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ABSTRACT 

 

The liver is a multi-functional and highly regenerative organ. While resilient, the liver 

is susceptible to organ damage and failure. In both the acute and chronic settings liver 

disease has dire consequences for health. A common cause of liver damage is adverse 

reactions to drugs which can lead to drug induced liver injury (DILI). This creates 

major problems for patients, clinicians, the pharmaceutical industry and regulatory 

authorities. In the context of drug overdose or serious adverse reactions, liver failure 

can be acute and life threatening, and in some cases require orthotopic liver 

transplantation. While transplantation is highly successful, such an approach has 

limitations and justifies basic science attempts to develop better human models to 

study liver injury and to develop scalable intervention strategies. With this in mind, 

we have studied the importance of microRNAs (miRs) in regulating human drug 

metabolism in pluripotent stem cell – derived hepatocytes and their potential to reduce 

liver toxicity in response to toxic levels of paracetamol. miRs are small non-coding 

RNAs that are approximately 20 - 24 nucleotides long and their major function is to 

fine tune gene expression of their target genes.  Recently, it has been demonstrated 

that microRNAs play a role in regulating the first phase of drug metabolism however 

the second phase of drug metabolism, drug conjugation, has not been studied in detail. 

Drug conjugation is a crucial stage in human drug metabolism, and any alterations in 

this process can lead to changes in compound pharmacology, including therapeutic 

dose and clearance from the body. To test the importance of miRs in regulating phase 

II drug metabolism we opted to study the metabolism of a common used analgesic, 

paracetamol. When taken in the appropriate amounts paracetamol is modified by 

sulfotransferases (SULTs) and UDP - glucuronosyltransferases (UGTs) and removed 

from the body without organ damage. However, when paracetamol is taken above the 

recommended dose it is metabolised by phase I enzymes to generate a toxic 

intermediate N-acetyl-p-benzoquinone imine (NAPQI), which if untreated can lead to 

massive hepatocyte cell death and liver failure, placing the patient in a life threatening 

situation.  
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In order to promote non-toxic drug metabolism, in the context of drug overdose, we 

employed candidate miRs to regulate different parts of the paracetamol metabolism 

pathway. In summary, we have focused on studying human drug metabolism in the 

major metabolic cell type of the liver, the hepatocyte.  

We have identified a novel microRNA (called miR-324-5p) which regulates phase II 

drug metabolism and reduces cell cytotoxicity. Additionally, a supportive role of anti-

microRNA-324 in response to fulminant plasma collected from paracetamol overdose 

patients is also observed.  The findings of this project are novel, provide proof of 

concept and exemplify the power of stem cell based models to identify new approaches 

to treating human liver damage. 
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1. INTRODUCTION 

1.1 LIVER AS AN ORGAN  

The liver is the largest internal organ in the human body providing different metabolic, 

endocrine and exocrine functions. The major endocrine functions include secretion of 

variety of hormones such as angiotensinogen, thrombopoietin, and insulin-like factors, 

whereas exocrine functions include formation of the bile. The liver is also an essential 

organ for reconditioning blood, drug detoxification, glycogen storage, regulation of 

cholesterol and fatty acid transport, urea metabolism and secretion of major serum 

(plasma) proteins such as albumin and apolipoproteins (Si-Tayeb et al, 2010a).             

The specific structure of the liver is essential to maintain multifunctional nature of the 

organ.  

The liver lobule is the basic architectural unit of the liver. The lobule consists of plates 

of hepatocytes separated by sinusoidal spaces that are connected to a network of blood 

vessels capillaries. The liver lobules are in the shape of hexagon with each of the six 

corners demarcated by the presence of a ‘portal triad’ of vessels consisting of a portal 

vein, bile duct, and hepatic artery (Figure 1.1). The blood supplied from both the 

hepatic artery and the portal vein enters the sinusoidal space, and through endothelial 

fenestrae comes into direct contact with the basal surface of hepatocytes – the major 

metabolic cells of the liver. Once these cells absorb metabolites and toxins, the blood 

leaves the lobule through the central vein. The apical surface of the adjoining 

hepatocytes secretes bile into the bile canaliculi that then flows through intrahepatic 

bile ducts to the extrahepatic bile ducts, where it is finally stored in gall bladder before 

release into the duodenum (Zorn, 2008).    



22 
 

                        

Figure 1.1: Liver lobule. Illustration showing overall structure of a portion of a liver lobule. The ‘portal 

triad’ consisting of portal vein, bile duct and hepatic artery is surrounded by hepatocytes lined by 

sinusoidal endothelium that radiate toward a central efferent vein. Picture adapted from Si-Tayeb et al, 

2010a. 

 

Hepatocytes (parenchymal cells) make up approximately 70-80% of the liver mass 

(Blouin et al, 1977). Their function is supported by the non-parenchymal cells; 

cholangiocytes (biliary epithelial cells), sinusoidal endothelial cells, endothelial cells, 

natural killer cells, Kupffer cells (resident liver macrophages), infiltrate  and hepatic 

stellate cells (Kmiec, 2001).  

The polarized nature of hepatocytes is essential to proper function (Figure 1.2).           

The basolateral surface of hepatocytes is directly connected with sinusoidal 

endothelial cells what facilitates the transport of endocrine secretions to the blood 

stream, whereas tight junctions between hepatocytes allow for the canaliculus 

formation. The canaliculus collects bile salts and bile acids that are transported across 

the apical side of the hepatocyte (Wang and Boyer, 2004).   
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Figure 1.2: Hepatocyte polarity. Polarization of hepatocytes is essential for endocrine and exocrine 

secretions. Picture adapted from Solvo Biotechnology (www.solvobiotech.com). Abbreviations: 

MRP1/MRP2/MRP3/MRP4/MRP5/MRP6, Multidrug resistance-associated protein 1/2/3/4/5/6; 

MDR3, Multi-drug resistant ABC transporter 3; BSEP, Bile Salt Export Pump; BSRP, Breast Cancer 

Resistance Protein; PgP, P-glycoprotein; MATE1, Multidrug And Toxin Extrusion 1; ABCG5/ABCG8, 

ATP- binding cassette subfamily G member 5/8; OCT1/3, Organic Cation Transporter 1/3; 

OATP1B3/1B1/2B1/1A2, Organic Anion-Transporting polypeptide 1B3/1B1/2B1/1A2; OAT2, 

Organic Anion Transporter 2; NTCP, Sodium-Taurocholate Cotransporting Polypeptide; PGT, 

Prostaglandin Transporter; ENT1/2, Equilibrative Nucleoside Transporter 1/2.  

 

The delivery of hepatocytes which are fully polarized and functional for long periods 

of time is currently a major challenge to the field. As a consequence, ex vivo 

hepatocytes rapidly dedifferentiate and die. Therefore it is important that we learn from 

human liver development and homeostasis, in the adult, to improve our cell based 

models.  

 

 

 

 

 

 

http://www.solvobiotech.com/
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1.2 OVERVIEW OF THE LIVER DEVELOPMENT   

Studies on different animal models such as the mouse, rat, chicken, zebrafish have 

identified many genes and molecular pathways regulating embryonic liver 

development and proven that hepatogenesis is evolutionary conserved (Zaret, 2008)  

There are three primary germ layers in the early embryo: ectoderm, mesoderm, and 

endoderm (Figure 1.3). During gastrulation, the endoderm germ layer is established 

and forms a primitive gut tube that is further subdivided into foregut, midgut, and 

hindgut regions. Tremblay and Zaret (2005) fate mapping studies in the mouse embryo 

at embryonic day 8.0 identified that embryonic liver originates from the ventral foregut 

endoderm. At day 9.0 of embryonic development, the hepatic diverticulum,                     

an out-pocket of thickened ventral foregut epithelium is formed next to the developing 

heart. The anterior portion of the diverticulum gives rise to the liver and intrahepatic 

biliary tree, whereas the posterior portion forms the gall bladder and extrahepatic bile 

ducts. Subsequently, the hepatoblasts delaminate from the epithelium and invade the 

septum transversum mesenchyme (STM) (Le Douarin, 1975). At later stages of 

embryonic development (e9.5-e.15), STM contributes fibroblasts and stellate cells. 

The bi-potential hepatoblasts residing next to the portal veins become cholangiocytes 

(biliary epithelial cells), while the ones located in the parenchyma differentiate to 

hepatocytes (Lemaigre, 2003). The maturation of hepatocytes and biliary network 

continues until birth to generate liver specific tissue architecture. Later the liver bud is 

vascularized to become major fetal haematopoietic organ.   
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Figure 1.3: Stages of mouse and human liver development. Embryonic stem cells derived from the 

inner mass of the blastocyst give rise to three principal germ layers: ectoderm, mesoderm, and 

endoderm. The anterior region of the endoderm forms the foregut. Following hepatic specification of 

foregut endoderm, hepatic cells (hepatoblasts) will bud into the septum transversum mesenchyme and 

continue to proliferate and differentiate. Hepatic and bile epithelial cells maturation continues until 

several weeks after birth. The red bars highlight the key stages of liver development. The black and blue 

bars indicate mouse and human liver development respectively. Picture adapted from Kung et al, 2010.  

 

1.2.1 ENDODERM FORMATION  

In Amniotes the definitive endoderm (DE) is formed during the gastrulation process 

where it emerges as a sheet of cells from anterior end of the primitive streak               

(Grapin-Botton, 2008). A wide number of studies have demonstrated that the DE 

formation involves epithelial – mesenchymal transition (EMT) and requires Snail/Slug 

gene to repress E-cadherin expression (Nakaya et al, 2008; Blanco et al, 2007).           

The movement of the endoderm is strictly controlled by the mesoderm-derived 

Sdf1/Cxcl12b acting on C-X-C chemokine receptor type 4 (CXCR4) -expressing 

endoderm in zebrafish and Xenopus (Fukui et al, 2007; Mizoguchi et al, 2008).  
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Transforming growth factor β (TGFβ) signalling has been demonstrated to be essential 

in endoderm formation. One of the major TGFβ growth factors, Nodal, has been shown 

to initiate both endoderm and mesoderm formation in a concentration – dependent 

manner, where high levels of this protein induce endoderm and low levels lead to 

mesoderm formation (Zorn and Wells, 2007; Shen, 2007; Dougan et al, 2003).            

The other TGFβ growth factors such as growth/ differentiation factor 1 (Gdf1) and 2 

(Gdf2) are expressed in the node like Nodal and enhance its activity by forming 

heterodimers (Tanaka et al, 2007). Although Nodal is essential for in vivo endoderm 

development, Yasanuga et al (2005) and D’Amour et al (2005) have demonstrated that 

endoderm can be efficiently generated in vitro from mouse and human embryonic stem 

cells using only Activin A as a surrogate of Nodal.   

To generate endoderm, Nodal directly stimulates SRY-box 17 (Sox 17) expression 

which in turn activates hepatic nuclear factor 1β (HNF1β) and Forkhead A family 

(FoxA1-3) in part through synergistic interactions with β-catenin (Sinner et al, 2004). 

In vertebrates, GATA family (Gata 1-6) that is partially regulated by Nodal signalling 

has been shown to control the expression of different factors involved in activation of 

endoderm such as hepatic nuclear factor 4 (HNF4) (Morrisey, 1998).  

Nodal is a downstream target of Wnt pathway. Conlon et al (1994) and Huelsken et al 

(2000) have proven that lack of Nodal or β-catenin signalling in mouse embryos 

resulted in failure of primitive streak formation, suggesting that interaction between 

Nodal and Wnt is essential to form definitive endoderm. Further studies on Wnt 

pathway revealed that specifically Wnt3 acts in synergy with Nodal, as the mouse germ 

layer formation and expression of mesendoderm markers are dependent on that gene 

(Liu, 1999).   
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1.2.2 FOREGUT SPECIFICATION 

High Nodal signalling is required to make anterior definitive endoderm that at later 

stages of gastrulation is developed to epithelial gut tube surrounded by mesoderm 

(Zorn and Wells, 2007). The mesodermal signals (such as Wnt and Fibroblast Growth 

Factor (FGF)) pattern the gut tube to three particular domains: foregut (expressing 

Hhex), midgut (expressing Pdx1), and hindgut (expressing Cdx), where foregut is the 

major precursor for liver, pancreas, gall bladder and lungs. (Moore –Scott et al, 2007; 

Tremblay and Zaret, 2005). Several studies have demonstrated that temporal and 

spatial gradients of Wnt (McLin et al, 2007) and FGF (Dessimoz et al, 2006) along 

with mesenchyme-derived bone morphogenetic protein (BMP) (Roberts et al, 1995) 

and retinoic acid (Stafford et al, 2004) direct the patterning along the anterior-posterior 

axis necessary for hepatic competence in the ventral foregut region. Wnt and FGF 

secreted from the posterior mesoderm have been demonstrated to promote dose-

dependent expression of Pdx1 and CdxB, which specify midgut and hindgut 

respectively (Kumar et al, 2003; and Wells and Melton, 2000) and suppress the 

expression of Hhex important in the formation of foregut (Dessimoz et al, 2006).      

The anterior (endoderm) region inhibits the signalling of Wnt and FGF, which results 

in the establishment of foregut identity. In addition, Wnt-antagonists such as secreted 

frizzled – related protein 5 (Sfrp5) expressed in the foregut endoderm are expressed to 

weaken/inhibit Wnt activity in the foregut region (Dessimoz et al, 2006; McLin et al, 

2007).    

Transcription factors such as Foxa2, Gata 4-6 and Hhex play an important role in 

foregut organogenesis, therefore hepatic competence is strictly dependant on the 

activity of these genes. Studies using DNA footprinting to identify potential elements 

that control albumin expression revealed that Foxa2 and Gata 4 were capable to bind 

the albumin enhancer before the onset of albumin expression, suggesting that these 

factors were enhancing the chromatin accessibility to allow hepatic genes to be 

transcribed in response to external stimuli (Bossard and Zaret, 1998; Gualdi et al, 

1996). 
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1.2.3 HEPATIC SPECIFICATION 

Specification of the hepatocytic lineage from the foregut endoderm requires two major 

signals: FGF signal (FGF1, FGF2, and FGF8) from cardiac mesoderm and bone 

morphogenetic protein (BMP2 and BMP 4) signal from septum-transversum-

mesenchyme (STM) (Jung et al, 1999; Chung et al, 2008, Deutsch et al, 2001; Rossi 

et al, 2001; Chung et al, 2008; Shifley et al, 2012).  

Several studies have demonstrated that removal of cardiac mesoderm as well as 

inhibition of either FGF signalling or FGF receptors (FGFR-1 and FGFR-4) located 

on the endodermal cells led to liver induction failure due to lack of albumin mRNA 

expression. The downstream pathways of FGF signalling are still unclear, however a 

few studies suggest that FGF controls MAP kinase pathway and PI3K pathway that 

regulate hepatic gene expression and hepatic growth respectively (Jung et al, 1999; 

Kinoshita and Miyajima, 2002; Calmont et al, 2006). 

A number of studies demonstrated that BMP family plays an essential role in hepatic 

induction (Duncan and Watt, 2001; Shin et al, 2007). Zimmermann et al (1996) studies 

identified that BMP4-deficient embryos or suppression of the BMP signalling by a 

natural antagonist, Xnoggin, resulted in liver bud failure and inhibition of albumin 

production. Moreover, Xnoggin signalling was also capable of suppressing the 

albumin in FGF- induced endodermal cells, suggesting that BMP signalling is required 

to enhance the FGF –mediated induction of liver development. The other studies also 

suggested that knockdown of BMP gene in mice resulted in reduced expression of 

GATA4 – one of the major liver –enriched transcription factors that regulates the 

hepatic factor signalling network (Rossi et al, 2001; Darlington, 1999). 

 

1.2.4 LIVER BUD FORMATION 

Once hepatic specification is established, hepatic endoderm breaks down and allows 

newly-formed hepatoblasts to invade the STM. This results in the formation of the 

liver bud.  The process of delamination strictly depends on the activity of certain 

transcriptional factors such as Hhex, GATA4, GATA6, as wells as on Prox 1,              
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and Onecut. Studies have demonstrated that in Hhex -/- embryos, the epithelium arrests 

in a simple columnar state, therefore preventing hepatoblasts to invade STM (Bort et 

al, 2006; Keng et al, 2000). In addition, GATA 4 -/- embryos lack STM (Watt et al, 

2007), and along with GATA6-/- embryos have been demonstrated to have early 

defects in foregut morphogenesis (Zhao et al, 2005, Zhao et al, 2008). Prox 1 and 

Onecut were shown to control the expression of extracellular proteins (ECM) and 

matrix metalloproteinases (MMPs) that are important in hepatoblast migration and 

liver bud colonization (Margagliotti et al, 2007; Margagliotti et al, 2008).  

In addition, endothelial signals such as vascular endothelial growth factor receptor 

gene (Vegfr-2) and hepatoblast chemoattractant Neurturin are required for proper 

migration of the early bi-potential progenitors into the stroma of the STM                 

(Matsumoto et al, 2001; Tatsumi et al, 2007).   

Once the cells have migrated, the STM secretes a variety of factors such as FGF, BMP, 

Wnt, TGFβ, HGF and retinoic acid that promote liver bud growth and hepatoblast 

survival (Berg et al, 2007; Shin et al, 2007; McLin et al, 2007; Ishikawa et al, 2001; 

Negishi et al, 2010).  

 

1.2.5 HEPATOCYTE DIFFERENTIATION AND MATURATION 

Once specified, the bi-potential hepatoblasts express markers of fetal (α-fetoprotein; 

AFP) or adult (hepatic nuclear factors 4a (HNF4a) and 6 (HNF6), albumin (ALB)) 

hepatocytes and biliary epithelium (cytokeratin 17 (CK17) and 19 (CK19)). 

Hematopoietic cells colonize the nascent liver bud and express certain signals to 

induce hepatocyte specification.  

Notch signalling is one of the first signals to induce the differentiation of bipotential 

hepatoblasts by either promoting or inhibiting the differentiation either to 

cholangiocytes (bile ducts) or hepatocytes respectively (Tanimizu and Miyajima, 

2004).  The other hematopoietic signal, oncostatin M (OSM) in combination with 

glucocorticoids induces hepatocyte maturation by activating gp130 receptor and 

JAG/Stat3 signalling pathway and promoting polarization of the epithelium via             
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E-cadherin expression (Kinoshita et al, 1999; Kamiya et al, 1999). Hepatocyte growth 

factor (HGF) secreted from STM and non-parenchymal cells as well as Wnt signalling 

are important in hepatocyte proliferation, survival, maturation and liver zonation 

(Kamiya et al, 2001; Monga et al, 2002; Nejak-Bowen and Monga, 2008).   

 

1.2.6 FETAL, NEONATAL AND ADULT LIVER 

As liver plays a major role in synthesis of proteins and biotransformation of 

xenobiotics, it is important to take into consideration development changes of this 

organ and different metabolic capacity at fetal, neonate and adult stage. During 

gestation, the fetus is able to rely on metabolic activity of maternal liver in order to 

allow fetal liver to develop these functions. In the neonate, the liver still remains 

immature and undergoes several changes in its functional capacity during the early 

postnatal period; however the immaturity of the organ has little consequences on the 

healthy term neonate. Contrary to term neonates, preterm neonates are susceptible to 

the effects of immature liver, placing them at risk of hypoglycaemia, cholestasis, 

hyperbilirubinemia, bleeding and impaired drug metabolism (Grijalva and Vakili, 

2013).  

There are several postnatal changes in liver development before it gains the full 

synthetic and metabolic capacity of the adult organ. At birth, hepatocytes are arranged 

in plates at least three cells thick between the portal triads and central veins and by five 

months after birth, the sheets have thinned to two cells thick. Until five years of age, 

these extra layers of cells defend the neonate from entrance of potentially toxic 

substances from the sinusoids before obtaining the one sheet of cells as established in 

adult liver (Macsween, 1994; Gow et al, 2000).  

What is more, during neonatal stage hepatocytes increase in size as well as in diameter 

of hepatic lobules and quantity of endoplasmic reticulum (ER). In addition, in the early 

postnatal period, sinusoidal fenestrae increase in density along with establishment of 

metabolic zones within the acinus (Barbera-Guillem et al, 1986; Gow et al, 2000).  
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Contrary to hepatic architecture, bile duct and bile canaliculi structure are immature in 

mammalian liver, and development of these biliary cells continue 1-2 weeks after birth 

as indicated in mouse and rat liver models (Shiojiri, 1997).   

In the case of liver circulation, the fetal organ receives highly oxygenated blood and 

nutrients via the umbilical vein that supplies approximately 75% of the total blood to 

the liver (Haugen et al, 2005). In man after birth, with the loss of the umbilical vein 

input, a larger proportion of the portal vein blood flow is shunted away from the liver 

through the ductus venosus (Rudolph, 1983; Nagano et al, 1999). In general, the 

closure of the ductus venosus occurs within 2 weeks of life in the majority of neonates, 

however in preterm neonates this process might be significantly delayed causing 

portacaval shunt (Kondo et al, 2001; Loberant et al, 1999). This liver shunt may result 

in direct pass of metabolic and pharmacologic substances from the portal into the 

systemic circulation and may interfere with child’s growth and development 

(Fugelseth et al, 1998).   

As adult liver performs various metabolic functions (i.e lipogenesis and drug 

detoxification), the embryonic liver has much less metabolic activity and rather, 

functions as a hematopoietic microenvironment (Kinoshita et al, 1999). Increasing 

evidence indicate that hematopoietic stem cells (HSCs) originating from the aorta –

gonad-mesonephrons (AGM) region migrate to the fetal liver to generate numerous 

definitive HSCs. The hematopoietic microenvironment in the fetal liver is created by a 

complex of cell types, including epitehliocytes, resident macrophages, and several 

stromal cell populations of mesenchymal origin such as hepatic stellate cells, fibroblasts, 

myofibroblasts, vascular smooth muscle and endothelial cells, and mesenchymal stromal 

cells (Payushina et al, 2012). These cell types secrete different adhesive factors (e.g E-

selectin, VCAM-1), chemoattractants (eg. stromal cell-derived factor -1) or extracellular 

matices (e.g fibronectin and collagen) that support proliferation and survival of 

hematopoietic stem cells in the fetal liver. Although the majority of liver metabolic 

functions appear peri- or postnatally, haematopoiesis – supporting activity of the liver is 

lost during late-fetal development. Subsequently, HSCs migrate to the bone marrow or 

around spleen around the perinatal stage to constitute the adult type of hematopoietic 

system.   
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Plasma protein synthesis and level of biotransformation significantly differ among 

fetus, neonates, and adult. The main serum protein produced by the fetal liver is alpha-

fetoprotein (AFP) which reaches its final concentration by the end of the first trimester. 

The albumin (ALB) synthesis begins at 16th week of gestation and reaches the adult 

levels by the end of gestation (37 weeks). The coagulation proteins (e.g fibrinogen) 

are usually low in newborn infants and reach adult levels within first days after birth.  

Generally, the hepatic drug metabolism pathways in the fetal and neonate livers are 

immature which results in prolonged drug elimination and increased plasma half-lives.  

The phase I metabolic enzymes such as cytochromes P450 families demonstrate 

significant differences in expression and activity in the fetus and neonate compared to 

adults. At birth, the cytochrome proteins are expressed at 30% of adult concentration, 

and they reach adult levels by 1 year of age. 

 It is important to mention that CYP3A7 is the major cytochrome in human embryonic, 

fetal and newborn liver (Kitada and Kamataki, 1994). Once it reaches its peak point at 

early neonatal period, the enzymes activity transitions to CYP3A4, one of the major 

adult cytochromes. CYP3A4 expression and activity then reaches 30 - 50% of adult 

levels from 3 to 12 months of age (Lacroix et al, 1997).   

Phase II enzymes that are responsible for detoxification of certain substrates, 

demonstrate different level of expression throughout liver development. It has been 

proven that neonates have limited enzymatic glucuronidation capacity as indicated by 

their limited ability to conjugate bilirubin during early postnatal life resulting in 

unconjugated hyperbilirubinemia (Krauer and Dayer, 1991). Bilirubin is 

biotransformed by UDP-glucuronosyltransferase 1A1 (UGT1A1, UGTs) and its 

expression is low during fetal and early postnatal development, and reaches 25% of 

adult levels by 3 months of age (Coughtrie et al, 1988). Contrary to UGTs, hepatic 

sulfotransferases (SULT) that are responsible for sulfate conjugation of xenobiotics 

are much highly expressed in fetus and neonate, potentially suggesting their essential 

role in detoxification in early liver development (Alcorn and McNamara, 2002).  
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Mooij et al (2014) study has demonstrated that hepatic expression of human influx and 

efflux transporters depends on the age. Hepatic Phase III transporters such as MRP2, 

OATP1B1 and OATP1B3 were significantly decreased in all paediatric age when 

compared with adults. What is more, MDR1 (P-gp) gene expression in fetuses, 

neonates and infants was notably lower than in adult livers.    

 

1.3 LIVER DISEASES 

Some of the most common causes of liver injury include adverse drug reactions, 

alcohol and drug abuse, nonalcoholic steatohepatitis, and viral infection (Musana et 

al, 2004; Adams and Angulo, 2006). These factors lead to liver fibrosis, which results 

in the accumulation of extracellular matrix proteins (EMPs). Fibrogenic cytokines 

such as TGF-β, angiotensin II, and leptin play an important role in this process, 

regulating the production of collagen during liver injury (Duffield et al, 2005; Battaler 

and Brenner, 2005). Accumulation of EMPs leads to scar formation and upon chronic 

exposure may result in liver cirrhosis (Iredale, 2007). This has dire consequences for 

liver function and increases the risk of developing hepatocellular carcinoma (HCC) 

(Gines et al, 2004; Schrader et al, 2011). HCC is the third most common cause of 

cancer-related death worldwide (Vara et al, 2011), and advances in research are 

required to better understand HCC progression and treatment.  

Recent studies (Schrader et al, 2011) have demonstrated that the biochemical 

composition of the extracellular matrix (ECM) is an important factor in HCC biology. 

In these studies, matrix stiffness consistent with chronic liver disease promoted HCC 

proliferation, whereas the less-stiff physiological environment fostered cellular 

dormancy.  

Because the liver plays a major role in metabolism, mutations or polymorphisms that 

affect metabolic or synthetic activity can have profound effects on liver function and 

therefore susceptibility to injury. For instance, the gene mutation in Wilson’s disease 

occurs on chromosome 13, and in homozygous form leads to the diminished function 

of the hepatic protein ATP7B. This subsequently results in a decreased excretion of 
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the biliary copper and accumulation of this element in hepatocytes, potentially leading 

to serious hepatocellular damage (Ala et al, 2007). 

What is more, a genetic mutation in SERPINA1 gene that encodes alpha-1-antirypsin 

(A1AT) protein, leads to the A1AT deficiency in the blood and lungs, and deposition 

of excessive abnormal protein in liver cells (Stoller and Aboussouan, 2005).   

To study this issue in greater depth, researchers are developing human models that 

more accurately predict the relationship between genotype and phenotype.               

These models are essential to establishing a better understanding of human disease. 

For most patients, genetic factors will result in different responses that may affect drug 

absorption, distribution, efficacy, and excretion. This is extremely interesting in the 

context of race and ethnicity (Xie et al, 2001). In most populations, phase I (CYP450) 

and phase II (UGTs, SULTs, NATs, GSTs, and TPMT) drug metabolizing activities 

are polymodal, resulting in either extensive, intermediate or poor drug metabolism 

(Wilkinson, 2005; Jancova et al, 2010). For example, single nucleotide 

polymorphisms in N - acetyltransferases may cause slow or rapid acetylation.          

Thus, they become a predisposing factor affecting the sensitivity of individuals to 

drugs. Different variations of alleles in drug-metabolizing enzymes may also play an 

important role in the development of various types of cancers. For instance, genetic 

polymorphism of glutathione S transferases (GSPT1 and GSTA1) may increase the 

risk of developing HCC (Chen et al, 2010).  

Therefore, the level of interindividual sensitivity to different drugs is an important 

predictive measurement that will lead to a better understanding of drug toxicity and 

“tipping points” and likely reduce the instances of drug-induced liver injury (DILI) 

and/or the predisposition to HCC (Kaplowitz, 2004). 

 

1.4 MODELLING LIVER BIOLOGY AND DISEASE IN VITRO 

There are significant morbidity, mortality, and economic burden associated with 

human liver disease. Therefore, developing new systems that improve the study and 

prediction of liver disease is likely to lead to more effective interventions in the future.  
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Current approaches use human and animal cell cultures, with primary human 

hepatocytes viewed as the most physiologically relevant model for examining 

hepatocyte biology in vitro. However, the predictive nature of these models is severely 

limited because of the scarcity and poor quality of these cells. To bypass issues of 

scarcity, several groups used different techniques to immortalize human hepatocytes. 

Unfortunately, the derived cell lines exhibited poor function and karyotypic instability, 

limiting large-scale application (Allain et al, 2002; Cai et al, 2000; Delgado et al, 

2005; Wege et al, 2003). More recently, the HepaRG and Fa2N-4 cell lines were 

established and possess CYP450 activity (Guillouzo et al, 2007; Mills et al, 2004; 

Hariparsad et al, 2008). Although the HepaRG and Fa2N-4 cell lines may be attractive 

sources of cells for modelling human drug metabolism, their usefulness in predicting 

drug toxicity is not optimal because they remain more resilient than primary human 

hepatocytes to toxicological insult.  

 

1.5 PLURIPOTENT STEM CELLS (PSCs) AS RENEWABLE SOMATIC CELL-

BASED MODELS 

In recent years, somatic and stem cell populations have been studied for their ability 

to differentiate or transdifferentiate into hepatocyte-like cells (HLCs).             

Additionally, many studies have confirmed that fetal and adult liver stem cells have 

biopotential properties and are able to differentiate into hepatocytes and 

cholangiocytes (Dalgetty et al, 2009; Medine et al, 2010; Schmelzer et al, 2006).  

The approach taken in this project as well as widely used by others employs PSCs; 

human embryonic stem cells (hESCs) and induced PSCs (iPSCs). Both populations 

may provide new opportunities for improving cell-based models owing to their 

renewable nature, plasticity, and isolation from a known genetic background.       

hESCs are derived from the inner mass of blastocysts unsuitable for human 

implantation and demonstrate self-renewal and pluripotency (Reubinoff et al, 2000, 

Thomson et al, 1998). hESCs were first derived from the inner cell mass (ICM) of the 

blastocyst stage (100-200 cells) of emryos generated by in vitro fertalization. hESCs 

are characterised by two unique properties: self-renewal, capable of dividing 
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indefinitely in culture, and pluripotency, the ability to differentiate to variety of cell 

types from all germ layers; the endoderm, mesoderm, and ectoderm (Cai et al, 2006; 

Hoffman and Carpenter, 2005; Vazin and Freed, 2010). These pluripotent stem cells 

are defined by the expression of pluripotent transcription factors; Oct 3 / 4, Nanog, and 

Sox2 in addition to their cell surface antigen pattern; defined by the presence of stage 

specific embryonic antigens (SSEA 3 and 4) and tumour rejection antigens (Tra 1-60 

and Tra-1-81). Pluripotency is measured using a combination of spontaneous (Fletcher 

et al, 2008) and directed differentiation to cell types including muscle (Xiao et al, 

2008) , cardiomyocytes (Melkoumian et al, 2010), hepatocytes (Hay et al, 2008ab) 

and neuronal derivatives (Lee et al, 2007).  

In recent years, significant progress has been made in differentiating PSCs into HLCs. 

The use of defined factors and serum-free media has facilitated the development of 

efficient procedures for HLC specification, which is likely to have significant impact 

in the short term and improve our understanding of human liver biology.          

Moreover, the development of defined procedures may have clinical applications in 

the future. 

Current methods used for HLC generation are spontaneous and directed 

differentiation. The spontaneous technique involves formation of three-dimensional 

multicellular aggregates, termed embryoid bodies. In the presence of particular factors 

these three-dimensional structures differentiate into HLCs (Asahina et al, 2004; Lavon 

et al, 2004; Duan et al, 2007; Basma et al, 2009). Although this method is 

reproducible, its spontaneous nature has several drawbacks, including low efficiency 

during HLC production and mixed cell type generation. 

Directed differentiation is based on the application of extracellular signals in two 

dimensions to mimic the physiological pathways required during human liver 

development and has proved to be more efficient (D’Amour et al, 2005; Agarwal et 

al, 2008; Cai et al, 2007; Hay et al, 2007; Hay et al, 2008; Duan et al, 2010).           

While both of these approaches to hepatocyte differentiation have been optimized, they 

still require further refinement if stem cell–derived technologies are to be widely 

adopted.  
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In addition to hESCs, iPSCs are used within the field. These cells can be derived from 

litmitless genetic background, offering significant advantages over hESCs.  

Derivation of human iPSCs (hiPSCs) from somatic cells by the introduction of four 

transcription factors (Oct 3/4, Sox2, c-Myc, Klf4) has created new opportunities in 

regenerative medicine (Takahashi and Yamanaka, 2006). iPSCs were initially 

generated from murine fibroblasts and resembled ESCs in various ways including 

morphology, proliferation, gene expression, and teratoma formation. In 2007, 

Takahashi et al successfully reprogrammed human dermal fibroblasts into a 

pluripotent state. Similar to murine iPSCs, hiPSCs were able to differentiate into cell 

types of three germ layers in vitro and form teratomas in vivo. These studies were 

ground-breaking and have provided enormous potential to further our understanding 

of human biology and the influence of genetics. For example, recent studies have also 

focused on inherited metabolic disorders (IMDs) of the liver. IMDs are usually caused 

by genetic mutations that affect key enzymes within hepatocytes. Rashid et al (2010) 

made a breakthrough in determining the potential of iPSCs by studying phenotype-

genotype interactions. The authors generated functional hepatocytes from iPSCs 

derived from patients with familial hypercholesterolemia, glycogen storage disease 

type I, and alpha-1 antitrypsin deficiency. 

 The results from these studies demonstrated that iPSC-derived hepatocytes 

recapitulate some of the pathophysiological features of the disease state. Such findings 

demonstrate the importance of iPSC models in better understanding human disease 

and may, in the future, lead to the development of platform technologies that could be 

used to identify novel medicines to better treat human disease. 

 

1.5.1 USING DEFINED CELL NICHES TO STABILIZE CELL PHENOTYPE 

Through co-culture of HLCs with other specific cell types and/or supplementation with 

growth factors, and ECMs, hepatocellular function will likely be improved and more 

closely align with human physiology (Ishii et al, 2008; Ishii et al, 2010; Tuleuova et 

al, 2010). Although co-cultures provide a supportive role, the undefined nature and the 

scarcity of primary material complicates culture definition and cost-effective scale-up 
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(Bhatia et al, 1997). Therefore, many laboratories have focused on other approaches 

to improve cell biology.  

Recent studies by Miki et al (2011a; 2011b) demonstrated that oxygenation as well as 

continuous supply of cells with fresh medium using hollow fibre technology promoted 

hepatic gene expression. Additionally, studies demonstrated that defined medium, a 

synthetic tissue culture substratum, and posttranslational modifications play important 

roles in improving and maintaining hepatic function, phenotype, and life span (Hay et 

al 2011; Zhou et al, 2012; Hannoun et al, 2010; Lucendo-Villarin et al, 2012; 

Takayama et al, 2012; Takayama et al, 2013; Vuoristo et al, 2013; Medine et al, 2013). 

What is more, these improvements in combination with scale up abilities (Vosough et 

al, 2013), and serum-free differentiation approaches (Szkolnicka et al, 2013 and 

2014a/b) provide potential GMP ready options for large scale manufacture.  

 

 

1.5.2 RECENT ADVANCES IN GENERATION OF HEPATOCYTES 

 

Recently, other approaches that bypass pluripotency have been developed to generate 

HLCs. For example, Huang et al (2011) and Sekiya & Suzuki (2011) have generated 

induced hepatocytes (iHEPs) from mouse fibroblasts.  

The transdifferentiated iHEPs were produced from murine fibroblasts using viral 

transduction and expression of GATA4, HNF1a, and FOXA3 and inactivation of 

p19Arf or HNF4a expression in combination with FOXA1, FOXA2, or FOXA3. Three 

years later Huang et al (2014) and Du et al (2014) have generated metabolically 

functional hiHEPs from human somatic cells using viral transduction and expression 

of either FOXA3, HNF1A, and HNF4a or overexpression of hepatic nuclear factors 

(HNF1a, HNF4a, HNF6) in combination with the maturation factors such as ATF5, 

PROX1, and CEBPA. Although promising, the transdifferentiated cells depend on 

primary material and its availability. What is more, the transdifferentiation techniques 

still require further strategies to address the lack of proliferation of these cells and 

generation of mixed populations. 
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Scale-up of cell-based technologies is essential for their in vitro and in vivo application. 

Recent studies have improved the expansion of undifferentiated hESCs and hiPSCs as 

three-dimensional aggregates without the need for feeders or microcarriers (Amit et 

al, 2010; Larijani et al, 2011).  

The resulting systems exhibited stable karyotype, sustained pluripotency, and self-

renewal. These prototype systems hold great promise and may lead to a decrease in 

production costs and provide controllable systems for scaling up PSCs and their 

derivatives. MicroRNAs are additional key regulators in many cellular processes, 

including hepatocyte differentiation of hESCs. Kim et al (2011) demonstrated that 

microRNAs are modulated during hESC differentiation to hepatocytes. In particular, 

mir-122 played a significant role in regulating hepatic maturity; therefore, microRNAs 

appear important in delivering high-fidelity HLCs for in vitro and in vivo approaches.  

In addition to pluripotent stem cell derived hepatocytes, liver stem cells can now be 

isolated and expanded in vitro in a three –dimensional structure (3D) offering a new 

promise for large-scale production. Huch et al (2013) have demonstrated that single 

mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in Rspo1        

(Wnt agonist)-based culture medium in vitro and subsequently can be differentiated 

into functional hepatocytes in vitro and in vivo. Two years later, the same group has 

reported a successful expansion of primary human bile duct cells as bipotent stem cells 

into 3D organoids (Huch et al, 2015). These cells are able to differentiate into 

functional hepatocytes in vitro and generate bona fide hepatic cells upon 

transplantation.  

 

1.5.3 ‘OFF THE SHELF’ CELL - BASED THERAPIES 

Currently, orthotopic liver transplantation is the only effective treatment for fulminant 

or end-stage liver disease. Although successful, liver transplantation is significantly 

limited owing to a shortage of donor organs. The lack of sufficient donor livers led 

scientists and physicians to search for alternative transplantation strategies.  
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Two interesting areas of development are hepatocyte transplantation and the 

bioartificial liver device. Hepatocyte transplantation has been considered as a viable 

treatment for patients suffering from liver disorders (Azuma et al, 2007; Zern, 2009; 

Hay, 2010). Most recently, a peritoneal transplantation procedure carried out at Kings 

College Hospital (United Kingdom) had a positive outcome and removed the need for 

orthotopic liver transplantation.  

Extracorporeal support is another option that uses the bioartificial liver devices fuelled 

with viable hepatocytes capable of performing essential liver functions.             

Although these devices have been successful in supporting patients until 

transplantation, the cell types used in these systems need to be improved. In particular, 

hepatocyte function, long-term stability, and cost-effective scale-up are key.                   

In addition to the current clinical methodologies, a recent study with iPSC technology 

has provided hope that in the future, disease-causing mutations may be corrected using 

DNA editing tools. Yusa et al. (2011) achieved biallelic correction of a point mutation 

(Glu342Lys) in the alpha-1-antitrypsin gene (A1AT) by using a combination of zinc 

finger and piggyBAC technology. Importantly, genetic correction of hiPSCs restored 

function of A1AT in derived liver cells in vitro and in vivo. Although this approach is 

very promising, a number of important safety issues (Payne et al, 2010) must be 

addressed before this technology can be routinely deployed within the clinic. 

 

1.6 DRUG METABOLISM 

Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination, 

and/or detoxification of xenobiotics or exogenous compounds introduced into the body 

(Meyer, 1996). These enzymes protect the body against the potential harmful exposure 

to certain endobiotics and xenobiotics from the environment. Most of the xenobiotic 

sources include environmental pollution, cosmetic products, food additives, and drugs. 

These compounds usually are lipophilic, leading to accumulation of these products in 

the body, resulting in toxicity. 
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 In order to efficiently eliminate them and minimize the potential injury, they are 

subjected to one or multiple pathways that constitute the phase I, phase II metabolising 

enzymes and phase III transporters (Gonzalez and Tukey, Chapter 3; Xu et al, 2005) 

(Figure 1.4; Table 1.1).  

 

Figure 1.4: Phases of drug metabolism. Most of the drugs are lipophilic and therefore have to be 

processed by Phase I reactions that involve oxidation, reduction and hydrolysis. This leads to the 

formation of a highly reactive metabolite that has to be detoxified by Phase II conjugations reactions 

that involve enzymes such as GSTs and UGTs. Once metabolized, the waste product is excreted from 

the cell by Phase III transporters either to urine or bile. Abbreviations: CYPs, Cytochromes P450; GST, 

glutathione S-transferases; UGT, UDP-glucuronosyltransferases; MDR1, Multi-drug resistant ABC 

transporter 1. Picture based on the figure from www.diversehealthservices.wordpress.com.  

 

 

 

 

 

 

 

 

 

 

http://www.diversehealthservices.wordpress.com/
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ENZYMES/ TRANSPORTERS REACTIONS 

PHASE  1   

Cytochrome P450s (CYPs) C and O oxidation, dealkylation, others 

Flavin – containing monooxygenases (FMO) N, S, and P oxidation 

Epoxide hydrolases (mEH, sEH) Hydrolysis of epoxides 

PHASE 2  

UDP – glucuronosyltransferases (UGTs) Addition of glucoronic acid  

Glutathione S – transferases (GSTs) Addition of glutathione 

Sulfotransferases (SULTs) Addition of sulfate 

N- acetyltransferases (NAT) Addition of acetyl group 

Methyltransferases  (MT) Addition of methyl group 

PHASE 3   

ATP –binding cassette transporters (ABC) Transport of ions, amino acids, peptides, 

sugars, drugs (drug efflux)  

Solute carriers transporters (SLC)  Transport of peptidomimetics, 

translocation of cationic drugs (drug 

influx); antiporters 

                                                                                                                                 

Table 1.1: Phase I, Phase II enzymes and Phase III transporters involved in drug metabolism. 

Adapted from Gonzalez and Tukey, 2005. Abbreviations: C; carbon, O, oxygen; N; nitrogen; S; 

sulphur; P; phosphorus. 
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1.6.1 PHASE I 

Phase I of drug metabolism involves oxidation, reduction, or hydrolytic reactions.       

In this phase, enzymes (Table 1.1) introduce a functional group leading to the 

modification of the drug. The modified drug usually carries hydroxyl (-OH), carboxyl 

(-COOH), sulfhydryl (-SH), or amine (NH2) group. The role of functional group is to 

increase the water solubility of the drug and alter its biological properties.         

Reactions carried out by these enzymes usually lead to the inactivation of an active 

drug. Currently, cytochromes P450 enzymes are considered to play the major role in 

Phase I drug metabolism (Gonzalez and Tukey, 2005). 

 

Cytochromes P450 

 

Forms of CYPs and their distribution 

Cytochromes P450 (CYPs) are microsomal enzymes found abundantly in the liver, 

gastrointestinal tract, lungs and kidney. Twelve families exist in all mammals, whereas 

only five of them can be found in human: CYP1, CYP2, CYP3, CYP4, and CYP7. 

Particularly, enzymes such as CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and 

CYP3A5  play an important role in hepatic / extra-hepatic metabolism as well as 

reduce or alter the pharmacologic activity of many drugs and facilitate their 

elimination (Wilkinson, 2005; Lewis, 2003; Pascussi et al, 2003). 

 

Function 

Cytochromes (CYP) are a superfamily of enzymes that contain a molecule of heme 

that is non - covalently bound to the polypeptide chain. Heme, the oxygen-binding 

moiety that also is found in the haemoglobin, contains one atom of iron in a 

hydrocarbon cage that binds oxygen in the CYP active site as a part of the catalytic 

cycle of these enzymes.  
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These enzymes use O2 and H+ derived from the cofactor- reduced nicotinamide 

adenine dinucleotide phosphate (NADPH) to carry out the oxidation of different 

substrates. Metabolism of a substrate by a CYP results in the production of an oxidized 

substrate and a molecule of water as a by-product.     However, for most of these 

enzymes the reaction is ‘uncoupled’, consuming more O2 than the substrate 

metabolized and producing activated oxygen (O2
-). This highly active molecule is 

usually converted to water by the enzyme superoxide dismutase (Lewis, 2003).  

 

Substrates, inhibitors and inductors of CYPs 

The major substrates, inducers and inhibitors are in the Table 1.2.  

 

Table 1.2: Substrates, inducers and inhibitors of major Cytochromes (P450) involved            

in drug metabolism. The picture is adapted from Lynch, 2011. 
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Gene polymorphisms 

Gene polymorphisms are a source of genetic variability. This is commonly found in 

CYP 450 enzymes and influences a patient’s response to a particular drug.            

Persons that inherited two wild –type alleles of particular cytochrome enzyme are 

considered as ‘extensive’ (normal) metabolizers. However, inheritance of one or two 

variant alleles results in decreased enzymes activity or ‘poor’ metabolizer respectively 

(Lynch et al, 2007). Finally, people with multiple copies of wild-type alleles are 

considered as ‘ultra-rapid’ metabolizers (Phillips et al, 2001).  

In the superfamily of cytochrome P450 enzymes, CYP2D6 was the first one to be 

identified with genetic polymorphism. The CYP2D6 enzyme is responsible for 

metabolizing more than 65 drugs on the market and to date around 78 variants of this 

protein have been identified (Kimura et al, 1989). The gene duplication of this enzyme 

occurs often in people with northeastern African background, whereas it is rarely seen 

in northern Europeans (Wilkinson, 2005). Contrary to ‘ultra-rapid’ genotype, the 

reduced activity of this protein is predominantly seen in blacks (variant CYP2D6*17) 

and in Southeast Asians (variant CYP2D6*10). As CYP2D6 is particularly involved 

in biotransformation of codeine to morphine, the pain relief effect is much more 

difficult to achieve in people with low enzyme activity (poor metabolism) (Sindrup 

and Brøsen, 1995).  

CYP2C19 enzymes has two major variants CYP2C19*2 and CYP2C19*3 that account 

for more than 95% of cases of poor metabolism. As CYP2C19 is responsible for 

transforming proton – pump inhibitors (omeprazole, rebeprazole, lansoprazole) these 

variants are specifically important to Southeast Asia where poor metabolism accounts 

for approximately 10-25% (Wedlund, 2000). The enzyme CYP2C9 is considered to 

be the most predominantly expressed CYP enzyme in the human liver (Kirchheiner et 

al, 2004). It metabolizes approximately 10% of the drugs and the two inherited amino 

acid substitutions Arg144Cys(*2) and Ile359Leu (*3) are known to affect catalytic 

functions of this protein (Ieiri et al, 2000; Sullivan-Klose et al, 1996; and Stubbins et 

al, 1996). Patients with these specific CYP2C9 variations have lower mean daily 

warfarin doses and a greater risk of bleeding (Redman et al, 2008). 
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In case of CYP3A4, more than 20 mutations have been discovered, however the 

variations do not translate into significant interindividual variability in vivo (Ingelman-

Sundberg et al, 2007). Different CYP3A4 polymorphisms have been described, with 

decreased (*8,*11, *13, *17), none (*20), and increased activity (*18A) allele in vitro 

(Boźina et al, 2009). However, their low frequency cannot explain common 

interindividual differences in CYP3A4 activity.  

It potentially suggests that the enzyme is well preserved, and any possible CYP3A4 

variations could be connected with genes that regulate this particular enzyme such as 

PXR, CAR, or GR transcriptional factors (Urquhart et al, 2007; Lamba et al, 2005; 

Hustert et al, 2001). 

 

1.6.2 PHASE II 

Phase II enzymes (Table 1.1) facilitate the elimination of drugs and lead to the 

inactivation of electrophilic and potentially toxic metabolites produced by oxidation 

in Phase I. Most of the phase I enzymes biologically inactivate the drug, whereas the 

phase II reactions produce a metabolite with improved water solubility and increased 

molecular weight (conjugation reactions), which serves to facilitate the elimination of 

the drug from the tissue. Currently, the three major families, UDP-

glucuronosyltransferases, sulfotransferases and glutathione S -transferases, play a 

major role in metabolism of the different drugs.  

 

UDP – glucuronosyltransferases (UGTs) 

 

UGTs and their distribution 

The mammalian UGT gene superfamily is known to consist of 117 members, where 

only four families have been identified in humans: UGT1, UGT2 (divided to 2A and 

2B), UGT3 and UGT8.  
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The enzymes of each family share approximately 40% homology in their DNA 

sequences, whereas enzymes of each subfamily are approximately 60% similar 

(Burchell et al, 1995). 

Currently, there are twenty – two human UGT proteins identified: UGT1A1, 1A3, 

1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10; 2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 

2B17, 2B28; 3A1, 3A2 and 8A1 (Mackenzie et al, 2008; Miners et al, 2006; Sneitz et 

al, 2009). Although, UGTs can be distributed in different tissues, liver is the major 

location of expression of these proteins. Seven UGT enzymes such as UGT1A1, 1A3, 

1A4, 1A6, 1A9, 2B7, and 2B15 have been considered to play a major role in human 

liver drug metabolism. It has also been described that several UGTs such as UGT1A7, 

UGT1A8, and UGT1A10 are expressed only in gastrointestinal (GI) tract, and they 

play an important role during first-pass metabolism of dietary supplements and drugs 

(Gregory et al, 2004; Tukey and Strassburg, 2000; and Cheng et al, 1999).  

 

Function 

UDP –glucuronosyltransferases (UGTs) play a major role in the process of 

glucuronidation. These enzymes are the most important enzymes of Phase II in human 

metabolism. They are responsible for metabolizing many different endobiotics 

(bilirubin, steroid hormones, bile –acids) as well as are considered to biotransform     

40-70% of all clinical drugs (Wells et al, 2004). UGTs are a superfamily of a 

membrane-bound enzymes and catalyse the transfer of glucuronic acid from the 

cofactor UDP-glucuronic acid (UDPGA) to a substrate to form B-D-

glucopyranosiduronic acids (glucuronides), metabolites that are sensitive to cleavage 

by B-glucuronidase. The enzymes are able to generate O-linked glucuronides that can 

be formed through the conjugation of UDPGA with aliphatic alcohols, phenols, 

carboxylic acids, or primary, secondary and tertiary amine linkages (Gonzalez and 

Tukey, 2005; Jancova et al, 2010).  
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Substrates, inhibitors and inductors of UGTs 

The UGT enzymes have been shown to exhibit overlap in substrate specificities, and 

to date only a few substrate – selective forms of the enzymes have been identified. 

Glucuronidation of bilirubin, the major product of heme metabolism, is catalysed only 

by UGT1A1 (Wang et al, 2006).  The enzyme has also been shown to moderately 

conjugate simple phenols, anthraquinones, and C18 steroids (Tukey and Strassburg, 

2000). Isoforms such as UGT1A3, UGT1A9, and UGT2A1 are responsible for 

conjugation of carboxylic acids (Wen et al, 2007), UGT2B7 has been shown to 

metabolise opioids (Coffman et al, 1998), UGT1A6 shows high affinity for 

conjugating complex phenols and primary amines (Miners et al, 2006; King et al, 

2000), whereas UGT1A10 preferentially conjugates bioflavonoids (Lewinsky et al, 

2005). In general, a variety of nonsteroidal anti-inflammatory, analgesic, 

anticonvulsant and antiviral drugs have been described as putative (potential) 

inhibitors of glucuronidation reactions in humans. Currently, only hecogenin (steroidal 

saponin) and fluconazole have been shown as selective inhibitors of UGT1A4 and 

UGT2B7 respectively (Uchaipichat et al, 2006a; Uchaipichat et al, 2006b), whereas 

rifampicin has been demonstrated to be a putative UGT inducer in humans (Caraco et 

al, 1997).  

 

Gene polymorphisms 

Crigler-Najjar syndrome is a rare disorder that affects the metabolism of bilirubin, 

resulting in the production of high levels of unconjugated bilirubin that often leads to 

brain damage in infants (Bosma, 2003) It has been described that there are at least 50 

mutations in UGT1A1 enzyme that cause the disease (Kadakol et al, 2000).                  

The syndrome is an autosomal recessive disorder, where type I patients have complete 

absence of UGT1A1, whereas type II patients have partial activity of this particular 

phase II enzyme. In addition, Gilbert’s syndrome, a disease with a similar pathology 

to Crigler-Najjar, is usually caused by mutation in UGT1 gene and is found in 

approximately 10% of the population (Ehmer et al, 2008).  
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Sulfotransferases (SULTs) 

 

SULTs and their distribution 

Currently, four families of SULTs have been identified in humans: SULT1, SULT2, 

SULT4, and SULT6. The SULT1 family has 9 members that are divided into four 

subfamilies: SULT1A1, 1A2, 1A3, 1A4; 1B1, 1C1, 1C2, 1C3; 1E1.  The SULT2 

family can be divided into two subfamilies: SULT2 (SULT2A1) and SULT2B, where 

SULT2B is comprised of two isoforms: SULT2B1a and SULT2B1b. SULT4 and 

SULT6 family have only one member: SULT4A1 and SULT6B1 respectively 

(Lindsay et al, 2008).  

It has been reported that members of the same SULT family share approximately 45% 

amino-acid sequence identity while members of the same subfamilies share 

approximately 60% homology (Weinshilbourn et al, 1997).  

SULT enzymes are divided into two major classes: cytosolic and membrane-bound 

ones. The membrane-bound SULTs are localised in the Golgi apparatus and are 

responsible for sulfonation of peptides and proteins, whereas the conjugation of 

xenobiotics such as drugs, steroids, bile acids and neurotransmitters occurs only in the 

cytosol (Gamage et al, 2006).  

This group of enzymes is widely distributed. The SULT1A subfamily has been 

identified in liver, brain, intestine, breast, lung, adrenal gland, kidney, placenta, and 

blood platelets. SULT1A1 enzymes exhibit the highest expression in the liver, whereas 

SULT1A3/SULT1A4 is expressed in most of the tissues except of adult liver and 

SULT1B1 showed very low expression in liver, small intestine, colon and leukocytes. 

SULT1C subfamily is highly produced in human fetus, and SULT1E1 member shows 

predominant expression both in fetal and adult liver (Hempel et al, 2004). SULT2A1 

shows the highest level of expression in liver, adrenal, duodenum and fetal adrenal 

gland (Duanmu et al, 2006).  
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SULT2B is majorly localised in human prostate (Shimizu et al, 2003), placenta 

(Dongning et al, 2004), lung (He et al, 2005), kidney (Kohjitani et al, 2006) and colon 

(Geese and Raftogianis, 2001), with no expression in the liver (Dongning et al, 2004). 

Human SULT4A1 has been identified in the brain (Liyou et al, 2003), and SULT6B1 

is produced in testis and kidney (Lindsay et al, 2008).   

 

Function  

Sulfotransferases (SULTs) are the second most important group of Phase II enzymes. 

Sulfonation (sometimes referred as sulfation) reactions are important in metabolism of 

endogenous low – molecular compounds such as steroids, serotonin, and exogenous 

compounds (drugs, chemicals). This superfamily of enzymes is located in the cytosol 

or membrane of the cell, and conjugate sulfate (sulfonate) derived from 3’-

phosphoadenosine-5’-phosphosulfate (PAPS) to the hydroxyl groups of aromatic and 

aliphatic compounds. It has been assumed (hypothesized) that SULTs are the major 

detoxification enzymes in the developing fetus, as no UGT transcripts were detected 

in fetal liver at 20 weeks of gestation (Strassburg et al, 2002). Additionally, it has been 

demonstrated that human fetal liver cytosolic fractions showed significant SULT 

activity towards a large number of substrates such as cortisol, paracetamol, 

testosterone (Ring et al, 1999). 

 

Substrates, inhibitors and inductors of SULTs 

SULT enzymes usually have different substrate preferences, however some overlap 

may be observed. SULT1A1 member usually is responsible for sulfonation of phenolic 

compounds (e.g phenols, benzylic alcohols, aromatic amines) and 4-nitrophenol has 

been used to selectively detect the activity of this particular enzyme   (Dajani et al, 

1998). SULT1A2 takes part in detoxifying substrates such as 2-naphtol or 4-

nitrophenol, however it has been demonstrated that the enzyme may also generate 

chemically reactive and mutagenic hydroxylamine metabolites (Meinl et al, 2002).  
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SULT1A3 usually shows high affinity for catecholamines, whereas SULT1B1 is 

usually restricted to thyroid hormones (Fujita et al, 1997). SULT1C1 conjugates 

iodothyronines (Li et al, 2000) and SULT1E1 exclusively regulates metabolism of 

estrogen (Falany et al, 1995). SULT2A1 form is responsible for the sulfoconjugation 

of hydroxysteroids such as DHEA, bile acids, and androgens (Comer et al, 1993).  

Currently, no particular substrates have been identified for SULT4A1 and SULT6B1.  

The inhibitors of this superfamily have been only identified for SULT1A subfamily. 

Compounds such as curcumin and quercetin have been proven to inhibit the activity 

of SULT1A1 in fetal and adult liver (Vietri et al, 2003; De Santi et al, 2002).                   

In addition, King et al (2006) have demonstrated that ibuprofen may lead to SULT1E1 

inhibition.  

Conversely, retinoic acid has been potentially shown to induce the activity of 

SULT1A1, 2A1 and 1E1 in hepatic carcinoma cell line HepG2 as well as in intestinal 

carcinoma cell line Caco-2 (Maiti et al, 2005). 

 

Gene polymorphisms 

Several genetic polymorphisms have been identified for SULT1A1, 1A2, 1A3, 1C2,  

2A1, 2A3, and 2B1, where the genetic differences of SULT1A1 have been the most 

well described (Lindsay et al, 2008). The substitution of arginine 213 (Arg213) to 

histidine amino acid results in variation of activity and thermal stability of SULT1A1. 

This mutation has been found in approximately 25-36% of Caucasians (Glatt et al, 

2004). It has also been reported that mutations in this particular enzyme may lead to 

the development of lung cancer (Arslan et al, 2009) or urothelial carcinoma          

(Huang et al, 2009).   
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Glutathione S – Transferases (GSTs)  

 

GSTs and their distribution 

Two superfamilies of GSTs have been described: soluble GSTs and MAPEG 

(membrane- associated proteins in eicosanoid and glutathione metabolism).                

The first superfamily of enzymes is usually involved in the metabolism of toxic 

xenobiotics and endobiotics, whereas the other ones biotransform arachidonic acid 

(Jancova et al, 2010).   

The soluble GSTs are subdivided into eight separate classes designated Alpha, Kappa, 

Mu, Pi, Sigma, Theta, Zeta and Omega. Most of them reside in cytoplasm, however it 

has been shown that they may be present in nucleus, mitochondria and peroxisomes 

(Soboll et al, 1995; Morel et al, 2004) There are seven classes of enzymes that are 

found in human: Alpha (A1-A4), Mu (M1-M5), Omega (O1-O2), Pi (P1), Kappa (K1), 

Theta (T1,T2) and Zeta (Z1). These enzymes share approximately 60% homology 

within a class but less than 30% identity with separate classes (Jancova et al, 2010).  

Both of the superfamilies are found in the liver, kidney, pancreas, heart, lung, brain 

and intestine (Hayes et al, 2000).  

 

Function  

The superfamily of glutathione S – transferases (GSTs) apart of detoxifying a variety 

of xenobiotics play an essential role in cellular protection against oxidative stress.  

GSTs are responsible for catalysing the conjugation of hydrophobic and hydrophilic 

compounds with reduced glutathione as well as play major role in detoxification of 

epoxides and metabolism of steroids or prostaglandins (van Bladeren et al, 2000). 

Contrary to UGTs and SULTs, GSTs defend against reactive oxygen species (ROS) 

that usually arise through metabolic processes caused by cytochromes P450 – 

mediated chemical reactions (Sheehan et al, 2001).  
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GSTs protect the cell by transferring glutathione to reactive electrophiles.                     

The tripeptide glutathione that serves a substrate is synthesized from γ –glutamic acid, 

cysteine and glycine. In cells, the glutathione exists in reduced (GSH) and oxidised   

(GSSG) state, where the GSH: GSSG ratio is critical for maintaining a cellular 

environment in the reduced state. During metabolism of different xenobiotics, the 

GSSG content may arise which leads to potential oxidative damage (Gonzalez and 

Tukey, 2005). 

 

Substrates, inhibitors and inductors of GSTs 

The electrophilic compounds such as epoxides, quinones, sulfoxides and esters are 

potential substrates for GSTs as they are able to react with the thiol moiety of 

glutathione. Only a number of substrates have been identified for specific subfamilies 

of enzymes e.g ethacrynic acid (diuretic drug) for GSTP1, trans-stilbene oxide for 

GSTM1, and relatively small molecules such as methylene chloride react with GSTT1 

(Ahokas et al, 1985; van Iersel et al, 1998; Bernardini et al, 2001; Thier et al, 1998). 

In case of inhibitors, retinoic acid has been identified to lower the activity of human 

placental and liver glutathione transferases (Kulkarni et al, 1995), whereas extracts 

from cruciferous vegetables (e.g broccoli, cabbage) or grapefruit extract may induce 

the activity of variety of human GSTs (Williamson et al, 1997).  

 

Gene polymorphisms 

Allelic variations have been identified for Alpha, Mu, Pi, and Theta GST enzymes. 

Lack of GSTM1, GSTT1, and GSTP1 genes have been associated with development 

of bladder, breast, lung or colorectal cancer as well as with higher susceptibility to 

asthma and allergies (Ritchie et al, 2009; Piirilä, et al 2001). Currently, polymorphism 

in MAPEG class of GST enzymes is unknown.  
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1.6.3 PHASE III 

Phase III transporters (Table 1.1) are important in drug absorption and distribution, 

however their major role is to excrete conjugation products from Phase II.         

Preceding their excretion, the biotransformed metabolites require transmembrane 

movement from the internal to the external compartment of the cell. Transport of 

conjugates involves different transport proteins (export pumps) as the products of 

Phase II cannot be carried out by free diffusion due to the high lipid content of the cell 

membrane which acts as a natural cell barrier (Chen, 2012). The two major 

superfamily of transport proteins that are important in Phase III metabolism are ATP-

binding cassette transporters (ABC transporters) and Solute Carrier Transporters (SLC 

Transporters), where ABC transporters are considered to be the most important in the 

drug efflux process (Russel, 2010). 

 

ATP – Binding Cassette Transporters (ABC transporters)  

 

ABC transporters and their distribution 

Human ATP – binding cassette transporters (ABC transporters) are grouped into seven 

subfamilies (ABCA, ABCB, ABCC, ABCD, ABCE, ABCF and ABCG) encoding 49 

different proteins (Sheps and Ling, 2007).  

Only three major subfamilies out of seven: ABCB (ABCB1/MDR1), ABCC 

(ABCC1/MRP1, ABCC2/MRP2, ABCC3/MRP3, ABCC4/MRP4), and ABCG 

(ABCG2/BCRP) are specifically involved in drug transport (Szakacs et al, 2008).     

All of these subfamilies are widely distributed, especially in transporting epithelia such 

as liver, intestine and kidney as well as in tissues such as placenta and brain where the 

barrier function is crucial.  
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Function  

In general, transporters can be categorized as the influx or efflux proteins, depending 

on the direction in which the carriers translocate the compounds. ABC transporters 

proteins are considered as the efflux transporters because they use energy derived from 

ATP hydrolysis to mediate the primary active export of drugs from the intracellular to 

the extracellular milieu, often against a steep diffusion gradient.  

The major protein of ABCB family is MDR-1, also called P-glycoprotein (P-gp).    

This protein is usually located on the apical (canalicular) side of intestine, liver and 

kidneys and plays major role in reducing systemic drug exposure by limiting oral 

absorption and facilitating urinary and bile excretion (Brinkmann and Eichelbaum, 

2001).  

The multidrug resistance – associated proteins (MRP) belong to ABCC subfamily and 

mediate transport of organic compounds of Phase II such as glutathione, glucoronide, 

and sulfate conjugates but also are able to facilitate the efflux of cationic substrates in 

the presence of reduced glutathione. The MRPs have variety of functions depending 

on the hepatic localisation. MRP2 is located at the apical membrane, emphasizing its 

crucial role in excreting anionic drugs and conjugates at the last stages of metabolism 

(Nies and Keppler, 2007). MRP1 and MRP3 are located at the basolateral (sinusoidal) 

side of hepatocytes, therefore they efflux UGT-processed drugs from the intestine to 

the blood (Borst et al, 2007). Contrary to the other MRPs, MRP4 is located at the both 

sides of the membrane. In hepatocytes, the transporter is localized at the basolateral 

side but is expressed at the apical side of renal and proximal tubule cells, indicating 

renal drug elimination (Rius et al, 2003).  

Breast Cancer Resistance Protein (BCRP/ ABCG2) is the only transporter from the 

ABCG subfamily that is involved in drug metabolism. These proteins require homo – 

or heterodimerisation to create an active transporter. 
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Substrates, inhibitors and inductors of ABC transporters  

ABCB1/MDR1 (P-gp) can interact with a wide variety of substrates such as anticancer 

drugs, steroids, linear and cyclic peptides (Sharom, 2011). Some drugs such as 

cyclosporines are substrates and inhibitors, other drug like nifedipine are inhibitors, 

whereas digoxin is only a substrate (Schinkel et al, 1995; Anglicheau et al, 2006; Liow 

et al, 2007; Choi et al, 2013). It has been demonstrated that particular substrates for P-

gp are also potential substrates for CYP3A4, confirming that the substrate overlap is 

connected with the coordinated regulation and tissue expression in the liver as well as 

with common role in protecting the host from the environmental toxins (Marzolini et 

al, 2004). The major substrates of subfamily ABCC1/MRP1 protein include 

conjugates of lipophilic compounds with glutathione, glucuronate, or sulfate, 

including cysteinyl leukotriens, 17β – glucoronosyl estradiol where the glutathione S-

conjugate leukotriene C4 has the highest affinity for this transporter (König et al, 1999).  

Leier et al (1996) identified that glutathione disulphide has low affinity for MRP1 

potentially indicating that the export pump plays a role in oxidative stress where the 

levels of glutathione disulphide increase. The anticancer drug methotrexate is effluxed 

by MRP1 in its native form (Hooijberg et al, 1999). Contrary to MRP1, MRP2 

transporter plays a major role in eliminating bilirubin glucuronosides.                       

MRP3 preferentially transports glucuronosides and has 10-fold higher affinity for 17β 

- glucoronosyl estradiol than MRP2 suggesting that MRP3 eliminates these 

compounds when MRP2 protein function is impaired (Jedlitschky et al, 1997 and Loe 

et al, 1997). The first endogenous substrate identified for ABCG/BCRP protein was 

porphyrin/heme therefore the protein plays an important role in heme homeostasis 

regulation under hypoxic conditions (Krishnamurthy et al, 2004). The transporter 

mainly transports drugs such as cimetidine, antibiotics as well as effluxes irinotecan 

and SN-38, the major anticancer compounds (Doyle and Ross, 2003; Sarkadi et al, 

2006; Nakatomi et al, 2001; Noguchi et al, 2014). 
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Gene polymorphisms 

To date, around 29 short nucleotide polymorphisms (SNPs) have been reported in 

MDR1 gene. SNPs in exons 26 and 21 have been widely characterised in different 

ethnic populations. One of the major mutation in exon 26 (3435 C>T) does not affect 

the amino acid composition, however the P-gp function may be reduced in the intestine 

which results in differences in pharmacokinetic parameters for substrates such as 

digoxin (cardiac glycoside) (Brinkmann and Eichelbaum, 2001) 

A couple of studies have demonstrated genetic variants in ABCC family transporters 

in vitro. In one study, the genetic variant Arg433Ser in MRP1 (ABCC1) protein 

decreased transport of leukotriene C4, where in the other study the same SNP 

conferred a 2.1 – fold resistance to doxorubicin anticancer drug compared to cells 

expressing the wild type MRP1 protein (Conrad et al, 2002). The genetic analysis of 

other proteins of this family have revealed that heterozygous SNP Arg412Gly in 

MRP2 that occurs in protein-substrate binding region results in loss of transporter 

activity (Hulot et al, 2005), whereas SNPs such as 211 C>T found at the promoter 

region of MRP3 leads to significantly lower mRNA levels of this particular gene (Lang 

et al, 2004). Krishnamurthy et al (2008) have demonstrated that SNPs in MRP4 protein 

such as r23765534 that often occurs in the Japanese population (>18%) reduce 

transporters function through impairment of membrane localization usually leading to 

high sensitivity to some drugs (e.g thiopurines).  

Different genetic variants have been demonstrated to occur in ABCG2 (BCRP) 

transporter. Polymorphisms in this particular protein have been shown to be associated 

with adverse reactions in patients treated with anticancer drug gefitinib as well as have 

been found to be highly predictive of plasma uric acid levels in patients potentially 

suffering from hyperuricemia (Lemos et al, 2011).   

Fukuda et al (2010) have identified that some SNP of the ABC transporter genes such 

as ABCB1 (MDR1), ABCB11(BSEP), and ABCC1 (MRP1) are associated with 

susceptibility of developing hepatocellular carcinoma (HCC), implying that aberrant 

hepatic clearance of toxic substances may increase the risk of hepatocarcinogenesis. 

 



58 
 

1.6.4 DRUG-INDUCED LIVER INJURY AND CURRENT BIOMARKERS 

Genetic polymorphism of the major drug metabolic enzymes (Chapter 1; Paragraph 

1.6) has been demonstrated not only to play a key role in pathogenesis of inherited 

metabolic disorders or liver cancers but also in drug-induced liver injury (DILI).  

DILI represents a major human health concern as it accounts for approximately 50% 

of acute liver failure cases and is one of the leading causes of transplantation in 

Western countries (Lee, 2003). Currently, liver injury caused by either intrinsic or 

idiosyncratic drug reactions is a major challenge for industry and regulatory authorities 

as it terminates the further development of the substance both at the pre-clinical and 

clinical stages. What is more, in most cases the drug hepatotoxicity is recognized post-

marketing therefore DILI is the significant reason for withdrawing drugs from the 

market (Williams et al, 2013).  

Paracetamol (APAP; acetaminophen) accounts for approximately 50-80% of drug-

associated cases of liver failure (Lee, 2003). Although paracetamol – induced 

hepatotoxicity is predictable (intrinsic) and well understood, it has been proven that 

half of the cases are believed to be the result of unintentional therapeutic 

misadventures (idiosyncratic) (Ostapowicz et al, 2002; Larson et al, 2005). Regardless 

of the drug or type of hepatotoxicity, DILI is difficult to assess due to lack of 

appropriate predictive models and specific biomarkers and therefore is a process of 

exclusion (Williams et al, 2013; Antoine et al, 2014).  

Currently, different genetic risk factors (e.g polymorphism of metabolising and 

mitochondrial enzymes, MHC/HLA genotype) and environmental factors (e.g drug 

interaction; alcohol consumption) have helped researchers to understand the 

complexity of drug induced hepatotoxicity and improve ‘personalized medicine’. 

Although these factors are promising, identification of all possible factors causing 

DILI and establishment of appropriate in vitro/in vivo models still remain a challenge 

in DILI prediction (Russmann et al, 2009; Tujios and Fontana, 2011). 
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To overcome these problems, serum biomarkers such as keratin 18 (K18), high 

mobility group box – 1 (HMGB1), and glutamate dehydrogenase (GLDH) in addition 

to current alanine/ aspartate transaminases (ALT/AST) and alkaline phosphatase 

(ALP) have been discovered (O’Brien et al, 2002; Antoine et al, 2012; Schutte et al, 

2004; Wieckowska et al, 2006; Cummings et al, 2008) . Although very promising, the 

specificity of these markers to hepatic injury is still not well evaluated (Fontana, 2014, 

Antoine et al, 2014).  

Recently, microRNAs have been demonstrated not only to be potential and sensitive 

biomarkers for DILI (e.g miR-122 and miR-192) (Wang et al, 2009; Starkey Lewis, 

2011) but also they have been shown to regulate internal metabolic processes that may 

be useful determining the underlying biology and in the future assessment and 

treatment of serious drug-induced liver injuries (Yokoi and Nakajima, 2012; Yu and 

Pan, 2012).  

 

1.7 MICRORNAS 

 

MicroRNAs as gene regulators 

MicroRNAs (miRs; miRNAs) are an important class of non-coding small RNAs that 

possess a large range of biological activities in a variety of organisms (Breving and 

Esquela – Kerscher, 2010). In the human genome approximately 1000 miRs have been 

encoded and they have been shown to play an important role in embryonic 

development, cell proliferation, tissue differentiation and metabolism (Liu and Olson, 

2010; Darnell et al, 2006; Suh et al, 2004; Hwang and Mendell, 2006; Rottiers and 

Näär, 2012).  
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Nomenclature 

According to miRBase (the microRNA database; www.mirbase.org) and Ambros et al 

(2003) each microRNA has a specific name and identifier. The first three letters of the 

microRNA signifies the organism that the molecule comes from (e.g ‘hsa’ in hsa-miR-

121 stands for ‘human’). The mature microRNA is designated as ‘miR’, whilst ‘mir’ 

refers to microRNA gene and the predicted stem loop of the primary transcript. If two 

microRNA precursors are at different genomic loci but give rise to the same mature 

microRNA then they are designated as ‘hsa-mir-121-1’ and ‘hsa-mir-121-2’. Letter 

suffixes usually denote closely related mature microRNA sequences such as ‘hsa-miR-

121a’ and ‘hsa-miR-121b’. If precursor gives rise to two mature microRNA strands 

then the molecule that is predominantly expressed (usually a guide strand) is 

designated ‘hsa-miR-121’, whereas the less abundant sequence (passenger strand, 

from the opposite arm) is denoted as ‘hsa-miR-121*’. When the data is insufficient to 

determine which of the molecules is more predominant, then names like ‘hsa-miR-

121-5p’ (from 5’ arm) and ‘hsa-miR-121-3p’ (from opposite 3’ arm) are given. 

 

Genomic location 

In regards to genomic location, miRs can be intergenic, intronic or exonic (Olena and 

Patton, 2010). The intergenic miRs are usually found in genomic regions distinct from 

their own transcripts and can be divided to monocistronic (with their own promoters) 

or polycistronic (where several miRs are transcribed as cluster of primary transcripts). 

The most studied group are intronic miRs that are found in the introns of protein –

coding and non-coding genes and can be present as a single miR or a cluster of several 

miRs. The exonic miRs are the novel family of miRs where they overlap exon and 

intron of the non-coding gene (Bartel, 2004). 

 

 

 

http://www.mirbase.org/
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Regulation of microRNAs  

The regulation of miRs is poorly understood, however several studies have proven that 

these molecules can be controlled by DNA-binding (c-Myc, HNF4a and p53) and 

epigenetic factors (DNA-methyltransferases; DNMT1 and DNMT3b) (Breving and 

Esquela – Kerscher, 2010; Chang et al, 2008; Chang et al, 2007; Han et al, 2007; 

Bender, 2008). MiR processing and maturation might also be under nuclear and 

cytoplasmic regulation. Factors such as ribonucleoprotein A1 (hnRNP A1) binds to 

primary microRNA stem loop regions (UAGGGA/U elements) and induces 

conformational changes to allow Drosha processing, whereas KH-type splicing 

regulatory protein (KSRP) recognizes the terminal loop of pre-miRs, therefore 

promoting Dicer- mediated processing in the cytoplasm (Michlewski et al, 2008; 

Trabucchi et al, 2009).  

MiR biogenesis may also be negatively regulated by RNA binding protein LIN-28 

(inhibition of Drosha/Dicer binding to pre-miR) and RNA editing (replacement of 

adenosine to inosine within the hairpin region of pre-miR) (Moss et al, 1997; Newman 

et al, 2008; Yang et al, 2006). Under certain conditions miR have been shown to be 

regulated by Hu-antigen R (HuR) (Bhattacharyya et al, 2006), Dead and Homolog 1 

(Dnd1) (Kedde et al, 2007), and Importin 8 (Weinmann et al, 2009).   

 

1.7.1 MICRORNA BIOGENESIS AND FUNCTION 

MicroRNAs are usually transcribed by RNA polymerase to form long (>100 nt) 

hairpin primary structures called primary microRNAs (pri-miRs) (Lee et al, 2004). 

These molecules are then further cleaved by the endonuclease Drosha and its cofactor 

DGCR8 (DiGeorge Syndrome Critical Region 8) to form approximately 70 nt long 

precursor microRNA (pre-miR) (Denli et al, 2004). The pre-miR is then exported to 

the cytoplasm by exportin 5 (Yi et al, 2003) through the nuclear pore complex where 

it is further processed by the Dicer enzyme to yield ~ 22 nt long  miR-miR* duplexes 

(Chendrimada et al, 2005).  
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The passenger strand (miR*) is usually degraded and the guide strand is incorporated 

to the RNA induced silencing (RISC/Argonaute) complex, although ocassionally both 

strands can give rise to mature and functional microRNAs (Khvorova et al, 2003).   

The complex then induces the gene silencing/activation at the post-transcriptional 

level with several mechanisms. The perfect match between miR and the coding region 

of the particular mRNA leads to the transcript cleavage processed by the Argonaute 2 

(Ago 2) enzyme that out of four Argonautes present in mammals has a ‘slicer’ activity. 

If the match is perfect or imperfect between miR and 3’utranslated region (3’UTR) of 

the mRNA it usually leads to translational repression (inihibition of initiation factors 

and 40S/60S ribosomal subunits; ribosomal drop off) or stimulation (binding to 5’UTR 

elements of mRNA) as well as mRNA degradation / storage (deadenylation, decapping 

followed by 5’-3’ degradation, storage in P- bodies) (Djuranovic et al, 2012; Henke et 

al, 2008; Vasudevan et al, 2007; Filipowicz et al, 2008). Recently, microRNAs have 

been found in exosomes (circulating plasma microvesicles), indicating their potential 

role in intercellular communication (Gibbings et al, 2009) (Figure 1.5) 

It has been proven that microRNAs may also act at the transcriptional level by inducing 

the repressive chromatin state by recruting different epigenetic factors, may block the 

binding of polymerase II or basic trancriptional factors (Zardo et al, 2012; O’Connell, 

2012; Pastori et al, 2010). In addition, it has also been reported that microRNAs may 

activate gene transcription by a process known as RNA activation (RNAa)               

(Place et al, 2007) (Figure 1.5) 
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Figure 1.5: MicroRNA biogenesis. MicroRNAs are transcribed to form long pri-miRNA that is further 

cleaved by Drosha enzyme and DGCR8 to form ~ 70-100 nt long pre-miR. The pre-miR is further 

processed by the Dicer and the guide strand is incorporated to RISC/Argonaute complex that acts at 

post-transcriptional level (translational repression, P-body sequestration, mRNA degradation) or at 

trancriptional level (recruitment of epigenetic factors or  basic transcriptional factors binding inhibition). 

Abbreviations: RISC, RNA-Induced Silencing Complex; TRBP, TAR RNA Binidng Protein; DGCR8, 

DiGeorge Syndrome Critical Region 8. Picture adapted from Liu and Olson (2010).  

 

1.7.2 THE ROLE OF MICRORNAS IN LIVER DISEASES AND DRUG-INDUCED 

LIVER INJURY 

MicroRNAs are estimated to control approximately 20-30% of mRNA targets, 

therefore it is not surprising that they regulate different biological process and may be 

involved in the pathogenesis of many human diseases. Currently, microRNAs have 

been demonstrated to play an essential role in the pathogenesis of lung (Oglegsby et 

al, 2010; Tomankowa et al, 2010), liver (Gramantieri et al, 2008), kidney (Wu et al, 

2014), sickle cell disease (Chen et al, 2008), endometrium disease (Ohlsson Teague et 

al, 2009), and infectious disease (Gupta et al, 2009).   
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In the case of the liver, microRNAs have been involved in the pathogenesis of different 

liver cancers (Kota et al, 2009; Gramantieri et al, 2008), liver diseases (Zheng et al, 

2010; Tang et al, 2009), HCV infection (Jopling et al, 2005; Hou et al, 2010) as well 

as in the important processes connected with lipid (Rayner et al, 2010; Esau et al, 

2006) and drug metabolism (Pan et al, 2009; Takagi et al, 2010; Yokoi and Nakajima, 

2013; Wang et al, 2014).  

MicroRNAs have been shown to regulate the expression of drug metabolizing 

enzymes and transporters by direct targeting the 3’ UTR of the gene transcripts or 

‘indirect’ targeting the transcription factors (e.g nuclear receptors) that regulate these 

molecules. Therefore, modulation of the microRNA pathways may lead to an altered 

capacity of drug metabolism and disposition, and a different response to cell 

metabolism (Yu, 2009).  

The microRNA regulation of drug metabolism in connection with new improved in 

vitro stem cell models may provide a better understanding of drug-associated injury 

and identify new targets which could lead to clinical translation in the future. 

 

1.7.3 COMPUTER PROGRAMMES TO PREDICT MICRORNA BINDING 

As deregulation of genes controlled by microRNAs is linked with many different 

disorders, including cancer and metabolic diseases, it is essential to reliably predict 

potential microRNA targets which might be involved in the pathogenesis of these 

diseases.  In order to examine microRNA-mRNA binding efficiency, a variety of 

microRNA target prediction algorithms have been available online. The most 

commonly computational tools used are: TargetScan, PicTar, DIANA-microT, 

miRanda, rna22 and PITA.  These algorithms take into consideration different 

parameters that contribute to the final score such as seed match type, 3’ 

complementarity, free energy binding and conservation. In order to evaluate the 

authenticity of the target prediction programmes, there are two statistical parameters 

used to characterise their performance, namely: sensitivity (a percentage of correctly 

predicted targets out of total correct ones) and specificity (a percentage of correctly 

predicted among overall predicted ones). 
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It has been suggested that the emphasis should be put more on sensitivity in the search 

of all potential targets for specific microRNA and on specificity in the examination of 

microRNAs regulating a single gene (Witkos et al, 2011). 

According to Alexiou et al (2009) research, TargetScan, DIANA-microT, and PicTar 

have a highest precision and sensitivity, and therefore are very useful to consider site 

conservation (Witkos et al, 2011). Contrary to these softwares, miRanda has been 

considered as a tool with low precision and too many false positives (John et al, 2004).  

What is more, Baek et al (2008) studies on the influence of miR-223 on the protein 

output in mouse neutrophils demonstrated that TargetScan and PicTar where the best 

in predicting microRNA-mRNA binding sites that where validated in in vivo results. 

Moreover, only TargetScan total context score that is assigned to each result, 

correlated with protein downregulation in this study. Contrary to TargetScan, DIANA-

microT tool examines each target site independently, and therefore it is not a useful 

programme to analyse microRNAs with multiple target sites (Kiriakidou et al, 2004; 

and Witkos et al, 2011). In addition, PITA and rna22 algorithms focus on novel 

features of microRNA-mRNA interactions; target site accessibility and pattern 

recognition, respectively. Although the latter ones might be useful, their microRNA 

target sites prediction is very low (Kertesz et al, 2007; Miranda et al, 2006).  

 

1.8 THE OBJECTIVES OF THE THESIS  

The study centres on the major metabolic cell type of the liver, the hepatocyte.            

The major interest was in the hepatocyte damage after drug overdose. While a number 

of models exist, their drawbacks outweigh their advantages, resulting in poor 

performance. To circumvent those issues, a reliable biological model is required.       

The project begins with the characterisation of the pluripotent stem cell – derived 

hepatocytes under defined and serum-free conditions. These hepatocytes may serve as 

a scalable, genetically stable, and renewable model to more appropriately study drug 

overdose. In addition to this, microRNAs have been demonstrated to play an essential 

role in drug metabolism and toxicity.  This thesis therefore examines the hypothesis 

that the optimized hepatic model can serve as a platform to study paracetamol 
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(acetaminophen, APAP) toxicity in vitro and allow to understand the regulatory role 

of particular microRNAs in metabolism of a drug. The experiments focused on human 

APAP toxicity following overdose, with a view to identifying non-coding microRNAs 

which could reduce or attenutate this process.  

The findings in the thesis may provide better understanding of the biological processes 

underlying drug-induced liver injury and potentially have application in managing 

DILI in the future.   
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2.1 MATERIALS AND SOLUTIONS 

2.1.1 REAGENT SOLUTIONS/CHEMICALS/SDS GELS 

Table 2.1: Reagent solutions/ chemicals/SDS gels 

NAME CONTENT SUPPLIER 
SUMO SDS Lysis Buffer 2% SDS 

50 mM Tris pH8 

1 mM EDTA 

10 mM Iodoacetamide 

Sigma - Aldrich 

 Sigma - Aldrich 

Sigma - Aldrich 

Sigma - Aldrich 

RIPA Buffer 25 mM Tris HCl pH 7.6 

150 mM NaCl 

1% NP-40 

1% Sodium deoxycholate 

0.1% SDS 

Thermo Scientific 

(Life Technologies) 

Western Running Buffer NuPAGE® MES SDS 

Running Buffer (x 20) 

Life Technologies 

Western Transfer Buffer NuPage® Transfer Buffer 

(x 20) 

Life Technologies 

1 x PBS 0.01 M phosphate buffer 

0.0027M potassium chloride 

0.137 M sodium chloride 

Sigma – Aldrich 

Tween - 20  Sigma - Aldrich 

DDT  Sigma - Aldrich 

SeeBlue® 10 pre-stained protein bands 

(4-250 kDa) 

Life Technologies 

Protease Inhibitor Cocktails  Sigma - Aldrich 

Protein Loading Dye NuPAGE® LDS Sample 

Buffer (x4) 

Life Technologies 

Antioxidant NuPAGE®  Life Technologies 

SDS Gel NuPAGE® 4-12% Bis Tris Life Technologies 

 

2.1.2 PLURIPOTENT STEM CELL LINES 

Table 2.2:  List of stem cell lines 

CELL LINE DESCRIPTION 
H9 Female embryonic stem cell line (WT) 

33D6 Induced pluripotent stem cell line (WT) 

MAN 11  Female embryonic stem cell line (WT) 

MAN 12 Male embryonic stem cell line (WT) 
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2.1.3 CELL CULTURE MEDIA, FACTORS, REAGENTS AND CULTURE PLATES 

Table 2.3:  List of cell culture media, growth factors, and reagents used. 

REAGENTS/ FACTORS / MEDIA SUPPLIER 
L – GlutaMAX Life Technologies 

50 x B27 supplement Life Technologies 

Knockout Serum Replacement (KO-SR) Life Technologies 

Non-Essential Amino Acids (NEAA) Life Technologies 

2 – mercaptoethanol Life Technologies 

Foetal Bovine Serum Life Technologies 

Essential 8 (E8) Life Technologies 

Dulbecco’s Modified Eagle Medium (DMEM) Life Technologies 

Knockout DMEM (KO-DMEM) Life Technologies 

RPMI 1640 Life Technologies 

HepatoZyme ™ (HZ/HZM) Life Technologies 

Leibovitz’s Medium (L-15) Life Technologies 

Lipofectamine RNAiMax  Life Technologies 

EDTA Life Technologies 

Collagenase IV Life Technologies 

1 x Penicillin/Streptomycin (Pen/Strep) Life Technologies 

TrypLE Life Technologies 

Pierce™ BCA Protein Assay Kit  Life Technologies 

mTeSR1 Stem Cell Technologies 

Gentle Cell Dissociation Reagent Stem Cell Technologies 

Wnt3a Peprotech 

Activin A (AA) Peprotech 

Hepatocyte Growth Factor (HGF) Peprotech 

Oncostatin M (OSM) Peprotech 

Insuline (bovine pancreas) Sigma – Aldrich 

Tryptose phosphate broth Sigma - Aldrich 

Ascorbic Acid Sigma - Aldrich 

Hydrocortisone 21- hemisuccinate sodium Sigma - Aldrich 

P450 – Glo (TM) CYP Assay Promega 

CellTitre-Glo® Luminescent Cell Viability 

Assay 

Promega 

GSSG/GSH Assay Promega 

Caspase 3/7 activity Assay Promega 

MEF- Conditioned Medium (MEF-CM) R&D Systems 

Matrigel® (10 x) BD Bioscience/Corning 

Multiwell culture plates Corning (Costar)/ Iwaki 

Albumin ELISA Assay Kit Alpha Diagnostics 

Hepatocyte Culture Medium (HCM) Lonza 

ROCK Inhibitor (Y-27632) Millipore/Calbiochem 
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2.1.4 MEDIA AND SUPPLEMENT PREPARATION FOR EACH CELL LINE 

MAINTENANCE AND DIFFERENTIATION STAGE   

Table 2.4: Media and supplements used for culturing and differentiating PSCs. 

Cell Line Medium Supplements 
Re-seed 
dilution 

Human Embryonic 

Stem Cells 

mTeSR1 (MT) N/A 1:3 / 1:4 

Essential 8 (E8) N/A 1:4 

 

 

 

Human Induced 

Pluripotent Stem 

Cells 

 

 

 

MEF- Conditioned 

Medium (MEF –CM) 

 

1% L-GlutaMAX per 100 

ml of medium 

 

10ng/ml basic fibroblast 

growth  factor (bFGF) 

 

 

 

 

1:2 

Essential 8 (E8) N/A 1:3 / 1:4 

 

 

Embryoid Bodies 

 

Dulbecco’s  Modified 

Eagle Medium 

(DMEM) 

 

20% FCS/FBS 

1% L-GlutaMAX 

 

 

N/A 

hESC/hiPSC Derived 

Definitive Endoderm 

Advanced RPMI 1640 

medium 

              50 x B27 

50ng/ml Wnt3a 

100ng/ml AA 

1% Pen/Strep 

N/A 

 

hESC/hiPSC Derived 

Hepatic Progenitors 

 

Knockout DMEM 

(KO-DMEM) 

20% KO-SR 

0.5% L-GlutaMAX 

1% NEAA 

0.2% B-mercaptoethanol 

1% DMSO 

1% Pen/Strep 

N/A 

 

 

hESC/hiPSC Derived 

Hepatocytes 

 

 

HepatoZyme™ 

 

         10ng/ml HGF 

20 ng/ ml OSM 

1% hydrocortisone 21-

hemisuccinate (10uM) 

1% L-GlutaMAX 

         1% Pen/Strep 

N/A 

Hepatocyte Culture 

Medium (HCM) 
N/A 

Leibovitz’s Medium 

(L-15) 

10ng/ml HGF 

20 ng/ ml OSM 

1% hydrocortisone 21-

hemisuccinate (10uM) 

1% L-GlutaMAX 

8.3% Tryptose phosphate 

broth 

8.3 % FBS 

1uM Insuline 

0.2% Ascorbic acid 

1% Pen/Strep 

 
N/A 
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2.1.5 ANTIBODIES  

Table 2.5: List of primary / secondary and flow antibodies 

Primary Antibodies    

Antigen Type Company Dilution 

Oct 4 Rabbit Poly Abcam 

1:200 (WB) 

1:250 (ICC) 

Sox 17 Goat Poly R&D Systems 1:500 (ICC) 

Foxa 1 Mouse Mono Abcam 1:200 (ICC) 

HNF4a Rabbit Poly Santa Cruz 

1:200 (WB) 

1:100 (ICC) 

AFP Mouse Mono Sigma - Aldrich 1:500 (ICC) 

AFP Mouse Mono Abcam 1:200 (WB) 

CYP3A Sheep Poly University of Dundee 1:100 (WB) 

A1AT Mouse Mono Abcam 1:200 (WB) 

Albumin (ALB) Mouse Mono Sigma - Aldrich 

1:2000 (WB)  

1:500 (ICC) 

E-cadherin Mouse Mono Abcam 

1:200(WB) 

1:100(ICC) 

GSTP1 Rabbit Poly Abcam 1:50 (ICC) 

GSTT1 Rabbit Poly Abcam 1:500 (ICC) 

SULT1A1 Mouse Mono Abcam 1:100 (ICC) 

SULT2A1 Rabbit Poly Abcam 1:250 (ICC) 

UGT1A1 Mouse Mono R&D Systems 1:100 (ICC) 

ABCC1 Mouse Mono Abcam 1:50 (ICC) 

ABCG2 Mouse Mono Abcam 1:100 (ICC) 
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B-actin Mouse Mono Sigma 1:10000 (WB) 

DAPI (Hoechst3342)  Life Technologies 2 drops per ml 

Secondary Antibodies    

Antigen Host Company Dilution 

Anti-Goat 488 Donkey Molecular Probes 1:400 

Anti-Mouse 488 Rabbit Molecular Probes 1:400 

Anti-Rabbit 568 Goat Molecular Probes 1:400 

Anti – Rabbit 488 Goat Molecular Probes 1:400 

Anti-mouse IgG HRP Goat DAKO 

1:1000           

(ALB 1:2000) 

Anti-rabbit IgG HRP Swine DAKO 1:1000 

   Anti- goat IgG HRP Rabbit DAKO 1:1000 

Anti- sheep IgG HRP Rabbit DAKO 1:1000 

Flow Cytometry Antibodies 

Antigen Type Company Dilution 

Anti –human Tra – 1-60 PE eBioscience 1:50 

Anti-human Tra – 1-81 APC eBioscience 1:50 

Anti-human CD15(SSEA1) FITC eBioscience 1:50 

Anti-human SSEA4 PE eBioscience 1:50 

Mouse IgG1 κ Iso Control APC eBioscience 1:50 

Mouse IgG1 κ Iso Control FITC eBioscience 1:50 

Mouse IgG1 κ Iso Control PE eBioscience 1:50 
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2.1.6 PRIMERS (Taqman) 

Table 2.6: List of primers and LightCycler 480 cycle conditions 

GENE SUPPLIER PRIMER ID 
OCT 3/4 Applied Biosystem Hs00742896_ s1 

NANOG Applied Biosystem Hs02387400_g1 

SOX17 Applied Biosystem Hs00751752_s1 

CXCR4 Applied Biosystem Hs00237052_s1 

NODAL Applied Biosystem Hs01086749_m1 

HNF4a Applied Biosystem Hs01023298_ m1 

HNF1B Applied Biosystem Hs01001604_m1 

AFP Applied Biosystem Hs01040601_m1 

ALB Applied Biosystem Hs00910225_m1 

ECAD Applied Biosystem Hs01023895_m1 

GSTT1 Applied Biosystem Hs00184475_m1 

SULT2A1 Applied Biosystem Hs00234219_m1 

UGT1A1 Applied Biosystem Hs02511055_m1 

B2M Applied Biosystem Hs00984230_ m1 

GAPDH Applied Biosystem Hs02758991_g1 

   

 Cycle Conditions (LightCycler 480 system; Roche) 
Step Temperature / Time /Ramp Rate 

Pre-Incubation      

(1 cycle) 

95°C / 10 min / 4.8°C/s 

Amplification 

(40 cycles) 

95°C  /  10 sec / 4.8°C/s 

60°C / 30 sec / 2.5 °C/s 

Melting (1 cycle) 95°C/ 1s/  4.8°C/s 

60°C/ 1 min/ 2.5 °C/s 

99°/ Continuous/ 0.11°C/s 

Cooling (1 cycle) 40°C / 30s/ 2.5°C/s 
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2.1.7 MICRORNA PRECURSORS AND ANTAGOMIRS  

All precursors (Pre-miR™) and antagomirs (Ant-miR™) were purchased from 

Ambion (Life Technologies). The oligonucleotides are listed in Table 2.7 below:  

Table 2.7:  List of precursors and antagomirs 

microRNA Type Company 
miRBase (miR) 

Accession Number  

hsa-miR-122-5p Precursor Ambion  (PM11012) MI0000442/MIMAT0000421 

hsa-miR-122-5p Antagomir Ambion  (AM11012) MI0000442/MIMAT0000421 

hsa-miR-483-3p Precursor Ambion  (PM12478) MI0002467/MIMAT0002173 

hsa-miR-483-3p Antagomir Ambion  (AM12478)) MI0002467/MIMAT0002173 

hsa-miR-24-3p Precursor Ambion  (PM10737) MI0000080/MIMAT0000080 

hsa-miR-24-3p Antagomir Ambion  (AM10737) MI0000080/MIMAT0000080 

hsa-miR-148a-3p Precursor Ambion (PM10263) MI0000243/MIMAT0000243 

hsa-miR-148a-3p Antagomir Ambion (AM10263) MI0000243/MIMAT0000243 

hsa-miR-324-5p Precursor Ambion (PM10253) MI0000813/MIMAT0000761 

hsa-miR-324-5p Antagomir Ambion (AM10253) MI0000813/MIMAT0000761 

Negative Control  Precursor Ambion (AM17110)  

Negative Control Antagomir Ambion (AM17010)  

Cy3- Negative 

Control 
Precursor Ambion (AM17120)  

Cy3-Negative 

Control 
Antagomir Ambion (AM17011)  
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2.2 MAMMALIAN CELL CULTURE AND DIFFERENTIATION 

2.2.1 MAINTENANCE OF PLURIPOTENT STEM CELL CULTURES 

Coating of culture dishes with Matrigel® 

A 10 ml stock bottle of Matrigel® (MG; BD Biosciences, UK) was thawed overnight 

at 4°C on ice. 10 ml of KO-DMEM (Life Technologies, UK) was added to the stock 

bottle and mixed using a pipette. Matrigel® was aliquoted to 1ml aliquots and stored 

at -20°C. When required, the aliquot of Matrigel® was thawed at 4°C overnight before 

being coated to avoid the formation of a gel. Approximately 17 ml of cold KO-DMEM 

was added to 1 ml aliquot, mixed and added to the wells, depending on the plate format.  

Table 2.8:  The amount of Matrigel® per well of the specific plate format. 

 

Plate Format Volume / Well 

6 well plate 1 ml  

12 well plate 0.5 ml  

24 well plate 0.3 ml  

 

The MG-coated plates were either stored overnight at 4°C or left for an hour at room 

temperature before adding a cell suspension.  

 

Culturing hESC and hiPSC populations  

a) hESC and hiPSC cultured in MEFs-free conditions (CM, MT, E8) 

hESCs were cultured for over 30 passages on Matrigel® coated 6 well plates and were 

fed either with 3 ml of mTeSR-1® (MT, Life Technologies) or Essential 8 ® (E8, Life 

Technologies). After 24 hours, the medium in the plates was aspirated and 3 ml of 

fresh MT or E8 was added. The cells were incubated at 37°C in 5% CO2 for optimal 

growth.  

hiPSC were cultured on Matrigel® coated 6 well plates and fed either with 3 ml Mouse 

Embryonic Fibroblast Conditioned Medium (MEF-CM, R&D) supplemented  with 

10ng/ml basic Fibroblast Growth Factor (bFGF) or  Essential 8 ®                                     
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(E8, Life Technologies). After 24 hours, the medium was aspirated and 3ml of fresh 

medium (MEF-CM or E8) was added. The cells were incubated at 37°C in 5% (v/v) 

CO2 for optimal growth. 

b) hiPSC cultured on Mouse Embryonic Fibroblasts (for EB formation) 

 

A vial of irradiated MEFs (GlobalStem® MEF CF-1) of concentration 5 x 105 cells 

per ml was resuspended in 10 ml of MEFs medium. The fibroblasts were spun down 

at 1000 rpm for 5 min. Once the supernatant was aspirated, MEFs were resuspended 

in 12 ml of MEFs medium and plated in Matrigel® coated plates (2ml/well). The 

MEFs/Matrigel® coated plated were incubated at 37°C and 5% CO2 for optimal 

attachment. Once MEFs attached, induced pluripotent stem cell line (33D6) was 

passaged onto MEFs and cultured in 3ml Mouse Embryonic Fibroblasts Conditioned 

Medium (MEF-CM, R&D) supplemented with 10ng/ml basic Fibroblast Growth 

Factor (bFGF). After 24 hours, the medium was aspirated and 3ml of fresh medium 

was added. The cells were incubated at 37°C in 5% (v/v) CO2 for optimal growth. 

Once the cells reached confluency of ~ 80 - 90%, they were split for embryoid body 

(EB) formation.  

Gradual Transition of hESCs/hiPSC from CM to MT or E8 

Human embryonic and induced pluripotent stem cells were cultured on Matrigel® (BD 

Biosciences, UK) coated plasticware in Mouse Embryonic Fibroblast Conditioned 

Medium (MEF-CM; R&D Systems) before being transferred into mTeSR-1® (MT, 

Life Technologies, UK) or Essential 8 (E8, Life Technologies). The cells were split at 

1:3 (hESCs) or 1:2 (hiPSCs) ratio and left overnight to settle down at 37°C. They were 

then transferred into 75:25 ratio of CM to MT (or E8) followed by 50:50, 25:75 and 

finally 100% MT or E8. Each stage was maintained for 48 hours.  
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Transition of hESCs from MT to E8 medium  

Human embryonic stem cell lines were cultured on Matrigel® coated plasticware in 

mTeSR1 (MT) medium before transfer into Essential 8 (E8). hESCs were then 

transferred either to a 50 / 50 ratio of MT to E8 or directly in to 100% E8.  

 

Passaging hESC and hiPSC populations  

hESCs (MEFs-free conditions) were split at ratio 1:3 (hiPSC at ratio 1:2) using a 

collagenase type IV (200 U/ml) (Life Technologies) for CM and MT conditions or 

EDTA (1:1000 dilution of 0.5M solution; Invitrogen) for E8 conditions  to passage 

them. The medium was aspirated, and the cells were washed once with 3-4 ml of PBS. 

1 ml of collagenase or EDTA was added and the cells were incubated at 37°C (5% 

CO2) for approximately 3-10 min (collagenase IV) or 4 min (EDTA). At the point the 

cell colonies begin to lift off at the edge, the collagenase was aspirated and cells were 

washed once with PBS. 3 ml (2ml for hiPSC) of fresh medium was added and the cells 

were scraped off. Subsequently, 1 ml of cell culture was added to the fresh plate 

containing 2 ml of fresh medium. When placing the cells in the incubator, the culture 

container was agitated to ensure even distribution of colonies.  

 

Freezing and thawing hESC and hiPSC populations 

hESC and hiPSC at the 90% confluency were removed from their substrate (~ 3 ml 

medium suspension) to the 15 ml falcon tube and centrifuged at 1000 rpm for 5 min. 

The supernatant was aspirated and cells were resuspended in the 0.5 ml of freezing 

medium [mixture of 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich] and 90% 

knockout serum replacement (KO-SR; Life Technologies)) and subsequently placed 

in cryotube. The cells were stored in -80°C for 24-48 hours and later transferred to 

liquid nitrogen for long term storage. 
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The cells were thawed by placing the cryotube in water bath at 37°C. Once thawed, 

the colonies were gently placed in 4 ml of MEF-CM + 10ng/ml bFGF in the 15 ml 

falcon tube. The cells were then centrifuged at 1000 rpm for 5 min. The supernatant 

was aspirated and the colonies were resuspend in 3 ml of fresh MEF-CM (+ bFGF) 

and placed on MEFs/ Matrigel ® - coated plate. Once cells reached ~ 90% confluency, 

transition to serum-free media could be performed (see paragraph 2.2.1).  

 

Mycoplasma Testing 

hESCs or hiPSCs were routinely tested for Mycoplasma presence. To determine any 

contamination MycoAlert™ kit (Lonza) was used. Fresh medium was added to            

40-80% confluent stem cells. After 24 hours, the supernatant was collected to 

Eppendorf tube. The sample was spinned down at 1500 rpm (2000 x g) for 5 min.          

A volume of 100 ul of the clear supernatant was added to a well of 96 - well microplate. 

A volume of 100 ul of assay control and 100 ul of assay buffer (negative control) were 

transferred to two separate wells of the microplate. A volume of 100 ul of MycoAlert™ 

reagent was added to each sample and control and incubated for 5 min at room 

temperature.  Following the incubation, the microplate was placed in the luminometer 

(Promega) and the reading was taken (Reading A). A volume of 100 ul of MycoAlert™ 

substrate to each sample was added and incubated for 10 min. Following the second 

incubation, the microplate was placed in the luminometer and the reading was taken 

(Reading B).  

The ratio (Reading B / Reading A) was calculated. The ratio of Reading B to Reading 

A was used to determine whether a culture was contaminated by Mycoplasma as 

follows: 
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Table 2.9: Interpretation of the Mycoplasma test results.  

Ratio Interpretation 

< 0.9 Negative for Mycoplasma 

0.9 - 1.2 
Borderline: quarantine cells 

and retest in 24 h 

>1.2 Mycoplasma contamination 

 

 

2.2.2 EMBRYOID BODY (EB) FORMATION 

Human embryonic stem cells (hESCs) generate embryoid bodies (EBs) at 90-100% of 

confluency. hESCs were cultured in MEFs-free conditions, whereas human induced 

pluripotent stem cells (hiPSCs) were cultured on MEFs to generate EBs. The medium 

was aspirated and cells were washed once with PBS. 4ml of EB medium was added 

(80% DMEM, 20% FCS/FBS, and 1% L-GlutaMAX) and cells were scraped to a low 

cluster plate and incubated at 37°C for 48 hours to promote cell aggregation.                

The EBs were fed with fresh EB medium every two days for 7 days until the aggregates 

were well defined and vacuolated. Subsequently, the EBs were transferred to 0.5% 

gelatin-coated chamber slides (BD Biosciences, UK) in 1 ml of EB medium and 

incubated at 37°C. The EBs on chamber slides were fed every other day for 14 days to 

allow them to spontaneously differentiate. After 14 days, the EBs were fixed with 

methanol (alternatively PFA), and stained for specific markers of three germ layers. 

Protocol based on Hannoun (2011).  

 

2.2.3 HEPATIC DIFFERENTIATION OF PLURIPOTENT STEM CELLS 

hESC were routinely cultured in feeder – free conditions using mTeSR1 or E8 medium 

and maintained in a humidified 37°C, 5% CO2 incubator. hiPSCs were routinely 

cultured  either in CM or E8 medium. Prior to differentiation, cells were split to a 

specific plate format either using ‘colony plating’ or ‘single - cell plating’ method. 
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a) Colony plating (both hESCs and hiPSCs) – used for PSCs characterisation  

 

Pluripotent stem cells were split and passaged using the same method as indicated in 

paragraph 2.2.1 (section: passaging hESC and hiPSC populations). 

 

b) Single - cell plating (only hESC H9 cell line) – used for paracetamol toxicity 

studies/transfection experiments (see Szkolnicka et al, 2014a for details) 

hESCs (H9) (at ~ 80-90% confluency) were dissociated into single – cell suspension 

using StemCell Technologies Dissociation Reagent. Once dissociated, cells were 

transferred to DMEM medium and centrifuged at 300 g (alternatively 1000 rpm) for 5 

min at room temperature. The supernatant was aspirated and the cell pellet was 

resuspended in MT medium containing ROCK inhibitor (Y-27632) to a final 

concentration of 10 uM. Cells were seeded on a specific plate format at ~ 2 x 105 viable 

cells per cm2 (Table 2.10) 

Table 2.10: The surface area of a well of a specific plate format. 

Plate format Surface area per well 

6 –  well 9.5 cm2 

12 – well 3.8 cm2 

24 – well 1.9 cm2 

48-  well 0.95 cm2  (Corning / Costar) 

48 – well 0.76 cm2  (Iwaki) 

96 -  well 0.32 cm2 

 

The differentiation of hESCs was initiated at 20-40% confluence (hiPSC in CM 

conditions ~50% and in E8 conditions ~ 20-40%), by replacing medium pluripotent 

stem cell medium with endoderm differentiation medium - RPMI 1640 containing 1x 

B27 (Life Technologies) a 100ng/ml Activin A (Peprotech) and 50ng/ml Wnt3a 

(Peprotech).  Medium was changed every 24 hours for a period of 72 hours. After 72 

hours, the differentiating cells were transferred to SR-DMSO hepatocyte 

differentiation medium and were cultured in it for another 5 days.                                      
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The medium consisted of KO-DMEM (Life Technologies), Serum Replacement (Life 

Technologies), 0.5% GlutamMAX (Life Technologies), 1% non-essential amino acids 

(Life Technologies), 0.2% β-mercaptoethanol (Life Technologies) and 1% dimethyl 

sulfoxide (Sigma). At day 9, differentiating cells were cultured in hepatocyte 

maturation medium HepatoZYME (Life Technologies) containing 1% GlutamMAX 

(Life Technologies), supplemented with 10 ng/ml hepatocyte growth factor 

(Peprotech) and 20 ng/ml oncostatin M (Peprotech).  The process differed a little for 

iPSCs. hiPSC were cultured on matrigel coated surfaces until 20-50% confluent 

(depending on the medium). At this point mouse embryonic fibroblast conditioned 

medium (MEF-CM) or E8 was then replaced with endoderm differentiation medium - 

RPMI 1640 containing B27 (Life Technologies) a 100 ng/ml Activin A (Peprotech) 

and 50ng/ml Wnt3a (R&D Systems). Medium was changed every 24 hours for a period 

of 72 hours. On days 4 and 5 the differentiating cells were cultured in RPMI/B27 

medium containing 100ng/ml of Activin A alone. From day 6 the cells were 

differentiated using hepatocyte specification medium – KO- DMEM (Life 

Technologies), KO- Serum Replacement (Life Technologies), 0.5% GlutaMAX (Life 

Technologies), 1% non-essential amino acids (Life Technologies), 0.2% β-

mercaptoethanol (Life Technologies) and 1% dimethyl sulfoxide (Sigma). From days 

9-14, hepatocyte maturation was directed using HepatoZYME® (Life Technologies) 

supplemented with 10 uM hydrocortisone 21-hemisuccinate, 10 ng/ml hepatocyte 

growth factor (Peprotech) and 20ng/ml oncostatin M (Peprotech).  
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2.3 CHARACTERISATION OF PLURIPOTENT STEM CELLS (PSCs) 

AND PSCs – DERIVED HEPATOCYTES 

 

2.3.1 IMMUNOCYTOCHEMISTRY 

Cell cultures at different points during cellular differentiation were fixed in 100%      

ice-cold methanol at -20°C for 30 min. Postfixation, cell monolayers were washed 

twice with PBS at room temperature. After blocking with 0.1% PBS-Tween containing 

10% BSA for 1 hour, the cells were incubated with primary antibodies diluted in PBS-

0.1% Tween/1% BSA at 4°C overnight. The following day, the primary antibody was 

removed, and the fixed monolayers were washed three times with PBS-0.1% 

Tween/1% BSA. Following this, the cells were incubated with the appropriate 

secondary antibody diluted in PBS-0.1%/Tween/1%BSA for 1 hour at room 

temperature and washed three times with PBS-0.1%/Tween/1%BSA and subsequently 

three times with PBS. After washing, the fixed monolayers were incubated with 

Hoechst 33342 (NucBlue Live Cell Stain Ready Probes; Molecular Probes) diluted in 

PBS for 20 min at room temperature.  

Cultures were subsequently mounted with PermaFluor™ Aqueous Mounting Medium 

(Thermo Scientific), covered with cover slides and left overnight at 4°C. 

The cells were analysed by Olympus TH4-200 microscope and Volocity 4 

(alternatively FIJI) software. The percentage of positive cells and standard error were 

estimated from at least four random fields of view. 

 

2.3.2 ELISA ASSAYS  

At days 14, 16, 18, 20, 22, 24, 26 of differentiation, 1ml of each of the medium              

(L-15, HCM, HZ) was added to hESC - derived hepatocytes and incubated overnight 

at 37°C in 5% CO2. After 24 hours, the supernatants were collected (n = 3 per time 

point and condition) and could be stored at -80°C for later use.  
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Albumin ELISA assay was measured and carried out as per the manufacturer's (Alpha 

Diagnostics) instructions. Samples were diluted 1:10 and pipetted (100 ul) in triplicates 

into a 96-well plate coated with purified anti-human albumin antibodies. Along with 

standards, the samples were incubated for 1 hour at room temperature. Following 

incubation and washing, Anti – Human Albumin Horseradish Peroxidase   (HRP) was 

added to each well and incubated for 30 min at room temperature. Subsequently, the 

colour was developed by adding TMB substrate (chromogenic substrate containing 

peroxide) to the samples and incubating them in the dark for 15 min. To terminate the 

reaction, Stop Solution was added (1% sulfuric acid) and the absorbance was read at 

450 nm using an MRX II plate reader. The data was normalised to per mg protein as 

determined by the BCA assay (Pierce, UK).  

 

2.3.3 CYTOCHROME P450 ASSAYS  

CYP3A and CYP1A2 activity were measured by pGlo kit from Promega (Madison, 

WI) and carried out as per the manufacturer’s instructions for nonlytic CYP450 

activity estimation (http://http://www.promega.com/tbs/tb325/tb325.pdf). 

 

Basic cytochrome P450 activity 

At different time points hESC- derived hepatocytes and  hiPSC- derived hepatocyte 

cells were incubated either with CYP3A4 (1:40) or CYP1A2 (1:50) specific luciferin 

substrate (P450 – Glo™ CYP3A4/CYP1A2 Assay, Promega; UK) and incubated for 

5 hours at 37°C. The culture medium was used as a negative control. Following 

incubation, 50 ul of supernatant from each well (n=3) was pipetted onto the 96-well 

microplate and mixed with 50 ul of luciferin detection reagent. The plate was left in 

the dark, at room temperature for 20 min to allow signal stabilisation. The basal 

activity of the enzymes was measured using luminometer (Promega) and expressed as 

relative light units (RLU). The data was normalised to per milligram of protein (BCA 

assay). 

 

http://http/www.promega.com/tbs/tb325/tb325.pdf
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Drug- induced cytochrome P450 activity 

At day 16 (hESC-derived hepatocytes) and day 12 (hiPSC – derived hepatocytes), cells 

were incubated with CYP3A and 1A2 inducer, phenobarbital (PB), at 1mM 

concentration for 48 hours before measurement of CYP3A and CYP1A2 activity.     

The CYP activity was detected using P450 – Glo ™ Assay and data was normalised 

to protein concentration as described above.  

 

2.3.4 ANALYSIS OF SINGLE NUCLEOTIDE POLYMORPHISM (SNP) IN 

PLURIPOTENT STEM CELLS 

Human embryonic stem cells (H9, MAN11, MAN12) were maintained for at least 

three passages in MT medium before collecting samples for SNP analysis.  

The genomic DNA of hESCs was extracted using GeneElute™ Mammalian Genomic 

DNA Miniprep Kit (Sigma- Aldrich) as per manufactures instructions. In brief, cells 

were released with TrypLE and centrifuged for 5 min at 300 x g. The culture medium 

(supernatant) was removed and discarded. The pellet was resuspended thoroughly in 

200 ul of Resuspension Solution. Subsequently, 20 ul of the Proteinase K solution was 

added to the sample followed by 200 ul of Lysis Solution C. The lysate was vortexed 

thoroughly (15 sec), and incubated at 70°C for 10 min. Subsequently, 200 ul of ethanol 

was added to the lysate and the entire contents of the tube were transferred to the 

binding column and centrifuged at 6500 x g for 1 minute. Then, the lysate was washed 

twice using 500 ul Wash Solution Concentrate and centrifuged at 6500 x g for 1-3 min. 

Finally, the DNA was eluted using 200 ul of the Elution Solution and centrifuged at 

6500 x g for 1 minute.  

 

The pure genomic DNA of hESCs was sent to Aros (Denmark) to analyse SNPs of the 

samples. The samples were examined by Illumina CytoSNP-12 Beadchip Assay.       

The samples were further analysed by Illumina GenomeViewer software.  
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2.3.5 FLUORESCENCE ACTIVATED CELL SORTING (FACS)  

Staining cells 

Fluorescence activated cell sorting (FACS) was used to confirm the cell surface marker 

expression of hESCs (MT and E8 media) and hiPSCs (CM and E8 media). One well 

of 6-well plate containing hESCs (iPSC) was treated with TrypLE (Life Technologies) 

for 5 min at room temperature. Cells were lifted as single cells and transferred to FACs 

tube containing 1 ml of DMEM/F12 medium. Subsequently, cells were centrifuged at 

1000 rpm for 5 min and re-suspended in 1000 ul of 2% FCS in PBS. Cells were 

centrifuged at 1000 rpm for 5 min and re-suspended in appropriate volume of medium 

(number of tubes x 100 ul). Cells were aliquotted into 3 tubes, each containing 100 ul 

of cells and labelled as follows:  

 

Tube 1: 100 ul of unstained cells (just cells, no antibodies) 

Tube 2: 100 ul of cells + isotype controls (APC/FITC/PE) 

Tube 3: 100 ul of cells + antibodies of interest (APC Tra-1-81; FITC CD15; PE Tra 

1-60). All antibodies were diluted 1:50.  

 

The three tubes were incubated for 30-45 min on ice in dark. After incubation, cells 

were centrifuged at 1000 rpm for 5 min and re-suspended in 500 ul 2% FCS in PBS. 

Subsequently, cells were centrifuged at 1000 rpm for 5 min and finally re-suspended 

in 400 ul 2% FCS in PBS. Prior to analysis, cells were left at 4°C.  

 

Compensation controls 

 

Three tubes were prepared as follows:  

Tube 1: Positive and negative compensation beads + PE Tra-1-60 antibody (1:50 

dilution) 

Tube 2: Positive and negative compensation beads + APC Tra-1-81 antibody (1:50 

dilution) 
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Tube 3: Positive and negative compensation beads + FITC CD15 antibody (1:50 

dilution) 

To each tube was added 400 ul 2% FCS in PBS. All tubes were stored at 4°C prior to 

analysis.  

 

Unstained cells and compensation beads were used as controls. Dead and apoptotic 

cells along with debris were not included in the analysis. This was carried out by using 

and electronic liver gate on forward scatter and side scatter parameters. Data for 5000-

100,000 ‘live’ events were acquired for each sample using Fortessa 4- laser and 

analysed using FlowJo software.  

 

2.4 MOLECULAR TECHNIQUES 

2.4.1 RNA ISOLATION AND EXTRACTION 

The cells of interest were washed with PBS and 1ml of TRIzol reagent (Life 

Technologies) was added per well of a 12-well plate and left to incubate for 5 min at 

room temperature. The cells were scraped, and placed in a 1.5 ml Eppendorf tube 

(stored at -80° C for later use if required). 0.5 ml of Chloroform was added to the tube 

and mixed by inverting; this was done in a fume hood. The solution was centrifuged 

at 13,000 rpm for 15 min at 4°C. The aqueous layer was collected into a clean 

Eppendorf tube. 1ml of Isopropanol was added to the tube, mixed by inverting and 

placed for 10 min at room temperature to precipitate RNA. The solution was 

centrifuged at 13,000 RPM for 20 min at 4°C. The supernatant was aspirated without 

disturbing the RNA pellet. 0.5 ml of 70% ethanol was used to wash the RNA. 

Following 5 min incubation at room temperature, the RNA was centrifuged at 8,000 

rpm for 5 min at 4°C. The washing step was repeated 3 times. The ethanol was 

aspirated, and the pellet was left to dry for 5-10 min at room temperature. Once the 

ethanol evaporated, the RNA pellet was resuspended in 30 ul of deionised water. The 

RNA quality was assessed by nanodrop.  
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2.4.2 REVERSE TRANSCRIPTION AND POLYMERASE CHAIN REACTION (PCR) 

Total RNA was reverse transcribed using QuantiTect Reverse Transcription kit 

(QIAGEN; alternatively Superscript III First Strand Synthesis SuperMix kit), as per 

manufacturer’s instructions. A standard RT reaction was as follows:  

 

For Quantitect RT kit 

1. Genomic DNA elimination reaction components (Table 2.11) 

 

Components Volume / Reaction Final Concentration 
gDNA wipeout Buffer, 7x 2 ul 1x 

Template RNA 1ug  

RNase-free water up to final concentration  

Total volume 14 ul  

 

2. Reverse Transcription reaction components (Table 2.12) 

 

Components Volume / Reaction Final Concentration 
RT Mastermix 

Reverse Transcriptase 1 ul  

RT Buffer, 5x 4 ul 1x 

RT Primer Mix 1 ul  

Template RNA 

Entire gDNA elimination 

reaction 
14 ul 

 

 

 

For Superscript III Reverse Transcription kit 

1. One Step cDNA Synthesis (Table 2.13) 

Components Volume/ Reaction 
2 x RT Reaction Mix 10 ul 

RT Enzyme Mix  2 ul 

Template RNA 1ug ( x ul) 

DEPC- treated water up to 20 ul final volume 

 

 

 



89 
 

Quantitative polymerase chain reaction (qPCR) was carried out using TaqMan Fast 

Advance Mastermix and appropriate primers (Applied Biosystems, Foster City, CA 

http://www.appliedbiosystems.com). The primers are listed in the Table 2.6.                       

A standard qPCR reaction was as follows:  

 

Table 2.14:  Volume per reaction of specific qPCR components. 

 

Component Volume per reaction                  
(384-well plate) 

TaqMan Fast Advanced Master Mix (2x) 5 ul 

TaqMan Assay primer/probe (20x) 0.5 ul 

cDNA template 10 ng  (x ul) 

Nuclease-free water  up to 10 ul 

Total volume per reaction 10 ul 

 

The samples were analysed using Roche LightCycler 480 Real – Time PCR System 

(the appropriate cycle conditions are specified in Table 2.6) Results were normalised 

to B2M or GAPDH and expressed as relative expression over the control sample (day 

0 either of hESC or hiPSC).  

 

2.4.3 REVERSE TRANSCRIPTION AND RT2 PROFILER PCR ARRAY (HUMAN 

DRUG METABOLISM) 

The total RNA of hESC-derived hepatocytes (day 18) and Primary Human 

Hepatocytes (purchased from 3H Biomedical AB) was reverse transcribed using RT2 

First Strand Kit (QIAGEN) as per manufacturer’s instructions. The RT reaction was 

as follows:  

 

1. Genomic DNA elimination mix (Table 2.15) 

 

Component Amount 
RNA 400 ng (x ul) 

Buffer GE 2 ul 

RNase-free water up to 10 ul 

Total volume 10 ul final volume 
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2. Reverse Transcription mix (Table 2.16) 

 

Component Volume for 1 reaction 
5x Buffer BC3 4 ul 

Control P2 1 ul 

RE3 Reverse Transcriptase Mix 2 ul 

RNase – free water 3 ul 

Total volume 10 ul 

 

The qPCR reaction was set up using RT2 Profiler PCR Array (Human Drug 

Metabolism Array, Human Drug Metabolism Phase II Enzymes Array, and Human 

Drug Transporters Array were purchased from QIAGEN) as per manufacturer’s 

instructions. A standard qPCR reaction was as follows:  

 

3. qPCR components mix (Table 2.17) 

 

Array Format 384 (4 x 96) 
2x RT2 SYBR Green Mastermix (ROX) 650 ul 

cDNA synthesis reaction 102 ul 

RNase-free water 548 ul 

Total volume 1300 ul 

 

The samples were analysed using Applied Biosystems model 7900 HT. The cycle 

conditions were as follows:  

 

Table 2.18: The qPCR cycle conditions for AF7900 HT machine.  

 

Cycle Conditions ( AB 7900 HT) 
Stage Temperature/Time/Cycle(s) 

Stage I 95°C / 10 min / 1 cycle 

Stage II 95°C / 15 sec /  40 cycles 

60°C / 1 min  

Stage III 95°C / 15 sec /  1 cycle 

60°C / 1 min 

95°C / 15 sec 
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2.4.4 MICRORNA MICROARRAY 

Sample processing and microRNA expression were analysed by Sistemic (Glasgow). 

The microRNA profiling was used to compare microRNA expression profile of hESC 

- derived hepatocytes and primary human hepatocytes. 

 

Cells and Samples 

To generate microRNA profiles, two sample sets were used:  

 A commercial source (3H Biomedical, Sweden) of total RNA  prepared from 

primary human hepatocytes (a single donor, technical replicates n = 4) 

 hESC-derived hepatocytes (cell pellets; n = 4) 

 

Samples were provided as total RNA (primary hepatocytes) and a PBS- washed, frozen 

cell pellets shipped on dry iced. 

 

Sample processing and quality control  

The total RNA from frozen cell pellets was produced using Sistemic’s SOP for RNA 

isolation which preserved the small RNA population (< 200 nucleotides). All total 

RNA was examined for quantity and quality. RNA concentration was measured 

following Absorbance ratios at 260/280 and 230/260 nm were determined as indicators 

of sample yield and purity, respectively. An additional RNA quality control was 

performed by Agilent 2100 Bioanalyser and the RNA 6000 Nano Kit to determine the 

RNA integrity number. 

 

Microarray profiling 

The samples were analysed on Agilent miRNA platform (using Agilent’s SurePrint 

G3 Human v16 microRNA 8x60K microarray slides; miRBase version 16.0) following 

Sistemic SOP (SSOP07). One hundred (100) ng of total RNA, from a working solution 

at 50ng / ul in nuclease-free water, was used as input for each microarray experiment. 

Each slide contained 8 individual arrays, each array was identified by a unique barcode 

and contained capture probes for 1349 microRNAs (1205 Human; 144 viral). 
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The four major key steps of the microarray process were:  

1. Labelling of RNA with single-colour, Cy3-based reagent.  

2. Hybridisation of the labelled RNA samples to the microarray.  

3. Wash steps.  

4. Slide scanning, data capture and feature extraction (matching array spots to miRNA 

IDs) and quality control checks on the resultant image and data files.  

 

Data pre-processing and quality control 

The microarray data was normalised using Sistemic’s in-house pre-processing and data 

quality control (QC) methods. Array quality control was performed using outlier 

testing based on the following metrics: 

 

1. average signal per array  

2. average background per array  

3. % present (% of miRNAs where expression is detected on each array)  

4. principal components 1-3 from PCA (Jackson JE, 1991) of the full normalised  

    sample set 

In addition, a sample-to-sample correlation analysis was performed on the normalised 

data set using Pearson’s correlation metric. Outliers were identified using Grubbs’ 

outlier test (Grubbs, 1969) with significant called at p < 0.05. 

 

Detection of microRNAs  

Detection calls (present or absent) for individual miRNAs were compared across the 

samples. The detection calls were calculated using the Agilent Feature Extraction 

(AFE) software version 10.7.3.1. A detailed description of how these calls are made is 

available in the Feature Extraction Reference Guide on the Agilent website 

(http://www.genomics.agilent.com). 

 

The differences in miRNA expression between the groups were evaluated by 

performing t-tests separately for each miRNA. The p-values coming from the t-tests 

were adjusted for multiple test inflation using the Benjamini-Hochberg method 6 

http://www.genomics.agilent.com/
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(Benjamini and Hochberg, 1995) and are referred to as pFDR, where FDR is the false 

discovery rate. The miRNAs with significant differences from hypothesis testing at 

pFDR < 0.05 as well as having an absolute fold-change (FC) ≥ 1.5 were considered 

differentially expressed between the drug treatments and vehicle. A p-value cut-off of 

0.05 is common practice when analysing microarray data and the use of the fold-

change threshold of 1.5 is based on the documented array-to-array variability from the 

Agilent system. 

 

2.5 PROTEIN BIOCHEMISTRY TECHNIQUES 

2.5.1 CELLULAR PROTEIN EXTRACTION 

Cells grown in a culture plate were lysed in 150 ul of RIPA Buffer (Life Technologies) 

for 5 min at room temperature. The cells were sonicated and stored at -80°C for later 

use.  

2.5.2 MEASURING PROTEIN CONCENTRATION  

 

The protein concentration in the cell protein extract samples was quantified using the 

Pierce™ BCA (bicinchoninic acid; Thermo Scientific/Life Technologies) protein 

assay. Protein extracts were diluted 1:2 using deionized water (5 ul of sample extract 

and 5 ul of water) and pipetted in triplicate into a 96 well plate. Reagents A and B were 

mixed at a 50:1 ratio and a volume of 200 ul was transferred into each sample well and 

the bovine serum albumin standards (ranging from 20-2000 ug/ml).  The plate was 

incubated at room temperature for 20 min and the absorbance was read at 562nm using 

FLUOstar Omega (BMG Labtech). The protein concentrations were calculated by 

linear extrapolation using the standard curve generated from the protein standards. The 

protocol is based on Zhou et al (2012) and Hannoun (2011). 

 

2.5.3 SDS-NUPAGE® POLYACRYLAMIDE GEL ELECTROPHORESIS  

The gel electrophoresis (SDS-NuPage®, SDS-PAGE) was used to separate proteins of 

different molecular weights. The XCell SureLock® Mini-Cell system (Life 

Technologies, UK) was used to perform the gel electrophoresis. The  4-12% Bis-Tris 

pre-cast polyacrylamide gel (Life Technologies, UK) was fitted in the chamber and 
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subsequently filled with 1 x NuPage® MES-SDS running buffer and 0.5 ml of NuPage 

® antioxidant (Life Technologies, UK) in the inner chamber. The samples containing 

4 x LDS sample Buffer (NuPage ®) and DDT (Sigma – Aldrich) were denatured at 

70°C for 10 min. The volume of 10ug of protein and 5 ul of SeeBlue® Plus2 Pre-

Stained Standard Markers (Invitrogen) were loaded onto a gel.  

A current of 200 V was applied and the samples were run for approximately 90 min. 

Once the separation of proteins was successful, the gel was carefully removed from 

the cassette and was used to perform western blot. The protocol is based on Zhou et al 

(2012) and Hannoun (2011). 

 

2.5.4 WESTERN IMMUNOBLOTTING  

Protein transfer  

In order to detect the presence of specific proteins in sample extracts, western blot was 

performed using the XCell SureLock® Mini-Cell system, as per manufacturer’s 

instructions. After the protein seperation by SDS – PAGE, the polyacrylamide gel was 

transferred to the Polyvinylidene fluoride (PVDF) membrane (Millipore, UK) to 

prevent protein cross over if transfer was over run. The transfer stack was assembled 

in the following order from cathode to anode: 2-3 x sponge; 2x filter paper soaked in 

1x transfer buffer (NuPAGE®); SDS-PAGE gel; PVDF membrane pre-soaked in 

methanol (15 sec) and then in the transfer buffer; 2x filter paper soaked in transfer 

buffer; 2-3 x sponge. The stack was assembled in the XCell Blot II module and was 

tightly sealed and placed into the transfer SureLock® tank containing 1 x transfer 

buffer in the inner chamber and cold water in the outer chamber. A constant current of 

160 mA was applied for 90 min. The protocol is based on Zhou et al (2012) and 

Hannoun (2011). 

 

Immunoblotting 

Once proteins have been successfully transferred onto PVDF membrane, the 

membrane was blocked to prevent nonspecific antibody binding.  The membrane was 

blocked for 1 hour at room temperature with phosphate- buffered saline (PBS)/ 0.1% 

Tween 20/10% non - fat milk.  
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Once blocked, the membranes were probed with appropriate primary antibodies 

(diluted in PBS/0.1% Tween/10% milk at 4°C overnight under constant rotation. Once 

the primary antibody was incubated, membranes were washed three times in 10 ml of 

PBS/0.1% Tween. A horseradish peroxide (HRP) – conjugated secondary antibody 

(diluted in PBS/0.1% Tween; DAKO) was then incubated for 1 hour at room 

temperature and washed three times in PBS/0.1% Tween. The protocol is based on 

Zhou et al (2012) and Hannoun (2011) 

 

Enhanced chemiluminescence (ECL) 

The proteins of interest were detected using enhanced chemiluminescence (Pierce). 

The signal released was detected by x-ray film due to the chemical interaction of the 

HRP substrate (DAKO, UK) and conjugated HRP group on the secondary antibody of 

specific target protein.  The chemiluminescence reagents: Peroxide Buffer and 

Luminol / Enhancer were mixed at a 1:1 ratio and spotted on to the membrane (1ml 

for each membrane), ensuring it was evenly spread. The membrane was placed in the 

Kodak x-ray cassette under the transparent foil. In the dark room, the membrane was 

exposed to BD Biosciences x –ray film for appropriate length of time, typically 1-20 

min. The exposed film was developed using a film developer containing the fixative, 

developer and water solutions. The protocol is based on Zhou et al (2012) and 

Hannoun (2011). 

 

2.6 MODELLING PARACETAMOL TOXICITY IN VITRO 

Preparation of the paracetamol stock and cell treatment  

Paracetamol (Sigma- Aldrich) was diluted in ethanol (Sigma-Aldrich) and prepared at 

0.5 mM stock concentration. Different paracetamol concentrations (0 mM, 1 mM, 2 

mM, 5 mM, 7 mM, 10 mM, 20 mM, and 50 mM) were prepared by diluting the stock 

solution in specific volumes of HepatoZYME™ supplemented with factors (HGF, 

OSM) and 2% Bovine Serum Albumin (BSA; Sigma- Aldrich). At day 17, cells were 

treated with specific drug concentration and left for 24 hours in the incubator at 37°C. 

Simultaneously, the same experiment was performed for vehicle control (ethanol + 2% 

BSA + HGF/OSM).  
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Measurement of IC50 (Standard Curve) 

 

After 24 hours of incubation with the drug, the paracetamol toxicity was measured by 

the CellTiter-Glo Luminescent Cell Viability Assay from Promega. Cellular ATP 

levels were measured as per manufacturer’s instructions and the luminescence signal 

was detected by the luminometer (Promega). In brief, HepatoZYME™ containing 

HGF (10ng/ml) and OSM (20ng/ml) factors was mixed with CellTitre-Glo® Reagent 

in ratio 1:1. The medium was aspirated from the cultures and 0.5 ml of the mixture 

(HepatoZYME™ + CellTitre-Glo® Reagent) was added per well. The cells were left 

for 2 min on the shaker at room temperature, and for the remaining 28 min were 

incubated at room temperature in the dark.  After 30 min, 100 ul (in duplicates) of the 

mixture from each well (n=3) was pipetted onto the 96-well microplate and mixed with 

100 ul of luciferin detection reagent and left for 10 min at room temperature to stabilise 

the luminescent signal. The luminescence was recorded by luminometer (Promega). 

The same experiment was performed for vehicle control (ethanol). 

The IC50 of the paracetamol (the concentration of the compound resulting in 50% 

toxicity) was estimated from the function y = mx +b.  

 

2.7 RNAi TRANSFECTION TECHNIQUES  

Precursors and antagomirs stock preparation 

Precursors and antagomirs at 5nmol concentration were resuspended in 50 ul of the 

nuclease-free water to make 100 uM of final concentration. The 10 uM (10 pmol/ul) 

working stock solution was further prepared by using nuclease-free water, aliquoted 

in Eppendorf tubes and stored in -20.  

 

Optimisation of transfection  

 

At day 17 of differentiation, cells were transfected with 50 nM Cy3 - labelled 

precursors and antagomirs at different Lipofectamine RNAiMAX ratios (1:1, 1:2, 1:3) 

and examined for transfection efficiency after 24 hours of incubation at 37°C.           
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Cells were analysed by Olympus TH4-200 microscope and Volocity 4 (alternatively 

FIJI) software.  

 

Table 2.19: The RNAi transfection procedure for 2 wells of a 24-well plate                    

(~2 x 105 cells/ well) 

 

Steps Procedure Details (adherent cells; 50 nM of miRNA per well) 

  Ratio 

 Component 1:1 1:2 1:3 

Lipofectamine 

RNAiMAX was 

diluted in Opti-

MEM Medium 

Opti-MEM® 

Medium 
45 ul 40 ul 35 ul 

Lipofectamine ® 

RNAiMAX 
5 ul 10 ul 15 ul 

miRNA stock 

was diluted in 

Opti-MEM 

medium 

Opti-MEM® 

Medium 
45 ul 45 ul 45 ul 

miRNA (10uM) 5 ul 5 ul 5 ul 

Diluted 

Lipofectamine 

RNAiMAX was 

added to 

diluted miRNA 

(1:1 ratio) 

Diluted miRNA 50 ul 50 ul 50 ul 

Diluted 

Lipofectamine ® 

RNAiMAX 

50 ul 50 ul 50 ul 

Incubation The mix was incubated for 10 min at room temperature. 

miRNA–lipid 

complex was 

added to cells 

miRNA – reagent 

complex added 

per well 

50 ul 50 ul 50 ul 

 Volume of Opti-

MEM medium 

per well 

450 ul 450 ul 450 ul 

 Final volume per 

well 
500 ul 500 ul 500 ul 

 Final miRNA 

concentration 

per well 

50 nM 50 nM 50 nM 
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 Final 

Lipofectamine 

RNAiMAX used 

per well 

2.5 ul 5 ul 7.5 ul 

Medium changed 

After 5 hours of incubation miRNA-lipid-Opti-MEM complex was aspirated 

and replaced with 0.5 ml of HepatoZYME (no antibiotic) with 20ng/ml OSM 

and 10ng/ml HGF for remaining time.  

Visualised/ 

analysed cells 

The transfected cells were analysed by Olympus TH4-200 microscope and 

Volocity 4 software/ FIJI software. 

 

Transfection efficiency (visualisation) 

Transfection efficiency was estimated by live staining. At day 17 of differentiation, 

cell cultures were transfected with Cy3-labelled precursors/antagomirs (Ambion, Life 

Technologies) at 50 nM concentration and left for 24 hours in the incubator at 37°C. 

At day 18, the transfected cells were washed twice with PBS. After washing, the 

Hoechst 33342 (NucBlue® Live Cell Stain Read Probes; Life Technologies) diluted 

in HepatoZYME™ medium was added to the culture and incubated at 37°C for 10-15 

min. Subsequently, the medium with Hoeschst 33342 was removed and the fresh 

medium was added. The cells were analysed by Olympus TH4-200 microscope and 

Volocity 4 (alternatively FIJI) software. The percentage of positive cells and standard 

deviation were estimated from at least four random fields of view and quoted as ± 

standard error.  

 

2.8 MODULATING PARACETAMOL TOXICITY 

At day 17, cells were transfected with precursors and inhibitors of Cy3-labelled 

controls, miR-148, miR-24, and miR-324 and incubated for 24 hours at 37°C.            

Once transfected, hESC-derived hepatocytes were exposed to the concentration of 

paracetamol resulting in 50% toxicity (IC50) for another 24 hours. The toxic effect of 

the drug was measured using CellTiter – Glo® Luminescent Cell Viability Assay, and 

GSH/GSSG-Glo™ Assay (all from Promega).  
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CellTiter – Glo® Luminescent Cell Viability Assay 

See section 2.6 for details. Cellular ATP levels (n=6) were measured as per 

manufacturer’s instructions and the luminescence signal was detected by the 

luminometer (Promega). 

 

GSH/GSSG-Glo™ Assay  

GSH/GSSG activity was measured by pGlo kit from Promega (Madison, WI) and 

carried out as per the manufacturer’s instructions. The activity was measured in treated 

(paracetamol treatment) and non-treated (ethanol treatment; control) cells. In brief, the 

Total and Oxidized Glutathione Reagents were prepared as instructed and either of 

these reagents was added per well at 100 ul volume (n=6 for Total Glutathione Reagent 

and n=6 for Oxidized Glutathione Reagent). Subsequently, plates were left for 5 min 

on the shaker to lyse the cells. The 100 ul of luciferin generation reagent was added 

per well and cells were incubated for 30 min at room temperature in the dark. After 30 

min, 100 ul of luciferin detection reagent was added per each well and left for another 

15 min at room temperature to stabilise the luminescent signal. The luminescence was 

recorded by luminometer (Promega).  

 

2.9 PLASMA SAMPLE COLLECTION, PROCESSING, PATIENT 

INFORMATION 

Ethical approval for the study was from the Scotland ‘A’ Research and Ethics 

Committee and written informed consent was obtained. Three female donors or their 

nominated next of kin consented to blood sampling. Paracetamol hepatotoxicity was 

prospectively defined as previously described (Craig et al, 2009). Peripheral blood 

samples were obtained on the day of admission to the Scottish Liver Transplantation 

Unit. Serum was collected after centrifuged of blood samples at 1000g for 15 min and 

4°C within 1 hour following collection, immediately aliquoted and stored at -80°C 

until thawing for the experiments.  
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2.10 FULMINANT PLASMA EXPERIMENTS  

hESC (H9) - derived hepatocytes were transfected with the antagomir to miR-324-5p. 

Twenty four hours post transfection hESC – hepatocytes were exposed to to the 

fulminant plasma of the three paracetamol overdose patients (20% of plasma diluted 

in HepatoZYMETM + growth factors) for a further 24 hours (Patient 1, 8, 58) (n=4).                

ATP levels were measured using CellTitre – Glo® Luminescent Cell Viability assay 

(as described in section 2.6) and Caspase 3/7 acitvity was measured as described 

below.  

 

Caspase- Glo 3/7® Assay  

Caspase 3/7 activity were measured by pGlo kit from Promega (Madison, WI) and 

carried out as per the manufacturer’s instructions. In brief, HepatoZYME™ containing 

HGF (10ng/ml) and OSM (20ng/ml) factors was mixed with Caspase-Glo® Reagent 

in ratio 1:1. The medium was aspirated from the cultures and 0.4 ml of the mixture 

(HepatoZYME™ + Caspase-Glo® Reagent) was added per well. The cells were left 

for 2 min on the shaker at room temperature, and for the remaining 58 min were 

incubated at room temperature in the dark.  After 1 hour, 100 ul (in duplicates) of the 

mixture from each well (n=3) was pipetted onto the 96-well microplate and mixed with 

100 ul of luciferin detection reagent and left for 10 min at room temperature to stabilize 

the luminescent signal. The luminescence was recorded by luminometer (Promega).  

 

2.11 COMPOUND INCUBATION (DILI ASSAYS) 

Compounds were dissolved in Hybri-Max dimethyl sulfoxide (DMSO) from Sigma – 

Aldrich. The 20 mM stock solutions were made and further diluted in DMSO before 

being added to HepatoZYMETM culture medium (hESC-derived hepatocytes) or in 

InVitroGRO HI medium (cryoplateable hepatocytes), so that a consistent final 

concentration of 1% DMSO was maintained. Medium was aspirated from 96-well 

plates and replaced with 100 ul of medium containing the appropriate concentration of 

compound (vehicle control, 0, 0.1, 1, 10, 25, 50, 100, or 200 uM) in triplicate.     
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Plates were placed in a humidified 37°C, 5% CO2 incubator for 6 hours or 24 hours for 

the Apo-ONE Homogenious Caspase 3/7 Assay (Promega), and 24 hours, 4 days, or 7 

days for the CellTitre – Glo Luminescent Cell Viability Assay. Old medium was 

aspirated, and fresh medium – containing compound was added to the remaining plates 

on day 4. Fluorescence (Caspases) and luminesce (ATP) were detected using an 

EnVision plate reader (PerkinElmer), and expressed as a percentage of vehicle control.  

Concentration – response curves were plotted using the mean of the three replicates 

for each of the cell lines, and the concentration corresponding to a 50% viability on 

the four – parameter logistic regression line (50% inhibition/inhibitory concentration 

[IC50]) was determined using XLfit model 205.  

 

2.12 STATISTICAL ANALYSIS 

2.12.1 STUDENT’S T –TEST  

The levels of significance were measured using Student’s t-test. Significance levels 

were donated by one, two, three, and four asterisks to indicate p < 0.05, p < 0.01,             

p < 0.001, and p < 0.0001, respectively.  

 

2.12.2 MULTI – GROUP COMPARISON OF DIFFERENT CELL TYPES  

Principal Component Analysis (PCA) 

The PCA overview plot was generated by Sistemic (Glasgow). 

Principal Component Analysis (PCA) extracts the main effects from high-dimensional 

data such as microarray datasets, which for each sample have expression 

measurements from hundreds of miRNA. These main effects (principal components) 

were displayed in a simplified graphical representation which retained the main 

properties of the data. Samples which were similar clustered in the same space on the 

PCA plot. 
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2.12.3 RT2 PROFILER PCR ARRAY DATA ANALYSIS 

The PCR Array gene expression was analysed using PCR Array Data Analysis Web 

portal (www.SABiosciences.com/pcrarraydataanalysis.php). At the PCR Array Data 

Analysis Web Portal, Ct data was entered and the Web-based software automatically 

performed quantification using ΔΔ Ct method.  

 

2.13 miR – mRNA BINDING ANALYSIS 

TargetScan Human 6.2 (www.targetscan.org) is an online tool that predicts microRNA 

binding sites at the 3’ UTR of the biological target. The programme focuses on the 

presence of conserved and non-conserved sites that match the seed region of each of 

the microRNA (Lewis et al, 2005). The predictions were ranked based on the predicted 

efficacy of targeting as calculated using the context score + scores (Friedman et al, 

2009 and Grimson et al, 2007). 

 

       

 

 

 

 

 

 

http://www.sabiosciences.com/pcrarraydataanalysis.php
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CHAPTER THREE 

 

PLURIPOTENT STEM CELL MAINTENANCE 

AND HEPATOCELLULAR  DIFFERENTIATION 

USING A NOVEL AND SERUM -FREE 

APPROACH 
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3.1 INTRODUCTION 

 

3.1.1 PROPERTIES AND CHARACTERISTICS OF PLURIPOTENT STEM CELLS 

 

Pluripotent stem cells (PSCs) demonstrate an inexhaustible source of supply of human 

somatic cell types (Donovan and Gearhart, 2001). Therefore, their use in different 

applications, such as modelling human biology ‘in a dish’ or cell therapy, is very 

attractive. While PSCs are an enabling resource, their robust characterisation is 

essential prior to cellular differentiation. PSCs are usually characterised by the 

expression of stem cell surface specific markers (e.g SSEA4, Tra-1-60, Tra-1-81) and 

stem cell specific transcription factors (e.g Oct 3/4, Nanog, Sox2). Appropriate PSCs 

morphology is characterised by tightly packed colonies with defined edges, displaying 

high nuclear cytoplasmic ratio and prominent nucleoli (Thomson et al, 1998; 

Carpenter et al, 2004). In addition to this, examination of the appropriate chromosome 

number (karyotype) is essential. Although useful, methods such as ‘virtual 

karyotyping’ that mostly consist of comparative genomic hybridization (arrayCGH), 

single nucleotide polymorphism (SNP), DNA microarrays, and short tandem repeats 

provide higher resolution than conventional cytogenetics (e.g giemsa banding or 

FISH). Following their characterisation for PSC markers, PSC pluripotency must be 

assessed. This is usually measured by the ability of cells to form embryoid bodies 

(EBs) that can be further differentiated to three germ layers: ectoderm, mesoderm and 

endoderm indicated by the expression of β-tubulin III, α smooth muscle actin,              

and α – fetoprotein respectively. In addition to EBs, teratoma or PluriTest assays are 

also used as diagnostic criteria for bona fide pluripotent stem cells in vivo (Evans and 

Kaufman, 1981; Müller et al, 2012). Although PSCs should maintain appropriate 

genomic stability and express specific stem cell markers, their microenvironment such 

as cell : cell and cell : matrix interactions should be considered. In order to stabilise 

healthy environment for PSCs adhesion and growth, research previously employed 

different cell feeder layers. Initially, mouse embryonic fibroblasts (MEFs) were used 

to support hESC growth (Thomson et al, 1998), however their xenogenic nature has 

forced researchers to replace them with feeders of human origin such as foreskin cells 

(Amit et al, 2003) or bone marrow cells (Cheng et al, 2003).  
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As hESCs were required to be cultured in scalable manner, feeders - free systems were 

developed, where major focus was on the development of new cell matrices. The first 

matrix used was      Matrigel ™, the protein mixture extracted from Englebreth – Holm- 

Swarm sarcoma (Xu et al, 2001). Although it provided necessary attachment for cell 

support and growth, its animal origin and batch – batch variation led to develop more 

defined matrices such as fibronectin (Wang et al, 2005; Amit et al, 2004), vitronectin 

(Braam et al, 2008), and laminins (Rodin et al, 2009; Rodin et al, 2011).  However, in 

order to use PSCs in industrial settings and the clinic, defined culture conditions and 

SOPs are required.  

 

3.1.2 DEFINED CULTURE SYSTEMS FOR PLURIPOTENT STEM CELLS 

 

Although pluripotent stem cells have a great potential in regenerative medicine, their 

progress strictly depends on well – characterised stem cell systems that would allow 

proper stem cell growth and differentiation. Since the first human embryonic stem cell 

isolation by Thomson et al (1998), most of the research has been focused on culturing 

cells on mouse embryonic fibroblasts (MEFs) in the presence of fetal calf serum (FCS). 

Although animal – derived components have been widely accepted by researchers to 

successfully maintain and passage both hESCs and hiPSCs, products of animal origin 

are problematic. First, the nonhuman components found in serum or from feeder cell 

layers may elicit unknown biological effects on the cells, especially as significant 

variability is observed in serum, and feeder cells. Additionally, animal products used 

in the stem cell experimentation could potentially transmit pathogens to the cultured 

cells, therefore limiting use of pluripotent stem cells and their derivatives in cell-

therapy and bio-artificial devices (Akopian et al, 2010). In order to overcome these 

issues, researchers and companies have focused on developing defined, xeno–free,   

and serum-free media formulations, where major components are based on the 

signalling required for hESC/hiPSC self – renewal (for reviews see Chase and Firpo, 

2007; Unger et al, 2008). Currently, there is a number of commercially available serum 

– free media for hESC and hiPSC culture such as Nutristem (StemGent), PluriStem 

(Millipore), StemPro (Life technologies), X-Vivo (Lonza), ESF (Cell Science and 

Technology), TesR1 (StemCell Technologies), TeSR2 (StemCell Technologies), 
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mTeSR1 (Stem Cell Technologies), TESR – E8 (StemCell Technologies), and E8 

(Life Technologies). Although these media are considered as ‘serum-free’, some of 

them contain a fraction of bovine (BSA) or human (HSA) serum albumin in order to 

prevent the toxic effects of β – mercaptoethanol that plays a major role as an 

antioxidant (Chen et al, 2011). In addition to this, the formulation of these media 

contains different supplements (i.e insulin, transferrin, selenium) and growth factors 

(i.e bFGF, TGFβ; Nodal/Activin), therefore affecting different signalling pathways 

that are responsible for cell pluripotency, and long-term stability in culture (Wang et 

al, 2005; Beattie et al, 2005; James et al, 2005; Vallier et al, 2005; Xiao et al, 2006; 

Greber et al, 2007; Xu et al, 2008). Therefore, choice of the pluripotent stem cell 

medium for cell maintenance, expansion and differentiation should be researched 

thoroughly, especially if a clinical endpoint is desired. Akopian et al (2010) examined 

eight different serum-free media formulations in five different laboratories and 

concluded that StemPro and mTesR1 were the only formulations which supported 

stem cells for at least ten passages. The researchers attributed these positive results not 

only to FGF and TGFβ signalling that are mostly used in stem cell media but also to 

agonists to GABA receptors (Wang et al, 2008) and ErbB2 (Wang et al, 2007) which 

are considered to play a major role in hESC maintenance. Although mTeSR1 is widely 

successful in propagation of pluripotent stem cells, Chen et al (2011) pointed out that 

the StemCell Technologies ‘TeSR’ media are quite complex in terms of their 

formulation and even a fraction of either animal or human serum may cause batch 

variability. In order to overcome these problems, Chen et al along with Life 

Technologies as first have produced Essential 8 (E8) medium that is only based on 

eight components and is free from any serum or animal products. Therefore, we 

decided to examine the effects of E8 versus mTeSR1 on different pluripotent stem cell 

lines and on their derivate hepatocyte function. This was done with a view to lock 

down the ‘best’ stem cell system with which to generate hepatocytes for modelling 

purposes in Chapters 4 and 5.  
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3.2 RESULTS 
 

In this chapter, the pluripotent properties of three human embryonic stem cell lines and 

one human induced pluripotent stem cell line were successfully characterised by 

embryoid body formation and flow cytometry.  

Their DNA sequence variations were analysed by examining single nucleotide 

polymorphism (SNP) using Illumina Genome Viewer. We have established a new 

serum-free hepatic differentiation protocol and used it to successfully differentiate 

three human embryonic stem cell lines (two of them derived under GMP conditions) 

and one human induced pluripotent stem cell line. These lines were efficiently 

differentiated to hepatocytes when cultured in three different stem cell media: mTeSR1 

(Stem Cell Technologies), Essential 8 (Life Technologies) and MEFs-conditioned 

medium (R&D). Differentiated status was measured by quantitative PCR (qPCR), 

immunocytochemistry, and cytochrome P450 functional assay. Additionally, stem cell 

– derived hepatocytes were externally validated by industry. In those experiments, 

human embryonic stem cell (H9)-derived hepatocytes were exposed to 20 well 

characterised hepatotoxicants and displayed similar level of toxicity as primary human 

hepatocytes, hence proving their potential use in drug predictive studies and cell-based 

therapies in the future.  

 

 

3.2.1 CHARACTERISATION OF PLURIPOTENT STEM CELLS IN CULTURE 

 

A research grade, human embryonic stem cell line (H9), and two human embryonic 

stem cell lines derived under GMP conditions (female MAN11 and male MAN12) 

were characterised in two commercially available serum free pluripotent media          

(mTeSR1(MT) and Essential 8 (E8)). Additionally, a human induced pluripotent stem 

cell line (33D6) was characterised in mouse embryonic fibroblast conditioned medium 

(MEF - CM) as originally reported (Sullivan et al, 2010) and E8.  
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Single nucleotide polymorphisms (SNPs) of stem cells 

 

A single nucleotide polymorphism (SNP) is a variation at a single position in a DNA 

sequence among individuals. Any SNPs occurring within a gene may lead to variations 

in amino acid sequence, and therefore may potentially change the property of the coded 

protein. In order to study genetic abnormalities in hESC populations, genomic DNA 

samples were analysed by SNPs by Illumina HumanCytoSNP-12 v 2.1 Assay.           

The samples were further analysed by Illumina GenomeViewer software. The analysis 

was done by analysing log R ratio (log2 (signal intensities for allele A + allele B) and 

B allele frequency (calculated from signal intensity for allele B / signal intensities for 

allele A + B). Each blue dot represents the log2 ratio of one marker. A log ratio of 0   

(~ +/- 0.5) corresponds to normal, diploid copy number. Increased and decreased log2 

ratios correspond to either gained or deleted regions respectively. A value of 0.5 on    

B allele frequency (BAF) plot corresponds to heterozygous SNPs (AB genotype), 

whereas SNPs of value 0 or 1 correspond to homozygous changes (AA or BB 

genotype). Gain of one copy will increase log R ratio and will change B allele 

frequency to values of  0, ~ 0.33, ~ 0.67 and 1.0 indicating AAA, AAB, ABB, BBB 

potential genotypes respectively. 

 

Analysis of human embryonic stem cell line H9 cultured in mTeSR1 (MT) 

demonstrated two potential SNPs indicated as duplications on chromosome 7 (Figure 

3.1) and chromosome 14 (Figure 3.2).  Figure 3.1A and Figure 3.1B revealed that 

potential SNPs were located at the chromosome 7 (q11.21) between positions 

62,113,011 - 62,699,114. Further inside to the positions 62,113,011 - 62,699,114 

revealed no particular gene sequence (Figure 3.1C), therefore the potential 

microduplication could have occurred in a non-coding region of the genome.               

The second SNP was detected on chromosome 14 (q23.2) between positions 

63,577,228 – 63,785,655 (Figure 3.2A and Figure 3.2B). Figure 3.2C revealed a 

potential duplication in Ras Homolog Family Member J (RHOJ) gene (chr 14, q23.2, 

exact position: 63,671,080 - 63,760,230) that is responsible for regulating different 

processes such as cell motility, focal adhesion and invasion (Wilson et al, 2014).  
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Although the software demonstrated the exact gene position using GRCh37 assembly 

(human genome housed at Genome Reference Consortium), the position of RHOJ     

has been recently updated in current assembly release GRCh38 where new location 

has been revealed (chr 14, q23.2, 63,204,114 – 63,292,219). Therefore the analysis of 

the SNP of this particular gene was not analysed any further. In addition to present 

SNPs, H9s did not demonstrate any potential DNA variances in genes, including 

HNF4a, CYP3A4, or CYP1A2 (Supplementary Figures 1.1 and 1.2). What is more, 

for the purpose of this project H9s were examined for potential SNPs in SULT2A1, 

UGT1A1, and GSTT1 enzymes and no potential single-based variances were revealed 

(Supplementary Figure 1.3). No particular SNPs have been detected in MAN11 and 

MAN12 cell lines (Supplementary Figures 1.4 and 1.5). All human embryonic stem 

cell lines (H9, MAN11, MAN12) demonstrated appropriate alignment of DNA 

satellites (repetitive non-coding DNA that is the main component of centromeres) at 

all chromosomes except of chromosomes 13, 14, 15, 21, and 22. The DNA satelites 

are indicated by no signal in both log R ratio and B allele frequency (Supplementary 

Figures 1.1, 1.4 and 1.5) as they possess different (usually lower) density than bulk 

DNA. The other chromosomes presented (13, 14, 15, 21, and 22) are acrocentric as 

indicated by short (almost invisible) p arms (no log R ratio present). In this project, 

SNP analysis was not performed for human induced pluripotent stem cells. 
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Figure 3.1: SNP analysis of H9s cultured in mTeSR1 conditions (chromosome 7). A) Potential SNP 

found on chromosome 7. B) Closer look to the SNP. Microduplication found on chromosome 7, q11 

(position: 62,113,011-62,699,114). C) Closer look to the SNP. No sequence found on chromosome 7, 

q11.21, position: 62,113,011-62,699,114). Samples were analysed by Illumina GenomeViewer 

software. Abbreviation: SNP, short nucleotide polymorphism.       
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Figure 3.2: SNP analysis of H9s cultured in mTeSR1 conditions (chromosome 14). A) Potential 

SNP found on chromosome 14. B) Closer look to the SNP. Microduplication found on chromosome 14, 

q23 (position: 63,577,228 – 63,785,655). C) Closer look to the SNP. Potential SNP found in RHOJ gene 

located on chromosome 14, q23.2, exact position: 63,671,080 - 63,760,230 (GRCh37 assembly). 

Samples were analysed by Illumina GenomeViewer software. Abbreviation: SNP, short nucleotide 

polymorphism; RHOJ, Ras Homolog Family Member J.  
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Fluorescence Activated Cell Sorting (FACS) 

 

In order to characterise and examine the level of pluripotency of selected stem cell 

lines, fluorescence activated cell sorting (FACS) was used that analyses pluripotent 

stem cell surface markers. In this project, antibodies such as SSEA-4, TRA-1-60, and 

TRA-1-81 (all from eBioscience) were used to identify human pluripotent stem cell 

markers, and SSEA-1 was selected as a negative control as it uniquely marks stem cell 

differentiation. Table 3.1 represents the percentage of positive cells for each of the 

surface markers in a particular cell line and conditions. 

 PLURIPOTENT STEM CELL MARKERS 

SSEA-1 FITC 
% +ve cells 

SSEA-4 PE 
% +ve cells 

TRA-1-60 PE 
% +ve cells 

TRA-1-81 APC 
% +ve cells 

CELL LINE 
(MEDIUM) 

PASSAGE     

H9 (MT) 44 2.65 97.7 96 91.1 

 47 0.79 99.7 98 93.7 

 50 0.65 98.4 90.4 99.9 

 53 9.72 99.5 95 99.4 

H9 (E8) 56 1.8 - 85.9 12.2 

 60 2.1 - 87.4 15 

 

MAN11 (MT) 52 1.13 97.82 97.42 92.63 

 55 2.5 98.8 96.5 90.4 

 58 1.8 96.5 98.9 93.7 

MAN11(E8) 54 4.5 - 93.1 35.7 

 61 3.2 - 91.5 40.1 

 

MAN12 (MT) 48 0.52 98.12 94.52 97.39 

 53 0.99 98.58 96.2 97.86 

 57 1.5 97.5 95.5 96.3 

MAN12 (E8) 56 2.4 - 81.7 15.9 

 61 1.2 - 84 20.1 

 

33D6 (CM) 51 16.2 - 96.2 81.3 

 62 11.5 - 94.5 79.8 

33D6 (E8) 53 8.6 - 73.5 17.4 

 61 6.1 - 80.1 23.5 
 

Table 3.1: Flow cytometry. Human embryonic stem cell lines (H9, MAN11, MAN12) and human 

induced pluripotent stem cell line (33D6) are high for human pluripotent surface markers expression    

(SSEA-4, Tra-1-60, Tra-1-81), and low for the differentiation marker SSEA-1. The percentage of 

positive cells was taken from at least two passages. Abbreviations: MT, mTeSR1; E8, Essential 8; CM, 

MEFs-Conditioned Medium. 
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The levels of Tra-1-60 for all human embryonic stem cell lines in both conditions was 

above 90%, whereas for human induced pluripotent stem cells was ~80%. Surface 

marker Tra-1-81 was positive in more than 90% of human embryonic cells in MT 

condition, however the expression of this marker was much lower in E8 medium than 

expected. Similarly, to human ES cells, iPSC line 33D6 displayed low expression 

(~20%) of this marker in E8 medium, however high expression (~80%) was observed 

in cells cultured in CM medium. Although, both human embryonic and induced 

pluripotent stem cells expressed Tra-1-81 at low levels in E8 medium, this was 

probably due to insufficient amount of the antibody and not cells per se. SSEA4 was 

expressed in more than 96% of human embryonic stem cell lines in MT conditions, 

however it was not optimised in both CM and E8 medium. The stem cell differentiation 

marker, SSEA1, was expressed at low levels (~ 0.5-17%) in all cell lines as expected. 

The representative histograms of surface marker expression of hESC (H9; passage 47) 

cultured in MT are demonstrated in Supplementary Figure 1.10.  

 

 

Embryoid body formation 

 

Embryoid bodies (EBs) are three-dimensional aggregates formed in suspension by 

pluripotent stem cells (PSCs). Ability to form EBs by PSCs and to differentiate them 

further to three lineages is a standard method to assess the level of pluripotency.            

In this project, human embryonic and induced pluripotent stem cells were scraped to 

low cluster plate to promote aggregation. After seven days, when aggregates were well 

defined and vacuolated, cells were transferred to gelatin-coated chamber slides to 

allow for spontaneous differentiation. After fourteen days, cells were stained for three 

markers that characterise each of the germ layers: α smooth muscle actin (αSMA) for 

mesoderm, α-fetoprotein (AFP) for endoderm, and B-tubulin III for ectoderm.       

These data demonstrates that all three hESC (H9, MAN11, MAN12) and hiPSC 

(33D6) lines were able to spontaneously differentiate as indicated by positive 

expression of all linage markers (Figure 3.3). 
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Figure 3.3: Embryoid body (EB) formation. Three human embryonic stem cell lines (H9, MAN11, 

MAN12) and one human induced-pluripotent stem cell line (33D6) successfully formed EBs. The EBs 

were able to spontaneously differentiate to all three germ layers as represented by expression of 

smooth muscle actin (αSMA; mesoderm), α-fetoprotein (AFP; endoderm), and B-tubulin III 

(ectoderm). The images were taken at x 40 magnification.  
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3.2.2 CHARACTERISATION AND OPTIMISATION OF HEPATOCYTE 

DIFFERENTIATION 

 

The new serum – free model for pluripotent stem cell (PSCs) – derived hepatic 

differentiation 

 

In order to circumvent the problems connected with animal-derived products and L-

15 medium (Hay et al, 2007, 2008a), we examined commercially available serum-free 

hepatocyte maturation media: Hepatocyte Culture Medium (HCM, Lonza) and 

HepatoZYME (HZ, Life Technologies). In order to optimise the hepatic differentiation 

protocol, we focused on human embryonic H9 cell line as it was the most studied type 

of line in our laboratory. hESCs were differentiated to definitive endoderm and 

hepatoblasts up to day 8 as previously published (Hay et al, 2007 and 2008a).                

At day 8 of differentiation, early hepatocytes were transferred to three media (L-15; 

HCM; HZ) supplemented with specific growth and maturation factors (see Materials 

and Methods for details). From day 15 of differentiation, cell supernatant was collected 

every second day to examine metabolic functionality of cells by cytochrome P450 

(CYP3A and CYP1A2) activity and albumin production.  
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Figure 3.4 demonstrates that over a time course CYP3A activity of hepatic cells was 

substantially increasing in HZ conditions, displaying the highest activity at day 21 of 

differentiation. In comparison with other media, cells cultured in HZ medium 

demonstrated ~12 fold increase in the enzyme production at day 21 (p < 0.0001).  

 

 

 

Figure 3.4: Cytochrome 3A activity (L-15, HCM, HZ). Cytochrome 3A activity was measured over 

a time course in Leibovitz’s (L-15), Hepatocyte Culture (HCM), and HepatoZYME™ (HZ) media. 

Levels of significance are quoted over the bars and measured by Student’s t test: p-values: *(<0.05); ** 

(<0.01); *** (<0.001); **** (<0.0001) 
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Figure 3.5 demonstrates that similarly to CYP3A, the levels of hepatic CYP1A2 

activity was increasing during differentiation process. CYP1A2 displayed ~ 16 fold 

higher activity at day 25 in comparison with other media (p < 0.0001).  

 

 

 

Figure 3.5:  Cytochrome 1A2 activity (L-15, HCM, HZ). Cytochrome 1A2 activity was measured 

over a time course in Leibovitz’s (L-15), Hepatocyte Culture (HCM) and HepatoZYME™ (HZ) 

media. Levels of significance are quoted over the bars and measured by Student’s t test: p-values: 

*(<0.05); ** (<0.01); *** (<0.001);****(<0.0001). 
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In addition to cytochrome activity, the production of albumin, the major serum protein 

of the liver, was examined by Enzyme – Linked Immunosorbent Assay (ELISA). 

Figure 3.6 demonstrates that hESC-derived hepatocytes displayed the highest protein 

production at days 21, 23, 25 when cultured in HZ conditions. In comparison with 

other media, the level of albumin at these days in this particular conditions was ~ 2 

fold (p < 0.0001; p < 0.001; p < 0.01) and ~14 fold (p < 0.0001) higher than in HCM 

and L-15 media respectively.   

 

 

 

 

Figure 3.6: Albumin production (L-15, HCM, HZ). Albumin production was measured over a time 

course in Leibovitz’s (L-15), Hepatocyte Culture (HCM), and HepatoZYME™ (HZ) media. Levels 

of significance are quoted over the bars and measured by Student’s t test: p-values: *(<0.05); ** 

(<0.01); *** (<0.001); **** (<0.0001).  
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Morphological changes during hepatic differentiation using a serum-free 

approach 

 

Taking into consideration that hESC-derived hepatocytes significantly produced 

cytochromes P450 (CYP3A/ CYP1A2) and albumin as well as were free from any 

animal products in HepatoZYME™ conditions, we decided to apply this medium in 

our current protocol and create fully functional serum-free in vitro hepatocyte 

differentiation procedure. Figure 3.7 demonstrates the schematic overview of the        

re-optimised protocols for human embryonic stem cell lines (i) and human induced 

pluripotent stem cell lines (ii) that were based on initial Hay et al (2007; 2008a) and 

Sullivan et al (2010) procedures respectively.  

  

 

i) 

 

 
 

 

ii) 

 

 
 
Figure 3.7: Hepatocyte differentiation protocol. Step – wise protocol for the differentiation of human 

embryonic (i) and human induced (ii) pluripotent stem cells to hepatocytes using a serum-free system. 

Abbreviations: RPMI 1640, Roswell Park Memorial Institute Medium 1640; KO – SERUM, Knockout 

Serum Replacement; DMSO, dimethyl sulfoxide; HGF, hepatocyte growth factor; OSM, oncostatin M.  
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Once the last stage of the hepatic differentiation protocol was optimised, we decided 

to examine whether the procedure could be applied to different human embryonic and 

induced pluripotent stem cell lines and whether different pluripotent serum free culture 

conditions would affect phenotype, gene expression and functionality of hepatic cells. 

In order to investigate that, hESCs mentioned above were cultured either in mTeSR1 

or E8 for at least three passages before starting hepatocyte differentiation. hiPSC line 

33D6 was chosen and cultured in CM conditions as reported previously (Sullivan et 

al, 2010). Similarly, the 33D6 line was passaged at least three times before 

differentiation. In addition, hiPSCs were cultured in E8 medium to examine the effect 

of animal-free components on hiPSC- derived hepatocyte activity. 

 

Figure 3.8 demonstrates that hESC line H9 cultured either in MT or E8 underwent a 

series of morphological changes. hESC morphology changed as cells exited 

pluripotency (day 0) and transited through definitive endoderm (day 3) and upon 

hepatic specification (hepatoblast day 10; hepatocyte day 18). H9s in both serum - free 

conditions displayed dome-like colonies at day 0 as expected. Addition of Wnt3a and 

Activin A stimulated cells to loosen up, proliferate and form definitive endoderm that 

is characterised by spike/triangle –like shape. Upon hepatic specification (day 10), 

cells acquired more defined polygonal shape to finally form hexagonal shape with well 

- defined larger nuclei and canaliculi - like structures surrounding them at day 18 of 

maturation. Figure 3.9 and Figure 3.10 demonstrate two hESCs lines derived under 

GMP conditions, female MAN11 and male MAN12 that efficiently underwent 

sequential morphological changes when initially cultured either in MT or E8 medium. 

Although the differentiation was successful in both lines, MAN11 displayed 

morphologically less defined definitive endoderm structure in both conditions in 

comparison with MAN12, where cells at day 3 demonstrated similar phenotype to H9 

cell line. Similarly to hESC lines, hiPSC line 33D6 demonstrated appropriate 

morphology at all four stages of differentiation (Figure 3.11). It is important to mention 

that hiPSCs cultured in CM were much bigger in size and less compacted in 

comparison with E8 medium (day 0).  
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Gene and protein expression changes during hepatic differentiation using       

a serum – free approach 

 

In line with changes in cell morphology, changes in gene expression throughout 

cellular differentiation were observed in all cell lines presented. In this project, hESCs 

and hiPSCs were examined for major pluripotent stem cell (OCT 3/4, NANOG), 

definitive endoderm (SOX17, CXCR4, NODAL) and hepatic (HNF4a, HNF1B, AFP, 

ALB, ECAD) markers by quantitative PCR (qPCR). The genes were normalised to 

B2M housekeeping gene, however appropriate gene expression was also observed 

when normalised to GAPDH (Supplementary Figures 1.6 and 1.7). Figure 3.12 

demonstrates gene expression changes over a time course in H9s cultured either in MT 

or E8 medium prior to differentiation. At day 3 postdifferentiation, Oct and Nanog 

significantly decreased by 5- and 2.5 fold in comparison with day 0 in MT conditions. 

Surprisingly, H9s cultured in E8 displayed 3 fold higher expression of Nanog at          

day 3. hESCs cultured in E8 demonstrated significantly higher levels of endodermal 

markers at day 3 than in MT, as indicated by changes in CXCR4, and Nodal expression 

by ~5 -, and ~ 4 fold respectively. Contrary to this, Sox17 was expressed 1.5 fold 

higher in MT conditions. The marker of the fetal liver α-fetoprotein (AFP) was 

expressed at the similar gene levels (Supplementary Table 1.1A). The major hepatic 

transcriptional factor HNF4a was expressed in E8 conditions ~ 25 -, ~11 -, and 60-fold 

higher at days 3, 10, and 18 respectively in comparison with MT medium. Hepatic 

progenitor marker HNF1B was expressed 1.5 fold higher in E8 medium at day 10, 

whereas the marker of mature hepatocyte albumin (ALB) was expressed 2 fold lower 

at day 18 in comparison with MT conditions. E-cadherin, a marker of epithelial cell 

adhesion was upregulated by ~ 2.4 fold in E8 medium at day 10 in comparison with 

MT (Supplementary Table 1.1B).  

 

In order to confirm efficient hepatic differentiation, immunocytochemistry was 

performed (Figures 3.13 and 3.14). At day 3 postdifferentiation, Oct 3/4 was 

downregulated to 1.4% (SE ± 0.84) and 0% for MT and E8 respectively. Sox 17 was 

similarly expressed at endodermal stage in both media, as indicated by 93%                  

(SE ± 2.32) and 91% (SE ± 1.18) for MT and E8 respectively.  
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Upon hepatic specification, 94% (SE ± 2.73) and 88% (SE ± 4.14) of cells were 

positive for HNF4a expression at day 10 in MT and E8 respectively. AFP was positive 

in 99% of cells at day 10 and remained at the same level till day 18 in both media. 

Albumin was expressed by ~25% more in MT than in E8 medium at day 18 (97% (SE 

± 1.1) and 72% (SE ± 3.92) respectively). E-cadherin was highly expressed both in 

day 0 and day 18 in both media (80-100%).  Appropriate expression of markers during 

differentiation of H9s (MT) to hepatocytes was also confirmed by Western blot 

(Supplementary Figure 1.8A).  
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Figure 3.13: Protein expression during hepatic differentiation (H9s in MT) Stagewise hESC      

(H9 cell line) differentiation to the hepatocyte lineage. H9 cell line cultured in mTeSR (MT) was 

differentiated in a stagewise fashion toward the hepatocyte lineage. Immunocytochemistry showing 

downregulation of pluripotency marker Oct 4, as the cells expressed endodermal transcripts (Sox 17). 

Upon hepatic specification, HNF4a, AFP and ALB expression increased. Ecad expression was 

significantly downregulated at the definitive endoderm specification.  IgG controls demonstrated the 

specificity of immunostaining. The percentage of positive cells is provided in the top right of each 

panel. This was calculated from four random fields of view and is quoted as ± standard error.               

The images were taken at x 20 magnification. Abbreviations: Oct 4, Octamer 4; Sox 17, SRY-box 17; 

HNF4a, hepatic nuclear factor 4a; AFP, alpha-fetoprotein; ALB, albumin; Ecad, E-cadherin. 
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Figure 3.14: Protein expression during hepatic differentiation (H9s in E8). Stagewise hESC       

(H9 cell line) differentiation to the hepatocyte lineage. H9 cell line cultured in Essential 8 (E8) was 

differentiated in a stagewise fashion toward the hepatocyte lineage. Immunocytochemistry showing 

downregulation of pluripotency marker Oct 4, as the cells expressed endodermal transcripts (Sox 17). 

Upon hepatic specification, HNF4a, AFP and ALB expression increased. Ecad expression was 

significantly downregulated at the definitive endoderm specification.  IgG controls demonstrated the 

specificity of immunostaining. The percentage of positive cells is provided in the top right of each 

panel. This was calculated from four random fields of view and is quoted as ± standard error.               

The images were taken at x 20 magnification. Abbreviations: Oct 4, Octamer 4; Sox 17, SRY-box 17; 

HNF4a, hepatic nuclear factor 4a; AFP, alpha-fetoprotein; ALB, albumin; Ecad, E-cadherin. 

 

 

 

 

 

 

 

 



131 
 

Similarly to H9s, Oct 3/4 and Nanog  were downregulated in female GMP-hESC line 

MAN11 at day 3 of differentiation in MT conditions by 2.5 and 2 fold respectively.    

In E8 conditions, the gene expression of Oct remained similar in comparison with day 

0, whereas Nanog expression increased by 1.6 fold. In comparison with MT, cells in 

E8 displayed significant upregulation of Sox17, CXCR4, and Nodal by ~450, ~ 40 -, 

and 30 fold change. AFP was upregulated by ~3 fold at day 10 in MT conditions in 

comparison with E8, whereas downregulated by ~7 fold at day 18 (Supplementary 

Table 1.1A). HNF4a was significantly upregulated in E8 by ~30 -, ~45 -, and ~100 

fold at days 3, 10, and 18 respectively in comparison with MT medium. HNF1B 

demonstrated higher expression by 2 fold at day 10 in E8 medium, whereas albumin 

was expressed higher by ~ 14 fold in the same medium when compared with MT 

conditions (Figure 3.15). 

 

Immunocytochemistry demonstrated downregulation of Oct 3/4 by ~50 fold at day 3 

(2% (SE±1.86)) in MT conditions, however ~ 53.3% (SE ± 8.0) of cell remained 

positive for this gene in E8 at the same day. Endodermal Sox 17 was expressed at      

~58 % (SE ± 5.53) in MT and ~ 98% (SE ± 0.58) in E8 at day 3 of differentiation.    

The master hepatic regulator HNF4a was expressed in ~84% (SE ± 1.06) and 87% 

cells (SE ± 1.16) at day 10 and 18 respectively in MT, whereas ~54% (SE ± 4.9) and 

72% (SE ± 3.83) were positive at the same days in E8. AFP protein expression was 

present in ~ 63% (SE ± 2.47) at day 10, and increased up to 90% (SE ± 2.05) by day 

18. The same serum protein was expressed at 99% (SE ± 0.58) at day 10 in E8, and 

remained stable till day 18 as indicated by 99% (SE ± 0.48). Albumin was similarly 

expressed in both media at day 18, as demonstrated by 95% (SE ± 2.14; MT) and 98% 

(SE ± 0.71; E8). E - cadherin similarly to ALB was expressed at 96% (SE ± 2.40) and 

98% (SE ± 1.0) at day 18 in MT and E8 respectively (Figures 3.16 and 3.17).  
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Figure 3.16: Protein expression during hepatic differentiation (MAN11 in MT). Stagewise GMP 

- hESC (MAN11 cell line) differentiation to the hepatocyte lineage. MAN cell line cultured in mTeSR 

(MT) was differentiated in a stagewise fashion toward the hepatocyte lineage. Immunocytochemistry 

showing downregulation of pluripotency marker Oct 4, as the cells expressed endodermal transcripts 

(Sox 17). Upon hepatic specification, HNF4a, AFP and ALB expression increased. Ecad expression 

was significantly downregulated at the definitive endoderm specification.  IgG controls demonstrated 

the specificity of immunostaining. The percentage of positive cells is provided in the top right of each 

panel. This was calculated from four random fields of view and is quoted as ± standard error. The 

images were taken at x 20 magnification. Abbreviations: Oct 4, Octamer 4; Sox 17, SRY-box 17; 

HNF4a, hepatic nuclear factor 4a; AFP, alpha-fetoprotein; ALB, albumin; Ecad, E-cadherin. 
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Figure 3.17: Protein expression during hepatic differentiation (MAN11 in E8). Stagewise GMP 

- hESC (MAN11 cell line) differentiation to the hepatocyte lineage. MAN11 cell line cultured in 

Essential 8 (E8) was differentiated in a stagewise fashion toward the hepatocyte lineage. 

Immunocytochemistry showing downregulation of pluripotency marker Oct 4, as the cells expressed 

endodermal transcripts (Sox 17). Upon hepatic specification, HNF4a, AFP and ALB expression 

increased. Ecad expression was significantly downregulated at the definitive endoderm specification.  

IgG controls demonstrated the specificity of immunostaining. The percentage of positive cells is 

provided in the top right of each panel. This was calculated from four random fields of view and is 

quoted as ± standard error. The images were taken at x 20 magnification. Abbreviations: Oct 4, 

Octamer 4; Sox 17, SRY-box 17; HNF4a, hepatic nuclear factor 4a; AFP, alpha-fetoprotein; ALB, 

albumin; Ecad, E-cadherin. 

 

 

Male GMP-hESC line MAN12 displayed increase in Oct and Nanog by 2.5 fold and 

1.5 fold at day 3 in MT medium respectively (Figure 3.18). Similarly, Nanog was 

upregulated by ~1.5 fold in E8 medium at the endodermal stage, whereas Oct levels 

remained the same at day 3. The upregulated Oct expression at endodermal stage in 

both media was confirmed by immunostaining where ~ 55% and 86% of cells 

remained positive for this gene in MT and E8 conditions respectively                      
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(Figures 3.19 and 3.20).  Cells cultured in E8 medium demonstrated a significant 

increase in Sox17, CXCR4, and Nodal by ~125-, ~28-, and ~ 22 fold in comparison 

with MT conditions. AFP gene and protein expression was similarly expressed in both 

media at days 10 and 18 (Supplementary Table 1.1A). Although HNF4a displayed 

increase in gene expression by ~30, ~ 60, ~900 fold at days 3, 10, and 18 in E8 medium 

when compared to MT, the protein expression was similarly expressed at hepatoblast 

and hepatocyte stage in both media (Figures 3.18, 3.19 and 3.20). HNF1B was 

increased by ~10 fold in E8 medium at day 10 in comparison with other conditions. 

Contrary to other genes, albumin expression increased by ~10 fold in MT medium in 

comparison with E8.   

 

Gene expression results were further confirmed by immunocytochemistry           

(Figures 3.19 and 3.20). Oct 3/4 protein expression was downregulated at day 3, 

however remained still highly expressed at day 3 as indicated by ~ 55% (SE ± 4.0) and 

86% (SE ± 5.20) of cell being positive for this protein in MT and E8 respectively. 

Although results at day 3 were different as expected, the Oct expression was not 

present from day 10 onwards in both conditions. Sox17 protein expression was present 

in both media at ~ 85% (SE ± 1.29; MT) and 89% (SE ± 4.09; E8) at the definitive 

endoderm stage.  Upon hepatic specification, HNF4a was present at ~ 82% (SE ± 4.66) 

and 88% (SE ± 6.40) at day 10 in MT and E8 respectively,  whereas the expression of 

this protein was downregulated to ~ 68% (SE ± 3.05) in MT  and in E8 remained 

constant (88%; SE ± 0.49) by day 18 of differentiation. In MT conditions, AFP was 

expressed at 100% at day 10 and remained stable till day 18 (99%; SE ± 0.48). The 

same protein was expressed in ~ 99% (SE ± 0.33) of cells at the hepatoblast stage, and 

was slightly decreased to ~ 82% (SE ± 6.57) by hepatocyte stage. Both conditions 

demonstrated similar expression of albumin at day 18 of differentiation, as indicated 

by 99% (SE ± 0.58; MT) and 97% (SE ± 1.15; E8) of cells being positive for this 

protein. E – cadherin was similarly expressed in both media at 99% (SE ± 0.33) and 

91% (SE ± 2.50)  at day 18.  
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Figure 3.19: Protein expression during hepatic differentiation (MAN12 in MT). Stagewise GMP- 

hESC (MAN12 cell line) differentiation to the hepatocyte lineage. MAN12 cell line cultured in mTeSR 

(MT) was differentiated in a stagewise fashion toward the hepatocyte lineage. Immunocytochemistry 

showing downregulation of pluripotency marker Oct 4, as the cells expressed endodermal transcripts 

(Sox 17). Upon hepatic specification, HNF4a, AFP and ALB expression increased. Ecad expression 

was significantly downregulated at the definitive endoderm specification.  IgG controls demonstrated 

the specificity of immunostaining. The percentage of positive cells is provided in the top right of each 

panel. This was calculated from four random fields of view and is quoted as ± standard error. The images 

were taken at x 20 magnification. Abbreviations: Oct 4, Octamer 4; Sox 17, SRY-box 17; HNF4a, 

hepatic nuclear factor 4a; AFP, alpha-fetoprotein; ALB, albumin; Ecad, E-cadherin. 
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Figure 3.20: Protein expression during hepatic differentiation (MAN12 in E8) Stagewise GMP - 

hESC (MAN12 cell line) differentiation to the hepatocyte lineage. MAN12 cell line cultured in Essential 

8 (E8) was differentiated in a stagewise fashion toward the hepatocyte lineage. Immunocytochemistry 

showing downregulation of pluripotency marker Oct 4, as the cells expressed endodermal transcripts 

(Sox 17). Upon hepatic specification, HNF4a, AFP and ALB expression increased. Ecad expression 

was significantly downregulated at the definitive endoderm specification.  IgG controls demonstrated 

the specificity of immunostaining. The percentage of positive cells is provided in the top right of each 

panel. This was calculated from four random fields of view and is quoted as ± standard error. The images 

were taken at x 20 magnification. Abbreviations: Oct 4, Octamer 4; Sox 17, SRY-box 17; HNF4a, 

hepatic nuclear factor 4a; AFP, alpha-fetoprotein; ALB, albumin; Ecad, E-cadherin. 

 

 

Figure 3.21 demonstrates that hiPSC line 33D6 initially cultured in CM displayed 

downregulation of Oct and Nanog by 2.5 and 10 fold respectively by day 5 of 

differentiation. In E8 conditions at day 5, Oct expression remained the same, whereas 

Nanog increased by ~ 2 fold. Similarly to other lines, endodermal genes were 

significantly upregulated at day 5 in E8 medium in comparison with alternative 

conditions.  
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This was indicated by increase in Sox17, CXCR4, and Nodal gene expression by ~16, 

~66-, and ~45 fold change in E8 medium. HNF4a increased by ~13-, ~122-, and ~500 

fold at days 5, 9, and 14 in E8 medium in comparison with CM. HNF1B transcription 

factor was similarly expressed in both media at day 5, whereas at day 9 it increased by 

~47 fold in E8 medium when compared with CM. AFP gene expression increased 

~521 fold in E8 in comparison with CM, whereas E-cad increased by ~12 fold in E8 

(Supplementary Table 1.1 A and B). Albumin was upregulated by ~3 fold at day 14 in 

E8 medium in comparison with CM conditions.  

 

Successful differentiation of hiPSC line 33D6 was confirmed by 

immunocytochemistry (Figures 3.22 and 3.23). The pluripotent marker Oct 3/4 was 

significantly decreased by day 3, as indicated by 0.8% (SE ± 0.2) and 0.1% in MT and 

E8 media respectively. HNF4a hepatic marker was similarly expressed in MT and E8 

conditions at day 10, as indicated by ~98% (SE ± 0.47) and ~97% (SE ± 0.48) 

respectively. By day 18 the hepatic transcription marker expression decreased to ~65% 

(SE ± 0.40) in MT, whereas in E8 conditions the expression remained constant (~91%; 

SE ± 4.18). At day 10, AFP protein expression was significantly upregulated in MT 

conditions as indicated by 100% of cells being positive for this marker, whereas only 

42% (SE ± 0.63) of cell were expressing this protein in E8. By day 18, the expression 

of AFP was similar in both conditions (~98%, SE ± 0.3 for MT and 100% for E8). At 

the hepatocyte stage, E – cadherin was present in ~98% (SE ± 0.33) and 95% (SE ± 

0.58) cells in MT and E8 respectively. Appropriate expression of markers during 

differentiation of 33D6s (CM) to hepatocytes was also confirmed by Western blot 

(Supplementary Figure 1.8B).  
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Figure 3.22: Protein expression during hepatic differentiation (33D6 in CM). Stagewise hiPSC 

(33D6 cell line) differentiation to the hepatocyte lineage. 33D6 cell line cultured in Conditioned 

Medium (CM) was differentiated in a stagewise fashion toward the hepatocyte lineage. 

Immunocytochemistry showing downregulation of pluripotency marker Oct 4. Upon hepatic 

specification, HNF4a and AFP expression increased. Ecad expression was significantly 

downregulated at the definitive endoderm specification.  IgG controls demonstrated the specificity of 

immunostaining. The percentage of positive cells is provided in the top right of each panel. This was 

calculated from four random fields of view and is quoted as ± standard error. The images were taken 

at x 20 magnification. Abbreviations: Oct 4, Octamer 4; HNF4a, hepatic nuclear factor 4a; AFP, alpha-

fetoprotein; Ecad, Ecadherin. 
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Figure 3.23: Protein expression during hepatic differentiation (33D6 in E8). Stagewise hiPSC 

(33D6 cell line) differentiation to the hepatocyte lineage. 33D6 cell line cultured in Essential 8 (E8) 

was differentiated in a stagewise fashion toward the hepatocyte lineage. Immunocytochemistry 

showing downregulation of pluripotent marker Oct 4. Upon hepatic specification, HNF4a, AFP and 

AFP expression increased. Ecad expression was significantly downregulated at the definitive 

endoderm specification.  IgG controls demonstrated the specificity of immunostaining. The 

percentage of positive cells in provided in the top right of each panel. This was calculated from four 

random of fields of view and is quoted as ± standard error. The images were taken at x 20 

magnification. Abbreviations: Oct 4, Octamer 4; HNF4a, hepatic nuclear factor 4a; AFP, alpha-

fetoprotein; Ecad, Ecadherin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

Metabolic function of PSC-derived hepatocytes using a serum-free approach 

 

The liver plays a central role in many biochemical processes. In this project, the 

interest was specifically in drug metabolism and how stem cell – derived models could 

be used to study compound pharmacology and hepatotoxicity. The first step was to 

assess which, if any, cell based assay was suitable to for large-scale screening within 

the pharmaceutical industry. In order to progress to large – scale manufacture and 

industrial screening, stem cell –derived hepatocytes had to exhibit inducible 

cytochrome P450 activity. Using our serum – free process, hESCs (H9 lines) and 

hiPSCs demonstrated significantly improved metabolic capacity and were more stable 

in character, when compared with previous approaches using serum-containing 

medium (Hay et al, 2008a; Sullivan et al, 2010). Whereas basal activities of the 

cytochrome P450 enzymes provided important background information, we were keen 

to assess whether PSC-derived hepatocytes were drug – inducible, a hallmark of more 

mature hepatocyte. To assess this, pleiotropic P450 inducer, phenobarbital (PB), was 

used. Human ES and iPS cells selected in this project were induced with 1 mM PB for 

48 hours before the assessment of P450 activity.  

 

Hepatocytes derived from H9 line cultured in MT medium exhibited inducible CYP3A 

(~ 5 fold) and CYP1A2 (~ 4 fold) activity (Figure 3.24). Contrary to MT, hepatic cells 

derived from H9 line cultured in E8 demonstrated no induction of CYP3A enzymes, 

however CYP1A2 was induced by ~4 fold (Figure 3.24). Hepatocytes derived from 

GMP-hESC female MAN11 line initially cultured in MT displayed induction of 

CYP3A by ~2 fold, whereas no significant induction of CYP1A2 was observed (Figure 

3.25). Similarly, neither CYP3A nor CYP1A2 was induced in E8 medium by 

phenobarbital (Figure 3.25). Hepatic cells derived from GMP-hESCs male MAN12 

line cultured either in MT or E8 conditions did not display any CYP3A induction 

(Figure 3.26). CYP1A2 in MAN12-derived hepatocytes in both media was induced 

but not significantly (p>0.05). Although, somatic cells derived from hiPSC line 33D6 

demonstrated activity of both enzymes in two different media conditions, no drug 

induction was observed (Figure 3.27). 
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Figure 3.24: Cytochrome P450 activity of hESC (H9)-derived hepatocytes. Human hESC-derived 

hepatocytes display Cytochrome P450 drug metabolism (CYP3A and CYP1A2). The top panel 

demonstrates hepatocytes displaying both basic and inducible Cytochrome P450 3A and 1A2 drug 

metabolism when derived from ES cells cultured in mTeSR (MT) medium. The lower panel 

demonstrates hepatocytes displaying both basic Cytochrome P450 3A and 1A2 activity when derived 

from ES cells cultured in Essential 8 (E8) medium, however only CYP1A2 was induced.  Phenobarbital 

drug induction was carried out from day 16 for 48h, changing medium and phenobarbital on the daily 

basis. The CYP3A and CYP1A2 activity were measured using the nonlytic pGLOTM System (Promega) 

at day 18 (hESC-derived hepatocytes). At 5h post treatment, CYP3A and CYP1A2 activity were 

measured on a luminometer (Promega). Units of activity are expressed as relative light unit (RLU) ml-

1 mg-1 protein (n=3). Level of significance are quoted and measured by Student’s t-test. Significance 

levels are denoted ** (P < 0.01). Abbreviations: PB, Phenobarbital; Ctrl, Control; ml, millilitre; mg, 

milligram; mM, millimolar. 
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Figure 3.25: Cytochrome P450 activity of hESC (MAN11)-derived hepatocytes. Human 

hepatocytes derived from female GMP-grade hESC MAN11 line display Cytochrome P450 drug 

metabolism (CYP3A and CYP1A2). The top panel demonstrates hepatocytes displaying basic 

Cytochrome P450 3A and 1A2 when derived from ES cells cultured in mTeSR (MT) medium, however 

only inducible is 3A. The lower panel demonstrates hepatocytes displaying basic Cytochrome P450 3A 

and 1A2 activity when derived from ES cells cultured in Essential 8 (E8) medium. No drug induction 

was observed for both enzymes. Phenobarbital drug induction was carried out from day 16 for 48h, 

changing medium and phenobarbital on the daily basis. The CYP3A and CYP1A2 activity were 

measured using the nonlytic pGLOTM System (Promega) at day 18 (hESC-derived hepatocytes). At 5h 

post treatment, CYP3A and CYP1A2 activity were measured on a luminometer (Promega). Units of 

activity are expressed as relative light unit (RLU) ml-1 mg-1 protein (n=3). Level of significance are 

quoted and measured by Student’s t-test. Significance levels are denoted ** (P < 0.01). Abbreviations: 

PB, Phenobarbital; Ctrl, Control; ml, millilitre; mg, milligram; mM, millimolar. 
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Figure 3.26: Cytochrome P450 activity of hESC (MAN12)-derived hepatocytes Human hepatocytes 

derived from male GMP-grade hESC MAN12 line display Cytochrome P450 drug metabolism (CYP3A 

and CYP1A2). The top panel demonstrates hepatocytes displaying basic Cytochrome P450 3A and 1A2 

when derived from ES cells cultured in mTeSR (MT) medium. The lower panel demonstrates 

hepatocytes displaying basic Cytochrome P450 3A and 1A2 activity when derived from ES cells 

cultured in Essential 8 (E8) medium. No drug induction was observed for both enzymes in neither of 

the medium. Phenobarbital drug induction was carried out from day 16 for 48h, changing medium and 

phenobarbital on the daily basis. The CYP3A and CYP1A2 activity were measured using the nonlytic 

pGLOTM System (Promega) at day 18 (hESC-derived hepatocytes). At 5h post treatment, CYP3A and 

CYP1A2 activity were measured on a luminometer (Promega). Units of activity are expressed as relative 

light unit (RLU) ml-1 mg-1 protein (n=3). Abbreviations: PB, Phenobarbital; Ctrl, Control; ml, millilitre; 

mg, milligram; mM, millimolar. 
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Figure 3.27: Cytochrome P450 activity of hiPSC (33D6)-derived hepatocytes. Human hepatocytes 

derived from hiPSC line (33D6) display Cytochrome P450 drug metabolism (CYP3A and CYP1A2). 

The top panel demonstrates hepatocytes displaying basic Cytochrome P450 3A and 1A2 when derived 

from hiPCS cells cultured in MEFs Conditioned Medium (CM) medium. The lower panel demonstrates 

hepatocytes displaying basic Cytochrome P450 3A and 1A2 activity when derived from hiPSC cells 

cultured in Essential 8 (E8) medium. No drug induction was observed for both enzymes in neither of 

the medium. Phenobarbital drug induction was carried out from day 12 for 48h, changing medium and 

phenobarbital on the daily basis. The CYP3A and CYP1A2 activity were measured using the nonlytic 

pGLOTM System (Promega) at day 14 (hESC-derived hepatocytes). At 5h post treatment, CYP3A and 

CYP1A2 activity were measured on a luminometer (Promega). Units of activity are expressed as relative 

light unit (RLU) ml-1 mg-1 protein (n=3). Abbreviations: PB, Phenobarbital; Ctrl, Control; ml, millilitre; 

mg, milligram; mM, millimolar. 
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3.2.3 HESC-DERIVED HEPATOCYTES AS A RELIABLE MODEL TO PREDICT 

DRUG-INDUCED LIVER INJURY 

 

As it was clear that hepatocytes derived from the H9 cell line exhibited the highest 

basal and drug inducible cytochrome P450 activity, we elected to use hESC-derived 

hepatocytes to examine their potential for future large-scale manufacture and industrial 

application. hESC - derived hepatocytes, chosen on their basis of metabolic 

competence, were compared to a well-characterised batch of cryoplatable human 

hepatocytes (referred as primary hepatocytes). hESCs were scaled up and 

differentiated in 96-well plate format. In collaboration with Bristol-Myers-Squibb 

(USA) twenty known hepatotoxins were screened using primary and stem cell-derived 

hepatocytes (Table 3.2). Each cell type was incubated with specific compound for 1, 

4, or 7 days. In general, toxicity increased with time of exposure and eventually all 

compounds identified as toxic (IC50 < 200 uM) in primary human hepatocyte cultures 

were also toxic in hESC hepatocytes. Initially (day 1), fewer compounds were toxic to 

hESC hepatocytes (45%) as compared with primary hepatocytes (60%), but by day 4 

hESC hepatocytes displayed increased sensitivity (65%) over primary hepatocytes 

(60%). One compound, benzobromarone, was substantially more toxic in hESC 

hepatocytes cultures than in primary hepatocytes, but most compounds (8 of 20) were 

more toxic in primary hepatocyte cultures. By day 7, both assays identified 75% of the 

hepatotoxins as toxic in vitro. 
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Table 3.2: Prediction of drug – induced liver injury. IC50 for 20 human hepatotoxicants cultured 

with hESC-derived hepatocytes and cryopreserved human hepatocytes for 1, 4, or 7 days. Cellular ATP 

levels were measured and used to calculate IC50 (the concentration of the compound resulting in 50% 

toxicity). Wells were plated in triplicate for each concentration and each compound tested. If a 

compound failed to generate IC50 with the maximum concentration tested (200 uM), it was expressed 

as > 200. In general, toxicity increased with time of exposure. All compounds eventually were identified 

as toxic (e.g, an IC50 < 200 uM) in primary (cryopreserved) hepatocyte cultures were also toxic in 

hESC hepatocytes. Abbreviations: hESC, human embryonic stem cell. The experiment and analysis was 

performed by Dr Sarah Farnworth and Bristol-Myers-Squibb (BMS; USA). The results are published 

in Szkolnicka et al, 2014b.  

 

 

 

 

 

 

 

 



150 
 

As drug-induced liver injury is a complex process, it was important not only to assess 

cell viability (ATP production) but also the mechanism of cell death. In order to 

examine this, caspase 3/7 activity was measured by fluorescence using the Apo-ONE 

Homogenous Caspase 3/7 assay (Promega). The results demonstrated that nine of the 

fifteen toxic compounds induced increases in caspase 3/7 production over the same 

range of concentrations that reduced ATP (Figure 3.28). The remaining six toxic 

compounds did not induce caspase activity (Figure 3.29). Of the five compounds that 

were not toxic, concentration – related increases in hESC hepatocyte ATP were 

observed for dacarbazine, felbamate, and valproic acid, indicative of hormesis (Figure 

3.30). Of note, troglitazone also induced a substantial increase in hESC hepatocyte 

ATP on day 7, at lower concentrations, before sustaining a complete loss of cell ATP 

between 10 and 100 uM (Figure 3.28).  
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3.3 DISCUSSION 

The liver plays an important role in human physiology. It has been estimated to 

perform over 500 functions in vivo. Liver disease leads to decompensated organ 

function and results in the derangement of normal bodily functions. Therefore, it is 

important that early diagnosis and intervention take place. In this vein, defined human 

hepatocyte models from hESCs and iPSCs were developed during this project. 

Importantly, the novel serum-free approach that has been established in our laboratory, 

drives efficient hepatic differentiation in a format suitable for high throughput 

screening. In addition to this, we have demonstrated that culturing pluripotent stem 

cells (PSCs) in different serum-free media (here MT and E8) may affect the gene 

expression during differentiation stages. For instance, PSCs cultured in E8 medium 

displayed an increase in Nanog gene expression at day 3 (definitive endoderm 

specification) of differentiation in comparison with MT. Although unexpected, Teo et 

al (2011) demonstrated that Nanog is necessary to initiate the expression of 

Eomesodermin (EOMES) transcriptional factor, which in turn cooperates with 

SMAD2/3 to activate transcriptional network directing definitive endoderm formation. 

Although the specific reason is unknown, it has been hypothesized that much higher 

concentrations of Nodal and TGFβ in E8 medium contrary to MT medium results in 

the activation of Nanog, and therefore stimulation of its activity on endodermal genes 

at day 3 (Xu et al, 2008). 

 

Interestingly, hESC hepatocytes derived from H9s cultured in mTeSR1 exhibited 

greater metabolic and drug-inducible activity when compared with hepatocytes 

derived from MAN lines that were derived under GMP conditions and hiPSC 

hepatocytes. What is more, hepatic cells derived from pluripotent stem cells that were 

initially cultured in Essential 8 medium demonstrated lower cytochrome P450 activity 

when compared with MT (Figures 3.24 – 3.27). Although the exact reason is unknown, 

it is potentially suggested that higher levels of bFGF and TGFβ in E8 than in MT may 

influence the level of hepatic differentiation and metabolic activity.    
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What is more, early studies in our laboratory demonstrated that use of bFGF inhibitor 

(at 1uM concentration, StemCell Technologies) in E8 medium for 24 hours prior to 

differentiation results in regained cytochrome P450 activity to the levels comparable 

with MT. In order to approach issues such as weak embryoid body formation or 

differentiation, both StemCell Technologies and Life Technologies companies have 

produced commercially available Essential 6 medium (E6) that does not contain bFGF 

and TGFβ.  

Contrary to embryonic lines, induced pluripotent stem cell line 33D6 did not 

demonstrate any induced levels of the cytochromes P450 (CYP3A and CYP1A2) by 

phenobarbital (Figure 3.27). The reason for this is unknown, and we do not claim that 

this is a generic iPSC trait, but merely that it is evident in our best performing 

retrovirally derived iPSC line. The failure to respond to phenobarbital may be 

attributable to a number of factors, including stresses inherent with cellular 

reprogramming, genetic background, epigenetic modifications, and/or retroviral DNA 

insertion, and those should be the focus of future investigation.  

On the basis of metabolic competence, hESC hepatocytes were selected for scale-up 

and evaluated as a tool for hepatotoxicity studies (Table 3.2). hESC hepatocyte 

populations were robust, survived transit, and accurately predicted human compound 

toxicity, which was comparable to cryopreserved human hepatocytes. Within the 

group of 20 compounds tested, 15 were determined as toxic. Two mechanisms of 

cytotoxicity appeared to be involved, caspase-dependent apoptosis (9 compounds) 

(Figure 3.28) and caspase-independent necrosis (6 compounds) (Figure 3.29). Of note, 

ATP synthesis was induced at lower compound concentrations in response to some 

compounds (Figure 3.30). This is an example of hormesis, which is associated with 

cellular stress. Of note, there was clear evidence of hormesis in hESC-derived 

hepatocytes postexposure to valproic acid, felbamate, and dacarbazine. Interestingly, 

these three compounds were not detected as cytotoxic, and further investigation of 

stress-related endpoints, for example, reactive oxygen species, heat shock proteins, 

and unfolded protein-response transcription factors, will most likely be useful in 

defining the mechanism of toxicity associated with these compounds.  
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The two remaining compounds, isoniazid and diclofenac, did not induce toxicity in 

either primary or hESC hepatocytes. Isoniazid hepatotoxicity appears to be immune 

mediated, whereas diclofenac toxicity in human patients appears over weeks to 

months, making it possible that models of short duration or lacking immune 

components do not reveal the cumulative effects of these compounds.  

These data support that hESC hepatocytes performed on a par with gold standard 

assays, promising in the future that they may serve as a partial or full replacement for 

primary cells in safety screening.  

 

In conclusion, it is important to use well characterised pluripotent stem cell lines and 

it is feasible to construct serum - free models. It has been demonstrated that it is 

possible to model the potential for human drug-induced liver injury using stem cell-

derived hepatocytes. This is an important step to using stem cell-derived somatic cells 

in tailoring human medicines for different genetic backgrounds and improving the 

efficiency of drug development. In the future, it may also be possible to use such a 

resource for developing cell-based therapies. Whereas current models are equivalent 

to primary hepatocytes, there is a requirement to improve their sensitivity and 

prediction rates of drug toxicity. Therefore, in the future it will be important to 

sophisticate cell-based models and end point measurements to deliver better success 

in predicting human liver injury.  
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CHAPTER FOUR 

 

IDENTIFICATION OF NOVEL NON-CODING 

RNAs WHICH ARE PREDICTED TO REGULATE 

HUMAN PHASE II DRUG METABOLISM 
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4.1 INTRODUCTION 

4.1.1 PSC-DERIVED HEPATOCYTES FOR MODELLING DRUG METABOLISM 

 

Currently, drug development takes more than 12 years, has high attrition rate, and costs 

between U.S $800 million and $2 billion (Orloff et al, 2009; Kola and Landis, 2004; 

Medine et al, 2013). As a result there has been a significant reduction in new drug 

candidates. One of the major reasons for compound attrition is drug induced liver 

injury (DILI) and accounts for approximately 50% of acute liver-failure cases in the 

United States (Ostapowicz et al, 2002; Chalasani and Björnsson, 2010).                  

Current approaches to detect DILI employ a range of human cell lines and primary 

hepatocytes both of which are limited by scarcity, poor function, species specific 

readouts and batch to batch variation. Therefore in recent years there has been a focus 

on deriving hepatocytes from renewable stem cell populations isolated from defined 

genetic backgrounds (for a review see Szkolnicka et al 2013).  

 

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) are 

examples of pluripotent stem cells (PSCs) which offer an unlimited supply of human 

soma when coupled with an efficient differentiation procedure. Both PSC populations 

have been shown to efficiently differentiate to hepatocytes using defined factors 

(Lavon et al, 2004; Cai et al, 2007; Duan et al, 2007; Hay et al 2007 ; Hay et al 2008ab; 

Agarwal et al, 2008; Basma et al 2009; Hay et al 2011; Hannan et al, 2013; Medine et 

al 2013; Szkolnicka et al, 2014). Stem cell derived somatic cells are being developed 

and, which more closely reflect hepatocyte physiology, will undoubtedly provide new 

biomarkers of disease; more accurate prediction of human liver toxicity and may lead 

to the development of safer and more effective drugs in the future.  

 

Drug metabolising enzymes (DMEs) are divided into three major phases and play 

central roles in the metabolism, elimination, and/or detoxification of xenobiotics or 

exogenous compounds introduced into the body (Meyer, 1996). In phase I, a variety 

of enzymes acts to introduce reactive and polar groups into their substrates, and these 

reactions may occur by oxidation, reduction or hydrolysis.  
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The Cytochrome P450 superfamily is the major player in the process of oxidation.        

It is found abundantly in the liver, gastrointestinal tract, lung and kidney (Lewis, 

2003b). The reduction and hydrolysis of the drug is mainly carried out by nitro-

reductases and esterases respectively. Phase II DMEs are often termed conjugation 

enzymes and they include different subfamilies such as: Sulfotransferases (SULT), 

UDP-glucuronosyltransferases (UGT), and Glutathione S-Transferases (GST). 

Conjugation of phase I metabolites with phase II enzymes increases hydrophilicity of 

the compound resulting in the enhanced excretion in the bile, the urine, mediated via 

bile secretion and sweat (Hinson and Forkert, 1995). Conjugates and their metabolites 

can be excreted from cells by Phase III transporters which majorly include ATP-

binding cassette (ABC) transporters and solute – carrier transporters (SLC) (Xu et al, 

2005b) (Figure 4.1). 

        

Figure 4.1: Phases of drug metabolism (I, II, III). Drugs are metabolised by Phase I enzymes             

(e.g CYPs) to form highly reactive metabolites that are detoxified by Phase II conjugating enzymes     

(e.g GST, UGTs, SULTs) and excreted by Phase III transporters (e.g MDR1) to bile, urine or sweat. 

Abbreviations: CYPs, Cytochromes P450; GST, glutathione S-transferases; UGT, UDP-

glucuronosyltransferases, SULT, sulfotransferases; MDR1, multidrug-resistance protein 1.  
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4.1.2 MICRORNAs IN DRUG METABOLISM 

MicroRNAs (miRs) are a class of small, non-coding RNAs which major role is to 

inhibit gene expression at translational level (Friedman et al, 2009), however recently 

studies have demonstrated that the RNA molecules increase transcriptional and 

translational activity (Vasudevan and Steitz, 2007b; Fabian et al, 2010). MicroRNAs 

can also inhibit gene expression at transcriptional level by recruiting different 

epigenetic factors (e.g DNA methyltransferases) or by interacting with the pre-

initiation complex at the transcription start site blocking the binding of RNA 

polymerase II and basal transcriptional factors. (Pastori et al, 2010).  

Recently, some microRNAs have been shown to directly or indirectly control the drug 

metabolising enzymes or nuclear receptors, and consequently, affect the capacity of 

drug metabolism and disposition, and influence the sensitivity of cells to xenobiotic 

agents (Yu, 2009; Nakajima and Yokoi, 2011; Yokoi and Nakajima, 2013; Yu and 

Pan, 2012). Therefore, dysregulation of specific microRNAs which control the 

expression of drug metabolising enzymes or drug transporters, might lead to 

considerable change in the pharmacokinetic and pharmacodynamics property of a drug 

(Figure 4.2). Improved understanding of the regulatory pathways of these enzymes 

will provide novel insights into adverse drug reactions, drug resistance and drug-drug 

interaction in clinical pharmacotherapy. Identification of microRNA – enzyme 

interactions would help to develop new microRNA –based therapeutics such as 

miRNA antagonists or mimics that block toxic metabolite formation and cell death 

(Bader et al, 2010).  
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Figure 4.2: MicroRNA regulation of drug metabolism. MicroRNAs can directly regulate drug 

metabolising enzymes (direct regulation) or indirectly by controlling transcriptional factors (indirect 

regulation). Such regulation may cause changes in pharmacokinetics/dynamics of drugs leading to a 

therapeutic failure. MicroRNAs shown have been demonstrated to regulate specific genes (in brackets) 

at different metabolic stages. Adapted from Yokoi and Nakajima (2013), and Yu (2009). Abbreviations: 

HNF4a, hepatic nuclear factor 4a; ARNT, aryl hydrocarbon receptor nuclear translocator; PXR, 

pregnane X receptor; VDR, vitamin D receptor; CYP, cytochrome P450; SULT1A1, sulfotransferase 

1A1; P-gp, P-glycoprotein; ABCG2, ATP-binding cassette sub-family G member 2. 
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4.2 RESULTS 

In this chapter, we examined microRNA and drug metabolism gene expression in stem 

cell - derived hepatocytes. Firstly, the metabolic gene expression profile was examined 

in hESC - derived hepatocytes and compared with primary human hepatocytes profile. 

Once the commonly expressed metabolic genes were identified, the metabolic 

pathways that were intact in both systems were determined. After pathway 

identification (paracetamol), microRNA expression profile was examined both in 

hESC – derived hepatocytes and primary human hepatocytes. Once the commonly 

microRNAs were determined in both systems, we identified number of microRNAs 

that could modulate specific metabolic pathways of interest. The microRNA-mRNA 

binding interactions were predicted using TargetScan Human 6.2 software.                 

This programme was chosen in this study as it is considered to have one of the highest 

precision and sensitivity of all current computational tools (Witkos et al, 2011).              

In addition, its total context score that is assigned to each result correlates with protein 

downregulation (Witkos et al, 2011). 

 

4.2.1 METABOLIC GENE EXPRESSION PROFILE 

As regulation of all three phases of drug metabolising enzymes has a significant impact 

on metabolism, elimination and pharmacokinetics of a particular drug, it was important 

to assess what metabolic genes were expressed in both stem cell - derived (day 18 of 

differentiation) and freshly isolated primary human hepatocytes derived from one 

particular batch lot. In order to examine gene expression profile, three RT2 Profiler 

PCR Arrays of Phase I, II and III (Qiagen) were employed. Each array contained 96 

genes in 4 replicates (384 – well plate). Phase I array included enzyme families such 

as alcohol dehydrogenases (ADH1/4/5/6), aldehyde dehydrogenases (ALDH1), 

arachidonate lipoxygenases (ALOX5/12/15), cytochromes P450 

(CYP1/2/3/11/17/19), carboxylesterases (CES1/2/3), epoxide hydrolases (EPHX1), 

and hydroxysteroid dehydrogenases (HSD17). Phase II array contained glutathione S-

transferases families (alpha, GSTA; mu, GSTM; pi, GSTP; omega, GSTO; theta, 

GSTT), catechol–O-methyltransferases (COMT), N-acetyltransferases (NAT1 and 

NAT2), sulfotransferases (SULT1/2/4/6) and UDP-glucuronyltransferases 
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(UGT1/2/3/8). The Phase III array included two major influx transporters: solute 

carrier transporters (SLC2/10/15/16/19/22/28/29/38) and solute carrier organic anion 

transporters (SLCO1/2/3/4) and one superfamily of efflux transporters: ATP- binding 

cassette transporters (subfamily A/B/C). All arrays were normalised to five 

housekeeping genes (B actin, ActB; beta-2-microglobulin, B2M; glyceraldeyhyde-3-

phosphotase dehydrogenase, GAPDH; hypoxanthine phosphoribosyltransferase 1, 

HPRT1; and ribosomal protein P0, RPLP0). In the analysis, the three-fold difference 

was taken into consideration. Fold differences larger than 3 fold threshold were 

representing up-regulated genes, fold differences narrower than 3 fold threshold were 

indicating down-regulated genes, whereas fold differences between -3 to +3 boundary 

were representing genes similarly expressed. From these studies it was demonstrated 

that stem cell derived hepatocyte expressed transcript for Phase I drug metabolism 

with ~ 32% similarity to primary hepatocytes (Figure 4.3; Supplementary Table 1.2). 

Phase II drug metabolism with ~ 35% (Figure 4.3; Supplementary Table 1.3) and Phase 

III drug metabolism with ~ 29% similarity to primary hepatocytes (Figure 4.3; 

Supplementary Table 1.4).  

 

 

 

 

 

 

 

 

 

 

 



165 
 

 

                                                          

L
o

g
1
0

(C
o

n
tr

o
l
G

ro
u

p
;

2
Λ
–

D
e
lt

a
C

t)
L

o
g

1
0

(C
o

n
tr

o
l
G

ro
u

p
;

2
Λ
–

D
e
lt

a
C

t)
L

o
g

1
0

(C
o

n
tr

o
l
G

ro
u

p
;

2
Λ
–

D
e

lt
a

C
t)

Log10(Group1;2Λ–DeltaCt)

In
c

re
a

s
e
d

D
e

c
re

a
s
e

d
S

im
il

a
r

F
ig

u
re

 4
.3

: 
S

te
m

 c
e
ll

 –
d

er
iv

ed
 (

d
a

y
 1

8
) 

a
n

d
 p

ri
m

a
ry

 h
u

m
a

n
 h

e
p

a
to

cy
te

 g
en

e 
ex

p
re

ss
io

n
. 

T
h
e 

sc
at

te
r 

p
lo

ts
 r

ep
re

se
n
t 

ex
p

re
ss

io
n
 o

f 
th

e 
m

aj
o

r 

m
et

ab
o

li
c 

g
e
n
e
s 

in
v
o

lv
ed

 i
n

 P
h
as

e 
I 

(A
),

 P
h
as

e 
II

 (
B

),
 a

n
d

 P
h
as

e 
II

I 
(C

) 
d

ru
g
 m

et
ab

o
li

sm
. 

G
e
n
e 

e
x
p

re
ss

io
n
 w

a
s 

p
er

fo
rm

ed
 u

si
n
g

 H
u

m
a
n
 D

ru
g

 

M
et

ab
o

li
sm

 R
T

2
 P

ro
fi

le
r 

P
C

R
 A

rr
a
y
 (

Q
IA

G
E

N
) 

ac
co

rd
in

g
 t

o
 t

h
e 

m
an

u
fa

ct
u
re

 i
n
st

ru
ct

io
n

s.
 T

h
e 

g
en

e 
ex

p
re

ss
io

n
 w

as
 a

n
a
ly

se
d

 b
y
 R

T
2

 P
ro

fi
le

r 
P

C
R

 

A
rr

a
y
 D

at
a 

A
n
al

y
si

s 
v
er

si
o

n
 5

.0
 (

Q
IA

G
E

N
).

 T
h
e 

sc
at

te
r 

p
lo

t 
re

p
re

se
n
ts

 3
 f

o
ld

 c
h
a
n
g
e
 i

n
 g

e
n
e 

ex
p

re
ss

io
n
. 

T
h
e 

g
ra

p
h
 p

lo
ts

 t
h
e
 l

o
g

1
0
 o

f 
n
o

rm
al

iz
ed

 

g
en

e
 e

x
p

re
ss

io
n
 l

ev
el

s 
in

 a
 c

o
n
tr

o
l 

co
n
d

it
io

n
 (

x
-a

x
is

) 
v
er

su
s 

an
 e

x
p

er
im

e
n
ta

l 
co

n
d

it
io

n
 (

y
-a

x
is

).
 S

y
m

b
o

ls
 o

u
ts

id
e 

th
e 

b
o

u
n
d

ar
y
 a

re
a 

in
d

ic
at

e 
fo

ld
 –

d
if

fe
re

n
ce

s 
la

rg
er

 t
h
a
n
 a

 t
h
re

sh
o

ld
 (

3
 f

o
ld

).
  

T
h
e 

re
d

 s
y
m

b
o

ls
 i

n
 t

h
e 

u
p

p
er

 -
 l

ef
t 

co
rn

er
 r

ea
d

il
y
 i

d
en

ti
fy

 u
p

-r
eg

u
la

te
d

 g
en

es
, 

an
d

 t
h
e 

g
re

en
 s

y
m

b
o

ls
 i

n
 

th
e 

lo
w

er
-r

ig
h
t 

co
rn

er
 r

ea
d

il
y
 i

d
e
n
ti

fy
 d

o
w

n
-r

eg
u
la

te
d

 g
e
n
es

. 
T

h
e 

h
u

m
a
n
 p

ri
m

ar
y
 h

ep
at

o
cy

te
 t

o
ta

l 
R

N
A

 w
as

 p
u
rc

h
as

ed
 f

ro
m

 3
H

 B
io

m
ed

ic
al

 

(S
w

ed
e
n
).

 

 



166 
 

Phase I gene expression data (Figure 4.3; Supplementary Table 1.2) demonstrates that 

in comparison with primary human hepatocytes, stem cell derived hepatocytes 

displayed higher expression of CYP1A1 (upregulated by ~ 99.74 fold), similar 

expression of CYP2B6 and CYB5R3 reductase (downregulated by -1.63 and -2.05 

fold), and lower expression of the major hepatic cytochromes P450 involved in drug 

metabolism such as CYP3A4, CYP2C9, CYP2C19, and CYP2D6 (downregulated by 

-69.31, -246.36, -27.11, and -5.80 fold respectively). The Phase I array also measured 

alcohol (ADH) and aldehyde (ALDH) dehydrogenases that play a significant role in 

drug-drug/ drug-alcohol interactions. Class 4 of alcohol dehydrogenase (ADH4) was 

upregulated in stem cell derived hepatocytes by ~ 4.07 fold in comparison with the 

primary human hepatocyte model. The other classes of alcohol dehydrogenases 

(ADH5, ADH6) and aldehyde dehydrogenase class 1A1 (ALDH1A1) were similarly 

expressed in both hepatic systems, and their fold change is indicated as 2.60, -2.71, -

1.87 respectively. In addition, epoxide hydrolase (EPHX1) was similarly expressed in 

both models (downregulated by – 1.08 fold), whereas carboxylesterase 1 and 2 (CES1, 

CES2) were downregulated in hepatocyte-like cells by -56.19 and -26.53 fold 

respectively in comparison with  the primary system.   

Phase II expression data (Figure 4.3; Supplementary Table 1.3) demonstrates that in 

comparison with the gold standard model, glutathione S – transferases GSTP1, 

GSTA1, GSTA3, GSTA4 were upregulated in stem cell hepatocytes by 33.14, 5.68, 

5.09, and 11.26 fold respectively. Glutathione S - transferases of other classes, GSTT1, 

GSTK1, GSTM4, GSTO1, GSTO2 were similarly expressed in both models as 

indicated by – 1.06, 1.05, 1.25, 1.34 and – 1.04 fold respectively. Neither of the GST 

enzymes that play an important role in drug metabolism were downregulated. Different 

polypeptides of sulfotransferases family 1 such as SULT1A2/ 1E1/ 1C2/1C4/1C4 

demonstrated higher expression in stem cell derived hepatocytes than primary 

hepatocytes, with increase in expression measured at by 12.29, 59.55, 23.14, 23.14, 

3.40 fold respectively. Two sulfotransferases, SULT1A1 and SUL2A1 were expressed 

at the same levels in two models (fold change: 1.84 and -1.92 respectively).Whereas 

SULT1B1 was downregulated in stem cell derived hepatocytes by -8.05 fold in 

comparison to primary human hepatocytes.  
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Neither of the UDP-glucuronosyltransferase (UGT) genes was upregulated in the stem 

cell derived hepatocytes. Enzymes UGT3A1 and UGT2B28 were similarly expressed 

in both models (fold change  – 1.78), whereas other families of UGTs such as 

UGT1A1/ 1A4 and UGT2A3/ 2B4/ 2B7/ 2B10/ 2B17 were downregulated by – 3.35 

/ -137.61 and -59.49 / -30.73 / -6.65 / -8.33 / -59.46 fold respectively. UGT1A9 gene 

was not expressed in the stem cell derived hepatocytes (Ct> 35; data not shown) and 

therefore it was not analysed in further detail. Other enzymes such as N-

acetyltransferase 1 (NAT1) was upregulated in stem cell derived hepatocytes by 3.09 

fold, catechol-O-methyltransferase (COMT) was similarly expressed (fold change: 

1.69) in both models, whereas NAT2 was downregulated by -3.83 fold in stem cell 

derived hepatocytes. 

Phase III expression data (Figure 4.3, Supplementary Table 1.4) demonstrates that 

stem cell derived hepatocytes expressed higher gene expression of ABC transporters 

such as ABCG2 (fold change: 29.17) and different members of ABCC family: ABCC1 

(fold: 3.58), ABCC4 (fold: 17.42) and ABCC5 (fold: 8.28) in comparison with primary 

human hepatocytes. Other ABC transporters such as ABCB11, ABCC3, and ABCG8 

were expressed similarly as primary hepatocytes (1.41, -2.93, -2.83 fold change 

respectively). ABCB1, ABCB4, and ABCC2 transporters were downregulated in the 

stem cell derived hepatocyte model (fold change: -8.38; -4.68; -11.92 respectively). 

Influx transporters such as solute carrier transporters (SLC) were also analysed in the 

array. Membrane transport proteins such as SLCO1A2 (fold change: 17.38), SLC19A3 

(fold change: 8.59), SLCO2A1 (fold change: 49.01), and the two membrane 

transporters responsible for organic cation/anion/zwitterion transport such as 

SLC22A7 (fold change: 5.70) and SLC22A9 (fold change: 3.82) were upregulated in 

stem cell-derived hepatocytes in comparison with primary human hepatocytes. Two 

folate/thiamine influx transporters, SLC19A1 (fold change: 2.07) and SLC19A2 (fold 

change: 2.85) as well as SLC22A3 (fold change: -1.18) were similarly expressed in 

both models. Two solute organic anion transporters that are mainly expressed in the 

liver such as SLCO1B1 (fold change: -19.9) and SLCO1B3 (fold change: -8.69) as 

well as SLC22A1 (fold change: -17.46) were downregulated in stem cell-derived 

hepatocytes in comparison with primary human hepatocytes.  
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As the Phase II qPCR array did not include three important phase II metabolic genes 

(UGT2B15, UGT1A6, and SULT1A3), the expression of these genes was analysed by 

qPCR (Figure 4.4) and compared with the primary human hepatocytes (PHH).             

As Figure 4.4A demonstrates, UGT2B15 gene expression was downregulated by 67-

fold in hESC - derived hepatocytes in comparison with primary human hepatocyte, 

whereas UGT1A6 enzyme was downregulated in hepatocyte - like cells by ~ 7 fold 

(Figure 4.4B). SULT1A3 was upregulated in HLCs by ~ 9 fold when compared with 

PHHs (Figure 4.4C). 

                           

Figure 4.4: Gene expression of UGT2B15, UGT1A6, and SULT1A3. Gene expression of UGT2B15, 

UGT1A6, and SULT1A3 in Primary Human Hepatocytes (PHH) and in hepatocytes (d18) derived from 

human embryonic stem cell line H9. The gene expression was normalised to B2M housekeeping gene 

and expressed as fold change relative to PHH. Abbreviations: UGT2B15/UGT1A6, UDP-

glucuronosyltransferases 2B15/1A6; SULT1A3, Sulfotransferase 1A3, B2M, beta2-microglobulin.                          
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4.2.2 PARACETAMOL (APAP) METABOLIC PATHWAY 

Having identified commonly expressed metabolic genes in both models, it was 

important to determine which drug metabolic pathways were intact. To search for 

candidate metabolic pathways, Pharmacogenomics Knowledge Base (PharmGKB; 

www.pharmgkb.org) was used. From these studies we determined that both stem cell 

- derived and primary human hepatocytes exhibited an intact paracetamol metabolic 

pathway by gene expression. Paracetamol (APAP) is a common analgesic drug, and it 

is majorly produced from the phenacetin precursor by phase I enzymes: CYP1A2 and 

1A1 (Huang et al, 2012). When taken in therapeutic doses, greater than 90% of 

paracetamol is metabolized to phenolic glucuronide (APAP-glucuronide) and sulphate 

(APAP-sulfate) in the liver by glucuronosyltransferases (UGTs) and sulfotransferases 

(SULTs) and subsequently excreted in the urine by ABC transporters (Bessems and 

Vermeulen, 2001; Adjei et al, 2008). Of the remaining paracetamol, ~ 2% is excreted 

in the urine unchanged, ~ 5-10% is metabolized by cytochrome P450 (CYP) to N-

acetyl-p-benzoquinone imine (NAPQI), a highly reactive, electrophilic molecule that 

causes harm by formation of covalent bonds with other intracellular proteins (Chun et 

al, 2009; Larson, 2007; Rumack, 2002; Nelson, 1990). This reaction is prevented by 

conjugation with glutathione (GSH) and subsequent reactions generate a water-soluble 

product that is excreted into bile (APAP – cysteine; Jaeshke and Bajt, 2006). With 

paracetamol overdose, UGTs and SULTs are saturated, diverting the drug to be 

metabolized by CYP and generating NAPQI in amounts that can deplete intracellular 

glutathione. If glutathione is not replenished or GSTs do not function properly, NAPQI 

begins to accumulate in the hepatocytes, leading to hepatotoxicity and eventually liver 

failure (Lee, 1995; Hinson et al, 2010) (Figure 4.5). 
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Figure 4.5: APAP (paracetamol) metabolism (based on Pharmacogenomics Knowledge Base 

PharmGKB; www.pharmgkb.org). At normal doses it is conjugated by two major families of phase II 

enzymes: Sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs). This leads to the 

production of two metabolites: APAP-sulfate and APAP-glucuronide, which are further effluxed from 

the cell by one of the ABC transporters. At higher doses than recommended, APAP (paracetamol) is 

metabolised by Cytochrome P450 enzymes. This leads to the formation of a reactive metabolite, N-

acetyl-p-benzoquinone imine (NAPQI), which is further transformed  to a non-toxic  APAP- cysteine 

and mercapturic acid by Glutathione S- transferases (GSTT1,GSTP1). The metabolite is effluxed from 

the cell by one of the phase III transporters.                            

 

 

 

 

 

 

 

 

 

 

http://www.pharmgkb.org/
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4.2.3 PROTEIN EXPRESSION OF MAJOR METABOLIC GENES 

In order to validate the results generated from the PCR array experiments, 

immunostaining focusing on phase II and phase III protein expression was performed. 

Figure 4.6 and Figure 4.7 represent protein expression of the major phase II metabolic 

enzymes and phase III transporters of paracetamol processing during differentiation of 

human embryonic stem cells (hESCs; day 0) to definitive endoderm (DE; day 3),           

to hepatoblast (HBL; day 10) and to hepatocyte (HLC; day 18).   

The top panel of Figure 4.6 demonstrates high expression of glutathione S-transferase 

p1 (GSTP1) throughout the whole hepatic differentiation process. At day 0 (hESCs), 

GSTP1 was expressed at approximately 99% (SE±0.4) and the percentage of positive 

cells remained relatively constant at all stages of differentiation, as indicated by 98% 

(SE±0.48) in DE, 90% (SE±0.85) in HBL, and 96% (SE±0.4) in HLC. Glutathione S-

transferase theta 1 (GSTT1) demonstrated stable expression at 98% at all stages of 

differentiation (SE for hESCs: ±0.25; DE: ±0.65; HBL ± 0.48; HLC ± 0.25). The 

protein expression of sulfotransferase 1A1 (SULT1A1) was not detected at day 0, 

however at day 3 postdifferentiation it was significantly increased (98% ± 0.5) and 

remained constant at HBL (97% ± 0.4) and HLC (98% ± 0.63) stages. Contrary to 

SULT1A1, sulfotransferase 2A1 (SULT2A1) expression was not detected at 

pluripotent and definitive endoderm stages. During hepatic specification, 90% (± 0.65) 

of cells were positive for SULT2A1, whereas the expression of this enzyme was 

reduced by ~ 1.5 fold in stem cell derived hepatocytes (59% ± 2.85).  

UDP-glucuronosyltransferase 1A1 (UGT1A1) protein expression was not detected at 

the pluripotent, endodermal and hepatoblast stage (Figure 4.7). The expression of this 

protein significantly increased at the final stage of differentiation, as indicated by 

hepatocytes expressing 54% (± 4.3) cells positive for this marker. The ATP-binding 

cassette G2 (ABCG2) transporter was not expressed at the early stages of the 

differentiation, with increasing levels at the hepatic specification (HBL: 9% ± 0.63) 

and hepatocyte formation (HLC: 52% ± 1.55). The ATP-binding cassette C1 (ABCC1) 

transporter demonstrated high expression at day 0 (99% ± 0.48), day 3 (99% ± 0.48), 

and day 10 (99% ± 0.4) with decreasing levels by ~ 1.3 fold at day 18 of differentiation 

(77% ± 1.1) (Figure 4.7). 
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After validating the expression of the major phase II enzymes and phase III 

transporters involved in paracetamol detoxification, we decided to select and focus on 

three phase II enzymes that were similarly expressed in both models and played a 

major role in toxic (GSTT1) and non- toxic (SULT2A1, UGT1A1) processing of the 

drug (Figure 4.8). Once the genes were selected, we firstly examined microRNAs  that 

were commonly expressed in both stem cell derived hepatocytes and primary human 

hepatocytes (Figure 4.8), and used the TargetScan Human 6.2 programme to identify 

novel targets.   

 

            

 

 

 

 

 

 

 

 

Figure 4.8: APAP metabolism and microRNA/target prediction. The expression of enzymes and 

transporters involved in APAP metabolism and potential microRNA-target prediction. Phase II 

enzymes (GSTT1, SULT2A1, UGT1A1) and Phase III transporters (ABCG2, ABCC1) play major role 

in toxic and non-toxic pathways of APAP metabolism. In the non-toxic pathway APAP is metabolised 

by SULT2A1 enzymes and UGT1A1 to produce APAP sulfate and APAP glucuronide metabolite 

respectively that are effluxed from the cell by ABCG2 transporter. In a toxic pathway, APAP 

(paracetamol) is metabolised by GSTT1 enzyme to produce APAP cysteine and mercapturic acid 

metabolites that are effluxed from the cell by ABCC1 transporter. Abbreviations: GSTT1, glutathione 

S-transferase theta 1; SULT2A1, sulfotransferase 2A1; ABCG2, ATP-Binding Cassette Transporter 

Subfamily G member 2; ABCC1,  ATP-Binding Cassette Transporter Subfamily  C member 1; miR, 

microRNA.  
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4.2.4 MICRORNA EXPRESSION PROFILE 

In order to study miR regulation in toxicity studies, it is important that hESC-derived 

hepatocytes reflect partially the miR expression profile of the current gold standard 

model, primary human hepatocytes. Therefore, we compared the level of microRNA 

expression in stem cell derived and primary human hepatocytes. To generate 

microRNA expression profile, the RNAs from four replicates of primary human 

hepatocytes (a single donor) and from four experimental samples of hESC-derived 

hepatocytes (day 18) were used. The differences in miRNA expression between the 

two groups (PHH and HLCs) were evaluated firstly by performing ANOVA and then 

t-tests separately for each miRNA. The p-values coming from the t-tests were adjusted 

for multiple test inflation using the Benjamini-Hochberg method 6 (Benjamini Y and 

Hochberg Y, 1995) and are referred to as pFDR, where FDR is the false discovery rate. 

The miRNAs with significant differences from hypothesis testing at pFDR < 0.05 as 

well as having an absolute fold-change (FC) ≥ 1.5 were considered differentially 

expressed. A p-value cut-off of 0.05 is considered as a common practice when 

analysing microarray data and the use of the fold-change threshold of 1.5 is based on 

the documented array-to-array variability from the Agilent system. The microRNAs 

that had p-value > 0.05 and FC ≤ 1.5 were considered to be similarly expressed.             

A summary representation of the expression data was produced using Principal 

Component Analysis (PCA) (Jackson JE, 1991).  PCA extracts the main effects from 

high-dimensional data such as microarray datasets, which for each sample have 

expression measurements from hundreds of miRNA. These main effects (principal 

components) were displayed in a simplified graphical representation which retained 

the main properties of the data. In the PCA, samples that were similarly expressed 

clustered in the same space on the PCA plot.  

Principal Component Analysis overview plot, generated using 367-reliably detected 

miRNAs revealed very strong clustering by cell type (using pFDR < 0.05 and FC ≥ 

1.5) (Figure 4.9A). The statistical analysis of the microRNA Array demonstrated that 

~60% of reliably detected microRNAs were expressed at the same level both in 

primary human hepatocytes and hESC-derived hepatocytes, whereas ~ 40% were 

differentially  expressed in both of these systems (Figure 4.9B; Supplementary Tables 

1.6a/b/c and 1.7a/b/c).  
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Of note the major microRNA found in the hepatocyte, miR-122 (Lagos-Quintana et 

al, 2002), was expressed at the same level in hESC-derived hepatocytes as in primary 

human hepatocytes (Figure 4.9C).  

 

 

 

 

Figure 4.9: MicroRNA expression profile. Stem cell - derived hepatocytes (HLCs) and primary 

human hepatocytes (PHH) microRNA expression profile. (A) Principle Component Analysis overview 

plot demonstrates strong clustering by cell type. (B) Statistical analysis of the microRNA Array 

demonstrates 367-reliably detected microRNAs in both HLCs and PHH; 220 microRNAs have a similar 

expression in both systems, and 147 microRNAs are differentially-expressed. (C) microRNA 122 (miR-

122) is expressed in HLCs at the same level as in PHH. The microRNA Array was carried out by 

Sistemic (Glasgow). The RNA samples (4 replicates of PHH and 4 experimental samples of hESC-

derived hepatocytes) were run on Agilent miRNA platform.  
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Table 4.1 represents expression of microRNAs of interest that are expressed at similar 

levels in both stem cell - derived hepatocytes and primary human hepatocytes (for the 

whole microRNA array see Supplementary Table 1.6a/b/c).  

 

miR name Mean log2 intensity Interpretation 

hsa-miR-23b-3p 7.85 Similar 

hsa-miR-24-3p 8.31 Similar 

hsa-miR-27b-3p 7.76 Similar 

hsa-miR-122-5p 10.08 Similar 

hsa-miR-148a-3p 7.71 Similar 

hsa-miR-148b-3p 5.16 Similar 

hsa-miR-324-5p 4.49 Similar 

 

Table 4.1: MicroRNAs commonly expressed in both systems. Expression of selected microRNAs in 

stem cell - derived hepatocytes in comparison with primary human hepatocytes. Human miRs: 23b, 27b, 

122, 148a/b, 324 are similarly expressed in both cell based models. Abbreviations: HLC,           

hepatocyte-like cells; PHH, primary human hepatocytes; hsa, human; miR, microRNA. 
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4.2.5 MICRORNA TARGET PREDICTIONS 

It has been proven that microRNAs may interact with essential drug metabolizing 

enzymes which may result in pharmacokinetic and pharmacodynamic changes of a 

drug and may lead to therapeutic failure (Yu, 2009). Recent studies have shown an 

extensive work on miR regulation in Phase I drug metabolism, however the role of 

miRs in Phase II and Phase III is still poorly understood (Yu and Pan, 2012).    

Therefore the aim of the experiments was to identify miR candidate regulators of Phase 

II and Phase III activity, in the context of paracetamol metabolism.  

In order to predict potential microRNA binding sites, TargetScan Human 6.2 

(www.targetscan.og) software was used. The software analysed 3’UTR of the target 

gene and the results were based on the online context score. The context score takes 

into consideration type of seed matching, 3’ pairing outside of the seed region and 

adenine/uracil (AU) content upstream and downstream of predicted site.                   

These parameters are important as they verify how accessible the site is for the 

miR/RISC complex to fine tune gene expression. The potential microRNA binding 

sites were also examined by the other tools available online, however they were not as 

efficient in predicting miR/mRNA interactions as TargetScan Human 6.2                      

(see Supplementary Table 1.8 for details).  

In case of a non-toxic paracetamol metabolism, two microRNAs: hsa-miR-324-5p 

(context score 96%; 8mer seed match type) and hsa-miR-148a/b-3p (context score 

93%; 8mer seed match type) were predicted to regulate SULT2A1 and UGT1A1 

respectively (Figure 4.10). In case of a toxic paracetamol metabolism, a commonly 

expressed hsa-miR-24-3p (context score 84%; 7mer-m8 seed match type) 

demonstrated a potential high binding affinity for glutathione S - transferase theta 1 

(GSTT1) (Figure 4.11; Supplementary Table 1.5).   
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4.3 DISCUSSION 

MicroRNAs are known to play an important role in regulating human drug 

metabolism. Therefore, the identification of microRNAs and their metabolic targets in 

pluripotent stem cell derived hepatocytes will allow us to elucidate their function in 

vivo. These findings will provide better understanding of the biology underlying 

human drug metabolism and may shed light on human DILI. 

Metabolic gene expression array and immunocytochemistry of particular proteins of 

interest revealed different expression patterns. RT2 Profiler PCR expression array 

(Figure 4.3) demonstrated that cytochrome P450 1A1 (CYP1A1) was highly 

upregulated (~ 99 fold) in stem cell derived hepatocytes in comparison with the gold 

standard model. It has been demonstrated that CYP1A1 is a gene expressed at low 

levels in most adult liver samples and is more likely expressed in fetal cells (Hines, 

and McCarver, 2002; Marongiu et al, 2011). What is more, Jozefczuk et al (2011) 

transcriptomic analysis showed that hESC-derived hepatocytes demonstrated higher 

expression of CYP1A1, CYP11A1, CYP19A1, while hiPSC-derived hepatocytes had 

enriched CYP46A1 and CYP26A1. Although CYP2B6 that plays a significant role in 

phenobarbital metabolism (Liu et al, 2015) was similarly expressed at gene level in 

both cell-based systems, most of the drug metabolising cytochromes were 

downregulated in hepatocyte-like cells. Several studies have reported cytochrome 

expression in hESC-derived hepatocytes, in particular CYP3A4 isoform activity has 

been shown to vary considerably from 0-90% of the primary human hepatocytes used 

as comparators (Ek et al, 2007; Basma et al, 2009; Duna et al, 2010; Yildirimman et 

al, 2011). Potential cytochrome expression differences could be connected with the 

hESC starting population epigenetics, hepatic differentiation procedures or variability 

in primary hepatocyte donors (Wobus and Loser, 2011; Robinton and Daley, 2012; 

Kia et al, 2012). 

Figure 4.3 and Figure 4.6 demonstrated that the two major enzymes of glutathione      

S-transferase family, namely GSTP1 and GSTT1 that play an essential role in 

paracetamol metabolism were either upregulated or similarly expressed in stem cell 

derived hepatocytes in comparison to primary human hepatocytes.   
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Although both are considered as markers of fetal and mature hepatocytes, this was 

corroborated by the immunostaining studies with protein expression detected at the 

early stages of differentiation.   

Several papers have demonstrated that phase II detoxifying GST enzymes could be 

expressed in embryonic stem cells and definitive endoderm (Raijimakers et al, 2001; 

Funakoshi et al, 2011; Nair et al, 2013; Acharaya et al, 2010). Since standard culture 

techniques maintain mammalian cells in vitro under an artificial physicochemical 

environment such has ambient air and 5% CO2, GST enzymes could have been 

increased in order to protect cells from oxidative damage and prevent mutagenesis 

(Ishii and Mann, 2014).  

The qPCR and protein expression data (Figure 4.3) demonstrate that the two major 

liver sulfotransferases, namely SULT1A1 and SULT2A1 that are responsible for 

different sulfation processes, were expressed at the same level in both cell based 

systems. This was highly efficient with cells expressing ~ 98% for SULT1A1 and 

~59% SULT2A1 in stem cell- derived hepatocytes. Despite similarities, a number of 

sulfotransferases (e.g SULT1A2, SULT1A3, SULT1E1, SULT1C2) were upregulated 

in hepatocyte - like cells in comparison with primary human hepatocyte (Figures 4.3 

and 4.4). Alcorn and McNamara (2002) reported that investigation of hepatic 

sulfotransferase activity in the fetus and neonates revealed high activity of this 

enzymatic pathway suggesting an essential role in homeostasis and detoxification in 

the fetus and neonate. What is more, it has been demonstrated that in neonates and up 

to the age of 9, paracetamol sulfate is the major metabolite, whereas above this age 

paracetamol glucuronide is the major metabolic product (Levy et al, 1975; Grijalva et 

al, 2013). Similar pattern of paracetamol detoxification was observed in 2D and 3D 

stem cell derived hepatocytes, where sulfates were a dominating product over 

glucuronides in comparison with primary human hepatocytes potentially suggesting 

immaturity of in vitro cell models (Sengupta et al, 2014). Therefore in this project, 

sulfotransferases were examined in particular due to immaturity of hESC-derived 

hepatocytes.  
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With the exception of UDP glucuronosyltransferase 1A1 (UGT1A1), that is 

exclusively expressed in adult liver (Strassburg et al, 2002) and plays one of the major 

roles in bilirubin/ drug metabolism (Wang et al, 2006; Tukey and Strassburg, 2000), 

the remaining UGT families were significantly downregulated in the stem cell derived 

model (UGT1A4/1A6/2A3/2B4/2B7/2B10/2B15/2B17) (Figures 4.3 and 4.4). 

Enzymes such as UGT1A4/1A6 as well as UGT2s (2B being the most studied due to 

its abundance) catalyse the glucuronidation of endogenous compounds, namely steroid 

hormones, bile acids, retinoids, fatty acids and thyroid hormones (Mackenzie et al, 

1997; Radominska-Pandya et al, 1999). 

It has been reported that UGT enzymes were expressed at low levels during fetal and 

early postnatal human development. These phase II enzymes increase after birth, 

reaching about 25% of adult levels by 3 months of age (Coughtrie et al, 1988; Grijalva 

and Khashayar, 2013). Studies by Mikkelsen et al (1994) observed that infants 

demonstrated reduced and variable morphine clearance secondary to immature 

glucuronidation pathway. What is more, impaired chloramphenicol – UGT dependant 

conjugation in neonates has resulted in the ‘gray baby’ syndrome, a cause of neonatal 

deaths in the 1960s and 1970s (Weiss et al, 1960; Craft et al, 1974).  

PCR array (Figure 4.3) demonstrated similar expression of phase III transporters such 

as ABCG8 and ABCB11 that play an important role in cholesterol and bile acid 

transport respectively (Yu et al, 2002; Henkel et al, 2013). The two major ABC 

transporters of non-toxic (ABCG2) and toxic (ABCC1) pathways of paracetamol 

metabolism were upregulated in stem cell derived hepatocytes by 29.17 and 3.58 fold, 

with cells positively expressing these enzymes at ~ 52% and ~ 77%  respectively at 

day 18 of differentiation (Figures 4.3 and 4.7). Leslie et al (2005) reported that these 

two protective efflux systems (ABCC1 and ABCG2) located in the different sides of 

polarized cells cooperate to serve as physiologic protection. Contrary to ABCG2, 

ABCC1 (MRP1) protein was expressed at all stages of differentiation, potentially 

suggesting that ABCC1 role is protecting differentiating cells not only from toxic 

effects of xenobiotics but also from endogenous toxic metabolites and oxidative stress 

(Leslie et al, 2005).  
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Glutathione, a three amino acid peptide (gamma glutamyl-cysteinylglycine), is an 

abundant antioxidant found in eukaryotic cells (Sies, 1999). Most of the time, this 

peptide exists in reduced form (GSH) in which the sulfhydryl group of the cysteine is 

not linked in a disulphide linkage to a second glutathione. A small percentage of the 

glutathione is oxidised and present as a dimer of two of the peptide elements connected 

by a disulphide bond between the cysteines present in both molecules. Oxidised 

glutathione (GSSG) is an indicator of cell health and oxidative stress (Ballatori et al, 

2009). It has been proven that certain chemicals react with GSH to form adducts or to 

increase the GSSG levels, decreasing the ratio of reduced to oxidised GSH 

(GSH/GSSG). In connection with that, two studies (Hirrlinger et al, 2001 and Mueller 

et al, 2005) suggested that glutathione disulphide (GSSG), the oxidised form of 

glutathione, is a substrate of ABCC1, which enables ABCC1 to extrude GSSG from 

the cells during oxidative stress, therefore protecting from the cytotoxic effects.  

A certain number of microRNAs were similarly expressed in both of the cell-based 

models such as: hsa-miR-23b-3p; - 24-3p; -27b-3p; - 122-5p; -148a/b-3p; -324-5p 

(Table 4.1). Two microRNAs, miR-23b and miR-27b that belong to the miR-23b 

cluster (comprised fully of miRs 23b, 27b, and 24-1) have been demonstrated to be 

highly expressed in hepatocytes compared to developing bile ducts in fetal mouse liver 

(Rogler et al, 2009). What is more, Tzur et al (2009) studies demonstrated that human 

miR-23b is highly more expressed in adult liver than in embryonic liver and may be 

capable of inhibiting cell proliferation and mediate cell cycle arrest in mature 

hepatocytes (Tong et al, 2008). Specification and maturation of hepatocytes primarily 

depends on hepatic nuclear 4a (HNF4a) transcription factor that regulates various 

numbers of genes involved in synthesis/metabolism of fatty acid, cholesterol, glucose, 

urea and drug metabolism (Gonzalez, 2008; Kamiyama et al, 2007). In connection to 

that, it has been demonstrated that microRNA 24 (miR-24) directly inhibits HNF4a at 

both coding and 3’UTR region playing an important role in the regulation of bile acid 

production (Takagi et al, 2010). Similarly to HNF4a, pregnane  X receptor (PXR) 

along with retinoid X receptor a (RXRa) regulate drug metabolism and elimination by 

binding to response elements of target genes such as cytochromes P450, UDP-

glucuronosyltransferases, sulfotransferases and ABC transporters (MDR1 and MPR2) 

(Meijerman et al, 2006).  
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The microRNA array demonstrated that miR-148a that has been confirmed to 

negatively control pregnane X receptor (PXR) (Takagi et al, 2008), was expressed at 

the same level in both cell based models.  

Comparable expression was also detected for microRNA 122-5p, the most abundant 

microRNA in the liver tissue (Lagos-Quintana et al, 2002) that is involved in the 

regulation of cholesterol metabolism (Elmen et al, 2008; Esau et al, 2006; Esau, 2008; 

Krützfeldt et al, 2005) and hepatitis C virus replication (Jopling et al, 2005; Lanford 

et al, 2010) (Figure 4.9C) . Similarly to miR-122, expression of miR-324-5p in stem 

cell - derived hepatocytes was not significantly different from primary human 

hepatocytes. This particular small non-coding RNA has been described to play a 

regulatory role in Hedgehog signalling in cerebellar neuronal progenitors (Feretti et 

al, 2008; Xu et al, 2014), however its role in liver is not well studied.  

Target prediction strictly depends on the effectiveness of miR-mRNA interactions 

(Witkos et al, 2011). The levels of these interactions depend on different factors such 

as the ‘seed’ match. The ‘seed’ is a site located at 5’ part of microRNA (positions 2-

7) and its complete pairing within the 3’ target mRNA region (canonical site) 

determines the certainty of interaction (Figure 4.12). There are four canonical sites: 

the 8mer having matched adenine in position 1 and an additional match in position 8; 

the 7mer1A that has an adenine in position 1 at the 5’ end of miRNA, the 7merM8 that 

has adenine match in position 8; the 6mer that has no adenine match either in 1 or 8 

position. 

 

Figure 4.12: Seed match types. 8mer (M8-A1 8mer) having matched adenine in position 1 and an 

additional match in position 8, the M8-7mer that has adenine match in position 8; the 1A-7mer that has 

an adenine in position 1 at the 5’ end of miRNA; the 6mer that has no adenine match either in 1 or 8 

position. Adapted from TargetRank (http://hollywood.mit.edu/targetrank). 

http://hollywood.mit.edu/targetrank
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In this study, the level of mRNA/miR interactions is high for UGT1A1/miR-148a; 

SULT2A1/miR-324-5p and GSTT1/miR-24-3p, as indicated by 93%, 96% and 84% 

context score respectively (Figures 4.10 and 4.11). In addition, UGT1A1/miR-148a 

and SULT2A1/miR-324-5p interactions have been predicted to be stronger in 

comparison with GSTT1/ miR-24-3p. The first two interactions represent 8mer seed 

match (Figure 4.10) that represent the most efficient type of canonical site.                 

What is more, they have an additional pairing with 3’ part of microRNA                         

(3’– supplementary sites) and corresponding nucleotides what may potentially 

enhance the binding. The SULT2A1/miR-324-5p interaction as the only one in this 

study demonstrated at least 3-4 nucleotides consecutively paired at 13-16 positions of 

mRNA that are considered to be required to facilitate target prediction.   

In conclusion, microRNA and metabolism gene array identified important 

microRNA/mRNA interactions in stem cell derived hepatocytes that would allow us 

to understand the regulation of paracetamol metabolism and drug-induced liver injury 

in more details.  What is more, metabolic gene and protein expression data revealed 

that hESC-derived hepatocytes exhibited upregulated sulfotransferases as well as 

downregulated cytochromes and UDP-glucuronosyltransferases in comparison with 

primary human hepatocytes, potentially suggesting immaturity of the stem cell in vitro 

model that should be studied further.  

 

 

                      

 

 

 



187 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



188 
 

 

 

 

 

 

CHAPTER FIVE 

 

MODELLING AND MODULATING 

PARACETAMOL TOXICITY IN HESC – 

DERIVED HEPATOCYTES USING NON - 

CODING RNAS 

 

 

 

 

 

 



189 
 

5.1 INTRODUCTION 

5.1.1 CELL-BASED IN VITRO MODELS FOR PREDICTING PARACETAMOL 

TOXICITY 

The liver is a multi-functional and highly regenerative organ. While resilient, the liver 

is susceptible to organ damage and failure. In both the acute and chronic settings liver 

disease has dire consequences for health. A common cause of liver damage is adverse 

reactions to drugs which can lead to drug induced liver injury (DILI). This creates 

major problems for patients, clinicians, the pharmaceutical industry and regulatory 

authorities (Olsen and Whalen, 2009). It has been reported that in the United Kingdom 

(UK) approximately 15% of the hospital in-patients suffer from liver toxicity in 

response to medicines during admissions, with 20% of these patients readmitted again 

after one year and a 2% mortality rate (Davies et al, 2010; Davies et al, 2009). The 

annual cost to the National Health Service in the UK ~£450 million with the costs 

growing year by year (Pirmohamed, 2004).  

In the context of drug overdose or serious adverse reactions, liver failure can be acute 

and life threatening, and in some cases require orthotopic liver transplantation. While 

transplantation is highly successful, such an approach has limitations (Szkolnicka et al 

2014a) and justifies basic science attempts to develop better human models to study 

liver injury and scalable intervention strategies. Paracetamol (APAP) is a major cause 

of drug-induced liver injury and accounts for 50% of cases of acute liver failure (Chun, 

2009). Although much progress has been made in order to understand APAP- induced 

liver injury, most of the present knowledge of APAP hepatotoxicity has been learned 

from rodent studies in vivo and in primary culture. Despite their usefulness, there are 

significant species differences in the enzymatic activity of specific drug metabolism 

enzymes (e.g CYP1A, -2C, -2D, -3A) (Martignoni et al, 2006) and course of injury 

between rodents and humans (Nelson, 1990 and Jaeschke and Bait, 2006). In 

particular, Knight et al (2001) and Singer et al (1995) have noted that increased 

aminotransferase activity, the major marker of APAP-induced liver injury, can be 

detected in the plasma of rodents within 2-6 h of administration of a toxic dose of the 

drug (peak at 12 h), whereas in humans the activity of this enzyme is not observed 

before 12-24 h following ingestion and peaks at 48-72 h.  
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Although species differences such as metabolic rate and body size are important, 

mechanistic differences should also be taken into consideration. In order to bridge the 

gap between animals and humans much research has been focused on developing new 

and more predictable human in vitro models for drug toxicity studies. Primary human 

hepatocytes (PHH) are considered to be the gold standard in vitro model, however 

limited lifespan and donor background of these cells significantly affect the drug 

response. In order to generate more drug sensitive PHHs, cells are usually 

immortalized with SV40 T large antigen (Youdim et al, 2007), hTERT and E5/E7 

(Tsuruga et al, 2008) or co-cultured with murine stromal fibroblasts (Khetani et al, 

2013). Despite initial successes such as improved functional stability after 9 days of 

repeated drug exposure, the low levels of basal cytochrome P450 activity still limit use 

of PHH in analytical methods (Sinz et al, 2008). There has been much focus on variety 

of hepatoma cell lines as they demonstrate phenotypic stability and can be produced 

in large quantities. Hepatic cancer cell line HepG2 has been extensively used in drug 

toxicity studies, however its resemblance to gold standard model is still low. In 

paracetamol studies, three independent experiments tried to use adenovirus to induce 

the activity of CYP2E1 (Bai and Cederbaum, 2004), CYP3A4 (Vignati et al, 2005), 

and CYP2C9 (Iwamura et al, 2011) that play an important role in a toxic pathway of 

APAP metabolism. Although HepG2 cells transiently over-expressing particular 

enzymes displayed higher sensitivity to paracetamol-induced necrosis or apoptosis and 

generated higher amounts of reactive metabolites, the nature of viral transduction 

approach (enzyme of interest is transient) requires a new transfection for each 

experiment, therefore increasing the level of potential vector-integrated mutations 

(Godoy et al, 2013). What is more, Holmgren et al (2014) toxicity studies 

demonstrated that high proliferation of HepG2 cells in culture makes them impractical 

for long-term studies. HepaRG cell line, hepatoma – derived bipotent progenitors, 

demonstrated a positive model to study APAP-induced liver injury. In McGill et al 

(2011) studies, HepaRG cells exposed to different concentrations of the drug displayed 

APAP (NAPQI)-protein adduct formation, glutathione depletion, mitochondrial 

dysfunction and lactate dehydrogenase release. Although promising, the role in drug 

toxicity studies is still disputable due to their cancer origin and low sensitivity to 

different types of drugs (Gerets et al, 2012).  
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Contrary to models mentioned above, stem cells represent a type of cells that are 

capable of self-renewal, are genetically-stable and able to differentiate to all tissues. 

Therefore they are a promising source to generate a variety of cell-based models that 

can be used for drug development and high-throughput drug screening for different 

pathologies. Mesenchymal stem cells (MSCs) derived from bone marrow and adipose 

tissue have been reported to successfully differentiate to hepatocyte-like cells both in 

vitro and in vivo (Lysy et al, 2008; Lee et al, 2004; Aurich et al, 2007; Oyagi et al, 

2006; Banas et al, 2007; Kuo et al, 2008). Although recent studies have demonstrated 

that these adult stem cell – derived hepatic cells express liver-specific genes and are 

able to improve the mouse liver after acute APAP intoxication (Stock et al, 2014), 

their use safety screening is limited due to loss of multipotency after lengthy expansion 

(Muraglia et al, 2000 and Aomatsu et al, 2013).  

In recent years, functional hepatocytes derived from human embryonic (hESCs) and 

induced pluripotent (hiPSCs) stem cells have become an attractive toxicity model. 

Several different research groups (Cai et al, 2007; Hay et al, 2008;    Si-Tayeb et al, 

2010b, Brolen et al, 2010; Touboul et al, 2010; Yildrimman et al, 2011; Hannan et al, 

2013; Ulvestadt et al, 2013; Medine et al, 2013; Szkolnicka et al, 2014b)  have 

established functional and of high purity hepatocytes derived from hESCs and hiPSCs. 

Recent studies demonstrated that stem derived hepatocytes not only expressed proper 

liver metabolic functions but displayed stability and sensitivity to different drug 

exposures for more than 2 weeks (Holmgren et al, 2014) and demonstrated 

hepatotoxicity comparable to primary human hepatocytes (Szkolnicka et al, 2014b). 

Although Sengupta et al (2014) have demonstrated a potential application of hESC-

derived hepatocytes for assessing APAP- induced liver injury, the modified hepatic 

differentiation procedure required use of bovine serum albumin. Therefore the use of 

serum-free hepatic differentiation protocol established in this project may become a 

more stable and reliable model for paracetamol cytotoxicity in the future. 
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5.1.2 THE IMPORTANCE OF MICRORNAS IN PARACETAMOL TOXICITY 

Drug – induced liver injury (DILI) with paracetamol as the major contributor to the 

cytotoxicity, is a serious clinical problem and is the leading cause of drugs being 

removed from the market (Chang and Schiano, 2007; Halegoua-De Marzio, and 

Navarro, 2008). When taken in the appropriate amounts, paracetamol is modified by 

sulfotransferases (SULTs) and UDP glucuronosyltransferases (UGTs) and removed 

from the body without organ damage (Chun et al, 2009). However, when paracetamol 

is taken above the recommended dose it is metabolised by phase I enzymes such as 

cytochromes to generate a toxic intermediate N-acetyl-p-benzoquinone imine 

(NAPQI), which if untreated can lead to massive hepatocyte cell death and liver 

failure, placing the patient in a life threatening situation. In order to prevent the first 

onset of liver failure, identification of reliable and sensitive biomarkers is required. 

Currently, the major markers for APAP-induced liver injury are serum hepatocellular 

enzymes such as alanine (ALT) or aspartate (AST) aminotransferases and total 

bilirubin levels. Although useful, these serum markers are not liver specific,                   

are detected at later injury stage and may be induced during metabolic perturbations 

such as food starvation (Lindena et al, 1986; Wang et al, 2009a; Thulin et al, 2014).                

In order to overcome these issues, new biomarkers for DILI have been discovered such 

as human leukocyte antigen (HLA), glutamate dehydrogenase (GLDH), high mobility 

group box protein 1 (HMGB1), and keratin 18 (K18) (Antoine et al, 2009; Antoine et 

al, 2012; O’Brien et al, 2002). In addition to these, circulating microRNAs have 

emerged as promising biomarkers for DILI (Wang et al, 2009a; Starkey et al, 2011). 

In particular, liver -specific microRNA-122 has been considered as a reliable marker 

for APAP toxicity as it is evolutionary conserved among species, very abundant, stable 

and can be detected using small amounts of starting material (Mitchell et al, 2008).  

Although identification of tissue specific and drug sensitive markers is essential to 

prevent liver cytotoxicity, APAP overdose usually produces either no immediate 

symptoms or nonspecific intestinal irritation during the first 24 hours (Wang et al, 

2009a). Therefore, much of research should be focused on finding new therapeutic 

methods to treat patients who suffered from sudden idiosyncratic or intrinsic DILI.   
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Currently, the most effective is N-acetylcysteine (NAC), an amino acid derivative that 

can be quickly converted into intracellular reduced glutathione in order to detoxify 

NAPQI. However, NAC is effective only if administered within 8-10 h after the initial 

ingestion which may not correlate with the APAP-induced liver injury symptoms      

(after 24 h) (Chong, 2007).  As microRNAs have been demonstrated to play an 

important role in regulating drug metabolism and liver functions (see the discussion 

for details), there is a high potential for these non-coding RNAs to use them for 

therapeutic purposes against liver injury. Several studies have proven that microRNAs 

are able to regulate Phase I enzymes and Phase III transporters (Pan et al, 2009a; 

Tsuchiya et al, 2006; Yu, 2009; Yu and Pan, 2012), however the second phase of drug 

metabolism, drug conjugation, has not been studied in detail. Drug conjugation is a 

crucial stage part in human drug metabolism, and any alternations in this process can 

lead to changes in compound pharmacology, including therapeutic dose and clearance 

from the body. Therefore identification of microRNAs that may control expression of 

phase II enzymes that are responsible for APAP detoxification could be the next step 

to discover new treatment for DILI. What is more, studying phase II-miR interactions 

in stem cell – derived model would be more reflective to primary human hepatocytes. 

This would allow for better cytotoxicity prediction and identification of potential new 

microRNAs as biomarkers for paracetamol-induced liver injury.  

 

5.2 RESULTS 

In this chapter, we were interested to examine whether inhibition or delivery of 

microRNAs to hESC-derived hepatocytes would reduce paracetamol cytotoxicity in 

vitro. We identified a novel anti-microRNA of miR-324-5p which regulated the     

phase II SULT2A1 enzyme, reduced paracetamol induced hepatotoxicity and 

glutathione depletion. Additionally, we also demonstrated a supportive role for anti-

microRNA-324 in response to fulminant plasma collected from paracetamol overdose 

patients.  
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5.2.1 MODELLING PARACETAMOL TOXICITY IN VITRO 

In Chapter 4 the results generated from the array experiments were validated by 

immunostaining, focussing on phase II and phase III drug metabolism and excretion. 

Phase II proteins from the normal (SULT2A1, UGT1A1) and toxic (GSTT1) pathways 

were expressed in 59%, 54% and 98% respectively (Chapter 4; Figures 4.6 and 4.7) 

Importantly, stem cell –derived hepatocytes also expressed phase III drug transporters 

important in each pathway, in 52% (ABCG2) and 77% (ABCC1) of cells (Chapter 4; 

Figures 4.7). Therefore, it has been hypothesised that stem cell-derived hepatocytes 

possess the correct machinery to process paracetamol (APAP) in a normal and toxic 

manner. To test this, stem cell –derived hepatocytes were exposed to a range of 

concentrations of APAP (range 0 to 50 mM) for 24 hours. The cell morphology was 

examined and the cell viability was monitored by ATP production. Phase-contrast 

imaging demonstrated dose dependent toxicity on cell viability indicated by increasing 

cell death (Figure 5.1). The morphology results were in line with the cell viability 

assay. The studies demonstrated that hESC-derived hepatocytes responded to APAP 

in a dose dependent fashion, with an IC50 value (concentration that causes 50% of the 

cell death) of 12.85 mM (Figure 5.2; Supplementary Figure 1.9).  
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Figure 5.1: Morphology of hESC-derived hepatocytes after exposure to paracetamol. 

Morphological change of hESC-derived hepatocytes (day 17) exposed to different concentrations of 

paracetamol (APAP) (0-50 mM) for 24 hours. Contrary to the other concentrations, cells exposed to 20 

and 50mM APAP demonstrated significant apoptosis. Scale bar represents 100 um. Abbreviations: mM; 

millimolar. 
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Figure 5.2: Paracetamol (APAP) in vitro toxicity in stem cell –derived hepatocytes. At day 17, 

hESC-hepatocytes were induced with different concentrations of APAP (0-50 mM) for 24 hours. The 

CellTitre- Glo® Luminescent Cell Viability Assay (Promega) was used to measure the ATP levels. The 

IC50 (12.85 mM) was calculated from the function f(x) = ax + b. n=3, biological replicates. The graph 

represents fold change in cell viability.  

 

5.2.2 OPTIMISATION OF TRANSFECTION EFFICIENCY  

In order to test the hypothesis that stem cell – derived hepatocyte susceptibility to 

APAP overdose (IC50 = 12.85 mM) could be regulated by microRNAs, the synthetic 

RNAs were introduced in to the cells by lipophilic based transfection (Lipofectamine 

RNAiMAX; Life Technologies). In these experiments precursors and corresponding 

antagomirs were used. Stem cell – derived transfection was optimised (Figure 5.3). 

hESC - derived hepatocytes transfected with Cy3-labelled precursors (Ambion; Life 

Technologies) and Cy3-labelled antagomirs (Ambion; Life Technologies) at 50 nM 

concentration displayed efficient levels of transfection. Cy3-labelled precursors 

transfected at the 1:1, 1:2, and 1:3 lipofectamine ratio resulted in 81% (SE±6.4), 90% 

(SE±3.2), and 97% (SE±1.2) of positive cells respectively. Transfection with Cy3-

labelled antagomirs at 1:1, 1:2, and 1:3 lipofectamine ratio resulted in 21% (SE±3.4), 

47% (SE±5.49) and 33% (SE±2.3) of positive cells respectively (Figure 5.3).  
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The immunostaining demonstrated that the most efficient transfection ratio for 

precursors at 50 nM concentration was 1:3, whereas for the corresponding antagomirs 

at the same concentration was 1:2.  
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In order to further validate the transfection ratio efficiency and cell viability for both 

precursors and antagomirs, the well - established microRNA liver controls were used. 

In this experiment, precursors and antagomirs of miR-122-5p (marker of adult liver, 

Chang et al, 2004; Barad et al, 2004) and miR-483-3p (marker of fetal liver, Fu et al, 

2005) were transfected at both 1:2 and 1:3 lipofectamine ratio to determine the level 

of potential cell toxicity caused by lipophilic-based approach. The results 

demonstrated that transfection of both scrambled (Pre/Ant Ctrl) and liver (Pre/Ant of 

miR-122 and miR-483) microRNA controls did not significantly affect the viability of 

stem cell-derived hepatocytes as indicated by similar production of cellular ATP 

(Figure 5.4).          

                       

Figure 5.4: Cell viability and microRNA transfection. hESC - derived hepatocytes transfected with 

precursors and antagomirs (both at 50 nM) of the scrambled control, miR-122-5p and miR-483-3p for 

24 hours. Cell viability (ATP production) did not significantly change either at 1: 2 (A) or 1:3 (B) 

lipofectamine RNAiMAX ratios. Cell viability was measured by CellTitre – Glo® Luminescent Cell 

Viability Assay (Promega). Abbreviations: Pre Ctrl, precursor scrambled control; Ant Ctrl, antagomir 

scrambled control; Pre/Ant 122, precursor/antagomir of miR-122-5p; Pre/Ant 483, precursor/antagomir 

of miR-483-3p; RLU/ml, relative light units/ml.  
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5.2.3 MODULATION OF PARACETAMOL METABOLISM USING PRECURSORS 

AND ANTAGOMIRS 

In order to examine whether precursors / antagomirs of miR-24-3p, miR-148a, and 

miR-324-5p had any direct effect on the regulation of mRNA of GSTT1, UGT1A1, 

and SULT2A1, stem-cell derived hepatocytes were transfected with the microRNA 

activators and inhibitors at day 17 of differentiation for 24 hours and subsequently 

examined for gene expression by qPCR. 

The results demonstrated that transfection with the precursor of miR-24-3p and miR-

324-5p did not have any significant effect on the gene expression of GSTT1 and 

SULT2A1 enzyme respectively in comparison with the scrambled control (Figure 5.5). 

Transfection with precursor of miR-148a resulted in decreased UGT1A1 gene 

expression as indicated by ~ 2 (SD± 0.02) fold change (Figure 5.5). Transfection with 

the antagomir of miR-24-3p did not have any significant effect on the gene expression 

of GSTT1 enzyme in comparison with the scrambled control (Figure 5.6). Contrary to 

this result, transfection with the antagomirs of miR-148a and miR-324-5p resulted in 

increased gene expression of UGT1A1 and SULT2A1 enzymes as indicated by ~ 2.4 

(SD±0.23) and ~ 2.04 (SD±0.12) fold change respectively (Figure 5.6).  
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Figure 5.5: Gene expression of Phase II enzymes after transfection with miR precursors. Gene 

expression of GSTT1, UGT1A1, and SULT2A1 after transfection with precursors of scrambled control, 

miR-24-3p, miR-148a, and miR-324-5p respectively. The gene expression was normalised to 

housekeeping gene B2M and scrambled control. Levels of significance were measured by Student’s t 

test, where p < 0.05 and p < 0.01 were indicated by one and two asterix respectively. Abbreviations: 

GSTT1, glutathione S-transferase theta 1, UGT1A1, UDP-glucuronosyltransferase 1A1; SULT2A1, 

sulfotransferase 2A1; Pre 24/148/324; precursor of miR-24-3p, miR-148a, miR-324-5p; B2M, B-

microglobulin. 
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Figure 5.6: Gene expression of Phase II enzymes after transfection with miR antagomirs. Gene 

expression of GSTT1, UGT1A1, and SULT2A1 after transfection with antagomirs of scrambled 

control, miR-24-3p, miR-148a, and miR-324-5p respectively. The gene expression was normalised to 

housekeeping gene B2M and scrambled control. Levels of significance were measured by Student’s t 

test, where p < 0.05 and p < 0.01 were indicated by one and two asterix respectively. Abbreviations: 

GSTT1, glutathione S-transferase theta 1, UGT1A1, UDP-glucuronosyltransferase 1A1; SULT2A1, 

sulfotransferase 2A1; Ant 24/148/324; antagomir of miR-24-3p, miR-148a, miR-324-5p; B2M, B-

microglobulin. 
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In order to validate the regulatory effect of selected microRNAs on GSTT1, UGT1A1 

and SULT2A1 gene expression, the protein expression of these specific enzymes was 

also examined by immunocytochemistry. hESC-derived hepatocytes transfected with 

precursors of miR-24-3p, miR-148a, and miR-324-5p expressed 99% (SE±0.29), 18% 

(SE±2.30), and 63% (SE±0.55) of cells positive for GSTT1, UGT1A1, and SULT2A1 

respectively, suggesting no potential regulatory effect on the protein expression of 

these particular enzymes (Figure 5.7). 
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Figure 5.7: Protein expression of Phase II enzymes after transfection with precursors.              

Protein expression of GSTT1, UGT1A1, SULT2A1 after 24h transfection with either 

precursor scrambled control or relevant precursor of miR-24-3p, miR-148a; miR-324-5p. 

The percentage of positive cells is provided in the top right of each panel. This was calculated 

from four random fields of view and is quoted as ± standard error. Immunoglobulin G 

controls demonstrated the specificity of immunostaining. Scale bar represent 100um. 

Abbreviations: Pre Ctrl; precursor scrambled control; Pre 24/148/324;                                   

precursor of miR-24-3p; miR-148a; miR-324-5p.  
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Once it was established that phase II enzyme expression could be modulated for the 

non-toxic pathway (UGT1A1 and SULT2A1), the cell viability and reduced 

glutathione production (glutathione depletion) were measured in response to APAP 

incubation. Stem cell-derived hepatocytes were transfected with precursors of miR-

24-3p, miR-148a, and miR-324-5p for 24 hours prior to APAP incubation (IC50) for 

another 24 hours. The results demonstrated that transfection with precursors of miR-

24-3p and miR-148a slightly reduced cell viability in comparison with scrambled 

control, whereas transfection with precursor of miR-324-5p significantly reduced ATP 

production in stem cell derived hepatocytes (1.9 x 108 RLU/ml; p = 0.007) (Figure 

5.8). Similarly to cell viability, transfection with precursors of miR-24-3p, miR-148 

and miR-324-5p resulted in decreased generation of reduced glutathione (Figure 5.9).  

 

              

Figure 5.8: Cell viability after transfection with precursors. hESC - derived hepatocytes (d17) were 

transfected with precursors at 50nM concentration for 24 hours. At day 18, the transfected cells were 

exposed to paracetamol concentration that causes 50% of the cell death (IC50=12.85 mM) for another 

24 hours. At day 19, the cell viability was measured using CellTiter – Glo® Luminescent Cell Viability 

Assay (Promega). Abbreviations: Pre Ctrl, precursor scrambled control; Pre 24/148/324; precursor of 

miR-24-3p. miR-148a, miR-324-5p. Levels of significance were measured by Student’s t test, where    

p < 0.01 was indicated as two asterix.  
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Figure 5.9: Reduced glutathione production after transfection with precursors. hESC - derived 

hepatocytes (d17) were transfected with precursors at 50nM concentration for 24 hours. At day 18, the 

transfected cells were exposed to paracetamol concentration that causes 50% of the cell death 

(IC50=12.85 mM) for another 24 hours. At day 19, the glutathione reduction was measured using 
GSH/GSSG-Glo™ Assay (Promega). Abbreviations: Pre Ctrl, precursor scrambled control; Pre 

24/148/324; precursor of miR-24-3p. miR-148a, miR-324-5p. Levels of significance were measured by 

Student’s t test, where p < 0.01 was indicated as two asterix.  

 

Stem cell – derived hepatocytes transfected with antagomirs of miR-24-3p, and miR-

148a expressed 99% (SE±0.25) and 17% (SE±0.60) of cells positive for GSTT1 and 

UGT1A1 respectively, potentially suggesting no regulatory effect of these microRNAs 

on the protein expression of selected enzymes. Contrary to the precursor, hESC-

derived hepatocytes transfected with the antagomir of miR-324-5p expressed 95% 

(SE±1.09) of cells positive for SULT2A1, therefore suggesting inhibitory role of miR-

324 on SULT2A1 expression by ~ 20% (Figure 5.10).  
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Figure 5.10: Protein expression of Phase II enzymes after transfection with antagomirs. 

Protein expression of GSTT1, UGT1A1, SULT2A1 after 24h transfection with either 

antagomir scrambled control or relevant precursor of miR-24-3p, miR-148a; miR-324-5p. 

The percentage of positive cells is provided in the top right of each panel. This was calculated 

from four random fields of view and is quoted as ± standard error. Immunoglobulin G 

controls demonstrated the specificity of immunostaining. Scale bar represent 100um. 

Abbreviations: Ant Ctrl; antagomir scrambled control; Ant 24/148/324; antagomir of miR-

24-3p; miR-148a; miR-324-5p.  
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Transfection with the antagomirs of miR-24-3p and miR-148a did not increase the cell 

viability and generation of reduced glutathione in response to toxic concentration of 

APAP in comparison with scrambled control (Figure 5.11). Contrary to the antagomirs 

of miR-24-3p and miR-148a, inhibition of miR-324-5p in stem cell – derived 

hepatocytes resulted in a significant increase of ATP production (3.12 x 108 RLU/ml; 

p = 0.04) and reduced oxidative stress as indicated by 2-fold increase in reduced 

glutathione (0.008023 uM; p =0.03) (Figure 5.12)  

 

           

Figure 5.11: Cell viability after transfection with antagomirs. hESC - derived hepatocytes (d17) 

were transfected with antagomirs at 50nM concentration for 24 hours. At day 18, the transfected cells 

were exposed to paracetamol concentration that causes 50% of the cell death (IC50=12.85 mM) for 

another 24 hours. At day 19, the cell viability was measured using CellTiter – Glo® Luminescent Cell 

Viability Assay (Promega). Abbreviations: Ant Ctrl, antagomir scrambled control; Ant 24/148/324; 

antagomir of miR-24-3p. miR-148a, miR-324-5p. Levels of significance were measured by Student’s   

t test, where p < 0.05 was indicated as one asterix. 
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Figure 5.12: Reduced glutathione production after transfection with antagomirs.  hESC - derived 

hepatocytes (d17) were transfected with antagomirs at 50nM concentration for 24 hours. At day 18, the 

transfected cells were exposed to paracetamol concentration that causes 50% of the cell death 

(IC50=12.85mM) for another 24 hours. At day 19, the glutathione reduction was measured using 
GSH/GSSG-Glo™ Assay (Promega). Abbreviations: Ant Ctrl, antagomir scrambled control; Ant 

24/148/324; antagomir of miR-24-3p. miR-148a, miR-324-5p. Levels of significance were measured 

by Student’s t test, where p < 0.05 was indicated as one asterix. 

 

5.2.4 CELL PROTECTIVE EFFECT OF THE ANTAGOMIR 324-5P AFTER 

EXPOSURE TO PLASMA OF THE PARACETAMOL OVERDOSE PATIENTS 

As the inhibition of miR-324-5p in stem cell – derived hepatocytes resulted in 

increased gene and protein expression of SULT2A1 enzyme as well as significantly 

increased cell viability and reduced glutathione (GSH) in response to APAP 

incubation, we were interested to examine whether the antagomir of miR-324-5p could 

increase cell viability after exposure to the sera of paracetamol overdose female 

patients. In this experiment, stem cell –derived hepatocytes were exposed to the 

inhibitor of miR-324-5p for 24 hours and subsequently exposed to 20% of patient’s 

specific serum for another 24 hours. In this study, cell viability and caspase 3/7 activity 

were measured (Figures 5.13 and 5.14). Interestingly, hESC-derived hepatocytes 

showed significant increase in cell viability following exposure to Patient 1 (3.29 x 

108 RLU/ml; p = 0.016) and Patient 58 serum (3.54 x 108 RLU/ml; p = 0.0017) in 

comparison with scrambled controls (2 x 108 RLU/ml and 2.08 x 108 RLU/ml 

respectively). Cell exposure to Patient 8 serum did not demonstrate any significant 

increase in cell survival in comparison with scrambled controls as indicated by          
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3.72 x 108 RLU/ml and 3.67 x 108 RLU/ml respectively (Figure 5.13).  In line with 

ATP production, exposure to Patient 1 and Patient 58 sera resulted in increased caspase 

3/7 activity as indicated by 2.3 x 107 RLU/ml (p =0.008) and 2.6 x 107 RLU/ml 

(p=0.0103) respectively and compared to scrambled controls (1.6 x 107 RLU/ml and 

1.4 x 107 RLU/ml respectively). Exposure to Patient 8 serum did not significantly 

increase caspase 3/7 activity in comparison with the scrambled control as indicated by 

2.8 x 107 RLU/ml and 2.9 x 107 RLU/ml respectively (Figure 5.14). 

                                 

Figure 5.13: Cell viability after exposure to the fulminant plasma. hESC - derived hepatocytes were 

transfected with the antagomir to miR-324-5p. Twenty four hours post transfection hESC – hepatocytes 

were exposed to the fulminant plasma of the three paracetamol overdose patients for a further twenty 

four hours (Patients 1, 8, 58). The cellular ATP was measured on a luminometer (Promega). Units of 

activity are expressed as relative light units (RLU) ml-1 (n=4). Levels of significance are quoted and 

measured by Student’s t-test. Significance levels are denoted by one and two asterisks to indicate              

p < 0.05 and p < 0.01 respectively. 
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Figure 5.14: Caspase 3/7 activity after exposure to the fulminant plasma.  hESC - derived 

hepatocytes were transfected with the antagomir to miR-324-5p. Twenty four hours post transfection 

hESC – hepatocytes were exposed to the fulminant plasma of the three paracetamol overdose patients 

for a further twenty four hours (Patients 1, 8, 58). The Caspase 3/7 activation was measured on a 

luminometer (Promega). Units of activity are expressed as relative light units (RLU) ml-1 (n=4). Levels 

of significance are quoted and measured by Student’s t-test. Significance levels are denoted by one and 

two asterisks to indicate p < 0.05 and p < 0.01 respectively.  
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5.3 DISCUSSION  

Despite major progress in the knowledge and management of human liver injury, there 

are approximately 2000 cases per year of acute liver failure (ALF) in the United States 

(Hoofnagle, 1995; Polson et al 2005; Fontana, 2008). Paracetamol overdose is a major 

factor in ALF, with critical damage done to the hepatocyte compartment of the liver, 

and accounts for approximately 50% of cases (Nourjah et al, 2006; Bari and Fontana, 

2014). Although hepatocyte cell death occurs in large numbers, the manner in which 

the cells die following overdose remains complicated and controversial (Jaeschke et 

al 2012). Current medical treatments for paracetamol overdose include gastric lavage, 

activated charcoal ingestion and administration of cimetidine (Underhill et al, 1990; 

Burkhart et al, 1995). Agents such as methionine, N-acetylcysteine (NAC),                  

and cysteamine are also used to detoxify the liver toxic effects of NAPQI, with NAC 

considered as the most effective intervention to prevent liver failure (Brok et al, 2006). 

Although successful, these treatments may cause side effects, including the inhibition 

of key metabolic functions of the liver (Makin et al, 1995; Kozer and Koren, 2001),   

as well as negatively effects on pulmonary, gastrointestinal and central nervous 

systems (Chun et al, 2009; Schmidt and Dalhoff et al, 2001). In the absence of notable 

effect and at the onset of severe liver decompensation and failure, liver transplant is 

the only effective approach to treat patients. While highly successful, this is not 

considered to be an ‘off the shelf’ or scalable alternative. Therefore, other treatments 

are being explored to improve patient outcome. MicroRNAs are potent non-coding 

RNAs which can alter mammalian gene expression and therefore represent promising 

candidates for treating human disease. Several studies have shown that regulation of 

different microRNAs may potentially serve as effective therapeutics.                  

Currently, antisense oligonucleotides to miR-122 (RG-101; preclinical stage and 

Miravirsen (SPC3649); clinical stage) and miR-21 (RG-012; preclinical stage) are 

being developed to treat chronic hepatitis C virus (HCV) or Alport Syndrome 

respectively (Thong et al, 2014; Heidet and Gubler, 2009). More recently, the systemic 

delivery of miR-34a has been shown to reduce liver tumour growth (Daige et al, 2014) 

and miR-33 promotes clearance of excess cholesterol and is useful in treating 

atherosclerosis (Rayner et al 2011).  
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In the recent years there has been a focus on miR regulation of phase I enzymes 

involved in human drug metabolism. Studies have demonstrated that miR-27b 

regulates CYP3A4 and CYP1B1 and miR-126* controls CYP2A3 expression (Pan et 

al, 2009a; Tsuchiya et al, 2006; Kalscheuer et al, 2008). Other studies have also 

focused on microRNA regulation of drug transporters such as P-glycoprotein and 

breast cancer resistant protein (BCRP) (Kovalchuk et al, 2008; Zhu et al, 2008; Liao 

et al, 2008; To et al 2008, Pan et al, 2009b). While phase I and phase III of drug 

metabolism have been studied, there is still little known about regulation of phase II 

enzymes by microRNAs. Phase II enzymes, such as glutathione S - transferases and 

sulfotransferases, are essential to sufficiently detoxify different xenobiotics, therefore 

these enzymes serve as important clinical targets.  

In this study, three potential microRNAs (miR-24-3p, miR-148a, miR-324-5p) have 

been predicted by TargetScan Human 6.2 (see Chapter 4 for details) to regulate three 

important phase II enzymes that play an essential role both in toxic and non-toxic 

pathways of paracetamol metabolism: GSTT1, UGT1A1 and SULT2A1. In order to 

validate these interactions and examine their protective effect from toxic 

concentrations of paracetamol, induction of those two pathways was required.        

Using IC50 value of paracetamol in stem-cell derived model would allow to stimulate 

enzymes of interest under toxic conditions, however would not lead to complete cell 

death. Contrary to in vitro primary human and mouse hepatocytes that have been 

reported to show paracetamol IC50 value of 5-8 mM (Viollon et al, 1991), hESC-

derived hepatocytes displayed slightly less sensitivity as indicated by IC50 at 12.85 

mM (Figure 5.2). Although the value of stem cell model has been comparable with 

HepG2 IC50 at 12.34 mM (Kostrubsky et al, 2005; Wang et al, 2002; Li et al, 2013), 

the cell culture company Reinnervate did not observe IC50 even above 20 mM after 

24 hours of drug exposure in HepG2 (application note: Toxicity assessment using 

HepG2 liver cell lines; www.reinnervate.com). Therefore it proves that our hESC – 

hepatocytes are potentially still a better model to study the sensitivity of drugs than 

cancer-derived models.  

 

http://www.reinnervate.com/
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In order to test the hypothesis that stem cell –derived hepatocyte susceptibility to 

APAP overdose could be regulated by microRNAs, synthetic RNAs were introduced 

in to the cells by lipophilic based transfection. hESC - hepatocytes transfected with 

Cy3-labelled precursors and Cy3-labelled antagomirs at 50nM concentration 

displayed efficient levels of transfection at  miR/lipofectamine ratios 1:3 and 1:2 

respectively (Figure 5.3). It is assumed that higher amount of lipofectamine was 

required for efficient precursors transfection as the oligonucleotides were long (~70nt) 

and double-stranded, whereas antagomirs were short (~23 nt) and single-stranded.       

In addition, transfection with precursors/antagomirs of well-known liver microRNAs 

(miR-122 and miR-483) demonstrated that transfection at both ratios did not affect cell 

viability, proving that lipofectamine did not induce any cytotoxic effect per se (Figure 

5.4).  

Following optimisation, hESC-derived hepatocytes were transfected with appropriate 

microRNA precursors and inhibitors for 24 hours in order to examine whether 

oligonucleotides had any direct effect on mRNA transcript changes in the enzymes of 

interest. As demonstrated in Figure 5.5 and Figure 5.6, neither precursor nor antagomir 

had any effect on GSTT1 transcript. There are two potential suggestions for it. First, 

the 50 nM concentration of the oligonucleotides could have been too low to stimulate 

changes in this enzymes, and therefore further studies are required to examine whether 

higher concentrations of these molecules would be effective. Secondly, the level of 

miR-24/GSTT1 interaction, indicated by 7merM8 ‘seed’ match (see Chapter 4 for 

details) was less effective than for other interactions studied in this project, therefore 

more specific binding should be taken into consideration when analysing results on 

TargetScan. What is more, Swart and Dandara (2014) demonstrated that neither of the 

computational algorithms used in their study confirmed the results of miR-

631/SULT1A1 interaction reported by Yu et al in 2010, therefore proving that better 

tools for microRNA/gene binding specificity should be developed. Contrary to miR-

24/GSTT1 interaction, transfection with either precursor or antagomir of miR-148a 

significantly downregulated or upregulated UGT1A1 mRNA respectively, therefore 

suggesting that the miR is involved in mRNA degradation of this enzyme.  
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Apart of high level of binding (‘seed’ match - 8mer), the same microRNA has been 

demonstrated to regulate the activity of PXR transcription factor (Takagi et al, 2008) 

that also controls the activity of UGT1A1. Therefore, it is suggested that one 

microRNA may interact with similar genes that have similar metabolic functions. 

hESC - derived hepatocytes transfected with the inhibitor of  miR-324-5p 

demonstrated a significant increase in SULT2A1 transcripts, potentially suggesting 

high and valid interaction between this particular microRNA and target. Similarly to 

the antagomir, precursor 324-5p upregulated the gene transcription rather than 

downregulated as would be expected, therefore further studies are required to 

understand this phenomenon.  

In order to validate qPCR results, examination of protein expression was performed. 

Immunocytochemistry (Figure 5.7) has revealed that pre miR-24/GSTT1 and              

pre miR324/SULT2A1 interactions do not decrease protein expression. Protein 

expression confirms qPCR results for these genes, therefore further studies, especially 

of Drosha and Dicer mechanisms should be investigated. Although transfection with 

precursor miR-148a significantly downregulated UGT1A1 gene expression (Figure 

5.5), the immunofluorescence did not confirm that (Figure 5.7). Recently, Dluzen et 

al (2014) have reported that next to miR-491-3p, miR-148a was selected as one of the 

top candidates to target UGT1A1, however luciferase activity assay did not show any 

repressed luciferase activity in vitro in Huh7 cell line. This confirms lack of protein 

change in our study, however the research group did not examine whether microRNA 

had any effect on the stability or on the degradation of the mRNA. What is more,         

the same group has reported that miR-491-3p did not have any effect on UGT1A1 

expression in HepG2 cells, probably due to low levels of this enzyme expressed in this 

line. Therefore, further overexpression of this microRNA had little effect due to 

already saturating levels of the enzyme. This potentially suggests that ratio of 

miR/enzyme in the cell is important to exert the inhibitory effect.  
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In case of antagomirs (Figure 5.10), transfection with miR-24 inhibitor did not 

upregulate GSST1 protein expression in comparison with scrambled control, what has 

been confirmed by qPCR results (Figure 5.6), therefore as mentioned before, higher 

concentrations of oligonucleotides could be required. Although, qPCR results 

demonstrated that inhibition of miR-148a significantly upregulated UGT1A1 gene 

expression (Figure 5.6), immunofluorescence demonstrated only increase by 4% in 

protein expression in comparison with scrambled control (Figure 5.10). This again 

suggests that UGT1A1 expression could be under post-translational modification. 

Contrary to other interactions, inhibition of miR-324 resulted in ~ 20% increase in 

SULT2A1 protein expression, what has been confirmed by qPCR results (Figures 5.6 

and 5.10). This may potentially suggest that miR-324 regulates this enzyme not only 

by inhibiting translation at 3’ UTR but may also degrade transcripts by deadenylation 

process (Djuranovic et al, 2012), however further research is required to prove that. 

Once the miR/target interactions were examined and validated, stem cell - derived 

hepatocytes were transfected with precursors and inhibitors of microRNAs for 24 

hours and subsequently exposed to paracetamol IC50 concentration for another 24 

hours. This allowed to examine whether modulation of particular enzymes by specific 

microRNAs was sufficient to rescue cells from toxic effects of this drug. Despite the 

differences in gene and protein expression, transfection with precursors for all three 

enzymes demonstrated reduced cell viability and glutathione production (Figures 5.8 

and 5.9) after exposure to paracetamol. Although the result was expected, investigation 

of other mechanisms that may interfere with ATP production and oxidative stress 

should be examined. Figure 5.11 and Figure 5.12 demonstrate that only inhibition of 

miR-324 resulted in significant increase in cell viability and glutathione reduction after 

paracetamol exposure. This potentially suggests that inhibition of this microRNA, 

promotes ‘switch’ from toxic pathway to non-toxic pathway by increasing levels of 

SULT2A1, hence rescuing cells from death and decreasing oxidative stress.  
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The (initial) positive results with antagomir 324 against SULT2A1 pushed us to 

examine whether inhibition of this microRNA would increase cell viability after 

exposure to the sera of paracetamol-poisoned patients. Figure 5.13 and Figure 5.14 

demonstrate that the antagomir of miR 324 increased not only cell viability but also 

caspase 3/7 activity after exposure to Patient 1 and Patient 58 sera in comparison with 

scrambled control. As necrosis (metabolic perturbation with ATP depletion) and 

apoptosis (execution of ATP-dependant death program via caspases) represent an 

alternate outcomes of the same cellular pathways (through mitochondrial 

permeabilization), there has been a lot of controversies whether APAP-induced liver 

injury is caused by first or the second death mechanism (Bechmann et al, 2008; Kon 

et al, 2004; Ray et al, 1996; El Hassan et al, 2003; Gujral et al, 2002). As necrosis 

process is still considered as the dominant mechanism induced in paracetamol 

cytotoxicity, higher amount of ATP and caspase 3/7 activity in this study suggests 

‘switch’ from necrosis to apoptosis, indicating slower cell death. To further confirm 

that, Malhi et al (2006) have reported that apoptosis may develop in damaged cells 

that survive the injurious stresses that would otherwise cause necrotic cell death effect. 

Contrary to Patient 1 and Patient 58, transfection with the miR-324 inhibitor followed 

by exposure to Patient 8 serum had no effect on cell survival and increase in apoptosis, 

therefore further analysis of the individual profiles of these females is required to 

identify potential factors affecting these differences.  

In conclusion, it was demonstrated that stem cell based models are essential to 

developing a better understanding of human drug metabolism and its regulation.           

In this study, it has been demonstrated that a novel miR inhibitor, antagomir to miR-

324, plays a major role in the regulation of phase II enzyme SULT2A1 in the context 

of acute paracetamol injury and fulminant plasma from overdose patients.           

Notably, inhibition of this microRNA led to an increase in SULT2A1 expression, 

improving cell survival, reducing glutathione depletion and ultimately cell necrosis.                   

These findings offer a serious promise to reduce the toxic effects of paracetamol 

overdose. What is more, these findings are novel and provide proof of concept, 

exemplifying the power of stem cell based models to identify new approaches to 

treating human liver damage. 
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6.1 DISCUSSION 

 

6.1.1 IMPROVEMENT OF CURRENT IN VITRO MODELS IN DILI STUDIES 

 

Drug – induced liver injury (DILI) is currently a major concern as it is not predictable 

from pre-clinical safety assessment studies due to lack of predictive models (Williams 

et al, 2012). Despite extensive work, up to date there is no universally accepted 

biomarker for DILI and in vivo systems often fail to predict serious cases of DILI 

caused by both intrinsic (predictive) and idiosyncratic (unpredicted) reactions occurred 

in man. Therefore it is required to improve an understanding of DILI mechanism that 

will allow to design drugs that have low risk of causing potential adverse drug 

reactions in the patient population. Currently, due to concerns about poor performance 

and animal welfare, in vitro hepatocyte models have been in demand. What is more, 

in vitro models have enabled investigation of many chemicals entities in short time 

frame. Contrary to standard hepatic models (e.g primary hepatocytes, cancer-derived 

cell lines), pluripotent stem cells have opened new opportunities to obtain unlimited 

amount of genetically defined hepatocytes. Although promising, most of the stem    

cell-derived hepatic cells are cultured in serum - and xeno - containing conditions that 

limit their scale up and application. Therefore, current research in the stem cell field is 

focused on developing in vitro systems that are defined and are derived to clinical 

grade. 

 

During my project, I have established an efficient and serum-free protocol to 

successfully differentiate pluripotent stem cells to hepatocytes (Szkolnicka et al, 2014; 

Szkolnicka et al, 2014b). In this project (Chapter 3), I have been able to use this 

procedure to differentiate human embryonic stem cells (hESCs), including hESC lines 

that were derived under GMP standards, as well as human induced pluripotent stem 

cells. What is more, recent publications demonstrated that our hepatic model is 

scalable, shippable and can be successfully used to study drug toxicity and virus-host 

interactions in line with current gold standards (Medine et al, 2013; Szkolnicka et al, 

2014a, Szkolnicka et al, 2014b, Zhou et al, 2014).  



220 
 

In regards to advanced drug toxicity studies in 2D models, recent research has been 

focused on developing in vitro assays not only to model intrinsic but idiosyncratic 

drug-induced liver injury (DILI). Derivation of hepatocytes from functional induced 

pluripotent stem cells of patients who develop DILI could allow study of idiosyncratic 

reactions in DILI - affected patients compared with treated controls (Jozefczuk et al, 

2011; Fontana, 2014). What is more, Faulkner et al (2012) have expanded T cells        

(in the presence of dendritic cells) in vitro from peripheral blood of patients with 

allergic drug reactions. As antigens are presented on HLA molecules of antigen – 

presenting cells to the T cell receptors, additional studies of T cell physiology could 

be conducted. Such studies would allow studying drug hypersensitivity (e.g T cell 

proliferation, T cell change from ‘naïve’ to ‘memory’ type, cytokine production) in 

individuals in more depth.  

 

Although two dimensional hepatic assays have been efficient, they still demonstrate 

low cellular polarity, diffused liver zonation or limited utility under standard culture 

conditions for certain types of toxicity testing. In order to overcome these issues and 

mimic native tissue architecture, stem cell field has been focused on the development 

of new in vitro platforms such as 3D culture/tissue models and microfluidic systems.  

Much research has been focused on the development of natural and synthetic 3D 

scaffolds (Hay et al, 2011; Skardal et al, 2012; Lucendo – Villarin et al, 2014), where 

cells have ability to proliferate, migrate and properly differentiate in order to regain 

phenotypic stability and all necessary metabolic functions. Recently, it has been 

demonstrated that the use of defined biopolymer substrate in conjunction with serum-

free hepatic differentiation, revealed a unique gene signature (MMP13, CTNND2, and 

THBS2) that predicts stable hepatocyte performance (Lucendo – Villarin et al, 2015). 

Therefore, this and future similar studies may identify gold standard parameters for 

somatic cell quality control. Use of different matrices and addition of scaffolds has 

paved the way for more advanced co-culture systems, where human cells are 

composed of two to three primary cell types ( Khetani and Bhatia, 2008; Ishii et al, 

2010; Tuleuova et al, 2010;  Enosawa et al, 2011; Takebe et al, 2013; Ware et al, 

2015).  
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Although co – culture models allow to mimic in vivo environment and intercellular 

signalling, a lot of these models do not contain the appropriate proportions of 

supporting cells to resemble the whole liver. What is more, development of different 

synthetic scaffolds to hold cells together may introduce nonhuman and non-native 

aspect to the system what may effect drug toxicity assessment in the future               

(Visk, 2015). In order to overcome issues connected with application of foreign 

materials, much focus has been on self-forming hepatocyte spheroids, often called 

hepatospheres. It has been reported that contrary to 2D models, 3D spheroids either of 

primary cells or stem cell – derived hepatocytes prolonged the expression of phase I 

enzymes such as CYP1A1, CYP1A2, CYP2B9, CYP2B10 (Nemoto and Sakurai, 

1992; Nemoto et al, 1995; Shen et al, 2006), phase II UGT1A1, NNMT (Gieseck III 

et al, 2014) and were more sensitive to acetaminophen-induced hepatotoxicity (Du et 

al, 2006).  Although hepatospheres have been considered to hold a great promise as an 

in vitro system, optimisation of their size and oxygen/nutrition diffusion is still 

required. These issues have been recently approached by incorporation of fluid flow 

devices (microfluidics) such as HuREL® Biochip (Chao et al, 2009), Hollow – Fibre 

Reactor (Shmelzer et al, 2009) or Single – and Multi – Well Perfused Bioreactor 

(Sivaraman et al, 2005) that mimic blood flow, shear stress and supply cells with 

appropriate amounts of oxygen and nutrition. A more recent approach to generate 3D 

systems involves bioprinting, a method that allows for automated production of 

structures composed of living cells that possess critical attributes of specific tissue. 

Bioprinted 3D models such as Organovo’s exVive3D liver tissue (Organovo®; USA) 

recently has been reported to secrete fibrinogen, albumin and transferrin proportional 

to levels in whole liver and demonstrate in vivo-like responses to acetaminophen, 

ethanol or diclofenac (Visk, 2015). Three - dimensional bioprinting holds a great 

promise to fill the gaps between lead optimization and drug discovery phases, however 

use of this method is still fairly premature and therefore further developments are 

required.  
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Although efficient 2D and 3D models have been established for accurate drug toxicity 

prediction or future cell –based therapies, the large variability has been reported both 

on markers expression and key enzymes activities in PSC-derived hepatocytes.        

Such differences limit the application of these cells in safety pharmacology and 

toxicology assessment.  

One of the reason for it is lack of agreed endpoints of hepatic differentiation and 

maturation along with lack of standardized comparators for differentiated PSC-derived 

hepatocytes (Kia et al, 2012; Wobus and Loser, 2011). Recently, it has been 

demonstrated that the degree of ‘hepatic differentiation’ is controversial and needs 

further studies. Godoy et al (2015) genome - wide study has demonstrated that 

hepatocytes derived from human embryonic and induced pluripotent stem cells in vitro 

possess high expression of colon-associated transcriptional factors  (e.g KLF5, CDX2, 

NKX2), colon – enriched genes (e.g MEP1A, CDH17) and fibroblast – enriched genes 

(e.g TWIST1 and SNAIL2).  Therefore, it has been suggested that in order to further 

differentiate PSC-derived hepatocytes to pure mature populations, suppression of 

factors responsible for colon development and hepatic dedifferentiation is required.               

Such whole-genome analysis would open new opportunities to understand the 

transcriptional regulatory networks controlling the differentiation program, and would 

potentially eliminate ‘unwanted’ genes both in 2D and 3D systems. What is more, 

Avior et al (2015) studies demonstrated that looking at liver per se may not be 

sufficient to find answers on how to drive maturation of drug metabolic enzymes. 

Research of this group has revealed that vitamin K2 and litocholic acid, that is the 

byproduct of intestinal flora, stimulate the activity of PXR transcription factor that 

controls CYP3A4 and CYP2C9 expression in hPSC-derived hepatocytes. Avior et al 

studies demonstrated that microbial-derived cues were responsible for maturing 

cytochromes post-partum, and therefore future focus should be both on liver 

development and gut colonization.  
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6.1.2 PHARMACOGENOMICS OF PARACETAMOL 

 

 In this project (Chapter 4), hepatocytes derived from hESCs under serum-free 

conditions displayed comparable expression of metabolic enzymes and transporters to 

human primary hepatocytes.  The major focus was on SULT2A1, SULT1A1, 

UGT1A1, GSTT1 and GSTP1 enzymes as these play an essential role in paracetamol 

metabolism. Although our in vitro model along with other stem cell systems reported 

previously (McGill et al, 2011; Gunnes et al, 2013; Sengupta et al, 2014, Ware et al, 

2015) demonstrate a promising platform to study APAP-induced hepatotoxicity, 

recent studies call to focus on pharmacogenomics of paracetamol and ontogenesis of 

the regulatory pathways (Krasniak et al, 2014). A various number of research groups 

have reported that APAP pharmacokinetics (PK) and pharmacodynamics (PD) may 

widely differ between individuals and populations. Zuppa et al (2011) have reported 

that APAP PK varies with age from birth to adulthood. The authors have reported that 

the clearance (L/hr) of APAP increased two fold at 1 year of age (~4.09 L/hr) in 

comparison with 1 month old (~2.02 L/hr), whereas adolescent demonstrated the drug 

clearance at ~14.27 L/hr. Such differences are inseparably connected with various 

levels of metabolic enzymes in different age populations. Vieira et al (1996) analysed 

more than 238 livers, and discovered that CYP2E1 expression was increasing within 

the age (neonate < infant < child). Various levels of CYP2E1 would explain why 

younger infants have a decreased risk of paracetamol hepatotoxicity. What is more, it 

has been demonstrated that ethnicity may influence the cytochrome expression. 

Johnsrud et al (2003) have reported that CYP2E1 protein expression was higher in 

Northern European – Americans and Hispanic – Americans than in African – 

Americans. In case of phase II enzymes, glutathione S - transferases (GST) and UDP-

glucuronosyltransferases (UGT) have also been reported to increase within the age 

(Strassburg et al, 2002; Zuppa et al, 2011). Although some papers (Grijalva et al, 2013; 

Levy et al, 1975) have reported that up to age of 9 paracetamol sulfate is the major 

metabolite, Zuppa et al (2011) reported that APAP – sulfation is likely constant among 

ages (28 days to > 12 years of age). Such information may be favourable in the context 

of studying SULT2A1 regulation in this project as Ant -324 -5p may be effective in 

all age populations, therefore acting as a universal therapeutic in the future.  
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Except of PK and PD of APAP, polymorphism of metabolic genes and microRNAs 

that regulate their expression should be taken into consideration (often referred to as 

miRSNPs). It has been reported that genetic variations of 3’UTR of CYP1A2, 

CYP2B6, CYP2E1, PXR, UGT1A1, and UGT2B7 (Hu et al, 1997; Matimba et al, 

2009; Warnich et al, 2011; Wei et al, 2012; Dandara et al, 2014; Court et al, 2013; 

Swart and Dandara, 2014) as well as SNPs in microRNAs per se may interfere with 

miR-mRNA interactions, therefore influencing capacity of an individual to properly 

metabolise and excrete drugs, including paracetamol.  

 

Although pharmacogenomic data is very useful in predicting potential effects of APAP 

on metabolic genes in individuals, inflammatory responses have recently been taken 

into consideration when preventing hepatotoxicity. Garcia et al (2014) injected female 

Balb/c mice with Freund Complete Adjuvant (FCA) and boosted with Freund’s 

Incomplete Adjuvant (FIA) before administering a toxic dose (360 mg/kg) of 

paracetamol for three days. Injection of adjuvants resulted in an increase                            

in pro-inflammatory cytokines, α- 1- acid glycoprotein, lactate dehydrogenase             

and reduced CYP2E1 enzyme that is primarily responsible for producing hepatotoxic 

metabolite (NAPQI). Although the study revealed that inflammatory responses could 

decrease hepatotoxicity caused by paracetamol, the phenomenon is very complex due 

to potential activation of Kupffer cells or other immune-mediated molecular pathways 

that may cause overall tissue injury. Therefore, further research of this aspect is 

required. 

 

In the context of developing new reliable stem cell derived in vitro models for drug 

toxicity assays, it is essential to study large number of stem cells derived from 

individuals where age, ethnicity, microbiome and immune mechanisms are examined 

in more details. 
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6.1.3 IMPROVEMENT OF MICRORNA TARGET IDENTIFICATION  

 

In the last two chapters of this project (Chapter 4 and 5), I identified three potential 

microRNAs (miR-24, miR-148a, miR-324) that bind to specific targets of phase II 

drug metabolism (GSTT1, UGT1A1, and SULT2A1). Further investigation using 

precursors and antagomirs allowed us to discover that inhibition of miR-324 may 

potentially regulate SULT2A1 enzyme at both gene and protein expression and 

significantly decrease APAP-induced toxicity in hESC – derived hepatocytes. 

Although the results have been promising in in vitro system, there are couple of aspects 

that should be taken into consideration in the future. Firstly, examination of the 

function of antagomir for miR -324 (Ant-324) in vivo would be very useful to further 

confirm the effects of this microRNA in more complex systems. Since, miR-324-5p 

has been conserved in most of the species (based on miRBase; gene family ID: 

MIPF0000165), inhibition of this non-coding RNA for instance in APAP-injured mice 

would give additional information on its precise location (using fluorescence in situ 

hybridization; FISH). Additionally, it would be important to examine whether 

ALT/AST/bilirubin levels decrease or any changes in the size of mitochondria are 

observed.  

 

In this project, TargetScan Human 6.2 has been used to identify miR-mRNA 

interactions as this tool comparing to others (e.g miRanda, PicTar, Diana-microT, 

PITA) is highly precise and sensitive (Witkos et al, 2011)   However, it has been 

reported that due to our poor understanding of miR - mRNA interactions beyond ‘seed’ 

pairing, the prediction of most of the current algorithms have low sensitivity and 

specificity what in a results creates ~ 40% of false-positives (Zampetaki and Mayr, 

2012; Swart and Dandara, 2014). Therefore, all potential miR - mRNA interactions 

should be confirmed by functional validation. Recent experimental strategies to 

identify direct miRNA targets include use of microRNA precursors/antagomirs and 

luciferase – based assays. Although these methods are very useful, they are based on 

the hypothesis that reduced protein synthesis by microRNAs is the destabilization of 

target mRNAs. 
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Unfortunately, microRNAs and mRNAs levels not always correlate, therefore 

detecting changes at the messenger level to predict microRNA targets is not always 

reliable. In order to overcome these problems, new high- throughput methods have 

been developed such as Labelled miRNA Pull-Down (LAMP) Assay, High – 

Throughput Sequencing by Cross – Linking and Immunoprecipitation (HITS-CLIP), 

Cell-Based Cross-Linking and Immunoprecipitation (CLIP), and Immunoprecipitation 

of Tagged Components of the RISC Complex (RISC-IP) (Zampetaki and Mayr, 2012).  

 

Since microRNAs not only regulate their target by mRNA degradation but by protein 

translation, study of proteomics should be essential. Methods such as use of pulsed 

stable isotope labelling by amino acids (pSILAC) in cell culture may help to identify 

newly synthesized proteins that are pulsed-labelled with different isotopes of amino 

acids from the already existing ones (Zampetaki and Mayr, 2012).  

 

What is more, studies have also proven that different chemical designs of microRNA 

inhibitors may demonstrate inconsistencies in the results, therefore use of different 

types of inhibitors  (e.g locked nucleic acid or 2’-O’-methyl nucleotides) should be 

examined.  

 

 

6.1.4 CONCLUSION 

 

The studies demonstrate that hESC – derived hepatocytes are a useful tool to dissect 

the effects of miRs on gene regulation. These studies are enabling and may have 

significant translational potential.  
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SUPPLEMENTARY FIGURES AND TABLES 

 

 

Supplementary Figure 1.1: SNP analysis of H9 cell line cultured in MT. The analysis was 

done using Illumina GenomeViewer software. Abbreviations: SNP, single nucleotide 

polymorphism; MT, mTeSR1. 
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Supplementary Figure 1.2:  SNP analysis of HN4a (A), CYP1A2 (B), and CYP3A4 (C)     

in H9 cell line cultured in MT. SNPs were analysed by Illumina GenomeViewer software. 

Abbreviations: SNP, single nucleotide polymorphism; HNF4a, hepatic nuclear factor 4a; 

CYP3A4/CYP1A2, cytochrome P450 3A4 and 1A2; MT, mTeSR1. 



229 
 

 

Supplementary Figure 1.3:  SNP analysis of GSTT1 (A), UGT1A1 (B), and SULT2A1(C) 

in H9 cell line cultured in MT. SNPs were analysed by Illumina GenomeViewer software. 

Abbreviations: SNP, single nucleotide polymorphism; GSTT1, glutathione S-transferase; 

UGT1A1, UDP-glucuronosyltransferase 1A1; SULT2A1, sulfotransferase 2A1; MT, 

mTeSR1.  
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Supplementary Figure 1.4: SNP analysis of MAN11 cell line cultured in MT. The analysis was 

done using Illumina GenomeViewer software. Abbreviations: SNP, single nucleotide 

polymorphism; MT, mTeSR1. 
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Supplementary Figure 1.5: SNP analysis of MAN12 cell line cultured in MT. The analysis was 

done using Illumina GenomeViewer software. Abbreviations: SNP, single nucleotide 

polymorphism; MT, mTeSR1. 
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A)                                                                                      B) 

 

 

Supplementary Figure 1.8: Protein expression assessed by Western blots. Western blots 

demonstrate protein expression of appropriate markers at each stage of hESC (H9) (A) and hiPSC 

(33D6) (B) hepatic differentiation. Abbreviations: Oct 3/4, Octamer 3/4; AFP, α-fetoprotein; E-cad, E-

cadherin; CYP3A, cytochrome P450 3A; ALB, albumin; A1AT, α1-antitrypsin; hESC/hIPSC, human 

embryonic/human induced pluripotent cell.   

 

       

Supplementary Figure 1.9: APAP/EtOH in vitro toxicity in stem cell- derived hepatocytes. APAP 

was more toxic to cells than EtOH. At day 17, hESC-hepatocytes were induced with different 

concentrations of APAP (0-50 mM) and Ethanol (vehicle control) for 24 hours. The CellTitre- Glo® 

Luminescent Cell Viability Assay (Promega) was used to measure the ATP levels.The graph represents 

fold change in cell viability. Abbreviations: APAP, Acetaminophen (Paracetamol); EtOH, Ethanol. 
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Supplementary Figure 1.10: Surface marker expression of hESC (H9) cultured in MT medium.           

The histograms demonstrate hESC surface marker expression levels as expected, including stage 

specific embryonic antigens (SSEA) and tumour rejection antigens (Tra). The marker of differentiation 

SSEA1 was expressed at 0.79%, whereas the pluripotency markers SSEA4, Tra-1-60 and Tra-1-81 were 

expressed at 99.7%, 98%, and 93.7% respectively. The blue colour indicates unstained cells and the red 

colour represents stained cells with particular fluochrome-conjugated antibodies.  
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Supplementary Table 1.1: Gene expression of AFP (A) and Ecad (B) at different stages of hESC 

and hiPSC differentiation. Gene expression was measured using qPCR and normalised to 

housekeeping gene B2M and relatively to day 0. Abbreviations: AFP, α – fetoprotein; Ecad, E-cadherin; 

B2M, Beta -2- Microglobulin; MT, mTeSR1; E8, Essential 8.  
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RT2 PROFILER PCR ARRAY - Human Drug Metabolism Phase I (QIAGEN; PAHS-002Z) 

Gene 
Symbol 

AVG ΔCt 2^ - ΔCt 
Fold 

Change 

Fold Up – or 
Down- 

Regulation                

Group1 
(HLC) 

Control 
Group 
(PHH) 

Group1 
(HLC) 

Control 
Group 
(PHH) 

Group  1/ 
Control 

Group 1/ Control 

CYP1A1 0.38 7.02 0.768483 0.007705 99.74 99.74 

ADH4 4.08 6.10 0.059302 0.014562 4.07 4.07 

ADH5 1.01 2.39 0.495439 0.190431 2.60 2.60 

EPHX1 1.64 1.52 0.321538 0.347956 0.92 -1.08 

ADH6 4.78 3.34 0.036387 0.098713 0.37 -2.71 

ALDH1A1 0.45 -0.45 0.729565 1.363349 0.54 -1.87 

CYPB5R 0.65 -0.38 0.636322 1.303635 0.49 -2.05 

CYP2B6 7.46 6.75 0.005694 0.009309 0.61 -1.63 

CYP3A5 2.01 -1.18 0.248204 2.272074 0.11 -9.15 

CYP2J2 6.06 1.98 0.015040 0.252693 0.06 -16.80 

CYP2C8 6.76 0.63 0.009224 0.647110 0.01 -70.16 

CYP2C9 7.46 -0.49 0.005694 1.402808 0.00 -246.36 

CYP3A4 7.46 1.34 0.005694 0.394672 0.01 -69.31 

CYP2C19 6.91 2.15 0.008323 0.225670 0.04 -27.11 

CYP2D6 7.09 4.56 0.007318 0.042426 0.17 -5.80 

CES1 4.46 -1.36 0.045546 2.559360 0.02 -56.19 

CES2 4.07 -0.66 0.059552 1.579842 0.04 -26.53 

ADH1B 6.89 4.26 0.008442 0.052291 0.16 -6.19 

ADH1C 7.46 4.16 0.005694 0.056056 0.10 -9.84 

Supplementary Table 1.2: Phase I drug metabolism (PCR Array). Fold-Change (2^(- Delta Delta 

Ct)) is the normalized gene expression (2^(- Delta Ct)) in the Test Sample divided the normalized gene 

expression (2^(- Delta Ct)) in the Control Sample. Fold-Regulation represents fold-change results in a 

biologically meaningful way. Fold-change values greater than one indicate a positive- or an up-

regulation, and the fold-regulation is equal to the fold-change. Fold-change values less than one indicate 

a negative or down-regulation, and the fold-regulation is the negative inverse of the fold-change. Up-

regulated genes (fold differences larger than a 3 fold threshold) are indicated in red, down-regulated 

genes (fold differences narrower than 3 fold treshold) are indicated in green. Genes similarly expressed 

for the Group 1 and Control (fold differences between -3 to +3 boundary) are indicated in black. 

Abbreviations: HLC, hepatocyte-like-cells; PHH, primary human hepatocytes.  
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RT2 PROFILER PCR ARRAY - Human Drug Metabolism Phase II (QIAGEN; PAHS-069Z) 

Gene 
Symbol 

AVG ΔCt 2^ - ΔCt 
Fold 

Change 

Fold Up – or 
Down- 

Regulation                

Group1 
(HLC) 

Control 
Group 
(PHH) 

Group1 
(HLC) 

Control 
Group 
(PHH) 

Group  1/ 
Control 

Group 1/ Control 

GSTP1 -0.20 4.85 1.148277 0.034646 33.14 33.14 

GSTA1 -0.42 2.08 1.341208 0.236264 5.68 5.68 

GSTA4 3.37 6.86 0.096681 0.008588 11.26 11.26 

GSTA3 6.20 8.55 0.013622 0.002677 5.09 5.09 

SULT1E1 3.85 9.74 0.069583 0.001166 59.66 59.66 

SULT1A2 4.37 7.98 0.048511 0.003948 12.29 12.29 

SULT1C2 8.20 12.73 0.003411 0.000147 23.14 23.14 

SULT1C3 8.20 12.73 0.003411 0.000147 23.14 23.14 

SULT1C4 6.63 8.40 0.010075 0.002967 3.40 3.40 

NAT 1 9.80 11.43 0.001118 0.000362 3.09 3.09 

GSTO1 0.04 0.46 0.971041 0.724547 1.34 1.34 

GSTO2 8.00 7.95 0.003893 0.004040 0.96 -1.04 

GSTT1 3.47 3.39 0.089944 0.095282 0.94 -1.06 

GSTK1 2.45 2.52 0.182812 0.174788 1.05 1.05 

GSTM4 6.98 7.30 0.007905 0.006338 1.25 1.25 

UGT2B28 2.98 2.15 0.126827 0.225954 0.56 -1.78 

UGT3A1 7.78 6.94 0.004559 0.008118 0.56 -1.78 

SULT1A1 3.08 3.96 0.117951 0.064148 1.84 1.84 

SULT2A1 4.55 3.61 0.042611 0.081891 0.52 -1.92 

COMT 2.01 2.76 0.249051 0.147120 1.69 1.69 

UGT1A1 6.58 4.83 0.010486 0.035145 0.30 -3.35 

UGT1A4 10.39 3.28 0.000746 0.102607 0.01 -137.61 

UGT2B4 8.36 3.41 0.003054 0.093826 0.03 -30.73 

UGT2B7 3.56 0.83 0.084852 0.564152 0.15 -6.65 

UGT2B10 8.65 5.59 0.002489 0.020726 0.12 -8.33 

UGT2A3 10.59 4.69 0.000649 0.038640 0.02 -59.49 

UGT2B17 10.85 4.95 0.000543 0.032289 0.02 -59.46 

NAT2 7.58 5.64 0.005230 0.020051 0.26 -3.83 

SULT1B1 8.60 5.59 0.002579 0.020766 0.12 -8.05 

Supplementaty Table 1.3: Phase II drug metabolism (PCR Array). Fold-Change (2^(- Delta Delta 

Ct)) is the normalized gene expression (2^(- Delta Ct)) in the Test Sample divided the normalized gene 

expression (2^(- Delta Ct)) in the Control Sample. Fold-Regulation represents fold-change results in a 

biologically meaningful way. Fold-change values greater than one indicate a positive- or an up-

regulation, and the fold-regulation is equal to the fold-change. Fold-change values less than one indicate 

a negative or down-regulation, and the fold-regulation is the negative inverse of the fold-change. Up-

regulated genes (fold differences larger than a 3 fold threshold) are indicated in red, down-regulated 

genes (fold differences narrower than 3 fold treshold) are indicated in green. Genes similarly expressed 

for the Group 1 and Control (fold differences between -3 to +3 boundary) are indicated in black. 

Abbreviations: HLC, hepatocyte-like-cells; PHH, primary human hepatocytes.  
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RT2 PROFILER PCR ARRAY - Human Drug Transporters Phase III (QIAGEN; PAHS-070Z) 

Gene 
Symbol 

AVG ΔCt 2^ - ΔCt 
Fold 

Change 

Fold Up – or 
Down- 

Regulation                

Group1 
(HLC) 

Control 
Group 
(PHH) 

Group1 
(HLC) 

Control 
Group 
(PHH) 

Group  1/ 
Control 

Group 1/ Control 

ABCC1 6.89 8.73 0.008423 0.002350 3.58 3.58 

ABCC4 4.89 9.01 0.033689 0.001934 17.42 17.42 

ABCC5 5.93 8.98 0.016410 0.001982 8.28 8.28 

ABCG2 4.52 9.39 0.043502 0.001491 29.17 29.17 

SLCO1A2 7.29 11.41 0.006390 0.000368 17.38 17.38 

SLCO2A1 6.64 12.26 0.009994 0.000204 49.01 49.01 

SLC19A3 4.75 7.85 0.037173 0.004328 8.59 8.59 

SLC22A7 8.55 11.07 0.002659 0.000466 5.70 5.70 

SLC22A9 6.43 8.37 0.011561 0.003030 3.82 3.82 

ABCC3 5.53 3.98 0.021683 0.063471 0.34 -2.93 

ABCB11 8.58 9.07 0.002616 0.001859 1.41 1.41 

ABCG8 8.74 7.25 0.002338 0.006587 0.35 -2.82 

SLC19A1 9.35 10.40 0.001529 0.000738 2.07 2.07 

SLC19A2 4.95 6.46 0.032350 0.011345 2.85 2.85 

SLC22A3 6.28 6.05 0.012855 0.015105 0.85 -1.18 

ABCB1 8.16 5.09 0.003490 0.029260 0.12 -8.38 

ABCB4 8.73 6.51 0.002351 0.011003 0.21 -4.68 

ABCC2 6.42 2.84 0.011709 0.139434 0.08 -11.91 

SLCO1B1 10.59 6.34 0.000648 0.012367 0.05 -19.09 

SLCO1B3 10.88 7.76 0.000532 0.004626 0.12 -8.69 

SLC22A1 11.12 7.00 0.000448 0.007829 0.06 -17.46 

Supplementary Table 1.4: Phase III drug metabolism (PCR Array). Fold-Change (2^(- Delta Delta 

Ct)) is the normalized gene expression (2^(- Delta Ct)) in the Test Sample divided the normalized gene 

expression (2^(- Delta Ct)) in the Control Sample. Fold-Regulation represents fold-change results in a 

biologically meaningful way. Fold-change values greater than one indicate a positive- or an up-

regulation, and the fold-regulation is equal to the fold-change. Fold-change values less than one indicate 

a negative or down-regulation, and the fold-regulation is the negative inverse of the fold-change. Up-

regulated genes (fold differences larger than a 3 fold threshold) are indicated in red, down-regulated 

genes (fold differences narrower than 3 fold treshold) are indicated in green. Genes similarly expressed 

for the Group 1 and Control (fold differences between -3 to +3 boundary) are indicated in black. 

Abbreviations: HLC, hepatocyte-like-cells; PHH, primary human hepatocytes.  
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microRNA/ Gene 
(symbol) 

Accession Number  (miRBase)  

hsa-miR-324-5p MI0000813 / MIMAT0000761  

hsa-miR-24-3p MI0000080 / MIMAT0000080  

hsa-miR-148a MI0000253 / MIMAT0000243  

 

 UniGene GeneBank 

SULT2A1 Hs.515835 NM_003167 

GSTT1 Hs.268573 NM_000853 

UGT1A1 Hs.554822 NM_000463 

 

Supplementary Table 1.5: miRBase ID and NCBI of selected microRNAs and genes. 

Abbreviations: hsa, human; miR, microRNA, ID, identification; NCBI, National Centre for 

Biotechnology Information. 
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Supplementary Table 1.6 (a): The list of 220 microRNAs commonly expressed in stem cell (H9) –

derived hepatocytes (day 18) and primary human hepatocytes (PHH). The RNA samples                     

(4 replicates of PHH and 4 experimental samples of hESC-derived hepatocytes) were analysed on the 

Agilent miRNA platform (using Agilent’s SurePrint G3 Human v16 microRNA 8x60K microarray 

slides; miRbase version 16.0).  

 

miRNA Mean log2 intensity Relative mean intensity (%) Max. log2 intensity Relative max. intensity (%) Times detected (%) Chromosome Band

hsa-let-7b-3p 2.167553914 15.39758566 4.759083184 33.80695194 54.54545455 22q13.31

hsa-let-7e-5p 4.315044314 30.65264676 5.195762764 36.90897916 90.90909091 19q13.41

hsa-let-7f-1-3p 1.45060131 10.30459164 3.752587461 26.65713942 18.18181818 9q22.32

hsa-miR-1 1.562493903 11.09943959 4.033989956 28.65612962 18.18181818 20q13.33 /// 18q11.2

hsa-miR-107 8.445884654 59.99676945 9.20038125 65.35646358 100 10q23.31

has-miR-1202 6.624326485 47.05702306 9.080396756 64.50413344 100 6q25.3

hsa-miR-1207-5p 8.276057831 58.79037591 10.36982484 73.66380382 100 8q24.21

hsa-miR-122-5p 10.08319276 71.62766441 12.88839682 91.55490564 100 18q21.31

hsa-miR-1224-5p 4.619021262 32.8119984 6.317471652 44.87722788 100 3q27.1

hsa-miR-1225-3p 3.997769591 28.39883213 5.235933105 37.19433597 100 16p13.3

hsa-miR-1225-5p 7.302618353 51.87538401 9.080396756 64.50413344 100 16p13.3

hsa-miR-1226* 2.73590075 19.4349335 6.432835079 45.69673148 36.36363636 3p21.31

hsa-miR-1228-3p 4.737513176 33.65372574 6.047606994 42.96019866 100 12q13.3

hsa-miR-1228-5p 2.336520334 16.59786719 5.533498506 39.3081421 36.36363636 12q13.3

hsa-miR-1234 5.018803171 35.65191678 6.517331819 46.29696836 100 8q24.3

hsa-miR-1237 3.113032203 22.11395052 4.222428371 29.99473375 90.90909091 11q13.1

hsa-miR-1238 4.283605841 30.42931826 5.402617074 38.37840372 100 19p13.2

hsa-miR-1246 9.203731352 65.38026159 12.88839682 91.55490564 100 2q31.1

hsa-miR-1249 1.710712988 12.15233891 3.779902166 26.85117404 36.36363636 22q13.31

hsa-miR-1258 1.366140729 9.704611618 3.652512778 25.94624199 9.090909091 2q31.3

hsa-miR-125a-3p 3.718808154 26.4171824 5.533498506 39.3081421 81.81818182 19q13.41

hsa-miR-125b-5p 6.907149701 49.06610558 8.24897089 58.59795924 100 11q24.1 /// 21q21.1

hsa-miR-126-3p 4.453699943 31.63761046 6.745973602 47.92116392 72.72727273 9q34.3

hsa-miR-1260b 8.739559616 62.08293919 9.951193434 70.68998485 100 11q21

hsa-miR-1268b 6.897900491 49.00040226 8.914241059 63.32381836 100 17q25.3

hsa-miR-1275 7.082825486 50.31404822 9.543230472 67.79195098 100 6p21.31

hsa-miR-128 4.867008714 34.57361919 5.863396753 41.65163006 100 2q21.3 /// 3p22.3

hsa-miR-1281 4.906137632 34.85157807 7.000447289 49.72886077 100 22q13.2

hsa-miR-1288 3.126365697 22.20866726 4.382662349 31.1329829 81.81818182 17p11.2

hsa-miR-1290 6.649179186 47.23356842 9.685937919 68.80569746 100 1p36.13

hsa-miR-1296 1.866800635 13.2611339 3.836693986 27.25460434 45.45454545 10q21.3

hsa-miR-1305 4.957477645 35.21628054 6.488825654 46.09447 100 4q34.3

hsa-miR-133b 1.767910763 12.55865298 4.191590285 29.7756702 27.27272727 6p12.2

hsa-miR-135a-3p 3.580095563 25.43181406 5.333142011 37.88487587 100 3p21.1 /// 12q23.1

hsa-miR-140-5p 3.713856714 26.38200901 5.333142011 37.88487587 81.81818182 16q22.1

hsa-miR-1471 2.371194554 16.84418138 5.108433596 36.28862165 36.36363636 2q37.1

hsa-miR-148a-3p 7.715908631 54.81126137 9.34381318 66.37535654 100 7p15.2

hsa-miR-148b-3p 5.16186919 36.66821043 6.317471652 44.87722788 100 12q13.13

hsa-miR-150-3p 4.834592275 34.34334353 7.181437537 51.0145556 100 19q13.33

hsa-miR-151a-3p 4.160489957 29.55474376 5.468096887 38.84355064 90.90909091 8q24.3

hsa-miR-151a-5p 6.759415776 48.01665268 7.908331533 56.17816998 100 8q24.3

hsa-miR-155-5p 2.817584404 20.01518714 4.174217694 29.65226106 63.63636364 21q21.3

hsa-miR-16-5p 8.507873725 60.4371193 9.685937919 68.80569746 100 13q14.2 /// 3q25.33

hsa-miR-17-3p 3.717872965 26.41053913 5.605092098 39.81671929 90.90909091 13q31.3

hsa-miR-181a-5p 6.125048032 43.51031416 7.000447289 49.72886077 100 1q32.1 /// 9q33.3

hsa-miR-181b-5p 4.149834728 29.47905254 4.97754762 35.35885099 90.90909091 1q32.1 /// 9q33.3

hsa-miR-1825 4.717609699 33.51233803 6.609645511 46.95273427 100 20q11.21

hsa-miR-183-5p 3.26200335 23.17219225 5.2540446 37.32299404 81.81818182 7q32.2

hsa-miR-185-5p 3.599703802 25.5711045 4.964394851 35.26541808 90.90909091 22q11.21

hsa-miR-186-5p 3.107641947 22.07565993 4.576235395 32.50806176 81.81818182 1p31.1

hsa-miR-188-5p 5.832657074 41.43326556 9.2666837 65.82745424 100 Xp11.23

hsa-miR-1909-5p 1.881355523 13.36452701 4.082699416 29.0021455 36.36363636 19p13.3

hsa-miR-191-3p 4.106883242 29.1739394 4.949522624 35.1597707 100 3p21.31

hsa-miR-1910 1.56203899 11.09620803 4.204958561 29.87063401 18.18181818 16q24.1

hsa-miR-1914-3p 4.204836624 29.8697678 5.120226753 36.37239634 100 20q13.33

hsa-miR-1915 8.285328163 58.85622928 10.65447387 75.6858563 100 10p12.31

hsa-miR-193a-5p 4.085079479 29.01905268 5.605092098 39.81671929 100 17q11.2

hsa-miR-197-3p 5.426277098 38.5464767 7.888192297 56.03510751 100 1p13.3

hsa-miR-1973 5.804181369 41.23098357 6.891326276 48.95370121 100 4q26

hsa-miR-198 2.236101149 15.88452253 5.2540446 37.32299404 36.36363636 3q13.33

hsa-miR-203 3.126895637 22.21243177 4.798541198 34.08724862 72.72727273 14q32.33

hsa-miR-205-3p 1.96851625 13.98368797 4.713406887 33.48248264 36.36363636 1q32.2

hsa-miR-20a-3p 2.765103481 19.64238003 4.366871399 31.02080922 72.72727273 13q31.3

hsa-miR-21-5p 12.09963664 85.95181434 12.88839682 91.55490564 100 17q23.1

hsa-miR-210 5.877366952 41.75086974 8.351444508 59.32589791 90.90909091 11p15.5

hsa-miR-211-5p 1.376709151 9.779686194 3.768765425 26.77206232 9.090909091 15q13.3

hsa-miR-218-5p 4.947405224 35.14472939 7.814426908 55.5111026 90.90909091 4p15.31 /// 5q34

hsa-miR-22-5p 2.71668992 19.29846611 4.156098562 29.52354874 63.63636364 17p13.3
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Supplementary Table 1.6 (b): The list of 220 microRNAs commonly expressed in stem cell (H9) –

derived hepatocytes (day 18) and primary human hepatocytes (PHH). The RNA samples                    

(4 replicates of PHH and 4 experimental samples of hESC-derived hepatocytes) were analysed on the 

Agilent miRNA platform (using Agilent’s SurePrint G3 Human v16 microRNA 8x60K microarray 

slides; miRbase version 16.0).  

 

hsa-miR-221-3p 4.988289183 35.43515551 6.047606994 42.96019866 100 Xp11.3

hsa-miR-224-5p 4.216325184 29.95137874 5.863396753 41.65163006 100 Xq28

hsa-miR-2276 2.831064559 20.1109457 5.567690079 39.55102772 54.54545455 13q12.12

hsa-miR-23a-3p 8.369316464 59.45285437 9.2666837 65.82745424 100 19p13.13

hsa-miR-23b-3p 7.84616685 55.73657265 9.20038125 65.35646358 100 9q22.32

hsa-miR-24-3p 8.311629805 59.04306744 9.166945457 65.11894677 100 9q22.32 /// 19p13.13

hsa-miR-25-3p 6.685005927 47.48806973 8.159537635 57.96265499 100 7q22.1

hsa-miR-26a-5p 7.010850118 49.80275903 8.782112163 62.3852184 100 3p22.2 /// 12q14.1

hsa-miR-26b-5p 7.887656757 56.03130322 9.20038125 65.35646358 100 2q35

hsa-miR-27a-3p 7.070116486 50.22376769 8.24897089 58.59795924 100 19p13.13

hsa-miR-27b-3p 7.760195925 55.12586365 9.34381318 66.37535654 100 9q22.32

hsa-miR-28-5p 4.614680979 32.78116647 6.020154252 42.76518346 90.90909091 3q28

hsa-miR-2861 8.098232261 57.52716191 11.77690063 83.65920458 100 9q34.11

hsa-miR-30a-3p 2.950765003 20.96125804 4.534663185 32.21274654 63.63636364 6q13

hsa-miR-30a-5p 6.145492589 43.65554553 7.458327192 52.98148807 100 6q13

hsa-miR-30b-5p 6.546012759 46.50070827 7.941037626 56.41050324 100 8q24.22

hsa-miR-30c-5p 4.341174699 30.83826837 5.716816843 40.6103749 90.90909091 1p34.2 /// 6q13

hsa-miR-30e-3p 2.959039546 21.02003765 4.481761629 31.8369514 72.72727273 1p34.2

hsa-miR-30e-5p 5.432525493 38.59086323 6.891326276 48.95370121 100 1p34.2

hsa-miR-31-3p 1.917007372 13.61778595 3.803379697 27.01795066 45.45454545 9p21.3

hsa-miR-31-5p 2.482850148 17.63734577 5.235933105 37.19433597 45.45454545 9p21.3

hsa-miR-3124-5p 1.762034727 12.51691157 4.011269468 28.49473079 27.27272727 1q44

hsa-miR-3125 3.744020805 26.59628473 5.090800321 36.1633607 100 2p24.3

hsa-miR-3127-5p 3.293369985 23.39501045 5.834190844 41.44416096 72.72727273 2q11.2

hsa-miR-3137 2.024382356 14.38054229 4.097587661 29.10790666 36.36363636 3q29

hsa-miR-3138 2.135530188 15.17009971 4.393786163 31.2120028 36.36363636 4p16.1

hsa-miR-3141 5.767174081 40.96809605 8.494581071 60.34269268 100 5q33.2

hsa-miR-3148 2.369747636 16.83390295 4.222428371 29.99473375 54.54545455 8p12

hsa-miR-3156-5p 2.410880989 17.12610068 4.964394851 35.26541808 54.54545455 10q11.21 /// 18p11.21 /// 21q11.2

hsa-miR-3162-5p 8.079116607 57.39137063 9.428341899 66.97582058 100 11q12.1

hsa-miR-3189-3p 1.562705153 11.10094023 3.595719016 25.5427979 27.27272727 19p13.11

hsa-miR-3191-5p 1.925673313 13.67934593 4.011269468 28.49473079 36.36363636 19q13.32

hsa-miR-3194-5p 1.967760055 13.97831621 3.966179414 28.17442596 36.36363636 20q13.2

hsa-miR-3195 6.693009447 47.54492409 8.629280443 61.29955244 100 20q13.33

hsa-miR-3196 6.794186938 48.2636555 8.739987987 62.0859822 100 20q13.33

hsa-miR-3198 5.172946014 36.74689652 6.457343715 45.87083272 100 22q11.21 /// 12q13.13

hsa-miR-32-5p 2.221762751 15.7826673 3.814202968 27.09483559 45.45454545 9q31.3

hsa-miR-320a 6.064389577 43.07941657 8.039474417 57.10976563 100 8p21.3

hsa-miR-320b 7.151715081 50.80341711 9.20038125 65.35646358 100 1p13.1 /// 1q42.11

hsa-miR-320c 8.230368171 58.46581168 9.951193434 70.68998485 100 18q11.2 /// 18q11.2

hsa-miR-320d 7.725435848 54.87893956 9.428341899 66.97582058 100 13q14.11 /// Xq27.1

hsa-miR-320e 7.356786278 52.26017503 9.166945457 65.11894677 100 19q13.32

hsa-miR-324-3p 5.300069944 37.64994285 6.488825654 46.09447 100 17p13.1

hsa-miR-324-5p 4.49681939 31.94391675 5.468096887 38.84355064 90.90909091 17p13.1

hsa-miR-331-3p 7.044867749 50.04440902 8.494581071 60.34269268 100 12q22

hsa-miR-338-3p 2.500761434 17.76458161 3.872137461 27.50638306 54.54545455 17q25.3

hsa-miR-33a-5p 2.095408822 14.8850908 3.752587461 26.65713942 45.45454545 22q13.2

hsa-miR-340-5p 4.307660302 30.60019318 5.628631779 39.98393738 90.90909091 5q35.3

hsa-miR-342-3p 5.312297351 37.7368023 6.891326276 48.95370121 100 14q32.2

hsa-miR-345-5p 2.022335691 14.36600346 5.307697101 37.70412365 54.54545455 14q32.2

hsa-miR-3529-3p 3.279464699 23.2962319 4.97754762 35.35885099 90.90909091 15q26.1

hsa-miR-3610 2.916603406 20.71858536 6.233434393 44.280255 45.45454545 8q24.11

hsa-miR-3613-3p 1.833489088 13.0244997 4.481761629 31.8369514 27.27272727 13q14.2

hsa-miR-362-3p 3.732515475 26.51455467 5.333142011 37.88487587 90.90909091 Xp11.23

hsa-miR-362-5p 3.063632943 21.76303453 5.287277176 37.55906726 72.72727273 Xp11.23

hsa-miR-3620 1.916020994 13.61077905 4.268604247 30.32275189 36.36363636 1q42.13

hsa-miR-3646 2.378256536 16.89434736 5.487612049 38.98217989 36.36363636 20q13.12

hsa-miR-3651 5.96417265 42.36750869 9.34381318 66.37535654 100 9q22.31

hsa-miR-3653 4.365243802 31.00924731 6.457343715 45.87083272 81.81818182 22q12.2

hsa-miR-3656 6.79527371 48.27137557 10.20739641 72.50996603 100 11q23.3

hsa-miR-365b-3p 7.351961072 52.22589835 8.449858467 60.0249981 100 17q11.2

hsa-miR-3665 9.552278389 67.85622439 12.88839682 91.55490564 100 13q22.3

hsa-miR-3667-5p 3.284815365 23.33424126 8.004693565 56.86269397 36.36363636 22q13.33

hsa-miR-3676-3p 3.64853392 25.9179775 4.602704884 32.69609225 100 17p13.1

hsa-miR-3679-5p 6.597281304 46.86490304 9.428341899 66.97582058 100 2q21.2

hsa-miR-3692-5p 1.749766601 12.42976285 4.393786163 31.2120028 27.27272727 6q25.3

hsa-miR-3713 1.783968337 12.67272067 3.779902166 26.85117404 36.36363636 15q24.3

hsa-miR-374a-5p 6.637281637 47.14905217 8.307345268 59.0126315 100 Xq13.2

hsa-miR-375 2.79980384 19.8888799 4.314074629 30.64575844 63.63636364 2q35

hsa-miR-3917 1.810940875 12.86432465 3.562103075 25.30400138 36.36363636 1p36.11

hsa-miR-3935 2.140621 15.20626315 4.964394851 35.26541808 36.36363636 16q12.2

hsa-miR-3937 2.033564882 14.44577192 4.109507663 29.19258242 36.36363636 Xp11.4

hsa-miR-3940-3p 1.514500304 10.75850894 3.814202968 27.09483559 18.18181818 19p13.3
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Supplementary Table 1.6 (c): The list of 220 microRNAs commonly expressed in stem cell (H9) –

derived hepatocytes (day 18) and primary human hepatocytes (PHH). The RNA samples                     

(4 replicates of PHH and 4 experimental samples of hESC-derived hepatocytes) were analysed on the 

Agilent miRNA platform (using Agilent’s SurePrint G3 Human v16 microRNA 8x60K microarray 

slides; miRbase version 16.0).  

 

hsa-miR-422a 2.052950141 14.58347839 4.314074629 30.64575844 36.36363636 15q22.31

hsa-miR-423-3p 2.172437369 15.43227611 3.652512778 25.94624199 54.54545455 17q11.2

hsa-miR-423-5p 5.293541426 37.60356641 6.81014592 48.37702283 100 17q11.2

hsa-miR-425-3p 3.884924864 27.59722053 5.143929899 36.54077564 100 3p21.31

hsa-miR-425-5p 4.917363749 34.9313247 5.994724118 42.58453621 100 3p21.31

hsa-miR-4259 1.37179534 9.744780104 3.714713499 26.38809533 9.090909091 1q23.2

hsa-miR-4274 1.653315521 11.7446063 4.024114051 28.58597446 27.27272727 4p16.1

hsa-miR-4281 9.817200194 69.73814122 12.26005643 87.09138348 100 5q35.2

hsa-miR-4284 10.63253305 75.52999597 12.88839682 91.55490564 100 7q11.23

hsa-miR-4286 10.13008898 71.96079963 12.26005643 87.09138348 100 8p23.1

hsa-miR-4290 2.298701585 16.32921532 5.032584172 35.74981245 54.54545455 9q22.2

hsa-miR-4291 2.547862817 18.09917425 4.798541198 34.08724862 45.45454545 9q22.32

hsa-miR-4298 5.512091705 39.15607527 8.962374449 63.66574202 100 11p15.5

hsa-miR-4299 6.196038079 44.01460396 7.047227741 50.06117362 100 11p15.3

hsa-miR-4306 4.970258284 35.30706997 5.567690079 39.55102772 100 13q32.3

hsa-miR-4312 1.981447562 14.07554773 4.546875495 32.29949875 36.36363636 15q23

hsa-miR-4313 4.137015132 29.38798637 5.354448634 38.03623107 100 15q24.2

hsa-miR-4327 4.357748635 30.95600413 7.047227741 50.06117362 90.90909091 21q22.11

hsa-miR-449a 2.257026606 16.03317006 4.949522624 35.1597707 45.45454545 5q11.2

hsa-miR-449b-3p 2.841666032 20.18625506 5.164175203 36.68459158 72.72727273 5q11.2

hsa-miR-449c-3p 2.132960588 15.15184612 4.74185466 33.68456621 45.45454545 5q11.2

hsa-miR-450a-5p 1.62227387 11.52409669 4.097587661 29.10790666 18.18181818 Xq26.3 /// Xq26.3

hsa-miR-455-3p 4.859824581 34.52258549 6.72659457 47.78350169 90.90909091 9q32

hsa-miR-455-5p 2.852716444 20.26475353 5.523791743 39.23918846 45.45454545 9q32

hsa-miR-484 3.507815356 24.91835939 4.7701092 33.88527711 90.90909091 16p13.11

hsa-miR-485-3p 1.931620513 13.72159287 4.889324858 34.73214569 36.36363636 14q32.31

hsa-miR-491-3p 2.79097818 19.82618533 5.749949854 40.84574084 72.72727273 9p21.3

hsa-miR-494 8.283241846 58.84140877 9.2666837 65.82745424 100 14q32.31

hsa-miR-498 2.042204194 14.50714273 4.128734764 29.32916537 36.36363636 19q13.42

hsa-miR-500a-3p 2.531922596 17.98594019 4.393786163 31.2120028 63.63636364 Xp11.23

hsa-miR-500a-5p 2.013446043 14.30285435 3.836693986 27.25460434 54.54545455 Xp11.23

hsa-miR-502-3p 1.809240846 12.85224821 3.886555557 27.60880444 36.36363636 Xp11.23

hsa-miR-502-5p 1.490801471 10.59016028 3.625588668 25.75498202 18.18181818 Xp11.23

hsa-miR-505-3p 4.297800682 30.53015371 5.2540446 37.32299404 100 Xq27.1

hsa-miR-505-5p 2.540686049 18.04819286 3.779902166 26.85117404 72.72727273 Xq27.1

hsa-miR-513a-5p 3.157323374 22.42858035 5.994724118 42.58453621 81.81818182 Xq27.3 /// Xq27.3

hsa-miR-514b-3p 1.382131538 9.818205037 3.828411682 27.1957696 9.090909091 Xq27.3

hsa-miR-514b-5p 1.902062062 13.51161941 4.646466678 33.00696156 36.36363636 Xq27.3

hsa-miR-520b 2.658295224 18.88364952 6.317471652 44.87722788 36.36363636 19q13.42

hsa-miR-520e 2.203213737 15.65090125 4.660504415 33.10668099 36.36363636 19q13.42

hsa-miR-542-3p 1.510684728 10.73140435 3.537066614 25.12615065 18.18181818 Xq26.3

hsa-miR-548c-5p 1.908237818 13.55548994 4.993857538 35.47471125 45.45454545 12q14.2

hsa-miR-548d-5p 1.665941498 11.83429706 5.077772801 36.07081751 18.18181818 8q24.13 /// 17q24.2

hsa-miR-548q 1.884876552 13.38953924 4.033989956 28.65612962 36.36363636 10p13

hsa-miR-548y 1.590730845 11.30002548 4.798541198 34.08724862 18.18181818 14q21.3

hsa-miR-572 5.299110117 37.64312455 8.351444508 59.32589791 100 4p15.33

hsa-miR-574-3p 6.738285613 47.86655099 8.307345268 59.0126315 100 4p14

hsa-miR-574-5p 6.309902776 44.82346109 7.529016836 53.48364391 100 4p14

hsa-miR-575 5.508253983 39.12881336 7.360508577 52.286617 100 4q21.22

hsa-miR-576-3p 1.441526988 10.24013065 4.481761629 31.8369514 9.090909091 4q25

hsa-miR-583 2.349409727 16.68942917 5.618428218 39.91145467 36.36363636 5q15

hsa-miR-584-5p 1.953219225 13.87502296 4.204958561 29.87063401 36.36363636 5q32

hsa-miR-590-5p 3.62519098 25.75215698 4.92801709 35.0070025 90.90909091 7q11.23

hsa-miR-595 2.533720676 17.99871316 4.426959826 31.44765752 54.54545455 7q36.3

hsa-miR-601 2.495110907 17.72444214 5.523791743 39.23918846 36.36363636 9q33.3

hsa-miR-622 1.987259396 14.11683307 3.836693986 27.25460434 36.36363636 13q31.3

hsa-miR-623 2.102125464 14.93280361 4.565506063 32.43184414 36.36363636 13q32.3

hsa-miR-629-3p 2.576928339 18.3056461 4.74185466 33.68456621 54.54545455 15q23

hsa-miR-636 2.87515986 20.42418413 5.941433092 42.20597439 54.54545455 17q25.1

hsa-miR-638 7.871257032 55.914805 11.26571402 80.02790407 100 19p13.2

hsa-miR-654-3p 1.577967188 11.20935668 3.919572726 27.84334748 27.27272727 14q32.31

hsa-miR-654-5p 1.988699375 14.12706221 3.828411682 27.1957696 36.36363636 14q32.31

hsa-miR-660-5p 4.883626779 34.69166842 6.457343715 45.87083272 100 Xp11.23

hsa-miR-670 2.181052967 15.49347847 3.652512778 25.94624199 54.54545455 11p11.2

hsa-miR-671-5p 3.572143416 25.37532464 8.389540218 59.59651722 45.45454545 7q36.1

hsa-miR-708-5p 2.188349404 15.54530994 5.052081488 35.88831493 36.36363636 11q14.1

hsa-miR-720 12.96589229 92.10540783 14.07723238 100 100 3q26.1

hsa-miR-744-5p 3.261608841 23.16938979 5.643112092 40.08680074 63.63636364 17p12

hsa-miR-762 6.884747527 48.90696795 9.023659859 64.1010933 100 16p11.2

hsa-miR-764 1.417116093 10.06672374 3.662623558 26.01806562 18.18181818 Xq23

hsa-miR-765 2.803470829 19.91492897 6.256605335 44.4448537 54.54545455 1q23.1

hsa-miR-766-3p 3.844533615 27.31029447 5.889589913 41.83769761 90.90909091 Xq24

hsa-miR-769-5p 1.776484643 12.61955898 4.024114051 28.58597446 27.27272727 19q13.32

hsa-miR-874 5.604346965 39.8114261 7.529016836 53.48364391 100 5q31.2

hsa-miR-892b 1.894749864 13.45967598 3.850146141 27.350164 36.36363636 Xq27.3

hsa-miR-937 2.072552938 14.72273017 4.576235395 32.50806176 54.54545455 8q24.3

hsa-miR-939 5.706233587 40.53519495 7.851199509 55.77232299 100 8q24.3

hsa-miR-940 6.790849694 48.23994883 8.696390017 61.77627664 100 16p13.3

hsa-miR-96-5p 4.977460703 35.35823356 6.773394597 48.11595359 90.90909091 7q32.2
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Supplementary Table 1.7 (a): The list of 147 microRNAs differentially expressed in stem cell (H9) 

– derived hepatocytes (day 18) and primary human hepatocytes (PHH). The RNA samples                 

(4 replicates of PHH and 4 experimental samples of hESC-derived hepatocytes) were analysed on the 

Agilent miRNA platform (using Agilent’s SurePrint G3 Human v16 microRNA 8x60K microarray 

slides; miRbase version 16.0).  

 

 

 

 

 

miRNA ID q-value Fold-change FC interpretation Mean log2 intensity Relative mean intensity (%)Max. log2 intensity Relative max. intensity (%)Times detected (%) Chromosome Band

hsa-miR-367-3p 0.006216967 166.609765 2D is up-regulated compared to Primary1.925673 13.679346 4.011269 28.494731 36.363636 19q13.32

hsa-miR-10a-5p 0.001450354 111.6681019 2D is up-regulated compared to Primary8.14278 57.843615 10.369825 73.663804 100 Xq26.2

hsa-miR-363-3p 0.001768226 88.74062756 2D is up-regulated compared to Primary3.744021 26.596285 5.0908 36.163361 100 2p24.3

hsa-miR-302c-3p 0.00631854 79.20295295 2D is up-regulated compared to Primary4.322427 30.705093 6.391693 45.404472 90.909091 17q23.1

hsa-miR-302a-3p 0.005319514 73.38721242 2D is up-regulated compared to Primary2.765103 19.64238 4.366871 31.020809 72.727273 13q31.3

hsa-let-7d-5p 0.00392552 -59.53733561 2D is down-regulated compared to Primary3.13543 22.273056 7.684292 54.586664 45.454545 9q22.32

hsa-miR-302d-3p 0.005719979 58.58515953 2D is up-regulated compared to Primary12.099637 85.951814 12.888397 91.554906 100 17q23.1

hsa-miR-483-3p 0.007780986 50.94123812 2D is up-regulated compared to Primary3.284815 23.334241 8.004694 56.862694 36.363636 22q13.33

hsa-let-7g-5p 0.002644448 -48.81526984 2D is down-regulated compared to Primary1.450601 10.304592 3.752587 26.657139 18.181818 9q22.32

hsa-miR-302a-5p 0.005719979 47.70794123 2D is up-regulated compared to Primary8.980866 63.797102 11.265714 80.027904 100 13q31.3

hsa-let-7b-5p 0.003731103 -42.23072965 2D is down-regulated compared to Primary4.89201 34.751218 9.166945 65.118947 100 22q13.31

hsa-miR-124-3p 0.00254598 41.71368478 2D is up-regulated compared to Primary3.99777 28.398832 5.235933 37.194336 100 16p13.3

hsa-miR-302b-3p 0.006607641 39.64912998 2D is up-regulated compared to Primary7.60986 54.057926 9.54323 67.791951 100 Xq26.2

hsa-miR-9-3p 0.003661016 39.48245758 2D is up-regulated compared to Primary2.852716 20.264754 5.523792 39.239188 45.454545 9q32

hsa-miR-205-5p 0.003726865 36.86764498 2D is up-regulated compared to Primary4.204837 29.869768 5.120227 36.372396 100 20q13.33

hsa-miR-142-3p 0.001386123 -35.79791775 2D is down-regulated compared to Primary6.649179 47.233568 9.685938 68.805697 100 1p36.13

hsa-let-7f-5p 0.001768226 -32.69364117 2D is down-regulated compared to Primary4.315044 30.652647 5.195763 36.908979 90.909091 19q13.41

hsa-miR-885-5p 0.00982556 -28.13687256 2D is down-regulated compared to Primary4.859825 34.522585 6.726595 47.783502 90.909091 9q32

hsa-miR-130a-3p 0.001768226 27.48975085 2D is up-regulated compared to Primary4.4537 31.63761 6.745974 47.921164 72.727273 9q34.3

hsa-miR-195-5p 0.003215809 -26.20303676 2D is down-regulated compared to Primary8.507874 60.437119 9.685938 68.805697 100 13q14.2 /// 3q25.33

hsa-miR-424-5p 0.005719979 26.08790096 2D is up-regulated compared to Primary1.93188 13.723436 4.070104 28.912672 36.363636 14q32.2

hsa-let-7a-5p 0.002409861 -24.17825557 2D is down-regulated compared to Primary6.54328 46.481296 10.654474 75.685856 100 9q22.32 /// 11q24.1 /// 22q13.31

hsa-miR-99b-5p 0.00113966 23.57227583 2D is up-regulated compared to Primary2.312112 16.424481 5.307697 37.704124 36.363636 17p13.1

hsa-miR-98 0.001768226 -21.10142844 2D is down-regulated compared to Primary2.790978 19.826185 5.74995 40.845741 72.727273 9p21.3

hsa-miR-199a-3p 0.003215809 20.31973615 2D is up-regulated compared to Primary4.71761 33.512338 6.609646 46.952734 100 20q11.21

hsa-miR-10b-5p 0.001386123 19.96746988 2D is up-regulated compared to Primary7.743955 55.010491 9.200381 65.356464 100 7q22.1

hsa-let-7i-5p 0.00254598 -19.28726264 2D is down-regulated compared to Primary5.995091 42.587139 10.369825 73.663804 90.909091 9q22.32 /// Xp11.22

hsa-miR-204-5p 0.004881779 17.657277 2D is up-regulated compared to Primary4.106883 29.173939 4.949523 35.159771 100 3p21.31

hsa-miR-9-5p 0.005319514 17.41420901 2D is up-regulated compared to Primary3.196699 22.70829 5.333142 37.884876 72.727273 3p23

hsa-miR-149-5p 0.001768226 17.22573669 2D is up-regulated compared to Primary4.568911 32.45603 7.458327 52.981488 72.727273 14q32.31

hsa-miR-223-3p 0.001386123 -16.84805657 2D is down-regulated compared to Primary5.426277 38.546477 7.888192 56.035108 100 1p13.3

hsa-miR-145-5p 0.001450354 16.39274846 2D is up-regulated compared to Primary4.957478 35.216281 6.488826 46.09447 100 4q34.3

hsa-miR-141-3p 0.016438066 16.34619258 2D is up-regulated compared to Primary2.701053 19.187383 4.082699 29.002145 72.727273 11p11.2

hsa-miR-497-5p 0.001408222 -16.06973507 2D is down-regulated compared to Primary1.783968 12.672721 3.779902 26.851174 36.363636 15q24.3

hsa-miR-200c-3p 0.00392552 15.8667121 2D is up-regulated compared to Primary1.881356 13.364527 4.082699 29.002145 36.363636 19p13.3

hsa-miR-219-5p 0.009263772 15.38610417 2D is up-regulated compared to Primary5.945512 42.234949 8.962374 63.665742 100 1q41 /// 11q13.1

hsa-miR-301a-3p 0.04514623 15.28567709 2D is up-regulated compared to Primary1.968516 13.983688 4.713407 33.482483 36.363636 1q32.2

hsa-miR-135b-5p 0.009676961 14.81423358 2D is up-regulated compared to Primary6.451751 45.831106 8.089788 57.46718 100 3q21.3

hsa-let-7c 0.00727818 -14.7793576 2D is down-regulated compared to Primary4.776818 33.932934 8.782112 62.385218 81.818182 21q21.1

hsa-miR-122-3p 0.005812963 -13.18474061 2D is down-regulated compared to Primary3.725254 26.462975 6.35071 45.11334 72.727273 19p13.2

hsa-miR-200a-3p 0.015136803 -12.83049084 2D is down-regulated compared to Primary5.437408 38.625545 7.606615 54.034874 100 13q31.3

hsa-miR-3907 0.001818216 -11.50509526 2D is down-regulated compared to Primary5.30007 37.649943 6.488826 46.09447 100 17p13.1

hsa-miR-663a 0.009553921 11.08632066 2D is up-regulated compared to Primary2.547863 18.099174 4.798541 34.087249 45.454545 9q22.32

hsa-miR-29b-3p 0.009176736 -10.87871508 2D is down-regulated compared to Primary3.930191 27.918775 6.317472 44.877228 72.727273 12p13.31

hsa-miR-29a-3p 0.009479841 -10.68985878 2D is down-regulated compared to Primary2.720455 19.325215 5.856481 41.6025 45.454545 1p36.33

hsa-miR-301b 0.00392552 10.30155433 2D is up-regulated compared to Primary4.470073 31.753919 7.047228 50.061174 72.727273 1q32.2

hsa-miR-134 0.005319514 10.18260673 2D is up-regulated compared to Primary7.082825 50.314048 9.54323 67.791951 100 6p21.31

hsa-miR-34b-5p 0.044943801 -9.763632483 2D is down-regulated compared to Primary6.546013 46.500708 7.941038 56.410503 100 8q24.22

hsa-miR-29c-5p 0.001386123 -9.241603002 2D is down-regulated compared to Primary4.46233 31.698918 8.159538 57.962655 72.727273 9q21.12
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Supplementary Table 1.7 (b): The list of 147 microRNAs differentially expressed in stem cell (H9) 

–derived hepatocytes (day 18) and primary human hepatocytes (PHH). The RNA samples                   

(4 replicates of PHH and 4 experimental samples of hESC-derived hepatocytes) were analysed on the 

Agilent miRNA platform (using Agilent’s SurePrint G3 Human v16 microRNA 8x60K microarray 

slides; miRbase version 16.0).  

 

 

 

hsa-miR-A51:J88142-5p 0.001450354 -8.998030658 2D is down-regulated compared to Primary1.866801 13.261134 3.836694 27.254604 45.454545 10q21.3

hsa-miR-199a-5p 0.006400925 8.860890186 2D is up-regulated compared to Primary3.262003 23.172192 5.254045 37.322994 81.818182 7q32.2

hsa-miR-153 0.007743766 8.788499396 2D is up-regulated compared to Primary3.995737 28.384391 5.402617 38.378404 90.909091 16q22.1

hsa-miR-130b-3p 0.003215809 8.739756787 2D is up-regulated compared to Primary9.74456 69.222131 11.265714 80.027904 100 14q24.3

hsa-miR-200b-3p 0.031426129 -8.52822124 2D is down-regulated compared to Primary4.792322 34.043069 6.726595 47.783502 100 Xq26.2

hsa-miR-192-3p 0.018021085 -8.509942579 2D is down-regulated compared to Primary6.759416 48.016653 7.908332 56.17817 100 8q24.3

hsa-miR-378a-3p 0.026624467 -8.213035783 2D is down-regulated compared to Primary7.356786 52.260175 9.166945 65.118947 100 19q13.32

hsa-miR-551b-3p 0.011499027 8.047258674 2D is up-regulated compared to Primary1.5145 10.758509 3.814203 27.094836 18.181818 19p13.3

hsa-miR-335-5p 0.001768226 7.905635181 2D is up-regulated compared to Primary5.015419 35.62788 7.047228 50.061174 90.909091 17q22

hsa-miR-29c-3p 0.009166364 -7.882767531 2D is down-regulated compared to Primary3.126896 22.212432 4.798541 34.087249 72.727273 14q32.33

hsa-miR-146a-5p 0.032799954 -7.627917385 2D is down-regulated compared to Primary9.489043 67.40702 12.048653 85.589645 100 11q12.1

hsa-miR-372 0.019688253 7.038613049 2D is up-regulated compared to Primary3.073202 21.831009 5.008503 35.578746 72.727273 9q31.3

hsa-miR-630 0.009431134 7.025409159 2D is up-regulated compared to Primary1.653316 11.744606 4.024114 28.585974 27.272727 4p16.1

hsa-miR-125a-5p 0.005196602 7.015441931 2D is up-regulated compared to Primary2.33652 16.597867 5.533499 39.308142 36.363636 12q13.3

hsa-miR-139-3p 0.005719979 -6.989712073 2D is down-regulated compared to Primary4.906138 34.851578 7.000447 49.728861 100 22q13.2

hsa-miR-625-5p 0.011032117 6.950431943 2D is up-regulated compared to Primary6.576286 46.715759 8.38954 59.596517 100 3p25.1

hsa-miR-199b-5p 0.013076595 6.92958479 2D is up-regulated compared to Primary3.599704 25.571105 4.964395 35.265418 90.909091 22q11.21

hsa-miR-106a-5p 0.005121252 6.8276196 2D is up-regulated compared to Primary5.0368 35.779762 7.483551 53.160672 100 11q24.1

hsa-miR-3149 0.031354786 6.821027395 2D is up-regulated compared to Primary2.831065 20.110946 5.56769 39.551028 54.545455 13q12.12

hsa-miR-194-5p 0.003726865 -6.512361894 2D is down-regulated compared to Primary7.290946 51.792467 9.02366 64.101093 100 3q25.33

hsa-miR-20b-5p 0.005178839 6.461721461 2D is up-regulated compared to Primary2.516171 17.874045 5.077773 36.070818 45.454545 11q13.1

hsa-miR-429 0.016438066 -6.307624421 2D is down-regulated compared to Primary1.833489 13.0245 4.481762 31.836951 27.272727 13q14.2

hsa-miR-100-5p 0.003661016 -6.286774015 2D is down-regulated compared to Primary4.653924 33.059938 9.428342 66.975821 90.909091 3p21.1

hsa-miR-129-2-3p 0.003661016 6.282994486 2D is up-regulated compared to Primary5.160362 36.657504 7.252453 51.519028 100 19q13.41

hsa-miR-421 0.002357157 6.243070154 2D is up-regulated compared to Primary2.500761 17.764582 3.872137 27.506383 54.545455 17q25.3

hsa-miR-582-5p 0.007780986 -6.210325247 2D is down-regulated compared to Primary4.139397 29.404906 6.810146 48.377023 72.727273 Xq26.3

hsa-miR-4270 0.002409861 -6.141232007 2D is down-regulated compared to Primary4.56163 32.404307 6.517332 46.296968 90.909091 11q23.1

hsa-miR-34b-3p 0.021930435 6.119539052 2D is up-regulated compared to Primary1.807537 12.840147 3.537067 25.126151 36.363636 8q24.22

hsa-miR-101-3p 0.015974143 -6.011038431 2D is down-regulated compared to Primary4.466184 31.726294 8.039474 57.109766 90.909091 12q14.1

hsa-miR-466 0.034312812 5.89750118 2D is up-regulated compared to Primary9.552278 67.856224 12.888397 91.554906 100 13q22.3

hsa-miR-557 0.002929101 -5.771547494 2D is down-regulated compared to Primary2.134854 15.165295 4.139335 29.404464 45.454545 Xq13.2

hsa-miR-34a-3p 0.011375284 -5.754378628 2D is down-regulated compared to Primary2.950765 20.961258 4.534663 32.212747 63.636364 6q13

hsa-miR-99a-5p 0.007780986 -5.65376946 2D is down-regulated compared to Primary8.283242 hsa-miR-A51:J88130b-3p 9.266684 65.827454 100 14q32.31

hsa-miR-20a-5p 0.010423834 5.642091349 2D is up-regulated compared to Primary8.285328 58.856229 10.654474 75.685856 100 10p12.31

hsa-miR-21-3p 0.028284818 -5.625521383 2D is down-regulated compared to Primary6.912845 49.106563 9.54323 67.791951 100 11q13.1

hsa-miR-125b-2-3p 0.001768226 -5.597849447 2D is down-regulated compared to Primary5.018803 35.651917 6.517332 46.296968 100 8q24.3

hsa-miR-4257 0.007676182 5.53900874 2D is up-regulated compared to Primary7.983591 56.712789 8.914241 63.323818 100 1p36.22

hsa-miR-564 0.017105876 -5.50403732 2D is down-regulated compared to Primary2.05295 14.583478 4.314075 30.645758 36.363636 15q22.31

hsa-miR-4324 0.007743766 -5.49057202 2D is down-regulated compared to Primary3.709141 26.348507 7.000447 49.728861 72.727273 21p11.2

hsa-miR-215 0.007741066 -5.368650288 2D is down-regulated compared to Primary5.623869 39.950102 7.606615 54.034874 100 16p13.12

hsa-miR-29b-1-5p 0.003726865 -5.359722598 2D is down-regulated compared to Primary3.126445 22.209228 6.047607 42.960199 54.545455 1p36.33

hsa-miR-192-5p 0.005910313 -5.346244097 2D is down-regulated compared to Primary3.105493 22.060393 4.889325 34.732146 72.727273 17q21.32

hsa-miR-454-3p 0.011105345 5.332023137 2D is up-regulated compared to Primary6.795274 48.271376 10.207396 72.509966 100 11q23.3

hsa-miR-487b 0.003374527 -5.325311587 2D is down-regulated compared to Primary1.749767 12.429763 4.393786 31.212003 27.272727 6q25.3

hsa-miR-4261 0.012024164 -5.227009769 2D is down-regulated compared to Primary3.397281 24.133156 5.79116 41.138481 72.727273 11q23.1

hsa-miR-19b-3p 0.026076718 5.04529004 2D is up-regulated compared to Primary5.832657 41.433266 9.266684 65.827454 100 Xp11.23

hsa-miR-3188 0.00974634 -4.991595786 2D is down-regulated compared to Primary8.31163 59.043067 9.166945 65.118947 100 9q22.32 /// 19p13.13

hsa-miR-219-2-3p 0.006165807 4.986703634 2D is up-regulated compared to Primary1.787583 12.698396 3.51949 25.001294 36.363636 1q41 /// 11q13.1

hsa-miR-193b-3p 0.007741066 -4.954626676 2D is down-regulated compared to Primary2.817584 20.015187 4.174218 29.652261 63.636364 21q21.3

hsa-miR-3911 0.013725602 -4.873055771 2D is down-regulated compared to Primary4.496819 31.943917 5.468097 38.843551 90.909091 17p13.1

hsa-miR-194-3p 0.00113966 -4.799203383 2D is down-regulated compared to Primary6.190455 43.974947 7.529017 53.483644 100 13q14.2
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Supplementary Table 1.7 (c): The list of 147 microRNAs differentially expressed in stem cell (H9) 

–derived hepatocytes (day 18) and primary human hepatocytes (PHH). The RNA samples                  

(4 replicates of PHH and 4 experimental samples of hESC-derived hepatocytes) were analysed on the 

Agilent miRNA platform (using Agilent’s SurePrint G3 Human v16 microRNA 8x60K microarray 

slides; miRbase version 16.0).  

 

 

 

hsa-miR-92a-3p 0.001768226 4.691319596 2D is up-regulated compared to Primary6.783817 48.189989 10.654474 75.685856 100 11p15.5

hsa-miR-4254 0.03426676 4.6909326 2D is up-regulated compared to Primary2.697647 19.163189 4.268604 30.322752 72.727273 1p36.22

hsa-miR-30b-3p 0.00113966 -4.644014637 2D is down-regulated compared to Primary2.07166 14.716386 3.537067 25.126151 54.545455 1q24.3

hsa-miR-373-3p 0.005196602 4.60652042 2D is up-regulated compared to Primary2.221763 15.782667 3.814203 27.094836 45.454545 9q31.3

hsa-miR-342-5p 0.015456022 4.545802816 2D is up-regulated compared to Primary5.031944 35.745262 8.739988 62.085982 72.727273 4q25

hsa-miR-374c-5p 0.007743766 4.530162685 2D is up-regulated compared to Primary8.230368 58.465812 9.951193 70.689985 100 18q11.2 /// 18q11.2

hsa-miR-1181 0.010406007 4.52740348 2D is up-regulated compared to Primary8.445885 59.996769 9.200381 65.356464 100 10q23.31

hsa-miR-32-3p 0.048586465 4.514914782 2D is up-regulated compared to Primary7.760196 55.125864 9.343813 66.375357 100 9q22.32

hsa-miR-18b-5p 0.017795105 4.38389616 2D is up-regulated compared to Primary5.161869 36.66821 6.317472 44.877228 100 12q13.13

hsa-miR-146b-5p 0.018005132 -4.383521474 2D is down-regulated compared to Primary6.457012 45.868476 8.004694 56.862694 100 22q11.21

hsa-miR-1280 0.007377137 -4.359696228 2D is down-regulated compared to Primary1.366141 9.704612 3.652513 25.946242 9.090909 2q31.3

hsa-miR-214-3p 0.003374527 4.346332512 2D is up-regulated compared to Primary4.085079 29.019053 5.605092 39.816719 100 17q11.2

hsa-miR-361-5p 0.001450354 4.281126352 2D is up-regulated compared to Primary2.95904 21.020038 4.481762 31.836951 72.727273 1p34.2

hsa-miR-483-5p 0.045987593 4.23656287 2D is up-regulated compared to Primary6.156958 43.736991 10.207396 72.509966 72.727273 4q25

hsa-miR-3652 0.009111126 4.128461864 2D is up-regulated compared to Primary5.767174 40.968096 8.494581 60.342693 100 5q33.2

hsa-miR-718 0.005196602 -4.077917824 2D is down-regulated compared to Primary4.137015 29.387986 5.354449 38.036231 100 15q24.2

hsa-miR-93-5p 0.001802779 4.053021187 2D is up-regulated compared to Primary5.927516 42.107109 7.391498 52.506752 100 11p15.5

hsa-miR-1247-5p 0.031611456 4.051299538 2D is up-regulated compared to Primary2.735901 19.434933 6.432835 45.696731 36.363636 3p21.31

hsa-miR-3663-3p 0.001768226 -3.991724194 2D is down-regulated compared to Primary8.079117 57.391371 9.428342 66.975821 100 11q12.1

hsa-miR-877-3p 0.038767617 3.860153875 2D is up-regulated compared to Primary2.07344 14.729029 4.109508 29.192582 45.454545 17q22

hsa-miR-18a-5p 0.024434202 3.793670823 2D is up-regulated compared to Primary7.715909 54.811261 9.343813 66.375357 100 7p15.2

hsa-miR-196b-5p 0.008582669 3.614466324 2D is up-regulated compared to Primary3.717873 26.410539 5.605092 39.816719 90.909091 13q31.3

hsa-miR-371b-3p 0.01680877 3.475143067 2D is up-regulated compared to Primary5.172946 36.746897 6.457344 45.870833 100 22q11.21 /// 12q13.13

hsa-miR-328 0.031354786 3.415548063 2D is up-regulated compared to Primary7.243368 51.454487 9.166945 65.118947 100 1q32.2

hsa-miR-374c-3p 0.015456022 3.413331292 2D is up-regulated compared to Primary7.151715 50.803417 9.200381 65.356464 100 1p13.1 /// 1q42.11

hsa-miR-106b-5p 0.014014879 3.321003311 2D is up-regulated compared to Primary5.961815 42.350758 8.159538 57.962655 100 1p31.3 /// 9p24.1

hsa-miR-664-3p 0.013725602 -3.308474718 2D is down-regulated compared to Primary5.512092 39.156075 8.962374 63.665742 100 11p15.5

hsa-miR-3648 0.003978971 3.265961729 2D is up-regulated compared to Primary2.024382 14.380542 4.097588 29.107907 36.363636 3q29

hsa-miR-4271 0.00532593 3.206081258 2D is up-regulated compared to Primary3.279465 23.296232 4.977548 35.358851 90.909091 15q26.1

hsa-miR-34a-5p 0.031426129 -3.143537876 2D is down-regulated compared to Primary6.145493 43.655546 7.458327 52.981488 100 6q13

hsa-miR-22-3p 0.017105876 -3.109875188 2D is down-regulated compared to Primary2.729919 19.392444 6.391693 45.404472 45.454545 17p13.1

hsa-miR-19a-3p 0.038294357 3.107605968 2D is up-regulated compared to Primary3.107642 22.07566 4.576235 32.508062 81.818182 1p31.1

hsa-miR-361-3p 0.016438066 -3.096822314 2D is down-regulated compared to Primary5.82178 41.356001 7.219022 51.281543 100 8q24.22

hsa-miR-15a-5p 0.027919433 -2.911347564 2D is down-regulated compared to Primary4.615061 32.783869 7.814427 55.511103 72.727273 12p13.31

hsa-miR-532-5p 0.029595192 2.600635049 2D is up-regulated compared to Primary1.810941 12.864325 3.562103 25.304001 36.363636 1p36.11

hsa-miR-222-3p 0.008544941 -2.538630293 2D is down-regulated compared to Primary1.811606 12.869052 3.575528 25.399367 36.363636 7p15.2

hsa-miR-103b 0.002929101 2.509982363 2D is up-regulated compared to Primary1.562494 11.09944 4.03399 28.65613 18.181818 20q13.33 /// 18q11.2

hsa-miR-30d-5p 0.006478808 -2.463169826 2D is down-regulated compared to Primary4.947405 35.144729 7.814427 55.511103 90.909091 4p15.31 /// 5q34

hsa-miR-152 0.020455136 -2.365562993 2D is down-regulated compared to Primary2.082416 14.792794 4.128735 29.329165 45.454545 11q13.4

hsa-miR-15b-5p 0.009263772 2.353383749 2D is up-regulated compared to Primary2.545268 18.080743 6.35071 45.11334 27.272727 17q22

hsa-miR-132-3p 0.016438066 -2.313495716 2D is down-regulated compared to Primary8.73956 62.082939 9.951193 70.689985 100 11q21

hsa-miR-193a-3p 0.037839073 -2.255116553 2D is down-regulated compared to Primary2.746676 19.511474 5.14393 36.540776 63.636364 2q35 /// 7q36.3

hsa-miR-1260a 0.014592923 -2.252486973 2D is down-regulated compared to Primary4.341497 30.840561 7.252453 51.519028 72.727273 8p23.1 /// 8q12.3 /// 20q13.33

hsa-miR-532-3p 0.015136803 2.199536782 2D is up-regulated compared to Primary3.760642 26.714358 6.391693 45.404472 81.818182 9q34.11

hsa-miR-652-3p 0.001768226 2.197033168 2D is up-regulated compared to Primary2.127208 15.110979 4.284846 30.43813 36.363636 1p36.33

hsa-miR-140-3p 0.014699923 -2.05231758 2D is down-regulated compared to Primary3.126366 22.208667 4.382662 31.132983 81.818182 17p11.2

hsa-miR-642b-3p 0.011329406 -1.682510959 2D is down-regulated compared to Primary10.130089 71.9608 12.260056 87.091383 100 8p23.1
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Supplementary Table 1.8: Computational tools for microRNA target prediction.                                       

The level of miR/ mRNA interaction studied in this project (Examined) were examined by different 

online tools. To validate the efficiency of these algorithms, the binding interactions of already 

published targets were included (Validated). The table demonstrates that TargetScan Human 6.2 tool 

was the most successful in predicting miR/mRNA interactions. Abbreviations: SULT2A1, 

sulfotransferase 2A1; UGT1A1, UDP-glucuronosyltransferase 1A1; GSTT1; glutathione S 

transferase theta 1; HNF4a, hepatic nuclear factor 4a; PXR, pregnane X receptor; CYP3A4; 

cytochrome 3A4; ABCC1, ATP-binding cassette C1; miR, microRNAs, miRSVR, miRands 

microRNA score; miTG; DIANA microRNA score. 
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