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Abstract

We study the optimal way to decode information present in a popula-
tion code. Using a matched filter, the performance in Gaussian additive
noise is as good as the theoretical maximum. The scheme can be ap-
plied when correlations among the neurons in the population are present.
We show how the read out of the matched filter can be implemented in
a neurophysiological realistic manner. The method seems advantageous
for computations in layered networks.

At many stages of neural information processing in the brain, information is not carried
by a single neuron but shared by many neurons in parallel. Evidence for this has been
found in sensory systems [7], motor systems [3, 6] and hippocampal place cells [4]. In
population codes neurons have receptive fields centered at different locations, but their
tuning curves are wide and overlap considerably. Thus a stimulus will activate a large
population of neurons. Combining the response rates of the different neurons, the stimulus
can be reconstructed. The population coding is not vulnerable to failure of a single neuron.
In addition, the population signal is less noisy than the signal from a single neuron alone.
This can be used to increase accuracy or limit temporal averaging to allow for a quicker
response [5, 13].

One approach to read out the encoded stimulus is to average the responses of all neurons in
the population in order to construct the population vector [3]. Due to noise in the responses
of the neurons there are trial to trial fluctuations in the estimate of the encoded quantity (e.g.
motion direction). A statistical construct, the Cramer-Rao bound, gives the minimal trial to
trial error obtainable at a certain noise level. But the Cramer-Rao bound does not prescribe
how to accomplish the minimal error. It is not unreasonable to assume that the nervous
system in its evolutionary quest for efficiency performs close to the optimum. However,
the population vector scores in most situations worse than the bound [11]. In this paper we
discuss optimal readout mechanisms.

Interestingly, readout using a non-linear recurrent network approaches the optimal perfor-
mance [9, 2], suggesting that possibly on a circuit level the brain has indeed implemented
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Figure 1: a) Simulated population activity of 200 units in response to a stimulus with an
180°angle. The stimulus is distorted with Gaussian additive noise, o = 0.5 (lower panel).
Upper panel: The response filtered with a matched filter. b) The error of the matched filter
in the estimate of the stimulus angle as a function of the width of the filter. The standard
deviation across trials in the angle estimate is plotted. The error approaches the theoretical
limit (dotted line) when the filter width equals the width of the stimulus, that is, when the
filter is matched (indicated by the arrow). Dashed line: error when using the population
vector. c) as b) but for the amplitude estimate.

a population code reader. Yet, such a recurrent network has two possible disadvantages:
1) The output of the network becomes non-linear in the input; in an extreme case a sub-
threshold input will not lead to any response in the output. 2) The network is recurrent and
therefore some time passes before the final output is reached, slowing down computation.

Here we propose a simple, intuitive network to readout the population code of a direction
selective population. We extend the readout mechanism to not only read the encoded angle
of the stimulus but also the amplitude of the stimulus. We prove that the method equals the
Cramer-Rao bound for the both the angle and the amplitude.

1 Matched filter

We consider a population N neurons coding for an angle between 0 and 360 degrees. On
a given trial, the response of neuron i is r; = f;(6) + v, where f;(8) = A exp[(cos(8) —
1) /w?] is the neuron’s tuning curve, and v is a Gaussian white noise with zero mean and
independent across cells unless specified otherwise. The tuning width w is chosen 60, the
stimulus amplitude A is normalized to one. Consider a population response illustrated in
Fig. 1a. The task is to determine the coded angle, i.e. the location of the peak, as precise
as possible despite the presence of noise. In addition, we extend the task to determine the
coded amplitude, i.e. the height of the peak. The amplitude of the signal is important for
many psycho-physical tasks, especially when two stimuli of different amplitude need to be
compared.

The question how to readout a population code optimally can be understood by consid-
ering the following two extreme approaches. One extreme is to select the neuron which
gives the largest response, and to assume that the coded angle is the preferred direction of
that neuron. This method is obviously very sensitive to noise and does not use that one
can average over neurons to reduce the noise. The other extreme is to average over all
neurons, thereby constructing the average, or population vector given by p = }V Efv ri€;,
where e; = {cos(2mi/N), sin(2mi/N)} is a two dimensional unit vector pointing in the
direction that neuron ¢ codes for. The population vector has the advantage of averaging
over many neurons. As a result it performs well, especially if the tuning curves are broad



[10]. However, if the tuning curve is narrow, most neurons only contribute noise to the
population vector estimate without providing information about the coded angle. Indeed,
in most cases the population vector performs under the theoretical limit [9].

The question thus seems to be: what is the optimal number of neurons one should aver-
age over and how should their responses be weighted? The answer is a matched filter.
A matched filter weighs the responses according to the shape of the tuning curve itself.
In other words the responses are convolved with the average tuning curve (Fig. 1a), the
encoded angle is where the output of the filtered response is maximal. In addition, the
stimulus amplitude is given by the height of the maximum [12]. In Fig. 1b,c the stan-
dard deviation (SD) in the angle and amplitude estimate is shown as function of the filter
width. When the filter width has exactly the width of the tuning curve, that is, the filter is
matched, the performance equals the theoretical limit. Note that for wide filters the result
approximates the population vector result, and for narrow filters it approaches the single
cell maximum result (Fig. 1c).

It is common to retrieve information from a population code using the maximum likelihood
estimator. Although it performs optimally under many conditions, it has no obvious biolog-
ical implementation as it is a fitting procedure. As we prove now, the maximum likelihood
and the matched filter are identical for Gaussian additive noise. Using maximum likely-
hood the encoded angle is given by the angle which is most likely to have been encoded
given the noise distribution.

oML — arg max In P(r|6),

where P(r|6) is the probability that a stimulus with angle 6 leads to response r, the
arg max, y stands for the value of z that maximizes y. For independent Gaussian additive
noise this simplifies to

Oeai” = argmax D [r; = fi(0)]” = argmax 3 rifi(6), M

where we used that the tuning curves are homogeneously distributed such that 3=, f;(6)?
does not depend on 6.

On the other hand, using the matched filter we search for the output which gives the max-
imal response. For the matched filter the filter kernel is proportional to the tuning curve
centered around zero angle (where the proportionality constant B is chosen such that the
output and the input amplitudes are equal in the noiseless case), and the output of the filter
is denoted o;. The output is

0; = BZrkfi_k(G = 0) = BZkak(a = 27ri/N)
k k

We search for the output neuron 4 which gives the maximal response. The angle estimate
is obtained by reading off to which angle neuron ¢ corresponds,

OMF = arg Max 0; = argmax Z T f1(6) (2)

k
where we assume that the tuning curves are densely distributed, such that the error due to
discretization is much smaller than the error caused by the noise. Egs.1 and 2 are the same,
meaning that both methods give identical estimates from trial to trial and give therefore the
same performance.

2 Breakdown of maximum likelihood

We have just shown that the matched filter performs as good as the maximum likelihood
algorithm. But does this performance always reach the Cramer-Rao limit? It is often
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Figure 2: The dependence of the reconstruction error on the strength of the noise level (de-
fined as noise SD divided by stimulus amplitude). Upper panel: The error in the stimulus
amplitude using a matched filter (dashed line) and maximum likelihood (dotted line). They
approximate the Cramer-Rao bound (solid line) for all noise strengths. The matched filter
estimate has a bias (triangles) but the bias is much smaller than the error.

Lower panel: The reconstruction error in the stimulus angle (dashed line) obeys the
Cramer-Rao bound (solid line) for low noise. But for high noise the error worsens and
deviates from the Cramer-Rao bound. The maximum likelihood estimate (dotted line, over-
lapping with the dashed line) performs identically to the matched filter.

assumed that the performance of the maximum likelihood fit precisely equals the value
given by the Cramer-Rao bound [10, 9]. Indeed, the amplitude estimate follows the Cramer-
Rao bound, Fig. 2, top. However, for the angle estimate both the maximum likelihood and
the matched filter perform worse than the Cramer-Rao bound for high noise conditions,
lower panel Fig. 2. The underlying reason is that the angle is encoded non-linearly in the
response of the neurons. For non-linearly encoded the quantities the maximum likelihood
reaches the Cramer-Rao limit only for small noise amplitudes [12]. Although we did not
found a superior readout method for these high noise levels, in this regime the noise is
unrealistically high from a biological point of view.

One might have expected that at high noise levels the amplitude and angle estimates can
confound each other. Namely, a spurious maximum can arise due to the randomness, and
this maximum would lead to a wrong estimate of both angle and amplitude. Furthermore,
taking the maximum seems a dangerous strategy which could lead to a systematic tendency
(bias) to overestimate the amplitude. To test for this we did the maximum likelihood fit for
the amplitude, using the exact location of the angle. And likewise, we did the maximum
likelihood fit for the angle given the true amplitude of the stimulus. For the tested noise
levels we did not see a significant change in the performance. In addition, because of
symmetry, there is never a bias in the angle estimate. The bias in the amplitude estimate
was always much less than the reconstruction error (triangles in Fig. 2, upper panel).

3 Effect of correlation

Until here we assumed that the noise was uncorrelated across neurons. However, when
neurons share noisy inputs, the fluctuations in their responses will be correlated. Physio-
logically, typical correlation coefficients in firing rates are between 0.1 and 0.2 [14]. We
consider all cells to have the same correlation coefficient ¢. The effect of these correlations
on an estimation depend on the quantity to be estimated. When the average activity of
a pool of cells carrying the same signal is estimated, correlation increases the error [14].
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Figure 3: The error in the angle and amplitude estimate as a function of correlation level.
Left: The angle estimate improves with increasing correlation. Right; The CR bound
in amplitude estimate depends non-monotonically on the correlation level. After being
corrected, the matched filter follows this behavior.

However, correlation has a more subtle effect if different cells carry different signals, as is
our case here [1]. The angle estimate improves with increasing correlation and the ampli-
tude estimate initially deteriorates, but, already for extremely small correlation intensities
improves for increasing correlation [1]. The improvement of the estimates with increasing
correlation can be understood by considering the extreme case of 100% correlation. In that
case the noise is identical in all neurons, so that from trial to trail the whole response pro-
file is shifted up or down by a random amount, but otherwise the shape of the response is
noiseless. Obviously, in this case the average activity will follow the fluctuations and show
large errors, but both the angle and amplitude of the signal can be read off perfectly. In
essence, when different cells carry different messages, correlations make it more difficult
to confound the messages of different neurons, improving the quality of the estimation.

We tested if the matched filter can still perform optimally when correlation is present. To
that end we mixed in a common noise source to all neurons such that the total noise was
kept constant. We measured again the performance of the estimate. Without any adjustment
the matched filter, the angle estimate follows the Cramer-Rao bound, Fig. 3 left. But the
amplitude reconstruction error increases with increasing correlation, Fig. 3 right.

In general, matched filters can be adjusted to perform optimally when the noise is correlated
across neurons. The idea is to first filter the input such that the noise becomes white. This is
called a pre-whitening filter. After pre-whitening, the task is again to detect a known signal
amidst white noise, for which one uses a matched filter. Here, in the case of infinite range
correlation, whitening is performed by subtracting the average signal. The performance
of the matched filter after whitening is again optimal, although possibly worse than in the
uncorrelated case. Thus the matched filter is improved by subtracting common fluctuations
in the signal, i.e. by a center-surround filter. We set the filter to be

cN F
0;=_r; [fji(o) - mf ’ 9

J
where f = %>, fx(0) indicates the tuning curve averaged over locations. With this
expression, the matched filter and maximum likelyhood are, again, identical, and thus the
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Figure 4: Reading out the maximum of the matched filter. a) Method of reading out: The
tuning curve (lower panel), tuning curve with noise (hext panel), the output of the filter
(next panel), and the half-wave rectified filter output (upper panel). b+c) Performance of
the angle and amplitude estimate (thick curves) as a function of filter width. The arrow
represents the tuning curve width. Angle and amplitude are estimated by calculating the
population vector of the filtered and rectified response.

corrected matched filter follows the theoretical limit, Fig. 3. The strength of the surround
inhibition depends on the correlation ¢ and the number of neurons N. It is interesting
to note that the optimal balance between center and surround depends on the correlation
strength. For ¢N >> 1, the surround area equals center area and fluctuations common to all
neurons will not change the output; all common noise is filtered out.

4 Reading out the matched filter

Neural implementation of a matched filter seems very plausible given the typical receptive
field layout. However, the maximum still has to be located, and to reconstruct the stimulus
amplitude, the value of the maximum has to be calculated. (It does not help to take the
population vector of the filtered response; as the filtering is a linear operation, the perfor-
mance equals the performance of the population vector of the non-filtered response.) One
way is to implement a winner-take-all network. The solution we propose, is to rectify the
filter output and take the population vector of this rectified response, thereby ignoring all
responses which are too small and probably just contain noise, Fig 4a. Using an appropri-
ately normalized balanced center-surround filter, a value of the rectifying threshold exists
such that both the amplitude and the angle can be simultaneously accurately read out, with
an error close to the Cramer-Rao limit. The tuning width of the spatial filter has to be cho-
sen smaller than the width of the tuning curve, roughly half of that, Fig. 4b+c. As we note
in the Discussion, after filtering and rectification the output curve is about as wide as the
tuning curve of the input, Fig. 4a.

5 Discussion

We have shown that given a population response contaminated with Gaussian additive
noise, the encoded stimulus can be extracted by using a matched filter. The matched filter
resembles the template matching introduced in earlier works [8, 4], and the method also
shows some similarity to a recurrent network halted after a few iterations [2]. However, the
proposed method is simpler and mathematically more tractable.



The advantages of the matched filter and the proposed readout are: 1) It is easily imple-
mented in neural circuitry. The spatial filter is provided by diverging connectivity with
lateral inhibition, the rectification is inherent to a neuron’s input-output relation. 2) It is
purely feed-forward and is therefore fast. 3) The amplitude of the stimulus is preserved. 4)
The matched filter is easily extended to cases when correlation is present, and possibly also
non-Gaussian noise can be treated.

Fig. 4a shows that the output has about the same width as the input (upper and lower panel).
This suggest that our readout is consistent with an architecture in which computations are
done at multiple, subsequent layers. At every layer neural noise is added, but it is optimally
filtered out by spatial filtering. If the filter would be too narrow, noise would accumulate
in subsequent layers. If, on the other hand, the filter would be too wide the stimulus angle
would be lost. With the matched filter the output has the same width as the input, and the
network preserves the advantages of the population code. Computational consequences of
these architectures are currently examined.
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