counter netM and ω-netM ′ with state sets Q and Q′ respectively,

there is an effectively computable sequence (Sk ,S′k )k ∈N of pairs of OCN with state sets Sk ⊇ Q

and Sk ⊇ Q′ respectively, such that for all k,m,m′ ∈ N and states p ∈ Q,p′ ∈ Q′,

pm �k p′m′ w.r.t. M,M ′ ⇐⇒ pm � p′m′ w.r.t. Sk ,S′k . (5.27)

A direct consequence of this is the effective semilinearity, and thus decidability, of weak

simulation � over any fixed pair of one-counter nets.

Theorem 5.20. Let N ,N ′ be two one-counter nets. The largest weak simulation relation �

with respect to N ,N ′ is a semilinear set and its representation is effectively computable.

Proof. By Theorem 5.3, it suffices to show the claim for the largest strong simulation � be-

tween a OCNM and an ω-NetM ′. By Lemma 5.19, one can iteratively compute the sequence
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(Sk ,S′k )k ∈N of nets characterizing �k for growing k. Because Sk and S′
k

are one-counter nets,

we can apply Theorem 4.19 and derive that strong simulation w.r.t. Sk ,S′k , and hence the ap-

proximant �k w.r.t. M,M ′ are effectively semilinear sets. Recall that for k ∈ N, �k+1 ⊆ �k .

Because equality of semilinear sets is decidable, we can check after each iteration if �k+1 ⊇�k
holds, in which case we stop with the description of �k =� . Termination of this procedure is

guaranteed by Lemma 5.16. �

Before we prove Lemma 5.19, we introduce two important ingredients for the construction

of the nets Sk ,S′k . The first is a class of simple gadgets called test chains that will form part of

these nets and allow us to check, by means of a continued simulation game, if the counter value

of Spoiler is ≥ i for some hard-wired constant i ∈ N. A test chain for i ∈ N, is a pair Ti ,T ′i of

OCNs with initial states ti and t ′i over actions Act = {e, f }. We let ti be the starting point of

a counter-decreasing chain of e-steps of length i where the last state of the chain can make an

f -step, whereas t ′i is a simple e-loop (see Figure 5.1). Then we observe that for all m,n ∈ N,

tim 6� t ′in ⇐⇒ m ≥ i. (5.28)

ti

e, −1

e, −1

e, −1

f

i

t ′i

e

Figure 5.1: A test chain for value i ∈ N.

The second ingredient for our construction is the notion of minimal sufficient values. Con-

sider the approximant �k for some parameter k, and let (q,q′) ∈ (Q×Q′) be a pair of states. By

monotonicity (Lemma 5.14, point 1), there is a minimal value suf (q,q′,k) ∈ N∪ {ω} satisfying

∀n′ ∈ N. q(suf (q,q′,k)) 6�k q′n′. (5.29)

Let suf (q,q′,k) be ω if no finite value satisfies this condition. The following properties are

immediate from the definitions.

Lemma 5.21. For all q ∈ Q,q′ ∈ Q′ and k ∈ N,

1. suf (q,q′,0) = ω, and

2. suf (q,q′,k) ≥ suf (q,q′,k + 1).
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We are now ready to present the construction of successive pairs of nets Sk ,S′k , that satisfy

the claim of Lemma 5.19. The idea behind the construction of nets for parameter k + 1 is as

follows. Assuming we have already constructed a semilinear representation of �k in the form

of two OCN Sk and S′
k
, we can compute the values suf (q,q′,k) for every pair (q,q′).

The nets Sk+1 and S′
k+1 are constructed so that a simulation game played on the arena

Sk+1,S′k+1 mimics the approximant game game played on M,M ′ with ω-parameter (k + 1)

until Duplicator uses an ω-labelled transition, leading to some game position qn vs. q′n′. Af-

terwards, the approximant game would continue with the next lower parameter k. In the sim-

ulation game on Sk+1 and S′
k+1, Duplicator cannot make the ω-step but can instead enforce

the play to continue in some subgame (a test chain) that he wins iff Spoiler’s counter is smaller

than the hard-wired value suf (q,q′,k). This “forcing” of the play can be implemented for OCN

simulation using a standard technique called defender’s forcing (see e.g. [34]), that essentially

allows Duplicator to reach a universal process (and thus win) in the next round unless his op-

ponent moves in some specific way.

The nets Sk+1 and S′
k+1 thus consist of the original netsM,M ′ where all ω-transitions in

Duplicator’s net M ′ are replaced by a small constant defenders-forcing script, leading to the

corresponding testing gadget. The only difference between two such pairs of nets for different

parameters k is the lengths of the test chains.

Definition 5.22 (The construction of Sk and S′
k
). Fix a OCNM = (Q,Act,δ), an ω-netM ′ =

(Q′,Act,δ) and a constant k ≥ 1. We construct the one-counter nets Sk and S′
k

that characterize

the approximant �k .

For any pair (p,p′) ∈ Q×Q′ of states, let Tp,p′ and T ′p,p′ be the nets that describe the test

chain for suf (p,p′,k −1). Let Tp,p′ = (Tp,p′,{e, f },δp,p′) and T ′p,p′ = (T ′p,p′,{e, f },δ′p,p′) and

let tp,p′ and t ′p,p′ be the initial states of Tp,p′ and T ′p,p′ respectively. W.l.o.g. we can assume

that e, f <Act are new letters. We define the one-counter nets Sk and S′
k

over the new alphabet

Act as follows. Act contains all letters of the original alphabet, two (new) actions e, f used in

test gadgets and a new action (p,p′) for every pair of original states.

Act = Act∪ { f ,e} ∪ (Q×Q′). (5.30)

The net Sk = (Sk ,Act,δk ) has all original states ofM, plus those of all test chains:

Sk = Q∪
⋃

p∈Q,p′∈Q′
Tp,p′ (5.31)

Its transitions δk ⊇ δ∪⋃q∈Q,q′∈Q′ δq,q′ are those ofM, all test chains, and the following for

all q ∈ Q,q′ ∈ Q′:

q
(q,q′),0−−−−−−−→ tq,q′ (5.32)
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The net S′
k

= (S′
k
,Act,δ′

k
) has states

S′k = Q′∪ (
⋃

q∈Q,q′∈Q′
T ′q,q′)∪ {W }. (5.33)

So it contains all original states ofM ′, those of all test chains and a new “win” state W . Its set

of transitions is δ′
k
⊇ {q a,x−−−−→ q′ ∈ δ′ | x , ω} ∪⋃q∈Q,q′∈Q′ δq,q′. It contains those transitions

in M ′ which are not labelled by ω, the transitions of the test chains plus the following, that

allow Duplicator to force the game into a test chain:

p′
a,0−−−−→ t ′p,q′ for all p ∈ Q and q′,p′ ∈ Q′ if p′

a,ω−−−−→ q′ ∈ δ′, (5.34)

p′
(q,q′),0−−−−−−−→ W for all q ∈ Q and q′,p′ ∈ Q′, (5.35)

t ′q,q′
(q,q′),0−−−−−−−→ t ′q,q′ for all q ∈ Q and q′ ∈ Q′, (5.36)

t ′q,q′
(q,p′),0−−−−−−−−→ W for all q ∈ Q and q′,p′ ∈ Q′ if p′ , q′, (5.37)

t ′q,q′
a,0−−−−→ W for all q ∈ Q and q′ ∈ Q′ and a ∈ Act, (5.38)

W
a,0−−−−→ W for all a ∈ Act′. (5.39)

Figure 5.2 illustrates the forcing mechanism due to these new transitions.

p

q

tq,q′tq,r ′

a, d

(q, q′)

b

(q, r ′)

p′

t ′q,q′

Wa Act′

(Q ×
Q ′)

(q,
p
′ ) ,

(q,
q
′ )

Act
(q, q′)

Figure 5.2: The forcing mechanism that replaces a Duplicator transition p′
a,ω−−−−→ q′. Counter

effects are omitted, individual transitions are grouped and punishing moves are coloured. For

instance, the red arrow from p′ to W depicts all transitions due to Equation (5.35) that prevent

Spoiler from using any actions of the form (p,p′) ∈ Act unless Duplicator already moved to some

state t ′q,q′. Note that Spoiler must prevent Duplicator from reaching the universal state W and

that once the players are at states tq,q′ and t ′q,q′, she has no other option but to play the test

chain that starts here.

Observe that the definition of the nets Sk ,S′k above is relative to the values suf (p,p′,k −1)

for all original control states p,p′. It is therefore crucial to know these values for this contruc-

tion to be effective. The following two lemmas state the correctness of the construction.
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Lemma 5.23. For all control states (p,p′) ∈ Q×Q′ and naturals k,m,n ∈ N:

pm 6� p′m′ w.r.t. Sk ,S′k ⇐= pm 6�k p′m′ w.r.t.M,M ′ (5.40)

Proof. Note that by definition of approximants, pm 6�k p′m′ implies pm 6�kα p′m′ for some ordi-

nal α. By the game interpretation (Lemma 5.13) it is thus sufficient to show that for all ordinals

α, if Spoiler has a winning strategy in the approximant game from position (pm,p′m′,α,k)

then she also has a winning strategy in the simulation game between Sk ,S′k from position

(pm,p′m′).

We proceed by ordinal induction on α. The base case trivially holds since Spoiler loses

from a position (pm,p′m′,0,k) by definition of the approximant game (Definition 5.11).

For the induction step let Spoiler play the same move pm
a−−→ qn for some a ∈ Act in both

games according to her assumed winning strategy in the approximant game. Now Duplicator

makes his response move in the new game between Sk ,S′k , which yields two cases. In the

first case, Duplicator does not use a transition from Equation (5.34). Then his move induces a

corresponding move in the approximant game which leads to a new configuration (qn,q′n′,γ,k)

where qn 6�kγ q′n′ for some ordinal γ < α. By the induction hypothesis, Spoiler now has a

winning strategy to continue the simulation game from position (qn,q′n′).

In the second case, Duplicator’s response is via a transition from Equation (5.34), which

leads to a new configuration (qn,t ′r,q′n
′) for some r ∈ Q. Thus in the approximant game there

will exist Duplicator moves to positions (qn,q′n′,γ,k − 1) where γ < α and n′ ∈ N can be

arbitrarily high. We can safely assume that Duplicator chooses r = q, since otherwise Spoiler

can afterwards win in one round by a (q,q′) labelled step from qn. Now in the next round

Spoiler can play qn
(q,q′)−−−−−−→ tq,q′n by Equation (5.32) and Duplicator’s only option is to stay in

his current state by Equation (5.36). The simulation game thus continues from (tq,q′n,t ′q,q′n
′),

which is the beginning of the testing gadget for states q,q′. To show that Spoiler wins the

rest of the simulation game, we show that indeed, n must be at least be suf (k −1,q,q′). By

our initial assumption, Spoiler wins the approximant game from the position (pm,p′m′,α,k).

Thus there is some ordinal γ < α such that Spoiler also wins the approximant game from

position (qn,q′n′,γ,k − 1) for every n′ ∈ N. Thus, by Lemma 5.13 and Definition 5.9, we

have qn 6�k−1
γ q′n′ and by Lemma 5.14 (item 2) qn 6�k−1 q′n′ for all n′ ∈ N. By the definition

of sufficient values, we obtain n ≥ suf (q,q′,k −1). By the construction of the gadgets and

Equation (5.28) we get tq,q′n 6� t ′q,q′n
′, which concludes our proof. �

Lemma 5.24. For all control states (p,p′) ∈ Q×Q′ and naturals k,m,n ∈ N:

pm 6� p′m′ w.r.t. Sk ,S′k =⇒ pm 6�k p′m′ w.r.t.M,M ′ (5.41)

Proof. Assume pm 6� p′m′ w.r.t. Sk and S′
k
. Since both Sk ,S′k are just one-counter nets, non-

simulation manifests itself at some finite approximant α ∈ N, i.e., pm 6�α p′m′. By definition
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of �k it suffices to show that some ordinal γ exists such that pm 6�kγ p′m′ w.r.t. M,M ′. By

the game characterization of approximants (Lemma 5.13) this amounts to showing a winning

strategy for Spoiler in the approximant game from position (pm,p′m′,γ,k).

We proceed by induction on α. The claim is trivial for the base case α = 0. For the induction

step we consider a move pm
a−−→ qn for some a ∈ Act by Spoiler in both games according to

Spoiler’s assumed winning strategy in the simulation game between Sk ,S′k . It cannot be a

Spoiler move p
(p,q′),0−−−−−−−−→ tp,q′ by Equation (5.32), because this would allow Duplicator to

reply by moving to the universal state W by Equation (5.35). Now we consider all (possibly

infinitely many) replies by Duplicator in the approximant game betweenM,M ′ from a position

(pm,p′m′,γ,k) for some yet to be determined ordinal γ. These replies fall into two classes.

In the first class, Duplicator’s move p′m′
a−−→ q′n′ is not due to anω-transition and thus also

a possible move in the simulation game betweenSk ,S′k . From our assumption that Spoiler wins

the simulation game from position (pm,p′m′) in at most α ∈ N steps, it follows that Spoiler

wins from (qn,q′n′) in at most α− 1 steps. By induction hypothesis, there is a ordinal β s.t.

Spoiler has a winning strategy in the approximant game for �kβ betweenM,M ′ from position

(qn,q′n′). There are only finitely many such replies. Let γ0 be the maximal such β.

In the second class, Duplicator’s move p′m′
a−−→ q′n′ uses an ω-transition, which does

not exist in S′
k
. Instead, Duplicator can move p′m′

a,0−−−−→ t ′r,q′m
′ by a transition due to Equa-

tion (5.34). From our assumption that Spoiler wins the simulation game from position (pm,p′m′)

in at most α ∈ N steps, it follows that Spoiler wins from (qn,t ′r,q′m
′) in at most α−1 steps. If

r , q then this is trivially true by a move due to Equation (5.32). Otherwise, if r = q, then this

can only be achieved by a Spoiler move qn
(q,q′),0−−−−−−−→ tq,q′n in the next round, because for any

other Spoiler move Duplicator has a winning countermove by Equations (5.37) or (5.38). In this

case Duplicator can only reply with a move t ′q,q′m
′ (q,q′),0−−−−−−−→ t ′q,q′m

′ due to Equation (5.36),

and we must have that Spoiler can win in at most α − 2 steps from position (tq,q′n,t ′q,q′m
′),

which is the beginning of the testing gadget for states (q,q′). By construction of Sk ,S′k , in par-

ticular by definition of the gadgets and Equation (5.28), this implies that n ≥ suf (q,q′,k −1).

By the definition of sufficient values we obtain ∀n′ ∈ N.qn 6�k−1 q′n′. Therefore, for every

n′ ∈ N there exists some ordinal β s.t. qn 6�k−1
β q′n′. Let γ be the least ordinal greater or equal

all those β. Each of the finitely many distinct ω-transitions yields such an γ. Let γ1 be the

maximum of them.

Finally, we set γ := max(γ0,γ1) + 1. Then every reply to Spoiler’s initial move pm
a−−→ qn

in the approximant game from (pm,p′m′,γ,k) leads to a position that is winning for Spoiler. It

follows that Spoiler has a winning strategy in the approximant game from (pm,p′m′,γ,k). �

The proof of Lemma 5.19 is now a formality.

Proof of Lemma 5.19. LetM = (Q,Act,δ) andM ′ = (Q′,Act,δ′). We iteratively construct nets
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(Sk ,S′k ) that characterize �k for growing k ∈ N.

For the base case k = 0, we observe that �0 = Q×N×Q′×N is the full relation. The claim

therefore trivially holds for the pair S0,S′0 of nets that contain no transitions at all. Also, by

Lemma 5.21, point 1, the minimal sufficient value suf (q,q′,0) equals ω for every pair of states

(q,q′) ∈ Q×Q′.

For the induction step, consider k > 0. By assumption, we have already constructed

the pair (Sk−1,S′k−1) of nets correctly characterizing �k−1. By Theorem 4.19 (page 49) we

know that the simulation preorder w.r.t. Sk−1,S′k−1 is effectively semilinear. Since semilinear

sets are effectively closed under projections and complements, we can compute the semilin-

ear representation of the approximant �k−1 and its complement and therefore also the values

suf (q,q′,k −1) for all (q,q′) ∈ Q×Q′. Knowing these values, we can construct the next pair

(Sk ,S′k ) of nets according to Definition 5.22. The correctness of this new pair follows from

Lemmas 5.23 and 5.24. �

Note that in the proof above, we construct a description of the previous approximants only

to compute the values suf (p,p′,k −1). We will now show that these values are in fact polyno-

mially bounded and can also be computed in polynomial space.

5.4 Complexity Analysis

We show that the bounds on the coefficients of the Belt Theorem, as derived in Section 4.3,

imply that the construction shown in the previous section for checking weak simulation actually

uses only polynomial space.

To obtain an upper bound for the complexity of this procedure, we will show that the sizes

of all nets (Sk ,S′k ), as constructed in Definition 5.22, are polynomial in the sizes of M and

M ′. We start with some observations about the shape of the nets Sk and S′
k
.

Lemma 5.25.

1. The net S′
k

remains constant from index k = 1 on.

2. Every net Sk for k > 0 contains precisely |Q×Q′ | many disjoint testing chains, one for

each pair of states inM andM ′.

3. If suf (q,q′,k −1) ,ω, then the length of the test chain for states q,q′ in net Sk is exactly

suf (q,q′,k −1). Otherwise, it is a simple e-labelled loop.

Using these properties above and Lemma 5.21, point 2, we derive that indeed at some

k ∈ N, the sequence (Si ,S′i )i∈N of nets stabilises to (Sk ,S′1). This holds because for any

pair (q,q′) there can only be one index i such that the respective sufficient value jumps from
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suf (q,q′,i) = ω to suf (q,q′,i + 1) ∈ N. Because these nets characterize approximants �k and

�k+1 w.r.t.M,M ′ (by Lemmas 5.23 and 5.24) we obtain that �k = �k+1 = � .

Lemma 5.26. Consider the sequence (Sk ,S′k )k ∈N as constructed in Definition 5.22 for the

OCNM and ω-NetM ′. For any index k ∈ N, the nets Sk ,S′k are of polynomial size, and can

be constructed in polynomial space with respect to the sizes of the original netsM andM ′.

Proof. For k = 0, these nets are defined to be just copies of M and M ′ with no transitions.

The claim is therefore trivial for k = 0. For all higher indices k + 1, we consider nets Sk+1 and

S′k+1 individually.

By Lemma 5.25, point 1, S′
k+1 is the same as S′1, which can easily be seen to be of poly-

nomial size in the sizes of M and M ′ (cf. Definition 5.22). The net Sk+1 is completely

determined by the original pair of nets and the length of the test chains, which in turn are de-

rived only from the minimal sufficient values suf (q,q′,k) for level k. By construction, the size

of the net Sk+1 is polynomial (actually linear) in the sizes ofM,M ′ and the maximal length

of a test chain in the net Sk . By Lemma 5.25, point 3, it is therefore enough show that one can

compute the values suf (q,q′,k) for all states q ∈ Q and q′ ∈ Q′ in polynomial space and bound

them polynomially w.r.t.M,M ′ in case they are finite.

Recall that suf (q,q′,k) is defined in terms of the approximant �k , which is characterized

as the strong simulation � relative to the nets Sk ,S′k by Lemma 5.19.

Let Ck be the maximal length an acyclic path in the product of nets Sk and S′k . By

Theorem 4.12, Ck is sufficient for the claim of the Belt Theorem applied to the nets Sk and S′
k
.

In particular, by Lemma 4.20, it bounds the width of all vertical belts and therefore all finite

values suf (q,q′,k):

suf (q,q′,k) ∈ N =⇒ suf (q,q′,k) ≤ Ck . (5.42)

The form of the nets (Lemma 5.25, points 2,3) means that the longest acyclic path in the

product of Sk and S′k , must actually start within the part described by the original nets, and

eventually go through one of the test chains. We can therefore bound Ck by

Ck ≤ C1 +Ck−1. (5.43)

We fix a pair (q,q′) of states and consider the length of the test chain for this pair in the

net Si for growing indices i. By Lemma 5.21 and Lemma 5.25, point 3, we see that there

can only be one index i such that the length of the chain increases, namely if suf (q,q′,i) =

ω > suf (q,q′,i + 1) ∈ N. Because there are always exactly K = |Q×Q′ | many test chains, this

means that there can be at most K indices i such that Ci+1 ≥ Ci . Together with Equation (5.43)

we can therefore globally bound every Ck by

Ck ≤ K ·C1. (5.44)
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We conclude that the sizes of all Sk ,S′k are polynomial in the sizes of M and M ′. By

Lemma 4.20, we can thus compute the exact values of suf (q,q′,k) and construct Sk+1,S′k+1

using polynomial space w.r.t.M andM ′ as required. �

Theorem 5.27. For any pair N ,N ′ of one-counter nets one can construct two polynomially

bigger OCNs S and S′ that contain the original states of N and N ′ respectively, such that

weak simulation � w.r.t. N ,N ′ is the projection of strong simulation w.r.t. S,S′.

Proof. The claim follows from Theorem 5.3 and Lemmas 5.19 and 5.26. �

The main result of this section is now a direct consequence of Theorems 4.19 and 5.27.

Recall that a PSPACE lower bound already holds for strong simulation.

Theorem 5.28. Checking weak simulation preorder between two OCNs is PSPACE-complete.

Moreover, the largest weak simulation relation is semilinear and can be explicitly represented

in space exponential in the sizes of the input nets.

5.5 Comparison with Finite Systems

We now turn to strong and weak simulation between OCA/OCN and finite systems.

Srba [47] showed a PSPACE lower bound for checking strong simulation between OCA and

NFA, in both directions. This result was obtained by reduction from the emptiness problem for

alternating finite automata over a unary alphabet, which was already known to be PSPACE-hard

[21, 31]. Matching upper bounds (for strong and weak simulation) follow from the fact that

µ-calculus model checking is in PSPACE for one-counter systems [46], because finite systems

as well as the strong/weak simulation conditions can be expressed as µ-calculus formulae.

Strong simulation between one-counter nets and finite systems was known to be P-complete,

in both directions [33]. The complexity of the corresponding weak simulation problems how-

ever were only known to be between P and PSPACE. In this section we show that these prob-

lems are in fact polynomial time complete. Note that for the direction NF A � OCN, this is

not immediately obvious because one still has to deal with the problem of infinite branching.

The usual weak simulation approximants do not converge at level ω, but only at ω2 (see Theo-

rem 5.18). The easy direction is the following.

Theorem 5.29. Checking if a finite-state process weakly simulates a OCN process is in P.

Proof. It suffices to first replace the step relation in the finite system with its weak closure so

that q
a

===⇒ q′ ⇐⇒ q
a−−→ q′ and then check if the resulting finite system strongly simulates

the net. The finiteness of the state space allows us to compute the weak closure in polynomial

time. A polynomial time algorithm for checking strong simulation between OCN and finite-

state processes can be found in [33]. �
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For the other direction, checking if a OCN process weakly simulates a finite-state process,

we show that it suffices to consider a finite version of the net where the counter is capped

at a polynomially bounded level. The crucial observation is that monotonicity (Lemma 3.13)

implies that Duplicator must be able to ensure that his counter never decreases along any partial

play that repeats control states.

Definition 5.30. Let N = (Q,Act,δ) be a OCN and l ∈ N. The l-capped version of N is

the finite system Nl = (Ql ,−−→) with states Ql = {(q,n) |q ∈ Q,n ≤ l} that has a transition

(p,m)
a−−→ (q,min{n,l}) iff pm

a−−→N qn.

It is easy to see that Nl can be constructed from N in time proportional to l × |N |. We

observe the following properties.

Proposition 5.31. For n,l ∈ N and q ∈ Q,

1. (q,min{n,l}) � qn,

2. qn �
l

(q,min{n,l}),

3. (q,min{n,l}) � (q,min{n + 1,l}).

We continue to show that Duplicator can be assumed to play optimally in a sense that

depends on cycles in the underlying control graphs. Consider a simulation game between a

finite process and a OCN process (or its l-capped version). Recall that OCN subsume finite

systems, so we can identify plays of the weak simulation game with paths in the product graph

of the given systems. In our scenario, it is actually only Duplicator that could be restricted by

his counter. So we are looking at a one-dimensional game and it makes sense what it means

for a play to be decreasing.

Definition 5.32. A path π = p0t0 . . . tk−1pk in a OCN is decreasing if ∆(π) < 0. Similarly, a

path in the product graph (F ×N ) of finite system F and OCNN is decreasing if the induced

path in N is.

Lemma 5.33. Suppose p � qn. Then Duplicator has a winning strategy in the weak simulation

game that moreover guarantees the following properties in every play.

1. No round decreases the counter by more than |Q | ·2 + 1.

2. No simple cycle is decreasing.

Proof. A weak step s0m0
a

===⇒ tlnl made by Duplicator as a response in the weak simulation

game is due to some sequence

s0m0
τ−−→ s1m1

τ−−→ . . .
τ−−→ slml

a−−→ t0n0
τ−−→ t1n1

τ−−→ . . .
τ−−→ tknk . (5.45)
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By monotonicity (Lemma 3.13), it is suboptimal for Duplicator to decrease the counter when

silently moving from state si to s j = si (or from ti to t j = ti) for i < j. Also, we can safely

assume that a weak step as above will be non-decreasing if there are indices i < j with si = s j

and mi < m j (or ti = t j and ni < n j ). Therefore, if the weak step decreases the counter, both

silent paths will be acyclic and hence no longer than |Q |. Such a step cannot decrease the

counter by more than |Q | ·2 + 1.

For the second point observe that if Duplicator cannot avoid the next simple cycle to be

decreasing, then Spoiler must have some strategy to enforce cycles to be decreasing. Such a

strategy must be winning for Spoiler as it eventually exhausts Duplicator’s counter. �

The next lemma uses the previously stated optimality assumption to show that we only

need to consider a polynomially capped net to determine if a OCN process weakly simulates a

finite-state process.

Lemma 5.34. For any pair F = (S,−−→), N = (Q,Act,δ) of a finite-state system and a OCN

respectively, there is a polynomial bound c such that for all n ∈ N:

p � qn ⇐⇒ p � (q,min{n,c}) (5.46)

where (q,min{n,c}) is a state of the c-capped version Nc of N .

Proof. The “if” direction follows directly from Proposition 5.31 (point 1). For the other direc-

tion we show that c = (2|Q |+1)( |S×Q |+1) suffices to contradict p � qn and p 6� (q,min{n,c}).
If p � qn then p �c qn and by Proposition 5.31 (2) it also holds that p �c (q,min{n,c}).

Moreover, Duplicator has an optimal strategy in the sense of Lemma 5.33. We see that using

the same strategy in the game p vs. (q,min{n,c}) guarantees that

1. No round decreases the second component of Duplicator’s state by more than 2|Q |+ 1.

2. For any simple cycle between game positions pi ,(qi ,ni ) and pj ,(qj ,n j ) it holds that

n j ≥ ni or n j ≥ c− (2|Q |+ 1)( |S×Q |).

To see the second point observe that the only way a simple cycle can be decreasing is because

some of its increases are dropped due to the counter being at its limit c. Then point 1 implies

n j ≥ c− (2|Q |+ 1)( |S×Q |) because the length of simple cycles is bounded by |S×Q |. By our

assumption p 6� (q,min{n,c}), we can consider a play

π = (p0,(q0,n0))(t0,t ′0)(p1,(q1,n1))(t1,t ′1) . . . (pl ,(ql ,nl )) (5.47)

where p0 = p and (q0,n0) = (q,min{n,c}), along which Duplicator plays optimally as described

above and which is winning for Spoiler in the smallest possible number of rounds.

Since c > |S ×Q |, we know that π must contain cycles as otherwise l ≤ |S ×Q | and thus

p �c (q,min{n,c}) contradicts that π is won by Spoiler. So assume the last simple cycle in
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π is between positions i and j. We know that n j < ni , as otherwise omitting this last cycle

results in a shorter play, which by monotonicity (Lemma 3.13, applied to weak simulation

approximants �α) must also be winning for Spoiler. Thus, by Observation 2 above, n j ≥
c− (2|Q |+ 1)(|S×Q |) and in particular we get that n j ≥ (2|Q |+ 1) due to our choice of c.

Finally, recall that the last position (pl ,(ql ,nl )) in the play π must be directly winning

for Spoiler. That is, for some action a it holds that pl
a−−→ and (ql ,nl ) 6a===⇒. But since nl >

(2|Q | + 1), we know that also qlnl 6a===⇒ in the original OCN process. This contradicts our

assumption that Duplicator’s original strategy in the unrestricted game was winning. �

Theorem 5.35. Checking if a OCN process weakly simulates a finite-state process can be done

in polynomial time.

Proof. To check if p � qn holds we can by Lemma 5.34 equivalently check p � (q,min{n,c})
where (q,min{n,c}) is a state of a polynomially bounded finite system Nc . Checking weak

simulation between two finite processes is in P. �



Chapter 6

Trace and Language Inclusion

The traces of a process are all (finite) sequences of actions it can emit. Trace inclusion is the

problem whether all traces of one process are also traces of another given process. We look at

the decidability and complexity of checking trace inclusion between finite systems, OCN and

OCA. Where appropriate, we consider weak trace inclusion and trace universality problems.

Recall (Definition 2.6 on page 10) that the set of traces of a process α is given as T (α) =

{w ∈Act∗ | ∃β.α w−−−→ β} and trace inclusion α ⊆ β holds for two processes α and β iff T (α) ⊆
T (β). We want to decide if trace inclusion holds for a given pair of one-counter processes,

which are configurations of (restricted) one-counter automata.

Related problems have been addressed since the 1970’s: Valiant [50] studies language in-

clusion and equivalence of deterministic pushdown automata (DPDAs) and subclasses. The

language of a process is a subset of its traces, usually defined by excluding those traces that

do not lead to some accepting configuration. Valiant showed that language inclusion for deter-

ministic one-counter automata (DOCA) and language universality for nondeterministic OCAs

are already undecidable. Valiant and Paterson [51] showed the decidability of language equiva-

lence for DOCAs. This problem has recently been shown to be NL-complete by Böhm, Göller,

and Jančar [6], assuming fixed initial counter values. Jančar, Esparza, and Moller [28, 25]

consider trace inclusion between Petri nets/VASS and finite systems and prove decidability in

both directions. Jančar [24] showed that trace equivalence, and therefore also inclusion, is un-

decidable for 2-dimensional VASSs. The status of trace inclusion and equivalence for OCNs

was stated as an open question in [12].

In the following section, we discuss how trace inclusion relates to language inclusion and

recover the mentioned results by Valiant [50], that trace inclusion between DOCA, as well as

trace universality for nondeterministic OCA are undecidable.

In Section 6.2 we show that trace inclusion and equivalence are undecidable for OCNs.

This result holds even for processes with initial counter values fixed to 0 and (by Lemma 3.10)

extends to the case where only the process on the right is nondeterministic.

77
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In Section 6.3, we study trace inclusion between OCA and finite systems. We show that

strong and weak trace inclusion between OCA and NFA are PSPACE-complete. The other

direction is undecidable (Corollary 6.6), so we focus on the problem NFA ⊆ OCN in more

detail. This problem can be easily seen to be (logspace) inter-reducible with trace universality

for OCN. It was known to be decidable, even for the more general class of VASSs [28], but the

exact complexity was unknown. We show that trace universality of OCN is in fact Ackerman-

nian, i.e., that no primitive recursive upper bound is possible. We also provide Ackermannian

lower bounds on the length of minimal witnesses for non-universality.

6.1 Traces vs. Languages

In formal language theory, automata are seen as as acceptors of action sequences, where accep-

tance is usually defined by a reachability criterion. Given a distinguished initial configuration α

and a set Acc of accepting configurations, an automaton over a (finite) alphabet Act of actions

accepts a word w ∈ Act∗ if it allows a w-labelled run from α to some β ∈ Acc. The language

of the automaton consists of all accepted words.

For one-counter automata with state-set Q, different acceptence criteria can been consid-

ered. The most common ones are by final state (Acc = F ×N for some fixed F ⊆ Q), by empty

counter (Acc = Q× {0}) and by empty counter and final state simultaneously (Acc = F × {0}).
Naturally, the set T (pm) of traces of pm can be seen as its language, where every configuration

is accepting, i.e., Acc = Q×N.

For unrestricted OCA, the respective inclusion problems are all reducible (in logspace) to

language inclusion where acceptance is by final state, because of the zero-testing capability of

the model. For OCN accepting by final state, inclusion is monotone with respect to the counter

in the sense of Lemma 3.13 (page 27). This is not true for acceptance by empty counter. For

instance, if the system consists of a single, decreasing loop p
a,−1−−−−−→ p, then the languages of

p1 and p2 are {a} and {aa} respectively, and thus incomparable.

We will go on to show that for OCA and OCN, checking language inclusion where accep-

tance is by final state can be reduced to trace inclusion and vice versa.

Definition 6.1. LetA = (Q,Act,δ,δ0) be a OCA and F ⊆ Q a set of final states. The language

of a configuration pm ∈ Q×N is

LA,F (pm) = {w ∈ Act∗ | pm
w−−−→ f n for some f n ∈ F ×N}. (6.1)

We will drop the indicesA,F if they are clear from the context. For processes pm and p′m′ we

write pm ⊆ f p′m′ to mean that L (pm) ⊆ L (p′m′). If pm and p′m′ are processes of different

OCA, the languages are assumed to be defined relative to their disjoint union.
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By language inclusion we mean both the relation ⊆ f itself and also the decision problem

OCA ⊆ f OCA that asks if pm ⊆ f p′m′ holds for two given OCA processes pm and p′m′.

Language universality is the problem that asks if Act∗ = L (pm) holds for a given process pm.

Trace inclusion is trivially reducible to language inclusion (and trace universality to lan-

guage universality), because both notions coincide in case all states are final. The next lemma

shows that, for acceptence by final state, the same holds for the other direction. This motivates

our later focus on the seemingly less expressive notion of trace inclusion.

Lemma 6.2. For OCAs, language inclusion and universality can be reduced (in logspace) to

trace inclusion and universality, respectively.

Proof. We show how to reduce language inclusion to trace inclusion. The same construction

also works for universality. Assume we are given two processes of the OCA A with alphabet

Act. We construct B, which is a copy of A, where every final state has a f -labelled self-

loop for some new action f . Moreover, we add to B a new universal state U with self-loops

U
a,0−−−−→U for every original action a ∈Act. This means that in B, Un

a−−→ holds for all original

actions and n ∈ N. Finally, we connect original states to U in a way that whenever qn 6a−−→ in

A for some configuration qn of A, we have qn
a−−→ Un in B. This can be achieved by adding

transition q
a,0−−−−→U if state q has no a-labelled outgoing transition and a zero-testing transition

q
a,=0−−−−−→ U if all a-labelled outgoing transitions of q have negative effect. Observe that this

construction preserves determinism, but can only be used if B allows zero-tests.

To see why this construction is correct assume w ∈ Act∗ witnesses pm 6⊆ f p′m′ in A.

Then pm
w−−−→ qn for some final state q and thus pm

w f−−−−→ in B. At the same time, no run

p′m′
w−−−→ q′n′ exists to some final state q′, either because p′m′ 6w−−−→ or because no such state

q′ is final. In both cases w f witnesses pm * qn in B. Conversely, every witness for non-trace

inclusion in B must end with the new action f , because this is the only action that can be

disabled. So a shortest witness for pm * qn in B must be of the form w f for some w ∈ Act∗.

This means that w witnesses pm 6⊆ f qn inA because in order to play the last action, the process

on the left must reach a final state and in order to not be able to play it, the process on the right

must not be able to reach a final state using an equally labelled path. �

Remark 6.3. A similar construction can be used to reduce OCN ⊆ f OCN to trace inclusion

between OCN, where zero-tests are not available. In this case we add transitions q
a,0−−−−→ U

for all states q and actions a. The correctness of this alternative construction follows using the

same argument. This alternative construction does not introduce new zero-testing transitions

and thus preserves the system being a net. However, it does not preserve determinism.

Later in this chapter we will study trace inclusion where the process on the right is deter-

ministic and moreover, at least one side is restricted to be a one-counter net, and thus does not
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contain zero-tests. The reason for this restriction is that both trace inclusion for deterministic

OCAs and trace universality of nondeterministic OCAs are already undecidable. This can be

seen by the following argument that is originally due to Valiant [50]. We first observe that the

emptiness problem of the intersection of two DOCA languages is undecidable.

Theorem 6.4. It is undecidable to check if L (p0)∩L (q0) = ∅ holds for two given processes

p0 and q0 of a deterministic one-counter automaton.

Proof. By reduction from the halting problem for 2-CM (Theorem 2.4). Both OCA processes

directly simulate the finite control and keep track of only one counter each.

Suppose we are given a 2-CM with states in Q and transitions in T ⊆ (Q×Act×Op×Q),

where Op = {inci,deci,ifzi | 1 ≤ i ≤ 2} are the possible operations on the counters. We can

contruct a OCA A = (Q′,T,δ,δ0) with states set Q′ = {p1,p2 | p ∈ Q} and action labels in T ,

such that whenever some transition t ∈ T justifies a step (p,c1,c2)
a−−→ (q,c1 + d1,c2 + d2) in

the 2-CM, then there are steps (p1,c1)
t−−→ (q1,c1 + d1) and (p2,c2)

t−−→ (q2,c2 + d2) in A. For

instance, for t = (p,a,inc1,q) ∈ T we introduce transitions (p1,t,1,q1) ∈ δ and (p2,t,0,q2) ∈ δ
in the OCA. Notice that the so constructed OCA is deterministic.

Assume that qhalt ∈ Q is the halting state of the 2-CM. If we let qhalt be the only accepting

state in the OCA, then the language of q10 describes exactly those paths from state q in the

2-CM that correctly update the first counter when initialized to 0. Similarly, L (q20) describes

those (proto-) runs that are valid w.r.t. the second counter. This means the intersection of their

languages is non-empty precisely if there is a valid and terminating run of the 2-CM, starting

in configuration (q,0,0). �

The class of languages definable by deterministic OCAs accepting by final state is effec-

tively closed under complementation because one can simply swap final and non-final states.

Together with Theorem 6.4 and Lemma 6.2 we derive the following.

Corollary 6.5. Language and trace inclusion are undecidable for DOCAs.

Proof. Language inclusion DOCA ⊆ f DOCA can be shown to be undecidable by reduction

from the problem of checking emptiness of the intersection of DOCA languages, Theorem 6.4.

Complementing the language of a process can be achieved by swapping final and non-final

states: Act∗ \ LA,F (pm) = LA,Q\F (pm). This means that LF (p0) ∩ LF (q0) = ∅ iff both

LF (p0) ⊆ LQ\F (q0) and LF (q0) ⊆ LQ\F (p0). The undecidability of trace inclusion follows

from the above and Lemma 6.2. �

Corollary 6.6. Language and trace universality are undecidable for nondeterministic OCAs.

Proof. LF (p0)∩LF (q0) = ∅ iff LQ\F (p0)∪LQ\F (q0) = Act∗ iff the process r0, which can

nondeterministically choose between p0 and q0 has a universal language. This shows that
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language universality is undecidable for OCA. The undecidability of trace inclusion follows

by Lemma 6.2. �

6.2 Undecidability of Inclusion for One-Counter Nets

In this section, we show that checking trace inclusion (and equivalence) is undecidable for

OCN. The proof is by reduction from the containment problem for weighted finite automata

over min-plus semirings, which is known to be undecidable [3].

Definition 6.7. A weighted finite automaton (WFA) over a semiring (S,⊕,0,⊗,1) is an NFA

where each transition carries a weight, which is an element of S. Formally, it is a structure

A = (Q,Σ,δ,q0) where Q is a finite set of states, Σ is a finite alphabet, δ ⊆ (Q×Σ×S×Q) is a

transition relation and q0 ∈ Q is a designated initial state.

A is complete if for every p ∈ Q and a ∈ Σ, there is at least one transition (p,a,d,q) ∈ δ.

A run of A on a word w = w0w1 . . .wn ∈ Σ∗ is a sequence ρ = (qi ,wi ,di ,qi+1)0≤i≤n ∈ δ∗ of

transitions. The value of such a run is A(ρ) =
⊗n

i=0 di , the semiring product of its weights.

The value of a word w ∈ Σ∗ isA(w) =
⊕{A(ρ) | ρ is a run of A on w}, the semiring sum of

the values of all possible runs on w.

The value A(w) is well-defined because there can only be finitely many runs of A on any

given word w due to the finite branching property of WFAs. If there is no run of A on w, then

A(w) = 0 is the empty semiring sum.

One can interpret WFAs as a way of defining functionsA : Σ∗→ S. In particular, complete

WFAs define total functions on Σ∗. Unlike for NFAs, where the containment problem asks if the

language of one automaton is contained in that of another, in the weighted setting containment

is relative to some order on the semiring domain that compares the values of words in the two

automata.

We consider the min-plus semiring (Z∪ {∞},min,∞,+,0), where the semiring sum and

product are minimum and addition on Z∪ {∞} respectively. For WFAs A and B over this

semiring and with alphabet Σ, we write A ≤ B if for every word w ∈ Σ∗ it holds that A(w) ≥
B(w). Intuitively, if A ≤ B, it is harder for a word to be in A than in B, so its value in A is

worse than in B. Since we are in a min-plus semiring, worse means larger. The containment

problem asks if A ≤ B holds for two given WFAs A and B over (Z∪ {∞},min,∞,+,0) with

the same alphabet. We recall the following result from Almagor, Boker, and Kupferman [3].

Theorem 6.8 ([3], Theorem 4). The containment problem is undecidable for WFAs over (Z∪
{∞},min,∞,+,0) with weights in {−1,0,1}.

We turn to WFAs over the complementary max-plus semirings (Z∪ {−∞},max,−∞,+,0)

and (N∪ {−∞},max,−∞,+,0). Here, the containment problem asks if A(w) ≤ B(w) holds for
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all w ∈ Σ∗. We again write A ≤ B if this is the case.

Lemma 6.9. The containment problem for WFAs over (N∪ {−∞},max,−∞,+,0) with weights

in {0,1} is undecidable.

Proof. We can reduce the undecidable containment problem for WFAs over min-plus as con-

sidered in Theorem 6.8 to containment for WFAs over max-plus with weights in {−1,0,1}
simply by inverting all weights in the input automata.

Next, we reduce this problem to the containment for WFAs over (N∪ {−∞},max,−∞,+,0)

with weights in {0,1,2}. Let A and A ′ be two WFAs over (Z∪ {−∞},max,−∞,+,0) with

weights in {−1,0,1}. Construct WFAs B and B ′ by replacing every weight w by w′ = w+ 1 in

transitions of A and A ′ respectively. The resulting automata have weights in {0,1,2} and for

every word w ∈ Σ∗ we have B(w) =A(w) + |w | ∈ N and B ′(w) =A ′(w) + |w | ∈ N. It follows

that

B(w) ≤ B ′(w) ⇐⇒ A(w) ≤ A ′(w), (6.2)

so containment for WFAs over (N∪ {−∞},max,−∞,+,0) with weights in {0,1,2} is undecid-

able.

To complete the proof, we show how to normalize the weights to {0,1}. Let x be a fresh

symbol. The WFAs C and C′ are the result of replacing every transition t = (p
a,d−−−−→ q) in B

and B ′ respectively, by two transitions p
a,d0−−−−−→ pt

x,d1−−−−−→ q where d = d0 + d1 is the original

weight and pt is a new state. We see that every word w in the domain of C is of the form

w = a0xa1x . . . xan or w = a0xa1x . . . xan x. Moreover, for any such word, C(a0xa1x . . . xan ) =

B(a0a1a2 . . . an ) and the same holds for C′ and B ′. We thus get B ≤ B ′ ⇐⇒ C ≤ C′, which

completes the proof. �

Theorem 6.10. Trace inclusion and equivalence are undecidable for OCNs.

Proof. Inclusion can trivially be reduced to equivalence for nondeterministic systems like

OCN. We show the undecidability of inclusion by reduction from the containment problem

of WFAs over (N∪ {−∞},max,−∞,+,0) with weights in {0,1}. The idea is to encode the WFA

as OCN, using the counter as accumulator. To ensure a faithful encoding of WFA containment,

the OCN can at any point jump to a gadget that compares the counter values by simultaneously

counting down.

Given WFAsA = (Q,Σ,δ,q) andA ′ = (Q′,Σ,δ′,q′) we construct nets B and B ′ with states

Q∪ {D} and Q′∪ {D} resp., over alphabet Act = Σ∪ {d} where d is a fresh symbol. We add

transitions D
d,−1−−−−−→ D to both nets as well as q

d,−1−−−−−→ D for any original state (in Q or Q′

respectively). We argue that A ≤ A ′ if and only if T (q0) ⊆ T (q′0).

Assume a witness w withA(w) = v > LA′ (w). Then there is a run ofA on w with a value

higher than that of any run ofA ′ on w. So the word wdv must be a valid trace from q0, but not
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from q′0. Conversely, if A(w) ≤ A ′(w) for all w ∈ Σ∗, then for any run of B there is a run of

B ′ over the same sequence of actions which accumulates a higher or equal counter value. Thus

no such word can be extended to a counterexample for trace inclusion by appending finitely

many d’s. �

6.3 Comparison with Finite Systems

We turn to checking strong and weak trace inclusion between finite-state systems and one-

counter systems. First, we focus on the question OCA ⊆ NFA, if the (weak) traces of a given

OCA process are subsumed by those of a finite process, and show that this problem is PSPACE-

complete. We rely on the following lemma about the reachability of a fixed control state in a

one-counter automaton.

Lemma 6.11 (Control state Reachability). Let p,q ∈Q be states of a OCA, K = |Q | and m ∈ N.

If there exists some n ∈ N such that pm −−→∗ qn, then pm −−→k qmk for some mk ∈ N and

k ≤ mK + 2K3−K2.

Proof. We distinguish two cases depending on whether or not there is a positive path from pm

to control state q.

Case 1:. Assume that a positive path pm −−→∗+ qn exists and consider a shortest positive

path (p0m0) −−→+ (p1m1) −−→+ · · · −−→+ (pkmk ) from pm = p0m0 to qn = pkmk . We know that

there is a path from p0 to pk in the control graph of the automaton that uses transitions in δ only.

So there must be such a path in the control graph that is shorter than K . Thus, if m0 ≥ K , then

there is a nk such that p0m0 −−→k
+ pknk for some k ≤ K . Otherwise, if m0 < K , we recall that

pimi −−→k pjm j implies pi (mi + 1) −−→k pj (m j + 1). After at most K − 1 steps, our minimal

path will repeat some control state pi = pj at positions i < j < K . By minimality we can assume

that then, mi < m j . Therefore, after at most K such repetitions the counter will reach a value

≥ K , wich means that the remaining path must be no longer than K . This allows us to bound

the length of the shortest positive path from p0m0 to control state pk by (K −1)K + K = K2.

Case 2:. No positive path pm −−→∗+ qn exists for any n ∈ N. Consider a shortest path

p0m0
π1−−−→∗+ p1m1

π2−−−→∗ p2m2
π3−−−→∗+ pkmk (6.3)

from p0m0 = pm to pkmk , where pk = q and π1 and π3 are the longest positive prefix and suffix,

respectively. The prefix π1 is a positive path from counter value m0 to m1 = 0. By Lemma 3.5

on page 21, it is no longer than m0K + K3−K2. The intermediate path π2 starts and ends with

a zero-testing transition and is therefore no longer than K3−K2 by Lemma 3.5. The length of

the suffix π3 can be bounded by K2 as in the first case. To conclude, the length of the shortest

path from pm to some configuration with control state q is bounded by mK + 2K3−K2. �
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Theorem 6.12. Checking strong trace inclusion pm ⊆ q or weak trace inclusion pm j q for a

OCA process pm and a finite process q is PSPACE-complete.

Proof. A PSPACE lower bound holds already for strong trace universality for finite-state sys-

tems [38]. The weak trace inclusion problem can trivially be reduced to the strong one in

cubic time by taking the transitive closure of the finite system w.r.t. silent (τ-labelled) transi-

tions. It remains to show a PSPACE upper bound for OCA ⊆ NFA. Let pm be a configuration

of the OCA A = (Q,Act,δ,δ0) and q a state of the NFA B = (S,Act,δ) and let B̄ denote the

deterministic powerset automaton for B.

To check if T (pm) * T (q) holds we can equivalently test T (pm)∩T (q)c , ∅. That is, if

in the product automatonA×B̄ some control state (p′,∅) is reachable from initial configuration

(p,{q})m. This can be checked by nondeterministically guessing a path stepwise. Note that

this product automaton is a OCA with K = |Q | ∗2 |S | states. By Lemma 6.11, we know that the

shortest path that witnesses such a control state reachability is bounded by b = mK +2K3−K2.

This bounds the number of steps we need to consider until we can safely terminate and conclude

that in fact trace inclusion holds. The bound b is polynomial in m and |Q | and exponential in

|S |. However, we need only polynomial space to store a configuration of A×B̄ (with control

state numbers and counter values encoded in binary) and the binary coded values of the search-

depth and its bound b. Thus we can check the condition in PSPACE. �

The converse problem is known to be undecidable. In fact, Valiant [50] showed that al-

ready trace universality is undecidable for nondeterministic OCAs (see Corollary 6.6 in Sec-

tion 6.1). We now study the restriction to OCNs. The decidability of trace inclusion between

a NFA and a OCN has been shown by Jančar, Esparza, and Moller [25], even for the more

general class of Petri nets. The proof uses a well-quasi-order based saturation method that

basically determinizes the net on the fly. This yields a non-primitive recursive procedure with

space requirements bounded in terms of the longest antichains in an application of Higman’s

lemma. We will show that for one-counter nets, this naïve approach is optimal: The problem

NFA ⊆ OCN is Ackermanian, i.e., lies at exactly level ω in the fast-growing hierarchy [13] and

the mentioned algorithm achieves this upper bound.

We first observe that one can without much effort reduce the problem NFA ⊆ OCN to

the trace universality problem for OCNs. We now prove this for OCNs, but in fact the same

construction works for any class of systems that is closed under synchronous products with

finite systems.

Lemma 6.13. Trace inclusion NFA ⊆OCN is logspace-reducible to trace universality of OCNs.

Proof. LetA = (Q,Act,δ) be an NFA andA ′ = (Q′,Act,δ) be a OCN. We consider the OCNB
with states {U }∪ (Q×Q′) and actions Act′ = δ that has a transition (p,p′)

(p,a,q),d−−−−−−−−−→ (q,q′) for
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every (p,a,q) ∈ δ and (p′,a,d,q′) ∈ δ′. The OCN B moreover contains transitions U
t,0−−−→ U

for all actions t ∈ δ and (p,p′)
(q,a,q′),0−−−−−−−−−→ U for all p = q ∈ Q and p′,q′ ∈ Q′.

Let wa ∈ δ+ be a witness for non-universality of some configuration (p,p′)m of B. This

means any run of B that is labelled with w must end in a configuration (q,q′)n where q
a−−→ and

q′n 6a−−→, and so, w ∈ T (p) \T (p′m). Conversely, if w witnesses p * pm and π = t0t1 . . . tk ∈ δ
is a w-labelled run of A, then π witnesses non-universality of the process (p,p′)m of B. �

We now present a simple nondeterministic algorithm that is based on coverability trees and

solves the trace universality problem for OCNs.

Let N⊥ denote the set of non-negative integers plus a special least element ⊥ and define

max : 2N⊥→N⊥ as the function that returns the maximal element of any nonempty finite subset

and ⊥ otherwise. We lift the definition of traces to sets S ⊆ Q ×N of processes in the natu-

ral way: The traces of S are T (S) =
⋃

qn∈S T (qn). By the monotonicity of trace inclusion

(Lemma 3.13), the traces of a finite set of processes are determined only by the traces of its

maximal elements.

Definition 6.14. For a finite set S ⊆ Q ×N define the macrostate as the vector MS ∈ Nk
⊥ of

dimension k = |Q | where for each 0 ≤ i < k, MS (i) = max{n | qin ∈ S}. In particular, the

macrostate for a singleton set S = {qin} is the vector with value n at the i-th coordinate and

⊥ on all others. The norm |M | of M is the value in its biggest dimension. We define a step

relation
a

===⇒ for all a ∈ Act on the set of macrostates as follows:

(n0,n1,. . . ,nk )
a

===⇒ (m0,m1,. . . ,mk ) (6.4)

iff for all indices 0 ≤ i < k, mi = max{n | ∃n j , ⊥. qjn j
a−−→ qin}. The traces of macrostate M

are T (M) =
⋃

0≤i≤k T (qimi ). For two macrostates M,N we say M is covered by N and write

M v N , if it is pointwise smaller, i.e., M (i) ≤ N (i) for all indices 0 ≤ i < k. For convenience,

we will write {q0 = n0,q1 = n1,. . . ,ql = nl } to denote the macrostate with value ni in dimension

qi ∈ Q and ⊥ for all unlisted dimensions.

Steps on macrostates correspond to the classical powerset construction and each macrostate

represents the finite set of possible configurations the OCN can be in, where all non-maximal

configurations are pruned out. The next lemma directly follows from these definitions and

monotonicity (Lemma 3.13).

Lemma 6.15.

1. The covering-order v is a well quasi order on Nk
⊥, the set of all macrostates. Moreover,

M v N implies T (M) ⊆ T (N ).

2. If M
a

===⇒ N then |N | ≤ |M |+ 1.
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3. For any finite set S ⊆ Q×N it holds that T (S) = T (MS ).

Dealing with macrostates allows us to treat universality as a reachability problem: By

Lemma 6.15, point 3, we see that configuration qn is not trace universal, Act∗ , T (qn), if and

only if M{qn } ===⇒∗ (⊥,⊥,. . . ,⊥). We take the perspective of a Pathfinder, who wants to reach

(⊥)k .

Point 1 of Lemma 6.15 allows us to use a naïve procedure to decide universality by exhaus-

tively unfolding the coverability-tree of all reachable macrostates in search for a path to (⊥)k ,

and thus a witness for non-universality. Whenever we see a macrostate that covers one of its

ancestors, we can safely stop exploring this branch, because a minimal witness, if one exists,

can omit the intermediate path.

To analyze the complexity of this procedure, we recall the definition of the fast-growing

hierarchy and a result from [13], that allows us to compute a bound on the maximal number of

incomparable macrostates visited.

Definition 6.16. Consider the family of functions Fn : N→ N where for x,k ∈ N,

F0(x) = x + 1 and Fk+1(x) = Fx+1
k (x).

Here, Fk denotes the k-fold application of F. Moreover, define Fω (x) = Fx (x) for the first limit

ordinal ω. For k ≤ ω, Fk denotes the least class of functions that contains all constants and is

closed under substitution, sum, projections, limited recursion and applications of functions Fn

for n ≤ k.

Already F2 contains all elementary functions and the union
⋃

k ∈NFk of all finite levels

contains exactly the primitive-recursive functions. A function is called Ackermannian if it is in

Fω \⋃k ∈NFk .

A sequence x0,x1,. . . ,xl of macrostates is called good if there are indices 0 ≤ i < j ≤ l

such that xi v x j and bad otherwise. Such a sequence is called t-controlled by f : N→ N if

|xi | < f (i + t) for every index 0 ≤ i ≤ l.

Theorem 6.17 ([13]). Let f :N→N be a monotone function inFγ such that f (x) ≥ max{1,x}
for some γ ≥ 1. There is a function Lk, f (t) in Fk+γ−1 that computes a bound on the maximal

length of bad sequences in Nk
⊥ which are t-controlled by f .

Corollary 6.18. Trace universality of OCNs with no more than k states is inFk . Trace univer-

sality for unresticted OCNs is in Fω .

Proof. Observe that the time and space requirements to implement the naïve procedure outlined

above are bounded in terms of the longest non-increasing (w.r.t. covering) sequence in this

unfolding. These are bad sequences where the norm of the initial macrostate is n0, the counter

value of the process to check for universality. By point 2 of Lemma 6.15, all such sequences
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are n0-controlled by the successor function succ(x) = x + 1, which is in F1. By Theorem 6.17,

one can compute a bound Lk,succ (n0) on the maximal length of minimal witnesses and thus

implement the procedure in Fk , if the dimension of the macrostates – the number of states in

the input net – is fixed to k.

For the general case, the number k of states of the OCN is part of the input. The bound on

the maximal length of witnesses one needs to consider therefore not only depends on the initial

counter value n0 but also on k. This bound is B(k,n0) = Lk,succ (n0). Sicne Lk,succ ∈ Fk for

every k ∈ N, the function B : N×N→ N must be in Fω . Computing the necessary bound and

implementing the procedure can thus be done in Fω . �

Remark 6.19. In a similar fashion, we can determinize OCN with respect to their weak traces

and derive an Fω upper bound for the weak trace universality of OCNs, as well as the problem

OCN j OCN. In this setting, a OCN process either has only finitely many possible weak a-

successors for a particular action a, in which case each such step is short (cf. Remark 5.6 on

page 55), or for some control states q, there are weak a-steps to qn for unbounded counter

values n ∈ N.

The crucial observation is that if a weak trace can lead to some process qn for arbitrarily

high n, then every extension of this trace that is a witness for non-universality must contain

some action that is disabled in all qn. Therefore, one can use a symbolic value > > n ∈ N when

defining steps between macrostates: the dimension corresponding to control state q is set to

> if the current prefix of the constructed witness can lead to unbounded qn, and this value is

only removed (and set to ⊥) when the candidate witness prescribes an action that is disabled

in all qn. The natural extension of the well-order v on these generalized macrostates is again

monotone with respect their weak traces (cf. Lemma 6.15), and implies a decision procedure.

At first glance, Fω seems like a rather crude upper bound. However, we will show that

this bound is optimal and strong and weak trace universality are indeed Ackermannian, i.e.,

not primitive recursive. Before we prove this lower bound (in Theorem 6.25), let us introduce

some convenient notation.

Let N = (Q,Act,δ) be a OCN that contains a universal state U: one that has self-loops

U
a,0−−−−→ U ∈ δ for every action a ∈ Act. Naturally, a Pathfinder who wants to prove non-

universality must avoid macrostates with M (U) ,⊥, because no continuation of a path leading

to such a macrostate can be a witness. We can use this observation to construct macrostates

that inhibit Pathfinder to make certain actions.

Definition 6.20. Let S ⊆ Act be a set of actions in a OCN that contains a universal state U . A

state q ∈ Q is called an S-obstacle if q
a,0−−−−→ U ∈ δ for all actions a ∈ S. We say q ignores S, if

q
a,0−−−−→ q ∈ δ for all a ∈ S.
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Note that if a macrostate contains an S-obstacle, then Pathfinder must avoid all actions of

S. In order to remove an obstacle, Pathfinder must play an action that is not the label of any of

its incoming transitions.

Example 6.21. We show how to construct a one-counter net Nk , parametrized with k ∈ N,

together with a process that is not trace universal, but any witness for non-universality must be

longer than Fk (1).

We define the net Nk = (Q,Act,δ) with states Q = {I,U,A} ∪ {Fi | 0 ≤ i ≤ k} and actions

Act = {0,1,. . . ,k} ∪ {e}. The set δ of transitions contains

U
a,0−−−−→ U for all a ∈ Act, (6.5)

Fi
i,−1−−−−−→ Fi for all 0 ≤ i ≤ k, (6.6)

Fi

j,0−−−−→ U for all 0 ≤ i < j ≤ k, (6.7)

Fi
e,0−−−−→ U for all 0 ≤ i < k, (6.8)

A
(i+1),0−−−−−−−→ Fi for all 0 ≤ i < k, (6.9)

as well as A
0,+1−−−−−→ A, I

e,0−−−−→ Fk and I
e,0−−−−→ A. See Figure 6.1 below for the net N3.

F0F1F2F3

A

U

0, +

{1, 2, 3}

0, −1, −2, −3, −

123

{1, 2, 3, e }{2, 3, e }{3, e }e

{0, 1, 2, 3, e }

I
e

e

{0, 1, 2, 3}

Figure 6.1: The netN3. Edges labelled with sets of actions indicate multiple transitions, one for

each action in the set. The process I (1) is not trace universal but any witness for non-universality

is longer than F3(1).

The interesting property of the netNk is that for all m,n ∈N, the macrostate {A = m,Fk = n}
is not universal, but has no witnesses shorter than Fn

k
(m).

Intuitively, in order to show non-universality, a Pathfinder must play the “end”-action e

eventually, in order to remove the accumulator state A, i.e., exclude the possibility that the net

is in configuration A(n) for some n. For this to be safe, all occurrences of the Fi must first be
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removed, because they all are e-obstacles. Removing {Fi = n} amounts to playing the action

i at least n + 1 times, which in turn requires first removing all Fj for j < i. But every action

i respawns another m instances of Fi−1, where m is the current value of the accumulator A,

which gets incremented every time the action 0 is played. This means a shortest witness for

non-universality of {A = m,Fi = n} must faithfully recur according to the definition of Fn
i (m),

and thus count up the accumulator to at least Fn
k

(m).

To find a single non-universal configuration with the mentioned lower bound on the length

of witnesses, consider the process I (1). The initial state I has transitions I
e,0−−−−→ Fk ,I

e,0−−−−→ A

and I
i,0−−−→ U for all actions i , e ∈ Act. This makes it an Act ⊆ {q}-obstacle and hence,

any witness for non-universality of I (1) must start with action e to avoid reaching a universal

macrostate. This action leads to {A = 1,Fi = 1}, which has no witnesses shorter than Fi (1).

We now show that trace universality for OCNs is not primitive recursive, by reduction from

the control state reachability problem in incrementing counter machines, which is Ackermanian-

hard [11, 13]. An incrementing counter machine is a counter machine (cf. Definition 2.2 on

page 8) with imprecise counter-behaviour: It has the possibility to spontaneously increment

any of its counters.

Definition 6.22. A k-dimensional incrementing counter machine (k-ICM) is a triple M =

(Q,Act,δ) where Q is a finite set of control states, Act is a finite alphabet of actions and δ

is a transition relation of the form δ ⊆ Q×Act×OP×Q, where OP = {inci,deci,ifzi | 0 < i ≤ k}
are the possible operations on the counters.

A configuration (q,c1,c2,. . . ,ck ) ∈ Q×Nk ofM consists of a state and a valuation of the

counters. M can make an a-labelled step

(q,c1,c2,. . . ,ck )
a−−→ (q′,c′1,c

′
2,. . . ,c

′
k ) (6.10)

from one configuration to another, if there is a transition (q,a,op,q′) ∈ δ and the following are

satisfied.

1. If op = inci then c′i ≥ ci + 1 and c′j ≥ cj for all j , i.

2. If op = deci then c′i ≥ ci −1 ≥ 0 and c′j ≥ cj for all j , i.

3. If op = ifzi then c′i ≥ ci = 0 and c′j ≥ cj for all j , i.

Control state reachability is the decision problem that asks if there is a run of the ICM from

a given initial configuration to some configuration in a given final state. This problem has

non-primitive recursive complexity [11, 13].

Remark 6.23. Syntactically, there is no difference between incrementing counter machines and

ordinary counter machines. Semantically, the difference is that a ICM can always set the value
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of a counter higher than prescribed by the current transition. ICM therefore induce infinitely

branching transition systems.

Remark 6.24. Incrementing counter machines are monotone with respect to counter valuations:

If a step (q,c1,c2,. . . ,ck )
a−−→ (q′,c′1,c

′
2,. . . ,c

′
k
) is possible, then so is (q,d1,d2,. . . ,dk )

a−−→
(q′,c′1,c

′
2,. . . ,c

′
k
) for all pointwise smaller counter valuations (d1,d2,. . . ,dk ) v (c1,c2,. . . ,ck ).

This is because a transition that decreases counter i is enabled even if the value of the ith counter

is 0. Since ICMs can contain zero-testing transitions that are enabled only if the corresponding

counter value is 0, a smaller valuation usually strictly simulates any larger one.

Theorem 6.25. Trace universality for nondeterminisic OCNs is non-primitive recursive.

Proof. By reduction from the control state reachability for incrementing counter machine,

which is non-primitive recursive [11]. We construct a OCN-process that it is not universal

iff a given configuration of a k-ICM can reach a given final state. The idea is to enforce a

faithful simulation of the ICM by Pathfinder, who wants to show non-universality of the OCN

process.

We construct a netN which has a unique action for every transition of the ICM, as well as

actions τi that indicate incrementing errors for every counter ci , and actions ] and $ to mark the

beginning and end of a run respectively. This ensures a strict correspondence between words

and runs of the ICM. The states of N are

1. an initial state Init and a universal state U ,

2. a state qi for every state qi of the ICM.

3. a state Ci for every 0 < i ≥ k, representing the ith counter of the ICM.

4. a state Z, that will be used to access the constant 0 and that ignores every action but the

end marker $.

A configuration (q,c1,c2,. . . ,ck ) of the ICM is represented by a macrostate {q = 0,Z =

0,C1 = c1,C2 = c2,. . . ,Ck = ck }. The Pathfinder will announce transitions of the ICM (as well

as actions demanding increment errors) in order to move between macrostates according to a

faithful simulation of the ICM.

Initialization. To set up M0 = {q0 = 0,Z = 0,C0 = 0,C1 = 0,. . . ,Ck = 0}, representing the

initial ICM configuration, we add ]-labelled transitions with effect 0 from Init to q0,Z and Ci

for all 0 ≤ i ≤ k. Moreover, we make Init an obstacle for every action but ]. This way, Pathfinder

must initially play the action ] (and set up M0) in order to avoid a universal macrostate.

Finite control. For any transition t = q
a,op−−−−−→ q′ of the ICM, we add a transition q

t,0−−−→ q′ to

N that, in a macrostate-step, will replace the value 0 in dimension q by⊥ and introduce value 0
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in dimension q′. Moreover, we make every state q an obstacle for all actions announcing ICM-

transitions not originating in q. This prevents Pathfinder from announcing transitions from q

unless the current macrostate has M (q) = 0 and M (qi ) = ⊥ for all qi , q.

Simulation of the counters. Every transition operates on one of the counters 0 ≤ i ≤ k.

Below we list the corresponding transitions in the OCN N for this counter. Every state of N
not explicitly mentioned ignores the action in question. In the macrostate, the value of these

states are therefore unchanged.

inci For every ICM-transition t that increases the ith counter, N contains a t-labelled transi-

tion from state Ci to Ci with effect +1. Additionally, to deal with spontanious increment

errors, there is a τi-labelled increasing self-loop in state Ci .

deci For ICM-transitions t that decreases the ith counter, N contains a t-labelled transition

from state Ci to Ci with effect −1. This means that the next macrostate M could lose

the value for this counter and have M (Ci ) = ⊥ if previously, the value was 0. Note that

the decrementing step from value 0 to value 0 is valid in the ICM. In order to avoid

losing the state Ci in the macrostate, the OCN contains a transition Z
t,0−−−→ Ci from the

constant-zero state Z to state Ci . This way, all correctly set up macrostates will never

have M (Ci ) = ⊥.

ifzi For every ICM-transition t that test the ith counter for 0, we add a t-labelled transition

Ci
t,−1−−−−−→ U from state Ci to the universal state. This prevents Pathfinder from using

these actions if the current macrostate has M (Ci ) > 0 because it would make the next

macrostate universal. If however M (Ci ) = 0, such a step is safe because the punishing

transition is not enabled in the OCN-process Ci0.

Lastly, we only need to add transitions to N so that the final state qf is the only original

ICM-state which is not an obstacle for $. This prevents Pathfinder from playing the end-action

$ unless the simulation has reached the final state. �
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Semantic Preorders Between
Deterministic Systems

For deterministic systems, simulation and trace inclusion coincide. In fact, trace inclusion

(⊆A,A′) and simulation (�A,A′) relative to OCAs A and A ′ already coincide if only A ′ is

deterministic (cf. Section 2.2.2 on page 11). We now focus on the problem OCA ⊆ DOCA,

trace inclusion between one-counter systems where the process on the right is deterministic.

This problem is undecidable (Corollary 6.5), so we will have to further restrict the input to

regain decidability. Our main focus lies on deterministic one-counter nets (DOCNs) but later,

in Section 7.2, we will consider inclusion between deterministic OCAs and OCNs, so let’s first

consider otherwise unrestricted systems in order to introduce some notation.

Due to the lack of nondeterministic choice in the system on the right, OCA ⊆ DOCA can

be seen as a reachability problem in the product of the two systems. We ask if from a given

initial pair of processes, some pair (qn,q′n′) is reachable such that both qn
a−−→ and q′n′ 6a−−→

for some action label a. This termination criterion can be verified locally in constant time.

By Lemma 3.10, we can assume that in fact, both input systems are deterministic and more-

over, the DOCA on the right is complete. That is, we want to check if pm ⊆ p′m′ holds for pro-

ceses pm and p′m′ of a DOCAA = (Q,Act,δ,δ0) and a complete DOCAA ′ = (Q′,Act,δ′,δ′0),

respectively. Any trace w ∈ Act∗ of pm uniquely determines a path in the product of the two

automata and vice versa. We therefore identify witnesses for non-inclusion with the corre-

sponding paths they induce in the product.

Definition 7.1. Assume processes pm and p′m′ of a DOCA A and a complete DOCA A ′
respectively. A witness for pm * p′m′ is a path π in the product of A and A ′ such that

(pm,p′m′)
π−−→ (qn,q′n′) and for some action a ∈ Act, qn

a−−→ but q′n′ 6a−−→.

Since A ′ is complete, any witness for pm * p′m′ exhausts the counter in the process of

A ′, i.e., it takes (pm,p′m′) to some pair of configurations (qn,q′0). This is because a process

92
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of a complete OCA can only not make an a-step in case the counter is empty.

We now further restrict the input and consider the problem DOCN ⊆DOCN, trace inclusion

between processes of a DOCN A and a complete DOCN A ′. In Section 7.2 we will later see

how to generalize our technique to the case where only one side forbids zero-tests.

7.1 Inclusion for Deterministic One-Counter Nets

For deterministic one-counter nets, a PSPACE upper bound for checking trace inclusion follows

from our previous result for simulation (Theorem 4.19). Similar problems have already been

considered by Higuchi, Wakatsuki, and Tomita, who compared the classes of languages defined

by DOCNs with various acceptance modes [18] and in a series of papers [17, 15, 16] studied

the respective inclusion problems. In each case, they showed bounds on the length of shortest

witnesses for non-inclusion that are polynomial in the size of the given automata and the initial

counter values. They derived procedures that exhaustively search for a witness and work in

time and space polynomial in the size of the automata, assuming fixed initial counter values.

We now consider the trace inclusion problem DOCN ⊆ DOCN, where the initial counter values

are part of the input and given in binary.

7.1.1 Silent Steps and Nondeterminism

We assume here what in formal language theory are sometimes called realtime automata: those

that do not have ε-labelled transitions, which silently advance a computation without prolong-

ing the trace it prescribes. This is safe because of the customary definition of deterministic

(pushdown) automata, that ensures that not only the induced LTSs, but their weak closures (ab-

stracting ε-steps) have to be deterministic. The usual syntactic restriction for DPDAs that no

state with outgoing ε-transitions may have outgoing transitions labelled by a , ε, together with

the monotonicity of steps in OCNs implies that all states on ε-cycles must be deadlocks. This

means one can eliminate ε-transitions by first removing ε-cycles, replacing every remaining

short path that contains an ε step by a uniquely labelled new transition, and then normalizing

the effects of single transitions to {−1,0,1}. Such a reduction works in O(log n) space (see the

appendix of [27] for details). Allowing ε-transitions as in DPDAs therefore does not change

the complexity of trace inclusion.

However, using τ-labelled transitions, that are not subject to the syntactic restriction for

ε-steps in DPDAs, one can easily simulate nondeterministic choice. That is, one can construct

a DOCN which induces a deterministic LTS, but its weak closure is isomorphic to the LTS

induced by a given nondeterministic OCN. For example, the choice introduced by transitions

{(p,a,d0,q0),(p,a,d1,q1),. . . ,(p,a,dk ,qk )} can be simulated by the following chain.
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p . . .

q0 q1 q2 . . . qk

τ τ τ τ

a, d0
a, d1 a, d2 a, dk

Therefore, by Theorem 6.10, weak trace inclusion DOCN j DOCN and equivalence as well as

weak trace universality for DOCA (Corollary 6.6) are undecidable.

7.1.2 Reachability in Vector Addition Systems

Before we go on and show how to solve DOCN ⊆ DOCN let us point out that this problem is

actually closely related to the reachability problem for vector addition systems.

Lemma 7.2. The problem VASS ⊆ DOCN is logspace reducible to the reachability problem

of VASS. More precisely, given a k-dimensional VASS A = (Q,Act,δ) and a DOCN A ′ =

(Q′,Act,δ′), one can construct an only polynomially larger, (k + 1)-dimensional VASS B such

that for all p ∈ Q, p′ ∈ Q′ and m1,m2,. . . ,mk ,m ∈ N, there are states init,halt of B such that

p(m1,m2,. . . ,mk ) * p′m′ ⇐⇒ init(m1,m2,. . . ,mk ,m) −−→∗ halt(0,0,. . . ,0). (7.1)

Proof. Assume w.l.o.g., that the OCN A ′ is complete (the construction for Lemma 3.10 can

be used). Define B as the product of A and A ′: it has states-set S ⊆ Q×Q′ and a transition

(p,p′)
(t, t ′),D,d−−−−−−−−−→ (q,q′) for all t = (p,a,D,q) ∈ δ and t ′ = (p′,a,d,q′) ∈ δ′. Since A ′ is com-

plete, every witness for non-inclusion leads to some pair q(n1,n2,. . . ,nk ),q′0 of processes ofA
and A ′ respectively, such that q(n1,n2,. . . ,nk )

a−−→ but q′0 6a−−→. There are only finitely many

transitions t = (q,a,D,r) ∈ δ in A that enable this winning step. For each q ∈ Q, q′ ∈ Q′ and

t ∈ δ as above, we add a new transition

(q,q′)
Stop(t ),D,0−−−−−−−−−−→ E (7.2)

to the VASSB, where Stop(t) is a fresh symbol and E is the (unique) halting state of B. Finally,

add transitions E
$,Ci−−−−−→ E for every 0 < i ≤ k + 1, where Ci ∈ {0,−1}k+1 is the vector where

only the ith component is −1. The constructed VASS B now satisfies Equation (7.1) for every

p ∈ Q p′ ∈ Q′ and m1,m2,. . . ,mk ,m′ ∈ N, where init = (p,p′) and halt = E. �

Lemma 7.3. The reachability problem of VASSs is logspace reducible to VASS ⊆ DOCN. More

precisely, for a given k-dimensional VASS B = (B,Act,δ), together with initial and terminal

configurations p(m1,m2,. . . ,mk ) and q(n1,n2,. . . ,nk ), one can construct a k-dimensional VASS

A and a DOCN A ′, both with state-sets B∪ {E}, such that

p(m1,m2,. . . ,mk ) * pm ⇐⇒ p(m1,m2,. . . ,mk ,m) −−→∗ q(n1,n2,. . . ,nk ). (7.3)
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Proof. We let A and A ′ be copies of the original system B, where every transition is labelled

by some unique action symbol. A tracks the effect of an original transition precisely, and

the effect of a transition in A ′ is the sum of the effects of the corresponding transtion in B.

This way, any path t1t2 . . . tl from the initial process in B determines a trace of both processes

p(m1,m2,. . . ,mk ) in A and p(m1 + m2 + · · ·+ mk ) in A ′ and vice versa.

Finally, add new states E,R toA, and transitions q
$,−(n1,n2, ...,nk )−−−−−−−−−−−−−−−→ E

$,0,0, ...,0−−−−−−−−−→ R, where

$ is a fresh symbol. In A ′, we add states E,R and transitions q
$,−(n1+n2+· · ·+nk )−−−−−−−−−−−−−−−−→ E

$,−1−−−−−→ R.

Notice that any path p(m1,m2,. . . ,mk ,m) −−→∗ q(n1,n2,. . . ,nk ) in B prescribes a trace w of

A and A ′, that leads to processes q(n1,n2,. . . ,nk ) and q(n1 + n2 + · · ·+ nk ), respectively. The

word w$$ then witnesses non-inclusion. Conversely, if p(m1,m2,. . . ,mk ) * p(
∑

1≤i≤k mi ),

then there must be a witness ending in $$, which means that the process q(n1,n2,. . . ,nk ) was

reached because the witnessing trace leads to a deadlock in A. �

The previous two lemmas show that trace inclusion VASS ⊆ DOCN is essentially the same

problem as VASS reachability. For the one-dimensional case, this connection seems not very

exciting: after all, Lemma 7.3 only allows to reduce the already NL-complete reachability

problem for OCN (Theorem 3.8) to OCN ⊆ DOCN. In the other direction, Lemma 7.2 allows

to reduce OCN ⊆ DOCN to reachability in 2-dimensional VASS, which has a known double

exponential time upper bound in the number of transitions [23]. However, a PSPACE upper

bound already follows from the fact that strong simulation checking is decidable in polynomial

space (Theorem 4.19), because simulation and trace inclusion coincide for deterministic sys-

tems. An interesting observation is that both reductions also work for VASS with additional

zero-testable counters. Hence, trace inclusion between a VASS with one zero-testable counter

and a DOCN corresponds to the reachability problem for VASSs with one zero-testable counter,

which is decidable [44, 7].

7.1.3 Characterizing Witnesses

We now characterize the form of possible witnesses for non-inclusion between DOCN pro-

cesses. This characterization will be sufficient in the sense that if any witness exists at all, then

there is also one in our prescribed form. In the next subsection, this will guide our (nondeter-

ministic) procedure that guesses and verifies witnesses.

Since we are looking at trace inclusion between one-counter nets, witnesses for non-inclusion

are monotone with regards to counter values. The next lemma states this formally. It follows

easily from the monotonicity of the steps in OCN-processes. As before, we always assume

w.l.o.g. that the two given automata are in normal form (cf. Definition 3.9 and Lemma 3.10).

Lemma 7.4 (Witness Monotoniticy). LetA = (Q,Act,δ) andA ′ = (Q′,Act,δ′) be two DOCNs

in normal form and pm, and p′m′ processes of A and A ′, respectively. Then for all l ∈ N,
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every witness for pm * p′m′ is a witness for p(m + l) * p′m′

Intuitively, finding a witness is a kind of coverability question due to the monotonicity of

steps in OCNs: Any witness for pm * p′m′ must be enabled, in particular in the process pm

on the left, and moreover exhaust the counter in the process of the complete net on the right. It

takes the initial pair of processes to some pair (qn,q′0) where the exact value n is not important.

Since any sufficiently long path in the product will revisit control states, we can compare paths

with respect to their effect on the counters and see that some are “better” than others in the

sense that they have a smaller effect on the counter on the left. For instance, a cycle that only

increments the counter on the right and decrements the one on the left is surely a suboptimal

choice when looking for a shortest witness, because omitting such a cycle leads to a shorter

witness by monotonicity (Lemma 7.4).

The characterization Theorem 7.6 below states that if a positive witness exists, then there

is also one that, apart from short paths, combines only the most productive cycles and in a

sensible way. It is very similar to Lemma 3.7 that characterizes positive paths in OCA.

Definition 7.5. Let π be a path in the product of A and A ′. The slope of π is the ratio

S(π) = ∆(π)/∆′(π) of its effects on the counter ofA andA ′ respectively, where for n > 0 and

k ∈ Z we let n/0 =∞ > k, 0/0 = 0 and −n/0 = −∞ < k. We partition the set of paths into four

disjoint types: (<,<),(>,≥),(≤,≥), and (≥,<). The type of π is Type(π) = (J,I) iff ∆(π) J 0

and ∆′(π) I 0.

Recall (Definition 3.4) that a loop is a non-empty cyclic path in the product such that none

of its proper subpaths is a cycle. No loop is longer than K = |Q×Q′ | because it visits exactly

one node twice.

Theorem 7.6. LetA andA ′ be DOCNs in normal form, with state-sets Q and Q′, respectively

and let K = |Q×Q′ |. There is a bound c ∈ N that depends polynomially on K, such that the

following holds for all p ∈ Q, p′ ∈ Q′ and m,m′ ∈ N.

If there is a witness for pm * p′m′ then there is one that is either no longer than c or has

one of the following forms:

1. π0Ll0
0 π1, where L0 is a loop of type (≥,<) and π0,π1 are no longer than c,

2. π0Ll0
0 π1Ll1

1 π2, where L0 and L1 are loops of type (>,≥) and (<,<) with S(L0) > S(L1)

and π0,π1,π2 are no longer than c,

3. π0Ll0
0 π1, where L0 is a loop of type (<,<) and π0,π1 are no longer than c,

where in all cases, the number of iterations l0,l1 ∈N are polynomial in K and the initial counter

value m′ of the given processes.
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A ′
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Figure 7.1: Illustration of the changes in counter values during paths of forms 1, 2 and 3 as given

in Theorem 7.6. The bent blue arrows indicate the effect of short paths πi , the red and green

arrows indicate the counter-effect of loops that are iterated.

Note that the bound c in the claim of Theorem 7.6 depends only on the number of states of

the given nets and not on the size of the action alphabet.

Example 7.7. Consider two systems that each consist only of a single, a-labelled self-loop:

p
a,0−−−−→ p and p′

a,−1−−−−−→ p′ repectively. The product of these nets has only one edge, namely

L = (p,p′)
a,0,−1−−−−−→ (p,p′), which is a loop with effects ∆(L) = 0 and ∆′(L) = −1, type (≥,<)

and slope∞. The only witness for pm * p′m′ is π = Lm′, which is a path of form 1.

The remainder of this section is devoted to the proof of Theorem 7.6. We show that it

is safe to consider only paths in a reduced form, that allows to derive bounds on the length

of certain subpaths. For this, we introduce path rewriting rules that exchange occurrences of

some loops by others. We then show (in Lemma 7.9) that these rules preserve witnesses and

(in Lemma 7.10) cannot be applied indefinitely. For reduced witnesses, those to which no

rules are applicable, we derive (Lemma 7.12) bounds on the multiplicities of loops that are less

productive than others, which will finally enable us to prove Theorem 7.6.

We start with an easy observation: No loop L is longer than K , so there are only F0 :=

(2K )2 possible different values for the pair (∆(L),∆′(L)) of effects. Moreover, if a witness

for (pm,p′m′) exists, then there is also one that does not contain different loops with the

same effects: If π0L0π1L1π2 is a witness and L0 , L1 are two loops with (∆(L0),∆′(L0)) =

(∆(L1),∆′(L1)), then either π0L2
0π1π2 (if ∆(L0) ≥ 0) or π0π1L2

1π2 (if ∆(L0) < 0) must also be

a witness by Lemma 7.4. We can therefore consider only paths of the form

π = π0Ll0
0 π1Ll1

1 . . . πr Llr
r πr+1 (7.4)

where r < F0, all πi are acyclic and all loops have pairwise different effects. We call a positive

path sane if it is of this form.
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Definition 7.8. Consider the rules given below.

UUL

π = π0Ll0
0 π1Ll1

1 π2
Type(L0) = (>,≥)
Type(L1) = (>,≥)
∆′(L0) · x = ∆′(L1) · y
S(L0) ≥ S(L1)
l1− y > 0
ρ = π0Ll0+x

0 π1Ll1−y
1 π2

UUR

π = π0Ll0
0 π1Ll1

1 π2
Type(L0) = (>,≥)
Type(L1) = (>,≥)
∆′(L0) · x = ∆′(L1) · y
S(L0) < S(L1)
l0− x > |π1L1 |
ρ = π0Ll0−x

0 π1Ll1+y
1 π2

UD

π = π0Ll0
0 π1Ll1

1 π2
Type(L0) = (>,≥)
Type(L1) = (<,<)
∆′(L0) · x = −∆′(L1) · y
S(L0) ≤ S(L1)
l0− x ≥ |π1 |
l1− y > 0∧ l0− x > 0
ρ = π0Ll0−x

0 π1Ll1−y
1 π2

DDL

π = π0Ll0
0 π1Ll1

1 π2
Type(L0) = (<,<)
Type(L1) = (<,<)
∆′(L0) · x = ∆′(L1) · y
S(L0) < S(L1)
l1 > |L0 | · x + 2|π1 |
l1− y > 0
ρ = π0Ll0+x

0 π1Ll1−y
1 π2

DDR

π = π0Ll0
0 π1Ll1

1 π2
Type(L0) = (<,<)
Type(L1) = (<,<)
∆′(L0) · x = ∆′(L1) · y
S(L0) ≥ S(L1)
l0− x > 0
ρ = π0Ll0−x

0 π1Ll1+y
1 π2

Each rule consists of conditions (lines above the bar) and a conclusion ρ, which is a path,

below the bar. Their names indicate which type of loops are handled: E.g., UUL exchanges

loops of type (>,≥) (up) for others of the same type to its left.

We say that a rule is applicable to a sane path π if there are 0 < x,y,l0,l1 ∈ N and two

different loops L0 and L1 such that all conditions are satisfied. In this case the rule can rewrite

π to ρ, its conclusion and we say ρ is the result of applying the rule to π.

Lemma 7.9. Let π be a sane witness for pm * p′m′ and ρ be the result of applying one of the

rules to π. Then ρ is a sane witness for pm * p′m′.

Proof. Each rule only modifies the number of times some loops are iterated, and never com-

pletely removes a loop. Therefore, sane paths are always rewritten to other sane paths.

Let’s say we rewrite π = π0Ll0
0 π1Ll1

1 π2 to ρ. The key observation is that the conditions of

the rule imply that we can always decompose the paths π and ρ into π = αγ and ρ = βγ, such

that ∆′(α) = ∆′(β) and ∆(α) ≤ ∆(β). By monotonicity (Lemma 7.4) and the assumption that

π is a witness, it is therefore sufficient to show that the result ρ is still enabled in the initial

position (pm,p′m′). We proceed by case distinction for the used rule.

UUL. Since π is a witness, its prefix α = π0Ll0
0 π1Ll1

1 must be enabled in (pm,p′m′) and

because Type(L0) = (>,≥), so is the prefix β = π0Ll0+x
0 π1Ll1−y

1 of the result ρ. Assume that

(pm,p′m′)
α−−−→ (qn,q′n′). Since ∆′(α) = ∆′(β) we have (pm,p′m′)

β−−→ (qn̂,q′n′). The con-

dition S(L0) ≥ S(L1) implies that n̂ ≥ n ≥ Γ(π2) and therefore that ρ is enabled in (pm,p′m′).
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UUR. The prefix π0Ll0−x
0 of π must be enabled and since the last condition of the rule

demands that l0 − x > |π1L1 |, so is the path π0Ll0−x
0 π1L1. The fact that Type(L1) = (>,≥),

means that also π0Ll0−x
0 π1Ll1+y

1 and therefore the result ρ is enabled in (pm,p′m′).

UD. Type(L1) = (<,<) implies S(L1) <∞. Since S(L0) < S(L1), we know that S(L0) <∞
and hence ∆′(L0) > 0. The path π0Ll0−x

0 is a prefix of π and is therefore enabled in (pm,p′m′).

As l0− x ≥ |π1 | by assumption, we get that

m +∆(π0Ll0−x
0 ) ≥ l0− x ≥ |π1 | ≥ Γ(π1) (7.5)

and similarly, by ∆′(L0) > 0,

m′+∆′(π0Ll0−x
0 ) ≥ l0− x ≥ |π1 | ≥ Γ′(π1). (7.6)

This means that the prefix β = π0Ll0−x
0 π1 of ρ is enabled in (pm,p′m′). Let us now consider the

prefix α = π0Ll0−x
0 Lx

0 π1Ly
1 of π. Because ∆′(L0) · x = −∆′(L1) · y we get ∆′(α) = ∆′(β). By

S(L0) < S(L1) we obtain that ∆(α) ≤ ∆(β). Because π = αLl1−y
1 π2 is a witness for pm * p′m′,

we can apply Lemma 7.4 to conclude ρ = βLl1−y
1 π2 must be a witness for pm * p′m′.

DDL. We know that m +∆(π0Ll0
0 ) +∆(π1) ≥ Γ(Ll1

1 ), because π is enabled in (pm,p′m′).

As L1 is a type (<,<) loop we also know that ∆(L1) < 0. Therefore, Γ(Ll1
1 ) ≥ l1 and

m +∆(π0Ll0
0 ) ≥ l1−∆(π1). (7.7)

Assume towards a contradiction that m +∆(π0Ll0
0 ) < Γ(Lx

0 π1). This means that

m +∆(π0Ll0
0 ) < Γ(Lx

0 ) + |π1 | ≤ |L0 | · x + |π1 |. (7.8)

This, together with Equation (7.7) yields l1−∆(π1) < |L0 | · x + |π1 | and thus l1 < |L0 | · x +2|π1 |
which contradicts the condition that l1 > |L0 | · x + 2|π1 |. Hence, m +∆(π0Ll0

0 ) ≥ Γ(Lx
0 π1). By

the same argument we get that m′ +∆′(π0Ll0
0 ) ≥ Γ′(Lx

0 π1). So the prefix β = π0Ll0+x
0 π1 of

ρ is enabled in (pm,p′m′). Consider the prefix α = π0Ll0
0 π1Ly

1 of π. By the assumption that

∆′(Lx
0 ) =∆′(Ly

1 ) we get that ∆′(α) =∆′(β). Because of S(L0) < S(L1) we get ∆(Lx
0 ) ≥ ∆(Ly

1 )

and therefore that ∆(α) ≤ ∆(β). By Lemma 7.4 we conclude that the path ρ = βLl1−y
1 π2 is a

witness for pm * p′m′.

DDR. Let α = π0Ll0
0 π1 and let (pm,p′m′)

α−−−→ (qn,q′n′). Due to the type of L0 and because

π is a witness, we know that the prefix β = π0Ll0−x
0 π1Ly

1 of ρ is enabled in (pm,p′m′). Since

∆′(L0) · x = ∆′(L1) · y, we get that (pm,p′m′)
β−−→ (qn̂,q′n′) for some n̂ ∈ N. The condition

S(L0) ≥ S(L1) of the rule implies that ∆(Lx
0 ) ≤ ∆(Ly

1 ) < 0, and therefore that n̂ ≥ n. We

conclude that the path Ll1
1 π2 is enabled in (qr,q′r ′) and therefore that ρ = π0Ll0−x

0 π1Ll1+y
1 π2 is

enabled in (pm,p′m′) as required. �

Lemma 7.10. Any sequence of successive applications of rules to a given path π must eventu-

ally terminate.
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Proof. Consider a π to which we apply the rewriting rules. W.l.o.g. assume π is sane, as

otherwise no rule is applicable by definition. Let V and E be the sets of nodes and transitions

of the product of A and A ′. The decomposition of π is the sequence

Dec(π) = (π0,L0,l0)(π1,L1,l1) . . . (πk ,Lk ,lk )πk+1 (7.9)

in (E∗×E∗×N)∗E∗ such that π = π0Ll0
0 π1Ll1

1 . . . πk Llk
k
πk+1, where k ≤ F0 and for all 0 ≤ i ≤ k,

1. Li is a loop,

2. πi is acyclic,

3. For any two transitions t ∈ πi and t ′ ∈ Li with target(t) = target(t ′) it holds that target(Li ) =

target(t).

The last condition demands that any loop Li shares exactly one node with the acyclic path πi
it succeeds and thus ensures that the decomposition of a path is unique. As no application

of a rule completely removes all occurrences of loops nor introduces new ones nor touches

the intermediate paths, we observe that rule applications only change the exponents li in the

decomposition of the path.

Based on the order of loops in the decomposition of π, and their potential for rule applica-

tion, we now define a notion of weights for paths, and show that these weights have to strictly

decrease along a well-order whenever a rule is applied.

Let (L0,L1,. . . ,Lk ) be the sequence of loops that occur in the decomposition of π. Further-

more, we fix some linear order ≺ on {L0,L1,. . . ,Lk } that satisfies the following conditions for

any two different loops Li ,L j with i < j.

1. If Type(Li ) = Type(L j ) = (>,≥) and S(Li ) ≥ S(L j ) then Li ≺ L j .

2. If Type(Li ) = Type(L j ) = (>,≥) and S(Li ) < S(L j ) then Li � L j .

3. If Type(Li ) = Type(L j ) = (<,<) and S(Li ) < S(L j ) then Li ≺ L j .

4. If Type(Li ) = Type(L j ) = (<,<) and S(Li ) ≥ S(L j ) then Li � L j .

Surely, such a linearisation exists because the conditions above only restrict ≺ between loops

of the same type and slopes are linearly ordered. Consider the permutation σ : k → k given by

σ(i) < σ( j) ⇐⇒ Li ≺ L j . The weight of π is

W (π) = (lσ (k ),lσ (k−1),. . . ,lσ (0)) ∈ Nk+1. (7.10)

The weight of π is the ordered tuple of exponents li of loops that occur in π. Since the rules

do not change the order of loop occurrences, the path before and after applying a rule have

comparable weights. The very definition of weights ensures that rule applications must strictly
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reduce the weight of a path. We finish the proof of Lemma 7.10 by showing the following

claim.

If ρ is the result of applying one of the rewriting rules to π then W (π′) @lex W (π) where

@lex is the lexicographic extension of the pointwise ordering of tuples of naturals.

This implies the claim of the lemma, because @lex is a well-ordering for Nk+1. To prove this

claim, assume the decompositions of π and ρ are

Dec(π) = (π0,L0,l0)(π1,L1,l1) . . . (πk ,Lk ,lk )πk+1 and

Dec(ρ) = (π0,L0,r0)(π1,L1,r1) . . . (πk ,Lk ,rk )πk+1.
(7.11)

We show for every type of rule that if the occurrences of loop Li increase then those of some

loop L j with Li ≺ L j strictly decrease.

If the rule was UUL, then ri = li + x and r j = l j − y for some i < j, 0 < x,y and type (>,≥)

loops Li ,L j with S(Li ) ≥ S(L j ). By condition 1) in the definition of ≺ we get Li ≺ L j .

For rule UUR, we know ri = li − x and r j = l j + y for some 0 < x,y and type (>,≥) loops

Li ,L j with S(Li ) < S(L j ). By condition 2) in the definition of ≺, we get Li � L j .

For rule DDL, we know ri = li + x and r j = l j − y for type (<,<) loops Li ,L j with S(Li ) <

S(L j ). By condition 3) in the definition of ≺, we know Li ≺ L j .

For rule DDR, we know ri = li − x and r j = l j + y for some 0 < x,y and type (<,<) loops

Li ,L j with S(Li ) > S(L j ). So condition 4) in the definition of ≺, implies Li � L j .

Finally, if the rule used to derive ρ was UD we immediately see that ri < li and r j < l j ,

which implies the claim. �

Lemmas 7.9 and 7.10 allow us to focus on witnesses that are reduced, i.e., which are sane

and to which none of the rewriting rules is applicable. We will show (in Lemma 7.12) that on

those reduced paths, the multiplicities of loops with suboptimal effect can be bounded.

Example 7.11. Consider two DOCNs such that their product is the graph depicted on the left

in Figure 7.2, in which we identify transitions with their action labels for simplicity and let

v0 = (p,p′) ∈ V . The paths t0t1t2, t3t4 and t6 are loops with effects (3,1), (2,1) and (−1,−1)

respectively.

The path π = (t0t1t2)(t3t4)9t5(t6)20 is a witness for p0 * p′10 of length 42. However,

this path is not reduced because we can apply rule UUL to change occurrences of (t3t4) by

the more effective loop (t0t1t2), for instance setting x = y = 8. The resulting path is π′ =

(t0t1t2)9(t3t4)1t5(t6)20, which is a reduced witness for p0 * p′10 of length 50. Shorter reduced

witnesses exists, for example (t0t1t2)6t5t16
6 , but because of their different loop structure, these

cannot be obtained from π by applying rewriting rules from Definition 7.8.
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Figure 7.2: Product of two DOCN (left). The right shows how counter values evolve along paths

π (in red) and π′ (in blue) from initial point (0,10).

The previous example shows that our path rewriting rules do not necessarily preserve min-

imality of witnesses. However, we can bound the multiplicities of loops with suboptimal effect

on reduced paths.

Lemma 7.12. Let π = π0Ll0
0 π1Ll1

1 π2 be a reduced path where L0,L1 are loops occurring with

multiplicities l0 > 0 and l1 > 0.

1. If Type(L0) = Type(L1) = (>,≥) and S(L0) ≥ S(L1) then l1 < K

2. If Type(L0) = Type(L1) = (>,≥) and S(L0) < S(L1) then l0 ≤ |π1 |+ 2K

3. If Type(L0) = Type(L1) = (<,<) and S(L0) < S(L1) then l1 < K2 + 2|π1 |

4. If Type(L0) = Type(L1) = (<,<) and S(L0) ≥ S(L1) then l0 < K

5. If Type(L0) = (>,≥), Type(L1) = (<,<) and S(L0) ≤ S(L1) then l0 ≤ |π1 |+ K or l1 ≤ K.

Proof. The fourth condition of any rule is satified e.g. by x = ∆′(L1) and y = ∆′(L0). So if

0 < x,y ∈N is the smallest satisfying pair we know x,y ≤ K . The bounds are now easily derived

by contradiction:

1. If l1 ≥ K then l1− y ≥ l1−K > 0 and rule UUL is applicable.

2. If l0 > |π1 |+2K then l0− x > |π1 |+2K − x ≥ |π1 |+ |L1 | ≥ |π1L1 | and rule UUR is appli-

cable.

3. If l1 ≥ K2 + 2|π1 | then l1 ≥ |L0 | · x + 2|π1 | and l1− y ≥ l1−K > 0, so rule DDL is appli-

cable.

4. If l0 > K then l0− x > 0, so rule DDR is applicable.

5. If l1 > K and l0 > |π1 | + K , then l1 − y > 0, l0 − x > 0 and l0 − x > |π1 |, so rule UD is

applicable.
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In each case we conclude that one of the rules is applicable, which contradicts the assumption

that π is reduced. �

Proof of Theorem 7.6. We show that we can sufficiently increase the bound c such that when-

ever there is a witness for pm * p′m′ but there is no such witness shorter than c or of form 1)

or 2), then there must be a witness of form 3).

Assume a reduced witness π for pm * p′m′ that is minimal in length: no shorter witness is

reduced. Recall that this also means that π is sane: it is of the form described in Equation (7.4).

By monotonicity (Lemma 7.4) and because π is of minimal length among the reduced wit-

nesses, we see that it cannot contain loops of type (≤,≥). Since π is not of form 1), it therefore

contains only loops of types (>,≥) and (<,<). Relaxing the bound on the length of paths

between loops to F1 := F0(2K + K2), we can write π as

π = π0Ll0
0 π1Ll1

1 . . . πk Llk
k
πk+1 (7.12)

where k ≤ F0, all |πi | < F1 and the number of iterations of loop Li is li > K .

Consider a block πpos = Lli
i πi+1Lli+1

i+1πi+2 . . . π j L
l j
j that is part of the decomposition above,

such that all loops are of type (>,≥). If for indices i ≤ x < y ≤ j we have S(Lx ) ≥ S(Ly ), then

by Lemma 7.12.1 we get ly < K . Therefore, πpos is of the form

πpos = Lli
i πi+1Lli+1

i+1πi+2 . . . π jL
l j
j π j+1 (7.13)

where the lengths of πi are bounded by F2 := F0 · (K2 + F1) and the slopes of loops are strictly

increasing: S(Lx ) < S(Ly ) for any two indices i ≤ x < y ≤ j. By Lemma 7.12.2 this means that

lx ≤ |πx+1 |+2K ≤ F2 +2K =: F3. We conclude that the prefix π′ = Lli
i πi+1Lli+1

i+1πi+2 . . . π j−1Ll j−1
j−1

is no longer than ( j − i) · (K ·F3 + F2) and therefore

πpos = π′Ll j
j π j+1 (7.14)

where |π′ | is bounded by F4 := F0(K ·F3 + F2) and |π j+1 | by F2.

We continue to show by a similar argument that we can bound the number of iterations

of all but the most productive loop in a block consisting of only type (<,<) loops. Consider

a block πneg = Lli
i πi+1Lli+1

i+1πi+2 . . . π jL
l j
j that is part of the decomposition in Equation (7.12),

where all loops are of type (<,<). If S(Lx ) ≥ S(Ly ) for some indices i ≤ x < y ≤ j, then by

Lemma 7.12.4 we know lx < K . This means that πneg is of the form

πneg = πiL
li
i πi+1Lli+1

i+1πi+2 . . . π jL
l j
j π j+1 (7.15)

where all πi have lengths bounded by F2 and S(Lx ) < S(Ly ) for any two indices i ≤ x < y ≤ j.

By Lemma 7.12.3 we get ly ≤ K2 + 2|πx | ≤ K2 + 2F2 =: F ′3 and conclude that the suffix π′′ =

πi+1Lli+1
i+1πi+2 . . . π jL

l j
j π j+1 is no longer than ( j− i) · (K ·F ′3 + F2). Therefore, πneg is of the form

πneg = πiL
li
i π
′′ (7.16)
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where πi is bounded by F2 and π′′ by F ′4 := F0(K ·F ′3 + F2).

Equations (7.14) and (7.16) characterize the form of maximal subpaths of the witness π in

Equation (7.12), along which the type of loops does not change. They allow us to write π as

π = π0Ll0
0 π1Ll1

1 π2 . . . πk Llk
k
πk+1 (7.17)

where for all indices 0 ≤ i < k:

1. πi is no longer than F5 := F3 + F ′3 + F4 + F ′4 .

2. li > K .

3. Consecutive loops Li and Li+1 have different types.

4. If loops Li ,L j for 0 ≤ i < j ≤ k have the same type then S(Li ) < S(L j ).

In the remainder of this proof, we further increase the polynomial bound for the gaps πi be-

tween the loops; this allows to conclude that π contains at least one type (<,<) loop and finally,

that π is of form 3).

Observe that if all loops Li in Equation (7.17) are of type (>,≥) then the witness is already

of form π = π0Llπ1 as in Equation (7.14), where π0,π1 are short and L is the most effective

loop. In this case, consider the run

(pm,p′m′)
π0L

l

−−−−−→ (qn,q′n′) (7.18)

induced by the prefix π0L. Since A ′ is complete we know ∆′(π) = −m′. Together with

∆′(π1) ≤ |π1 | ≤ F5 we get n′ ≤ F5. We know that l ≤ |π1 | ≤ F5, because Γ(π1) ≤ |π1 | and

otherwise, fewer iterations l would result in a shorter witness and we assumed π to be minimal

in length. Hence, we could bound π by F6 := F5 + K ·F5 + F5. So if we let c ≥ F6, our witness

π must contain type (<,<) loops as it is assumed not to be no shorter than c.

Finally, fix an index 0 ≤ x ≤ k such that in Equation (7.17), Lx is a loop of type (<,<) with

most efficient decrease (minimal slope). That is, π is of the form

π = π0Llx
x π1. (7.19)

We now bound π0 and π1 and thereby prove that π is of form 3). We start with the suffix π1.

If Lx is the only loop of type (<,<), we are done, because then |π1 | ≤ F5. Suppose we have

two indices 0 ≤ y < y+2 ≤ k, where both Ly and Ly+2 are of type (<,<). This means that Ly+1

is of type (>,≥) with S(Ly+1) < S(Ly+2). By Lemma 7.12.5 and the fact that ly+2 > K we know

that ly+1 < |πy+1 |+ K ≤ F6. So πy+1Lly+1
y+1πy+2 is no longer than 2 ·F5 + K ·F6 =: F7. Applying

Lemma 7.12.3 to Ly and Ly+2 we get ly+2 ≤ K2 + 2 · F7 =: F8 and thus πy+1Lly+1
y+1πy+2Lly+2

y+2 is

no longer than F9 := F5 + (K ·F6) + F5 + (K ·F8). Now the above argument can be repeated for

any successive pair of type (<,<) loops in π1 of which there are at most F0. So, |π1 | < F0 ·F9.
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To bound the prefix π0 in Equation (7.19), we recall (point 3 above) that consecutive loops

in Equation (7.17) have different types and therefore x ≤ 1. In case x = 0, we immediately get

|π0 | ≤ F5. If x = 1, then L0 is a type (>,≥) loop with S(L0) < S(Lx ) and so by Lemma 7.12.5

and point 2), we get l0 ≤ |π1 |+ K < F6. This means |π0 | ≤ 2F5 + K ·F6 = F7.

We conclude that c := F9 ·F0 is sufficient to ensure that any witness π, longer than c which

is not of form 1) or 2) must have form 3).

To see why l0 and l1 can always be bounded polynomially in K and m′, we look at the

types of the loops involved. For paths of form 1 and 3, L0 decreases the counter on the right

at least once in every iteration. Since the value m′+∆′(π0) before the first iteration is at most

m′+ c, we have l0 ≤ m′+ c.

Paths of the second form can be decomposed into a prefix π0Ll0
0 and a suffix π1Ll1

1 π2, which

is a path of form 3. Let y0 ∈ N be minimal such that the effect of the path γ0 = π0L0
0π1Ly0

1 π2,

in which L0 is not iterated at all is sufficient to reduce the initial value m′ below 0. That is, we

have m′+∆′(π0L0
0π1Ly0

1 π2) ≤ 0. Note that as for forms 1 and 3, we can bound y0 by m′+ 2c

and therefore, |γ0 | is no larger than 3c + K · (m′+2c). This path might not be a witness because

it is not enabled on the left side. However, because of the condition on the slopes, there are

x,y ≤ K such that the effect of the loops satisfy

∆′(L0) · x = −∆′(L1) · y and ∆(L0) · x > −∆(L1) · y. (7.20)

This means, increasing the iterations of the loops L0 and L1 by x and y respectively, does not

change the effect of the path on the right, but strictly increases the effect on the left. We increase

the iterations (l0,l1) = (0,y0) in γ0 as suggested above for Γ(γ0) < |γ0 | < 3c + K · (m′ + 2c)

times. The resulting path γ1 = π0Lx1
0 π1Ly1

1 π2 is then surely a witness, and iterates the loops not

more than x1 = 3c + K · (m′+ 2c) and y1 = m′+ 5c + K · (m′+ 2c) times. �

7.1.4 An NL-Upper bound

We will now use the characterization of witnesses from the previous section to show an NL

upper bound for the problem OCN ⊆ DOCN, trace inclusion between processes of one-counter

nets and deterministic one-counter nets, where initial counter values are part of the input. This

matches the trivial lower bound that already holds for DFA ⊆ DFA.

Under certain conditions, one can show that the length of a shortest witness for non-

inclusion is polynomial in the size of the input nets. Theorem 7.6 (on page 96) implies that this

is the case for instances (A,A ′,pm,p′m′), if the initial value m′ (not its binary encoding) is

itself polynomially bounded in the size of the input nets. Then, one can simply stepwise guess

and verify a witness, storing the binary encoded effects along the way in logarithmic space.

In general however, the length of shortest witnesses depends (polynomially) not only on

the size of the input nets, but also on the initial counter values. Recall the simple self-looping
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processes with effects 0 and −1 from Example 7.7 on page 97. A witness for non-inclusion

pm * p′m′ must iterate these loops exactly m′ times. For practical purposes it is reasonable

to assume that the initial counter values are given in binary encoding. The length of minimal

witnesses can therefore only be exponentially bounded in the size of the input.

This means that if the initial counter values are part of the input, the simple procedure

mentioned above is not sufficient. However, Example 7.7 and indeed Theorem 7.6 suggest

that, although we might not be able to store and manipulate the counter effects directly, we can

guess the general form of a witness and then (efficiently) check if a witness of that form exists.

In order to address the issue of large initial counter values, we first present a lemma about

the complexity of verifying inequalities of (weighted) binary numbers. It can be shown using

standard O(log n)-space algorithms for multiplication and addition on the fly.

Lemma 7.13. Inequalities of the form m · A + B ≥ n ·C + D where all coefficients are non-

negative integers given in binary can be verified in O(log(A+ B +C + D)) deterministic space,

regardless of the size of m and n.

Proof. Assume w.l.o.g. that the bit-representations of m and n are of the same length, as are

those of A,B,C and D, and we have the least significant bit on the right.

To check m ≥ n, we can stepwise read their binary representation from right to left, flipping

an “output” bit Out on the way: Initially, Out := 1; in every step set Out := 0 if the current bit

in m is strictly smaller than that in n; set Out := 1 if the current bit in m is strictly bigger than

that in n and otherwise proceed without touching Out. The inequality holds iff Out = 1 after

completely reading the input.

To check the weighted variant, we use the same algorithm but multiply m · A, and n ·C on

the fly, using standard long binary multiplication. We use a scratchpad to store the intermediate

sums, starting with values B and D. In a step that reads the ith bit m[i] of m, we want to add

A · 2i to the intermediate sum if m[i] = 1. We can do that by shifting the binary representation

of A left i times and then adding the result to the current scratchpad. We see that none of the

bits up to i− 1 in the scratchpad are affected by this operation. We can therefore discard (and

use for the comparison in our simple algorithm above) the rightmost bit of the scratchpad in

every step. The relevant part of the intermediate sum on each side thus uses no more than x +1

bits, where x is the length of the bit representation of A, B, C and D. �

Theorem 7.14. The problem OCN ⊆ DOCN is in NL.

Proof. Let pm and p′m′ be processes of (given) nets A = (Q,Act,δ) and A ′ = (Q′,Act,δ′)

respectively and let K = |Q×Q′ | ∈ N be the number of states in their product. By Lemma 3.10

(page 25), we can assume w.l.o.g. that A is in fact deterministic and A ′ is complete and

deterministic, and thus Theorem 7.6 applies.
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Assume that pm * p′m′. We argue that one can nondeterministically guess a template

(consisting of short paths) and verify in logspace that there is indeed some witness that fits this

template. Theorem 7.6 allows us to either guess a short (≤ c) path π or one of forms 1,2 or 3,

together with matching short paths πi ,Li . The effect and guard of these paths are bounded by

their lengths and hence by c, which is polynomial in K . This means O(log K ) space suffices

to compute the binary representation of these values and verify that the conditions the form

imposes on the types and slopes of the loops are met. It remains to check if exponents li ∈ N
exist, that complete the description of a witness π.

Case 1. There is a witness π = π0Ll0
0 π1 of form 1. Then surely, there is also a positive wit-

ness for pm * p′m′ of this form, that just iterates the type (≥,<) loop L0, i.e., the π1 is a prefix

of L0. The type of L0 implies that Γ(π0Ll
0) ≤ Γ(π0L0) for all 1 < l ∈ N. Therefore, it suffices to

check if the prefix π0L0 is enabled in (pm,p′m′), which can be done using logarithmic space

as |π0L0 | ≤ c + K .

Case 2. There is a witness π = π0Ll0
0 π1Ll1

1 π2 of form 2. As in the first case, it suffices

to check if the prefix π0L0 is enabled in (pm,p′m′), because then the process on the left can

repeat the loop L0 arbitrarily often. The existence of l0,l1 ∈ N completing the description of a

witness is then guaranteed because the slope of the first loop is bigger than that of the second.

Case 3. There is a witness π = π0Ll0
0 π1 of form 3, Recall that, because A ′ is complete,

a path π is a witness iff there is some edge T in the product such that ∆′(T ) = −1, and both

m ≥ Γ(πT ) and n +∆′(π) = 0. Equivalently, we can write this as

m +∆(π0Ll0
0 ) = m +∆(π0) +∆(L0) · l0 ≥ Γ(π1T ) and (7.21)

n + 1 = −∆′(πT ) = −∆′(π0)−∆′(L0) · l0−∆′(π1T ). (7.22)

Eliminating l0, we see that this is true iff

m +∆(π0) +∆(L0) · ∆
′(π0) +∆′(π1T ) + n
−∆′(L0)

≥ Γ(π1T ). (7.23)

Depending on the sign of the actual counter-effects of the guessed short paths, we can sim-

plifying this further and bring it into the form m · A + B ≥ n ·C + D where A,B,C,D ∈ N are

polynomial in K . By Lemma 7.13 the condition can be verified in O(log K ).

We conclude that, if any witness for non-inclusion pm * p′m′ exists, then by Theorem 7.6,

also one in one of the four possible forms. For each of these forms, one can guess a polynomially-

size description, consisting of short paths, and then verify the existence of a witness that fits

this description (by Lemma 7.13) in O(log K ) space. �

7.2 Automata vs. Nets: Allowing Zero-Tests on One Side

We now generalize the result of the previous section and show that checking trace inclusion

OCA ⊆ DOCN is also NL-complete. Again, by Lemma 3.10, it suffices to consider DOCAs
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A = (Q,Act,δ,δ0) and DOCN A ′ = (Q′,Act,δ′) in normal form. Let K = |Q ×Q′ | be the

number of states of their product (cf. Definition 3.17 on page 29) let pm and p′m′ be processes

of A and A ′ respectively.

Any witness for non-inclusion pm * p′m′ can be split into a positive prefix, along which

no zero-testing transitions are used, a zero-touching intermediate path and the remaining path,

which is again positive. Theorem 7.6 characterizes the positive suffix. We then show that

the number of zero-testing transitions, and therefore the length of the intermediate path, can

be bounded polynomially. Finally, we show (in Lemma 7.18) that the positive prefix can be

assumed to have a very simple form: it essentially only iterates one most effective simple

cycle. This allows us to check, just as in the proof of Theorem 7.14, the existence of witnesses

by exhaustively checking a small number of templates, which can be done in O(log K ) space.

We first focus on zero-touching paths in the product ofA andA ′, and start by introducing a

notion of rank for positions (pm,p′m′), that is the necessary number of zero-testing transitions

on paths witnessing pm * p′m′.

Definition 7.15. The rank of a path in the product of A and A ′ is the number of zero-testing

transitions used. The rank #(pm,p′m′) of two processes pm and p′m′ of A and A ′ is the

minimal rank of any witness for pm * p′m′ and ω if none exists.

Of course, the interesting case is if the rank of a given pair is strictly bigger than 0: no

positive witness for non-inclusion exists. Otherwise, we can turn A into a OCN by removing

all zero-testing transitions, and preserve the existence or non-existence of positive witnesses,

which can be verified already by Theorem 7.14.

If however, all witnesses for (pm,p′m′) contain zero-testing transitions, we can make addi-

tional assumptions on positive prefixes of witnesses: If 0 < #(pm,p′m′), then no positive path

that is enabled in (pm,p′m′) must contain a cycle C with ∆(C) ≥ 0 > ∆′(C), nor a subpath

L0πL1, where T ype(L0) = (>,≥), T ype(L1) = (<,<) and S(L0) > S(L1). This is because both

conditions would imply the existence of a positive witness contrary to the assumption on the

rank. The next lemmas characterize the positive prefix and the intermediate part, under the

assumption that the rank of the positions they visit remains positive.

Lemma 7.16. Assume (pm,p′m′) −−→∗+ (qn,q′n′) but (pm,p′m′) 6−−→∗+ (qn,q′x) for all x < n′.

Moreover, assume that the rank #(pm,p′m′) is strictly positive and let π be a shortest positive

path from (pm,p′m′) to (qn,q′n′). Then π does not visit any counter value mi of A more than

(K −1) times.

Proof. Assume towards a contradiction that π visits a pair (s,s′) ∈ Q×Q′ of control states and

a counter value i of A more than once: π = αβγ with

(pm,p′m′)
α−−−→+ (si,s′i′)

β−−→+ (si,s′ j ′)
γ−−→+ (qn,q′n′). (7.24)
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We know that ∆′(β) ≥ 0, because otherwise some positive path αβl contradicts the assumption

that no positive witness for pm * p′m′ exists. If ∆′(β) = 0, then the path αγ from (pm,p′m′)

to (qn,q′n′) contradicts the minimality of π. If ∆′(β) > 0, then the path αγ is from (pm,p′m′)

to (qn,q′x) for some n′−∆′(β), contrary to the minimality of n′. This means that whenever

a counter value i of A is revisited along π, the corresponding control states must differ, and

therefore no value is visited more than (K −1) times. �

Lemma 7.17. Assume that 0 < #(p1,p′m′) < ω and let n′ ∈ N be minimal such that a positive

path (p1,p′m′) −−→∗+ (q0,q′n′) exists. Then (p1,p′m′) −−→k
+ (q0,q′n′) for some k < K3.

Proof. Consider a shortest path

π = (p0m0,p′0m′0) −−→+ (p1m1,p′1,m
′
1) −−→+ . . . −−→+ (pkmk ,p′k ,m

′
k ) (7.25)

where (p0m0,p′0m′0) = (p1,p′m′) and (pkmk ,p′km′
k
) = (q0,q′n′). By Lemma 7.16, we know

that no counter value mi of A is visited more than (K − 1) times. This observation allows us

to recycle the proof of Lemma 3.5 on page 21, to show that maximal counter value mi visited

along π cannot be larger than (K −1)K .

Let 0 ≤ x ≤ k be the index of the position (pxmx ,p′xm′x ) along our path π where mx is

maximal. For each value 0 ≤ y < mx , we can mark the maximal index 0 ≤ l (y) < x and the

minimal index x < f (y) ≤ k such that ml (y) = m f (y) = y. If the maximal counter value mx

is at least (K − 1)K , then there must be two values 0 ≤ z < y ≤ mx such that (pl (z),p′l (z)) =

(pl (y),p′l (y)) and (pf (z),p′f (z)) = (pf (y),p′f (y)). This means we can decompose π according to

y and z into

(p0m0,p′0m′0)
α0−−−→+(pl (z)ml (z),p′l (z)m

′
l (z))

β0−−−→+(pl (y)ml (y),p′l (y)m
′
l (y))

γ−−→+(pf (y)m f (y),p′f (y)m
′
f (y)) (7.26)

β1−−−→+(pf (z)m f (z),p′f (z)m
′
f (z))

α1−−−→+(pkmk ,p′k ,m
′
k )

such that mi ≥ y for all l (y) ≤ i ≤ f (y) and mi ≥ y for all l (z) ≤ i ≤ f (z). This, and the

assumption that there is no positive witness for p1 * p′m′ mean that α0 β
i
0γ β

i
1α1 is enabled

from (p1,p′m′) for all i ∈ N. We distinguish three cases, depending on how the difference

d = m′
l (z) −m′

f (z) = ∆′(γ) compares to the difference c = m′
l (y) −m′

f (y) = ∆′(β0γ β1), and in

each case derive a contradiction.

Case d = c. Then α0γα1 is a path from (p1,p′m′) to (q0,q′n′) that is shorter than π, which

contradicts that π is a shortest such path.

Case d > c. Then α0 β0 β0γ β1 β1α1 is a positive path from from (p1,p′m′) to (q0,q′n′′)

for some n′′ < n′, contrary to the minimality of n′.
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Case d < c. Then α0γα1 is a positive path from from (p1,p′m′) to (q0,q′n′′) for some

n′′ < n′, which again contradicts minimality of n′.

We conclude that the maximal counter value mx seen along the path π must be smaller

than (K −1)K . By our previous observation that (K −1) bounds the number of times any value

0 ≤ m ≤ mx is visited along π, we get that there are no more than (K−1)K (K−1) < K3 distinct

positions visited by π. �

Lemma 7.18. Consider p,q ∈ Q, p′q′ ∈ Q′ and m,m′n,n′ ∈ N such that

1. #(pm,p′m′) > 0,

2. n′ is minimal such that (pm,p′m′) −−→∗+ (q0,q′n′),

3. m ≥ l + K, where l = K4 + 2K2 + 2K.

Then there is a positive path from (pm,p′m′) to (q0,q′n′) of the form π = π0Ll0
0 π1π2, where

|π0π1 | < K, |π2 | < K · l and L0 is a loop with ∆(L0) < 0.

Proof. Consider a shortest path π from (pm,p′m′) to (q0,q′n′). We decompose the path into

π = (pm,p′m′)
α−−−→+ (rl,r ′l ′)

β−−→+ (q0,q′n′) such that α is a maximal prefix that ends with

l. By Lemma 7.16, we know that the suffix β visits fewer than (K − 1) · l different positions,

so | β | < (K − 1) · l. Because n′ was assumed to be minimal, also l ′ must be minimal and

(pm,p′m′) 6−−→∗+ (rl,r ′x) for x < l.

We now show that there is a possibly different positive path of the form α′ = α0L0α1 from

(pm,p′m′) to (rl,r ′l ′) such that L0 is a simple cycle with ∆(L0) < 0 and |α0α1 | < l, which

completes the proof. The prefix α drops the counter of A by m − l > K . Consequently, it

contains at least one simple cycle L0 with effect ∆(L0) < 0. Let α = α0L0α1 where L0 is such

a decreasing loop that moreover is maximally steep: the ratio ∆′(L0)/|∆(L0) | is minimal.

Case 1. ∆′(L0) ≥ 0. Let S be a maximal set of non-overlapping cyclic subpaths of α0α1

such that −∆(L0) divides
∑

C ∈S ∆(C) and let α′0α
′
1 be the remainder of removing all cycles of

S from α0α1. Further, let l0 ∈ N be the unique solution of
∑

C ∈S ∆(C) = −∆(L0) · l0. A crucial

observation is that the choice of L0 implies∑
C ∈S

∆′(C) ≥ −∆′(L0) · l0. (7.27)

We now repeat the argument from Lemma 3.7, only in two dimensions. If the remainder α′0α
′
1

contains more than K non-overlapping simple cycles, then the overall effect of some of them

on the counter of A is divisible by −∆(L0), contrary to the maximality of S. Therefore, the

remainder α′0α
′
1 is no longer than K2. By Equation (7.27), we know that the path α′ = α′0Ll0

0 α
′
1

has effects

∆(α′) = ∆(α) and ∆′(α′) ≤ ∆′(α). (7.28)
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If we start moving according to α′ from position (pm,p′m′), the counter ofA cannot drop

below m+∆(α)− |α′0α′1 | −K > l−K2−K , which is positive. This, together with the assumption

on the rank of the initial position, means the path α′ is enabled in (pm,p′m′). By minimality

of l ′, we conclude that (pm,p′m′)
α′−−−→+ (rl,r ′l ′).

Case 2. ∆′(L0) < 0. In this case it is not guaranteed that any set S of cycles occurring

along α0α1 with effect divisible by −∆(L0) satisfies the condition Equation (7.27). This is

because there might be a positive loop U on the path α1 with ∆(U) > 0 and ∆′(U)/∆(U) <

∆′(L0)/∆(L0). If no such loop exists we can proceed as in case 1.

Otherwise, the assumption on the rank of the initial position implies that U must not occur

before the decreasing loop L0. So we can decompose α as α0L0α1Uα2. Just as in the first

case, we can replace the prefix α0L0α1 with α′0Ll0
0 α
′
1 where |α′0α′1 | < K2. W.l.o.g. assume

that the suffix α′1Uα2 is longer than K2, as otherwise the claim directly holds. Also, we can

assume w.l.o.g. that α2 does not contain any loop with the exact same effects as L0. Now

one of two cases must hold: Either the suffix Uα2 does not contain any decreasing loops L1

with ∆(L1) < 0, or it does. If if does not, then the suffix α2 cannot be longer than K4 +

2K2 +2K ·K , because every simple loop must increase the counter onA, and the final value is

K4 + 2K2 + 2K . Otherwise, if there are decreasing loops, then there must be one with minimal

ratio ∆′(L1)/|∆(L1) |. We repeat the argument for case 1 for the suffix α2 and the loop L1.

Because there are at most K · 2K different pairs of counter-effects for decreasing loops Li , we

eventually end up with a path

α′ = π′0Ll0
0 π
′
1Ll1

1 π
′
2 . . . π

′
k−1Llk−1

k−1π
′
k (7.29)

from (pm,p′m′) to (rl,r ′l ′) where k ≤ 2K2 and for all 0 ≤ i ≤ k, |π′iπ′i+1 | < K2. We derive that∑
2≤i≤k |π′i | < K2 · (2K2)/2 = K4.

Finally, pick a maximal subset S of the cycles {Le1
1 ,L

e2
2 ,. . . L

ek
k
} and d ∈ N such that∑

C ∈S ∆(C) = −∆(L0) · d. Observe that this is possible if
∑

1≤i≤k li > −∆(L0). Because all

Li for i ≥ 1 are less steep than L0, we again observe that
∑

C ∈S ∆′(C) ≥ −∆′(L0) · d. We re-

place the cycles in S by d iterations of the initial decreasing loop L0. That is, we construct the

path

α′′ = π′0Ll0+d
0 π′1Ll1−e1

1 π′2 . . . π
′
k−1Llk−1−ek−1

k−1 π′k . (7.30)

The suffix π′1Ll1−e1
1 π′2 . . . π

′
k−1Llk−1−ek−1

k−1 π′
k

is no longer than K2 + K + K4 < l. This means that

the guard Γ(α′′), the minimal counter value that enables α′′ for A is no larger than |π′0L0 | +
K2 + K + K4 < K2 + K + K2 + K + K4 = l. Therefore, α′′ must be enabled in (pm,p′m′). By

minimality of l ′ we derive that (pm,p′m′)
α′′−−−→+ (rl,r ′l ′), which concludes our proof. �

Theorem 7.19. The problem OCA ⊆ DOCN is in NL.
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Proof. We use Lemmas 7.17 and 7.18 as well as Theorem 7.6 and consider all possible forms

of witnesses for non-inclusion. For each form, we show that one can verify the existence of a

witness of this form nondeterministically, using only logarithmic space. Assume pm * p′m′.

Case 1: #(pm,p′m′) = 0. This means there must be a positive witness, which means we can

turn A into a OCN by removing all zero-testing transitions without changing that pm * p′m′.

The existence of such witnesses can be checked as in the proof of Theorem 7.14.

Case 2: #(pm,p′m′) > 0. Then, no positive path witnesses pm * p′m′. We can decompose

any witness into a positive prefix α, an intermediate path β that uses zero-testing transitions,

and a positive suffix γ. Let π be some witness and cut it into

(pm,p′m′)
α−−−→+ (p00,p′0m′0)
β1−−−→ (p10,p′1m′1)

β2−−−→ (p20,p′2m′2)
β3−−−→ . . .

βl−−−→ (pl0,p′lm
′
l ) (7.31)

γ−−→+ (pkmk ,p′k0)

where (p00,p′0m′0) is the first position at where the counter of A reaches value 0, and w.l.o.g.,

m′0 is minimal. That is, (pm,p′m′) 6−−→∗+ (p00,p′0x) for any x < m′0. Moreover, each βi

on the zero-touching path starts with a zero-testing transition and is otherwise positive. By

Lemma 7.17, each such βi is no longer than K3.

Case 2a: The rank #(pm,p′m′) is at least K2. This means there is a shortest witness of

the above form with at least K2 intermediate phases βi . Then, at least one pair (q,q′) of

control states repeats as starting states for two different βi , β j , i < j. By minimality of the

witness, the path ρ = βi βi+1 . . . β j−1 must strictly decrease the counter ofA ′. We observe that

|ρ| < K3 ·K2 and that some prefix of αρr witnesses pm * p′m′ for some r ∈ N. It suffices to

check the existence of paths α and ρ satisfying −∆(α) = m, ∆(ρ) = 0 and ∆′(ρ) < 0.

Case 2b: The rank #(pm,p′m′) is strictly between 0 and K2. Again we consider a shortest

witness of form Equation (7.31). We know that the intermediate path β = β0 β1 . . . βl from

(p00,p′0,m
′
0) to (pl0,p′l ,m

′
l
) is no longer than K3 ·K2.

By Theorem 7.6, we can assume that the positive suffix γ, which is a witness for pl0 * p′
l
m′

l

has one of three possible forms. We show that for each form one can extract polynomially

bounded paths that suffice as certificates for the existence of a witness of this form. This means

that just as in the proof of Theorem 7.14, we can in nondeterministic logarithmic space guess

and verify these paths. Let c be the polynomial bound provided by Theorem 7.6.

Form 1: γ = π0Ll0
0 π1, where L0 is a loop with ∆′(L0) < 0 and ∆(L0) ≥ 0 and |π0π1 | ≤ c. It

suffices to guess and verify the prefix π0L0, because then L0 can be iterated sufficiently often

to eventually reduce the counter of A ′ below 0. This certificate is no longer than c + K2. To

check if a witness for pm * p′m′ of this form exists, we need to check if there is a path αβπ0L0

with −∆(α) = m, ∆(βπ0L0) ≥ 0, ∆′(L0) < 0 and ∆′(L0) ≥ 0. This can be done in logspace by

Lemma 7.13.
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Form 2: γ = π0Ll0
0 π1Ll1

1 π2, where π0,π1,π2 are no longer than c, L0 is a loop with ef-

fects ∆′(L0) > 0 and ∆(L0) ≤ 0, L1 is a loop with effects ∆′(L1) < 0 and ∆(L1) < 0, and

∆(L0)/∆′(L0) > ∆(L1)/∆′(L1). To show the existence of such a path, it suffices to show that

L0 can be iterated at least once and that afterwards, the initial states of L1 can be reached. The

latter can be checked in log(K ) space, as it is just reachability in the finite (product) control

graph. The conditions on the effects can also be checked in logspace, because all guessed paths

are polynomially bounded in K and their effects can thus be stored in log(K ). The existence

of a witness for pm * p′m′ of this form can thus be shown by providing paths αβπ0L0, as

well as L1 satisfying the above conditions and −∆(α) = m. Note that | βπ0L0 | is no longer than

(2K2 + K5) + c.

Form 3: γ = π0Ll0
0 π1, where L0 is a loop with effects ∆′(L0) < 0 and ∆(L0) < 0 and

|π0π1 | ≤ c. Because initially, the path γ starts with counter value 0 in A, this means that the

decreasing loop L0 cannot be iterated more than c times. The whole path γ is therefore no

longer than c + K2 · c. To check if a witness of this form exists, we can check (in logspace) if

there is a path αβγ with −∆(α) = m, ∆(βγ) ≥ 0, ∆′(βγ) < 0.

We have considered all possible forms of witnesses for pm * p′m′, and in each case demon-

strated that the existence of a witness of this form can be verified using logarithmic space. �

We turn to the problem OCN ⊆ DOCA, where zero-tests are only allowed in the system on

the right. There is a subtle difference to the problem DOCA ⊆ OCN considered earlier in this

section, regarding the applicability of Theorem 7.6. We present here only a partial solution.

Let A = (Q,Act,δ) be a DOCN, A ′ = (Q′,Act,δ′,δ′0) be a DOCA and K = |Q×Q′ |. Any

witness for p0m0 * p′0m′0 can be split into a positive prefix, along which no zero-testing tran-

sitions are used, and the remaining path, that starts with a zero-testing transition of A ′. It is

true that intermediate positions (q1n1,q′10) and (q2n2,q′20) along the witness are comparable if

(q1,q′1) = (q2,q′2), and due to the monotonicity in the net A (Lemma 3.13 on page 27), such

a repetition of control states implies a strict increase in the counter values: n1 < n2. However,

the problem is bounding the length of the path between two such positions along a shortest

witness. Here, we cannot directly derive a polynomial bound by applying Theorem 7.6, be-

cause the theorem does not deal with possible witnesses that end in (or further use) zero-tests.

In order to adjust the proof of Theorem 7.6 so that it can be used here, one has to deal with

the problem that a witness could depend on a zero-test from some position (qn,q′0) where the

value n has to be sufficiently high to enable the remaining witness. This means that

1. Cycles L with effects ∆(L) < 0 < ∆′(L), that were considered “obviously bad” before,

cannot so easily be dismissed.

2. It might be necessary to alternate between two different loops.
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Example 7.20. Assume states W and W ′ of a DOCN A and a DOCA A ′,respectively, such

that Wn ⊆ W ′0 iff n ≥ 20. Consider now two other states p0 and q0 of A and A ′, where

the relevant parts of A and A ′ are given on the left and the middle of Figure 7.3 below.

The systems are constructed so that whenever p0n * q0m, some witness exists that leads to a

position Wn ⊆W ′0, where n ≥ 20.

p0

p1

p3p2

a, −1

bb

c

c, −1

c, −1
W

d

q0

q1

q3q2

a, 1

bb

c

c, −1
c, −1

U

Σ

c c

d, −1

W ′
d

A ′

A0 5 10 15 20
0

5

10

15

20

Figure 7.3: Part of DOCNA (on the left), part of DOCAA ′ (middle) and the change of counter

value along the path π from position (p05,q05). Notice the double-arrows indicating zero-testing

transitions in A ′.

To illustrate the first problem above, observe that p02 * q013, but every witness uses the

a-labelled loop L = ((p0,a,−1,p0),(q0,a,1,q0)) with effects ∆(L) = −1 and ∆′(L) = 1 (red in

the picture). For the second problem, notice that p05 * q05, as witnessed for instance by a trace

with the prefix π = a4b(ccc)5ba14b(ccc)7ba8b4d, that leads to (W22,W ′0). The change in

counter value induced by this witness is drawn on the right in Figure 7.3, where the a-labelled

loop is coloured red and the c-labelled loop is blue. However, every witness for p05 * q05 must

initially alternate between the a-labelled loop and the c-labelled loop.

Despite the additional complications, it seems reasonable that with further effort, one can

show that certificates for non-inclusion based on short paths like in Theorem 7.6 are sufficient.

We conjecture that the problem DOCN ⊆ DOCA is also N L-complete, even with arbitrary

initial counter values as part of the input.

We conclude this section with an NL upper bound for a subproblem that makes addi-

tional assumptions on how the initial counter values compare. Specifically, we demand that

the counter values m,m′ ∈ N for the given processes pm and p′m′ satisfy m ≥ K3 and m′ = 0,

where K is the size of the product of the input systems.

Lemma 7.21. Let p,q ∈ Q, p′q′ ∈ Q′. If there is a path from (pm,p′0) to (qn,q′0) for some

m,n ∈ N, then (pk,p′0) −−→k (qx,q′0) for k ≤ K3 and x ≥ 1.
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Proof. Consider the automaton B, that is the product of the control-graph of A with A ′,
i.e. the product ofA andA ′ that ignores the counter ofA. B is itself a OCA with K states. By

assumption, for some m,n ∈ N there is a path (pm,p′0) −−→∗ (qn,q′0) in the product A×A ′.
This means in B, there is a valid path from (p,p′)0 to (q,q′)0. By Lemma 3.5 (page 21), there

must also be such a path of length k < K3, which in turn prescribes a path in the product of A
and A ′. Because the absolute effect of a path is bounded by its length, this path must already

be enabled in (pk,p′0), which implies the claim. �

Theorem 7.22. Suppose we are given a OCN A = (Q,Act,δ), a DOCA A ′ = (Q′,Act,δ′,δ′0)

and processes pm and p′m′ ofA andA ′, respectively, where m ≥ |Q×Q′ |3 amd m′ = 0. There

is a procedure that uses O(log( |Q×Q′ |)) space to decide if pm ⊆ p′m′.

Proof. Assume w.l.o.g. that A ′ is complete, so every witness for pm * p′m′ ends in some

position (qn,q′0), where some transition t ∈ δ allows a step in A and no equally labelled

transition of A ′ is enabled. By Lemma 7.21, there is a path π that takes (pm,p′0) to (qx,q′0),

for some x ≥ 1, and which is shorter than K3. Our assumption that m ≥ K3 means that this path

must be enabled, as it cannot decrease the counter ofA below 0 due to its length. Since x ≥ 1,

we must have qx
t−−→, which means that π is a witness for pm * p′m′.

To check if pm ⊆ p′m′ holds it therefore suffices to guess one of the finitely many possible

witnesses with length bounded by K3. This can be done stepwise where only the (binary

encoded) effects on the counters and the current pair of control states are memorized. �



Chapter 8

Conclusion and Outlook

We studied the decidability and complexity of inclusion problems for processes definable by

one-counter automata (OCA), focussing on well-known semantic partial orders: simulation

preorder and trace inclusion, both in their ordinary strong and also their weak variants, that

abstract from internal behaviour. Unlike some semantic equivalences that are decidable for

much more expressive classes of systems, these notions are already undecidable for OCAs,

a fairly limited model of computation. This motivated a more fine-grained investigation of

further restricted models, in particular of inclusion problems between OCAs, one-counter nets

(OCNs) and finite systems (NFAs) in all remaining combinations. Tables 8.1 to 8.3 summarize

the state of the art for these problems and points to the relevant literature or theorems in this

dissertation for the respective results.

We were especially interested in one-counter nets, that have access to an unbounded integer

counter but lack the explicit zero-testing capability of OCAs. In terms of their expressibility,

OCNs lie strictly between NFAs and OCAs. An important property of OCNs is that steps

are monotone with respect to counter values. This implies that any two OCN processes with

the same control state are comparable w.r.t. simulation: for any state p of a OCN, and for all

m,n ∈ N where m ≤ n, it holds that pm � pn. Almost all our positive results crucially rely on

this monotonicity property.

Simulation preorder. All problems studied in this thesis concern variations or extensions

of one central game: simulation for OCNs. It was known [2, 29] that checking simulation is

decidable for OCNs but already undecidable for the slightly more general model OCA [30].

Moreover, previous work by Jančar, Moller, and Sawa [30] showed that the maximal simula-

tion relation relative to a given pair of nets is a semilinear set and one can effectively compute a

semilinear representation. All previous arguments were based on the locality of the simulation

condition, as well as a characterization now called the Belt Theorem, that captures a certain

regularity of the maximal simulation relation. However, the proofs for this theorem were not

116
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constructive and consequently, no bounds on the parameters in the derived semilinear descrip-

tion of simulation, and also no upper bound on the complexity of simulation checking were

known.

Our first main result (Theorem 4.19) contributed to our understanding of strong simulation

between OCN processes. We were able to pinpoint the exact complexity of this problem to

PSPACE and showed that one can effectively compute a semilinear description of the maximal

simulation relation of size exponential only in the total number of control states of the input

nets. This was made possible by a new and constructive proof of the Belt Theorem (Theo-

rem 4.2). Our proof yields polynomial bounds for the crucial parameters in the description of

the maximal simulation. Based on this, we derived a nondeterministic decision procedure for

the simulation checking problem, that works in polynomial space and thus matches the known

PSPACE lower bound from Srba [47].

� NFA OCN OCA

NFA
P-complete

[45]

P-complete

UB: [33]

PSPACE-complete

LB: [47] UB: [46]

OCN
P-complete

UB: [33]

PSPACE-complete

LB: [47] UB: [20], Theorem 4.19
?

OCA
PSPACE-complete

LB: [47] UB: [46]

?

decidable [1]

undecidable

[30]

Table 8.1: Results for strong simulation checking between OCAs, OCNs, and NFAs. For exam-

ple, the cell on the lower left states that the problem OCA � NFA is PSPACE-complete and that

lower and upper bounds are due to [47] and [46] respectively.

The PSPACE upper bound for checking strong and weak simulation between NFAs and

OCAs is due to the fact that the µ-calculus model checking problem for OCAs is in PSPACE

[46]. This is because finite systems and also the strong and weak simulation conditions can be

expressed as µ-calculus formulae [26].

There are still some gaps in the knowledge about simulation between OCAs and OCNs,

where one of the two given processes is allowed to have zero-tests.

We were recently able to establish the decidability of the problem OCA � OCN [1]. It

turns out that simulation problems PDA � VASS between pushdown automata and vector ad-

dition systems correspond to multidimensional pushdown energy games: these are two-player

games played on a (shared) pushdown graph, where the goal of the energy player (Dupli-

cator) is to forever maintain non-negative values in all energy dimensions. One can show

[1], that simulation between PDAs and VASSs is undecidable even in the 1-dimensional case

(OCN), and simulation between OCAs and VASSs becomes undecidable from dimension 2 on.

However, 1-dimensional energy games on OCAs, which correspond to the simulation problem
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OCA � OCN are decidable: based on the monotonicity of steps in the net, we observe a certain

regularity of the maximal simulation relation and derive that it is semilinear. The decidability

then follows from this, and the finite branching property of OCNs, using two complementary

semi-decision procedures that search for certificates. The exact complexity of this problem re-

mains open. Our argument does not immediately provide bounds that would allow an effective

construction of the whole relation. Also, it is not clear yet how to extend this technique to weak

simulation.

Weak simulation. Our second main result was the PSPACE-completeness of weak simula-

tion for OCNs (Theorem 5.28). The decidability of weak simulation for OCNs was published

in [20] and the improvement to PSPACE-completeness appeared subsequently in [19]. Sec-

tions 5.1 to 5.4 contain a simplified and unified presentation of these results.

This positive result is particularly surprising if one recalls that, for most types of systems,

checking bisimulation is computationally easier than simulation: In [35], Kučera and Mayr

showed how to construct reductions from simulation to bisimulation checking, that are effective

for a wide range of systems including OCNs. For OCNs, strong bisimulation is decidable and

NL-complete, even for OCAs [6], but weak bisimulation is undecidable [37].

The main complication with weak simulation arises from the fact that with regard to weak

steps, the LTSs induced by a OCNs can be infinitely branching. One consequence is that

Kučera and Mayr’s reductions are not effective. Moreover, the standard weak simulation ap-

proximants (cf. Definition 2.20) do not converge at level ω, which means there is no trivial

semi-decision procedure for non-inclusion. We later showed (in Theorem 5.18), that weak

simulation approximants are only guaranteed to converge at level ω2.

Our approach for weak simulation on OCNs is based on previous results for strong simula-

tion, particularly on the effectiveness (and bounds) of the semilinear description of the maximal

simulation relation. We showed that weak simulation between OCNs can in fact be approxi-

mated finitely, using a customized notion of approximants. These approximant relations con-

verge at a polynomially bounded level and moreover, can be represented in terms of strong

simulation between OCNs. The fact that the maximal simulation can be effectively computed

makes it possible to construct representations of our approximants, and hence of the largest

weak simulation for the original input nets.

At the end of Chapter 5, we considered the remaining gaps regarding the complexity of

checking strong and weak simulation between OCA/OCN and finite systems. In particular, we

showed (Theorems 5.29 and 5.35) polynomial-time completeness of weak simulation between

OCNs and NFAs, in both directions.

The decidability of the problems OCA � OCN and OCN � OCA, weak simulation between

OCAs and OCNs remains open. These problems are of course PSPACE-hard, but unlike the
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� NFA OCN OCA

NFA
P-complete

LB: [45]

P-complete

UB: [20], Theorem 5.35

PSPACE-complete

LB: [47] UB: [46]

OCN
P-complete

UB: [20], Theorem 5.29

PSPACE-complete

LB: [47] UB: [20], Theorem 5.28
?

OCA
PSPACE-complete

LB: [47] UB: [46]
?

undecidable

[30]

Table 8.2: Weak simulation problems between OCAs, OCNs and NFAs.

corresponding strong simulation problems are not known to have semi-decidable complements.

Trace inclusion. In Chapter 6 we discussed strong and weak trace inclusion. We compared

trace inclusion with the classical notion of language inclusion from automata theory, and ex-

plicitly recovered some negative results about OCA languages from [50]: both trace inclusion

for DOCA and trace universality for OCAs are undecidable (Corollaries 6.5 and 6.6). We

then showed (Theorem 6.10) the undecidability of trace inclusion between OCNs, by reduction

from the undecidable containment problem for weighted finite automata [3]. Table 8.3 lists the

known results for checking trace inclusion between systems of OCAs, OCNs and NFAs.

⊆ / j NFA OCN OCA

NFA
PSPACE-complete

[38]

Ackermann-complete

Theorem 6.25

undecidable

Corollary 6.6

OCN
PSPACE-complete

UB: [20], Theorem 6.12

undecidable

[20], Theorem 6.10
undecidable

OCA
PSPACE-complete

UB: [20], Theorem 6.12
undecidable undecidable

Table 8.3: Results for strong and weak trace inclusion checking between OCAs, OCNs and

NFAs.

The picture for weak trace inclusion is the same: Lower bounds and undecidability re-

sults trivially propagate from strong to weak trace inclusion. The Fω upper bound for trace

universality of OCNs (and the problem NFA ⊆ OCN) also holds for trace universality and

NFA j OCN (see Lemma 6.13 and Remark 6.19). Our PSPACE upper bound (Theorem 6.12)

for the problem OCA ⊆ NFA also holds for the corresponding weak trace inclusion problem,

because one can (in logspace) compute the weak closure for NFAs.

The Deterministic Case. For deterministic systems, simulation and trace inclusion coincide.

One can show (cf. Lemma 3.10), that this is already the case if only the supposedly larger



Chapter 8. Conclusion and Outlook 120

process on the right is deterministic. These problems essentially become reachability problems

in the synchronous products of the two input systems. A trivial NL-lower bound for all these

inclusions therefore follows from NFA ⊆ DFA, which is just reachability in a finite (product)

graph, and therefore NL-complete. Table 8.4 gives an overview of the results on checking

strong and weak simulation/trace inclusion for deterministic systems.

Our main result in this area is an NL upper bound for OCN ⊆ DOCN, inclusion between a

OCN and a deterministic OCN (Theorem 7.14).

Similar questions were addressed by Higuchi, Tomita, and Wakatsuki [17, 15, 16]: they

considered different notions of language inclusion between DOCNs, assuming fixed initial

counter values. In each case, they computed polynomial bounds on the length of shortest

witnesses for non-inclusion and proposed polynomial-time procedures that exhaustively search

for a witness of bounded length [17, 15, 16]. Other than these results, our NL-upper bound for

OCN ⊆ DOCN holds even with (binary encoded) initial counter values as part of the input. In

this case, shortest witnesses can be exponential in the size of the input. Our proof uses a non-

trivial characterization of sufficient witnesses for non-inclusion (Theorem 7.6). We were able

to extend our result to the problem OCA ⊆ DOCN (Theorem 7.19) and under certain additional

assumptions also for OCN ⊆DOCA (Theorem 7.22), where one of the sides allows zero-testing

transitions. The decidability of the unrestricted problem OCN ⊆ DOCA is still open.

�=⊆ DFA DOCN DOCA

NFA NL-complete NL-complete NL-complete

OCN NL-complete
NL-complete

Theorem 7.14

NL-complete*

Theorem 7.22

OCA NL-complete
NL-complete

Theorem 7.19

undecidable

[50], Corollary 6.5

Table 8.4: simulation/trace inclusion between OCA, OCN and NFA and their respective deter-

ministic variants. Note that weak trace inclusion NFA j DOCA (and vice versa) correspond to

the reachability problem for OCA, which is NL-complete by Theorem 3.8.

An NL upper bound for OCA j DFA again follows from the fact that one can compute the

weak closure for DFAs in logspace and from the NL procedure for OCA reachability (Theo-

rem 3.8). One can use silent (τ-labelled) transitions in DOCNs to simulate nondeterministic

choice with respect to weak steps (see Section 7.1.1). This means that the lower bounds for

trace inclusion between nondeterministic systems (Table 8.3) also hold for weak trace inclusion

between deterministic systems.
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[29] P. Jančar and F. Moller. “Simulation of One-Counter Nets via Colouring”. Tech. rep.

Uppsala Computing Science, Feb. 1999.
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