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Abstract

Multiple-input multiple-output (MIMO) systems are a matuechnology that has been incor-
porated into current wireless broadband standards to wepitee channel capacity and link
reliability. Nevertheless, due to the continuous increguglemand for wireless data traffic new
strategies are to be adopted. Very large MIMO antenna arsggyesents a paradigm shift in
terms of theory and implementation, where the use of tensindieds of antennas provides
significant improvements in throughput and radiated eneffigiency compared to single an-
tennas setups. Since design constraints limit the numhesadifie antennas, virtual systems can
be seen as a promising technique due to their ability to manit exploit the gains of multi-
antenna systems by means of wireless cooperation. Coimgjdbese arguments, in this work,
energy efficient coding and network design for large virtdiO systems are presented.

Firstly, a cooperative virtual MIMO (V-MIMO) system that s a large multi-antenna trans-
mitter and implements compress-and-forward (CF) relaypeaation is investigated. Since
constructing a reliable codebook is the most computatipreaimplex task performed by the
relay nodes in CF cooperation, reduced complexity quaitdiséechniques are introduced. The
analysis is focused on the block error probability (BLER) &me computational complexity for
the uniform scalar quantiser (U-SQ) and the Lloyd-Max atbon (LM-SQ). Numerical results
show that the LM-SQ is simpler to design and can achieve a Bh&Rormance comparable to
the optimal vector quantiser. Furthermore, due to its lomglexity, U-SQ could be consider
particularly suitable for very large wireless systems.

Even though very large MIMO systems enhance the spectralezflly of wireless networks,
this comes at the expense of linearly increasing the powesuwroption due to the use of multi-
ple radio frequency chains to support the antennas. Thagréargy efficiency and throughput
of the cooperative V-MIMO system are analysed and the impéitte imperfect channel state
information (CSI) on the system’s performance is studiethalfy, a power allocation algo-
rithm is implemented to reduce the total power consumpti@mmulation results show that
wireless cooperation between users is more energy effitiantusing a high modulation order
transmission and that the larger the number of transmitnaate the lower the impact of the
imperfect CSI on the system’s performance.

Finally, the application of cooperative systems is extentiewireless self-backhauling het-
erogeneous networks, where the decode-and-forward (RfQqul is employed to provide a
cost-effective and reliable backhaul. The associatecetodfs for a heterogeneous network
with inhomogeneous user distributions are investigateoutih the use of sleeping strategies.
Three different policies for switching-off base statioms eonsidered: random, load-based and
greedy algorithms. The probability of coverage for the mandand load-based sleeping poli-
cies is derived. Moreover, an energy efficient base statigmiogment and operation approach
is presented. Numerical results show that the average nuofibase stations required to sup-
port the traffic load at peak-time can be reduced by using thedy algorithm for base station
deployment and that highly clustered networks exhibit alemaverage serving distance and
thus, a better probability of coverage.
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Chapter 1
Introduction

This thesis focuses on the design of energy-efficient makigout multiple-out systems with
very large antenna arrays and its integration with the qunatcooperative wireless systems.
The origin and motivation of this work are provided in Sestibl. Followed by the overview
of the organisation of the remaining chapters in Section Eirzally, the main contributions of

this thesis are summarised in Section 1.3.

1.1 Motivation

In recent years, demand for cellular data has been growingjderably and it is estimated that
the traffic generated by smart-phones will increase by 1@gibetween 2017 and 2023 with a
compound annual growth rate (CAGR) of 42% [6]. Current fotgéneration (4G) systems use
advanced technologies such as orthogonal frequencyiativisultiplexing (OFDM), multiple-

input multiple-output (MIMO) and turbo codes in order to este spectral efficiencies close to

theoretical limits [2].

Since the design of current wireless networks have beenyrdinen by enabling high spectral
efficiency, these networks are characterised by poor ermgdfigiency (EE). With a total number
of mobile subscribers of more than half of the global popatatthe telecommunications indus-
try is becoming a major consumer of global energy. Thus,demeyears a great interest from
academia and industry has arisen in technologies that ailesigning wireless networks with
better coverage and higher EE [7]. The motivation is twafdtdstly, the telecommunication
network operators are experiencing significant impact eir ttash flows due to energy cost.
Secondly, the social responsibility of environmental getion by reducing the carbon footprint
due to information and communications technology has beogary relevant [4]. The ultimate
goal is, thus, to design network architectures and teclgnedoneeded to meet the explosive

growth in cellular data demand without increasing the dVersergy consumption.

Base station sleeping strategies, relay and cooperativencmications, resource allocation

techniques and novel radio access techniques have beeasipetential solutions for energy
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efficient wireless communication systems [4, 8]. By usingppéells and femtocells, network
deployment strategies have been considered as an alertmimprove the energy efficiency
of the network by decreasing the average path loss [8]. Rlgceasearch on base station
energy saving has also gathered great interest since tihgyermnsumption breakdown over
the mobile network elements illustrates that, althoughcive and data centres are the most
energy greedy, up to 80% of the overall energy is consumebtdpdse stations [9]. To reduce
energy consumption, China Mobile have deployed a dynamieep@lgorithm saving up to
27% of the total energy consumption [10]. Moreover, a sdalabse station sleeping strategy
complemented by the use of cooperative communications angipcontrol algorithm was

proposed in [11].

The energy efficiency, defined as the number of bits traredgoer Joule of energy, is affected
by many factors such as spectral efficiency, radiated transmaver, and circuit power con-
sumption [12]. Generally speaking, the design of energgiefit networks can be achieved by
using specifically designed architectures, radio teclgietoand resource management tech-
nigues. Some of the techniques that have been identifiedtasti@ solutions for the fifth-

generation (5G) mobile systems are listed in Table 1.1.

| Energy-Efficient: | Solutions and Features \

- Optimization of the cell size: large vs small cell deployrhé
Architectures - Overlay resource: microcell, picocell or femtocell
- Relay and cooperative communications

D

- Power and resource allocation
- Single-input single-output (SISO) vs MIMO scheduling

—

Resource Managemen

- Heterogeneous Network deployment
Radio Technologies | - Millimetre wave communications
- Simultaneous wireless information and power transfer

Table 1.1: Technigues for energy efficiency [4].

Though relay and cooperative communications were injtimtroduced as an alternative to
increase coverage area, later these technologies wereisgsoto increase the throughput as
well as decrease the transmission power [1,13,14]. In timgtkerm Evolution advanced (LTE-

A) standard, in-band and out-band relaying standards hese included. Nevertheless, some
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issues like full duplex relays and connectivity with mobiddays are left for implementation in
the next generation mobile networks, where it is expectatldifferent relay policies will be

supported.

1.2 Thesis Outline

The use of emergent techniques such as Massive MIMO, millenegave frequencies as well
as the use of small cells and relays in the next generatiomonks impose new research chal-
lenges. This work is aimed at designing a multi-user MIMOtelys for optimal energy ef-
ficiency. In particular, bringing insights on how relay armbperative techniques can be in-
tegrated with very large antenna MIMO systems. MoreoveresibG systems are expected
to support heterogeneous networks, the trade-offs betwpectral efficiency, probability of

coverage and energy efficiency are investigated.

1.2.1 Background

Chapter 2 provides a comprehensive basis for the reseaesenied in Chapters 3-5. First,
some fundamental principles of MIMO systems are providedtusly of the system’s perfor-
mance when the number of antennas employed is increaseteanillustrated. Then, coop-
erative wireless systems are presented as a practicatatlter to traditional MIMO systems.
Thus, a general overview of the benefits of using Virtual MIM@tems are described. In
addition, an introduction to millimetre-wave communicatisystems is given. Finally, the

principles of stochastic geometry for heterogeneous misvare presented.

1.2.2 Low Complexity Codebook Design

Chapter 3 considers a cooperative virtual MIMO (V-MIMO) & that uses a large multi-
antenna transmitter and implements bit-interleaved cadedulation (BICM) transmission
and compress-and-forward (CF) relay cooperation amongjpteuteceiving nodes. Since con-
structing a reliable codebook is the most computationalipglex task performed by the relay
nodes in CF cooperation, reduced complexity quantisagghrtiques are introduced in this
chapter. In order to focus the analysis on the block errdpaindity (BLER) and computational

complexity, an error-free conference link between themoissaered. Two different scalar
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gquantisation technigues are presented, where the reah@agiriary parts of the received sig-
nals are quantised independently. First, the uniform scplantiser (U-SQ) is considered and
the performance achieved when a large number of antennaedshoth at the transmitter and
receiver is evaluated. Second, the Lloyd-Max algorithm {EK) is employed to reduce the
error distortion by taking advantage of the distributiortiod received signals. A comparison
in terms of BLER and computational complexity for designihg codebook and forwarding a
compressed version of the signal to the destination nodprasented. In practice, besides the
data symbols, additional control information is transeditthus, the overhead incurred by the
guantisation techniques is computed by calculating thebaurof bits required to transmit the

codebook to the destination node.

1.2.3 Energy Efficient Massive MIMO Wireless Networks

In Chapter 4, a cooperative Virtual multi-user MIMO (MU-MI®) system that uses a large
multi-antenna transmitter and implements BICM transmoissand decode-and-forward (DF)
relay cooperation among multiple receiving nodes is carsidl In DF-based cooperation,
decoding, re-encoding and forwarding the estimated redesignals to the destination node
for subsequent processing are the main tasks that eachhatayo perform. Even though

large multi-antenna approaches have been pointed as ativdffevay to enhance the spectral
efficiency (SE) of wireless networks, this comes at the egpar linearly increasing the power
consumption due to the use of multiple radio frequency (Rfirts to support the antennas.
Thus, in this chapter, the energy efficiency and the effedtivoughput of the wireless system
are analysed. In order to quantify any energy efficiency gaichieved by the cooperative
wireless system a common framework is required. Thus, a poasumption model that

considers not only the power consumed by the transmittealsotthat takes into account the
overhead power consumption incurred by the relays is inted. Moreover, the impact of

the imperfect channel state information (CSI) on the thhpudg and energy efficiency of the
system is studied and a power allocation algorithm to redbedotal power consumption is

implemented.

1.2.4 Energy Efficient Inhomogeneous Cellular Networks

In Chapter 5, a wireless self-backhauling heterogeneadrgonieis studied. Thus, it is assumed

that the macro-cell base station (BS) controls the userdsding, resource allocation and sup-
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ports high-mobility users, while micro BSs, with a smalleverage area, provide high data
rates for low-mobility users. Each micro base station isuaEs] to be equipped with large
multi-antenna transmitter to perform backhaul and accessations using millimetre wave
(mm-wave) frequencies. Furthermore, a DF cooperationrighgo is employed to provide a
cost-effective and reliable backhaul. An energy efficieamdostation deployment and dynamic
operation by using the heuristic greedy algorithm are priese Due to the inhomogeneity of
the traffic load in 5G heterogeneous networks (HetNets}, firis assumed that the users are
inhomogeneous distributed in space with the average nuaflusers varying over time. Later,
it is assumed that the average number of users to be serve@ddsvhile their distribution in

space is modelled by a Thomas Cluster Process [15].

1.2.5 Conclusions

Finally, conclusions of the previous chapters and futurekvame presented in Chapter 6.

1.3 Contributions

The main contributions for this research in cooperativeelggs systems with large antenna

arrays are described as follows:

e The Lloyd - Max (LM-SQ) algorithm and Uniform Scalar Quaatien (U-SQ) at each
relay node are proposed as enablers for cooperative MIM@msygswith large antenna
arrays. An analysis of the design complexity and BLER of tlirelss cooperative sys-
tem is presented. It is shown that the LM-SQ is less compleixaghieves a comparable
performance to the optimal vector quantiser. MeanwhiléS@-s much simpler and
exhibits a good performance when a large cooperative asr@pnsidered, making it

suitable for these systems [16].

e A power consumption model that considers the overhead iedusy the relays is in-
troduced. Using this model as a framework, an analysis oketiergy efficiency and
throughput for a virtual MIMO system with a large transmitexma array is presented.
Moreover, the impact of the imperfect CSI on the system'sgoerance is studied and
a power allocation algorithm is implemented to reduce thal {wower consumption. It

is shown that when the number of available resource blocksssicted, cooperative
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systems can be employed to meet the demand for high datdX@ies

Using an heuristic greedy algorithm, an energy-efficieselstation deployment for mm-
wave self-backhauling networks is presented. Moreoveynamhic operation algorithm
that allows the base stations to reduce power consumptiewhghing operation modes
during low traffic load conditions is introduced. It is shotrat the average number of
additional micro base stations required by the greedy algorto support the traffic load

at peak-time was7.6% lower compared with a random selection [18].

A tunable model that can cover a wide range of scenarios frbwwnzogeneous Poisson
point process to highly heterogeneous clustered wirelessganks is introduced. Using
the distribution of the serving distance, the probabilifycoverage and throughput of a
wireless self-backhaul system with inhomogeneous uséitdiion are derived. Addi-

tionally an energy saving assessment using sleeping #igwiis performed by using
random, load-based and greedy policies. It is shown thainthemogeneous nature of
the system provides an advantage for the algorithms wherto#d of the BSs and the

resource allocation are considered [19].



Chapter 2
Background

In this chapter, an essential framework for the understendf this thesis is provided. First,
some fundamental principles of multiple-input multipletput (MIMO) systems are given. A
study of the system’s performance when the number of anseemgployed is increased will
be illustrated. Then, cooperative wireless systems argepted as a practical alternative to
traditional MIMO systems. Thus, a general overview of theddits of using virtual MIMO
systems are provided. In addition, an introduction to miire wave communication sys-
tems is given. Finally, the principles of stochastic geaynéir heterogeneous networks are
presented. The content of this chapter is therefore dividew four main sections: MIMO
Wireless Systems, Cooperative Wireless Communicatioriimdtre Wave Wireless Systems
and Stochastic Geometry for Cellular Networks. Therehg,¢hapter provides the reader with
the essential knowledge of the state-of-the-art whichvélfrequently referred to in remainder

of the thesis.

2.1 MIMO Wireless Systems

The use of multiple antennas at the transmitter and receiwsireless systems, referred to as
multiple-input multiple-output systems, gained attemtaver the past decade due their ability
to improve both the channel capacity and the link reliabitif wireless communications. In
this section, the concept of MIMO systems, spatial mulkiplg and spatial diversity are intro-
duced. Furthermore, the extension of MIMO systems to thealedcMassive MIMO concept

is presented.

2.1.1 MIMO System Model

Consider a narrowband point-to-point MIMO communicatigistem equipped withV; an-
tennas at the transmitter arid. antennas at the receiver, as shown in Figure 2.1(a). Assum-

ing frequency-flat block Rayleigh fading, where the chammatrix entries are constant during

7



Background

each block but independently Rayleigh distributed on diifé blocks, the so-called quasi-static

MIMO channel at a given time may be represented as

hitr  hi2 - hin,
—_ ho1  haa -+ han, | 2.1)
_thl hn,o - thNt_

where the elemerit;; is the fading coefficient from thgth transmit antenna to theth receive
antenna modelled as zero-mean circularly symmetric comphbaissian random variable [20]

with E[|h;;]?] = 1. The input-output relation of the system is given by

y = Hx + n, (2.2)
wherey = [y1,¥2,...,yn,.]” represents the received signal vector= [z1, 2, ..., zx,]|
is the transmitted signal vector amd = [nq,na, ... ,nNT]T is the noise vector with entries

ng ~ CN(O, No).

Since the channel matrix at the receiver can be obtainediby trgining pilot signals [20], it
is assumed that the channel state information (CSI) is kraivtime receiver and the transmitter
side. Typically, this training information is sent to tharsmitter via a feedback channel.
With the knowledge of the CSI at the transmitter, optimal poadlocation algorithms may be
utilized to assign various levels of transmitted power toheaf the transmit antennas. Due to
the limitation on the feedback channel in practical wirglegstems, it is not always possible
to obtain CSI at the transmitter. If that is the case, theagare assumed to be transmitted

through each antenna with equal power leveEf N;, whereE; is the total transmit power.

2.1.2 Benefits of MIMO Systems

The performance improvements achieved by MIMO systems aestd array gain, diver-
sity gain and spatial multiplexing gain. In the followingadah of these gains is briefly re-
viewed considering a system wifti,-transmit andV,.-receive antennas, frequently referred to
asN; x N, MIMO system.
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j E User 1
j l User 2
X, E User N,

Figure 2.1: Schematic representation of a (a) point-tovpand (b) multi-user MIMO wireless
system, with alV;-antenna transmitter ant¥,.-antenna receiver oN, single-antenna users,
respectively.
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2.1.2.1 Array Gain

Array gain is the increase in receive signal-to-noisesr§8NR) that results from the coherent
combining of wireless signals at a receiver [21]. Coheremtlasining may be realized through
spatial processing at the receive antenna array and/ocialspeg-processing at the transmit
antenna array and thus requires channel knowledge in themitier and receiver, respectively,
and depends on the number of transmit and receive antennagy. gfain improves the coverage

of the wireless network by increasing the resistance ofystem to noise [20, 21].

2.1.2.2 Diversity Gain

In a wireless system, the signal power at the receiver fltesuandomly (or fades). Diversity
is a technique that mitigates fading in wireless links byvjptimg the receiver with multiple
(ideally independent) copies of the transmitted signalgace, frequency or time [20, 21].
With an increasing number of independent copies, the pililyatihat at least one of these
copies does not experience a deep fade increases, therptyving the quality and reliability
of reception. A MIMO system equipped witN;-transmit antennas andl,.-receive antennas
could offer a maximum ofV; x N, independently fading links, and hence a spatial diverdity o

orderN; x N, [22].

2.1.2.3 Spatial Multiplexing Gain

MIMO systems offer a linear (in the number of transmit-rgeeantenna pairs) anin(Ny, N,)

increase in capacity for no additional power or bandwidbegxditure [23]. This gain, referred

9
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to as spatial multiplexing gain is achieved by transmittmgltiple, independent data signals
from the individual antennas. Under suitable channel d¢ard, such as rich scattering, the
receiver can separate these data streams. Consideringattiatreceive antenna observes a
superposition of the transmitted signal, various deteatdnitectures, such as maximum likeli-
hood (ML), zero-forcing (ZF), minimum mean-square erroM8IE), and successive interfer-
ence cancellation (SIC) detector, can be used to achievmlspaultiplexing gain [24, 25]. In
general, the number of data streams that can be reliablyosti@gpby a MIMO channel equals
min(Ny, N,) [26].

2.1.2.4 Capacity of Fading MIMO Channels

MIMO systems can offer substantial improvements over cotivpal single-input single-input
(S1S0O) systems by employing diversity and spatial mulkijplg techniques. In this section, the

gain offered by MIMO in terms of system capacity is explored.

Assume an ergodic block fading channel model where the @aemains constant over a
block of consecutive symbols and changes independentbsadiocks. The average SNR at
each receive antenna is given by/Ny sinceE[|h;;|%] = 1 in (2.2). If the transmitted symbols
span an infinite number of independently fading blocks, thenfion capacity, also known as
ergodic capacity, is the ensemble average of the informatite over the distribution of the
elements of the channel matrH [27]. Assuming that the channel is known at the receiver
and no channel state information at is available at the tnétes, the ergodic capacity can be

expressed as [23, 28].

E
C =E |log, det (I S HHY ). 2.3
MIMO [Ogg e (NT‘F N,Ng >] (2.3)

whereE[-] denotes the mathematical expectation operator. Singl&-multiple-output (SIMO)
and Multiple-input single-output (MISO) channels are salsccases of MIMO channels. Con-
sider a SIMO channdi with V; = 1 andN,.-receive antennas. Then, the capacity of the SIMO

channel is given by

E;
Csimo =E [10g2 (1 + F"hHQﬂ : (2.4)
0

On the other hand, if a MISO channel wiff}-transmit antennas andl, = 1 is considered,

10
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then the capacity of the MISO channel is given by

E;s
o mie)] @5)

Cuiso =E [logz <1 +

Due to the inability of the MISO transmitter to exploit arrggin when the channel is unknown
at the transmitter, it is clear from equations (2.4) and)(#at Csryo > Curso. Using
equation (2.1) to model the MIMO channel, Figure 2.2 shovesdigodic capacity of several
MIMO configurations as a function of SNR. As expected, at traes SNR, the ergodic capacity
increases withV; and V... Since, MISO channels do not offer array gain in the absehGSb

at the transmitter, then the ergodic capacity afa 2 SIMO channel is greater than that of a

2 x 1 MISO channel as shown in Figure 2.2.

2 5 T

N
o

[
(&)]

Ergodic Capacity (bits/s/Hz)
=
o

0 5 10 15 20
SNR (dB)

Figure 2.2: Ergodic capacity for different MIMO antenna figarations, when Rayleigh-fading
channels are considered.

2.1.3 Multi-user MIMO

Aiming to exploit the spatial multiplexing gain, MIMO tecblogy has shifted from a point-
to-point to a multi-user approach, where several usersiandtaneously served by a multiple-
antenna transmitter (see Figure 2.1(b)). Multi-user MIMOU:MIMO) has two advantages
over point-to-point MIMO. First, it is less vulnerable toethpropagation environment, even

under line-of-sight conditions. Second, only single-anteterminals are required [29, 30].

Consider a MU-MIMO system which consists of -antenna transmitter andy, single-

antenna users. The transmitter sends the modulated datzoksynsing a transmit vector

11
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that satisfies the power constraiff|x||?] = E, and linearly precodes the symbols using the
channel estimate. Let, be the symbol to be transmitted to theh user, withE|[|s;|?] = 1.

Then, the linearly precoded vectarcan be written as

x = \/paFs, (2.6)

wheres € CN*1 is the vector of data symbol& < CNe*" is the precoding matrix and
pq = E,/E[tr(FFH)] is a normalization constant that satisfig$|x||?] = E,. As a result, the

received signal at the-th user is given by

Yk = /Pahifisy + Z Vvpihifjs; + ng, (2.7)
J#k

whereh; andf; are thek-th row and column of the channel and precoding matrix, respe
tively. The Shannon sum-capacity for downlink MU-MIMO rexgs the solution of a convex

optimization problem [29]
Cru—mrmo = sup{log, det (INt + deDaHH) 1 (2.8)

with a > 0, 17a = 1, whereD, is a diagonal matrix whose diagonal elements comprise the

vectora € N; x 1, and1 denotes theéV; x 1 vector of ones.

2.1.4 Very large antenna MIMO arrays

The performance of practical MIMO systems strongly depesdgroperties of the antenna
arrays and the propagation environment, limiting the cépaxt the system. What prevents
the Shannon-theoretic version of MU-MIMO from being scédais, first, the exponentially

increasing complexity of coding and decoding, and secdmadtitne spent acquiring CSI which
increases with both the number of service antennas and théearuof users [29]. When the
number of antenna elements in the arrays increases, bothrtapjies and challenges arise.
Massive MIMO is a MU-MIMO cellular system where the numbert@nsmit antennas and
the number users are large. In this section, the concephthétassive MIMO systems in

terms of communication schemes and signal detection @doted.

12



Background

2.1.4.1 Massive MIMO

In traditional MU-MIMO systems, precoding in the downlinkdadetection in the uplink re-
quire CSl at the transmitter. Thus, the time-frequencyusss required for channel estimation
are proportional to the number of transmit antennas ancentdent of the number of receive
antennas. Generally speaking, two different operatingesazhn be used for transmission,
frequency-division duplexing (FDD) and time-division dexing (TDD). The downlink CSI
acquisition in a FDD operation requires a two-stage proedilihe transmitter first sends out
pilot waveforms, based on which the terminals then estitfeechannel responses, quantise
the estimates, and feed them back to the base station [3d§yBtems with a large number of
transmit antennas, such a procedure would reduce the apeifttiency significantly. Instead,
a common approach in Massive MIMO is to operate in TDD modd,raty on the reciprocity
of the channel to compute the pre-coding coefficients basedgptink CSI [32]. In practice,
the uplink and downlink channels are not perfectly recipfaue to mismatches of the RF
chains [33]. Nevertheless, these mismatches can be rengveatlibration [32, 34, 35]. More-
over, as the number of transmit antennas is typically irs@dao several times the number of
users, simple linear precoders and decoders can be emmlaytbd downlink (DL) and uplink

(UL) to approach the Shannon limit [29].

Massive MIMO technology relies on the coherent but companatly very simple processing
of signals from the antennas at the transmitter. Some bséfit Massive MU-MIMO system
are [29, 30, 33]: a) improvements of the capacity and simabtasly of the radiated energy
efficiency, b) support for inexpensive low-power composem) the reduction of latency on
the air interface, d) the simplification of the multiple assdayer and e) the increment on the
robustness against interference and jamming. Neverthdlassive MIMO also exhibits some
limiting factors as [29, 30]: a) pilot contamination, b) fierformance relies on a favourable
propagation channel, i.e., the channel responses fromahsnhitter to different user terminals
are sufficiently different, c) the increment on the interpalver consumption, d) increased

hardware and baseband processing at the transmitter.

Figure 2.3 compares the Shannon spectral efficiency (blaclef and that achieved by Mas-
sive MIMO with linear precoding (blue curve) as a functiontieé number of antennas at the
transmitter whenV,. = 16 users and an average SNR) dB are considered. The results in this

plot are computed according to equation (2.8) for the Shatinot, while the linear precoding

13



Background

Sum Rate (bits/s/Hz)

101 —MU-MIMO ZF precoding||
—Shannon Limit (DPC)
Il Il

20 30 40 50 60 70 80 90 100
Number of transmit antennas (Nt)

Figure 2.3: Comparison of the total spectral efficiency werthe number of antennas at the
transmitter of the Shannon limit (dirty-paper coding) anddgive MIMO (linear pre-coding)
systems forV,. = 16 users and SNR- 0 dB.

lower bound is computed according to the zero-forcing lobamd given in [36] as

N, — N,
Czr = N, log, <1 + M) . (2.9)

N,

If the transmitter is equipped witly; = 64 antennas, then Massive MIMO provides the same
performance as the optimal dirty-paper coding Mr = 55, thus, by employing additional
antennas at the transmitter, zero-forcing can offer coitiy@eperformance compared with the

dirty-paper coding technique that is required to achievenBibn-capacity in Massive MIMO.

2.2 Cooperative Wireless Communications

As it was mentioned in Section 2.1, MIMO systems have drawniicant interest due to
their ability to increase both capacity and reliability obdern wireless communications. Nev-
ertheless, design constraints for mobile devices limitrthmber of usable antennas; further,
closely spaced antennas entail the presence of highlylatadefading signals, limiting per-
formance [37]. Cooperative systems can be considered asctigal alternative to traditional
MIMO systems when the size and cost of the wireless devidmiteld, allowing single-antenna
devices in a multi-user scenario to share their messagéslf3®is section, the concept of co-
operative wireless communications is introduced. Fistne cooperation configurations and

operation types are outlined, followed by an introductidrtypical relaying schemes and a
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comparison of their achievable rates. Finally, an intraiduncto virtual MIMO systems is pro-
vided.

2.2.1 Configurations and Operation Types

Consider the three-node classical relay channel showrgur&i2.4(a), where the source node
(S) transmits to the destination node (D) with the assigtarfche relay node (R) [37], where
the source terminal, the destination and relay are equipitadsingle-antenna transmitter and
receivers. Moreover, it is assumed that the nodes operatdatf-duplex mode, and thus, can-
not transmit and receive simultaneously. From the soupmgist of view, the system becomes
a multiple-access channel. At the destination, the cotiperaystem can be seen as broadcast

channel, with all receivers coordinating to perform joietettion [39].

The classical relay channel concept can be extended to laegeork architectures. Figure 2.4
illustrates various relaying configurations that can benébin wireless networks, such as the
parallel relay channel in Figure 2.4(b), the virtual MIMO-RBUMO) channel in Figure 2.4(c),

and the two-way relay channel in Figure 2.4(d) [24]. Accogdio the scope of this work, the

V-MIMO system will be presented in more detail in Section.3.2

R,
S D S D
R,
a) b)
S, D, R
S
82 D2 1 SZ
c) d)

Figure 2.4: Different cooperation architectures: (a)silza three-node relay channel, (b) par-
allel relay channel, (c) virtual MIMO (V-MIMO) channel, (dyvo-way relay channel network.
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2.2.2 Relaying Protocols (DF, AF, and CF)

In a cooperative system, the relay node assists the comatiamavith the destination node by
either amplifying-and-forwarding (AF), decoding-and¥@arding (DF) or compressing-and-
forwarding (CF) the received signal. In the AF operation mothe relay node amplifies
and retransmits the received signal, subject to its maxirmansmit power constraint [40, 41].
Meanwhile, the signal received from the source terminaleimodulated and decoded before
retransmission if the DF mode is employed. Finally, if a CIEmgion mode is implemented,
a quantised and compressed version of the received sigfailiarded to the destination ter-
minal using a source coding method [41]. In the followingfetent transmission types for
cooperative systems, the principles of these relayingopais and their different achievable

rates are briefly introduced.

For each of the aforementioned cooperation schemes (AFNDEER) and using as a model the
three-node classical relay channel, three different titiwesion multiple-access (TDMA)-based
transmission protocols can be considered. For the trasgmiprotocol Type I, the source node
communicates with the relay and destination node durinditsitime slot. In the second time
slot, both the relay and source node communicate with thiéndéisn node [40]. During the
operation Type Il, only the relay node transmits to the desitbn node over the second time
slot [42]. Finally, the third Type is identical to the Typepaat for the fact that there is no direct
transmission from source to destination during the firsetsot [43]. The TDMA transmission

protocols are then summarised in Table 2.1 [40].

| Time Slot / Type] | ] I

1 S—»R,D S—R,D S—R
2 S—-D,R—D R—D S—-D,R—D

Table 2.1: TDMA-based protocols. S, R and D stand for themurelay and destination
nodes, respectively. A B represents a communication between nodes A and B.

In order to proceed with the introduction of the relayingtpomls, first the three-node classical
relay channel is presented, where the subscsiptsandd are used to classify the transmitted
(or received) signals at the source, relay and destinat@spectively. The signal transmitted
by the source during theth time slot is denoted by, ; for i = 1,2, with Ez,;] = 0 and

E[lzs,:|?] = 1. Thus, the signal received at the relay and destinationsidthe first time slot
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are given by
Yr = v Pshsrxs,l + 21 (210)
Yd1 = vV Pshsdxs,l + Zd,1 (211)

where P, is the transmit power of the source node over one symbol geeRairthermore, the
data channels from the source to the ngde {r,d} are represented by,;z;1 whereh;

is the small scale fading gain modelled as Rayleigh fadingoredver,z;; ~ CAN(0,0%)
represents the white noise over thih time slot at thej-th node. During the second time slot,

the destination node receives a superposition of the reldysaurce transmission according to

Yd2 = V Pshsdxs,Z + V Prhrdwr + 2d,25 (212)

whereP, denotes the relay transmit power andis the re-transmitted signal from the relay to

the destination node over the second time slot.

2.2.2.1 Amplify-and-Forward

Under an amplify-and-forward protocol, the relay receigamisy version of the signal trans-
mitted by the source than then amplifies and retransmitsatadstination node. As shown in
Table 2.1, in the first time slot, a data symbg); is transmitted by the source to the destination.
Over the second time slot, the destination receives a sopigign of the relay transmission and
the source transmission. Thus the received signal at thmadtsn over the two time slots can

be written as follows

Yd1 =V Pshsaxsi + za 1, (2.13)
Yd,2 = V Pshsdxs,Z + v Prhrdhsdaws,l + 2d,27 (214)
where
E
a= 5 . 5 (2.15)
|hsr[2Esq + oy

is a normalization parametefs ; = PsE[|z51|?] is the source power during the first time slot,

E, = P,E[|z,|?] is the relay power with:, = ay, and the accumulative noise term is given by
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242 ~ N(0,0% + 0% |hra|*a*). Once the data symbols have been detected, the achieveble ra

for the AF protocol,R 4, can be obtained as [24,42]

1 hsr 2 I 2E7"
RAF = §1Og2 (1 + |]’L5d|2E3,1 + B} ’ ’ ‘ d‘ > . (216)

oy t+ |hsr|2Es,1 + |h7"d|2ET

2.2.2.2 Decode-and-Forward

During the first time slot of the decode-and-forward protptite received signal at the relay is
given by (2.10). In the second time slot, the relay node denabels, decodes, re-encodes and
retransmits the signat, = z,;, wherez,; denotes the estimated signalaf;. Assuming
thatz, ; is successfully decoded at the relay, then the receivedilsigit the destination over

the two time slots are given by

Ya1 = V Pshsazsi + 24,1, (2.17)
Yd2 = V Pshsdxs,Q + V Prhrdxs,l + 2d,27 (218)

From [44] it is known that the achievable rate for the DF raigyprotocol can be obtained as

Rpr = min{Rpr1,Rpr2} < min{l(xs1;Yr, yalzr), I(xs,1; 2r|ya) }, (2.19)

wherel (z; 1; yr, yalzr) upper bounds the mutual information of the broadcast cHaneg the
rate of information transferred from the source to the relag destination nodes. Meanwhile,
the mutual information of the multiple-access channel, itee channel between the source and
relay nodes and the destination, is bounded @y 1; =, |yq). As a result, the termRp; and
Rpre in (2.19) are given by [13,45]

1
Rpr1 = I(xs,ﬁ y?‘ayd|x7“) = 5 log, (1 + |hsr|2Es,1) ) (2.20)

1
Rpro = [(.%'5,1; xrlyd) = B log, (1 + ’hrdler + ‘hsd‘2E872) . (2.21)

Substituting equations (2.20) and (2.21) into (2.19), tbleievable rate for the DF relaying

protocol can be written as

1
Rpr = 5 min{ 10g2 (1 + ’hsrles,l) 710g2 (1 + ‘hrd‘QEr + ’hsd‘QEs,Q)} . (2'22)
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2.2.2.3 Compress-and-Forward

During the compress-and-forward protocol, the relay fodsaa quantised and compressed
version of the received signal by employing standard geatitin, or some source coding tech-
niques to compress the signal. After the second time slotandrding to [46], the three-node

relay system is equivalent to a system in which destinataferhas two antennas and thus the

corresponding received signals are given by

Yr + 2¢ |V Pshsrxs,l + Zr,1 + 2z (2 23)
Yd,1 V Pshsdws,l + 2d,1

where z. is the independent and identically distributed (i.i.d.ycalar Gaussian noise, fre-
quently referred to as compression noise, which is indegendf y, andyg ;. Besides the

widely used Wyner-Ziv (WZ) coding, a standard source codiag be employed for practical
considerations. These include a reduced complexity at amble achievable rate [47] and
the fact that there is no improvement in performance for comelated systems [48]. As a

result, the signal received at the destination node duhiegécond time slot is given by

Yd2 = V Pshsdxs,Q + V Prhrdxs,l + Zd,2 + Zc. (224)

Assuming a standard source coding, then the power levekofdmpression noise. is lower
bounded by [47]

2 _ Elllyaell]

c

OcF = ﬂ, (225)

where(C' is the capacity of the error-free conference link betweerréhay and the destination
nodes and is assumed to be equal to the fixed quantisatiorirfaie, the achievable rate of the

CF protocol can be expressed as

(2.26)

1 hsr|?E
RCF = 5 10g2 <1 —|— |]’L5d|2E371 —|— | ST| 51 ) .

L+ ogp+0gy

2.2.3 Virtual MIMO Systems

Cooperative systems are considered as an effective apptoamprove spectral and energy

efficiency of wireless networks without requiring multiplamber of antennas per device. The
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basic principle of a cooperative wireless system is to granparbitrary number of single-
antenna devices into virtual antenna arrays to mimic andoéxjhe gains of multi-antenna
systems by means of wireless cooperation [49-51]. ViMdARO (V-MIMO) systems are
considered a particular relaying configuration (see Figutéc)), that uses distributed antennas
on multiple devices to achieve some of the benefits provigecbhventional MIMO Systems.
In this section, the application of the classic three-naayrnetwork is extended to a system

with multiple source, relay and destination nodes, as stiowaigure 2.5.

L Relay 7 | Y
: : : Short
BlCM 2 y range
: ~—— Relay N-1 |links
Vi
e Destination
MIMO Transmitter Virtual MIMO Receiver

Figure 2.5: System model of the cooperative virtual MIMOteys, that assumes a multi-
antenna transmitter and single-antenna relay and destinaddes.

V-MIMO systems lie in the integration of MIMO and relay tediogies. From the MIMO

perspective, V-MIMO configurations are designed to achdiversity, multiplexing or beam-

forming gains. Meanwhile, from the relay perspective, ¢hegstems can adopt either AF,
DF, CF or even a combination of these schemes to completegahsnission in one-hop or
multiple hops [52]. Even though cooperative MIMO systemevslan increase of the system
complexity and a larger signalling overhead required f@psuting the wireless cooperation, a
cost-effective trade-off regarding capacity, cell edgetighput, coverage, mobility and com-
plexity is obtained. These improvements hinge on the usaghstrsibuted antennas, which
increases the system capacity by means of spatial divg4€ty When the separation between
the relay and destination nodes varies, the AF, DF and Cloguts exhibit different perfor-

mance in terms of capacity. If the relay is close to the dattin, the CF protocol performs
the better compared with DF [53, 54]. Considering that thegroconsumed for each of the
protocols is relatively small compared with that of the Rif€waitry, the slightly different power

consumption between the protocols can be neglected. Aseaerdn from Figure 2.6, when

the relay channel is wealg (< 1), DF fails to take advantage of the cooperative systemesinc
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Figure 2.6: Achievable rates when a weak=£ 0.5) and strong ¢ = 2) relay channel is
considered, wherg is the relative channel strength of the relay and receiver [1

its performance is limited by the rate at which the relay camextly decode the received sig-
nal. On the other hand, when a reliable channel is considgred 1), DF outperforms CF
and meets the cut-set bound of the capadity ¢f the conference link [1]. In other words, for
large values of; (i.e., the relative channel strength of the relay and recigithe DF not only

outperforms the CF protocol but also is capacity-achieyseg Figure 2.7).
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Figure 2.7: Best cooperation protocol based on the capaoitypower gain of the conference
link [1].

For illustrative purposes, Figures 2.8(a) and 2.8(b) shiespectively, the spectral efficiency
(SE) and energy efficiency (EE) performance &f & 1 MISO system2 x 2 MIMO system
and2 x 2 V-MIMO system. The physical channel propagation paransesee adopted from
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the 3GPP LTE standard models [55] and equations (2.3) aB)l¢2 used to calculate the SE
for the MIMO and MISO channels, respectively. Meanwhilee #E, defined as the number
of bits that can be successfully delivered per unit of enenggs computed using the power
consumption model introduced in Section 4.3. The relay @my@nts a CF protocol through
an out-of-band short-range cooperation channel and itsignasd that the maximum transmit
power of the relay is smaller than that of the source termiff@abm Figure 2.8(a), it can be
noticed that the SE achieved by the cooperative MIMO systergomparable with that of a
traditional MIMO system and much larger of that of a MISO syst Moreover, from Figure
2.8(b), it is possible to notice that in the low-SE regimeMMO shows a much better EE
performance than the non-cooperative MISO system and pesfalose to the ideal MIMO.
Meanwhile, in the high-SE regime, V-MIMO performs much betthan MISO but it is out-
performed by the MIMO system, since the additional poweutitegl to carry out the wireless

cooperation reduces its EE performance.
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Figure 2.8: Comparison of the (a) spectral and (b) energgieffty performance for the V-
MIMO that implements CF wireless cooperation, MISO and MIg¢3tems.

In this chapter, only the optimal vector quantiser (VQ), itlee Voronoi VQ (see Section 3.4.1.1
for further details) was considered. Nevertheless, it idant that the practicality of CF coop-
eration will be greatly enhanced if an efficient source cgdacthnique can be used at the relay.
Thus, low complexity quantisers that enable the use of @&systith large number of antennas

will be presented in Chapter 3.
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2.3 Millimetre Wave Wireless Systems

Despite research efforts to deploy efficient wireless tetdgies, mobile data traffic demand
has experienced a unprecedented growth [56]. Recent stadggest that millimetre-wave
(mm-wave) frequencies could be used as an alternative toutnently saturated 700 MHz to
2.6 GHz radio spectrum bands for wireless communicatiohdrizhis section, the concept of

mm-wave communications, its opportunities and challergesntroduced.

2.3.1 Mm-wave spectrum

Almost all commercial radio communications services ofgena a narrow band of the radio
frequency (RF) spectrum between 300 MHz and 3 GHz due tovitaifable propagation char-
acteristics. Thus, the portion of the RF spectrum above 3 &dzeen largely unexploited for
commercial wireless applications [2,57]. Within the 3 - 3BAz spectrum, up to 252 GHz can
potentially be suitable for mobile wireless communicasi@s shown in Figure 2.9. Since, the
transmitted signals can experience an attenuation of dfodB/km at around 60 GHz, and up
to tens of dBs in the range of 164 - 200 GHz [58] due to the oxyayshwater vapour absorp-
tion, these bands are frequently excluded for mobile braadtapplications as the transmission
range in these bands will be limited.

3 GHz 57 64

164 200 300 GHz
54 GHz 99 GHz 99 GHz
4 4 7Y
Cellular mobile Potential 252 GHz
communications available bandwidth

Water vapor (H,0)
60 GHZ_ oxygen absorption band
absorption band

Figure 2.9: Millimetre wave spectrum [2].

However, considering that current cell sizes in urban emvirents are on the order of 200 m,
atmospheric absorption does not create significant additipath loss for mm-wave frequen-
cies. Only 7 dB/km of attenuation is expected during heainfali, which can be translated to

only 1.4 dB of attenuation over the 200 m of coverage [59, 60].
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2.3.2 Millimetre Wave Channel Model

As mentioned in Section 2.1.4, Massive MIMO technology amalscells are two promising
approaches for future cellular networks. While, MassiveVi@ can accurately concentrate
transmitted energy to the mobile users, small cells deerémsaverage distance between trans-
mitters and users by overlaying small cell access poinssiltiag in lower propagation losses
and higher energy efficiency [61, 62]. Both of these appreadre readily supported and en-
hanced by the mm-wave spectrum, since the small wavelemgthenly allow for hundreds
of antenna elements to be placed in relatively small phy/sjgace, but also because by reduc-
ing the serving distance, mm-wave frequencies can overetteeuations due the propagation.
Furthermore, beamforming techniques can be employed tedse the link capacity in the
mm-wave regime. Beamforming is essentially a spatial filgeoperation typically using an
array of antennas to radiate energy in a specific directi8h [Bhe gain obtained through an-
tenna beamforming can also compensate for the path losspwa$NR, enhance the Ricean

factor gain, and reduce delay spread due to multipath digpef63, 64].

In order to characterise the channel for mm-wave communitatdetailed statistical models
have been developed [58, 59, 65, 66]. Since range is one dethéssues that mm-wave fre-
guencies face then it is important to determine how pathvasgs with distance. In standard
urban cellular models, it is common to fit the line-of-sight$) and nonline-of-sight (NL0S)
path losses separately. While LoS path losses roughlwidte free space propagation based
on Friis’ law, in order to characterise the presence of Nlfe&juently a standard linear fitting

is used as follows [2,5,57]

PL(dB) = a + 10blogo(r) + &, (2.27)

where¢ ~ N(0,03%) with 0% as the log-normal shadowing varianeejs the distance in

metersa andb are the least square fits. The values g andoy are shown in Table 2.2.

| Variable | 28 GHz \ 73 GHz \

NLoS | a=72,6=292,0y =87dB | a =82.7,b=2.69,0ny = 7.7dB
LoS a=614,0=20,0ny =58dB | a=169.8,b=2.0,0ny =5.8dB

Table 2.2: Statistical model for the large-scale pararsdtgr

All these parameters represent large-scale fading clesistats, thus, they are associated with

24



Background

the macro-scattering environment and change relativelylgl[67]. In order to generate a ran-
dom narrowband time-varying channel, the angles of ar(i&al\) and departure (AoD) can be
used to describe each of the subpaths. Assuming a mm-wategrswsth V,.-receive antennas
and N;-transmit antennas, the narrowband time-varying chanaiel getween a transmitter-

receiver pair can be represented by a matrix given by [5]

K N,
1 o
H= V N, DD naar( @ O )al (. 650), (2.28)

k=11=1

wherey, ; is the complex small-scale fading gain on thia subpath of thé-th cluster,a,.(-)
anday(-) are the vector response functions for the receive and titmsitenna arrays to the
angular arrivals and departures afiql andei’l are the horizontal and vertical angles of arrival
(j = r) or departure { = t), respectively. Further details about the time-varyingretel can
be found in Section 5.3.1.

2.3.3 Challenges and Opportunities

Despite the potential of mm-wave communications, thereaamember of key challenges to
overcome in order to fully exploit the benefit of using mm-wdvequencies. Among these

challenges, it is possible to point out:

e Design of circuit componentsvith high carrier frequency and wide bandwidth in mm-
wave communications, several technical challenges in éisgd of circuit components
and antennas need to be addressed. From severe non-listeatiath of power amplifiers
(PA) to phase noise and IQ imbalance faced by the RF intadyciteuits [68].

¢ Interference Managemensince practical mm-wave systems are limited in range &larg
number of mm-wave access points may be deployed to providerage, thus, interfer-
ence management mechanisms to prevent degradation ofrkgteidormance could be

required [69].

e Blockage in order to ensure robust network connectivity due to treppgation char-
acteristics of mm-wave frequencies, different approadies the physical layer to the

network layer can be considered: exploiting reflectiomyiglg techniques, etc [57, 69].

Due to the inherent limitations of mm-wave propagation, mvave cellular systems require to
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coexist with other systems, such as long-term evolutiorEjLAnd WiFi, in order to provide
uniform, robust high capacity across different deployradB¥, 70]. Thus, it is expected that
mm-wave networks will be inherently heterogeneous. Tleesfin heterogeneous networks,
or HetNets, short-rage smalls cells operating in the mmenfamquencies will coexist with
macrocells transmitting in the microwave frequencies.erattion and cooperation between
different kinds of networks become a key factor to solve ttodblems of mobility management,

vertical handover and mobile data offloading in future vassl communications [57].

2.4 Stochastic Geometry for Cellular Networks

While wireless communications systems have been studredeftades, until just a few years
ago, mathematical performance analysis of these netwoassnet possible without extreme
simplifications. In this section, basic concepts from sé&mtic geometry and Poisson point

processes are introduced. For further details, the readehised to consider [15, 71-74].

2.4.1 Point Process

Stochastic geometiig a branch of applied probability which allows the study afidom phe-
nomena on the plane or in higher dimensions. It is intridicelated to the theory of point
processes [75]. Nowadays, it is widely used in the contextoofimunication networks [76].
The most elemental object studied in stochastic geometnthar point processes. point

processcan be depicted as a random collection of points in space~geee 2.10).

Formally, a point process (PR, = {X;,i € N}, is a random collection of points within a
measure space. In the case of cellular networks this spabe Buclidean spadg? [72]. A
convenient interpretation is to think @& as a counting measure, where the idea is to count the

number of points falling in any set c R¢. Thus, a point process can be defined as [71]
T(A) =D (X €A, (2.29)
XiECD

whereW(A) is a random variable whose distribution depends upoisince¥ (A) represents
the number of points ob in A, then®(A) < oo for any boundedd C R?. Recall that a set is

bounded if it is contained in a ball with finite radius [73]. i&eally speaking, point processes
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in R% exhibit some dichotomies as follows [76]:

e A PP can be eithestationaryor not. A PP is stationary if the law of the point process is
invariant by translation. For example,& = {X;,i € 1...k} is a PP, wher&; € R?
represents the location of each user of a cellular netwoftenTthe distribution of the
shifted PP® + v (obtained by shifting each poitX; € ® to X; + v) is identical to the
distribution of®.

e A PP can banarkedor not. Marks assign labels to the points of the process tmalefi
some underlying property. They are typically independétih®PP and independent and
identically distributed. For example, a PP formed by thetimn of the base stations is

marked if each point is labelled &; = 0 or X; = 1 according to their activity level.
e A PP can besotropicor not. Isotropy holds if the law of the PP is invariant to tata.

e A PP can bdPoissonor not. A formal definition of the Poisson point process isegivn

the following subsection.

500

-500 -
-500 0 500

Figure 2.10: A single realization of a Point Process wheeebihie lines represent the Voronoi
boundaries.

2.4.2 Poisson Point Process

A Poisson point proces@PPP) is a point process with expected valuel) = E [V (A)] if
[71,72]

1. For all set4, the random variabl& (A) is Poisson distributed with mear{A).
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2. For anym disjoints setsy, ..., A,,, the random variable$ (A;) are independent.

Due to mathematically tractability, considerable reseamaellular networks has been focused
on the so callethomogeneous Poisson point progeshich essentially is a PPP with uniform
intensity A such that

w(A) = M(A), (2.30)

wherel(A) is the Lebesgue measure (or size)dfSome of the most useful properties of the
PPP are listed below [71, 72]:

¢ Independent thinningf a PPP results in a different PPP. If each point in a PPP is ran
domly and independently assigned bindfy 1} marks withP(Q; = 1) = ¢, then the

collection of points marked alsform a new PPP with intensity\.

e Superpositiorof independent PPPs results in a PPP. Thus; thdependent homoge-
neous PPPs characterized by intensitewith i = 1,2, ..., m are combined to form a
new PPP, this new PP will also be a PPP, now with inteﬁgj&1 A

e Displacement of a PPResults in a different PPP. Thus, if each point of a PPP idalisol
by some random law, for example by adding i.i.d Gaussianaemndariables to each

point, the PP consisting of these new random points will BEs®PP.

2.4.3 Downlink Analysis

Consider the downlink of a cellular network that consist aéé stations (BSs) located accord-
ing to a homogeneous PRF3) of intensity \ in the Euclidean plane and the location of the
users (UEs) independently determined by other stationairgt process®(V?). It is assumed
that each user is associated with the closest base staBgrthie users in the Voronoi cell of
a BS are associated with it (see Figure 2.10). As a resultuske is served by the BS that
provides it the highest average SINR. Moreover, it is assuthat the transmission between
the base station and the user is constant with a fixed p&etlowing a orthogonal multiple
access within a cell. Thus, the intended user sees intaderfeom all other BSs in the network
except from its tagged BS. Once the signal is transmitteatiénuates with distance according
to the standard power-law path loss propagation model,evher 2. Thus, the received signal
at a distance has an average power 6f(r) = Pr—. In order to take into account the chan-

nel effects, multiplicative random valués for the desired signal anf for thei-th interferer
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are employed. For the sake of simplicity, it is assumed these values follow a Rayleigh

distribution with unit power.

In the following the SINR, servicing distance, interferenand probability of coverage of this
cellular network are briefly introduced. Further detaila & found in [15,71-75,77,78] and

the references therein.

2.4.3.1 Distance to the nearest Base Station

An important measure of the cellular network is the distanseparating a typical user from
its tagged BS. From [71], it is known that no other BS can bsealldhatr, since each user is
served by the closest BS. In other words, all interfering Bf&slocated farther than Using
the fact that the null probability of a Poisson process witim area of interest is exp(—AA),
then the probability (PDF) and cumulative (CDF) densitydlion of » are given by [15]

fr(r) =2mrXexp(—7wAr?), >0, (2.31a)
Fr(r)=1—exp(-7Ar®), r>0. (2.31b)

2.4.3.2 Signal-interference-to-noise-ratio (SINR)

Without loss of generality and using the Slivnyak’s theottbat states that conditioning a PPP
on a point atz does not change the distribution of the rest of the proct$s,aissumed that
the user under consideration is located at the origin. TtlenSINR of the user at a random

distancer from its tagged BS can be expressed as

HPpPr—
SINR= ——, (2.32)
oy + IR
where
Ir= Y  GPIX™, (2.33)
X,;€®\b(0,0)

is the cumulative interference from all the other BSs, ediclg the tagged BS for a typical user

at the origin, which is denoted b0, 0). For simplicity the interferencéy is considered a
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standard M/M shot noise [73, 74, 79], that is created by ag@aipoint process of intensity
outside a disch(0, R), centred at the origin of radius.

2.4.3.3 Probability of Coverage

The probability of coverage is the probability that a typigser is able to achieve some thresh-
old SINR, 7, i.e., it is the complementary cumulative distribution é¢tion (CCDF) of SINR
and is defined by [71, 73]

P = P(SINR> 7). (2.34)

Equation (2.34) can also be thought as the average fractiosens who at any time achieve a

target SINRr. Conditioning on the nearest BS being at a distanfrem the typical user, the

probability of coverage of the homogeneous PPP network/enddy [71]

Pc :/ 0]P’(SINR> T|r) fr(r)dr. (2.35)

Using equation (2.31a), the fact thétis an exponential random variable with unit mean, i.e.,

H ~ exp(1) and some algebraic manipulation, the probability of cogerean be simplified to

Py = 27 / Oe“’“ze—TP’”“U?vch (rP %) rdr, (2.36)
r>

whereL;, (TP~'r®) is the Laplace transform of equation (2.33), and is given by

Li, (TP71r%) = exp(mrMp(7, @), (2.37)
where
p(r,0) = 74/ Tl (2.38)
’ 7—72/04 1 + U,O‘/Q '

2.4.3.4 Validation

Practical LTE cellular networks are usually deployed in aergirategic manner than just ran-

dom independent placing, and for this reason a regular loeedgrid has been used to model
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current cells. The hexagonal grid model can be considered apper bound since a perfectly
regular geometry is in fact optimal from a coverage pointie®w[80]. However, this approach
is idealised, since imperfections relative to the landforamd deployment costs produce in
practice irregular grids. Simulation studies account faske imperfections by perturbing the
BSs locations with a 2D Gaussian or uniform random variaf8é$ Since a practical LTE
network lies somewhere between the two extremes of perégetiarity (hexagonal grid) and
complete randomness (PPP), it is expected that its SINRrageegorobability be bounded by

these two extremes, as pointed by [80].
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Figure 2.11: (a) Homogeneous PPP BSs deployment compatadawb) 2000m x2000m
section of a LTE network in central London [3], where the kldots represent the BSs locations
and the blue lines their corresponding coverage.

Figure 2.11 compares 2000m x2000m section of a LTE network in central London and a
sample of BSs generated from a homogeneous PPP of the sasiy.d&he main weakness
of the Poisson model is that due to the independence of the B¥&Pwill in some cases be
located very close together with significant coverage afdws is balanced by two strengths:
the characteristic inclusion of different cell sizes andms and the lack of edge effects, i.e.,
the network extends indefinitely in all directions [71]. etheless, as it is shown in Chapter 5,
despite the analytical tractability, the assumption of mbgeneous PPP is not always the most
accurate model for future 5G wireless networks. Since the &8 to be deployed in locations
where the users are more likely to appear, having as reswdtveork where the uses will be

clustered towards the BS, rather than being uniformly ithisted within the area of interest.
An illustrative plot is presented in Figure 2.12, where tihebability of coverage of a regular
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hexagonal grid and a homogeneous PPP is presented. Fropiahig is possible to notice
that the curves have the same shape but there is a perforgapad about 4 dB over nearly
the entire SINR range, which depends on the actual BS laysad and the path loss exponent.
Thus, the probability of coverage of a practical cellulasteyns is expected to lie roughly

between the grid and the PPP deployments.
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Figure 2.12: A comparison of the interference-limited cage probability withoe = 3 for a
500m x 500m regular grid and a Poisson layout.

2.5 Summary

This chapter provided some basic principles on MIMO systerosperative communications,
mm-wave systems and stochastic geometry. In the first sgdtie basic concepts for MIMO
systems were introduced. It was shown that, MIMO systemsuoawide significant improve-

ments over the conventional SISO case, in terms of both eadblie rate and link reliability.

In the second section, cooperative wireless communicaiistems were introduced as a prac-
tical alternative to traditional MIMO systems, when thengmnitter or receiver may not be able
to support multiple antennas. Typical cooperation prd&cioe., AF, DF and CF, and their

achievable rates were illustrated. It was shown that, Dikesek a higher rate when the relay

is close to the source, but CF outperforms DF when the reltsyaeser to the destination.

In the third part, a brief review of mm-wave wireless systemas provided. The propagation
characteristics of mm-wave frequencies were introducetitla® opportunities and challenges

were presented.
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Finally, an introduction to stochastic geometry for mobgllfuture 5G wireless communi-
cations systems was presented. Where the SINR, the sergtamck and the probability of

coverage of homogeneous PPP wireless systems were chigextte
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Chapter 3
Low Complexity Codebook Design

In this chapter, a cooperative virtual MIMO (V-MIMO) systetimat uses a large multi-antenna
transmitter and implements bit-interleaved coded moauidBICM) transmission and compress-
and-forward (CF) relay cooperation among multiple recejuvodes is presented. Since con-
structing a reliable codebook is the most computationaliyglex task performed by the relay
nodes in CF cooperation, reduced complexity quantisatchrtiques are introduced in this
chapter. In order to focus our analysis on the block errobabdity (BLER) and computa-
tional complexity, and considering that the relays and #etidation nodes are closely spaced,

an error-free conference link is assumed between them.

Two different scalar quantisation techniques are predeint¢his chapter, where the real and
imaginary parts of the received signals are quantised &mtdgntly. First, the uniform scalar
quantiser (U-SQ) is considered and the performance aahiebhen a large number of anten-
nas is used both at the transmitter and receiver is evalugttbnd, the Lloyd-Max algorithm
(LM-SQ) [82] is employed to reduce the error distortion bitg advantage of the distribution
of the received signals. A comparison in terms of BLER andmatational complexity for de-
signing the codebook and forwarding a compressed versitheafignal to the destination node
are presented. In practice, besides the data symbolsiaditontrol information is transmit-
ted, thus, the overhead incurred by the quantisation tgqaksiis computed by calculating the

number of bits required to transmit the codebook to the dattin node.

Numerical results show that the LM-SQ is simpler to desigd ean achieve a BLER perfor-
mance comparable to the optimal vector quantiser (V-VQjtiemmore, due to its low com-

plexity, U-SQ could be consider particularly suitable ferylarge wireless systems.

The remainder of this chapter is organised as follows. 8e@&il presents the background and
motivation of this chapter. The system model is describefldation 3.2. The CF cooperation
at the relays is presented in Section 3.3. A description®fdtv complexity quantisation tech-
niques, codebook design and the corresponding complexdélysis are presented in Section

3.4. Simulation results are shown in Section 3.5. Finakgct®n 3.6 concludes the chapter.
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3.1 Introduction

MIMO systems have drawn significant interest in recent yedue to their ability to increase
both capacity and reliability of modern wireless commutitwss. Nevertheless, design con-
straints for mobile devices limit the number of usable angéesy further, closely spaced antennas
entail the presence of highly correlated fading signatsitihg performance. V-MIMO systems
have recently emerged as a promising technigue due to thidity do mimic and exploit the
gains of multi-antenna systems by means of wireless cotiperi@3]. A CF cooperation pro-
vides a good trade-off between performance, complexity datd rate when the relays are
located close by the destination. In a CF - based cooperatiorstructing a reliable codebook
and forwarding a compressed version of the received signdlge destination node for subse-
quent processing are the main tasks that each relay hadtompeihe codebook generation is

the most computationally complex stage in the design [84].

In [85], codebook designs of the V-VQ and the tree-structurector quantisation (TSVQ) to
enable CF cooperation are presented. Different from theQy&/multi-stage TSVQ where the
encoding task is divided into several stages is introdultedas shown that the TSVQ is much
simpler to design and can achieve performance comparalie toptimal V-VQ. Meanwhile,
an achievable rate based quantisation scheme is presenf8@].i This scheme based on a
scalar quantiser achieves better performance and highgpregsion efficiency in the AWGN

scenario.

In [87], the authors combined the improved affinity propamai(lAP) with the conventional
Linde-Buzo-Gray (LBG) algorithm to generate an effectivgoaithm called IAP-LBG. Ac-
cording to the experimental results, the proposed methoamy improved its convergence
abilities but also provided higher-quality codebooks teanventional LBG method does. A
fast search method based on principal component analySi8)(B proposed in [88]. The
PCA-LBG-based VQ algorithm outperformed other methodsims of peak signal-to-noise

ratio and number of codewords searched.

Furthermore, in [89] a modified LBG algorithm is proposedwvd#is shown that, compared with
the conventional V-VQ, it reduces the execution time andlmemof iterations by shifting all the
low-utility codewords near to the cells with high utilityn [90], a channel quantised physical-
layer network coding (CQ-PNC) scheme based on VBLAST toeaghthe full diversity was

presented. Specifically, the relay uses QR decompositioarteert the received signals and es-
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timate the Gaussian integer summation. Numerical simaratshowed that CQ-PNC performs

within a 2 dB gap from the theoretical bound.

A universal unitary space vector quantisation (USVQ) codéddesign criterion was provided
in [91], which can design optimum codebooks for various igpabrrelated channels with ar-
bitrary antenna configurations. Simulations showed thactpacity achieved is very close to
that obtained through ideal precoding and outperformetlahéhe schemes using the tradi-
tional Grassmannian codebooks. Further, a random vectmtigation approach that generates
the codevectors independently from a uniform distributiomthe complex unit sphere, us-
ing a limited number of feedback bits was presented in [92kaMvhile, the authors in [93]
adopted the generalized Lloyd algorithm (GLA) to optimilae todebook in terms of maximal
average signal-to-noise ratio (SNR) for a distributed deaming with limited feedback for
a time varying amplify-and-forward cooperative networkumrical results showed that the
distributed beamforming with compressed feedback pedariosely to the case with infinite
feedback.

In [94], the authors designed and analysed the performdricansmit beamformers for MIMO

systems, based on bandwidth-limited information, by ogdtiie design of transmit beamform-
ing as an equivalent sphere vector quantisation (SVQ) probAs a result, the rate-distortion
performance achieved by the generalized Lloyd’s algorithtower-bounded. In order to opti-
mize symmetric and asymmetric scalable multiple desariptjuantisers, in [95], an extension
of the Lloyd-Max algorithm was described. Experimentautssconfirmed that, compared to
conventional schemes, the proposed quantiser accounsignificant average gain in SNR for

a wide range of packet loss rates.

Additionally, in [96], a vector quantisation techniquettba&ploits the reduced dimensionality of
the channel Gram matrix by using Jensen’s inequality anehetiecomposition to improve the
pairwise error probability was investigated. Moreovef9in], a initial codebook design method
for VQ was proposed. The mean and variance characteridtievavere used to partition the
training vectors into different groups and the codewordsewselected from each group to
generate an initial codebook. Experimental results deiratesl that the proposed method

exhibits a better performance than the conventional ones.

In this chapter, reduced complexity quantisation techedcare proposed for V-MIMO to enable

a large cooperative system with multiple relays. This wadftets from the previous research
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in that i) it is proposed using scalar quantisation at eatdkyreode, where the Lloyd - Max
algorithm and uniform scalar quantisation are considdrei analyses the complexity and iii)
presents the block error rate performance of the proposadtigation techniques. Simulation
results show that LM-SQ is less complex and achieves a cablegperformance to the optimal
V-VQ. Meanwhile, U-SQ is much simpler and exhibits a goodfgmanance when a large V-

MIMO array is considered, making it suitable for future i@ss communications.

3.2 System Model

Consider a cooperative V-MIMO system with/¥-antenna transmitter and a receiver com-
prising V,. single-antenna devices, as shown in Figure 3.1. At therrdtes side, a BICM
scheme is employed to provide error correction and imprbeesystem’s performance. The
data bits are encoded using a régtinear convolutional encoder and then passed through an
ideal bitwise interleaver, which rearranges the codedusiisg a random permutation. Next,
the interleaved coded bits are demultiplexed infostreams. In each streain= 1,..., Ny

a group ofm? coded bits are mapped to a data symbplfrom a symbol alphabet’ of size

|X| = 2m% Thus, the transmission rate’gm? R, bits per channel use. Finally, the transmitter
simultaneously sends the modulated data symbols thrdgmtennas using a transmit vector
given byx = [z1,...,zn,]T € XM that satisfies the power constraib| x ||?] = E,/N;.

Thus, the corresponding power per bitfis = E,/(m%Ry).

Vector
: Quantizer
Relay1 |[¥" | v
e?y : Standard
X
Short
BICM Relay N -1 range |
Yy rA links v
Y : Inter-cluster
: Destination Standelrd RX
............................. | BICMY
MIMO Transmitter Virtual MIMO Receiver ;

Figure 3.1: Block diagram of MIMO transmitter and virtual MO receiver.

In order to model the channel effects and considering thatrdmsmitter is located far away

from the receivers, a block fading channel is employed. &iperfect channel state information
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(CSIl) is assumed at the receivers only, then, the receigedisis given by

y =Hx+n, (3.1)

whereH denotes theV,. x N; channel matrix anceh the noise vector with componentg ~
CN(0,Np) andl = 1,..., N,. The notatiorCN (u, o?) represents a complex Gaussian distri-
bution with meary, and variancer?. Since, a slow fading propagation model is assuri#d,

remains constant through symbol periods.

The cluster of receivers, that includes the destinatiorerentl theN, = N, — 1 relays, are
assumed to be closely spaced, thus, it is reasonable totetkpddhe wireless cooperation
between the relays and destination is considerably beti@mzore stable than that between
the transmitter and receivers. In fact, it is highly likehat a high channel capacity could be
achieved due to the high reliability of these short rangkslirAs was considered in [1, 24, 98,
99], it is assumed that the relays and destination nodesecatgpthrough error-free conference
links of capacityC'. The one-shot cooperation links require the destinatiatetmde the signals
sent over the conference links. In order to handle the amafutfaita that is to be sent from the
relays to the destination, in this chapter, the CF protoga@onsidered. Hence, a compressed
version of the signals will be passed to a standard trarsngitid sent over the conference link,

as will be detailed in Section 3.4.

Moreover, the destination node is assumed to be equippddantitaditional receiver which
observes the signals from the transmitter, and an intrst@ueceiver which observes signals
from the relays. Thus, the cooperation is performed at ealay through the simultaneous
and independent transmission of orthogonal signals tomigei the inter channel interference.
Later, the destination performs zero forcing (ZF) demaiitutaof the received signal and com-
putes the log-likelihood ratio (LLR) for each coded bit. Thalti-path LLRs are combined into
one output stream by the multiplexer, and then rearrangedtleir original positions by the
deinterleaver. Finally, the decoder accepts the LLRs afadled bits and employs a soft-input
Viterbi algorithm to decode the signals. Thus, with helprrthe relays, the single-antenna
destination node receives,.-path signals. Hence, a reliable compression process vediokd

the destination node to handle the compression noise afarpeMIMO decoding [24].

38



Low Complexity Codebook Design

3.3 Compress-and-Forward Cooperation

Aiming to mimic the performance of a traditional MIMO syster V-MIMO operation is
carried out at the receiver side, whe¥g relays cooperate with the destination node through
error-free conference links. To avoid interfering with thega sent by the transmitter, the con-
ference links are assumed to be carried out via orthogoraaireis to the transmitter array,
i.e., different frequencies bands are used for transmgitind receiving signals at each relay.
Compared with the long range data chankglthe orthogonal conference links are shorter-
range and could be reused many times within the coverage &aasequently, the wireless
cooperation will not affect the overall system throughplut.Chapter 2, different cooperative
techniques including the AF, DF, and CF schemes were predeBince the AF protocol am-
plifies not only its received signal but also the associatadsSian noise, an AF-relayed packet
may become too noisy to be decoded in practice. MoreoverDi@rotocol does not take
advantage of the aggregated information provided by theofdle nodes, since it performs a
single pass decoding at each relay and its computationaplesity can be restrictive. Thus,
a better candidate to implement the V-MIMO system is the GRqmol, as it provides a better
performance when the relays are closer to the destinatigjaidd reduces the amount of data

that needs to be sent through the short-range links.

Assuming that the CF protocol is used for wireless coopamathen the main tasks performed
at each relay includes designing a codebook, quantisingetiedved signals and forwarding the
compressed signals. After a quantiser is employed at eday) eecompressed version of the
signal will be passed through the conference links. In [9@] EL.OQ], it was demonstrated that
if the compressed version of the signal at each rejayfollows a Gaussian distribution, then

the compression noise can be modelled by an i.i.d comples&auvariable as follows

Yo = Yr + Ne (3.2)

wherey, is the received signal at each relay and~ CN(0,0% ;) withc € {1,..., N} is

the compression noise [46,84], which is assumed to be imdigpe ofy,. and can be computed

%_ Along with the compressed version of the

received signal, each relay node passes to the destinatiminformation related with?, ..

according to equation (2.25) a$,,. =

Once the destination knows the valuesgf,., it scales the received signals using a degradation

factorn, per stream so that the relayed signals and the one recengadiglfrom the transmitter

39



Low Complexity Codebook Design

have the same power of additive Gaussian noise [101, 102]s,the cooperative system can

be modelled as follows

y =Hx +n, (3.3)
where ~ _
Vimhiy - /mhan,
N : : N,
H= andn, £ ——2 . (3.4)
g Ny + o2
VNN - \/INGNG N, 0T %cr
I hn, 1 e hn, N,

Notice that the--th row of H corresponds to the direct link between transmitter andrdgin
node. Since there is no relay assisting the destination tiadethere is no degradation factor
affecting the transmission and thys = 1. The receiver implements a soft demodulator with
low complexity by using a linear ZF equalizer followed by feyer max-log LLR calculation.

Following the model presented in [103], the LLR for each abdit 02 is calculated by

~ 1 s s
Ly, H) = — | min |# — 2|> — min |&, — 2|, (3.5)
Oj. |zex? zeX}

fori = 1,...,logo(M) and) € {1,...,m% x N;}, wherex? denotes the set of symbols in
the M -QAM constellation whose bit label at positierequalsb € {0, 1}, & is an estimate of
the symbol in layek provided by the equalizer, amﬁ is an equalizer weight. In the ZF based

demodulator, the equalization consists of

%zp = (HUH) '"H9y = x + 1, (3.6)
where the post-equalization noise vecibrhas a covariance matrix given by

R = E{nn"} = Ny(HPH) . (3.7)

Therefore, the approximate bit LLRs are obtained with thealsyl estimatez, = (xzr)x
and weight factow? = (R); . The notation(a), and(A), . represent thé-th element of
vectora and the element in row and column/ of matrix A, respectively. Calculating the

LLRs separately for each layer results in a significant cexipt reduction. In particular, the

40



Low Complexity Codebook Design

complexity of evaluating (3.7) for all coded bits scaleg¥sV; N, |X?|), i.e., linearly with the

number of antennas [103, 104].

3.4 Quantisation Design at the Relays

When the CF protocol is used for wireless cooperation, thim t@gks performed at each re-
lay node are: (a) designing a codebook, (b) quantising theived signals and (c) forwarding
the compressed signals. Thus, the design of an efficientoodteis a critical factor to per-
form reliable CF cooperation. In this section, a standawgd® coding technique of ratk,.
and measured in bits per/sample is employed. Moreoveragssimed that the source coding
rate R is equal to the error-free conference link capaeity, whereC is measured in bits per
dimension/sample. Frequently, it is assumed that the mdaes are equipped with a vector
quantiser (VQ) module that performs an exhaustive searfthddhe correct codeword. Never-
theless, its high computational complexity make its imatation impractical for high-order
modulations, larg€’ or when a large-antenna system is considered. In this sedtie widely
used Voronoi vector quantiser (V-VQ) algorithm is presdraad alternative algorithms for low

complexity codebook design are introduced.

3.4.1 Codebook Design

During the codebook design, knowledge of the noise-frestetiation and the size of the code-
book22¢ is required at the relay. Note that, in practice besides #t@ symbols and the modu-

lation order, additional control information is transradithrough the control channel. Thus, the
c-th relay is able to construct the noise-free constellagioh = {h.z. + Diell,. N\ hiwi}

of its received signals.

3.4.1.1 Voronoi Vector Quantiser

A special class of vector quantisers are the so cAltednoior nearest neighbouwector quan-
tisers that has the feature that the partitions regionsampletely determined by the codebook
and distortion measure [105, 106]. In [107], Linde, Buzod &ray (LBG) proposed a VQ
design algorithm based on a training sequence that byptesased for multi-dimensional in-

tegration and provides an optimal codebook in the sense mifmising the average distortion.
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Specifically, if a mean squared error (MSE) distortion meassiassumed, then the encoding

regionsD,, are defined by the nearest neighbour criteria given by

Dy ={yq: lyq — ”qHQ <Ilyg — v;HQ,Vq' =12,... 7220}7 (3.8)

whereD, is the encoding region associated with the codevegtoy, denotes the noise-free
constellation of the received signals and the number ofvearters within the codebook .
This condition guarantees that the encoding region canefsall vectors that are closer tg
than any of the other codevectors. Moreover, each codaveghould be averaged over the

number of the training vectors within the encoding regiofodlews [107]

vy = ¢=1,2,...,2%, (3.9)

In implementation, it is required that at least one trainimgtor belongs to each encoding
region to guarantee that (3.9) is finite. In general, givennthmber of codevectors required for
quantisatior2?“, the LBG is an iterative algorithm which provides a codebookwo steps.
Using (3.8), it provides a set of partition regions (the deblack lines) and, through (3.9),
updates the codevectors (the set of all red stars), whialitiesthe smallest MSE distortion.
Figure 3.2 shows the partition regions and codebook oldaiten the V-VQ is employed. In
practice, every received signal falling in a particularioegare approximated by the red star
associated with that region. Note that in this plot there3@eegions and 32 codevectors, each

of which can be uniquely represented by 5 bits. Thus, thiislamensional, 5-bit V-VQ.

3.4.1.2 Uniform Scalar Quantiser

Unlike vector quantisation that mapsradimensional vector per unit time, a quantisation
scheme is called scalar if the source signal is quantiseccample at a time [108]. Although
this quantiser is not ideal in terms of minimising the distor, scalar quantisation is a rather
simple technique that can be easily implemented in hardw@oalar quantisers can be clas-
sified as uniform or non-uniform. While the decision boumggin uniform quantisation are
equally spaced, the non-uniform schemes try to assign #eecfidecision intervals to be in-
versely proportional to the probability density [105, 108} uniform scalar quantisation each

codeword can be represented usitig= [log, IV;] bits per dimension, wher®'; is the number
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Figure 3.2: Two-dimensional Voronoi vector quantiser ldase the LBG algorithm withR,. =
5 bits/sample. The solid black lines define the partition agiand the red starts denote the
codevectors.

of decision intervals and’ is referred to as the bits per dimension/sample. Since th&ico
bution of each error to the MSE is weighted by the probabdignsity function (PDF) of the
signal [108], the choice of the step size, or equivalently #Ngexy,in, max] determines the
quantised error obtained. Recall that the MSE not only aatsofor the granular error but
also the overload distortion. As shown in Figure 3.3, if tbarse signal is not bounded then
the dynamic range of a uniform quantiser cannot cover theleviemge. The areas beyond
[Tmin, Tmax] are called the overload areas, and the quantisation ertradirced is the over-
load error [108]. The granular error is the component that ancounts for quantisation noise

Within [Zmin, Tmax] (S€€ Figure 3.3).

Note that, the uniform quantisation is only optimal (in thmimum MSE sense) for a uniform
distribution, where the MSE;? can be calculated by [108]

N;

b;
02 = Z/ (Ye — yg)* fx (2)dz. (3.10)

g=1 bi—1

From (3.10), it is known that the smaller the decision irgégy the smaller the error term
(Ye — Yq)?, thUSO'g is inversely proportional to the number of decision intévs;. Given that

this value is fixed, the quantiser design should find the piecd of decision boundaries and

43



Low Complexity Codebook Design

0.7 T ‘ T
06
. Quantised Decision
0.5 Values ' Boundaries | |
o — g
_.04r N le—1 -
<
= e
0.3 i
Xmin/ \X
02 L max |
01l i
0
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

X

Figure 3.3: Histogram of = R.{y?}.

quantised values so thaj,2 is minimised.

Although a vector quantisation performs better than sagla@ntisation, this reduction comes
at the expense of more computational complexity, hencepditentially large virtual antenna
array systems low complexity processing are desirable highahapter, it is considered that
N; quantisation levelsy;, fall in the middle of the boundary points. Thus, if eithee treal
or imaginary part of the signal received at each relay fadisvieen the boundarids — 1 and
b;, then it gets assigned a quantised valge, Moreover, the quantisation rang@,, us], is
chosen as the one with the lowest MSE and depends.ddue to the symmetric distribution
of the noise-free constellation, it is assumed fhat —u;. In general, when a uniform scalar

quantiser is employed, it necessary to allodagg (N;) bits to store each symbol.

3.4.1.3 Lloyd-Max Quantiser

In order to compensate for the distortion introduced by aptilmal uniform scalar quantiser,
multiple technigues can be employed; from increasing thmb®r of bits per sample to im-
plementing a non-uniform scalar quantiser such as Lloyd-bad_BG [107], or even concate-
nating source coding, e.g. Huffman coding, to the quandisgirocess. In this subsection, the
contribution of each error to the MSE weighted by its PDF issidered by employing the non-
uniform Lloyd-Max scalar quantiser; which is an algoritharicularly attractive for real-time
implementations due to its lower computational compleklfy9]. The Lloyd-Max algorithm
has previously been used for image processing [110], audiing and signal processing [108].

In the context of digital communications and particulady farge MIMO antenna arrays, it can
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be considered as an enabler for future wireless commuaitatiue to its low complexity and

ability to take in to account the distribution of the receisgnals.

The Lloyd-Max quantiser (LM-SQ) satisfies the conditionatti) the quantised value for each
decision interval is the centroid of the probability masghe interval and ii) the decision

boundary is simply the midpoint of the neighbouring quasttisalue [108]. Thus, given a PDF,
fx(z) and a fixed number of decision intervals;, it is required to find the set of boundaries

{b,}57~" and set of quantised valugs, }o" " such that

Syt afx(a)de

, (3.11)
fblj,%l fx(z)dx

Yq =

and

1
by = 5 (Yg + Yg+1)- (3.12)

In order to solve (3.11) and (3.12) simultaneously, an itezgprocedure is described in Al-
gorithm 1 [108], whereA is a positive variable accounting for the increment step aisdan

arbitrary threshold.

Algorithm 1 Lloyd-Max quantiser per dimension
1: Initialize by = —o0, by, = 00, y1 = y{VF, 0=c¢
2: while |#| > e do
3 forq=1: N;do
4 Usingy, andb,_; into (3.12) solve foi,.

5: Usingy, andb, into (3.11) solve fory, 1.

6

end for

fbbqq_l xfx(z)dx

7: Calculated = yy, —
N s

8: if @ > 0then

9: n=y1—A
10: else
11: 1=y +A
12: end if
13: end while

From Algorithm 1, the LM-SQ could be seen as a special case\déQYa one-dimensional

vector quantiser which performs a local optimization penehsion by using the LBG algo-
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rithm, where the real and imaginary componentgadre independently quantised and achieve
an optimal minimum MSE per dimension. For example, assunfiaga 256-QAM constella-
tion is transmitted, then the real (right) and imaginarft{leomponents of the received signals
are shown in Figure 3.4. As can be seen, the distribution @fntlagnitude of the received
signals is not uniform, but is normally distributed arourstaz Thus, if a U-SQ is employed
at the receiver the equally spaced partition boundaridsaffiéct the MSE performance of the
system. An a improved BLER performance would be observechwiine LM-SQ algorithm is
employed to define the decision boundaries and scalar gadntalues accordingly to the PDF
distribution, as the higher the probability of occurrenice $maller the step size is assigned to
that region.

Boundaries
% Codebook
sF ] I Received signal

Imaginary Part

El o 1
Real Part

Figure 3.4: Decision boundaries for the real (right) andgmary (left) components of a 256-
QAM constellation, when the LM-SQ is employed at each relay.

Finally, it is assumed that the transmitter uses a 16-QAMs@lation. An instantaneous ver-
sion of . is shown in Figure 3.5. With the knowledge of the noise fremstallation, either a
LM-SQ or U-SQ approach can be used. The codebook designdeby¥Q is also shown in
Figure 3.5(a) for comparison. Even though the scalar gsantmplemented at the relay are
suboptimal in terms of MSE, they are much simpler to desigh execute and can achieve a

comparable performance to the optimal V-VQ, as will be shaw8ection 3.5 .

Figure 3.5 shows the codebooks designed by (a) V-VQ, (b) IM&ad (c) U-SQ schemes.
As can be seen, given a training sequence, V-VQ generatedirmensional optimum code-
book. Meanwhile, LM-SQ optimizes the MSE per dimension bgsidering the distribution
of the signal. Note that, given the symmetry of theQAM modulation andy}" so is the
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codebook obtained by using U-SQ, making this even simpldegign. Thus, even though the

proposed schemes are suboptimal, they have a low commahtomplexity as shown in the

next section.
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Figure 3.5: 2-dimensional codebook desigre-#t relay obtained by using the (a) V-VQ, (b)
LM-SQ and (c) U-SQ quantisation schemes, with= 2 bits per dimension/sample and 4-
QAM modulation order, where the- and y-axis represent theR.{y.}|?> and|l,,{y.}|?, re-
spectively.

3.4.2 Complexity Analysis

Once the codebook has been designed by each relay nodes, i logdé up table to assign a code
to each received signal. In order to fairly compare the cewxipt of V-VQ, U-SQ and LM-SQ
quantisers, in this section, the computation times forgiesg the codebook and encoding the

received signal, and the overhead bits required for codetvaaosmission are presented.

3.4.2.1 Codebook design complexity

Recall that both V-VQ and LM-SQ use the LBG algorithm to dadige codebook with a dif-
ferent size of training sequence. While V-VQ performs a twoeahsional vector optimization,
LM-SQ optimizes the MSE per dimension. Therefore, theiliglesomplexity mainly comes
from the LBG algorithm implementation. In [111], the comgtihnal time for implementing

the LBG algorithm is given by

Tipg = ICyVsTy + I,(Cy — 1)V Ty, (3.13)
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wherel, is the number of iterations needed to meet the stoppingiorite”;, the codebook size

andV; the number of training vectors. The scaldfsandT. stand for the computational times
for finding the distance between two vectors and comparimgdiatortion values, respectively.
For V-VQ, which implements the LBG algorithm using as tramisequence the noise-free

constellation and considering that< V;/C} [111], then, the design time can be described as

2N
Tivg < < (PTa+ (227 = DTL). (3.14)

On the other hand, for the proposed LM-SQ quantisation seh#ra computation time is given

by

2N

Taim < 2 2Ty + (2 — 1)T.). (3.15)

2C

A justification for (3.15) is as follows, in accordance wittetLM-SQ algorithm in subsection
3.4.1.3, the real and imaginary parts of the received sighare quantised independently at
each relay. Thus, the number of codevectors required tmstaat thel/-QAM constellation

is 2¢ rather thar22“. During the initial stage, the LM-SQ algorithm is able tother reduce
complexity by employing training scalar values instead efters. Without loss of generality
and considering that the computational times for findingdiséance between two vectors and
comparing its distortion depend on the size of the vecten #fy andT, for V-VQ are greater
that the ones required for LM-SQ.

On the other hand, when a U-SQ is considered the design timkecabtained by

Tyusq < 2(VMNTy), (3.16)

where a squarg/-QAM constellation is assumed. Recall that, U-SQ is not enhpn-iterative
algorithm but also avoids using a training sequence. Thesdesign complexity is reduced
to compute the maximum absolute value of the distributiomggsan each dimension. Even
though a training sequence is not necessary, the avaiabflithis information at the relays
allows them to select the valug with lowest MSE. Without loss of generality, when a large
V-MIMO system is considered, the complexity order of theigietimes arel; vq = O(M™M),
Tainm = O(\/MM) andT,usq = O(VMN,), respectively. Comparing the complexity for
V-VQ with the proposed schemes, the LM-SQ and U-SQ methodsiderably reduce the
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design complexity.

3.4.2.2 Encoding complexity and overhead

With a reliable codebook, each relay node quantises thé/egteymbols by finding the code-
vector with lowest Euclidean distance to the received symParticularly, the encoding algo-
rithm for a V-VQ can be viewed as an exhaustive search alguritFor a codebook of size
22C the codevector selection for one symbol requir¥s distortion evaluations an@?¢ — 1)
comparisons. Thus, the required time to search the codelmnaine symbol can be written
as [101]

Tovq = 22Ty + (2%¢ - 1)T... (3.17)

For the scalar quantisation schemes, the search reqfiresaluations and2® — 1) compar-

isons per dimension. Therefore, the computation time fopdimg each symbol is
Toim = Tsusq = 22Ty + (29 = )T.). (3.18)

The computation time in (3.18) represents the worst casthéoproposed schemes. Nonethe-
less, a much simpler search can also be performed by emglaysticing operation per dimen-
sion. Finally, the overhead incurred by the quantisatichnéues is considered by calculating
the number of bits required to transmit the codebook to tistimkgion node, task performed
every L-consecutive symbol periods. For the optimal V-VQ the whmdebook needs to be
transmitted. Considering the dimension of each codevetttercodebook size and assuming

that B-bits are used to represent each codevector, the overhisaatbi

Onvq = 2*“"'B/L. (3.19)

Meanwhile, the proposed schemes only require the infoongier dimension to reconstruct
the codebook, thus,
Ontm = 2°T'B/L, (3.20)

for LM-SQ and
Onusq = 3B/L, (3.21)
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in the case of U-SQ, which only requires the knowledge of tilaen,, per dimension and’,

reducing significantly the total overhead.

3.5 Numerical results

In this section, the block error rate (BLER) performance aathplexity analysis of the V-
MIMO system considering low complexity quantisation teicues at the relay nodes are pre-
sented. Unless stated otherwise, the results shown indht®s pertain to a BICM-MIMO
system with 4-QAM Gray mapping modulation and a Rate-1/2/glutional code with con-
straint length 7 and generator polynomi@l83, 171],...1. Rayleigh block - fading withl 03
blocks is assumed, where each block has 200 consecutiveobpeninds. Moreover, the LLRs
are computed through the max-log approximation [103] andi&tection is performed at the
destination node. The V-VQ is a two-dimensional vector gisanwith bit rate of2 bits per di-
mension/sample; further, the total transmitted pogis normalized to unity and/, = N, —1

is the number of relays employed. The simulation resultscaraputed through the Monte

Carlo method.

3.5.1 BLER evaluation of the Codebook design

Recall, that for a fixed number of decision intervals, the llenshe quantisation step is, the
smaller the granular quantisation noise becomes. Howtweismaller quantisation step size
translates into a smalles,, which leads to larger overload areas, hence a larger adgedoan-

tisation error [108]. For our numerical simulations, was selected according to Figure 3.6,

which shows the MSE obtained faf = 2, 4 andS bits per dimension/sample.

As mentioned above, the codebook design complexity anddemga@omplexity of the V-VQ
quantiser is very high. To reduce the complexity and enhttrepracticality of the CF cooper-
ation, it is proposed to employ the Lloyd-Max algorithm penédnsion to design the codebook
at the relay. Figure 3.7 compares the BLER performancé@ox 20 (N. = 19) and10 x 30

(N, = 29) V-MIMO systems when different quantisation techniques @mployed. It can be
seen that, whetV,, = 20 the performance gap is about 0.38 dB (LM-SQ) and 1.67 dB (J-SQ
from the optimal V-VQ at BLER= 10~2. For the10 x 30 case, the losses are 0.30 dB and
0.83 dB, respectively. From Figure 3.7, it can be noticedlittmeasing the number of receiver

antennas not only improves the system’s performance botratkices the gap between V-VQ
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Figure 3.6: Minimum square error (MSE) obtained wtth = 2,4 and 8 bits per dimen-
sion/sample when a 4-QAM modulation order is considered.
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Figure 3.7: BLER performance of V-MIMO system wif, = 10, N, = 20 and30, 4-QAM
modulation and” = 2 bits per dimension/sample.

and the scalar quantisation techniques.

It is of particular interest to analyse the performance aidav-MIMO systems, thus, Figure
3.8 compares the BLER performance whgn= 50, and N,, = 100 and150 are considered.
For the50 x 100 system, LM-SQ and U-SQ perform within 0.54 dB and 1.65 dB of @
respectively. As the number of receivers is increasety,tc= 150, the proposed quantisation
techniques perform better, requiring 0.29 dB and 0.79 dBéid’, /Ny than V-VQ, respec-

tively. By comparing Figures 3.7 and 3.8, it can be seen tiaperformance mainly depends

51



Low Complexity Codebook Design

100¢

107

BLER

107

10
0 2 4 6 8 10

EbNo (dB)

Figure 3.8: BLER performance of V-MIMO system wiify = 50, N,, = 100 and150, 4-QAM
modulation and” = 2 bits per dimension/sample.

on the ratioN,./ N;.

Continuing with the BLER performance analysis, Table 3dwshthe performance gain of LM-
SQ over U-SQ for different system configurations at BLER0~2. The number of receivers
was selected to get the same ratitvs,/ N, whenNV; = 10, 20, 50 and100 are employed. From
Table 3.1, it can be seen that (a)/ds increases the performance gap between LM-SQ and U-
SQ reduces and, (b) the performance gap between the propdseahes is similar for systems

with different configurations but the same raitip / N;.

[N, [ N, [IM-SQ [ U-SQ] Fy/No 9ap (dB)] N./N; |

15 | 11.67 | 18.90 7.23 15
10 | 20 6.60 7.89 1.29 2.0
30 3.14 3.67 0.53 3.0
30 | 11.46 | 18.75 7.29 15
20 | 40 6.72 7.93 121 2.0
60 3.29 3.85 0.56 3.0
75 | 12.05 | 20.09 8.04 15
50 | 100 | 7.13 8.24 111 2.0
150 | 3.70 4.20 0.50 3.0
150 | 13.43 | > 20 ~9 15
100 | 200 | 7.42 8.56 1.14 2.0
300 3.91 4.48 0.57 3.0

Table 3.1:E;, /Ny performance gap between LM-SQ and U-SQ quantiser when?2 bits per
dimension/sample at BLER #)~2 and4-QAM modulation order system are considered.
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Figure 3.9: Computation times for designing a reliable todd withC' = 2 bits per dimen-
sion/sample and 4-QAM modulation order.

3.5.2 Complexity evaluation of the Codebook design

Figures 3.9 and 3.10 compare the design and search congputiaties according to equations
(3.15) and (3.16) respectively. Figure 3.9 shows the coatjmut times required for constructing
a reliable codebook whefi = 2, M = 4 and wherel. andT, are normalized to one for sim-
plicity. As can be seen, a8, increases, the design complexity for V-VQ grows expondptia
according tol,; vq < 4*N=2(16T, + 151.). Even though, the proposed LM-SQ also shows
an exponential behaviour, it has lower exponential groata asly 1\ < 22Vt=2(47, + 3T,).
Meanwhile, the design complexity of U-SQ only grows lingaslith IV;. Further, as shown in
Figure 3.10, the computation time required for quantisheyreceived symbols of LM-SQ and
U-SQ ®T;, + 6T) is lower than that of V-VQ 167, + 15T,).

On the other hand, the overhead bits for transmitting theloodk for a given quantisation rate
of 2 bits per dimension/sample is computed considefing 200 consecutive symbol periods
and B = 8 bits per element. The V-VQ requires 1.28 bits/period whilfour times greater
than 0.32 bits/period required by LM-SQ and much larger tthe of U-SQ requiring 0.12
bits/period. Since, the proposed quantisation schemesare efficient in complexity and
achieve a comparable performance to the optimal V-VQ, tlheydcbe considered as a suitable

alternative to enable a large-scale cooperative wirelessark.
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Figure 3.10: Computation times for quantising a symbol witk- 2 bits per dimension/sample
and 4-QAM modulation order.

3.6 Summary

In this chapter, a cooperative virtual MIMO system that usesulti-antenna transmitter and
implements BICM transmission and CF cooperation amongebiaspaced single-antenna re-
ceivers was presented. Since constructing a reliable codtels the most computationally
complex task performed by the relay nodes, two codeboolgdesiernatives to the optimal
Voronoi VQ were introduced. A comparison in terms of the dmmgk design complexity,

encoding complexity and the overhead bits required forstratiing the codebook to the desti-

nation node was also presented.

Furthermore, from practical considerations the perforreaof large V-MIMO systems was
analysed. An evaluation of the BLER performance widén= 50 and N, = 100 and 150
was presented. For th# x 100 V-MIMO system, simulation results have shown that, the
LM-SQ and U-SQ perform within 0.54 dB and 1.65 dB of V-VQ, resfively. To illustrate the
benefit of CF cooperation in very large virtual-MIMO systerttee number of receivers was
increased up tadv,, = 150. It was shown that the proposed quantisation techniquasrest)
0.29 dB and 0.79 dB higheE; /N, than V-VQ, respectively. Moreover, simulation results
showed that the BLER performance mainly depends on the ofitibe number of antennas
at the transmitter and the number of single-antenna dewict®e receiver. In addition, for a
given quantisation rate of 2 bits per dimension/sample /and 8 bits per element. The V-VQ
requires 1.28 bits/period which is four times greater th&2 ®its/period required by LM-SQ
and much larger than that of U-SQ requiring 0.12 bits/perfidce, the proposed quantisation
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schemes are more efficient in terms of computational contpglexd achieve a comparable
performance to the optimal V-VQ, they can be considered astabde alternative to enable

large-scale cooperative wireless networks.
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Chapter 4
Energy Efficient Massive MIMO

Wireless Networks

In this chapter, a novel cooperative virtual multi-user MMMU-MIMO) system that uses
a large multi-antenna transmitter and implements bitdeéeed coded modulation (BICM)
transmission and decode-and-forward (DF) relay coomratmong multiple receiving nodes
is presented. In DF-based cooperation, decoding, re-arga@ohd forwarding the estimated
received signals to the destination node for subsequenepsing are the main tasks that each
relay has to perform. Even though large multi-antenna ares have been identified as
an effective way to enhance the spectral efficiency (SE) oéless networks, this comes at
the expense of linearly increasing the power consumptiom tduthe use of multiple radio
frequency (RF) chains to support the antennas. Thus, irchi@pter, the energy efficiency and
the effective throughput of the proposed DF cooperatiotesysare analysed to understand its

advantages and trade-offs.

In order to quantify any energy efficiency (EE) gains achietyy the cooperative wireless
system a common framework is required. Thus, a power consommodel that considers not
only the power consumed by the transmitter but also thastaite account the overhead power
consumption incurred by the relays is presented. Moredkerjmpact of the imperfect CSI
on the throughput and energy efficiency of the system is atlidFinally, a power allocation

algorithm is used to reduce the total power consumption.

Simulation results show that, in practical scenarios wleereimber of users share the radio
spectrum and thus there is a restriction on the availableures blocks, cooperative systems
can be employed to meet the demand for high data rates. Merdbis shown that wireless
cooperation between users is more energy efficient thag tnggih modulation order transmis-
sion in the low resource block usage case. Numerical reshte that the larger the number

of transmit antennas, the lower the impact of imperfect G8he system’s performance.

The remainder of this chapter is organised as follows. 8edatil presents the background

and motivation of this chapter. The system model is desdrineSection 4.2. The power
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consumption model and the analysis of the spectral and emdfigiency of the virtual MU-
MIMO are presented in Section 4.3. Simulation results amvshin Section 4.4. Finally,

conclusions are presented in Section 4.5.

4.1 Introduction

Due to the forthcoming spectrum shortage and the incread@mgand for data services, the
design of current wireless networks has been focused oriegditigh spectral efficiency sys-

tems [112]. Virtual MIMO (V-MIMO) and Massive MIMO approael have been put forward

as effective means to enhance the SE performance [61, 1G8je¥ér, this comes at the ex-
pense of linearly increasing circuit power consumption utne use of multiple RF chains to
connect the antennas [113]. Since the requirement for itbiggiaccess has significantly in-
creased the energy demands [12,112], the study and devetdrfitechniques that can provide

highly efficient energy wireless systems have recenthaetidd significant attention.

Previous works have been focused on studying the EE of éi#iiMO or Massive MIMO
systems, but not both. As an example, the authors in [14,111B},have studied the energy
efficiency of a standard relay channel, i.e., a three-nodeark where the source transmits
to the destination with the assistance of the relay. Mealewtiie EE performance of a relay
channel corrupted by additive white Gaussian is boundedi4][ The authors in [115] in-
vestigated the EE performance of a relay channel operatitigei time division duplex (TDD)
when a low-power regime is considered. Additionally, thenmalized achievable minimum
energy-per-bit that enables optimal power allocation ketwthe source and the relay was de-
rived in [14]. Nevertheless, in these papers the circuitggheonsumption is not considered,
which may become significant in practical wireless systerinemthe transmit antenna array is

very large.

Assuming that a space-time block coding (STBC) scheme i logéhe transmitter, the energy
and delay efficiencies of a MIMO cooperative wireless semstwork were derived in [116]
using semi-analytic techniques. The results showed tht jwilicious choice of design pa-
rameters the virtual MIMO technique can provide significamprovement in terms of energy
efficiency and transmission delay. Further, in [55] an ugmmind of EE as a function of SE
for a V-MIMO system with CF cooperation is presented and thase this an EE optimiza-

tion problem is formulated. The achievable rate for the GaumsMIMO relay channel that
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implements zero-forcing (ZF) precoding and the DF protagas obtained in [117], by using

standard convex optimization techniques.

Furthermore, from the Massive MIMO perspective, severadliss have been conducted to
analyse the way that a large number of transmit and receitaas impact the EE perfor-
mance. In [113], the performance of a point-to-point lasgatle MIMO systems that considers
the overall power consumption on both the transmitter ard¢ceiver was presented and the
optimal RF chain configuration to maximize the transmissete under power constraint was
derived. Meanwhile, in [118], the authors determined theimim required transmit power for
a given outage probability, showing that antenna sele@iongeneral the most energy efficient
option as it requires a single radio-frequency chain. Addilly, the authors in [119] presented
the EE for the uplink MU-MIMO configuration and an optimal pemallocation strategy while
both RF transmission power and device electronic circuitgrovere considered. An improved
circuit management scheme showed that user antennas dbeuised only when the corre-
sponding spatial channels are sufficiently good and usiegntimproves the overall EE of the
network.

Generally speaking, there are mainly two ways to reduceggnesnsumption: 1) by using
energy aware components in the base stations and 2) by iraptamg energy aware network
deployment strategies. In order to quantify the gains aekdicoy employing energy aware
techniques, an appropriate energy efficiency metric musteieed [120]. In [121], a power
consumption model for a LTE user equipment was presented. middel included functions
of UL and DL power and data rate where realistic measuremfents handset devices for
power consumption were used. Moreover, a power consumptizael for mobile broadband
access networks that takes into account the backhaul, anthdam trade-offs between infras-
tructure, energy, and spectrum costs when low-power miage [stations are employed was
introduced in [112]. In [120], the authors developed powedeis for macro and micro base
stations relying on data sheets of several Global SysterMidnile Communications (GSM)
and Universal Mobile Telecommunications Service (UMTS3ebatations with a focus on the

component level, e.g., power amplifier and cooling equipmen

Since the effect of circuit power consumption is more sexiehien the transmitter is equipped
with a massive number of antennas [112], different modelpdaver consumption that consider
the fundamental power for operating the circuit at the tngitter have been proposed. In [122],

a power consumption model that considers not only the trammwer on the power amplifier
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but also the circuit power dissipated by analogue devicd#rer loss factors in base stations
was presented. Simulation results showed that the eneligiee€y becomes a quasi-concave
function as the number of antennas increases. Moreovealiatie power consumption model
that reveals how the number of antennas, active users, amshtit power jointly affect the EE
was presented in [7,123]. It was shown that the transmit paveeeases with the number of
antennas. This implied that energy-efficient systems camnabd@ in high signal-to-noise ratio

regimes in which interference-suppressing signal pracgss mandatory.

Furthermore, the authors in [9] presented a power modestigdorts a broad range of network
scenarios and base station types, features and confiqwaticluding base station deactivation
and scaling factors which are used to predict the power ¢coptan of base stations up to the
year 2020.

In this chapter, the energy efficiency and throughput for IMO system that uses a large
transmit antenna array and implements DF cooperation leettie user terminals are studied.
The main contributions of this chapter can be summarisedllsvs: i) the total power con-
sumed considering not only the transmit and circuit pow@somption but also the overhead
power consumed by the relays is computed, ii) the energyiagifig and the effective through-
put of a cooperative system, when the available resourakblare limited, are evaluated, iii)
the impact of imperfect CSI on the system’s performance é&uated and a power allocation
algorithm to reduce power consumption is implemented. &itimn results show that the opti-
mal throughput is obtained when there is no restriction erusge of resource blocks. However,
in a practical scenario when a number of users are sharinfygheency resources, coopera-
tive systems could be implemented in order to meet the derdumarahta rates. Such wireless
cooperation between users is more energy efficient tham @shigh modulation order trans-
mission in the low resource block usage case. Moreovershasvn that the larger the number

of transmit antennas, the lower the impact of imperfect Gthe system'’s performance.

4.2 System Model

Consider the downlink transmission of a cooperative vilkild-MIMO OFDM system with a
N;-antenna base station (BS) aid (<« N;) single-antenna user terminals (UES), as shown in
Figure 4.1. The multicarrier system, where a block\¢f, information symboils is transmitted

in parallel onV,;, subcarriers, can be efficiently implemented in discret@ tirsing an inverse
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Figure 4.1: Block diagram of MIMO base station and virtual MMUMO receiver.

fast Fourier transform (IFFT) to act as a modulator and an feFact as a demodulator [124].
Similar to Chapter 3, at the transmitter side, a BICM schesreniployed to provide error cor-
rection and improve the system’s performance. The datal@tencoded using a raf®; linear
convolutional encoder and then passed through an ideaiskitinterleaver, which rearranges
the coded bits using a random permutation. Next, the irseeld coded bits are demultiplexed
into V; streams. In each streatn= 1,...,N; a group ofm® coded bits are mapped to a
data symbols;, from a symbol alphabe$ of size|S| = 2m: . Thus, the transmission rate is
Nym®R, bits per channel use. It is further assumed that the BS usearlprecoding tech-
niques to process the signal before transmitting to allsuskr order to guarantee a practical
implementation and according with Section 2.1.4, it is adered that the BS and UEs operate
according to the TDD protocol. Hence, the time-frequenspueces required for CSl are inde-
pendent of the number of transmit antennas and the upliokspéinable the BS to estimate the
UE channels. In this work, perfect hardware chain calibrais considered and thus the uplink
and downlink channels are considered reciprocal. More@block fading model, where the
small-scale fading vector remains constant during a colcerdlock of. symbols and is in-
dependent in different coherence blocks, is assumed. érantire, it is assumed that the UEs
are closely located with non-light-sight (NLoS) conditiprwhere the rich scattering allows
spatial separation of the intended signal for each UE [1E&jure 4.1 shows the diagram of
a cooperative virtual MU-MIMO system that uses DF cooperamong multiple receiving
nodes to increase the capacity of the destination onesfuttlger assumed that the relays and
destination nodes cooperate through one-shot conferericednd that each destination node
is equipped with a traditional receiver which observes theads from the transmitter, and an

intra-cluster receiver which observes signals from thay®l Section 4.2.3 provides the reader
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with further information regarding the wireless coopeamatcarried out at the receiver side.

4.2.1 Uplink Training

Let 7, be the number of symbols per coherence interval used fankupiiots and transmitted
simultaneously at each UE. Since the pilot sequences aoVihgEs are pair-wise orthogonal,
then, it is required that, > N,. Considering that the BS serves the UEs over a slow flat-
fading channel and the channel estimation error can bestiest a component that contributes
as an additional source of distortion independent of theenoomponent, then the minimum

mean-square error (MMSE) estimate of the channel mdifix, CV* <V is given by [126]

tu Py H+ Vi Py N

I:I = us
tyPy+1 tuPy +1

(4.1)

where P, denotes the average transmit power of each uplink pilot symidN, € CNexNr
represents the distortion introduced by the imperfect obhrestimation with entries

n, ~ CN(0,1). Then the channel matrix is equivalent to

H=M+¢, (4.2)

where £ is the channel estimation error. Since MMSE channel esitimas assumedH

and £ are independent [127] and their elements are givenﬁ@,yw CN (0, tj}gupil) and
gij~CN (O Viuby ) respectively.

Pty Pu+1

4.2.2 Downlink Transmission

The BS simultaneously transmits the modulated data symthobsigh V; antennas using a
transmit vectorx = [z1,...,zy,]", that satisfies the power constraifii|x||?] = P. The BS
uses the channel estimdteto linearly precode the symbols, i.& s a linear combination of
the symbols intended for th¥,. UEs. Lets; be the symbol to be transmitted to théh user,

with E[|s;|?] = 1. Then, the linearly precoded vectorcan be written as

x = /paFs, (4.3)
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wheres € CV*1 is the vector of data symbolB, € CV**"* is the precoding matrix angl; is

a normalization constant chosen to satisfy the power cainsit[||x||?] = P. Thus,

P
= 4.4
Pd= o (FFH) (44)
Collectively, the received signal vector of theé UES can be written as
y=H"x+n=pH Fs+n, (4.5)

wheren € CM*1 is the additive noise vector for the UEs withh ~ CA/(0,0%;). Aiming to
null out the multiuser interference by projecting eachatreonto the orthogonal complement
of the inter-user interference, zero-forcing (ZF) preogdis adopted. Thus, the precoding

matrix F' can be expressed as [126]

F=H@\A")!, (4.6)

where(-)* and(-)” denote the matrix conjugate and transpose operationgataggy. Finally,

the received signal at theth UE is given by

Yx = /pahj Fs + ny,

= VDahj fese + Y v/pabi tjs; + ni, (4.7)
ik

whereh,, andf, are thek-th column of the channel and precoding matrix, respegtivElen
though linear precoder schemes are not optimal, they caisdxd to reduce signal processing
complexity. Moreover, when the number of antennas usedeatrémsmitter is large enough,

then the performance of linear precoders is nearly-opt[6151128].

4.2.3 Cooperative Virtual MU-MIMO System

At the receiver side, a cooperative virtual MU-MIMO systdmttuses DF cooperation among
multiple receiving nodes to increase the capacity of thémkgson nodes is considered. In other

words, each of théV,; destination nodes is assisted By relays to increase their capacity. Since
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the cluster ofV,, = Ny(N. + 1) receivers are assumed to be closely spaced, it is reasdoable
expect that the wireless cooperation between the relaysiesithation is considerably better
and more stable than that between the transmitter and egseiln fact, it is highly likely that

a high channel capacity could be achieved due to the highiity of these short range links.
The one-shot cooperation link requires the relay to decbdesignals and send over to their

destination node (see Figure 4.1).

In this scenario, it is assumed that each of the single-aateeceivers acts either as a relay or
as a destination node. With a DF cooperative protocol, eglaly decodes the received signal,
re-encodes and retransmits the signal

Sk = S, (4.8)

where s, is the relay’s estimate of,. Assuming that the signal is decoded correctly, i.e.,

$r = s, then the signal received at the destination node can bewas

Uk = V Prhrasy +na, (4.9)

whereP, denotes the maximum transmit power at each relay. The sioge cooperation link
between the relay and the destination is modelled as anvagldihite Gaussian noise channel
ngq. The power gain of the cooperation channel to the power dfdineodata channel is repre-
sented byy,s = SNReoop/ SNRyata and it remains constant throughout the system (see Figure
4.2). Since a scenario where the UEs are closely locatedisreedd, then we are interested in
high values ofy,.; [55].

SNRdata Z
% | Y | Relayi
Base

Station Short range
link SNRe

XNt . . .
E Destination j

Figure 4.2: Simplified block diagram of the cooperative egstwhere SNRua and SNRqgp
represent the power gain of the data and cooperative creamaspectively.

A

Note that in this work, it was assumed that each destinatiate fis assisted by the same num-

ber of relays. Nevertheless, it is also possible that thislrer varies according to the demand
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in data rate at each destination node and the traffic loadeofybtem. As mentioned in Sec-
tion 3.2, this scenario is feasible if the orthogonalityvibetn the cooperative one-shot links is
guaranteed, otherwise, the interference and complexityeatlecoder would make the system

impractical for implementation.

4.3 Energy Efficiency

The aim of this section is to quantify the overall power canption of the virtual MU-MIMO

system described in Section 4.2 and to analyse its energyeeffy performance. Thus, it is
considered that the power expenditure in both the downlimk the cooperative links is the
sum of the power consumed at the BS, the destination andsralages and a fixed constant

accounting for the load-independent power consumption.

4.3.1 Power Consumption Model

In order to compute the power consumed by the virtual MU-MIBY@tem rather than only the
transmitted power, the three main components from the paveetelling point of view within
the network are considered: (a) the multi-antenna BS, ®)rétay cooperation and (c) the

load-independent power consumption.

For each base station within the network, the power consompbodel should consider the
five main power-drawing elements: the power amplifier (P#¢,dnalogue front-end, the digital
baseband, the control and network backhaul, and powerrsgsi@]. Based on the models
proposed in [7, 55, 129], the power consumption at the BS dftaal MU-MIMO system is

modelled as follows

1
Pas = <P+ NiPot+ mb N, Peod + Plo, (4.10)

wheres denotes the efficiency of the PR, is the total transmit power consumption and =
log, (M) is the number of bits transmitted per data symbol, sinceagssimed tha;, belongs to
anM-QAM constellation. As described in [7], the power requitedun the circuit components
(including filters, converters and mixers) is denotedFRas and it is linearly dependent on

N;. Further, Poq is the power coding and scales with the number of user tetsiNa and
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the modulation efficiency. Meanwhild), represents the power consumed by the single local

oscillator.

The cluster of receivers, that includes the destinationralay nodes are assumed to be closely
spaced and cooperate through one-shot links. Each relagisred to decode, encode and
re-transmit the signal to its destination node. Thus, the@goaonsumption at the receiver
side should account for the circuit power consumption atWkes, signal processing power
consumption and the transmit power required to carry outdineless cooperation. The total

power consumed at the receiver side can be computed as

Pyg = Ny Per + NeNa Py + m3 N, NgPeog + ml (N, + NeNa) Pec, (4.12)

where P, is the circuit power consumption per UE afd accounts for the transmit power at
each relay. Following the assumption in [55], the powercatmn ratio between the relay and
the transmitter is defined as= P, /P. Thus, with the knowledge aP, the relay decides its

own transmit power. The power for decoding and re-codingrpio the retransmission are,
respectively,Pyec and Peoq, and depend on the number of bits processed. Moreover, taobns
value P, accounting for the fixed power consumption required for loatkpendent power of

the backhaul infrastructure, control signalling and siveling is considered [7]. Finally, the

power consumption of the cooperative system can be writen a

FPeons= Pas + PUe + F. (4.12)

4.3.2 Achievable Rate

In this subsection, the achievable rate of the system iotred in Section 4.2 is described.
Assuming that the channel can be estimated at the transnttieergodic achievable rate at the
k-th node is given by

Ry, = logy (1 + 7), (4.13)

wherer is the associated signal-to-interference-plus-noise (8iNR) and can be calculated

using equation (4.7). Considering equation (2.22) and aftbstituting the value of SINR into

eqguation (4.13), the achievable rate at thtlh node can be written as
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Plalf|? e :
E [log2 (1 + S PRTEPT )| if direct link,
R, =
1 - Plalf|? 9 .
5 min {E {logQ (1 + =, PITE TS JE [logQ (1 + Pr|hyq] )] , otherwise

(4.14)

whereh,.q is the channel gain between relay and destination nodé’aantt] P, are the transmit

power at the transmitter and relay node, respectively. dédtiat if the destination node is
assisted by a relay, as in the lower part of (4.14), then tinieaable rate is limited by the
minimum rate between the base station-relay and relayrdgisin links according to equation
(2.22). Finally, the sum achievable rate atitibe destination node that is assisted¥yyrelays

can be computed as follows
N, ~
< |1 P|hlf,|?
=3 L o, (14 o ELE )
et > ek PIRTE 2 + 0%

: <1 L PIIEP )]
0g9 = .
D it Phlt? + 0%

(4.15)

JE [logy (1+ Prlheal?)] }}

+E

4.3.3 Energy Efficiency Analysis

In this section, the energy efficiency of the system desdribeSection 4.2 is studied for three
different scenarios. First, it is considered that a smathber of UEs is served by the BS.
Therefore, the BS is allowed to use more than one resourcl pler destination node to fulfil
the target rate (See Figure 4.3). Since each resource bimaksts of one slot in both the time
and frequency domains, when there is no restriction on thebeu of resource blocks, theth
UE is served throughV,, carriers. Nevertheless, in a practical scenario, wherentimber
of resource blocks per user terminal is restricted, diffempproaches can be considered to
satisfy the UES’ demand for data rate. On one side, a codpenaireless system, where
the throughput is increased by the number of relays servauy @estination node, can be
implemented. On the other side, it is also possible to irereéhe modulation order per beam.
In these two last scenarios, precoding allows multiple Ukariag the same time-frequency
resources. Figure 4.4 shows a graphic representation optssible scenarios of the traffic

load of the network. On the left, the network operates underttaffic load, so the available
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resource blocks for thié-th user are not limited. On the right, the traffic load of thework
has increased and thus, the BS is required either to seliéetedit time-resource blocks for
transmission or to increase the modulation order per beam.

Occupied Resource Available
. Resource D Block used D Resource
by the k-th Block

Block
UE

Frequency
Frequency

Time Time

Figure 4.3: Graphic representation of the network undertlafiic load (left) and high traffic
load (right), respectively. The black, grey and white boaes used to indicate the occupied
time-frequency resource blocks, those used by the intehdbdiser and the resources blocks
that are available for transmission, respectively.

Generally speaking, the throughput of the system dependbeiblock error rate (BLER)
performance, that accounts for the number of correctlyivedebits. At thek-th destination

node the number of bits received without error can be expdeas follows
T = m2[(1 — P 4) + N.(1 —Pe,)], (4.16)

whereP, ; andP, , are the block error probability at the destination and relagle, respec-
tively. Thus, withNy; > 1 destination nodes, the packet throughput per channel ugees

by Z]kvjl T, and measured in bits/s. Assuming that the system is allowvadd more than one
resource block and the transmit power per resource bloék/ i§,,, then the effective packet

throughput for the virtual MU-MIMO that uses th€,, available resource blocks is given by

Ng
Er = Ny, ZTk. (4.17)
k=1

Finally, the average energy efficiency can be defined as

pE - LT [bits/J]. (4.18)

}%OHS
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Figure 4.4: Base station simultaneously transmitting tdtipla single-antenna users.

4.3.4 Power Allocation

Recall that for large antenna MIMO systems the transmit pdnereases linearly with the

number of transmit antennas at each base station. Thuspongol schemes are used to
adapt the transmit power of the base station in order to &seréhe capacity of the system
through interference management or managing the cell agegil30—133]. Due to inter-user
interference, the SINR may fluctuate at the receiver sidsingudegradation of the system'’s
performance. Power allocation is considered as a suitabletavdeal with these detrimental
effects, since the transmitted power can be varied to maiataertain quality of service, min-

imize inter-user interference or even reduce the totaktranpower [134]. Nevertheless, the
design of power control schemes is not a trivial task as thezanany trade-offs and practical
constraints that should be considered. In general, the ipalieeation optimization problem

can be written as

max  g(SINRy,...,SINRy,)

V1., UN-
by fi[?
st. SINR, = ,
o + ik £
Ny
> £ < Py (4.19)
k=1

whereg(-) is a performance function dependant on the SINR values, éhtoxf;, is the pre-
coding vector at the transmitter for userand P, is the power allocation per user at the

transmitter.

The problem in (4.19) is in general complex to solve, sinexehmight be (a) conflicting in-
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terests between users, (b) strong inter-user interfergn@ non-convex performance region
and (d) a large set of feasible beamforming vecfers . .., vy, }. Nevertheless, ZF precoding
removes interference by projecting the observations as

Ny

vi=>Y (hih{)*h;, (4.20)
k=1

which is the orthogonal complement of the interfering sign@his condition greatly simplifies
the precoding design by reducing the search-space and iactfgal importance in high-SNR
scenarios where inter-user interference dominates ttse teim in the SINR expression [135].
Although perfect interference nulling requires perfect,GZ¥ precoding can be implemented
under imperfect CSI by avoiding inter-user interferenaeglsome of the strongest eigenvec-
torsE [h;hj!] of each usek [135-137].

The power allocationf; ., that will determine the operating point in the performanegion
can be computed explicitly for ZF precoding, since all thie@fve interfering channels are
zero. For a set of given power coefficieilg,, > 0 and invertible performance functiogs(-),

the power allocation problem can be described as [138]

s.t.z Py, < PM (4.21)

wherep; , = |h{fi|2, PM& js the maximum transmit power and, is an associated cost

function weight. The solution of (4.21) is given in [138] adldws:

o2 d _ o2
Pd,k = |:—N—gk 1 <7N>:| , (4.22)
P dx Tewkprr ) ] 4

where the function] ; replaces negative values with zero, and the paranfeter0 is selected

to use full power.
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4.4 Numerical Results

In this section, the energy efficiency analysis of the virtd&J-MIMO system described in
Section 4.2 is presented. A constraint on the humber ofablailresource blocks and the avail-
able information used for channel estimation is consideldrdess stated otherwise, the results
shown in this section pertain to a BICM-MIMO system witi-QAM Gray mapping modu-
lation and a Rate-1/2 convolutional code with constraingte 7 and generator polynomials
[133,171]octa1- Rayleigh block-fading with 0° blocks, where each block has 200 consecutive
symbol periods, is considered. Moreover, ZF linear preap@ performed before transmission
and the decode-and-forward protocol is implemented at eglait node to enable wireless co-
operation. Further, the total transmitted poureis normalized to unity. The simulation results
are computed through the Monte Carlo method. Other sinmugtarameters are given in Table
4.1 and were adopted from [7,55, 123].

\ Description | Parameter Value \
Power allocation ratio ~ 0.25
Efficiency of the PA at BS ) 0.3
Fixed power consumption Py 18W
Power consumed by oscillator B 2W
Circuit power at BS Py 1w
Circuit power at UE Py 0.1W
Power required for coding Peod 0.1 W/(Gbit/symbol)
Power required for decoding  Pyec 0.8 W/(Gbit/symbol)

Table 4.1: Simulation Parameters of Section 4.4.

4.4.1 Perfect Channel State Information

In order to understand the results presented in this sedtigmire 4.5 shows the power con-
sumption model described by equation (4.12). As can been Hee model is linearly depen-
dent on the number of transmit antennas and the transmitrpmavsider at the base station.
Further, equation (4.14) was used to compute the specficieety, SE= W x Ry, of a MIMO
system with ZF precoding. From Figure 4.6, it can be seerath#ite number of users increases
for a constant number of transmit antenns = 20, the spectral efficiency follows a quadratic
function. In other words, after reaching an optimal numtfedis (V,, = 10) served by the
BS, the reduction of the degrees of freedom in ZF beamformoades down the achievable

rate. In the following figures, the effect that the wirelessperation carried out at the receiver
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has on the energy efficiency performance is studied.
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Transmit Power (W)

Figure 4.5: Power model described by equation (4.12) ascifumof the number of transmit
antennas and maximum transmit power at the base station.

Figure 4.7 compares the effective packet throughput whertdltget rate has been set as 8
bits/s andN; = 1 and N; = 20 remain constant. It can be seen that the optimal scenario
in terms of effective throughput is obtained when the systess as many resource blocks as
possible (Case 1). For this particular scenario, the degnééreedom are higher compared
with the other cases improving the global performance. dege there is no overhead power
consumed since there are no active relays. From Figure tdc@nialso be noticed that the

power required to achieve the target rate increases as ttielation order does.

30 \
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Figure 4.6: Achievable rate of a MIMO system that implemetfprecoding withV; = 20.
As mentioned, itis of particular interest to analyse thegneonsumption of V-MIMO systems

71



Energy Efficient Massive MIMO Wireless Networks

8 ”:V ’, T T T
i ! — _Casel:N =0,N, =4, M=4
1 1 c rb
it ! --.Case2:N_=1,N, =2,M=4 [|
! A c b
\ ! ---Case3:N =3,N =1,M=4
6 I c b |
ol ! —Case4:N =0,N, =2,M=16
B i ! . — — —
E5—: ! --»CaseS.NC-l,Nrb-l,M-le %
= | ! ——Case6:N =0,N =1, M=256
> i ! c rb
o4 1 i
ey 1 1
2 b
o3 | ¢ |
o I !
(= !
20 I A
q 1
h 1
1w .
1
1
O ’ Il L L L
50 100 150 200 250 300 350
PCOHS(J)
(a)
8 - - = T
— Casel:N =0,N, =4, M=4
c b
s --.Case2:N =1,N, =2,M=4 [|
c rb
6 -.--.Case 3: NC:S, Nrbzl,M:4 i
0 —Case4:N =0,N, =2, M=16
B c b
-55* ---Case5:N =1,N =1,M=16 [
5 — Case6:N =0,N, =1, M =256
odr c b |
c
g
o3r 1
£
2F il
1r il
0 L |
40 80 90 100

(b)

Figure 4.7: Packet throughput of a virtual MIMO system wNh = 20, N; = 1 and a target
rate of 8 bits/s, wheréV, is the number of relays and¥,, is the number of resource blocks
used for transmission and is the modulation order. Figure 4.7(b) shows a zoomed versfio

Figure 4.7(a).

with constrained resource blocks, thus Figure 4.8 showEEor the aforementioned settings
regarding the effective packet throughput. In order towate the value of EE, the transmit
power of the system was increased until the target packatgiwput was reached. From Figure
4.8, it can be seen that the EE grows with @ntil the system reaches the target rate of 8
bits/s. These results are related with the behaviour obdénfigure 4.7, where the throughput

increases with the transmit power. However, once the maxirpacket throughput delivered
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Figure 4.8: Energy efficiency of a virtual MIMO system wity = 20, N; = 1 and a target
rate of 8 bits/s, wher&/,. is the number of relays andl,.,, is the number of resource blocks used
for transmission and/ is the modulation order.

by the system is reached, increasing the transmit power wakaffect the system in terms
of throughput, but it does affect the EE. Since the BS is camsg more power to achieve
the same throughput, then the EE drops as can be seen in HigureKnowing the point
where the system achieves the target throughput is imgddanaintain a high EE and to save
energy. Finally, it can be noticed that the highest EE isiobthwhen the system uses all the
available resource blocks. However, a good and practiadétoff between EE and the required
resource blocks is shown for the Cases 2 and 3. In particddse 3 shows a comparable EE
performance using a DF cooperation between users and oalyesource block. Therefore, it
can be considered that the cooperative system is a viablendpt a practical systems where

the number of available resource blocks is constrained.

Continuing with the analysis of thefEand EE, it is now considered that the system is limited to
N,, = 1 and there is more that one destination node to be served afdet rate of the system
is set to 16 bits/s, the number of transmit antennd$;is- 20 and a variable number of relays,
N, per destination node is considered. From Figure 4.9 angbadmy Cases 7-9, it is possible
to notice the contribution of the relays to the total powenstamption. Different from Case 9,
where only one relay is assisting each destination nodentliement in the overhead power
consumption is more evident in Case 7 where each destinatide is assisted by 7 relays.
Recall from Section 4.3.1, that this overhead is result ef gbwer consumed for decoding,

re-encoding and forwarding the symbol at the relays. Framplot, it can also be noted that
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the system requires less power to reach the target throtigtipen the number of beams is

increased and not the modulation order.
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Figure 4.9: Packet throughput of a virtual MIMO system with = 20, N,;, = 1 and a target
rate of 16 bits/s, wher&/, and N, are the number of relays and destination nodes, respsgtivel
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Figure 4.10: Energy efficiency of a virtual MIMO system with = 20, N,;, = 1 and a target
rate of 16 bits/s, wher&/, and N, are the number of relays and destination nodes, respsgtivel

and M denotes the modulation order.

Finally, Figure 4.10 compares the EE performance when ni@medne destination node is

served by the BS. As can be seen, when the number of relayseptnation node goes from

N. = 1to N, = 7 (Case 7 and 9) withi/ = 4, the EE achieves a maximum value of 0.28
and 0.27 (measured in bits/J), respectively. This redndtighe EE is result of the increase of

total power consumption (see Figure 4.9). Further, as shiowigure 4.10, wherd/ = 16 the
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maximum EE achievable is 0.15 bits/J. Thus, for a fixed thinpug) the EE diminishes when

the modulation order increases.

4.4.2 Imperfect Channel State Information

In this subsection, the impact of the imperfect channehregion in the performance of the
network is investigated. In order to simulate a system witperfect CSl at the transmitter,
the channel was modelled by using equation (4.2). The asaiygarticularly focused on
the energy efficiency and the trade-off between power coptiom throughput and channel
estimation error. Figure 4.11 presents the throughputesedi by the virtual MIMO system

whenN, = 4 (Ny = 1, N, = 3) and a4-QAM modulation order is used per antenna. As can be

b (T ==
7 |- -
A6 [ b
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Figure 4.11: Packet throughput of a virtual MIMO system with= 20, N; = 1, N, = 3 and
a target rate of 8 bits/s when equal transmit power is usedrmtenna.

seen, as the number of transmit antennas increasesNfom20 to 30 and50, the performance
gap between the system with perfect CSl and imperfect CSs$umned at 4 bits/s is reduced from
0.5Jt0 0.25 and 0.10 J, respectively. From this plot, it damlae pointed out that, even though
no power allocation scheme was employed, the degrees afdire@rovided by increasing the
number of transmit antennas mitigated the effects of theeifiept CSI. Moreover, the system’s
performance in terms of energy efficiency is presented iniféigl.12. As pointed out in the
previous subsection, as the number of antennas increasleesahe total power consumption,
nevertheless the improvement in terms of throughput isiderable. This means that the
system withV; = 50 transmit antennas has the best performance in terms ofyeetfigency.

Moreover, it can be seen that the performance gap for thermawiachievable EE value, when
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both perfect and imperfect CSI are considered, reduceseanuimber of transmit antennas

increases as a result of the trade-off between throughglpawer consumption imposed by

the system.
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Figure 4.12: Energy efficiency of a virtual MIMO system with = 20, N; = 1, N, = 3 and
a target rate of 8 bits/s when equal transmit power is usedrmtenna.

4.4.3 Power Allocation

As it was mentioned, the transmit power of large antenna MI8&tems increases linearly
with the number of transmit antennas. Thus, power conttoéises can be used to adapt the
transmit power of the base station in order to increase thadity and reduce the total power
consumption. In this subsection, the system’s performamd¢erms of energy efficiency and
throughput, when the power allocation scheme describeddtich 4.3.4 is employed, is evalu-
ated. For illustrative purposes, the power coefficidnts obtained by using equation (4.22) for
a virtual MIMO system equipped witly; = 4 transmit antennas are given by.5958, 0.6509,
0.3806,0.2768}. Thus, instead of assuming a equal power level for transomisthe power

allocation algorithm uses the coefficients that improvesystem'’s throughput.

Continuing with the analysis and similar to the previougisec the virtual MIMO system is
assumed to be equipped wit¥). = 4 (Ng = 1, N, = 3) receivers and-QAM modulation. As
can be seen from Figure 4.13, the larger the number of tramgngnnas, the lower is the power
consumption required to achieve the target packet thrautglipis result is mainly associated
with the fact that the precoding matrix possesses more degefreedom for large antenna

MIMO systems. From this plot, it can also be pointed out tlmhpared with the case where
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Figure 4.13: Packet throughput of a virtual MIMO system with= 20, N; = 1 and a target
rate of 8 bits/s when the power allocation algorithm desetiby equation (4.22) is used.

the maximum transmit power is used per antenna, when ther@leeation algorithm is used,

it is possible not only to reduce the total power consumptibrthe system but also to use
the transmit power in an efficient way. This provides highaing to the links that are more
affected by the Rayleigh fading. In particular, the gap eemwthe systems with and without
the power allocation algorithm at target packet througtgiut bits/s andV; = 20, 30 and50

are 1.57, 0.92 and 0.52 J, respectively. Notice that thepaence gap reduces as the number
of transmit antennas increases, this can be explained tsid=ring that with a relatively low
number of transmit antennas the opportunity for improverigeconsiderable, while very large
MIMO systems mainly take advantage on the fact that the &ffgicfading, imperfect CSl and

interference vanish as the number of transmit antennassgi®9].

Considering the performance in terms of packet throughfgigure 4.14 compares the energy
efficiency performance of the virtual MIMO system when powa#location is implemented.
From this plot is evident that not only the larger the numbletransmit antennas the better
the performance that can be achieved but also that the maxipeuformance gap between the
EE values decreases as the number of transmit antennaasesrejoing fron.014 to 0.009
and0.007 when N; = 20, 30, 50, respectively. These results are clearly associated witbet
shown in Figure 4.13 were the power required to carried aitridgmsmission and cooperation
can lower when a power allocation algorithm is used comptordde case where a maximum

transmit power per antenna is employed for transmission.
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Figure 4.14: Energy efficiency of a virtual MIMO system with = 20, N; = 1 and a target
rate of 8 bits/s when the power allocation algorithm desatiby equation (4.22) is used.

4.5 Summary

In this chapter, a cooperative virtual MU-MIMO system thaes a multi-antenna transmitter
and implements BICM transmission and DF cooperation amtosgly spaced single-antenna
receivers was presented. Large multi-antenna systemsdprew effective way to enhance
the spectral efficiency of wireless networks at the expefh$ieearly increasing circuit power

consumption due to the use of multiple radio frequency chailm this chapter, the energy
efficiency and the effective throughput of this wireless perative system were analysed. In
order to provide a common framework, a power consumptionehtitht considers not only

the transmit and circuit power consumed at the transmitiealso that takes into account the
overhead power consumption incurred by the wireless cadiparwas introduced. Then, the
throughput and energy efficiency of the cooperative systédiin koth perfect and imperfect

channel state information were evaluated.

When perfect channel estate information is consideredad sihown that the best performance
in terms of throughput and energy efficiency is obtained wthemumber of available resource
blocks for transmission is not restricted. Neverthelesgma practical system was considered,
i.e., the number of resource blocks is constrained, viftlidlO showed to be an enabler for
future wireless communication systems. It can be highdighhat when the target throughput
of the system was fixed, the maximum energy efficiency valiesed for M = 4 was 0.2

bits/J. Meanwhile wherd/ = 16 was employed, the maximum EE obtained was 0.15 bits/J.
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This gap was result of the increase of the total power coniompequired to meet the target

rate with different modulation orders, going from 60 to 110 J

Moreover, simulation results showed that the larger thebramof transmit antennas, the lower
the impact of the imperfect CSI on the throughput and eneffigiency of the system, where
a performance gap between the system with perfect CSI andriegp CSI measured at 4
bits/s was reduced from 0.5 J to 0.25 and 0.10 J, wNen= 20, 30 and 50, respectively.
Finally, when a power allocation algorithm was considetbd,gap between the systems with
and without power allocation at 4 bits/s and = 20, 30 and50 was 1.57, 1.02 and 0.52 J,
respectively. Thus, it was pointed out that the performagagein terms of throughput reduces
as the number of transmit antennas increases. Meanwtlélejalimum EE value was obtained

for N; = 50, the maximum number of transmit antennas considered iratfaysis.

In the next chapter, the energy efficiency of a self-backhgudystem is evaluated and sleeping
strategies are used to improve the energy efficiency ofleelkystems with inhomogeneous

distribution of the users.
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Chapter 5

Energy Efficient Inhomogeneous
Cellular Networks

In this chapter, a wireless self-backhauling heterogememiwork is considered. Each micro
base station is assumed to be equipped with large multiraateransmitter to perform back-
haul and access operations using mm-wave frequencieshefure, a decode-and-forward
(DF) cooperation algorithm is employed to provide a cofative and reliable backhaul links

between micro BSs.

An energy efficient base station deployment and operationsing the heuristic greedy algo-

rithm are presented. Due to the inhomogeneity of the traffid in 5G heterogeneous networks,
first, the users are assumed to be inhomogeneously diswlifiitspace with the average num-
ber of users varying over time. Later, a fixed average numbesers is assumed to be served

by each base station while their distribution in space isetled by a Thomas Cluster Process.

Numerical results show that by using the greedy algorithmbfise station deployment, the
average number of micro base stations required to suppertraffic load at peak-time can
be reduced. On the other hand, highly clustered networkiiexhsmaller average serving
distance and thus a better probability of coverage. Hereegteedy algorithm provides a
higher throughput than the load-based and random algaitiyntonsidering the limitations in

frequency resources for backhauling while switching-@f® stations.

The remainder of this chapter is organised as follows. 8eé&til presents the background, mo-
tivation and problem definition of this chapter. The greelfjpathm, that is used throughout
the chapter, is introduced in Section 5.2. An efficient baagan deployment for heteroge-
neous networks is presented in Section 5.3. A descriptidhe&leeping strategies and their
corresponding performance analysis in terms of coveradesaargy efficiency are presented
in Section 5.4. Simulation results for the base stationaapent and sleeping strategies are

shown in Section 5.5. Finally, Section 5.6 concludes thetha
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5.1 Introduction

Heterogeneous networks (HetNets) have been consideregramising system architecture to
meet the exponentially increasing demand for wireless watfic [71, 140-142]. In HetNets,
the macro-cell BSs control the user scheduling, resoutoeation and support high-mobility
users, while micro BSs, with a smaller coverage area, peodigh data rates for low-mobility
users. In this scenario, not only can a better frequencyerears be achieved, but also the energy
efficiency (EE) of the network can be improved due to reducati foss in small cells [143].
Due to the large traffic load that is passed into the core nétveme of the major impediments to
deploying of HetNets is access to cost-effective, relianle scalable backhaul networks [144].
Since the traditional optical fibre backhaul is not alwayailable due to high deployment costs,
the use of millimetre-wave (mm-wave) bands has been projposenable broadband radio and
backhauling in future wireless networks [145]. The advgesaof mm-wave backhaul include
overcoming geographical constraints, the availabilityanfie bandwidth, easy deployment of
multi-antenna transmission and typical line-of-sight @) @ropagation characteristics that help
to control co-channel interference [140, 144, 145]. Nédwaddss, in order to compensate for the
high path loss large array and beamforming gains are ratj[fifel]. Since relaying allows the
system to reduce signal degradation due to path loss byestiiogtthe distance between trans-
mitter and receiver, cooperative systems can be used tptreddbackhaul data from the micro
BSs to the aggregation points, which are BSs with wired baigktA well-researched method to
model HetNets is the assumption of independent homogertemigson point processes (PPP)
to determine both users’ and base stations’ locations. iepe analytical tractability this
approach lacks accuracy to model future 5G HetNets, sireenibro BSs are to be deployed
in locations where the users are more likely to appear, stJEgwill be clustered towards the
BS, rather than being uniformly distributed [146, 147]. thermore, the frequent assumption
of unlimited capacity for backhauling is unrealistic. Angptine targets of the 5G mobile and
wireless communications systems is to handle the inhonemendistribution of increasing

traffic demand over time and space in a efficient manner [146].

In order to capture the dynamics of 5G HetNets, the spat&fidition of the users within the
area of interest (see Figure 5.1) can be viewed as an additiegree of freedom to the wire-
less network. These networks are frequently referred tetsdgeneous HetNets (HetHetNets)
since they exhibit heterogeneity in both infrastructurd aser distribution [148]. The user dis-

tribution is a critical parameter that will determine théwmerk performance in wireless cellular
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Figure 5.1: Comparison of the (a) homogeneous PPP and @ipodd distribution of the users
within a1000m x1000m area of interest, where the triangles and dots represe@3is’ and
UESs’ locations, respectively.

networks. There are two key performance metrics that aeet@ffl by the user distribution: (1)
the load of the BSs which is determined by the clustering gntigs of the user distribution, and
(2) the spectral efficiency of the UEs which is a function @fsil-to-interference-plus-noise
ratio (SINR) and the bandwidth [141, 147].

5.1.1 Related Work

In [149], the authors study the spatial traffic heterogeneft outdoor users in dense areas
of a urban scenario via a second-order statistic: the Caaffiof Variation (CoV) of two
spatial metrics of the resulting point process, the Voraedliiareas and the Delaunay cell edge
lengths. The results show that the topology of the buildings urban environment imposes a
significant degree of heterogeneity on the spatial diginbuof the wireless traffic. In [150],

a tractable method of sampling UEs by conditionally thignine BS point process shows that
the resulting framework can be used as a generative modélidy surrent capacity-centric
deployments, where the UEs are more likely to lie closereéd®8s. Moreover, in [151], closed-
form analytical models for signal-to-interference-raf8iR) and coverage in cellular networks
with heterogeneous traffic are presented when macro-BS®soninidirectional antennas are

considered.
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An adjustable spatial traffic model for HetHetNets with lied backhaul connection capacity
is introduced in [141]. It is shown that user-in-the-loopll()schemes, whereby the BS load
and backhaul connections are taken into account, impra/entan user rate and the coverage
probabilities in future 5G networks. Nevertheless, all blaekhaul connections are assumed
to be wired. Meanwhile, the authors in [148] introduce a igpataffic modelling approach
with adjustable statistical properties capturing the sgvef the network heterogeneity by
using the coefficient of variation and the correlation coedfit between the spatial UE and
BS distributions. In [147], an analysis of the downlink caage probability is presented. The
results are specialized to a particular case of a Thomateclpgcess demonstrating that the
coverage probability decreases when the variance of thelarsaion distribution increases,
ultimately collapsing to the result for the PPP user distidn. In [152], the authors provide
a formal analysis of the downlink coverage probability inme of a general density function
describing the locations of users around the BSs. The deresults are specialized for two

cases of interest: the Thomas cluster process and theVdtéster process.

Furthermore, in [153], the authors proposed a greedy dlgorihat finds the set of micro BSs
locations that maximizes the EE of the network while saiigfjthe capacity demand, though,
multiple antenna transmission is not considered in this@agh. In order to minimize the
total energy consumption of a HetNet, in [154], the auth@sodnpose the optimization into a
deployment problem at peak-time and an operation problenif-gieak time. In other words,
the network was designed to satisfy the quality-of-servitae target traffic load and optimized
to operate when the traffic load falls below this thresholdr the deployment optimization,
they proposed a constant-factor approximation greedyighgo, while the dynamic operation
problem uses a Lagrangian relaxation solution. In [155,dbthors analysed the EE and its
relationship with the densities of macro and micro BSs in #\Nldé In particular, they used a
stochastic geometry based model to derive the EE and area powsumption. Meanwhile, the
area spectral efficiency (ASE) aspect of micro BS deployrsestudied in [156]. Furthermore,
aiming to save energy depending on the traffic profile of thle seitching-off algorithms for

macro and micro BSs during off-peak times are investigaidd43] and [156].

5.1.2 Problem Definition

The following sections are aimed to improve the energy eificy performance for the self-

backhauling heterogeneous network. Without loss of gditrtne optimization problem for
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the EE can be formulated as follows

min Z nee(b)

P
Irll.P

subject to Pse < Peons

fwRen > Ren(1 — fu) (5.1)

wherengg(b) is the sum EE value that can be achieved by the set of BSthe transmit
power is denoted by, ||r|| is the serving distance anfé. is the power consumption of the
network once some BSs have been switched-off, Ifepresents the fraction of resources used
for backhauling, an in-band solution is only feasiblefifRy, > Rn(1 — fu), WhereRyy,
denotes the sum data rate of the access linksigpds the sum data rate of the backhaul links

supporting the network.

There are many reasons why equation (5.1) may be difficulbkeesin an optimal fashion.
The most important might be: (a) conflicting interests betvenergy efficiency, throughput
and power consumption; (b) non-negligible inter-channtgrference; (c) the performance re-
gion can be non-convex [142,157] and (d) the computatiooalptexity of the combinatorial

problem grows exponentially with the number of base statisithin the network [154].
The contribution of this chapter can be summarised as fatiow
(@) A heuristic greedy algorithm for energy-efficient BS ldgment and dynamic BS oper-
ation is proposed.

(b) A tunable model that can cover a wide range of scenaras &t homogeneous PPP to
highly heterogeneous clustered wireless networks is ptedeAThomas cluster process

is employed to generate the clustered UEs.

(c) An analysis of the probability of coverage and throughipyrovided for a wireless self-

backhaul system with constrained frequency resources.
(d) An energy saving assessment is performed by using ranttad-based and greedy

sleeping policies.

In the following, the principles of the greedy algorithm @m&oduced in Section 5.2 and the

optimization problem in (5.1) is analysed from two differ@erspectives.
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5.2 Greedy Algorithm

Recently, the study of combinatorial problems with subniadobjective functions has at-
tracted great attention, since many optimization problears be represented as constrained
variants of submodular maximization [158]. In general td@hniques used to compute approx-
imate solutions to submodular maximization problems cathivided into two main categories.
The first approach is combinatorial in nature, and is mostlyebl on local search techniques
and greedy rules. In this approach the solutions are ustaaliblyed for specific structures mak-
ing extensions quite difficult. On the other hand, the se@pmtoach is composed of two steps.
In the first step, a fractional solution is found for a reléoatof the problem. In the second step,
the fractional solution is rounded to obtain an integral mée incurring only a small loss in
the objective. Two issues arise when using this approaaht, Bince the objective function is
not linear, it is not clear how to formulate a relaxation whaan be approximated efficiently.
Second, given a fractional solution, a rounding procedumedutputs an integral solution with-
out losing too much in the objective function is requiredthis work, the greedy approach is

used to approximate the optimization problem presente8l. i) (

A greedy algorithm is a mathematical process that looksifopke, easy-to-implement solu-
tions to complex, multi-step problems by making the chdizg ait each step provides the most
obvious benefit [159]. These algorithms are called greeaplmse even though the optimal
solution to each smaller instance will provide an immedéatgput, the algorithm does not con-
sider the larger problem as a whole, i.e., it makes a locgitin@l choice in the hope that this
choice will lead overall to a globally optimal solution. Gna decision has been made, it is

never reconsidered.

Greedy algorithms work by recursively constructing a sailgécts from the smallest possible
constituent parts. Amongst the advantages of using a gralgdyithm, it is possible to high-
light the fact that solutions to smaller instances of thebfmm can be straightforward and easy
to understand. The disadvantage is that a series of locahalpggolutions may not lead to the
global optimal solution. Nevertheless, the greedy alporiguarantees a reasonably good ap-
proximation to the optimal solution if the functighis submodular. Assuming thgt() = 0,

i.e., the empty set carries no value, then the submodulardgerty has two equivalent defini-

tions described as follows [160]

Definition 5.1 (Submodularity) Let X be a finite set, commonly called the ground set. A

function f : 2% — R that assigns each subsgtC X a valuef(S) is called submodular if for
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allsubsetsS C T C Xandallx € X\ T,

f(Suda}) = f(S) = fF(TU{a}) — F(T). (5.2)

In other words, iff measures th&enefit”, then the marginal benefit of addingto S is at
least as high as the marginal benefit of adding i#toSinceS C T andx are all arbitrary,
then, addingr to a bigger set cannot provide a betbemefitthan adding it to a smaller set.

Equivalently,

Proposition 5.1. f is a submodular function if and only if for aff, " C X, it holds that

FSNT)+ F(SUT) < £(S) + F(T). (5.3)

Therefore, submodular set functions exhibit a natural wighing returns property [160]. A
property of submodular functions is that the non-negatinear combination of submodular
functions is also a submodular function. In other wordgfiif.. ., f; are submodular on the
same sefX, anday, ..., a;, With o, € RT, thenayfi + -+ + aufi, is also a submodular
function onX [160, 161].

Another property that is required on a submodular functiomonotonicity. In other words, the
more elements in the ground set, the larger the value ufd€hus, f is a monotonic function

if for every S C T'thenf(S) < f(T'). A useful property of functions that are both submodular
and monotonic is that the truncation of such a function ie aldomodular and monotonic. In
other words, the functiomin(f(.S), c) is still a submodular iff is submodular and monotonic

andc € R is a constant.

Definition 5.2. Let f be a monotonic, submodular, hon-negative functionXanThe greedy
algorithm, which starts wittt as the empty set and at every step selects an elemehich
maximizes the marginal benefitS U {z}) — f(.S), provides as an output a s8tthat achieves

a (1 — 1/e')-approximation of the optimum.

The proof of Definition 5.2 can be found in [160, 162]. In thédaing, some common exam-

ples of submodular functions are illustrated [163].

e CoverageinsetLetT,T5,...,T, be subsets of afinite sét If S = [n] = {1,2,...,n}
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is the ground set, then the coverage functfon2® — R, defined asf(A) = | Ujea Tj

is submodular, non-negative and monotonic.

Figure 5.2: Coverage in set system.

e Combinatorial optimization problemd_et S be a finite set with elements an@” its

power set of cardinalitg™. If f: 2% — R, thenminacg f(A) is submodular.

e Entropy and Mutual informationLet X1, X5, ..., X,, be random variables, anfl =
{1,2,...,n}. If X4 = {X;|i € A} is the set of random variables with indicesAnand
A C S. Thenf(A) = H(Xa), whereH (-) is the entropy function, is submodular, non-
negative and monotonic. Additionally(A) = I(X; Xg|4), wherel(-; -) is the mutual

information of two random variables, is also submodular.

5.3 Base Station Deployment

In this section, an energy-efficient BS deployment alganitonsidering that the users follow
an inhomogeneous distribution in space and time is predemi®reover, an energy-efficient
dynamic operation for the additional micro BSs during thepafak traffic load periods is dis-

cussed.

5.3.1 System Model

Consider the downlink of a heterogeneous cellular netwdrkre a set of macro and micro base
stations,B4 = By U B, are assumed to transmit at the pow&y; and F,, respectively (see
Figure 5.3). Throughout the chapter, the subschipis used to denote a macro base station.
Moreover, the UEs are associated with the BS that provideditdihest signal strength at the

location of the user.
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Small cells

Figure 5.3: Millimetre-wave MIMO based wireless backhaurl 5G.

In this section, it is assumed thatMa-antenna micro BS communicates with\a-antenna
micro BS viaN, data streams, whe®¥; < N; andN,; < N,.. Moreover, aN; x N, precoder
F is applied at the transmitting BS, withF ||2= N,. At the destination, a combiner is used

to process the received signal which results in

y = VPWHHFs + W (n +1,), (5.4)

whereP; denotes the average transmit power with {a, M }, H is the N,. x V; channel matrix,

s is the N, x 1 vector of transmitted symbols such thgfss”] = 3-In,, n ~ CN'(0,1,)

is the Gaussian noise corrupting the received signal,Ignithe corresponding interference.
Moreover, W is the N, x N, combining matrix. Since mm-wave channels are expected to
have limited scattering [164], in this section, a geometh@annel model withV; scatterers

is adopted, where each scatterer is further assumed toledsta single propagation path

between the BSs. Under this assumption, the chalHnedin be expressed as [165]

Ny
NN, )
H = Pi(x) lzl Yraa (] )al (), (5.5)

where PL(z) = P;hy|z|~® denotes the path-loss between the BSs at distanaad path
loss exponenty, and), ; is the complex Rayleigh distributed gain of théh path such that
E [|¢1.]*] = 1. The angles of departure or arrival (AoDs/A0As) are dendigd] ; and
1, For simplicity, it is assumed that scattering only occursaazimuth and, thus, the BSs
only implement 2D beamforming. Additionally, uniform liaearrays (ULAS) are used for the

antenna response vectoss(¢] ;) anda;(¢f ;). Thus,a; (4] ;) can be written as
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a(d ) = 1 1 J@rAwdsind ) AN/ Aw)dsin(] )] (5.6)
; Nt
where),, is the signal wavelength, antis the distance between antenna elements. The array

response vectors at the receivgr(¢’ ;), can be written in a similar fashion.

5.3.2 Performance Metrics

In this subsection, the metrics used to evaluate the pedioce of the base station deployment

algorithm are presented.

5.3.2.1 Achievable Rate

There are several factors that support interference mamagtan a mm-wave Massive MIMO
implementation ranging from limited range, narrow beanmisdand high spatial selectivity to
the use of the large number of degrees of freedom to faellgabspace-based and interference
alignment methods [166]. For mm-wave MIMO systems the efficdesign of the precoders
and combiners maximizes the sum-rate of the system. Theiacthievable rate per base station

can be written as follows [165]

Ry = log, <det

P‘
I + ﬁlewHHFFHHHWD, (5.7)

s

where the noise covariance matrix after combiniRgjs given by

R=E{W'mn+L) W/ n+1,)"} —E{W (0 +1,)} E{W/(n+1,)}"
E{W/W* + WAL L,”W*} - E {W"1,} E {I,”W*}" (5.8)

5.3.2.2 Power Consumption Model

The total energy consumption of the HetNet can be considasatie sum of the power con-
sumed during access and backhauling operations. The Margonsumed by a conventional
BS during access includes the power consumed by the RF pomg@ifiar (PA), analogue fil-

ters, as well as the power consumed by the baseband and digital processing. If a macro

BS is considered, a fixed power consumption required forcsitding should also be taken into
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account. Meanwhile, the power consumption for backhaulimdudes the power consumed
during the transmission to the core network and the powarimed| to carry out the wireless

cooperation. Thus, the power consumption of the networkbeatomputed as follows

|B]

1 1 _
Pcons = (gPJM + PO) + Z <g(fa,kpa + fb,ka) + Pcr + Ppr + fw,kPw> fid,k> (59)
k=1

whered denotes the efficiency of the PA arel and P, are the power consumption values
for access and backhaul, respectivaly, is the power required to run the circuit components
(including filters, converters and mixerd},, denotes the power for signal processing &d
is a constant accounting for the fixed power consumptioniredudor control signalling and
site-cooling when a macro BS is considered. Moreoygl,, f; %, and fiq ;. are equal to one
when the dynamic moddsonthaul-backhaul(fh-bh), relay or idle of the k-th BS are active
(refer to Section 5.3.4 for further information) and zeroendthey are not, respectively. The
notationz is used for the NOT Boolean operator. Additionallf, ;. is used to indicate the
presencef, » = 1) or absencef, » = 0) of a wired connection to the core of the network and

P, is the corresponding power consumed.

5.3.2.3 Energy Efficiency

Energy efficiency metrics play a vital role in the comprelansssessment of the energy per-
formance of wireless communication systems providing ietanformation on the energy
consumption of the entire network [167]. It also provideseaayal framework for the quan-
tification of energy consumption reduction achieved whenagyic operation algorithms are
employed. In this section, the classical and widely-usdepBi-Joule measurement is used to

evaluate energy efficiency and defined as

DataRate 2B, ik

EE = — =
Power Consumption P.ons

[bits/J. (5.10)

5.3.3 Energy-Efficient BS Deployment Algorithm

Finding an optimal deployment of micro BSs which can supp@ipeak-time wireless traffic in

a cost-effective way can be an extremely complex optimamagiroblem, due to the conflicting
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interests in terms of throughput and power consumptioncantputational complexity. A sub-
optimal but practical approach is to choose al%ebf candidate locations and select a subset

of these to deploy the additional small cells such that th@Bhe network is optimized.

Algorithm 2 Base Station Deployment Algorithm
1: Initialize B =0
2: Setnpp(By) = npp(Bu)
3: while [, Ry, < R}”hm(l — fuw) do
4: b = arg maxpep, Zb63¢(CEE(B¢ Ub) — Cer(By))
5
6
7

B+~ BUb
B. < B:\b
: end while

The heuristic greedy algorithm described in Section 5.2ripleyed to select in each step the
micro BS that maximizes a weighted cost functi6is(Bs) = ner(Bs) — wyey(By). This
function takes into account the EE of the system and pemattze additional network cost,
wycp(By), for deploying and operating the BSs, with< w;, < 1 as the normalized cost for
deploying a micro BS at an specific location atyda proportional cost for operating the BS.
Moreover, it is assumed the existence of a macro BS locattteajeographical centre of the
area of interest, that provides scheduling and resourceadibn for the micro BS and support

to high-mobility users. The BS deployment algorithm is digsal in Algorithm 2.
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Figure 5.4: Cost associated for deploying micro BSs at eastlidate locatioi©Google Maps,
where the triangle denotes the macro BS’ location and lighy @nd black dots show the
locations with the lower and higher cost for deploymentpeesively.

91



Energy Efficient Inhomogeneous Cellular Networks

In Algorithm 2, B, represents the set of micro BS candidates. If some locagi@sot available
for deployment due to the local terrain, higher weighig, are assigned to these locations. In
this work, the area of interest is divided into an equallytristed grid, where each location
has a cost associated with the suitability for BS deploymémt example of this scenario is
shown in Figure 5.4, where the feasible locations for thermand micro BS are denoted by a
triangle and circles, respectively. The grey scale codié@tes the cost for deploying a BS at
each candidate location, where the light grey and black taig/ the locations with the lowest

and highest cost for deployment, respectively.
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Figure 5.5: Submodularity test of the cost functiOag(By4), where the red lineC'rg(By U
b) = Cee(By) = CEE(B;) ub) — CEE(B;), indicates the regions where the incremental value
of the function increases (right) or decreases (left) asitheeof the input set increases.

From Section 5.2, it is known that the greedy algorithm gois@s an optimal solution if i)
Cer(0) = 0, i) Cgr(Byg) is a non-decreasing function, and ii)zx(B,) is submodular.
Even though the EE function violates condition ii), in [1%4]d [153], it was shown that under
a fixed area and bandwidth the SE satisfies the three prapeffigure 5.5 shows that the
proposed algorithm achieves submodularity, i.e., theedifice in the incremental value of the
function that a single element makes when added to an inputeseeases as the size of the

input set increases for most of the locations1%).

5.3.4 Traffic-Aware Dynamic BS Operation

Even when a base station experiences little to no activigy thay consume more than the 50%
of their peak energy [168]. Considering that the traffic & tietwork is less than the 20% of

92



Energy Efficient Inhomogeneous Cellular Networks

the peak-time traffic for 50% of the time, then, the BSs depibtp satisfy the requirements of
the network are under-utilized most of the time [168, 168]older to obtain energy savings, a
coordinated dynamic operation approach that allows thear&tto switch-off BSs and transfer
their user load to different cells during periods of lowiatition could be considered. Further-
more, cooperative techniques have been identified as actater approach to improve the EE
of cellular networks [170,171]. From the backhauling perdjve, allowing some micro BSs
to relay their traffic to the core of the network not only reési¢he cost for operation but also
ensures that shutting down micro BSs does not leave coveardgs. For this aim, it is assumed
that the daily traffic profile for each type of BS follows thetgan shown in Figure 5.6, which
is based on [168]. Once the network has been deployed to heeetquirements of the traffic

at peak-time, a dynamic BS operation is considered to rethectmotal energy consumption.
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Figure 5.6: Normalized traffic load of small and macro cadigarding the time of the day.

During the dynamic or load-aware operation of the micro Bi9s,assumed that each of them

can adopt one of the following modes:

e Full operation (full): where the BS not only performs access and backhaataimns
but also has a wired connection that allows it to forward thia diraffic to the core of the

network;

e Access/Fronthaul and Backha(fh-bh): the BS performs wireless backhauling and ac-

cess;

e Relay The BS only relays the data traffic from other micro BSs;
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e Switched-off(idle): the BS is switched-off to save energy.

Moreover, it is assumed that the number of micro BSs provigitd a wired connection to the
core of the network depends on the density facigy, = |Bop|/|Bs| with By = B, U By,
whereB,, and3,, are, respectively, the sets of BSs with optical fibre and leés backhaul

connection. Then, the energy optimization problem can ligenras

max Props,
77017789

subject to [, Rpp > R?h(l — fuw)- (5.11)

Most combinatorial optimization problems, as the one desdrby equation (5.11), are NP-
hard to solve optimally [172]. Since they cannot be solvegdlynomial time unles® = NP,

a natural approach to cope with this intractability is to aseapproximation algorithm. In this
section, a heuristic greedy algorithm is employed in Algion 3 to solve the optimization

problem.

Algorithm 3 Dynamic base station operation
1: OrderB. = (B, U By,)\ B according the traffic load
2: SetBB; = By
3: Set@ = {full, fh — bh,relay,idle} as set of the operational mode for a BS
4: while f, Ry, < R?h(l - fw) do

5: b = argmaxq s, ZBd EPcil:(Q
6: By« ByUbQ)

7: B. + Bc\b(Q)

8: end while

In Algorithm 3, two assumptions are made: additional opfibae connections are not allowed
andeh < R”mm Moreover, the total power consumptiéf,,s(Q) depends on the operation
mode adopted by the BSs. In equation (5.9), some flags aretoasedicate the energy con-
sumption for each operational mode. Thus, if the micro BSvisched-off, f;4 1, is set to one.
Otherwise,f, ,. and f;, , are activated according to the operation mode. Notice thi.D), the
power consumption for signal processing and running thauitiare always considered when
the BS remains active. Since the aim of Algorithm 3 is to mazenthe FE = ER‘“( ) perfor-

cons( Q)
mance of the system, Section 5.5 presents the numericédisreftiained by using Algorithms

2 and 3 for base station deployment and dynamic operatispectively.
In the next section, the associated trade-offs of an enedfggient self-backhauling heteroge-
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neous network with inhomogeneous distribution of the uasgzsnvestigated.

5.4 Sleeping Strategies for Inhomogeneous Cellular Netwkr

A well-researched method to model HetNets is the assumpfigmdependent homogeneous
Poisson point processes to model the locations of both asetdase stations. Despite the
analytical tractability this approach lacks accuracy taeiduture 5G wireless networks, since
base stations are usually deployed in locations where tirs ase more likely to appear, so the
UEs will be clustered towards the BS, rather than being amifp distributed. In this section,
the associated trade-offs for the downlink of an energiefii self-backhauling heterogeneous
network with inhomogeneous user distribution are analysealigh the employment of sleep-
ing strategies. Three different policies for switchindtodise stations are considered: random,
load-based and greedy algorithms. Moreover, the prolaloficoverage for the random and
load-based sleeping policies and study of the performafhitedeuristic greedy algorithm are

presented.

5.4.1 System Model

Consider a heterogeneous cellular network where a set 0bia8s 3, are assumed to transmit
at the same poweP. The locations of the BSs are modelled by an independent enemus
PPP,@&BS), of densityA; > 0. A fractionw of the BSs, called anchored BS (A-BS) henceforth,
have a wired connection to the core of the network while tBelvackhaul wirelessly to A-BSs;
this results in single-hop and two-hop links to the users@aged with the A-BSs and BSs,
respectively (see Figure 5.7) [173]. Thus, a Bernoulli mandvariable with probabilityw is
used to assign a wired backhaul (or not) to each BS. Unlikar pvorks which were mainly
focused on the backhaul performance analysis when the WHsniformly distributed, in this

section, the analysis is focused on scenarios with a noregeneous user distribution.

As mentioned in [141], while the homogeneous PPP assumfitiche UE distribution is not
practical, highly clustered distributions with no UEs iatlyeen are also unlikely in practice.
Thus, a tunable model that covers a wide range of scenanas drhighly homogeneous PPP
to a highly heterogeneous clustered case is consideredsindttion. As a result, users can be
divided into two main categories: (a) users that are caedlavith the BSs or points of interest

and (b) users that are not correlated with the points of ésteii.e., the distribution of these

95



Energy Efficient Inhomogeneous Cellular Networks

A-BSs with wired

) . connection to the
BS with wireless core

connection to the

core \ II\T thi_s example,
\ A-BS,, A-BS,, b=
/

UEs correlated “ UEs non-correlated
with the BS with the BS

Figure 5.7: Diagram of the HetHetNet wireless network coesed.

users is independent from the location of the BSs.

In particular, the distribution of UEs can be considerechassuperposition of two independent
distributions. The first one is a homogeneous PPP with depsif’#) and the second one is a
cluster process with total density of — p)A\(UF) [141]. Thus, in a network with = 0, all the
users locations are correlated with the points of inteeesl,the resulting network is a clustered
point process. On the contrary, a PPP generatedpnithl models a uniform user distribution

in space. Any other value of < p < 1 results in the superposition of a homogeneous PPP and

a Thomas cluster process (see Figure 5.8).

When the users are correlated £ 0) with a given BS located at; € R?, then, the users
are assumed to be symmetrically, independently, and hlytidistributed (i.i.d.) around
X; € <I>§BS). Thus, aPoisson cluster processenoted byd! is formed by the union of all
such locations of users. In other words, the point@gﬁs) serve as cluster centres fof'.
Moreover, it is assumed that the user locatiore R? with respect to its cluster centrg,,
follows a probability density function (PDFjj(z). Following [147], the PRPY is modelled
as a Thomas cluster process, where the cluster members @rddeEscattered according to a

symmetric normal distribution with variane€ around the BS. Thus, [15]

—zl?
f(z) = \/% exp (%) , z € R% (5.12)

Without loss of generality and according to the independegmoperty of the PPPs, which

suggests that conditioning the process on a randomly chmmsenof the cluster does not change
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Figure 5.8: Various UE distributions in B)00m x1000m network with different clustering
properties: (ap = 0, (b) p = 0.20, (c) p = 0.40, (d) p = 0.60, (e)p = 0.80 and (f)p = 1.00.
Starting from a pure Thomas cluster process until a homamenBPP. The number of BSs is
10 and the cluster variance 190m. Black triangles denote the BSs and small blue dots denote
the UEs.

its distribution, the downlink analysis is performed at pityal user of®? [15]. Since the PPPs
are stationary processes, then the origin can be transforonie location of the typical user.
Thus, given that the typical user is at the origin, the laoatf the cluster centre i € @&Bs).
Slivnyak’s theorem guarantees that if this point is exctutiem (I)%BS), ie., <I>§BS) \ {y} the

remaining process has the same distributio@%gsg ) [15,147].

For simplicity and following the notation suggested in [],4&n additional tier, <I>(BS) is

formed. This tier consists of only of the cluster centre,, |<I%BS = {y}. As a result, the
set of indices of this 2-tier HetNet can be defined@s- £y = {0} U K; = {1}. Thus, the
user can either connect to its own cluster centre, i.e., ﬁérBI)(()BS), or, to some other BS
e o\

received power can be expressed as

. Assuming that the typical user is served by the B at @,(CBS) with £ € K, the

P(x;) = Phj || x; |7, (5.13)

whereq is the path loss exponent aitlis the transmit power. In order to incorporate the ran-
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dom effects of the channel a multiplicative random vaiyés considered. Under the Rayleigh
fading assumption, the channel coefficiehjsare i.i.d. exponential random variables with unit
mean. Throughout this chapter, the notation~ exp(1) describes an exponential random

variable with unit mean.

Average power-based cell selection in which a user (or B8heots to the BS (or A-BS) that
provides maximum received power is assumed. Consideratghie average power from a BS
atx; € (I)ECBS) is P || x; |7, then the set of serving BSs is the set of closest BS from each

tier [174].

5.4.2 Performance Metrics

In this subsection, the metrics used to evaluate the pedioce of the sleeping strategies are

presented.

5.4.2.1 Access and Backhaul Load

From the above discussion, access and backhaul links ammaddo share the available radio
resources (or bandwidth) and hence the throughput of theonketdepends on the user load at
the BSs/A-BSs. LetV,, N, ., andN,, denote the number of BSs with wireless backhaul links
to the tagged A-BS, the number of users served by the tagge8,/and the number of users

associated with the tagged BS, respectively.

Since an A-BS serves both users and BSs, the radio resouioested to the associated BSs
are assumed to be proportional to their user load. Everyisitarelled as BS-independent with
probability p or BS-correlated with probabilityl — p). The average number of independent
users per BSis; = pAUF) /(\; 4+ \g), meanwhile, the average number of correlated users
per BS iskg = (1 — p)AUE) /(A1 + \g). Thus, the fraction of radio resources available for all

the associated BSs at an A-BS are

(ko + k1) Ny
(ko + K£1)Np + Nyw’

= (5.14)
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and the fraction for the access link with the associatedsumer

Nu,w
ko + K1)Np + Ny

Na = 1_77b:( (5.15)

Generally speaking, the number of UEs clustered towards B& may be different due to
strategic base station locations and transmit power. Nesess, in this work, it is assumed

that the number of dependent users per BS is uniform acressetiwork.

Moreover, the fraction of bandwidth available for the BSwred by an A-BS are assumed to
be shared equally among the BSs and hence the fraction af ragburces available to the
tagged BS from the tagged A-BS ajg/ Ny, which is equivalent to the resource fraction used
for backhaul by the corresponding BS. The access and baotduaacity at each BS is assumed

to be shared equally among the associated users [173] .

5.4.2.2 SINR Model

Considering the cooperative system model described indbest4.1, the value of SINR at the
typical receiver when it is served by the BS or A-BS (see FduB located at a distandex ||

can be described as [173],

PGpGuh, || Xa H_a
I, + UJQV

PGEhy || xy ||

SINR, =
R I+ 0%

., SINR =

(5.16)

whereo3, = NyB is the thermal noise poweh, andh, ~ exp(1), Gp and Gy denote
the antenna gain of the BS and user, respectively. Recainwhinterference limited system
is consideredr3, = 0 and (5.16) reduces to the SIR parameter. Furthermigrand J, are
the corresponding interference for access and backhad, liespectively. These terms are
dependent on the service distance and details on how toatddhem are provided in Section
5.4.3.

5.4.2.3 Throughput and Data Rate

A user cannot be served by a BS unless the received SINR acheen threshold, i.e.,

Pc(SINR > 7), wherer is a prescribed quality-of-service (QoS) SINR value. Thhs,
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Figure 5.9: SINR model of the HetHetNet described in Sechidnl.
throughput attained at a given BS - UE link is given by

T = P (SINR> 7) logy(1 + 7). (5.17)

Considering the resource allocation model (egs. (5.14)aid)), the SINR equation in (5.16)
and the achievable rate for the DF protocol in equation (21B2 rate for a typical user is given
by [173]

m log, (1 + SINR,), if associated with a wired A-BS

Ry = W10g2(1+T) = . Kotk
Nmu min { (1 o (HO“FEﬁlO)Eb'l")Nu,w) 10g2(1 + SINRI)’

W%% log,(1 + SINR) | , otherwise
(5.18)

wherelV is the bandwidth of the system. Notice, if the typical usesdsved by a BS, due to
the two-hop cooperative link, then the rate is limited by ithieimum rate between the access

and backhaul links, as in the lower part of (5.18).

5.4.2.4 Power Consumption Model

As mentioned in Section 5.3.4, the traffic of the network ssl¢han the 20% of the peak-
time traffic for 50% of the time. Thus, the network becomesaundilized most of the time.
Rewriting the power consumption model presented in Se&i8r2.2, the power consumed by

the network can be calculated as follows
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|B]
1
Pcons:Z<S(P+fb,kp)+Pcr+Ppr> ) (519)
k=1
whered denotes the efficiency of the PR,, is the power required to run the circuit components
(including filters, converters and mixers), aRgl denotes the power for signal processing. The
variable f; j, indicates if thek-th micro BS performs a wirelesgy(,, = 1) or wired (f; ;, = 0)

backhaul operation.

5.4.2.5 Energy Efficiency

Theoretically, in order to compare the performance of twateys, it is enough to set a target
throughput and measure the power drawn by each of the systéevertheless, discrepancies
on the systems’ capabilities and cost to run the tests makeatiaing the energy consumption
by the effective throughput more suitable for practical iempentation. Thus, in this section,
the reciprocal of Bit-per-Joule measurement, namely gneosgsumption per delivered infor-

mation bit, referred to as the energy consumption ratio (F@69] is used and defined as

Power Consumptio

ECR =
Data Rate

T3/t (5.20)

5.4.3 Probability of Coverage

In this section, the effect of the inhomogeneous user Higion in the performance of the
network is investigated. The analysis is mainly focusedhendistance distribution between a
typical user and its tagged A-BS or BS and its impact on théaidity of coverage. Recall

that a user cannot be served by a BS unless the received SBt¢Re® a desired threshold.
The probability of coverage can be definedPag SINR > 1) [77], which can be seen as the

probability that a randomly chosen user can achieve a t&igNR 7 [72].

To begin, letR; be a random variable denoting the distance from a typical atsthe origin
to the nearest point of the Poisson point prockﬁ;%s). Since the typical user is served by the
closest base station, no other base station can be closeRthal hus, the PDF of?; can be

derived using the fact that the null probability of a spaRaisson process within an ardaof
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interest isexp(—A1 A) [71]

P(r > Ry) = IP(No BS closer tharR; )
= exp(—\R?). (5.21)

From the above discussion, it is known that the typical useserved by a BS located at a
distanceR;. Since, the probability that two BSs lie on this boundaryesZ73], there exists
no other BS within the disé(0, R;) of radiusR;. The notationb(c, z) is used to describe a
disc centred at of radiusz. Accordingly, the PDF and cumulative density function (QF

R, are given by [15]

fry(r) = 2mr A exp(—m\r?), 1 >0, (5.22a)
Fg,(r) =1—exp(—mA;r?),  r>0. (5.22b)

Following the notation introduced in Section 5.4.1, thdribstion of Ry needs to be treated
differently as@éBS) contains only a single point with a predefined distance itligion. As-
suming that®f is a Thomas cluster processt, is Rayleigh distributed with PDF and CDF

given by [147,175,176]

T 7'2

fRo(r) = —gexp|{—5—5], 120 (5.23a)
7,2

FRy(r) =1—exp (—ﬁ> ,  r>0. (5.23b)

Recalling that the superposition of two independent Poigsocesses results in a new Poisson
process where its density equals the sum of the individuadites, then the PDF and CDF of

the superposition of an homogeneous and clustered distrilsucan be computed as
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fo(r) =pfrR, + (1 =) fRs (5.24a)
277\ (—mar?) + = (r(1=p) - >0
= 27r exp(—mAr —|r(l—p)lexp | ——= r
1P p 1 0_2 D p 20_2 3 -
Fy(r) = pFr, + (1 = p)Fg, (5.24b)
2

=14+ (p—1)exp <—;7> — pexp(—=\7r?), r >0,
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Figure 5.10: Probability density function of the servingtdnce between the typical user and
its tagged BS for NumBS = 30, NumUE = 1000, Area(60m x 1000m and the superposition
probabilityp = 0,0.25,0.5,0.75 and1.

Figure 5.10 shows the PDF of the serving distance betweepieatyuser and its tagged BS.
It is clear from the plot that analytical and numerical résuhatch and that the superposition
probability p plays a vital role in determining the performance of the Hattet. Before the
probability of coverage of the HetHetNet is formally inteambd, the effect of the inhomoge-
neous user distribution is studied by calculating the refithe distances from a typical user
to its tagged A-BS or BSKs) and to the second closest BS, i.e., its dominant interfgiey.
Following the approach in [151] and assuming a interferdimsited system, the SIRy, in dB
can be calculated as

v =Ps+ G — Iy, (5.25)

whereG = Gy Gp is the antenna gain, the transmit power associated wittatigeet! A-BS or
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BS is given by
Ps =P+ G- PLg+ hg, (5.26)

and the aggregate interference is

Ligg= Y, (P+G—PLj+hy), (5.27)
jeadPINs

with hg and h; following a normal Gaussian distributiah (11, 0%;). Thus, the SIR can be

upper-bounded considering only the strongest interfesdoliows
¥ =Ps—logg <y =Ps— Fr (5.28a)

= PLg— PL;+ h, (5.28b)

where PL;[dB] = 10alog,y(R;) with i € {S,I} is the path loss and = hg + hy ~
N (2u,20%;). Furthermore,

10 Rg
y = — ca-l — h 5.29
77 Tlog(10) Og<Rz> i (5:298)
S log(Rs,7) + h (5.29b)
’7 - log(l()) « Og S,I 9 .

where0 < Rg < Ry, and asresulRg ; € [0, 1] has the following CDF and PDF

R%
Ré,[ - 277)‘1(3%,1 - 1)

F(Rsy) = (1—p) S+ pR% ;. 0<Rs;<1 (5.30a)

R% ;(2Rs,r — 47\ Rs 10?) .
(R%,I - 27”‘1(32,1 —1)o?)?

2Rg 1
. ) 0< RSI <1
R%; —2m\ (R — 1)02>

Jr(Rs1) =2pRsy+ (1 —p) <— (5.30b)
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Further details of the derivation of (5.30) are presentefigpendix A.
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Figure 5.11: Probability density function of the rafity ; = Rs/R;.

Figure 5.11 shows the analytical results closely match tiearical results for the PDF of the
ratio Rs; = Rg/R;. It can be seen that the averageRy ; is lower for a highly clustered
system compared with the average obtained with a homogertistribution. From this obser-
vation it can be pointed out that the distance between theafis second nearest BS increases
asp — 0. Moreover, there is a crossing point At ; = 0.31 that is essentially defined by
the cluster variance and the density of the homogeneousbdisin. Furthermore, in terms
of interference the smaller the ratis ;, the lower the interference a typical user experiences.
Finally, this crossing point shows where the cluster or hgemegous distribution becomes more

dominant in the system’s performance.

For the sake of clarity and using the inverse transform #mpthe PDF of the logarithm of

Rs 1, i.e.,Y =log(Rg ) can be obtained as

e?Y(2e¥ — 4mhieYo?) 2eY
— oY |2pe? £ (1—p) [ —
fy(y) =e [ pe’ + (1 —p) ( (€2v — 2w\ (e — 1)02)2 T ey 2\ (€2V — 1)a2>] )

y<0. (5.31)

For further details of the derivation of (5.31), see App&rili

The analytical and numerical results of (5.31) are shownigure 5.12. In this analysis, the
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discussion will be focused on the case where 0.5, since the results for the inhomogeneous
case in Section 5.5.2 are closely related to performancibigedh in this plot. As can be seen,
unlike the homogeneous cage=£ 1) where the PDF of?s ; follows an exponential growth or
the highly clustered networlp (= 0) that follows a log-normal distribution, when the superpo-
sition of the two user distributions occurs, the PDHQf; has a peak around -2 dB. This can
be explained considering the crossing point in Figure S\¥hen the probability ofts ; — 0
the stronger interferer is located far away from the ser@8&gand thus it is highly likely that
the typical user and the tagged BS are correlated. NeveshelvhenRg ; approaches the
crossing point af.31, the typical user can be served either by its cluster cemtemather BS.
As can be seen from Figure 5.12, on the left hand side of thesitrg point the inhomogeneous
distribution of the network becomes dominant, but the opp@spplies if instead the right hand
side is considered. The oscillatory behaviour at -2 dB caattributed to the different weights
that each of the distributions impose when the serving nligts are varied. As will be seen
in Section 5.5.2, the load-based algorithm, where the sgmistance is not a crucial decision
parameter, is going to be penalized in terms of overall thinput. In general, the performance
of the HetHetNet is heavily dependent of the cluster vagatite density of BSs in the area of

interest and the inhomogeneity of the user distribution.

2
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Figure 5.12: PDF of thévbg(Rs 1) = log(Rs/Ry).

From the discussion above, it can be deduced that if a typisat associates with a BS of
locationx; € <I>§B o ), then the total interference experienced by the typicaf issgenerated
from two independent sets: (1) the centre of its clustgr,= Phy || xo ||~ and (2) the

cumulative interference from all the other BSs excluding tdgged BS, in other word$; =
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> L€a (BN Pihy || x ||7%. Moreover, if the typical user is served by its cluster aentr
X 1 Xj

the interferenc&y is generated by the remaining BSs, igkk@gm\bmo) Pihy || xx ||~

Thus,I, andl, in (5.16) can be calculated based on the tefm<; andZy.

Considering the fact that under the Rayleigh fading assiematl the sources of interference

are independent of each other and using the Campbell-Méelaeem, the probability of cov-

erage can be expressed as a product of their Laplace trarssfai#7, 178]. Thus, the overall

coverage probability can be defined in terms of the per-teerage probability as follows

Po = p- ]P’CH + (1 — p) . ]P’CT, (532)

where the value®c,, andPc, account for the probability of coverage of the homogeneous

and the Thomas cluster processes cases, respectively.[F4@iit is known that the

P, = / I £1a(rr* P71 fr(r)ar, (5.33a)

>0 pek

whereLr,, (s) = E[—sly] denotes the Laplace transform of the interference termsfated)
the PDF of the distance distribution. Given that the BS’ tiges follow a homogeneous PPP

distribution, the Laplace transform &f,, evaluated atrPlis

Lr, (TTO‘P_l) = exp(—m(Ag + A\1)p(T, a)r2), (5.34)

wherep(r,a) = 25 5 Fi[1,1 — 2/ 2 — 2/, —7] is the Gaussian Hypergeometric function.

On the other hand, considering the inhomogeneity of the ortvthe probability of coverage

corresponding to the Thomas cluster procégs, can be written as

Pc, =Pco + P, (5.35)

whereP~ andP¢; are the probabilities of coverage associated to th@%B %) and <I>(13 o ),

respectively. From [147, 152], the Laplace transforms ftben different components of the

clustered Poisson process are given by

Ly, (TTC“Pfl) = exp(—m(Ao + A1)p(T, 04)7“2), (5.36)
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oo
Lr(s) = /ﬂg i slPr*a 1 1 };’R(:()xi)dr, (5.37)
where (5.36) deals with the interference from all the BSsepkthe cluster centre. Recall that
since thed*” tier is created where the typical user is located, the eariuzone will be the ball
b(0, o). In the case of (5.37), a virtual exclusion zone is formediadothe typical user, since
the cluster centre acting as a interferer lies outside thlis As a result, the distance distribution
fro(r) will be conditioned onky > zp = z;. The per-tier probability of coveragé-, and

Pc1 can be described as [147]

Pog= — 20 5.38
O (T, a)A + Ao (5-38)

—r? + xf
]PCl = 271')\1/ / |: 5 1 T T'/I'Z) exp (7) d?":| (539)

x x - exp (—mz?(1 + p(7, @)A1 + Ao)) dz.

Once the inhomogeneity of the network and its impact on tbbatuility of coverage have been
accounted for, the next section aims to improve the syst@erormance by using sleeping

strategies to reduce the power consumption during lowigcferiods.

5.4.4 Sleeping Strategies

Since full operation of the micro BSs is not required at atlds and all locations due to the in-
homogeneous distribution of traffic over time and spacehémext subsections, three policies
to optimize the power consumption and throughput of the adtware presented. The effect of
dynamically switching-off micro BSs based on a random yadind two deterministic policies
(load-based and greedy algorithms) is investigated. ThieBYys performance is quantified by
using two metrics: probability of coverage and ECR. Previmworks, studying the coverage
in homogeneous scenarios shown that the probability ofrageeis independent of the trans-
mit power in the interference-limited regime, i.e2 — 0 [155]. This effect is a result of
increasing the density of the network by adding more BSs hactkfore not only improving

the received signal but also increasing the interferentleetdagged user. As it is shown in the
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following subsections, this effect can be more evident @véi® as the network becomes more

inhomogeneous.

5.4.4.1 Random Sleeping

This sleeping strategy can be modelled as a Bernoulli t&i&b] such that each micro BS
operates with probability and is turned off with probabilitf1 — ¢), independent of all the
other base stations’ load or the throughput of the netwotker@fore, after applying random
sleeping over the micro BSs within the area of interest, tleeame total power consumption of

the network can be calculated as

PRS ZQ()\l 'Pcons)+(1 —Q)()‘l 'PO)> (540)

where P,,,,s and P, are the consumed power of each micro BS when it is active ded id
respectively. In inhomogeneous HetHetNets with randompite, the coverage probability is

given by

Pope = (1 —p) {/ 2mqAor exp(—mgho(p(T, ) + 1)7“2) eXp(TT‘aU]QVP_l)d’I“ (5.41)
x>0

oo [ [ ey (T ) o]

X T - exp (—wa(l + p(1,)g\ + )\o)) dx }

+p {/ 217 exp(—mghi (p(T, &) + 1)r%) exp(Tro‘a]QVP_l)dr} .
0

When the background noise is not considereqd,= 0, it reduces to

Pops = (1 —p) (q (Pco + Pc1) + ' (5.42)

- - + —_—,
1+p<7,a>> P15 0(r0)

wherelPco andP¢; are the probabilities of coverage described in equatior88j&and (5.39),
respectively. Compared with the results in [155], where mbgeneous system is considered,
with an inhomogeneous distribution every time a centre dtister is switched-off, its load is
shifted to surrounding BSs, changing the percentage of @&lated users. Moreover, jifis

set to one for the scenario under consideration, equatid)Beduces to the results presented
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in [155]. Figure 5.13 shows the probability of coverage aebd by the random sleeping al-
gorithm when an arbitrary Qo8 is considered. As can be seen, wherc —20 dB all the

users achieved the desired Qo0S. Nevertheless, as thetdrgeeases, the probability that the
SIR parameter achieves this value reduces and thus thelilitybaf coverage tends to zero for
7 > 50 dB. Finally, Figure 5.13 clearly indicates that the analjtticurves match the numerical

results obtained through simulation.

Proof: See Appendix B.
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Figure 5.13: Probability of coverage when a random sleeisiegnployed foy = 0.7, 0% = 0
andp = 0,0.5 and1.

5.4.4.2 Strategic Sleeping 1: Balancing the Load - A Vorondased Scheme

Instead of randomly switching micro BSs off, they can be siét-off based on their activity
levels. This sleeping strategy can be seen as a load-awtrg that incorporates a traffic pro-
file in the optimization problem. Specifically, this strategleeping is modelled as a function
s : x — [0, 1] which implies that if the activity level of the coverage asessociated with the
BS has activity levek: € [0, 1], then it operates with probability(z) and sleeps with probabil-
ity (1 — s(x)), independently [155]. In other words, a user located in &$twi-Voronoi cell
of activity level a is active with the same probability, and thus a cell with a higher level of
activity will exhibit a higher probability of remaining daee. As a result, the average power

consumption of the HetHetNet when a load-aware sleepiagesly is employed is given by
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Prp = Ela](A1 - Peons) + (1 — E[a]) (M - P), (5.43)

whereE[a] = [ a(z)fa(z)dz andfa(z) is the pdf of the variablel, which denotes the activity
within the Poisson-Voronoi cell. Moreover, if the probdlyilof coverage is conditioned on the
activity of a typical cell, then the probability of coverafge the inhomogeneous case presented

can be described as follows

1 1
Pe,p = m/o zP(SINR> 7|x) fa(z)dx (5.44a)
1
= 0, S ERSINRS I = ) () 5 440)
1

1
. M/O 2(1 — s(2))P(SINR> 7|N > 1) fa(x)dz,

whereP(SINR> 7| N = i) is the probability of coverage for the typical user when #ésved
by thei-th BS. While the probability?(SINR > 7|N = 1) was defined by equation (5.32),
P(SINR> 7|N > 1) can be defined as

P(SINR> 7|N > 1) = Y B(N = i|N > 1)B(SINR> 7|N = i) (5.45a)
=2
=3 (Bis)a - B2 | R s WA
= 2 s s - exp ()t 7 gidx
o —m2?E[s]\;  —x%% T\ 7 z?
2 oexp (=22 da.
e G =7 ) e (o)
(5.45b)

Proof: See Appendix C.

Figure 5.14 clearly shows that the analytical curves mdtemumerical results obtained through

simulation. For simplicity, a interference-limited scejnai.e.,o—?V = 0, is considered.
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Figure 5.14: Probability of coverage when a load-basedritigo is employed for%, = 0 and
p=0,0.5andl1.

5.4.4.3 Strategic Sleeping 2: Balancing the frequency regice allocation - A Greedy

Algorithm based Strategy

Compared with the load-aware algorithm presented aboveendrdy the load at each micro
BS was considered, in this section, an heuristic greedyrigthgo to provide a fair distribution

of the resources among the users and improve the throughthe network is proposed. Since
increasing the throughput of a network subject to a poweswamption constraint is of interest,

an optimization problem is formulated as follows

min > " npor(b)

P
N[t

subject to Pse < Peons (5.46)

wherengcr(b) is the sum ECR value based on equation (5.20) that can bevadhig the set of

BSs,BB, and P, is the power consumption of the network once some BSs havedwieched-

off. The optimal solution for energy saving that considexl-backhauling and relaying can
be found by exhaustive search. Moreover, as pointed out 9] [And the references therein,
convex optimization-based algorithms and their relaxetiare computationally expensive for
large-scale networks. Thus, the proposed heuristic grakgdyithm is employed to activate in
each step the micro BS that minimizes the energy consumptitim of the system as shown

in Algorithm 4. The greedy switching-off algorithm startstiwvthe empty set and iteratively
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adds one micro BS location at each step which has the highesyesaving among the set of

candidate locations until the saved energy reaches a taalyet [19].

Algorithm 4 Strategic sleeping 2: Greedy algorithm

1: Initialize B = 0, B, = BS € "%, P,. = 0

2: Setnpcr(B) =0

3: while P, < P,y dO

4 b=argmingeg, ) ep(nEcr(BUb) —npor(B))
5: B+~ BUb
6: B. «+ B:\b
7
8:

Pse = Ise + Pcons(b)
end while

A greedy algorithm guarantees an optimal solution ifiy-(0) = 0, ii) npcr(B) is a non-
decreasing function, and ii)zcr(B) is submodular [153,154]. In [154], it is shown that under
a constant area and bandwidth the throughput satisfies timeseproperties. In order to show
that the greedy algorithm is still a viable solution for ahamogeneous traffic distribution, the

probability that the submodularity condition holds for

necr(BU{b}) —necr(B) > necr(B' U{b}) — necr(B), (5.47)

is investigated. The scatter plot in Figure 5.15, showsdbaut 5% of the cases do not satisfy
the inequality. However, the throughput reductions in ¢hcases are relatively small and more
than95% of cases still meet the condition in equation (5.47). Thusan be considered that
the greedy algorithm should improve the performance of therdwo sleeping algorithms, and

later in Section 5.5.2, simulation results that supposd thsult are provided.

From the discussion above, it can be pointed out that thedgrseitching-off algorithm is
the only one among the three algorithms that can take intoustdhe restriction in backhaul
links for balancing the network resource allocation andsthachieving an improvement in the

system'’s throughput.

5.5 Numerical Results

In this section, the analytical and numerical results arapared in terms of energy efficiency
for the base station deployment and sleeping strategiesilded in Sections 5.3 and 5.4, re-

spectively.
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Figure 5.15: Submodularity test under an inhomogeneoffitdistribution.

5.5.1 Base Station Deployment

This subsection presents the energy efficiency analysihéomm-wave Massive MIMO based
wireless backhaul considering the deployment and dynapecadion algorithms presented in
Section 5.3. Unless stated otherwise, the results shovisiséction pertain to a MIMO system
operating at 28 GHz. A narrow band block-fading propagatibannel described in equation
(2.28) is considered. Moreover, a DF protocol is implemérde the cooperative technique
between BSs. For simplicity, the precoder and combinersseraed to be optimal and; = 5
data streams are used for transmission. Other importaathygders for the simulation can be
found in Table 5.1.

\ Description | Parameter] Value \
Transmit power of the micro B$ P 30dBm
Path Loss exponent « Access: LoS = 2.0, NLoS = 3.3
Backhaul: LoS =2.0, NLoS =3.5
Carrier frequency v 28 GHz
Noise power o3 -174 dBm/Hz +10log,, (W) +10
Number of data streams N, 5
Number of transmit antennas Ny 20

Table 5.1: Simulation Parameters of Section 5.5.1.

Firstly, the benefit of considering additional micro BSshiitthe area of interest is presented.
From Figure 5.16, it can be seen that as the number of micraB&=d to the network increases
so does the SE. Meanwhile, the EE performance is limited égdtlditional power consumption

incurred by the deployment of micro BSs, so for the sake ofpgammon, the results obtained
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with the optimal solution are also presented. Throughaistgbction, the optimal solution for
the optimization problems described in Algorithms 2 and Gisputed through an exhaustive
search.
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Figure 5.16: Achievable spectral efficiency as a functiom niamber of additional micro BS
deployed.

In order to obtain practical results, the traffic profile shoiw Figure 5.6 is further consid-
ered. As can be seen, low traffic load conditions (lower tha¥b &f the peak-time) occur for
about 67% of the day for a micro BS. Thus, during this period/aachic operation can be

implemented to reduce the energy consumption of the network

Figure 5.17(a) shows the deployment of the additional mB@8s to support the traffic load
at peak-time (12 - 14hrs and 15 - 20 hrs) obtained through ritlgn 3. Meanwhile, Figure
5.17(b) presents the reconfiguration and wireless codpereaarried out by the BSs for a low
load period. As it is noted, as the traffic load and distrifutof the users vary, the tasks
performed by each of the BS may change as well. The only exeejgtthe macro BS, which is
considered to be active the whole time to carry out scheguiigsource allocation and support
for high-mobility users. In particular, it can be noticedtlin areas where the traffic load is
low the BSs adopt relaying tasks or are switched-off. In lmatbes, the EE of the network is
improved by reducing the total power consumption. Spegitie EE performance is improved
when a cooperative system is implemented as the distanb@sdeBSs are scaled down and

therefore, the high path loss that mm-wave frequenciesrexye is reduced.

Figure 5.18 shows the average number of BSs that are actjaediag the time of the day.
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Figure 5.17: (a) Full operation mode of the additional miBf®s during peak-time traffic load
(2pm) and (b) dynamic operation mode of each micro BSs whetrdffic load reduces (4pm).
The arrows indicate the association between BSs when AltgorB is used to dynamically
change the operating mode of the BSs.

During peak-time traffic most of the BSs remain active to ntaettraffic demand. When

the load of the network reduces, the dynamic algorithm $wkeoff some of the BSs to save
energy. The results obtained through Algorithms 2 and 3@mgpared with a random selection,
where the BSs are deployed without taking into account traffofiles and deployment costs.
From Figure 5.18, it can be seen that, in general, the numtertive antennas are lower for
the greedy algorithm. Furthermore, on average a reducfi@i.6% in terms of the number of

BS required to satisfy the demand at peak-time is achiev@dpared to random allocation.

Considering that it is of particular interest to analyse ¢hergy efficiency of the system for
dynamic operation, Figures 5.19(a) and 5.19(b) show theatipe modes adopted by the micro
BSs regarding the traffic profile. As can be seen, when the dénimadata rate reduces, some

of the micro BSs operating in fronthaul-backhaul mode aseeimd used as a relay or switched-
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Figure 5.18: Number of active BSs regarding the time of the da

off. Furthermore, it can also be noticed that the number of Bfgjuired to support the traffic

demand during different times of the days follows the ressiitown in Figure 5.18, as expected.
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Figure 5.19: Operation mode when a (a) greedy algorithm Bhdafdom selection are used
for deploying the additional BSs.

As aresult, in Figure 5.20, it can be seen that the EE of thiesysonsiderably improves when
the dynamic operation algorithm is considered, achievingagaimum value of 0.34 compared
with the 0.22 bits/s/Hz for the random selection. This is banexplained considering the
fact that the traffic aware algorithm can better determimenthmber of active BSs required to
satisfy the current demand for data rate. Compared with tesywithout dynamic operation,

a significant reduction in the power consumption is achievkdn the system is under-utilized

during the low traffic load periods.

5.5.2 Sleeping Strategies

In this section, the numerical and analytical results f@& thndom, load-based and greedy

sleeping policies described in Section 5.4 are comparedesdrstated otherwise, the results
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Figure 5.20: Energy consumption considering the actiaetime BSs for a specific traffic dis-
tribution.

shown in this subsection pertain to a mm-wave system operati 73 GHz. A narrow band
block-fading propagation channel is considered. More@BX- protocol is implemented as the
cooperative technique between BS and its tagged A-BS. @tipmrtant simulation parameters

can be found in Table 5.2.

\ Description | Parameter] Value \
Fraction of anchored (wired) BSs w 0.3
BS PPP density A1 50 per kn?
UE PPP density AUE) 1000 per kM
Variance of the Thomas cluster procgss o¢? 100 m
mm-wave bandwidth W 2GHz
Transmit power of micro BS P 30 dBm
Path Loss exponent Qo Access: LoS =2.0, NLoS=3.3
Backhaul: LoS =2.0, NLoS =3.5
Carrier frequency v 73 GHz
Antenna gain at the BS Gp 18 dB
Noise power o3 -174 dBm/Hz +10log, (W) +10

Table 5.2: Simulation Parameters of Section 5.5.2.

Figure 5.21 shows the probability of coverage for diffenaities of the cluster variane€ and

a fixed valuep = 0.5, which implies that half of the traffic of the network is notcelated with
any BS. From Figure 5.21 and following the discussion ini®ad.4.3 is evident that reducing
the cluster variance reduces the distance between theatymer and its tagged BS, thus the
probability of coverage is improved. Moreover, the plotaclg indicates that the analytical

curves match the numerical results obtained through stionla
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Figure 5.21: Probability of coverage for different densifyBSs and cluster variance?.

Continuing with the analysis of the system’s performanoethe following, the trade-off be-
tween the probability of coverage and throughput when shgeptrategies are employed to
reduce the power consumption of HetHetNets is analysedur&if.22(a) compares the prob-
ability of coverage for the sleeping policies discusseddnt®n 5.4 when the inhomogeneity
of the network is set tp = 0, i.e., all the users are correlated with the BS. It is shovean tihe
random algorithm performs the worst when switching-off BS®owing a gap of abo@J in
saved energy with respect to the greedy algorithnP{at= 0.9). Itis important to note thatin a
highly clustered network, the greedy algorithm perfofidbetter than the load-based algorithm
since switching-off BSs based on the load inevitably insesahe average distance between the
typical user and its tagged BS. Comparing these resultsthitbe in Figure 5.23(a), it can be
noticed that when the superposition of the user distrilmgtio.e.,p = 0.5, is considered the
load-based algorithm outperforms the greedy algorithmbinual3J. The reason for this be-
haviour is two-fold, first, the cost function of the greedgaithm prioritizes the throughput
and not the probability of coverage and second, in highlgteled networks, the serving dis-

tance is reduced.

Figure 5.22(b) shows the total throughput of the HetHetNleémp = 0. In order to fairly
compare the performance of the sleeping polices, the pilithalf coverage is set a20% for
each algorithm. Blue, red and green squares are used taiadie throughput of the system
when the random, load-based and greedy algorithms are gethlespectively. Based on the

results in Figure 5.22(b), it can be noticed that the gredggrithm considerably outperforms
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Figure 5.22: (a) Probability of coverage and (b) throughmutsaved energy for a HetHetNet
with NumBS =50, NumUEs = 1000, = 0 andr = 0 dB. The squares indicate the saved energy
when the probability of coverage is @1%.

the other sleeping polices for a data rate of 150 MB/s. Fraguiéis 5.22(a) and 5.22(b), it can
be pointed out that even though the load-based algorithavshoprovement in terms of saved
energy with respect to the random algorithm, the tradesothis case is seen in the overall
throughput, since the random policy provides a higher thinput when a fixed probability of

coverage is considered.

In order to understand how the throughput of the system éctftl when independent users
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are considered in the systemjs set to 0.5% = 0.5). Figure 5.23(b) shows that in terms of
throughput the greedy algorithm achieves the best tradefehergy saving and data through-
put for a wide range of scenarios, including highly homogetsePPP and highly heterogeneous

clustered wireless networks. From this plot, it can alsoditéecad that the throughput obtained

by the load-based algorithm is very affected by the presendeBS base stations that limit

the available bandwidth per user and by the reduction of nterference when the BSs are

switched-off.
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Figure 5.23: (a) Probability of coverage and (b) throughputsaved energy for a HetHetNet
with NumBS = 50, NumUEs = 100¢; = 0.5 and7 = 0 dB. The squares indicate the saved

energy when the probability of coverage i9a%.
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NumBS =50, p =0, UEs = 1000
Pc | Marker colour| Algorithm | Energy (J)| Throughput (bits/s
blue R 3.5 0.16e9
0.90 red L 6.3 0.15e9
green G 10.8 0.18e9
NumBS =50, p = 0.5, UEs = 1000
Pc |  Marker [ Algorithm | Energy (J)| Throughput (bits/s
blue R 3.6 2.92e9
0.90 red L 24 1.39e9
green G 10.5 3.24e9
R =random, L = load-based, G = greedy algorithm

Table 5.3: Comparison of the saved energy and throughput digesystem is highly clustered
and the superposition of cluster and homogeneous procisssassidered.

Finally, the ECR performance of the system is analysed.regt.24(a) and 5.24(b) show the
ECR achieved by the sleeping polices whesa 0 andp = 0.5, respectively. From these plots,
it can be seen that the best performance is achieved by thdygedgorithm having the lowest
ECR value for the whole range of saved energy intervals. blae a better performance from
all the sleeping policies can be achieved in a highly clestaretwork due to the throughput
depending on the serving distance. On the other hand, it eamobced the ECR value of
the load-algorithm shows a heavy dependence on the irgederand the fraction of A-BSs

available according to the throughput results in Figurgg and 5.23.

From Figure 5.24(a), it can also be noticed that the ECR padace of all sleeping policies
tends to the same value as the number of BSs that are switche@reases, i.e., there is a
saturation in throughput that can be achieved by the grelegyithm and thus, continuing to
switch BSs off increases the power consumed to carry outdbparation between the BSs and
the A-BSs. Hence, after this crossing point, the advantageged by the greedy algorithm in

terms of ECR is negligible compared with the other two aliponis.

In general, the more clustered the network, the smallerghgrgy distance between the typical
user and its tagged BS and thus, the better the performanesns of probability of coverage
and throughput. For the sake of clarity, a summary of thecsamergy using the three sleeping
policies is presented in Table 5.3, where the target prdéibabif coverage is set to 0.9 and
the blue, red and green squares in Figures 5.22 and 5.23eacetesponding markers for the

random, load-based and greedy algorithm, respectively.
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Figure 5.24: Energy consumption ratio (ECR) with NumBS =N0OmUEs = 10007 = 0 dB
and (a) p =0 and (b) p = 0.5, respectively.

5.6 Summary

In this chapter, a millimetre-wave system to enable setkbauling in future wireless networks

was considered. Aiming to handle the inhomogeneous disiitv of increasing traffic demand

over time and space in 5G wireless communications systeimsahle model that can cover a

wide range of scenarios from a homogeneous PPP to highlyolgetecous clustered wireless

networks was presented, where a Thomas cluster procesplsyat to generate the clustered
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users. Moreover, energy-efficient base station deploymeatraffic aware dynamic operation
algorithms for time-varying scenarios were presented. thieamore, the distribution of the
serving distance was analysed and the probability of cgesaad throughput when the wireless

self-backhaul system with constrained frequency resauscemployed were provided.

Numerical results showed that the average number of addltimicro BS required to support
the traffic load at peak-time wa¥.6% lower compared with a random selection. Addition-
ally, it was shown that the EE performance of the network aimniproved from 0.22 to 0.34

bits/s/Hz when the dynamic operation algorithm is consider

Finally, aiming to optimize the energy efficiency of the &yst the use of energy-efficient
sleeping algorithms was investigated. Three differenicpes for switching-off base stations
were considered: random, load-based and greedy algorithires probability of coverage for
the random and load-based sleeping policies was derivethangerformance of the heuristic

greedy algorithm studied.

Numerical results showed that highly clustered networksleta smaller average serving dis-
tance and thus a better probability of coverage. Moreover,greedy algorithm provided a
higher throughput since the load-based and random algwsitio not consider limitations in
frequency resources for backhauling while switching-@aféé stations. Nevertheless, the load-
based algorithm outperformed the greedy algorithm in tevhpsobability of coverage in mod-
erately clustered scenarios since the overall throughithieanetwork is prioritized by the cost
function of the greedy algorithm. The load-based algoritittained energy savings of 13.5 J
higher than the greedy algorithm, but the greedy algoritishiewed 1.85 Gb/s higher overall

throughput compared with the load-base algorithm.
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Chapter 6
Conclusions and Future Work

This thesis has contributed to the design of energy-efficieaperative wireless systems when
a large number of antennas at the transmitter is considdrethis chapter, Section 6.1 will
emphasize the key contributions of the thesis. Meanwhidmeslimitations of the work and

suggestions for future work will be discussed in Section 6.2

6.1 Conclusions

This thesis extended the application of cooperative conitations to MIMO wireless systems
equipped with large transmit antenna arrays. Focused aiding insights for energy-efficient
systems, different approaches were considered such agnithgslow complexity quantisation
techniques, deploying and operating a network for eneffigient performance and studying
self-backhauling mm-wave systems. The key contributionghig thesis are summarised as

follows.

6.1.1 Low Complexity Design

When the number of antennas employed for transmissiondeeeefrom tens to hundreds dif-
ferent challenges are imposed for the system’s implementaOne of them related with the
computational complexity required to carried out the coafen between terminals. Consid-
ering that the codebook design plays a key role in the systeorhplexity and its implemen-
tation, when a CF protocol is used for wireless cooperatioer) the design of low complexity
and reliable codebooks is required to enable future 5G mgstén this work, low complexity
gquantisation techniques were proposed. Numerical siibngsuggest that a comparable per-
formance with the optimum vector quantiser can be achievsehvthe probability distribution
function of the signal is considered during the codebookgtiesin particular, if the signals
follows a Gaussian distribution the granular and overloadre should be taken into account

before quantisation. The reduced complexity of the scalehniques presented is particularly
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valuable and attractive for practical wireless commuincasystems, and enables scaling up

the benefits of cooperative MIMO systems.

6.1.2 Massive Cooperative MIMO systems

Despite the benefits provided from multi-antenna cooperatystems, this comes at the ex-
pense of linearly increasing the power consumption at thestmitter due to the use of multiple
radio frequency chains to drive the antennas. Thus, in thigwhe trade-off between capacity
and total power consumption was evaluated. Numerical tesubgest that not only a practi-
cal trade-off between capacity and power consumption casbbened but also that Massive
cooperative MIMO systems are suitable for practical imgatation when limited information

of the channel is available at the transmitter, making trsystems robust not only to chan-
nel estimation errors but also to imperfections of the d¢ircamponents. Additionally, it was

shown that even though the design of power control schemegeneral not a trivial task, the

degrees of freedom in Massive MIMO systems allows using krimpear precoding schemes,
greatly simplifying its design. Numerical results suggéstt the implementation of power al-
location algorithms are more significant when the ratio leemvthe number of transmit and

receive antennas approaches to the unit.

6.1.3 Energy Efficient Backhaul systems

Compared with 4G systems where the locations of both usatdase stations were mod-
elled as homogeneous Poisson point processes, due to time 085G deployments, the users
are more likely to appear clustered towards the base statiather than being uniformly dis-
tributed around them. In this work, a millimetre-wave syste enable self-backhauling for in-
homogeneous wireless networks was considered. Numeesalts suggest that mm-wave can
be considered as an enabler for 5G systems, since highleadsnetworks exhibit a smaller
average serving distance and thus mm-wave frequenciesvesinome attenuations due the
propagation. Moreover, the use of large number of antenhtsedransmitter supported and
enhanced by the mm-wave spectrum provides a solution toablkhul bottleneck, enabling
the adoption of self-backhauling systems. Finally, nuoarresults show that policies for
switching-off base stations can be considered as an ditezrta improve the energy efficiency

of the system when a backhaul network with limited frequer@spurces is considered.
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6.2 Future Work

This work has identified promising technologies for enegfficient 5G systems using coop-
erative wireless communications. Nevertheless, the peghachemes have some limitations
due to the initial modelling assumptions. Thus, there avers¢research directions that can be

extended. Some suggestions are listed below:

¢ In Chapter 3, low complexity quantisation algorithms wearesgnted. Simulations results
showed that the distribution of the signals plays a key rol¢he performance of the
quantiser. Even though the Lloyd-Max algorithm takes intocaunt the distribution of
the signals during the codebook design, a further improwennethe trade-off between
complexity and performance can be achieved if a two-stagatiper is considered [180].
Additionally, new approaches to improve the performancthefcompress-and-forward
protocol such as: bottleneck graphs, bi-section methodadtides can be considered in

cooperative wireless systems with large antenna arrayd.[18

e In Chapter 4, multiple relays assist the destination nodadease its throughput via
wireless cooperation. Nevertheless, it was assumed thalg$tination and relays nodes
share their data through error free links. Since in largéessaeless networks, coopera-
tion can lead to severe interference and thus higher paas®gtind throughput reduction,
the results of this chapter can be improved by incorporatiteyference-aware wireless
cooperation algorithms. System level simulations areireduo evaluate the trade-off
between alleviating co-channel interference and explgitiooperative diversity in large

antenna arrays setups.

e Even though the gap between 5G backhaul requirements aktidndacapabilities has
been significantly reduced with the use of mm-waves systemsChapter 5, it was
assumed that the backhaul network was only restricted mnstexf total power consump-
tion and capacity. Thus, the results presented can be furttproved if the modelling
of inhomogeneous HetNets includes disparities in termyélgronisation and latency.
Enabling the 5G backhaul solutions to exploit the heteredggrof the network while

offering the quality of service required by the users.

e In Chapter 5, the design of an energy-efficient self-backhgumm-wave cooperative
system was proposed. Nevertheless, it was assumed thattpeinfinnel state informa-

tion was available at the transmitter and that digital basdibhbeamforming was carried
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out at the base station before transmission. Unfortunapelgfect channel state infor-
mation is difficult to achieve due to the large number of anésnand the small signal-
to-noise ratio before beamforming. Moreover, the high obshixed signal components
makes digital baseband beamforming an impractical soiufitnus, an extended analysis
of the system’s performance when channel estimation d@kgos and hybrid precoding
solutions tailored to mm-wave frequencies are consideoedtcenriched the modelling

and provide more insights into the application of mm-waw&emys for 5G deployments.
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Appendix A

Ratio of the distances to the tagged BS
and strongest interferer

With a interference-limited network, the noise power cactesidered as negligible. The SIR,
7, in dB can be calculated as= Ps — 1,44, WherePs is the transmit power associated with
the tagged A-BS or BS anl},, the aggregate interference. Thus, the SIR consideringtbaly

strongest interferer can be upper-bounded as follows

PY:PS_IQQQSPAY:PS_PI (Ala)
=P+G—PLg+hs—(P+G—PL; +hy) (A.1b)
= PLg— PL; + (hs — hy) (A.1c)

wherePL;[dB] = 10« log,,(R;) with i € {S, I} is the path lossq > 2, hg ~ N (p, 0%;) and
hr ~ N (u,0%). Thus, the upper-bounii can be rewritten as

4 =10log,o(RS) — 10logo(RT) + h (A.2a)
10 Rg

S———— a-log [ Z) +h A.2b

7T Tlog(ioy ¢ <R1> * (A.2b)
10

Y = — ca- ] A.2

¥ oz(10) “ og(Rsr) +h (A.2c)

where0 < Rg < Ry andRgs; € [0,1] andh = hg + h; ~ N(2u,20%;). Considering the
PDF distribution of the serving distance and strongestfieter, the CDF of the ratio of the
distances to the tagged BS and strongest interféf€Rs ), is given by
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oo rraRs
F.(Rs)=P(r < Rsj)=(1- p)/ / TRo(r1,72)dr1dry
0 0

roR
+P/ JRry (11, r2)dr1dry (A.33)
o Jo
oo pr2Rs —r2
=(1-p 277)\1736_”(7"%_7"%) T—le%_% dridry
0 0 o?
+pR% (A.3b)
R%
=(1— ’ + pR% ;. A.3c
( p) R%J — 27_[_)\1 (R%J — 1)0_2 p S, 1 ( )

where equation (A.3a) accounts for the closest BS and sstrgterferer in each of the tiers.
Taking the derivative off,.(Rs ), the PDF of the ratio of the distance$,(Rs ), can be

obtained as follows

R%I(QRSJ — 47T)\1RS710'2) 2Rg 1
fr(Rsp) = (1-p) <— ’ ; 102

(B2, — 2nh (R, — 1)o2)? | RE, — 2nh(R%, —1

+ 2pRs 1, 0<Rgr <1 (A.4a)

Finally, using the inverse transform theorem, the PDF ofltwarithm of R, i.e., Y =

log(Rs,1), is obtained as

e?¥(2e¥ — dm1eYo?) 2¢eY
— eY(] — _
friy)=el=p) ( (2 — 2may (2 — 1)o?)2 | 2 — Dmay (2 — 1)02>

+ 2pe?, y < 0. (A.5a)
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Appendix B

Probability of Coverage with Random
Sleeping

In order to account for the background noisg,, its contribution is incorporated to the proba-

bility of coverage (equation (5.32)) by multiplying its Uape transform as follows

Py = />0 2mgAir exp(—mgA (p(7, @) + 1)r?) exp(rr®ox P~ )dr, (B.1)

IP’Z%’ = />0 2wgAor exp(—mgro(p(T, ) + 1)7’2) eXp(TT’aO']ZVP_l)dT, (B.2)

and

- —r2+x22
IP>O]\1[:27Tq)\1/ / [ 21+T r/xz) a Xp< 202 >d7}

X T - exp (—mv (1 + p(7,a))gA1 + X)) da. (B.3a)

Substituting equations (B.1), (B.2) and (B.3a) into (5,3Bg probability of coverage of the
random sleeping algorithm is given by

Pops = (1 = p)(Pgy +PEY) + pPEY (B.4)

If the background noise;3; = 0, is not considered, then equation (B.4) reduces to

Pogs = (1 —p) (q (Pco +Pc1) + ﬂ) +p——. (B.5)
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Appendix C

Probability of Coverage with the
Load-based Algorithm

As suggested in [155], the first step to obtain the probgbiftcoverage is to condition the
sleeping algorithm on the activity of a Poisson-Voronoiioeg:(z). Thus, all the micro BSs
are enumerated in increasing order of distance from thedypiser, starting fromv = 1, i.e.,
the serving BS. Moreover, i.i.d. random variablds,~ A, are assigned to each micro BS such
thatA € [0, 1], whereA; represents the user activity within the Poisson-Voronthiezel f 4 ()
describes its PDF. From [155], it is known that the probabitif coverage of the load-based
algorithm can be described by

1
Po,, = m /O SP(SINR> 7[2) fa(w)da (C.1a)

1 " SB(N = DP(SINR> 7|V
ZM/OQC( = 1)P(SINR> 7|N = 1) fa(x)dz

1
+ Efa(2)] /0 xP(N > 1)P(SINR> 7|N > 1) fa(z)dx (C.1b)
1 1
= m/o xs(x)P(SINR> 7|N = 1) fa(z)dx
1 1
+ B /O 2(1 — 5(z))P(SINR> 7|N > 1) fa(z)dz (C.1c)

where (C.1a) is, by definition, the coverage of probabiligigiited over the active user links,
(C.1b) partitions the probability of coverage into the @wghen the nearest micro BS is awake
and the event when it is asleep, (C.1c) uses the Laplacddremef the remaining interferers to
represent the probability of coverage. The té&?(8INR> 7|N = 1) corresponds to the PDF
presented by equations (5.23a) or (5.22a) if the nearessB8rielated or not with the user
location, respectively. In order to calculai®SINR> 7|N > 1), two cases are considered:
if the closest BS to the typical user is (a) its cluster ceotr¢b) any other micro BS. When
case (a) occurs, then the interferers are uniform disgtutgarding the typical user location.

Nevertheless, when case (b) is considered, the contribofithe cluster centre as an interferer
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must be considered as follows,

P(SINR> 7|N > 1) = > P(N =i|N > 1)P(SINR> 7|N = i) (C.2a)
=2
[e%s} %) a2
= Z {E[s](l - E[s])zz/ exp (—W.%'QE[S])\lp(T, a) + %)
i=2 z=0
* z 9 —ZEaJJQVT x?
X gidx| + - g exp |~ E[s]A\p(T, ) + —F 32 dx
(C.2b)

whereg; = 2(7A1)i2%~1/(i — 1)l exp(—mx?)\;1). Notice that the last term in (C.2b) should be
discarded if the cluster centre is switched-off as a reduth® sleeping strategy adopted and

thus, (C.2a) reduces to the results derived in [155].
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Publication List

Journal Papers

1. Miryam Gonzalez-Perez and J. ThompsoBnérgy Efficient Inhomogeneous Cellular

Networks” Submitted tolEEE Transactions on Communications

Conference Papers

1. M. Gonzalez and J. ThompsonAri energy efficient base station deployment for mm-
wave based wireless backhd@u2016 IEEE 27th Annual International Symposium on

Personal, Indoor, and Mobile Radio Communications (PIMR@lencia, 2016, pp. 1-6.

2. M. G. Gonzalez-Perez and J. Thompsofwmadlysis of the energy efficiency of a Virtual
MIMO system with a large antenna arrAyEEE EUROCON 2015 - International Con-
ference on Computer as a Tool (EUROCON), Salamanca, 2013.-6p

3. M. G. Gonzalez-Perez and J. Thompsof,Low Complexity Quantization Technique
for Virtual MIMO System$ 2015 IEEE 81st Vehicular Technology Conference (VTC
Spring), Glasgow, 2015, pp. 1-5.
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