
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



From the Conventional MIMO to Massive
MIMO Systems: Performance Analysis and

Energy Efficiency Optimization

Wenjun Fu

T
H
E

U
N I V E

R
S

I
T
Y

O
F

E
D

I N B
U

R
G

H

A thesis submitted for the degree of Doctor of Philosophy.
The University of Edinburgh.

July 2017



Abstract

The main topic of this thesis is based on multiple-input multiple-output (MIMO) wireless com-
munications, which is a novel technology that has attracted great interest in the last twenty
years. Conventional MIMO systems using up to eight antennas play a vital role in the urban
cellular network, where the deployment of multiple antennas have significantly enhanced the
throughput without taking extra spectrum or power resources. The massive MIMO systems
“scales” up the benefits that offered by the conventional MIMO systems. Using sixty four or
more antennas at the BS not only improves the spectrum efficiency significantly, but also pro-
vides additional link robustness. It is considered as a key technology in the fifth generation
of mobile communication technology standards network, and the design of new algorithms for
these two systems is the basis of the research in this thesis.

Firstly, at the receiver side of the conventional MIMO systems, a general framework of bit er-
ror rate (BER) approximation for the detection algorithms is proposed, which aims to support
an adaptive modulation scheme. The main idea is to utilize a simplified BER approxima-
tion scheme, which is based on the union bound of the maximum-likelihood detector (MLD),
whereby the bit error rate (BER) performance of the detector for the varying channel quali-
ties can be efficiently predicted. The K-best detector is utilized in the thesis because its quasi-
MLD performance and the parallel computational structure. The simulation results have clearly
shown the adaptive K-best algorithm, by applying the simplified approximation method, has
much reduced computational complexity while still maintaining a promising BER performance.

Secondly, in terms of the uplink channel estimation for the massive MIMO systems with
the time-division-duplex operation, the performance of the Grassmannian line packing (GLP)
based uplink pilot codebook design is investigated. It aims to eliminate the pilot contamina-
tion effect in order to increase the downlink achievable rate. In the case of a limited channel
coherence interval, the uplink codebook design can be treated as a line packing problem in a
Grassmannian manifold. The closed-form analytical expressions of downlink achievable rate
for both the single-cell and multi-cell systems are proposed, which are intended for performance
analysis and optimization. The numerical results validate the proposed analytical expressions
and the rate gains by using the GLP-based uplink codebook design.

Finally, the study is extended to the energy efficiency (EE) of the massive MIMO system, as
the reduction carbon emissions from the information and communication technology is a long-
term target for the researchers. An effective framework of maximizing the EE for the massive
MIMO systems is proposed in this thesis. The optimization starts from the maximization of
the minimum user rate, which is aiming to increase the quality-of-service and provide a feasi-
ble constraint for the EE maximization problem. Secondly, the EE problem is a non-concave
problem and can not be solved directly, so the combination of fractional programming and the
successive concave approximation based algorithm are proposed to find a good suboptimal so-
lution. It has been shown that the proposed optimization algorithm provides a significant EE
improvement compared to a baseline case.
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Chapter 1
Introduction

This thesis will concentrate on the system design and performance analysis in both conventional

multiple-input multiple-output (MIMO) and massive MIMO systems, along with the energy

efficiency optimizations. The first chapter will provide an overview of the thesis, which will

start in Section 1.1 with the motivation and origin of the work. It will be followed in Section

1.2 by an account of various contributions to the thesis. Finally, Section 1.3 will present an

overview of the organizational content.

1.1 Motivation

The demand for data traffic in the recent decades has increased enormously because of the

widespread use of smart devices. According to the report in [3], the global mobile data traffic

has increased 4000 times between 2006 and 2016. By 2015, an incredible 563 million mobile

connections were recorded, while mobile entertainment, such as video streaming, which re-

quires huge amounts of data traffic, had become extremely popular. Consequently, the wireless

communication industry has come to play a vital role in the fundamental operation of a society.

Moreover, the future demand for data traffic is set to grow exponentially, since the report in

[3] also pointed out that the monthly traffic by year 2021 will have increased six times from its

recorded 2016 level due to current and future demands from the mobile entertainment industry

because of emerging innovative techniques, such as Virtual Reality (VR), Augmented Reality

(AR) and the Internet of Things (IoT) [4] which are likely to be very much more widespread

within the next five to ten years. Consequently, all these new applications will be based on

platforms and services that will require ever faster connection speeds in order to provide more

efficient coverage.

Clearly, such developmental demands on the wireless communication technology industry will

need to meet the growing public demand. In order to achieve this, the fourth generation of

mobile phone mobile communication technology standards networks (4G) becomes more so-

phisticated and by 2015 [3] they had already gone way beyond the third generation of mobile
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phone mobile communication technology standards networks (3G) to such an extent that by

2021, it has been predicted that over 79% of mobile data traffic will be provided by the 4G

networks. However, there is an expectation that current technology will soon be pushed to

its limits; hence, with the aim of meeting such massive future demands for the IoT, enhanced

broadband and critical communications [5], great efforts by both academia and the industry to

research of the fifth generation of mobile phone mobile communication technology standards

network (5G), therefore there is considerable optimism in both quarters regarding the proto-

types that have been developed by various companies to date [6]; consequently, the standards

that will be required from the 5G network by 2021 is confidently being predicted.

In terms of the 5G network, it is expected to provide the service for a massive number of devices

and a wide range of applications with very high data rate, very low latency and energy-efficient

network [7]. Firstly, according to the technical report in [7], the data rate is expected to reach

10Gbps for better propagation environment, such as the case of indoor or dense outdoor; the

data rate is expected to reach 100Mbps in urban or suburban area and it is expected to reach

10Mbps almost everywhere. Secondly, in terms of the low latency requirement, it is required

by the upcoming applications, such as smart vehicles. Thirdly, the energy-efficiency of the

5G network is required from both economic and environment perspective, where the network

operator needs to concern about the operation costs and the CO2 emissions.

The 4G multiple-input multiple-output (MIMO), which is wireless communication technology

that produce those vital extra gains required for enhanced transmission [8], employed multiple

antennas at both the transmitter and receiver devices. Compared with the traditional single-

input single-output (SISO) systems, the deployment of multiple antennas offered extra diversity

gain in order to combat wireless channel fading. Additionally, the MIMO systems offer spatial

multiplexing gain whereby, if a greater number of antennas are deployed, the system capacity

increases linearly without it requiring extra system bandwidth and power consumption. Due

to such benefits, the MIMO technology has become an essential technology to meet wireless

communication systems demands.

However, alongside the benefits from the deployment of multiple antennas, challenges also

arise, especially at the receiver side since the computational complexity for detecting the trans-

mitted signals increases exponentially with the numbers of antennas and modulation schemes.

However, while some detection algorithms, such as the Maximum likelihood detector (MLD),

guarantee performance, this comes at the cost of extremely high complexity [9]. On the other
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hand, linear detectors - e.g. zero-forcing (ZF) or minimum mean square error (MMSE) - are

straightforward to be implemented in MIMO systems, but give limited performance [10]. How-

ever, the K-best detector utilizes tree-search, which simplified the detection process and mean-

while have a promising bit error rate (BER) performance [11]. Hence, in terms of the algo-

rithm regarding balancing the computational complexity and the BER, the K-best detector is a

favourable option [12].

The combination of the K-best algorithm and adaptive modulation and coding scheme is an

interesting topic, but did not attract attention from researchers. The main reason is the com-

plexity of predicting the performance in different channel conditions. Adaptive modulation and

coding is an effective scheme for improving spectrum efficiency with given a BER constraint

[13]. Based on the channel condition, such schemes are selected to meet this constraint. One

challenge is the difficulty of received signal-to-noise ratio (SINR) calculation for the K-best

detection algorithm, which makes it difficult to predict the BER performance for the given

channel condition. Additionally, because of the limited length of coherence interval, perfor-

mance prediction needs to be simplified. Motivated by the superior BER performance of the

K-best detector and the enhancement of spectrum efficiency in the adaptive modulation and

coding scheme, this thesis will investigate the feasibility of combining these two method.

In recently years, antenna technology has been critical to the development of massive MIMO

systems for use in the 5G networks [14, 15]. Unlike in the 4G MIMO systems, in the 5G

networks, in order to serve tens of single antenna user equipments (UEs), a large number of

antennas are intending to be deployed at the base station (BS) [16]. Consequently. the diversity

and spatial multiplexing gains that offered by MIMO systems can be scaled up considerably,

enabling them to achieve much higher spectrum efficiency. Moreover, because the linear de-

tectors are able to achieve excellent performance, the problem of the design complexity at the

receiver side has been greatly reduced.

However, the larger number of BS antennas has also increased pilot contamination, which

is considered to be a particular performance limiting issue for the massive MIMO systems

with time-division-duplex (TDD) operation, since the reduced length of the coherence inter-

vals makes it impossible for an orthogonal pilot sequence for uplink training to be assigned to

each UE [17]. As a result, the reuse of orthogonal pilot sequences becomes a common scheme

for eliminating the effect of pilot contamination. Motivated by the deduction of system per-

formance from pilot contamination, an investigation on the design of uplink pilot sequences
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codebook other than pilot reuse scheme will be presented in this thesis.

Besides meeting the higher data rate and better coverage targets, the power consumption in cel-

lular networks has attracted much pubic attention [18, 19]. Also, the reduction of CO2 has been

listed as a long-term target, not only for the cellular networks suppliers, but also for the other

related information and communication technology (ICT) industries [20–22]. In accordance

with the prediction in [23], the ICT industry, which was responsible for 2% of the global car-

bon footprint in 2007, will be responsible for its increase to 2.7% by 2021; more than 50% of

the power consumption that creates this comes from BSs [24]. Consequently, motivated by re-

ducing the power consumption while achieving high energy efficiency, this thesis will propose

the establishment of an optimization based power allocation scheme.

1.2 Objectives and contributions

1.2.1 Objectives

The objective of this thesis has been to study the performance improvement of both the con-

ventional MIMO and massive MIMO systems. On the one hand, it has set out to evaluate the

performance of conventional MIMO systems with the K-best detector at receiver and adaptive

modulation scheme to enhance the throughput. On the other hand, it has aimed to study the

downlink achievable sum rate of multi-cell massive MIMO system with TDD operation, which

utilizes the Grassmannian line packing based uplink training codebook design. This thesis has

further aimed to maximize the energy efficiency of massive MIMO system by utilizing the

proposed optimization framework.

1.2.2 Key contributions

The key contributions to this thesis will be:

1. The K-best detector with an adaptive modulation scheme is proposed for conventional

MIMO systems. To predict the BER performance of the K-best detector in different

channel conditions, a simplified BER estimation method based on the union bound (UB)

of MLD is proposed. However, only the closest error events are considered in the esti-

mation, which has significantly reduces the estimation accuracy. A look-up-table (LUT)

has generated for improving the estimation accuracy with different K values.
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2. Closed-form analytical expressions of downlink achievable sum rates are proposed for

both single-cell and multi-cell massive MIMO systems with TDD operation. The propo-

sitions clearly demonstrate how the system performances are influenced by pilot contam-

ination and the number of BS antennas. Furthermore, this thesis proposes a closed-form

analytical expression of downlink achievable sum rate with the pilot reuse scheme has

been proposed. This clearly reveals how the downlink rate is affected by the selected

reuse factor. Comparisons have been made between the Grassmannian line packing based

pilot codebook design and the pilot reuse scheme. If the pilot length is less than the total

number of UEs, the Grassmannian line packing based pilot codebook design outperforms

the pilot reuse scheme. The numerical results have validated the propositions and the gain

of downlink achievable rate.

3. A general framework of energy efficiency maximization is proposed. The optimization

algorithm starts with a minimum UE rate maximization, which aims to provide a fea-

sible constraint for solving the energy efficiency problem. The combination of frac-

tional programming and sequential concave approximation (SCA) algorithm are utilized

in the proposition, where the local optimal solution can be sequentially calculated with

polynomial-time complexity. The numerical results have validated the improvement of

the minimum UE rate and the energy efficiency, together with the convergence of the

algorithm.

1.3 The Organization of the Thesis

The remainder of this thesis will be organized as follows.

Chapter 2

The Chapter 2 will describe the general background knowledge and principles related to the

thesis by, (i) presenting a review of the fading in wireless channels, (ii) describing the conven-

tional MIMO systems, including diversity and spatial multiplexing gain, channel capacity and

commonly utilized receiver-side detectors, (iii) giving a brief introduction to multi-UE MIMO

systems, during which different multiple access schemes will be mentioned, (iv) describing the

massive MIMO systems, and (v) introducing and comparing the TDD and frequency-division-

duplex (FDD) operations.

Chapter 3
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This chapter will propose the K-best detector with adaptive modulation scheme and the per-

formance analysis by, (i) presenting a brief literature review on the development of detection

algorithm and research of adaptive modulation and coding, (ii) describing the system model of

the conventional MIMO systems, (iii) introducing the tree structure search, which is considered

to be the key mechanism behind the K-best detector, (iv) offering a detailed explanation of the

MLD union bound, (v) proposing a simplified prediction method for the adaptive modulation,

and (vi) presenting numerical results that will support the various novel propositions made at

the conclusion of this thesis.

Chapter 4

The Chapter 4 will focus on the multi-cell massive MIMO system with TDD operations by,

(i) offering a general literature review of the related works, (ii) illustrating the system model

of both single-cell and multi-cell massive MIMO, (iii) proposing of the downlink achievable

sum rate analytical expressions for both single-cell and multi-cell massive MIMO systems,

(iv) presenting the analytical expression of the pilot reuse scheme, and (v) by validating the

analytical propositions by way of simulations.

Chapter 5

The Chapter 5 will propose a general framework of energy efficiency maximization with min-

imum UE rate constraint by, (i) introducing the power consumption model for both uplink

and downlink transmission, (ii) formulating the energy efficiency maximization problem, (iii)

providing a brief overview of the fractional programming theory and the sequential concave

approximation (SCA) algorithm, and (iv) providing simulation results to proof the validity of

the proposed optimization framework.

Chapter 6

This Chapter 6 will, (i) present the conclusions of the thesis, and (ii) indicate the directions for

future work.
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Chapter 2
Background

This chapter, which will present the necessary background knowledge about wireless commu-

nication technology essential for understanding this thesis, will be generally divided into two

topics, (i) the conventional multiple-input multiple output (MIMO) systems, and (ii) the multi

user equipment (UE) MIMO systems. An overview of the conventional MIMO systems starts

with its basic system structure and then examines the advantages, disadvantages and the diver-

sity of operations. It will then offer an overview of common detection algorithms. Secondly,

the multi-UE MIMO systems will be introduced by way of a system model and the various

multiple access schemes. Finally, the massive MIMO system will also be mentioned, together

with uplink channel estimation and downlink precoding techniques.

2.1 Fading and Wireless Channels

Various factors limit system performance in wireless communication - (i) thermal noise at the

receiver side, (ii) noise from the natural environment, and (iii) noise in the urban environment;

these are known as antenna noise temperatures [25]. Because the statistical characteristic of

these noises is flat in terms of power density, it follows a Gaussian distribution with zero mean

and variance σ2
n , otherwise known as white Gaussian noise. An ideal channel model for re-

search is known as additive-white-Gaussian-noise (AWGN) channel, in which AWGN noise

only exists. Also, researchers into mobile communication technology should consider other

possible sources of degradation in the wireless propagation.

Two physical phenomenon - fading and interference - are the core challenges currently faced

by mobile communications [26]. In previously wired communication systems, the attenuation

in a wire line channel does not change rapidly over time. However, because communication in

a wireless environment has dispensed with a wire line as it is based on electromagnetic spec-

trum. Consequently, the attenuation of a wireless channel emanates from these factors, such

as large-scale fading due to path loss and shadowing, and small-scale fading due to multipath
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Channel Fading

Large-scale fading Small-scale fading

Path-loss Shadowing Multi-path fading Time-variance

Frequency-selective
fading

Flat fading Fast fading Slow fading

Figure 2.1: Classification of fading in wireless channel [1]

propagations, all of which makes the research additionally challenging. There are also differ-

ent types of interference in cellular network that possibly come from either uplink or downlink

transmission. Figure.2.1 shows the catalogue of fading in wireless channels [1].

Before the MIMO systems are discussed,however, fading in wireless channels will be consid-

ered.

2.1.1 Large-scale Fading

Large-scale fading describes the attenuation in signal power due to the long distance transmis-

sion, which is known as path loss, or the shadowing from big objects, such as buildings and

mountains. This model is based on an average of these two influences, which has a function

with distance as the variable. Power variation is slow in the large-scale fading, where it is

assumed to be constant during numbers of time intervals.

A general way of modelling large-scale fading coefficient β (in dB) is the log-normal shadow-

ing model, which is given as [25]

β = βs (d0) + 10γs log10

(
d

d0

)
+ Xs, (2.1)

where βs represents the path loss with unit dB, which is a function of distance d between the

transmitter and receiver; d0 is a reference distance and its value depends on the size of the cell;

γs is a path loss attenuation constant, which is modelled according to different transmission

environments; Xs denotes the random variable which follows the Gaussian distribution, with a

zero mean and variance of σ2
n . The utilization of random variable Xs indicates the attenuation
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Figure 2.2: Path loss versus distance with carrier frequency of 1.5GHz, d0 = 100m, σ = 6dB

caused by flat fading. Moreover, even if two receivers are at the same distance from the trans-

mitter, their large-scale fading coefficients may not be equal because of shadowing. Large-scale

fading will be utilized in the simulations included in Chapters 4 and 5.

Figure.2.2 shows the path loss of four paths calculated with equation (2.13). The carrier fre-

quency is equal to 1.5GHz, and the four paths share the same distance where d is in a range

from 1 to 1000 meters. The reference distance d0 is equal to 100m, and σ is equal to 6dB.

It can be seen that, due to the attenuation of path loss, path loss increases with the distance.

Furthermore, all the values of path loss fluctuate randomly because of the random shadowing

effect within each path.

2.1.2 Small-Scale Fading

Small-scale fading describes the variations in the propagation environment, where the ampli-

tude and phase of received signals fluctuates rapidly within a limited time scale. It is different

from the slow variation process in large-scale fading. One of the reasons for fluctuation is

the multipath propagation environment, where transmitted signals reflects and scatters during

transmission and multiple copies are received at the receiver side with distortions in amplitude
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Figure 2.3: Example of two path propagations with one transmitter and receiver

and phase. Before the introduction of small-scale fading, a brief introduction will be given

regarding the calculation of coherence time, coherence bandwidth and coherence interval.

2.1.2.1 Coherence Time, Coherence Bandwidth and Coherence Interval

• Coherence Time: is denoted by Tc in unit of seconds, is defined as the time period that the

channel is assumed to be invariant. The explanation starts from a simple example, which

is illustrated in Fig.2.3. Consider one transmitter and receiver, where both have only one

antenna and there is a line-of-sight (LoS) path between them. The received signal y in

Figure.2.3(a) is a combination of LoS signal that is directly transmitted plus the signal

after reflection, which can be expressed as

y (t) =
(
e−i2πfc

da
c + e−i2πfc

db
c

)
s (t) =

(
e−i2π

da
λ + e−i2π

db
λ

)
s (t) , (2.2)

where fc is the carrier frequency and c denotes the speed of light. The distance da and db

represents the distances of the LoS path and reflection from the transmitter to the receiver

respectively. The wavelength is denoted by λ with λ = c
fc

. If the receiver shifts to the

right direction for a distance of d as shown in Fig.2.3 (b), the received signal can be

expressed as

y (t) =
(
e−i2π

d
λ + e−i2π

−d
λ

)
s (t) = 2 cos

(
2π
d

λ

)
s (t) . (2.3)

From equation (2.3), it can be found that the received signal will be zero if d > λ
2 . This

implies the movement distance of λ
2 guarantees the invariance of the channel [27]. The
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coherence time Ts is approximated as follows with movement speed v [27],

Tc =
λ

2v
. (2.4)

• Coherence Bandwidth: is denoted by Bc with a unit of Hz, is defined as the interval

in the frequency domain, where the magnitude of the channel frequency response stays

constant. By utilizing the example in Figure.2.3 (a), if the transmitter sends signal with

sinusoidal wave where x (t) = ei2πft, the channel frequency response is expressed as

Gh (f) = e−i2π(fc+f) da
c + e−i2π(fc+f)

db
c = e−i2πf

da
c + e−i2πf

db
c , (2.5)

where the channel frequency response fluctuates with frequency f and |Gh (f) | is the

magnitude of the frequency response, which is given as

|Gh (f) | =
∣∣∣e−i2πf dac + e−i2πf

db
c

∣∣∣ = 2

∣∣∣∣cos

(
πf

da − db
c

)∣∣∣∣ . (2.6)

The coherence bandwidth is the interval between the zero value of |GH(f)|, which is

defined as

Bc =
c

da − db
. (2.7)

• Coherence Interval: T quantifies the number of samples within the period of time Ts

seconds and the bandwidth Bc Hz, which is based on the Nyquist-Shannon sampling

theorem, which is a part of a signal with a Tc seconds time period and aBc Hz bandwidth

that contains T samples inside, which is expressed as

T = TsBc. (2.8)

2.1.2.2 Classification of Small-Scale Fading

As shown in Figure.2.1, by comparing the transmit signal and the characteristic of the channel,

the small-scale fading can be classified into the following two approaches.

1. This classification is based on the multipath spread, which results in time dispersion. If

the bandwidth of transmit signal is denoted by Bs, the channel is known as frequency-
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selective fading orflat fading based on the following conditions.

Frequency-selective fading : Bs > Bc (2.9)

Flat fading : Bs < Bc. (2.10)

In a frequency-selective channel, the relationship of Bs > Bc implies that the transmit

signal has a smaller symbol time period than the delay spread of the channel. As a

result, the frequency components of the transmit signal might result in inconsistent fading

conditions. In a flat fading channel, the relationship of Bs < Bc implies that the transmit

signal has a larger symbol time than the delay spread of the channel. Consequently,

the frequency components of the transmit signal experiences the same fading conditions.

The flat fading channel is also known as the narrowband channel, which is because the

coherence bandwidth of the transmit signal is lower than the coherence bandwidth of the

channel.

2. The second classification is based on the Doppler spread, where it results in frequency

dispersion. The channel, which is known either as fast fading or slow fading, is based on

the following conditions.

Fast fading : Ts > Tc (2.11)

Slow fading : Ts < Tc. (2.12)

The fast fading channel means the channel coherence time is lower than the one of trans-

mit signal, which suggests that the impulse response fluctuates during the time period of

the transmit signal. Whereas the slow fading channel means that the channel stays con-

stant during the time period of the transmit signal. In this thesis, the small-scale fading

is based on flat, slow fading.

2.2 MIMO Systems

Because the transmitted power fluctuates rapidly due to fading in the wireless channel, the sys-

tem performance, such as the BER at the receiver side, is heavily influenced. To combat fading,

the MIMO technique is proposed for improving throughput and provide a reliable communi-

cation service. Compared with the single-input single-output (SISO) systems, the deployment
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of multiple antennas at both the transmitter and receiver improves gains in spatial and time do-

mains, which enhances the performance without taking up extra spectrum resource. Before the

detailed introduction of MIMO systems, the following are some of the terms and their meanings

that are used throughout this thesis.

• Point-to-point MIMO systems: has one device serving one terminal device both of which

are equipped with multiple antennas.

• Multi-user MIMO systems: has one device with multiple antennas - such as BS - which

serves multiple terminal devices with single or multiple antennas, such as the current

cellular network.

• Conventional MIMO systems: MIMO technology is a broad catalogue describing the uti-

lization of multiple antennas at both transmitter and receiver. The term “conventional”

describes the MIMO technique in the fourth generation of mobile phone mobile commu-

nication technology standards network (4G) [28].

• Massive MIMO systems: has a large array of antennas utilized at BS-this could be hun-

dreds or even thousands-serving tens or hundreds of single antenna UEs. It will play an

important role in the up and coming the fifth generation of mobile phone mobile commu-

nication technology standards network (5G) [15, 29].

2.2.1 Point-to-point Conventional MIMO System Model

Consider a point-to-point conventional MIMO system with Mt and Mr antennas at both the

transmitter and receiver. Note that Mr ≥ Mt. The channel follows block flat fading, where

the channel state information (CSI) stays constant within each communication block, and stays

independent from each block to each block. The received signal y is represented as

y = Hs + n, (2.13)
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also equation (2.13) can be interpreted in the following form,
y1

y2

...

yMr


︸ ︷︷ ︸
Mr×1

=


h11 h12 . . . h1Mt

h21 h22 . . . h2Mt

...
...

...
...

hMr1 hMr2 . . . hMrMt


︸ ︷︷ ︸

Mr×Mt


s1

s2

...

sMt


︸ ︷︷ ︸
Mt×1

+


n1

n2

...

nMr


︸ ︷︷ ︸
Mr×1

, (2.14)

where y ∈ CMr×1 denotes the received signal with vector element yMr representing the received

term from the Mr-th antenna, where s ∈ CMt×1 is the transmitted signal with the element sMt

denoting the signal sent from Mt-th antenna, and H ∈ CMr×Mt represents the channel matrix

with elements hMrMt representing the channel gain from the Mt-th transmitting antenna to the

Mr-th receiving antenna, which is independent and identically distributed (i.i.d). Normalization

is applied on the channel matrix with E
[
|hMrMt |2

]
= 1. The variable n ∈ CMr×1 is the AWGN

and element nMr is a complex random variable with a zero mean and a variance of N0, which

follows a Gaussian distribution.

2.2.2 The Advantages of MIMO Systems - Diversity Gain

Compared with a SISO system, the main advantages of MIMO technology is because of the

gains from diversity and spatial multiplexing [30]. Due to the randomness of the wireless chan-

nel, one path is very likely to fall into deep fade, even in the case of high SNR. However, if the

same information can be transmitted through multiple paths, each of which has independent

fading conditions, the transmitted information, there will be a lower chance of it falling into

deep fading, or at least one copy can be sent to the receiver through a better propagation en-

vironment. This is naturally achieved by the deployment of multiple antennas and it is known

as the “diversity gain”, which is intended both to combat small-scale fading and improve the

reliability and spectrum efficiency of systems. The diversity gain can be achieved from the

various sources described as follows:

1. Time domain: the time diversity gain is achieved by transmitting the same signal repeat-

edly within different coherence intervals; the repetition needs to be large enough, so that

each signal may have independent fading conditions.

2. Frequency domain: the frequency diversity gain is similar to time diversity, but it is
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Figure 2.4: Examples of frequency,time and space-time diversity technique in communication
systems

explored in frequency domains, where the same signal is repeatedly sent within different

frequency bands.

3. Space domain: the space diversity gain is achieved by the deployment of multiple an-

tennas at both the transmitter and receiver, assuming there is sufficient space in between

antennas.

Figure.2.4 shows examples of how to achieve diversity gain in the domains described above.

It is noticeable that extra time and frequency resources are required to achieve diversity gain

with both of these schemes because additional time slots or frequency bands are occupied for

the transmission of the repeated signals. In terms of space diversity, MIMO systems utilize the

spatial domain for performance enhancement; most importantly this does not require additional

time or frequency resources. In order to achieve diversity gain with high rate performance, an

optimal coding scheme is also required. The Alamouti space-time block coding (STBC) is a

powerful scheme designed for MIMO systems [31]. Figure.2.4 (c) illustrates the mechanism of

the space-time scheme with repeated signals simultaneously transmitted through independent

channels. The Alamouti STBC represents an improvement over the traditional space-time code
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by introducing a simple coding scheme at the transmitter, while, at the same time, transmit

and receive diversity can easily be achieved. An introduction to the Alamouti STBC scheme is

given below in order to explain the diversity gain in MIMO systems.

Consider a simple example of a 2× 1 multiple-input single-output (MISO) system with binary

phase-shift keying (BPSK) modulation scheme. The symbol sequence to be transmitted is given

as [s1, s2, · · · , sn], where n complex symbols are sent within n time slots. If the repetition

coding scheme is considered, the first transmit vector is expressed as s1 = [s1, s1]T and the

second vector as s2 = [s2, s2]T and so on. However, in the Alamouti STBC scheme, two

complex symbols are encoded as follows [26, 31]

s =

s1 −s∗2
s2 s∗1

 , (2.15)

where s denotes the encoded symbols for two time slots. During the transmission, the elements

in the first column of equation (2.15) will be assigned to each antenna for transmission in the

first time slot and followed by the second column. Note that s is a complex-orthogonal matrix.

It is assumed that the channel state information remains invariant during these two time slots.

The received signal of two time slots are denoted by y1 and y2, which is expressed as

y1 =
[
h1 h2

]s1

s2

+ n1 (2.16)

y2 =
[
h1 h2

]−s∗2
s∗1

+ n2, (2.17)

where hn denotes the CSI in the n-th time slot and nn represents the AWGN in the n-th time

slot. Equation (2.16) and (2.17) can be combined and rewritten for detection in the following
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form

y =

y1

y∗2

 =

h1 h2

h∗2 −h∗1

s1

s2

+

n1

n∗2

 = Hs + n. (2.18)

It is assumed that the channel state information (CSI) is known at the receiver in this example,

or alternatively it can be obtained by utilizing channel estimation scheme. By multiplying the

Hermitian transpose of H at the receiver side, the received vector y can be separated into two

individual streams, which is given as

r = HHy = HHHs + HHn

r1 =
[
|h1|2 + |h2|2

]
s1 + h∗1n1 + h2n

∗
2 (2.19)

r2 =
[
|h1|2 + |h2|2

]
s2 − h∗1n∗2 + h∗2n2 (2.20)

The detection algorithm, such as the maximum likelihood detector (MLD), can be applied

in equation (2.19) and (2.20). More importantly, two symbols are transmitted in two time

slots, where no additional resource - either in time or frequency - is required to double the rate

compared with the repetition coding scheme. Additionally, if it is assumed that same transmit

power is applied in both the Alamouti STBC and the repetition coding scheme, it has been

reduced by 50%. In this MISO example, the transmission diversity gain by utilizing Alamouti

STBC is 2, because each received signal in equation (2.19) and (2.20) only contains one symbol

and not a combination of two. Consider the MISO system with transmit antenna equals to Mt,

the diversity gain will increased to Mt. In MIMO systems, if there are Mt transmitting and Mr

receive antennas with i.i.d. Rayleigh fading channel, the diversity gain will be MtMr.

Figure.2.6 shows the comparison of bit-error-rate (BER) performance. The following three

systems are considered with BPSK modulation scheme and the MLD for detection at receiver:

(i) uncoded SISO (Mt = Mr = 1), (ii) MISO (Mt = 2,Mr = 1) and (iii) MIMO (Mt = Mr =

2) with the Alamouti STBC scheme. The channel, which utilizes Rayleigh fading, has a zero

mean and a unit variance. The total power constrain is the same for all three systems. It is

noticeable that both the MISO and MIMO systems outperform the SISO system because of the

diversity gain. By utilizing one more antenna at the receiver, the MIMO system has a better

BER performance over the MISO system, which is also because of its receiving diversity gain.
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Figure 2.6: BER performance of SISO, MISO and MIMO systems with Alamouti STBC

2.2.3 The Advantage of MIMO Systems - Spatial Multiplexing Gain

The diversity gain in MIMO systems combat fading in channel and improve the transmission

reliability. However, the fading can also provide an extra degree of freedom for the system,

which comes from the multiple arrival directions at the receiver side with rich reflection and

scattering in multipath propagation. If multiple independent signals are transmitted simultane-

ously without interleaving in between, the system throughput can be much increased without

taking up extra time and frequency resources. This is known as the spatial multiplexing gain

that is offered by MIMO systems.

Figure.2.7 shows a block-diagram of the vertical Bell Laboratories layered space-time (V-

BLAST) architecture of MIMO systems [32]. At the transmitter side, the input data streams

will firstly be divided into Mt independent sub-streams prior to symbol mapping; they will

then be send through Mt transmit antennas simultaneously over same frequency band. Each

receive antenna will receive all these sub-streams with different signatures of the propagation

environment. The received signal will be multiplexed and if the CSI is known at the receiver,

the transmit data can be jointly detected. By comparison, in the Alamouti STBC scheme, the

V-LBAST offers much higher data throughput, which increases with the number of antennas
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deployed, whereby the maximum degree of freedom is min (Mt,Mr).

MIMO systems provide both diversity gain and spatial multiplexing gain, but with a trade-off

in between. Consequently, it is difficult to achieve the theoretical maximum reliability and data

throughput that the MIMO architecture offers at the same time.

The capacity of MIMO system will be introduced in the following section.

2.2.4 The Capacity of MIMO Systems

The previous section demonstrated that MIMO systems offer diversity gains and spatial mul-

tiplexing gains for performance improvements in fading combat and data throughput, with the

ideal values of both gains can be achieved beingMtMr and min (Mt,Mr). Capacity is enhanced

by transmitting data over multiple independent channels in a rich scattering environment. In

the following section, the enhanced capacity of MIMO systems over SISO will be discussed.

2.2.4.1 Capacity of MIMO Systems with a Deterministic Channel

The analysis of the capacity of MIMO systems can be divided into two approaches, (i)deterministic

channel, and (ii) random channel. The system model utilized in the following section is based

on the equation (2.13), where the channel matrix H is assumed to be deterministic. The channel

capacity is defined as the maximum mutual information between transmit signal s and received

signal y, which is expressed as [1, 25]

CM = max
f(s)

I (s;y) , (2.21)
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where f(s) is the probability density function (PDF) of transmit random signal s, I (s;y) de-

notes the mutual information of both s and y, and it is given as

I (s;y) = He (y)−He (y|s) , (2.22)

where He (y) represents the entropy of y and He (y|s) denotes the conditional entropy of y

with given s. As n and s are two independent random vectors, the conditional entropy can be

transformed as He (y|s) = He (n). And consequently the mutual information is equivalent to

I (s;y) = He (y)−He (n) . (2.23)

As the entropy of noise term is a constant, therefore the maximization of channel capacity

comes from maximizing the entropy of receive signal y.

SISO channel capacity

Consider a SISO system with limited transmit power, where E
[
|s|2 ≤ Es

]
and Es denotes the

transmit power. In this case, both the transmit and receive signal and channel plus noise is trans-

ferred from matrix into scalers if utilizing equation (2.13). If only the AWGN channel is consid-

ered, both transmit and receive signal needs to follow Gaussian distribution to reach the max-

imum capacity with transmit signal s ∼ CN (0, Es) and receive signal y ∼ CN
(
0, Es + σ2

n
)
,

where σ2
n denotes the noise variance. As a result, the entropy He (n) equals to log2

(
πeσ2

n
)

and He (y) equals to log2

(
πe
(
Es + σ2

n
))

. The AWGN channel capacity of SISO system is

expressed as [25, 26]

CSISO,AWGN = log2

(
1 +

Es

σ2
n

)
(bit/s/Hz) , (2.24)

where Es
σ2

n
is the SNR of SISO systems. In a more general case, the receive signal will also be

affected by the randomness from channel if Rayleigh flat fading is considered rather than the

AWGN case. The entropy He (yc) becomes log2

(
πe
(
|h|2Es + σ2

n
))

and the corresponding

capacity of SISO systems is expressed as

CSISO = log2

(
1 +

Es

σ2
n
|h|2
)

(bit/s/Hz) . (2.25)

SIMO channel capacity

Consider a single-input multiple-output (SIMO) system with one transmit and Mr receive an-
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tennas. Now both the receive signal and channel plus noise are in the form of vector if utilizing

equation (2.13), with H = [h1, h2, · · · , hr]
T . The transmit signal is a scaler now. The entropy

He (y) becomes log2

(
πe

(
Mr∑
i=1
|hi|2Es + σ2

n

))
and the corresponding capacity of SIMO sys-

tems is expressed as [1, 26]

CSIMO = log2

(
1 +

Es

σ2
n

Mr∑
i=1

|hi|2
)

(bit/s/Hz) . (2.26)

It can be observed from equation (2.26) that the channel capacity is logarithmic increase with

the number of receive antenna Mr with the spatial multiplexing gain of Mr.

MISO channel capacity

Consider a MISO system with Mt transmit antenna and one receive antenna. Now the transmit

signal and channel are in the form of vector, which are expressed as s = [s1, s2, · · · , sMt ]
T

and H = [h1, h2, · · · , hMt ]. The receive signal and noise are both scalers. If each trans-

mit antenna has the same power with the total constrain as Es, the entropy He (y) becomes

log2

(
πe

(
Mt∑
i=1
|hi|2 Es

Mt
+ σ2

n

))
and the corresponding capacity of MISO systems is expressed

as [33]

CMISO = log2

(
1 +

Es

Mtσ2
n

Mt∑
i=1

|hi|2
)

(bit/s/Hz) . (2.27)

From equation (2.27), it can be found that the MISO channel capacity is logarithmically in-

crease with the number of transmit antenna Mt with the spatial multiplexing gain of Mt.

MIMO channel capacity

Consider a MIMO system with Mt transmit and Mr receive antennas. The covariance matrix of

receive signal y is interpreted as

Ry = E{yyH} = E

{
Es

Mt
HssHHH + nnH

}
=
Es

Mt
HE

{
ssH

}
HH + E

{
nnH

}
=
Es

Mt
HRsH

H + σ2
nIMr , (2.28)

where I is an Mr ×Mr identity matrix. Both the entropy He (y) and He (n) can be expressed
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as

He (y) = log2 [det (πeRy)] = log2

[
det

(
πe

(
Es

Mt
HRsH

H + σ2
nIMr

))]
(2.29)

He (n) = log2 [det (πeRn)] = log2

[
det
(
πeσ2

nIMr

)]
. (2.30)

Consequently, the channel capacity of MIMO systems is expressed as

CMIMO = log2

[
det

(
πe

(
Es

Mt
HRsH

H + σ2
nIMr

))]
− log2

[
det
(
πeσ2

nIMr

)]
= log2

[
det

(
IMr +

Es

Mtσ2
n
HRsH

H

)]
(bit/s/Hz) . (2.31)

2.2.5 Capacity of MIMO Systems With CSI Not Known at the Transmitter

In the case of CSI not known at the transmitter side, the transmit power can be equally allo-

cated. As a result, with Mt transmit antennas, the autocorrelation matrix Rs in equation (2.31)

becomes a identity matrix IMt , which is expressed as [34]

CMIMO,EP = log2

[
det

(
IMr +

Es

Mtσ2
n
HHH

)]
. (2.32)

If HHH has the SVD decomposition as HHH = U
∑

VH , equation (2.32) can be simplified

as

CMIMO,EP = log2

[
det

(
IMr +

Es

Mtσ2
n
U
∑

VH

)]

=

min(Mt,Mr)∑
i=1

log2

(
1 +

Es

Mtσ2
n
λ2
H

)
, (2.33)

where λH denotes the eigenvalue of HHH . Equation (2.33) indicates that the channel capacity

of Mt ×Mr MIMO can be seen as a combination of min (Mt,Mr) SISO channel with equal

power allocation.

2.2.5.1 Capacity of MIMO Systems with CSI Known at the Transmitter

At the transmitter side of MIMO systems, the CSI can be available from different techniques,

such as feedback (FDD) or channel reciprocity (TDD). The transmit power can be adaptively

allocated based on the channel quality, which is known as water-filling power allocation algo-
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rithm and it is considered as an useful technique for improving system capacity [34].

The optimal achievable capacity with power allocation can be formulated as follows

max
Ei

min(Mt,Mr)∑
i=1

log2

(
1 +

Ei
σ2

n
λi

)
(2.34a)

Subject to
Mt∑
i=1

≤ Es (2.34b)

Ei ≥ 0 (2.34c)

where Ei denotes the allocated power of each antenna. The solution of this problem can be

achieved by water-filling power allocation algorithm, where the optimal power Ei should meet

the following constrain (
σ2

n

λ2
i

+ Ei

)
= µ, ∀ i (2.35)

where µ denotes the chosen threshold for water-filling power allocation algorithm. From equa-

tion (2.35), the optimal power for each antenna Ei is expressed as

E∗i =

(
µ− σ2

n

λi

)+

, (2.36)

where ”+” represents the positive term only. As a result, the capacity with CSI at the transmitter

is given as

CMIMO,WF =

Mt∑
i=1

log2

(
1 +

E∗i
σ2

n
λi

)
. (2.37)

2.2.5.2 Capacity of MIMO Systems with Random Channels

The capacity introduced previously is based on a deterministic channel model. However, ran-

dom channel, which changes as a function of time, is a more realistic model and H is considered

to be a random matrix. The capacity will also be random by the utilization of random channel

in calculation.

Ergodic capacity of MIMO systems

Consider a MIMO system with an ergodic flat fading channel, where the channel stays inde-

pendent between each time period and constant within each period. If there are N time periods,
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Figure 2.8: Ergodic capacity of different MIMO configurations

the capacity of MIMO systems will be the average performance, which is expressed as

CMIMO =
1

N

N∑
n=1

log2

(
IMr +

Es

Mtσ2
n
H [n]RsH

H [n]

)
(bit/s/Hz) . (2.38)

The ergodic capacity is the expectation of equation (2.31) in the case of N → ∞, which is

presented as

CMIMO,ergodic = E

[
N∑
n=1

log2

(
IMr +

Es

Mtσ2
n
HRsH

H

)
(bit/s/Hz)

]
. (2.39)

Fig.2.8 shows the simulation results of ergodic capacity over SNR, which includes SISO,

SIMO, MISO and MIMO systems. Firstly, it can be observed that all the capacity results

increase linearly regarding to the SNR. Secondly, the capacity of MIMO with Mt = Mr = 4 is

almost triple over the SISO case when SNR is 15dB. Even in the case of low SNR, the MIMO

system still outperforms the SISO system. Thirdly, the SIMO performs better than MISO be-

cause of the power gain, which is scaled with Mr. To be more specific, the multiple antennas

deployed at the receiver in SIMO system is able to coherently combine the received signal,

which results to a power boost.
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Figure 2.9: Outage capacity of different MIMO configurations

Outage capacity of MIMO systems

The q%-outage capacity,CMIMO,outage, is defined as the maximum possible capacity for (100− q)%

channel samples [33]. Fig.2.9 shows the cumulative density function (CDF) of capacity with

SNR = 10dB. The 10 % outage capacity of different number of antennas are highlighted in

the figure. Again, MIMO system is outperformed over SISO system with improvement about

50% in the case of Mt = Mr = 2 and 260 % in the case of Mt = Mr = 4.

2.2.6 MIMO Detection Algorithms

The MIMO detection algorithm is the signal processing technique which is applied to detect

the transmitted signals at the receiver side. To be more specific, at the transmitter side, Mt

independent data streams will be modulated and transmitted by theMt antennas. At the receiver

side of system, Mr antennas receive signals that contains CSI and thermal noise. As a result,

detection algorithm is applied to jointly detect the signal.
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2.2.6.1 Maximum likelihood detection

The MLD adopts an exhaustive search approach for signal detection [35]. A search will be

conducted over all the possible combinations of candidate symbols. The detection, which cal-

culates the Euclidean distance between received noisy signals and all the possible candidate

vectors, is formulated as:

ŝML = arg min
s∈S
‖y −Hs‖2 (2.40)

where S denotes the constellation set of transmit symbols and the ‖(·)‖ denotes the norm of

the vector. The optimal detection resulting from the MLD will be the vector with minimum

Euclidean distance, which indicates the smallest error probability. Due to the exhaustive search,

the optimal detection result also leads to the optimal BER performance. However, there is a

trade-off between the optimal detection performance and the computational complexity, since

the computational complexity will increase exponentially with the number of antennas in the

MIMO system and the modulation constellation. For example, if the MLD is used on a 16× 16

MIMO system with 256-QAM, the detection of one symbol vector involves a search of over

25616 lattice points, which limits the practical use of the MLD.

2.2.6.2 Linear detection

Linear detection algorithms are proposed in order to reduce the computational complexity of

the MLD to compensate for detection performance [36]. The basic idea behind the algorithm is

to invert the action of the channel matrix H in the received signal by applying a matrix filter, the

main purpose of which is to obtain the desired signal by filtering out the channel information

and noise. One approach to a linear detection algorithm is called zero forcing (ZF). It utilizes

the pseudo inverse of the channel matrix which is H† =
(
HHH

)−1
HH . By applying on the

received signal, the estimated detection result is given as [36]

ŝZF = H†y = s + H†n (2.41)

From the above equation, it can be observed that the noise effect, H†n, will be enhanced in

the detected result. However, this degrades the detection accuracy and leads to a sub-optimal

detection result. To reduce the noise effect, a minimum mean square error (MMSE) criterion

is proposed. The MMSE receiver adds the power of noise in the pseudo inverse calculation so

that after the multiplication, both the effect of channel and noise can be filtered. The MMSE
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receiver can be written as [36]

WMMSE = (HHH +N0IMt)
−1HH (2.42)

whereN0 and IMt denote noise power and identity matrix with the size ofMt respectively. Note

that the initial results calculated from the linear detection algorithms are not the constellation

points from set S, therefore, the detection results will be rounded to the closest constellation

points.

2.2.6.3 Ordered successive interference cancellation detection

The ordered successive interference cancellation (OSIC), which is known as Vertical Bell Labo-

ratories Layered Space-Time (V-BLAST) receiver [37], is developed which further reduces the

interference between transmitted signals. To compare it with the linear detectors, the V-BLAST

detector applies a non-linear detection algorithm and it splits the detection into stages. Each

substream of the received signal is detected individually while the other substreams are treated

as ”interference”. The detection of each substream can utilize either the ZF or the MMSE algo-

rithm as the nulling vector. After the detection of one substream, the interference cancellation

is achieved by subtracting the detected vector from the original received signal. One impor-

tant issue is that the detection performance is significantly influenced by the cancellation order,

which is based on the post-detection SNR of each vector stream. The optimal cancellation or-

der always starts the detection of the vector with the post-detection SNR in a descending order.

The detection has Mi iterations with i = 1, 2, · · · ,Mt. The detection process is summarized as

follows:

• Ordering step: the detection order defines the sequence of detecting individual signals

from the received signal vector. It is based on the Euclidian norm value for each row of

the channel matrix. We will rank the Euclidian norm value and detection order starting

from row with the minimum value which represents the maximum SNR.

k = arg min
j
‖
(
H†i

)
j
‖2 (2.43)

where
(
H†i

)
j

represents the j-th row of the pseudoinverse of Hi. Please note that the

j-th row can only be selected from the signals that have not been detected yet.
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• Nulling step: after defining the detection order,the kth row of (H†) is chosen as the

nulling vector wk to null out the weaker transmitted signals for purpose of reducing

interference which can be expressed as:

ŝk,i = wT
k yi (2.44)

• Slicing step: we need to slice the signal obtained from the nulling step to the nearest

constellation point s̃k,i, in order to recover the transmitted data.

• Cancellation step: in this step, we need to remove the detected signal from the received

vector using the result of the slicing step. The purpose of this cancellation is to reduce

the interference caused by this signal. . . .

yi+1 = yi − s̃k,i(H)k (2.45)

where (H)k represents the kth row of H. The nulling the k-th column of Hi results the

channel matrix Hi+1 for the following iteration.

The V-BLAST algorithm will repeat these steps until all the transmitted signals are detected.

Both ZF and MMSE detectors can be applied in the V-BLAST detector for the single stream

detection. Also the application of MMSE detector can further reduce the noise effect.

Figure.2.10 shows the uncoded BER performance of the five detection algorithms. The simu-

lation considers a 16-QAM 4× 4 MIMO systems. The top two curves are linear detectors. We

can find that MMSE has better performance than ZF. It can be seen that at BER of 10−2, the

performance gap between these two linear detectors is 2dB. However, linear detectors have the

worst performance among these five algorithms. V-BLAST has better BER performance over

linear detectors. It can be seen V-BLAST-ZF has 3dB gains over MMSE at BER of 10−2. As

mentioned before, V-BLAST-MMSE has slightly better performance than V-BLAST-ZF which

is 2dB at BER of 10−2. Finally, it is noticeable that the MLD has the best performance of the

group.

This section focused on the point-to-point MIMO systems, where one device is designed to

serve another device and where both are equipped with multiple antennas to create a single-UE

MIMO system and where BS serves on UE with multiple antennas. The following section will

describe another type of MIMO system-the multi-UE MIMO system-which is like the cellular
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Figure 2.10: BER of 4× 4 MIMO system with 16-QAM and different detection algorithms

network, where one BS serves multiple single antenna UEs with the same time and frequency

resource, and where, if there are M antennas at the BS serving K single-antenna UEs are in a

single hexagon shaped cell, they will form a M ×K multi-UE MIMO system.

2.2.6.4 Semidefinite Relaxation Programming Based Detection

Although the MLD achieves the optimal detection performance, the computational complexity

increases exponentially with the modulation order and the number of antennas. To simplified

the complexity, an alternative approach of detection in MIMO systems is to convert the MLD

into a optimization problem and utilize semidefinite relaxation (SDR) programming to solve it,

which is known as the SDR-based detection [38, 39].

Different from the exhaustive search that utilized in the MLD, the SDR-based detection re-

formulates the original MLD detection problem and the near-MLD result can be found with

polynomial worst-case complexity. To be more specific, consider BPSK modulation scheme,
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Equation (2.40) can be reformulated into a minimization problem as [40]

minimize
s

tr (QSDRXSDR) (2.46a)

subject to XSDR = xSDRx
H
SDR (2.46b)

xSDR ∈ SBPSK, (2.46c)

where QSDR and XSDR are defined as

QSDR =

HHH −HHy

−yHH ‖y‖2

 , XSDR =

s
1

 . (2.47)

Consider diag (XSDR) is defined as a vector with elements from the diagonal entries of XSDR

and eSDR is defined as a vector with all the elements equal to one. Additionally, it is defined

that XSDR � 0 represents the matrix XSDR is positive semidefinite. In the SDR-based de-

tection, Constraint (2.46b) and (2.46c) can be replaced and it becomes a typical semidefinite

programming problem, which is expressed as

minimize
s

tr (QSDRXSDR) (2.48a)

subject to diag (XSDR) = eSDR (2.48b)

XSDR � 0. (2.48c)

Problem (2.48a) can be solved iteratively by utilizing common optimization algorithms and the

detection result s can be found by adopting various methods, such as rounding quantizations

[41]. The SDR-based detection achieves quasi-MLD BER with reduced complexity, however,

the performance still needs to be improved when detecting the symbol with high order modu-

lation scheme [9].

2.3 Multi-UE MIMO and Massive MIMO Systems

The following section will describe the multi-UE MIMO systems and explain its basic structure

and the advantages it offers. It will also introduce the massive MIMO systems-a novel commu-

nication technology that has attracted great interests from both academia and industries-which,

although it belongs to multi-UE MIMO system, because the number of BS antennas has been

greatly increased, it has brought about many exciting innovations.
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2.3.1 Single-cell Multi-UE MIMO systems

Figure.2.11 shows a simplified block digram of multi-UE MIMO system. As listed in the figure,

uplink and downlink are two communication stages in multi-UE MIMO systems. In the uplink

stage (also known as multiple access), multiple UEs send independent data streams to one BS

with multiple antennas, which can be seen as a “many-to-one” transmission. As the UEs are

assumed to be distributed in the cell randomly, the uplink data streams are expected to have

different distortions. In the downlink stage (also known as broadcasting), BS transmits the data

streams to the serving UEs, which can be seen as a “one-to-many” transmission. Different from

the uplink stage, in downlink transmission, the UE will receive the signal and interference in

one channel. To be more specific, UE k will receive both the desired downlink signal xk and

the interference xj where j 6= k in the downlink channel between UE k and BS. As a result,

precoding can be utilized in downlink transmission to reduce the interference. The detailed

discussion will be given in the section latter.

2.3.1.1 Multiple Access Scheme

In multi-UE MIMO systems, BS is designed to serve multiple UEs within the same time-

frequency resource. Multiple access schemes are proposed as a resource allocation strategy for

the serving UEs in order to share the limited resources efficiently.

Similar to the diversity gain, as described above, the multiple access scheme can utilize the

resources from different dimensions. The common techniques include frequency division mul-
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tiple access (FDMA), time division multiple access (TDMA), code division multiple access

(CDMA) and space division frequency multiple access (SDMA) [42]. A brief introduction is

given as follows.

• FDMA: its resource sharing is based on the division in frequency spectrum, where a

different frequency band is assigned to each UE, meaning that UEs can communicate

with the BS simultaneously. Its advantages are, (i) the easy implementation of its system

design, (ii) it suffers less inter-symbol interference, and (iii) it needs fewer overheads for

the synchronization with BS.

• TDMA: its resource sharing is based on the division in time period, where the serving

UEs share the entire frequency band, but different time slots are assigned to each UE. It

has been utilized in the Global System for Mobile Communications (GSM). However, its

one drawback is the large overhead cost of synchronization.

• CDMA: it is designed to allow the serving UEs to share both the spectrum and time

resource simultaneously, since a unique spreading code for signal encoding is assigned to

each UE. The codebook, which is known by BS, is used to distinguish the data transmitted

from multiple UEs.

• SDMA: it is achieved by allocating an array of M antennas at the BS, where the distin-

guish of UEs is based on the beam pattern. This can be jointly used with the other three

schemes.

2.3.2 Massive MIMO Systems

The massive MIMO technique can be seen as an “upgraded” version of multi-UE MIMO sys-

tems. A principle feature is that BS utilizes a large-array of antennas with the number of

hundreds or even thousands simultaneously serving tens or even hundreds of single antenna

UEs within the same time-frequency resources. This adoption of excess antennas has enhanced

the gains that the conventional MIMO systems offer, bringing additional benefits.

2.3.2.1 Frequency-division-duplex and Time-division-duplex

As mentioned above, the CSI is crucial to the performance of all MIMO systems. To be more

specific, an accurate estimation of CSI is essential for both the detector at the receiver and
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Figure 2.12: Frame structures of FDD and TDD operations

the BS for downlink precoding. TDD and frequency-division-duplex (FDD) are two common

traffic modes in the urban cellular systems with different CSI acquisition schemes [43], which

are illustrated in Fig.2.12. It is assumed that the pilot aided scheme is utilized for channel

estimation in which the CSI is estimated from the received known pilot sequences straightfor-

wardly. However, part of the coherence interval needs to be allocated for the transmission of

pilot sequences. Meanwhile, if many resources are allocated for channel estimation, the data

transmission rate will definitely be influenced. The consumption of resources with both the

FDD and TDD operations are listed below.

FDD Operation

In the FDD operation, both uplink and downlink transmission operates in the same coherence

time; however different frequency bands are assigned. The basic operation procedures are:

1. Uplink-channel estimation: uplink CSI is estimated from all the UEs that send their own

assigned pilot sequences, presumably simultaneously, to their BS. The channel estima-

tion is performed based on the known pilot sequences.

2. Uplink-data transmission and detection: the UEs start to send data after sending the

pilot sequences. Based on the estimated uplink CSI, the detection is performed at BS to

achieve the uplink data.

3. Downlink-channel estimation: The downlink CSI needs to be estimated again. The BS
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sends the downlink pilot sequence to each UE and channel estimation is performed at UE

side.

4. Downlink-CSI feedback: The estimated CSI is fed back to the BS from the uplink control

channel.

5. Downlink-precoding and data transmission: The downlink data is passed through the

precoder and transmitted to UEs.

When counting the resources that are needed for channel estimation in FDD operation, the

uplink CSI pilot needs a minimum length of K and the length of downlink pilot should be

equal to the number of BS antennas M . Consequently, the pilot length in the FDD operation

needs to be at least K + M . This limits the application of FDD operation in massive MIMO

system because of the large array of BS antennas.

TDD operation

In the TDD operation, both uplink and downlink transmission are designed to share the same

frequency spectrum, but in different time slots. For this the following three steps are taken:

1. Uplink training and channel estimation: the TDD operation starts with all the active UEs

sending their own assigned pilot sequence to the BS. It is assumed to be simultaneously

and it is also assumed that the BS received the known pilot sequences synchronously

and perform channel estimation to obtain the uplink CSI. Since the same frequency band

is utilized for both uplink and downlink traffic, the downlink CSI for precoding is as-

sumed to be consistent with the one from the uplink estimation because of the channel

reciprocity. This is considered to be a principle advantage of the TDD operation.

2. Uplink data transmission and detection: the UEs transmit data streams after sending the

pilot sequences. The estimated CSI is utilized for detecting the transmitted data streams

from UEs. In massive MIMO systems, low complexity detectors such as linear detection,

is capable of achieving optimal performance.

3. Downlink precoding and data transmission: The estimated CSI is also utilized for down-

link precoding. The downlink data streams will pass to the precoder and then they will

be sent to UEs.

In this thesis, the TDD operation is selected for massive MIMO systems. The main reason is the
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resources for channel estimation are not proportional to the number of BS antennas. To achieve

the benefits the massive MIMO systems offer, an essential condition is that access number of

antennas serves single antenna UEs, where M >> K. Comparing with the pilot length in the

TDD operation is scaled withK, the FDD operation needs a minimum length ofM+K, which

limits the application in the case of large M .

2.3.2.2 Uplink in massive MIMO system with TDD operation

The least squared (LS) method is a useful channel estimation scheme in massive MIMO sys-

tems. Consider UE i is assigned with the pilot sequence si ∈ Rτ×1. The received signal at the

BS in cell j is expressed as

yj =

K∑
i=1

sihi + nj , (2.49)

where si ∈ RτM×M denotes the pilot received at BS with si = si ⊗ IM and IM is a M ×M
identity matrix. The estimated CSI ĥi of UE i from LS method is expressed as

ĥi = sHyj (2.50)

2.3.2.3 Downlink in Massive MIMO System with TDD Operation

The channel reciprocity in TDD operation results in the utilization of estimated uplink CSI in

downlink transmission. With the CSI known at BS, the precoding technique can be adopted for

performance enhancement [44] from various different aspects.

Precoding technique both eliminates interference between UEs and reduces the size and energy

consumption of terminal equipments. In multi-UE MIMO system of the uplink detection at BS,

when serving large number of UEs the computational complexity will be very high, because

the received signal at BS is a combination of multiple streams and the jointly detection is com-

putation intensive. In the downlink transmission, high energy consumption arises with the high

computational detection at the UE side, which will limit the mobility service of equipments.

Consequently, a precoding technique is applied for “pre-processing” before the downlink trans-

mission in order to increase the spatial multiplexing gain that UEs have achieved. This helps to

improve the detection performance at the UE side and also to increase the system’s capacity.

Linear precoding schemes are generally utilized in massive MIMO systems; this is similar to the
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adoption of linear detection for uplink, where the large number of antennas result in favourable

propagation and the complexity for both detection and precoding design is reduced. Maximum

ratio transmission (MRT) belongs to the linear precoding schemes, which is aiming to maximize

the SNR in downlink transmission. The received signal ri ∈ C of UE i is expressed as

ri =

K∑
k=1

hHi tkxk + zi, (2.51)

where tk ∈ CM×1 denotes the precoding vector, xk represents the transmit data symbols and

zi ∈ C is the receiver noise and zi ∈ CN (0, 1). As the TDD operation is considered, the

downlink channel utilized the Hermitian transpose of the uplink channel. The MRT precoding

vector is given as

tk =
hk
‖hk‖

(2.52)

2.4 Chapter summary

The first part of this chapter, which has introduced the background knowledge regarding both

the conventional MIMO and massive MIMO systems as used in this thesis, started with a point-

to-point description of the conventional MIMO systems. Firstly, the fading in wireless prop-

agation environment was introduced, together with the concept of both large- and small-scale

fading, which will be applied in the system model, to be presented in the next three chapters.

Secondly, a detailed description of the advantages that offered by MIMO systems was covered,

revealing a principle benefit of diversity gain that can be achieved in time, frequency and space

dimensions, where it has been much enhanced both by the deployment of multiple antennas and

by reaching up toMtMr in MIMO systems. Thirdly, this chapter revealed that another benefit is

the spatial multiplexing gain, where the system capacity linearly increases with min (Mt,Mr).

Fourthly, a comparison channel capacity has been established between SISO, SIMO, MISO and

MIMO systems, with the simulation result verifying a capacity improvement by incorporating

additional antennas.

The second part of this chapter considered multi-UE MIMO and massive MIMO systems.

Firstly, the multiple access scheme that was utilized in the multi-UE MIMO system is intro-

duced. The CDMA scheme is considered in the following system design. Secondly, a brief

introduction of massive MIMO system has been given. An introduction of the advantages that
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is offered by massive MIMO systems has been given, where it not only brings a great enhance-

ment of system capacity but also reduces the computational complexity at the BS side. The

research into the TDD or FDD operation based massive MIMO system have attracted great

interests; hence, in this thesis, the TDD operation is utilized because of the channel reciprocity.

The next chapter will consider the conventional MIMO systems, where the combination of the

K-best detector with adaptive modulation scheme will be proposed. The chapter 4 will present

the analytical results based on massive MIMO systems, followed by the chapter 5, where the

system’s energy efficiency will be maximized.
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Chapter 3

Performance Analysis of the K-Best
Detector with Adaptive Modulation

This chapter describes an error probability approximation framework for multiple-input multiple-

output (MIMO) systems with the K-Best detection algorithm at receiver side, which aims to

serve for the adaptive modulation scheme. The basic idea of this work is to utilize a simpli-

fied error probability approximation scheme based on the union bound (UB) of the maximum

likelihood detector (MLD) such that the bit error rate (BER) performance of the K-Best algo-

rithm in various channel qualities can be efficiently predicted. Instead of considering all the

error events, we only apply the minimum Euclidean distance (MED) errors in the UB calcu-

lation will be applied - this amounts to only a small portion, especially since the number of

antenna is large. This will be suitable for real-time adaptive modulation systems because the

computational complexity has been much reduced. To improve the accuracy of prediction, the

signal-to-noise ratio (SNR) gaps between the simplified UB and the full UB in different chan-

nel conditions are estimated and recorded in a look-up-table (LUT). By applying the simplified

approximation method, simulation results have clearly shown the adaptive K-Best algorithm

to have a much reduced computational complexity while still maintaining a promising BER

performance.

The remainder of this chapter will be organized as follows: section 3.1 will introduce of the

background and purpose of this chapter by giving a brief literature review of the MIMO detec-

tion algorithm with the adaptive modulation. Section 3.2 will focus on the system model and

the detection algorithms, both of which will be utilised in this chapter. Section 3.3 will present

a detailed explanation of the UB of the MLD. Section 3.4 will describe the procedures of how

adaptation works and how the LUT that contains SNR gaps between predictions and actual re-

sults are generated. Section 3.5 will bring the chapter to this conclusion with a demonstration

of the simulation results and its corresponding analysis.
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3.1 Introduction

As stated in Chapter 2, MIMO is an advanced wireless communication technology that has at-

tracted great interest from both researchers and industrialists. The deployment of multiple an-

tennas at both transmitter and receiver is a promising technique designed to increase spectrum

efficiency with a high order of diversity [26, 37, 45]. Multiple data streams are sent simulta-

neously from the transmitter, but each stream will suffer independent fading through different

channels. Therefore, the joint-detection of transmitted information from the received signal at

the receiver side becomes both important and challenging because it is crucial that the system

should achieve a high data rate while maintaining an acceptable detection error probability at

the receiver side. Consequently, there has to be a trade-off between detection performance and

computational complexity at the receiver side.

Convincing detection results often entail a the high computational complexity, hence the MLD,

which is an optimal receiver designed for the MIMO systems, guarantees robust detection per-

formance. However, an exhaustive search over the large lattice point space leads to high com-

putational complexity, which makes it unrealistic for practical application, whereas the linear

detector can be implemented simply, although it needs a higher SNR in order to achieve the

desired performance. Therefore, over the last decade a considerable number of detection algo-

rithms have been proposed in order to achieve a quasi-MLD performance with an manageable

level of complexity. For instance, numerous novel tree-search based detection algorithms have

been proposed, such as the fixed sphere decoder (FSD) [46] and the K-Best detector [11]. The

K-Best detector is a non-linear algorithm that achieves the quasi-ML performance with fixed

degree of complexity allowing detection to be executed simultaneously by applying a breadth-

first tree search with a fixed number of searching paths at each level, which is a feature has great

potential for parallel hardware platforms implementation as well as for practical applications

[47, 48].

In terms of spectrum efficient transmission in MIMO systems, an adaptive transmission tech-

nique is an convincing means of improving data throughput over time-varying channels [49–

51]. The adaptive transmission method estimates the channel condition at the receiver and feeds

back the relevant transmission parameter, which matches the instantaneous channel quality in

order for it to transmit based on the channel condition estimation. The typical transmission pa-

rameter can be modified to includes transmit power, modulation scheme, and coding scheme.

By employing the adaptive transmission scheme, the system throughput can either be max-
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imised by setting a target BER, or BER can be reduced under a fixed throughput requirement

[52].

Related work: the K-Best detector is based on a tree-search based algorithm which was first

proposed in [9, 53]. Until recently the development of the K-Best algorithm focused mainly

on the complexity reductions and detection performance improvements. However, in [54], the

authors proposed an adaptive K-value method according to the channel condition and an adap-

tive K values will be employed in the detection according to the varying channel conditions

at each tree level. In [55] the authors considered the complexity reduction on higher order

modulation schemes in the K-Best algorithm. In contrast to the conventional K-Best algorithm,

which implements a full expansion at each level, the proposed algorithm expands to only par-

tial constellation sets at certain levels thus providing good detection performance with fewer

computations. A lattice reduction (LR) aiding K-Best algorithm was proposed in [56], hence

the authors claim to reduce computational complexity; therefore the proposed algorithm is suit-

able for massive MIMO systems. A combination of the MMSE and the K-Best algorithm was

proposed in [57] where the complexity is reduced firstly by utilizing MMSE detection followed

by the reduced-dimension K-Best algorithm. In [58], an improved K-Best algorithm was pro-

posed whereby a flexible number of nodes are utilized in the detection; these are determined by

a pre-defined adaptive threshold value, thus achieving quasi-MLD performance by considering

more nodes at an early detection stage than the conventional K-Best algorithm.

The adaptive transmission scheme has become a significant technology that has been used in the

third and forth generation of mobile communication technology standards network (3G & 4G)

[49, 59]. In [60] the authors proposed a joint power control and adaptive modulation scheme

for uplink transmission in massive MIMO systems, which increases the average spectrum effi-

ciency. In [61], the adaptive transmission was applied to virtual-MIMO systems and this gave

a promising performance. The imperfect CSI in an adaptive transmission is another topic that

has attracted great interest. The authors in [62] proposed a scheme with outdated CSI where the

coefficient of time correction was calculated based on SINR and BER. In [63], the adaptation

was based on the mean of channel feedback with the Alamouti structure.

Contribution: this chapter will now focus on the K-Best algorithm with an adaptive transmis-

sion scheme for the uplink transmission. An estimation scheme is proposed to predict the

performance of the K-Best algorithm in time varying channels with different transmission pa-

rameters, which, in order to estimate the error probability rate will entail the application of a
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simplified error probability approximation method based on the UB of the MLD. Compared

with the original UB of the MLD, the proposed method utilizes the MED events only in the

approximation. This simplification is computationally complex, hence it is more suitable to be

used for performance predictions in real-time adaptive modulation setups. The channel condi-

tion number is utilized as the channel quality indicator in the system. Furthermore, by setting

up the target BER, a look-up table (LUT) approach is applied to approximate performance gaps

between the proposed simplified approximation and the conventional UB or the K-Best detector

with different K values.

At this point, the BER performance of the K-Best algorithm can be predicted accurately in the

adaptive modulation scheme by using this pre-estimated table, thus allowing the modulation

schemes that achieve the target BER to be sent back to the users. So far, numerical results have

shown that the proposed scheme guarantees a promising error rate performance under different

channel conditions with much reduced computational complexity.

3.2 The System Model

3.2.1 The MIMO System Model

This model assumes an uncoded conventional point-to-point MIMO system with Mt transmit

antennas and Mr receive antennas, denoted as Mt ×Mr. It is further assumed that Mr ≥ Mt

and where the received vector y with size Mr × 1 can be denoted as

y = Hs + n, (3.1)

where s = [s1, s2, . . . , sMt ]
T denotes the transmitted symbol vector of size Mt × 1 and each

symbol is modulated with a complex constellation based on M-ary quadrature amplitude mod-

ulation (M-QAM). The received complex vector is represented as y = [y1, y2, . . . , yMr ]
T with

n = [n1, n2, . . . , nMr ]
T as the additive white Gaussian noise (AWGN) vector with elements of

independent and identically distributed (i.i.d) complex Gaussian noise. In addition, the complex

noise elements have a zero mean and a variance of σ2
n . The channel H ∈ CMr×Mt has i.i.d el-

ements hji ∼ CN (0, 1) indicating the uncorrelated Rayleigh fading propagation environment.

An assumption is made that the CSI is perfectly known at the receiver side.
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3.2.2 The Tree-search Based Detection and K-Best Algorithm

The K-Best algorithm is a detection method that can be seen as an extension over the sphere

decoder (SD). If the search for an optimal detection is accomplished by a tree-search based

method, the K-Best algorithm performs a breadth-first search from the top to the bottom with

fixed K points at each level. The following section will give a brief introduction to the SD and

the tree-search, which will be followed by an explanation of the K-Best algorithm.

The MLD performs exhaustive searches over all the candidate vectors. Figure.3.1(a) shows an

example of the MLD search principle, where the red cross represents the received noisy signal

and the blue points denote the noiseless constellation set. The search is based on a calculation

of the Euclidean distances (ED) between the received signal and all the other candidate points.

Therefore it is proposed that the SD reduces the computational complexity by searching only

a subset of the constellations [64]. Figure.3.1 shows the principle of the SD where the con-

stellation points in the subset are selected inside a sphere with a pre-defined radius R and the

received signal is the centre point, with the detection result, which is obtained by comparing

the ED between the received signal and the points in the subset and it is written as [64]

ŝSD = ‖y −Hŝ‖2 ≤ R2
SD. (3.2)

(a) MLD - exhaustive search (b) SD - search within pre-defined sphere

Figure 3.1: Comparison of MLD and SD search principles

The detection search shown in Fig.3.1 can also be viewed as a tree-search problem, in which

the decision tree contains all the points in the constellation set as leaf nodes, and the search

starts from the top to the bottom. The tree pruning generally starts with converting the received
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symbols from a complex value into a real value form, which is given as

yr =

<(y)

=(y)

 =

<(H) −=(H)

=(H) <(H)

<(s)

=(s)

+

<(n)

=(n)


= Hrsr + nr, (3.3)

where <{·} denotes the real, and ={·} represents the imaginary part of the symbol vectors;

yr,Hr, sr and nr are the real value vectors. Note that the size of the real vectors are doubled

over complex vectors after the conversions. Following the conversion, the QR decomposition

is applied on the real valued channel matrix, which comes to

Hr = QR, (3.4)

where Q ∈ R2Mr×2Mt is a unitary real value matrix and R ∈ R2Mt×2Mt is an upper triangular

real value matrix with entries rmn. By multiplying the nulling term QH on the MLD equation,

the reformulation is represented as

ŝML = arg min
ŝr∈S2Mt

r

‖QH(yr −Hrŝr)‖2

= arg min
ŝr∈S2Mt

r

‖QHyr −QHQRŝr‖2

= arg min
ŝr∈S2Mt

r

‖ỹr −Rŝr‖2

= arg min
ŝr,n∈S2Mt

r

2Mt∑
m=1

|ỹr,m −
2Mt∑
n=1

rmnŝr,n|2, (3.5)

where Sr represents a real-valued constellation set. Note that ỹr = QHyr = RHH
r yr. Due

to Rc is an upper triangular matrix with zero elements under the matrix diagonal, the search of

the closest lattice point as the optimal detection result in equation (3.5) can be transformed into

a tree structure search. Fig.3.2 shows an example of the expanded tree structure. The lattice

point tree contains 2Mr + 1 tree levels and tree level starts from 2Mr + 1 to 1. If we have

level m lies above the m-1 level, the nodes in level m are parent nodes and each node in level

m − 1 is a child node. Each parent node contains a number of
√Sr real valued child nodes.

The paths between parent nodes and child nodes are named as the partial Euclidean distances
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Figure 3.2: The K-Best detection tree diagram

(PEDs) between the lattice points. The PED of the level m can be represented as

PEDm = PEDm+1 + |ỹr,m −
2Mt∑
n=1

rmnŝr,n|2, (3.6)

where PEDm records the PEDs of both the previous level PEDm+1 and the current level. In

the end, the path with the smallest acccumulative PEDs is chosen and the node points on this

path is sorted as the detection result. The computational complexity depends on the number of

nodes that were visited during the traversal. The MLD utilises the exhaustive traversal, which

calculates the acccumulative PEDs of each path and select the minimum one as the detection

result. The SD only visit the path with the accumulative PEDs that less or equal to R. The SD

reduces the computational complexity involved in detection from the reduction of the number

of nodes visit while keeps acceptable detection errors.

Two traversal approaches are utilized in the tree-structure in order to establish a detection re-

sult, which are depth-first and breadth-first. The depth-first approach is commonly utilised by

the SD, where the search moves from the top to the bottom repeatedly until the accumulative

PEDs meet the constraints. Once the search finds that the accumulative PEDs exceed R, it

moves backward to the parent node and tries the other branches, after which all the candidates

are stored and compared. Although the SD is an efficient detection algorithm, there are two

potential problems exist [46]: firstly, the choice of radius RSD is significant to the overall per-

formance; hence, if the radius is set as a large number, the detection performance can only be

guarantee by sacrificing computational complexity. However, if the radius is small, the correct

transmitted signal is more likely to be neglected, which indicates an uncertain complexity of the
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SD. The second potential problem is that the sequential nature of the depth-first search limits

the wider applications of the SD in parallel hardware platforms.

The K-Best algorithm is a detection method which can be seen as an extension of the SD,

which aims to tackle the uncertain complexity and sequential nature problems. The breadth-

first search is considered in the K-Best algorithm, whereas, by contrast, the depth-first search

in the search of the K-Best algorithm is only one directional. The search at each level only

keeps K nodes with the smallest PEDs and the expansion of the child nodes follows these K

candidates. When the search reaches Level 1, the path with the smallest accumulative PEDs

is selected from the fixed number of candidates. The value K has significantly influenced the

detection performance and complexity, therefore, if the intention is to maximize the detection

performance, the K value should be set as a large number. In summary, the nature of a breadth-

first search shows that it has a fixed complexity, which not only reduces the searching candidates

but also make it suitable for the implementation with the practical hardware platform consisting

of very-large-scale integration (VLSI) or field-programmable gate array (FPGA).

Compared with the MLD, the computational complexity in the K-Best algorithm has been much

reduced. As discussed in Chapter 2, the detection of one vector in the MLD needs to search

MMr
n possible vectors in MIMO systems, where Mn is the size of constellation set and Mr is

the number of receive antennas. However, the K-Best algorithm only needs KMr . As a result,

both the detection performance and complexity is determined by the choice of K.

After the introduction of the K-Best algorithm, the UB of the MLD will be introduced in the

next section, where the prediction of the K-Best algorithm will be based on it.

3.2.3 The UB of the MLD

The UB for the BER of the MLD is a simple, but widely used upper bound, which acts as

an indicator of the MLD detection performance by providing a theoretical approximation of

the error probability. It is tight especially at high SNRs [65, 66]. The calculation of the UB

generally starts with the most basic element, the Pairwise Error Probability (PEP) which is

denoted as Psi→s′j
. It indicates the probability that the receiver detected vector s′j but the vector
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si was actually sent. The Psi→s′j
is formulated as

Psi→s′j
= P

(
‖y −Hsi‖2 > ‖y −Hs′j‖2

)
= P

(
‖Hsi + n−Hsi‖2 > ‖Hsi + n−Hs′j‖2

)
= P

(
‖n‖2 > ‖n + H

(
si − s′j

)
‖2
)

(3.7)

where
(
si − s′j

)
is the difference between two signal vectors. If we have δi,j′ =

(
si − s′j

)
,

then equation (3.7) can be transformed as follows

Psi→s′j
= P

(
nHn >

(
n + Hδi,j′

)H (
n + Hδi,j′

))
= P

(
nHn > nHn + nHHδi,j′ + δHi,j′H

Hn + δHi,j′H
HHδi,j′

)
= P

(
−δHi,j′HHHδi,j′ > 2Re{nHHδi,j′}

)
. (3.8)

The 2Re{nHHδi,j′} is denoted by ξi,j′ . As mentioned above, the noise vector n has Gaussian

distribution. Then we have the mean value of ξi,j′ is 0 and variance σ2
ξi,j′

is 2σ2
nδ

H
i,j′H

HHδi,j′ .

We can formally define the conditional probability density function (PDF) of detecting s′j but

actually si was send over channel H

Psi→s′j
=

1√
2πσ2

ξi,j′

∫ −δH
i,j′H

HHδi,j′

−∞
e

(ξi,j′−0)
2

2σ2
ξi,j′ dξi,j′

=
1√
2π

∫ ∞
δH
i,j′

HHHδi,j′
σξi,j′

e
ξ2
i,j′
2 dξi,j′

= Q

(
δHi,j′H

HHδi,j′

σξi,j′

)

= Q

 δHi,j′H
HHδi,j′√

2σ2
nδ

H
i,j′H

HHδi,j′


= Q

√δHi,j′H
HHδi,j′

2σ2
n

 (3.9)

whereQ(·) is the Marcum Q-function. The numerator in equation (3.9) represents the euclidean

distance between vector si and sc,j′ under the given channel realization H, which is interpreted
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as

d2
si→s′j

= δHi,j′H
HHδi,j′

=
(
si − s′j

)H
HHH

(
si − s′j

)
= ‖H

(
si − s′j

)
‖2 (3.10)

According to equation (3.10), the PEP of one symbol vector can be calculated. The UB of the

MLD is sum of the mean PEP of all the candidate symbol vectors. The first step is to calculate

the mean PEP over i.i.d. uncorrelated Gaussian distributed channels. The mean PEP is given

as [66]

PEPi,j = E

Q

√√√√d2

si→s′j

2σ2
n




=

(
1− µi,j

2

)Mr Mr−1∑
k=1

(
Mr − 1 + k

k

)(
1 + µi,j

2

)k
(3.11)

where

µi,j =

√
γi,j

1 + γi,j
(3.12)

and

γi,j =

‖δi,j′‖2
Mt∑
n=1

log2(Mn)

4Mr

Mt∑
n=1

E (|sn|2)

Eb

N0
. (3.13)

The UB of the MLD can be represented as

Pub =
1

Mt∑
n=1

log2(Mn)

1
Mt∏
n=1

Mn

M
Mt
n∑

i=1

M
Mt
n∑

j=1&j 6=i
eb(si, s

∗
j )

× E

{
Q

√‖H(si − s∗j )‖2
2σ2

n

}, (3.14)

where eb(si, s∗j ) is the number of bit errors between the vectors si and sj .

Consequently, it is noticeable that the UB of the MLD includes all the error events in the

calculation. This comprehensive calculation provides an accurate estimation of the BER per-
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Figure 3.3: System diagram of the K-Best adaptive modulation scheme

formance in high SNR region. However, due to the high computational complexity, it is not

suitable for real-time implementation. In terms of the application in prediction of the K-Best

performance in adaptive modulation scheme, it needs simplifications, which will be introduced

in the following section.

3.3 The K-Best Algorithm with Adaptive Modulation Scheme

In this section, firstly an overview of the proposed adaptive MIMO system with the K-Best

algorithm will be given. Secondly, how the detection performance is affected by the channel

condition number will be investigated and thirdly a comprehensive introduction will be pre-

sented on the simplified UB with MED events method.

Fig.3.3 shows the block diagram of the MIMO systems with the adaptive modulation scheme.

Here, the transmitters are considered as users with either a single antenna devices or a device

with multiple antennas. The receiver is the device with multiple antennas using the K-Best

algorithm as the detector. The detailed description of the systems is given as follows:
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1. Measure the MIMO channel and the transmit powers: each transmitter will first trans-

mit pilot symbols to perform channel estimation. At the receiver, the channel estimation

module predicts the channel state information (CSI) according to the received pilot sym-

bols.

2. Estimate the error rate for different modulation scheme combinations: the adaptive mod-

ulation module computes the error probability using perfect CSI with different modula-

tion scheme set-ups for users.

3. Select the modulation schemes combinations: after the calculation of error probabilities,

the modulation combination reaches the target BER, which is chosen for the adaptive

modulation.

4. Feed back the chosen modulation schemes to users at the transmitter side: finally, the

combination of modulation schemes, which maximizing data throughput and still meets

the target error rate, is feed back to the users. The users then transmit data symbols

according to the feed back information. Note that this scheme is most suitable for the

channel with slow fading.

A simple example is presented to explain the principle of adaptive modulation scheme. Consid-

ered a single-input single-output (SISO) system with AWGN channel. The modulation scheme

can be utilized is quadrature phase-shift keying (QPSK) and 8PSK. The target BER for adaptive

modulation equals to 10−3. In [25, 49], the error probability of QPSK and 8PSK are expressed

as

PQPSK ≈ Q (
√
γ) (3.15)

P8PSK ≈ 0.666Q
(√

2γ sin (π/8)
)
, (3.16)

where γ denotes the SNR. As a result, based on equations (3.15) and (3.16), it can be calcu-

lated that the minimum SNRs to reach the 10−3 are 10.35dB and 14.79dB respectively. Con-

sequently, when the instantaneous SNR of this system is between 10.35dB and 14.79dB, the

QPSK modulation scheme can be utilized. If the SNR is bigger than 14.79dB, the 8PSK mod-

ulation can be utilized. If the SNR is less than 10.35dB, the system can choose to transmit

nothing or use lower order modulation scheme.

However, the BER performance of K-Best detector in the channel with Rayleigh fading is more
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difficult to predict, since there is no closed-form expression of estimating it. Consequently, in

terms of utilizing the K-Best detector with the adaptive modulation scheme in MIMO systems,

a simplified prediction method is required for estimating the BER performance in different

channel conditions. In the following section, one of the channel quality metric, the channel

conditional number, will first be discussed. Then, the proposed simplified prediction scheme

will be introduced.

3.3.1 Influence of Channel Condition Number on Detection Performance

The propagation environment has a significant influence on the performance of the K-Best

detector. One of the channel quality metrics is the channel condition number, denoted as κH.

The calculation of κH starts from applying the singular value decomposition (SVD) of the

channel matrix, which is given as

H = UΣΣΣVH , (3.17)

where U is a Mr ×Mr complex unitary matrix, V is a Mt ×Mt complex unitary and ΣΣΣ is a

Mr ×Mt diagonal matrix with non-zero real elements on the diagonal. The singular values of

matrix H are the diagonal entries of ΣΣΣ, which is denoted as λH. Then κH is defined as

κH =
λH,max

λH,min
≥ 1, (3.18)

where λH,max and λH,min represents the maximum and minimum singular value. The singular

values are located in a decreasing order over the diagonal of ΣΣΣ. If κH = 1, the channel is

considered as well-conditioned channel. In this case, the receiver can equalise the channel

without losing performance. When κH > 1, the channel quality deteriorates with an increasing

κH value. In [67], the authors provided simulation which shows how the κH influences the

detection performance of the linear detectors (i.e., ZF and MMSE). The interest here is the

influence of κH on the non-linear detectors such as the K-Best algorithm.

Regarding an uncoded point-to-point MIMO system with Mt = Mr = 4; the transmit signal is

modulated with a 16−QAM scheme for each transmitter and with the MLD and K-Best with

K = 4, 8, 12, 16 are adopted as the detection algorithm. Fig.3.4 illustrates how the BER of K-

Best is degraded by the increasing value of κH. In the case of κH < 10, only the MLD andK =

16 have an acceptable BER performance, which is below 10−3. However, the performance

drops dramatically when κH > 10. Furthermore, the degradation in BER is significant in both
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largeK values (e.g.,K = 16) and smallK values (e.g.,K = 4). Fig.3.5 plots the acccumulative

distribution function (CDF) simulation of κH for an i.i.d Rayleigh fading channel. This shows

that there is an approximately a 30% chance that κH > 10 and a 15% chance that κH >

15. The CDF result indicates that the high condition number channel events occur frequently,

which significantly affects the overall detection performance. Based on the characteristics of

channel observed in Fig.3.5 and the degradation observed in Fig.3.4, it has clearly shown that

the uncertainty of channel quality and its impact on the detection performance of the receiver.

The adaptive K-Best algorithm is proposed, since the main goal of the adaptive K-Best algo-

rithm is to combat influences brought by the varying channel conditions and that by selecting

feasible modulation schemes which fit the channel condition, the detection performance can

achieve the target BER.

3.3.2 The Simplified UB with MED

In adaptive modulation, one important step is to achieve an accurate prediction of the error

rate under varying channel conditions. It has been mentioned in [11] that with a sufficiently

large K value, the K-Best detector performs closely to the MLD, while in [65] it is shown that

the UB is a tight upper bound of the MLD. As a result, the approximation of the K-Best error

probability employs the UB of MLD for each channel realization. However, equation (3.14)

has shown a high computational complexity that is not suitable for practical implementation of

the adaptive modulation scheme. For example, if a 4× 4 MIMO utilizes 64-QAM scheme, the

UB needs to calculate 644 PEPs, where each PEP averages over 644 pairs of vectors, which is a

very high computational complexity. Therefore , approximation needs to be accurate and with

less computations. The simplified approximation method of the error probability is proposed

to overcome the high computational requirement while maintaining a high level of accuracy.

The simplified approximation uses only the MED events for the calculation of the PEP if com-

paring with the conventional UB of the MLD. The MED events indicate error events of the

constellation points that are at a MED from the transmitted symbols. The MED is expressed as

dmin = min
s∈MMt

n &s6=s′
‖s− s′‖. (3.19)
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In order to compare with the non MED events, the MED events have a relation of

Q

√d2
s→s′

2σ2
n

 ≤ Q
√d2

min

2σ2
n

 . (3.20)

In equation (3.20), the reason for the MED events having higher probabilities than the other

error events is because the Q-function is a decreasing function of the Euclidean distance. Since

the MED events have significant influence on the overall error probability approximation, the

simplified UB utilizes MED events in the PEP calculation in order to obtain a rough approxi-

mation of the full UB. If the set ΛMED denotes the subset of the constellation points with the

MED to the transmit signal, then it is clear that ΛMED is much lower than the full constella-

tion point set. Also, the lattice space of ΛMED is also smaller than the full constellation point

lattice space. Therefore, the proposed simplified UB approximation of the K-Best algorithm’s

performance is derived as

Pub,MED =
1

Mt∑
n=1

log2(Mn)

1
Mt∏
n=1

Mn

M
Mt
n∑

i=1

ΛMED∑
MED=1

eb(si, s
∗
MED)

× E

{
Q

(√
‖H(si − s∗MED)‖2

2σ2
n

+ ∆SNR

)}
, (3.21)

where Pub,MED denotes the error probability approximation using the UB with MED events

only. By comparing Equation (3.14) and (3.21), we can find that the utilization of ΛMED has

much reduced the computational complexity of UB. The utilization of closest error events has

reduced the computational complexity from MMt
n to ΛMED, which is approximately 94% to

99.8% of the error events are neglected. This reduction is important for enabling the proposition

in real-time error performance prediction.

Although the UB approximations with the MED events are not tight enough to yield an accurate

approximation, it has the same PEP trend in the high SNR region. The gaps between the UB

with MED events and the full UB in SNR are estimated as error rate corrections for the use

in the adaptive modulation algorithm. Therefore, if the SNR gap is denoted as ∆SNR, it is

represented as

∆SNR = ∆SNRUB + ∆SNRkbest. (3.22)

The estimation of the ∆SNR value starts from setting the modulation combinations, which
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indicates the combinations of the possible feeding of modulation schemes to different users.

Then the channel condition numbers κH are divided into different groups with small value

intervals based on the CDF of κH. Finally, the ∆SNRUB between the simplified UB and the

full UB within each group of κH are estimated and recorded.

Compare with single-input single-output (SISO) systems, the estimation of ∆SNRUB is diffi-

cult in MIMO systems. In [68], the author mentioned the error probability estimation method

based on the closest error events in SISO systems. As a single antenna is utilised in both

transmitter and receiver, the received signal and channel are all scalars;thus, the distances be-

tween signals when calculating union bounds multiplies a scalar rather than a matrix in MIMO

systems. As a result, the smallest error events definitely dominate the UB calculation. Further-

more, the distance between the transmit signal and its neighbouring points will not be changed

after passing through channels. This is the reason why closest error events in SISO systems are

reliable when estimating the error probability in them. However, the channel becomes a matrix

in MIMO systems, which adds much uncertainty and influences to the error probability estima-

tions. Here is a simple examples containing several random channel realizations, which aims

to give an impression of error events calculation in MIMO systems. An uncoded point-to-point

MIMO systems may be considered with Mt = Mr = 2 in which the BPSK modulation scheme

is utilised in the system for simplicity. Parts of the possible transmit vectors are selected and

given as follows

scb =

1− i 1 + i −1 + i −1 + i −1 + i

1− i 1− i 1− i 1 + i −1 + i


where the columns of scb are named from s1 to s5. Because the d2

si→s′j
dominates the UB,

it is of interest to see how the d2
si→s′j

is influenced by the channel matrix with different κH.

The squared distance between s1 and the rest of the four vectors are 4, 8, 12, 16 respectively.

The following table shows the impact on distance when s1 is transmitted through four different

channel realisations. Table 3.1 shows the distance changes in four different channel realisations,

Original distance Channel 1 Channel 2 Channel 3 Channel 4
d2
s1→s′2

4 2.1445 11.2174 13.8237 22.3411
d2
s1→s′3

8 4.2889 22.4349 27.6473 44.6823
d2
s1→s′4

12 58.1617 45.9433 6.1513 32.3765
d2
s1→s′5

16 90.8377 160.3259 74.4302 7.9302

Table 3.1: Cases of d2
si→s′j

in different channel realisations
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which are given as

H1 =

−0.1792 + 0.2255i 0.4377− 2.7430i

0.2259− 0.6341i 0.4938 + 2.7395i



H2 =

 1.2608 + 0.8006i 2.7421− 2.0351i

−0.5512 + 0.5197i 0.6471 + 1.0565i



H3 =

1.1239 + 0.3740i −0.6434− 1.8919i

0.0737− 1.4309i −2.6654 + 1.2026i



H4 =

 1.4580− 1.2397i −1.8630 + 2.1348i

−0.6280 + 1.2363i 0.7278− 1.3626i


In channel 1, both d2

s1→s′2
and d3

s1→s′2
are reduced and the closest point is still the smallest

distance. However, in both channels 3 and 4, the error events, which are not the closest point

before transmission, have the smallest distance after passing the channels. The results indicate

that the MED events might not always have the smallest distance in every channel realisations

of MIMO systems. But, referring to the calculation of UB, which considers average distance

over many channel realisations, the MED events still provides precise prediction of the error

probability. Table 3.2 shows the average distance values over 10,000 channel realisations. It is

Original distance E[d2
s1→s′2

]

d2
s1→s′2

4 32.1391
d2
s1→s′3

8 64.2781
d2
s1→s′4

12 96.1996
d2
s1→s′5

16 128.3895

Table 3.2: Cases of average d2
si→s′j

noticeable that the closest point before the transmission still has the smallest average distance

which dominates the union bound calculation.

The other key point is to estimate the gap between the K-Best algorithm with different K

value configurations. Although a large K value leads to a quasi-MLD performance, under

well conditioned channels, small K values can also be used to obtain optimal result with fewer

computations. Therefore, smallK value cases are included in the adaptive scheme. The perfor-

mance gaps ∆SNRkbest are estimated so that the simplified UB is able to predict the K-Best
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algorithm with different K values. The accurate predications of error probability are based on

the above two performance gaps. An LUT can be built with ∆SNR under different channel

conditions, therefore the LUT is crucial to the adaptive modulation scheme.

As mentioned above that the uncoded MIMO system is considered in this study. However, the

proposed scheme can be extended to coded MIMO systems. LUTs of ∆SNR can be estimated

and recorded which target to different coding schemes. Consequently, the proposed adaptive

scheme can choose the corresponding LUT for BER performance analysis.

3.4 Simulation Results

In this section, the simulation results are given on performance of the K-Best algorithm with the

adaptive modulation scheme. The first step of simulation was to build the LUT of ∆SNRt and

∆SNRkbest. For the estimations of ∆SNR, simulations have been made on a 4 × 4 MIMO

systems; there are four users at the transmitter and the receiver has four antennas with the K-

Best SD algorithm as detector. The Mn-ary QAM modulation scheme is used in the simulation

with M = 4, 16. Based on the CDF of κH, it has been divided into eight groups with interval

value of 5 from κHH = 1 to κH = 40. For example, group 1 is from κH = 1 to κH = 5, and

group 2 is from κH = 6 to κH = 10 etc.. Within each group of κH, there are a minimum 10,000

of randomly generated channel realizations that have κH distributed within the range.

Fig.3.6 shows an example of how the ∆SNRUB between the UB with MED events and the full

UB are constructed. The figure shows the BER performance as a function of SNR of the fully

calculated UB versus the UB with MED events only. The BER curves of these two bounds

are consistent with fixed SNR gaps between each other. With the target BER as 10−3, the

∆SNRUB values between the full UB and the UB with MED events have been estimated.

Fig.3.7 shows an example of how the ∆SNRkbest was estimated between the UB using only the

MED events and the K-Best algorithm with differentK values within different κH value ranges.

It is clear that with larger K values, the K-Best algorithm will produce a better performance.

The reduction of the performance of the K-Best algorithm with different K values at the target

BER were estimated. In the simulation, there were a total MMt
n = 65536 possible transmit

vectors and for each vector, the subset ΛMED approximate ranges from 24 to 84. Compared to

the full UB with the set 164, the proposed scheme can reduce the computation between 94% to

99.98% by utilizing the closest points in the UB calculation.
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Figure 3.6: The UB with MED events and the full UB, in MIMO with Mt = Mr = 4, 16-QAM
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Table 3.4 is built with the ∆SNRkbest covering eight different ranges of κH values. Note that

the number (1) to (8) in Table 3.4 represents eight different combinations of modulation scheme

in a 4 × 4 MIMO systems, which is given as

Groups Combinations
(1) 4× 4− QAM
(2) [16, 4, 4, 4] with K = 16 for 16-QAM and K = 4 for 4-QAM
(3) [16, 16, 4, 4] with K = 16 for 16-QAM and K = 4 for 4-QAM
(4) 4× 16− QAM with K = 16

(5) 4× 16− QAM with K = 12

(6) 4× 16− QAM with K = 8

Table 3.3: Notes of combinations in LUT

The ∆SNR values of the K-Best algorithm for both small and big K values are similar for

small values of κH. This indicates that with the well-conditioned channels, the K-Best algo-

rithm can use small K values in order to reduce computational complexity. In the case of large

value of κH, the difference of ∆SNR with different modulation configurations becomes signif-

icant. The performance degradations caused by high κH is obvious in higher order modulation
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schemes with small K values.

Fig.3.8 shows the BER performance of the K-Best adaptive modulation scheme versus the

MLD and the K-Best algorithm. For the users at the transmitter side, there are six different

modulation configurations to select according to the channel conditions in adaptive modulation

scheme, following Table 3.3. The target BER is set to BERt = 10−3. For each channel

realization, the predicted performance of different modulation combinations will be calculated

with the simplified UB and the pre-recorded LUT. In Fig.3.8, it can be observed that the K-Best

algorithm has similar performance with the MLD. Additionally, the K-Best with the adaptive

modulation scheme follows the BER of 4×4-QAM modulations until the SNR is approximately

11dB. When the SNR is greater than 11dB, the BER performance of the K-Best algorithm

fluctuates around BERt with higher data rate than the fix modulation configurations.

κH (1) (2) (3) (4) (5) (6)
1∼5 0.33 1.66 1.66 1.43 1.43 1.43
6∼10 0.40 2.24 2.33 2.20 2.20 2.20
11∼15 0.46 2.40 2.65 2.60 2.60 2.60
16∼20 0.50 2.50 2.80 2.75 2.75 2.85
21∼25 0.55 2.62 2.90 2.82 2.84 3.10
26∼30 0.55 2.65 2.96 2.91 3.02 3.52
31∼35 0.60 2.65 3.00 2.94 3.15 4.61
36∼40 0.60 2.70 3.05 2.96 3.40 5.46

Table 3.4: LUT of ∆SNR (dB)

3.5 Conclusion

The K-Best algorithm with adaptive modulation scheme was proposed in this chapter. A sim-

plified approach was given to approximate the error probability with the minimum Euclidean

distance events considered only. By estimating the performance gaps between the conventional

union bound and the simplified union bound, accurate predictions were made on the BER per-

formance of the K-Best algorithm with far fewer computations. From the simulations, the adap-

tive K-Best has guaranteed the BER performance with an approximately 94% to 99% reduction

of computations compared with the conventional union bound in one search iteration. Future

work will consider the performance in the cases of imperfect CSI and correlated channels.

The receiver side of MIMO systems is computation intensive, which scales with the number of

antennas at the transmitter side. As a result, research in detection algorithms is accompanied
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by the development of MIMO systems. However, with the proposition of massive MIMO

systems, the design of receivers is less challenging compared to the difficulty that the transmitter

side faces. Massive MIMO system deploys a large array of antennas at base station (BS),

usually hundreds or even thousands, to serve tens of single-antenna user equipments (UEs).

Following the scale up of antennas, the random channel becomes more deterministic, which

leads to the adaptation of simple linear detectors that can achieve a good performance. A

detailed introduction to the benefits that brought by massive MIMO systems will be presented

in the following chapter.

The pilot contamination issue arises with the proposition of massive MIMO systems [69, 70].

To be more specific, the pilot sequences utilised in training-based uplink channel estimation

can not all be orthogonal with each other under a limited coherence interval. As a result, the

reuse of orthogonal pilots across different cells becomes a straight forward solution. However,

the pilot reuse scheme causes inter-cell interference, which significantly influences the quality

of CSI and constantly limits the overall performance of massive MIMO systems. In the next

chapter, an uplink codebook design will be proposed to eliminate the pilot contamination effect.
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Chapter 4
Achievable Rate Performance of TDD

Multi-cell Massive MIMO with
Non-Orthogonal Pilots

The advantages that offered by multiple-input multiple-output (MIMO) systems were discussed

in Chapters 2 and 3. Basically, thanks to the deployment of multiple antennas at both the trans-

mitter and receiver sides, the throughput was shown to be much enhanced, even under the

channel with fading, interference and limited bandwidth conditions. However, signal process-

ing complexity increases exponentially with the number of antennas deployed, especially at the

receiver side. By thinking through both the advantages and challenges offered by the MIMO

systems, various questions occur to researchers, such as, if the MIMO systems was scaled up,

would it offer further advantages or would it create greater problems? After scaling up the

system is named massive MIMO, or large-scale antennas MIMO systems, which was first in-

troduced in [71] and studied in [72]. In the following four years, much literatures focused on

the performance analysis, propositions for schemes involving both uplink and downlink trans-

missions and system optimizations.

This chapter describes an uplink pilot codebook design method for the multi-cell massive

MIMO systems with time-division-duplex (TDD) operations, which aims to eliminate pilot

contamination and increase the downlink achievable sum rate. Basically, the idea behind the

proposition is to treat the pilot codebook design as a problem of optimal line packing in a

Grassmannian manifold. A closed-form downlink achievable sum rate expression is proposed

to demonstrate how the system performance is influenced by the cross-correlations between up-

link pilots and the number of antennas at base station (BS). The simulation results have verified

the proposition by comparing it with the pilot reuse scheme.

The chapter will be organized as follows: Section 4.1 will explain the purpose of this chapter,

then it will offer a brief literature review of the massive MIMO systems. Section 4.2 will fo-

cus on the system model. Section 4.3 will explain the proposed downlink achievable sum rate
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results. Section 4.4 will introduce the pilot reuse scheme and followed by the introduction of

Grassmannian line packing (GLP) and its application for uplink channel estimation in Section

4.5. Finally, Section 4.6 will demonstrate the simulation results, together with the correspond-

ing analysis, and it will also bring the chapter to a conclusion in Section 4.7.

4.1 Introduction

The massive MIMO systems are an advanced cellular network architecture that is regarded as

a promising technology for the fifth generation of mobile communication technology standards

network (5G) [71, 73–75]. Compared with the conventional multi-user MIMO systems, a large-

array of antennas - i.e. hundreds or even thousands -has bee designed to be deployed at BS

in the massive MIMO systems, which offers high data rate and robustness to tens, or even

hundreds, of single-antenna user-equipments (UEs) within the same time-frequency resources.

The utilization of excess antennas has solved many difficult technical issues and brought extra

advantages, which will be described as follows:

• Firstly, the size of the channel matrix is enlarged along with the array of antennas, where

the random matrix theory can be utilized for the analysis of channel characteristics. The

channel gains inside the channel matrix tend to be pair-wisely orthogonal by utilizing the

law of large numbers in the random channel matrix theory, which is considered to be a

favourable propagation environment. As a result, the system capacity can be maximized

under a desirable environment. Moreover, simple signal processing techniques, such as

linear processing can achieve optimal performance in both uplink channel estimation and

signal detection with much reduced computational complexity.

• Secondly, the massive MIMO systems guarantee high multiplexing gain. As long as the

distance between antennas is large and rich scattering exists in the environment and sig-

nals will pass through channels with independent fading. Thus, the spatial multiplexing

gain can be dramatically enhanced, which will increases the capacity significantly.

• Thirdly, the massive MIMO systems provide promising robustness. In LTE systems,

there are typically 4 to 8 antennas at deployed at the BS [59], where the failure of one

antenna unit may significantly influence the system performance. However, the massive

MIMO systems deploy hundreds or even thousands of antennas, which do not suffer

much overall impact on the whole system with the case of one or two antenna failures.
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The benefits that are offered by massive MIMO systems relies heavily on an accurate channel

estimation. For the detection at BS, channel state information (CSI) is required if the linear de-

tection algorithms are utilized [9]. For beamforming, the deployment of more antennas means

narrower beams, where the high quality CSI plays an important role in beamforming. Re-

cent literature has focused on the research of channel estimation in both TDD and frequency-

division-duplex (FDD) based massive MIMO systems [76–79]. However, TDD operation is

preferred in massive MIMO systems because of channel reciprocity, where the training over-

head depends only on the number of UEs rather on than the number of antennas at the BSs

[27].

Pilot contamination is a common phenomenon that exists in the multi-user system with TDD

operation, but it has become an issue that fundamentally limits the capacity of massive MIMO

systems. In a pilot-aided uplink channel estimation, each UE should be assigned with an or-

thogonal pilot sequence, and pilot codebook is known by the BSs. Based on this known pilot

codebook, the BSs estimate the CSI of the UEs in their home cell by various algorithms. How-

ever, in multi-cell systems, the allocation of orthogonal pilot sequence to each UE is impractical

with a limited length of the coherence interval. Consequently, a common solution is to allocate

orthogonal pilot sequences to a fraction of the UEs while the remainder are designed to reuse

these pilots, this is known as pilot reuse scheme. If the BS receives the same pilot sequences

from different UEs, it may degrade the accuracy of channel estimation, whereby this effect is

known as pilot contamination phenomenon.

Related work: Following the initial idea massive MIMO systems, the researchers focused on

the study of system capacity and performance analysis. In [70], the researchers provide a gen-

eral overview and analysis of research directions in massive MIMO systems. Experimental

results were based on the testbed with 128 BS antennas serving 4 UEs in a single-cell scenario,

which shows a good performance of spectrum efficiency. A discussion of the optimal num-

ber of BS antennas is provided in [80]. The expressions of achievable sum rate for multi-cell

massive MIMO systems were proposed with various linear precoders and detectors. The re-

searchers believe that the deployment of the minimum mean squared errors (MMSE) algorithm

for detection and zero-forcing (ZF) for precoding would perform better than the maximum ratio

transmission (MRT) and eigenbeamforming.

In [81], both the spectrum and energy efficiency of massive MIMO systems have been inves-

tigated. The deployment of a large BS antenna array has been shown to provide a significant
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increase in spectrum efficiency. However, the authors only considered small-scale fading and

no large-scale fading in the simulations. The closed-form expressions of downlink achievable

sum rates in the massive MIMO are proposed in [82]. The optimization of per UE rate, also

known as “fairness”, was implemented based on the proposed expression. However, the prob-

lem was that closed-form expression did not clearly show how the rate was influenced by pilot

contamination.

Because the pilot contamination phenomenon is considered to be a principle factor that limits

the system performance, numerous propositions were proposed to eliminate it. The existing

channel estimation techniques in the massive MIMO system can generally be categorized into

two schemes: (i) pilot-aided, and (ii) subspace-based schemes [69]. In [79], a detailed analysis

is given regarding how the pilot contamination in the uplink influences the downlink achievable

rates. Based on the proposed rate expression, the researchers believe that the rate will be satu-

rated due to pilot contamination. Therefore, a downlink precoding scheme aiming at reducing

both intra-cell and inter-cell interference was proposed.

In [83, 84], the pilot codebook was divided into several subsets while UEs were divided into

cell-centre and cell-edge groups according to path-loss and shadowing. Following the division,

one subset was reused and the remaining subsets were assigned to the remaining UEs. This

pilot allocation improved the quality-of-service (QoS) of cell-edge UEs with the rate decrease

of reused UEs as a compensation.

In [85] the researchers examined the covariance between the desired and the interfering UE

channels because the channel estimation performance depends on the overlapping condition

of their dominant subspaces. The pilot contamination was much reduced under the condi-

tion of limited angle of arrival at BS. In [86], an analysis was made on the allocation of UEs

with a given number of antennas and coherence intervals. Other than the conventional pilot

reuse scheme, the researchers in [87] first proposed the design of the pilot codebook with GLP

method under the condition of not sufficiently large training section. In [88] the generalized

welch bound equality sequence design was proposed. However, only a single-cell case was

considered, while a multi-cell case is considered in [89]; the authors make an invalid assump-

tion about power control.

Contributions: In contrast with pilot reuse schemes, this chapter has focused on the GLP based

pilot codebook design. Although it is not the first time GLP has been applied to eliminate pilot
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M antennas

UE 1

Cell j UE 2

Figure 4.1: Single-cell diagram of massive MIMO systems with K single-antenna UEs and a
large array of M antennas at BS

contamination, the aim of this chapter is to provide a comprehensive analysis of the downlink

achievable rate improvements the system offers. Closed-form expressions of downlink achiev-

able rate are proposed for both single-cell and multi-cell massive MIMO systems with TDD

operations as these have clearly shown how the pilot contamination and BS antenna number

influences the system’s performance. Additionally, the closed-form expression of multi-cell

massive MIMO systems with pilot reuse scheme for training sequence scheduling is proposed.

Comparisons were made with conventional pilot reuse scheme and the numerical results showed

that the GLP-based pilot design outperformed the pilot reuse scheme thereby bringing large

gains in the system throughput.

4.2 System Model

4.2.1 Single-cell Massive MIMO System Model

A more general single-cell case without considering uplink power control is introduced before

the multi-cell model. Consider a single-cell massive MIMO cellular network as illustrated

in Figure.4.1, where a central BS equipped with an array of M antennas serving K single-

antenna UEs. Note that M � K. A block-fading channel is considered and the channel

vector from UE i to the BS can be represented as
√
βihi, where βi represents the large-scale

fading coefficient that models the effect of path-loss and shadowing; hi represents the small-

scale fading and vector contains independent and identically distributed (i.i.d) random variables
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where hi ∈ CN (0, IM ). It is assumed that the channel model
√
βihi remains constant during

one coherence interval.

4.2.1.1 Single-cell Uplink Channel Estimation

The single-cell uplink transmission starts with UEs sending their own training sequences to

their home cell BS simultaneously. The UE i will be assigned a pilot sequence vector si, where

si ∈ Cτ×1 has a length of τ samples and E[|si|2] = 1. The correlation coefficient of pilot

sequences between the UE i1 and the UE i2 is given as

ρ2
i1,i2 , |sHi1 si2 |2, (4.1)

where in the perfect orthogonality condition it has

ρ2
i1,i2 =

0, if i1 6= i2

1, if i1 = i2.
(4.2)

Non perfect orthogonality is considered in the system model, where the possible factors of

orthogonality loss are the utilization of finite precision analog to digital converters (ADCs)or

digital to analogue converters (DACs) at transmitter or receiver side. As mentioned in [70, 71],

a large number of cheap antennas will be deployed at the BS in the massive MIMO systems.

The finite precision devices might brings quantization noises, which causes the imperfect or-

thogonality between pilot sequences. The average impairment exists in both GLP-based uplink

codebook and pilot reuse scheme, which is expressed as

E
[
ρ2
i1,i2

]
=

0.01, if i1 6= i2

0.99, if i1 = i2.
(4.3)

It is assumed that UEs send their uplink pilot sequence simultaneously to the BSs, where the

received signal at BS j is expressed as

y =

K∑
k=1

√
pu
kβkSkhk + nj , (4.4)

where y ∈ CτM×1 is the received signal; pu
k denotes the uplink transmit power; nj ∈ CτM×1
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represents additive white Gaussian noise (AWGN) at the BS with elements nM ∈ CN (0, σ2
nIM );

Sk ∈ CτM×M denotes the matrix including the pilot sequence from UE k to BS j and Sk =

sk ⊗ IM . Once the BS receives the uplink training sequences, the least-squares (LS) method is

applied for estimating CSI [90], where the estimated CSI of UE i is represented as

ĥi =
1√
pu
i

SHi y

=
√
βihi︸ ︷︷ ︸

desired CSI

+
1√
pu
i

 K∑
k 6=i

√
pu
kβkρi,khk + SHi nj


︸ ︷︷ ︸

interferece & noise

. (4.5)

Equation (4.5) shows that the channel estimation result consists the desired CSI and interfer-

ence. The intra-cell interference exists if K > τ , where ρi,k 6= 0. Otherwise, if the assigned

pilots are all orthogonal, the intra-cell interference vanishes and only thermal noise is left.

4.2.1.2 Single-cell Downlink Transmission

Recall that reciprocity in the TDD operation leads to a downlink transmission utilizes the esti-

mated CSI in uplink training. The maximum ratio transmission (MRT) scheme is applied for

downlink precoding [91], where the received noisy signal for UE i is expressed as

ri =
K∑
k=1

√
pd
iβih

H
i tkxk + zi, (4.6)

where pd
i is the downlink transmit power;

√
βih

H
i denotes the downlink CSI, which utilized the

uplink CSI; zi represents the AWGN and zi ∈ CN (0, σ2
zIM ); xk represents the data symbols

streams to UE k and tk is MRT linear precoding vector, which is expressed as

tk =
ĥk

‖ĥk‖
. (4.7)

4.2.2 Multi-cell Massive MIMO System Model

Consider a multi-cell massive MIMO cellular network with TDD operation, where multiple

central BS equipped with an array of M antennas serving K single-antenna UEs and is illus-

trated in Figure.4.2. Note that M � K. A block-fading channel is considered and the channel

vector from UE i in cell j to the BS l can be represented as
√
βij,lhij,l, where βij,l represents
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 Cell L

Cell L-1
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Cell L-3
M antennas

M antennas
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Interference
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Figure 4.2: Cell diagram of massive MIMO systems with L cells, K single-antenna UEs and a
large array of M antennas at BS

the large-scale fading coefficient that models the effect of path-loss and shadowing; hij,l repre-

sents the small-scale fading and vector contains independent and identically distributed (i.i.d)

random variables where hij,l ∈ CN (0, IM ). It is assumed that the channel model
√
βij,lhij,l

remains constant during one coherence interval.

4.2.2.1 Multi-cell Uplink Channel Estimation

The multi-cell uplink transmission starts with UEs sending their own training sequences to their

home cell BS simultaneously. The UE i in cell j will be assigned a pilot sequence vector sij ,

where sij ∈ Cτ×1 has a length of τ samples and E[|sij |2] = 1. The correlation coefficient of

pilot sequences between the UE i1 and the UE i2 in cell j is given as

ρ2
i1j,i2j , |sHi1jsi2j |2, (4.8)

where in the perfect orthogonality condition it has

ρ2
i1j,i2j =

0, if i1 6= i2

1, if i1 = i2.
(4.9)

It is assumed that UEs send their uplink pilot sequence simultaneously and the BS received the

uplink pilot sequence from both the home cell and the other L− 1 cells synchronously, where
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βij,l hij,l

cell j

cell l

UE i

UE k

βkl,jhkl,j

Figure 4.3: Cell diagram of massive MIMO systems with L cells, K single-antenna UEs and a
large array of M antennas at BS

the received signal at BS j is expressed as

yj =

K∑
k=1

√
pu
kjβkj,jSkjhkj,j︸ ︷︷ ︸

cell j

+

L∑
l 6=j

K∑
k=1

√
pu
klβkl,jSklhkl,j︸ ︷︷ ︸

other L−1 cells

+nj

=
L∑
l=1

K∑
k=1

√
pu
klβkl,jSklhkl,j + nj , (4.10)

where yj ∈ CτM×1 is the received signal; pu
kj denotes the uplink transmit power; nj ∈

CτM×1 represents additive white Gaussian noise (AWGN) at the BS with elements nM ∈
CN (0, σ2

nIM ); Skj ∈ CτM×M denotes the matrix includes the pilot sequence from UE k to BS

j and Sk = sk ⊗ IM . Once the BS receives the uplink training sequences, the LS method is

applied for estimating CSI, where the estimated CSI of UE i is represented as

ĥij,j =
1√
pu
ij

STijyj

=
√
βij,jhij,j+

1√
pu
ij

 K∑
k 6=i

√
pu
kjβkj,jρij,kjhkj,j+

L∑
l 6=j

K∑
k=1

√
pu
klβkl,jρij,klhkl,j+STijnj

 .

(4.11)
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Equation (4.11) shows how the correlation between uplink training sequences influence the

accuracy of estimation result. If there is no pilot contamination exists, the desired CSI is only

affected by thermal noise. However, due to the limited coherence interval and large number

of UEs, pilot contamination is difficult to be eliminated. Therefore, an uplink training scheme

with mitigation of the pilot correlation becomes important to the system.

4.2.2.2 Multi-cell Downlink Transmission

It is assumed that the estimated CSI in uplink training is utilized in downlink transmission

because of channel reciprocity in TDD operation. The MRT scheme is applied in downlink

precoding, where the received noisy signal by UE i in cell j is expressed as

rij =
√
pd
ijβij,jh

H
ij,j(

K∑
k=1

hHij,jtij,jxij,j)︸ ︷︷ ︸
cell j

+
L∑
l 6=j

K∑
k=1

√
pd
ilβij,lh

H
ij,ltkl,lxkl,l︸ ︷︷ ︸

other L−1 cells

+zij

=
L∑
l=1

K∑
k=1

√
pd
ij,lβij,lh

H
ij,ltkl,lxkl,l + zij , (4.12)

where pd
ij is the downlink transmit power;

√
βij,jh

H
ij,j denotes the downlink CSI, which utilized

the uplink CSI; zij represents the AWGN and zij ∈ CN (0, σ2
wIM ); xkl,l represents the data

symbols streams to UE k in cell l from BS l and tkl,l is linear precoding vector where tkl,l =
ĥkl,l

‖ĥkl,l‖
.

4.3 Downlink Achievable Sum Rate

4.3.1 Single-cell Massive MIMO Achievable Sum Rate

As mentioned above, the law of large numbers in random matrix theory is utilized in analysing

the characteristics of the massive MIMO channel, which defines the asymptotic orthogonality

between channels because of the utilization of a large antenna array at the BS. If the assumption

is made that the number of BS antennas increase to infinity, the following results, known as
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asymptotically favourable propagation environment [27, 81, 88], is expressed as

lim
M→∞

1

M
hHi hj =

0, if i 6= j

1, if i = j.
(4.13)

The results in (4.13) can be applied to simplify the denominator of downlink precoding vector

‖ĥi‖, where

‖ĥi‖ =

√
‖ĥi‖2 =

√
ĥHi ĥi. (4.14)

The term ĥHi ĥi can be simplified as

ĥHi ĥi =
1√
pu
i

(
K∑

n1=1

√
pu
n1
βn1ρi,n1hn1 + SHi nj

)H
× 1√

pu
i

(
K∑

n2=1

√
pu
n2
βn2ρi,n2hn2 + STi nj

)

=
1

pu
i

K∑
n1=1

K∑
n2=1

√
pu
n1
βn1

√
pu
n2
βn2ρi,n1ρi,n2h

H
n1
hn2 +

1

pu
i

K∑
n1=1

√
pu
n1
βn1ρi,n1h

H
n1
SHi nj

+
1

pu
i

K∑
n2=1

√
pu
n2
βn2ρi,n2n

H
j Sihn2 +

1

pu
i

nHj SiS
T
i nj (4.15)

Then, E‖ĥHi ĥi‖ is expressed as

E‖ĥHi ĥi‖ =
1

pu
i

K∑
n1=1

K∑
n2=1

√
pu
n1
βn1

√
pu
n2
βn2ρi,n1ρi,n2E

[
hHn1

hn2

]
+

1

pu
i

E
[
nHj SiS

T
i nj

]
= βiM +

1

pu
i

( K∑
n1=n2 6=i

pu
n1
βn1ρ

2
i,n1

E
[
hHn1

hn1

]
+

K∑
n1 6=n2

√
pu
n1
βn1

√
pu
n2
βn2ρi,n1ρi,n2E

[
hHn1

hn2

]
+ E

[
tr(SHi njn

H
j Si)

])

= M

(
1

pu
i

K∑
n=1

(
pu
nβnρ

2
i,n + σ2

))
= Mαi,n. (4.16)

The UE received signal can be derived into the form of the desired signal plus the effective

noise, where the effective noise includes the intra-cell interference and thermal noise [79]. Let

gi =
√
pd
iβih

H
i ti, then the received signal of UE i is represented as

ri = E[gi]xi + z
′
i, (4.17)
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where z
′
i represents the effective noise and is expressed as

z
′
i = (gi − E[gi])xi +

 K∑
k 6=i

gkxk

+ zi. (4.18)

The expression of received signal in (4.17) and the effective noise in (4.18) follows the methods

proposed in [79, 92, 93]. It is assumed that for pilot-aided channel estimation, each estimated

instantaneous CSI is known by the BS. It is also assumed that the UEs know the expectation

of channel E[gi] not the instantaneous CSI. It is because the distribution of channel is straight-

forward to calculate. Refer to the instantaneous CSI, as the assumption has been made on

single-antenna UEs, the CSI between one UE and BS is a scaler. Consequently, for the detec-

tion of downlink signal at the UE side, the CSI is not as important as the detection in MIMO

systems. Following these assumptions, in [80], an ergodic downlink achievable rate of UE i is

proposed, which is given as

Rd
i =

(
1− τ

T

)
log2

(
1 + γd

i

)

=
(

1− τ

T

)
log2

1 +

(
E
[
hHi ti

])2
βip

d
i

Var
[
hHi ti

]
βip

d
i +

K∑
m 6=i

E
∣∣hHi tm∣∣2 βipd

m + σ2
D

 , (4.19)

where γi denotes the downlink SINR of UE i, and Var
[
hHi ti

]
is defined as Var

[
hHi ti

]
=

E|
(
hHi ti − E

[
hHi ti

])
|2. Based on equation (4.19), the following theorem is proposed with a

closed-form expression of downlink rate in single-cell massive MIMO system.

Theorem 1. Consider a single-cell massive MIMO system with TDD operation utilizing LS

method for uplink channel estimation and MRT method for downlink precoding, the following

rates are achievable for UE i in downlink transmission

Rd
i =

(
1− τ

T

)
log2

(
1 + γd

i

)
(4.20)

where γd
ij denotes the SINR of UE i. The closed-form expression of SINR γd

i is proposed and

expressed as

γd
ij =

Mβ2
i p

d
i

αi,n

(
βip

d
i +

K∑
m6=i

(
1 +

Mβip
u
iρ

2
m,i

pu
mαm,n

)
βipd

m + σ2
w

) , (4.21)
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with αi,n =
K∑
n=1

1
pu
i

(
βnρ

2
i,n + σ2

w

)
.

Proof. See Appendix.

The proposed closed-form expression can be utilized to study the downlink throughput of

single-cell massive MIMO system. The more important feature is that it clearly shows how

the number of BS antennas and intra-cell interference limits the system throughput.

4.3.2 Multi-cell Massive MIMO Downlink Achievable Sum Rate

The result of the asymptotically favourable propagation environment can also be applied in

deriving the downlink achievable sum rate in multi-cell scenario, which is expressed as

lim
M→∞

1

M
hHij,jhkj,j =

0, if i 6= k

1, if i = k.
(4.22)

The results shown in (4.22) are the channel of UE i and UE k in cell j. It can also be extended

into multi-cell case. Following this result, the term ĥHij,jĥij,j is simplified as

ĥHij,jĥij,j =
1√
pu
ij

 L∑
l1=1

K∑
n1=1

√
pu
n1l1

βn1l1,jρij,n1l1hn1l1,j + STijnj

H

×

1√
pu
ij

 L∑
l2=1

K∑
n2=1

√
pu
n2l2

βn2l2,jρij,n2l2hn2l2,j + STijnj


=

1

pu
ij

L∑
l1=1

K∑
n1=1

L∑
l2=1

K∑
n2=1

√
pu
n1l1

βn1l1,j

√
pu
n2l2

βn2l2,jρij,n1l1ρij,n2l2h
H
n1l1,jhn2l2,j

+
1

pu
ij

L∑
l1=1

K∑
n1=1

√
pu
n1l1

βn1l1,jρij,n1l1h
H
n1l1,jS

T
ijnj

+
1

pu
ij

L∑
l2=1

K∑
n2=1

√
pu
n2l2

βn2l2,jρij,n2l2n
H
j Sijhn2l2,j +

1

pu
ij

nHj SijS
T
ijnj (4.23)
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Consequently, E‖ĥHij,jĥij,j‖ can be simplified as

E‖ĥHij,jĥij,j‖

= βij,jM +
1

pu
ij

K∑
n1=n2 6=i

pu
n1jβn1j,jρ

2
ij,n1jM +

1

pu
ij

L∑
l1=l2 6=j

K∑
n1=n2

pu
n1l1βn1l1,jρ

2
ij,n1l1M +Mσ2

= M

(
1

pij,j

L∑
l=1

K∑
n=1

(
pu
nlβnlρ

2
ij,nl + σ2

))
= Mαij,nl (4.24)

As a result, the precoding vector tij,j from BS j to UE i in cell j can also be expressed as

tij,j =
ĥij,j√
Mαij,nl

. (4.25)

In a multi-cell scenario, the received signal at the UE side can also be interpreted as the desired

signal and effective noise, where the effective noise includes both possible intra-cell and inter-

cell interference plus thermal noise. Let gij =
√
pd
ijβij,jh

H
ij,jtij , then the received signal of UE

i in cell j is represented as

rij = E[gij ]xij + z
′
ij , (4.26)

where z
′
i represents the effective noise and is expressed as

z
′
ij = (gij − E[gij ])xij +

K∑
k 6=i

gkjxkj +
L∑
l 6=j

K∑
k=1

gklxkl + zij . (4.27)

The multi-cell ergodic downlink achievable rate of UE i in cell j is given as [80]

Rd
ij =

(
1− τ

T

)
log2

(
1 + γd

ij

)
, (4.28)

with the downlink SINR γd
ij expressed as

γd
ij =

(
E
[
hHij,jtij,j

])2
βij,jp

d
ij

Var
[
hHij,jtij,j

]
βij,jp

d
ij,j+

K∑
m 6=i

E
∣∣∣hHij,jtmj,j∣∣∣2βij,jpd

mj +
L∑
l 6=j

K∑
k=1

E
∣∣∣hHij,ltkl,l∣∣∣2βij,lpd

kl + σ2
D

(4.29)

Based on Equation (4.28), the following closed-form ergodic downlink achievable sum rate is

proposed.

Theorem 2. Consider a multi-cell massive MIMO system with TDD operation utilizing the LS
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method as uplink channel estimation and MRT method as downlink precoding, the following

rates are achievable for UE i of cell j in downlink transmission

Rd
ij =

(
1− τ

T

)
log2

(
1− γd

ij

)
(4.30)

where γd
ij denotes the SINR of UE i which is expressed as

γd
ij =

Mβ2
ij,jp

d
ij

αij,nm

(
βij,jp

d
ij +

K∑
m6=i

(
1 +

Mβij,jp
u
ijρ

2
mj,ij

pu
mjαmj,nm

)
βij,jp

d
mj+

L∑
l 6=j

K∑
k=1

(
1 +

Mβil,lp
u
ilρ

2
kl,ij

pu
klαkl,nm

)
βil,lp

d
kl + σ2

) ,
(4.31)

with αij,nm =
L∑

m=1

K∑
n=1

1
pu
ij

(
βnm,jρ

2
ij,nm + σ2

D

)
.

Proof. See Appendix.

The achievable rates expression given in Theorem 2 has clearly demonstrated how the system

spectrum efficiency might be affected by correlations between pilot sequence and number of

BS antennas. Both intra- and inter-cell interference will lead to non-zero correlations in the

denominator of SINR expression which degrades the achievable rate. To maximize the achiev-

able rate, the ideal case is that each UE assigned a uplink training sequence which is orthogonal

with each other and interference will vanish.

4.4 Pilot Reuse Scheme

The pilot reuse is a common scheme that utilized in the multi-cell massive MIMO system for

the pilot sequence distribution. Due to the limited length of the coherence interval, it is difficult

to assign an orthogonal pilot signal to each UE. As a result, non-orthogonal pilot codebooks

have to be adopted. If the orthogonal pilot codebook can satisfy the UEs in N cells, then the

remaining L − N cells are going to reuse these pilot sequences. The pilot reuse scheme that

utilized in this thesis is based on the traditional frequency division multiple access (FDMA)

with different reuse factors (RF) considered. There is a trade-off between RF and training over-

head. If a bigger RF value is utilized, there will be fewer UEs that suffer inter-cell interference
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and the downlink rate might be improved. However, a bigger RF value means a bigger training

overhead, which might limit the downlink transmission. The following closed-form expression

of downlink achievable sum rate with the pilot reuse scheme is proposed for the performance

analysis.

Corollary 1. If we assume the condition of perfect orthogonality between pilots and pilot reuse

factorRF is positive integer which is larger or equal to 1, the achievable downlink rate of each

UE with pilot reuse scheme for uplink channel estimation is given as

Rd,prij =
(

1− τ

T

)
log2

(
1− γd,prij

)
(4.32)

where γd,prij denotes the SINR of UE i in cell j using pilot reuse scheme which is expressed by

γd,prij =
Mβ2

ij,jp
d
ij

αij,nm

(
K∑
k=1

βij,jp
d
kj + ξl1 + ξl2 + ξl3 + σ2

D

) (4.33)

with

• ξl1 =
L− L

RF∑
l1 6=j

K∑
k1=1

βij,l1p
d
k1l1

• ξl2 =
L/RF∑
l2 6=j

K−1∑
k2=1

βij,l2p
d
k2l2

• ξl3 =
L/RF∑
l2 6=j

1∑
k3

(
1 +

Mβil2,l2p
u
il2

pu
k3l2

αk3l2,nl

)
βil2,l2p

d
k3l2

Proof. Under the assumption that pilot reuse factor RF is positive integer and RF ≥ 1, we

have the number of UEs who are assigned orthogonal pilots is
(
L− L

RF

)
×K+ L

RF ×(K − 1).

If there is perfect orthogonality between pilots, it comes to ρ = 0. The other L
RF UEs reuse the

pilot which comes to ρ = 1. As a result, equation (4.31) can be simplified and we can have the

closed-form expression of downlink achievable rate using pilot reuse scheme.

With given cell numbers and RF, the equation (4.32) clearly shows the impact to the downlink

achievable rate with different RF values.
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4.5 Grassmannian Line Packing based Pilot Design

Other than the pilot reuse scheme, the pilot codebook design can also be treated as a line

packing problem in an Grassmannian manifold. The GLP problem is to find a optimal packing

of N one-dimensional subspaces in a M -dimensional complex vector space by maximizing

the minimum pairwise distance between subspaces [94]. It is a classic mathematical problem

which has been well studied for downlink transmission for beamforming codebook design in the

conventional multi-user MIMO systems [95, 96]. Inspired by this application, it is considered

here in the pilot sequence design. In this section, we will introduce the GLP problem and

investigate the application to the pilot sequence design for uplink channel estimation.

Consider two 1-dimensional unit vectors wi and wj all belong to a matrix ΦM with wi ≡ wj .

The equivalence of two vectors can be seen as two lines with same length in a complex vector

space CM . The two lines can also be seen as two one-dimensional subspaces in CM . The set

of all the one-dimensional subspaces in CM is denoted as G(m, 1), which forms a Grassmann

Manifold. Assume that there are N one-dimensional subspaces in the Grassmann manifold

G(m, 1), the GLP problem is to find a codebook with optimally packing of these N subspaces,

i.e. the N subspaces are equally separated in space with the largest possible adjacent distances.

The GLP problem can be formulated as

max
si,sj∈G(m,1)

min
i 6=j

dc (si, sj) , (4.34)

where dc denotes the distance between vector si and sj . In the Grassmann manifold, different

metrics have been proposed for defining the distance between codewords. One is the choral

distance. For the choral distance between two 1-dimensional subspace is expressed as

dch(si, sj) = sin (θ1,2) =
√

1− |sHi sj |2. (4.35)

The other one is the Fubini-Study distance, which is expressed as

dfs(si, sj) = arccos |det
(
sHi sj

)
|. (4.36)

The choral distance is chosen here as the distance metric, because of its previous application in

downlink achievable rate analysis [97].

The GLP method can also be utilized in pilot sequence design. If each UE is assigned a training
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SINRi,j =
βi,jpi,j

βi,j

(
ρ2
G

K∑
k 6=i

pk,j +
Kρ2G+σ2

w
M

K∑
m=1

pm,j

)
+

L∑
l 6=j

K∑
k=1

βi,lpk,l
(M+K)ρ2G+σ2

w
M +

Kρ2G+σ2
w

M σ2
i

(4.37)

sequence with length τ and there are totally K UEs in the L cells, it forms a τ ×K matrix with

the pilot sequence as the row vector. Due to the limited length of τ , it is not possible to assign

each UE with orthogonal pilots in a TDD massive MIMO system. As a result, in the pilot

reuse scheme [83], only some of the UEs are assigned with orthogonal pilots and the other UEs

reuse these pilots. However, the pilot sequences can be treated as packing K one-dimensional

subspaces in a G(τ, 1) Grassmann manifold. With maximum adjacent distances between pilots,

the correlations between pilot sequences will be minimized. The correlation between pilot

sequence s1 and s2 can be written as

ρ2
s1,s2 = |sH1 s2|2 = 1− d2

c(s1, s2). (4.38)

The distance between codewords is upper bounded by the simplex and the orthoplex bound

[94, 98]. The choral distance between codeword wi and wj is bounded as follows,

d2
ch (si, sj) ≤


(τ−1)
τ · K

K−1 , if K ≤ τ(τ + 1)/2

(τ−1)
τ , if K > τ(τ + 1)/2.

(4.39)

The above upper bound of distance can be utilized in bounding the correlations of the pilot

sequences scheme with GLP. Consequently, we can estimate the achievable sum rate with the

proposed pilot sequence design.

4.6 Simulation Results

In this section, numerical results are going to be presented. The aim is to verify the proposed

closed-form expressions of downlink achievable sum rate for single-cell systems, multi-cell

systems and pilot reuse scheme. Additionally, the performance of pilot reuse scheme and GLP-

based codebook design will be compared.

The numerical results are generated by the following steps. Firstly, UEs are generated and
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Number of antennas at BS, M 64 ≤ M ≤ 256
Number of single antenna UEs, K 8 ≤ M ≤ 64
Cell radius 500 m
UE minimum distance from BS 25 m
Carrier frequency 1.9 GHz
System bandwidth 20 MHz
Maximum UL power,PULmax 200 mW
Maximum DL power,PDLmax 40 W
Thermal noise, σ2

n -174 dBm/Hz
Mobility speed 60 km/H
Path loss model 35.3 + 37.6 log10 d dB
Coherence bandwidth 100 kHz

Table 4.1: Simulation parameters for the results in this section

randomly located in each cell. Secondly, pilots for uplink channel estimation are generated.

For the pilot reuse scheme, the Hadamard matrix is generated as the orthogonal pilot codebook

with the vector length of τ . For the non-orthogonal pilot codebook, the algorithm proposed by

[99] is utilized for generating the GLP-based pilot codebook. Thirdly, the pilot sequences are

assigned to UEs for channel estimation. Fourthly, the estimated CSI is utilized for downlink

transmission and we can calculate the downlink achievable sum rate. The downlink SINR

of simulation results for each channel realization are calculated by utilizing Equation (4.19)

and Equation (4.28) for single- and multi-cell respectively. The downlink SINR of analytical

results for each channel realization are calculated by utilizing Equation (4.21) and Equation

(4.31). Both the downlink achievable sum rate of simulation and analytical results are averaged

over 10,000 channel realizations.

4.6.1 Verifications of Proposed Analytical Expressions

Firstly, the validity of single-cell analytical downlink achievable sum rate proposed in Theorem

1 will be verified. Consider a single-cell massive MIMO system with hexagonal shape cell and

single-antenna UEs randomly located. Figure.4.4 shows an example layout of simulated single-

cell massive MIMO system with K = 8, where the red triangle and blue squares represent BS

and UEs respectively. The simulation parameters are listed in Table 4.1. The uplink pilot

codebook is a normalized τ × K Hadamard matrix, where column vector is assigned to each

UE. The pilot sequence length τ is equal to the number of UE K. Both the UL and DL power

utilize the maximum power for the sake of simplicity.
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Figure 4.4: Illustration of single hexagonal cell layout with K = 8

Figure.4.5 shows the downlink achievable sum rate versus number of BS antennas. Four dif-

ferent configurations of K are considered with K = τ = 8, 16, 32, 64. The analytical rate

values are calculated by adopting equation (4.20) in Theorem 1 and the simulation rate values

are based on 10,000 channel realizations. It can be observed that all the downlink achievable

sum rate increase linearly with the number of antennas. The proposed analytical expression

provides an accurate approximation of the downlink rate as the analytical results well matched

with the simulation results.

Secondly, the validity of analytical multi-cell downlink achievable sum rate proposed in Theo-

rem 2 will be verified. The simulation considers 19 cells system with a central cell surrounded

by two layer of cells. Figure.4.6 shows an illustration of the system layout withK = 8 for each

cell. The case of RF = 1 is considered in the simulation. Each cell has same number of UE

and shares the same uplink codebook with τ = K. This is illustrated in Figure.4.6 by utilizing

same fill color (i.e. white). The configuration of simulation parameters is same with single-cell

case, which is listed in Table 4.1.

Figure.4.7 shows the downlink achievable sum rate with RF = 1 versus number of BS anten-

nas. Again, four different configurations of K are considered with K = 8, 16, 32, 64 for each

cell. The analytical results are calculated by adopting equation (4.30) in Theorem 2 and simu-

lation results from equation (4.28) with 10,000 channel realizations. It can be observed that the

downlink achievable sum rate increases linearly with M . Additionally, the proposed analytical

results match well with the simulation results, which has proofed the validity of Theorem 2.
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Figure 4.5: Average downlink achievable sum rate versus the number of BS antennas M , with
τ = K = 8, 16, 32, 64
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Figure 4.6: Illustration of multi-cell massive MIMO systems with L = 19, RF = 1. The
fill color uses white only represents the assignment of one set orthogonal pilot
sequences in each cell. In this example, K = 8.

81



Achievable Rate Performance of TDD Multi-cell Massive MIMO with Non-Orthogonal Pilots

Number of BS antennas, M
50 100 150 200 250 300

D
ow

nl
in

k 
ac

hi
ev

ab
le

 s
um

 r
at

e 
(b

it/
s/

H
z)

200

400

600

800

1000

1200

1400

1600

1800

2000

K= ==8
K= = = 16
K= = = 32
K= = = 64
Simulation

Figure 4.7: Average downlink achievable sum rate versus the number of BS antennas M , with
L = 19, τ = K = 8, 16, 32, 64 and RF = 1

pilot length,τ K in white cell K in green cell K in yellow cell Total number of UE
τ = 8 K = 2 K = 3 K = 3 50
τ = 16 K = 5 K = 5 K = 6 101
τ = 32 K = 10 K = 11 K = 11 202
τ = 64 K = 20 K = 22 K = 22 404

Table 4.2: UE distribution when RF = 3

Thirdly, the validity of the proposition of downlink achievable sum rate with pilot reuse scheme

in Corollary 1 is verified. Figure.4.8 illustrates the layout of simulated system with RF = 3.

Three different colors are applied in the layout to indicate the reuse of mutual orthogonal pilot

sequences. The simulation parameters are consistent with the previous simulations. Three

configurations of τ are considered with τ = 8, 16, 32, 64 as the length of orthogonal pilot

codebook. The UE distribution in different cells is listed in Figure.4.9 shows the downlink

achievable sum rate with RF = 3 versus number of BS antennas. The analytical results are

calculated by adopting equation (4.32) in Corollary 1 and the simulation results are calculated

by adopting equation (4.28). It can be observed that the analytical results match well with the

simulation results, which again shown the validity of the proposed analytical expression.
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Figure 4.8: Illustration of multi-cell massive MIMO systems with L = 19, RF = 3. Each
fill color represents the assignment of one set orthogonal pilot sequences. In this
example, K = 8.

Number of BS antenna, M
50 100 150 200 250 300

D
ow

nl
in

k 
ac

hi
ev

ab
le

 s
um

 r
at

e 
(b

it/
s/

H
z)

200

300

400

500

600

700

800

900

1000

1100

1200

K= ==8
K= ==16
K= ==32
K= ==64
Simulation

Figure 4.9: Average downlink achievable sum rate versus the number of BS antennas M , with
L = 19, τ = K = 8, 16, 32, 64 and RF = 3
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4.6.2 Performance Comparison of GLP-based Codebook Design and Pilot Reuse

Scheme

In the previous section, the proposed analytical achievable downlink rate of multi-cell massive

MIMO systems have been verified. Simulation results have shown the validity of the propo-

sitions. In this section, the comparison of achievable downlink rate of proposed GLP-based

uplink codebook design and pilot reuse scheme will be presented.

The performance comparison considers not only the average downlink achievable sum rate,

but also the rate of both cell central and edge UEs. The classification method in each cell is

consistent, which is compared with the following threshold βtj [83]

βtj =
ϕ

K

K∑
i=1

β2
ij , (4.40)

where ϕ denotes the coefficient that defined based on the system configurations. The ϕ is

chosen as 0.2 in this thesis. As a result, the classification of central and edge UE in cell j is

expressed as β
2
ij ≥ βtj , central UE

β2
ij < βtj , edge UE

. (4.41)

The system parameters are consistent with the previous simulation of RF = 3. Figure.4.10

shows the average downlink achievable sum rate versus the number of BS antennas. The GLP-

based design utilizes the codebook generated from the algorithm proposed in [99], which has

constant modulus and a finite alphabet (i.e.phase-shift keying (PSK)). It can be observed that the

GLP-based pilot codebook outperforms the pilot reuse scheme. Additionally, with the increase

of τ , the rate gain becomes more significant. In the case of τ = 8, the average improvement

is about 0.5%. When τ increases to 16 and 32, the average improvement is about 3.4 %. In

the case of τ = 64, the rate improvement becomes 4.7%. The reason is due to the increase of

choral distance between lines in Grassmannian manifold along with the vector space dimen-

sion. In another word, the correlation between codewords decreases as indicated by the upper

bound. Figure.4.11 shows the downlink spectrum efficiency of both central and edge UEs. The

simulation considers τ = 32 with M = 128, 256. By observing at the 10th percentile, i.e., the

90% likely minimum UE rate, the improvement of central UE is about 70% and nearly two fold

of edge UEs.
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Figure 4.10: Comparison of average downlink achievable sum rate versus the number of BS
antennas M between GLP-based pilot codebook and pilot reuse scheme, with
L = 19, τ = K = 8, 16, 32, 64 and RF = 3

4.7 Conclusion

This chapter has investigated the achievable sum rate of multi-cell massive MIMO system with

TDD operation. Firstly, closed-form expressions of downlink rate for both single-cell and

multi-cell configurations of massive MIMO systems were proposed. The LS method and MRT

scheme were utilized for uplink channel estimation and downlink precoding. The proposed

expression clearly shows how the number of BS antennas and correlation between uplink pilots

influence the downlink achievable rate. Simulation results have shown the validity of propo-

sitions. Secondly, closed-form expression of downlink rate for massive MIMO systems with

pilot reuse scheme as uplink pilot scheduling was proposed. This proposition shows the rate

performance with any given reuse factors. Thirdly, the downlink rate performance of the Grass-

mannian line packing based uplink pilot codebook has been investigated. Comparisons have

been made between pilot reuse scheme and Grassmannian line packing based pilot codebook

design by utilizing the proposed expressions. The simulation results show that the Grassman-

nian line packing pilot codebook offers significant rate improvement.
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Figure 4.11: The downlink spectrum efficiency comparison of central and edge UE

86



Chapter 5
Energy-efficient power allocation in

multi-cell massive MIMO systems

The performance benefits offered by massive multiple-input multiple-output (MIMO) systems

and the deployment of large number of base station (BS) antennas that are capable of increasing

system capacity and robustness have been discussed in Chapter 2 and 4. However, a further

question that naturally arises is how energy efficient is the massive MIMO systems? While the

large number of antennas at BS can dramatically increase capacity performance, like a double-

edge sword, the restive power consumption might become problematic, since it is considered to

be as important in communication systems design as capacity. In [100], it was pointed out that

BS consumes 80% of the energy in cellular network operations, which means that the research

into energy saving in massive MIMO systems is urgently required.

This chapter describes a general framework of optimization for maximizing global energy ef-

ficiency (EE) in massive MIMO systems, whereby the optimization starts with maximizing

minimum user-equipment (UE) rate which aims to improve the quality-of-service (QoS) and

provide a feasible condition for the EE maximization problem. Secondly, to solve the EE op-

timization which is considered to be a non-concave problem, the fractional programming and

successive convex approximation (SCA)-based algorithm will be used to find a local optimal

solution with affordable complexity.

The remainder of this chapter will consist of the following:

1. In Section 5.1, the background and purpose of this chapter will be described and a brief

literature review of energy efficiency in both convention MIMO and massive MIMO

systems will be given.

2. In Section 5.2, the system mode and the EE problem will be given.

3. In Section 5.3, a detailed explanation of the maximization of minimum UE rate will be

presented.
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4. In Section 5.4, an explanation of the fractional programming and SCA-based algorithm

will be given.

5. In Section 5.5, the simulation results, together with the corresponding analysis will be

demonstrated, and then will bring the chapter to its conclusion in Section 5.6.

5.1 Introduction

The development of cellular network has grown rapidly over the last twenty years. According to

the report in [100], the CO2 emission from information and communication technology weights

approximately 2% in 2011, but it is predicted to increase dramatically up to 2021 due to the

data communication demands [3]. Massive MIMO is an advanced cellular network architecture

which is regarded to be a promising technology for the fifth generation of mobile phone mobile

communication technology standards network (5G) [71, 73–75]. Consequently, the research

into the EE in massive MIMO systems has become very important and it has attracted great

interest from both academia and industry.

The optimization of EE, which is a ratio of sum rate over sum energy consumption as a benefit-

to-cost ratio, generally utilizes fractional programming due to the natural of fraction expression.

However, due to the effect of pilot contamination, this method is not suitable for optimizing

massive MIMO systems. It is because the sum rate expression in the numerator is generally a

non-convex problem, which can not be solved within polynomial time.

Related work: The concept of a green cellular network was proposed in [101], where the im-

portance of developing mechanisms for reducing energy consumption was addressed. The re-

duction at BS side can be implemented in two different ways, (i) hardware improvement, and

(ii) transmission protocol/allocation scheme development. This thesis will focus on the latter.

The statistics of daily data loads is unevenly distributed across the time periods and cells [102].

Consequently, the power consumption of the BS can be adaptive to the actual demands for the

sake of energy efficiency. The adaptation of traffic loads is a popular research topic belongs to

the catalogue of transmission protocol scheme, where under the condition of satisfying QoS,

the operation mode of BS switches based on the varying traffic demands. In the off-peak time

slots, such as midnight, BS can turn to sleep mode (also called lower power mode or deep

idle mode) for the purpose of saving energy[102]. This adaptation allows for straightforward

88



Energy-efficient power allocation in multi-cell massive MIMO systems

implementation in an urban cellular system, but its drawback is that a selection has to be made

between high performance and energy efficiency.

In [103], a mode switching algorithm between MIMO and SIMO was proposed. The results

showed that transmission energy can be saved 50% by utilizing dynamic mode. The collabo-

ration between BSs was also proposed for the adaptation of traffic loads [104]. Various coop-

erative initiatives were also recommended for the sake of increasing coverage and services for

off-peak period. Additionally, an artificial neural network (ANN) was utilized for predicting

traffic statistics [105], and BSs can dynamically change the working mode according to the

prediction.

Other than the propositions of different transmission protocol, optimization techniques are also

applied for resource allocation. Based on the cell condition, BSs optimally or sub-optimally

allocate resource based on the calculation results from optimization algorithms. The object of

optimization can vary according to specific requirements, such as the maximization of through-

put for the purpose of system performance, or the maximization of EE as an energy saver. An

optimization based scheduler for maximizing the EE in a MIMO system was proposed in [106]

and a trade-off between the EE and the number of BS antennas is discussed, where the numer-

ical results demonstrate that the system EE decrease with the number of antennas. In [107],

a gradient-based method is also adopted for the optimization of EE in conventional MIMO

systems, with close performance to the optimal linear solution. The Dinkelbach method is a

powerful algorithm that is usually utilized for EE optimization in conventional MIMO systems

[108–110]. Simulation results have shown that the optimal solution can be achieved within

polynomial-time complexity.

There is also great research interest in EE optimization in massive MIMO systems; for in-

stance, in [81] the EE problem in orthogonal frequency division multiple access (OFDMA)

based system was formulated. An iterative algorithm that based on the Dinkelbach’s method

was proposed to optimize the power, subcarrier and antenna allocation policies. Also in [111],

in order to maximize the EE, the optimal configuration of BS antennas and UEs inside each cell

was focused on; a new power consumption model was proposed and closed-form expressions

of EE were obtained for comparisons. In [112], the downlink EE performance was investigated

and results showed that the circuit power consumption per antenna significantly influences the

EE. In [113], a single-cell downlink power allocation algorithm was proposed to achieve EE

and both transmit and circuit power were considered. In [114] a power allocation algorithm for
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maximizing EE in massive MIMO systems was proposed.

Contributions: A general framework was proposed for the EE maximization in the massive

MIMO systems with time-division-duplex (TDD) operation, where the minimum UE rate was

firstly maximized in order to increase the QoS and provide a feasible constrain for the EE

optimization latter. It is noticeable that the massive MIMO system is an interference-limited

system, the optimization of EE was considered to be non-concave, which is a non-deterministic

polynomial-time hard (NP-hard) problem. A combination of fractional programming and suc-

cessive convex approximation (SCA)-based algorithm was proposed in order to tackle the EE

maximization iteratively and efficiently. The local optimal solution of downlink power alloca-

tion can be found with acceptable complexity. Comparisons were made between the downlink

power with equal division and the power allocation after the optimization. Furthermore, it con-

sidered the case of the GLP-based codebook design and the pilot reuse scheme. Numerical

results proofed the validity of the proposed optimization methods, where the EE has been sig-

nificantly improved. Additionally, it showed that the minimum UE rate was highly improved

after the proposed optimization. The EE of the GLP-based codebook design also performed

better thanthe pilot reuse scheme.

5.2 Energy Efficiency and Optimization Problem Formulation

For the purpose of this section, the general concept of efficiency (EE) was defined as the output

with given resource that can be seen as a “benefit-cost ratio”. Hence, high efficiency means

that more output per unit of resource. In terms of the massive MIMO systems, the “benefit” is

the amount of data that is successfully transmitted within a time period, while the “cost” is the

total power consumption that is required for transmission. Consequently, the EE (measured in

bit/Joules) of the massive MIMO systems in this thesis is defined as a fractional expression with

the downlink achievable sum rate (measured in bit/seconds) over the total power consumption

(measured in Watts, where Watts = Joules/second), which is expressed as

Energy Efficiency =
Downlink achievable sum rate

Total power consumption
. (5.1)

It is noticeable that the EE can not only be expressed as a fractional expression, but also with

a differential form, as mentioned in [110]. The reason for choosing the fractional form in this

thesis is to try to be consistent with the common definition of spectral efficiency, which is
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Figure 5.1: Energy efficiency versus transmit power pt, with Pc = 1W

defined as the total number of bits over the system bandwidth [115].

The objective of this work was to develop an efficient power allocation algorithm to jointly

allocate the power to all the UEs in the multi-cell massive MIMO systems, and meanwhile

satisfy the transmit power limitation and minimum UE rate constraints, in order to maximize

the EE as defined in (5.1). To be more specific, it is aiming to find a “balance” point of the

achievable rate and the transmit power. Figure.5.1 shows a simple example of EE versus the

transmit power, which is aiming to illustrate the trade-off between achievable rate and power

consumption. The EE is expressed as

EE =
log2 (1 + pt)

pt + Pc
, (5.2)

where pt denotes the transmit power and Pc is the circuit power. In this example, Pc is a

fixed constant and assumed to be equal to 1W. Figure.5.1 illustrates how the EE varies with the

transmit power. Note that the EE is not monotonically increased with the transmit power and

in this example the optimal pt is equal to 1.7W, which means the rate and power meets the best

trade-off when the transmit power is set to 1.7W.

The simple example showed here is to illustrate why the optimization of EE is essential. In
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the following sections, the mathematical formulation of the EE for multi-cell massive MIMO

systems with TDD operation will be presented, which starts with the power consumption mod-

elling.

5.2.1 Power Consumption Model

To formulate the EE maximization problem, the total power consumption of Ptot the system

will be first modelled, where Ptot is expressed as

Ptot = Pu + Pd, (5.3)

where Pu and Pd denotes the total power for the uplink and downlink transmission respectively.

In terms of the total power consumption model for the uplink transmission, it includes: (i)

the transmit power for transmitting uplink pilot of single antenna UEs, and (ii) the circuit and

signal processing power associated with transmission of uplink pilot. Without loss of generality,

it follows the assumption below

Assumption 1. For all the single-antenna UEs in the multi-cell massive MIMO systems with

TDD operation, it is assumed that all the UEs have the same power amplifier (PA) efficiency,

circuit and signal processing power consumption for each coherence interval. For all the BSs,

it follows the assumptions below

1. All the BSs have the same PA ratio, circuit and signal processing power consumption for

each coherence interval.

2. Each transceiver serves one antenna at the BS.

Consequently, following the Assumption 1, the total power consumption for the uplink trans-

mission Pu is defined as

Pu =

L∑
l=1

K∑
k=1

τ

T

pu
kl

ηUE︸ ︷︷ ︸
uplink transmit power

+ L ·K · pu
c︸ ︷︷ ︸

uplink circuits and
signal processing power

, (5.4)

where pu
kl denotes the uplink transmit power of UE k in cell l and k ∈ K, l ∈ L, ηUE is the PA

efficiency of UE, τ
T p

u
kl denotes the transmit power for uplink pilot transmission, pu

c represents

the circuits and signal processing power of UEs.
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Figure 5.2: Block diagram of BS transceiver [2]

After the formulation of total power consumption of uplink transmission, it will focus on the

total power consumption model for BS in downlink transmission Pd, which includes (i) the

downlink transmit power, and (ii) the circuit and signal processing power for the BS in receiving

and transmitting signal. The Pd is expressed as [2, 114]

Pd =
1

σBS

(
L∑
l=1

K∑
k=1

(
1− τ

T

) pd
kl

ηBS
+ L ·M · pd

c

)
, (5.5)

where pd
kl denotes the downlink transmit power for UE k by the BS in cell l and k ∈ K, l ∈ L,

ηBS denotes the PA efficiency and σBS represents the loss factors of BS, which is expressed as

σBS = (1− σDC) (1− σMS) (1− σcool) , (5.6)

where σDC, σMS and σcool represents the loss factor due to (i) direct-current (DC) to DC power

supply, (ii) mains supply indicating Alternating Current (AC) to DC unit and (iii) cooling sys-

tem respectively [114] [2]. The pd
c is the circuit and signal processing power consumption of

BS, which is modelled as

pd
c = pd

c,dac + pd
c,mix + pd

c,filt + pd
c,syn + pd

bf, (5.7)

where pd
c,dac, pd

c,mix and pd
c,filt represents the circuit power consumption of each BS antenna for

the operation of (i) digital-analogue-converting, (ii) mixing, and (iii) filtering [103]. The pd
c,syn

and pd
bf represents the consumption of frequency synthesizer and beamforming respectively.

Figure 5.2 shows a simplified block diagram of the BS transceiver structure [2], with the BB
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Parameter Description
Pu Total uplink power consumption
pu
kl Uplink transmit power from the UE k in cell l

ηUE Power amplifier efficiency ratio of UE
pu

c Total Circuit and signal processing power consumption of UE

Table 5.1: Power model parameters for the uplink in multi-cell massive MIMO systems

Parameter Description
Pd Total downlink power consumption
pd
kl Downlink transmit power to the UE k from BS l
ηBS Power amplifier efficiency of BS
σBS Loss factors of BS
σDC Loss factor from direct-current to direct-current power supply
σMS Loss factor from main supply
σcool Loss factor from cooling
pd

c Total circuit and signal processing power consumption of BS
pd

c,dac BS power consumption of digital-analogue-converting
pd

c,mix BS power consumption of mixing
pd

c,filt BS power consumption of filtering
pd

c,syn BS power consumption of synchronization
pd

c,syn BS power consumption of beamforming

Table 5.2: Power model parameters for the downlink in multi-cell massive MIMO systems

denoting the baseband units. It is noticeable that the BS transceiver can be generally divided

into three modules, which are

1. The BB unit: the power consumption from the operations of signal processing are pro-

duced from this unit, and it is represented by pd
c .

2. The small radio frequency transceiver plus the PA units: the downlink transmit power

is influence by the PA efficiency, because the PA units are intending to prevent adjacent

channel interference, however, it has low efficiency, which is represented by ηBS.

3. The power loss from the combination of power supply units and the system cooling units

are modelled with σBS.

For the sake of understanding, the power model parameters for the uplink and downlink trans-

mission utilized in this thesis have been listed in Table 5.1 and Table 5.2 respectively. In terms

of the typical values of the parameters, they are listed in Table 5.3 along with the references.
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Following the formulation of the total power consumption of the system, the problem of maxi-

mizing the EE can be mathematically formulated in the next section.

5.2.2 Problem Formulation

The EE is defined as

EE
(
pu
kl, p

d
kl

)
=

L∑
l=1

K∑
k=1

(
1− τ

T

)
log2

(
1 + γkl

(
pu
kl, p

d
kl

))
(

L∑
l=1

K∑
k=1

τ
T

pu
kl
ηUE

+ L ·K · pu
c

)
+

(
1
σBS

(
L∑
l=1

K∑
k=1

(
1− τ

T

) pd
kl
ηBS

+ L ·M · pd
c

))
(5.8)

where γkl denotes the SINR which utilizes the proposed SINR expression in Equation (4.31).

As the EE is defined equation (5.8), power allocation will be applied on both uplink and down-

link transmit power for maximizing the EE of systems. The optimization problem can be for-

mulated as

maximize
pu
kl,p

d
kl

EE
(
pu
kl, p

d
kl

)
(5.9a)

subject to 0 < pu
kl ≤ pu

max , ∀ (k, l) ∈ (K,L) (5.9b)

pd
kl ≥ 0, ∀ (k, l) ∈ (K,L) (5.9c)
K∑
k=1

pd
kl ≤ pd

max , ∀ (l) ∈ (L) (5.9d)

RDkl
(
pu
kl, p

d
kl

)
≥ ζklRmin , ∀ (k, l) ∈ (K,L) , (5.9e)

where pu
max and pd

max are the maximum uplink and downlink transmit power constrain at UE

and BS side due to the hardware limitations, Rmin represents the minimum downlink rate that

guarantees the QoS, ζkl is a random scaler between 0 and 1. In (5.9), Constraint (5.9b) ensures

that the uplink power is less or equal to the maximum limitation but larger than 0. Constraint

(5.9c) and (5.9d) ensure that the downlink power to each UE is larger or equal to 0, and the sum

power to all the UEs in one cell meets the maximum limitation. Constraint (5.9e) represents that

the downlink achievable rate of each UE needs to larger or equal to the pre-defined minimum

UE rate.

It is noticeable that the Problem (5.9a) that the maximization of EE is challenging to solve

directly. The Problem (5.8) has a ratio form with a fractional structure and it belongs to the
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fractional programming problem, it can not be directly solved with the existing algorithms

belongs to the fractional programming theory [110, 116]. If the optimization problem has a

concave and convex function in the numerator and the denominator respectively, it can be solved

efficiently with a guaranteed polynomial-time complexity. However, it can be observed that the

numerator in Problem (5.9a) and the Constraint (5.9e) includes the downlink achievable sum

rate of a multi-cell massive MIMO systems, which is a difference of two concave functions.

And it is noticeable that the optimization problem with difference of two concave functions is

generally non-concave and challenge to find the globally optimal solution. In this thesis, the

combination of the fractional programming and the SCA method are proposed to allocate the

power effectively in order to achieve the optimal EE.

The proposed optimization method starts with the reformulation of (5.9), which aims to convert

the variables in equation (5.8) into vector form. The purpose of conversion for the algorithm

is for the jointly allocation of the transmit power for all the UEs in the multi-cell scenario.

Following this reformulation, the optimization focuses on one single power vector, rather than

multiple scaler power values.

In terms of the downlink achievable sum rate, the problem utilizes the proposition in Theo-

rem 2. By observing the equation, it is noticeable that the jointly optimization of both uplink

and downlink power for multi-cell massive MIMO systems is very complex, which is difficult

for practical application. For the sake of solving the problem efficiently, it is assumed that all

the UEs utilize full power for the transmission of uplink training sequences. It is because by

observing the downlink SINR expression in equation (4.31), it can be found that the down-

link achievable sum rates increase monotonically with the uplink power. Consequently, the

optimization only considers the downlink transmit power as the variable, which is expressed as

p ,
[
pd

1l, p
d
2l, · · · , pd

kl

]T ∈ R(LK×1)
+ , (5.10)

where p is the vectors with elements of the downlink power for each UE. Consequently, the

downlink SINR expression in equation (4.31) is reformulated in the following definition.

Definition 1. The downlink SINR of UE i in cell j is reformulated as

γij (p) =
zTijp

bTijp + σ2
n
, (5.11)
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with zij ,
[
0, 0, · · · , M

αij,nj
β2
ij,j , 0, 0, · · ·

]T
∈ R(LK×1)

bij ,

[
0, 0, · · · , βij,j ,

K∑
k 6=i

(Mβij,jρ
2
kj,ij+αkj,nm)

αkj,nm
βij,j ,

L∑
l 6=j

K∑
k=1

(Mβij,lρ
2
kl,ij+αkl,nm)

αkl,nm
βij,l, · · ·

]T
,

where zij is a LK × 1 all zero vector except for one corresponding position. The bij ∈
RLK×1 is similarly defined, but for multiple non zero entries. For example, in terms of the

the calculation of γij , it has pd
ij in the numerator. Consequently, the non zero entry in zij

will be M
αij,nj

β2
ij,j and all the other entries will be zero. Then, the numerator of γij equals to

M
αij,nj

β2
ij,jp

d
ij . In terms of bij in the denominator, it is similarly defined.

The total power consumption of the system can also be reformulated as

Psum (p) = Pu +

(
1

σBS

(
L∑
l=1

K∑
k=1

cTη p + L ·M · pd
c

))
, (5.12)

where cη is a LK × 1 vector with all the entries are
(
1− τ

T

)
1
ηBS

. Following the reformulation

of the SINR and utilization of fixed uplink power, the Problem (5.9a) can be simplified as

maximize
p

EE (p) =

L∑
l=1

K∑
k=1

(
1− τ

T

)
log2 (1 + γkl (p))

Pu +

(
1
σBS

(
L∑
l=1

K∑
k=1

cTη p + L ·M · pd
c

)) (5.13a)

subject to tTklp ≥ 0, ∀ (k, l) ∈ (K,L) (5.13b)
K∑
k=1

tTklp ≤ pd
max , ∀ (l) ∈ (L) (5.13c)

Rd
kl (p) ≥ ζklRmin , ∀ (k, l) ∈ (K,L) , (5.13d)

where tkl , [0, 0, · · · , 1, 0, 0, · · · ]T is a vector with KL × 1 length and all zero elements but

unit elements at corresponding position.

Compared with the Problem (5.9), the reformulated problem in (5.13) is more straightforward

to understand. More importantly, the aim of the optimization algorithm is to jointly optimize

the downlink transmit power for all the UEs of the cell, and it can be easily achieved after the

reformulation. Also, the reformulated problem is suitable for utilizing the CVX [117] to solve

it. In the following section, the optimization of the minimum UE rate will be considered. It is

aiming not only to maximize the QoS for all the UEs, but also provide a feasible constraint for

the EE optimization in the varying quality propagation environment.
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5.3 Optimization of Max-min Rate

To solve the problem of EE maximization, the first step is to maximize the minimum UE rate,

Rmin. As the constraint that shown is in (5.13d), a fixed value of Rmin is obviously not suitable.

It is because the UE positions and propagation environment are always changing, where the

minimum UE rate also varies. For example, the cell edge UEs may suffer strong interference

which might influence the channel estimation quality and therefore the downlink transmission

rate might be reduced. In order to tackle the Problem (5.13a), a proper constraint value of

minimum UE rate is required at the beginning of EE maximization. Moreover, by maximizing

the minimum UE rate, it solves the feasibility of EE optimization problem. The maximized

minimum UE rate is the best downlink achievable rate that can be reached for a given channel

realization. Consequently, it plays the role as an “upper bound” of the UE rate and the constraint

of the maximized UE rate times a random scaler guarantees the feasibility of each iteration in

the optimization algorithm.

On the other hand, fairness should also be considered in the system design. The object of

fairness is to enhance the minimum UE rate, which improves the QoS of UE. The maximization

problem of the minimum UE rate is formulated as follows

maximize
P

min
k,l

Rd
kl(p) (5.14a)

Subject to tTklp ≥ 0, ∀ (k, l) ∈ (K,L) (5.14b)
K∑
k=1

tTklp ≤ pd
max , ∀ (l) ∈ (L) . (5.14c)

To solve Problem (5.14a), it can be transferred into a epigraph form, which is commonly used

for solving concave optimization problem [116]. The epigraph form is a reformulation of the

concave problem by replacing the original objective function with a new variable and an equal

constraints. Consequently, the Problem (5.14a) can be reformulated as

maximize
x ,p

x (5.15a)

subject to Rkl(p) ≥ x ,∀ (k, l) ∈ (K,L) (5.15b)

tTklp ≥ 0, ∀ (k, l) ∈ (K,L) (5.15c)
K∑
k=1

tTklp ≤ pd
max , ∀ (l) ∈ (L) , (5.15d)
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where x is the introduced variable. It can be found that Problem (5.15) is a linear programming

problem and it is concave. It can be solved by the common optimization method, e.g. CVX,

where the proof of concave is presented below.

Proposition 1. The Problem (5.15) is linear programming problem.

Proof. The constraint (5.15b) can be reformulated as follows

(
1− τ

T

)
log2

(
1 +

zTijp

bTijp + σ2
n

)
≥ x

log2

(
1 +

zTijp

bTijp + σ2
n

)
≥ x(

1− τ
T

)
zTijp

bTijp + σ2
n
≥ 2

x

(1− τT ) − 1 (5.16)

Let y , 2

x

(1− τT ) − 1, then equation (5.16) can be reformulated as

zTijp ≥ ybTijp + yσ2
n(

zTij − ybTij
)
p ≥ yσ2

p ≥ yσ2(
zTij − ybTij

) (5.17)

As a result, the reformulation of constraint (5.15b) proofed that the Problem (5.15) is a linear

programming problem.

After the maximization of minimum UE rate, it provides a feasible constraints for optimizing

EE. As Problem (5.13a) is a fractional expression, the fractional programming, which is a

useful branch of optimization theory [110], can be utilized for solving the problem. A brief

introduction of fractional programming and the algorithm that utilized for solving the problem

will be given below.
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5.4 Introduction of Fractional Programming

Consider the following optimization problem

maximize
x

y (x)

z (x)
(5.18a)

subject to vi (x) ≤ 0, ∀i = 1, 2, · · · , I (5.18b)

wj (x) = 0, ∀j = 1, 2, · · · , J (5.18c)

where y (x) is a non-negative concave function, and z (x) is a positive convex function, vi (x)

is convex for all the i and wj (x) is affine for all the j. As proved in [110], equation (5.18a) is

a quasi-concave optimization problem.

One useful algorithm for solving the optimization with objective function as a fractional expres-

sion is the Dinkelbach algorithm [118]. it is a an approach of parametric convex programme,

because of the introduction of an extra parameter λ. The fractional problem can be converted

into linear form and iteratively solved. If the constraints (5.18b) and (5.18c) are denoted by X ,

the Problem (5.18a) can be converted as

F (λ) = maximize
x∈X

y(x)− λ(x). (5.19)

The function F (λ) has the following properties [110, 118]

• F (λ) is convex on R

Proof. if it is assumed that u ∈ [0, 1], then it has

F (uλ1 + (1− u)λ2) = max {y (x)− uλ1 (x)− (1− u)λ2 (x)} =

max {u [y (x)− λ1 (x)] + (1− u) [y (x)− λ2 (x)]} ≤

u ·max {[y (x)− λ1 (x)]}+ (1− u) ·max {[y (x)− λ2 (x)]} =

uF (λ1) + (1− u)F (λ2) (5.20)

• F (λ) is monotonically decreasing, e.g. if λ2 > λ1, then F (λ2) < F (λ1)
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Proof. Let λ2 > λ1, then F (λ2) has the following relationship

F (λ2) = max {y(x)− λ2z(x)} = y(x2)− λ2z(x2) <

y(x2)− λ1z(x2) ≤ max {y(x)− λ1z(x)} = F (λ1) (5.21)

• F (λ) = 0 has a unique solution, λ0

Proof. AsF (λ) is monotonically decreasing, plus the following fact, where limλ→−∞ F (λ) =

+∞ and limλ→+∞ F (λ) = −∞, F (λ) = 0 has a unique solution, λ0.

In addition, the connection of Problem (5.18a) and (5.19) is proved as follows [110, 118].

Proposition 2. If x∗ ∈ X and λ∗ = y(x∗)
z(x∗) , then x∗ will be a solution of problem (5.18a) if and

only if

x∗ = arg max
x∈X

{y (x)− λ∗z (x)} (5.22)

Proof. If x∗ is the optimal solution of problem (5.18a), it comes to

λ∗ =
y (x∗)

z (x∗)
>
y (x)

z (x)
, ∀x ∈ X . (5.23)

As a result, y (x)−λ∗z (x) ≤ 0, ∀x ∈ X and y (x∗)−λ∗z (x∗) = 0. Consequently, F (λ∗ = 0)

and it meets equation (5.22). On the other hand, if x∗ = arg max
x∈X

{y (x)− λ∗z (x)}, it comes

to

y (x)− λ∗z (x) ≤ y (x∗)− λ∗z (x∗) = F (λ∗) = 0, ∀x ∈ X . (5.24)

As a result,

λ∗ ≥ y (x)

z (x)
, ∀x ∈ X (5.25)

λ∗ =
y (x∗)

z (x∗)
(5.26)

As a result, the Problem (5.18a) is converted into linear convex problems, where F (λ) contin-

uously decreases with the variable λ. The convergence point is found by iteratively updating
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λ so that the numerator function can be maximized while the denominator function can be

minimized, until F (λ) = 0 and x∗ is equivalently the root of the function. The Dinkelbach

algorithm is described in Algorithm 1.

Algorithm 1 The Dinkelbach method to solve optimization problem

Require:
λ(0) (initial value of λ where F (λ0) ≥ 0)
εfp (convergence tolerance)
i = 0 (iteration number)

Ensure:
λ∗ (optimal λ)
x∗ (optimal x)

1: while F (λi) ≥ εfp do
2: solve the problem x∗i = arg max

x∈X

(
y (x)− λ(i)g (x)

)
;

3: i = i+ 1;
4: end while

The directly utilization of the fractional programming theory to solve the EE maximization

problem is not capable because of the objective function and constraint has DC function. In

the next section, the SCA algorithm will be introduced, where it will be combined with the

fractional programming.

5.4.1 Introduction of the SCA Algorithm

The utilization of fractional programming theory converts the EE maximization problem into a

series of concave problem, and the global optimal solution can be iteratively found by utilizing

the Dinklebach algorithm. However, the directly adoption of fractional programming theory

requires conditions on both the objective function and constraints, where y (x) needs to be a

concave function, z (x) is a concave function and the constraints are all concave as well. In

terms of the multi-cell massive MIMO system with TDD operation, the expression of downlink

rate, which is the numerator in Problem (5.13a) and the constraint (5.13d), is a non-concave

function [119, 120]. Consequently, the sequential concave approximation (SCA) algorithm is

considered for combining with the fractional programming.

The SCA algorithm is an advanced scheme that utilized to solve the non-concave optimization

problems, where the local optimal solutions can be found efficiently with acceptable complexity
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[121, 122]. Consider a non-concave optimization problem

maximize
x∈RM

y (x) (5.27a)

s.t. cj (x) ≤ 0 , j = 1, 2, · · · , J,x ∈ Ω (5.27b)

where y, cj are both continuous and differentiable functions over RM . It is assumed that both

y and cj can be expanded as the difference of two non-negative concave functions, which are

expressed as

y (x) , y+ (x)− y− (x) (5.28)

cj (x) , c+
j (x)− c−j (x) (5.29)

where y+, y−, c+
j , c
−
j : RM → R. It can be observed that both the objective function (5.27a)

and the constraint (5.27b) are typical difference of concave functions (DC) programming of

variable x [123] with DC constraint, which is generally considered as a non-concave problem.

As a result, common concave optimization algorithms can not be directly applied on solving

this kind of problems.

There are many algorithms that proposed for finding the global optimal solutions for the non-

concave problems [124, 125]. However, the high computational complexity is not suitable in

massive MIMO systems. One common scheme of solving a non-concave problem with local

convergence is the approximation of concave functions. And the SCA algorithm adopts this

scheme in solving the non-concave problem iteratively. A surrogate function is generated for

the approximation iteratively by utilizing the first order Taylor series expansion, which is given

as

y(x, z) = y(x)+ −
(
y−(z) + (∇y(z))T (x− z)

)
. (5.30)

The equation (5.30) is an approximation of function y(x), which is tight when x = z. Other-

wise it comes to y(x, z) < y(x). Similarly, the surrogate functions can also be generated for

the DC constraints. By replacing the non-concave functions in both the objective function and

constraints with their surrogate functions, problem (5.27a) can be approximated linearly by a

series of concave functions, which can be iteratively solved with acceptable complexity. The

SCA algorithm is summarized in Algorithm 2.

After the introduction of fractional programming and the SCA algorithm, the proposed frac-

tional SCA algorithm in solving the EE problem will be presented in the follow section.
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5.4.2 Fractional SCA Algorithm

To solve the maximization of EE in multi-cell massive MIMO system with TDD operation, the

combination of fractional programming and the SCA algorithm is proposed to jointly find the

optimal downlink power allocation. The optimization firstly calculates the maximized mini-

mum UE rate R∗min, which provides a feasible constraints. Secondly, the surrogate function is

generated for the downlink achievable rate, which is the numerator of the objective function

(5.13a) and constraints (5.13d), where with feasible vector q, the surrogate functions for the

SCA algorithm are expressed as

Rd
kl(p,q) ,

(
1− τ

T

)(
log2

((
zTkl + bTkl

)
p + σ2

n(
zTkl + bTkl

)
q + σ2

n

)
− 1

log (2)

bTkl (p− q)(
zTkl + bTkl

)
q + σ2

n

)
. (5.31)

Thirdly, by utilizing the fractional programming in the (5.13a) with equation (5.31), the maxi-

mization problem is reformulated as

maximize
p

L∑
l=1

K∑
k=1

(
1− τ

T

)(
log2

((
zTkl + bTkl

)
p + σ2

n(
zTkl + bTkl

)
q + σ2

n

)
− 1

log (2)

bTkl (p− q)(
zTkl + bTkl

)
q + σ2

n

)
− λPtot (p) (5.32a)

subject to tTklp ≥ 0,∀ (k, l) ∈ (K,L) (5.32b)
K∑
k=1

tTklp ≤ pd
max,∀ (l) ∈ (L) (5.32c)

(
1− τ

T

)(
log2

((
zTkl + bTkl

)
p + σ2

n(
zTkl + bTkl

)
q + σ2

n

)
− 1

log (2)

bTkl (p− q)(
zTkl + bTkl

)
q + σ2

n

)
≥ R∗min,∀ (k, l) ∈ (K,L) . (5.32d)

The maximization Problem (5.32) becomes a concave optimization problem with both linear

objective function and constraints, which can be iteratively solved by Algorithm 3 with the

CVX package [117, 126].

The convergence of the proposed fractional SCA algorithm is proved below.

Proposition 3. The fractional SCA algorithm in Algorithm 3 always converges to a Karush-

Kuhn-Tucker (KKT) stationary solution of Problem (5.13).
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Algorithm 2 The SCA algorithm

Require:
i = 0 (iteration number)
x(0) (initial value of x where x ∈ X )
εSCA (convergence tolerance)

Ensure:
x∗ (optimal x)

1: while ‖x(i+1) − x(i)‖2 > εSCA do
2: Generate the surrogate functions y

(
x,x(i)

)
and cj

(
x,x(i)

)
;

3: x(i+1) = arg max y
(
x,x(i)

)
x∈Ω
cj(x,x(i))≤0,j=1,2,··· ,J

;

4: i = i+ 1
5: end while

Proof. To any concave function, it is upper-bounded by its first-order Taylor expansion at any

point. Meanwhile, it is noticeable that the numerator of objective function (5.13a) and the

constraint (5.13d) are the difference of two concave functions. If Rd
kl (p) is represented as

Rd
kl (p) = r+

kl (p)− r−kl (p) , (5.33)

for any pj , it thus have that

r+
kl (p)− r−kl (p) ≥ r+

kl (p)−
[
r−kl (pj) +

(
ORd

kl (p)
)T

(p− pj)
]
. (5.34)

Consequently, (5.32a) and (5.32d) are lower bounds of (5.13a) and (5.13d). As the lower

bounds in (5.33) is tight when evaluated in pj , when p = pj , it comes to (5.32a) and (5.32d)

are equal to (5.13a) and (5.13d). Similarly, the gradients of (5.32a) and (5.32d) are equal to

(5.13a) and (5.13d) when p = pj . Consequently, the proposition proof is completed.

By utilizing the Algorithm 3, the EE will monotonically increase and the local-optimal solu-

tion, which meets the given constraints, will iteratively be founded within polynomial time and

affordable complexity.

5.5 Numerical examples

In this section, the validity of the proposed optimization algorithms will be verified by numeri-

cal simulations.
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Algorithm 3 The fractional SCA algorithm to solve Problem (5.13)
1: Initialization for SCA algorithm:

q(0) ∈ RKL×1 % an initial feasible downlink power vector
ε1 ∈ R % a small convergence threshold

2: i = 0;
3: repeat
4: Given q(i), generate the surrogate functions Rd

kl

(
p,q(i)

)
based on Equation (5.31);

5: Initialization for Dinkelbach method:
λ(0) ≥ 0 % determined by a random power vector p(0) ∈ RKL×1

ε2 ∈ R % a small convergence threshold
6: j = 0;
7: repeat
8: Given λ(j) , obtain the optimal solution p(j) for Problem (5.32);

9: λ(j+1) ←
L∑
l=1

K∑
k=1

Rd
kl(p

(j),q(i))

Ptot(p(j))
;

10: j ← j + 1;
11: until |λ(j) − λ(j−1)| ≤ ε1;
12: i← i+ 1;
13: return q(i) ← p(j);
14: until ||q(i) − q(i−1)||2 ≤ ε2;
15: return a locally optimal solution p∗ = q(i) for Problem (5.13).

Consider a massive MIMO system consisting of 19 hexagon shaped cells, where each cell has

a central BS and randomly distributed UEs. The simulation parameters listed in Table 5.3,

which includes both the configuration of BS antennas and UE distribution, plus the power

consumption of circuit power for both BS and UE. Additionally, the circuit power of BS was

chosen according to the prediction that by the year 2020 [2]. The pilot reuse scheme with

RF = 3 was considered in the simulation with the same UE distribution that was proposed

in Chapter 4. The codebook for the GLP-based uplink pilot utilized the algorithm that was

proposed in [99].

Figure.5.3 shows the minimum UE rate versus the number of BS antennas. The GLP based pilot

codebook design and pilot reuse scheme were both utilized with RF = 3 and τ = 16. The

maximization of the minimum UE rate were calculated with the CVX. It can be observed that

the adoption of optimization has enhanced the QoS significantly. When M = 64, the minimum

UE rate of the pilot reuse scheme almost doubled, and it almost tripled for the GLP-based pilot

design after the maximization. When M = 256, the improvement of pilot reuse increased by

more than three times and it is approximately four times for the GLP-based pilot design after

maximization.
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Number of cells, L 19
Number of antennas at BS, M 64 ≤ M ≤ 256
Cell radius 500 m
UE minimum distance from BS 25 m
Carrier frequency 1.9 GHz
System bandwidth 20 MHz
Maximum UL power,PUL

max 200 mW
Maximum DL power,PDL

max 40 W
Thermal noise, σ2

n -174 dBm/Hz [127]
Mobility speed 60 km/H
Path loss model 35.3 + 37.6 log10 d dB
Coherence bandwidth 100 kHz
Power consumption of circuit power at BS, P d

c 0.2 W [128]
Loss factor from DC to DC power supply, σDC 7.5% [2]
Loss factor from mains supply, σMS 9% [2]
Loss factor from cooling, σcool 10% [2]
Power amplifier efficiency of BS, ηBS 50 % [128]
Power amplifier efficiency of UE, ηUE 20 % [129]
UE circuit power, P u

c 0.1 W [130]
Convergence tolerance, ε 1× 10−3

Table 5.3: Simulation parameters for the results in this section
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Figure 5.3: Comparison of the minimum UE rate versus number of BS antennas M with and
without maximization, with RF = 3, τ = 16
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Number of BS antennas, M
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Figure 5.4: Comparison of the energy efficiency versus the number of BS antennas with and
without maximization, with RF = 3, τ = 16

Number of BS antennas, M
50 100 150 200 250

D
ow

nl
in

k 
ac

hi
ev

ab
le

 s
um

 r
at

e(
bi

t/s
/H

z)

260

280

300

320

340

360

380

400

420

440

GLP, optimized
Reuse, optimized
GLP,unoptimized
Reuse,unoptimized

= = 16, optimized

= = 16, unoptimized

Figure 5.5: Comparison of the downlink achievable sum rate versus the number of BS antennas
M with and without optimization, with RF = 3, τ = 16.

108



Energy-efficient power allocation in multi-cell massive MIMO systems
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Figure 5.6: Converge performance of Algorithm 3, with RF = 3, τ = 16, ε = 1× 10−3

Figure.5.4 shows the EE of multi-cell massive MIMO system versus the number of BS anten-

nas. Again, the GLP based pilot codebook design and the pilot reuse scheme are both utilized,

with RF = 3 and τ = 16. The maximization of EE utilized Algorithm 3. For the unoptimized

EE, the downlink transmit power was equally divided for each serving UE in the cell, i.e. P
d
max
K .

It can be observed that the EE of both schemes decreased with the number of BS antennas,

whereby, the EE without optimization slightly increased, but was almost consistent, mainly be-

cause, in the EE without optimization the downlink transmit power is dominant. The maximum

power was utilized for downlink transmission and the increase of circuit power did not have

a big influence on the EE. However, after the optimization, the downlink transmit power was

greatly reduce, so the EE of both schemes decreased with the number of BS antenna adopted

followed by the increase of BS circuit power.

Figure.5.5 shows the downlink achievable sum rate versus the number of BS antennas. A

comparison has been made between the rates after downlink power allocation and the rate after

the equal division of downlink transmission power has been utilized. Although the focus was

on maximizing the EE, the optimal allocation of downlink power and the maximized minimum

UE rate has improved the performance, with approximately 3% for GLP-based pilot codebook

design and 5% for the pilot reuse scheme. The gap between two schemes has been reduced after
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the power allocation. However, the GLP-based codebook design still performed better than the

pilot reuse scheme. The main reason of the optimized rate has better performance than the

unoptimized rate is that the optimal EE is computed with the maximum downlink achievable

sum rate. According to the proposition in [108], the maximization of EE is equivalent with the

downlink rate maximization.

Figure.5.6 shows the convergence performance of Algorithm 3. This is a Cumulative distribu-

tion function (CDF) plot of the iteration numbers to reach the ε = 10−3 in the maximization

of EE with RF = 3 and τ = 16. It can be observed that there are 90% of the results need 6

iterations to reaches the convergence point, and the optimization algorithm will 100% converge

within 12 iterations.

5.6 Conclusion

In this chapter, motivated by the increasing demand for reducing energy consumption in cellular

system designs, a general framework has been proposed for maximizing the energy efficiency of

the system with a guaranteed minimum downlink rate constraint - a framework can be utilized

in both multi-UE MIMO and massive MIMO systems. The optimal allocation of downlink

transmit power was developed, which was based on the joint adoption of the fractional pro-

gramming theory and sequential concave approximation. Because the difference of concave

function problems exists in the objective functions and constraints, a first-order approximation

has been considered for converting the non-concave problem into a series of concave problems.

This was followed by converting the optimization problem from a fractional form into a linear

form, in order for it to be solved iteratively.

Maximization of the minimum UE rate has also been considered in order to provide a feasible

constraint. By applying the proposed optimization algorithm, the numerical results showed an

improvement in the system’s minimum UE rate, where the pilot reuse scheme has increased

approximately 200% and the GLP-based codebook design almost increased 300% after utiliz-

ing the proposed optimization. In terms of the maximization of EE, compared with the equal

division of downlink transmit power, it has been increased six times with M = 64 and two

times with M = 256. The results have also shown that the energy efficiency of massive MIMO

system decreases with the number of BS antennas after optimization, because of the increased

circuit power consumption of BS. This suggests that an optimal number of BS antennas should
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be considered for balancing the rate and energy performance of efficiency.

This chapter will be followed by the conclusion to this thesis in which the works and contribu-

tions in terms of both the conventional MIMO and massive MIMO systems will be summarized,

after which a future extension of this research will be proposed.
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Chapter 6
Conclusions and Future Work

This thesis has contributed to both conventional multiple-input multiple-output (MIMO) and

massive MIMO systems. In this chapter, Section 6.1 will present a conclusion, which will

summarize its main contributions and Section 6.2 will focus on the further research directions

based on the findings from this thesis.

6.1 Conclusions

This thesis presented a study of both conventional MIMO and massive MIMO systems. The

contributions focus on the following two important perspectives: (i) capacity enhancement,

and (ii) energy efficiency improvement. The major research findings are summarized in the

following section.

6.1.1 The K-best Detector and Adaptive Modulation Scheme

The joint utilization of K-best detector and adaptive modulation scheme has been presented in

this thesis. The bit-error-rate (BER) performance estimation of the K-best algorithm in dif-

ferent channel conditions has been solved by the proposed estimation scheme, which is based

on the union bound (UB) of maximum likelihood detector(MLD) with minimum Euclidean

distance events that significantly reduced the computational complexity between 95% to 99%.

The BER estimation has guaranteed accuracy with the pre-estimated look-up-table (LUT). With

the reduced complexity and promising estimation accuracy, the K-best algorithm and adaptive

modulation is very suitable for the practical application, especially for the parallel high perfor-

mance hardware platform.

6.1.2 New Analytical Results

Three closed-form analytical expressions of down link achievable sum rate for massive MIMO

systems with time-division-duplex (TDD) operation have been proposed in this thesis. The
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adoption of analytical propositions helps to establish how the downlink achievable sum rate is

affected by the pilot contamination phenomenon, which is considered to be one of the main

limiting factors in terms of the performance of the massive MIMO systems. These propositions

can be utilized for the performance analysis of single-cell, multi-cell and pilot reuse schemes

respectively, since the numerical results have validated the analytical propositions.

This thesis has evaluated the performance of Grassmannian line packing (GLP) based pilot

codebook design and a comparison has been made with the pilot reuse scheme. Furthermore,

the numerical results have shown that the codebook design has significantly increased the down-

link performance for both cell centre and edge user-equipments (UEs).

6.1.3 General framework of energy efficiency maximization

This thesis proposes a general framework of energy efficiency maximization that can be applied

in both multi-UE and massive MIMO systems. The optimal allocation of downlink transmit

power, which is based on the joint adoption of the fractional programming theory and sequential

concave approximation, has been proposed. Since the difference of concave function problems

exist in the objective function and constraints, the first-order approximation has been considered

in order to convert the non-concave problem into a series of concave problems. It can be

iteratively solved by converting the optimization problem from fractional into linear form. The

numerical results proof the enhancement of minimum UE rate and the significant improvement

of energy efficiency. It was found that the energy efficiency decreases with the number of base

station (BS) antennas, because of the increase in circuit power consumption.

6.2 Future Work

Several directions may be taken that might possibly expand on the findings of this thesis.

• In Chapter 3, an assumption was made regarding the adaptive modulation scheme, whereby

the perfect channel state information (CSI) was fully available at the receiver. Further

improvements could be made for choosing the imperfect CSI for the performance pre-

diction of the adaptive modulation scheme. This is because the imperfection comes from

two different sources, (i) predicted errors from the channel estimation scheme, and (ii)

the delay existed in the feedback from receiver to transmitter. The extension of imperfect
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CSI is considered to be a more practical assumption and increases more difficulties for

the performance prediction in adaptive modulation scheme.

• In Chapter 3, the transmission parameter considered in the adaptive scheme is the mod-

ulation. More parameters could be included in the adaptive scheme; for example, the

coding schemes and transmit power could also be considered for the K-best detector

as it is similar to the present adaptive modulation scheme, whereby the transmit power

and coding method is adjusted to meet the varying channel conditions with the aim of

maximizing the spectrum efficiency.

• In Chapter 4, the least square (LS) and maximum ratio transmission (MRT) methods were

utilized for uplink channel estimation and downlink precoding. A possible expansion

would be to consider other schemes. For example, zero-forcing (ZF) and minimum mean

squared error (MMSE) are linear channel estimation methods, which have also been

shown to perform well in massive MIMO systems. Similarly, the downlink precoding

can also be considered for the ZF and MMSE scheme to further enhance the downlink

rate.

• In Chapter 5, the power consumption model of downlink transmission adopted full ra-

dio frequency (RF) chains. An expansion could be made to optimize the number of RF

chains for downlink transmission; this is known as the hybrid analogue and digital beam-

forming[131, 132]. The optimization problem could be extended in order to maximize

the energy efficiency of the system with the number of RF chains being the variable,

which subjects to the constraint of minimum UE rate requirement and maximum down-

link power.
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Proof of the Theorem 1
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Proof.

∣∣∣hHij,jĥmj,j∣∣∣2
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Non-Orthogonal Pilots Based Spectral and

Energy Eff ciency Analysis for Multi-cell

Massive MIMO Systems

Wenjun Fu, Pan Cao, Member, IEEE and John Thompson, Fellow, IEEE

Abstract

Channel estimation plays an important role in massive multiple-input multiple output (MIMO)

systems in order to benef t from the high beamforming gain by forming very narrow beams. However,

pilot contamination (PC) usually exists and inf uences the quality of estimated channel state information

(CSI) due to the conf ict between the limited channel coherence interval and the large number of user

equipments (UEs). Instead of utilizing the traditional pilot reuse scheme, we apply the principle of Grass-

mannian line packing (GLP) for the non-orthogonal pilot sequence design in order to mitigate the PC

effect, where pairwise correlations between non-orthogonal pilot sequences has the same value between

0 and 1. In this work, for multi-cell massive MIMO systems with time-division-duplex (TDD) mode,

we propose a new closed-form expression based on the use of non-orthogonal pilot sequences,which

clearly shows how the PC, transmission power and number of base station (BS) antennas inf uence the

system spectral eff ciency (SE). In addition, we also propose a general framework to optimize the energy

eff ciency (EE) by effective downlink power control by two steps. We f rst solve a feasibility problem

to determine maximum rate requirement for UEs, and then we apply the fractional sequential convex

approximation algorithm to maximize the EE subject to feasible rate constraints to guarantee the QoS.

Numerical results verify the propositions and show the improved performance of non-orthogonal pilot

sequences to the traditional pilot reuse scheme in both SE and EE.

Index Terms

Massive multiple-input-and-multiple-output, spectral eff ciency, energy eff ciency, non-orthogonal

pilot sequence, fractional programming

The work is partially supported by the UK EPSRC grant number EP/L026147/1. The authors are with the Institute

for Digital Communications, The University of Edinburgh, Edinburgh EH3 9JL, United Kingdom (email: {w.fu, p.cao,

john.thompson}@ed.ac.uk).
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I. INTRODUCTION

Massive multiple-input-and-multiple-output (MIMO), also known as large-scale antenna sys-

tems, is a promising mobile communication technology to build the f fth generation (5G) cellular

networks. A large array of antennas - hundreds or even thousands - deployed at a base station

(BS) gives the potential of high data rates and reliability for tens or even hundreds of user

equipments (UEs) within the same time-frequency resources [1]–[3].

However, these benef ts offered by massive MIMO heavily rely on the quality of the estimated

channel state information (CSI) [4], [5]. In massive MIMO systems, the time-division-duplex

(TDD) operation mode may be preferred to the frequency-division-duplex (FDD) mode because

the feedback of high-dimensional channels can be avoided by utilizing channel reciprocity in

the TDD mode. To obtain high quality CSI in TDD mode, long orthogonal pilot sequences are

needed in order to avoid pilot contamination (PC). However, the transmission of such long pilot

sequences usually conf icts with the f nite channel coherence interval. As a result, PC becomes

a limiting factor for the spectral eff ciency (SE) when short pilot sequences are not properly

designed [4], [5]. Therefore, much attention has been attracted on pilot sequences design in

order to reduce inf uence of PC on the system performance.

Meanwhile, as the number of BS antennas increases greatly, massive MIMO may cause higher

energy consumption. Due to the fact that the BSs accounts for more than 70% percent total

energy consumption in the existing cellular network [6], [7], it has become a main concern for

the 5G cellular operators how to realize the green network operation. Therefore, besides the SE

performance, the energy eff ciency (EE) is also a crucial performance metric for massive MIMO

system design and evaluation.

A. Related work

One widely used scheme for pilot sequence design for channel estimation in a massive MIMO

system is pilot reuse. The basic idea of pilot reuse is for some UEs to reuse the same set of

orthogonal pilot sequences as the others [5]. As the UEs who use the same pilots will interfere

with each other in the uplink pilot transmission, PC highly depends on the how the orthogonal

pilots are allocated to the UEs. Therefore, previous literature focused on how to smartly reuse

pilots to reduce the PC effect. The authors in [4] utilize a common cell-based reuse, where the

set of orthogonal pilot sequences are reused by the cells in a regular pattern. In [8], [9], the pilot

sequence design has been improved by dividing sequences into several subsets while UEs are
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divided into cell-centre and cell-edge groups according to path-loss and shadowing. Following

this division, one subset is reused by the centre UEs and the remaining subsets are assigned

to the edge UEs. This pilot allocation improved the QoS of edge UEs with a rate decrease of

central UEs as compensation. In [10] the authors consider the covariance between the desired

and the interfering UE channels because the channel estimation performance depends on the

overlap of their dominant subspaces. The PC effect has been much reduced under the condition

of limited angle of arrival at BS. In [11], the optimal schedule of UEs in each cell based on a

given number of antennas and coherence interval is proposed.

Another pilot sequence design scheme is the recently proposed non-orthogonal pilots based

scheme [12]. Unlike the pilot reuse scheme where the pairwise correlation value of pilot se-

quences is either 0 or 1, the non-orthogonal pilot sequence based scheme has a correlation value

between 0 and 1. The authors in [12] investigate the error variance performance of channel

estimation with non-orthogonal pilot sequences design, whereas the performance analysis of the

SE and EE is excluded. In [13], the SE performance is analyzed for a single-cell massive MIMO

system, which is extended to a multi-cell system in [14], [15]. However, the derivation for the

SE expression is based on an unrealistic assumption in [14], which will be explained in Remark

1 in section III.

B. Contributions

This work aims to provide a complete and accurate analysis of both the SE and EE for a

multi-cell massive MIMO system with TDD mode when the non-orthogonal pilots sequences

are used. The main contributions are summarized as follows:

1) We derive a new closed-form sum rate expression based on the non-orthogonal pilot

sequence scheme for a multi-cell massive MIMO system in Theorem 1 of Section III. This

expression clearly shows how the PC, the number of BS antennas and uplink/downlink

transmission power inf uence the SE performance. Furthermore, this expression can be

formulated as the sum rate based on orthogonal pilots reuse scheme as shown in Corollary

1 of Section III;

2) We propose a general framework for the optimization of the EE. Based on the proposed rate

expression, the framework f rst solve a feasibility problem to determine the maximum rate

requirement for the UEs. Then, we utilize the fractional sequential convex approximation
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