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Abstract 

A theory of data types and a programming language based on category theory 
are presented. 

Data types play a crucial role in programming. They enable us to write programs 
easily and elegantly. Various programming languages have been developed, each 
of which may use different kinds of data types. Therefore, it becomes important 
to organize data types systematically so that we can understand the relationship 
between one data type and another and investigate future directions which lead 
us to discover exciting new data types. 

There have been several approaches to systematically organize data types: alge-
braic specification methods using algebras, domain theory using complete par-
tially ordered sets and type theory using the connection between logics and data 
types. Here, we use category theory. Category theory has- proved to be remark-
ably good at revealing the nature of mathematical objects, and we use it to 
understand the true nature of data types in programming. 

We organize data types under a new categorical notion of F, G-dialgebras which 
is an extension of the notion of adjunctions as well as that of T-algebras. T-
algebras are also used in domain theory, but while domain theory needs some 
primitive data types, like products, to start with, we do not need any. Products, 
coproducts and exponentiations (i.e. function spaces) are defined exactly like in 
category theory using adjunctions. F, G-dialgebras also enable us to define the 
natural number object, the object for finite lists and other familiar data types 
in programming. Furthermore, their symmetry allows us to have the dual of the 
natural number object and the object for infinite lists (or lazy lists). 

We also introduce a functional programming language in a categorical style. It 
has no primitive data types nor primitive control structures (e.g. no if state-
ments). Data types are declared using F, G-dialgebras and each data type is 
associated with its own control structure. For example, natural numbers are 
associated with primitive recursion. We define the meaning of the language 
operationally by giving a set of reduction rules. We also prove that any com-
putation in this programming language terminates using Tait's computability 
method. - 

A specification language to describe categories is also included. It is used to give 
a formal semantics to F, G-dialgebras as well as to give a basis to the categorical 
programming language we introduce. 

- 
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Chapter 1 

Introduction 

This is an exploration of data types through category theory. It is an attempt 

to achieve better understanding of data types, their uniform classification, and 

discovery of a new world of data types. Data types have been with us since 

the very first programming languages. Even some machine languages now have 

some concept of data types, but early programming languages had only a fixed 

number of data types, like integers, reals and strings, and/or a fixed number of 

data type constructors, like array constructors and record constructors. When 

we gradually realized how important data types were, programming languages 

started having richer and richer data types. A number of programming languages 

now allow us to define our own data types. Some might even say that the richer 

they are, the better the programming languages are. Programming languages 

can be classified by the way how they handle data types. 

There is no question about the importance of data types. Much research in this 

area has produced various kinds of data types, so varied that one cannot capture 

them all. We now need to systematically organize data types. We want to know 

the connection between one data type and another. We want to know the reason 

why those data types are with us and why some other data types are not. After 

getting a clear view of data types, we might find the future direction to discover 

other important data types. 

There have been already some attempts to organize data types. We can name 
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CHAPTER 1. INTRODUCTION 	 2 

some of the important ones: Domain theory is one, algebraic specification is 

another and type theory is one where a lot of research is going on at the moment. 

In this thesis, we will present yet another attempt to organize data types. We 

do so by using category theory. We call our data types Categorical Data Types 

(or CDT for short). 

One might ask "Why category theory?" Category theory is known as highly 

abstract mathematics. Some call it abstract nonsense. It chases abstract arrows 

and diagrams, proves nothing but about those arrows and diagrams, rarely talks 

about what arrows are for and often concepts go beyond one's imagination. 

However, when this 'abstract nonsense' works, it is like magic. One may discover 

a simple theorem actually means very deep things and some concepts beautifully 

unify and connect things which are unrelated before. 

In ordinary mathematics, whether we are aware or not, we are in the world of 

set theory. Mathematics has been so well developed with set theory that we can 

hardly do anything without it. Therefore, it is very natural that semantics of 

programming. languages is generally based on set theory. Note that it is often 

said that most of programming languages do not have set theoretic semantics 

and, therefore, domain theory has been developed, but this does not contradict 

with "semantics based on set theory", because domain theory itself is based on 

set theory. A domain is a set with certain properties. 

Set theory is a powerful tool, but sometimes this power disfigures beautiful ob-

jects so that we cannot directly see their natural properties. For example, in set 

theory it is not easy to see either the duality between injective and surjective 

functions or the duality between cartesian products and disjoint sums. It is in 

category theory that these dualities come out clearly. Category theory concen-

trates on the outer behaviour of objects. It does not care what is in an object, 

whereas set theory is all about what is in an object. It is interesting to know 

that seeing from the outside reveals the nature of an object more naturally than 

seeing its inside. For example, one of the most important concepts discovered by 
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category theory is adjunction (or adjoint situation), which is strikingly simple 

but very beautiful and unifies various concepts under the same name. 

Our slogan is: "category theory can provide a better and more natural under-

standing of mathematical objects than set theory", so we use it to guide our tour 

around the world of data types. Note that we do not mean to abandon set 

theory by this. We will still heavily rely on it, but our intuition should not be 

obstructed by it. 

1.1 Backgrounds 

1.1.1 Algebraic Specification Methods 

Algebraic specification methods were first developed to describe what programs 

do. They are not like operational semantics or denotational semantics. These 

semantics also describe what programs do but in a different way. They describe it 

by giving meaning to each part of programs. They need to know how programs 

are written, that is, they need actual codes. Whereas, algebraic specification 

methods never talk about how programs are implemented. They describe their 

behaviour abstractly viewing from outside. 

This abstract view point, seeing from outside, led to the discovery of abstract 

data types (see e.g. [Goguen, Thatcher and Wagner 78]). It is interesting to know 

that algebraic specification methods were started to describe programs but it 

also developed a theory of data types. Since algebraic specification methods try 

to describe things from an outside point of view, they cannot talk about the 

concrete nature of data types which programs handle. Therefore, the data types 

also needed to be abstracted and, thus, abstract data types have been developed. 

We may divide algebraic specification methods into two: specification of data 
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types and specification of programs. 

pecificatioi 

of Programs 

Specification of Data Types 

Algebraic Specification 

It is the former, specification of data types, that concerns us in this thesis. 

Algebraic specification methods got their method of describing data types from 

abstract algebras in mathematics. Mathematicians have been using abstract 

algebras for about a century. Abstract algebras are only concerned with concrete 

real algebras insofar as they satisfy some laws. For example, a set with a binary 

operation is a group when the operation is associative, there is an identity and 

every element is invertible. A real set and a real operation can be anything, 

integers and +, general linear matrixes and their multiplication, and so on. Any 

theorem established for general groups can be applied to any real groups. There 

are various kinds of abstract algebras: groups, rings, fields, and so on. Those 

abstract algebras can be presented uniformly by universal algebras. Algebraic 

specification methods use a many-sorted version of universal algebras. 

Naïvely speaking, an algebraic specification is a triple (S, E, E), where S is a set 

of sorts, E is a S x S-indexed set of operations and E is a set of equations over 

E. For example, in an algebraic specification language CLEAR [Burstall and 

Goguen 80, Burstall and Goguen 821 a specification of lists may be as follows. 

constant List = 
theory 

sorts elem ent, list 
opns nil list 

cons 	element, list -> list 
head list -> element 
tail 
	

list -> list 
eqns all e 	element, 1 : list, head(cons(e,].)) = e 

all e 	element, 1 : list, tail(cons(el)) = 1 
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endth 

S is { element, list }, Elist  is { nil }, Eliet element  is { head }, and so on. E 

consists of the two equations above. 

There are several problems about this specification as we will see immediately 

after we say what a specification means. An algebraic specification (5, E, E) 

defines a class of many sorted algebras each of which, say A, consists of an S-

sorted set J AI and functions IA: 1A1 81  x ... x JAI.. - 1A1 8  for each f E E 81 ...38  

which satisfy the equations in E. 

The first problem of the above specification is that not only lists satisfy it but 

also many of other data types as well. There is actually no way to make it 

describe only lists so long as we stick to first order methods. We need something 

of second order. The way algebraic specification methods usually obtain this is 

to put data constraints. We rely on the categorical fact that the initial algebra is 

unique up to isomorphism. In this case, we put a data constraint onto the sort 

'list', but not to 'element' because if we put a data constraint onto 'element' 

then the 'element' sort would be empty. 

The second problem is that 'head' and 'tail' are partial functions. The speci-

fication does not say what is 'head (nil)' nor what is "tail (nil)'. In order to 

fix this problem, we have to introduce, for example, error algebras or go into 

partial algebras. 

The third problem is that although we put a data constraint on 'list' it is not 

immediately obvious that 'nil' and 'cons' can construct all the lists. Some alge-

braic specification languages do distinguish these constructors from the others. 

The fourth problem is about the sort 'element'. We actually need it as a param-

eter. When we use this specification, 'element' denotes a particular data type 

defined by another specification and we need a way to plug in any specification of 

'element' into this specification. Actually, CLEAR has this facility. 'List' can 

be defined as 'procedure' taking parametrized type 'element'. However, this 
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new specification no longer corresponds to a class of algebras but to something 

one level higher. 

Many other problems there might be, but most of them have been solved in one 

way or another. The important point we would like to make is that the naive 

idea of 

algebraic specification = universal algebra 

does not work well and we have to put a lot of other ideas into algebraic speci-

fication methods. One might wonder why so many complications are needed to 

define everyday objects like lists. 

In CDT, we stick to the very simple relation 

categorical data type = F, G-dialgebra 

F, G-dialgebras can be seen as an extension of universal algebras (see section 3.1). 

We do not need to introduce meta arguments or any other complicated ideas into 

CDT in order to define lists or other basic data types. 

1.1.2 Domain Theory 

Domain theory was started with denotational semantics [Stoy 77, Scott 76]. In 

order to give denotational semantics to programs, we need several domains to 

which the denotations are mapped. Those domains are often interwoven and 

recursively defined. The most famous example of this is the following D. 

This domain D was necessary to give denotational semantics to the untyped 

lambda calculus. In general, we would like to solve the following domain equa-

tion: 

DF(D) 

where F(D) is a domain expression involving D. 
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Though domains are mathematical objects and not necessarily representable in 

computers, the idea of recursively defined data types has been adopted into 

several programming languages. For example, we can have a domain L for lists 

of A elements by solving' 

L1+AxL, 

and in the original version of ML [Gordon, Milner and Wordsworth 791, we could 

define the data type for lists just like the same. 

abstype 'a list = unit + 'a # 'a list 
with 

On the other hand, some domains cannot be represented in the same way. For 

example, we can have a domain I for infinite lists of A elements by solving 

I A x '.L 

where Ij_ is the lifting of I by adding the new least element, but we cannot define 

infinite lists in ML in a similar way. 

Comparing with algebraic specification methods, in domain theory we can define 

data types easily and there is no complication of parametrized data types, but 

we have some difficulty of defining operations over data types. In algebraic spec-

ification methods we define operations together with data types, but in domain 

theory we have to define them using the isomorphisms of domain equations. 

If an algebraic specification (S, E, E) has no equational constraints (i.e. E = 0), 

the initial algebra can be given by solving the following domain equations. 

Al 	 IAI 3  x ... x IAI, Jill, - 

By this connection, we can see the possibility of combining algebraic specifica- 

tion methods and domain theory together. Actually, data types in the current 

We have to say what kind of domains we are dealing with. Let us say in this thesis that a domain 

is a complete partially ordered set with the least element and a function between domains needs 

to be continuous and strict. 
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Standard ML [Milner 84, Harper, MacQueen and Milner 861 are defined in this 

mixed fashion (see also section 5.3). 

Categorically, we can go the other way round. If F(D) is a covariant functor, 

the initial fixed point of F(D) can be characterized as the initial F-algebra. A 

F-algebra is a categorical generalization of an ordinary algebra. The main idea 

we borrow from domain theory is this connection between initial fixed points 

and initial algebras. 

After becoming familiar with category theory, one can notice the dual connection 

between final fixed points and final co-algebras. People rarely talked about them 

until recently [Arbib and Manes 801. One of the reasons is that co-algebras are 

not so popular and another reason is that final fixed points are often the same 

as initial fixed points in domain theory. However, in CDT we will use this dual 

connection as well. Final co-algebras give us some very intersting data types like 

infinite lists. We defined infinite lists by the initial fixed point of 

I A x 

Actually, what we were doing using the lifting IL  is to get the final fixed point 

of 

IAxL 

1.2 Basic Category Theory 

This section is to roughly introduce some categorical concepts we will use in the 

rest of this thesis. The author refers to category theory text books like [Mac Lane 

71], [Arbib and Manes 75] and [Lambek and Scott 861 for more detail account of 

category theory. 

A category C is given by 

a collection of objects ICI, 
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o for any pair of objects A and B, a collection Home (A, B) of morphisrns 

from domain A to codomain B, (we write f: A - B for f E Home (A, B)) 

'. for any objects A, B and C, an operation called composition denoted by 

'o' from Homc(B,C)  x  Homc(A,B)  to Homc (A,C) which is associative, 

(f o g) o h = f o (g o h) 

o for any object A, an identity morphism IA:  A -+ A such that for any 1: B -+ 

A and any g:A -+ C 

IA 0 ff 	and 	goIA=g 

Two objects A and B are called isomorphic if there are two morphisms 1: A - B 

and g: B - A such that 

f og=IB 	and 	gof=IA. 

f and g are called isomorphisms. 

The opposite category COP of a category C is defined by reversing the direction 

of all the morphisms in C. 

Homcop(A,B) = Home(B,A) 

We may write C°" morphism fop :  A - B for C morphism f: B - A. 

The product category C x D of a category C and a category D is given as 

o a C x D object is (A, B) for a C object A and a D object B 

o a C x D morphism from (A, B) to (A', B') is (1 g) for a C morphism 

f:A - B and a  morphismg:A -p B. 

A covariant functor F from a category C to a category D (we write F: C -* D) 

is given by 

0 associating a 0 object F(A) for every C object A 

o associating a 0 morphism F(f): F(A) -p F(B) for every C morphism 

- f:A — Bsuchthat 

F(IA) = 'F(A) 	and 	F(f o g) = F(f) o F(g) 
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A contravariant functor is defined in a similar way except that F(f): F(B) -+ 

F(A). 

A natural transformation a from a covariant functor F: C -+ D to a covariant 

functor C: C - D (we write a: F -3 C) is given by 

c associating a D morphism aA: F(A) -+ G(A) for every C object A such 

that for any C morphism 1: A -+ B the following diagram commutes. 

F(A)_
aA 

 .-G(A) 

F(f)J _______ I G(f) 

F(B) 	
a 	

srG(B) 
B 

When every aA is an isomorphism, we call a natural isomorphism. 

Two functors F: C -+ 0 and C: 0 -+ C are called adjoints if there exists a natural 

isomorphism 

&A,B:HomD(F(A),B) -- Homc(A,G(B)). 

F is called the left adjoint functor of C and C is called the right adjoint functor 

of F. We also call t,bA,B (or its inverse & 'B) factorizer or mediating morphism. 

1.3 Development of Categorical Data Types 

The motivation of CDT was to adopt the categorical way of defining data types 

into specification languages. Anybody educated using set theory has quite a 

shock when he first sees the way category theory works. It gives a totally different 

point of view to things which are familiar. Things which were vaguely connected 

suddenly are fitted into systematic places. It seems that the nature of things is 

finally revealed. 

There are many beautiful concepts discovered through category theory, but 

here we concentrate only one of them, namely adjunction (or adjoint situa- 

tion). In [Mac Lane 71], one will find many equivalent forms of the definition 
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of adjunction (we gave one of them in section 1.2). One may be first at a loss 

for chosing the definition. Adjunction is so versatile that it can be seen in a 

number of different forms and it is sometimes difficult to understand it if one 

sticks to a particular form of the definition. The form is not important if the 

spirit is understood. Adjunction can be regarded as a property of two functors 

or because of the unique correspondence between two functors it can be seen as 

defining one of them from the other. It is the latter which is important to us 

because it is a typical way of defining things in category theory. Let us see an 

example. 

Using set theory, we can define what the product of two sets is, what the product 

of two groups is, what the product of two topological spaces is, and so on. Each 

definition is obviously deferent from the others but all of them are called by the 

same name, product. Why is that so? Is there any common property which all 

the different kinds of products should satisfy? Can we give the general definition 

of product? Category theory can give an affirmative answer to these questions. 

The categorical definition of products is 

For object A and B, the product A x B is an object such that there 

are two morphisms 

7r1 : A x B -+ A 	and 	ir2 : A x B -i 

and for any given two morphisms 

f:C—A and g:C —*B 

there is a unique morphism h: C - A x B such that the following 

diagram commutes. 

72  
A -' 	A 	 B 

C 
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It is easily shown that any two objects satisfy this definition are 

isomorphic. We may write (1,9)  for h. 

This definition is general enough to cover the definition of products for sets, 

groups, topological spaces, and so on. We no longer need to define products for 

each individual case. 

The generality should not be bound only in mathematics. Why should it not 

equally be appropriate to the definition of products in programming languages? 

The product data type of type A and type B is usually defined as a type of 

records whose first component is of type A and the second one is of type B, but 

this definition is like one in set theory. It assumes too much about how elements 

of data types are represented. It is not acceptable as an abstract description of 

the product data type. If the product data type is defined as an abstract data 

type, how can we present it? 

We can directly adopt the categorical definition of products. There are five 

ingredients in the definition. 

two given objects A and B, 

the object A x B we are defining, 

two morphisms 7r 1 : A x B -p A and 72: A x B -* B, 

(f,g):C—AxB  for  f:C-----A  and g:C_B,and 

the commutative diagram. 

We may write these down as follows 

object A x B is 

7r1 : A x B -i A 

(f,g):C - Ax B for f:C - A and g:C -p B 

where 	 (*) 

7r1 0 (f,g) =1 

72 o Y, 9) = g 

7r1  oh = fA 2  oh = g h = (f,g) 

end object. 
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Can we call this a categorical definition of the product data type constructor? 

Although this is an exact copy of the categorical definition, it somehow lost the 

spirit of category theory; its beauty; its simplicity. The categorical definition 

of products we gave is in a disguised form of adjunction. The definition could 

have been sufficient to just say that the product functor is the right adjoint of 

the diagonal functor. The previous definition expands this into plain words so 

that there are a lot of duplications. One of them is that the type of ( , ) can be 

deduced from the type of 7r 1  and 7r2 . If f and g has the same type as 7r 1  and 72  

except replacing A x B by C, (f, g) is a morphism from C to A x B. Another 

duplication is that the commutative diagram can also be deduced from the rest. 

There are no other trivial ways to make diagrams involving 7r 1 , 7r2 , f, g and 

(f, g). Therefore, the definition of product data types can be written simply as 

object A x B is 

7r1 :A x B - A 

ir2 :A x B -* B 

end object. 

This supplies the minimal information to get back to (*). Now, we have to use 

the fact that A x B is defined by adjunction (it was not necessary in (*)). Let 

us indicate this by saying it is a right object as well as declaring ( , 

right object A x B with ( , ) is 

7r1 :A x B -+ A 

7r2 :A x B -p B 

end object 

This is the declaration of the product data type constructor in CDT (except for 

minor changes). 

Let us examine the generality and simplicity of this declaration mechanism 

through examples. Let us try exponentials BA.  The functor . is defined as 

the right adjoint functor of o x A. The definition in CDT is 

right object BA  with curry( ) is 

eval : BA x A -+ B 

end object 
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We can derive the usual definition of exponentials from this definition. First, 

the type of curry() should be 

f:CxA —B 
curry(f):C -+ BA 

The type of I is obtained from the type of 'eval' just replacing BA  by C. The 

commutative diagram which curry(f) gives can be obtained by connecting 

BAXA 	
eval 

'B 	and CXA 

by curry(f): C -+ BA. The only way to connect them together results 

	

A 	
eval 

BXA 	-B 

curry(f) / 

C x A 

The morphism denoted by curry(f) is the unique one which makes this diagram 

commute. Thus, we recovered the ordinary definition of exponentials. 

We said 'right object' for products and exponentials. It is natural to think that 

we also have 'left object' as dual. The dual of products are coproducts. Let us 

define them in CDT. 

left object A + B with [ , J is 
v1 :A -1 A + B 

v2 :B - A+B 

end object 

The type of [ , } can be obtained from the type of u 1  and 1/2. 

f:A — C g:B —+C 
[f,g]:A+B -p C 

Note that [f, g] goes from A + B to C not the other way round as it would be if 

it were a right object. The name 'left object' came from the fact that A + B is 
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in the left hand side of -. Remember that A x B was in the right hand side 

of -+ for ( , ). The natural way of connecting f and g with v1  and v2  by [f, g] 

gives us the ordinary commutative diagram which [f, g] should satisfy. 

V1 
A 	.A+Bi 	B 

CV 	 Cy 

We demonstrated that we can express basic categorical constructs in CDT. Those 

constructs, or data types, are primitives in ordinary programming languages. 

Can we declare more familiar data types? In fact, the 'left object' declaration 

gives all those which can be defined by algebraic methods with no equations. 

'Without equations' seems that we cannot define much, but actually it gives us 

all the important data types of ordinary programming languages. For example, 

natural numbers can be defined as 

left object nat with pr( , ) is 

zero: 1 -p nat 

succ: nat -p nat 

end object 

This is very much like a specification of natural numbers in algebraic specification 

methods except that we do not have the predecessor function or plus or times 

and that we have something called pr( , ). From analogy of the types of [ , 

and ( , ), the type of pr( , ) should be 

f:1—C g:C —.0 
pr(f,g):nat—C 

We also obtain the diagram characterizing 'nat' as we did for products and 
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others. 
zero 	 succ 

1 	 •nat 	•nat 

Ipr(f,g) 	Ipr(f,g) 

This is exactly the definition of 'nat' being a natural number object in category 

theory and it is well know that we can define all the primitive recursive functions 

using pr( , ). For example, the addition function can be defined by 

de
=

f add 	eval o (pr(curry(ir 2), curry (succ o eval)) o 7r i ,7r2 ). 

As another example, we give the definition of lists in CDT. It is 

left object list(A) with prl( , ) is 

nil: 1 - list(A) 

cons: A x list(A) -) list(A) 

end object 

The type of prl( , ) is 

f:1—+C g:AxC —*C 
prl(f,g): list (A) —p C 

The diagram is 
nil cons 

• list(A) i 	A x list(A) 

}1prl(f,g) 0 	IAxprl(f,g) 

	

Bi 	 A x B 
g 

Remember that our definition of lists in CLEAR had 'head' and 'tail', but we 

do not declare them here. We can define them by prl( , ). 

head IMF  prl(v2 , ui  o 7r1 ) 	 : list(A) —p A + 1 

tail 	[u1  0 ir2 , "21 0 prl(zi2 , V1 0 (ir1 , [cons, nil])) 	: list(A) 	list(A) + 1 
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'Without equations' is not a disadvantage to define everyday data types. 

By the connection between initial fixed points and F-algebras, we can define the 

initial fixed point D of a covariant function F(X) as follows. 

left object D with ifi( ) is 

cz:F(D) —D 

end object 

a gives one direction of the isomorphism between D and F(D). The difference 

between domain theory and CDT is that we have the direct use of the unique 

morphisms by t/ 

F(D)_
a  

F(i(f)) 1 ________ 

F(A) 
I 

We have been using 'left object' more than 'right object', but they are dual and 

there are equally as many right objects as left objects. Just they are not familiar 

in ordinary programming languages. For example, the following definition gives 

the data type for infinite lists. 

right object inflist(A) with fold( , ) is 

hd: inffist(A) -p A 

tl: inffist(A) -+ inflist(A) 

end object 

This gives the final fixed point of I A x I. 

We have devised, based on category theory, a simply way of defining data types. 

The next question is whether we can adopt this method into ordinary program-

ming languages. The answer is negative. Although what we can define in this 

way is far less than what we can define using algebraic specification languages 

with equations, we still have some strange things that can be defined in this way. 

Let us see an example. We defined list(A) as a parametrized data type but in 
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fact it is a functor. 

list(f): list(A) -+ list (B) 

for a morphism f: A -p B is often called map function. In LISP it is 'MAP CAR' 

and in ML it is 'map'. The general declaration mechanism of CDT allows us 

to define the left and right adjoint functors of list(A) which is a unimaginable 

thing and should not exist in the world of programming. We need to put a 

restriction to prevent these objects. The restriction will come out of a notion of 

computability in our setting. Interestingly, it turns out the category should be 

cartesian closed + initial fixed points + final fixed points 

We might see the similarity between this and the connection of lambda calculus 

and cartesian closed categories. 

By putting this computability restriction, we can regard CDT as not only a 

device of defining data types but also a programming language. We program in 

a categorical fashion; there are no concrete data but morphisms; programs are 

also morphisms; there are no variables in programs. The computation in this 

language is reduction from morphisms to canonical ones. For example, we can 

reduce 

add o (succ o zero, succ o zero) 	succ o succ o zero 

which corresponds to the calculation of 1 + 1 = 2. 

We summerize the characteristics of CDT as follows. 

CDT uses categorical characterization of data types. We do not need to 

say things explicitly. All the equations are automatically generated for 

definitions. 

CDT needs no primitive data types. Ordinary programming languages 

(e.g. PASCAL, LISP, ML) have primitive data types: natural numbers, 

lists, records, and so on, but CDT does not. They can be defined. Thus, 

CDT is analogous to algebraic specification methods where we can specify 

them as well. However, algebraic specification methods cannot specify 
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higher order data types (i.e. function spaces or exponentials in a categorical 

term) nor can they specify products without using equations. 

CDT can not only define products without explicitly mentioning equations 

but also can define exponentials. 

CDT is symmetric in the sense that we can define initial algebras (or initial 

fixed points) as well as final co-algebras (or final fixed points). 

Algebraic specification methods use initiality implicitly and we do not use 

the unique homomorphisms between the initial algebras and the others, 

whereas CDT has explicit access to the unique morphisms. This gives the 

power of programming without going though equational characterization 

as we need to do in algebraic specification methods. 

Domain theory does not use the initiality explicitly either. The reason for 

this is that recursion in ordinary programming languages provide all the 

power of programming. 

CDT defines functors. Functors are thought to be parametrized data types. 

Algebraic specification methods usually introduce parametrization later, 

but in CDT functorial behaviour of parametrized data types is treated at 

the base level. 

1.4 In This Thesis 

The theory of categorical data types is divided into three: Categorical Specifica- 

tion Language, Categorical Data Types and Categorical Programming Language. 

Categorical 
Programming Language 

Categorical Data Types 

Categorical Specification Language 
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Chapter 2 are about Categorical Specification Language (CSL for short). CSL 

is a specification language. It is an extension of ordinary algebraic specifica-

tion languages. Whereas algebraic specifications specify algebras, it specifies 

categories. In order to specify categories, CSL has to handle functors, natural 

transformations and factorizers (or mediating morphisms). A CSL signature 

declares some functor names and their types (i.e. variances), some natural trans-

formation names and their types and some factorizer names and their types. A 

CSL sentence is a conditional equation of functors, natural transformations and 

factorizers. A CSL model is a category equipped with functors, natural transfor-

mations and factorizers which have right types as are specified in the signature 

and which satisfy the sentences. 

Chapter 3 gives the main idea of Categorical Data Types. The difference between 

CSL and CDT is that whereas CSL declares functors, natural transformations 

and factorizers separately and connects them by sentences, CDT declare them 

together in a style of adjoint declarations. The semantics of CDT will be given 

informally in terms of F, C-algebras and formally in terms of CSL. There are 

some examples of data types we can define in CDT. 

Chapter 4 is about Categorical Programming Language (CPL for short). CPL 

is a functional programming language which adopts the categorical declaration 

mechanism of data types from CDT. In order to define the notion of computation 

in CPL, we have to put some restrictions to CDT. We will introduce the notion of 

elements and canonical elements and present reduction rules to reduce elements 

to their equivalent canonical elements. We will also prove that any reduction in 

CPL terminates using Tait's computability method. 

Each of those three languages, CSL, CDT and CPL, characterizes a category of 

data types in different ways. 

Syntax Semantics 

CSL Signature and Sentences Models 

CDT Adjoint Declarations Freeness and Co-Freeness 

CPL Restricted Adjoint Declarations Operational 
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In chapter 5, we will investigate the real consequences of our study in CDT. 

Section 5.1 is about an implementation of CPL as a real programming language. 

Section 5.2 is about the connection between CDT and typed lambda calculi, and 

finally in section 5.3 we will attempt to extend ML incorporating the CDT data 

type declaration mechanism. 

1.5 Comparison with Other Works 

Systematic studies of data types have already been carried out by various people 

in various contexts: ADJ in the context of initial algebras [Goguen, Thatcher and 

Wagner 78], Plotkin, Smyth and Lehmann in the context of domains [Lehmann 

and Smyth 81, Smyth and Plotkin 821 and Martin-Lôf in the context of type 

theory [Martin-Lôf 79]. This thesis is about a study of the same subject in the 

context of category theory. We do not try to extend the traditional approaches as 

Parasaya-Ghomi did for algebraic specification methods to include higher order 

types [Parasaya-Ghorni 821, nor do we try to unify two approaches together like 

[Dybjer 831, but we just directly use categorical methods of defining things. 

Categorical Programming Language in chapter 4 might resemble Categorical 

Abstract Machine (CAM) by Curien [Curien 861, but he is only interested in 

cartesian closed categories whereas CPL deals with a class of different categories. 

Moreover, the reduction rules in CPL is systematically generated for products, 

coproducts, exponentials, natural numbers, and so on. We do not give any 

special reduction rules for any data types we define. CPL can be seen as 

CPL = CAM + initial data types + final data types. 

Actually, CAM can be absorbed into 'initial data types' and 'final data types', 

so in CPL we do not need to start with a particular set of reduction rules 

for cartesian closed categories. CPL has an ability to define cartesian closed 

categories and the introduction of data types also gives the control structure 

over those data types. Here is another slogan: "control structures in programming 
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languages come out of the structure of data types". 

4-4 

4-4 

Data Types 

boolean 

disjoint union 

natural number 

product 

function space 

Control Structures 

if statement 

case statement 

primitive recursion, for statement 

pairing 

function call 

Barr and Wells uses sketches in [Barr and Wells 85] to describe algebras categor-

ically. It is more powerful than ordinary algebraic specification methods because 

sketches can use any kind of limits whereas algebraic specification methods uses 

only products. However, CSL uses special kinds of limits and colimits, so that 

not all the things in CSL can be presented in terms of sketches. It is inter-

esting to investigate an extension of sketches to allow colimits. Note that the 

treatment of parametrize data types will be still different because CSL directly 

specifies functors whereas sketches not. 



Chapter 2 

Categorical Specification Language 

CDT can be seen from various points of view and can be presented in many ways. 

In this chapter, we present it as a specification language for categories (we call 

the specification language Categorical Specification Language or CSL for short). 

This is not the way originated, and it is difficult to recognize natural properties of 

data types in this way. We will give an alternative and more intuitive definition 

of CDT in chapter 3. However, the aim of CSL is to give mathematically rigorous 

background for the more intuitive presentation of CDT. 

In applicative functional programming languages like ML, it is natural to see 

that their data types and functions form a category; each data type is an object; 

each function is a morphism; we have an identity function; and two functions can 

be composed in a usual way. We can also treat other programming languages 

including procedural ones semantically as defining domains and functions, and we 

can see that they form a category. These categories associated with programming 

languages reflect the characteristics of the programming languages. Thus, the 

study of data types can be carried out by examining these categories. CSL is a 

specification language for these categories. 

Usually, a category is given by defining what an object consists of (e.g. a set 

for Set, the category of sets) and what a morphism between objects is (e.g. a 

set function for Set), but this is not the way CSL works. We are trying to 

understand a category in an abstract manner; we do not say what an object is; 

23 
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instead, we specify how it is constructed through its relationship among other 

objects. We saw in chapter 1 an ML data type for lists and it was a parameter-

ized data type. We can now see it as a data type constructor; given a data type 

it constructs a new data type for the lists of given this data type. Categorically, 

constructors of objects are functors and they provide structures for categories. 

Remember that a cartesian closed category is a category with three functors, 

the terminal (constant) functor, the product functor and the exponential func-

tor. Thus, CSL specifies a category equipped with some functors. Because the 

properties of functors are often described in terms of their interaction with natu-

ral transformations and factorizers (e.g. the binary product functor is explained 

with two natural transformations, 7r1  and 7r2 , and factorizer ( , )), CSL also 

specifies natural transformations and factorizers. 

Let us make a comparison with algebraic specification languages like CLEAR 

[Burstall and Goguen 80, Burstall and Goguen 82]. An algebraic specification 

consists of declarations of some sorts and some operations on these sorts. Sorts 

are their data types. A model of an algebraic specification is a many-sorted 

algebra. On the other hand, a CSL specification consists of declarations .of 

some functors, some natural transformations between them and some factoriz-

ers. Functors corresponds to sorts, and natural transformations and factorizers 

correspond to operations. A model of a CSL specification is a category equipped 

with some functors, some natural transformations between them and some fac-

torizers. It is abstract in the sense that the specification does not distinguish 

between equivalent categories (an algebraic specification does not distinguish iso-

morphic algebras). Note that, in general, the various models of a specification 

are not equivalent (e.g. not all the cartesian categories are equivalent). 

As CSL specifies functors, the treatment of parametrized data types is different 

from algebraic specification languages. It specifies one level higher objects. The 

concept of parameterized data types and how to combine them play very essen-

tial roles in algebraic specification languages, but parameterized data types are 

treated in their meta-level (one level higher than the level treating algebras), 

that is specifications themselves are parameterized rather than dealing with pa- 
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rameterized sorts in specifications. In CSL, on the other hand, parameterized 

data types are the basic objects in specifications. In one specification, several 

parameterized data types can be declared and their relationship is directly spec-

ified. Therefore, combining specifications does not play as important a role as it 

does in algebraic specification languages. 

Our goal in this chapter is to define the specification language CSL. In sec-

tion 2.1, we will introduce several notations for dealing with functors which will 

be necessary later. In section 2.2, we will define the CSL signatures and in 

section 2.3 the CSL models. The definition of CSL sentences and the CSL satis-

faction relation will be in section 2.5 which follows section 2.4 in which we will 

introduce expressions involving natural transformations and factorizers. Finally, 

in section 2.6 we will show that there is a initial CSL model for each CSL theory. 

2.1 A Functorial Calculus 

Before giving the definition of CSL signatures, we will look at some aspects of 

functors. This will be a kind of a functorial calculus though not as abstract as 

[Kelly 721 is. [Kelly 721 develops a calculus of combining functors as we will do 

in this section, but for the purpose of solving the coherence problems, and he 

treats many variable functors quite extensibly. However, he does not say much 

about mixed variant functors which we are interested in. We will also generalize 

variances to include free-variance and fixed-variance for uniform treatment. 

Functors are very much like ordinary functions except that functors have vari-

ances. Let F be a unary functor C -p C and C be a binary functor C x C - C. 

Then, we can combine them to get more complex functors: 

C(F(X),Y) 	F(G(X,F(Y))) 	C(F(X),G(X,Y)) 

We call them functorial expressions. Of course, not every such expression denotes 

a functor. For example, G(X, X) is not a proper functor if C is covariant in one 

argument and contravariant in the other. It is a functor if C is covariant in both 
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arguments or contravariant in both arguments, or if C does not depend on one 

of the arguments. 

In order to cope with these situations uniformly, we introduce two new variances: 

fixed-variance and free-variance. We say that a functor F(X) is fixed-variant 

in X if F is not functorial in X, that is, F maps objects to objects, but no 

morphisms. We also say that a functor F(X) is free-variant in X if F does not 

depend on X. Therefore, when C: C x C - C is covariant in the first argument 

and contravariant in the second, C(X, X) is a fixed-variant functor. 

In order to clearly distinguish ordinary functors from those functors in this ex-

tended sense which can be fixed-variant and/or free-variant, we call the latter 

pseudo-functors in this section. In the rest of the thesis, we call both functors. 

Let us introduce the symbols for variances. 

Definition 2.1.1: Let Var be the set of variances {+, -, I, T}: + for covari-

ant, - for contravariant, I for free-variant and T for fixed-variant. 0 

The next definition is extending the notion of opposite categories. 

Definition 2.1.2: Let C be a category. 

C is C itself. 

C-  is the opposite category of C. 

C1  is the category which has only one object and only one morphism (i.e. 

the identity of the one object). We may call the category one point category. 

CT  is the category which has the same objects as C but no morphisins 

except identities. 

In this way, we can regard the variances as functions mapping categories to 

categories (i.e.. Cat -+ Cat, where Cat is the category of (small) categories) or 

we can even regard them as a monoid acting on Cat. 
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Definition 2.1.3: (Var,.) is a commutative monoid with unit +, where the 

monoid operation .:Var x Var ---o. Var is defined by the following table. 

QUEEN  
II!!! 
Image 
Sunni 
MMMMM 

Proposition 2.1.4: (Var,.) is a monoid acting on Cat, that is, C" (C 

for any u,v E Var. 

Proof: We have to show (C - ) -  C (i.e. the opposite of opposite is itself) and 

so on, but they are trivial. 

Since we will deal with many variable functors and they are functors from prod-

ucts of categories C x ... x C to a category C, Var action for product categories 

should be investigated. 

Proposition 2.1.5: Var action on Cat distributes over products, that is, for 

any categories C and D 

(C x D) 	C x 

(CXD)CXD, 

(CxD) 1 C 1- xD -  and 

(CXD)TCTXDT. 

Proof: 1 is trivial. 2 says that the opposite of the product category is iso- 

morphic to the product of the opposite categories and it is the case because 

(f,g)°P:(A,B) -+ (C, D) 	(f,g):(C,D) - (A, B) 4= f : C -+ A and 

g: D -+ B f0: A -+ C and g°": B - D (f°I19 
0p

):  (A, B) - (C, D). 

3 holds because the product of the one point category is the one point category 

and 4 also holds because what T does is just forgetting morphisms. 0 
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We need one more preparation before talking about pseudo-functors. The cate-

gory CT  can be embedded into C+  as well as into C and they themselves are 

embedded into C1 , that is we have the following embedding functors. 

C1 	CT 

We introduce the partial order on Var to respect these embeddings. 

Definition 2.1.6: 	is a partial order on Var such that .1- C ± E T and 

From the definition, it is clear that 

Proposition 2.1.7: If u v, there is an embedding functor 	CU -+ Cu. 

Now we can start talking about pseudo-functors and their calculus. As a function 

is associated with an arity (simply a natural number), a pseudo-functor over a 

particular category C is associated with a varity which is a sequence of variances. 

For example, binary functor C: C x C - C which is contravariant in the first 

argument and covariant in the second is a pseudo-functor with a varity —+. 

Definition 2.1.8: A pseudo-functor F of varity v1 . . . v, is a (covariant) functor 

from CU1  x 	x Cv  to C. 

When we are given a var-indexed set r of primitive pseudo-functors, where 

F E is a pseudo-functor of varity v 1  . . . v,, we would like to establish 

how to combine these primitive pseudo-functors and get more complex pseudo-

functors like H(G(X, Y), F(X)). 

Firstly, we extend the action of variances on categories to that on functors. For 

example, from a contravariant functor F: C - C we get a covariant functor 

Definition 2.1.9: For a functor F: C - 0, 
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a functor F: C+ 	D is F itself, 

a functor F: C-  D is given by F (A) = A for an object A in C and 

F(f°P) = F(f)°P for a morphism f in C, 

a functor F1 : C1  - D1  is the identity functor since both C 1  and D 1  are 

the one point category, and 

a functor FT :  CT ) DT has the same object mapping as F but no mor-

phism mapping. 

FT:CTDT 

ZZ  
F:C — D 

N 
Proposition 2.1.10: For a functor F: C - 0, (Fu)0  = FV. 

Proof: We have to check this for all the combinations of u and v. For example, 

(F- )T = FT is true because F only changes the mapping of morphisms but 

(F- )T  forgets it. g 

We have the two propositions which give us the basis for combining mixed variant 

functors. 

Proposition 2.1.11: For functors F: CU1  x ... x Cu 	Cvi x 	x C" and 

G:CIx ... xC)m - C (i.e. varityv i  ... vm), GoFisafunctorof Cu' x ... xCU- 

C (i.e. varity u 1  ... u,,). 

F 	 C 
C'' x 	x cu. 	C"' x ... x C""' 	 C 

Proof: Trivial from the definition of composition of functors. 0 
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Proposition 2.1.12: For functors F1: CU1 x 	x C's" -+ C"',..., F,,,: Cu,  X 	X 

C' + C", (F1 ,.. .,Fm ) is a functor of Cu ,  x 	x C 	C" x 	x C"". 

C"' 

_____ 	(F,,..., Fm)  
X 	x Cu 	'- C"' 	C' x 	x Cu,% 	• C" x 	x C"" 

C ",,' 

Proof: It is trivial from the following definition of products in Cat. 

The two propositions allow us to combine functors only if the source and target 

categories match exactly. For example, F: C - C and C: C -+ C cannot be 

composed into C o F. Therefore, we have to first convert functors of C"' x ... x 

C"" -+ C into those of C'4 x ... x C'- --+ Cu.  There are two ways to do so. 

Firstly, from definition 2.1.9, pseudo-functor F of varity v 1  . . . v,, that is F is a 

functor of C" x 	x C'Jn -+ C, into 

F": (C" x ... x C'n)" -+ Cu = C"" x ... x C""" .-+ C" 

The isomorphism is from proposition 2.1.5 and proposition 2.1.4. 

The other way of conversion is using embedding functors and coercing functors 

into greater variances (e.g. covariant functor can be a fixed variant functor). 

Definition 2.1.13: If u1  E v 1 ,. . . , u,, v,, and F is a pseudo-functor of varity 

U1 . . . u, we can coerce it to a pseudo-functor of varity v 1  . . . v,, by 

	

Fl-. def 
 F o 	x 	x 

X X 

F 
- 	 C"'x•..xC"' 

We may write F1v1...vn when u 1 .. . u,, is obvious. 0 
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Let us now define the composition of pseudo-functors. 

Definition 2.1.14: Let F be a pseudo-functor of varity u1  ... u 1,, and C 1 , .. ., G 

be pseudo-functors of varity v 11  ... Vim,. . . , V,g . . . vnm, respectively. Then we 
def have a pseudo-functor F[C1 ,... , G,] of varity w 1  . . . v',, where W 1  = U1 • Vj U 

U u, . v,,'. The definition of the pseudo-functor is 

F[G1,...,G] de 
=

f 
 

Proof of well-definedness: C, is a functor of Cvii  X 	x 	-+ C. Gi  is 

a functor of C"°i  x 	x C" 	C'. Since u, • v 1  E w 1 ,..., u, • v, E 

w m , from definition 2.1.13 GI'••"  is a functor of Cui  x CtuhhI 	CU. From 

proposition 2.1.12 (Gul 1W...Wi ,••  . , G Unj W1...Wm)  is a functor of Cwl x .. x Cw- 

Cu l x 	x Cun. Therefore, from proposition 2.1.11, 

F o (G1 1 wl ...Wm • .., 
Gun I v ...WVft): CW1  x ... x CuJhh1 _+ C 

is a pseudo-functor of varity w j . .. 	. 0 

The variances of C1 ,. . . , C, are appropriately modified according to the varity 

of F and then the least upper bound is taken so that we can pair them together. 

We need some lemmas to show the associativity of the composition. 

Lemma 2.1.15: Let u v and F be a pseudo-functor of varity w1 ... w,. 

1. For any w, u . w 1Z  v . w and , - - p 

'Var is a commutative semiring with unit: U as its addition and . as its multiplication. If we 

express varities as vectors, then varity of F[G,, . . ., C,] can be computed by the following matrix 

multiplication. 

V11 ... VJM 

(w,, . . . , Wm) = ( ui , . . . , u,) 

Vnl ... Vnm 
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The following diagram commutes. 

P 
C VSW1  x •• x C"° 	 Cu 

I 	c 

	

eX•••x 	

F'

U'vU'v 

U•W1 X ... x C''-' _ Cu 

In other words, the action of Var on functors is natural with respect to 

the partial order F. 

e, o FV = 

Fu' ... u. IVI ... Vn = 

(F 0 G)u=Fuo GtI 

6 (F ' , F 	I" 1, • 	n/ u _ 
\ iFu

'" Fni 

7. 	= 

Proof: We have to check any pairs of u and v 1 and 2 hold from the definitions. 

3 follows 2. 41)  5 and 6 are easy to show and 7 follows them. 

Proposition 2.1.16: Let F, Gig —, G, and Hl ,..., H,, be pseudo-functors of 

the following varities: 

C1 : v11  ... vim, ... 	, G: vni . . . v,,,, 

	

H1 : w11 . . . w1, 	... 	, H,: Wmi . . . W4 

Then, the following equality between functors holds: 

(F[Gi ,...,Cn])[Hi ,...,Hm] = F[Ci[Hi,...,HmJ,...,Gn[Hi,...,Hm]]. 

Proof: Let varity a1 . . . a, b11 . . . b1 ,.. . , b, 1  . . . b, and c1  . . . c1 be 

Vii ... Vim 
def 	 . 

	

(a1 ,... ,am) = (u1 ,.. .,u) 	: 	. 

Vi ... Vnm 
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bil • . . bit  Vil . • . Vim Wjj . . . Wit 

def . . 	. and 

bnl • bn, Vnl ---VnTn)  Wml . . . 

Vil • Vim W11 ... Wit 

(c i ,  l e i )     
def 
= (ui , . . . , u,,) 

. 
: 

. 	• 
• . 	: : 

V,1 . . . Vnm Wml . . . Wj 

Then, 

(F[Gi,...,Gn])[Hi,...,H,m ] 

- F o (Gui I6i...6m 	 I1•  m) o (H°' IC1...Ci 	Ham IC1...Cj\ 
- 	 ii 	'''nI 	 ii 	 nil 

C.••Cj 	\ 	\ = F  (Cr9al ... am o (HhI ............/ 

= F o (C o (e 11 . 1 , 61  x • .. 	 0 i I 

= F o (Gr' o 	o H6' c••• 	 • 
i I 

= F o (G1  o (Hvli.u1 tV,•V,•uj...W11•U,•uj IC...C1 	.....) 

= F o (Cr1 o (Hv11 1C1 ... Cl 	.....) 

whereas 

F[C1 [Hi ,. . ., H],... ,C[H 1 ,. . ., Hm]] 

= F 	((C 1  o (l1jli1bll ... bl: ,.  . •, Hmii...bit))Uii.Ci . . .) 

= F (Cr1 o (H h11 jbjj.u1 ... b11.u1 	
" 

	

c1...Cg 	
) '1'• 

= F o (cr1  o (Hiv 	I 111 C...Cj 	

), • • 

Therefore, the proposition holds. J 

Pseudo-functors nearly form an algebraic theory. The only problem is that 

the straightforward pairing of pseudo-functors does not give us functors from 

cut x...x  Cu-  toCv1x  ... xC  but from Cut x  ... xCtoCx  ... x C. 

Pseudo-functors are functions between four sorts, +, —, I and T, but these four 

sorts are related and behave like a single sort. 
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The varity of TL is +1, that of F is + and, therefore, from definition 2.1.14, 
F[IIfl has varit +.L. The varity of  is +1, that of ll fl  is 1+, that of eG is 

++ and from definition 2.1.14 the varity of G[fl , I] is 

(+,+)(+ 	
=(+•+U+.±,+.±U+.+)=(+U±,±U+)=(++) 

Finally, the varity of the whole pseudo-functor is 

(-,-i-)I
+ 
 +) 	+ U + 0 +' 	+ U + 0 _L) 	U +, — U _L) (T, 

so it is fixed-variant in X and contravariant in Y. J 

The last proposition in this section is to establish the relationship between the 

syntactic substitution of functorial expressions and the composition of pseudo-

functors defined in definition 2.1.14. 

Proposition 2.1.18: Let 

A(X 11 ...,x).E 	and 	A(Y 1 ,. ..,Ym).Ei, ..., 

be closed functorial expressions. Then, 

, X) .E)[e(A(Y 1 ,. . . , Y,n).E1),... , (A(Y i ,.. . , Ym).E n)J 

, Ym) .E[Ei /X 1 ,. . . , En/Xn j) 

where E[E1 /X1 ,. . . , ETI/X,J is E in which X1 , . . . , X, are replaced byE1.. .. , 
respectively. 

Proof: We can easily prove it by structural induction on E using proposi-
tion 2.1.16 J 

From this correspondence, for closed functorial expression K of ti variables and 
L 1 ,.. . , L n  of m variables, we write 

K[L 1 ,. . . 

for a closed functorial expression of m variables which is obtained by replacing 

ii variables in K by L 1 ,.. . , L. Then, the proposition is 	 - 

e(K[L 1 ,. . ., L]) = eK[L1,.. .,eL]. 
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2.2 Signatures of Categorical Specification 

Language 

A specification normally consists of a signature, which says what kind of sorts 

there are and what kinds of operations there are, and a set of sentences (or 

equations), which give properties of the operations. A specification defines a 

class of models which has what the signature says and satisfies the sentences. 

Therefore, in order to define a specification language, we have to define what its 

signatures are, what its sentences are and what its models are. However, it is 

often convenient to define, first, models without being constrained by sentences 

and, then, define a satisfaction relation between a statement and a model de-

termining whether the statement is true in the model or not. A model which 

satisfies all the sentences is called a theory model. See institutions [Goguen and 

Burstall 83] for a categorical abstract definition of what specification languages 

are. 

A CSL signature will be divided into three parts; in the first part, we will de-

clare some names for functors, which will serve as parameterized data types 

(or data type constructors); in the second part, we will declare some names for 

natural transformations, which will serve as polymorphic functions over the pa-

rameterized data types; and in the third part, we will declare some names for 

factorizers (or mediating morphisms), which will be necessary to put initial or 

final constrains on the data types. 

The first part can be presented as a var-indexed set r. F in 	is said to 

have varity v 1  . . . v,. We may write F(vi ,.. . ,v,) to indicate this. 

r looks almost like an equational signature for algebraic specification languages. 

It is as if Var were the set of sorts and r were a set of operations over the sorts. 

The only difference is that r is not a Varxvar-indexed set but simply a Var -

indexed set. This is because we can apply Var to functors to get other functors 
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as we explained in definition 2.1.9, so it is sufficient to give r as a Var-indexed 

set. 

Note that 1' is one sorted. Each signature describes only one category. However, 

because we are dealing with one level higher objects, it has the power to describe 

more than one data type (or sort) inside one signature. We will illustrate this 

later in this section. 

In the second part, a CSL signature introduces some symbols for natural trans-

formations. Normally, a natural transformation is defined as follows: given two 

functors F, C: C -+ D, a natural transformation a: F - C is a function which as-

signs to each A E ICI a morphism CIA:  F(A) -+ G(A) such that for any morphism 

f: A - B in C the following diagram commutes. 

F(A)_aA 
 .-C(A) 

FM I 	Cy 

_____ I G(f) 

F(B) 	.G(B) 
aB 

As we have seen in section 2.1, closed functorial expressions provide more com-

plicated functors constructed from primitive functors in r. Let A be CFE(r). 

We- index the set of natural transformations by two closed functorial expres-

sions, that is, the second part of a CSL signature is given by a AxA-indexed set 

a E LK,L will denote a natural transformation EK -4 EL, where EK and 

EL will be the denotations of K and L, respectively. We may write a: K __*+ L 

to indicate this. Since a natural transformation should go between functors of 

the same number of variables, AKL  should be empty when K and L have differ-

ent number of variables. Even if they have the same number of variables, their 

variances may be different. In that case, we take the least upper bound of two 

variances. 

The third and the final part of a CSL signature introduces symbols for factorizers 

(or mediating morphisms). In general, a factorizer is an isomorphism associated 

with an adjunction. If F - G where F: C - 0 and C: 0 - C, the factorizer 1' 
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gives the following natural isomorphism between horn sets. 

ib:Homo(F(A),B) -- Horoc(A,G(B)) 

For example, the factorizer associated with the binary product functor 'prod' 

(:C x C - C) is 'pair' which gives for any two morphisms 1: C - A and 

g: C -i.  B a morphism pair(f,g): C -+ prod(A, B). We can write this situation 

as the following rule. 

C--A C —  -B 

prod(A, B) 

In CSL, factorizers are given by a (AxA)x(AxA)-indexed set W (A = CFE(r)). 

The index (AxA) specifies the type of morphisms to which a factorizer can be 

applied and the index AxA specifies the type of morphisins obtained by applying 

the factorizer. For 

1' E '(Ki,Li) ... (K,,L, 71 ),(K,L), 

we may write it as the following rule. 

f l: K1 - 	 . . . fm .KT,, %  -+ L. 
b(fi,...,fm):KL 

where fl ,.. ., f, are auxiliary names of morphisms introduced for this rule. As 

we have restricted the indexed set A , It  should be indexed by functors of the 

same number of variables, and also we take the least upper bound of the variances 

and regard it as the overall variance. 

Hence, we come to the definition of CSL signatures. 

Definition 2.2.1: A CSL signature is a triple (I', , i'), where r is a Var-

indexed set, A is a AxA-indexed set (where A = CFE()) for natural transfor-

mations and 'I' is a (AxA)-x(AxA)-indexed set for factorizers. As a restriction to the 

triple, EIK,L  should be empty if K and L has the different number of variables 

and W((K L ,L i ) ... (Km ,L m ),(K,L)) should also be empty if K1 , L, K and L do not have 

the same number of variables. j 

As an example, we will give a CSL signature for cartesian closed categories. 
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Example 2.2.2: A cartesian closed category can be characterized as a category 

having three special functors: terminal object '1' (which is a constant functor), 

binary product 'prod' and exponential 'exp'. Therefore, 

F0 = { i}, 	r, = {prod}, 	r, = {exp}, 

where '()' denotes the empty string in Vart. The rest of F 8  is empty. We 

sometimes write the index set r as 

{1, prod(+,+), exp(—,+)}. 

The product functor 'prod' is associated with two natural transformations which 

give projection morphisms. 

7r1 : A(X, Y) .prod(X, Y) - A(X, Y) .X 

7r2: A(X, Y).prod(X, Y) -+ A(X,Y).Y 

If there is no ambiguity, we may write them by listing their components as 

follows: 

lrlA,B: prod(A, B) -p A 

7r2A,B:prod(A,B) -+ B 

We might even omit subscripts from Ir1AB and 7r2A,B.  The exponential func-

tor 'exp' is associated with one natural transformation which gives evaluation 

morphisms. 

ev: )(X, Y).prod(exp(X, Y), X) -+ A(X, Y).Y 

Note that the variance of these two functors is T+. Therefore, A is 

	

\(X,Y).prod(X,Y),)(X,Y).X 	= { iri} 

L(X,Y).prod(X,Y),A(X,Y).Y 	= {ir2} 

)(XY).prod(exp(X,Y),X),A(X,Y).Y = {ev} 

For any other combinations of closed functorial expression K and L, ItK,1  is 

empty. 
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Functors (I') 1 prod(+, +) exp(—, +) 

Natural Transformations (A) iri : prod (A,B) - A 

ir2: prod (A,B) - B 

ev: prod(exp(A, B), A) -p B 

Factorizers ('1') 

f:C —A g:C —B 
pair(f, g): C - prod(A, B) 

h:prod(C,A)—B 
curry(h):C - exp(A,B) 

Figure 2-1: CSL Signature for Cartesian Closed Categories 

Finally, there are three factorizers for the three functors: '!' for '1', 'pair' for 

'prod' and 'curry' for 'exp'. 

!:A(X).X—* A(X).1 

f:A(X,Y,Z).Z - A(X,Y,Z).X 	g:A(X,Y,Z).Z -+ A(X,Y,Z).Y 
pair(f, g): A(X, Y, Z).Z -+ A(X, Y, Z).prod(X, Y) 

h: A(X, Y, Z).prod(Z, X) - )t(X,Y, Z).Y 
curry(h): )t(X,Y, Z).Z -+ )t(X, Y, Z).exp(X,Y) 

If there is no ambiguity, we might write these rules down as in figure 2-1, where 

we summarize the definition of the CSL signature for cartesian closed categories. 

We will omit the tedious formal definition of 'I' as an indexed set. II 

As we mentioned earlier, a CSL signature is one sorted, but because it handles 

higher objects, it is no less powerful than a many sorted equational signature. 

Let us demonstrate this. An equational signature is given by a pair (5, E) where 

S is a set (of sort names) and E is an sxs-indexed set (of operator names). We 

will translate it to a corresponding CSL signature (1', z, 'I'). Since functors play 

a role of sorts, we declare a constant functor for each sort in S. 

r0  = S1 
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and we have a binary product functor to deal with sequences of sorts. 3  

= {prod} 

Operations will be translated to natural transformations: for each operation 

o E E 81 ...3 , 3 , we have a natural transformation of the same name. 

o: prod (s i , prod( ... ,prod(s_ 1 ,$))) - s 

that is, 

O.prod(ai.prod( .... prod(s_i,a))),)'().s = E81 ...8,8 

We also have two projections for 'prod' in A and IF has only one factorizer 'pair' 

for pairing. It is easy to see that the CSL signature (I', A, W) corresponds to the 

equational signature (S, E). 

Proposition 2.2.3: A many-sorted equational signature can be represented by 

a CSL signature. 

It is interesting to know that we represented a many-sorted equational signature 

by a category with products because an algebraic theory can exactly be given as 

a category with products [Lawvere 63]. 

Let us make CSL signatures form a category by extending a pre-.CSL signature 

morphism in a natural way. Intuitively, a signature morphism (not only in 

CSL but in general) does some renamings of symbols and/or some mergings of 

symbols. 

Definition 2.2.4: A CSL signature morphism or from a CSL signature (I', A, W) 

to a CSL signature (I", A', 'I") is a triple (or', a", a") consisting of 

a vai-indexed function 	 - r 1  for mapping functor names, 

a AxA-indexed function (where A = CFE()) aL: AK,L - A ',?K,,sL for 

mapping natural transformation names, and 

'We could have n—ary product functors for all natural numbers as well, but since we can represent 

them using a binary one, we only declare the binary one. 
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3. a (AxA) * x (AxA)-indexed function 

for mapping factorizer names. 

We often write aF for o,10 (F), ca for aL(c)  and a1, for &((K, ,L,) (KL))(tb). Ii 

Definition 2.2.5: The category of CSL signatures CSig has CSL signatures 

as its objects and CSL signature morphisms as its morphisms. The identity 

morphism on a CSL signature (I', A, W) consists of the corresponding identity 

functions for the components and the composition of CSL morphisms is given by 

combining the component-wise compositions as indexed functions. This clearly 

forms a category. [] 
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2.3 Models of Categorical Specification 

Language 

In this section, we will define CSL models. A CSL signature specifies symbols for 

functors, natural transformations and factorizers, so intuitively, a CSL model is a 

category associated with these functors, natural transformations and factorizers. 

Definition 2.3.1: Given a CSL signature (F, i, W), a CSL model (C, ) is a 

small category C together with an assignment 

assigns each functor name of varity v 1  ... v, to a functor Cvi  x 	Ct?n 

C.4  As we have seen in section 2.1, e can be extended to the assignment 

of closed functorial expressions to functors. 

e assigns each natural transformation name a E 1K,L,  where K and L are 

closed functorial expressions of n variables, to a set of C morphisms 

eK(A1,. . . , A,) -+ eL(A 1 ,. . . , A1) 

for arbitrary C objects A 	A 5 1, .. ., ''n. 

Each factorizer symbol 	E W((K1,L1) .... (K,L)), where K1 , L 1 ,..., Km , L m , 

K, L are closed functorial expressions of n variables, is assigned to a set of 

'We could say e is a Vaf-mdexed function 

Punct(Ct'i x 	x 

'We could express it as a AxA-indexed function (where A = CPE()) 

ex,L: AK,L - Nat(KITT , eLIT ... T). 
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Set functions 

[f Homc(eKj(Ai,.. . , A n), eL(A1,.. . , A n)) 

i=1 

-p Homc(K(Ai,. . . , A,), eL(A1,. . . , A 1 )) 

for arbitrary C objects A,,..., A ,, . 

Note that we do not assign a natural transformation symbol to a natural trans-

formation, but it is mapped to a set of morphisms and whether they form. a 

natural transformation or not is left to be stated by equations. 

Example 2.3.2: Let (r,,W) be the CSL signature for cartesian closed cate-

gories defined in example 2.2.2. Then, any cartesian closed category is a CSL 

model of this signature by obvious assignment of the symbols to the functors, 

natural transformations and factorizers. However, the converse is not true. We 

can have a category which has three functors, three natural-transformation-

look-alikes and three factorizer-look-alikes. CSL models do not require mapping 

natural transformation symbols to natural transformations but only to a set of 

morphisms, nor do they require mapping factorizer symbols to factorizers. The 

factorizer-look-alikes may not give unique morphisms or may not commute some 

diagrams. 0 

CSL model morphisms are defined simply as a kind of homomorphisms. They 

keep the structure nicely. 

Definition 2.3.3: Given a CSL signature (r,z,W), a CSL model morphism 

from a CSL model (C, ) to another (0, ) is a covariant functor T: C -+ 0 such 

that 

1. for any F in 

To EF = çFo(T°' x 	x T) 
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holds, 

C01x ... xCvn 	
CF 	

C 

rlx ... xTunJ 	 0 

Dvlx ... xDvn 
ff 

for any a E 1 K,L and for any C objects A 1 ,... ,A 

T(e 0iA1. IA) = 

and 

for any ip E W(K1,L1)...(K,Th,L,,,),(K,L),  for any C objects A 1 ,.. . , A and for any 

C morphisrns f: K,(A 1 ,. . . , A,) -+ eL1(A1, . . . , A,) (i = 1,. .. , m), 

.,fm)) = cbT(A1),...,T(A)(T(f1),. .. ,T(fry)). II 

Hence, the category of CSL models is: 

Definition 2.3.4: For a CSL signature (I', I, 'I'), the category of CSL models, 

CMod((r, is., W)), has CSL models as objects and CSL model morphisms as 

morphisms; the identity morphism on (C, ) is the identity functor IC  and the 

composition of morphisms is the composition of their underlying functors. J 

2.4 Functorial Calculus (revisit) 

In section 2.1 we saw functorial expressions denote functors. In this section 

we will see an expression involving natural transformation symbols and factor- 

izer symbols denote a set of morphisms. 6  For example, under the signature of 

6 Some may want it to denote a natural transformation, but the treatment of factorizers seems 

very complicated to do so. 
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cartesian closed categories given in example 2.2.2, what should the following 

expression denote? 

o prod (curry (ir2 ), I) 

We even have a problem for expressions like 7r1  o 72  because 7r1  and 72  are 

not projections of the same product: 7r2  is of prod(A, prod(B, C)) and 1r1  is 

of prod(B, C). Actually, natural transformations are polymorphic like ML func-

tions are. 7  As we defined in definition 2.3.1, ir1  denote a set of morphisms. 

7r1A,B: prod(A, B) - A 

We have to figure out for each occurrence of 7r1  what A and B are. 

Definition 2.4.1: For a CSL signature (r, A , 'I'), we have a set Exp(r, A , W) 

of CSL expressions defined by the following BNF. 

e :: = I I e1  o e2  I a I ik(ei,...,em) J F(e i ,. . . , e,.) I I 

where a E z, ip E W and f is a variable for morphisms. We also have a set 

AExp(r, A , ill) of CSL annotated expressions defined by the following BNF. 

e ::= I[K] I e 1 oe2  I a[Ki,...,K] I t/, [Ki , ... , KnJ(ei,...,em) I 
F(ei,...,e) I I 

where K1 ,. . . , K, are closed functorial expressions over 1'. 

It is trivial to see that for each annotated expression there is a corresponding 

expression (i.e. forgetting all the annotations, [...]), which we call skeleton of 

'Conversely, ML polymorphic functions are natural transformations. This fact is rarely noticed, 

but it sometimes helps to understand the behaviour of polymorphic functions. For example, any 

ML function I of type alist -. mt should never depend on elements in the list but only to the 

length of list. As another example, if I is of type cIist - alist and if we apply it to an integer 

list 11,4,  3, 51 and get [5, 1, 3], we know the result of applying f to [2, 8, 6, 101 (each element is 

doubled) without actually applying it. The result should be [10,2,6], i.e. each element of the 

result is doubled as well. 
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the annotated expression. We are going to type check an expression first and, 

then, we determine its denotation. Annotated expressions are used to remember 

the type check information inside expressions. We will give the typing rules 

for annotated expressions and show that every expression has the most general 

annotated expression and we take the type of this annotated expression as the 

type of the expression. 

First, we define the notion of unification. 

Definition 2.4.2: A closed functorial expression K of n variables is said to be 

more general than a closed functorial expression K' of m variables if there are 

closed functorial expressions KI , . . . , K,, of m variables such that 

K[K1 ,....,K,,]K' 

where is the equivalence relation ignoring variable renaming. (Trivially, K 

K' implies eK = eK'.) U 

Definition 2.4.3: Closed functorial expressions K and L are said to be unifiable 

when there is a closed functorial expression K' such that K' is less  general than 

K as well as L. 0 

Proposition 2.4.4: If closed functorial expressions K and K' are unifiable, then 

there is a most general unification, that is, there exist K1 , . . . , K,, and L 1 ,. . . , 

such that K[K1 ,.. . , K,,] L[L 1 , .. . , L,,] and for any K' which is less general 

than K and K' there are K,. ..,K  such that K' K[K1 ,.. .,K,I][K,. . 

Proof: Same as ordinary unification of terms. J 

Let us now define the type of annotated expressions. 

Definition 2.4.5: Let (1', L, W) be a CSL signature. An annotated expression 

e has a type p F- e: K - L when it can be derived from the following rules, where 

P is a given assignment of each morphism variable to its type and K and L are 

closed functorial expressions. 

1. For the identity, p F I[KJ:K - K. 
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For the composition, 

pF el : K'—'L 	pFe2 :K—'K' 
pFe1 oe2 :K-*L 

For a natural transformation a E £K,L, where K and L are of n variables, 

For a factorizer t,& E l((K l ,L l )...(K, ,L,,1 ) , (K,L)), where K, L i , K,L are of n 

variables, 

	

pFe'• 1 ' 	]_4 L s.tLKs 	'. K sIK 1' 	, 
K 	i, . • , K 1  

p F 0[K' 	K' 1 (e 1 , . . . ) em):K[K' 	K' 1  -+ L[K' 	K' 1'•••' 	nJ 1,", nJ 	 1'S"' r 

For a functor F E 

p F e1: K--+L 
p  F(ei ,...,e):F[Ki ,...,K] -+ F[L1 ,...,L] 

where e,: K1 _!!L is e: K, -+ L• if v, is + or J.., e,: L, -+ K, if v i  is - and 

I: K, -* K, if v, is T. 

For a morphism variable f, p  F 1: p(f). 

Definition 2.4.6: We say an annotated expression e is more general than e' if 

there exist closed functorial expressions K1 , .. . , K, such that e' e[Ki ,.. . , K,], 

where e[Ki ,.. . , K,J is e with all its annotations being composed with K1 , . .. , 

e.g. a[L1 ,. . ., L mj[Ki ,.. .,K] is a[L1 [K1 ,. . . , K n],. .. ,Lm [Ki ,.. .,K]]. J 

Proposition 2.4.7: If an annotated expression e has a type p I- e: K -* 

e[Ki ,.. . , K,] has the following type. 

p[Ki ,... ,K] F e[Ki ,... ,K n]:K[Ki ,. ..,K] -+ L[K1 ,. . . , K,.] 

where p[Ki ,. . . , K](f) is K'[K 1 , . . . , K] -+ L'[K1 ,.. . , K] when p(f)  is K' --+ 

L'. 

Proof It can easily proved from definition 2.4.5 by structural induction on e. 0 
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Proposition 2.4.8: Let e E Exp(r, A, Q) be an expression of a CSL signature 

(r, A, W). If there exists an annotated expression e' whose skeleton is e and if it 

has a type, then there exists a most general annotated expression which has a 

type and whose skeleton is e. 

Proof: It can be proved by structural induction on e. 

If e is I, the most general annotated expression is I[I], where I is the 

identity closed functorial expression A(X) .X. 

If e is e 1 oe2 , from induction hypothesis, we have the most general annotated 

expressions for e1  and e2 . 

p 1 I-e:K--sK' 	p2 I-e:L--'L' 

We unify K with L' achieving K[K1 ,. . . , K,] L'[L 1 ,. . . , L,,]. The most 

general annotated expression for e and its type is 

pHe[Ki,...,Kn]o4[Li,...,Lm]:L[Li,...,Lm J _+K'[K1 ,...,K] 

where p is the result of combining p i [Ki, .. . , K,] and p2[L 1 ,. . . , Lm]. 

If e is a natural. transformation a E AK,L,  the most general annotated 

expression and its type is 

P F- [][In,.. . , 1T1: K - 

where 11' is the closed functorial expression A(X 1 ,.. . , X,J.X,. 

If e is &(ei ,. . . ,em ) for a factorizer çt' E W((K l ,L L ) .... ( K,L)), from induction 

hypothesis, we have annotated expressions e such that 

p, I- e:K - L. 

We unify K with Ki  and L with L,. If the unification is successful, we 

have the most general annotated expression for e. 

pH t&[Ji,...,J](e[J1.........,e[Jm ,...]): 

K[J1 ,...,J] -+ L[J1 ,.. .,J,2j 

where J1 , . . . , J, J11 	are the substitution for K, and Li obtained from 

the unification and p is the result of combining p1[J,,. . 
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If e is F(ei, . .. , en), let the most general annotated expressions for ei be 

S p. I- e•: K1 —Vj

+Li. 

Then, the most general annotated expression for e and its type is 

p1.- 	 —p F[L1 ,...,L]. 

If e is a morphism variable f, its most general annotated expression is itself 

and has the following type. 

p1- f:A(X,Y).X— )t(X,Y).Y 	Ij 

From this proposition, 

Definition 2.4.9: We define the type of an expression e E Exp(r, i, W) to be 

the type of the most general annotated expression e' whose skeleton is e. 

Let us finally define the denotation of expressions in Exp(r, A, ,Q) when a CSL 

model (C, ) is given. Since each expression e is associated uniquely to the most 

general annotated expression e' by proposition 2.4.8, we can define the denotation 

of e to be that of e' and define the denotation of annotated expressions. 

Definition 2.4.10: Let (F, A, W) be a CSL signature and (C, ) be a CSL 

model. For an annotated expression e E AExp(r, i, 'I') of type p I- e: K —+ L 

(where K and L are of 1 variables), we define its denotation, ec, to be a set of 

morphisms 

(ee)A1,.,A,:eK(Al,..,At) —4 

for any C objects A 1 ,.. . , A- and for any morphism variable assignment w (where 

w(f, A 1 , . . . , A1) gives a morphism of type eK'(A 1 ,.. - , A1) - eV(A1, . . . , A 1 ) 

when p(f)  is K' - L'). 

For the identity, 
def 

(EI[K])A1 ..... A, = IeKEA1..,A,] 

For compositions, 

(eel 0 e2)A 1  .... ,A 1 	(eel)A, A, 
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For natural transformations, 

def 
(ea[Ki,. 	, 1< r&l) i ,...,.4 4e- 

For factorizers, 

	

(ei,b[Ki,. ..,KJ(ei ,. .. , Cm))Aj,... 	
def 

For functors, 

(eF(ei, . . . , efl))A,...,A('teteF . . . , 

For morphism variables, 

def 
(f )At ,...,A,. = w(f,A 1 , ... , A 1 ) 

Proof of well-definedness: We have to show, for example, for a natural trans-

formation CC E IK,L,  (a[Ki ,.. ., 	 is a morphism from 

. . , A 1 ) 	to 	L[K1 ,.. . , K,,](A,. . . , A 1 ). 

This holds because from definition 2.3.1 CKi(Ai,...,AI),...,EK(Ai .... A1) is a morphism 

from eK(eK 1 (A 1 ,.. . , A 1),...)) to eL(K 1 (A 1 ,. . . , A 1),...) and from proposi-

tion 2.1.18 it is from eK[K1 , . . . , K](A l ,. .., A 1 ) to eL[K1 ,.. . ,K](A 1 ,... , A1). II 

Example 2.4.11: Let (, A, ) be a CSL signature for cartesian closed cate-

gories presented in example 2.2.2 and (C, ) be a CSL model of this signature 

where C is a cartesian closed category, and C is the standard assignment (i.e. 

the product symbol to the product functor and so on). Let us find out the de-

notation of ev o pair(f, 7r2 ). First, we have to find out the corresponding most 

general annotated expression and its type by the algorithm used to prove propo-

sition 2.4.8. 

1. evopair(f, 7r2 ) is given by composing ev and pair(f, 7r2 ), so we need to calcu-

late the most general annotated expressions for these two sub-expressions 

first. 
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ev is a natural transformation, and its most general annotated ex-

pression is 

Pi I- ev[11,ll]:prod[exp,11] -+ 112 * 

pair(f, ir2 ) is given by applying the factorizer pair to f and 7r2 . 

'f' is a morphism variable, its most general annotated expression 

is 

P2 1- f:11 -+ ll. 

ir2  is a natural transformation, and its most general annotated 

expression is 

F- ir2 [][J 1 ,111 ] prod -+ 

pair has the type 

((rl, II) (ll, ll), (11, prod[fl, ll])) 

By unification, we get the most general annotated expression for 

pair (f, 72). 

P4 I- pair[rI, ll, prod[11, IT  3 ] (1 ir2 [ll, ll]): 

prod[11, fl] -~ prod[11, fl] 

where p4 maps f to prod[ll, II] -+ fl. 

Unifying prod[ll, 11] and prod[exp, ][121,  we get the most general annotated 

expression for ev o pair(f, 7r 2 ). 

	

P5 1- ev[113  II o pair[exp[113 	31 	3  prod[ll, ll]](f, ir 2 [11, l}) 2' 31 

	

2' 	31' 	2' 

prod[ll, rr -p ll 

where ps maps f to prod[ll,llJ - exp[ll,ll]. 

From definition 2.4.10, the denotation of this annotated expression is a set of 

morphisrns for objects A, B and C and a morphism variable assignment 

Q(f, A, B, C): e prod (A, B) -p exp(B, C). 
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(eev[fl,ll])A,B,c = eevB,c 

(f)A,B,c = w(f,A,B,C) 

(e72[r1,111 ])A,B.c = &r2A,B 

(pair[ ... ](f,7r2 [ ... J))ABc = 

epa1rEWCP(BC),B.EP1.Od(A,B) (w (1, A, B, C), eII2AB) 

(ev[ ...  ]o  pair[ ... ](f ,7r2[ ... ]))ABc= 

eevB,c ° epairEcp(B,c),B,eprod(AB) (w (1 A, B, C), e72AB) 

Therefore, the denotation of ev o pair(f, 7r 2) is 

eevB,c 0 pairep(B,c),B,eprod(A,B)(w(f, A, B, C), 72AB) 	11 

2.5 Sentences and Satisfaction Relation of Cat-

egorical Specification Language 

In this section, we will finish defining the specification language CSL at last. 

First, we define what a CSL sentence is. 

Definition 2.5.1: A CSL conditional equation is a sequence of CSL expression 

pairs and a CSL expression pair. We usually write it as 

or simply e = e' if the preceding sequence is empty. To be typed, it needs to 

share the same morphism variable environment, ej and e have to have the same 

type and e and e' have to have the same type. We may write the types as follows: 

pF- e1 = e'1 :K1  -~ L 1  A... A e = e',:K -+ 	= e = e':K -+ L 

We write CEq(r, i., 'I') for the set of all the CSL conditional equations which 

can be typed. 0 
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The CSL conditional equations are the CSL sentences. We now have to define 

the satisfaction relation for CSL. We have separately defined what CSL models 

are and what CSL conditional equations are. The satisfaction relation connects 

these two together so that we can say a CSL conditional equation holds or not 

in a particular CSL model. 

Definition 2.5.2: Let (, i, 'I') be a CSL signature. A CSL model (C, ) sat-

isfies a CSL conditional equation 

having a type 

p I- e1 = e'1 :K1  -+ L 1  A ...Ae = e':K -+ L, = e = e':K - L, 

if and only if for any objects A 1 , . . . , A 1  and any morphism variable assignment 

we have either 

a CSL equation e, = e such that (ejA1 A 	(ee)A1 ..... A1, or 

(e)A1,...,A, = 

We will write 

(C,e)ei=e'1 A...Ae=e.e=e' 

when (C, ) satisfies this CSL conditional equation. 

We have defined the specification language, CSL: CSL signatures, CSL models, 

CSL conditional equations and CSL satisfaction relation. We could have defined 

it as an institution (see [Goguen and Burstall 83]) by defining CMod as a 

contravariant functor and showing CSL satisfaction condition. 

Finally, let us finish presenting the CSL theory (i.e. a pair of CSL signature and 

CSL conditional equations) of cartesian closed categories. 

Example 2.5.3: We have presented the signature for cartesian closed categories 

in example 2.2.2 (or figure 2-1), so all we have to do is to list the CSL conditional 

equations. (Note that they are not conditional for this example.) 

1.! =! 
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2.1 = I 

3.pair(7r1 ,72) = I 

4.7r1  o pair(f, g) = f 

5.7r2 opair(f,g) =g 

6.pair(f, g) o h = pair(f o h, g o h) 

7.prod(f, g) = pair(f o 	o 7r2 ) 

8.curry(ev) = I 

9.ev o curry (prod (f,I)) = f 

10.curry(f) o g = curry(f o prod(g,I)) 

11.exp(f,g) = curry(g o eval o prod (f,I)) 

The naturality of 7r 1 , 7r2  and ev can be derived from these equations. For example, 

the naturality of 7r 1  is shown by 

o prod(f, g) = 7r1  o pair(f o 7r1 , go 7r2) = f o ira. 	LI 

2.6 Free Categories 

One of the major advantages of algebraic specification methods using equations 

or conditional equations over other specification methods is that any theory has 

an initial model (i.e. the initial object in the category of models which satisfy the 

theory). This also holds for CSL, and in this section, we will construct an initial 

model for a CSL theory. Remember that a CSL model is a pair of a category 

and an interpretation. The category of an initial CSL model corresponds to a 

so-called free category. 

Given a CSL signature (I', A, W) and a set 0 of CSL conditional equations, we 

are going to define a special category C and an interpretation E. For simplicity, 

we assume that r does not contain any free-variant functors. (We can always 

get such a signature by discarding free-variant arguments. This does not affect 

its semantics at all.) 
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Definition 2.6.1: We say that a closed functorial expression is ground if it has 

no variables, that is, its basic form is AQ.E. We take ground closed functorial 

expressions as the objects of C. 

The definition of morphisms of C is a little bit more complicated, so we define 

them step. by step. 

Definition 2.6.2: A ground annotated expression is an annotated expression 

such that 

all the annotation, [K,,. .., K,] consists of ground closed functorial expres-

sions, and 

it does not contain any morphism variables. I] 

Proposition 2.6.3: If a ground annotated expression e has a type p F e: K - 

L, p is empty and both K and L are ground functorial expressions. 

Proof We can easily prove it from definition 2.4.5 by structural induction. 

The following will give us the basis of the morphisrns in C. 

Definition 2.6.4: For ground closed functorial expressions K and L, we define 

GExp(K, L) def
=  { eJ e is ground and 0 F e: K -+ L } [ 

To make GExp proper morphisms, we introduce a family of equivalence relations 

indexed by a pair of ground functorial expressions. Each —=KL  is an equivalence 

relation on GExp (K, L). 

Definition 2.6.5: We define to be the smallest relation satisfying the follow-

ing conditions. (In the following, to simplify the presentation, we omit indexes 

of if there is no ambiguity.) 

is an equivalence relation, that is, reflexive, symmetric and transitive. 

If e 1 —K,L  e'1  and e2  —K',K 4, then e 1  o e2  K',L 4 o4. 

If e E GExp(K,L), then I[L]o e e and e  I[K] e. 
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For a functor symbol F E 	if e1 	4, ...and  e 	e, then 

F(ei ,...,e) 

For a factorizer symbol i/i E W((K,L) ... (K;,L),(K?,LS)) and ground functorial 

expressions K1 ,. . . , K,, if e1 4, . . . and e1  e, then 

0[Ki,...,K1(4,. ..,e). 

Finally, for a conditional CSL equation e 1  = e'1  A... Ae n  = en  e = e' E e 
whose type is 

pI-  e1  = 4:K -+ 1.4 A . . . A en  = e',:K -+ L' = e = e': K' -+ 

with p(f1)  is K," -* L7, ground functorial expressions K1 ,. . . , K, and 

ground annotated expressions 

e7 E GEXP(K,"[Ki,...,K m],L'[Ki,...,Km ]), 

if for all j = 1,...,n 

(e1[Ki,. . .,Km])[e,. . . ,e'/fi,.. . , fi] 

(,[.Ki,...,1Cm])[4',... ,e11'/fi,...,f1], 

then 

(e[Ki,...,Km])[c,. ..,e'/fi,...,f1] 

We can now define the morphisms of C. 

Definition 2.6.1 (continued): The C morphisms from K to L are the equiva-

lence classes of GExp(K, L) by =K,L,  or simply, 

Homc(K,L) GExp(K,L)/K,L. 

We write (e) for the equivalence class to which e belongs. 0 
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Proposition 2.6.6: C is a category. 

Proof: The identity morphism of a C object K is given by (I[K]). The compo-

sition of (e): K -+ L and (e'): K' -+ K is defined by 

(e) o (e') def 
 = (e o e'). 

The composition is trivially associative, and the satisfiability of the absorption 

rules of the identities is guaranteed by the second condition of the equivalence 

relation defined in definition 2.6.5. 0 

Let us define an interpretation e so that (C, ) is a CSL model of the CSL 

signature (r, A , 'I'). 

Definition 2.6.7: The definition of e is divided into three. 

For a functor symbol F E r 01 ...0 , F is a functor C"••" -+ C defined by 

and 

,(e)) 

For a natural transformation symbol a E EIK,L, a is 

def = (a[K1,. . .,K,). 

Finally, for a factorizer symbol b E W((KiLi)...(K,L),(K,L)), et/) is 

' 	(t'[K, .... K in] (e j ,...,e)). Jj 

Proposition 2.6.8: (C, ) is a CSL model of (I', á, W). Moreover, it is a theory 

model of the CSL theory given by the set e of CSL conditional equations. 

Proof: The condition 6 in definition 2.6.5 makes it satisfy the conditional equa-

tions. 

We have constructed a special CSL model (C, ), and we will next show that it 

is the initial object in the full-subcategory of CMod((T, A, ,Q)) of all the models 

satisfying 0. 
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Theorem 2.6.9: For any CSL model satisfying e, there is a unique CSL model 

morphism from (C, ). 

Proof: Let (0, ç)  be an arbitrary CSL model satisfying e. Using the denotation 

of annotated expressions on this model (see definition 2.4.10), we define a functor 

T from C to D as follows: 

T(K) 	 del çK and T((e)) = çe. 

Note that, since K is a ground functorial expression K is an D object, and that, 

since e is a ground annotated expression, çe is a 0 morphism (it does not need 

objects A,, ... , A or a morphism variable assignment 4 It is easy to see that 

T is a (covariant) functor (note that we have to show the well-definedness first). 

It is also not so difficult to show that T is a CSL model morphism and that it 

is the unique one from (C, ) to (C, ) (simply extending the result on algebraic 

specifications). II 

The advantage of working in an initial CSL model is that, if we show that a 

conditional equation holds in the initial one, then we automatically know that it 

holds in any CSL model. In chapter 4, we will define the symbolic computation 

in categories and it can be regarded as the computation in free categories. 



Chapter 3 

Categorical Data Types 

In chapter 2, we introduced categorical data types from a point of view of a 

specification language defining categories. Although the specification language 

CSL is a rigorous language, it is rather tedious and categoritians may never 

define categories in that way. In this chapter, we will give another presentation 

of categorical data types, which will be simpler and more intuitive. This is also 

the way Categorical Data Types originated. Note that we are not discarding 

CSL completely and that the semantics of categorical data types will be given 

in terms of CSL. 

Section 3.1 is an extended introduction to categorical data types. We will in-

vestigate some conventional data types and introduce a new uniform categorical 

way of defining data types. In section 3.2, we will make this new way into the 

CDT declaration mechanism. Section 3.3 will give various examples of CDT dec-

larations. In section 3.4, CDT declarations will be connected to CSL theories, 

and finally in section 3.5 we will give a construction of CDT data types. 
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3.1 What are Categorical Data Types? 

The need for pairs of two (or more) items of data often arises when we write 

programs. It is often the case that a function or procedure takes more than one 

argument and this means that a pair (or a record) of data needs to be passed to 

the function or procedure. In another situation, we may want to declare a new 

data type whose element is a pair of elements of other data types. In PASCAL, 

we can define such data types using its record... end construct. For example, 

intchar whose element is a pair of an integer and a character can be declared 

as: 

type intchar = record 
first: integer; 
second: char 

end; 

In ML, this can be done by 

type intchar = mt * string; 

(where since ML does not have a type for representing characters, we have to use 

'string' type whose element is a sequence of characters). These two languages 

have the means of constructing data types of pairs from already-existing data 

types. Let us call the constructors product type constructors. Most of the current 

programming languages have product type constructors in one way or another 

as their built-in primitives because they are so essential that we can even say 

that no programming language is complete without them. 

In order to understand the nature of product type constructors, let us suppose 

a programming language which does not have them as primitives and that we 

have to define them in terms of others. This might mean that we need in the 

language some kind of one level higher operations which can define not types but 
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type constructors. Let us refer to an algebraic specification language CLEAR,' 

and see its ability to define a product type constructor. 

constant Triv = 
theory 

sort element 
endth 

procedure Prod(A:Triv,B:Triv) = 
theory 

data sort prod 
opns pair: element of A,element of B -> prod 

pu : prod -> element of A 
pi2 : prod -> element of B 

eqns all a:element of A,b:element of B. 
pil(pair(ab)) = a 

all a:element of A,b:element of B, 
p12(pair(a,b)) = b 

endth 

This defines an algebra P of three sorts: two 'element' sorts (let us call them 

'A-element' and 'B-element' to distinguish them) and a 'prod' sort. The un-

derlying set IPIpd is the (set) product of two sets IPIA....elemeflt  and II5...e1ement. 

The declaration also defines three operations (or functions), 'pair', 'pi 1' and 

'pi2', satisfying the two equations listed. Note that the following equation can 

be proved using induction on 'prod' sort (we have the induction principle on this 

sort because of the initial data constraint). 

all x: prod. pair(pi1(x),pi2(x)) = x 

An algebraic specification language like CLEAR is powerful enough to allow us 

to define all kinds of type constructors (including ordinary data types as constant 

type constructors) in a uniform way without having any particular primitives. 

However, because of its use of equations, we cannot adopt its declaration mech- 

'CLEAR can be institution independent, but here we refer the one that uses the equational 

algebraic institution. 
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anism in ordinary programming languages. 2  We might be puzzled that we need 

equations even to define such very basic data types as products. 

Let us find whether there is any other ways of defining product type constructors 

by examining the foundation, namely mathematics. Modern mathematics uses 

set theory extensively because of its power. Set theory does not have a product 

type constructor as its primitive construct either, so it is defined by means of 

other constructs. For sets A and B, their (set) product is defined as: 

A x B def . = uz , y)IXEA, YEB} 

where (x, y) is really an abbreviation of {{x} {z y}}. Although this looks very 

simple, it actually needs some work to show from the axioms of set theory that 

this is actually a set. Set theory uses the power of first order logic so heavily that 

it is much harder to put the set theory formalism into a programming language 

than to put the algebraic specification formalism. As an example, let (z) be a 

first order formula. Then, from the comprehension axiom (or the replacement 

axiom), we have the set 

{ x E A I O (x) 
} 

where A is 'a set. (x) can be anything expressible by first order logic (using 

quantifiers and negations), and this is too much powerful to investigate the basic 

property of data types. It disfigures the beauty behind this powerful definition 

mechanism and we cannot see through it easily. 

Set theory has achieved a firm position as the foundation of mathematics, but 

there are some alternatives. Category theory is one of them. It has been proved 

that category theory has a remarkable ability to disclose true nature of mathe-

matical objects. For example, a product constructor (or categorically a functor 

C x C -+ C) is beautifully characterized as the right adjoint of the diagonal 

'There is a programming language OBJ Goguen and Tardo 79] which treats equations as a kind 

of program (as rewrite rules). 
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functor C x C - C.3  Expanding the definition of adjunctions, this means that 

we have the following natural isomorphism: 

Homc(C,A) x Homc(C,B) Homc  (C, prod(A, B)) 	(*) 

(natural in A, B and C). We use 'prod' for the product functor to follow the 

notation we use later. The isomorphic function from the left-hand side to the 

right-hand side is the factorizer of this adjunction and we write 'pair' for it. We 

can rewrite this adjoint situation as the following rule: 

C! ~ A C  

prod(A,B) 	
(**) 

Given two morphisms F: C - A and C: C -+ B, pair(f, g) give a morphism of 
C -+ prod(A, B). This correspondence is one-to-one and is natural in A, B and 
C. 

Comparing with the product type constructor 'Prod' defined by CLEAR, we have 

the same 'pair' though the previous one takes two elements as the arguments 

and this one takes two morphisms instead, and now we can find the things corre-

sponding to two projections 'pi' and 'p12' as well. Replacing C by prod(A, B) 
in (*), we get: 

Homc  (prod(A, B), A) x Homc(prod(A, B), B) 

Homc(prod(A, B), prod (A, B)). 

We have a very special morphism in Homc(prod(A, B), prod (A, B)), namely 

the identity. Because of the isomorphism, there exist unique morphisms of 

prod (A, B) -+ A and prod(A, B) —p B which are mapped to the identity by 

'pair', and these are the projections. We name them 'pi' and 'pi2' as well. 

Because of the very way they are defined, it is trivial that 

pair(pil,pi2) =1. 	 (+) 

'There may be more than one right adjoint of the diagonal functor, but they are isomorphic. 

Therefore, we say 'the' right adjoint rather than 'a' right adjoint. 
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Furthermore, from the naturality in C of (*), we have the nile 

p11 
prod(A, B) 	A 

Pair(fa) 	 p12 
C 	)prod(A,B) 	B 

C 	prod(A, B) 
pair(pil,pi2) 

 prod (A, B) 

and, if we express it by equations and use (+), 

pair(pil o pair(f, g), pi2 o pair(f, g)) = pair(pil, pi2) o pair(f, g) = pair(f, g). 

Since 'pair' is isomorphic, we can conclude that the following equations hold: 

pil o pair(f, g) = f and pi2 o pair(f, g) = g. 

These are exactly the ones which we listed when defining 'Prod' in CLEAR. 

Note that this time they are derived equations. By saying that 'prod' is the 

right adjoint to the diagonal functor, we get these equations automatically. This 

shows how neat the categorical definition is. 

Another advantage of categorical definition is that we can form the dual defini-

tion easily. We defined the product functor as the right adjoint of the diagonal 

functor. Then, it is natural to ask what is the left adjoint of the diagonal functor. 

It is the coproduct functor C x C -+ C. In the category of sets, the copoduct of 

two sets A and B is their disjoint sum 

A+B{o}x AU{ 1}xB. 

It is not easy to see in set theory that this is the dual of A x B. In PASCAL, 

we can define coproducts by means of variant record. In ML, we used to have 

a built-in coproduct type constructor '+', but the new Standard ML does not. 

Instead, '+' can be defined by the following 'datatype' declaration. 

datatype 'a + 'b = ml of 'a I in2 of 'b; 

We cannot define the product type constructor by a 'datatype' declaration in 

ML, but we can define its dual. ML looks non-symmetric from this. In CLEAR, 

we can define a coproduct type constructor as follows: 

Procedure CoProd(A:Triv,B:Triv) = 
theory 
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data sort coprod 
opns ml: element of A -> coprod 

in2: element of B -> coprod 
endth 

Again, this cannot be seen as the dual of 'Prod' we defined earlier; here we do 

not use equations; we have only two operations whereas we had three. This 

shows that CLEAR is not symmetric either. 

Now, in category theory, the coproduct functor C x C —+ C which we call 'coprod' 

is defined by the dual of (*), by just changing the direction of arrows. 

Homc(A,C) x Homc(B,C) = Homc(coprod(A,B),C) 

We name the isomorphic function going from the left-hand side to the right-hand 

side 'case' (we could call it 'copair' to emphasize the duality to 'pair', but, since 

it plays a role of 'case' statements of ML or C (or PASCAL), we call it 'case'). 

Writing the adjunction as a rule, 

A!C B - -+C 

coprod(A,B) 
ca8e(f g)

) C 

Two injections ml: A —+ coprod(A, B) and in2: B —+ coprod(A, B) are defined as 

the morphisms which 'case' maps to the identity of coprod(A, B). As before, we 

can derive some equations easily. 

From what we have looked at, it seems a good idea to design a category theory 

based (programming or specification) language which has the ability to define 

functors by means of adjunctions. Since it is convenient to introduce names for 

unit natural transformations and factorizers at the same time, we regard an ad-

junction as a triple of a functor, a unit natural transformation and a factorizer 

(see, for example, [Mac Lane 71] for many equivalent ways of defining adjunc-

tions). Therefore, a category theory based language may have the following two 

forms of declaring new functors: 

let (F, a, &) be right adjoint of C 

let (F, a, 0) be left adjoint of C 
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where G is a functor we already have, F is the new functor we are defining, c 

is the associated unit natural transformation and 0 is the associated factorizer. 

One problem is that we need to have some primitive functors with which we 

start. We definitely need diagonal functors for we want to define product and 

coproduct functors. In order to define the natural number object (which is a 

constant functor), we need a pretty complicated functor C. The problem is how 

to represent such C. 

Let us investigate how other languages and theories define the data type of 

natural numbers. 	In set theory, it has the axiom of infinity which says the 

existence of natural number. This may look rather artificial. In PASCAL, there 

is no intuitively easy way to define it. In ML, though it is a built-in data type 

for efficiency, we could define it as: 

datatype nat = zero I succ of nat; 

Note the recursiveness in this definition. Essentially, we need some kind of 

recursiveness to define a data type of natural numbers. In CLEAR, one can 

define it as 

constant Nat = 
theory 

data sort nat 
opns zero: nat 

succ: nat -> nat 
endth 

This is very much similar to the one in ML, though we often think that the 

CLEAR definition is based on the initial algebra semantics whereas the ML 

definition is based on domain theory. In domain theory, a data type of natural 

numbers can be defined as the solution of the following domain equation 

N1--N. (*) 

The initial solution of (*) can be calculated as a colimit of a sequence of domains, 

but we do not go into its detail here. As a connection to the initial algebra 

semantics, the initial solution can be characterized as the initial T-algebra, where 
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T is a functor T(X) lef 1 + X in this case. In general, given a category and an 

endo-functor T, we can form a category of T-algebras. 

Definition 3.1.1: For a category C and an endo-functor T: C -+ C, the category 

of T-algebras is defined 

its objects are pairs (A, f) where A is a C object and f is a C morphism 

T(A) -* A, and 

its morphisrns h: (A,!) - (B, g) are C morphisms h: A -+ B which make 

the following diagram commute. 

T(A) 

T(h)J 	0 	1  
T(B) 	

9 

Note that this is a weaker version of the category of T-algebras defined in many 

category theory books (e.g. [Mac Lane 71]) where T needs to be a monad. El 

We can dualize definition 3.1.1 to define T-coalgebras. However, in the theory of 

categorical data types ('CDT theory' for short), we combine the two definitions 

together. 

Definition 3.1.2: Let C and D be categories and both F and C be functors 

from C to D. We define an F, G-dialgebra4  as 

1. its objects are pairs (A, 1) where A is a C object and f is a D morphism 

of F(A) —.G(A),and 

'The name dialgebra was suggested by Bob McKay. 
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2. its morphisms h: (A, 1) - (B, g) are C morphisms h: A -+ B such that the 

following diagram commutes. 

F(A) 	G(A) 

F(h) I 	Ct 	G(h) 

F(B) 	
g 	

C(B) 

In the case where F or C is contravariant, we have to modify the direction 

of some arrows. 

It is easy to show that it is a category; let us write DA1g(F, C) for it. Note 

that DA1g(T, I) is the category of T-algebras and DAIg(I, T) is the category of 

T-coalgebras. 

This is a very simple extension of definition 3.1.1, yet its symmetry and di-

viding the source category from the target one give us greater freedom. With 

T-algebras, we need to use the coproduct functor to define the domain of natural 

numbers, but by F, G-dialgebra we do not. Let C be any category and D be its 

product C x C. We define the functors F and C as 

F(A)I(l,A) and C(A)'I(A,A). 

Let (nat, (zero, succ)) be the initial F, C-dialgebra. From the definition, 'nat' is 

a C object, 'zero' is a C morphism of 1 -+ nat and 'succ' is a C morphism of 

nat -p nat. The initiality means that for any DAIg(F, C) object (A, (1 g)) there 

exists a unique DAIg(F,C) morphism h: (nat, (zero, succ)) -* (A, (f,g)). If we 

spell out the definition, this means that for any C object A and any C thorphisms 

f: 1 - A and g: A -' A there exists a unique C morphism h: nat - A which 
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makes the following diagram commute. 

zero 	 succ 
1 	 •nat 	•nat 

This is exactly the definition of 'nat' being a natural number object in category 

theory. 

To get further generality of F, G-dialgebras, we parametrize F and C. 

Definition 3.1.3: Let C, 0 and E be categories, and let F: C x 0 -i E and 

C: C x D -+ E be functors. We define (Left [F, C}(A),77 A ) for a D object A 

to be the initial object in the category DA1g(F( , A), G( . , A)). Dually, we 

define (Right [F, G](A), €A)  to be the final object. We may write Right (A) for 

Right[F, G](A) and Left(A) for Left[F, G](A) if the context makes F and C 

clear. J 

Proposition 3.1.4: If Left[F, GI (A) exists for every object A E IDI, Left[F, G} 

denotes a functor D -+ C (i.e. we can extend it to 0 morphisms). Dually, if 

Right[F, GI(A) exists for every A E JDJ, Right[F,G] denotes a functor D -  C. 

Proof: We first need to define what Left[F, G](f) is for a D morphism f: A - B. 

We define it as the morphism h: Left(A) - Left(B) which fills in the following 

p 
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diagram. 

F(Left(A),A) 17A 
 G(Left(A),A) 

F(h, I) I 	 I G(h, I) 

F(Left(B), A) 	G (Left (B), A) 

F(I,f) 	 G(1, f) 

F(Left(B),B) 
7B 

' G(Left(B),B) 

(Left(A), 'lÀ) 

(Left (B), G(I, f) o 'lB 0 F(I, f)) 

The unique existence of the morphism is provided because (Left(A), 'IA)  is the 

initial object of DA1g(F(. ,A),G(. ,A)). In other words, Left(f) is the unique 

morphism which satisfies 

G(Left(f), 1) 077B 0 F(Left(f), f) = 'IA. 

Let us check that Left is in fact a functor. Trivially, 

G(I,I)o'IAoF(I,I) = 77A- 

Therefore, Left(I A ) = 'Left(A). For morphisms 1: A - B and g: B - C, 

G (Left (g) 0 Left (f), g 0 f) 0  'ic 0 F (Left (g) 0 Left (f), g o f) 

= G(Left(f),f) 0 G(Left(g),g) 0 , 0 F(Left(g),g) 0 F(Left(f),f) 

= G (Left (f), 1) 0  'lB 0 F (Left (f), f) 

= T1A 
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Therefore, Left(g) o Left(f) = Left (g o 1). 

F(Left(A),A) 11A 
-0- G (Left (A),A) 

F(Left(f), 1) 	 G(Left(f), f) 

TIB 

	

F(Left(g o f), g o 1) F(Left(B),B) 	G(Left(B),B) G(Left(go f),go f) 

F(Left(g), g) 	 G(Left(g), g) 

	

F(Left(C),C) 	G(Left(C),C) 1 

Dually, we can prove that Right is a functor. 

'Left' and 'Right' may suggest a connection with left and right adjoint functors. 

In fact, 

Proposition 3.1.5: For a functor F: C -+ D, its left adjoint functor can be 

denoted by 

Left [A(X, Y).Y, A(X, Y).F(X)J 

and, dually, its right adjoint functor can be denoted by 

Right[A(X, Y) .F(X), A(X, Y) .Y]. 

Proof: Let us only check the left adjoint case. We see A(X, Y) .Y as a functor 

C x 0 -+ D and )t(X, Y).F(X) as a functor C x 0 - D. From definition 3.1.3, 

Left is a functor D - C. If we spell out the condition of (Left(A), hA)  being 

the initial algebra, it means that for any C object B and a C morphism 1: A -p 

F(B) there exists a unique C morphism h: Left(A) - B such that the following 
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diagram commutes. 

A 
'7A .F(Left(A)) 	Left(A) 

F(h) 

____  
A 	.F(B) 	 B 

This is exactly the condition of Left being the left adjoint functor of F. Dually, 

we can prove that Right[A(X, Y).F(X), A(X, Y) X1 is the right adjoint. 

Hence, definition 3.1.2 of F, G-dialgebras covers both T-algebras and adjoints so 

that it enables us to define products, coproducts, natural number object, and so 

on in a uniform way. 

3.2 Data Type Declarations in 

Categorical Data Types 

In the previous section, we have looked at some ways of defining data types in 

some languages. In this section, we will introduce how to define data types in 

CDT. 

If we were only interested in functors, only Left [F, C] and Right [F, C] defined 

in the previous section would be needed, but we do want morphisms (or natural 

transformations) and factorizers which will make up some kind of programs, the 

meaning of which we will examine in chapter 4 (e.g. how to execute them). 

Left [F, C] and Right[F, C] have been defined for functors F: C x D - E and 

C: C x D - E, where C, 0 and E are some categories. Remember the aim of 

CDT; we would like to define (or specify, or study) a category of data types. 

Therefore, C, B and E should somehow be related to this category. The simplest 

we can think of is that they are the product categories of this category and all 
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the functors are in the form of C 8  — C, where s is a sequence of variances (i.e. 

s E Va?) and C" Cvi x ... x Cvn. 

In order to simplify the presentation, let us use the vector notation and write, 

for example, F for a sequence of functors (F1 ,.. . , F,) where all of them have the 

same type C 8  —+ C, that is, P is a functor of C 8  —+ C?. 

From definition 3.1.3, for P: C x c —+ C' and : C x C — C', Left[F, G] is 

i a functor C •  — C and Right[F, G] s a functor C .8 
—+ C, where u . v1 ... = 

def 
 

U S V1.. .0 S V,. 

Hence, we come to the definition of CDT declarations. 

Definition 3.2.1: In CDT theory, there are two forms of declaring new functors. 

One is to define a functor L: C —+ C by 

left object L(.) with tk is 

: P(L, ) —+ ã(L, L )  (*) 

end object 

and the other is to define a functor R: C —+ C by 

right object R() with ik is 

— (R, X- ) 

end object 

where X is a sequence (X 1 , . . . , X,) of variables, b is the associated factorizer, Ci 

is a sequence (a1,.. . , am) of the associated natural transformations, and P and 

are sequences (F1 ,..., Fm) and (C1 ,... ,C), respectively, of functors which we 

have as primitives or we have already defined and whose type is F1 : C x C — C 

and G: C x C 	— C, respectively. Semantically, L is Left[P, a] and R is 
Right[P, a]. We may call L left functor or left object and R right functor or 

right object. fi 

If we expand the definition of Left, (*) defines for any C objects A = (A 1 ,.. . , A,,) 
an object L(A) and a morphism 

aA 	ã(L(A),A), 
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and for any object B and a sequence of morphisms 7:P(B,A) -+ ã(B,A), 

denotes the unique morphism which makes the following diagram commute. 

P(L(A),A) 	 ã(L(A),A) 	L(A) 

I 	
(i) 

F(B,A) 	 • 
_____ 

G(B,A) 	 B 
I 

In definition 3.2.1, it is not immediately clear what kind of P and d is allowed. 

We vaguely stated that they are primitive or have been defined already. In order 

to clarify this point, we go back to CSL and regard a CDT declaration as an 

extension of a given CSL signature. 

Definition 3.2.2: Let (, A, W) be a CSL signature. A CDT declaration D E 
Deci is given by the following BNF expression. 

D ::= { left I right } object F(X1 ,.. .,X) with ifi is 
a1 : E1 -+ Ell 

am : Em  . E 

end object 

where F is a new functor symbol, 1' is a new factorizer symbol, ar ,. . . , am  are 

new natural transformation symbols, and Ei and E (1 = 1,.. . , m) are well-

formed functorial expressions (under this signature (I', i, W)) whose variables 

are X1 , . .. , X, and F (here we use F as a formal parameter like we use its 

function name inside a function body in PASCAL). 

We need to put restriction on the variance of F in the functorial expressions 

such that for each i= 1, ... ,m 

the variance of F in Ei should be either covariant or free, 

the variance of F in E should also be either covariant or free, and 
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3. either the variance of F in E, should be covariant or that in E should be 

covariant. 

We could have allowed F to be contravariant (as indeed the original definition 

of CDT did), but it turned out that the generality by contravariance was of very 

little use, so, because it simplifies the following argument, we restrict ourselves 

only to covariant functors. The third condition above is to make the extension 

consistent (each a, should somehow relate to the functor we are declaring). 

Let us calculate the variance of F. If. the variance of A (F, X 1 ,.. . , X,) .E, is v,s, 

(Vi  E Var for the variance of F and 3, E Var* for the variance of X 1 ,. .. , 

and that of A(F, X 1 ,. . . , X).E isA(F, X 1 ,. . . , X,j.E, denotes a functor 

C" x C8 ' -+ C and A(F,X 1 ,. . . , X,).E does a functor C" x C -+ C. The 

restriction above states that v, U v = +. From proposition 3.1.4, the variance of 

F in case that it is declared by a left CDT declaration should be 

	

USjU—.8:, 	 (*) 

and in case that it is declared by a right one, the variance should be 

	

-0 8LJ4 	 (**) 

where Vart  is a partially ordered set by u 1  . . . 	. . . v, if and only if u1  

and Un  E v. 

Definition 3.2.2 (continued): A CSL declaration gives an extension of CSL 

signature. 

where the variance of F is given by (*) or (**), the type of aj  is 

A(X 1 ,. . . , X) .E,[F(X 1 ,. ..,X)/F] -+ A(X 1 ,.. .,X) .E[F(X 1 ,. . 

and the type of i& is 

f1:A(X,Xi,...,X).E[X/F] - A(X,Xi,...,X).E[X/F] (1= 1,...,m) 
fl,. . ., fm):A(X,Xi,...,Xn).F(Xi,...,X) _+ A(X,X 1 ,.. .,X).X 
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by a left CDT declaration and 

f1:A(X,Xi,...,X).E,[X/F] - )t(X,X 1 ,...,X).E[X/F] (i=1 1  ... I  M) 

0 (fi,...,fm):A(X,Xi,...,Xn).X -3 )t(X,X 1 ,...,X).F(X 1 ,...,X) 

by a right one. 

We will see in section 3.4 a CDT declaration as a CSL theory extension so that 

the semantics of a CDT declaration can be given by a CSL model. 

3.3 Examples of Categorical Data Types 

In this section, we will present several examples of categorical data types declared 

by 

left object F(X1 ,.. . , X,) with 0 is 

- 

(*) 

a,,: Em  

end object 

for left objects and by 

right object F(X1 , . .. , X1 ) with 1' is 

a1 : E1  -p 

(* *) 

am : Em -4 E 

end object 

for right objects. 

3.3.1 Terminal and Initial Objects 

Let us start with an empty CSL signature (0, 0, 0). The simplest case of (*) and 

(**) is when n = m = 0. If we consider the case when n = m = 0 in (**), we 

get the declaration of the terminal object. 
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right object 1 with! 

end object 

(We omitted the keyword 'is' to make the declaration look nicer.) From the 

definition, this defines an object '1' and for any object A there is a unique 

morphism '!' from '1' to A. 

A 	 •1 

Therefore, it really is the terminal object. 

Dually, if we change the keyword 'right' to 'left' in the definition of the terminal 

object, we get the definition of the initial object. 

left object 0 with !! 

end object 

The factorizer '!!' gives a unique morphism from '0' to any object A. 

0 

3.3.2 Products and CoProducts 

Next, we define products and coproducts. The binary product functor can be 

declared as the following right object. 

right object prod(X, Y) with pair is 

pu: prod - X 

pi2: prod - Y 

end object 

From definition 3.2.2, this defines a functor symbol 'prod' whose variance is '++' 

(i.e. covariant in both arguments), two natural transformation symbols 'pi' and 

'pi2' whose types are 

pu: A(X, Y).prod(X, Y) -+ )(X, Y).X 

pi2: A(X, Y).prod(X, Y) -+ 
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and a factorizer symbol 'pair' whose type is 

f:A(Z,X,Y).Z - )(Z,X,Y).X 	g:X(Z,X,Y).Z -4 A(Z,X,Y).Y 
pair(f,g): )(Z, X, Y).Z - A(X, Y, Z).prod(X,Y) 

If we write this down in a more understandable way, it becomes the familiar 

definition of the binary product, that is 'prod' has two unit morphisms 

pu 	 Di2 
A' 	prod(A,B) 

and pair(f, g) gives the unique morphism for any morphisms 1: C -+ A and 

g: C -+ B such that the following diagram commutes. 

pil 	 Di2 
prod(A,B) 	PB 

ct 
f p a i ir (f , lg) g  

C 

Note that the CDT declaration of the binary product functor is very similar to 

the 'Prod' theory in CLEAR defined in 3.1. One of the differences is that in 

CLEAR 'pair' is treated as a function in the same class as 'pi' and 'pi2' but in 

CDT 'pair' is quite different from 'pi' and 'pi2'. Another one is that in CLEAR 

'Prod' is declared as the initial algebra so it is close to CDT's left object but in 

CDT 'prod' is naturally a right object because the product functor is the right 

adjoint of the diagonal functor. 

Dually, we can define the binary coproduct functor as a left object. 

left object coprod(X, Y) with case is 

ml: x - coprod 

in2: Y -+ coprod 

end object 

Again, this declaration looks very close to the one in CLEAR (defined in sec-

tion 3.1), but note that we have 'case' in CDT so that we can use it to write 

programs or to specify some properties. 
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Just writing the situation as a diagram, 

ml 	 in2 
A 	.coprod(A,B) 	B 

C 

3.3.3 Exponentials 

One of the objections against algebraic specification methods is that it cannot 

handle function spaces. CDT's declaration mechanism looks very close to that 

of algebraic specification methods, but CDT is based on category theory not on 

many-sorted algebras, and in category theory function spaces can be defined as 

exponentials. For objects A and B, the exponential of B by A is written as 

exp(A, B) 5  satisfies the following natural isomorphism. 

Homc(prod(C, A), B) = Homc(C, exp(A, B)) 

In other words, The functor exp(A, -) is the right adjoint of prod( , A). We 

write 'curry' for the factorizer and 'eval' for the counit natural transformation. 

Then, for any object C and any morphism f: prod(C, A) - B, curry(f) is the 

unique morphism from exp(A, B) to C such that the following diagram com-

mutes. 

	

C 	 prod (C,A) 

	

curry(f) I 	prod(curry(f),I)  I 

exp(A,B) 	prod(exp(A, B), A) 	'- B 
eval 

5 Many category theory books use the notation BA for the exponential of B by A. 
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The reason why the exponentials are function spaces is that their global elements 

are just morphisms.6  

Homc(1, exp(A, B)) = Homc (prod(1, A), B) = Homc(A, B) 

Let us write down the definition as a CDT declaration. Assume a CSL signa-

ture (I', A, 'I') which contains the definition of the binary product functor as we 

defined in subsection 3.3.2. Then, the exponential functor can be declared as 

follows. 

right object exp(X, Y) with curry is 

eval: prod (exp, X) - Y 

end object 

This is so far the most complicated CDT declaration. In the previous examples, 

functorial expressions E1  and E in (*) and (**) are all simply variables. From 

definition 3.2.2, the CDT declaration above defines a functor symbol 'exp' of 

type —+, a natural transformation 'eval' of type 

A(X, Y).prod(exp(X, Y), X) -3 A(X, Y).Y 

and a factorizer 'curry' of type 

f : A (Z, X, Y).prod (Z, X) -4 )t(Z,X,Y).Y 
curry(f): )(Z, X, Y).Z -+ A(Z, X, Y).exp(X, Y) 

These types are what we expect them to be form the exponential adjunction. 

Let us once more convince ourselves that the semantics by F, G-dialgebras really 

defines the exponentials. (exp(A, B), evalA , B ) is the final F, G-dialgebra where 

F(C) lef  prod(C, A) and G(C) lef B. This means that, for any (C, f) where 

C is an object and f is a morphism of F(C) — G(C), curry(f) is the unique 

morphism of 

(exp(A, B), evalA,B) - (C, 1). 

6 A global element of an object A are a morphism from the terminal object to A. 
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From definition 3.1.2 of F, G-dialgebras, curry(f) is the unique morphism C - 

exp(A, B) which makes the following diagram commute. 

F(C) = prod(C, A) 	 .B=G(C) 

F(curry(f)) = prod(curry(f),I) 	 CV 	 = G(curry(f)) 

F(exp(A,B)) = prod (exp(A,B),A) 	 sB = G(exp(A,B)) 
evalA,B 

This is exactly the condition of 'exp' being the exponential functor. 

The declaration of the exponential functor in CDT very much looks like a dec-

laration in a algebraic specification language (e.g. in CLEAR), but, as is well-

known, we cannot define function spaces as algebras. The essential difference 

lies in that 'exp' is a right object, in other words, defined by the terminal data 

constraint rather than the initial one which CLEAR uses and in the availability 

of the factorizer 'curry'. If we define 'curry' as an ordinary function (or an ML 

function), its type is 

(CxA-+B)—(C--(A—+B)) 

and this could never be a type of algebraic functions (i.e. functions defined by 

algebraic specification methods). 

3.3.4 Natural Number Object 

As we have already shown that the natural number object can be given by 'Left', 

let us write it down as a CDT declaration. Although we can define the natural 

number object if we have only the terminal object, it is often very convenient 

to assume that a CSL signature (I', A, '11)-contains not only the terminal object 

but also the product functor and the exponential functor. The declaration of 
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the natural number object as a CDT is 

left object nat with pr is 

zero: 1 - nat 

succ: nat -+ nat 

end object 

which defines a constant functor (i.e. an object) 'nat' with two morphisms 'zero' 

and 'succ'. 

zero 
1 	

naIIJsUcc 

In addition, the factorizer 'pr' (standing for primitive recursion) gives for any 

morphisms f: 1 -+ A and g: A -' A a unique morphism pr(f, g): nat - A such 

that the following diagram commutes. 

zero 	 succ 
1 	 'nat 	'nat 

1"\Ipr(f, g) Of 	pr(f,g) 

As is well-known (e.g. [Goldblatt 79] chapter 3), 'pr' provides us to define any 

primitive recursive function. 

Definition 3.3.1: For a category C with the natural number object 'nat', the 

terminal object '1' and the binary product functor 'prod', a morphism f is prim-

itive recursive (on natural numbers) if it can be generated after finitely many 

steps by means of the following rules 

f = mat: nat -+ nat, 

f = zero: 1 - nat, 

f = succ: nat - nat, 
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f = pu: prod(nat, nat) - nat, 

f = p12: prod(nat, nat) -+ nat, 

f = g o pair(h, k): A -+ nat for primitive recursive morphisms 

g: prod (nat, nat) - nat. h: A -+ nat and k: A -+ nat, 

f = g o prod(h, k): prod(A, B) -+ nat for primitive recursive morphisms 

g: prod (nat, nat) - nat, h: A -+ nat and k: B -+ nat, and 

1: prod(nat, A) -+ nat satisfying 

f o pair (zero o !, I) = g, and 

f o pair(succ o pu, p12) = h o pair(f, I 

for primitive recursive g: A -+ nat and h: prod(nat, prod(nat, A)) -+ nat. 

This is a straight copy of the standard definition of primitive recursive functions 

on natural numbers. 

Proposition 3.3.2: If a cartesian closed category C has the natural number 

object, it has all the primitive recursive morphisms. 

Proof: It is suffice to show that there exists a morphism f: prod(nat, A) - nat 

for any morphisms g: A -+ nat and h: prod(nat, prod(nat, A)) -p nat such that 

f o pair(zero o !, I) = g, and 

10 pair(succ 0 pu, p12) = ho pair(f,I). 

There is a morphism k: nat -p prod(exp(A, nat), nat) such that the following 

diagram commutes. 

zero 	 succ 
1 	 nat 	 •nat 

prod (exp(A, nat), nat) 	 prod(exp(A, nat), nat) 
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where g' and h' are 

de g f= pair(curry(g o pi2), zero) 
• de h =f  pair( curry (h o pair( eval o pair( pi2, 

pil o p11), 

pi2 o p11)),, 

succ o pi2). 

Therefore, k is pr(g,  , h)p 	 d
. Then, f =ef 

eval o prod(pil o k, I). We can easily show 

that this is what we wanted. J 

For example, the morphism 'add' corresponding to the addition function of nat-

ural numbers can be given as 

add def= eval o prod(pr(curry(pi2), curry(succ o eva!)), I). 

It corresponds to the following usual definition of 'add'. 

add(O,y) = 1/ 

add(x + 1, y) = add(z, y) + 1 

Furthermore, we can easily prove categorically that 'add' satisfies familiar laws 

like its commutativity (categorically add o pair(pi2, p11) = add) and so on. 

3.3.5 Lists 

We have defined the data type of natural numbers in the previous subsection. 

Another algebraic data type which is often used in programming is the data type 

of lists. In CDT, the data type of lists is defined as follows: 

left object list(X) with pri is 

nil: 1 -+ list 

cons: prod (X, list) -+ list 

end object 

We needed to assume a CSL signature having the terminal object and the product 

functor. The declaration above defines a one argument covariant functor 'list', 
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two natural transformations 

nil: )i(X).1 _* )t(X).list(X) and cons: )(X).prod(X, list (X)) --*+A (X).list(X) 

and a factorizer 'pri' (standing for primitive recursion on list) whose type is 

f:A(Y,X).l - A(Y,X).Y 	g: A(Y, X).prod(X, 	- 
prl(f,g):A(Y,X).list(X) - A(Y,X 

As usual, we can express the situation as a diagram. 

nil 	 cons 
'- list(A) 	prod (A, list (A)) 

I prl(f, g) 0 	I prod (I, prl(f, g)) 
I 	 I 

B g 	
prod(A,B) 

A global element of list(A) is normally constructed from 'nil' and 'cons'. For 

example, list(nat) has 

cons o pair(succ o zero, cons o pair(succ o succ o zero, nil)) 

as a global element (in plain words, this element is the list of 1 and 2). 'nil' 

and 'cons' are usually called constructors of 'list'. We can see in general to 

define an algebraic CDT by listing its constructors. Destructors are defined 

using factorizers. In the case of 'list', 'hd' (head) and 'tl' (tail) can be defined 

as follows. 

hd del = prl(in2, ml o p11) 
del 

tl = coprod(pi2,I) o prl(in2,inl o prod(I, case(cons, nil))) 

Note that we have to define 'hd' and 'ti' as total functions (in a sense). The type 

of 'hd' is list(A) -+ coprod(A, 1) and is not list(A) -+ A. The type of 'ti' is also 

list(A) -p coprod(list(A), 1). The type '1' is for error (like I in a domain) and, 

for example, hd o nil = in2. 

As 'list' is a covariant functor, for a morphism f: A -+ B list (f): list (A) -+ list (B) 

transforms a list of A elements to a list of B elements by applying f to each 
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element. For example, list(succ): list(nat) -p list(nat) increments every element 

in a given list by one. In general, we have the following equations: 

list(f) = prl(nil, cons o prod (f, I)) 

list(f) o nil = nil 

list (f) o cons o pair(x, 1) = cons o pair(f o z, list (f) o 1) 

'list' corresponds to 'map' function in ML and 'MAPCAR' in LISP. 

3.3.6 Final Co-Algebras (Infinite Lists and Co-Natural 

Number Object). 

The objects we defined in the preceding subsections are all familiar either in 

category theory or in programming languages. Particularly, we have seen in 

subsection 3.3.4 and 3.3.5 the natural number object and the data type of lists, 

which are typical initial algebras. Recently, several works have been done about 

final coalgebras, which are the dual of initial algebras (see [Arbib and Manes 801). 

From their symmetry of CDT declarations, we can easily define final coalgebras 

in CDT as well as initial algebras. 

Let us dualize the declaration of the natural number object defined in subsec-

tion 3.3.4 by 

left object nat with pr is 

zero: 1 - nat 

succ: nat - nat 

end object 

If we simply replace 'left' by 'right' and change the direction of arrows, we get 

right object conat with copr is 

cozero: nat -+ 1 

cosucc: nat -+ nat 

end object 

Unfortunately, this is not an exciting object. We can prove that 'conat' is isomor- 

phic to the terminal object as follows: from the uniqueness of terminal objects 
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up to isomorphism in any category, we simply need to show that '1' is the ter-

minal F, G-dialgebra for these particular F and C, that is, for any object A and 

morphistns f: A -p 1 and g: A -+ A, there exists a unique morphism h: A - 1 

such that the following diagram commutes. 

	

A 	
g 	

'-A 

	

I 	 I 

	

I 	 I 

	

hi 	Ct 	h  

	

I 	 I 

	

cosucc 	cozero 

Indeed, we have this unique morphism A - 1 because '1' is the terminal object 

and the above diagram trivially commutes. 

Although the exact dual of the natural number object is not an interesting thing, 

we can modify it to get a CDT data type of infinite lists. 

right object infiist(X) with fold is 

head: inifist -+ X 

tail: inflist -+ inflist 

end object 

The diagram of explaining 'inifist' is 

	

B 	
g 	

'B 

fold (f,g) I 	fold (f,g) I 

inffist(A) 	.- inffist(A) - A 

	

tail 	 head 

Since the functor 'inflist' is not so familiar in category theory or in conventional 

programming languages, let us find out what it is in the category of sets. We 

expect it to be a set of infinite lists in some sense. 
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Proposition 3.3.3: In the category of sets, for a set A, inflist(A) is the following 

set of w-infinite sequences of elements in A. 

{ (xo 9 z1,.. .,x,...) I x, E A } 

Proof: We define 'head' and 'tail' as follows: 

del head((xo,xi ,...,x .... )) = 
del tail((zo , xi , ...,x,...)) = (z1,z2,...,xfl+l,...) 

Let fold(f,g)(x) be a sequence (ho (z),h i (x),.. . ,h,(x),...) for functions f : B -+ 

A and g: B - B. The commutativity of the diagram above forces the following 

equations. 

ho(x) = 1(x) 

(hi (x),h 2 (z),... ,h+1(x),. . .) = (ho (x),h i (x),.. . ,h,,(x),. . 

Therefore, fold(f, g) (x) is uniquely determined as 

fold (f,g)(x)  4-el 
 (f(x),f(g(x)),.. . ,f(g'(x)),...) 

Hence, at least in the category of sets, inffist(A) is really the data type of infinite 

lists of A elements. 

More generally, 

Proposition 3.3.4: In a cartesian closed category C with the natural number 

object, inffist(A) is isomorphic to exp(nat, A). 

Proof: Let us define h: exp(nat, A) -+ infflst(A) to be the fill-in morphism of 

the following diagram. 

exp(nat,A) 	
tail' 	

.- exp(nat,A) 
I 	 I 
I 	 I 

	

C' 	hI _ 
\head' 

I 	 I 

inffist(A) 	 inffist(A) 	• A 

	

tail 	 head 

where 'head" and 'tail" are 
del 

head = eval o pair(I, zero o !), 
, del 

tai l = curry(eval o prod(I,succ)). 
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We define h': inffist(A) -p exp(nat, A) to be 

W 	curry(eval o pair (pr(curry (head o pi2), exp(tail,I)) o pi2,pil)). 

After some calculation, we can show that h o = I and h' o h = I, so infiist(A) 

is isomorphic to exp(nat, A). El 

This proposition tells us that 

00  inffist(A)AxAx ... xAx...11A. 

Indeed, this is the dual of E A, the special case of which is the natural number 

object, nat E 1. 

We started this subsection by considering the dual of the natural number object. 

It led us to the CDT data type of infinite lists. We still have a different question 

whether there is a final coalgebra which resembles a data type of natural num-

bers. The answer is yes. The following right object defines a CDT data type of 

natural numbers plus alpha. 

right object conat with copr is 

pred: conat -+ coprod(1, conat) 

end object 

The situation can be written as a diagram 

A 	 .-coprod(1,A) 

copr(f) 	 0 	 coprod(1,copr(f)) 

IF 

conat 	 coprod(1, conat) 
pred 

The natural transformation 'pred' is the predecessor function and there is a 

morphism from 'nat' to 'conat' given by 

copr(pr(inl, in2 o case(zero, succ))) 
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which we expect to be injective, but so far the author has been able neither to 

prove it nor to give a counter example. 'Conat' has an interesting extra element, 

namely the infinity (oo). The ground element to denote it is 

infinity def= copr(in2) 

It is easy to prove that the predecessor of the infinity is itself (i.e. predoinfinity = 

in2 o infinity). 

In the category of sets, 'conat' is really the set of natural numbers and the 

infinity. 

Proposition 3.3.5: In Set, 'conat' is 'nat U { oo Y. 
Proof: The predecessor function is defined as usual. Roughly speaking, for any 

function f: A - coprod(1, A), copr(f)(x) is the number oE applications of f to 

x to get the element of 1 

copr(f)(z) = n 	where f(x) E 1, 

and, if it never results in the element of 1, copr(f)(x) = oo. We can easily show 

that this is the unique function which makes the 'conat' diagram commute. 

Therefore, in the category of sets, 'conat' is isomorphic to 'nat', but this is not 

the case for all the categories. There are some categories where 'conat' and 'nat' 

are not isomorphic. 

Proposition 3.3.6: In category TRF of sets as objects and total recursive func-

tions as morphisms, there exists the natural number object but does not exist 

the co-natural number object. 

Proof: TRF's terminal object, initial object, product fuñctor and coproduct 

functor are all the same as those of Set. For example, injections 'ml' and 'in2' 

for coprod(A, B) are trivially total and recursive, and for any two total recursive 

functions f: A -i C and g: B -p C case(f, g) is also total recursive function. We 

can write it down as a kind of program. 

def case(f, g) (x) = if x E A then f(x) 

else g(x) 
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The natural number object 'nat' in TRF is also the ordinary set of natural 

numbers. 'Zero' and 'succ' are total recursive functions from the very definition 

of recursive functions and for 1:1 -+ A and g: A -+ A of total recursive functions, 

pr(f, g) can be written as the following program. 

pr(f,g)(n) d=ef  ifn=O then f() 

else g(pr(f,g)(n - 1)) 

which defines a total recursive function. 

However, we cannot have the co-natural number object in TRF. The program 

of copr(f) for a total recursive function 1: A -+ coprod(l, A) can only be 

copr(f)(x) Ld  if 1(x) E  then 0 

else copr(f)(f(x)) + 1 

which is recursive but not total. 

There is also a category which has both 'nat' and 'conat' and in which they are 

non-isomorphic. We will show this in chapter 4. 

From the point of view of finding fixed points of functors, 'nat' is the initial fixed 

point of F(X) lef
1 + X and 'conat' is the final fixed point of the same functor. 

3.3.7 Automata 

The declarations of initial algebras and final coalgebras do not use the full power 

of the CDT declaration mechanism. Their unit and counit natural transforma-

tions always have the form 

cx:E - F 

for initial algebras and have the form 

a:F - E 

for final coalgebras, where E is any functorial expression but F is a variable 

(more specially, the variable which denotes the object we declare). Therefore, all 

we are doing is just listing constructors for initial algebras and listing destructors 
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for final coalgebras. We will see what kind of form define sensible functors in 

section 3.5. So far, the only exception was the exponentials. We will see another 

example in this subsection. 

One of the interesting applications of category theory to computer science is 

to automata theory. [Arbib and Manes 75] presents the category Dyn(I) of 

I-dynamics whose object is 

S 
QxI 

where Q is the set of states, I is the set of inputs and S is a dynamics which is a 

function determining the next state of the automaton according to the current 

state and input. 

From this, we can construct a categorical data type of automata. 

right object dyn(I) with univ is 

next: prod(dyn, I) -+ dyn 

end object 

Note that our dyn(I) for an object I is just an object; it is not a category like 

Dyn(I) is. The diagram which explains this right object is 

prod(Q,I) 

	

I 	 I 

	

prod(univ(S), I) I 	0 	I univ(S) 

	

I 	 I 

prod (dyn(I), I) 	' dyn 
next 

For any dynamics 6: prod(Q, I) - Q and an initial state q0 : 1 - Q, we get an 

automaton 

univ(S) 0 qo  

	

1 	 .- dyn(I) 

as a global element of dyn(I). Though we can put this automaton into the next 

state by applying 'next', we are never ever able to see its behaviour from the 

outside. Moreover, because of this non-observability, we can easily prove that 
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dyn(I) is in fact isomorphic to the terminal object. In order to make 'dyn' a 

more sensible object, we need to add an output function. The new categorical 

data type of automata is 7  

right object dyn'(I, 0) with univ' is 

next': prod(dyn', I) -+ dyn' 

output': dyn' -1- 0 

end object 

For any dynamics 5: prod(Q, I) - Q, any output function 3: Q - 0 and an 

initial state q0: 1 - Q, we have a global element in dyn'(I, 0) 

univ'(S, i3) ° 
1 	 dyn'(I,O). 

We can obtain its next state by applying 'next" and its output by 'output". In 

addition, the following proposition holds. 

Proposition 3.3.7: In a cartesian closed category, the categorical data type of 

Moore automata, dyn'(I, 0), is isomorphic to exp(list(I), 0). 

Proof: By defining two morphisms between them and proving that they form 

an isomorphism. ] 

3.3.8 Obscure Categorical Data Types 

We have defined more or less familiar data types as categorical data types in the 

preceding subsections. One might ask whether CDT can define any data types 

7 The original definition we used was 

right object dyn'(I, 0) with univ' is 

next': prod(dyn', I) - prod(dyn', 0) 

end object 

which gave us the categorical data type of Mealy automata. The current definition gives us the 

data type of Moore automata. 
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which are unable to be defined in other languages or methods. The data type 

of automata is such an example and we can invent similar examples more, but 

still they are familiar (or we are just trying to express our familiar data types in 

CDT). In fact, CDT allows us very obscure data types, some of which may not 

be conceptualized in the human brain (at least not in the author's brain). 

From the prime requirement of CDT, it can define right and left adjoint functors 

of any existing functors, and in subsection 3.3.5, we defined 'list' as a covariant 

functor, so that we can declare its left and right adjoint functors in CDT as 

follows. 

left object ladjlist(X) with & is 

a: X -+ list(ladjlist) 

end object 

right object radjlist(X) with t// is 

a': list(radjlist) -+ X 

end object 

Some questions arise immediately after defining these data types: are they fa-

miliar data types, and are they in any way useful? The answers to the both 

questions are unfortunately negative. For the left adjoint, 

Proposition 3.3.8: In a-cartesian closed category, 'ladjlist(A)' for any object 

A is isomorphic to the initial object. 

Proof: It is easy to show that the initial object makes the characteristic dia-

gram of 'ladjlist' commute. Note that in a cartesian closed category 'list(0)'is 

isomorphic to the terminal object so that the unit morphism of 'ladjlist' is the 

unique morphism to the terminal object. [I 

The right adjoint functor is more harmful than the left one. 

Proposition 3.3.9: A cartesian closed category with 'radjlist' degenerates (i.e. 

all the objects are isomorphic). 

Proof: We have the following morphism from the initial object. 

nil 	 a' 
1 -' list (radj list (0)) -+ 0 
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Then, it is easy to show that the terminal object is isomorphic to the initial one. 

This further implies that any object in the category is isomorphic to the initial 

object. 

A prod (A, 1) prod (A,O) 0 	D 

Most of the left and right adjoint functors of conventional data types follow the 

same pattern as 'list', that is, they are either trivial or destructive, so they are 

useless. 

Hence, a natural question to ask ourselves is that what kind of categorical data 

types are useful. But what is the formal criteria of useful data types? We have 

not yet defined this. We will come back to this in chapter 4 and see it from a 

point of view of computability of categorical data types. 

3.4 Semantics of Categorical Data Types 

In definition 3.2.2, we associated a CDT declaration to a CSL signature extension 

(an injective morphism in CSig). In this section, we will see it as a CSL theory 

extension and give the precise semantics of CDT declarations. 

First, from our informal intention of CDT declarations we have to figure out the 

CSL statements which characterize them. A CDT declaration 

left object L(X 1 , . . . , X,) with 1' is 

-+ 

cxm:Em 4 

end object 

is the syntactic form of defining the functor L = Left[P, ], where P and c are 

corresponding functors for E1 ,. .. , Em  and Ei,. . . , E, respectively. (L(A), ) 
is the initial object of DA1g(P, C) and tp is its mediating morphism, that is, 

for any morphisms f: F(B, A) -+ G(B, A), 0(7) gives a unique morphism from 
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L(A) to B such that the following diagram commutes. 

P(L(A),A)  
OeA  
	 ã(L(A),A) 	L( A ) 

1 	0 	IG 	A 	I t(7) 

-. 	 _- 	- 
F(B,A) _______ •G(B,A) 	 B 

I 
The commutativity of this diagram can be expressed as the following equation: 

= Jo F(0(7), A), 	 (*) 

and the uniqueness can be expressed as the following conditional equation: 

ã(h,A)o=7o1(h,A)=.h=t,b(7) 	 (**) 

The two equations say everything about L, and &. Let us now translate 

them to CSL statements in (I' U {L}, A U {c i ,. . . , a}, W U {&}) so as to give 

complete description of the CDT declaration above in CSL. (*) corresponds to 

the following m CSL equations: 

E[t,b(fi,...,fm)/LJo cii  = fioEi[tb(fi,...,f rn)/L] 8 	(LEQ) 

(i = 1,. .. , m) and (**) corresponds to the following conditional CSL equation. 

E[g/L] o cil = fi o Ei [g/L] A 

A E,jg/LJ 0 	= f, 0 Em [g/L] = g =i&(fi,. . . 
, f,,) (LCEQ) 

In addition, we should have a CSL equation expressing functors by factorizers and 

natural transformations. We can extract such an equation from proposition 3.1.4. 

L(h 1 ,... ,h) = 

a1  o E1 [h11X,j,. .. , E[h/X1 ] o am  o Em[hi/Xj]) 9  (LFEQ) 

fm)/L] means replacing the variable L by &(fi ,.. ., fm) and replacing the other 

variables X1, . . . , X, 1  by the identities, that is it is a shorthand for 

Ei[tI(fi,...,fm)/L,I/Xi,...,I/Xn]. 
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Therefore, the semantics of CDT declaration can be given as a CSL theory 

extension as follows. 

Definition 3.4.1: Given a CSL theory (, A, W, ), a CDT declaration 

left object L(X1 , . .. , X,) with '& is 

.E' _ V' al. .L#1 ) £1 1
I 

 

am : Em * 

end object, 

where Ei and E (i = 1,.. . , m) are CSL functorial expressions over (I', A, W) 

whose variables are X 1 ,. .., X, and L, is associated with a CSL theory morphism 

CL: (I', A, w, 0) -+ (r u {L}, A u {al . ., omil IF u {}, 

0 U {LEQ 1 ,—,  LEQm ,LCEQ,LFEQ}) 

where the types of L, a1,. . . , a and it' are as given in definition 3.2.2. Dually, 

we can associate to a right object R 

right object R(X 1 ,. . . , X,j with TP is 

al : El  -+ Ell  

am : Em 4 E 

end object, 

a CSL theory morphism CR. 

cR:(r,,W,e) 	ru{R},u{a i,...,am},wu{}, 

0 U {REQ 1 ,. . . , REQm ,RCEQ,RFEQ}) 

where REQ, RCEQ and RFEQ are 

	

ajoEj[iib(fi,...,f m)/R] = E[b(fi,...,fm)IR] 0 fi 	(REQ) 

9 E1 [h/X1] is a shorthand for EjEI/L,h1/X1, .. . , h/XJ. 
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a1 o Ei [g/R] = E[g/R] o fl  A 

A am  o Em [g/R] = E,jg/RJ o f,, = g = t(fi, . . , fm) (RCEQ) 

= 

o a1  o E1 [h/X,],. .. , E[h,/X1 ] o am  o Em [hi/Xi]) (RFEQ) 

Example 3.4.2: Let (I', t, 'P, ê) be the CSL theory of cartesian closed cate-

gories (see examples 2.2.2 and 2.5.3). On top of this, as we have seen in sec-

tion 3.3.4, we can define a natural number object by 

left object nat with pr is 

zero: 1 —+ nat 

succ: nat — nat 

end object. 

The CSL statements characterizing this object are 

pr(f, g) o zero = f 
	

(LEQnat , i ) 

pr(f, g) o succ = g o pr(f, g) 
	

(LEQ nat2 ) 

h o zero = f A h o succ = g o h h = pr(f, g) 	 (LCEQ 8 ) 

The CSL extension anat associated with the declaration above is: 

nftt (r, , 'I') c
( U {nat}, A U {zero, succ}, 'I' U {pr}, 

0 U {LEQnati,LEQnat2,LCEQnat}) II 

Thus, each CDT declaration can be associated with a CSL theory extension. This 

can be thought as a semantics of CDT declarations. However, it is sometimes 

convenient to regard their semantics to be real categories. 

Definition 3.4.3: A sequence of CDT declarations Dl,...,Di  defines a Se-

quence of CSL theory extensions starting from the empty CSL theory. 

D1 	 CD2 	 CD1 

(0,0,0,0)  
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We define a model of the CDT declaration sequence Dl ,..., D1 to be a category 

which is a CSL theory model of , W, and the free model of Di ,..., D1 

to be the free category of this CSL theory (see section 2.6). 

If we do not rely on any ways of defining functors other than CDT declarations 

and if we do not accept any pre-defined functors, it is inevitable to start with the 

empty CSL theory. We have defined cartesian closed categories as a CSL theory 

in examples 2.2.2 and 2.5.3, but we can do so in CDT starting from the empty 

theory by just declaring the terminal object (see subsection 3.3.1), products (see 

subsection 3.3.2) and exponentials (see subsection 3.3.3). The advantage of the 

latter is that we neither need to think about equations nor need to do tedious 

typing of functors, natural transformations or factorizers. These things come 

out automatically, so it is easy to define categories and there is less chance to 

make mistakes. 

We have introduced CDT declarations from Left and Right, but we could not 

connect them formally. Now, after having models of CDT as categories, we can 

do so. 

Proposition 3.4.4: Let (C, e) be a model of a CDT declaration sequence D1 , 

..,D.IfD 1 is 

left object L(X 1 ,. . . , X,) with ik is 

- 

am : Em -4 

end object 

then L = Left(P, a) where 

!! (eA(L,X1,. ..,x).E 1 , .. . , EA(L,x 1 ,. . X.). E.) 

ã def 

The similar thing holds for right CDT declarations. 

Proof: Trivial, because we set the CSL statements so that this proposition 

holds. 



CHAPTER 3. CATEGORICAL DATA TYPES 	 101 

Finally, in this section, let us summarize the objects we have defined in this 

chapter and their characteristic CSL statements in figure 3-1. 

3.5 Existence of Left and Right 

In section 3.1, we have introduced functors Left[F, G] and Right[F, C] with 

the condition which characterizes them, but we did not consider whether such 

functors exist or not. In this section, we study them mathematically and present 

a condition of the existence. 

Let us recall the standard construction of initial T-algebras (see, for example, 

[Scott 76, Lehmann and Smyth 81]). 

Proposition 3.5.1: For a w-cocomplete category C (i.e. it has colimit of any 

w-chain diagram) and an endo-functor T: C -+ C which is w-cocontinuous (i.e. 

it preserves colimit of any w-chain diagram), its initial T-algebra is given by the 

colimit of the following w-chain diagram.'° 

11 	T(H) 	 T2 (11) 	T'(!!) 	 T''(!!) 
0 -) T(0) 	) T2 (0) 	... 	) T(0) 

As we presented in section 3.1, Left [F, C] is a generalization of initial T-algebras, 

whereFisafunctorofCxD — E and GisofCxD - E. We will reduce the 

existence problem of Left to that of corresponding T-algebras. For a D object 

A, from its definition (Left[F, GI (A), 'lA)  is the initial object in the category 

101n general, this sequence might not converge at w. In such a case, we may extend the sequence 

up to any ordinal such that 

T'+1(0) = T(Ta(0)), and 

T'(0) = colimit T (0) for a limit ordinal 9 (treating 0 as a limit ordinal). 
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Name - 	CDT Declaration CSL Statements 

Terminal right object 1 with I / =1 

end object 

Initial left object 0 with!! / =1! 

end object 

Products right object prod(X, 1) with pair is pil o pair(f, g) = I 
pil:prod —.X pi2 o pair(f, g) = g 

p12: prod —.Y h = pair(pil o h, pi2 o h) 

end object prod(f, g) = pair(f o pu, g  o pi2) 

Coproducts left object coprod(X, Y) with case is case(f, g)  o ml = / 
ml: X - coprod case(f, g) o in2 = g 

in2: Y —+ coprod h = case(h o ml, ho in2) 

end object coprod(f, g) = case(inl o f, in2 o g) 

Exponentials right object exp(X, Y) with curry is eval o prod(curry(f), I) = / 
eva!: prod(exp, X) - Y h = curry(eval o prod(h, I)) 

end object exp(f, g) = curry(g o eval o prod(I, I)) 
NNO left object net with pr is pr(f, g) o zero = / 

zero: 1— net pr(f, g) o succ = gopr(f,g) 

succ: nat -' net he succ = go h => h = pr(h o zero, g) 

end object 

Lists left object list(X) with Prl is prl(f, g) o nil = / 
nil: 1 —+ list prl(f, g) o cons = prod(I, prl(f, g)) o g 

cons: prod(X, list) -' list ho cons = prod(I, h) o g 

end object h = prl(h a nil, g) 

list(f) = prl(nil, cons o prod(f, I)) 
Infinite Lists right object inflist(X) with fold is head o fold(f, g) = f 

head: inflist - X tail o fold(/, g) = fold(f, g)  o g 

tail: inflist -. inifist tail o h = go h 	h = fold(head a h, g) 

end object inflist(f) = fold(f a head, tail) 

Co-NNO right object conat with copr is pred o copr(f) = coprod(I, copr(f)) o / 
pred: conat -, coprod(1, conat) ho pred = / o coprod(I, h) 

end object h = copr(f) 

Automata right object dyn'(I, 0) with univ1  is next' o prod(univ'(f, g),  I) = univ'(f, g) a f 

next': prod(dyn', I) - dyn' output' a univ'(f, g) = g 

output': dyn' - 0 next' o prod(h, I) = ho / 
end object h = univ'(f, output' o h) 

Figure 3-1: CDT Objects 
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DA1g(F( ,A),G( ,A)), so 

	

F(Left[F, G](A), A) 	1A 	
• G(Left[F, G](A), A) 

Now, if G( ,A) has a left adjoint functor, say H( ,A): E -+ C, this morphism 

'IA has its one-to-one corresponding morphism 

	

H(F(Left[F, G](A), A), A) 	 Left [F, G](A). 

This means that Left[F, C] (A) is a T-algebra, where T(B) 	H(F(B, A), A), 

and we naturally expect this T-algebra• to be special. It really is the initial 

T-algebra, so we can formulate the following theorem. 

Theorem 3.5.2:. Let F: C x D - D and C: C x D -+ E be functors. If 

C is -cocompIete, 

for each  object A, CA!G(.  ,A):C -+ E has a left adjoint HA:E - C, 

and 

for each D object A, FA 
def= F( . ,A):C -* E is w-cocontinuous, 

then Left[F, G](A) exists in C and 

Left[F, G](A) = colimit(HA  o F4"(0) 

Proof: Since a left adjoint is cocontinuous, TA 	HA o  FA is c.'-cocontinuous 

if FA is so. All we have to show is that the initial TA-algebra gives the initial 

object of DA1g(FA , GA), and the rest follows from proposition 3.5.1. 

Let the initial TA-algebra be I paired with a morphism 

	

HA(FA(I)) 	
1; 	

I. 

For an object (B, f) in DAIg(FA , GA) 

FA  (B) 	I 	
GA(B) 
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we have to construct the unique morphism from I to B which makes a certain di-

agram commute. To do so, let us name the factorizer of the adjunction HA 1-  GA 

b, that is, ip is the natural isomorphism Homc (HA (C),  D) -- HomE(C, GA  (D)). 

Then, ' - '(f) gives a TA -algebra 

HA(FA(B)) 	 B 

and since (I, ,&) is the initial TA-algebra, there exists a unique morphism g: I - B 

such that the following diagram commutes. 

HA (FA (I))_1; 	
I 

HA(FA(g)) 	 g 	 (*) 

HA(FA(B)) 	lB 

The naturality of 0 converts this diagram to the following commutative diagram. 

	

OW  
FA(I) 	. G(I). 

FA(g) 	 GA(g) 	 (**) 

	

FA(B) 	.GA(B) 
I 

(i.e. 1(g o 	= GA(g) o &(t) and &(&'(f) o HA(FA(g))) = 1 ° FA(g)). That 

showed the existence of g. The uniqueness of g is no more difficult. If g: I - B 

satisfies (**), then by applying 1i' we get (*) back again and so there g should 

be unique. 0 

Example 3.5.3: Trivially, if E is C and C: C x D -+ C is the projection func-

tor, GA is the identity which has the left adjoint HA which is also the identity 

functor. In this case, the above theorem is essentially stating the same thing as 

proposition 3.5.1. 0 
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Example 3.5.4: Another simple case is that E is C x C and GA is the diagonal 

functor. Its left adjoint is the binary coproduct functor. FA:  C -+ C x C can be 

decomposed into F and F both of which are functors of C x 0 -+ C such that 

FA(B) = (F(B),F(B)). The theorem states that Left[F,G](A) is the initial 

TA -algebra where TA(B) = del 
FA

,
(B) + FA(B). This explains that our natural 

del number object in subsection 3.3.4 is the initial T-algebra where T(B) = 1 + B. 

Theorem 3.5.2 has its dual form for Right [F, CJ. 

Theorem 3.5.5: Let F: C x D -. D and C: C x 0—+ E be functors. If 

C is w-complete, 

for each  object A, FA F(. ,A):C -+ E has a right adjoint KA:E -* C, 

and 

for each 0 object A, GA 
del= G( , A): C - E is w-continuous, 

then Right[F, C] (A) exists in C and 

Right [F, G](A) = limit (HA  o FA ) "(l) 

Example 3.5.6: As an application of this theorem, let us calculate dyn'(I, 0). 

For this, we should take 0 to be C x C, E to be C x C, F: C x C x C - C x C to 

be F(A, I, 0) (Ax I, A) and C: CXC-  x C - C x  to be G(A, I, 0) (A, 0). 

F1,0 has a right adjoint H1,o(D, E) 	exp(I, D) x E. Therefore, dyn'(I, 0) is 

the final T1,0-coalgebra, where T1 ,0  (A) 	H1 ,0 (G1 ,0 (A)) = exp(I,A) x 0. Now, 
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let us calculate limit T 0 (1). 

T°  'p 11 ' 	1 1,0'. 	- 

T11 0 (1) 	exp(I, 1) x 0 0 exp(1, 0) 

T 0 (1) Tj,o(0) exp(I,O) x 0 exp(1 + 1,0) 

T 0 (l) 	exp(I,exp(1+I,O)) x  

exp(Ix (1+I),0) x  

exp(1+ 1+12 ,0) 

Tp0'(l) 	exp(1+I+I 2 +...+I'',0) 

106 

Therefore, dyn'(I, 0) limit TIn 	exp(1+I+1 2 -i-• .. , 0) exp (list (I) , 0). 



Chapter 4 

Computation and Categorical Data 

Types 

In chapter 2 section 2.4, we introduced CSL expressions Exp(r, a , W) which 

denote polymorphic functions in CSL models. In this chapter, we will see them 

as programs and see how they can be executed. One of the ways to treat spec-

ifications as programs is to regard equations as rewrite rules, but in our case, 

CSL statements are in general conditional equations and, therefore, it is quite 

difficult to treat them as rewrite rules. Furthermore general rewriting cannot 

be regarded as real computation unless rules are Church-Rosser and strongly 

normalizing, otherwise, rewriting is more close to theorem proving. 

There is no other way so long as we are dealing with CSL specifications. Re-

member that CSL was introduced in order to give semantics to categorical data 

types we have investigated in chapter 3. In CDT theory, we are not dealing with 

arbitrary CSL specifications, but some special ones, ones which are associated 

with CDT declarations. Therefore, we have much more hope for executing these 

special CSL specifications than arbitrary ones. For example, cartesian closed 

categories are, as is well-known, connected to lambda calculus which is a model 

of computation, so we can put some evaluation mechanism into them. [Curien 

861, for example, has developed such a system. A difference of our approach 

from his is that we do not restrict ourselves only to cartesian closed categories. 

One of the main aims of CDT is to study categories formed by programming 

107 
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languages, and we should not presume any structure in the categories without 

proper reasons. We can only accept the cartesian closed structure in CDT if this 

is necessary for putting the concept of computation to it. As we will see later 

in this chapter, our categories are cartesian closed (with some extra structure), 

and by then we should know why the cartesian closed structure is necessary. 

CSL expressions in section 2.4 and the CDT declaration mechanism in chapter 3 

give us the basis of Categorical Programming Language (CPL) to which we 

will devote this chapter. CPL tries to extract the computable part of CDT. 

As we have seen in subsection 3.3.8, CDT in general allows us to define very 

strange objects which have no concept of being computable. We are going to 

put restrictions to the form of CDT declarations in CPL. 

Therefore, in CPL, we can declare data types by CDT (with restrictions). As 

we have seen in section 3.4, this will determine a CSL in which we can have CSL 

expressions introduced in section 2.4. CSL expressions are the programs in CPL. 

There is no difference between programs and data. From the categorical point of 

view, there is nothing inside objects, that is, there are no data inside data types. 

CSL expressions whose domain is the terminal object are called CPL elements. 

The execution in CPL is essentially a reduction of a CPL element to a canonical 

irreducible CPL element. 

Following the result of this chapter, CPL will not only exist on paper, but also 

can be implemented. This will be presented in chapter 5. 

In section 4.1 we introduce a restriction to objects we can declare in CPL and 

a set of reduction rules for CPL computation. In section 4.2 we see an example 

of computation in CPL. In section 4.3 we prove that any computation in CPL 

terminates (i.e. the reductions are normalizing) by Tait's computability method. 

In section 4.4 we show some properties about objects in CPL and, finally, sec-

tion 4.5 gives another set of reduction rules for CPL computation which reduces 

CPL elements into intuitively more canonical elements. 
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4.1 Reduction Rules for Categorical Program-

ming Language 

In this section, we will present some basic definitions together with the reduction 

rules for CPL. Let us assume in the following discussion that we have defined 

categorical data types by a sequence of CDT declarations, D1 ,.. . , Dj, and that 

we have obtained the corresponding CSL, (I', A, W, e) as in definition 3.4.3. 

In ordinary programming languages, we distinguish programs and data. We 

feed data into a program; it processes the data and then outputs the result data. 

We cannot feed a program into another program and data cannot process other 

data or programs. However, it is true that data are a special kind of programs, 

very simple ones. We can write data directly into programs as initialization 

statements or as assignments. For example, natural numbers like 1, 132, 59, etc. 

are data as well as constants in programs. In some languages like LISP, there is 

no difference between data and programs at all. CPL is not as liberated as LISP, 

but both data and programs are morphisms and data are just special morphisms 

having a special domain object. 

As we know, category theory deals with the external structure of objects rather 

than their inner structure so it is not proper to think about data inside objects. 

However, we do sometimes need something similar to elements in set theory. We 

say elements in category theory are morphisms whose domain is the terminal 

object. 
C 

We say e is an element of A. If we think in the category of sets (Set), '1' is the 

one-point set and a morphism from the one-point set to a set corresponds to an 

element in the set. 

Hoin8et(1,A) A 

Hence, the definition of elements in CPL is: 
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Definition 4.1.1: Given a CSL signature (I', A, W), a CPL element e is a CSL 

expression with no morphism variables whose domain type is the terminal object. 

p1- e:A(X i ,...,X).1 —3K 

(see section 2.4 for typing). In case n = 0 which is very often the case, we may 

write I- e: 1 - E where E is a functorial expression without variables. We also 

say that e is an element of E. 

In order for this definition to be sensible, we need to have the terminal object in 

our category. For simplicity, we assume that D1  is the CDT declaration of the 

terminal object as is presented in subsection 3.3.1. 

Though this definition is a natural way of defining elements in category theory, 

it introduces non-symmetry in CPL. Remember that CDT is meant to be sym-

metric: e.g. if we have an object of natural numbers, we should have its dual, 

an object of co-natural numbers, and so on. Since we treat '1' as a special ob-

ject and the elements in CPL are defined in this way, we destroy the beauty of 

symmetry. We will see the consequence of this shortly. 

Example 4.1.2: Assume that we have defined all the objects in section 3.3. 

Then 

succ o zero, 

pi2 o pair(succ a zero, nil), 

evalo prod(pr(curry(pi2), curry(succ o eval)), 1) a pair(succ a succ o zero, succ o zero) 

are all CPL elements. 0 

As we can see from this example, we cannot regard all the elements as data. 

'succ o zero' and 'pair(succ o zero, nil)' can be data, but 'pi o pair(succ o zero, nil)' 

cannot be. We call special data-like CPL elements canonical CPL elements. The 

definition is: 

Definition 4.1.3: A canonical CPL element is a CPL element which wholly 

consists of natural transformations introduced by left objects and factorizers by 
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right objects. Formally, a canonical CPL element, c e CE, is defined by 

c::=IIaLocIt,1)R(ei,..., en)  oc 

where crL is a natural transformation of a left object and 0R is a factorizer of a 

right object. Note we often do not write I at the tail of canonical elements. II 
From this definition, 'pair' and 'curry' can form canonical elements, but 'pill, 

'pi2' or 'eval' cannot. So for the right objects, factorizers are the means of 

creating canonical elements. On the other hand, 'zero', 'succ' and 'cons' can 

form canonical elements, but not 'pr' or 'case'. So for the left objects, natural 

transformations are the means of creating canonical elements. 

Canonical Non-Canonical 

left object 
natural transformations factorizers 

e.g. zero, succ, nil, cons e.g. case, pr, pri 

right object 
factorzers natural transformations 

e.g. pair, curry e.g. pi l l  pi2, eval 

Definition 4.1.3 is beautifully symmetrical as we hoped from the symmetry of 

CDT. In addition, if we look at the canonical elements in other programming 

languages, we note that 'pair' corresponds to making pairs of data, 'curry' cor-

responds to lambda abstraction and both create canonical things (i.e. we cannot 

process them any more as themselves), and also we note that 'pr' and 'case' 

are programming constructs corresponding to primitive recursive definitions and 

case statements and they can never be data. Therefore, definition 4.1.3 fits well 

with the usual notion of data. 

Of course, this is not the only definition of canonical elements. It defines quite 

lazy canonical elements. It does not care what are inside factorizers. For exam-

ple, 

pair(pil o pair(succ o zero, nil), zero) 

is a canonical element of 'prod(nat, nat)' from this definition. Some might not 

want to call it canonical because it is equal to another canonical element 

pair(succ o zero, zero) 
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which looks more canonical. However, this is because 'prod' is a rather special 

object. In general, expressions inside factorizers may not be elements, so we 

cannot demand them to be canonical (or we have to treat product-like objects 

special). One might still accept this easily since canonical elements in Martin-

Lôf's type theory are similar to ours, but another queer aspect of our definition 

is that we accept 

pair(pi2, pu) o pair(succ, I) o zero 

as a canonical element. It is equal to the following element 

pair(pi2 o pair(succ, I) o zero, pil o pair(succ, I) o zero), 

but this is again because of the special property of 'prod'. In general 

?I)R(e1,...,e)oc 

is not equal to something in the form of 	. . , cj. For example, we cannot 

always find other simpler canonical elements which is equal to 'fold(f, g) o 

(where 'fold' is the factorizer of 'inflist'). 

There are many views of computation, but in CPL computation is the reduction 

of an element to a canonical element equal to the given element. 

e = C 

Since the reduction is not straightforward, we want to do step-by-step reduction. 

Therefore, we modify the above form of reduction to the following one. 

(e, c) = c' 

This means that a CSL expression e applied to a CPL canonical element c is 

reduced to a CPL canonical element c'. It is like calculating the result of applying 

an element c to a function e. Obviously, e o c should be semantically equal to 

C'. Since a CPL element is a morphism from the terminal object and 'I' is its 

canonical element, if we want to reduce an arbitrary CPL element e we can ask 

for the following reduction. 

(e, I) =*- c 
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In the following, we assume that the associativity of 'o' (the composition of 

morphisms) has been taken care by some means so that in our rules we do not 

consider it. We also assume that there are no functors in CPL elements because 

we can always replace them with factorizers and natural transformations. For 

example, 

eval o prod (curry (succ), nil) 

is equivalent to 

eval o pair(curry(succ) o p11, nil o pi2). 

Let us now define rules for the reductions. The simplest one is for identities. 

Since I o c is equal to c, we should have the following rule. 

(I, c) = c 	 (IDENT) 

Next, for the composition, we naturally have 

(e2, C) =. ci' 	(el, C") 	C' 

(el o  e2, C) 	c' 	
(COMP) 

In case that e is a natural transformation introduced by a left object or a fac-

torizer introduced by a right object, the rule is easy because the composition of 

e with a canonical element is canonical by definition 4.1.3. 

(ft, c) . aLO C 	 (L-NAT) 

(bR(el, . . . , e,), c) . l'R (el , ... , e,) o C 	 (R-FACT) 

For example, (succ, zero) = succ o zero and 

(curry(pi2), pair(zero, succ o zero)) = curry(pi2) o pair(zero, succ o zero). 

Difficulty comes in in the other cases, i.e. when e is a natural transformation of 

a right object or a factorizer of a left object. Let us first consider the case for a 

factorizer th  introduced by the following left object. 

left object L(X) with ?t.'L is 

aL:E(L,X) - E'(L,X) 

end object 
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From the property of this object, we have a CSL equation 

E'(&L(e),I) o aL = e o E(bL(e),I). 

An instance of this equation is 'pr(f, g) o succ = g o pr(f, g)', and in this case 

we should have a rewrite rule from 'pr(f, g) o succ' to 'g o pr(f, g)'. Therefore, in 

general we might have the following rule. 

(eoE(?,bL(e),I),c) =. C' 

(El (111'L(e), I), aL 0 C) =. C' 

However, this rule is not what we wanted. We wanted a rule for (l'L  (e), c") =. c". 

In order that the above rule to be a one we want, E'(L, X) should be simply L, 

and we get 

(eoE(&L(e),I),c) = C' 

(1I)L(e), L o c) = C' 	
(L-FACT) 

The restriction that demands E'(L, X) should be L is the first restriction we 

put onto objects in order to obtain the CPL computation rules. The left objects 

introduced in chapter 3, initial object, coproducts, natural number object and 

lists, all satisfy this restriction except the left adjoint functor of 'list' which we 

do not expect to be in the world of computation. If E'(L, X) is something other 

than L, we are allowing to have the left adjoint L' of E'(. , X) by 

left object L'(X, Y) with t&Ls is 

aL':Y —4 E'(LL',X) 

end object. 

In familiar categories (e.g. the category of sets), a functor F: C —p C hardly has 

a left adjoint: e.g. the product functor . x A does not have one, nor does the 

coproduct functor • + A. 

As an example of L-FACT, let us write the rules for the factorizer associated with 

the natural number object. There are two rules for two natural transformations, 

'zero' and 'succ'. 

(e, C) 	c' 	 (e'o pr(e,e'),c) = c' 
(pr(e, e'), zero o C) 	c' 	(pr(e, e'), succ 0 c) 	C' 
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Let us now consider the last case, the case for the reduction rule of a natural 

transformation aR introduced by the following right object declaration. 

right object R(X) with OR  is 

czR:E(R,X) - E'(R,X) 

end object 

From the property of this object, we have a CSL equation 

aR o E(&R(e),I) = E'(?,I'R(e),I) o e. 

An instance of this equation is 'p11 o pair(f, g) = f', and in this case we should 

have a rule to rewrite 'Pilo pair(f, g)' to 'f'. Therefore, in general we have a rule 

rewriting from the left-hand side to the right-hand side as the following rule. 

(E'(&R(e),I) 0 e, c) = c' 

(aR,E (OR (e),I) 0 C) = c' 

However, this rule is not quite right because E(&R(e), I) 0 C is not a canonical 

element. We cannot have functors in canonical elements. Therefore, what the 

rule should really look like is 

c = E (OR  (e),I) 0 c" 	(E'(1&R (e),I) 0 e, C") = C' 

(aR,C) = c' 	 (+) 

We now have a different problem of finding out an expression e and a canonical 

element c" from a given canonical element c such that 

c = E (OR (e),I) 0 

Since we are dealing with computation, we need a mechanical way of solving this 

problem. Let us introduce another form of reduction rules. 

(c,E,R) " (OR (e),c") 	 (*) 

such that c = E(&R (e), I) 0 c" where E is a functorial expression in which R is a 

variable. By these rules, we can rewrite the rule (+) to 

	

(c,E(R,X),R) "-h (fr,(e),c") 	(E'(ç1R(e),I) 0 e, C
11) = c' 

	

(aR,C) 	C' 
(R-NAT) 
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We now have to list the rules for (*). If E is simply R itself, c should be 

E (OR (e), I) o c" = OR (e) o c". Therefore, the rule should be 

(Olt  (e) o c",R,R) 	(OR (e),c "). 	 (R-NAT-V) 

Next, if E(R, X) does not depend on R, c is E (OR  (e), I) o c" = c", so the rule 

may be 

(c,E,R) ' 

but where does OR(e)  come from? We cannot determine e. Therefore, E(R,X) 

must not be independent from R (i.e. E(R,X) should not be free in R). 

The case left is when E(R, X) is not a variable but a real functorial expression. 

Let it be 

F(E1 (R,X),... ,E(R,X)), 	 (1) 

where F is a functor name. In this case, the equation we are solving is 

c =F(El(R(e),I),...,E(&R(e),I)) oc". 	 (2) 

Since functors are always represented by their associated factorizers, the equation 

looks like 

C = (p(•. 0 El  (OR  (e), I) 0 ... 0 E(?.'R(e), I) 0...) 0 C. 	 (3) 

As we can see, we might have to pick up the same &R(e) from more than one 

place and this would be a trouble. Because OR(e)  is a general CSL expression 

and we cannot do theorem proving to show two CSL expressions are equal when 

doing the CPL computation. Therefore, we need to restrict that R(e) should 

appear only once in (3). In order for this, we have to first restrict that only one 

E1  in (2) contains R. Without loss of generality, we can assume it is E1  (R, X), 

and since we are only interested in the first argument of F, we assume that F is 

a unary functor and E(R, X) is F(E(R, X)). Now (2) looks like 

c = F(E (OR (e),I)) 0 C '1 , 	 (2') 

but still (3) might have more than one OR(e)  because when we expand functors 

by factorizers using (LFEQ) or (RFEQ) in definition 3.4.1, we might duplicate 
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OR (e). Before stating the restriction to guarantee the no-duplication of OR (e), let 

us note that F should be a functor introduced by a right object declaration. This 

is because, if we look at the equation (3), c is a canonical element consisting of left 

natural transformations and right factorizers, so OF  should be a right factorizer. 

Let the following be the declaration of F. 

right object F(Y) with OF is 

/31 :Ei (F,Y) -' E(F,Y) 

(4) 

13m:Em (F,Y) ) 

end object 

From the equation (RFEQ) in definition 3.4.1, (3) really is 

c = tI)F( El' (I, E (OR (e), I)) 0 /31 0 E1  (I, E (OR (e) 

 

E(I,E(&R(e),I)) O/3m OEm(I,E (OR (e),I))) oc" 

In order that OR(e) should appear only once in this equation, Y should appear 

only once in one of E, and E. In order to show that Y should not be in one of 

E, let F be simply 

right object F(Y) with OF is 

/3:Y - F 

end object. 

(3) becomes 

C = OF (9 o E (OR (e),I)) 0 

We may demand that c should be OF (ê) o a and find OR (e) such that 

è = /3o E (OR (e),I), 

 

but how can we solve this equation? In general, we need theorem proving for 

this. We should have reduced the problem recursively into 

(6,.k, R) '\ 

but there is no way to do this if Y appears in one of E1 , because a should never 

be an element. The typing rule in definition 3.2.2 gives us 

è:Y—Z 
OF (è): Z -+ F(Y) 
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and we cannot choose Y to be the terminal object. If Y and F were the other 

way round in (4'), we could choose Z to be the terminal object to make a an 

element. Therefore, if Y is in one of E in (4), we have a possibility of reducing 

the problem of solving (3') into a smaller problem of the same kind. Without 

losing generality, we can assume that Y only appears in El in (4). Now, (3') is 

C = &p(E(I,E(0R(e),I)) o/31,/32,...,/3m) 	 (3") 

We demand c to be &p(1, a2, •., e) 0 a, 50 (3") is further rewritten to 

OF (al, e2, . . . , a111) 0  a = 	 (k11 	E(1&R(e) , I)) 0 /31, /32, .. . , /3m) 0 C 11 . 	 (3 1") 

Here, we cannot jump to the conclusion that al  is E(I,E (OR (e),I))o/3l, e 2  is /32, 

and a is c", because a part of a may well.contribute to form E(1, E((R(e), I)). 

What is desirable is that we could rewrite &p(è1, e2,.. ., ,11) o to t/(e'1, a,... , e) 
like pair(f, g) 0 h = pair(f 0 h, g 0 h). This is possible when each Eit in (4) does 

not depend on F. 

Proposition 4.1.4: Let R be a right object defined by 

right object R(X 1 ,. . . , X,) with Olt is 

aj :Ei (R,X i,..., X.) -+ E(X 1 ,. ..,X 11 ) 

end object 

(note that E does not depend on R), then 

?PR(e1,. ..,em) 0 e' = &R(el 0 Ei (e',I,. . . ,I), .. ,Cm  0 Em (',I,... ,I)) (REQC) 

Proof: From (RCEQ) in definition 3.4.1, 

a1 0 El(t/.'R(el, .. .,em) 0 e',I,.. . I)= fl  A 

am oEm (1)bR(el,..., e m ) o el , I,...,I)=fm A 

='. ?,&R(e1,..., em) oe'=?,&R(f1,...,fm). 
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Using (REQ I) and the fact that E1 is covariant in R, we get 

el  o Ej (e',I,. I,—, ,I) = fi A... A em 0 Em (e',I,. I,—, I) = fin 

*tI)R(e1, ... , em) o e'=1pR(f1, ... ,f). 

Therefore, 

tI)R(e1,...,e)oc '  = t&R(ej 

We call this kind of right objects unconditioned. The name indicates that the ob-

jects are characterized without using conditional CSL equations. In fact, (REQJ, 

(REQC), (RFEQ) and the following (REQI) characterize the unconditioned right 

objects.' 

(REQI) 

Therefore, we assume that in (4) F does not appear in any of E. As we have 

already assumed that Y appears only in k ' , (4) now looks like 

right object F(Y) with OF  is 

th:Ei(F)—'E(Y) 
02 :E2 (F) -+E 

I3ni :Em (F) - 
end object 

(Es ) .. . , E- ,,,, do not depend on F or Y in this case, but in general F might have 

parameters other than Y and they can appear in E,. . . , E), and (3) is 

tI)F(el 0 E1 (),e 2  0 E6 (è),. ,m0 E()) 

= 'p(E(E (OR  (e),I)) oflioEi(c"),th oE2 (c") ...... oE(c")). () 

If, furthermore, the first argument of OF  is an element, we can reduce the problem 

of solving (3) into 

0 E,() = E(E(?/.' R (e), I)) 0 01 0 Ei(c"). 	 ( 5) 

'We can define unconditioned left objects as dual. 
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Since o k1(Z) is an element, we can ask its canonical element and it becomes 

almost like the original object (3) except E is replaced. Let us see the typing 

rule for OF defined in definition 3.2.2. 

fl : Ei (Z)-4E(Y) 

Since OF in () is making an element, Z above should be the terminal object 

1. In order that f above is also an element, E1 (Z) (or E1 (1) because Z is 1) 

should also the terminal object. Because E1 (Z) cannot be independent from Z, 

E1 (z) should be simply Z. Therefore, (5) is 

a1  0 Z = E(E(?bR(e) , I)) 0 ,81  0 c". 	 (51) 

As i 0 Z is an element, we can ask its canonical element by 

(a1 ,a) = a', 	 (6) 

and we can also ask to solve 

at = .E(E (Olt (e) , I)) 0 all 	 (7) 

by 

(a', E (E(.R, X)), R) ' (? 4'R(e), a"). 

If we set c" to be 

a2  0 k2 (C . . , a 1  0 k. 

() is satisfied from (REQ) in definition 3.4.1. 

kil 	o,61 oE1 (c") 

= E(E(i,R(e), 1)) 0 #1 0 El (OF (C" , e2 0 E2 (a),. .. ,a 0 Em(a))) 

= E(E(?/.'R(e), I)) o,81 0 a" 	.................................(from (REQ)) 

= a' 	............................................................(from (7)) 

= a1  0 a 	........................................................(from (6)) 

$oE1 (c") 	............................................... (i=2,...,in) 

= m 0  E(ØF(a", a 2  0 E2 (a),.. . ,am  0 

= 	0 E1 (a) 	................................................ (from (REQJ) 
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Therefore, we got the following rule. 

E(.E(R, X)), R) "-. (çb(e), a") 

(b(a1 ,a2 ,.. .,am)o a,F(E(R,X)),R) 	 (R-NAT-F) 

"-b (?4'R(e),?,bp(a",e2oE2(e),...,amoEm(a))) 

As an example of the rules (R-FACT), (R-NAT), (R-NAT-V) and (R-NAT-F), let 

us write the rules for the exponentials. The CDT declaration of the exponentials 

is 
right object exp(X, Y) with curry is 

eval: prod(exp, X) --+ Y 

end object 

as we have seen in subsection 3.3.3. The rule (R-FACT) is simply 

(curry(e), c) 	curry(e) o c, 

and the rule (R-NAT) is 

(c, prod(exp, X), exp)'.e (curry (e), c") 	(e,.c") = c' 
eval,c) = c' 

The rule (R-NAT-V) is simply 

(curry(e) o c", exp, exp) -,+ (curry(e), c"), 

and, finally, the rule (R-NAT-F) is 

(è', exp, exp) '- (curry (e), a") 
(pair(è1 , a2 ) o Z, prod(exp, X), exp) '- (curry(e), pair(è", a2 0  a)) 

We may simplify the last three rules and have the next one instead. 

el, C) = curry(e) o c" 
	

(e, pair (c", e2 -0 c)) = c' 
(eval, pair 

We will see an example using these rules in the next section. 

In order to obtain (R-NAT-F), we have put several restrictions to the right 

object declaration. To state the restrictions formally, let us introduce the notion 

'productive'. 

Definition 4.1.5: Functorial expressions which are productive in X are gener-

ated by the following two rules. 
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X itself is a functorial expression productive in X. 

If P(Y1 ,. . . , Y,) is a functor which is productive in Y and E is a functorial 

expression productive in X, P(E 1 ,.. . , E,_, E1, E+i,. . . , E,) is productive 

in X, where. E1 ,.. . , E_ 1 , E,+1,. . . , E1  are functorial expressions which do 

not contain X. 

A functor P(Y1 , .. . , Y1 ) is called productive in its i-th argument 1', when P is 

declared as a right object and its declaration 

right object P(Y1 , . .. , Y,) with 1I'p  is 

ap,1 : Ep, i (P, Yi , . .. , Y,) -+ E 1  (P, Y1 ,.. . , Y) 

ap,: Ep,(P, l'i,. . . , Yn) 	 Eo y,(P, Y1,....  Y,) 

end object 

satisfies 

P is unconditioned (i.e. P does not appear in E, 1 ,.. . , 

Y1  does not appear in E 1 ,.. . , Epml 

Yi  appears only one of E, 1 ,.. . , 	so let us assume that it appears in 

E ,1  only, 

E,1  is simply F, and 

Ep,, is a functorial expression productive in Y. 
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Therefore, the declaration above may look more like 

right object P(Y1 , ... , Y,. . . , Y,) with tp is 

01p,: Ep,1(P,Y 1 . ... , Y.._ 1 , l+1, . . . , Yy ) 

E,1 (Y1 ,.. .,Yj_ 1 ,Y1+1 ,...,Y) 

(P) 

p,m:Epm(P,Yi,...,Y_i,Z+i,...,Yn) + 

end object 

pj  may be called projection to Y. 

The functor 'prod' is a typical productive functor. It is productive in its both 

arguments. The functor 'exp' is not productive in any of its arguments. A 

functorial expression 'prod(prod(X, exp(Y, Z)), prod(X, U))' is productive in U 

but not in X or Y or Z. 

Definition 4.1.6: A right object R is called computable if its declaration 

right object R(X 1 ,. . . , X,) with OR  is 

zR,1: ER,l(R, X 1 ,. . . , X,) —* E 1  (R, X 1 ,. . . , 

(RC) 

R,m ER,m(R, X 1 , . . . , X,) _ E(R, X,. . . 

end object 

satisfies that ER,,.... , ER,,n are functorial expressions productive in R. We also 

call a left object L computable when its declaration is 

left object L(X 1 , . .. , X) with ?L is 

cZL,1:EL,l(L,Xl,. . .,X) —+ L 

(LC) 

L, m:EL, m (L,X1,.. .,X) — L 

end object 
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The reduction rules we have defined in this section work when all the objects we 

define are computable, and all the objects declared in section 3.3 are computable 

except the obscure ones in subsection 3.3.8. Obviously, we did not want to have 

those obscure objects in our datatype system and the computability constraint 

gets rid of them. In other words, the categories which are defined by declaring 

computable objects cannot be richer than cartesian closed category with recursive 

objects. Note that we did not make the restriction in the beginning. We had the 

ability to declare a lot of other objects, but it turned out that in order to be able 

to discuss the computability in CDT, the categories should be cartesian closed 

with recursive objects. This signifies the importance of cartesian closed cate-

gories in computer science yet again (e.g. the models of typed lambda calculus 

correspond to cartesian closed categories). 

Note that not all the productive objects are computable by the definition 4.1.5, 

but from now on we only treat computable objects, so productive objects mean 

computable productive objects. 

Definition 4.1.7: Let D1 ,. . . , D1 be a sequence of CDT declarations defining 

only computable objects and let (I', A, 'I', 0) be the corresponding CSL theory 

defined by definition 3.4.3. Then, we can have computation rules for CPL ele-

ments over the CSL signature (1', A, 'I'). The computation rules are divided into 

two: those in the form of 

c' 

where c and c' are canonical elements and e and c can be composed (i.e. e o c is 

an element), and those in the form of 

(c, E, R) '\k (l'R(e1,.. . , em ), c') 

where c and c' are canonical elements, R is a right functor name, E is a functorial 

expression productive in R and, if c is an element of E', E should be more general 

than E'. 

1. IDENT 

(1, C) 	c 
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COMP 

	

(e2 , c) =:>. c" 	(e1, c") 	c' 
(el 0 e2 , C) 	C' 

L-NAT 

	

(cL,J, c) 	. 	 0 C 

R-FACT 

(&R(e1,.. .,em),c) = &R(e1,.. .,em) 0  

L-FACT 
(e1  o EL,J[t/.L(el,. . . , e) /L], c) 	C 

(t'L(e1,. . . ,e,,), CILJ 0 c) = c' 

R-NAT. 

(C,ERJ ,R) 

(EJ[1'R(el,. . . , e,,)/RJ o e 1 , c") 	C1  

(aR,J, c) 	C1  

R-NAT-V 

o c", R, R) ". (1'R(el,. . . ,e,,), c") 

R-NAT-F 

REE, 	Y,EE, 1  

	

(c', E,1[E/Y], R) 	(l'R(e1.... ,e,$), C") 

(l'R(e1,. . . ,es), itp(e1 o 

0 Ep,,_ i [c/PJ,C", èj+l  0 Ep11 [c/P],.. ,è,, 0 Ep,m [C/P])) 

where the objects L, R and P are defined as (LC), (RC) and (P), respectively, 

and R E Ei  means that R appears in a functorial expression E,. f 

We have to show that the rules are well-formed, but we have to show their 

soundness at the same time. We will do this in section 4.3 as well as showing 

that every reduction terminates (in other words, every element is normalizable 

by these rules). 
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4.2 An Example of using Reduction Rules 

In this section, we will see an example computation in CPL using the reduction 

rules defined in the previous section. Since computation by hand is very tiresome, 

we do only one example, but we will see some more examples of CPL computation 

done by a computer in chapter 5. 

Let us assume that we have declared the terminal object as in subsection 3.3. 1, 

products as in subsection 3.3.2, exponentials as in subsection 3.3.3 and natu-

ral number object as in subsection 3.3.4. We can write down instances of the 

reduction rules in definition 4.1.7 as follows. 

(I, C) 	. c 

(e2, C) 	c" 	(el , c") = c' 

(el oe2 ,c) =>. C,  

For the terminal object, we have 

(IDENT) 

(COMP) 

(!,c) 	!oc. 	 (R-FACT) 

For products, we have 

(pair(e i ,e2 ),c) = pair(e i ,e2 ) o c, 

(c, R, R) -,+(pair(e 1 , e2 ), c") 	(e 1 , c") 	c' 
(pii,c) = c' 

and 

(pair(e 1 ,e2 )oc, prod, prod) '- (pair(e i ,e2 ),c) 

(RFACTpair) 

(R-NAT 11 ) 

(RNATVprOd) 

If we combine (R-NAT 11 ) and (RNATVpmd) together, we get a familiar rule 

Similarly, for 'p12', we have 

(e l , C) = c' 
(pi, pair(e1 , e2 ) o c) = c' 

(R-NAT 11 ) 

(e2, C) 	c' 
(pi2, pair(e 1 , e2 ) 0  c) 	c' 

(R-NAT) 
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For exponentials, as we have seen in the previous section, we have the following 

two rules. 

	

(curry(e), c) = curry(e) o c 	 (R-FACT.) 

e l , C) = curry(e) o c" 	(e, pair(c", e2 o c)) = c' 
(eva!, pair(e 1 ,e2) o c) 	c' 

	(R-NAT' vai) 

For natural number object, we have 

(zero, c) = zero o c, 	 (LNATgero ) 

(succ, c) = succ o c, 	 (L-NAT8 ) 

(e l , C) = c' 
(pr(e 1 ,e2 ), zero o c) 	c' 	 (L-FACTZO) 

and 
(e 2  o pr(e i , e 2), c) = c' 	

(L-FACTSUCC) (pr(e 1 ,e2 ),succo c) 

Now let us try to calculate '1 + 1' in CPL. The addition function is defined in 

subsection 3.3.4 as 

add = eval o prod (pr (curry (pi2), curry(succ o eval)), I). 

If we expand 'prod' by 'pair', we get 

add = eval o pair(pr (curry (pi2), curry(succ o eva!)) o pu, pi2). 

Therefore, the calculation '1 + 1' corresponds to the following reduction. 

(eval o pair(pr(curry(pi2), curry(succ o eva!)) o pu, pi2), 

pair(succ o zero, succ o zero)) 	c 
(1) 

From (COMP), 

(pair(pr(curry(pi2), curry(succ o eval)) o pu, p12), 

pair(succ o zero, succ o zero)) 	c 1  

(eval,c 1 ) 	c 

(eval o pair (pr(curry(pi2), curry(succ o eval)) o pu, pi2), 

pair(succ o zero, succ o zero)) = c 

From (R-FACT), c 1  is 

pair (pr (curry (pi2, curry(succ o eva!) o pu, pi2) o pair(succ o zero, succ o zero), 



CHAPTER 4. COMPUTATION AND CATEGORICAL DATA TYPES 128 

so we need to calculate 

(eva!, pair(pr(curry(pi2, curry(succ o eval) o pil,pi2)o 

pair(succ o zero, succ o zero)) = C. 

From (R-NAT' 1), 

(pr(curry(p12),curry(succ o eval)) o p11, 

pair(succ o zero, succ o zero)) =:> curry(el ) o c2  

	

(e 1 , pair(c2 , pi2 o pair(succ o zero, succ o zero))) = c 	 (2) 

(eva!, pair(pr(curry(pi2, curry(succ o eva!) o p11, p12) 

	

pair(succ o zero, succ o zero)) 	C. 

From (COMP), 

(p11, pair(succ o zero, succ o zero)) 

(pr (curry (p12), curry (succ o eval)),c3) = curry(e1 ) o c2  

(pr(curry(pi2), curry(succ o eval)) o p11, 

pair(succ o zero, succ o zero)) = curry(e1 ) o c2  

From (R-NAT ,  ,11 ), 

(succ o zero,!) 	c3  
(p11, pair(succ o zero, succ o zero)) => c3  

and from (L-NAT 0) and (L-NAT 8 4, c3 is 

succ o zero o!. 

Going back to (3), we need to calculate 

(pr(curry(pi2),curry(succ o eval)),succ o zero o!) = curry(el ) o c2 . 

From (L-FACT 8 j, 

(curry(succ o eva!) o pr(curry(pi2),curry(succ o eva!)), 

zero o!) 	curry(el ) 0 C2 

(pr(curry(pi2), curry(succ 0 eval)),succ o zero o!) = curry(el ) 0 c2  

and from (COMP) 

(pr (curry (p12), curry (succ o eva!)), zero o!) => e4  

(curry(succo eval),c 4) = curry(e2 ) 0 C2 

(curry(succ 0 eval) 0 pr(curry(pi2), 

curry(succ 0 eva!)),zero o!) = curry(e l ) 0 

(4) 
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From (L-FACT), 

(curry(pi2),!) 	c4  
(pr(curry(pi2), curry(succ o eval)), zero o!) = c4  

and from (R-FACT,,), c 4  is 'curry (pi2) o!'. Going back to (4), e 1  is 'succoeval' 

and c2  is curry(p12) o!. Therefore, going back to (2), we now have to calculate 

(succ o eval, pair(curry(pi2) o !, p12 o pair(succ o zero, succ o zero))) = 

From (COMP), 

(eval,pair(curry(pi2) o!, 

pi2 o pair(succ o zero, succ o zero))) 

(succ,c 5 ) 	c 	 (5) 

(succ o eval, pair(curry(pi2) o!, 

	

pi2 o pair(succ o zero, succ o zero))) 	c 

From (R-NAT 1), 

(curry(p12) o!,!) 	curry(e2 ) o c6  

	

(e2 , pair(c6 , p'2  o pair(succ o zero, succ o zero))) 	c5  

	

(eva!, pair(curry(p12) o !,pi2 o pair(succ o zero, succ o zero))) 	c5  

From (R-FACT,) and (R-FACT,), e2  is 'p12' and c6  is '!o !', so we have 

(pi2, pair(! o !, p12 o pair(succ o zero, succ o zero))) = 

From (R-NAT), 

(pi2 o pair (succ o zero, succ o zero),!) =:>. c5  
(pi2, pair(! o !, pi2 o pair(succ o zero, succ o zero))) 	c5  

From (COMP), 

(pair(succ o zero, succ o zero),!) 	c6  

(p12, c6 ) 	C& 

(pi2 o pair(succ o zero, succ o zero),!) 	c5  

From (RFACT pair), c6  is 

pair(succ o zero, succ o zero) o!, 
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so we have 

(p12, pair(succ o zero, succ o zero) o!) 	c5  

and (R-NAT) 

(succ o zero,!) 	Cr" 
(p12, pair(succ o zero, succ o zero) o!) 	c5  

By using (L-NAT) and (L-NAT BU4j, c5  is 

succ o zero o!. 

Now, we go back to (5) and we need to calculate 

(succ, succ o zero o!) = c, 

but this is straightforward from (L-NAT.,,,, ) and c is 

succ o succ 0 zero o!. 

Therefore, the reduction (1) is 

(eval o pair (pr(curry (pi2), curry(succ o eva!)) o pu, p12), 

pair(succ o zero, succ o zero)) = succ 0 SUCC o zero o! 

that is, we have shown '1 + 1' is '2' in CPL. 

4.3 Well-Definedness and Normalization Theo-

rem for Reduction Rules 

In section 4.1, we discussed what is computation in CPL and obtained a set 

of reduction rules (definition 4.1.7). Usual questions to be asked when we get 

reduction rules are, firstly, whether they are well-defined or not and, secondly, 

whether they are normalizing or not. In this section, we will answer both ques-

tions affirmatively. 

Let us assume in this section that we are working in a CSL theory (I', A, 'I', 9) 

which is obtained by a sequence of CDT declarations, D1 , . . . , D1, each of which 

is a computable object declaration. 
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First, we prove the well-definedness of the reduction rules. 

Theorem 4.3.1: Well-Definedness Theorem: Let e o c be an element in 

(, i, ') and c be a canonical element. If from the rules listed in definition 4.1.7 

we deduce 

	

(e '  c) 	c', 

then c' is a canonical element and e o c = c' holds in (1', i, W, 0) (or in any CSL 

theory model of this). 

Proof: We prove at the same time that for a canonical element c, a right functor 

a functorial expression E productive in R which is more general than the type 

of c, if the rules in definition 4.1.7 deduce 

	

(c,E,R) 	(e, c'), 

then e is l'R(e1,. . . , e,,) for some e1 ,. . . , e,, c' is a canonical element and c = 

E[t/(ei ,.. .,em)/R] o c' holds in (r,i,W,0). 

The proof is done by mathematical induction on the length of reduction, so all 

we have to do is to check each reduction rule. 

IDENT 

(I,c) 	c 

It is trivial from I o c = c. 

COMP 

	

(e2 , c) = c" 	(e l , c") 	c' 

	

(el 0 	e 2 , c) 	c' 

From the induction hypothesis c' is canonical and c' = el 0 c" = e1  0 e2  0 C- 

L-NAT 

(aL,J, C) =P. aL,J 0 C 

It is trivial since CiL,j 0 c is a canonical element. 

R-FACT 

(OR (e1 ) .. .,em),c) =. 'OR (e1,...,em) 0  

It is again trivial since R(e1,.. . , em) o c is a canonical element. 
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L-FACT 
(e5  o EL,J[?4'L(el,. . . ,e)/L], c) = c' 

(t&L(ej,. . :, Cm), aL,J 0 c) => C' 

If aj,, o c is canonical, c is canonical, and from (LEQ 1) 

ey  o EL,J['L(e1,.. . , e,,) /L] 0 C = 1/)L(C1,. . . ,e,,) o ftj 0 C. 

Therefore, the premise of the rule is well-formed, so from the induction 

hypothesis c' is canonical, and 

C = e2  o EL,,[ij?L(el,.. . , e,,.)/L] o c = 1IL(e1,.. . ,e,,) 0 aL,, 0  C- 

R-NAT 

(c, ER,J,  R) 	(OR (el,. . . , e,,), c") 

e) /R] 0 e, c" ) 	C' 

(aR,,,C) =J. C 

Since aRj can be composed with c and aR,,  has the type ER,J —+ E 1 , c 

is an element of a functorial expression not more general than ER,J.  From 

the induction hypothesis, c" is a canonical element and 

ER,J[l'R(e1, . . ., e.)/RI 0 C't = C. 

Therefore, 

aR,J 0 C 

= aR,, 0 ER,J[çt'R(el,.. . , e,,)/R] 0 c" 	.................. (from (REQ 1 )) 

0 e• 0 C" 	..................(from hypothesis) 

= c. 	.........  ..................................... (from hypothesis) 

R-NAT-V 

0 c",R,R) '- (?,&R(el,. ..,em),C") 

R is a variable, so it is more general than anything, so the rule is well-

formed. Since 1'R(e1,. . . , em) o c" is a canonical element, so is c". 
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8. R-NAT-F 

REE1 	YEE ,1 	(è5,c)=c' 

(c', E, 5 [E1/Y,], R) "-* (l'R(e1 3  . . . , ei), c") 

(Op 	Z.) oc,P(Ei ,...,E),R) "-* 

(?,bR(el,. . . , 	o Ep, i [c/P],..., 

0 Ep,,_ i [c/P], C", 	0 Ep1ji [c1PJ,. 	o Ep, m [c/P])) 

o c = 	o Ep, i [c/P],...) and from the typing rule of i&p, 

Zi o Epj[c1Pj = êi o c is an element of a functorial expression which is 

not more general than E,1[E11Y1,. . . J which is not more general than 

E ,5 [E1 1Y1 ]. Therefore, the premises of the rule are well-formed and 

ej  o Ep,1 [c/P 

= ejoc 	...........................................(Ep,, is simply F) 

= Cl 	..............................................(from (1,c) = c') 

= E,J[EI/Y] [?.'R(e1,.. .)/R] o c"...... (from (c', E, 1 [E,/Y1 ], R) 

Therefore, 

P(El ,...)[&R(e j ,...)/R] o Op(2 1  oEp1[c/P],...,c I' 
,...) 

= &p(cxpi,. . .,E, J[E/ Y] [tbR(el,. . .)/R],...) 

(expand F) 

= t&p(i o EPA  [c/P],...,Ej,J[Ej/Yj][t.bR(el,  ... )/R] oc ..... ) 

(from 4.1.4 and (REQ,j) 

= Op (eh o Ep, i [c/F],.. . , ^ej  o Ep, 1 [c/P] .... ) 	............. (from above) 

= &(a 1 ,.. . , m) o c . 	.................................... (from 4.1.4) 

Of course, Op ( a, o Ep, i [c/P],. . . ,c",...) is a canonical element. 

We have proved the theorem as well as shown the well-formedness of the reduc-

tion rules.- a 
Next, we prove the normalization, that is to prove the following theorem. 
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Theorem 4.3.2: Normalization Theorem: For a canonical element c and a 

CSL expression e whose domain is compatible with the codomain of c (i.e. we 

can have e o c as an element), there is a canonical element c' such that 

(e, c) 	. C'  

by the rules listed in definition 4.1.7. (] 

Before proving this theorem, we need some preparation. Note that the theorem 

proves the two things together: the existence of c' and the reducibility of (e, c) = 

C'. Therefore, from the existence part, we will have the following corollary. 

Corollary 4.3.3: For any element e in (1', i, W), there is a canonical element c 

such that e = c holds in (I', A, W, e). J 

Showing the reducibility can be regarded as showing the termination of compu-

tation in CPL. So, every program terminates in CPL. This is what we expected 

because we only use primitive recursions. 

First, we show a property of canonical elements. 

Proposition 4.3.4: A canonical element of R(E 1 ,. . ., E,,) for a right object R 

defined by (RC) has the following form. 

&R(e1,...,em)oc 

where c is another canonical element. 

On the other hand, a canonical element of L(E 1 ,... , E1 ) for a left object L 

defined by (LC) has the following form. 

aL,, 0 C 

where c is another canonical element. 

Proof A canonical element only consists of natural transformations of left 

objects and factorizers of right objects. Therefore, a canonical element should 

look like either 

aL,, 0 C 	or 	&R(e1,. . . , e m ) o C. 

From the typing rules in section 2.4, the first one always gives an element of 

L(E 1 ,.. . , E) and the second one gives an element of R(E 1 ,. . . , En). 0 
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From this proposition, we can see that whenever we have 

(e, c) 	or 	(c,E,R) 

we can always apply exactly one of the rules in definition 4.1.7. In other words, 

the computation in CPL is never stuck and deterministic. We can always proceed 

to the next computation step. 

We are going to prove the normalization theorem by the computability method 

due to Tait [Tait 671. This method is often used to show normalization of various 

systems especially that of lambda calculi (see, for example, [Stenlund 721 and 

[Lambek and Scott 86]) where two kinds of induction are used: induction on 

types and induction on structures. The method usually goes for lambda calculi 

as follows: 

Define the notion of computable terms inductively on types. 

Show that any computable term is normalizable. 

Show that all the terms are computable by induction on terms. 

Therefore, any term is normalizable. 

The notion of computable terms is stronger than that of normalizable terms, 

but we need this stronger notion (which is a part of the essence of the Tait 

computability method) to carry out the normalization proof. The computability 

predicate also divide the two inductions involved in the proof clearly. In our 

case, the normalization proof goes as follows. 

1. We define the notion of computable canonical elements inductively on types. 

Intuitively, a canonical element c is calculable if 

aL o c is computable if c is computable. 

OR (e) o c is computable if there is a reduction (cXR, OR (e) o c) 	c' 

such that c' is computable, that is all the components of &R(e)  o c are 

computable. 

2. We define the notion of calculability for expressions (we could have called 

it computability as well as is conventional in proofs about lambda calculi, 

but we distinguish them for clarity). An expression e is calculable if for 
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any computable canonical element c there is a reduction (e, c) 	c' such 

that c' is computable. Note that an expression e is normalizable if for any 

canonical element e there is a reduction (e, c) = c, whereas e is calculable 

if there is a reduction for any computable canonical element. Therefore, it 

should be easier to prove that an expression is calculable than to prove it 

is normalizable. 

We will prove that all the expressions are calculable by structural induction. 

As an easy corollary, we can show that any canonical element is com-

putable. 

Finally, we prove that all the reductions are normalizing. 

First, let us assign for each n-ary functor F a function which given sets C1  .. . , Cn  

of canonical elements of type E1 ,.. . , E, gives a set of canonical elements C of 

type F(E1 , .. . , E,). We write F for the function (i.e. C = fr(c1 ,. . ., C,)). P is 

monotonic in the ith argument if F is covariant in the ith argument, and fr is 

anti-monotonic in the ith argument if F is contravariant in the ith argument. 

Definition 4.3.5: 	1. For a left object2  

left object L(X) with th  is 

clL:EL(L,X) - L 

end object, 

L(C) is the minimal fixed point of the following monotonic function: 

S —*{aLoc I CEEL(S,C)} 

The minimal fixed point can be calculated as the least upper bound of the 

following ascending chain: 

L0 (c) c L(c) C •.. C L(c) C L +1(C) c ... c L(C) c 

where L0 (C) is 0 and 

def L +1  (C) 	{aLoc I cEEL(Lfl(C),C)  }. 

'For simplicity, we define this for a simple left object, but the general case should be obvious. 
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For a right object 

right object R(X) with OR  is 

E(R,X) 

end object, 

R(C) is the maximal fixed point of the following monotonic function: 

S i—+  { OR (e) o c I (cZR, OR (e) o c) 	c' such that c' e E(S, C) } 

The maximal fixed point can be calculated as the greatest lower bound of 

the following descending chain: 

where .R0 (C) is the set of all the canonical elements of R(E) (where C is a 

set of canonical elements of type E) and 

del 
= {?PR(e)oc 

(aR, OR (e) o c) 	c' such that c' E E(k,(c), C) }. 

For a right object 3  

right object R'(X) with 1IiR  is 

aR: prod (R, ER, (X)) - E,(R',X) 

end object, 

h'(C) is the maximal fixed point of the following monotonic function: 

S i—+ { t4',s(e) o c I For any c' E ER' (C) (an', pair(t'RI(e)oc, c')) 	c" 

such that c" E ER, (S, C) } 

We can similarly define 4,(C). 

Well-definedness: We have to show that F is monotonic or anti-monotonic 

according to the variance of F. We prove this by induction on the order of 

declaration of objects. 

'For a right object R, since the domain of aR:  ER (R, X) - E(R, X) needs to be productive in 

R, there are basically these two cases: when ER (R, X) is R and when it is prod(R, E"(X)). 
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If F is the left object L above and covariant, we show that.Lp is monotonic 

by induction on 8. L0  is trivially monotonic. L +1(C) is 

{crLoC I cEEL(Lfl(C),C)}. 

From the induction hypothesis Lp is monotonic. Since EL (L, X) is covari-

ant in both L and X, from the other induction hypothesis E1  is monotonic. 

Therefore, EL(L(C),  C) is monotonic in C, and .L #+1  is monotonic. Hence, 

L is monotonic. Similarly, we can show that L is anti-monotonic if L is 

contravariant. 

If  is the right object R above and covariant, we show that Rp is monotonic 

by induction on 48. ho is trivially monotonic. h +1 (C) is 

{ OR (e) o c I (aR, OR (e) o c) = c' A c' E E(h,(C), C) }. 

From the induction hypothesis, !?,e is monotonic, and from the other in-

duction hypothesis, E is monotonic in both arguments. Therefore, h +  
is monotonic, and by induction R is monotonic. We can similarly show 

that R is anti-monotonic if R is contravariant. 

If F is the right object R' above and covariant, we show that R is mono-

tonic by induction on 48. h is trivially monotonic. h (C) is 

{ Olt ,  (e) o c I Vc' E tit,  (C) (aRs,pair(1'Rs(e) o c, c ')) 	c"  A 

C"  E E,(h(C),C) }. 

From the induction hypothesis, Jkl  is monotonic, and from the other induc-

tion hypothesis, ER,  is anti-monotonic and E, is monotonic in both argu-

ments. Therefore, R+1  is monotonic, and by induction R' is monotonic. 

We can similarly show that R' is anti-monotonic if R' is contravariant. III 

We now define the notion of computability and calculability. 

Definition 4.3.6: The set flF(Ei,...,) of computable canonical elements of type 

F(E1 ,. . . , E) is defined inductively by .fr(12 E1 , .. . , 0EJ. III 
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Definition 4.3.7: An CSL expression e of type E -+ E' is called calculable with 

respect to C - C' for C C 12E  and C' C 12E'  if for any c in C there is a reduction 

(e, c) = c' such that c' is in C'. When e is calculable with respect to 11 E - 

we simply say that e is calculable. 

	

Example 4.3.8: 	1. For the terminal object '1' 

right object 1 with 

end object, 

since there is no natural transformation, any canonical element is com-

putable. Let us use * to denote an arbitrary element of 1. 

For the left object 'nat' of natural numbers 

left object nat with pr is 

zero: 1 -+ nat 

succ: nat -i nat 

end object, 

	

fit0  is 0. ;i 	is 

{ zero o c, sücc o c' I c E i A c' E iO } = { 
zero o * }. 

Similarly nat2  consists of zero o * and succ o zero o *. In general, iL is 

the set of n elements corresponding to a set of 0, 1, 2, ..., and ti - 1. 

Therefore, nat is the set of all the canonical elements of nat. 

For the right object 'prod' of products 

right object prod(X, Y) with pair is 

pu: prod - X 

pi2: prod - Y 

end object, 

a canonical element pair(e 1 , e2 ) o c is computable if there are reductions 

(pil l  pair(e 1 ,e2
) 0 

 c) = c1 	and 	(pi2,pair(e i , e2
) 0 

 c) = c2 
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such that Cl and C2 are computable, that is a canonical element of prod is 

computable if its components are computable. Since the reductions above 

are equivalent to (e 1 , c) = c 1  and (e2 , c) c2 , if c is computable and e 1  

and e2  are calculable, pair(e 1 , e2 ) o c is computable. 

For the right object 'exp' of exponentials 

right object exp(X, Y) with curry is 

eval: prod(exp, X) - Y 

end object, 

a canonical element curry(e) 0 C of type exp(E, E') is computable, if for any 

computable canonical element c' of type E' there is a reduction 

(eval,pair(curry(e) 0 c, c')) 

and c" is computable. The reduction is equivalent to (e, pair(c, c')) 	C" . 

Since pair(c, c') is computable, there is such a reduction if e is calcula-

ble. Remember that currey(e) corresponds to the closure of e (or lambda 

closed term of e) so that we can say that a closure is calculable if the ap-

plication with canonical elements always results canonical elements. This 

exactly corresponds to the definition of computability for lambda expres-

sions (see [Stenlund 72]). 

For the right object 'inflist' of infinite lists 

right object infiist(X) with fold is 

head: inifist - X 

tail: inflist —+ inflist 

end object, 

let us figure out the computable canonical elements of type inflist (nat). 

iirsto(fl nat) is the set of all the canonical elements of type inflist(nat). 

liiIt1(1 nat) is 

	

{ fold(e 1 ,e2 ) 0 C 	(head, fold(e 1 ,e2 ) 0 C) 	C1 Ac 1  E 11nat  A 

(tail,fold(e 1 ,e2 ) 0 c) 	C2 Ac 2  e inisto(flnat) } 

	

= { fold(e i , e2 ) 0 C 	(e 1 , c) =*- c 1  A (fold(e i , e2 ) 0 e2, c) = c2  }. 
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Therefore, if e1 and e2 are calculable and c is computable, fold(e i , e2) o c 

is in iI1ti(fl nat). We can inductively show that it is in any liiitp(fl at), 

and, therefore, it is in ixrst(fl nat ). 

6. For the left object of ordinals 

left object ord with pro is 

ozero: 1 — ord 

sup: exp(nat, ord) —+ ord 

end object, 

;a0 is empty, ord, is { ozero o * }, and 

ord2  

={ sup oc, ozeroo* I cEé(nat,ord 1)} 

= { sup o curry(e) o c, ozero o * I Vc' E nat (e, pair(c, c')) = c" A 

c" 	á 

	

E 	1  } 

= { sup o curry(e) o c, ozero o * I Vc' E flnat  (e, pair(c, c')) = ozero o * }. 

In general, 

ord+i = { sup o curry(e) 0 C, ozero o * 

	

VC? 
E gnat (e, pair(c, c')) = C"  A C"  E 	} 

Therefore, a canonical element sup o curry(e) o c is computable if the fol-

lowing reductions always exist: 

(e, pair(c, c 1 )) = sup o curry(e 1 ) 0 

(el , pair(4, c2)) = sup 0 curry(e 2 ) 0 4 

(e2 , pair(4, cs)) = sup o curry(e 3) 0 4 

(ep, pair(c, cp+i)) = ozero 0 * 

The next proposition intuitively means that functors preserve the structure of 

data. For example, when the functor 'list' (or map in ML and MAPCAR in LISP) 

is applied to a list, it only changes the components of the list and preserves the 

length. 
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Proposition 4.3.9: Let F be n-ary functor, and e1,. . . , en be CSL expressions 

calculable with respect to C —+ C. Then F(ei ,. . . , e) is calculable with respect 

to fr(C',. . . , C) —+ F(C", Cc'), where C," is C1  and C" is C if F is covariant 

in the ith argument and C," is C and C," is C, if F is contravariant in the ith 

argument. 

Proof: We prove this by induction on the order of declarations of objects. 

1. Let F be a left object declared by 

left object L(X) with ?,&L is 

aL:EL(L,X) —+ L 

end object 

which is covariant in X, e be a CSL expression which is calculable with 

respect to C —+ C'. We prove that L(e) is calculable with respect to 

Lp(C) — L(C') by induction on 3. Trivially, L(e) is calculable with 

respect to L 0(C) —+ L 0 (C) because .L 0 (C) is empty. Assume we have proved 

that L(e) is calculable with respect to L(C) -p Lp(C'). An element of 

L +1(C) is aL o c such that c E EL(L$(C), C). From L-FACT we get 

(XLOEL(I,e)0EL(L(e),I),c) =' - c' 
(aL0EL(I,e) 0EL(t/JL(aL0EL(I,c)),I),c) 	c' 

(bL(crL o EL (I, e)), aL 0 C) =41  C' 

(L(e),aL 0 c) =: a(, 0 C' 

Since EL(L,  X) consists of functors declared before L, from the induc-

tion hypothesis, EL(L(e),I)  is calculable with respect to EL(L $ (C), C) —+ 

EL(L(C'), C) and EL (I, e) is calculable with respect to EL(L(C'), C) -~ 

EL(L(C'), C'). Therefore, there is a reduction 

(EL (I, e) 0 EL(L(e) , 1), c) = c'  

such that c' is in EL(L,(C'), C'). From definition 4.3.5, aLoc '  is in L #+1 (C') 
Hence, L(e) is calculable with respect to L 1 (C) —+ L +1(C'). By induc-

tion, L(e) is calculable with respect to L(C) —+ L,(C') for any fl, and, 

therefore, L(e) is calculable with respect to L(C) —+ L(C'). When L(X) is 

contravariant, we can similarly prove that L(e) is calculable with respect 

to L(C') -' L(C). 
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Let F be a right object declared by 

right object R(X) with OR  is 

aR:R - E(R,X) 

end object 

which is covariant, and e be a CSL expression which is calculable with 

respect to C —+ C'. We prove that R(e) is calculable with respect to 

— Rp(C') by induction on fl. From R-FACT, we have 

(R(e),c) =. l'R(ER(I,e) ° ER) o c. 

Trivially, R(e) is calculable with respect to 	- .ko(C) because .k0(C') 

is the set of all the canonical elements of R. Assume we have proved that 

R(e) is calculable with respect to Rp(C) —+ R(C'). An element of R +1(C) 

is OR (e') o.c' such that there is a reduction (crR,cl'R(e')  o c') = c"  and c" is 

in E(kp(C), C). We will show that the following canonical element is in 

R#+1 

?)t)R(ER (I, e) o aR)  o ?&R(e) 0 C' 	 (*) 

From R-NAT, we have 

(E '  (R (e), I) o E(I, c),  
k(R(e),I) o E(I,e) o aR,bR(e')  o Cl) 	c" 
ER' (I, c) o aR), I), Ej(I, e) o aR, OR(e') o c') 	c 

aR, t#&R(E(I, e) o aR) 0 OR(e l) 0 C') = C" 

Since E(R, X) consists of functors declared before R, E(R(e), I)oE(I, e) 

is calculable with respect to E(R,(C), C) — E(.k,(C'), C') from the in-

duction hypothesis. Therefore, c" is in E(.,9 (C'), C'), and from defini-

tion 4.3.5, (*) is in Rfl+l (C). Therefore, by induction, R(e) is calculable 

with respect to R(C) —+ R, 9 (C') for any 8, so it is calculable with respect 

to R(C) — 1(C'). When R(X) is contravariant, we can similarly prove 

that R(e) is calculable with respect to R(C') — i(C). 

If F be a right object declared by. 

right object R'(X) with ?,bR' is 

aw: prod (R', ER, (X)) — E(R,X) 

end object, 
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we can similarly prove that R(e) is calculable with respect to h(C) -+ 

h(C') (or with respect to h(C') -p (C) when R(X) is contravariant). J 

In the following few lemmas, we are to prove all the expressions are calculable. 

Lemma 4.3.10: 1 is calculable. 

Proof: We have to show that for any computable canonical element c there is 

a reduction of (I, c) = c' and that c' is computable. This is immediate from the 

reduction rule IDENT and that c' is c 

Lemma 4.3.11: If both e 1  and e2  are calculable, so is e1  o e2 . 

Proof: For any computable canonical element c' we have the following reduction 

from COMP: 
(e2, c) #-  c" 	(e l , c") = c' 

(el o e2, C) 	c' 

Since e 2  is calculable, there is a reduction for (e2 , c) = c" so that c" is computable. 

Since e 1  is calculable, there is a reduction for (e 1 , c") . c' so that c' is computable. 

Therefore, there is a reduction for (e 1  o e2 , c) = c' so that c' is computable. 

Lemma 4.3.12: For any natural transformation aL of a left object L, crL is 

calculable. 

Proof: For any computable canonical element c, we have the following reduction 

by L-NAT: 

(cZL, c) * ft 0 C 

From definition 4.3.6, aL 0 c is computable. Therefore, aL is calculable. 

Lemma 4.3.13: For any natural transformation aR of a right object R, aR is 

calculable. 

Proof: Let R be 
right object R(X) with OR  is 

aR:R -4 E(R,X) 

end object, 

and c be a computable canonical element R(E). For any fi, c is in Rp~ 1(flE). 

From definition 4.3.5, there exists a reduction (aR, c) = c' such that c' is in 
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Ej(hp(fl E), liE). Because the result of reductions does not depend on /3, c' is in 

E(fli(flE) , flE) = E(h(flE),flE) = 
p 

Therefore, aR is calculable. We can similarly prove that for a right object 

right object R'(X) with &R'  is 

aRt: prod (R', ER , (X)) - ER, (R', X) 

end object, 

aRt is calculable. 

Lemma 4.3.14: If e is calculable, so is tIIL(e)  where L is a left object and bL is 

its factorizer. 

Proof: Let L be 
left object L(X) with IL  is 

cZL:EL(L,X) -+ L 

end object, 

and e: EL  (E, E') - E be a calculable CSL expression. We will prove that t1L(e) 

is calculable with respect to Lp(I1ES) -+ fl E  by induction on 8. Trivially, it is 

calculable with respect to LO(I2ES) - flE because Lo(UE') is empty. Assume we 

have proved that ?/7L(e)  is calculable with respect to Lp(l1gs) -' flE. An element 

in L $+1 (I)E') is aL o c for c which is in EL(Lp(flgs), flE').  From L-FACT, we get 

(EL (t/'L (e), I), c) = c" 	(e, c") = c' 

(eoEL(&L(e),I),c) 	c' 

('L(e),aL o C) = c' 

From proposition 4.3.9 and the induction hypothesis, EL(liL(e), I) is calcula-

ble with respect to EL(L(IZES), 11E') -4  EL(flE, liE'), and there is a reduction 

(EL (&L(e),I), c) 	c". Since e is calculable, there is a reduction (e, c") = c' such 

that c' is in 11E•  Therefore, &R(e) is calculable with respect to L +l(lZE') 

and by induction it is calculable with respect to Lp(flEs) - l&g for any 3. Be-

cause IZL(E') = L(flE') is Up L(flE'), we have proved that 1/iL (e) is calculable. [] 

Lemma 4.3.15: If e is calculable, so is OR(e) where R is a right object and /R 

is its factorizer. 
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Proof: Let R be 
right object R(X) with OR is 

cXR:R - E(R,X) 

end object, 

and e be a CSL expression of type E -p E(E, E'). We are to prove that 

?I)R(e): E -* R(E) is calculable. Since = !? (OE,) is lip hp(fZEs), we prove 

that OR(e) is calculable with respect to 11 E - hp(I2E') by induction on 8. Triv-

ially, it is calculable with respect to 12 E -+ .lo(flE') because for any c E fl s we 

have (çbR(e), c) = 1I'R(e) o c and ho(czE?) is the set of all the canonical elements 

of type R(E'). Assume we have proved that /.'R(e)  is calculable with respect to 

nE -+ .&p((IEs). For any c E 11B we have (t'R(e),  c) = 0,R (e) o c. From R-NAT, 

we get 
(e, C) = c" 	(E(&R(e),I),c") 	c' 

o c) 	c' 

Since e is calculable, there is a reduction (e, c) 	c" and c"  is in E(flE, liEs). As 

we assumed that l'R (e) is calculable with respect to 12E - Rp(flEs), E(R(e),I) 

is calculable with respect to E(flE,flEs) -+ E(hp(flEs),fzEs) from proposi-

tion 4.3.9. Therefore, there is a reduction (E(i/..'R(e), I)c") c' and c' is in 

E(hfl(nE5),fzE.). From definition 4.3.5, &R(e)  o c is in .kp ~i (flgs), so OR(e)  is 

calculable with respect to 11E - Rp+1(I1ES), and by induction it is calculable 

with respect to E - Rp(IZEI) for any /3. Therefore, it is calculable with respect 

to OB - h(flE'). We can similarly prove that for a right object 

right object R'(X) with IR' is 

aRs: prod (R', ER, (X)) - ER, (R', X) 

end object, 

I'R' (e) is calculable. 

Theorem 4.3.16: Any CSL expression e is calculable. 

Proof: This is proved by structural induction and each case follows from the 

lemmas, 4.3.10, 4.3.11, 4.3.12, 4.3.13, 4.3.14 and 4.3.15. II 

Corollary 4.3.17: Any canonical element is computable. 

Proof: As a canonical element c is a CSL expression, and therefore, from the- 
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orem 4.3.16 it is calculable. Because any canonical element of the terminal ob-

ject 1 is computable, specially I is computable. Therefore, there is a reduction 

(c, I) = c' such that c' is computable. Trivially, c' is c (using L-NAT, R-FACT 

and COMP), so c is computable. fi 

We now finish this section by proving the normalization theorem. 

Proof of Normalization 4.3.2: From theorem 4.3.16, any expression e is cal-

culable, and from corollary 4.3.17, any canonical element is computable. There-

fore, from the definition 4.3.7 of calculable expressions, there is a reduction 

(e, c) c'. 

4.4 Properties of Computable Objects 

In section 4.1, we saw that we have to restrict ourselves to computable objects 

(definition 4.1.6) in order to introduce our notion of computability into CDT. 

Let us see in this section some of the properties which these particular objects 

enjoy. 

First, we show that computable left objects are fixed points of some domain 

equations. 

Theorem 4.4.1: Let L be a computable left object declared as follows. 

left object L(X 1 ,. .. , X,) with 1,17L is 

aL,l:EL,l(L,X1,.. .,X) - L 

XL, m EL,,n(L,X1,.. . ,X) + L 

end object 

Then, the following isomorphism holds in any CSL model which has L and 

coproducts. 

L(X 1 ,...,X) 	>ELJ(L(Xl,...,Xfl),Xl,...,X) 
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where E7- is the m-ary coproduct. Furthermore, if A is an object which satisfies 

m 

AEEL,J(A,Xl, ... ,X), 
1=1 

there is a unique morphism h from L(X 1 ,.. . , X,,,) to A such that the following 

diagram commutes. 

in 

>EL,j(L(Xl,.. 
j=1 	 I 	 I 

M 	 I 	 I 
I 	 C' 

2=1 	 I 	 I 
m 

E,,,1(A,x1,. ..,X) 	 A 
•j=1 	 = 

Proof For simplicity, we prove the isomorphism in case L does not have any 

parameters (i.e. n = 0). Therefore, the isomorphism we prove is 

L F, ELJ(L). 

Let f be a morphism 

, aL,,] 

where [ ,..., ] is the factorizer of E7. f is a morphism from E7  EL,J(L) to 

L. Let g be a morphism 

bL(vl o EL,1(f),. . . , L4 0 ELm(f)) 

where v1  is the j-th injection of E7 1 . g is a morphism from L to E7L 1  EL,J(L). 

We show that f is the inverse of g. Let us first show that f o g = I. 

1 0 g 0 ftj 

1 0 V2  0 EL,j(f) 0 EL,J(g) ................................... (from (LEQ,)) 

= ftj 0  EL,,(f) 0  EL,,(g) 

= CILJ 0  EL,j(f 0 g) ....................................(EL,1(L) is covariant) 

From (LCEQ), 

fog 	bR(aL,1,.. .,aL,m) = I. 
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The second equality holds again from (LCEQ). Next we show that g o f = I. 

gof 

= [g 0 aL,1,... , g 0 aL,m] 

= [vi o EL,1(f  o g),. .. ,Vn  0 ELm(f o g)] 

= [L1OELj(I),...,L.' m 0EL1(I)] 

= 	 L'ml 

=1 

Therefore, L E7 EL,(L). For any object A which satisfies A E7 EL,, (A), 

let i be the isomorphism from ET .7=1 EL,J(A)  to A, then the unique morphism is 

given by 

t7R(Z 0 L/1,..., 10 L/m). 

It is easy to see the diagram commutes from (LEQ 5) and the uniqueness from 

(LCEQ).a 

If we apply this theorem to the objects we defined in chapter 3, we get the 

following isomorphisms. 

nat 1 + nat 

list (X) 1 + prod (X, list (X)) 

We can see the exact correspondence to domain theory. In domain theory, the 

domain of natural numbers and that of lists are defined as the minimal domains 

which satisfies the above isomorphisms. 

By duality principle, we have the dual theorem of theorem 4.4.1. 

Theorem 4.4.2: Let R be a computable right object declared as follows. 

right object R(X 1 ,. . . , X) with OR is 

cxR,l:R —+ E,1 (R,X 1 ,. . 

aR,m: R —p Ek,m(R, X i ,..., X) 

end object 
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Then, the following isomorphism holds in any CSL model which has R and 

products. 

"I 

R (X i ,. . . , X,) 	II E 5  (R(X 1 ,.. . , X,), X1,. . . , X,,) 
j=1 

where I17 is the m-ary product. Furthermore, if A is an object which satisfies 

in 

A [J E ,1 (A,X 1 ,. ..,X), 
J=1 

there is a unique morphism h from A to R(X 1 ,.. . , X) such that the following 

diagram commutes. 

In 

	

A 	 ll E ,1(A,X1, ... , X) 

	

I 	 1=1 	 I 

	

h I 	 0 	 I fJE ,1 (h,X 1 ,...,x) 

	

I 	 11=1 

ad = j=1 

Proof: By duality. j 

We can see that the infinite list defined in subsection 3.3.6 is the maximal fixed 

point of the following domain equation. 

inflist(X) X x inflist(X) 

The next theorem states that productive objects define products. 

Theorem 4.4.3: Let P(Y1 ,.. . , Y,,) be a functor which is productive in Y. Then, 

there is a functor F(Y1 ,.. . 	 . . , Y,,) such that 

- 

Proof: First, note that it is easy to extend the theorem to productive functo- 

rial expressions by simply applying the theorem repeatedly. Let us prove the 
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theorem by induction on the order of declaration of productive objects. Let the 

declaration of P to be as follows. 

right object P(Y1 ,. ..,Y1 ,.. .,Y) with 7l'p is 

0p,1 : Ep 1 (P, Y1 , . . . , 	} +i,. . . , Y,) __+ 	. . . , 	Y, + , . . . , Y,) 

ap,j: P -* E, 1 (Y1 ,.. . , Y1...., Y, Y1 9  .. . , 

ap,:Ep,m(P,Yi, ... ,Y1_i,Y1i,. . . , Y,) _+ E m (Yi, .... Y1....i) Y+i,. . . , Y,) 

end object 

By induction hypothesis and from what we note at the beginning of the proof, 

there is a functor F'(Y1 ,. . . , Y,...., Y,+1, . . . , Y,) such that 

E ,1 (Y1 ,.. .,Y) 	x F'(Y1 , .. 	 . - 

Since P is a computable object as well, Ep,k(P,  Y1 ,. . . , Y1...., Y + ,. . . , Y,) is pro-

ductive in P. Therefore, from induction hypothesis there are functors 

Gk (Y,,. ..,Y.. 1 ,Y, +1,.. 

such that 

EP,k (F, 1 1,.. . , Y.. 1 ,Y 	V
n) 	P x C,, (Y1 ,.. . , Y 1 , 	... , Yb). 1+1, ••• , 	- 

Using exponentials, the above definition of P is essentially the same as 

right object P(Y1 ,. . ., Y1 ,.. . , Y,) with t/,p  is 

ap,1 :P - exp(Gi (Yi ,.. .,Y,_i,Y+1... . ,Y,), 

(V. 	Yi- 11  Yi+19 	17 

ap,1: P -+ Yi X F' (Y1 ,.. . , Y1,Y+1, . .. , Y,) 

cxp,:P -' exp(Cm (Yi , ... ,Y,_ i ,Y1+i ,.. . )
Y,), 

E,m (Yi,... ,Y_ i ,Yi +i, ... ,Y)) 

end object 
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From theorem 4.4.2, we have 

m 
P(Yi,...,Y,jYxF'(Y1,...)x flexp (Gk  (Yl .... ),E , k(yl,...)). - $ 

A:= 1 

F'(Y1  .... ) x Mnexp(Gk(Yl, . . .), E(Y i ,...)) does not depend on Y. We have 

proved the theorem. 

From this theorem, we can always make the declaration of computable objects 

into an equivalent declaration to which we can apply theorem 4.4.2. For example, 

the declaration of the object for automata in subsection 3.3.7 was 

right object dyn'(I, 0) with univ' is 

next': prod (dyn', I) -+ dyn' 

output': dyn' -+ 0 

end object 

to which we cannot apply theorem 4.4.2, but the above declaration is equivalent 

to the following one. 

right object dyn'(I, 0) with univ1  is 

next': dyn' - exp(I, dyn') 

output': dyn' - 0 

end object 

Then, from theorem 4.4.2 we can see dyn'(I, 0) as the maximal fixed point of 

the following domain equation. 

dyn'(I, 0) exp(I, dyn'(I, 0)) x 0 
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4.5 Reduction Rules for Full Evaluation 

In section 4.1 we presented a set of reduction rules which can reduce any ele-

ment to a canonical element. However, the notion of canonical element (defini-

tion 4.1.3) was quite weak (or sloppy), and the canonical elements we get out 

of reductions sometimes not acceptable as 'canonical'. We can define a more 

refined notion of canonical elements. 

Definition 4.5.1: A canonical element is called uncondition, if it is generated 

by the following rule. 

p::=IIoL ,i opItI R (e 1 ,...,em)opI1I)c (...,ej , ... ,pk,  ... ) 

where R is not a unconditioned right object, C is a unconditioned object 

right object C(X 1 ,.. . , X,) with tc is 

ac,1:Ec,,(C,Xi,...,X) -+ 

crC,k:C -+ E,,k(X1,..., X,, ) 

end object 

and if Ec,k(C,  X1 ,. .., X,) is simply C then the kth argument of t,bc needs to be 

a unconditioned canonical element. 

For example, 

pair(succ, I) o zero 	and 	pair(pil o pair(succ o zero, nil), zero) 

are canonical elements but not unconditioned. Their equivalent unconditioned 

canonical element is 'pair(succ o zero, zero)'. 

We can define reduction rules which only produce unconditioned canonical ele- 

ments as result. 
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Definition 4.5.2: The form of reduction rules is 

(e, P) =. p' 

where e is a CSL expression and p is a unconditioned canonical element whose 

domain is compatible with the domain of e. 

FULL-IDENT 

(I, p) =* p 

FULL-COMP 

(e2,p) 	p" 	(el , p") 
(e 1  0 e29p) 1L 	' 

FULL-L-NAT 

	

(aL,J, P) 	aL,I o p 

FULL-R-FACT 

(l'R(e1,...,e m),p) =t/R(e1,...,e m)op 

where R is not a unconditioned right object. 

FULL-C-FACT 

(e1 , p) = e, or e 	e3  0 Ec,1[p1CJ 
(&c(ei, .

.. , 
em), p) 	t/.'c(4,. . . , 

where C is a unconditioned right object and e, is either the result of eval-

uating (e,, p) or ej 0 Ec,,[p/C] depending of whether Ec ,j  is simply C or 

not. 

FULL-L-FACT 

(e5  0 EL,I[bL(e1,. . . , em)/LJ, p) =. p' 
(L(e1,.. . ,em), aJ,, 0 	=*>. p1  

FULL-R-NAT 

(Ek1[frn(ei,. . .,em)/R] 0 e,,?&p( . .. . p,...)) 	p' 
(cxR,J,'ç&p(.. . ,&R(e1, . . . ,em) 0 p, ..

. )) 
#~ p1 
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In writing down this rule, t,bp(.... 0R(e1,. . . , em ) o p .... ) is rather inaccu-

rate. It means picking up OR (e1,.. . , em ) according to the occurrence of R 

in ER,J.  ?,bp'S are nested as productive objects P's are in ER,J. For example, 

the rule for 'pi' of object 'prod' is 

(p1,') =. p' 
(pil,pair(pi , p2)) =p' 

Ed,1 is simply 'prod', so there is no t'c'S.  The rule for 'eval' of object 

'exp' is 
(e,pair(I,p)) =*p' 

(eval,pair(curry(e),p)) =x p' 

Remember that E,1  is 'prod(exp, X)'. 

Let us call the new system FULL and the previous system defined in defini-

tion 4.1.7 LAZY. El 

As we have proved theorem 4.3.1, we can easily show that FULL system is well-

defined. In addition, we can show that the reduction in FULL system is stronger 

than that in LAZY system, that is, 

Proposition 4.5.3: If (e, p) =* p' in FULL system, then (e, p) = c' in LAZY 

system. 

On the other hand, since a FULL reduction is nothing but the repeated appli-

cation of LAZY reductions, we have the normalization theorem. 

Theorem 4.5.4: For a unconditioned canonical element p and a CSL expression 

e whose domain is compatible with the codomain of p, there is a unconditioned 

canonical element p' such that 

(e, P) =*p' 

in FULL reduction system. 0 



Chapter 5 

Application of Categorical Data 

Types 

In this chapter we see some applications of CDT and CPL. We have concentrated 

on category theory in the previous chapters and it is sometimes hard to relate 

our results to others if they are not familiar with category theory. The author 

is not claiming that it is better to use category theory in practice. Category 

theory is used as a guiding principle to see things without being obscured by 

inessentials. Therefore, once one establishes some results using category theory, 

it is very interesting to see what it means in other terms and we might get some 

deep insight. 

In section 5.1, we will see an implementation of CPL. In section 5.2, we will ex-

amine the connection between CDT and typed lambda calculi and in section 5.3 

we will propose a new ML which is obtained by combining the current ML and 

CPL. 

156 
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5.1 An implementation of 

Categorical Programming Language 

In chapter 4, we introduced a programming language CPL and its computation 

rules. A CPL system has been implemented using Franz Lisp. In the section, we 

will demonstrate the system and see some examples of reductions which it can 

manage. 

When the system is started, it prints the following message and waits for user 

commands. 

Categorical Programming Language (version 3) 
cpl> 

First, we have to declare some objects because the system does not know any 

objects when it is started. The very fist object we declare is the terminal object. 

We use edit command to enter its declaration. 

cpl>edit 
I right object 1 with I 
I end object; 
right object 1 defined 
cpl> 

Note that user inputs are in italic font. We define products, exponentials and 

natural number object as well. The declarations are exactly the same as we pre-

sented in chapter 3 (except that to make output shorter we use 'a' for successor 

and '0' for zero). 

cpl>edit 
I right object prod(a,b) with pair is 
I pu: prod .> a 
I p12:prod-> b 
I end object; 
right object prod(+,+) defined 
cpl>edit 
I right object ezp(a,b) with curry is 
I 	eval: prod (ezp,a) -> b 
I end object; 
right object exp(-.+) defined 
cpl>edit 
I left object nat with pr is 
1 	0:1-> nat 
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I 	: nat -> nat 
I end object; 
left object nat defined 
cp].'edit 
I left object coprod(a,b) with case i3 

I 	ml: a -> coprod 
I 	in2: b -> coprod 
I end object; 
left object coprod(+.+) defined 
cpl> 

Each time we declare an object the system remembers its factorizer and natural 

transformations as well as the functor associated with. In the above transaction, 

'prod(+ , +)' indicates that system recongnized 'prod' as a covariant functor of 

two arguments whereas 'exp(- ,+)' indicates that 'exp' is a functor which is 

contravariant in the first argument and covariant in the second. The variance 

is calculated as we formulated in section 3.2. The system can type CSL ex-

pressions using the rules in section 2.4. For example, we can ask the type of 

'pair(pi2 ,eval)'. 

cpl>ehow pair(pi2,eval) 
pair(pi2. ev) 

prod(exp(*b,*a)*b) -> prod(*b,*a) 
cpl> 

where '*a' and '*b'  are variables for objects, or we can see them as a kind of 

type variables in ML; 'pair 	2 eva].)' is a polymorphic function in this sense. 

As we have done in section 4.2, we can ask to the system to calculate '1+1' using 

'simp' command. 

cpl>simp evaLpair(pr(curry(pie),curry(s. eval)).pil ,pi2).pair(s. 0,3.0) 
3.8.0 

:1 -> nat 
cpl> 

Note that the composition 'o' is typed as'.'. The system applied reduction rules 

to get the following reduction: 

(eval.pair( ... ).pair(s.0,s.0),I) 	s.s.O. 

We can see how the system deduced the reduction by enabling the trace mode. 

cpl>set trace on 
cpl>simp evaLpair(pr(curry(p12),curry(s. eval)).pil ,pi2).pair(s. 0,3.0) 
0:eval.pair(pr(cuxry(pi2) .curry(a.eval)) .pil,pi2) .pair(s.0.s.0)* 
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1:eval.pair(pr(curry(pi2),curry(s.eval)) .pil,pi2)*pair(s.0,s.0) 
2:eval*pair(pr(curry(pi2).cuXrY(8.eVal)) .pil,pi2).pair(s.0,s.0) 
3[1]:pr(curry(pi2),curry(8.eVal)).pil*paiT(3.0,B.0) 
4[1]:pr(curry(pi2) ,curry(s.eval)).a.0*id 
5[1] :pr(curry(pi2) ,curry(s.eval)) .8*0 
6(1] :pr(curry(pi2) ,curry(s.eval))*s.0 
7( 1]:curry(s.eval).pr(curry(pi 2) , curry( 8 .eval)) *0  
8(1] :curry(s.eva].) .curry(pi2) . 
9(1] :curry(s.eval) .curry(pi2)*! 
10(1] :curry(a.eval)*curry(pi2).! 
11(1] :*curry(a.eval) .curry(pi2).! 
12:s.eval*pair(curry(pi2).Lpi2.pair(a.0,a.0)) 
13(1] :curry(pi2) . 

14(1] :curxy(pi2)*! 
15(1] :*curry(pi2).! 
16:a.pi2*pair(! .pi2.pair(s.0,s.0)) 
17:s.p12.pair(s.0,s.0)*id 
18:s.pi2*pair(s.0,s.0) 
19:a.a.0*id 
20:8.8*0 

s*a  .0 
*s. a. 0  

8.8.0 
:1 -> nat 

cpl> 

Each line has the following form: 

step number [ depth of computation I]: I expression * [canonical element 

It indicates the following reduction: 

(I_expression_' I canonical element I) 

Step 0 denotes the reduction of 

(evaLpair(pr(curry(pi2), curry(s.eval)) .pil, pi2).pair(s.0, 0.0), I) . .... 	(+) 

Step 1 is obtained from R-FACT rule (and R-COMP); the reduction (+) is the 

same as the reduction of 

(eva]..pair(pr(curry(pi2), cuzry(s.eval)) .pil, pi2), pair(s.0, s.0)) 

Again from R-FACT, this reduction is the same as 

(eval, pair(pr(curry(pi2), curry(s.eval)).pil, pi2) .pair(s.0, s.0)) 	.... 	 (++) 

which is step 2. From R-NAT, we have to calculate 

(pair(pr(curry(pi2), curry(s.eval)) .pil, pi2) .pair(s.0, s.0), 

prod(exp, a), exp) '.-. (curry(...).... 
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In order to do this, from R-NAT-F we have to calculate 

(pr(curry(pi2), curry(s.eva].)) .pil, pair(s.O, 8.0)) =... 	 (t) 

This reduction is carried out from step 3 to step 12 and we get 

(pr(curry(pi2), curry(a.eval)).pil, pair(s.O, s.0)) 	curry(a.eva1).curry(pi2).!. 

Note that from step 3 to 4 it did the reduction 

(pil,pair(s.0, 8.0)) 	e.0, 

and from step 6 to 7 it used L-FACT and did the reduction 

(curry(s.eval).pr(curry(pil), curry(s.eval)), 0) = 

(pr(curry(pi2),curry(s.eval)), a.0) . 

Therefore, (t) is 

(pr(curry(pi2), curry(s.eval)).pi 1, pair(e.0, s.0)) = (curry(a.eval), curry(pi2).!), 

and from R-NAT the reduction of (++) is the same as 

(s.eval, pair(curry(pi2).!, pi2.pair(s.0, s.0))) 

The rest of the steps are done similarly. 

It is inconvenient to write down the definition of the addition every time we 

want to add something. Therefore, the system has the facility to give names to 

morphisms. For example, we can name the addition function 'add' and use it as 

follows: 

cpl>let add=eval.pair(pr(curry(pif),curry(s. eval)).pil,pi2) 
add : prod(nat.nat) -> nat defined 
cpl>simp add.pair(s.Os.s.0) 

:1 -> nat 

We can define the multiplication and factorial functions. 

cpl>let mult=eval.prod(pr(curry(0.!),c urry(add.pair (eval,pif))), Id) 
mult prod(nat.nat) -> nat defined 
cpl>let fact=pIl .pr(pair(3.O,O),pasr(mult.pair(s.pIe,pIl),s.p12)) 
fact nat -> nat defined 
cp].>3smp mu1t.palr(8.3. 0,3.3.3.0) 

:1 -> nat 
cpl)ssmp fact.3.3.3.3.0 
8.B.8.S.8.8.8.8.8.B.B.8.8.S.8.B.8.8.B.B.B.8.S.B.O.! 

:1->nat 
cpl> 

Let us next define the object for lists. 
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cpl> edit 
I left object list(p) with pri is 
I 	nil:1->list 
I cons.prod(p,list)-> list 
I end object; 
left object iist(+) defined 
cpi> edit 
I let append=eval.prod(prl(curry(pi2), 
I 	 curry(cons.pair(pil .pil,eval.pair(pi2.pil,pi2)))), 
I 	 id); 
append : prod(list(*a),list(*a)) -> iist(*a) defined 
cpi>let reverse —prl(nil,append.pair(pi,cons.pair(pi1,nil.!))) 
reverse iiat(*a) -> iist(*a) defined 
cpi>let hd=prl(inR,inl .pil) 
hd : iist(*a) -> coprod(*a,1) defined 
cpi>let hdp=case('hd,in) 
hdp : coprod(iist(*a),1) -> coprod(*a,1) defined 
cpl>let tl=case(inl .pi2,in2).prl(in2,inl .pair(pil, case (cons, nil).pi)) 
ti : list(*a) -> coprod(iist(*a),1) defined 
cpi>let tlp=case(tl,inf) 
tip : coprod(list(*a),1) -> coprod(list(*a)1) defined 
cpi>let seq=pi2.pr(pasr(0, nil),pair(s.pil , cons)) 
seq : nat -> iiat(nat) defined 
cpi> 

The morphism 'seq' returns a list of length n for a given natural number n such 

that the list consists of the descending sequence of natural numbers, r - 1, n - 

2,. .. , 2, 1, 0. We can try it in the system. 

cpi)simp seq.s.s.s.O 
cons.pair(s.pil,cons).pair(s.pil,cons).pair(O,nil).! 

:1 -> list(nat) 
cpi> 

The result dose not look like the sequence of 2, 1 and 0, but this is because our 

definition of canonical element (definition 4.1.3) is weak. We can ask the system 

to reduce an element to unconditioned canonical elements (see definition 4.5.1) 

using reduction rules listed in definition 4.5.2. 

cpi>ssmp full seq.s.s.s.O 
cons.pair(s.s.O. ! .cons.pair(s.O.! ,cons.pair(O.! .nil.!))) 

:1 -> list(nat) 
cpi> 

Now, it looks more like the sequence of 2, 1, and 0. We may continue to do some 

more reductions about lists. 

cpi>simp hd.seq.s.s.s.O 
inl.s.s.O.! 

:1 -> coprod(nat1) 
cpi>simp hd.nil 
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in2.! 
:1 -> coprod(*a.1) 

cpl>simp hdp.tl.seq.8.3.s.0 
ml. a . 0.! 

:1 -> coprod(nat,1) 
cpl>ssmp full append.pair(seq.s.s.0,seq.3.3.s. 0) 
cons.pair(a.O.! ,cona.pair(0. ! .cona.pair(a.a.O.! ,cona.pair(a.O. ! .cons. 

pair(O. ! ,nil.!))))) 
:1 -> list(nat) 

cpl>ssmp full reverse.st 
cons.pair(O. ! ,cons.pair(a.O. ! ,cons.pair(a.a.0.! ,cona.pair(O. ! ,cona. 

pair(s.0. ! nil.!))))) 
:1 -> list(nat) 

cpl> 

where 'it' denotes the result of the immediately-preceding reduction. 

Let us next experiment with infinite lists. 

cpl>edit 
I right object inflist(a) with fold is 
I head: inflist -> a 
I 	tail: inflist -> inflist 
I end object; 
right object infliat(+) defined 
cpl>let incaeq=fold(id,$).O 
incaeq : 1 -> inf].iat(nat) defined 
cpl>simp head.incseq 
0 

:1 -> nat 
cpl>simp head. tail. tail. tail. incseq 
8.8.8.0 

:1 -> flat 
cpl>let alt =fold(head.pil,pair(pi2,tail.p ii)) 
alt : prod(infliat(*a).infliat(*a)) -> infliat(*a) 
cpl>let infseq=fold(id,id).0 
infaeq : 1 -> infliat(nat) 
cpl>simp head. tail. taiL alt.pair(incseq, infseq) 
8.0 

:1 -> nat 
cpl> 

where 'incseq' is the infinite increasing sequence 0, 1, 2, 3, 4, ..., and 'infseq' 

is the infinite sequence of Os. We can merge two infinite lists by 'alt' which 

picks up elements alternatively from the two infinite lists. 
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5.2 Typed Lambda Calculus 

In this section, we will investigate connection between CPL and typed lambda 

calculi. Lambda calculi were invented to mathematically formalize the notion of 

computation. Typed lambda calculi (first order) are an important part of lambda 

calculi and are studied in various ways. Usually a typed lambda calculus starts 

with a fixed number of ground types and allows only -+ as type constructors. 

For example, [Stenlund 72] treats natural numbers and ordinals, and [Troelstra 

731 deals with one level higher ordinals. An interesting question is "What kind 

of types can be added to lambda calculi?" Natural numbers, ordinals, lists..... 

We will show in this section that any data types we can define in CPL can be 

added into typed lambda calculi. 

We are to define a typed lambda calculus. As CPL does not have any ground 

objects to start with, our lambda calculus does not have any ground types either. 

Instead it has two ways of constructing types, one corresponding to forming left 

objects and the other corresponding to forming right objects. 

Definition 5.2.1: The syntax of our lambda calculus is given as follows. 

An enumerable set TVar of type variables. p, v,... E TVar. 

The set Type of types is defined by the following rules. 

pETVar pET 	OFaEType TFrEType 
TFpType 	 TFa— rEType 

Tu{p}I-aiEType 	... 	TU{p}FaeType 
I'  F p.(a1,. ..,c) EType 

Tu{p}I-a1EType 	... 	Tu{p}F-  aEType 
r F 7ip.(a 1 ,...,or,) E Type 

We use a, r... . for the meta-variables of Type. tip. (a 1 ,. . . , a) corresponds 

to left objects and lip. (oi,.. . , a) corresponds to right objects. 

An enumerable set Var of variables. x, y, z,... E Var. 
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4. The set Term of terms and their types are defined by the following rules. 

rEVar 	x:aE.r 
rF -x: a 

r U { x: a} I- t: 
r F )tx'.t: a -p 

FFt1 :a-+r 	rFt2 :a 
I' F t 1 t2  : r 

r F 	 : aj[p.(a i ,. . . , a,)/pJ - A P. (ai,.. . ) o) 

r F J p.(a11...,a ),r : (a1 [r/pJ -* r) -+ ... -+ (a,jr/p] -+ r) 

r F 	 jip.(oi,. .. , a,) -+ a,[pp.(ai ,.. . , a,)/pJ 

r F Pip.(ui,...,a),r:  (r -+ ai [r/pJ) -p 	-* (r -4 an[r/p]) 

CJ4p.( Ql ,... an),i is the i-th constructor of j ip.(ai ,. . . , o) and 	 is 

the generalized iterator for it. 	 and 	 are the dual 

pairs. i:i 

We have the usual reduction rules c and [3 and two delta rules. We write a > b 

for the term a reducing to the term b by one step reduction and write a b for 

a reducing to b by some steps. The two delta rules are: 

.. . afl (CMP .( Tl ,...,Qfl ),b) > ai(ai[J,p.(,i,...,a),7al . . . a/pb) 

and 

ab) > a[PP.(Ql,...,C0),al . . . a/p](a,b) 

where a[t/p] is a term of type a[r/p] - a[v/p] when the type of t is r - v and 

is defined as follows. 

1. If p does not appear in a, then a[t/p] 
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2. p[t/p] 	t. 

3 (al —' or2)[t1p] 	Ax°1'°3[n1PI..Xyt71.or2[t/p](xy). 

4 	. . ,or,)[t/p] 	1M W.( 1 [T/P1,...)JW.(C l [U/P] .... ) al . . . On 

where a1 	Ao,[T/p][,w.(a1[v/p),...)/v1 C
v. (Q 1 [T1PJ,...),I(orI[/w.(al[V/pJ,. . .)/vJ[t/p]z). 

5. jiv.(oi,.. . , an)  [t/p] 	PW.(, l [ 7.... )al ... an  

where a 	Axh1'(d1En/P]i).oj[JIz.i. (al  [r/p],. . 

It looks very complicated but this is the faithful translation of or[t/p} as or being 

a functor. 

Let us see some types we can define in our lambda calculus. 

Example 5.2.2: The empty type can be defined as 0 	ip.(), and one point 

type can be defined as 1 71p. 
(). 

We denote the element of 1 as * P1 , 1 .... 1  Az' X. I] 

Example 5.2.3: The product of two types, or and r can be defined as or x r 

Ip.(or,r). We have two projections. 

ir,Dax r,, :orxr—+or 	72 	Daxr,2 :orxr-3r 

If a is a term of type or and b is a term of type r, we can define a term (a, b) of 

type or x r. 

(a, b) 	Paxi.(Az'.a)(Az'.b)* : or x r 

We have the following reduction. 

7r1 (a,b) 	DCXT ,,(PDX? ,(Az.a)(Az.b)*) > (Az.x)((Ax.a)*) a 

Similarly, we can show that 7r 2  (a, b) i b. J 

Example 5.2.4: Dually, the coproduct of or and r is defined as or+r ,p.(a,r). 

Two injections are defined as follows. 

C,.,1 	 L2 Cg+,2 : r —* a+ 

J + , satisfies the following reductions. 

.Ja+r,v ab(C +r,ic) D a((Az.x)c) > ac 

J0+ ,ab(1,2c) be 
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Example 5.2.5: Let us define the natural numbers in our lambda calculus. The 

definition of type is 

Zero and the successor function are defined by 

0 C,1  * : .a 	s 	C11,,2  : W - w 

J gives us almost the ordinary well-known iterator but its type is 

: (1 -+ a) - (a -+ a) -+ c4. -4 a. 

We can define the ordinary one by this 	as follows. 

Ax.Ay.Am.J, 0 (Az.x)yn : a - (a -+ a) —+ w - a 

It satisfies the usual reductions: 

J,abO J,0,(Az.a)b(C,i*) > (Az.a) ((Ax.x) *) a 

and 

Y,ab(sn) J,,(Az.a)b(C, 2n) > b(J,(Az.a)bn) 	b(Jabrt) 

where 	is the equivalence relation generated by . Using J, we can define 

all the primitive recursive functions. For example, the addition function can be 

define as 

add )n.Am.Jmsn : w w -+ w. 

Example 5.2.6: As [Stenlund 72] and [Troelstra 731, we can define the type 

for ordinals by f2 /Lp.(1, c' -+ p). We only check whether our definition of the 
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iterator coincides with the ordinary one. 

p) 

On 	Cn,,* :fl 

supCç , 2  

J,0, : (1 -, or) - ((C4) --+ a) -+ a) --I. Il -+ or 

Jn,(Ax.a)bOn 	\x.a)((Az.x)*) a 

Jc , (Ax.a)b(sup t) > b((w - p) 	(Az.a) b/pit) 

b((Ay.Az.Jç,,,(Ax.a)b(yz))t) r' b(Az.Jn, g (Az.a)b(tz)) 

Example 5.2.7: Finally, the type for finite lists can be defined by 

4, 	izp.(1,a x p) 

with 

nil CL,1* : 4, 	cons 	: a x 4, -+ 4, 

:(1-+r)--(axr-.+r)_+L0 _4.r 

whereas the type for infinite lists can be defined by 4 71p. (c, p) with 

head D1, 1 	I, -+ a 	tail 	: I, - 4 

(r -+ a) -+ (r -+ r) - r -p  4 

head(Pj0,abc) ac 	tail(P147 , Tabc) Pj,,,.ab(bc) 	II 

After finishing this section, the author is communicate with [Mendler 86] where 

recursive types are introduced into first-order and second-order typed lambda 

calculi. He uses least fixed points and greatest fixed points as we do, but their 
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recursion combinator R has a different type from ours. 

M:(p—+r)--+a--+r 

p.a -+ r 

The author cannot give a clear connection between our iterator and his. In 

addition, he takes fixed points over a single type expression and, therefore, he 

needs some basic type constructors like 1 and +, whereas in our lambda calculus 

there are no basic type constructors. 

5.3 ML and Categorical Programming 

Language 

We might say that ML is based on (first order) typed lambda calculi as we might 

say that LISP is based on untyped lambda calculi. The type structure of ML 

depends on the version of ML we are talking about. If we are talking about 

the original ML developed with LCF [Gordon, Milner and Wordsworth 791, it 

had some base types, product, disjoint sum, integer, etc. , and had ability to 

introduce new types via recursively defined type equations. For example, the 

data type for binary trees whose leaves are integers were defined as 

absrectype btree = mt + (btree * btree) 
with leaf n = absbtree(jni n) 
and node(tlt2) = absbtree(inr(t1,t2)) 
and isleaf t = isl(repbtree t) 
and leaf value t = outl(repbtree t) 
and left t = fst(outr(repbtree t)) 
and right t = snd(outr(repbtree t));; 

Here, we needed the coproduct type constructor '+' as a primitive. We could not 

do without it, whereas 'int' can be defined in terms of others primitives (ML has 

it as a primitive type just because of efficiency). 

At the next evolution of ML which yielded the current Standard ML [Milner 

84, Harper, MacQueen and Milner 861, we discovered that the coproduct type 
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constructor is no longer needed as a primitive. Standard ML has a 'datatype' 

declaration mechanism by which the coproduct type constructor can be defined. 

datatype 'a + 'b = ml of 'a I mr of 'b; 

A datatype declaration lists the constructors of the defining type. An element 

of "a + 'b' can be obtained by either applying 'ml' to an element of "a' or 

applying 'inr' to an element of "b'. We can define the data type for binary 

trees in Standard ML as follows. 

datatype btree = leaf of mt I node of btree * btree; 

The symbol 'I ' is just like '+', but we shifted from the object level of the language 

to the syntax level. Note that we no longer need the separate definition of 'leaf' 

or 'node'. We can define the other functions using case statements. 

exception btree; 

fun isleaf t = case t of 
leaf - => true 

I node - => false; 

fun leafvalue t case t of 
leaf n => n 

I node 	=> raise btree; 

fun left t = case t of 
leaf - > raise btree 

I node(tl.,t2) => ti; 

fun right t = case t of 
leaf - > raise btree 

I node(tl,t2) => t2; 

We got rid of the coproduct type constructor from the primitives, but Standard 

ML still needs the product type constructor. From a category theoretic point 

of view, we can sense asymmetry in the type structure of Standard ML. Let us 

remember that CPL (or the lambda calculus defined in section 5.2) needs neither 

the coproduct type constructor nor the product type constructor as a primitive. 

We should be able to introduce the symmetry of CPL into ML. Let us proceed 
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to the next stage of the ML evolution and define Symmetric ML. 

Primitives Declaration Mechanism 

ML ->, unit, #, + abstype 

Standard ML ->, unit, * datatype 

Symmetric ML -> datatype, codatatype 

CPL left object, right object 

ML Evolution 

Remember that datatype declarations correspond to left object declarations. We 

list constructors for types. In order to get rid of the product type constructor 

from primitives, we should have a declaration mechanism which corresponds to 

the right object declaration mechanism. Its syntax is 

codatatype TypeParam Typeld = 
Id is TypeExp & ... & Id is TypeEzp; 

A codatatype declaration introduces a type by listing its destructors. The prod-

uct type constructor can be defined as follows. 

codatatype 'a * 'b = fat is 'a & and is 'b; 

where 'f at : 'a * 'b -> 'a' gives the projection function to the first compo-

nent and 'end : 'a * 'b -> 'b' gives the projection function to the second 

component. If the declaration is recursive, we do not take the initial fixed point 

of the type equation but the final fixed point. This is firstly because of sym-

metry and secondly because the initial fixed points are often trivial. Because of 

this, we can define infinite objects by codatatype declarations. For example, the 

following declaration gives us the data type for infinite lists. 

codatatype 'a inf list = head is 'a & tail is 'a inflist; 

If we took the initial fixed point, we would get the empty data type. 

Obviously we have destructors for co-data types because we declare them, but 

how can we construct data for co-data types? We had case statements for data 

types, so we have 'merge' statements as dual. Its syntax is 
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merge Destructor <= Ezp k ... & Destructor <= Exp 

For example, the function 'pair' which makes a pair of given two elements can 

be defined as follows. 

fun pair(x,y) = merge fst <= x & end < 

As a more complicated example, we might define a function which combines two 

infinite lists together. 

fun coinb(ll,12) = merge head <= head 11 
& tail <= comb(12tai]. 11); 

It is now clear that, if elements of co-data types are just records and 'merge' 

creates records after evaluating expressions, this 'comb' function never terminates 

because it tries to sweep the entire infinite lists which cannot be done in finite 

time. We need lazyness in the evaluation mechanism. An element of 'inf list' is 

a record of two components but each component is a closure whose computation 

leads to a value. A 'merge' statement creates a record consisting of these records. 

Therefore, the declaration of 'inf list' is not like 

datatype 'a inflist = something of 'a * 'a mt list, 

but is closer to 

datatype 'a mt list = something of (unit -> 'a) * 
(unit -> 'a inflist); 

and 'head', 'tail and 'comb' are like 

fun head(something(x,l)) = xQ; 

fun tail(something(x,l)) = 10; 

fun comb(11,12) = something(fn 0 => head 11, 
fn 	=> comb(12tail 11)); 

Note that, as we use pattern matching to declare functions over data types, 

we ,  can also use it to declare functions over co-data types. For example, an 

alternative definition of 'comb' may be 

fun head comb(l1,_) = head 11 
& tail comb(11,12) = comb(12,tail 11); 



Conclusions 

We have looked at a categorical approach to the theory of data types. The goal 

of this thesis was to develop CPL (Categorical Programming Language) which is 

a programming language in a categorical style and which has a categorical way 

of defining data types. 

CSL (Categorical Specification Language) was actually developed later than 

CDT (Categorical Data Types) and CPL. At first, CDT was given its semantics 

without depending on CSL. We could have carried out the thesis without CSL, 

but CSL provides the syntactic materials for CDT and CPL so we would have 

still needed those parts. CSL is very much like an ordinary algebraic specifica-

tion language, but it is not trivial in two senses: the treatment of functors and 

the treatment of natural transformations. Functors are very similar to functions 

but variances make them special and interesting. Natural transformations are 

essentially polymorphic functions, so if there had been a specification language 

for polymorphic functions, we might not have needed to struggle for developing 

CSL. It might be interesting to investigate what polymorphic algebraic specifica-

tion languages can be. 

CSL is equational. Much of category theory can be presented equationally so 

that CSL is good enough in this sense, but presenting categorical concepts equa-

tionally loses half of the essential meaning. For example, although the adjoint 

situation can be explained equationally, its essence is something more. This is 

why, the author believes, there are so many equivalent forms of defining the ad-

joint situation. Therefore, it is nice to have a specification language which can 

172 



Conclusions 	 173 

naturally express categorical concepts. Sketches [Barr and Wells 851 are more 

categorical than equations, so it might be an idea to use sketches in CSL. 

CDT is the heart of the thesis. It was developed after the author first studied 

category theory and tried to express categorical definitions in algebraic specifica-

tion languages. As we have seen in chapter 3, algebraic specification languages 

can express categorical definitions but not naturally. CDT succeeded to de-

fine some basic categorical definitions like products, coproducts, exponentials, 

natural numbers and so on more naturally, but it cannot define, for example, 

pullbacks or more complicated categorical concepts. One of the suggestions to 

extend CDT is to allow equations inside the CDT declarations. In this way, we 

may define pullbacks as follows: 

right object pullback(f : A -p C, g: B - C) with pbpair is 

7r1 : pullback - A 

7r2 : pullback - B 

where 

1 0 111 = 9 0 2 

end object 

The declaration should be read as follows: 

For any morphisms f: A - C and g: B - C, pullback(f, g) is an object 

and it is associated with two morphisms 

	

7r1 : pullback(f, g) - A 	and 	7r2 : pullback(f, g) -+ B 

such that f 0 7r, = g 0 7r2 . 

For any morphisrnsh:D—A and k:D--+B such that fohg0k,there 

exists a unique morphism pbpair(h, k): D -p pullback(f, g) such that 

	

0 pbpair(h, k) = h 	and 	ir2  0 pbpair(h, k) = k 

Note that 'pullback' is no longer a simple functor but takes two morphisms. We 

can similarly define pushouts, equalizers, co-equalizers and so on. In fact, we 

can define any finite limit or colimit. Since limits and colimits are something to 



Conclusions 	 174 

do with diagrams, it seems natural to introduce the declaration mechanism of 

diagrams. For example, we may have a diagram consisting of three objects and 

two morphisms as follows: 

diagram el is 

objects A,B,C 

morphisrns 1: A - C, g: B - C 

end diagram 

Then, 'pullback' can be regarded as taking an 'el' diagram as its parameter, and 

it is a functor from the category of 'el' diagrams. This extension is becoming 

very much similar to the parametrization mechanism in algebraic specification 

languages. Diagrams correspond to so-called loose specifications, and object dec-

larations correspond to parametrized specifications (or procedures in CLEAR's 

terminology) which take a specification which matches as a parameter and return 

a new specification. It is very interesting to investigate the possibility of CDT 

with equations along this line as a first class specification language. CDT we 

presented in this thesis was bounded by the restriction of computability. If we 

introduce equations, it becomes increasingly difficult to connect them to com-

puting. If we had 'pullback' in CDT, we would have to prove f o k = go h before 

using pbpair(k, h). Therefore, the programming would involve some proving. 

CDT and CSL are essentially one sorted systems (here sort = category), and 

some would like to extend them to many sorted systems. We could have extended 

them here, but since our main goal in this thesis was to understand data types, 

we were interested in only one category, the category of data types, and so 

CDT and CSL were single sorted. Our approach is very close to that of domain 

theory which mainly deals only one category, the category of domains. On the 

other hand, algebraic specification methods deal with many categories. Each 

specification is associated with a category. However, they are still related in 

some sense because they all are algebras over the category of sets (or some 

other underlying category). As we mentioned above, if we extend CDT with the 

diagram declarations, we will have to deal with a lot of different categories of 
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diagrams, and it will be interesting to find out what F, G-dialgebras can give us 

in this context. 

CPL is a functional programming language without variables. It may look like 

FP proposed by John Backus because FP also has no variables. However, CPL 

is based on category theory and it has an ability to declare data types by means 

of CDT. CPL does not need any primitives to start with. One of the reasons for 

not having variables is that category theory is abstract in the sense that objects 

are simply points and only their outer behaviour is concerned. However, we 

could have variables for morphisms. For example, we might want to have 

twice(f) def 
 = 1 0  f 

which takes a morphism f: A - A and returns a morphism of A —+ A. The 

current CPL system cannot handle it and we have to write it like 

twice def= eval o pair(iri , eval) 

which is a morphism from exp(A, A) to exp(A, A). This definition is not self-

explanatory. It is evident that we need morphism variables in CPL for easier 

use. Note that twice(f) can simply be a macro because definitions can never be 

recursive. 

We proposed in chapter 5 to make CPL more like an ordinary functional pro-

gramming language. It has datatype declarations as well as co-datatype declara-

tions. It is left for the future to actually implement the language. It is interesting 

to see how to handle (or represent) lazy data types. 

Since CPL is an applicative language and has the possibility of executing pro-

grams in parallel as well as the possibility of partial evaluation, some kind of 

special hardware can be invented to execute CPL programs fast. 

The future plan of CDT and CPL would be to extend CDT to cope with equa-

tions and to develop a total programming environment in which users can define 

things categorically, reason (or prove) their properties categorically, execute some 

programs categorically. 
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