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ABSTRACT 

IncN plasmids commonly encode resistance to a number of anti-

biotics, and endow this property on potentially pathogenic bacteria. 

They are capable of transferring between bacterial cells by con- 

jugation. 	The conjugation system of these plasmids is markedly 

different from the archetypal system of the F plasmid, and during 

the course of this work has been studied in detail for one IncN 

plasmid, R46. 

The origin of transfer (oriT), the specific site from which 

the plasmid DNA is transferred has been examined using a previously 

isolated recombinant, pED939. 	The transposon Tn1725 was inserted 

in pED939 resulting in its insertion within the 900bp oriT fragment. 

Two of these insertions showed reduced oriT activity. 	A series of 

deletions and sub-clones were constructed using restriction targets 

within Tn1725, and these led to the positioning of the nick site 

within 174bp, as well as to the identification of two other 

domains required for full oriT activity. 	These two domains still 

allowed optimum oriT activity when separated by 9kb of DNA. 

Restriction mapping positioned the oriT containing fragment 

within R46, and showed it to be at the end of the DNA encoding the 

transfer proteins. 	Furthermore, a promoter was identified which 

transcribed away from oriT towards the transfer genes. 	The 

direction of transfer of R46 was determined and shown to be such 

that it transferred the transfer genes last. 

Eleven IncN plasmids were tested to determine if they would 

mobilise R46 oriT. 	Seven did, but four did not. 	This suggested 

two different conjugation systems within IncN plasmids. 

The nucleotide sequence of a 650bp region with full oriT 

activity was determined and the Tn1725 insertions positioned within 

it. 	Features of the sequence are discussed. 



A series of transfer deficient point mutants of R46 were 

characterised, and 30 transfer deficient R46::Tn1725 plasmids 

constructed. 	These should allow further characterisation of the 

proteins required for transfer. 

Finally, R46 and the closely related IncN plasmid N3 were 

each shown to contain two copies of an insertion sequence which 

was called 1S46. 	This was shown to be closely related to ISl5. 
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Abbreviations 

Ap ampicillin 

Ant antimony (III) 

Asa arsenate 

Asi arsenite 

bp base pair 

Cm chioramphenicol 

kb kilobase 

Km kanamycin 

min minute 

Nal nalidixic acid 

Rep replication 

Res restriction (EcoRil) 

s second 

sfx surface exclusion 

Sm streptomycin 

Spc spectinomycin 

Sul sulphonamide 

Tc tetracycline 

Tp trimethoprim 

Tra transfer 

Throughout this thesis ug has been used in place of 

1g to denote microgram. 
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CHAPTER ONE 

INTRODUCTION 

1(a) Plasmids 

A plasmid is an extrachromosomal DNA molecule which encodes 

functions required for its own replication in its bacterial host 

cell. 	Plasmids are present in a wide range of Gram negative and 

Gram positive bacteria. Although most exist as covalently closed 

circles some are linear (Hirochika 	ci, 	, 198t.). 

Plasmids have been classified according to their ability to 

co-exist in the same cell: two closely related plasmids will not 

co-exist and are said to be incompatible. 	This is an indication 

that their replication systems are similar, and can interact with 

one another. 	Generally plasmids of the same incompatibility group 

show extensive (>65%) DNA homology, whereas there is relatively little 

homology (<15%) among those of different groups (Grindley et al., 1973; 

Falkow et al., 1974). 	This has been demonstrated in beteroduplex 

studies, and liquid hybridisation experiments among IncFII (Sharp 

et al., 1973), IncW (Gorai et al., 1979), IncP (Villarroel et al., 

1983) and IncN (Brown, 1981; Konars1-.Kozlowsca and Iyer, 1983) 

plasmids. 	This homology between closely related plasmids involves 

much more DNA than is required for replication, and includes in 

particular, regions required to encode the conjugation (see later) 

functions of the plasmid. 	This explains the observation that 

plasmids of the same incompatibility group encode the same type of 

pili (extracellular structures required for conjugation). 

The regions conserved between related plasmids have been termed 

the"backbone" of the plasmid molecule (Villarroel et al., 1983), and 

the differences are due to insertion and deletion of sequences often 

involving transposable elements. 	However, the IncP group does 

include three plasmids (R751, R906 and R772) which share little 

homology with each other, or with other IncP plasmids, and must 

represent separate lines of descent within the IncP group(Villarroel 

et al., 1983). 
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Plasmids were first identified as a consequence of their 

ability to transfer from one bacterial cell to another. 	This 

process is called conjugation. 	The F plasmid was recognised 

(Lederberg, 1952; Hayes, 1953) because it enabled strains of 

E.coli to transfer chromosomal genes. 	Similarly, antibiotic 

resistance plasmids could spread through a population of bacteria 

and make them resistant to a variety of antibiotics (see Watanabe, 

193). 	The conjugation systems of plasmids from different 

incompatibility groups are usually distinct. 	This was demonstrated 

in a number of ways, including: lack of DNA homology in regions 

which encode the transfer functions; different lengths of DNA 

required for conjugation (e.g. 3b for IncF plasmids, but ca.20kb 

for IncN plasmids); and differences in the pili encoded by different 

plasmids (Bradley, 1980). 

It is common for plasmids to code for resistance to one or more 

antibiotics. 	The IncN plasmid R46, for instance, carries genes 

determining resistance to thnpicillin, tetracycline, streptomycin, 

sulphonamide and spectinomycin (Brown and Willetts, 1981). 	The 

observation that closely related plasmids share a common backbone, 

but carry genes determining resistance to different antibiotics 

led to the suggestion that these genes were inherited by most plasmids 

relatively recently, probably via transposition. 	This proposal of 

how plasmids may have evolved is supported by the discovery of 

plasmids from the same incompatibility groups as contemporary plasmids 

in strains stored before the use of antibiotics (Datta and Hughes, 

1983). 	None of these plasmids carry genes which determine resistance 

to antibiotics, suggesting that these may have been inherited by 

plasmids in the last fifty years. 	Presumably these genes were 

already present in the population, but after the introduction of 

antibiotics were amplified via transposition. 
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1(b) This study of IncN plasmids 

In the course of this work the IncN plasmid R46 was extensively 

studied. 	It was isolated from Salmonella typhimurium in a Brighton 

hospital (Datta and Kontomichalou, 1965), and was one of the first 

plasmids to be assigned to the IncN group. 	R46 is a conjugative 

plasmid, 51.7Kb in size, and encodes resistance to tetracycline, 

ampicillin, sulphonamide, spectinomycin and arsenate compounds 

(Brown and Willetts, 1981). 

This thesis extends our knowledge of the conjugation system of 

IncN plasmids. 	Firstly, the origin of transfer (2EiL the site 

from which plasmid DNA is transferred, see later) of R46 has been 

studied in detail, and the nucleotide sequence of a 650bp region 

with full oriT activity has been determined. This work was extended 

to other IncN plasmids by measuring the efficiency with which they 

were capable of mobilising R46 oriT clones. 	Secondly, the transfer 

genes of R46 were examined by making a number of transfer deficient 

transposon insertions and point mutants of R46, and a method by 

which these mutants could be assigned to complementation groups is 

discussed. 

Finally, R46, as well as two other IncN plasmids (N3 and pCU1), 

were shown to carry copies of the insertion sequence 1S46. 

2. 	IncN plasmids 

2(a) Discovery of IncN plasmids 

Plasmids were originally classified according to their ability 

to inhibit the fertility of the F plasmid (Watanabe 1964), and 

F1 plasmids were initially all thought to be closely related and 

to produce I-type pili (Lawn et al., 1967). 	However it later 

became clear that some Fi plasmid-carrying strains would not 

propagate the I-type pilus specific phage Ifl. 	One such plasmid 

was R46, which was shown on the basis of incompatibility and surface 

exclusion to be closely related to N3 and R15, two of the classical 

Fi plasmids isolated by Watanabe. 	N3, R15 and R46 were placed in 



incompatibility group N (Datta and Hedges, 1971), and their relatedness 

was emphasised by the discovery of a phage, IKe, specific for cells 

carrying an IncN plasmid (Khatoon and Iyer, 1971). 	Many more 

IncN plasmids have been described, and an extensive list has been 

compiled by Jacob et al. (1977). 

IncN plasmids have a relatively wide host range. 	They were 

found to be present in species of Proteus, Providencia, Salmonella, 

Shigella, Klebsiella and Yersinia by characterising resistance 

plasmids transferred from these species to E.coli (Coetzee et al., 1972; 

Datta and Hedges, 1972; Hedges, 1974; Hedges, 1975; Hedges et al., 

1973; Kimura et al., 1976; Jacob et al., 1977). 	Tardif and Grant 

(1930) reported that IncN plasmids from E.coli were transferred at 

high frequency to, and were stable in, the other genera of 

Enterobacteriaceae. 	Jacoby (1977) found that R46, but not N3 or 

R15, was transmissible to Ps.aeruginosa, suggesting that certain 

IncN plasmids can replicate in some Pseudorrrnas species. 

2(b) Properties of IncN plasmids 

The IncN plasmids R46, its derivative pKM101,pCUl and N3 

have been studied in some detail (Brown and Willetts, 1981; Langer 

et al., 1981; Langer and Walker, 1981; Konarska-Kozlowska and Iyer, 

1981; Ando and Arai, 1981; Brown et al., 1984), and restriction 

endonuclease and genetic maps are available for each of these plasmids 

(fig 1.1). 

Brown (1981) made heteroduplexes between recombinants carrying 

the transfer region of R46- and the related plasmid N3. 	These suggested 

that the transfer regions of the two IncN plasmids were identical. 

Konarska-Koz1owska and Iyer (1983) analysed nine IncN plasmids 

(including pKM101) for homology with different regions of the 

previously characterised IncN plasmid pCUl. 	A 6kb fragment of 

pCU1 which encodes resistance to ampicillin as well as the maintenance 

functions of the plasmid was used as a probe in Southern blot 

analysis against the other plasmids. 	All shared homology with the 



Fig. 1.1 

Maps of R46 and N3. 

The map of R46 was redrawn from Brown and Willetts (1981) 

with the addition of the two copies of 1S46 (chapter 6; Brown 

et al., 1984). 	The restriction enzyme cleavage sites shown 

are EcoRI(R), HindIII(H), 	II(Bg), PstI(P), Sail(S), BamHI(Ba), 

aI(K), SmaI(Sm), and XhoI(X). Co-ordinates are in kilobases. 

The map of N3 was redrawn from Brown (1981). 	The phenotype 

of N3 differs from that of R46 in that it does not carry APR, 
RR 	R 	 R Asa , Asi , or Ant determinants, its Tc gene is different, and 

it encodes the EcoRil restriction and modification system. 	The 

copies of 1S46 are marked with heavy lines (see chapter 6; Brown 

et al., 1984). 
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6kb fragment, suggesting that the maintenance functions are conserved 

between these IncN plasmids. 	Similar experiments showed that all 

the IncN plasmids shared homology with the transfer region of pCijl. 

It is therefore likely that, as with IncP plasmids, IncN plasmids 

have a common backbone consisting of maintenance and transfer 

functions. 

IncN plasmids endow host cells with a variety of properties 

apart from antibiotic resistance. 	The characteristic properties 

of these plasmids are outlined below. 

2(b)(i) Protection against effects of UV radiation 

A number of plasmids, particularly of incompatibility groups I 

and N (Molina et al., 1979) enhance resistance of E.coli and 

S. typhimurium to uV radiation. 	Several such plasmids also 

increase the rate of mutagenesis induced by uir radiation or chemical 

agents, and increase the spontaneous mutation rate (Chernin and 

Mikoyan, 1981). 	The best studied of these plasmids is pKM101 

which is an in vivo deletion derivative of R46 (Mortelmans and Stocker, 

1979; Brown et al., 1984). 	These are the only plasmids which 

increase the propagation and mutation rate of uv-irradiated phage 

in unirradiated cells (Mortelmans and Stocker, 1976; Walker, 1977; 

Chernin and Mikoyan, 1981). 	The capacities of pKM101 to enhance 

survival after uv radiation, and to increase the rate of mutagenesis, 

are closely related as single mutations affect both processes 

(Walker, 1978). 	The ability of pKM101 to increase the rate of 

mutagenesis in the presence of a number of mutagens led to the 

inclusion of the plasmid in the Ames tester strains for the detection 

of potential carcinogens (McCann, 1975). 	The genes involved in 

this effect have been mapped in R46 and pKM101 (Brown and Willetts, 

1981; Langer et al., 1981) and are called the muc genes. 

In E.coli, R46 and pKM101 are able to suppress the effects of 

unluCD mutations (Walker and Dobson, 1979). 	The products of the 

UmuC and UinuD genes are thought to be involved in error-prone 

repair, as mutants in these genes are non-mutable with a wide range 



of agents, but still exhibit the other SOS responses. 	The muc 

region of pKM101 contains two genes, mucA and mucB, with their 

products having the same molecular weights as the products of the 

umuD and umuC genes, respectively (Elledge and Walker, 1983; 

Perry and Walker, 1982). 	Furthermore, a gene fusion between mucB 

and lacZ expressed from the mucAB promoter, suggests that the mucAB 

genes are organised as an operon, and are, like umuCD, under the 

control of the lexA repressor (Elledge and Walker, 1983(b)). 

The genes are not induced in a strain containing the recA56 or 

lexA3 (ind) alleles. 	This is consistent with them being controlled 

in a similar fashion to other genes involved in the SOS response, 

which are induced in response to DNA damage by recA-mediated degradation 

of the lexA repressor. 

Dowden and Strike (1982) have suggested that DNA present on 

R46, but absent in pKM101, codes for a repressor of the mucAB genes, 

and that this repressor may be interchangeable with the lexA protein. 

This may explain the observation of McCann et al.,(1975) that 

strains carrying pKM101 show a higher mutation rate than those 

carrying R46 itself. 

2(b)(ii) Restriction and modification 

Watanabe (1964) first showed that bacteriophage Awas restricted 

and modified by cells harbouring plasmids N3 and R15. 	This was 

extended by Bannister and Glover (1968) who showed that X was 

restricted by only 12 of 151 strains carrying Fi resistance plasmids. 

These plasmids had the same specificity as R15 or N3, and this was 

called host specificity pattern II (hspll). 	It was later shown 

that all plasmids which carried the hspll system were IncN (Hedges, 

1972), although not all IncN plasmids carried it. 	The genes 

required for restriction have been mapped on the N3 molecule (Brown 

et al., 1984). 	The sequence recognised by the hspll restriction 

system was determined by Bigger et al., (1973) to be CCA/TGG, 

and the modified bases were shown to he methylated cytosine residues 

within the restriction recognition sequence (Boyer et al., 1973). 

Smith and Nathans (1973) proposed a new nomenclature for restriction 

modification systems in which the hspll system was re-named EcoRil. 
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2(b)(iii) Potentially lethal products of pKM101 

A number of plasmids have been shown to carry genes which are 

lethal to the host cell under certain conditions. 	The best understood 

of these are the lethal genes of RP4. 	There are three genes 

kilA, kilB and kilC which are lethal in the absence of the genes 

korA, korB and korC (for Kill over-ride; Figurski et al., 1982). 

The IncN plasmid p}U4101 encodes a similar system (Winans and 

Walker, submitted). 	It has been observed that cells harbouring 

pKM101 or R46 grow slowly on minimal medium, unless the agar is 

supplemented with purines (Langer et al., 1981), although why these 

plasmids should increase the requirement for purines is not clear. 

The region of pKM101 responsible for this phenotype was placed on 

the pKM101 map (Langer et al., 1981), and called sb. 	The product 

of the sl10 gene (now called kilA) is lethal in the absence of two 

other genes: korA and korB. 	A fourth gene kilB is also lethal in 

the absence of korA and korB, but in their presence may be necessary 

for pilus synthesis and conjugal transfer, as a Tn5 mutation of 

kilB is also transfer deficient. 	Alternatively, this could be 

explained by a polar effect of Tn5 on neighbouring genes. 

Winans and Walker have shown that kilA and kilB cause cell death 

rather than loss of the plasmid. 	A plasmid which carries the 

korA and korB genes, and is temperature sensitive for replication 

will allow a cell also containing a plasmid with kilA and kilB, but 

no kor genes, to survive at 30°C. 	However, at 42°C the kor plasmid 

will not replicate and the cells die, even on medium without antibiotics. 

Rodriguez and Iyer (1981) have reported killing of Klebsiella 

pneumoniae when it is used as a recipient in matings with strains 

carrying IncN plasmids. 	This effect appears to be specific for 

IncN plasmids, although IncP and IncW plasmids showed it to a lesser 

degree. 	It was dependent upon transfer, as all conjugation- 

deficient mutants were also deficient in killing (Kil). 	At low 

frequency Ku Tra 
+

mutants could be recovered. 	The killing of 

K. pneumoniae appears to be unrelated to the kil/kor system of Winans 

and Walker as double mutants of kilA and kilB were still able to kill 

K.pneumoniae (Winans and Walker, submitted). 



3. Conjugation 

Introduction to conjugation 

Conjugation is one method by which bacterial DNA can be transferred 

between bacterial cells. 	It requires cell to cell contact and is 

usually encoded by a plasmid present in the donor cell. 	There are 

two types of plasmid capable of transferring between bacterial cells: 

conjugative and non-conjugative plasmids. 	The former are generally 

large (>30kb) and encode all the products required for their own 

transfer. 	Non-conjugative plasmids, however, are usually small 

(<10kb), and although coding for some transfer proteins, they can 

only transfer when a suitable conjugative plasmid is present in the 

same cell to code for other transfer functions. 

Conjugative plasmids have been isolated from a wide range of 

Gram negative bacteria (see Jacob et al., 1977), and are also present 

in Gram positive bacteria (Clewell, 181). 	The following discussion 

will be concerned almost exclusively with the conjugative plasmids 

of E.coli, and particularly the F plasmid about which most is known. 

Model for conjugation 

3(b)(i) Cell-to-cell contact 

Conjugative plasmids representative of all incompatibility groups 

have been shown to encode pill (Bradley, 1980). 	These extracellular 

structures appear to be required for conjugation (see below). 

There are three morphological types of pili as seen in the electron 

microscope: thin flexible; thick flexible; and rigid (Bradley, 

1980). 	Where more than one naturally occurring plasmid from the 

same incompatibility group has been tested they produce the same 

type of pilus. 	The type of pilus produced can affect the efficiency 

with which the plasmid transfers in certain conditions. 	For instance 

IncN plasmids transfer at high levels on solid media, but approximately 

1000 fold less efficiently when the matings are done in liquid media. 

This is thought to be due to their rigid pill being sheared off during 

mating in liquid media. 
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direction, the opposite strand of A was transferred (Rupp and Ihier, 

1968). 	The known polarity of A DNA indicated that it was 

transferred with the 5' end leading. 	Vapnek and Rupp (1970) 

showed that only one strand of F plasmid DNA is transferred to the 

recipient, and that this is the denser in CsC1-poly (U,G) equilibrium 

density gradients,while the other strand remains in the donor cell. 

This supported the observation that F transfers single stranded DNA 

to mini-cells (Cohen et al., 1968). 

It is widely assumed that other plasmids transfer their DNA 

similarly, but there is little data available to support this. 

However, it has been shown that the IncFII plasmid R538-1 and the 

IncTa plasmid R64 drd 11 transfer only one strand to the recipient 

(Vapnek et al., 1971). 	Further, RP4 (IncP) and R144 (Incict 

transfer their DNA unidirectionally (Al-doori et al., 1982; Barth 

and Datta, 1976), but it is not yet proven that they transfer only 

one DNA strand. 

Willetts (1972) realised that the nick introduced in one strand 

of the F plasmid must be specific, as the bacterial chromosome is 

not transferred. 	He concluded that there was a specific site on 

F at which the nick was introduced prior to transfer. 	This site 

was designated the origin of transfer (oriT). 	This hypothesis was 

confirmed by demonstrating that some Tra Hfr strains which had 

suffered deletions within the F DNA were unable to transfer even 

if all the F tra functions were supplied in trans. 	Willetts con- 

cluded that these had lost oriT, and mapped this to one end of the 

transfer region (Willetts, 1972). 	Several conjugative and non- 

conjugative plasmids have since been proven to contain an oriT 

(reviewed by Willetts and Wilkins, 1984; see chapter 3). 

Before a DNA strand can be transferred to the recipient a nick 

must be introduced at oriT. 	Everett and Willetts (1980) devised 

a system by which they could assay this nicking in a A transducing 

phage which carries oriT. 	They showed that nicking requires two 
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F tra proteins: traY and traZ (chapter 5). 	The products of these 

genes are thought to form a specific endonuclease. 	Surprisingly, 

the transducing phage was nicked even in the absence of mating 

pair formation, and nicking must occur at oriT even in the absence 

of a recipient strain. 

3(b)(iii) Triggering of transfer 

Since the oriT of F is reversibly nicked during cell growth it 

must be transfer of the DNA that is initiated by mating pair 

formation. 	The model for F transfer (Everett and Willetts, 1980; 

1982; Willetts and Wilkins, 1984) proposes that transfer of F DNA 

is triggered by an F encoded protein after mating pair formation. 

A candidate for this triggering protein is the traM product which 

is not required for pilus synthesis, formation of mating pairs, 

or nicking at oriT, but is essential for DNA transfer and the 

conjugal DNA synthesis which takes place in the donor to replace 

the transferred strand. 	Further, the location of the traM product 

in the inner membrane, and its ability to bind to DNA near oriT 

make it a potential candidate for a triggering protein (Achtman 

et al., 1979; Thompson and Taylor, 1982; Willetts and Wilkins, 

1984). 

3(b)(iv) Transfer of the DNA 

Nicking at oriT and triggering of DNA transfer is followed by 

unwinding of the DNA to separate the single strands. 	An F plasmid 

protein, encoded by tral, is probably responsible for this unwinding 

as it has recently been shown to be DNA helicase I (M. Abdel-Monem 

et al., 1983). 	This protein possesses a DNA-dependent ATPase 

activity, and if it is fixed to the membrane it may supply the 

energy required for displacement of the transferred strand into the 

recipient. 	The DNA is unwound at an estimated rate of 1200bp per 

second, which is similar to the rate at which DNA is transferred 

(Abdel-Monem and Hoffman Berling, 1976; Kuhn et al., 1979; Willetts 

and Wilkins, 1984). 
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The role of the pilus in DNA transfer is not clear. 	The pilus 

may serve simply to recognise a recipient cell and bring the cells 

together, or in addition the DNA may be transferred through the 

hole in the pilus. 	Once mating aggregates have formed concentrations 

of SDS which would dissociate pili do not prevent DNA transfer, 

suggesting that either the pili are unnecessary for this or are 

protected at this stage (Achtman, 1978). 	Willetts and Wilkins. (1984) 

pointed out that although the hole in the pilus is large enough to 

allow transfer of DNA, if specific proteins are transferred in 

association with the DNA, this may be incompatible with the complex 

being transferred through the pilus. 

Further, there is evidence for fusion of the membranes of the 

donor and recipient cells during transfer. X  receptor protein 

can be exchanged between Hfr and F strains as a consequence of 

mating (R. Goldschmidt and R. Curtiss, quoted in Willetts and 

Wilkins, 1984). 	Moreover, some E.coli mutants which are deficient 

in their ability to act as recipients In matings with cells containing 

certain F-type plasmids have been shown not to produce the ompA 

major outer membrane protein. 	The ompA protein is transmembranous 

and may occur at the adhesion sites between. inner and outer membranes 

(Di Renzio and Inouye, 1979) that have been implicated in nucleic 

acid transfer (Bayer, 1968). 	The pill on the donor cell also 

occur at these adhesion sites (Bayer, 1976). 	Perhaps retraction 

of the pill bring the adhesion sites of donor and recipient together, 

fusing the membranes, and allowing the plasmid access to the recipient 

cell via a specific membrane protein complex. 	This complex probably 

includes the protein encoded by traD of F, as this is present in the 

inner and outer membranes, and is involved in the penetration into 

the cell of certain plasmid specific phage. 	The ti-al protein may 

also be positioned on the membrane, near this complex, so that 

unwinding can supply the energy to move the DNA into the recipient. 
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3(b)(v) Circularisation of transferred DNA 

F DNA enters the recipient as a linear single strand. 	Single 

stranded DNA is unstable in E.coli so it is likely that the transferred 

DNA is stabilised by single stranded DNA binding protein. 	Recently 

F plasmid has been shown to encode a single stranded DNA binding 

protein which shares extensive homology with that of E.coli 

(Klodkin et al., 1983). 	However deletion of the gene (ssf) which 

encodes this protein does not render the plasmid unable to transfer 

or unable to replicate, so its function is not clear. 	However, 

as the experiments used E.coli strains which were capable of 

producing single stranded DNA binding protein, it is possible that 

this compensates for loss of ssf. 

The complementary strand to the transferred DNA is synthesised 

prior to circularisation. 	This was concluded for Rldrd19 by 

finding linear double stranded plasmid DNA in association with the 

membrane of heavily irradiated recipients (Falkow et al., 1971), 

and is assumed to be the case for other conjugative plasmids. 

Circularisation of plasmid DNA does not require expression of 

plasmid genes in the recipient. 	This was concluded from experiments 

in which F and Collb-P9drdl were replicated and circularised in 

rifampicin-treated recipients (Hiraga and Saitoh, 1975), and is 

inferred from the ability of oriT clones to circularise in cells 

which did not also inherit the conjugative plasmid. 

The circularisation process is not understood in detail. 

A plasmid encoded protein bound to the leading (5 1 ) terminus of the 

DNA may recognise the other (31 ) end as it enters the recipient, and 

then allow circularisation. 	Whether there is any specificity 

required at the 3' end in the form of bound protein or nucleotide 

sequence is not known. 

After circularisation the mating cells disaggregate, probably 

because of expression of transfer or surface exclusion genes in the 

recipient. 	The recipient cell, which now contains a double stranded, 

replicating plasmid is called a transconjugant and quickly develops 

the capacity to act as a donor. 



3(b)(vi) Conjugal DNA synthesis 

Vapnek and Rupp (1970) showed that the complement to the trans-

ferred strand of F plasmid was synthesised in the recipient, while 

in the donor DNA synthesis occurred to replace the transferred 

strand. 	This indicated that conjugation was a replicative process. 

Both donor and recipient conjugal DNA synthesis (DCDS and RCDS 

respectively) of the F plasmid require DNA polymerase III (Wilkins 

and Hollom, 1974; Kingsman and Willetts, 1979). 	Early models 

proposed that the primer for DCDS was the 3' end of the transferred 

strand, by analogy with the rolling circle model for ØX174 replication 

(Gilbert and Dressier, 1968). 	However, this was disproven by 

showing that DCDS was inhibited by rifampicin, implying that it was 

necessary for RNA polymerase to synthesise a primer (Kingsman and 

Willetts, 1979). 	The primer for RCDS of F is synthesised by RNA 

polymerase and/or the primosome (Wilkins and Hoilom, 1974; reviewed 

Willetts and Wilkins, 1984). 

Several plasmids from different incompatibility groups, most 

notably IncI and IncP (but not IncN) encode a primase which 

synthesises an RNA primer on single stranded DNA templates in vitro 

(Lanka and Barth, 1981). 	Although the IncI primase is co-controlled 

with the tra genes, primase deficient mutants () transfer at 

frequencies comparable to the wild type plasmid (Chatfield et al., 

1982). 	However, RCDS Idas virtually eliminated when a sog plasmid 

was transferred to a dnaG primase deficient recipient. Interestingly, 

RCDS did occur if a non-transferable recombinant carrying the sog 

gene was present in the donor. 	This was almost certainly due to 

transfer of the primase with the plasmid DNA, and sets an important 

precedent for the transfer of transfer proteins from the donor to the 

recipient during conjugation. 

14 
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CHAPTER TWO 

MATERIALS AND METHODS 

2(a) Growth Media and Buffers 

L-Broth contained, per litre: Difco Bacto Tryptone, lOg; Difco 

Bacto yeast extract, 5g; NaC1, 5g. pH7.2. 

Nutrient agar: Oxoid no. 2. Nutrient Broth, 25g; Davis New Zealand 

agar, 12.5g per litre. 

L Agar: As L-broth, but with lOg NaCl and 15g Difco agar per litre. 

BBL Agar: Baltimore Biological Laboratories trypticase, lOg; NaC1, 

5g; Difco agar, lOg per litre. 

LC Agar: Difco Bacto Tryptone, lOg; Difco Bacto yeast extract, 5g; 

NaC1, 59; Difco agar,lOg; O.LM CaCl2, 4ml; 20% (w/v) glucose, 5m1; 

0.25% (w/v) Thymidine, 4ml, per litre. pH7.2. 

M9 Minimal Agar: Davis New Zealand agar, 20g; NH) C1, ig; NaCl, 0.5g; 

Na2  HPO)4, Tg; KH2PO4, 3g; MgS07H 20 
 O.g; Glucose, 2.5g; Thiamine, 

2ug per litre. 

Spizizen Bacto Agar: Difco Bacto agar, 16g; (NH )2  SO, lOg; K2  HPO14 , 

TOg; K2PO, 30g; Sodium citrate, 5g. MgSO, lg; Glucose, 2.5g; 

Thiamine, 2ug per litre. 

Difco Top Agar: Difco Bacto agar, Ig; L-Broth, 4oml per litre. 

BBL ToD Agar: As BBL agar, but only 6.5g Difco agar per litre. 

LC Top Agar: Difco Bacto Tryptone, lOg; Difco Bacto yeast extract, 

5g; NaCl, 5g; Difco agar, Tg; 0.5M CaCl2, lOmi per litre. 

Citrate Buffer: Citric acid, 78g; Trisodium citrate dihydrate,2589pei-[.re  

Phage Buffer contained per litre: FI2P0)4 , 3g; Na2ffP01 ,Tg; 

NaCl, 5g; 0.1M MgS0, lOrni; 0.01M CaCl2, lOml; 1% (w/v) gelatin,lml. 

TE Buffer: 10mM Tris-HCL (pH8.0), 1mM EDTA. 

TES Buffer: TE containing 1% (w/V) NaCl. 

TAR Buffer: 1 0inM Tris, 20mM Sodium acetate, 5mM EDTA (pH8.2). 

TEE Buffer: 90mM Tris, 89mM Boric acid, 2.5mM EDTA. 

SSC: 0.15M NaCl, 0.015M  Sodium citrate. 
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Plasmids, Phages and Bacterial Strains 

See tables 2.2, 2.3 and 2.11.. 

Conjugation Techniques 

2(c) (1) Broth matings 

These were used to construct strains containing F-type plasmids. 

Fresh 2inls overnight cultures of donor and recipient strains were 

used. 	0.lml of donor and 0.lrnl of recipient were mixed in a test- 

tube with 0.4inls of L-broth. 	These were left to stand in a 31 0C 

water bath. After 90 minutes a range of dilutions was made and 0.liril 

spread on selective plates. 

In broth matings of pEDlOO, where no selection for the plasmid 

was available, the recipient strain was selected for, and the 

resulting colonies checked for their sensitivity to F-specific phages. 

2(c) (ii) Quantitative filter matings 

This method was used in quantitative matings of all IncN, IncP, 

IncW and IncM plasmids. Fresh 2m1 overnight cultures of donor and 

recipient were diluted 1:20 in lOmis of L-broth and shaken in a 31 0C  

water bath until they reached a density of 2 x 108  cells/mi. 	These. 

cultures were then chilled on ice. 	0.2mls of the donor was mixed with 

1.8mls of the recipient in a chilled Universal bottle. 	The mixture 

was taken up in a 2ml syringe and passed through a 20mm diameter 

membrane filter (Millipore Corporation, pore size 0.145uN). 	The cells 

were retained on the filter, which was placed on a pre-warmed nutrient 

agar plate at 37°C for 30 minutes. 	The filter was then placed in a 

chilled Universal bottle containing 2mls of L-broth and vortexed for 

30s to resuspend the cells. 	These were then diluted and plated on 

selective plates as required. 	The original donor culture was diluted 

105  foldand 0.lml spread on nutrient agar plates, to determine the 

number of donor cells used. The plates were incubated overnight 

(nutrient agar) or for approximately 36 hours (minimal agar). 

20 of the colonies from the donor culture were patched and replica 



TABLE 2.1 FINAL CONCENTRATION OF ADDITIVES TO 
MINIMAL AND NUTRIENT MEDIA 

Antibiotics Minimal(ug/ml) Nutrient(ug/mi) 	L-agar(ug/ml) 

Ampicillin 50 40 	 40 
(Penbri tin) 

Chioramphenicol 50 50 	 - 
(Chioromycetin) 

Kaiamycin 25 20 	 - 
(Kantrex) 

Nalidixic acid 40 40 	 - 

Spectinomycin 100 20 	 - 

Streptomycin 400 400 	 - 

Sulphcnamide 100 - 	 - 
(Suiphadimidine) 

Tetracycline 10 20 	 - 
(Achromycin) 

Trimethoprim 50 - 	 - 

Amino acids 	 20 

Others 

Thymine 	 50 	 50 	 - 

Tetrazolium 	 - 	 - 	 20 

Galactose 	 - 	 - 	 8mg/mi 



TABLE 2.2 PLASMIDS 

Plasmid Phenotype, Genotype or Description Inc Group Reference/Source 

pBR322 APR TcR Bolivar et al. 1977 

pBR322 	::IS1 TcR M Chandler 

pCUl APR Spc IncN Konarska-Kozlowska and Iyer, 1981 
R 

pED101 Ap , galK coding sequence P. Mullineaux 

pED822 ApR, ForiT 	derivative of pED825 Everett and Willetts, 1982 

pED825 APR Everett and Willetts, 1982 

pED889 SulS Tra 	mutant of R46 IncN Brown et al, 	1984 

pED904 Hindill - A fragment of R46, IncN Brown and Willetts, 1981 
in vitro deletion 

pED935 TetRCmR R46 Tra 	derivative of pBR325 Brown and Willetts, 1981 

pED938 ApR, R46 oriTF  derivative of pED825 Brown, 	1981 

pED939 ApR, R46 oriT 	derivative of pED938 Brown, 1981 

pED957 R46::Tn5 IncN Brown, 1981 

pED967 ApRCmR, R46 oriT 	derivative of pBR325 Brown, 1981 

R pED994 Kan, pML31: : 1S46 Brown et al, 1984 



TABLE 2.2(a) PLASMIDS 

Plasmid Phenotype, Genotype or Description Inc Group Reference/Source 

F Tra IncFI Hayes, 1968 
pHR9 promoter of gal operon in pK04 Newman et al., 1982 
pIP1091 pBR322::1S15 Labigne-Rcussel and 

Courvalin,.1983 
pKM101 ApR Uvp  + Tra 	S10 IncN Mortelmans and Stocker, 1979 
pLG-339 Kan RTetR 

Stocker et al, 	1982 
pME420 ApRCmR Tet5  deletion of pBR325 J Watson 
pML31 KanR, mini

-SF replicon Timmis et al., 1978 
pMUR274::Tn7 TpR Tra IncN Datta and Hughes, 1983 
pMUR545::Tn9 Cm 	Tra IncN Datta and Hughes, 1983 
N3 Su1R Spc 	TetR EcoRil Uvp 	Tra IncN Watanabe et al., 	1964 
R1-19 APR Cm 	Km 	smR 51R Tra IncFII Meynell and Datta, 1967 

R46 APR suiR SpcR/SmR TcR Uvp 	AsaR AsiR Tra IncN Datta and Hedges 1971 
R68 APR Km  	TcR Tra IncP Chandler and Krishnapillai, 1974 
R100 Cm 	fig 	5m1 	siR TcR Tra IncFII Egawa and Hirota, 1962 

R269N APR Sm1 	TcR EcoRil Tra IncN Hedges, 1972 
R388 5iR TPR 

IncW Datta and Hedges, 1972 
R390 APR Spc 	suiR TcR EcoRlI IncN Coetzee et al., 	1972 
R446b TcR 5mR IncM Hedges et al., 	1973 



TABLE 2.2(b) PLASMIDS 

Plasmid Phenotype, Genotype or Description Inc Group Reference/Source 

R447b Ap Kan  R  Tra IncM Hedges et al., 1973 

R825 APR Tra IncN Hedges, 1974 

R893 APR Sm'  Tra IncN Hedges et al., 	1973 

R979 APR Sm KanR  Tra IncN Mathew and Hedges, 1976 

RM98 APR Sm Sul' 	TcR Tra IncN Jacob et al., 	1977 

RSF1010 suiR smR IncQ Guerry et al., 1974 

Rtsl::Tn1725 KmRCmR IncT R.Schmitt 

pUB307 Km 
R 
 Tc  R 

 
Tra 

+
Ap 	deletion of RP1 IncP Bennett et al., 	1977 

pSC101 R Tc Cohen and Chang, 1977 



TABLE 2.3 	BACTERIOPHAGES 

Bacteriophages 
	

Genotype 
	

Reference or Source 

EDX4 
	

b 515 b 519 c 1857 Sam7 
	

Dempsey and Willetts, 1976 

EDA7 
	

c 1857 Sam7 
	

Willetts and McIntire, 1978 

f 1 
	

Achtman et al., 1971 

12 
	

Achtman et al., 1971 

Ike 
	 Khatoon et al, 1972 

Ml 3mp 8 
	

Messing and Viera, 1982 

rvl 1 3mp9 
	

Messing and Viera, 1982 

PI vir a 
	

Willetts, 1969 

PR4 
	

Bradley and Rutherford, 1975 

VA A 3 
	

EDA4 exo::1S1 
	

Willetts et al, 1981 



TABLE 2.4 BACTERIAL STRAINS 

Strain 

E.coli K-12 C-600 

X4'78 

CE6O-403 

CE6O-124 

ED24 

ED395 

ED3818 

ED3822 

ED3886 

ED8654 

HB1O1 

JC3272 

JC6310 

J52571 

J Ml 01 

RU2901 

Relevant Characteristics 

Leu Thi lhr 

Leu 	Pro
- 
 Pur

- 
 Lys Sm R  

Trp Lac::Tn5 

Trp Lac::Tn5 

Spc R 

His Lys Trp Str Na1R 

Rif'  derivative of JC3272 

RecA 

Met 

Leu Pro Thi RecA 

His Lys Trp strR 

His Trp RecA strR 

Leu Thr 5trR 

Lac (F lac pro traD36 lacZ M15) 

Thi Thr Leu Pro Na1R 

Reference/Source 

Appleyard,  1954 

Curtiss and Rensh&w, 1968. 

D.Berg 

D .Berg 

Willetts and Finnegan, 1970 

Dempsey and Willetts, 1976 

Willetts and Maule, 1979 

N. Willetts 

Brown et al., 1984 

Borck et al., 1976 

Boyer et al, 1969 

Achtman et al., 1971 

Willetts, 1975 

Ohtsubo, 1970 

Messing et al, 1981 

H. Schmitt 

E.coli B 	 . 	 Studier, 1969 



/ 

TABLE 2.4(a) 	BACTERIAL STRAINS 

Strain 
	 Relevant Characteristics 

	 Reference/Source 

Enterobacter aerogenes (ATCC13048) 
	

Skerman et al., 1980 

Proteus morganii (ATCC25830) 
	

Skerman et al., 1980 

Providencia stuartii 164 
	 Smith et al., 1976 

Salmonella typhimuriurn LT2 
	

Clowes and Hayes, 1968 

(NC1B 10248) 

Shigella sonnei 
	

J. Govan 

Pseudomonas aeruginosa PA02 
	

Ser 
	 Holloway, 1969 
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plated onto appropriate plates to ensure they carried the plasmids 

being tested. Similarly,if the donor contained more than one plasmid 

20 transconjugants were tested to determine which had received both 

plasmids. 

2(c)(iii) Quantitative plate matings 

Donor and recipient cultures were grown overnight in L-broth. 

0.lml volumes of appropriate dilutions of donor cells and undiluted 

recipient culture were spread directly onto selective plates and 

incubated overnight. 	This method gave less efficient transfer 

of IncN plasmids than did filter matings, but was sufficient to 

distinguish between Tra+  and Tra phenotypes. 	It was also used 

to construct strains containing IncN, IncP, IncM or IncW plasmids. 

2(c)(iv) Replica plate matings 

These were used as a preliminary screen to isolate Tra mutants. 

Donor colonies were patched onto nutrient plates and incubated at 

37°C for approximately e. hours or overnight. 	They were then 

replica-plated onto selective plates spread with 0.lml of a fresh 
cuL#e 	 + 

2ml overnight/of recipient. 	Patches were distinguished as Tra or 

Tra after overnight incubation at 37°C. 

2(c)(v) Isolation of transfer deficient point mutantE. 

(v) (a) Screening for tra mutants after mutagenesis 

ED395 containing R46 was grown overnight in 2mls of L-broth. 

This was diluted 1:20 in lOmis of L-broth, and grown to a cell 

density of 2 x 10 /ml. 	The cells were pelieted in the bench 

centrifuge, washed in 5mls of 0.1M citrate buffer and again pelleted. 

The cells were resuspended in 4.5mls of citrate biffer and 0.5ml 

of lmg/ml N-nitro-N-nitroso guanidine (NTG) was added. 	This mixture 

was vortexed and incubated for 30 minutes at 37°C. 	20u1 of the 

mixture was then added to 2m1 of L-broth and shaken overnight. 
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The overnight culture was diluted i05-l06  fold and plated on 

nutrient agar plates containing tetracycline. 	The resulting 

colonies were replica plate mated to selective plates spread with 

JC3272 and putative transfer deficient mutants purified. 	These 

were re-tested in replica plate matings, and finally in semi-

quantitative plate matings. 

(v)(b) Enriching for PR4R 	mutants 

ED395 (R46), ED395 (pED1029) or ED395 (N3) were mutagenised 

with N-nitro-N-nitroso-guanidine as described above. 	0.lml of 

the resulting overnight cultures were spread on selective plates 

either undiluted or diluted 10-fold. 	0.Olml of PR4 (titre >1010p.fu/ml) 

was spotted onto the lawn of cells. 	10 colonies which grew within 

the area of phage lysis were streaked on selective plates on which 

0.lml of PR4 had been spread. 	2ml overnight cultures were then 

made of single colonies and these were checked for sensitivity to 

PR4 in spot tests (section 2(d)(i) ). Small scale plasmid DNA 

preparations were made on any which were PR4R, and these were used 

tc transform ED395. 	The resulting colonies were re-checked for 

sensitivity to 5R4, and if again resistant were checked for 

residual transfer-frequency in plate matings to JC3272. 

2(d) Bacteriophage techniques 

2(d)(i) Ike and PR4 preparation and spot tests 

0.lml of ED395 (R46) was mixed with 0.lml of phage lysate in 

2ml of molten LC top agar and poured onto an LC nutrient plate. 

The multiplicity of infection was sufficient to give confluent 

lysis. 	After overnight incubation at 37°C top agar was removed 

and the plate surface flooded with 4ml of L-broth. 	The top agar 

was vortexed with this troth in a Universal bottle and the mixture 

centrifuged for 5 mm (5,000g). 	The supernatant was then carefully 

decanted and contaminating bacterial cells lysed by treatment with 

Diethyl ether(for Ike)or removed by filtration (for PR4; pore size 

0.45um, Millipore Corporation). 
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For spot tests, 0.lml of static overnight culture was added 

to 0.25m1 of molten LC top agar, and poured onto LC nutrient agar. 

0.Olml spots of Ike and PR4 suspensions (approximately 106pfu/ml 

in phage buffer) were then applied and left to dry. 	Sensitive 

strains were lysed after overnight incubation. 

2(d)(ii) fl and f2 preparation and spot tests 

fl and f2 were prepared as described above for Ike and PR4 

except that ED395 (Flac) was used to propagate these phages. 

2(d)(iii) 	Alysates and isolation of X DNA 

To prepare A plate lysates ca.106p.f.u. were first adsorbed 

to 0.lml of C600 (2 x 108/ml; grown in L-broth supplemented with 

10mM MgCl2) at room temperature for 10 minutes. 	This mixture was 

then added to 2.5mls of molten BBL top agar and poured over a fresh, 

wet L-plate. 	This was incubated overnight at 37°C. 	The top 

agar was removed and the plate surface flooded with 2ml of L-broth. 

The top agar was vortexed with this in a Universal bottle and the 

mixture centrifuged for 5 mm (5000g). 	The supernatant was then 

carefully decanted and contaminating bacterial cells lysed by 

treatment with chloroform. 	The lysate was titred. 

To prepare A liquid lysates 500ml of L-broth (containing 100mM 

Mg504) in a 2 flask was inoculated with 25ml of overnight culture 

of C600. 	The culture was grown to an optical density of approximately 

0.5 (at 650nm; ca. 2 x 10  cells/ml). 	Phage was added to a multi- 

plicity of infection of 0.1-1.0. 	Cultures were shaken at 370C and 

the optical density followed. 	When the optical density stopped 

falling (i.e. when all the sensitive cells were lysed) 0.5ml of 

chloroform was added. 	The cultures were shaken for 5-10 minutes 

and the cell debris was removed by centrifugation (16,000g, 10 mm., 

4°C). 	The supernatant was poured into 500m1 flasks with lOg of 

polyethylene glycol (PEG) 6000 and 4g NaCl for each lOOmis. 	These 

were dissolved by shaking and placed in the cold room overnight. 
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The PEG-phage precipitate was harvested by centrifugation (10 mm, 

16,000g), and resuspended in 5m1 of phage buffer. 	The resuspended 

phage lysate was spun at 8000g for 5 minutes to pellet protein. 

To further purify and concentrate the phage the supernatant 

was loaded onto a triple step gradient. 	The step gradient was 

made by dispensing 2m1 of 1.7g/ml CsCl solution (9.36g CsCl in 

7.64ml; of phage buffer) into a Spinco 25.1 polyallomer tube. 

2m1 of CsCl solution (10.Og of CsCl in 15ml of phage buffer) was 

layered on top with a 5ml pipette. 	The third step was made by 

carefully layering 2m1 of 1.3g/ml CsCl solution (9.75g of CsCl in 

22.75m1 of phage buffer) on top of the first two steps. 	The phage 

solution was layered on top of the three steps and the tube spun at 

73000g for 180 min in the spin-out Spinco 25.1 rotor. 	The phage 

band was removed with a 5m1 syringe in a volume of approximately 

2m1. 	This solution was made up with phage buffer and CsC1to 

final volume of 12ml and density of 1.6g/ml. 

To further purify the phage this solution was dispensed into 

a Beckman heat seal polyallomer tube, and centrifuged (90,000g, 

40hrs, 15°C). 	The resulting phage band was removed with a 5m1 

syringe. 	The phage were then titred and, 5 x 10 
12

phage dialysed 

against 100 volumes of TE. 	The phage were transferred to an acid 

washed repelcoted, screw-capped tube and phenol extracted (phenol 

pre-equilibrated with TE). 	The extraction was repeated twice. 

The phenol was removed by dialysis against 100 vols of TES; 

then three changes of TE over about 2 days at 4°C. 	The DNA 

concentration and protein contamination of the solution were estimated 

from measurements of 0D260  and 0D280  of a ten (or forty) -fold 

dilution, using a Zeiss spectrophotometer. 	Protein contamination 

was considered negligible if the 260/280 ratio was >1.7. 



2(d)(iv) P1 transduction 

0.lml of P1 vir a (107pfu/ml) were mixed with 0.2m1 of 'donor' 

cell culture (grown overnight in L-broth) and plated out on LC 

agar in LC top agar). 	The transducing lysate was harvested as 

for Ike, and titred. 	Transduction was achieved by mixing 0.lml 

transducing phage lysate (108pfu/ml) with 0.lmi fresh overnight 

recipient culture and 0.lml of 30mM Mgs04, 15mM CaCl2, incubating 

at 3700  for 20 mm, and spreading on selective minimal agar 

(containing 1% (w/v) Na3Citrate). 

(e) Galactokinase assays 

c4 
This method is based on that of Wilson 	(1966). 	25m1 

of L-broth was inoculated with 0.5ml of an overnight culture of 

the strain to be tested. 	This was shaken at 37°C to an 0.D.650 

of 0.2 - 0.25. 	imi of the culture was removed and dispensed into 

a 'snap-cap' polypropylene microfuge (Eppendorf) tube to which 40ul 

of lysis mix (100mM EDTA, 100mM DTT, 50mM Tris-HCL pH8.0) and 

4 drops of toluene were added. 	This was mixed thoroughly by 

vortexing for 1 minute. 	These tubes containing lysed cells were 

shaken at 37°C for 30-45 minutes with the lids open to evaporate the 

toluene. 

Reactions were carried out in Eppendorf tubes which contained 

lOul of 'mix 1' (5mM DTT, 16mM NaF), 25ul of 'mix 2' (8mM MgCl 2Y 

3.2mM ATP, 200mM Tris-HCL pH7.9), 5ul of galactose solution 

(50u1 of 2% galactose, 50u1 of D-(1- 14 C)galactose (Amersham CFA 435), 

900u1 distilled water) and lOul of lysed cells. 	This mixture was 

incubated at 32°C for 15 minutes. 	One tube was included which 

contained lOul of distilled water instead of cells. 	After the 

incubation a 25u1 aliquot from each tube was spotted onto DE81 

paper (a 2.5cm diameter circle). 

The samples on the DE81 paper were then washed in distilled 

water. 	One sample was not washed for use in the calculation 

(see later). 	Three washes at room temperature were used. 	The 

water was poured off and the paper dried at 95°C for 30 minutes. 

21 
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The paper was then placed in scintillation vials containing 

3m1 of 0.4% Butyl PBD in toluene. 

Galactokinase activity was determined from the calculation: 

nM galactose phosphorylated/min/0.D.650 = 

(sample c.p.m. - blank (no cells) c.p.m) x 5000 
time(min) x unwashed (c.p.m.) x 0D650 

f)Plasmid DNA preparations 

(f)(j) Small-scale cleared lysate preparations for screening purposes 

1.4ml of stationary phase cultures were pelleted in Eppendorf 

tubes using an Eppendorf microfuge (30 sec). 	The cells were 

resuspended in 50u1 lysis buffer (35mM Tris-HCL pH8.0; 70mM EDTA; 

18% (w/v) sucrose; img/ml lysozyme (Sigma)) and incubated at 37°C 

for 5 mm. 	50u1 of Triton lysis solution were added (0.2% Triton 

X - 100 (v/v); 	50mM Tris-HCL, pH8.0; 60mM EDTA), mixed, and 

the tubes left to stand at room temperature for 10 mm. 	The 

lysates were cleared by centrifuging (microfuge, 5 mm). 	40ul of 

supernatants were mixed with lOul cleared lysate loading buffer 

(SDS 5% (w/v); Ficol 10% (w/v); Bromophenol blue 0.1% (w/v), 

in TAE buffer), incubated at 650C for 10 min and introduced into 

the wells of an agarose gel for electrophoresis. 	Approximate 

sizes of plasmids were estimated from the mobility of CCC forms on 

the gel, with reference to CCC molecules of known size. 

(f)(ii) Small-scale plasmid DNA preparations 

This method is based on that of Birnboim and Doly (1979). 

1.4ml of a shaken overnight culture in an Eppendorf tube was 

centrifuged (microfuge, 30 sec) the pellet resuspended by vortexing 

in 100ul lysis solution (Tris-HCl 2EmM, p1-18.0; EDTA 10mM; glucose, 

50mM; lysozyme (freshly added) 2mg/ml 	and left on ice for 10 

minutes. 	200ul alkaline SDS denaturation solution (SDS 1% (w/v); 

NaOH, 0.2M) were added, mixed and left at room temperature for 

5 mm. 	When the mixture was clear 150ul sodium acetate (3M, pH5.0) 

were added and mixed by inversion. 	A white precipitate of RNA 
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and protein formed immediately. 	The mixture was left on ice for 

30 mm, and mixed by inversion several times. 	After centrifuging 

(5 mm., microfuge) 400ul of supernatant were carefully removed to 

a clean microfuge tube, mixed with lml of ethanol (100%), and left 

at -70°C for 20 mm. 	Centrifugation (microfuge, 5 mm, 4°C) 

yielded a white pellet of DNA and RNA which was re-dissolved in 

lOOul of dilute sodium acetate (0.1M, pH6), and the addition of 

2COul of ethanol. 	After a further 20 min at -70°C, and 5 mm 

centrifugation at 4°C, the final pellet was dried in a vacuum 

desiccator and resuspended in TE. 	The plasmid DNA recovered by 

this method was sufficiently pure for restriction endonuclease 

digestion, and use in transformation. 

()(iii) Large scale purification of plasmid DNA (PEG method) 

This method is based on those of Clewell and Helinski (1970), 

and Humphreys et al. (1975). 	lml of fresh overnight culture was 

added to 1 litre of L-broth and grown by shaking overnight at 37°C. 

The cells were harvested by centrifugation (16,000g, 10 mm, 4°C) 

and resuspended in loml of 25% (w/v) sucrose in 50mM Tris-HCL p1-18.0. 

Maintaining the cells on ice, 1.5m1 of lysozyrne solution (20mg/mi 

in 250mM EDTA, pH8.0) were added, followed by 8ml of 250mM EDTA 

(pH8.C). 	After each addition the cell suspension was swirled 

intermittently on ice for 5 mm. 	12m1 of Triton lysis solution 

(0.2% (V/V) Triton X-100; 50mM Tris-HC1; 62.5mM EDTA; p1-18.0) were 

then added, thoroughly mixed by drawing up and expelling from a 25m1 

pipette, and the suspension left on ice (30 mm) for lysis to occur. 

The lysate was cleared by centrifugation (27,000g, 45 mm, 4°C) and 

decanted into a 50ml measuring cylinder (on ice). 	3% (w/v) NaCl 

and 10% (w/v) PEG 6000 were added, dissolved by inversion, and the 

solution left overnight at 4°C. 	After pelieting by mild centrifugation 

(5000g, 2 mm) the PEG-DNA precipitate was re-dissolved in 7m1 TES 

buffer, and transferred to a 15ml glass tube (corex) containing 

11gm of CsCl and 0.5m1 ethidium bromide (Eth Br) solution (10mg/mi 

in water).. Once dissolved, the solution was left on ice (15-30 

minutes) before centrifugation (12,000g, 30 mini  4°C). 	Under 
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these conditions PEG was displaced from solution and formed a 

pellicle on the side of the tube. 	The supernatant was carefully 

decanted into a clean tube, and further 0.2ml EthBr (10mg/mi) added, 

and the density of the solution adjusted to 1.59-1.61g/ml. 

Ultracentrifugation (90,000g, 40-60 hrs, 15°C) was carried out 

in Beckman heat-seal polyallomer tubes in a 50Ti rotor. 	The lower 

of the two flourescent bands (containing supercoiled plasmid DNA), 

viewed under long-wave uv, was removed through the side of the 

tube into a 2m1 syringe using a hypodermic needle. 	The solution 

was then extracted 3 times with n-butancl (pre-equilibriated 

against saturated CsC1 solution) to remove EthEr and dialysed 

extensively against TE buffer at 4°C. 

Finally, DNA concentration and protein contamination of the 

solution were estimated as described for X DNA. 

f)(iv) Large scale purification of plasmid DNA (phenol method) 

The cells were grown, lysed and the lysates cleared exactly 

as described in section §(iii) except that 500rnl of cells were used. 

After the clearing spin the supernatant was poured into a 30m1 

glass tube (corex). 	An equal volume of phenol (pre-equilibrated 

against TE) was added and mixed with the supernatant by inversion. 

This mixture was then centrifuged (10 mm, HE4 rotor, 10,500g ,LC) 

and the aqueous layer removed with a 10ml pipette. 	Half of the 

aqueous layer was dispensed in each of to 30m1 glass tubes (corex) 

and lml of 3M Na Acetate (pH7.5) added with two volumes of cold 

ethanol. 	These were mixed by inversion and placed at -70 
0
C for 

30 mm. 	This was then centrifuged (15 mm, HB4 rotor, 10,500g 

the ethanol poured off and the tubes left inverted for 10 min to 

remove the remaining ethanol. 	The pellets were resuspended in TE 

to a total volume of 12.5ml. RNAase(0.lml, 1mg/mi), EthB' (0.5mg/ml) 

and CsCl (0.95g/ml) were added and the final volume adjusted to 17ml 

with a density of 1.55g/ml. 	This was then dispensed into polyaliomer 

tubes and spun in the sorval TV-865B vertical rotor for 19 hours 

at 191,000g. 

This technique is much faster than the PEG method. 

$ 



(g) DNA techniques 

All DNA solutions were stored at 4°C in TE buffer. 

(g) (i) Ethanol precipitation 

DNA was precipitated by the addition of 0.1 volume 3M sodium 

acetate (pH5.0) and 2 volumes of ethanol. 	This was usually carried 

out in an Eppendorf tube. 	The DNA was then precipitated at -70°C 

for 15 minutes followed by centrifugation (microfuge, 5 mm, 4°C). 

Pellets were washed with ethanol (100% or 80%), left at -70°C 

for a further 5 mm., centrifuged again for 2 mm. and dried in 

a vacuum dessicator, prior to resuspension in TE buffer. 

g)(ii) Restriction endonuclease digestions 

Appropriate quantities of DNA, restriction endonuclease, lOX 

restriction buffer and distilled H 
2 
 0 were mixed thoroughly man 

Eppendorf tube and incubated at 37 C.65 C for II). 	lox universal 
restriction buffer was 0.3M Tris-Acetate (pH7.9); 10mM magnesium 

acetate; 0.66M potassium acetate; 5mM dithiothreitol; lmg/ml 

nuclease free Bovine serum albumin. 	Restriction endonucleases used 

were obtained from Boehringer Mannheim GmbH, Bethesda Research 

Laboratories Inc., New England Biolabs Inc., and NBL enzymes Ltd. 

(g)(iii) In vitro recombination of DNA fragments 

Ligations were carried out using T4 ligase in 1 x ligase 

cocktail (66mM Tris-HCL (pH7.5), 1mM EDTA, 10mM MgCl2, 10mM DTT, 

1mM ATP). 	bOng - 2ug of cleaved DNA was diluted with water, or 

added directly to lOX ligation cocktail. 	The final volume was 

20u1-100ul. 	T4 ligase was added and incubated overnight at 100C. 

(g)(iv) Transformation of E.coli with plasmid DNA 

0.5mb of a fresh overnight culture was diluted to 20mb in 

L-.broth and grown to a cell density of 2 x 108/ml by shaking at 370C. 

When the cells had reached 2 x 108/ml they were poured into a 

25 
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McCartney bottle and chilled on ice for 10 mm. 	The cells were 

pelleted (5,000g, 5 mm) and resuspended in lOmi of ice cold MgC12  

(100mM) and immediately centrifuged again (5,000g, 5 mm). 	The 

cells were resuspended in 10mls of cold CaCl2  (100mM), left on ice 

for 30 mm, pelieted again (5,000g, 5 mm) and finally resuspended 

in lml of 100mM CaCl2. 	The competent cells were used immediately 

for transformation. 

Up to bOng of DNA was added to 0.2m1 of competent cells in 

a test-tube which was then kept on ice for 30 mm. 	The test-tube 

was then placed in a 42°C water bath for 2 min. 	0.5mb of L-broth 

was added, and the cells shaken at 37°C for 1-16 hours before plating 

on selective media for transformants. 

(g)(v) Transfection of JMlol with M13mp8 and M13mp9 

JM101 was always stored on minimal plates, which selected for 

the F prime plasmid essential for M13 infection. 	A single colony 
cqLtur 

was used to inoculate a 2ml overnight A and the next day lml of this 

was diluted to 20m1 in L-broth. 	The cells were grown to a cell 

density of 2 x 108/ml and made competent by a procedure similar to 

that described in (iv) except that the MgCl2  wash was omitted. 

After the heat shock 2.5mis of BBL top agar containing 20u1 

of 24mg/rnl XG (5-.Bromo-4-chloro-3-indolyl-3-D-galac.topyranoside in 

dimethyl formamide (DMF)), lOul of 24mg/mi MTG (Methyl-B-D-

thiogalactoside in DMF) and 0.05ml of an exponential culture of 

JM101 was added tc the transfe.ted cells. 	This mixture was 

vortexed briefly, poured on Spizizen bac.to  agar plates, and incubated 

overnight at 37 
0
C. 

M13mp8 and M13mp9 plaques appeared blue, whereas recombinant 

plaques were white. 
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(g)(vi) Nick translation 

lOuCi of (c-32P) - labelled nucleoside triphosphate (dCTP, 

Amersham Radiochemicals) in ethanol solution was dispensed into 

an Eppendorf tube containing 5ul of distilled water and dried in 

a vacuum dessicator. 	98ul of DNA polymerase I buffer (50mM 

Tris-I-ICL pH7.5 and 5mM MgCl2), 2u1 of nucleotide triphosphate mix 

(lOul of a 10mM solution of each of the nucleotide triphosphates 

added to 960ul of H20), lul DNAase(2 x 10 5mg/ml), 1 unit of 

DNA polymerase I and lug. 	DNA were added to the dried down 

labelled nucleoside triphosphate. 	This mixture was incubated at 

10-15°C for 2 hours. 

lOOul of phenol, 5u1 of orange G, 30ul of calf thymus DNA 

(lmg/ml), and 65ul of TE were added after the incubation. 	This 

mixture was briefly vortexed and spun in a microfuge for 2 minutes 

to separate the layers. 	The aqueous layer was removed and passed 

through a 2m1 G75 column to separate the labelled DNA frcm the 

unincorporated 	
- 32. 
 P dCTP. 

(g)(vii) DNA fragment purification 

(g)(vii)(a) Agarose gels 

After the DNA had been electrophoresed (section J(i)), the gel 

was stained with ethidium bromide (5ug/ml) to localise the required 

band. 	This fragment was then cut out of the gel using a scalpel. 

The slice of agarose was placed in dialysis tubing containing lml 

of TE. 	The tubing was then immersed in a shallow layer of TAE in 

an electrophoresis tank and the DNA electroeluted at 200V for 30 

minutes. 	The polarity was reversed for 2 minutes to release the 

DNA from the wall of the dialysis tubing. 	The TE was then removed 

from the dialysis tube. 

A small DEAE-.cellulose (Whatman, DE52) column was constructed 

in a 200u1 Gilson tip, and used to purify the DNA. 	The column was 

washed twice with imi of TE before the DNA containing sclution was 
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passed through it. 	The DNA was then eluted with 0.5m1 of TE 

containing 2M NaCl. 	The eluate was extracted with phenol; 

then with ether, and ethanol precipitated. 	Fragments prepared in 

this way were suitable for ligation. 

(g)(vii)(b) Acrylamide gels 

The DNA was electrophoresed and stained to localise the 

required band as described in secticn !1(ii). 	The fragment of 

gel containing the band was placed in a siliconised (pre-.treated 

with a 2% solution of dimethyldichiorosilane in 1,1,1-trichloroethane) 

test-tube and 0.6m1 of gel elution buffer was added (0.5M ammonium 

acetate, 70mM magnesium acetate, 0.1% SDS, 1mM EDTA). 	This was 

vigorously shaken overnight at 37°C. 	The 0.6ml of buffer was 

poured off and the tube washed with another 0.4ml of gel elution 

buffer. 	These samples were pooled and 2.5ml of n-butanol was added 

tc extract the ethidium bromide. 	This mixture was shaken and then 

centrifuged (6,000g, 5 mm). 	The aqueous layer was removed and two 

equal amounts dispensed into two Eppendorf tubes. 	750ul of cold 

ethanol was added to each tube, and the mixture placed at -20°C 

overnight to precipitate the DNA. 

The next day the tubes were centrifuged (microfuge, 5 mm), the 

pellet redissolved in 200u1 of distilled water, 20ul of 3M sodium 

acetate added and then after the addition of 440u1 of ethanol the 

samples were placed at -70°C for 30 minutes. 	The samples were 

centrifuged (5 minutes, microfuge) washed once in 80% ethanol and 

then dried down in the vacuum dessicator. 

DNA prepared in this way was suitable for ligation. 

(h) Gel Electrophoresis 

(h)(j) Horizontal agarose gels 

Agarose slab gels (15cm x 25cm; 0.7% - 2% agarose (w/v) in 

200m1 TAE buffer) were placed between two perspex tanks (each 

containing 500m1 TAE buffer), and absorbant wicks('Access-matting ', 
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saturated with TAE buffer) were positioned at each end to make 

electrical contact between the gel and the buffer tanks. 	30u1 

DNA samples were mixed with 20u1 loading buffer (0.1% (W/v) 

bromophenol blue, 10% (W/v) Ficoll, in TAE buffer) and loaded by 

Gilson automatic pipette immediately after removal of the well- 

former. 	Each well was then filled to the top with TAE buffer and 

initial electrophoresis carried out at 150V for 15 mm. 	After 

this period the wells were again filled with TAE, the gel covered 

with a thin plastic sheet ('Saran wrap'), and electrophoresis 

resumed at 45V for approximately 16 hours. 	The gel was then 

stained with ethidium bromide (5ul/ml) for 15 mm, and de-stained 

in H 
2 
 0 for 60 mm. 	DNA was visualised by placing the gel on a 

long-wave uv transilluminator (Ultraviolet Products Inc., 365nn1 

peak transmission). 	Photography was with Ilford FP4 film for an 

exposure time of lOs through a red filter (Haya F (25A)). 

(h)(ii) Polyacrylamide gels 

This method was based on that of Maniatis et al. (1975). 

5% or 8% (w/v) acrylamide gels in TBE buffer were prepared by mixing 

appropirate volumes of 37.5% (v/v) acrylamide and 2% (w/v) bis- 

acrylamide stock solutions with lOX TEE and H20. 	The acrylamide 

to bis-.acrylamide ratio was 29:1 (w/v) and the gel volume either 

50m1 or 80ml. 	When run overnight the gel also contained 5% (v/v) 

glycerol. 	0.5ml of 10% ('w/v) ammonium persulphate and 60ul 

TEMED (N,N,N',N' - tetramethylethylenediame, Serva) were added to 

initiate polymerisation. 	The mixture was poured between two 

vertical glass plates (either 20 x 20cm or 20 x 30cm) separated 

by 1.5mm perspex spacers at the side edges, and sealed at the bottom 

edge with water agar. 	A toothed perspex well-former was inserted 

at the top of the gel immediately after pouring, and 30-60 minutes 

allowed fcr polymerisation. 	The well-former and seal were then 

removed and the gel connected to a perspex gel apparatus containing 

1 litre of TBE buffer in each tank. 	20ul DNA samples were mixed 

with 5u1 of loading buffer (50% (v/v) glycerol, 0.125% (w/v) xylene 
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cyanol FF, 0.125% (W/V) bromophenol blue, in THE) and loaded with 

a Hamilton microsyringe. 	Large gels (20 x 30cm) were run overnight 

at 200V, small gels (20 x 20cm) were run for 3 hours at 310V. 

Gels were stained for 5 mm. in ethidium bromide (5mg/mi), de-stained 

for 10 min in H20, and DNA bands visualised and photographed as in 

(h)(iii) Sequencing gels 

6% polyacrylamide gels were used. 	The buffer gradient gels 

were prepared exactly as described by Biggin et al. (1983). 	Gels 

were run at 40 watts (1200 volts) for 2-5 hours. 

After running the plates were separated and the gel was fixed 

in 10% acetic acid, 10% methanol for 15 mm. 	The gel, still on 

the glass plate, was left to stand or its end for 15 minutes to 

allow this solution to drain off. 	The gel was then transferred to 

Whatman 3MM paper, and dried on a Bio-rad gel drier. 	It was 

autoradiographed as described in section j(i). 

(h)(iv) Estimation of DNA fragment sizes 

The migration distances of standard fragments (of known 

molecular weight) were plotted against the logarithm of their 

sizes (using semi-log paper) and the sizes of unknown fragments on 

the same gel determined from the graph. 	The size standards were 

Hindlil restriction fragments of EDX7 (Sanger et al., 1982) 

various restriction products of pBR322 (Sutcliffe, 1978). 

(1) Electron microscopy 

Heteroduplexing and formamide spreading of DNA molecules were 

by the method of Davis et al. (1971). 	Molecules were mounted on 

parlodion grids, stained with uranyl acetate, shadowed with 

platinum and carbon, and photographed using a Siemans Elmiskop 

101 electron microscope. 	Negatives were projected and the outlines 

of molecules traced and measured, using either a Keuffel and Esser 
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map measurer or a Ferranti Cetec Tablet and Digitiser. 	0X174 

replicative form (5.38kb) and M13 (6.23kb) molecules were 

included on the grids to provide double and single strand length 

standards respectively. 

(j) Southern hybridisation techniques 

(j)(i) Agarose gels 

After running agarose gels were stained and photographed as 

described in k(i). 	The DNA was then denatured and transferred to 

nitrocellulose as described by Southern (1975). 	The filters 

were rinsed in 2 x SSC and baked at 80°C for 2 hours. 	The nitro- 

cellulose filters were pre-.soaked for 1 hour by shaking at 37°C in 

hybridisation fluid: 4 x 	C, 50% formamide, 0.1% sodium dodecyl 

sulphate, and lX Denhardt solution (0.02% bovine serum albumin, 

0.02% polyvinylpyrrolidone, 0.02% Ficoll). 	Hybridisation was 

carried out overnight at 37 
0C in a plastic bag containing hybridisation 

fluid (20m1 for a 12 lane gel) plus 500ug of denatured salmon sperm 

DNA and 10 to 106cpm of denatured probe (labelled by nick translation, 

as described in section (vi)). 

After hybridisation, filters were washed twice for 1 hour 

under hybridisation conditions and twice for 1 hour in 2 x SSC. 

The filters were then dried at 37°C. 	Autoradiograrns were usually 

exposed for 1 to 2 days at -70°C, using pre-flashed X-ray film 

(Dupont Cronex 4) and a phosphotungstate intensifying screen 

(Dupont Cronex). 

(j)(ii) M13 plaque hybridisation 

After cloning and transfection white plaques were picked onto 

a second plate which had been overlayed with 2m1 of BBL top oyr 

containing 0.lml of an exponential culture of JM101. 	This was 

incubated overnight, and then placed at 4°C for 2 hours. 	A 

nitrocellulose filter was then laid on top of the agar for 1 minute. 

The filter was removed and placed plaques uppermost for 2 minutes 
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on blotting paper soaked in denaturation solution (l.SM NaCl, 

0.5M NaOH). 	The filter was then placed in neutralisation solution 

(3M NaCl, 0.5M Tris-HCIpH7.4) for 5 mm, and finally washed in 

2 x SSC. 	The filters were blotted dry, dried at 37°C for 20 mm., 

and then baked at 80 
0
C for 2 hours. 

(k) Nucleotide sequencing 

The R46 oriT region was sequenced using the M13 method of 

Sanger et al. (1977), Sanger et al. (1980), and Biggin et al. (1983). 

DNA fragments were cloned into M13 mp8 and M13 mp9 (Messing and 

Viera, 1982; gifts of C.K. Lister and D.J. Finnegan). 	The 

ligation mix was used to transfect JM101 as described in section 9(v). 

Single stranded DNA (template preparations) were made from 

white plaques. 	JM101 was grown to an 0.D.650 of 0.3 and lml 

aliquots dispensed in Bijoux bottles. 	White plaques were picked 

using toothpicks and resuspended in the JM101 culture. 	This mixture 

was shaken for 4-5 hours with the bottles on their side. 	The 

culture was then decanted into an Eppendorf tube and centrifuged 

(microfuge, 5 mins) at room temperature: 	The supernatant was 

transferred to another Eppendorf tube and 0.2ml of 2.5M NaCl, 20% 

PEG 6000 was added. 	This mixture was incubated at room temperature 

for 30 mm. 	The M13-PEG precipitate was pelleted by centrifugation 

(microfuge, 5 mm), and the supernatant drawn off in a pasteur 

pipette. 

The tube was centrifuged again (microfuge, 1 mm) and the 

remainder of the PEG solution removed. 	lOOul of TE and 50ul 

of phenol (pre-equilibrated against TE) were added to the pellet. 

The mixture was thoroughly mixed by vortexing, and left to stand 

at room temperature for 10 mm. 	The layers were separated by 

centrifugation (2 mm, microfuge), the aqueous layer was removed to 

another tube, and the DNA ethanol precipitated. 	After the first 

ethanol precipitation the DNA was resuspended in lOOul of TE and the 

precipitation repeated. 	The resulting pellet was washed in lml of 
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ethanol, and dried in a vacuum dessicator. 	The pellet was 

resuspended in 50u1 of TE, and stored frozen at -20°C. 

The reaction and annealing procedure was carried out as 

described by Biggin et al. (1983) for sequencing with 

ct-thio-dATP (Amersham International, specific activity 

400ci/mmol. 	The nucleotide reaction mixes were as follows: 

'T': 0.125mMdCTP; 0.125mMdGTP; 0.00625mMdTTP; 0.25mMddATP 

'Cl: 0.125mMdGTP; 0.125mMdTTP; 0.00625m1VIdCTP; 0.04mMddCTP 

'G': 0.125mMdTTP; 0.125rnMdCTP; 0.00625mMdGTP; 0.08mMddGTP 

'A': 0.125mMdTTP; 0.125mMdCTF; 0.125mMdGTP; 0.05mMddATP 

2uls of one of these reaction mixes was dispensed into each of four 

Eppendorf tubes with 2u1 of primed template. 	The (35S)-dATP was 

aqueous and was dispensed with the DNA polymerase I (large fragment), 

2u1 per tube (0.2 units/ui Klenow, 10mM DTT 10mM Tris-HCL (pH8.0); 

0.5uC. (35S) c-thio-dATP). 	2u1 volumes of these three solutions 

were dispensed onto the sides of the Eppendorf tube, and the 

reactions were initiated by centrifugation (10 sec., microfuge). 

After 20 minutes at room temperature 2ul of chase (all four dNTPs 

at 0.25mM) were added and the reactions left for a further 15 minutes. 

Reaction mixtures werethen stored at 4 
0
C or 2u1 of dye mix (1mg 

xylene cyanol FF, 1mg bromophenol blue, 10mM EDTA in de-ionised 

formamide) was added before boiling. 	Samples were boiled for 3 

minutes before loading onto a buffer gradient gel. 

Autoradiography was as described in 

(1) Tn1725 mutagenesis 

Construction of ED734 (JC3272::Tnl725) 

The donor strain Rtsl::Tnl725/RU2901 was grown overnight in 2ml 

of L-broth at 30°C. 	Rtsl was transferred to JC3272 on nutrient 

plates containing Cm and Sm, and incubated overnight at 30°C. 

50 of the resulting colonies were picked, patched onto nutrient 

plates and incubated at 30°C. 	The patches were then replica plated 
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onto nutrient plates containing Cm and Sm, and incubated at 42 
0
C. 

Growth at this temperature eliminated Rts::Tn1725 because the plasmid 

is temperature sensitive for replication. 	The resulting CmRSmR  patches 

were purified by streaking onto a CmSm plate and incubating again 

at 42°C. 	That the plasmid had been lost from these CmRSmR  strains 

was confirmed by showing that they had lost the Kan 
R

marker of the 

plasmid. 	One of these was ED734 and this was assumed to be an 

insertion of Tn1725 into the chromosome of JC3272. 	This was 

supported by showing that R46 could transfer by conjugation CmR  from 

this strain, and that this was due to insertion of Tn1725 into R46 

(chapter 5). 

Mutagenesis of pED939 with Tn1725 

This procedure is also based on elimination of Rtsl::Tn1725 

at high temperature. 	Rts::Tnl725/RU2901, grown at 30°C, was used 

as donor in a plate mating to pED939/JC6310 selecting CmRApRSmR 

transconjugants. 	These colonies were patched on nutrient plates, 
p1cte.5 cuk C 

replica plated to Cm Ap Sm /growth was used to inoculate 2m1 of 

L-broth which was shaken overnight, and the plasmid DNA isolated 

in a small scale plasmid preparation. 	This was used to transform 

ED8654, which was then plated on CmAp plates. 	To avoid identical 

siblings only one colony was picked from each transformation 

experiment. 	These transformants were shown to contain pED939::Tn1725 

plasmids (chapter 3). 
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CHAPTER THREE 

THE LOCATION AND ACTIVITY OF THE R46 oriT 

3(a) Introduction 

As described in chapter 1, the F plasmid was shown to contain 

a specific site from which the DNA is transferred during conjugation, 

called oriT. 	This was concluded from the construction of dominant 

Tra deletions of Hfr strains (Willetts, 1972). 	The oriT of F 

was cloned into a Co1E1: :Tn3 cloning vector (Achtman et al., 1978) 

and eventually sub-cloned into a pBR322 derived vector on a 385bp 

fragment (Everett and Willetts, 1982). 	As predicted these ftCo rcE 

can transfer in the presence of a plasmid carrying all the F genes 

required for conjugation, and indeed this can be exploited as a 

cloning strategy. 

A number of other conjugative plasmids have been shown to 

contain oriT sites using similar cloning strategies. 	Those plasmids 

from which oriT has been cloned include RI, R100 (N. Willetts, 

R. Everett and W. Smith, quoted in Willetts and Wilkins, 1984), 

ColIb - P9 (Wymbs and B. Wilkins, quoted in Willetts and Wilkins, 

1984), RK2 (Yakobson and Guiney, 1983), R46 (Brown, 1981), and 

R6K (Shafferman and Helinski, 1983). 	The nucleotide sequences 

of DNA fragments carrying the oriT of several of these plasmids are 

available, and are discussed in chapter 4. 

Non-conjugative plasmids also have an oriT site. 	Those from 

ColEl, RSF1010 and C1oDF13 have been studied in detail (Warren et al., 

1978; Derbyshire, 1983; Snijders et al.,1983). 	Mobilisation of 

recombinants containing the oriT of these plasmids requires proteins 

encoded by a suitable conjugative plasmid, as well as other proteins 

determined by the non-conjugative plasmid itself. 
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In all plasmids studied in detail the oriT sequence maps to 

one end of the region which encodes the proteins involved in 

conjugation. 	This was first shown for F (Willetts, 1972), where 

oriT maps near traJ (see Willetts and Skurray, 1980). 	In plasmids 

RK2 and R46 where there are three or more tra regions the oriT 

sequence has been mapped to one end of one set of tra genes 

(Guiney and Helinski, 1979; Winans and Walker, submitted; this 

chapter). 	Even in the non-conjugative plasmids ColEl and RSF1010 the 

oriT sequence is at one end of the DNA which encodes the mobilisaticn 

proteins (Warren and Sherratt, 1978; Derbyshire, 1983). 	Further- 

more, in the two cases where the direction of transfer is known, 

RK2 and F, the DNA is transferred such that the tra region is 

transferred last. 

Specificity of oriT: The oriT sequence and the gene products 

which interact with it are generally plasmid specific. 	Many F-like 

plasmids (those from Inc groups Fl, Fil, Fill and Fly) have transfer 

operons which are very similar to F and will complement many F tra 

point mutants (AlfaroandWilletts, 1972). 	However, Reeves and Willetts 

(1974) showed that RlOO-1 and R1-19, both of which complemented 9 

of the 11 Ftra point mutants tested by Alfaro and Willetts, would 

not promote transfer from F oriT. 	This suggested that although the 

majority of their tra products are very similar to those of F, 

the ones required for the recognition of oriT, and presumably the 

oriT sequence itself, are different. 	Cn the other hand Co1V2 

(IncFI) and Co1VB trp (IncFIV) both of which promoted transfer from 

F oriT (Reeves and Willetts, 1974), and complemented all the point 

mutants tested by Alfaro and Willetts (1972) probably have an 

identical transfer system to that of F. 	Everett and Willetts (1980) 

showed that R100-1 and Rl_l9/would not nick an F oriTX transducing 

phage. 	This agreed with the observation that traY mutants (unable 

to form the traYZ endonunclease) of F are not complemented by R100-1 

or R1-19 (McIntire and Willetts, 1980; Thompson and Achtman, 1979). 
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F traZ mutants are complemented by R1-19, but not R100-1 (Everett 

and Willetts, 1980). 	These data suggested that very closely 

related plasmids have different oriT sequences, and different gene 

products which recognise them. 

Similar data have been reported for IncP plasmids (Yakobson 

and Guiney, 1983(b)). 	The RK2 (IncP) oriT clone was used as a 

probe against various IncP plasmids in Southern blot experiments 

and showed that the intensity of hybridisation, and size of the oriT 

containing fragment varied for certain IncP plasmids. 	There are 

two groups of IncP plasmids according to these criteria: a group 

which after digestion with HaeII gave strong hybridisation to a 

fragment of the same size as the HaeII fragment containing RK2 oriT; 

and a second group which gave weaker hybridisation to a smaller 

fragment. 	The data correlated with the genetic experiments as 

the second group gave low level mobilisation of the RK2 oriT clone 

while the first group gave high level mobilisation. 	The variation 

in the strength of homology suggested that closely related IncP 

plasmids encode different oriT sequerces and different proteins 

required for their recognition. 

R46 oriT: A. Brown (1981) commenced characterisation of the 

oriT of R46. 	He showed that deletions of R46 which had lost the 

BglII-F  fragment could not transfer, even if all of the transfer genes 

were supplied in trans. 	Recently, using further deletions of 

pKM101, Winans and Walker (submitted) showed that a 1.2kb region 

within this jII-F fragment contained oriT. 

Sub-clones of R46 which contain oriT have also been constructed. 

A. Brown cloned the 4.6kb 	II-F fragment into the BamHl target of 

pBR322, and showed that this plasmid could be mobilised at high 

frequency by derivatives of R46. 	By selecting for the ability to be 

mobilised by R46 derivatives R46 oriT was sub-cloned on a 1400bp 

fragment (in a plasmid called pED938, fig.3.1), and ultimately on 

a 900bp HaeII-TI fragment (in pED939) which retained full oriT 

activity. 	Sau3A, MspI and Alul restriction maps of the latter 
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fragment were determined. Finally a 215bp  San3A fragment was 

sub-cloned, yielding a plasmid which was mobilisable, but at a 

much lower frequency than pED939 (Brown, 1981). 

This chapter describes the further characterisation of 

the sequences required for R46 oriT activity. 	These experiments 

have led to a more detailed understanding of the sequences involved 

in the recognition of oriT, and to a more accurate positioning 

of the nick site itself. 	Moreover, the study has been extended 

to other IncN plasmids by testing their ability to mobilise R46 

oriT clones. 	This has revealed specificity of oriT, and of tra 

proteins, among closely related IncN plasmids. 	The possibility 

that R46 oriT activity is activated by transcription across oriT 

was examined by fusing fragments to a galK gene in a promoter 

cloning vector. No promoters transcribing towards oriT were found, 

but one was shown to transcribe away from oriT. As with oriT 

clones from RSF1010, Co1E1 and F,dimers of an R46 oriT clone were 

shown to monomerise during mobilisation. 	This is evidence for 

breakage and re-union at the R46 oriT during mobilisation. 

Restriction analysis of R6 oriT clones allowed the co-ordinates 

on the R46 map of the 900bp 	I-HaeII fragment containing oriT 

in pED939 (hereafter referred to as the 900bp oriT fragment) to be 

determined. 	Finally, evidence for the direction of transfer of an 

R16 oriT clone, and thus of R46, is presented. 

3(b) Restriction map and transposon mutagenesis of pED939 

Using the restriction targets for 	Alul and Sau3A mapped 

by Brown, it had not proven possible to derive sub-clones of pED939 

with complete oriT activity. Attempts were made to overcome this 

difficulty by extending the available restriction data. A 

restriction map of pED938 for the enzymes Hinfl and HaeIII was made: 

the relevant portion is shown in fig 3.1. 	However, the targets 

for these enzymes did not help and the shortage of suitable 

restriction targets within the 900bp oriT fragment made it necessary 

to sub-clone oriT from pED939 without relying on restriction targets 
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already available in the plasmid. 	To this end it was decided to 

make transposon insertions into pED939. 

The Cm, Th3-like transposon Tn1725 was used (Altenbuchner, 

et al., 1983). 	This is flanked by inverted repeats, which contain 

EcoRI targets 15bp from each end of the element (Sch8ffl et al., 

1981). 	The method used to insert Tn1725 into pED939 is described 

in chapter 2. 

Small scale plasmid preparations were made from the Cm 
R 
 Ap  R  

(putative pED939::Tn1725 	transformarits. 	Cleavage with EcoRI 

gave three fragments: the 8.9k-b internal fragment of Th1725, and 

two others. 	The combined size of the latter was equal to the 

size of pED939 (2.9kb). 	This confirmed that the plasmids arose 

from insertions of Tn1725  into pED939, the sizes of the two smaller 

fragments representing the distances from the single EcoRI target 

of pED939 to those at the ends of Tn1725. 

Only those plasmids which yielded an EcoRI fragment of less 

than 900bp could have Tn1125 inserted within the 900bp oriT fragment; 

these were studied further. To determine whether the transposon 

had inserted clockwise or anti-clockwise of the EcoRI target of 

pED939 the pED939::Tn1725 plasmids were cleaved in double 

digestions with EcoRI and PstI; those pED939::Tn1125 plasmids 

which retained the 750bp EcoRI - PstI fragment of pED939 must have 

the transposon inserted clockwise of the EcoRI site, and therefore 

within the 900bp oriT fragment (see fig. 3.1). 	Four of the thirty- 

one plasmids screened had this property. 	From their EcoRI digests 

it could be ascertained that these had insertions some 1 00bp 

(pED1023), 600bp (pED1025), 750bp (pED1024) and 900bp (pED1026) from 

the EcoRI target of pED939 (see fig. 3A). 

The oriT activities of pED1023, pED1024, pED1025 and pED1026 

were tested. 	pED1029, a pSC101-based Cm 
R  Kan 

R plasmid carrying 

the whole transfer region of R46 (see chapter 5) was used to supply 

the transfer functions. 	The RecA strain JC6310 carrying pED1029 

was transformed with each of the four pED939: :Tn1125 plasmids 



Fig. 3.1 

Restriction maps of pED938 and pED939 from the unique PstI target to the Hinfi target at 

co-ordinate 259bpon the vector plasmid pED825 (described by Everett and Willetts, 1982). 

DNA derived from R46 is shown as a double line; the region deleted from pED938 to form 

pED939 is shown as a dotted line in fig. 3.1(b). 	The restriction enzyme targets present in the 

750bp FstI - EcoRI fragment are not shown (see Sutcliffe, 1978; Everett and Willetts, 1982). 
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described above, or with pED939 itself as positive control. 	The 

mobilisation frequencies of these five oriT plasmids are shown in 

fig. 3.2. 	pED102 and pED1025 gave mobilisation frequencies 

significantly lower than pED939; it seemed likely that in each of 

these plasmids (but especially pED1024) Tn1725 had inserted into 

DNA required for oriT activity. 	However, it is conceivable that 

the insertion of the 8.9k-b transposon could prevent transfer 

proteins from recognising oriT even if the transposon had inserted 

beside, rather than within the actual oriT DNA. 	To minimise this 

uncertainty it was decided to delete most of the DNA of the 

transposon. The first type of deletion which was prepared removed 

the internal EcoRI fragment of the transposon, leaving only 30bp 

of the transposon (including one EcoRI target), plus the extra 

pED939 DNA duplicated during transposition, at the original site of 

insertion. 	A second type of deletion removed the small EcoRI 

target of pED939, as well as the internal fragment of Th1125. 

These would effectively be derivatives of pED939 with deletions 

between the EcoRI targets of pED939 and Tn1725 (see fig. 3.2 and 

fig. 3A). 

The latter deletions were made by digesting the pED939::Tnl125 

plasmids to completion with EcoRI, religating at low DNA concentration, 

and then transforming with selection for Ap1. ApR transformarts 

were screened for CmR, and the plasmid DNA of those which were 

ApR Cm  was isolated and examined on an agarose gel. 	Those plasmids 

with only one EcoRI target and one PstI target, and which when 

linearised co-migrated with the approximately 2kb fragment of the 

appropriate pED939::Tn1725 plasmid, were assumed to carry the 

deletions required. The deletion plasmids are shown and named in 

fig. 3.2. 

Of these deletions, pED1039 was surprisingly difficult to 

isolate. 	The ligation conditions used should have favoured the 

circularisation of the EcoRI fragment containing the replication 

functions of pED939, with consequent deletion of both unnecessary 
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fragments. However, even when pED1023 had been completely cleaved 

with EcoRI, both small EcoRI fragments were repeatedly recovered 

together, such that only the fragment internal to the transposon 

was lost. Nineteen plasmids of this type (pED1031) were obtained 

before pED1039 could be isolated. 	A further ten plasmids 

containing only one EcoRI target were obtained, but these were 

smaller than the plasmid required, thus apparently carrying 

unplanned (and unexplained) extra deletions. 	Altogether forty-three 

ApR Cm  recombinants were screened before pED1039 was found; far 

more than was necessary to find the corresponding derivatives of 

the other three pED939::Tn1125 plasmids. 	Difficulties were also 

experienced with pED1039 after isolation; particularly in con-

structing strains containing dimers of pED1039 (see section 3.h.). 

It is conceivable that the problems with pED1039 were related to 

the fact that Tn1725 had inserted, in pED1023, within a series of 

eleven directly repeated sequences, such that the deletion plasmid 

pED1039 would contain five of these repeats (see chapter ). 

However, how this would affect the isolation of pED1039 is not 

clear. 

The second class of deletion derivatives, which have lost only 

the internal EcoRI fragment of Th1725 were made by partially digesting 

the pED939::Tn1725 plasmids with EcoRI, religating, and transforming 

with selection for ApR. 	A large proportion of the resulting plasmids 

had a size on PstI digestion very similar to that of pED939. 

As expected, however, these plasmids contained two EcoRI fragments, 

corresponding in size to the smaller fragments from the relevant 

pED939::Tnl25 plasmid. 	TT.2aaI digestions confirmed that the two 

EcoRI fragments were in the same orientation as in the original 

pED939: :Tn1725 plasmids. 

This successful deletion of the 8.9kb internal fragment of 

Th1125 greatly reduced the number of targets for restriction enzymes 

with tetranucleotide recognition sequences, so that these enzymes 

could be now used to map accurately the positions of the original 

Th1125 insertions into pED939. 	Double digestions with EcoRI and 



Fig. 3.2 

A simplified restriction map of the 900bp 	- HaeII fragment of pED939 which contains oriT (a), 

and derivatives of pED939 which: contain Tn1725 (b-e); are deleted for segments of DNA (e-i); and 

have ca.35bp insertions derived from Tn1725 (j-m). 

The large triangles represent Tn1725. 	The small triangles represent Tn1725 with the internal 

EcoRI fragment deleted. 	The dotted line represents deleted DNA. 

In the conjugation experiments (see table) JC6310 containing pED1029 and the appropriate derivative 

was the donor strain, and ED3818 the recipient. 	The transfer frequency is defined as the percentage 

of donor cells which transferred pED1029 to the recipient. 	The mcbilisation frequency is the number 

of recipients which received the oriT recombinant divided by the number which received pED1029. 
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Fig. 3.A 

Restriction enzyme digestions of pED939::Tn1725 plasmids 

and their derivatives. 

Tracks DNA Enzyme 

1 pED1023 EcoRI 

2 pED1039 EcoRI 

3 pED1025 EcoRI 

4 pED1028 EcoRI 

5 pED1033 PstI 

6 pED939 PstI 

7 pED1024 EcoRI 

8 pED1027 EcoRI 

9 pED1032 PstI 

10 pED1026 EcoRI 

11 pED1136 EcoRI 

12 pED1135 PstI 

13 X7 Hindill 
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a1 indicated that the distance from the Ta  aI target flanking the 

fragment of R46 DNA in pED939, to the Tn1725 insertions sites was 

(to the nearest ca.20bp) 400bp (pED1023), 500bp (pED1025), 600bp 

(pED1021 ) and. 850bp (pED1026). 	The relative positions of these 

four Tn1125 insertions, and the structures of the deletion plasmids, 

have more recently been confirmed by nucleotide sequencing (see 

fig. 3.2, and chapter 4). 

The mobilisation frequency of each of the eight deletion 

derivatives was measured (fig-3-2). 	All of the deletions which 

removed DNA between the transposon and the unique EcoRI target of 

pED939 caused a reduction in oriT activity. pED1136 showed such 

low mobilisation of ApR as to suggest that the nick site essential 

for transfer lies to the left of the p.0.1. - pED1026 (point of 

insertion of Tn1125 in pED1026; see fig. 3.2.). 	Admittedly 

mobilisation from the strain JC6310 (pED1136, pED1029), although 

low (1 x 	was not zero. 	However, examination of the plasmid 

DNA in four ApR trans conjugants generated by this donor showed that 

pED1136 had in fact not been transferred by an oriT-dependent 

mechanism. The plasmid DNA was not the same size as in the donor 

strain; it appeared that pED1136 had recombined at low frequency 

with pED1029 to form a larger plasmid. There was also another 

plasmid present, much smaller than pED1029, but larger than pED1136. 

How these plasmids were formed is not understood. The donor was 

a recA strain, and neither parent plasmid contains transposable 

elements. 	Whatever the origin of these plasmids, their 

occurrence would explain the mobilisation of ApR of pED1136 in the 

absence of a nick site on pED1136. 

DNA to the left of the p.o.i. - pED1023 and the p.o.i. - pED102 

is probably involved in the recognition of oriT (see figs. 3.2 and 

3.7). 	However, this DNA is not essential, as its deletion still 

allowed pED1027, pED1028 and pED1039 to be mobilised with low 

efficiency by an oriT dependent mechanism. 	The essential nick 

site must therefore be to the right of the p.o.i. - pED1024. 

The frequency of mobilisation of pED1027 was low (ca. 5 x lOu, 
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see figs. 3.2 and 3.1). 	To confirm that this was due to oriT 

recognition, and not to an alternative mechanism similar to that 

found for pED1136, the plasinid DNA from six ApR transconjugants 

was examined by electrophoresis. 	In five cases it was identical 

in size to that from the donor, as expected if mobilisation of 

pED1027 usually depended on recognition of its R46 oriT sequence 

by the homologous transfer proteins. Accordingly, if there is 

only one nick site in R46 it must presumably lie in the ca.250bp 

between the p.o.i. - pED1024 and the p.o.i. - pED1026 (see 

figs. 3.2 and 3.7). 

All of the Tn1725 internal deletion plasmids which were 

effectively 35bp insertion derivatives of pED939, were mobilised 

at similar frequencies to pED939 (see fig. 3.2). 	This suggests 

that although 8.9kb insertions at these positions could disrupt 

the recognition of R46 oriT, 35bp insertions could not. 

3(c) Construction of sub-clones 

The Tn1725 mutagenesis, and the effects of the deletions made 

between the transposons and the EcoRI target of pED939, suggested 

that full oriT activity required DNA to the left of the p.o.i - 

pED1023, and between that point and the p.o.i. - pED1026. 	In an 

attempt to clone all the DNA required for oriT activity on a fragment 

smaller than the 900bp oriT fragment, an EcoRI - MsDI  fragment of 

pED1035 was cloned into the EcoRI and Clal targets of pER322. 

This fragment extends from the Tnl125 EcoRI target remaining in 

pED1035 leftward to the 	target (see fig 3.2 and 3.3). 

To construct this clone pED1135 was digested to completion 

with EcoRland Mspi, and pER322 completely digested with EcoRI and 

Clal. 	The digests were mixed and ligated overnight, then HB101 

was transformed with the ligated DNA. 	Cloning of the EcoRI - ZfRI 

fragment required was selected by assuming that it would contain 

R46 oriT, and so demanding the presence of the oriT site in the 

recombinants. 	To this end the transformed E8101 cells were grown 

overnight in lOOmls of L-broth containing ainpiciflin. 	pED1029 



was then transferred by conjugation to the ampicillin resistant 

transformants, and the resulting HB101 (Ap , pED1029) transconjugants 

used as donors in a second filter mating with ED-.-818 (Reck NalE) 

as recipient. After the second mating the cells were spread on 

plates containing ampicillin and nalidixic acid, yielding, for 

example, twenty colonies from 0.ltnl of a 10
-2  dilution. 	The 

plasmid DNAs from twenty-two Ap (Nal ) trsnscon.jugants were 

isolated and sized on an agarose gel. 	Fourteen transconjugants 

contained recombinants greater in size than pBR322. 	The smallest 

was subjected to restriction endonuclease analysis. 	It contained 

an EcoRI - Hindill fragment which co-migrated on 1.2% agarose gels 

with the required EcoRI - YM I fragment of pED1135. 	The EcoRI - 

Hin dill fragment was approximately 622bp, and as expected it was 

not cleaved by 	A map of this plasmid, pED1137, is included 

in fig-3.3 and its structure has been confirmed by nucleotide 

sequencing (see chapter 4). 

JC6310 (pED1029) was transformed with pED1137 and ApR colonies 

selected. 	The resulting strain, JC6310 (pED1029, pED1137) was used 

as donor in a filter mating to ED3818. pEDU37 was mobilised at 

a high frequency (see fig. 3.3), suggesting that all the DNA 

required to constitute the nick site, and for the recognition of 

oriT, is located within the ca.622bp EcoRI - 	I fragment (fig.3.7). 

This EcoRI - 	I oriT fragment in pED1137, is inverted 

relative to the T2,aI - HaeII oriT - fragment of pED939. 	Interestingly, 

no instability of either plasmid has been seen in the presence of 

pED1029, which expresses the transfer functions of R46. 	This is 

in contrast to the F oriT plasmid pED806, which in a comparable 

situation, is lost from 99.6% of the cells after 5 hours growth; 

while pED822, which contains the F oriT in the other orientation, 

is stable in the presence of F lac (Everett and Wifletts, 1982). 

The ability of pED1027 to be mobilised suggested that DNA to 

the right of the p.o.i. - pED1024 contains the nick site (see 

fig. 3.2). 	However, this did not rule out the possibility that 

there were alternative nick site(s) present in pED939 to the left 
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of this insertion. 	Deletion of these hypothetical nick sites, 

rather than deletion of DNA required for efficient recognition of 

a single nick site, could explain the low mobilisation frequency 

of pED1027. 	To test this, DNA extending from the EcoRI target 

of Th1725 in pED1032 to the leftward 	I target was cloned into 

pED101. 	pED101 is an Ap galK promoter-cloning vector (see 

section 3e). 	The analogous EcoRI - 	I fragment of pED1033 

was cloned into pBR322 (see figs. 3.2 and 3.3). 	pED1032 and 

pED1033 were cleaved with EcoRI and TaqI, the digests fractionated 

on a 5% acrylamide gel, and the required fragments extracted as 

described in chapter 2. The isolated fragments were mixed with 

pED101 or pBR322 which had been cleaved with EcoRI and Clal, and 

the mixtures ligated overnight. EB101 was transformed with the 

ligated DNA, with selection for APR. 	Small scale plasmid 

preparations were made from six APR transformants in each case, 

and cleaved with EcoRI and Hindill. 	Two of the six plasmids 

derived from the purified pED1032 fragment were identical. 	They 

gave two EcoRI - Hindlil fragments: one which co-migrated with 

the large EcoRI - Hindill fragment of pED101; and one which 

co-migrated with the EcoRI - a1 fragment of pED1032. 	Similarly, 

six ApR transformants from the cloning of the EcoRI - 	I fragment 

of pED1033 into pBR322 contained two EcoRI - Hindlil fragments of the 

expected size. 	The structure of these clones (called pED1138 and 

pED1139) was confirmed by digestion with MspI, with EcoRI, and 

with EcoRI and TacI; and by nucleotide sequencing in the case of 

pED1139 (chapter u-). 	Maps of these clones are shown in fig 3.3. 

JC6310 (pED1029) was transformed with pED1139 and pED1138 

and APR was selected. 	The resulting strains were used as donors 

in matings to ED3818. 	Both sub-clones of the oriT region were 

mobilised at the same very low frequencies as pED1136 confirming 

the view that no nick sites are present in pED1138 and pED1139, 

i.e. to the left of the p.0.1. - pED1021 . 	This region is 

presumably required only for efficient recognition of oriT. 



Fig. 3.3 

A simple restriction endonuclease map of the fI 	HaeII fragment of pED939 which contains oriT, 

and partial maps of recombinants containing fragments derived from pED939. 

The maps show the DNA derived from R46 as a double line, and positioned below its original location 

in pED939. 	The neighbouring vector DNA is drawn as a single line. 

In the conjugation experiments (see table) JC6310 containing pFD1029 and the appropriate 

derivative was the donor strain, and ED3818 the recipient. 	The transfer frequency is defined as the 

percentage of donors which transfer pED1029 to the recipient, the mobilisation frequency is the number 

of recipients which received the oriT recombinant, divided by the number which received pEDl029. 
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As explained earlier, comparison of the mobilisation 

frequencies of pED1136 and pED1032 suggested that the nick site 

was in the ca.200bp present in pED1027, but not in pED1136. 

The mobilisation frequency of pED967, a Sau3A clone made by Brown 

suggested that the essential nick site was within the 215bp Sau3A 

fragment (fig. 3.3). 	If so the site should lie within the approx- 

imately 160bp between the p.o.i. - pED1024 and the rightward 

Sau3A target (see fig. 3.2). 	To confirm this, the appropriate 

EcoRI - Sau3A fragment was cloned between the BamHI and EcoRI 

targets of pED101. 

pED1027 was digested to completion with EcoRI and Sau3A and 

the fragments separated on an 8% acrylamide gel. 	The fragment 

required was recognised as that present in an EcoRI + Sau3A digest 

of pED1027, but not in that of pED939. This fragment was extracted, 

mixed with pED101 cleaved with EcoRI and BamHI, ligated overnight, 

and transformed into HE101. 	Four APR transformants were isolated. 

from O.lrnl of the transformation mixture. 	Small-scale plasmid 

preparations made from these colonies were digested with BamHI. 

Three of the four plasmids were not cleaved by BamHI. 	Digestion 

with EcoRI and. PstI showed that the same three plasmids gave fragments 

of the expected size: one co-migrating with the larger PstI - 

EcoRI fragment of pED101, the other being ca.lOObp smaller than the 

second such fragment of pED101. 	This was as expected if the EcoRI - 

BamHI fragment of pED101 had been replaced by the EcoRI - Sau3A 

fragment of pED1027. The presence of the latter fragment was 

confirmed by digesting one of the three recombinants with EcoRI 

and Sau3A, and fractionating on an 8% acrylainid.e gel alongside 

similar digests of pED101 and pED1027. The new recombinant 

plasmid. (pEDlll) clearly contained a band absent from pED101, and 

identical in mobility to the required pED1027 fragment. 

The oriT activity of pED1141 was measured.. 	Jc6310 (pED1029) 

was transformed with pEDU 1, Ap cells selected, and used as 

donors in matings with ED3818. 	pED1141 was inobilised at a higher 



47 

level than pED1138, pED1139 or pED1136 (see fig. 3.3), confirming 

that the nick site lies in the ca.160bp region under discussion 

(figs. 3.2, 3.3 and 3.4). 

3(d) Search for promoters near R46 	oriT 

The oriT of F is in an intergenic region of 292bp, with the 

promoters for flanking genes transcribing away from oriT (Thompson 

etal.,1984). 	The non-conjugative plasmids ColEl and C10DF13 

contain promoters which transcribe towards oriT, and it has been 

suggested that in these cases transcription across oriT is essential 

for its activity (Finnegan and Sherratt, 1982; Snijders et al., 1984). 

It was of interest, therefore, to know whether there are any promoters 

near R46 oriT which might be required for its activity, and/or for 

the expression of neighbouring genes. 	To study this, restriction 

fragments from the vicinity of R46 oriT were cloned upstream of a 

plasmid-.borne galK gene which has a ribosome binding site, but no 

promoter (McKenney et al., 1981). 	The level of expressionof this 

gene was determined for various recombinants, to obtain an indication 

of the position, orientation and strength of any promoters around 

R46 oriT. 

The galK vector plasmid used was pED101 (P. Mullineaux and 

N. Willetts, unpublished); a restriction map is shown in fig. 3.4. 

There are unique restriction targets for the enzymes EcoRI, Clal, 

Hindill, and BamHI upstream of the galK coding sequence. 	These 

targets can be used to clone fragments in order to assess them for 

promoter activity. 

pED1138, already described in section 3(d) and shown in figures 

3.3 and 3.4, is a pED101 derivative ccntaining the ca.650bp of DNA 

to the left of the ca.160bp thought to contain the oriT nick site. 

The fragment is orientated in such a way that if the galK gene were 

expressed it would indicate the presence of a promoter transcribing 

towards oriT, and across the position at which Tn1725 is inserted 
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in pED1024. 	Transcription of the galK gene is measured indirectly 

by determining the activity of its product galactokinase, in a galK 

strain containing the various plasmids (see chapter 2). 	As shown 

in fig. 3.4 pED1138 did not express the galK gene. 

The EcoRI - 	I fragment from pED1028 that was cloned into 

pBR322 in the plasmid pED1139 was also cloned into pED101 (see 

figs. 3.3 and 3.4). 	As shown a galK strain containing this clone 

(pED1140) showed no more galactokinase than the plasmid-.free control. 

These results for pED1138 and pED1139 imply that no promoter trans-

cribes over the p.o.i. - pED1024 or the p.o.i. - pED1025, and suggest 

that there is no transcription towards oriT (nick site) from this 

(rightward) direction. 	However, initiation with nearby termination 

within the 650bp region is not excluded. 

The cloning into pED101 of the 160bp EcoRI-Sau3A fragment, 

shown in section 4(d)to contain the nick site, was described 

earlier. 	The ga]ctokinase levels produced by this plasmid, pED1141 

(fig 3.4), suggest that no promoter transcribes leftward across the 

Position at which Tn1725 is inserted in pED1024 (see fig. 3.2). 

There is, therefore, no evidence from pED1138, pED1139 and 

pED1141 for a promoter transcribing rightwards towards, or leftwards 

from within the 160b.p region known to contain the nick site of R46. 

The 160bp thought to contain the nick site is only ca.lOObp from the 

HaeII target at the junction between the R46 sequences and those 

of the vector. 	It is therefore possible that a vector promoter 

transcribing leftward across the HaeII target could compensate for 

a promoter normally active in R46. 	This hypothetical R46 promoter 

would be outside the 900bp oriT fragment, and so not cloned in any 

of the pED101 derivatives. 	However, it is unlikely that such a 

vector promoter could transcribe across the nick site in pED1026, 

in which Tn1725 has inserted between the Rae" target and the nick 

site. 	It is also unlikely that a promoter beyond the HaeII target 

could transcribe across the nick site in R46, as transcription from 

it would converge with transcription from the R46 promoter shown below. 



Fig. 3.4 

Restriction maps of the recombinants used to detect promoter activity in the vicinity of R46 

oriT. 	Only the region from the unique PstI target in the APR  gene, to the end of the galK coding 

sequence is shown for each plasmid. 

The sources of the fragments which are shown here cloned into pED101 are illustrated in 

fig. 3.3 (for pED1141, pED1142, pED1138 and pED1140) and in fig. 3.5 (for PED1145). 	The DNA 

derived from R46 is shown as a double line, the DNA which contains the galK coding sequence is a 

solid line, and the neighbouring vector DNA as a single line. 

pHR9 contains the promoter of the gal operon linked to the galactokinase gene (Newman 

et al., 1982). 

Galactokinase activity is measured as nanomoles galactose phosphorylated per minute per 

O.D.650 (see chapter 2). 
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The smaller EcoRI - Hindill fragment of pED1137, which contains 

the ca.622bp EcoRI 	I fragment known to include all DNA necessary 

for oriT activity, was also cloned into pED101 (see figs. 3.3 and 

3.4) by digesting pED1137 with EcoRI, Hindlil and MspI, mixing with 

pED101 cleaved with EcoRI and Hindlil, ligating overnight, and 

transforming into HB101. 	The transformed cells were then grown 

in lOOmls of L-broth containing ampicillin, and APR oriTplasmids 

were selected in the way described for the construction of pED1137 

(see section 3(d)). Restriction analyses confirmed that these APR 

oriTplasmids contained the EcoRI - Hindill fragment of pED1137 

cloned into pED101. 

One such plasmid, pED1142, was introduced into the galK 

strain JC3272. 	Single colonies of JC3272 (pED1142) appeared white 

on galactose tetrazolium plates, which suggested they were expressing 

galK. 	This was confirmed bygalactokinase assays (fig. 3.4). 

There is a relatively strong promoter transcribing rightwards 

across the p.o.i. - pED1026, and away from oriT, (fig. 3.7). 	As 

there was no evidence for a promoter in the EcoRI - 	I fragment 

cloned in pED1138, this rightward promoter must be positioned in 

the ca.200bp between the p.o.i. - pED1024 and the p.o.i. 	pED1026. 

It could therefore either transcribe across the nick site from a 

position near Tn1725 in pED1024, or away from the nick site from a 

point to its right. 	These alternatives could be distinguished by 

fusing to galK smaller restriction endonuclease fragments, suitably 

chosen and orientated, but this was not attempted. 	However, the 

sequence within this region most closely related to the promoter 

consensus (Hawley and McClure, 1983) is positioned between the Sau3A 

target and Tn1725 in pED1026 (see chapter 4). 	This would not cause 

transcription across the nick site, but rightwards away from it, 

(fig. 3.7). 	The results presented in section 3(f) orientate the 

cloned TaqI - HaeII fragment containing R46 oriT in R46, and suggest 

that the promoter described above transcribes towards the transfer 

genes, and might therefore be required for expression of one or more 

of these. 
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To determine whether transcription in this direction continued 

for at least some 700bp into the transfer region, a 3.-/kb EcoRI - 

BglII fragment was cloned between the EcoRI and Bami-lI targets of 

pED101. 	This insert contains most of the 4.6kb BglII fragment 

carrying oriT, and includes approximately 600bp of the region thought 

to encode the transfer genes. 	This EcoRI - 	II fragment was 

cloned into pED101 in the same as was used (section 3(1)) to clone 

it into pBR322 (figs. 3.4 and 3.5). 	Galactokinase assays of a 

galK strain containing this recombinant (pED1143) show that it 

does not express galK. 	This implies that the transcription seen to 

emerge from the oriT DNA inserted in pED1142 must be terminated 

within 700bp beyond the point corresponding to the EcoRI site in 

pED1142. 

3(e) The position and orientation in R46 of the TaQI - HaeII 

fragment containing oriT 

The exact position of the TaqI - HaeII fragment containing oriT 
4. 

within the transfer region of R46 would allow the oriT clones to 

be related to R46 itself. 	Further, to correlate the orientation 

of transfer of the oriT clone pED1137 (section 3(g)) to R46 it was 

essential to determine the orientation in R46 of the cloned sequences. 

Brown showed that the HaeII fragment cloned in pED938, which 

contains oriT, originated from the BglII - F fragment of R46 (Brown, 

1981). 	Langer and Walker (1981) showed that this 	II fragment 

contained a 2.7kb HpaI fragment. 	According to the data of Langer 

and Walker the HpaI fragment was placed symmetrically within the 

4.6kb BglII fragment such that each HpaI fragment was 0.9kb from 

a BglII site (see fig. 3.5(a)). 	As the 1.4kb HaeII fragment cloned 

in pED938 was derived from the BglII - F fragment, but contains no 

BglII or HpaI targets, it can be deduced that it originated within 

the 2.7kb HpaI fragment. 	This was confirmed by using 32P-labelled 

pED938 as a probe in a Southern blot hybridisation against P46 

digested with fpaI. 	As expected, pED938 hybridised only to the 

2.7kb HpaI fragment. 
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It would have been possible to clone the 	II 	F fragment, 

or the 2.7kb HpaI fragment of R46, and to construct a restriction 

map of the recombinants. 	However, the restriction map of such a 

recombinant could not have been used to locate and orientate oriT 

on R46, as it would have been impossible to deduce the orientation 

of the cloned BglII or HpaI fragment in R46. 	To overcome this 

problem an R46::Tn1125 plasmid was used. 	Thirty transfer-deficient 

Tn1725 insertions into R46 were made (see chapter 5). 	In three of 

these, insertion was within the P&1II - F fragment. 	The position 

of one such insertion is shown in fig. 3.5(a). 	All three plasmids 

pED1036, pED1038 and pED1146) contained the 2.7kb HpaI oriT fragment 

within an EcoRI - 	II fragment. 	Cloning and restriction mapping 

of this EcoRI - 	II fragment would allow the information gathered 

from pED938 and its derivatives to be related to R46. 

Firstly, to reduce the dize of the R46::Tn1125 plasmid pED1036, 

in which Tn1725 had inserted nearest to the HpaI fragment, it was 

digested to completion with 1-jindlil, religated in a dilute solution, 

transformed into HB101 and the transformed cells spread on an 

ampicillin plate. 	Those Ap 
R 
 transformants which were Ap 

R 
 Tc  S  Cm  S  

were studied further. 	EcoRI + BglII digestion of small scale DNA 

preparations confirmed that the plasmids in these transformants 

consisted of DNA extending from the Hindill target within Tn1725 

of pED1036 to that at co-ordinate 49kb on the R46 map (see figs. 

3.5 and 1.1). 	One of these plasmids was called pED1144 (see fig. 

3.5). 	Sub-cloning of the oriT - containing EcoRI - 	II fragment 

of pED1144 was now relatively easy, because pED1144 contains only 

19kb compared to the 60.64b of pED1036, and includes only three 

EcoRI 	II fragments. 

pED1144 was cleaved to completion with EcoRI + BglII and 

pBR322 digested to completion with BamHI and EcoRI. 	3ug of the 

former and lug of the latter digest were ligated overnight. 	To 

enrich for the desired recombinant the DNA was ethanol precipitated 

after ligation, and cleaved with Hindlil + BarnHI + BglII. 	These 

three enzymes would not cleave the desired recombinant, but they 

C) 
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would cleave pBR322 and a number of other possible recombinants. 

The DNA was then transformed into HB101, and the products grown 

in lOOmis of L-broth containing ampicillin. 	oriT - containing 

recombinants were selected as described for pED1137 (section 3(d)). 

Plasmid DNA was isolated from twelve APR (Na1R) transconjugants and 

cleaved with EcoRI + Sail. 	One of the plasmids, pED1145, had the 

restriction pattern expected if the EcoRI - 	II fragment of pED1144 

had been cloned between the EcoRI and BamHI targets of pBR322. 

Its structure was confirmed by HpaI and EcoRI digestions. 

As explained earlier the information gathered from this 

recombinant can be related to R46, as the orientation in R46 of 

the cloned EcoRI - 	II fragment is known. 	Therefore the position 

and orientation in R46 of the TaqI - HaeII fragment which contains 

oriT could be determined from a restriction map of pED1145. 

To construct such a map, pED1145 was cleaved with a number of 

enzymes. 	Cleavage with Minfl showed that oriT must be within 

the largest fragment (2100bp) because there are no Hinfl targets 

within the 1400bp I-IaeII fragment containing oriT (see fig. 3.1). 

The oriT - containing Hinf I fragment must therefore be larger than 

1400bp, and the only such fragment was 2100bp (fig. 3.5(e)). 

Similarly R46 	oriT was shown to be within a 1275bp TaqI fragment, 

as this is the only R46 TaqI fragment in pED1145 larger than 900bp 

(fig. 3.5(e)). 	When pED1145 was cleaved with Hinfl plus 	a' the 
largest fragment was 1050bp. 	This must be derived from the 1275bp 

TaqI fragment and the 2100bp Hinfl fragment, as these are the only 

fragments large enough to produce it. 	Furthermore, it is the only 

TaqI - Hinfl fragment larger than 900bp, and therefore, from the 

restriction map of pED938 (fig. 3.1), must contain oriT. 	These 

data plus the restriction map of pED938 (fig. 3.1) allowed a map of 

a ca.2250bp region of pED1145, which contains oriT, to be constructed 

(fig. 3.5(e)). 	The whole 2250bp region shown in fig. 3.5(e) must 

lie within the 2.7kb HpaI R46 fragment, as the 2100bp Hinf I and 1275bp 

TLiaI fragments are not cleaved by 



Fig. 3.B 

Restriction analysis of pED1145. 

Track DNA Enzyme 

1 pED1145 TaqI 

2 pBR322 TaqI 

3 pED1145 Hinf I 

4 pBR322 TaqI 

5 pBR322 TaqI 

6 pED1032- EcoRI 

7 pED1145 Hincil 

8 pED1145 HpaI 

9 pED1145 Hincil 	(partial digestion) 

10 pBR322 TaqI 

11 X7 Hindlil 

Tracks 1-4 were run on a 2% agarose gel; tracks 5-7 on a 1.7% agarose gel and tracks 8-11 
on a 1% agarose gel. 

2I digested pBR322 produced size standards including a fragment of 616bp. There is not a 
616bp TaqI fragment in pBR322, but it appears due to methylatiori of the YaaI target at co-ordinate 
1126bp, with consequent fusing of the pBR322 fragments of 475bp and 141bp. 
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Fig. 3.5 

Restriction maps of the piasmids used to determine the orientation in R46 of the Tha1-11 

fragment of pED939 which contains oriT. 

DNA derived from R46 is drawn as a double line; Tn1725 is represented as a line with a circle 

on top (3.5(a)), and DNA derived from it as a solid box (3.5(b)); vector DNA is drawn as a single 

line. 	The approximate location of the nick site is shown as an arrow (3.5(e)). 

illustrates pED1036 linearised at the Hindlil target at co-ordinate 48.95kb on the R46 

map (fig. 1.1). 	This map only shows the relevant BgIII, Hindlil, EcoRI and IipaI targets. 

illustrates pED1144 linearised at its unique Hindlil target, showing only the relevant 

EcoRI and BgiII targets. 	The 3.7kb EcoRI - gII fragment contains oriT. 

illustrates pED1145 linearised at its unique Sail target. 	All the EcoRI and HpaI targets 

are shown, and all the Hincil targets additional to the Sail and HpaI targets (which are also 

Hincli) are shown. 

The HaeII fragment of pED938 which contains oriT is positioned directly below its location 

in pED1145. 

a restriction map of a 2250bp region containing oriT. This was constructed as described 

in the text. 	There may be other HaeII targets outwith the 1400bp HaeII fragment, and other TaqI 

targets within the 450bp TaqI - Hinfl fragment on the right hand side of the map. 
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The 2.7kb pI\ contains a single target for Hincli which also 

lies within the TaqI - HaeII (oriT) sub-fragment cloned in pED939 

(see sequence in chapter 4; and fig. 3.5). 	The 1-lincli target is 

480bp from the HaeII end, and 420bp from the TaqI end of the latter 

fragment. 	Hincil is an enzyme with a partially degenerate recognition 

sequence (GTPyPUAC) 	and will cleave at HpaI sites (GTTAAC). 

1-lincil digestion of the 2.716b HpaI fragment produced two fragments 

of about 1600bp and 1130bp. 	The F.incII target also lies in the 

2100bp 1-linfl fragment, containing oriT; 1400bp from one 1-jinfl 

terminus: for the Hinfl fragment yields 1400bp and 700bp sub-fragments 

when cut with Hincli (and it is not cut by HpaI). 	Only the 

1600bp Hincli segment of the 2.7kb 1-Ipal fragment is, then, large 

enough to accommodate the 1400bp Hincli - Hinfl fragment. 

As shown in fig. 3.5(e) the 1400bp Hincli 	Hinfl fragment 

contains the 420bp Hincli - 	I fragment of pED939 which must 

therefore map within the 1600bp Mmdl fragment. 	Consequently, the 

480bp Mmli - HaeII fragment of pED939, which has been shown to 

contain the nick site of R46 (section 3(d)), must be located within 

the 1130bp Hincil fragment. 

To position and orientate in R46 the TaqI - HaeII fragment 

containing oriT, all that remains to be determined is the order of 

the 1130bp and 1600bp Hincli fragments within the approximately 

2.7kb HpaI fragment. 	This was done by partially cleaving pED1145 

with Hinchi. 	pED1145 contains five 1-lincli fragments: 3256, 1600, 

1130, 1000 and 630bp. The 3256bp fragment is from pBR322, the 630 

and 1000bp fragments flank the 2.7kb 1-Ipal fragment (as shown in 

fig. 3.5(c)), and the 1600 and the 1130bp fragments are from within 

the HpaI fragment. 

The order of the two 1-lincli fragments within the HpaI fragment 

can be determined by measuring the size of the fragments in a 

partial Hincil digest. 	The only fragments of less than 2.7kb which 

were present when pED1141 was cleaved partially with Hincil, but 

absent from the complete digest, were approximately 1800bp and 
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2600bp in length. 	There were clearly no fragments of 2000 and 

2150bp (fig. 3.B.). 	This result unambiguously positioned the 

1600bp Hincil fragment, from within the 2.7kb fpaI fragment, 

beside the 1000bp flanking fragment and not beside the alternative 

650bp flanking fragment: moreover 650bp + 1130bp explains the 

1800bp partial digestion product. 

From these data it was concluded that the Laal and HaeII 

targets used to clone R46 oriT in pED939 map at R46 co-ordinates 

14.8kb and 15.7kb respectively (see fig. 3.5(a) (b) (c) (d)). 

3(f) The direction of transfer of R46 

The direction of transfer of R46 was determined by utilising 

regions of homology between plasmids containing R46 oriT, and 

the chromosome of the host strain. 	This homology allowed the 

plasmid to integrate reversibly into the E.coli chromosome, and therefore 

to promote transfer of chromosomal markers. 	Studies of the direction 

of transfer of chromosomal markers flanking the area of homology 

accordingly allowed the direction of transfer of the plasmid to be 

deduced. 

Two E.coli strains, CE60-103 and CE60-.124, with a copy of 

Tn5 inserted in the lactose operon, were used as donors in these 

matings. 	To create homology between Tn5 and the R46 oriT plasmid 

pED1137 a 3.4kb HindlIl fragment internal to Tn5, and which contains 

the Kan 
R

marker of Tn5, was cloned into the unique Hindill target 

of pED1137. 	An R46::Tn5 plasmid, pED957, was used as a source of 

this KanR  fragment. 	The resulting recombinant was called pED1112. 

The absolute orieitations of the Tn5::lac insertions in 

CE60-103 and CE60-124 was not known. 	It would, therefore, not have 

been possible to interpret the results obtained for transfer driven 

by integrated pED1112, without a suitable control. 	To provide 

such a control a plasmid was constructed which contained homology 

with Tn5, and for which the direction of transfer was known, by 

cloning the Hindill fragment of Tn5 into the Hindlil target of the 

F oriT clone pED822. 	The resulting plasmid was called pED1113 
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(see fig. 3.6). 	The direction with which pED1113 promoted transfer 

of the chromosomal markers flanking the lac genes of CE60-103 and 

CE60-.124 could be related to the known direction of transfer of 

pED1113 itself. 	Therefore the direction of transfer of pED1112 

could be deduced from a comparison of pED1112 - and pED1113 - promoted 

transfer of the chromosomal markers. 	However, it was first 

necessary to determine the orientations of the Hindill fragment of 

Tn5 in pED1113 and pED1112. 	This was achieved by cleaving both 

plasmids with PstI; there is an asymmetrically located PstI target 

within the 3.4kb  HindIll fragment, and one within the ApR  gene of 

both plasmids (see fig. 3.6). 	The restriction data showed that 

the fragment in pED1112 is in the opposite orientation to that 

in pED1113. 

pED1112 and pED1113 were transformed into CE60-103 and CE60-124, 

and APR colonies selected. 	These oriT clones require the transfer 

genes of R46 or F, respectively, in order to transfer. 	A derivative 

of the F plasmid, pEDlOO (Willetts and Johnson, 1981), was used to 

supply the transfer functions of F. 	This plasmid contains no 

insertion sequences, and is not itself capable of transferring the 

bacterial chromosome. 	Similarly, pED912 (Brown and Willetts, 1981) 

was used to supply the transfer functions of R46. 	pED100 and 

pED912 were transferred into the strains containing pED1113 and 

pED1112, respectively. 	The four resulting strains were used as 

donors in matings and the frequencies of transfer of chromosomal 

markers measured. 

As shown in fig. 3.6 the lac operonof E.coli is flanked by the 

genes proA and purE. 	The only chromosomal mutation present in 

CE60-103 and CE60-124, apart from the Tn5 insertion, is a trpE 

- deletion; they are accordingly potential proA+  or  purE+ donors. 

A proA purE double mutant was not available, so two separate 

recipients were used. 	These were X478 (purE SmR) and AB1157 

(proA SmR). 	The genotypes of these strains are presented in table 

2.1. 
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The four strains containing the plasmids were used as donors 

to X478 and AB1157. 	The transfer frequency of the APR  oriT 

containing clone, and of the chromosomal marker appropriate to 

the recipient used, was determined in each case. 	The results 

of these filter matings are shown in fig. 3.6. 

The direction in which pED1112 and pED1113 promoted chromosomal 

transfer from CE60-103 was opposite to that applying in CE60-.124. 

Evidently Tn5 is inserted in opposite orientations in CE60-103 

and CE60-124. 	Further pED1113 promoted a higher level of transfer 

of the purE marker of CE60-103, while pED1112 promoted transfer 

of its proA marker. 	Similarly pED1113 transferred the proA marker 

of CE60-124 at a high level while pED1112 promoted purE transfer. 

Since the Hindill fragment of Tn5 is oriented in opposite 

directions in pED1112 and pED1113, this implies that the transfer 

directions of pED1112 and pED1113 are the same. 	Accordingly the 

R46 oriT cloned in pED1136 transfers the plasmid in a clockwise 

orientation similar to that of F oriT in pED1113 (see fig. 3.6). 

The data described in section 3(f) orientate the oriT EcoRI- 

MspI fragment cloned in pED1136, with respect to R46. 	Since 

pED1136 transfers as, described above, then R46 must transfer anti-

clockwise as drawn (figs.1.1, 3.6). 

The R46::Tn5 plasmid pED957 was also used to promote transfer 

of the chromosome of CE60-103 and CE60-124. 	The Tn5 insertion in 

this plasmid had been located at co-ordinate 37.15kb on the R46 map 

(see fig. 1.1) by A. Brown (1981). 	The orientation of the Tn5 

insertion in pED957 was determined by BamHI and BamHI plus Smal 

digestion. 	There are single Smal and BamHI targets within Tn5, and 

a BamHI target at co-ordinate 44kb in R46. 	The BamHI fragment 

extending from the target within Tn5 to co-ordinate 44kb in R46 

was cleaved with Smal. 	Thus Tn5 is orientated in pED957 as shown 

in fig. 3.6. 
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CE60-103 and CE60-124 were transformed with pED957, and APR 

transformants selected. 	The resulting CE60-103 (pED957) and 

CE60-.124 (pED957) strains were used as donors. X478 could not be 

used as recipient in these matings as the low level 8mR  gene of 

pED957 prevented adequate contraselection. 	For this reason 

JE2571, which is a galK 	strain, was used as a recipient instead 

of X478 (see fig. 3.6). 	pED957 was shown to transfer proA more 

effectively than galK from CE60-103, and to transfer galK, but not 

proA from CE60-124. 	This is as expected if R46 transfers its 

transfer genes last. 

3(g) Recombination of pED1039 during mobilisation 

In Rec' cells two or more copies of a given cloning vector will 

commonly recombine to form dimers or multimers (see Summers and 

Sherratt, 1984). 	It has been show that dimers of recombinants 

containing the oriT of ColEl, F or RSF1010 are resolved to monomers 

during mobilisation (Warren and Clark, 1980; Everett and Willetts, 

1982; K. Derbyshire, 1983). 	This process can be explained in 

two ways: by early nicking at both oriT sites of the dimeric 

molecule in the donor, with consequent mobilisation of a monomer; 

or by nicking at a single oriT site, initiating transfer of a dimer 

which later forms a monomer because the leading end of the transferred 

oriT can recognise the incoming uncleaved oriT site, and recombine 

with it to yield a monomeric circle. 	The above findings have been 

cited as evidence for strand breakage and re-union at oriT during 

transfer. 	The R46 oriT clone pED1039, was studied to determine if 

it behaves in a similar way to the oriT clones of ColEl, Fand RSF1010. 

It was first necessary to ensure that pED1039 formed dimers. 

Undigested pED1039 DNA, which had been isolated from the Reck  strain 

ED8654 was run on an agarose gel. 	There appeared to be two forms 

of the plasrnid, whose mobilities relative to pBR322 suggested that 

they represented monomeric and dimeric circles. 



Fig. 3.6 

Restriction maps of the plasmids used to determine the direction of transfer of R46, and a 

schematic diagram indicating the relative positions of the chromosomal markers mentioned in section 3.f. 

The relative positions of the proA, lac, purE and gal markers on the E.coli chromosome. 

Restriction maps of the three plasmids carrying Tn5 (pED957) or a fragment of Tn5 (pED1112 

and pED1113), are shown. 	The orientation of Tn5 is demonstrated by the position of the PstI target 

within the Hindill fragment. 	The known direction of transfer of pED1113 and the direction of transfer 

of pED1112 and pED957 (from this experiment) are shown by the arrows on the restriction maps. 

The figures represent the numbers of recipients/ml of resuspended mated cells (see method 

for filter matings, chapter 2) which have inherited either the chromosomal marker or the plasmid (APR). 

The small number of revertants found in each case have been subtracted. 	pEDlOO or pED912 alone 

in the donors did not promote transfer of chromosomal markers from either strain. 
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JC6310 (recA), containing pED1029 to provide transfer functions, 

was transformed with pED1039, and APR  transformants selected. 	The 

plasmid DNAs were isolated from twenty-three transformants derived 

from two independent transformations, and run on an agarose gel. 

The pED1039 DNA used for the transformation acted as a control. 

None of the transformants contained DNA co-migrating with the covalently 

closed circular (CCC) monomer or dimer pED1039 DNA used for the 

transformation. 	One transformant appeared to contain a deletion 

derivative of pED1039, as the plasmid DNA migrated ahead of CCC 

monomeric pED1039 DNA. 	The twenty-two other transformants contained 

plasmids which appeared to be identical, and migrated slower than 

monomeric CCC pED1039, but ahead of CCC dimeric pED1039. 	When these 

plasmids were cleaved with EcoRI they gave a single band of 3.6Kb, 

which is 1.2Kb larger than linear pED1039. 	This plasmid could be 

mobilised by pED1029. 	This behaviour of pED1039 has not been 

explained. 	Note that problems had also been experienced in the 

original isolation of pED1039 (see section 3(d)). 

In an attempt to avoid these problems JC6310 without the 

resident pED1029 was transformed with pED1039, and APR  selected. 

Plasmid was isolated from eight of the resulting APR  transformants, 

and run on an agarose gel, with the pED1039 DNA used for transformation 

as control. 	When the plaEmid DNA from the transformants was cleaved 

with EcoRI it appeared to be the same size as linear pED1039 DNA. 

The undigested plasmid DNA from seven transformants appeared to 

be monomeric, while the eighth was dimeric. 	The JC6310 (pED1039 

(dimer)) strain was then usedas a recipient for pED1029 and Kan"  

transconjugants selected. 	The DNA was isolated from the resulting 

JC6310 (pED1039(dimer)) transconjugants and run on an agarose gel. 

This confirmed that the pED1039 DNA was as in the original JC6310 

(pED1039(dimer)) strain. 	JC630 (pED1039 (dimer), pED1029) was then 

used as donor in matings with the recA strain ED3886. 	ED3886 

is Spc R , so Ap 
R 
 (Spc  R)  transconjugants were selected. 	Plasmid 

DNAs isolated from seventy-three APR ( Spc ) transconjugants were 

examined on agarose gels. 	In seventy-two cases pED1039 had become 

monomeric, whereas in one transconjugant it was present as a dimer. 

Mcnomers were therefore formed in 98.75% of the mobilisation events. 



Fig. 3.0 

Monomerisatiori of dimers of pED1039 during mobilisation. 

Tracks 1-5 and 7-12 show cleared lysate DNA preparation 

of ED3886 (pED1029, pED1039) transconjugants. 

Track 6 shows a cleared lysate DNA preparation of the JC6310 

(pEDI029, pED1039 (dimer)) donor strain. 
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Warren and Clark (1980) noticed that the dimeric form of their 

Co1E1 oriT recombinant alone sometimes formed co-integrates with 

Co1E1 as a consequence of mobilisation. 	These co-integrates 

consisted of ColEl and the recombinant plasmid fused at their 

oriT sites, and were present in 5% of transconjugants. 	In the 

experiment using JC6310 (pED1039 (dimer), pED1029) as donor, 

fifty-five of the seventy-three AP'  (Spc") transconjugants examined 

also contained pED1029. 	In no case were pED1029 and pED1039 

present as a co-integrate. 

To confirm that pED1039 (dimer) did not resolve to the monomeric 

form merely as a result of vegetative growth, the strain was grown 

through approximately eighty generations, and the plasmid DNA 

isolated and examined with appropriate controls. 	All of the 

pED1039 DNA was still dimeric. 	The formation of monomers during 

vegetative growth was therefore very rare, if it occurred at all. 

3(h) Mobilisation of R46 oriT plasmids by conjugative plasmids 

other than R46 

oriT sequences are highly specific. 	Within the IncP group 

some plasmids have been shown not to mobilise recombinants containing 

the RK2 oriT sequence. 	This implies that there are at least two 

oriT sequences encoded by different IncP plasmids (Yakobson and 

Guiney 1983(b)). 	Similarly, neither F, R100 nor Rl can efficiently 

mobilise recombinants containing the oriT sequence of either of the 

other two plasmids (Willetts and Wilkins, 1984). 	This suggests 

that although these F-like plasmids encode genetically similar transfer 

systems, they have different oriT sequences. 

The capacity of eleven IncN plasmids other than R46, to 

mobilise recombinants containing R46 oriT was determined (table 3.1). 

pED1137, pED1112 and pED1026 were used as the oriT recombinants, 

depending on the antibiotic resistances of the conjugative plasmid. 

All three oriT plasmids were mobilised efficiently by the R46 

transfer system and by six other IncN plasmids, while another four 

IncN plasmids mobilised them at very low frequencies. 



TABLE 3.1 ABILITY OF CONJUGATIVE PLASMIDS OTHER THAN R46 
TO MOBILISE R46 anT RECOMBINANTS 

Conjugative Inc. group of 
	

R46 oriT 
	

Transfer freq.o±' Mob. freq. 
plasmid 	conj. plasmid recombinant used conj. plasmid 	transf.freg. 

N3 IncN pED1137 406% 1.17 

pCU1 IncN pED1112 305% 3.2x1O 

269N IncN pED1112 70% 3.1 

RM98 IncN pED1112 405% 9x10 1  

R447b IncN pED1026 77% 1.32 

893 IncN pED1112 280% 1.75 

R390 IncN pED1112 110% 3 

979 IncN pED1026 116% 2.7x1O'4  

pMUR274::Tn7 IncN pED1137 215% 7.5x1O 5  

pMUR545::Tn9 IncN pED1137 438% 1.5x1O 5  

825 IncN pED1112 630% <6.5x1O 6  

R388 IncW pED1137 65% <3.6x1O 4  

pUB307 IncP pED1137 397% 3.4x1O 5  

R446b IncM pED1112 121% 8x10 5  

pED1029 R46 Tra pED1137 89% 1.8 

pED1029 R46 Tra pED1112 78% 2.9 

pED1029 R46 Tra pED1026 16% 1.9 

* The transfer frequency is defined as the percentage of 

transconjugants which transfer the plasmid to the recipient. 



Fig. 3.7 

A summary diagram of the data presented in this chapter. 

(a) The triangles represent Tn1725 insertions in pED939. 

(c) The arrow represents the direction of transfer. 

(f) The length of the arrow represents the lOObp which are thought to contain the promoter 

(the exact location of a sequence related to the promoter consensus sequence is 

suggested in chapter 4). 	The arrowhead represents the direction of transcription. 
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R446b (IncM), pUB307 (IncP) and R388 (IncW) were also screened 

for their ability to mobilise plasmids containing R46 oriT. 	These 

three plasmids encode rigid pill similar to those of IncN plasmids, 

and share their susceptibility to the pilus-specific phage PR4. 

However they were unable to mobilise the R46 oriT plasmids. 

These results are discussed further in section 3(1). 

3(i) Discussion 

The mobilisation frequencies of the pED939: : Tn1725 plasmids, 

and the recombinants derived from them (figs. 3.2, 3.3) suggested 

that R46 oriT has at least two parts: the site at which the DNA 

is nicked prior to transfer; and DNA required for recognition of 

oriT. 	The latter DNA may fulfil several functions: binding of 

endonuclease(s); binding of proteins involved in triggering transfer; 

initiation and perhaps termination of DNA synthesis; and circular- 

isation of the plasmid after transfer. 	Deletion of the nick site 

would abolish oriT activity, whereas deletion of DNA involved in 

the recognition of oriT might reduce oriT activity to different 

degrees. 

The nick site was positioned within an approximately 160bp 

EcoRI - SaU3A fragment (figs. 3.2, 3.3 and summarised fig 3.7). 

The nucleotide sequence of this region (chapter 4) revealed that 

this fragment was 174bp in size, and contained two pairs of inverted 

repeats which may form two stemloop structures (see chapter 4). 

These putative structures are similar to stemloops proposed to 

exist very near the nick site of F, and may contain the nick site 

of R46. 	The nucleotide sequence of this region also revealed a 

Dral target (shown in fig. 3.7) which could be used to further 

localise the nick site by cloning the appropriate Dral - EcoRI or 

Sau3A - Dral fragments (fig. 3.7). 

The data described in this chapter do not rule out the possibility 

of a second nick site between the p.o.i. - pED1026 and the SaU3A 

target to its left (figs. 3.2 and 3.7). 	However, the oriT sequences 

of most plasmids are thought to contain only one nick site, such 
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that the nick takes place prior to transfer at a characteristic 

position between two specific base pairs. 	This appears to be the 

case for pSC101 (Nordheim, quoted in Willetts and Wilkins, 1984) 

and ColEl (Bastia, 1978) which were isolated as relaxation complexes, 

and the sequence in the vicinity of the nick determined. 	However, 

evidence from nicked F oriT phages showed nicking at up to 20 

different sites within a 20bp region (Thompson et al., 1984). 

These results are probably a consequence of packaging the nicked 

oriT phages, and so may not indicate that there are multiple 

oriT nick sites in the F plasmid. 

In pED1024 and pED1025 Tn1725 had disrupted DNA required for 

recognition of the nick site, and so reduced the efficiency of 

mobilisation. 	These insertions, particularly pED1024 which has 

very low oriT activity, are comparable to a CloDF13::Tri9Ol plasmid 

isolated by Van de Pol et al. (1978). 	This plasmid was mobilised 

at very lcw frequencies, even when all of the CloDF13 mobilisation 

proteins were supplied in trans. 

It is interesting that although an 8.9kb Tn1725 insertion in 

pED1024 and pED1025 reduced oriT activity, a 35bp remnant of Tn1725 

at the same positions (in pEDI032 and pED1033; fig. 3.2) did not. 

Presumably the 35bp insertions did not disrupt the region sufficiently 

to prevent recognition by the R46 transfer proteins. 	It is possible 

that the protein which recognises this region is capable of spanning 

35bp to interact with DNA on both sides of the insertion, but that 

it is incapable of doing this for an 8.9kb insertion. 	The 35bp 

contains two 15bp inverted repeats which may form a stemloop, so 

reducing the length of the interuption. 

The Tn1725 insertion plasmid pED1023 was mobilised by pED1029 

at a frequency very similar to pED939 (fig. 3.2). 	However, the 

EcoRI deletion plasmid made from it, pED1039, was mobilised at a 

frequency approximately 102  fold of that of pED939 (fig. 3.2). 

This implicated DNA to the left of the p.0.1. - pED1023 in the 

recognition of oriT. 	This suggested that DNA on both sides of the 
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p.o.i. - pED1023 was required for recognition of oriT, but Tn1725 

in pED1023 did not affect recognition. 	This can be interpreted 

as indicating that two distinct domains are necessary for maximum 

oriT activity (fig. 3.7). 	Perhaps the simplest explanation for 

this is that domain 1 and domain 2 (fig. 3.7) are both recognised 

by proteins to allow maximum oriT activity, and that no interaction 

between these two proteins is required. 	Even if this is the case 

it is surprising that domain 1 could act in pED1023, at a distance 

of over 9kb from the nick site, to allow high level mobilisation. 

The DNA required for recognition of oriT sequences from other 

plasmids has not been studied in detail. 	However, the DNA required 

to recognise the origin of viral strand synthesis in M13 phage 

(a site at which a double stranded molecule is nicked in one strand 

to allow unwinding of a single strand) has been studied in detail. 

In this system deletion of a 40bp sequence 140bp from the origin 

abolished replication of the phage (Dotto et al., 1982), but the 

phage replicated normally if a 0.75Kb fragment c-f foreign DNA was 

inserted between the origin and this 40bp sequence (Messing et al., 

1977). 	There is therefore a precedent for the occurrence of two 

domains at an origin functionally similar to oriT, and further it 

was possible to separate these domains with foreign DNA without 

affecting the activity of the origin. 	In the case of M13 the 

40bp sequence distal to the origin was required for initiation of 

DNA synthesis (Dotto et al., 1982). 	If domain 1 at R46 oriT was 

also involved in efficient DNA synthesis it may explain why it can 

be separated from the nick site by 91b, and still maintain high 

efficiency transfer. 

It is surprising that pED1027 and pElJ1141 which have lost 

over 200bp required for the recognition of oriT should be mobilised, 

even at low frequency. 	How this mobilisation can occur is not 

clear, but a similar result has been reported for the oriT of 

pMBl, which is contained in pBR322. 	Finnegan and Sherratt (1982) 

made a series of deletions in the vicinity of oriT of pBR322. 
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Deletions extending to within 45bp of the nick site were mobilised, 

although at frequencies approximately 100 fold lower than pBR322. 

From the direction of transfer of R46 (figs. 3.6 and 3.7) it 

becomes clear that the first ca.300bp to be transferred contains 

most of the DNA required for recognition of oriT (fig. 3.7). 

It is possible that proteins bound to this DNA may be transferred 

to the recipient, and be involved in recircularisation. 	This is 

consistent with the observation that R46 oriT 	are circularised 

in recipients which do not also inherit pED1029. 

One promoter was detected within the R46 oriT region which 

transcribes towards the transfer genes (figs. 3.4 and 3.7). 	The 

proposed location of this promoter was deduced partly from the 

nucleotide sequence (chapter 4), but could be confirmed by cloning 

the appropriate lOObp EcoRI - Sau3A fragment (fig. 3.7) into pED101. 

This promoter transcribes towards the transfer genes and may be 

required for the expression of one or more of these genes. 	The 

possibility that transcription from this promoter could be detected 

approximately 700bp into the transfer region was tested in recombinant 

pED1143 (fig. 3.4). 	No transcription was detected suggesting that 

it is terminated within these 700bp. 	The genetic map of the transfer 

region (Winans and Walker, submitted; fig. 5.1) indicates that one 

complementation group, traK, is positioned entirely within this 

700bp. 	The detected promoter may, then, transcribe traK. 

Transcription would not be detected in pED1143 if it was terminated 

at the end of traK. 

No other promoters were detected within the oriT region (section 

3(e);fig. 3.4), which strongly suggests that there is no transcription 

across the nick site in R46. 	This is supported by the nucleotide 

sequence of the region which revealed no good promoter consensus 

sequences which would allow transcription towards the nick site. 

These data make it unlikely that R46 requires transcription 

across oriT to allow transfer, although this has been suggested for 

Co1E1 (Finnegan and Sherratt, 1982) and CloDF13 (Snijders et al., 1983). 



In R46 and ColEl this is also made unlikely by the fact that 

exposure to rifampicin prior to mating does not inhibit transfer 

(see chapter 5; J. Maule and N. Willetts, unpublished). 

Restriction mapping positioned the HaeII - II fragment 
containing oriT within R46. 	This was located between R46 co-ordinates 

14.8kb and 15.7kb (figs. 1.1 and 3.5). 	The co-ordinates were 

calculated relative to the BglII target at co-ordinate 12.95.b. 

The 1.2kb suggested by Winans and Walker to contain oriT was 

located by making deletions extending from restriction targets 

within Tn5 and determining which deletions could be mobilised by 

pKM101. 	In this manner they mapped oriT to within co-ordinates 

ca.20.2kb to ca. 21.4kb. 	When the R46 data is used to calculate 

the location of oriT in pKM101 relative to the HpaI target at 

co-ordinate 20.1kb, then the HaeII - 	I fragment containing 

oriT maps to co-ordinates 20.72kb to 21.62kb on the pKM101 map. 

The data of Winans and Walker and the data described in this thesis 

are therefore in agreement. 

The thirty transfer-deficient Tn1725 insertions into R46 

described in chapter 5, and twenty-three transfer deficient Tn5 

insertions into pKM101 (Winans and Walker, submitted) all map 

on one side of oriT (fig. 5.1). 	It therefore seems very likely 

that the location determined for oriT defines one end of the R46 

transfer region. 	This is also true of the conjugative plasmids 

RP4 (Guiney and Helinski, 1976) and F,(Willetts, 1972) and the 

non-conjugative plasmids ColEl (Warren and Sherratt, 1978) and 

RSF1010 (Derbyshire, 1983). 

Comparisons of the direction of transfer of the chromosome 

of a lac::Tn5 strain containing F oriT, or R46 oriT plasmids, and 

the orientation of Tn5 fragments in these plasmids, led to the 

conclusion that R46 transfers in an anti-clockwise direction, as 

drawn (figs. 3.6 and 3.7). 	This effectively means that the transfer 

genes are transferred last, which is also the case for F and RP4. 
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It is striking that the oriT sequences of F, RP4 and R46 are all 

located at the end of the transfer genes, and the direction of 

transfer is the same in each case. 	Their transfer systems are 

genetically distinct, with different transfer gene products, and 

different oriT sequences. 	It is possible that there is an 

advantage in having the oriT sequence outside the transfer genes 

(or in an intergenic region) as proteins bound near oriT, or 

nicking at oriT might otherwise affect transcription of the transfer 

genes. 	Similarly, perhaps these three plasmids transfer in the 

same direction, because of a selective advantage in transferring 

their vegetative replication genes early. 	They all effectively 

accomplish this by transferring their transfer genes last. 

Dimers of the R46 oriT containing plasmid pED1039 resolved 

to monomers when mobilised from a recA strain containing pED1029. 

98.7% of the resulting transconjugants contained pED1039 monomers. 

The frequency of isolation of monomers was similar to that found 

with an F oriT clone (95.5%, Everett and Willetts, 1982), but higher 

than that found with a Co1E1 oriT clone (68%, Warren and Clark, 

1980). 	This experiment is evidence that R46 oriT is cleaved, 

and the plasmid recircularised during transfer. 

To test if the transfer genes required to recognise oriT, and 

probably the oriT sequence itself, are conserved between IncN 

plasmids, eleven were tested to determine if they were capable of 

mobilising a clone containing R46 oriT. 	Seven could mobilise one 

of these clones at frequencies similar to that shown by R46 (table 

3.1). 	However, four IncN plasmids mobilised the oriT clones at 

much lower frequencies (varying from 4.8 x 10 	to <5 x io of their 

own transfer frequency). 	Two of these four plasmids were 

isolated 	 as cryptic plasmids from strains stored before 

the use of antibiotics, and 	labelled with transposons 

(Datta and Hughes, 1983). 	Although sensitive to Ike and PR4 these 

plasmids must have transfer systems genetically distinct from R46. 

The other two IncN plasmids were R-.factors. 	This is the first 

report of genetic variation in the transfer systems of IncN plasmids. 
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It would be interesting to know if the four plasmids which 

do not mobilise R46 oriT have the same oriT sequence, and the 

same products required to recognise it. 	Cloning oriT from one 

of the four plasmids and determining if this clone is mobilised 

by the other three would answer this. 	Which of the eleven 

different pKM101 transfer mutants these four plasmids will 

complement should also be tested. 	This may allow identification 

of the complementation groups which encode proteins required for 

recognition of R46 oriT. 	Those required for this will probably 

not be complemented by any of the four plasmids which do not 

mobilise the R46 oriT clone. 	A similar method was used to 

characterise the traYZ genes of the F plasmid: RlOO complemented 

most of the F tra mutants, but would not recognise F oriT, and 

this led to the conclusion that at least one of the F specific 

tra genes which is not required for pilus synthesis must encode a 

protein which recognises oriT (Reeves and Willetts, 1974). 

c 

IricP, IncW and IncM plasmids would not/mobilise the R46 oriT 

clone. 	This supports the idea that these plasmids encode different 

oriT sequences, and specific proteins to recognise oriT, although 

they all encode rigid pili. 
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CHAPTER FOUR 

THE SEQUENCE OF A 650bp 	I - HaeII FRAGMENT WITH R46 oriT ACTIVITY 

4(a) Introduction 

The oriT from several plasmids has been cloned into non-

transferable cloning vectors, as was described in detail for R46 

oriT in chapter 3. 	The plasmids from which oriT has been cloned 

include F (Johnson et al., 1980), Rl, RlOO and ColIb-P9 (all quoted 

in Willetts and Wilkins, 1984), RK2 (Yakobson and Guiney, 1983), 

R6K (Shafferman and Helinski, 1983), and R46 (A. Brown, 1981; this 

thesis chapter 3), and the non-conjugative plasmids pMB1 (Finnegan 

and Sherratt, 1982), Co1E1 (Warren et al., 1978), RSF1010 (K. Derbyshire, 

1983) and C1oDF13 (Snijders et al., 1983). 	The sequences of the 

oriT regions of the conjugative plasmids F (Thompson et al., 1984), RK2 

(Yakobson and Guiney, 1983) and R6K (Shafferman and Helinski, 1983) 

are known, as are those of the non-conjugative plasmids pMB1 (Sutcliffe, 

1978), Co1E1 (Oka et al., 1979), RSF1010 (K. Derbyshire, 1983), and 

pSC101 (Nordheim quoted in Willetts and Wilkins, 1984). 	However, 

the direction of transfer can be related to the sequence of oriT 

only in the case of the F plasmid. 

The 622bp EcoRI - MspI fragment which has been cloned in pBR322 

to form pED1137, and which gives full R46 oriT activity has been 

sequenced. 	This relatively short fragment must be recognised by 

several transfer proteins, and it was hoped that the sequence may 

reveal features such as inverted or direct repeats which could act 

as protein recognition sequences. 	Further, the sequence was determined 

by sequencing from the Tn1725 insertions, which allowed the insertion 

points of Tn1725 to be ascertained. 	The seauence has been comoared 

with other oriT sequences, and notable features of the sequence are 

discussed. 



4(b) Sequencing strate 

The R46 oriT region was sequenced using the M13 dideoxy method 

of Sanger et al. (1977), see chapter 2. 	This technique demands 

that the fragments to be sequenced must be cloned into vectors 

derived from the F specific phage M13. 	It was decided to clone 

fragments containing DNA from the R46 oriT region from pED939; :Tn1725 

plasmids, making use of the EcoRI targets 15bp from the ends 

of Tn1725. 	This strategy was used for a number of reasons: 

(a) there is a shortage of suitable restriction targets within the 

R46 oriT region (see section 3(b)); (b) it would allow the exact 

positions of the Tn1725 insertions within the R46 oriT sequence to 

be determined; (c) the sequence of the 15bp of Tn1725 is known 

(Schöffl et al., 1981), and this would act as a control to ensure the 

sequencing reactions were working satisfactorily, and that the correct 

fragments were being sequenced. 	The sequencing strategy is shown in 

fig. 4.1 and table 4.1. 

Certain fragments were much more difficult to clone in one 

orientation than in the other. 	This can be exemplified by the 

observations made during cloning of the EcoRI - 1-lindlil fragment 

of pED1137, which contains R46 oriT (See fig. 3.3), into mp8 and 

mp9. 	These two M13 cloning vectors contain the polylinker in opposite 

orientations (see fig. 4.1). 	This allowed the EcoRI - Hindlil 

fragment to be cloned in opposite orientations in each vector. 

Recombinants containing this fragment cloned into mp8 were isolated 

at least 1000 fold more frequently than the analogous mp9 recombinants. 

The latter were only isolated by transferring a large number of white 

plaques to nitrocellulose and probing for homology to R46 oriT. 

No such procedure was required to find the recombinants in mp8, as 

almost every white plaque contained the recombinant required. 	It 

ought to have been very easy to isolate these recombinants in both 

MP8 and mp9 as pED1137 contains only two EcoRI - Hindill fragments, 

and the one not containing oriT was cut at many positions with MspI 

prior to the ligation. 



Fig. 4.1 

A diagram representing the sequencing strategy used to sequence R46 oriT. 

A map of the 900bp TaqI - HaeII fragment of pED939 which encode R46 oriT. 

The triangles denote the points of insertion of Tn1725 in (from left to right) pED1023, pED1025, 

pED1024 and pED1026. 	The arrows represent the DNA sequenced from each M13 recombinant. 

A simple diagram of the regions used to clone fragments into M13mp8 and M13mp9, showing 

the positions of the EcoRI and Hindill targets relative to the primer binding site (PBS). 
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TABLE 4.1 	SOURCE OF DNA CLONED INTO M13 CLONING VECTORS 

Region Sequenced 2Fragment cloned M13 vector used 

1Arrow 1 500bp EcoRI fragment of pED1033 M13 mp9 

2 622bp EcoRl-HindilI fragment of M13mp8 
pED1137 

3 400bp EcoRI fragment of pED1039 M13mp9 

4 2.4kb EcoRl fragment of pED1033 M13mp9 

5 2.3kb EcoRl fragment of pED1032 M13mp9 

6 2.0kb EcoRl fragment of pED1026 M13mp9 

7 622bp EcoRl-HindIll fragment of M13mp9 
pED1137 

8 600bp EcoRl-Hindill fragment of M13mp9 
pED1139 

9 500bp EcoRl-Hindill fragment of M13mp9 
pED1138 

See fig. 4.1. 

Plasmids described in figs 3.2 and 3.3. 



Overall, the three recombinants required to sequence the regions 

illustrated with arrows 7, 8 and 9 were very difficult to isolate. 

These difficulties are not understood, but may be explained by 

secondary structure or direct repeats within the cloned fragment inter- 

fering with M13 replication. 	The three rare recombinants were 

isolated by cloning fragments with different restriction targets at 

each end, and then by probing the resulting white plaques with DNA 

sharing homology to the 900bp oriT fragment (see above; fig. 4.1; 

table 4.1). 	However, the recombinants required to sequence the 

regions illustrated with the arrows 2, 3, 4, 5 and 6 were isolated 

very easily. 

The sequence of a 650bp fragment with full R46 oriT activity 

The sequence of the 650bp of the 900bp oriT fragment from the 

HaeII to the MspI target (see fig. 3.1) is shown in fig. 4.2. 

The points of insertion of Tn1725 in the four pED939: :Th1725 plasmids 

have been determined (fig. 4.2). 	The sequence of the junctions 

between R46 and vector DNA has been determined for the recombinants 

pED939, pED1137 and PED1139. 

Features of the R46 oriT sequence 

4(d)(i) Direct repeats 

Within the sequenced 650bp, between co-ordinates 64bp and 23bp 

(in fig. 4.2), there are +y-€ee direct repeats with a consensus 

sequence of TGATGTAA/TTT  (fig. 4.3). 	These fall into two groups, 

one of six repeats between co-ordinates 64bp and 129bp, and then 

after a gap of 21bp another Severepeats. 	The significance of these 

repeats is not understood, but their possible involvement in three 

different activities is discussed below. 



Fig. 4.2 

Nucleotide sequence of 650bp with full R46 anT activity. 	The sequenced DNA is the EcoRI - 

MspI fragment cloned in pED1137 (see fig. 3.3). 

The direct repeats (section 4(d)(i), fig. 4.3) are indicated with arrows. 

The bases duplicated by Tn1725 insertion in, from top to bottom, pED1023, pED1025, pED1024 

and pED1026 are shown in boxes. 	In the case of pED1023 the base pairs adjacent to only one end 

of Tn1725 have been determined and the first five of these bases are boxed. 	The duplicated bases 

are discussed further in section 4(e) and fig. 4.6. 

The inverted repeats within the 174bp known to contain the nick site are indicated with red 

arrows (see section 4(d)(ii) and fig. 4.4). 

The -10 and -35 sequences of the proposed promoter are shown in the red boxes. 



TYP R460RI SEU; 

FRUIISTAIIEN of: 	R460R1 .DAT check: 3387 from: 1 	to: 650 

FroMStiden Len9th: 6.50 bp 	5-SEP-84 13:36 Check: 3387 

1 CCGCiCCAT [AACTGGT GCCGCCCTGA TACTTTTGGG CTTCATAGTA 

51 CCCTCAfTTi GAATGATGTA ATThGATGT ATTCTGhT6 TATTATGT 

101 GfATTTTGA TGTACTTTT6 iTGTACTGC TACCTCAGTA CCATATG 

151 	MSTAArTCT ST 1GTCTCI CAACCTTCAA 6TGTGTACT TITGTGTAA 

—4 
201 	TTTTGATI3TA CIT TISTIST ATAGT6TT6 TACTG.iTATT CATGCAGC 

251 TjCGGA ATATTGAACG CTTTTTAGTC AGTTGTCCT TAACCTACST 

301 	ATCGCTCC TCCAAA GATGATTTTT TATCCCTTAA CCTt13CTATA 

351 ACCTAACGCA 6C66CATA TCACGCTMC ACCT6TTT AAAAAATAAA 

401 AAAATAAATA GCGTCAATFT TCGGTATAA TTAGSTATlA A'ACACCT 

> 
451 ATAACTCATT GTTTTATAAT GfGTTT6CTT TATTCTTTG GTAATACTAA  

501 GATTTCAGCT TGTTAGATCC CTCTTTT6 TTTAAUAAAT_6CACT6T6 

551 AC'6fCTGAT GCC4iATAI1 ACCGCAiAG TTCA6A ACTTTTTGGC 

601 CTATATAGC CTG6TTTCG 6AG6TAITC6 6TC6ATTT CTSC6GCGCT 

I 



Fig. 4.3 

Repeat Number Sequence Co-ordinates 

1 TGATGTAATTT 64-74bp 

2 TGATGTA-TTT 75-.84bp 

3 TGATGTA-TTT 86-95bp 

4 TGATGTA-TTT 97-106bp 

5 TGATGTACTTT 108-118bp 

6 TGTTGTACTGG 119-129bp 

7 TGATGTAATTC 149-159bp 

8 TGTTGTACTGT 160-170bp 

9 TGATGTACTTT 182-192bp 

10 TGATGTAATTT 193-203bp 

11 TGATGTACTTT 204-214bp 
12- T6TT11F1TAEç 25-2-lsbr 
1-3 TGT-rT-YAT 22. 	2346r 

Consensus TGATGTA%TTT 
1'I[hL i1 
33 1313 (313 (3 	11 133 

The ±1rteer)  direct repeats found within the 650bp R46 oriT 

sequence between co-ordinates 64bp and 23,bp (fig. 4.2). 	A 

consensus sequence is shown, and the ratio below each base illustrates 

how often the consensus base appears at the same position in the 

eleven repeats. 

The symbol - represents a one base pair gap introduced into the 

sequence to give the best alignment with the other repeats. 
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Firstly, although multiple direct repeats are not a feature of 

any of the oriT sequences so far reported (see Willetts and Wilkins, 

1984), they may be involved in R46 oriT activity. 	This is suggested 

by a comparison of the oriT activities of pED1023 and pED1039 

(see figs. 3.2 and 4.2) : pED1023 is fully oriT and contains the 

eleven repeats, but pED1039 which has lost six repeats has an oriT 

activity 100 fold lower than pED1023. 	Furthermore, there is only 

143bp present in pED1137, which has full oriT activity, but absent 

in pED1039. 	These 143bp contain six of the direct repeat sequences. 

Similarly, pED1028 which has lost all the direct repeats, was mobilised 

at a frequency 10 fold lower than pED1025 (pED939;:Tn1725  from which 

pED1028 was derived) which contains all of them (figs. 3.2, 4.2). 

These data implicate the direct repeats in full oriT activity, but 

clearly they are not absolutely required, and they do not appear to 

be as important as the 92bp between the points of insertion of 

Tn1725 in pED1024 and pED1025 (fig. 3.2). 

Secondly, these repeats may be involved in stb (a locus involved 

in plasmid stability) which was mapped in pKI101 by Winans and 

Walker (submitted) to approximately the same position. 	In many 

plasmids direct repeats are involved in two functions which affect 

the stability of the plasmid: incompatibility and partitioning 

(see Meacock and Cohen, 1980; Tolun and Helinski, 1981). 	These 

functions usually map near the origin of replication, although in 

IncFII plasmids the partition locus is located about 25kb from this 

(Miki et al., 1980; Nordstrom et al., 1980). 	In R46 the region 

essential for replication of R46 is approximately 11kb from the direct 

repeats found near R46 oriT (Brown and Willetts, 1981; Langer et al., 

1981; fig. 1.1). 

Thirdly, direct repeats are a common feature of replication 

origins and it is possible that the repeats in R46 are part of a 

secondary replication origin, or that they represent a remnant of 

a previously functional replication origin. 	Both of these have 

been found in IncF plasmids, although: not near oriT. 	IncF plasmids 

contain up to three replication origins, some of which are not 

functional in all of these plasmids (Bergquist et al., unpublished). 
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4(d)(ii) Inverted repeats 

Using the 'STLOOP' programme of the University of Wisconsin 

Genetics Computer Group, forty-four putative stem-loops were found 

within the 65obpsequence, according to the parameters described in 

fig. 4.4. The seven longest inverted repeats are shown in fig. 4.4. 

The two inverted repeats between co-ordinates 430-475bp are 

within the 174bp (cloned in pED1141, fig. 3.3) thought to include 

the nick site. 	If these were to form stem loops they would form 

two stems of lObp with two loops of 3bp. 	In one the loop would 

contain three adenine residues, in the other three thymidine 

residues (fig. 4.4). 	Even if these stem loops do not form the 

inverted repeats may act as binding sites for endonuclease(s) 

involved in nicking. 

Inverted repeats are a feature of the oriT regions of F, RK2, 

Co1E1, CloDF13 and RSF1010. 	Furthermore, the nick site of F 

appears to be within two pairs of inverted repeats which can be drawn 

as a double stemloop structure, similar to that within the 174bp 

which contains the R46 nick site (fig. 4.4), 	It would be surprising 

if these inverted repeats within R46 oriT are not involved with the 

R46 nick site, as they are the most striking feature within the 174bp 

known to contain the nick site, and because of their similarity with 

the region known to contain the F nick site. 

If this structure contains the nick site, then the region from 

co-ordinate ca.430bp-lbp (fig. 4.2) must be transferred first. 

This region contains a sequence with homology to the 7bp consensus 

sequence of a primosome binding site. 	The primosome can be used 

to synthesise RNA primers for DNA replication. 	The R46 sequence is 

GCAGCGG (358-365bp, fig. 4.2) and the consensus sequence is GAAGCGG 

(Van der Ende et al., 1983). 

In R46 the seven base pair sequence does not appear to be within 

a region of secondary structure, which makes it less likely that it 

could act as a primosome binding site. 	If R46, like F, transfers a 

single strand with the 5' terminus leading then the putative primosome 



Fig. 4.4 

The seven best inverted repeats found within the R46 

oriT sequence. 	The co-ordinates correspond to those shown 

in fig. 4.2. 	The University of Wisconsin Genetic Computer 

Group programme 'STEMLOOP' was used with the parameters: 

minimum stem 6bp; minimum bonds/stem 12 (G-C = 3 bonds; 

A-T = 2 bonds; G-T = 1 bond); and maximum loop size 20bp. 

The double stem loop structure between co-ordinates 430bp 

and 475bp illustrates the possible secondary structure within 

the 174bp which contains the R46 nick site. 



Fig. 4.4 

Repeats No. Bases Between Repeats 

1. 236 GTATTCATGC 245 

2 
257 CATAAGTACG 248 

2. 453 AACTCATTGT 462 

3 
457 TTGAGTAATA 466 

3. 19 GTGCCGCCCTGA 30 

4 
46 TACTTCGGGTTT 35 

4. 622 AGGTAATCGG 631 

1 
642 TCTATTAGAC 633 

5. 430 ATTAGGTATT 439 

3 
452 TAATCCACAA 442 

6. 121 TTGTACTGG 129 

5 
143 ACCATGACT 135 

7. 136 CAGTACCA 143 

18 
169 GTCATGTT 162 

T  AA.A T T 
T 	'A T. A 

II A 	G T. 

A C 	T A 

T A 	T A 

G C 	A T 

G C 	C G 

A T 	T A 

T A 	C G 

T A 	A T 

A T 	A T 

426A-A-T-A T-G-C-TT-T481 
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binding site would remain in the donor cell. 	It may be required to 

synthesise a primer for donor conjugal DNA synthesis, if the 3' OH 

of the transferred strand does not act as a primer. 

4(d)(iii) Promoter sequence 

As shown in section 3(d) there is one promoter which transcribes 

away from R46 oriT, and which is located in the 245bp between the 

points of insertion of Tn1725 in pED1024 and pED1026. 	The sequence 

within this region which is closest to the consensus sequence of 

a bacterial promoter (according to Hawley and McClure, 1983) is 

located at co-ordinates 540-569bp (fig. 4.2). 	The sequence of the 

proposed R46 promoter (TGCACA - 18bp - AATAAT) differs in three 

places from the consensus sequence (TTGACA - 17bp - TATAAT). 

The 18bp gap between the proposed -10 and -35 sequences is close 

enough to the optimum 17bp to allow promoter activity (Hawley and 

McClure, 1983). 

Fifty base pairs from this putative promoter at co-ordinates 

619-624 is a sequence (AGGAGG) which could act as a very good 

ribosome binding site (Stormo et al., 1982), however this is not 

followed by a start codon at which translation could begin. 	It may 

be of interest that an 	inverted repeat within this region 

(622-642, fig. 4.4) includes three base pairs of this sequence. 

The HaeII target at which the sequence data ends is at co-ordinate 

650bp, and presumably the translation start codon is beyond this. 

If this is the case then it is very unlikely that the sequence 

described above could act as a ribosome binding site. 

4(d)(iv) An AT-rich region within R46 oriT 

The 650bp region is 64.5% AT. 	However', the 120bp between 

co-ordinates 380bp and 500bp, which includes the putative secondary 

structure thought to be near the nick site, is 79% AT. 	Within this 

region there is a 24bp sequence (386-410bp) consisting entirely of AT. 

An AT-rich region has been shown to exist in the vicinity of F oriT 
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(Thompson et al., 1984), and to be a feature common to the vegetative 

replication origins of both plasmids and phages (Murotsu et al., 

1981; Shafferman and Helinski, 1983; Selzer et al., 1983; Moore 

et al., 1978) and the bacterial chromosome (Meijer et al., 1979). 

AT base pairing is not as strong as GC, and so these regions may 

assist the separation of the complementary DNA strands which must 

occur at oriT and at vegetative replication origins. 

4(d)(v) Homology to other oriT sequences 

The 'BESTFIT' programme of the University of Wisconsin Genetic 

Computer group was used to search for homology between the oriT 

sequence of R46 and those of F,RK2, C01E1, C1oDF13 and pSC101. 

The most interesting stretches of homology were found between the 

oriT of R46 and those of pSC101 and F. 	These are shown in fig. 4.5. 

Fifteen of nineteen bases in the vicinity of the nick site of 

pSC101 are identical to fifteen of nineteen bases between co-ordinates 

451bp. and 471bp of R46 oriT. 	This region of R46 oriT is within one 

of the inverted repeats thought to be near the nick site of R46. 

It is not clear whether this homology is biologically significant, 

particularly as R46 does not mobilise pSC101 (fig. 4.5). 

The homology between R46 oriT and F oriT is in the region between 

the points of insertion of Tn1725 in pED1024 and pED1025. 	This 

regicn is thought to be important for the recognition of R46 oriT. 

The region of homology contains a block of six adenine residues 

followed by six thymidine residues. 	This region is approximately 

100 bases from the stem of the proposed double stem loop structure 

thought to be near the nick site of R46, and is in the region which 

is transferred early. 	In F the homologous region is ca.180bp from 

the nick site, but is in the region transferred last. 	It is, 

therefore, unlikely that the homologous sequences have a common 

function. 



Fig. 4.5 

R46 Sequence 451 ATAACTCATTGTTTTATAATG 471 

pSC101 Sequence 1 ATAACTCTTTTATTTATCNNG 21 

R46 Sequence 315 AAAAAAGATGATTTTTTAT 333 

F Sequence 302 AAAAAACATTATTTTATAT 320 

Regions of homology between the R46 oriT sequence and the 

oriT sequence of pSC101 and F. 	The R46 co-ordinates correspond 

to those shown in fig. 4.2. 	The pSC101 and F co-ordinates 

correspond to those used by Willetts and Wilkins (1984). 

Use of the University of Wisconsin Genetic Computer Group 

programme 'SHUFFLE' indicated that this homology was not simply 

due to the high AT ratio of the oriT sequences. 
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4 (e) Sites of Tn1725 insertions 

The sequences of the DNA adjacent to each inverted repeat of 

Tn1725 in pED1024, pED1025 and pED1026 have been determined. 

This confirmed that in each case Tn1725 had not deleted neighbouring 

DNA. 	This was an important observation as transposons will delete 

adjacent DNA, and such deletions may have been responsible for 

the reduction in oriT activity shown by pED1024 and pED1025. 

Tn1725 was derived from the minor transposon of Tn1721 

(Altenbuchner et al., 1983) by the insertion of a Cm  Hindlil 

fragment. 	Tn1721, in common with all other Tn3-like transposons, 

has been shown to replicate 5bp of target DNA on insertion 

(Shiffl et al., 1981; I-Ieffron, 1983). 	Sequencing from these 

Tn1725 insertions was expected to reveal direct repeats of 5bp of 

target DNA adjacent to each inverted repeat of the transposon. 	It 

was surprising to find that the insertion in pED1024 and pED1025 had 

duplicated 6bp and 4bp respectively. 	However, Tn1725 had duplicated 

the expected 5bp on insertion in pED1025 (fig. 4.6 and 4.7). 	This 

heterogeneity in the number of base pairs duplicated has not previously 

been reported for a Tn3-like transposon. 	Only two bacterial 

transposable elements have been shown to duplicate a variable number 

of base pairs on insertion: 1S1 (8bp and 9bp; Kleckner, 1981; 

lida et al., 1981(a); Kanazawa et al., 1984) and 1S4 (llbp and 12bp; 

Klaer et al., 1981). 

4(f) Summary of the sequences required for R46 oriT activity 

It was shown in chapter 3 that the 558bp between the MspI target 

and the point of insertion of Tn1725 in pED1026 contains all the DNA 

required for oriT activity (fig. 3.3). 	The first 2c1bp contains 

13 direct repeats and 4 inverted repeats (see figs. 4.3 and 4.4). 

Deletion of this whole region lowered the mobilisation frequency 

approximately fifteen fold, implying that this region may be involved 

in high frequency mobilisation, but that it is not absolutely required 

for oriT activity. 	Alternative functions for these direct repeats 

are discussed in section 4(d)(i). 



Fig. 4.6 

Plasmid 	Sequence of 12bp at point Sequence adjacent Sequence adjacent Bases 
of insertion to Tn1725 to Tn1725 duplicated 

pED1025 	5'GCATGMTACGG3' 5'TCCCCTATTCA3' 5'CCCCCGAATAC3' 5 

3 'CGTACTTATGCC5 

pED1024 	51ACCTGCTATACA3' 5'TCCCCTATAGCA3 5'CCCCCCCTATAC3 6 

3 ' TGGACGATATGT5 I  

pED1026 	5'TCAGATGAACTT3' 	 5'CCCCCATCTG3' 	5'TCCCCAGATG3' 	 4 

3 'AGTCTACTTGAA5 I  

The R46 sequence present.. at the site of insertion of Tn1725 in pED939 before the insertion of Tn1725, 

and the sequences adjacent to Tn1725 in pED1024, pED1025 and pED1026. 

The duplicated bases are underlined. 	The 5 bases present at the ends of Tn1725 are 5 1 TCCCC3' and 

5 1CCCCC3'. 



Fig. 4.A 

Sequencing gels showing sequence ladders of M13mp8 and 

M13mp9 recombinants. 

Tracks 1-4 	correspond to arrow 4 (fig. 4.1) 
Tracks 5-8 correspond to arrow 9 
Tracks 9-12 correspond to arrow 8 
Tracks 13-16 correspond to arrow 6 
Tracks 17-20 correspond to arrow 3 
Tracks 2124 correspond to arrow 7 
Tracks 25-28 correspond to arrow 2 

In all cases the ladders are in the order GATC. 

Base pairs duplicated by Tn1725 

pEDlO25 

CATAAGCCCCC - Tn1725 - fGGGAfARG-T 

The 5 duplicated bases are underlined. See bottom of tracks 1-8. 

pED1O24 

GACGATATCCCCTC - Tn1725 - GGGCG-Prop 

The 6 duplicated bases are underlined. 	See bottom of tracks 

9-12 and 17-20. 

pEDlO26 

AGTCTACCCCC - Tn1725 - GGGGTCT1C 

The 4 duplicated bases are underlined. 	See bottom of tracks 

13-16 and 21-24. 
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The 92bp between the points of insertion of Tn1725 in pED1024 

and pED1025 must be important for oriT activity as pED1028 was 

mobilised by pED1029 at a frequency 100 fold higher than pED1027 

(fig. 3.2). 	These 92bp are cleaved with Sau3A  52bp from the 

p.o.i. - pED1025 and 40bp from the p.o.i.-pED1024 (figs. 3.2., 4.2). 

This Sau3A target was used to clone the 215bp Sau3A fragment in 

pED967 (fig.3.3). 	This clone, then, contains 40bp of the 92bp 

present in pED1027, but absent in pED1028 and is mobilised only 

2 fold higher than pED1028 (and at comparable frequencies to pED1141, 

fig. 3.2), implying that the SObp between the Sau3A target and the 

p.o.i.-pED1C25 are the most important sequences for recognition of 

oriT within the whole 92bp. 	These SObp contain no striking 

features (fig. 4.2). 

The 174bp between the p.o.i.pED1024 and the Sau3A target at 

co-ordinates 516-519bp contains the nick site of R46. 	This region 

contains a 120bp sequence which is 79% AT, but its most striking 

feature is a possible stemloop structure between cc-ordinates 430bp 

and 475bp (figs. 4.2, 4.4). 	This is similar to the secondary 

structure proposed at other nick sites, but shares homology only 

with the nick site of pSC101. 
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CHAPTER FIVE 

ISOLATION AND CHARACTERISATION 

OF TRANSFER DEFICIENT MUTANTS OF R46 

5(a) Introduction 

The genes required for conjugation are best understood in the 

F plasmid, and the F conjugation system has therefore been used as 

a model for other systems encoded by other conjugative plasmids. 

The mutants essential for the study of the Ftra mutants were isolated 

by mutagenising strains containing F-primes (e.g. Flac) and then 

screening for plasmids unable to transfer (Achtman et al., 1971; 1972). 

Transfer mutants unable to synthesise the pilus could be enriched 

for by picking strains containing F prime plasmids which were 

resistant to pilus specific phages (Ohtsubo et al., 1970). 	These 

mutants were then placed in complementation groups. A major 

difficulty experienced in these complementation experiments was 

that two F primes would not co-exist stably in the same cell, because 

they are incompatible. This was overcome either by constructing 

transient heterozygotes containing two F-primes (Achtman et al., 

1972), or by constructing transfer deficient mutants in the compatible 

F-like IncFII plasmid. R100, and using these to construct stable 

heterozygotes with the F prime mutants (Ohtsubo et al., 1970). 

The complementation groups defined by this process were then 

mapped within the transfer region by using deletions (Ippen - Ihler 

et al., 1972), polar insertions of Mu (Helmuth and Achtman, 1975) 

or of TnlO (in R100; Foster and Willetts, 1979), as well as chimeric 

plasmids and phages containing fragments of the Ftra region (Skurray 

et al., 1976; Thompson and Achtman, 1978; Johnson et al., 1981; 

McIntire and Willetts, 1980). 

Approximately twenty genes have been shown to be required for 

transfer of the F plasimid (Willetts and Skurray, 1980; Moore 

et al., 1982). 	Thirteen of these genes are required for pilus 
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assembly: tra A, L, E, K, B, V, W, C, U, F, Q, H, G (Willetts and 

Skurray, 1980; Moore et al., 1982). 	traA encodes pro-pilin which 

is processed by the traQ product to produce pilin; the single 

protein sub-unit found in pili (Minkley et al., 1916; Frost et. al., 

submitted). The other gene products are presumably required for 

sub-unit assembly and outgrowth/retraction mechanisms. 

The products of traN and traG are required for the stabilisation 

of mating pairs, which is essential for transfer to occur (see 

chapter i). 	Some mutants in traG also prevent pilus synthesis. 

The traYZ gene products are involved in nicking and the traM 

product may be involved in triggering as was discussed in detail 

in chapter 1. 	The functions of the products of the other two genes 

(tral and traD) involved in conjugal DNA synthesis were also discussed 

in chapter 1: they are a DNA unwinding protein, and a protein 

possibly involved in DNA transfer through the membrane, respectively. 

The traJ gene product is required for expression of most of 

the other transfer genes (Finnegan and Willetts, 1913). 	It acts 

to allow transcription from the promoter of the traYZ operon (see 

later; Gaffney et al., 1984; Mullineaux and Willetts, unpublished). 

Transfer genes of other plasmids 

The IncP plasmid RP4 and the IncN plasmid R46 (or pKN101) are 

the only plasmids, other than F-like plasmids, for which detailed 

genetic information on the transfer region is available. 

Transfer deficient Thi insertions into RP1 mapped to one or 

other of three regions of the plasmid called Tral, Tra2, and Tra3 

(Barth et al., 1918;  Barth,  1919). 	Insertions into all of these 

regions prevented pilus synthesis and some insertions into Tral 

prevented transfer but 	not affect sensitivity to pilus specific 

phage. 	This is in contrast to the F plasmid where all the transfer 

genes map to one region of the plasmid (Willetts and Skurray, 1980). 

Barth et al., (1918) placed their TnT insertions into 5 complementation 

groups using transient heterozygotes of two RP:: Tniplasmids. 	Two 

of these complementation groups, one in Tral the other in Tra2 were 

required for pilus synthesis. 
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Four tra point mutants which were sensitive to pilus specific 

phages and two which were resistant to these phages were also 

mapped to the Tral region (Watson et al., 1980). 	This study 

made use of stable heterozygotes of RP4 and a chimeric plasmid 

containing the Tral region. 

Transposon insertions into the IncN plasmid pKM101 indicated 

that this plasmid also contained three regions required for conjugal 

transfer (Winans and Walker, submitted; fig. 5.1). 	Tn5 insertions 

within two of these three regions prevented plating of the pilus- 

specific phage PR4. 	Winans and Walker characterised 28 Tra Tn5 

insertions, and placed them in 11 complementation groups, seven of 

which were required for pilus synthesis. 

Organisation of transfer genes 

F and F-like plasmids encode their transfer system on a 

continuous portion of the molecule (see Willetts and Skurray, 1980). 

The F transfer system consists of three transcriptional units. 

There is a major operon of 32kb which contains twenty-one genes 

most of which have been shown to be required for pilus synthesis 

conjugal DNA metabolism and surface exclusion. 	The tral and traZ 

genes which are at the distal end of the operon are expressed at 

low level when unlinked to the major promoter of the operon, 

suggesting that there is another promoter which can transcribe 

these two genes (see Willetts and Skurray, 1980). 	Two other genes, 

traM and traJ, are positioned upstream of the large operon and have 

their own promoters (Helmuth and Achtman, 1975; Thompson and Taylor, 

1982). 	The traYZ operon is positively controlled by the traJ 

product (Finnegan and Willetts, 1973). 	The evidence for whether 

traM expression is controlled by the traJ product is contradictory 

(Gaffney et al., 1984; Mullineaux and Willetts, unpublished). 

All three transcriptional units are transcribed from the transferred 

strand (Gaffney et al., 1984). 
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Most naturally occurring F-like plasmids transfer at very low 

frequencies since their transfer genes are repressed. 	F is unusual 

among these plasmids in beinge-rpressed for transfer. 	Repression 

requires the products of two genes: finP and finO (Finnegan and 

Willetts, 1971; 1972). 	F is finP, but finO. 	Y6 in F is near 

the position of finO in other F-like plasmids, suggesting the finO 

of F may have been inactivated by insertion of y5 (A.J. Clark, 

pers. comm.). 	The finP product of F will interact with the FinO 

product of a number of plasmids to repress the transfer of F. 

Plasmids capable of inhibiting the transfer of F are called Fin(F) 

(for fertility inhibition of the F plasmid). 	The FinOP complex 

acts on traJ and so indirectly prevents expression of the large 

operon (Finnegan and Willetts, 1973). 

Some Fin(F) plasmids such as Incla plasmids R624 and R144 are 

repressed for transfer. 	These are assumed to encode repressors 

analogous to, but distinct from, those of Fin(F) plasmids. De-

repressed mutants of these plasmids, which transfer at high frequency, 

have been isolated (Meynell and Datta, 1967; Sasakawa and Yoshikana, 

1978). 

Other Fin(F) plasmids such as R46 (IncN), RP4 (IncP) and R388 

(IncW) are naturally de-repressed for transfer.. Studies of the 

transfer regions of RP4 and R46 suggest their organisation differs 

fundamentally from that of F. 	Both plasmids devote approximately 

20b to transfer functions, which is considerably less than the 

32kb used by F. 

Secondly, and perhaps most significantly, it seems that the 

transfer cistrons of RP4 and R46 are transcribed from several 

promoters as transposon insertions were not polar on at least some 

nearby cistrons (Winans and Walker, submitted). 	The only trans- 

criptional unit studied in detail from these plasmids is from the 
5 RP 

Tral region/and includes the gene which encodes the RP4 primase 

(Lanka et al., 1984). 	In this case one RNA polymerase binding 

site, a proposed promoter, within the Tral region has been shown to 



be required for the expression of five polypeptides. 	This represents 

one operon, and it is possible that the transfer regions of both 

RP4 and R46 are made up of a series of short operons. 

The work described in this chapter was carried out to further 

our understanding of the genes required for transfer of R46. 	Forty 

Tra point mutants of R46 were characterised and thirty Tra Tn1725 

insertions were constructed. 	To allow the construction of stable 

heterozygotes between two plasmids both containing the R46 transfer 

genes a recombinant (pED1029) was constructed which contained the 

entire tra region of R46 cloned into pSC101. 	This plasmid was 

entirely stable in the presence of R46. 	Nine Tra point mutants 

of pED1029 were isolated. 	pED1029 was shown to encode the surface 

exclusion system of R46, and the relationship between R46 and the 

IncN plasmid pMTJR274::Tn7 was further examined by determining the 

specificity of their surface exclusion systems. 	Finally, transfer 

of R46 was shown not to be inhibited by prior exposure to rifampicin, 

ruling out the possibility that triggering of transfer or transfer 

per se requires transcription after mating pair formation. 

5(b) Transfer-Deficient point mutants of R46 

The properties of forty R46 tra point mutants are described 

in table 5.1. 	Thirty-five of these mutants were isolated previously 

(Wendy Smith and Neil Willetts, unpublished data; see table 5.1 

and chapter 2), but were characterised during the course of this 

work. 	The remaining six mutants were isolated by picking PR4 

resistant colonies (see chapter 2), which were later shown to be 

transfer deficient. 



TABLE 5.1(a): 	TRANSFER DEFICIENT POINT MUTANTS OF R46 

Phenotype Residual 
Plasmid Ap Tet Spc PR4 transfer frequency 

pED1043 R R R R 2 x i0 6  

pED1045 R R R R 1 x 10 

pED1046 R R R R 2 x 10 6  

pED1047 R R R R 4 x 10 6  

pED1049 R R R R 6.6 x 10 6  

pED1057 R R R R 2 x 10 6  

pED1058 R R R R 2 x 10 6  

pED1059 R R R R 3 x 10 6  

pED1060 R R R R 1.5 x 10 6  

pED1082 R R R R 1.4 x 10 6  

pED1083 R R R R 9 x 10 

pED1084 R R R R 9 x 1O 

pED1085 R R R R 1.9 x 10_6  

pED1086 R R R R 2.2 x 106 

pED1093 R R R R 2 x 16 

pED1095 R R R R 1.7 x 10 6  

pED1097 R R R R 7.8 x 10 6  

pED1098 R R R R 2.7 x 1O 6  

pED1099 R R R R 5.6 x 10 6  

pED1103 R R R R 3 x 10 6  

pED1107 R R R R 2.3 x 10 6  

pEDillO R R R R 2.7 x 106 

pED1111 R R R R 2.7 x 10 6  

pED1121 R R R R p2.2 x 10 

pED1122 R R R R 2.3 x 10-6 
 

pED1123 H R R R 1.9 x io6 

pED1124 R R R R 4.6 x 10 6  

pED1130 R R R R 3 x 106 

pED1131 H R R R 3.2 x 10 6  

pED1132 H H R R 1.8 x 10 

pED1133 R R R R 3 x o6 

pED1134 R R H R 3 x 10 6  

R46 H R R S 1.2x10'  

The donor strain was ED8654 containing the appropriate plasmid. JC3272 

was the recipient. The transfer frequency was the percentage of donors 

which transferred the plasmid to the recipient. 



TABLE 5.1(b): TRANSFER DEFICIENT POINT MUTANTS OF R46 

Plasmid 

pED1O44 

pED1O48 

pED1O56 

pED11O2 

p ED 1104 

pED11O5 

pED11O6 

pED 1129 

R46 

Phenotype 

R 	H H S 

R 	R S S 

R 	R S S 

R 	R R S 

R 	R S S 

R 	R S S 

R 	H R S 

R 	R R S 

R 	R R S 

Residual 
transfer freg. 

9.7 x lO 

<2.5 x 106 

<1.7 x 1o 6  

1.8 x 1O 4  

< 3 x 106 

4.8 x 10-  

<2.2 x io 6  

<3 x lO 

1.2 x lO 

The donor strain was ED8654 containing the appropriate plasmid. 

JC3272 was the recipient. 	The transfer frequency was the percentage 

of donors which transferred the plasmid to the recipient. 
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5(c) Transfer-Deficient R46::Tn1725 plasmids 

To allow Tn1725 insertions into R46 to be isolated using a 

conjugation assay (see below), Tn1725 (Cm R)  was first inserted into 

the chromosome of the E.coli strain JC3272 (see chapter 2). 	R46 

was transferred by conjugation into this strain (ED734), and 

ED734 (R46) used as a donor in filter matings in which ED3818 

(Ma1R) acted as recipient. 	CM  (Na1R) transconjugants were selected. 

These transconjugants were also TetR ApR Sui'  Spc and were assumed 

to be R46::Tn1125 plasmids. 	Previous studies (Willetts and Foster, 

1979; Brown, 1981) had shown that transposon insertions isolated from 

this type of conjugation assay can contain insertions within the 

genes required for conjugation, rendering the plasmid transfer 

deficient. 	To screen for such tra R46::Tn1725 plasmids 200 

transconjugants were replica plate mated (see chapter 2) to ED24. 

Plasrnids which would not transfer in these matings were those containing 

Tn1725 inserted within the conjugation genes. 	In this way thirty 

transfer-deficient R46:;Tfl_1125 plasmids were isolated. 	Small 

scale plasmid DNA preparations were made and digested with gII. 

The R46 BglII fragment in which Tn1725 had inserted could be easily 

identified as that absent in BglII digests of the R46::Tn1125 

plasmids; a BglII fragment approximately 9kb larger than the missing 

BglII fragment was present in all of the digestions (Tn1725 has no 

II targets). 	All thirty tra plasmids had Tn1725 inserted into 

BglII-A, -G or -F. 	These three fragments contain all the transfer 

genes of R46 (Brown and Wiiletts, 1981). 	The positions of the 

Tn1725 insertions were then mapped more exactly by HpaI, EcoRI, Sail 

and KpnI digestions (see figs. 5.1 and 5A). 

All thirty insertions fall within the transfer region of R46 

as shown in fig. 1.1 between P46 co-ordinates 35.5kb and 17.45kb. 

Twenty-nine fall within the three regions of pKM101 shown by Winans 

and Walker (submitted) to be essential for transfer (fig. 5.1). 

However, in pED1054 Tn1725 has inserted almost 3kb outside any of 

the three distinct transfer regions (TRA-1, TRA-2 and TRA-3) of R46 



Fig. 5.1 

Transposon insertions in and near the transfer region of R46 or pKM101. 

The region of R46 between the BglII and PstI targets at co-.ordinates 13kb and 36kb respectively. 

Each vertical line indicates a Tn1725 insertion, and the numbers denote the name of the plasmid 

containing the insertion. 

pED960 is an R46::Tn5 plasmid isolated by A. Brown (1931). 

Tn5 insertions into the transfer region of pKM101. 	These data are from Winans and Walker 

(submitted). 

The vertical lines show the positions of Tn5 insertions, and the letters denote the 

complementation group to which the gene inactivated by the transposon has been assigned. 

No Tn5 insertions have been isolated within the/regions, 

Stb, fip, nuc and eex/are not required for transfer (Winans and Walker, submitted). 

nuc is described by Winans and Walker (1983). 

The limits of Tral, Trail and Tralli are shown. 
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Fig. 5.A 

pI digestions of R46::Tn1725 plasmids. 

Track DNA Enzyme 

1 R46::Tn1725 

2 R46::Tn1725 HpaI 

3 pED1O35 HpaI 

4 pED1O37 hpaI 

5 pED1O4O 

6 pED1O41 EpaI 

7 pKM101 

8 pED1O63 

9 pED1065 jjpaI 

10 pED1066 HpaI 

11 pED1067 aJ 
12 pEDlO68 jjpaI 

13 pED1C69 Epai 

The size standards are from the 	I digest of pKM101 

(track 7; Langer and Walker, 1981). 

The map positions of most of these plasmids are shown 

in fig. 5.1. 
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defined by Winans and Walker. 	Tra+ Tn5 insertions have been isolated 

in the 3kb separating Tn1725 in pED1054 from Tral (fig. 5.1). 

In pED1054 Tn1725 must have inserted in a fourth transfer region 

(TRA-4). 	Cells carrying pED1054 were resistant to PR4, so TRA-4 

is probably necessary for pilus synthesis. 

5(d) Cloning of the entire transfer region of R46 into pLG339 

To construct stable heterozygotes between two plasmids both 

containing mutations in the R46 transfer region it was first necessary 

to clone the R46 transfer region into a plasmid compatible with R46. 

Brown and Willetts (1981) constructed plasmids pED935 and pED936 

which are pBR325 derivatives containing a ca.23kb PstI fragment 

which encodes the entire transfer system of R46. 	The PstI fragment 

was cloned from pED953 (an R46::Tn5 plasmid) and extends from the 

PstI target at 36kb on the R46 map to a PstI target within Tn5 

(inserted at co-ordinate 13.45kb). 

pED935 and pED936 are compatible with R46. 	However, they 

were both lost at high frequency from cells grown without selection 

for the plasmid (Brown, 1981). 	They also have high copy numbers 

which would have made the in vivo isolation of point mutants very 

difficult. 	For these reasons the transfer region of R46 was cloned 

from pED935 to pLG339. 	The latter plasmid is a low copy number 

KanR TetR  cloning vector derived from pSC101 (Stocker et al., 1982). 

An EcoRI - XhoI fragment which contained the whole transfer region 

of R46 was cleaved from pED935. 	This fragment extended from the 

EcoRI target of pBR325 to an XhoI target within the Tn5 sequence at 

the other end of the DNA required for the R46 transfer functions 

(see fig. 5.2). 	The EcoRI + XhoI digest of pED935 was mixed with 

a Sail + EcoRI digest of pLG339 and the mixture ligated overnight 

(XhoI single stranded termini are complementary to those of sail). 
ED8654 was transformed with the ligated mixture and the transformed 

cells then grown in L-broth containing kanarnycin. 	The resulting 

KanR cells were used as donors in a mating with ED3818 (NalR), and 
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KanR (Na1R) transconjugants selected. 	Small-scale plasmid preparations 

were made from the transconjugants and were cleaved with PstI or 

BglII. 	These digestions confirmed that the transconjugants contained 

plasmids in which the EcoRI - Sall fragment of pLG339 had been 

replaced by the EcoRI - XhoI fragment of pED935 containing the R46 

transfer region. 

This recombinant (pEIJ1029) was shown to transfer at high 

frequency, and to mobilise R46 oriT clones (see fig. 3.2). 	It was 

also sensitive to the IncN pilus specific phages PR4 and Ike. 

PR4 - resistant mutants of pED1029 

Eight pED1029 mutants which did not determine sensitivity to 

the pilus specific phage PR4 were isolated, as described in chapter 

2. 	The ability of these strains to transfer was measured, and all 

were found to be transfer deficient (see table 5.2). 

Surface exclusion 

The presence of R46 and pKM101 derivatives in the recipient cells 

lowers the frequency of trarisfer of R46 to those cells. 	These 

plasmids therefore encode a surface exclusion system (sfx). 	sfx 

was mapped by Winans and Walker (submitted) to a position among the 

transfer genes (fig. 5.1), although mutants of sfx were not transfer 

deficient. 

pED1029 should carry sfx, and in fact the presence of pED1029 

in the recipient reduced the transfer frequency of R46 by 30 fold 

(table 5.3). 	Similarly, the transfer frequency of pE]J1029 to a 

strain containing R46 was reduced by a similar amount (table 5.3). 

In chapter 3 four IncN plasmids were shown to encode transfer 

systems genetically distinct to that of R46. 	One of these, pMUR274:: 

Tn7 was tested to determine if its ability to transfer was affected 

by the sfx of R46. 	As shown in table 5.3 the presence of pED1029 

in the recipient did lower the transfer frequency of pMUR274::Tn. 



Fig. 5.2 

The construction of pED1029. 

R46 DNA is shown as a single line; pBR325 DNA as a solid 

line; pLG339 DNA as a double line; and Tn5 as a hatched box. 
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TABLE 5.2: TRANSFER DEFICIENT POINT MUTANTS OF pED1029 

Phenotype Residual transfer 
Plasmid KanR CmR PR4R frequency 

pED771 R R R <2.4 x 10 6  

pED772 H R P. 6.4 x 

pED773 R R R 3.1 x 10 4  

pED775 H R R 3.4 x 10 6  

pED777 R H H 3.7 x 10'6  

pED778 R R H 1.3 x lO 

pED788 R R R 2.8 x 10 6  

pED792 R R R 3.3 x io 

pED1029 R R S 1.5 

The donor strain was ED395 containing the appropriate plasmid. 

JC3272 was the recipient. 	The transfer frequency was the percentage 

of donors which transferred the plasmid to the recipient. 



TABLE 5.3 

TRANSFERRED PLASMID 

R46 
R46 
pED1O29 
pED1O29 
pMUR274: :Tn7 
pMUR274: :Tn7 
pED1O29 
pED1O29 

PLASMID IN RECIPIENT (ED3818) 	sfx index 

- 1 
pED1029 55.8 

- 1 
R46 42 

- 1 
pED1029 88.7 

- 1 
pMIJR274::Tn7 2.2 

Surface exclusion indices. 

An sfx index is the mating frequency with no plasmid in the 
recipient (ED3818) divided by the mating frequency with the 
appropriate plasmid present in the recipient. 

TABLE. 5.4 

Donor 	 Transfer Freq. 
R46/ED39c Pre-treated with Rif 	 27% 
R46/D35 Not treated with Rif 	 33% 

The effect of pre-treating the donor cells with rifampicin. 



However, the presence of pMIJR274::Tn7 did not reduce the transfer 

frequency of pED1029 (table 5.3). 	This implies that either pMUR274:: 

Tn7 does not encode an sfx system, or that it encodes a system with 

different specificity. 	Four surface exclusion systems have been 

identified amongst F-like plasmids (Willetts and Maule, 1974; 

see later). 

Pretreatment of donors with rifampicin 

The antibiotic rifampicin (rif) prevents transcription by RNA 

polymerase (Yarbrough et al., 1976). 	This antibiotic was used 

to test whether transcription was necessary after mating pair formation 

to allow R46 transfer. 

ED395 (R46) was grown to a cell density of approximately 

2 x 10 
8
/ml, and then rifampicin was added to a final concentration 

of 200ig/ml. 	The culture was shaken for a further 30 minutes 

and then used as a donor to the RifR  strain ED3822. 	A filter 

mating technique was used (see chapter 2), and the filter was incubated 

on an L-agar plate supplemented with rifampicin. 	R46 transferred 

at high frequency in the presence of rifampicin (table 5.4). 	This 

ruled out the necessity for expression of transfer genes after mating 

pair formation, and further suggested that transcription across oriT 

is not required for triggering of the transfer process (see chapter 3) 

Discussion 

It was originally intended to place the transfer-deficient 

mutants of P46 into complementation groups by constructing stable 

heterozygotes between them and mutants of pED1029. 	However, the 

classification of the pKM101::Tn5 mutants of Winans and Walker 

(submitted) into 11 complementation groups, and the development of a 

method for constructing transitory heterozygotes based on transformation, 

reduced the priority of these experiments. 	It would now be possible 

to construct transitory heterozygotes of the transfer deficient point 

mutants of R46 with each of the eleven pKM101 tra': :Tn5 mutants which 
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define the eleven complementation groups. 	This would allow a bank 

of R46 tra point mutants to be classified into complementation 

groups. Such a bank of point mutants may be more useful than the 

bank of Tn5 mutants constructed by Winans and Walker because Tn5 

insertions are usually polar (Berg et al., 1980). 	Each of the 

complementation groups of Winans and Walker actually represent 

transcriptional complementation groups which may contain more than 

one cistron. 	Some of the complementation groups are likely to 

have coding capacity for more than one protein, for instance traB 

TraE, traH and traJ are at least 2.1kb, 1.5kb, 1.3kb and 1.2kb 

respectively. 	The existence of more than one cistron within these 

regions might be revealed by analysis of the R46 tra point mutants. 

The restriction mapping of the Tra Tn5 insertions in pKM101 

allowed the limits of the transfer region to be determined (fig. 

5.1(b)). 	Winans and Walker showed that there were two regions of 

2.5kb and 0.7kb within the transfer genes which were not required 

for transfer since insertions into these regions did rot affect 

transfer. 	This allowed the transfer region to be divided into 

three regions called Tral, Trail and Tralli (fig.5.1). 	The Tra 

Tn1725 insertions into R46 extend the data for pKM101. 	Only R46:: 

Tn1725 plasmids which were transfer-deficient were studied, so no 

insertions into regions not required for transfer have been mapped. 

There were no Tra Tn1725 insertions within the 2.5kb and 0.7kb 

regions shown by Winans and Walker to be unnecessary for transfer 

(fig. 5.1(a)), which supports their conclusions. 

The Tn1725 insertions revealed regions required for transfer 

which were not identified by Winans and Walker. 	Firstly, seven 

plasmids (pED1066, pED1068, pED1081, pED1126, pED1067, pED1127, 

pED1053) contain Tn1725 inserted within the 1.1kb region between 

complementation groups traG and traF. 	Winans and Walker were unable 

to show that this was required for transfer as they isolated no 

insertions within this region. 	The Tn1725 insertions confirm that 

it is required for transfer, and that mutations within this region 
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lead to PR4 resistance. 	It should be possible to extend the limits 

of traF and traG, or/and to determine whether this region contains 

a new complementation group by checking whether the insertions within 

traF and traG are complemented by any of these seven R46::Tpj725 

plasmids. 	Secondly, pED1054, which is transfer deficient, contains 

Tn1725 inserted in a region not identified by Winans and Walker as 

necessary for transfer. 	This insertion is 2.3kb from the end of Tral 

and is separated from it by the genes KI1A, KorA and KorB. 	The 

region. containing Tn1725 in pED1054 will hereafter be called TraIV, 

and it is required for pilus formation and hence sensitivity to PR4. 

This must represent a twelfth complementation group required for 

conjugation, and an eigth essential for pilus assembly. 	The portion 

of pKM101 which must cc.ntain TraIV has not been ascribed a function 

by Winans and Walker, so that these results do not contradict their 

data. 	Also, TraIV is included in the fragment of DNA which encodes 

the R46 Tra functions in pED1029. 

The organisation of the transfer genes in R46 must be very 

different to that in the F plasrnid. 	As Tn5 is normally strongly 

polar on downstream genes it seems likely that each of the 

complementation groups of Winans and Walker represents a transcriptional 

unit encoding its own promoter. 	This means that there must be at 

least 12 transcriptional units within the R46 transfer region, and 

there is no evidence for a long operon comparable to the traYZ 

operon of F. 

The ability of seven of the eleven IncN plasmids tested to 

mobilise R46 oriT clones suggests that the R46 transfer system is 

widely conserved amongst IncN plasmids (chapter 3). 	This has been 

demonstrated directly for N3 and R46 by showing that the transfer 

regions of these plasmids would form heteroduplexes (Brown, 1981). 

However, the four IncN plasmids which do not mobilise R46 oriT clones 

must have at least one transfer gene which is different to that of 

R46 (see chapter 3). 	The data presented in this chapter indicates 

that one of these plasmids (pMiJR274:Tn7) does not encode a surface 

exclusion system which acts against the R46 transfer system. 
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It is,  not clear at this stage whether this is because this plasmid 

does not encode an sfx system, or whether it is because the system 

is of a different specificity. 	Four surface exclusion systems 

have been identified among F-like plasmids, and it has been suggested 

that the specificity of these is due to slight differences in the 

pili on the donor cell (Willetts and Maule, 1974). 	More experiments 

are required to determine if all Inca plasmids encode an sfx system 

and how specific these are. 	sfx gene(s) of pKM101 (called eex 

for entry exclusion by Winans and Walker, submitted) have been 

mapped between Tral and Trail, this implies that pMUR274::Tn7 must 

differ from R46 within this region. 

The fact that pED1029 is excluded by R46 (table 5.3) confirms 

that the surface exclusion system of F46 does not operate by preventing 

replication of the in coming IncN plasmid, but rather that entry of 

the plasmid into the recipient cell is reduced. 	This is also the 

case for F-like plasmids (see Willetts and Skurray, 1980). 

Similarly, the surface exclusion indices shown in table 5.3 are 

independent of incompatibility as pED1029 and the IncN plasmids are 

compatible. 

:fruci  Pretreatment of R46 with rifampicin did not decrease the\ transfer 

of R46. 	R46,therefore, does not require expression of tra genes 

in the donor after mating pair formation. 	This implies that all 

the proteins required for transfer must be present in the cell during 

normal growth, and that the trigger which initiates transfer is due 

to a change within these proteins. 	This is also the case for the 

F plasmid (Kingsman and Willetts, .1979), 	ColEl, RSF1010 and IncP 

plasmids (Maule and Willetts, unpublished data; Derbyshire and 

Willetts, unpublished data). 



CHAPTER SIX 

CHARACTERISATION OF 1S46, AN INSERTION SEQUENCE FOUND ON R46 AND N3 

6(a) Introduction 

Bacterial transposable elements are capable of inserting at 

different sites within replicons such as the bacterial chromosome, 

plasmids or bacteriophage DNA. 	They contribute a great deal of 

the genetic variability recently demonstrated in bacterial chromosomes 

and plasmids (see Iida et al., 1983). 

These elements fall into three classes. 	The first class forms 

two groups: insertion sequences which are small, from 768bp to 

2.1kb, and encode only those functions required for their own 

transposition; and composite transposons which carry genes unrelated 

to transposition function, usually antibiotic resistance genes, 

flanked by two copies of the same insertion sequence which alone 

encodes the transposition functions. 	The second class are Tn3 

like transposons which usually carry genes encoding resistance to 

antibiotics, and encode their own transposition functions. 	The best 

understood member of the third class is the bacteriophEge Mu which 

is very complex and has a life cycle similar in part to bacteriophages, 

but replicates and forms lysogens via transposition. 	These three 

classes have been reviewed by Kleckner (1981). 

Insertion sequences were initially detected in E.coli as highly 

polar mutations (reviewed by Starlinger and Saedler, 1976) which 

were shown to result from insertion of a DNA segment. 	The inserted 

sequences were short, 0.8kb- 1.5kb, and on the basis of sequence 

homology were of only a few different types. 	They were originally 

discovered on the E.coli chromosome, but were later demonstrated on 

plasmids and bacteriophages (Davidson et al., 1975;  Arber et al., 

1981). 



The central feature of insertion sequences is their ability to 

integrate at sites where they were not previcusly present. 	This 

process is independent of DNA homology and is called transposition. 

Transposition typically takes place at a frequency of approximately 
-4 	-9 

10 	to 10 	per generation (see lida et al., 1983). 	In addition 

to transposition insertion sequences can delete or invert neighbouring 

DNA, can be perfectly excised, and can fuse replicons. 

All of these phenomena occur in RecA cells demonstrating that 

they do not take place by homologous recombination. 

In addition to this non-homologous recombination insertion 

sequences can act as a substrate for homologous recombination. 	For 

instance the presence of two copies of an insertion sequence on a 

plasmid can, depending on the orientation of the copies, lead to 

deletion or inversion of the intervening segment of DNA after 

homologous recombination across the repeated sequences (see lida 

et al., 1983). 	Another example is recombination between two copies 

of the same insertion sequence, one on the F plasmid and the other 

in the bacterial chromosome. 	This can lead to the integration of 

F into the chrcmosome and so to the formation of Hfr strains which 

transfer chromosomal markers at high frequency (Davidson et al., 197)4). 

Two plasmids in the same RecA cell can fuse to form a double 

replicon if one of the original plasmids carries an insertion 

sequence. 	This takes place at low frequencies comparable to those 

of transposition. 	The resulting structure is called a cc-integrate 

and has a copy of the insertion sequence at each inter-replicon 

boundary (Ohtsubo et al., 1981; lida and Arber, 1980; Gill et al., 

1978). 	These copies are always in direct repeat. 

In transposition of the Tn3 like class of transposons co-integrates 

are usually intermediates in transposition and they are resolved by 

a site specific reccmbination system encoded by the transposon. 

After the resolution, which is independent of the host recombination 

system a copy of the transposon is present at its original position, 

and a second copy is present at a site in the target replicon (see 

Grindley, 1983). 



In the insertion sequence class of transposons co-integrates 

do net act as intermediates in transposition. 	These elements 

transpose independently of co-integrate formation and do not encode 

a site specific recombination system, because when they do form 

co-integrates these are then stable, and are not resolved in RecA 

cells (Grindley and Joyce, 1981). 	Transposition without co- 

integrate formation is called direct transposition. 	Co-integrate 

formation is thought to be closely related to transposition, and 

may take place by the same pathway with a co-integrate or a direct 

transposition event as the end product depending on the final 

cross-over (Galas and Chandler, 1981; Hershey and Bukhari, 1981). 

Insertion sequences are often studied using their ability to 

form co-integrates, rather than direct transposition, as an assay. 

Conjugation can be used as a selection procedure for co-integrates. 

A recA cell containing two plasmids, only one of which is capable 

of transfer, can be used as a donor in a mating experiment. 

Transfer of the plasmid not normally capable of transfer would be 

selected for. This can only transfer if it is covalently attached 

to the transferable plasmid in the form of a co-integrate. 	This 

method has been used to study a number of different transposons 

(Gill et al., 1978; Guyer, 1978; Grindley and Joyce, 1981; 

Willetts et al., 1981). 	If a strain is constructed containing 

a plasmid known to contain no transposable elements and a second 

plasmid whose content of transposable elements is unknown, then using 

this co-integration technique the second plasmid can be screened 

to determine if it carries transposable elements. 

Transposable elements of R46 

Some evidence was previously available for the presence of 

inserticn sequences on R46 and N3 (Brown, 1981). 	It had been shown 

that R46 contained two copies of a short sequence which was repeated 

in inverse orientation. 	This was demonstrated by cleaving R46 

at its unique XhoI site, denaturing and re-annealing it, and examining 

it under the electron microscope. 	This revealed a short double 
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stranded region of 865bp (30). 	It was also found that the 

restriction map of R46 constructed by Brown and Willetts (1981) 

differed from that of Langer and Walker (1981), and that the 

differences could be explained by an inversion of the DNA between 

the repeated sequences. 	This presumably occurred by homologous 

recombination between the repeated sequences. 	The restriction map 

of R46 suggested that each repeated sequence contained closely 

spaced PstI and SalI restriction targets, and that the two copies 

of the repeats flanked the TcR  and  As   determinants. (Brown, 1981). 

Similarly in N3 there were closely spaced PstI and SalI 

restriction targets on either side of the TcR  determinant, suggesting 

similar repeated sequences. 	In N3 they were in direct orientation. 

TcS deletions of N3 had been isolated fortuitously, and preliminary 

restriction mapping suggested they were formed by recombination 

across the repeated sequences (Brown, 1981). 	This restricticn 

mapping has been confirmed (Brown et al., 1984). 

There was also evidence that one of the repeated sequences on 

R46 was capable of fcrming co-integrates. 	pED815, a Tc 
R 
 Ap  S  Cm  R  

deletion of pBR325, was used as a target replicon for putative 

insertion sequences. on R46 by constructing a RecA strain containing 

both plasmids. 	This strain was used as a donor in a mating 

experiment, and transfer of Cm   was selected for. 	This could only 

be transferred if pED815 was covalently attached to R46 in the form 

of a co-integrate. 	Transconjugants were isolated with the 

phenotype of co-integrates, and detailed restriction enzyme mapping 

of one of these demonstrated that it was a co-integrate. 	R46 was 

integrated into pED815 with a copy of the repeated sequence at 

each inter-replicon bcundary (Brown, 1981). 

This chapter presents evidence that both copies of the repeated 

sequence in both R46 and N3 form cc-integrates. 	In each plasmid 

a TcR  determinant is flanked by the insertion sequence, but this was 

not transposable in the form of a composite transposon. 	Co-integrates 

were shown to resolve in Rec+  but not in Rec backgrounds. 	A simple 
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restriction map of the repeated sequence was constructed and 

Southern blots confirmed that all four sequences are homologous, 

as well as related to the similar insertion sequence ISiS (see below). 

6(b) Formation of co-integrates containing R46 or N3 and pME420 

The initial experiment of Brawn (1981) used pED815, a Cm TcR ApS 

derivative of pBR325, as a target for insertion sequences present on 

R46. 	However, the TcR  determinant of pBR325 is homologous to that 

of R46 (Brown and Willetts, 1981; this thesis) and this could lead 

to co-integration via homologous recombination, as well as to 

instability of co-integrates in Rec+  backgrounds. 	To overcome 

this objection a (CmR APR) TOS deletion of pBR325, pME420, which 

has no homology with R46 or N3 was used in these experiments. 

This plasmid exists in Rec+  cells as a mixture of monomers and 

multimers. 	To overcone the problems caused by co-integrates formed 

between R46 or N3 and multimeric forms of pME420 it was first 

linearised with EcoRI, re-ligated in vitro and transformed directly 

into the recA strain JC6310. 	It was confirmed that one transformant 

carried a monomer, and then R46 or N3 was transferred into this 

strain, and the resulting transconjugants used as donors with the 

Reck NalR  recipient ED3818. 

The strain containing H46 and pME420 gave CmR (Na1R)  transcon-

jugants at a frequency of 3 x 1O 5  relative to R46 transfer: all 

of these showed the antibiotic resistance phenotypes of both plasmids. 

Small scale plasmid DNA preparations were made from 15 independent 

transconjugants and were digested with BglII. 	Co-integrates 

formed via one or other of the repeated sequences were expected to 

have pME420 integrated within the 	II-A cr!II.-B  fragments of R46. 

There are no BglII targets present in pME420 so in co-integrates 

the 	II-A or 	II-B fragments of R46 would be replaced by a 

larger fragment. 	In nine of the isolates 	II-B was absent, whereas 

in the other six 	II-A was absent, and in each case a larger fragment 

was present. 	Sail digests showed that the co-integrate plasmids 

contained the normal complement of R46 Sail fragments, plus an extra 
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5.3kb fragment arising from pME420 (which has no Sail targets) 

flanked by two copies of the repeated sequence. 	This confirmed 

that these co-integrates had been formed via an insertion sequence 

present on R46, and that this insertion sequence contained a SalI 

target which was duplicated on the formation of the co-integrate. 

The insertion sequence was celled 1S46 and the two copies present 

in R46 named 1S46(a) (at co-ordinate 36kb) and 1S46(b) (at co- 

ordinate 46kb). 	Restriction digests of two representative co- 

integrates are shown in fig. 6.1, and a restriction map of R46 in 

fig. 1.1. 

In analogous experiments, pED904 was substituted for R46. 

pED904 is an in vitro deletion mutant of R46 (Brown and Willetts, 

1981), which carries 1S46(a) but not 1S46(b). 	This plasmid mobilised 

pME420 at a frequency of 8 x 10 6  relative to its own transfer, and 

BglII digests of plasmid DNA from Cm  transconjugants showed they 

contained pED904::pME420 co-integrates formed via 1S46(a). 	1S46(a) 

alone is therefore capable of co-integrate formation. 

N3 also mobilised pME420, at a frequency of 1.5 x lO 	of its 

own transfer. 	Plasmid DNA from 12. independent Crri'  transconjugants 

was examined by digestion with LZlII and Sail, and all 12 carried 

co-integrates of N3 and pME42C formed by transposition of the 

sequence at co-ordinate 5kb (called 1S46(d)). 	This copy of 1S46, 

therefore, transposed more frequently than the one at co-ordinate 

51.5kb (1S46(c)) in these experiments, although results in the 

following section show that 1S46(c) is also capable of transposition. 

A restriction digest of an N3::pIvLE420 co-integrate is shown in 

fig. 6.A, and a restriction map of N3 in fig. 1.1. 

6(c) Formation of co-integrates containing R388 and derivatives 
of R46 or N3 

To confirm that 1S46(.c) was capable of transposition the gII-E 

fragment of N3, which carries 1S46(c), was cloned in either orientation 

into the BamHI target of pBR322. 	The resultant plasmids had the 
R R S 

predicted Ap Spc Tc phenotype, and the isolated plasmid DNA had, 



as expected, one BamHI target, and a total size of 12kb. 	These 

plasmids were called pED1012 and pED1013. 

B388, a Tp 
B 
 Sul  B  Tra + IncW plasmid which has no known transposable 

sequences was conjugated into JC6310 containing either pED1013 or 

pED1012. 	These strains were used as donors to ED3818 selecting 

ApR (Na1B). BamHI and SalI digestion of plasmid DNA prepared 

from these transconjugants showed the patterns expected for R388::pED1012 

or R388::pED1013 co-integrates resulting from IS46(c) transposition. 

IS1 6(c) was therefore capable of transposition independently of IS46(d). 

Although the co-integration method using R46 or N3 with pME420 

provided an effective test for the presence of insertion sequences 

on R46 and N3, it would not detect transposition of antibiotic 

resistance markers independent of co-integrate formation. 	Since 

the tetracycline resistance markers in both R46 and N3 are flanked 

by copies of IS46, and these combinations might form composite TCR 

transposons direct transposition of these was looked for. 

Transfer deficient mutants of B46 or N3 were used to look for 
B 

direct transposition of the Tc 
R  determinants. Transfer of Tc from 

a strain containing one of the Tra mutants and R388, independently 

of the other R46 and N3 markers, would distinguish direct transposition 

from co-integrate formation. A transfer-deficient point mutant of 

B46 with residual transfer frequency of 107, called pED899,  was 

already available. A transfer deficient point mutant of N3 was made 

by isolating PR4-resistant colonies as described in chapter 2. 

The N3 transfer mutant was called pED101I. 

A Jc6310 derivative carrying R388 and pED899 transferred the 

pED889 TcR  marker to ED3818 at a frequency of 0 6  compared to R388 

transfer. 	Each transconjugant carried all of the pED899 antibiotic 

resistance markers plus TpB,  suggesting that they carried co-integrates 

of the two plasmids. 	This was confirmed by DglII digestion of plasmid 

DNA from six representative transconjugants, and the fragment pattern 

further showed that one co-integrate had arisen via IS46(a) transposition, 

and five had arisen via 15146(b) transposition. 	Digests of two 



Fig. 6.A 

L41II restriction analysis of co-integrate plasmids formed 
via various copies of 1S46. 

A. 	Track DNA Enzyme 
1 R46 BglII 
2 R46::pME420 via 1S46(a) BglII 
3 R46::pME420 via 1S46(b) BElII 
4 N3 BglII 
5 N3::pME420 via 1346(d) II 

B. 	Track DNA Enzyme 
1 pED889 BglII 
2 pED889::R388 via 1S46(a) BglII 
3 pED889::R388 via 1346(b) BglII 
4 R388 BglII 

C. 	Track DNA Enzyme 
1 pED1O17 BglII 
2 pED1017::R388 via 1S46(c) BglII 
3 R388 BglII 

pME420 contains no BglII sites, whereas R388 has two 

giving fragments of 24 and 8.6kb. 	The sizes of the BAlII 

fragments of R46 and pED1017 (same pattern as N3) are marked 

in kilobases. 	The fragments carrying copies of 1S46 are as 

follows: 

R46 	II-.A (IS46(a)),II-B(IS46(b)); N3 	II-E 

(1S45(c)) and 	II-A (1S46(d)). 
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co-integrates are shown in fig. 6.A. Of 350 TcR  transconjugants 

isolated in several mating experiments of the type described above, 
R S S only 3 were Tp Ap Spc , the pattern expected to result from 

direct transposition of such a transposan. 	However, gII 

restriction analysis showed that all three plasmids carried much 

larger segments of R46 DNA, and were deletion derivatives of 

co-integrate molecules. 	These data, plus the observation that none 

of the 21 co-integrates examined contained duplications of the entire 

IS46(a) - TcB - Is46(b) region indicate that transposition of this 

region occurs (if at all) considerably less frequently (<10 per 

R388 transconjugant) than that of IS46 itself. 

Similar experiments were carried out for pED1017, which had a 

residual transfer frequency of 5 x 10. A JC6310 derivative 

carrying R388 and pED1017 transferred the TcR  marker of the latter 

plasmid at a frequency of 9 x 10-6
, 
compared with R388 transfer. 

All of the transcon5ugants carried all of the pED1017 antibiotic 

resistance markers as well as TpR,  but in most cases pED1017 and 

R388 were present as separate plasmids. 	This may be due to low 

level complementation of the transfer defect of pED1017 by R388. 

Clones carrying co-integrate plasmids were identified amongst the 

transconugants as those which could retransfer TcR at high frequency 

in replica matings with ED24. 	They constituted approximately 6% 

of the initial Spc 
R 
 Tc  R  Tp 

R transcon.jugants. 	DNA from 11 of these 

was digested with 	II and confirmed that they were co-integrates: 

of these, 8 were formed via IS46(c), and 3 were formed via IS16(d). 

In these matings there was no evidence for the independent transposition 

of TcR,  or of duplication in the co-integrates of the entire IS46(c)- 

TcR - IS46(d) region of N3. 	A restriction digests of a pED1017::R388 

co-integrate is shown in fig. 6.A. 



M- 

6(d) Resolution of R46::pIYtE420. co-integrates 

Co-integrates formed via most insertion sequences are stable in 

RecA cells. 	They do, however, resolve at low frequency in Rec+ 

cells to yield the original plasmid which contained the insertion 

sequence and the target plasmid now containing a copy of the insertion 

sequence 	The target plasmid with the inserted insertion sequence 

can be used to determine the size and restriction map of the insertion 

sequence, as well as to study its re-transposition. 

+ 
Initial attempts to resolve, in Rec hosts, two R46::pME20 

co-integrates formed via 1S46(a) and 1S46(b) were unsuccessful in 

that attempts to separate the Cm TcS pME420::IS46 resolution 

product by P1 transduction or by transformation failed. 	However, 

it was possible that these co-integrates had been formed by R46 

insertion within the replication region of pME420, so that the 

pME420::IS46 resolution products would be inviable. 

Digestion of R46::pME420 co-integrates with PstI yielded all 

the fragments of R46 plus two extra fragments. 	The size of these 

two extra fragments indicated the distance from the PstI targets 

in the flanking copies of 1S46 to the PstI target in the APR  gene 

of pME420. 	The PstI digestion pattern of the two co-integrates 

used above suggested that R46 may indeed have inserted within the 

replication region, but for these co-integrates this could not be 

proven unequivocally. 

PstI digestion of other co-integrates allowed one to be chosen 

(pED1030) in which R46 had integrated into pME420, via 1S46(a), 

approximately 21th from its PstI site. 	In this co-integrate R46 

cculd not have inserted into the replication region of pME420. 

The PstI digest of pED1030 DNA provided preliminary evidence that 

resolution was occurring in the ReJ host; ED3818, since visual 

inspection of the gels indicated that those fragments derived from 

the expected (high copy number) pME420::IS46(a) component were 

present in greater molar amounts than those derived from the (low 

copy number) R46 component; this had not been cbserved for the 
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other co-integrates. 	pED1030 was transformed from ED3818 into 

JC3272 and into the isogenic recA strain JC6310, and Cm   TcR 

cclonies were purified. 	Continued presence of the co-integrate 

plasmid was confirmed by showing that the antibiotic resistance 

markers of R46 and pME420 were transferred from these strains 

in filter matings at similar frequencies, and that co-inheritance 

was 100%. 	Plasmid DNA was isolated from each strain after growth 

through approximately 15 and 100 generations and used to transform 

ED8654. 	Cm transformants were selected and tested for co-inheritance 

of TcR (see Table 6.1). 	When the plasmid DNA from the Rec strain 

was isolated after 15 generations 20% of the Cm  transformants were 

TcS, but this proportion remained constant after 100 generations. 

For the Rec+ strain 35% of the transformants were TcS  after 15 

generations, and this proportion increased to 100% after,  100 generations 

(table 6.1). 	This implied that resolution took place during the 

growth period in Reck  cells, but not in RecA. 	This suggested that 

1S46 does not encode a site specific recombination system analagous 

to that of ys. 

The isolation of small numbers cf Cm   TcS transformants after 

15 and 100 generations grc.wth in RecA cells has not been explained. 

However, as pED1030 was originally isolated in the Reck  strain 

ED3818 resolution would have taken place in this strain. 	It is 

possible, therefore, that JC6310 was transformed with both pED1030 

and the Cm  TcS resolution product. 	This may explain why low 

numbers of Cm   Tc transformants were found when DNA from the 

JC6310 strain was used to transform ED8654. 	To overcome this 

1S46 co-integrates originally isolated in a RecA strain were used 

in studies of resolution and confirmed that 1S46 mediated co-integrates 

do not resolve in RecA strains (section 6e). 

RS 
The plasmid DNA from 5 of the Cm Tet transformants was 

restricted with PstI and Sail which confirmed they were pME420:: 

1S46(a) plasmids. 	One of these was called pED1022. 



TABLE 6.1: 
	RESOLUTION OF pED1030 IN Reck  AND Rec CELLS 

Strain 

1 
Number of 	Number of Cm R 
	

2 % of Cm 
R 
 Tet  S  

generations 	transformants/mi 	trans formants 

pED1030/JC6310 	 15 2.6 x 10 	 19% 

pEDI030/JC6310 	 100 1 x 1O3 	 20% 

pED1030/JC3272 	 15 3 x 10 	 35% 

pED1030/JC3272 	 100 1 x 1O4 	 100% 

Plasmid DNA was isolated in small-scale preparations and used 

to transform ED8654. 	O.lml was spread on nutrient Cm plates. 

100 CM   transformants were patched and replica plated onto Cm 

nutrient plates and Tc nutrient plates. 

H R R S Co-integrates are Cm Tet , resolution products Cm Tet 



98 

The transformation technique for isolating resolution products, 

described above, has the advantage that the number of Cm 
R 
 Tc  S  

transformants is increased relative to the number of Cm   TcR ones 

by the multicopy nature and small size of the pME420:: 1S46(a) 

resolution product. 	This explains why 100% of the Cm 
R. 
 transformants 

isolated after 100 generations of growth in the Reck  JC3272 strain 

were resolution products (see table 6.1). 	This technique has the 

disadvantage, however, that the rate of resolution cannot be 

meaningfully quantitated, as the transformation step effectively 

acts as an enrichment for resolution products. 

6(e) Re-transposition of 1646(a) from pED1022 

pED1022 was transformed into JC6310 (R388) to study the re- 

transposition of 1S46(a) via co-integrate formation. 	In conjugation 

experiments between the strain and the recA recipient ED3886, the 

Cm 
R 
 marker of pED1022 was transferred at 106  of the R388 transfer 

frequency. 	Plasmid DNA was prepared from four independent Cm  TpR 

transconjugants, and digestion with SalI confirmed that in each case 

it gave the pattern expected for R388::pED1022 co-integrates with 

a copy of 1S46(a) at each boundary. 

1S46(a) was therefore retransposable from pED1022, demonstrating 

that no genes required for its transposition are located elsewhere 

on the R46 plasmid from which it was originally derived. 

Two of the pED1022::R385 co-integrates which were isolated 

in the •recA strain ED3886 were used in resolution experiments similar 

to those described in section 3(d). 	The pED1022::R388 co-integrates 

were transferred in conjugation to JC3272 and JC6310 and grown through 

approximately 100 generations. 	The plasmid DNA was isolated and 

transformed to 6D8654 selecting for 0mR. 	When the co-integrates 

were grown in the Reck  strain JC3272 44% and 46% of the Cm  trans-

formants were CmR TpS, whereas after the same growth period in the 

RecA JC6310 neither co-integrate yielded any Cm  TpS transformants. 

This confirmed the conclusion of section 3(d) that 1S46 co-integrates 

are very stable in RecA cells and probably only resolve in Rec + 

cells via homologous recombination. 



6(f) Physical characterisation of 1S46 

pML31, a Kan 	mini-F plasmid (Tirnrnis et al., 1978), was used 

by Brown (1981) as a target for transposons in N3, using conjugation 

to select co-integrates by the method described earlier. 	In this 

way a plasmid was isolated with the phenotype of a pML31::N3 

co-integrate. 	P1 was then grown on a Rec+ strain carrying this 

co-integrate and a KanR spcS TcS plasmid, called pED994, was isolated 
by transduction. 	pED994 was assumed to be a resolution product. 

Preliminary restriction analysis of this plasmid showed it was larger 

than pML31 (Brown, 1981). 

BglII digestion of the pML31::N3 co-integrate has demonstrated 

that it was formec via 1S46(d). 	Comparison of the sizes of 

restriction fragments in pML31 and pED994 was used to construct a 

restriction map of 1S46(d). 	It was shown to have inserted within 

the 3.7kb EcoRI Hindlil fragment of pML31 so that the equivalent 

fragment of pED994 was 4.51kb. 	This indicated that 1S46(d) was 

0.81kb in length. 	The orientation within the EcoRI - Hindill 

fragment was determined from double digests usingEcoRI together with 

Sail or PstI, and the distance from the vector EcoRI site to the 

SalI site within 1S46(d) was accurately measured as 2.41kb. 	The 

size of the internal Sail - PstI fragment of 1S46(d) was 195bp. 

The distance from the same EcoRI site to the point of 1S46(d) 

insertion was then determined by electron microscopy. 	Heteroduplex 

molecules formed between EcoRI  digested pED994 and pML31 DNA showed 

a single insertion loop corresponding to 1S46(d) located at 1.94 

0.04kb (mean of 11 molecules) from the EcoRI site (see fig. 6.B). 

The distance from one terminus of 1S46(d) to the internal Sail site 

is consequently 2.41 - 1.94 = 0.47kb, and from the internal PstI 

site to the other terminus is 810-470-195 = 145bp. 	The size of 

the single stranded loop in the heteroduplexes was measured as 

0.78 0.02kb (mean of 10 molecules), which is in good agreement with 

the size of 1S46(d) determined from restriction enzyme digests. 

No double stranded 'steir" bounding this loop was visible, which 

suggested that if inverted repeat sequences are present at the 



Fig. 6.1 

A map of pED994, a pML31 plasmid carrying an insertion 	 H 

of 1S46(d). 	pM131 was constructed by Timmis et al. (1978). 

The restriction enzyme cleavage sites shown are EcoRI (E), 

FstI (P), Sail (S), and Hindill (I-I). 

1S46 is shown as a solid box, the EcoRI fragment derived from 

F plasmid is a thicker line, and the transposon Tn903 as double 

lines. 

A restriction map of 1S46(d) is also shown. 	The figures 

denote the distance in base pairs between the restriction targets, 

and from these to the ends of the element. 
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termini of 1S46, they are probably shorter than 40bp. 	Maps of 

1646(d) and pED994 are shown in fig. 6.1.. 

6(g) The four copies of 1646  show homology to each other and to 

1S15 but not to IS1 

To demonstrate that the four copies of 1S46 in R46 and N3 are 

homologous, the two plasmids were digested with 	II, and the 

fragments were separated on agarose gels and transferred to nitro- 

cellulose filters. 	Duplicate filters were then hybridised to 

nick-translated 32P-labelled pED994 or pML31 (control) probe DNA. 

pED994 hybridised equally strongly to each of the four BglII 

fragments carrying separately 1S46(a), 1S46(b), 1S46(c) and 1S46(d), 

thus confirming the close similarity of all four repeated sequences. 

pML31 did not hybridise (fig. 6.B). 

Further hybridisaticn experiments were carried out to demonstrate 

the nonhomology of 1S46 with IS1, an insertion sequence of similar 

size. 	First pED994 did not hybridise to the EcoRI fragment of 

VA X3 (EDX4exo::IS1) that includes ISI (fig. 6..B). 

Second, 32P-labelled pBR322::IS1 DNA did not hybridise to 

three of the four BgIII fragments of R46 and N3 which carry copies 

of 1S46, although it did to the fourth. 	In a control experiment 

32P-.labelled pBR322 DNA also hybridised strongly to the fourth 

fragment, 	jII-B of R46; this fragment contains the TcR  determinant 

of R46, known to be closely related to that of pBR322 (Brown and 

Willetts 1981). 	Strong hybridisation of pBR322::IS1 	to the appropriate 

EcoRI fragment of VAX3 confirmed that IS1 hybridisation could be 

detected in this experiment. 	It was therefore concluded that 1S46 

and IS1 are not closely related. 

Recently, a new insertion sequence, IS15, has been described 

that is similar in size to IS1 but does not share DNA hcmolc'gy with 

it, (Labigne-Roussel et al., 1981, 1983). 	Since, like 1S46 this 

has single PstI and Sail targets 32P-labelled pBR322 :1S15 

(called pIP1091), was used as a probe against La= digested R46 



Fig. 6.B 

Gel photographs of the BgIII cleavage fragments of R46 

(lanes 1 to 9) and N3 (lanes 2 to 10) and autoradiographs of 

the same two lanes after southern transfer and hybridisation 

with 32p-labelled pED994 (lanes 3 and 4), pML31 (lanes 5 and 6), 

or pIP1091 (lanes 7 and 8). 	The positions of the !gjII 

restriction fragments of R46 and N3 are marked next to lanes 

land 10 respectively. 	The weak hybridisation of pML31 to gII-B 

was unexpected and is not understood, whereas the stronger 

hybridisation of pIP1091 to this fragment (lane 7) than to others 

containing 1S46 is due to the identical TcR determinants of R46 

and pIP1091. 

Gel photographs of the EcoRI fragments of ED,\4 (lane 1) 

and VAX3 (lane 2) and autoradiographs after southern transfer 

and hybridisation with 32P-labelled pED994. 

A heteroduplex molecule formed between pML31 and pED994 

after cleavage at their EcoRI targets. 	The 0.8kb single stranded 

loop represents the insertion of 1S46(d) present in pED994. 
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and N3. 	Strong hybridisation to the BglII bands containing 1S46 

confirmed that 1S46 and 1S15 are indeed related (fig. 6.B). 

A search for copies of IS4fi on other plasmids and in bacterial 
chromosomes 

Representative plasmids from six different incompatibility groups 

were screened for the presence of 1S46 or related sequences by 

Southern blot hybridisation. 	Restriction digests of the plasmids 

F (IncFI), Rl-19 (IncFII), RiCO (IncFII), R68 (IncP), RSF1010 

(IncQ), R388 (IncW), R390 (IncN), pCUl (IncN) and R46 (IncN) were 

separated by electrophoresis in agarose gels and transferred to 

nitrocellulose filters. 	These were then hybridised with the internal 

SalI-PstI fragment of 1S46(d), 32P-labelled by nick translation. 

With the exception of the R46 control and pCU1, none of these plasmids 

exhibited homology with the 1S46 probe fragment. 	pCUl did hybridise 

and contains one pair of the closely spaced PstI and Sail targets 

characteristic of 1S46 (Konarska-Koz1oska and Iyer, 1981). 

Similarly nitrocellulose blots of EcoRI digested chromosomal 

DNA from a variety of species of the families Enterobacteriace.ae  

and Pseudomonadaceae were hybridised with the 1S46 specific probe. 

R46 DNA was used as a hybridisation ccntrol on the same filters. 

The species tested were E.coli, Salmonella typhimurium, Shigella 

sonnei, Proteus morganii, Serratia marcescens, Providencia stuartii, 

Enterobacter aerogenes and Pseudomonas aeruginosa. 	None of these 

chromosomal DNA preparations showed any significant homology with 

1S46. 

Discussion 

The work described in this chapter demonstrates that R46 and 

N3 each contain two insertion sequences. 	Restriction mapping showed 

that they all contained similarly spaced PstI and Sail restriction 

targets, and Southern blots confirmed that they share homology with 

each other. 	The insertion sequence was called 1S46. 
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Co-integrate formation between R46 or N3 and the non-mobilisable 

plasmid pME420, or between R388 and transfer mutants of R46 or 

N3 was used as an assay for the transposition of the insertion 

sequences. 	Co-integrate formation took place in the recA strain 

JC6310, as expected for an insertion sequence based mechanism. 

Restriction enzyme digestions demonstrated that 1S46 had been 

duplicated on the formaticn of the co-integrates with copies of the 

sequence at each inter-replicon boundary, and that it had inserted 

at different locations within the target plasmid. 	These findings 

are typical of cc-integrate formation via insertion sequence 

transposition. 

Restriction digests also reveal which copy of 1S46 was involved 

in the formation of the co-integrate. 	Each of the four copies 

of 1S46 transposed with approximately similar frequencies which 

varied from 10 	
to 
 10 according to which assay system was used. 

These frequencies are similar to those reported for other insertion 

sequences, (lida et al., 1983). 	None of the other inverted repeat 

sequences on R46 (see fig 1.1)or N3 (Brown 1981) were found to be 

duplicated in any of these co-integrates, so either these are 

transposable at frequencies that are one or two orders of magnitude 

less than that of 1S46 or are not transposable at all. 

Resolution of pME420::R46 and R388::pED1022 co-integrates 
- 

was followed in Rec + and RecA strains. 	A transformation technique 

which enriched for the small, high copy number pME420::IS46 

resolution product was used to detect resolution. 	It occurred 

only in the Reck  strain. 	This implied that in common with other 

insertion sequences and in contrast to y6 and Tn3, 1S46 does not 

encode a site specific recombination system allowing efficient 

resolution of co-integrate molecules. 	Lack of such a system is 

also implied by the stability of the TcR  determinant of N3 which is 

flanked by copies of 1S46 in direct repeat, and would be lost at 

high frequency if 1S46 contained a site specific resolution system. 

Resolution of 1S46 mediated co-integrates, therefore, relies upon 
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reciprocal recombination between two copies of 1S46, brought about 

by the host dependent, generalised recombination system, which is 

relatively inefficient for such short regions of homology (Grindley 

and Joyce, 1981; Berg et al., 1981). 

Dodd and Bennett (1983) have recently described a resolution 

site (res) located on the PstI-F fragment of P46, which contains 

the terminal 135bp of 1S46(a). 	They showed that approximately 11% 

of their TnA insertions into P46 had suffered deletiors with one 

end-point at the res site of TnA and the other at a specific site 

within the PstI-F fragment of P46. 	Further they showed that R46 

encoded on analogue of the tnpR protein of TnA. 	Resolution of 

TM co-integrates by site specific recombination requires tnpR, 

and P46 was shown to complement TnA tnpR mutants. 	Although 1S46(a) 

is very near the res site of R46 the resolution system of P46 is 

unlikely to be encoded by 1S46 because: pME420::R46 co-integrates 

are stable in RecA cells; pED1022::1R388 co-integrates are stable 

in RecA cells also containing P46; and the TcR determinant of N3 

is stable (see above). 	Further, if 1S46 encoded the res site one 

may have expected Dodd and Bennett tc have isolated deletions with 

end-points in 1S46(b), but none were isolated. 	These conclusions 

are confirmed by the more recent observation that 1S46(a) is inserted 

within a transposable element similar to, but distinct from, TnA and 

Y6. 	The deletions are due to site specific recombination between 

the res site of TM and that of the inactivated transposon 

(P. Bennett, pers. comm.). 

A number of well characterised transposons have insertion 

sequences at their termini. 	The transposition functions of these 

composite transposons are encoded entirely by one or both of the 

terminal insertion sequences. 	The insertion sequence at the ends 

of Tn903 (1S903 - Kan1'-1S903) are identical and both encode trans- 

position functions (Grindley and Joyce 1981). 	However in TnE 

(1s50 - Kan - 1S50) and TnlO(IS10 - Tet - IS10)/of the flan-kin 

insertion sequences is mutated such that it no longer encodes the 

functions required for transpositon. 	Mutated insertion sequences 
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can still transpose when transposition functions are supplied 

in trans (Rothstein et al., 1980; Foster et al., 1981). 	It seems 

likely that any sequence flanked by insertion sequences will transpose 

in the form of a composite transposon. 	This is particularly evident 

for IS1 which is at the ends cf a number of composite transposons: 

Tn9 (MacHattie and Jackowski, 1977), 	Tn1681 (So et al., 1979), 

Tn2350 (Clerget et al., 1980) and Tn2571 (lida et al., 1981(b)). 

An in vivo system for the formation of new Cm   IS1 flanked composite 

transposons was devised by lida etal. (1981(c)). 	An IS1 element 

was transposed to a site in the vicinity of a Cm   determinant on a 

plasmid, and the Cm   gene was then transposed onto the genome of A. 

This transposition required the transposition of a second IS1 to the 

other side of the Cm gene prior to its transposition to A. 	These 

new composite transposons were subsequently shown to transpose from 

their location on A. 

Considering the data described above for other insertion 

sequences it seemed likely that the 1S46 - TOR - IS46 regions of 

N3 or R46 may act as composite transposons. 	However, none of the 

R46::pME420 or N3::pME420 co-integrates analysed by f 1II 

restriction showed duplications of the 1S46 - TcR - 1S46 regions, 

and were not formed via a composite transposon. 

However, the composite transpons so far studied appear to 

transpose directly at a higher frequency than that of co-integrate 

formation (N. Grindley pers. comm.), and so direct transposition of 

the 1S46 - TcR 1S46 regions on N3 and R46 was looked for. No 

such transposition from transfer deficient mutants of R46 or N3 to 

R388 was detected, and if generated at all must have been present 

at <3 x 10 -9 per cell. 	These results may simply reflect the 

distance between the 1S46 elements in each case: Chandler et al. 

0981) showed that for IS1 flanked composite transposons there was 

a two fold decrease in the frequency of transposition for each extra 

kilobase of DNA between the insertion sequences. 	If this is also 

true for 1S46 then the 1S46 - TcR - 1S46 region ought to form 

co-integrates 1000 fold less often than 1S46. 
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The other possibility is that 1S46 is only capable of co-integrate 

formation and not of direct transposition (or that it forms co-

integrates many fold more frequently than it transposes directly). 

This has been suggested for IS15 , which is closely related to 

1S46 (see below). 	IS15A was unable to transpose directly, although 

IS15, which is derivedfrornlSlsA (see below), was capable of trans-

posing directly in the same type of experiment (Labigne-Roussell and 

Courvalin, 1983). 	Further Tn2680 which is flanked by directly 

repeated copies of 1S26, which is closely related to IS15 and 1S46, 

was apparently unable to transpose directly (lida et al., 1982), 

while Tn1525 which is flanked by directly repeated copies of IS15 

could transpose directly in a similar system (Labigne-Roussel and 

Courvalin, 1983). 

The sequence of IS15 has been determined (Trieu-Cuot and 

Courvalin submitted), and has illustrated that IS15 is a copy of 

IS15A inserted into itself. 	The open reading frames of IS15A 

have been altered by the format-ion of IS15, and the authors suggest 

that the altered gene products may have led to a transposition 

merchanism based on direct transposition rather than co-integrate 

formation. 

The physical characterisation of 1S46 plus the inability of 

1S46 to hybridise to plasmids containing IS1 (pBR322 :: IS!, RI00 

and Rl-19), 1S2(F), 1S3(F), yS(F), IS10 (R100), 1S21 (R68) or Tnl 

(Rl-19) showed that it is distinct from those transposable elements 

as well as from 154, 1S5, 1S50 and 1S903 (Kleckner, 1981). 

However, 1S46 seems to be related to the insertion sequence 1S15 

(1744bp) and IS15A, 1526 (lida et al., 1982) and 1S140 (Brau and 

Piepersberg, 1983) all of which are approximately 800bp. 	These 

elements have been shown to contain similarly spaced Sail and PstI 

restriction targets. 

The sequence of ISiS confirms the physical map of 1S46 described 

in this chapter: the length of IS1EA is 820bp compared to ca.810bp 

for 1S46; the IS15A internal PstI - Sail fragment is 193bp compared 

to ca.195bp for 1S46; from the Sail site to the end of ISiS 
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is 457bp compared to ca.470bp for 1S46. 	1S15 has been shown to 

replicate eight base pairs on insertion, and to have inverted repeats 

- 	of 14 base pairs at its ends (Trieu - Cuot et al., 1983). 

1S46 related elements are present on plasmids belonging to a 

variety of incompatibility groups including IncA (RA1), IncC 

(pIP1031 and R40a), IncF (pJR62 and R124; but not F, R100 or 

R1-.19), md (several including pIP112, pIF565 and R144), IncM 

(pIP135, pIP151, pTHl), IncT (RT51) and IncY (pIP231), as well as 

on the IncN plasmids R46, N3 and pCU1 (Brau and Piepersberg, 1983; 

lida et al., 1982; Labigne -. Roussel and Courvalin, 1983). 

Unexpectedly it was not present on the IncN plasmid R390, despite 

its similarity to other IncN plasmids. 	Although widely distributed 

on plasmids, homology to 1S46 was not detected on the chromosomes 

of several species of enterobacteria or P.aeruginosa : this 

contrasts to the other small insertion sequence IS1, which although 

not found in Pseudomonas strains (Willetts et al., 1981) is fairly 

widely distributed amongst the Enterobacteriaceae (Saédler and Heiss, 

1973; Nyman et al., 1981). 
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The IncN plasmids R46 and N3 each contain two copies of an insertion sequence which we denote 1S46. This 
insertion sequence has single PstI and Sall restriction sites and is 0.81 kilobases long. All four copies of 1S46 
were capable of forming cointegrates, although the DNA between the insertion sequences, which in each case 
carries a tetracycline resistance gene, was not transposable in the form of a compound transposon. 1S46- 
mediated cointegrates resolved in Rec but not in RecA cells. Recombination between two copies of 1S46, 
causing an inversion, accounts for the existence of two distinct forms of R46. 1S46-mediated deletions were 
probably responsible for the formation of the plasmid pKMlOI from R46. lS46 was not homologous to IS! but 
did show homology with ISIS. 

Insertion sequences form one important group of trans- 
posable DNA elements; they differ from transposons in 
carrying no readily detectable marker and in being usually 
smaller in size (for a review, see ref. 34). Insertion sequences 
have been found on the chromosomes of Escheri(/,ja co/i 
and other cnlerohacteria and in plasmids either as individual 
elements or in pairs bounding antibiotic resistance markers, 
forming composite transposons. 

Only a relatively small number of plasmids of' various 
incompatibility groups have so far been screened for the 
presence of insertion sequences. In the course of our studies 
on the meN plasmids R46 and N3 (8; A. Brown. Ph.D. 
thesis. University of Edinburgh. Edinburgh, Scotland. 
1981). we encountered phenomena suggesting that each 
plasmid carries two copies of an insertion sequence. In both 
R46 and N3 these insertion sequences bound the Tc< region 
of the plasmid in inverted and direct repeat orientations. 
respectively. This paper describes these experiments and 
others designed to characterize the sequences (called 1S46) 
to show that they are interrelated and to determine their 
relationship to insertion sequences described previously. 
Also, unsuccessful attempts were made to transpose the Tc r 

determinants of R46 and N3 as composite transposons. 

MATERIALS AND METHODS 

Bacterial strains, plasmids, and phages. The characteristics 
of E. co/i K-12, Lnlero/,acterjaceae and I'seuc/onjonas  
strains, and of their plasmids and bacteriophages, are de-
scribed in Table 1. 

Media and buffers. Culture media were described by 
Willetts and Finnegan (67), and antibiotic additions were 
described by Brown and Willetts (8). 

Genetic techniques. Quantitative membrane filter matings 
were carried out as described by Brown and Willetts (8), and 
transformation was carried out by the technique of Leder- 
berg and Cohen (41). P1 vir a transduction was by the 
method of Willetts et at. (66). 

DNA preparation and manipulation. Plasmid DNA was 
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Eucaryotes, Faculie de Medicine. 67085 Strasbourg Cedex. France. 
Present address: Biotechnology Australia Pty. Ltd.. Rosevilte, 

New South Wales 2069. Australia 

prepared by a procedure based upon the cleared lysate 
technique of Clewell and Helinski (12) and the polyethylene 
glycol precipitation technique of Humphreys et at. (30). It 
was then purified by cesium chloride-ethidium bromide 
density gradient centrifugation. Small-scale plasmid prepara-
tions were made by the method of Birnboim and Doly (5). 

Bacterial DNA was prepared as described by Willetts et 
al. (66). Large-scale preparation of lambda phage lysates and 
extraction of the phage DNA were described by Willetts 
(63). 

The use of restriction enzymes for cleavage analysis and 
cloning was described by Brown and Willetts (8). 

Southern hybridization techniques. For hybridizations. 
DNA fragments separated on agarose gels were denatured 
and transferred to nitrocellulose filters by the methods of 
Southern (57). The filters were rinsed in 2x SSC (lx SSC is 
0.15 NaCl plus 0.015 M sodium citrate) and baked at 80°C for 
2 h. Plasmid DNA was nick translated as described by 
Willetts et al. (66), after Rigby et al. (52). The 195-base-pair 
(bp) Sail-Psil fragment of 1S46 was also labeled by this 
method after extraction from an 8Y< acrylamide gel by the 
method of Maxam and Gilbert (43). 

The nitrocellulose filters were presoaked for 1 h by 
shaking at 37°C in hybridization fluid: 4x SSC (0.6 M NaCl, 
0.06 M sodium citrate). 50<4 formamide. 0.1Y< sodium dode-
cyl sulLte, and lx Denhardt solution (0.02<4 bovine serum 
albumin, 0.029(' polyvinylpyrrolidone. 0.0291 Ficoll). Hy-
bridization was then carried out overnight at 37°C in a plastic 
bag containing hybridization fluid (20 ml for a 12-lane gel) 
plus 500 p.g of denatured salmon sperm DNA and 105 to 106  
cpm of denatured probed. 

After the hybridization, filters were washed twice for 1 h 
under hybridization conditions and twice for 1 h in 2x SSC. 
The filters were then dried at 37°C. Autoradiograms were 
usually exposed for ito 2 days at -70°C. using preflashed X-
ray film (Dupont Cronex 4) and a phosphotungstate intensi-
fying screen (Dupont Cronex). 

Electron microscopy. Self-annealing. heteroduplexing, and 
formamide spreading of DNA molecules were by the method 
of Davis et al. (18). The molecules were spread on Parlodion 
grids, and X174 double-stranded (5.38 kilobases [kbj) and 
M13 single-stranded (6.23 kb) DNA circles were added to 
provide length standards. Grids were examined, and mole-
cules were photographed with a Siemens Elmiskop 101 
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IA UI.E 1. Bacterial strains, plasmids, and phages 

Sample 	Relevant characteristic 	Reference 

Bacterial strains 

Escheric/,ia co/i Leu Thi 	Thr 
K-12 C600 

E.vclu'ric/,ic, ('0/i Spc' 
K-12 ED24 

Eschcricltit co/i 
K-12 El)395 

Escherichia co/i His' Lys 	Trp 	Str Na tr 

K-12 ED3818 
Eschcrichia co/i RecA - 	Spc 

K-12 ED3886 
Escltcricltia co/i Met - 

K-12 ED8654 
Esc/teric/tia co/i His Lys - Trp 	Strr 

K-12 JC3272 
Esc/ieric/,ia co/i His - Lys -  Trp - Strr 

K-12 JC6310 RecA 
Esc/teric/tia ( .0/i 

B 
Enterohacter 

(I('roi,'c,tcS 
(ATCC 13048) 

?,'oteus 
Ot0rtaflti 
(ATCC 25830) 

Provtcle,tcia 
stuartii 164 

.Sa/iflonc/Ia 
tvp/ti,nariion 
LT2 (NCuR 
10248) 

.S/ugel/a S0!titCi 

Pscudo,nona.c 	Ser 
aeruginosa 

PAO2 

Plasmids 

pBR322 deletion plasmid M. Chandler 
carrying IS! (personal 

communication) 
meN Apr Sper 35 
Sul' Tra 	R46 This paper 
in vitro deletion of R46 8 

containing HindIIl A 
fragment 

pBR322 derivatives This paper 
containing N3 Bg/11 E 
fragment in the BamHI 
site 

As for pED1012. but with This paper 
N3 Bg/11 F fragment in 
opposite orientation 

Tra 	N3 This paper 
pME420::1S46(d) This paper 
R46::pME420 cointegrate This paper 

27 
pBR322 derivative carrying 36 

IS /5. 
pBR325 derivative with a J. Watson 

1.0-kb deletion of the (personal 
Tcr gene removing the communication) 
!IindIlI. BootH!. and 
So/I sites 

EcoRI fS fragment of F 60 
linked to the EcoRl 
fragment of R6-5 
carrying Km 

TABLE 1—Continued 

Sample Relevant characteristics Reference 

N3 lncN Sul' Spc Tc 	EcoRII 61 
tivp 

R1-19 lncFll Ap' Cm' Km Sin' 46 
Sul' 

R46 IncN Ap Sul' Spc Tc 16 
U vp 

R68 IncP Ap Kmr  Ter 10 
R100 IncFlI Cm' Hg' Smr SuT 21 

Tc 
R388 IncW Suir Tpr 17 
R390 IncN Apr Sper SuIr fcr 14 

EcoRIl 
RSF1010 IncQ Sm SuIr 24 

Phages 

EDX4 X 6515 6519 (1857 Sa,n7 19 
VAX3 EDX4 cvo::IS/ 66 
P1 Or a Virulent variant of P1 kc 65 

electron microscope. Molecules were measured with a Fer-
ranti Cetec digitizer with an Olivetti P6040 minicomputer. 

RESULTS 

R46 contains short regions of homology. Linear single-
stranded molecules of R46 were obtained by cleaving R46 
DNA at its unique XItol site and denaturing at high pH. After 
a brief period of reannealing, the molecules were spread and 
photographed in the electron microscope. The structures 
observed (e.g.. Fig. 1) showed that R46 contains two pairs of 
inverted repeat sequences. One pair formed a short double-
stranded stem of ca. 340 bp with a single-stranded loop of ca. 
7.3 kb. The dimension and location of this stem-loop struc-
ture indicate that it is equivalent to that previously observed 
by Langer et at. (39) on pKM 101. a deletion mutant of R46 
(47). This pair of short inverted repeats flanks the ,rtucAB 
genes (51) and possibly the replication region of the two 
plasmids (Fig. 2A). 

The second pair of inverted repeats formed a double-
stranded region of 0.86 ± 0.03 kb and were separated by ca. 
9.4 kb of DNA which forms the two single-stranded 'tails' 
in Fig. 1. One of these tails is very short, indicating that one 
copy of the repeat lies very close to the XhoI site in the 
region of R46 that is deleted in pKM101 (Fig. 2A: 8). This 
second pair of inverted repeats would not, therefore, have 
been detected by Langer et al. (39). The position of each 
copy of this repeat on R46 coincided with closely spaced 
cleavage sites for Sail and Pstl, suggesting that these sites 
are contained within the repeated sequence. 

Inversion of a region of R46 flanked by inverted repeats. 
The sizes of the restriction endonuclease cleavage fragments 
of R46 DNA have been measured independently by Brown 
and Willetts (8) and by Langer and Walker (40). and there 
were striking differences between some of the values ob-
tained by the two groups. The existence of the second pair of 
inverted repeats described above could account for these 
discrepancies, since recombination between the two copies 
of this sequence would invert the intervening 9.5-kb seg-
ment, producing two distinct forms of R46. We designated 
our form "R46A" and designated that of Langer and Walker 

R46B' and confirmed the differences in restriction frag-
ment sizes by direct comparison on agarose gels (Fig. 3). 
R46A and R46B had similar total sizes and contained the 
same total number of cleavage sites for each restriction 
enzyme used. For Kpnl and Sma!, for which there are no 

67 

19 

68 

recA56 derivative 
of ED24 

6 

64 

59 

54 

54 

is 

13 

J. Govan 
(personal 
communication)     

28 

pBR322t:: IS! 

pCU 1 
pED899 
pED9O4 

pED1O12 

pED 1013 

p ED 10 17 
pED1O22 
pED 1030 
F 
p1 P1091 

pME42O 

pML3I 
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sites within the 9.5-0 segment. the digest patterns were 
identical, whereas for others (BaniHl. Be/lI. boRl . and 
I/md!!!) most fragments were common, but two fragments 
in each case differed between R46A and R46B. For example. 
the 17.1- and 8.5-kb Be/Il A and B fragments of R46A were 
replaced by fragments of 22.0 and 3.6 kh in R4613. Analysis 
of the sizes and the map positions of such altered fragments 
confirmed that the two forms of R46 differ by inversion of 
the 9.5-kb segment. This inversion most probably results 
from reciprocal recombination between the homologous 
inverted repeats. Although the inverted segment contains 
sites for Sail and Psi!, the restriction digest patterns for 
these two enzymes were indistinguishable between R46A 
and R46B. This further supports the inference that the 
repeated sequence itself contains a site for each of these 
enzymes (Fig. 2A). 

Evidence for similar short regions of homology on N3. A 
restriction endonuclease cleavage map of the meN plasmid 
N3 was constructed by techniques similar to those used for 
R46 (8). A combined physical and genetic map of N3 is 
presented in Fig. 213: it description of the data from which it 
was derived will he presented elsewhere (G. Coupland. A. 
Brown, and N. Willetts, manuscript in preparation). 

The map shows that there are two pairs of Sail and P.vi'l 
sites (characteristic of the inverted repeat sequences found 
in R46) in N3. though repeated in direct, rather than invert-
ed. orientation. Both small SaIl-I'.ril fragments from N3 
were shown to comigrate on acrylamidc gels with the Sail-
Psi! fragment originating from near coordinate 36 kh in R46. 
This suggested that N3 carries two copies of a repeated 
sequence similar to those found on R46. Further evidence 
for this resulted from consideration of heteroduplex mole-
cules formed between single strands of N3 and R46: in these 
molecules a short (0.7 ± 0.05 kb) region of heteroduplex 
DNA formation was apparent which corresponds in position 
to a part of one of the R46 repeat sequences, and to a 
complementary region on N3 located between coordinates 
51 to 52 kb. that includes both Sail and Psi! sites (Fig. 213; 
Coupland et al., in preparation). 

During the course of our studies of N3. it spontaneous Ic' 
deletion mutant ( pED991 ) was detected fort uitouslv. Bell I 
digests showed that ca. 11 kh of DNA had been lost, and P.11 
digests showed that the endpoints of the deletion lie close to 
the P,viI sites at coordinates 51.75 and 5.4 kh (Fig. 213). No 
novel-sized P.vil or .Sa/I fragments were present, suggesting 
that pED99I arose by homologous recombination between 
the directly repeated sequences covering these coordinates. 
leading to excision of the intervening DNA. 

The four repeated sequences on R46 and N3 are shown 
below to have the transposition properties of an insertion 
sequence. We shall therefore refer to them as 1S46(a) and 
1S46(b) (mapping near coordinates 36 and 46 kb on R46) and 
1S46(c) and 1S46(d) (near coordinates 51 and 5 kb on N3), 
respectively. 

1S46 will fuse R46 or N3 with a second plasmid to form 
cointegrate molecules. One consequence of the presence of 
an insertion sequence in a plasmid is that it will fuse this 
plasmid with another replicon to form a cointegrate molecule 
with directly repeated copies of the insertion sequence 
present at each interreplicon boundary (25. 50). Such cointe-
grates are often resolved into their component plasmids at 
only low frequencies, even in Rec hosts (4. 23). Conse- 
quently. conjugative plasmids carrying insertion sequences 
can mobilize nonconjugattve plasmids as part of cointegrate 
molecules. We used this system to determine whether the 
four repeated sequences decrihed in the previous section 
were transposable. An insertion sequence may also trans-
pose directly, but this is very difficult to measure and was 
not attempted in the present case. 

A iecA host strain (JC6310) carrying R46 or N3, and the 
monomeric form of the noncorijugative plasmid pME420 (a 
Cm Tc' deletion derivative of pBR325). was used as the 
donor in matings with the Rec Nat' recipient strain 
ED3818. The frequencies of formation of Tcr  [Na11] and Cm` 
[Nall transconjugants were taken as measures of R46 or N3 
and pME420 transfer, respectively. 

The strain containing R46 and pME420 gave Cm' trans- 
conjugants at a frequency of 3 x 10 	relative to R46 

FIG. 1. Self-annealed R46 single-strand DNA after cleavage of the plasmid with that. Two double-stranded snap-back' regions are 
visible, of lengths 0.86 and 0.34 kb, labeled C and E, respectively. The lengths in kilobases of the single-stranded segments of the molecule are 
as follows:. A. 0.06: B. 9.4; D. 7.6; F. 7.3; and G, 23.8. A single-stranded Ml) size standard is marked. 
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FIG. 2. (A) A map of R46. Redrawn from Brown and Willetts (8) 
ith the addition of the two copies of 1S46 (drawn with heavy lines). 

and of the 0.34-kb inverted repeats (1.R.). Abbreviations are as 
follows: Ap. ampicillin: Asa. arsenate: Asi. arsenite: Ant, antimony: 
MucAB, enhanced mutagenesis: Rep, replication: Spc. spectinomy-
cm: Sul. sulphonamide: Tc, tetracycline: and Tra. conjugal transfer. 
As well as the previously reported arsenate resistance. R40 confers 
resistance to arsenite ions and antimony Iii. The restriction enzyme 
cleavage sites shown are EcoRi (R(. Ifwdlli (H). Bg/ii (Bg(. 
PstI(P(. Sail(S). BamH I (Ba), Kpni (K). Sinai (Sm). and .V/wl (X). 

Coordinates are marked in kilobases. Map coordinates of restriction 
fragments referred to in the text are as follows: BgiiI-A. 21.3 to 38.4: 
Bgiii-B. 38.4 to 46.9: and /'sti-F .36.0 to 37.2. (B) A map of N3. A 
detailed description of the data that allowed construction of this map 
will be presented elsewhere (Coupland et at.. in preparation). The 
phenotype of N3 differs from that of R46 in that it does not carry 
Ap1, Asa. Asi1. or Ant' determinants, its Tc r gene is different (8. 45), 
and it encodes the Hspll restriction and modification system. The 
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transfer: all of these showed the antibiotic resistance pheno-
types of' both plasmids. Small-scale plasmid DNA prepara-
tions were made from 15 independent transconjugants and 
were digested with BgIll. Cointegrates resulting from trans-
position of' 1S46(a) and IS46h( were expected to have 
pME420 integrated within the Bg/ll B and Bg/iI A fragments 
of R46. respectively. In nine of' the isolates. BgiIi-B had 
been replaced by a larger fragment (pME420 contains no site 
for Bgili), whereas in the other six it was Bgili-A that was 
replaced. This suggested that 1S46(a) and 1S46(b) could each 
promote cointegrate formation (i.e., transpose) at approxi-
mately similar frequencies. Sail digests showed that the 
cointegrate plasmids contained the normal complement of 
R46 Sail fragments, plus an extra 5.3-kb fragment arising 
from pME420 (which has no Sail site) flanked by directly 
repeated copies of 1S46. One of the 1S46 elements has 
therefore been duplicated in each case. These data con-
firmed that the Cmr transconjugants  contained R46::pME420 
cointegrates formed by transposition of 1S46. Restriction 
digests of two representative cointegrates formed via 1S46(a) 
and 1S46(b) are shown in Fig. 4A. 

In analogous experiments, pED904 was substituted for 
R46. pED904 is an in vitro deletion mutant of R46 (8). which 
carries 1S46(a) but not 1S46(b). This plasmid mobilized 
pME420 at a frequency of 8 X 

10-6 relative to its own 
transfer, and Be/il digests of plasmid DNA from Cm1  
transconjugants showed them to contain pED904::pME420 
cointegrates formed via 1S46(a). 1S46(a) is therefore capable 
of' cointegrate formation (i.e.. transposition) in the absence 
of 1S46(b). A derivative of R46 carrying 1S46(b) alone was 
not available to allow the independent transposition of this 
copy to be tested. 	 - 

N3 also mobilized pME420. at a frequency of 1.5 x 10 of 
its own transfer. Plasmid DNA from 12 independent Cm1  
transconjugants was examined by digestion with BIiI and 
So/I, and all 12 carried cointegrates of N3 and pME420 
formed by transposition of iS46(d) (Fig. 4A). This copy of 
1S46. therefore, transposed more frequently than 1S46(c) in 
these experiments., although results in the following section 
show that 1S46(c) is also capable of transposition. 

Cointegrate formation between R388 and tra derivatives of 

R46 or N3. Although the mobilization technique used above 
provides an effective test for the presence of insertion 
sequences on conjugative plasmids, it would not detect 
direct transposition of antibiotic resistance markers by a 
mechanism independent of cointegrate formation. Since the 
tetracycline resistance markers in both R46 and N3 are 
flanked by copies of 1S46 (Fig. 2A), and these combinations 
might form composite transposons, we wished to look for 
direct transposition of these. The conjugation protocol was 
therefore reversed by using R388 (a conjugative meW Tp1  
Sul' plasmid with no known transposable sequences) to 
mobilize the Tc markers of transfer-deficient mutants of 
R46 and N3. 

A JC6310 derivative carrying R388 and pED889 (a tra 

point mutant of R46 with a residual transfer frequency of 
<10 ') transferred the pED889 Tc' marker to ED3818 at a 
frequency of 10 compared with R388 transfer. Each trans-
conjugant carried all of the pED889 antibiotic resistance 
markers plus Tp1 , suggesting that they carried cointegrates 

copies of lS46 are marked with heavy lines. Abbreviations are as for 
Fig. 2A: Res. restriction modification. Map coordinates of fragments 
mentioned in the text are as follows: BK/Il-A. 55.4 to 11.7: and Be/li 

E. 46.6 to 53.9. 
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of the two plasmids. This was confirmed by BgiII digestion 
of plasmid DNA from six representative transconugants, 
and the fragment Matcrn further showed that one cointegrate 
bits arisen via lS46(a) transposition, and five have arisen via 
IS46(h) transposition. Digests of two cointegrates are shown 
in Fig. 4B. A large number of the 'Fe transconjugants from 
the above mating were then screened to search for occasion-
al transposition of the segment flanked by 1S46(a) and 
lS46(b) as a Tc' and As transposon. Of 350 Tcr  colonies 
tested. 3 were Tp Ap' Spc', the pattern expected to result 
from direct transposition of such it transposon. However 
BgIll restriction analysis showed that all three plasmids 
carried much larger segments of R46 DNA and were deletion 
derivatives of cointegrate molecules. These data, plus the 
observation that none of the 21 cointegrates examined 
contained duplications of the entire 1S46(a)-lS46(b) region, 
indicate that transposition of this region occurs (if at all) 
considerably less frequently (<10 	per R388 transconju- 
gant) than that of' 1S46 itself. 

Similar experiments were carried out for N3, using 
pED1017. it tra N3 mutant deficient in pilus formation with 
it residual transfer frequency of 5 x 10 	A JC6310 deriva- 
tive carrying R388 and pED1017 transferred the Tc" marker 
of the latter plasmid at a frequency of 9 x 10', compared 
with R388 transfer. All of the transconjugants carried all of 
the pEDI017 antibiotic resistance markers as well as Tpr, 

hut in most. pED1017 and R388 were present as separate 
plasmids. This may to he due to it low level of complementa-
tion of the transfer defect of pED1017 by R388. Clones 
carrying cointegrate plasmids were identified amongst the 
transconjugants as those which could retransfer Ter at high 
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FIG. 4. B,IlI restriction analysis of cointegrate plasmids formed 
via various copies of 1S46. (A) Lanes: 1, R46; 2. an R46::pME420 
cointegrate formed via tS46(a): 3, an R46::pME420 cointegrate 
formed via tS46(b): 4. N3: and .5,  an N3::pME420 cointegrate 
tornned via tS46d). (13) Lanes.' 1. pED889: 2. it pED889::R388 
cointegrate formed via IS46a(; 3, it pED$89::R388 cointegrate 
formed via tS46(h); and 4. R388. (C) Lanes: 1. pED1017; 2. it 
pED1017::R388 cointegrate formed via 1546(c): and 3. R388. The 
DNA in all lanes was digested with Bi,'III. pME420 contains no Site 
tor this enzyme, whereas R388 has two Bg/Il sites, giving fragments 
of 24 and 8.6 kb. The sizes of the B,III fragments of R46 and of 
pED1017 (same pattern as N3) are marked in kilobases. The 
fragments carrying copies of lS46 are as' follows: R46 Bgltt-A 
contains tS46(a(. 1(46 Bg/tl-B contains tS46(b). N3 B,'/I1-E contains 
tS46(c), and N3 Bg/It-A contains tS46(d(. 
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FIG. 3. Comparison of the restriction endonuclease cleavage 
patterns of R46A (lanes 2, 4. 6. 8. and 10) and R46B (lanes 3. .5. 7. 9. 
and 11) cleaved with Hjndltl ( lanes 2 and 3). BwnHl (lanes 4 and SL 
EroRl (Lines 6 and 7). BgitI (lanes 8 and 9), and P.stl (lanes 10 and 
lU. Size standard in lane 1 was produced by cleaving X DNA with 
Hind IIt.  

frequency in replica matings with ED24. They constituted 
ca. 6% of the initial SperThI Tpr transconjugants. DNA from 
11 of these was digested with BgiII to confirm that they were 
cointegrates: of these, 8 were formed via 1S46(c), and three 
were formed via 1S46(d) (Fig. 413). In these matings there 
was no evidence for the independent transposition of Tcr  or 
of duplication in the cointegrates of the entire IS46(c)Tcr 

1S46(d) region of N3. 
In other experiments R388 mobilized the Ap" genes of 

either pED1012 or pED1013 at frequencies of S x 10. 
These plasmids are pBR322 derivatives containing the BgiII 
E fragment of N3. which carries 1546(c). cloned in either 
orientation. Ba,nHI and Sail digestion of plasmid DNA 
prepared f'rom these transconjugants showed the patterns 
expected for R388::pED1012 or R388::pED1013 cointegrates 
resulting from 1S46(c) transposition. 1546(c) transposition is 
therefore independent of the presence of 1S46(d). 

Resolution of R46: :pME42O cointegrates. R46: : pM E420 
cointegrates obtained as described in the previous section 
were used to determine whether 1S46-mediated cointegrates 
could be resolved by gither a plasmid- or host-encoded 
mechanism and consequently to provide pME420::1S46 plas-
mids for studies of retransposition. Initial experiments with 
two cointegrates. formed via 1S46(a) and 1S46(b), were 
unsuccessful in that attempts to separate the expected Cmr 

Tc' pME420::1S46 resolution product by either transforma-
tion or P1 transduction failed. However, it was possible that 
these cointegrates had been formed by R46 insertion within 
the replication region of pME420. so  that the pME420::1S46 
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FIG. 5. A heteroduplex molecule turned between pM I I and 
pED994 after cleavage at their LeaR! sites. The 0.8-kb single-
stranded loop (marked with an arrow) represents the insertion of 
lS46(d) present in pED994. 

resolution product would he inviable. This had been ob-
served previously for an 1S2/-based cointegrate (66). Be-
cause of the large size of the cointegrate molecule, it was 
difficult to demonstrate unequivocally that this was indeed 
the case, although I'stl digestions indicated that it was 
possibly so (data not shown). PsiI digestions of other 
cointegrates allowed one to he chosen (pED1030) in which 
integration had taken place Evia 1S46(a)] at it site ca. 2 kb 
from the l'stl site of pME420 and therefore definitely not in 
the replication region. 

Psil digestion of pED1030 DNA provided preliminary 
evidence that resolution was occurring in the Rec host 
ED3818. since visual inspection of the gels indicated that 
those fragments derived from the expected (high copy num-
ber) pME420::1S46(a) component were present in greater 
molar amounts than those derived from the (low copy 
number) R46 component; this had not been observed for the 
other cointegrates. pED1030 was transformed into JC3272 
and into the isogenic RecA strain JC6310. and Cmr  Tc1  
colonies were purified. Continued presence of the cointe-
grate plasmid was confirmed by showing that the antibiotic 
resistance markers of R46 and pME420 were transferred in 
filter matings at similar frequencies and that their coinheri-
tance was 100%. Plasmid DNA was then isolated from each 
strain before and after growth through ca. 100 generations 
and was used to transform ED8654. Cm transformants were 
selected and tested for coinheritance of Tc1, and the sizes of 
any Cm1  Tc' plasmids were measured on agarose gels. There 
was no cointegrate resolution in the RecA host during this 
growth period, whereas in the Rec host the proportion of 
Cm r transformants that were Tcs increased by ca. 70%. This 
technique for detecting resolution has the advantage that the 
frequency of formation of Cm1 Tcs  transformants is in-
creased relative to that of Cm1 Tcr  ones by the multicopy 
nature and small size of the pME420::1S46(a) resolution 
product; however, it has the concomitant disadvantage that 
the rate of resolution cannot be meaningfully quantitated. In 
similar experiments, R388::pED1022 (see below) was found 
to resolve slowly in Rec1  but not RecA cells. 

Retransposition of 1S46(a) from pEDI022. One 
pME420::1S46(a) plasmid from the previous experiment was 
chosen, shown to have inherited Sal! and Psil sites of 
1S46(a), and numbered pED1022. It was then transformed 
into JC6310 (R388) ' to study the retransposition of 1S46(a) 
via cointegrate formation. In conjugation experiments be-
tween this strain and the recA recipient ED3886, the Cmr 
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marker of pEDI022 was transferred at 10 	of the R388 
transfer frequency. Plasmid DNA was prepared from four 
independent Cm' Tp transconjugants. and digestion with 
Sail confirmed that in each case it gave the pattern expected 
for R388::pED1022 cointegrates with it copy of 1S46(a) at 
each boundary. 

1S46(a) was therefore retransposable from pED1022. dem-
onstrating that no genes required for its transposition are 
located elsewhere on the R46 plasmid from which it was 
originally derived. 

Physical characterization of 1S46. Before pME420 became 
available to us, we had used pML31 as the receptor plasmid 
to study 1S46 transposition. pML31 is a nonconjugative. 
Km. mini-F replicon that has previously been used in Tn3-
mediated transposition experiments (15), although the Km' 
gene is present within Tn903, which is transposable at low 
frequency (48). In these experiments, an N3::pML31 cointe-
grate was obtained that had resulted from 1S46(d) transposi-
tion, and P1 transduction was used to obtain the 
pML31::1S46(d) resolution product of this cointegrate. One 
Km transductant (out of 186 tested) was SPcS  Sul' To and 
carried a plasmid numbered pED994. Restriction analysis 
showed that it was Ca. 0.8 kb bigger than pML31 and carried 
the extra Psi[ and .SaiI sites characteristic of 1S46. 

Restriction analysis of pED994 showed that 1S46(d) was 
located within a4.51-kb EcoRl-Hindlll fragment. The equiv-
alent fragment in pML31 measured 3.7 kb, indicating that 
0.81 kb of DNA had been added. This value was similar to 
the length of DNA duplicated in N3::pME420 cointegrates 
and was taken to he an accurate measure of the total size of 
!S46(d). The orientation of 1S46(d) within the EcoRl-HindIII 
fragment was determined from double digests, using EcoRl 
together with Sail or Psi!, and the distance from the EcoRl 
site to the Sail site within 1S46(d) was accurately measured 

Rs 

FIG. 6. A map of pED994. a pML31 plasmid carrying an inser-
tion of 1S46(d) (shown as a solid box). The restriction map of pML31 
is based on the data of Kahn et al. (33) and Timmis et at. (60). The 
Psi! and Sail sites of lS46 are located 145 and 470 bp from the 
termini of the element, respectively, and the internal Psil-Sall 
distance is 195 bp. The restriction enzyme cleavage sites shown are 
LeaR! (R), Pstl (P), Sail (S). and Hiodilt (H). The fS LeaR! 
fragment derived from the plasmid F is shown as a thicker line, and 
the transposon Tn903 is designated by double lines. 
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as 2.41 kh. The size of the internal Sail-PstI fragment of 
1S46(d) was 195 hp. 

The distance from the same EcoRl site to the point of 
1S46(d) insertion was then determined by electron microsco-
py. Heteroduplex molecules formed between EcoRl-digest-
ed pED994 and pML31 DNA showed it single insertion loop 
corresponding to lS46 located at 1.94 ± 0.04 kb (mean of 11 
molecules) from the EcoRl site (Fig. 5). The distance from 
one terminus of 1S46(d) to the internal Sail site is, conse-
quently, 2.41 - 1.94 = 0.47 kh, and from the internal Pstl 
site to the other terminus is 810 - 470 - 195 = 145 hp. The 
size of the single-stranded loop in the heteroduplexes was 
measured as 0.78 ± 0.02 kb (mean of 10 molecules), which is 
in good agreement with the size of 1S46(d) determined from 
restriction enzyme digests. No double-stranded "stem" 
bounding this loop was visible, suggesting that if inverted 
repeat sequences are present at the termini of 1S46, they are 
probably shorter than 100 bp. Maps of 1S46(d) and pED994 
are shown in Fig. 6. 

The four copies of 1S46 show homology to each other and to 
ISIS but not to IS1. To demonstrate that the four copies of 
1S46 in R46 and N3 are homologous, the two plasmids were 
digested with BgiII, and the fragments were separated on 
agarose gels and transferred to nitrocellulose filters (57). 
Duplicate filters were then hybridized to nick-translated. 
2 P-laheled pED994 or pML31 (control) probe DNA. 

pED994 hybridized equally strongly to each of the four 13g111 
fragments carrying separately 1S46(a). 1S46(h). 1S46(c), and 

FIG. 7. (A( Gel photographs of the Bgltt cleavage fragments of 
R46 (lanes I and 9) and N3 (tones 2 and 10) and autoradiographs of 
the same two tones after Southern transfer and hybridization with 
'2 P-labeled pED994 (lanes 3 and 4). pML31 (lanes S and 6(. or 
plP1091 (lanes 7 and 8). The positions of the BgIll restriction 
fragments of R46 and N3 are marked next to lanes 1 and 10. 
respectively. The weak hybridization of pML31 to BlIt-B of R46 
(lane 5) was unexpected and is not understood, whereas the stronger 
hybridization of plP109l to this fragment (lane 7) than to others 
containing 1S46 is due to the identical Tc determinants of R46 and 
pIPlOYl. (B( Get photographs of the EcoRl fragments of EDX4 (lane 
t) and VAA3 (lane 2) and auioradiogniphs after Southern transfer 
and hybridization with U P-labeled pED994. 

J. tLsc 1 1 RiOt.. 

lS46(d. thus confirming the close similarity of all four 
repeated sequences (Fig. 7A(. 

Further hybridization experiments were carried out to 
demonstrate the nonhoniologv of 1S46 with IS/ . an insertion 
sequence of similar size. First. pED994 did not hybridize to 
the EcoRl fragment of VAX3 ( EDX4exo::LS/) that includes 
IS/ (Fig. 7B). Second. 3 P-labeled pBR322::lS/ DNA did 
not hybridize to three of the four BgiIL fragments of R46 and 
N3 which carry copies of 1S46, although it did to the fourth 
(data not shown). In it control experiment 32 P-labeled 
pBR322 DNA also hybridized strongly to the fourth frag-
ment. BgiIl-B of R46; this fragment contains the Tcr  deter-
minant of R46, known to he closely related to that of pBR322 
(8). Strong hybridization of pBR322::1S/ to the appropriate 
EcoRl fragment of VAX3 confirmed that IS/ hybridization 
could he detected in this experiment. We therefore conclude 
tht 1S46 and IS/ are not closely related. 

Recently, a new insertion sequence, 1S15& has been 
described that is similar in size to IS! but does not share 
DNA homology with it (36, 37). Since, like 1S46, this has 
single I'stl and Sail sites, we attempted to hybridize 32p_ 

labeled plP1091, a pBR322 derivative carrying IS/5A, to 
BgiIl-digested R46 and N3. Strong hybridization to the 
BgiII-digested hands containing 1S46 confirmed that 1S46 
and IS/5 are indeed related (Fig. 7A(. This finding is 
considered further below. 

Search for copies of 1546 on other plasmids and in bacterial 
chromosomes. Representative plasmids from six different 
incompatibility groups were screened for the presence of 
1S46 or related sequences by Southern blot hybridization. 
Restriction digests of the plasmids F (IncFl), R1-19 (IncFlI), 
R100 (lncFII), R68 (IncP), RSF101() (lncQ), R388 (meW), 
R390 (lncN), pCU1 (meN), and R46 (ineN) were separated 
by electrophoresis in agarose gels and transferred to nitro-
cellulose filters. These were then hybridized with the inter-
nal Sail-PstI fragment of 1S46(d) 32p_ labeled by nick transla-
tion. With the exception of the R46 control and pCU1. none 
of these plasmids exhibited homology with the 1S46 probe 
fragment (data not shown). pCU1 contains one pair of the 
closely spaced PstI and Sail sites characteristic of 1S46 (35). 

Similarly, nitrocellulose blots of EcoRl-digested chromo-
somal DNA from a variety of species of the families Entero-
bacteriaueae and Pseudo,nonadacc'ae were hybridized with 
the 1S46-specific probe. R46 DNA was used as a hybridiza-
tion control on the same filters. The species tested were E. 
co/i. Salmonella (vp/i jmuriu,n. S/iigeiia .con,ie,. Proteus inor-
gun. Serratia inarcescens. Protulencia stuartit. Eiu'ero-
hacter aerogene.s. and Pseuc/o,nonas aerugino,s a. None of 
these chromosomal DNA preparations showed any signifi-
cant homology with 1S46 (data not shown). 

DISCUSSION 

We have shown that the conjugative meN plasmids R46 
and N3 each contain two copies of a sequence, designated 
1S46, which has the transposition properties of an insertion 
sequence. All four copies of 1S46 displayed homology in 
hybridization experiments and contained a common .S'a/l-
Pstl internal fragment of ca. 195 bp; we therefore conclude 
that they are closely related, if not identical. 

The transposition of insertion sequences results in either 
insertion of it discrete copy of the element within it target 
replicon or fusion of the donor and target replicons to form a 
cointegrate molecule with a copy of the element at each 
boundary (for a review, see ref. 34). A model whereby these 
two different transposition products result from diverging 
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alternative transposition pathways has been proposed (22. 
26). Our assa of' 1S46 transposition was based upon cointe-
grate formation and consequent conjugative mobilization 
either of the Tc pBR325 derivative pME420 by the meN 
plasmid or of a Ira I ncN plasmid mutant by the transposon-
free lncW plasmid R388. Cointegrate formation took place in 
a RecA host strain, as expected for an insertion sequence-
based mechanism. Restriction enzyme cleavage analysis of 
the cointegrates showed that cointegration had occurred at a 
variety of sites on the recipient replicon and that a COPY  of 
1S46 was present at each interreplicon boundary. Both 
findings are again characteristic of cointegrate formation via 
insertion sequence transposition. In addition, such analysis 
showed which copy of 1S46 was involved. Taking the results 
overall, each of the four copies of 1S46 transposed with 
approximately similar frequencies: these varied from 10 to 
10. according to which mobilization assay system was 
used. None of the other inverted repeat sequences on R46 
(Fig. 1 and 2: 39) or N3 (data not shown: Coupland ci al., in 
preparation) were found to be duplicated in any of these 
cointegrates, so that either these are transposable at frequen-
cies that are one to two orders of magnitude less than that of 
1S46 or are not transposable at all. 

Resolution of both R46::pME420 and R388::pED1022 
cointegrates was followed in Rec and RecA strains: it 
took place only in the Rec host. In common with most other 
insertion sequences and in contrast to -y-f and Tn3 then (34). 
1S46 does not encode a site-specific recombination system 
giving efficient resolution of cointegrate molecules. Such 
resolution therefore relies upon reciprocal recombination 
between the two 1S46 copies, brought about by the host 
i'ecA-dependent. generalized recombination system, which 
is relatively inefficient for such short regions of homology (4. 
23). One of the pM E420: : 1S46(a) resolution products formed 
in a Rec' host was used to demonstrate that 1S46(a) could be 
retransposed to R388, forming a cointegrate, and hence that 
1S46(a) transposition is independent of other R46 DNA 
sequences. 

Dodd and Bennett (20) have recently described a resolu-
tion site (res) located on the P.ril F fragment of R46. which 
contains one terminus of 1S46(a). However, the absence of 
resolution of pME420::R46 cointegrates in RecA cells 
suggests that this res site is unlikely to he a part of 1S46. 
Furthermore, pED1022::R388 cointegrates were stable in 
RecA cells even in the presence of R46, showing that the 
R46 resolution system which will act in trans to resolve 
R46::Tn3 cointegrates will not resolve cointegrates formed 
via 1S46. 

A further property manifested by insertion sequences is 
the deletion of adjacent segments of DNA. Such deletions 
extend outwards from the last nucleotide of the transposable 
element for variable distances, such that the element itself is 
not deleted (58). The plasmid pKM101 is an As TO Sul' 
Spc" deletion derivative of R46 (Fig. 2) that is included in 
bacterial strains used for the Ames test for the detection of 
carcinogens as mutagens (44). Although derived by two 
consecutive deletion events (47), pKM101 differs from R46 
by the absence of a single contiguous DNA segment of 15 kb 
(8. 40). One of the endpoints of this deleted region lies at, or 
extremely close to, 1S46(a), and it is most likely that the 
deletions that formed pKM101 were generated by this ele-
ment. Similarly, it fortuitously isolated transfer-deficient R46 
mutant was shown to have a deletion extending into the 
transfer region from a point at or near 1S46)a). 

The two copies of 1S46 present on both R46 and N3 
provide short regions of DNA homology across which  

intramolecular recombination may take place. On R46 the 
IS-Jo elements are in opposite orientations, and recombina-
lion leads to inversion of the intervening segment. account-
ing for the existence of the two distinct forms of the R46 
molecule designated R46A and R46B. In contrast, on N3 the 
1S46 copies are directly repeated so that recombination 
would result in excision of the region between them. Its 
restriction fragment pattern showed that pED991. a sponta-
neous Tc' deletion derivative of N3, is probably the product 
of such an excision. The loss ofTc  from pED991 would then 
be analogous to the excision of resistance-determinant re-
gions hounded by directly repeated copies of IS/ from 
I ncFII R factors in S. tvpiiimuriuni and !'roIeus ,nirahiiis 
(29. 62). 

A number of well-characterized transposons contain inser-
tion elements at their termini (34). The transposition func-
tions of such "compound" transposons are encoded entirely 
by one or both terminal elements, which are, in most cases, 
independently transposable themselves. Moreover, it seems 
likely that any segment of DNA flanked by active insertion 
sequences in either orientation is potentially transposable. 
Examples for the short insertion sequence IS/ include Tn9 
(42), Tn1681 (56), Tn2350 (11). and Tn2571 (31). The region 
of R46 flanked by copies of 1S46 contains the determinants 
for Tc' and As', whereas in N3 the intervening segment 
contains a Tc' determinant. None of the transposition-
mediated R46::pME420 or N3::pME420 cointegrates ana-
lyzed showed duplications of these larger regions. SO WC 

investigated the possibility that their transposition might 
preferentially result in simple insertions, rather than replicon 
fusions. No such 'icr  insertions into R338 were detected, 
however, and if generated at all, they must have been 
present at <3 x 10 	per cell. Similarly. we were unable to 
detect transposition to R388 of the Tc region of N3. These 
results may simply reflect the long distance between the two 
1S46 elements in each case: Chandler et al. (9) showed that 
for IS/-flanked composite transposons. there was a twofold 
decrease in the frequency of transposition for each extra 
kilobase of DNA between the insertion sequences. In the 
present case, this would give an approximately 1.000-fold 
reduction, so that transposition of Tc'_ would be essentially 
undetectable. 

Physical characterization of 1S46 showed that it is ca. 810 
bp in length and contains single restriction sites for Sail and 
PsiI that are located 470 and 145 bp from the termini. 
respectively. It contained no sites for EcoRI, HindIII, 
Ba,nH I. BgiII, KpnI , SinaI. or Xhol. 

The restriction enzyme cleavage pattern plus the inability 
of 1S46 to hybridize to plasmids containing IS/ 
(pBR322.X::IS/. R1000. and R1-19). 1S2 (F). 1S3 (F). 'y- (F). 
msio (R100). 1S2/ (R68). or Till (1-19) showed that it is 
distinct from these transposable elements as well as from 
1S4, 1S5. 1S50. and 1S903 (34). 

However. 1S46 seems to be related to the insertion se-
quences lSI5 (1.5 kb) and ISI5.. 1S26. and 1S140 (all 0.8 kb) 
in that all of these contain single Sail and Pstl sites, and 
cross-hybridization between various members of the group 
has been demonstrated (7.32. 36-38). Three composite 
transposons consisting of a Kmr  gene flanked by direct 
repeats of 1S26 (Tn2680). 1S15 (Tn1525), and an IS/5-like 
element (Tn6) have been described previously (3. 32. 36). 
whereas a single copy of IS/40 was adjacent to a Gm gene 
in two other plasmids (7). No association of IS46-like 
elements with Tc' genes has been reported previously. 
IS/5 (830 bp) results from the spontaneous loss of 670 bp of 
duplicated DNA from IS/5 (1.500 bp), and this loss is 
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associated with it reduction in the frequency of transposition 
from 5 x 10 	to it frequency similar to that found for 1S46 
(36). This reduction in frequency, together with the reduc-
tion due to the length of DNA between the flanking insertion 
elements (9: see above), is probably responsible for inability 
to detect transposition of Tn2680 (J. Altenhuchner 171) as 
well as the potential Tcr transposons of R46 or N3. Transpo- 
sition of "I'0525. flanked by IS/5 itself was measurable in a 
similar system. 

Taken together, the above publications show that IS46-
related elements are present on plasmids belonging to a 
variety of incompatibility groups, including IncA (RA1), 
incC (pIP1031 and R40a). incF (pJR62 and R124: we showed 
that it was not present on F, R100, or R1-19), md (several, 
including pIP112. piP565, and R144). lncM (piP135. piPiSi. 
pTH1). meT (Rtsl). and IncY (pIP231), as well as on the 
IncN plasmids R46. N3, and pCU1. Unexpectedly, we found 
that 1S46 did not occur on the IncN plasmid R390, despite its 
similarity to other IncN plasmids and the presence of a Tcr 
gene. Despite this wide distribution amongst bacterial plas-
mids, we were unable to demonstrate the presence of iS46 
on the chromosomes of several species of enterohacteria or 
P. (Ier,li,',nosa: this contrasts to the other small insertion 
sequence. IS /, which although  not found in I'seiu./o,uonas 
strains (66), is fairly widely distributed amongst the Entero-
bac!erwceae family (49. 53). 
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