

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Optimizing Cache Utilization in Modern Cache

Hierarchies

Cheng-Chieh Huang
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2015

Abstract
Memory wall is one of the major performance bottlenecks in modern computer

systems. SRAM caches have been used to successfully bridge the performance gap

between the processor and the memory. However, SRAM cache’s latency is inversely

proportional to its size. Therefore, simply increasing the size of caches could result

in negative impact on performance. To solve this problem, modern processors employ

multiple levels of caches, each of a different size, forming the so called memory hier-

archy. Upon a miss, the processor will start to lookup the data from the highest level

(L1 cache) to the lowest level (main memory). Such a design can effectively reduce the

negative performance impact of simply using a large cache. However, because SRAM

has lower storage density compared to other volatile storage, the size of an SRAM

cache is restricted by the available on-chip area. With modern applications requiring

more and more memory, researchers are continuing to look at techniques for increas-

ing the effective cache capacity. In general, researchers are approaching this problem

from two angles: maximizing the utilization of current SRAM caches or exploiting

new technology to support larger capacity in cache hierarchies.

The first part of this thesis focuses on how to maximize the utilization of existing

SRAM cache. In our first work, we observe that not all words belonging to a cache

block are accessed around the same time. In fact, a subset of words are consistently

accessed sooner than others. We call this subset of words as critical words. In our

study, we found these critical words can be predicted by using access footprint. Based

on this observation, we propose critical-words-only cache (co cache). Unlike the con-

ventional cache which stores all words that belongs to a block, co-cache only stores the

words that we predict as critical. In this work, we convert an L2 cache to a co-cache

and use L1s access footprint information to predict critical words. Our experiments

show the co-cache can outperform a conventional L2 cache in the workloads whose

working-set-sizes are greater than the L2 cache size. To handle the workloads whose

working-set-sizes fit in the conventional L2, we propose the adaptive co-cache (aco-

cache) which allows the co-cache to be configured back to the conventional cache.

The second part of this thesis focuses on how to efficiently enable a large capacity

on-chip cache. In the near future, 3D stacking technology will allow us to stack one or

multiple DRAM chip(s) onto the processor. The total size of these chips is expected

to be on the order of hundreds of megabytes or even few gigabytes. Recent works

have proposed to use this space as an on-chip DRAM cache. However, the tags of the

DRAM cache have created a classic space/time trade-off issue. On the one hand, we

iii

would like the latency of a tag access to be small as it would contribute to both hit

and miss latencies. Accordingly, we would like to store these tags in a faster media

such as SRAM. However, with hundreds of megabytes of die-stacked DRAM cache,

the space overhead of the tags would be huge. For example, it would cost around 12

MB of SRAM space to store all the tags of a 256MB DRAM cache (if we used conven-

tional 64B blocks). Clearly this is too large, considering that some of the current chip

multiprocessors have an L3 that is smaller. Prior works have proposed to store these

tags along with the data in the stacked DRAM array (tags-in-DRAM). However, this

scheme increases the access latency of the DRAM cache. To optimize access latency

in the DRAM cache, we propose aggressive tag cache (ATCache). Similar to a conven-

tional cache, the ATCache caches recently accessed tags to exploit temporal locality;

it exploits spatial locality by prefetching tags from nearby cache sets. In addition,

we also address the high miss latency issue and cache pollution caused by excessive

prefetching. To reduce this overhead, we propose a cost-effective prefetching, which

is a combination of dynamic prefetching granularity tunning and hit-prefetching, to

throttle the number of sets prefetched. Our proposed ATCache (which consumes 0.4%

of overall tag size) can satisfy over 60% of DRAM cache tag accesses on average.

The last proposed work in this thesis is a DRAM-Cache-Aware (DCA) DRAM con-

troller. In this work, we first address the challenge of scheduling requests in the DRAM

cache. While many recent DRAM works have built their techniques based on a tags-

in-DRAM scheme, storing these tags in the DRAM array, however, increases the com-

plexity of a DRAM cache request. In contrast to a conventional request to DRAM

main memory, a request to the DRAM cache will now translate into multiple DRAM

cache accesses (tag and data). In this work, we address challenges of how to sched-

ule these DRAM cache accesses. We start by exploring whether or not a conventional

DRAM controller will work well in this scenario. We introduce two potential designs

and study their limitations. From this study, we derive a set of design principles that

an ideal DRAM cache controller must satisfy. We then propose a DRAM-cache-aware

(DCA) DRAM controller that is based on these design principles. Our experimental

results show that DCA can outperform the baseline over 14%.

iv

Lay Summary

Memory is an essential component of today’s computing systems. Computer programs

use memory to store the input, output, and also the intermediate values during com-

putation. However, because the speed of today’s main memory is significantly slower

than the processor speed, modern processors use hardware caches to bridge the per-

formance gap between processor and main memory. Typically, caches are made using

SRAM, which is a fast but a low density technology. The low-density of SRAM limits

the size of caches due to the limited available chip area.Meanwhile, modern appli-

cations such as big data analytics or high-performance computing workloads require

more and more memory to complete their tasks. Because the conventional cache can-

not scale as the growing memory requirement in these applications, memory becomes

the bottleneck in developing a high performance/efficient computing system. There-

fore, how to increase cache capacity for applications with larger memory requirement

is an important task for developing next-generation computers. In this thesis, we pro-

pose techniques to mitigate capacity issue in memory systems. In the first part of the

thesis, we try to improve the (SRAM) cache utilization in current memory systems. In

the second part of this thesis, we study on how to efficiently enable a larger (DRAM)

cache by exploiting emerging die-stacking technology.

v

Acknowledgements

I would like to thank my supervisor Vijay Nagarajan for all the help and guidance that

he has provided. Coming from an industry background, without a postgraduate degree,

I had no idea how to do research at the beginning of my PhD. Vijay helped me build

up all the essential skills for doing research work.

I would also like to thank everybody at Institute of Computing Systems Architec-

ture (ICSA) for their support and help. I am thankful to my second supervisor Nigel

Topham for reviewing my works in the annual review panel. I would also like to

thank Michael O’Boyle for giving me opportunity of being an organizing member in

PLDI 2014. Many thanks to my fellow students, Jose Cano, Marco Elver, Priyank

Faldu, Arpit Joshi, Rakesh Kumar, Thibaut Lutz, Alberto Magni, Andrew McPherson,

Bharghava Rajaram, Erik Tomusk, and Yuan Wen. As an non-native English speaker,

they have provided a great support in both improving my writing and research skills.

Finally, and most importantly, I would like to thank my parents for their absolutely

unconditional support.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following paper:

• C. Huang and V. Nagarajan, ”Increasing Cache Capacity via Critical-words-Only

Cache”, The 32nd IEEE International Conference on Computer Design (ICCD),

Seoul, Korea, October 2014 [1].

• C. Huang and V. Nagarajan, ”ATCache: Reducing DRAM Cache Latency via

a Small SRAM Tag Cache”, The 23rd International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT), Edmonton, Canada, August

2014 [2].

(Cheng-Chieh Huang)

vii

Table of Contents

I Preamble 1

1 Introduction 3

1.1 Overview . 3

1.2 Contributions . 5

1.2.1 Critical-words-Only Cache 5

1.2.2 Aggressive Tag Caching for DRAM cache 5

1.2.3 DRAM-Cache-Aware DRAM Controller 6

1.3 Thesis Structure . 6

2 Background 9

2.1 Memory Hierarchy Overview . 9

2.2 Cache Overview . 10

2.2.1 Organization . 10

2.2.2 Cache Optimizations . 12

2.3 Dynamic Random Access Memory (DRAM) 13

2.3.1 Introduction . 13

2.3.2 Terminologies . 14

2.3.3 DRAM Accesses . 16

2.3.4 Bus Turnaround . 18

2.4 DRAM Cache . 19

II SRAM Cache Optimization 23

3 Critical-words-Only Cache 25

3.1 Introduction . 25

3.2 Study and motivation . 29

3.2.1 Critical Words vs Non-critical Words 30

ix

3.2.2 Critical Words Predictability 31

3.2.3 Useful Words vs Critical Words 33

3.3 Methodology and Design . 33

3.3.1 Critical Words Predictor . 35

3.3.2 Co-cache Structure and Implementation 36

3.3.3 Adaptive Co-cache . 38

3.3.4 Space Overhead . 39

3.4 Evaluation Methodology . 41

3.4.1 Co-cache’s access latency 42

3.5 Results . 43

3.5.1 Performance Evaluation . 43

3.5.2 Adaptive Co-cache . 44

3.5.3 Sensitivity to L2 Size . 45

3.5.4 Sensitivity to Lower Level Latency 46

3.5.5 Sensitivity to Bandwidth . 47

3.5.6 Prefetcher Effects . 48

3.5.7 Energy Impact . 49

3.5.8 Comparison with Oracle Useful Words Technique 51

3.5.9 Multi-core Workloads . 52

3.6 Related Work . 53

3.7 Conclusion . 54

III DRAM Cache Optimization 57

4 Aggressive Tag Caching for DRAM Cache 59
4.1 Introduction . 59

4.2 Motivation . 62

4.3 Methodology and Design . 63

4.3.1 Terminology . 63

4.3.2 Locality of tag accesses . 64

4.3.3 Cost-effective Prefetching 64

4.3.4 Size, hit ratio and latency . 67

4.3.5 Integration with miss predictor 68

4.3.6 Design of ATCache . 68

4.3.7 Putting it all together . 70

x

4.3.8 Area overhead . 71

4.4 Experimental Methodology . 72

4.4.1 Baseline system . 72

4.4.2 DRAM cache organizations 72

4.5 Results . 74

4.5.1 Performance . 74

4.5.2 L2 miss latency . 77

4.5.3 Sensitivity towards caching ratio 77

4.5.4 Sensitivity towards DRAM cache size 78

4.5.5 Sensitivity towards PG . 80

4.5.6 Effect of Dynamic PG tuning 80

4.5.7 Multiprogrammed workloads 80

4.6 Related Work . 82

4.7 Conclusion . 83

5 DRAM-cache-aware DRAM controller 85

5.1 Introduction . 85

5.2 Motivation . 88

5.2.1 Basics of DRAM Controller Design 88

5.2.2 Accesses in DRAM Cache 89

5.2.3 Potential Designs . 90

5.2.4 Read-Write Interference . 94

5.3 DRAM-Cache-Aware Controller . 95

5.3.1 Design Principles . 95

5.3.2 Low Priority Read Queue (LPRQ) 96

5.3.3 LPRQ Servicing Scheme . 97

5.3.4 An example . 98

5.4 Experimental Methodology . 99

5.5 Results . 100

5.5.1 Performance . 101

5.5.2 Turnarounds . 102

5.5.3 Associativity . 103

5.5.4 Workload Analysis . 104

5.5.5 8-core Workloads . 105

5.5.6 Summary . 106

xi

5.6 Related Work . 106

5.7 Conclusion . 107

6 Summary of Contributions and Future Work 109
6.1 Summary of Contributions . 109

6.2 Future Work . 110

Bibliography 113

xii

List of Figures

2.1 Memory Hierarchy . 9

2.2 Memory Mapping in Different Cache Structure 11

2.3 Cache Organization . 12

2.4 A dual in-line memory module . 13

2.5 A DRAM Device in memory system 14

2.6 A DRAM memory system with two channels. (IMC: Integrated Mem-

ory Controller.) . 15

2.7 The diagram of a x64 DRAM module (with 2 x32 DRAM devices) . . 15

2.8 A row access in DRAM . 16

2.9 Column Read/Write in DRAM . 17

2.10 A complete read access in DRAM 18

2.11 A complete write access in DRAM 18

2.12 Block-based DRAM cache in Loh and Hill’s work [3] 20

2.13 Block-based DRAM cache in Qureshi and Loh’s work [4] 20

3.1 Miss rate versus L2 cache size: as the size of the L2 cache (8-way) is

increased from 128 KB through 4 MB, the local miss-rate significantly

decreases. For this experiment 32 KB (4-way) L1 cache was used. . . 26

3.2 (left) L1 + conventional L2: (1) X [0] causes a miss in L1 (2) the block

is fetched from L2 (3) X [0],X [1]...X [7] hit in L1. (right) L1 + L2 as co-

cache of depth 2: (1) X [0] causes an L1 miss, accessed in both co-cache

and lower-level (2) The first 2 critical words are fetched from co-cache

(3) X [0] and X [1] is accessed from L1 (4) The memory returns the full

block into L1 in time for second iteration of for loop(5) X [2] ... X [7]

hit in L1. 28

xiii

3.3 The word usage in different time intervals (dynamic instruction count);

the time at which the first word is accessed is taken to be 0. Eviction

in the graph refers to the time in which the block is replaced from L1. 30

3.4 The percentage of blocks that has accessed less than or equal to N

words with time. 31

3.5 Predictabilities of the first critical word, and both first and second com-

bined. 32

3.6 Useful words filtering versus critical words filtering 34

3.7 (a) cache block in a conventional cache (b) 4 blocks in a co-cache . . 34

3.8 Accessing a co-cache block . 35

3.9 Block placement – FR: Footprint registers (§ 3.3.1) 35

3.10 Performance Speedup . 42

3.11 Benchmark preference . 44

3.12 Sensitivity to reconfiguration threshold – 0% threshold means always

use co-cache; 100% means always use conventional cache. 45

3.13 Sensitivity to cache size . 46

3.14 Performance speedups with different latencies – Group A, B, C are

defined in Table 3.4. 47

3.15 Speedup versus Bandwidth . 48

3.16 Performance speedups with a stride prefetcher 49

3.17 Static energy comparison (without L3, the lower the better) 50

3.18 Dynamic energy comparison (the lower the better) 50

3.19 Performance comparison with oracle useful words filtering 51

3.20 Performance improvement in multiprogrammed workloads – Please

refer to Table 3.3 and Table 3.5 for workloads’ information. 52

4.1 Access latency of different types of DRAM cache. 60

4.2 Average latency of the DRAM cache (including main memory access

latency). The architectural parameters and workloads are shown in

Table 4.5. 60

4.3 Miss ratio with various PG. 65

4.4 Hardware structure of DPGTable . 66

4.5 Hit ratio, size for different caching ratios. 67

4.6 Accuracy of prior proposed predictors. 68

4.7 The access logic (also refer to Table 4.2). 69

xiv

4.8 Performance results. 74

4.9 L3 miss ratio. 75

4.10 ATCache hit ratio. 75

4.11 L2 miss latency reduction (higher the better). 77

4.12 Performance improvement for different caching ratios. Caching Ratio:

1 means a tags-in-SRAM design. 78

4.13 Sensitivity study of DRAM cache sizes. 79

4.14 Sensitivity study to PG (with MAP-I). 79

4.15 Tag Accesses . 81

4.16 Performance improvement in multiprogrammed workloads. 81

4.17 L2 miss latency reduction in multiprogrammed workloads (higher the

better). 82

5.1 Accesses in a cache read and a cache writeback. 90

5.2 How the translated accesses map to queues in BD and ROD. 91

5.3 A case study in baseline design (BD). 92

5.4 A case study in Request-Oriented Design (ROD) — please note that

bank 1 and bank 2 are in the same rank/channel and all queues are

using FR-FCFS policy. 93

5.5 Row conflict in DRAM cache due to shared cache replacement 94

5.6 How the translated accesses map to queues in DRAM-Cache-Aware

design . 96

5.7 Working case for Re-Reference Prediction Counter 98

5.8 Performance speedup of all designs (16-way) 101

5.9 Performance speedup of all designs (direct-mapped) 101

5.10 Read/Write accesses per turnaround (the higher the better) – 16-way . 102

5.11 Read/Write accesses per turnaround (the higher the better) – direct-

mapped . 102

5.12 Average speedup in different associativity 103

5.13 Performance speedup in single workload 104

5.14 Performance speedup in 8-core workload 105

xv

List of Tables

2.1 DRAM Timing Parameters . 16

3.1 Accessing the co-cache . 37

3.2 Area Overhead . 39

3.3 Architectural Parameters . 40

3.4 L2 miss-rates in different workloads 41

3.5 Workload groupings . 52

4.1 Tag sizes/latencies for different cache sizes. 63

4.2 ATCache access procedure (refer to Figure 4.7). 69

4.3 Example showing 5 DRAM cache accesses. 70

4.4 Overhead for different cache sizes. 71

4.5 System parameters . 73

4.6 Workload groupings . 73

4.7 Latency in different caching ratios – caching ratio of 1 equals tags-in-

SRAM (6 cycles). 77

5.1 System parameters . 99

5.2 Stacked DRAM parameters . 99

5.3 Workload groupings . 100

5.4 8-core workload groupings . 105

5.5 Techniques comparisons . 106

xvii

Part I

Preamble

1

Chapter 1

Introduction

1.1 Overview

In modern computer systems, memory has become an overwhelming bottleneck in sys-

tem performance due to the disparity of speed between the processor and the off-chip

memory, otherwise called the memory wall. To bridge the performance gap between

processor and off-chip memory, modern processors use hardware caches to avoid the

penalty of accessing off-chip memory. A hardware cache is a small memory buffer that

is usually made of static random access memory (SRAM) and placed on the processor

chip. While the access latency of off-chip main memory is around 10 to 100 nanosec-

onds, the on-chip cache allows the access latency to be in the order of few nanoseconds

or less. However, this latency is inversely proportional to its size. Larger SRAM size

will result in slower access latency. Therefore, modern processors use multiple levels

of caches (each of a different size) in its memory system. Upon a miss, the processor

will start to look up the data from the highest level (L1 cache) to the lowest level (main

memory). This is known as memory hierarchy.

In addition to multiple levels of caches, most modern processors, ranging from mo-

bile phones to supercomputers, have multiple processing units (cores) in a single physi-

cal package, known as the chip multiprocessor (CMP). A CMP chip will typically have

multiple small caches for each core (private caches) and a large cache shared among

all cores (shared cache). In a typical CMP memory hierarchy, the L1 is usually small

and private to match the speed of the processor core. On the other hand, lower level

caches such as L2 or L3 are are relatively larger and slower access latency compared

to the L1. Furthermore, to enhance the performance of multi-thread programs, the last

level cache is usually shared among all cores.

3

4 Chapter 1. Introduction

Computer programs nowadays require more memory to complete their jobs due

to various reasons. For example, huge data sets in big data applications increase the

memory footprint in modern computers. On the other hand, total cache size in today’s

processor chips is restricted by various reasons including the price, power budget, la-

tency, or available die area. For example, we can see an Intel Nehalem processor from

2007 has similar cache settings as Intel Haswell processor from 2013 [5]. With cache

sizes not able to match the growing memory requirement in these modern workloads,

caches will suffer from excessive cache misses (called capacity misses) and lose the

purpose of bridging the latency gap between the processor and the off-chip memory.

Given that memory is one of the major performance bottlenecks in computer systems,

how to maximize cache efficiency is a major challenge for computer scientists and

therefore draws a significant amount of research works from the computer architecture

community.

In this dissertation, we study how to support higher cache capacity in the CMP

processor. In modern processors, most on-chip caches use SRAM as storage. However,

SRAM’s low packing density limit the available on-chip storage. Therefore, how to

use existing SRAM space effectively becomes a fundamental problem for developing

a high performance/efficiency processor.

On the other hand, many computer programs in HPC [6] or servers [7] today

have working-set-sizes that are over hundreds of megabytes. Clearly, the conventional

SRAM cache will not be able to provide enough capacity for such workloads. Recently,

3D-stacking technology has enabled the option of embedding hundreds of megabyte

or even few gigabytes DRAM chips onto the processor. Prior studies have proposed

using this stacked DRAM as an L4 DRAM cache [8]. Given the huge size, many de-

sign questions, such as how to organize data and tag in the DRAM array [3, 4] arise

in DRAM cache. Therefore, how to efficiently enable this DRAM cache is another

important research problem.

To summarize, we focus on two architectural questions in this dissertation:

• How to effectively use existing SRAM space in memory hierarchy?

• How to effectively enable a large DRAM cache?

1.2. Contributions 5

1.2 Contributions

1.2.1 Critical-words-Only Cache

In the first work, we target the first architectural question that we arise in introduction

— how to effectively use existing SRAM space in memory hierarchy? Today, most

processors have multiple levels of caches. In multi-level cache hierarchies, choosing

the right cache size for each level is critical for performance. As we mentioned in

the previous section, the first-level cache (L1) is typically small, in order to match the

speed of the processor. The lower level caches, on the other hand, are typically large, in

order to reduce capacity misses. Ideally, the lower level cache should be large enough

to fit workloads’ working-set-sizes, but situations may arise in which the size of the

cache is lesser than the working-set-sizes of the workload. In that case, this cache

could adversely affect the overall system performance.

The first work of this thesis proposes a cache design called emphcritical-words-

only cache (co-cache) for increasing the effective cache capacity. Our approach in-

volves rethinking the notion of cache blocks; instead of storing all the words that be-

long to a cache block, we only store the critical words, where the critical words are

the words that are generally accessed before the others. Our experiments show that

with our design a 256 KB L2 performs as well as a 512 KB conventional L2 cache on

average.

1.2.2 Aggressive Tag Caching for DRAM cache

As 3D-stacking technology has enabled the chance to support a very large size DRAM

cache in the processor chip, how to effectively enable this DRAM cache is a major

challenge in research works. Because of its large size (a DRAM cache can be on the

order of hundreds of megabytes), the total size of the tags associated with it can also be

quite large (on the order of tens of megabytes). The large size of the tags has created

a problem [3]. Should we maintain the tags in the DRAM and pay the cost of a costly

tag access in the critical path? Or should we maintain the tags in the faster SRAM

by paying the area cost of a large SRAM for this purpose? Prior works have primar-

ily chosen the former and proposed a variety of techniques for reducing the cost of a

DRAM tag access. In this work, we first establish (with the help of a study) that main-

taining the tags in SRAM, because of its smaller access latency, leads to overall better

performance. Motivated by this study, we ask if it is possible to maintain tags in SRAM

6 Chapter 1. Introduction

without incurring high area overhead. Our key idea is simple. We propose to cache the

tags in a small SRAM tag cache; we show that there is enough spatial and temporal

locality amongst tag accesses to merit this idea. We propose the aggressive tag cache

(ATCache) which is a small SRAM tag cache. Similar to a conventional cache, the

ATCache caches recently accessed tags to exploit temporal locality; it exploits spatial

locality by prefetching tags from nearby cache sets. In addition, we also address the

high miss latency issue and cache pollution caused by excessive prefetching. To re-

duce this overhead, we propose a cost-effective prefetching, which is a combination

of dynamic prefetching granularity tunning and hit-prefetching, to throttle the number

of sets prefetched. Our proposed ATCache (which consumes 0.4% of overall tag area)

can satisfy over 60% of DRAM cache tag accesses on average.

1.2.3 DRAM-Cache-Aware DRAM Controller

We also observed many recent DRAM works [3, 4, 9, 10, 11] have built their technique

based on a tags-in-DRAM scheme, which means cache tags are stored in the DRAM

array itself. Storing these tags in the DRAM array, however, increases the complex-

ity of a DRAM cache request. In contrast to a conventional request to DRAM main

memory, a request to the DRAM cache will now translate into multiple DRAM cache

accesses (tag and data). In this work, we address challenges of how to schedule these

DRAM cache accesses. We start by exploring whether or not a conventional DRAM

controller will work well in this scenario. We introduce two potential designs and

study their limitations. From this study, we derive a set of design principles that an

ideal DRAM cache controller must satisfy. We then propose a DRAM-cache-aware

(DCA) DRAM controller that is based on these design principles. Our experimental

results show that DCA can outperform the baseline over 14%.

1.3 Thesis Structure

Chapter 2 provides background on memory systems. In this chapter, we first explain

the conventional memory hierarchy and the basic structure of a hardware-managed

cache. We then show the DRAM terminologies and access protocols which will be

used in our DRAM cache works. In the rest of this chapter, we summarize the current

state-of-the-art in the DRAM cache.

1.3. Thesis Structure 7

Chapter 2, 3, and 4 are the main contributions of this thesis. Critical-words-Only
Cache (co-cache, chapter 2) provides an opportunity to increase effective cache ca-

pacity when workloads’ working-set-sizes are not fitted in the cache size. We describe

the problem and evaluation our idea in this chapter. Aggressive Tag Cache (ATCache,

chapter 3) is used to enhance the access latency of a DRAM cache with the tags-in-

DRAM design. ATCache uses a small SRAM cache to the buffer of DRAM cache’s

tags. Also, we study and use a cost-effective prefetching to avoid prefetching over-

head. The last contribution of this thesis is the DRAM-Cache-Aware (DCA) DRAM
controller (chapter 2). In this work, we address the problem of how to schedule a

DRAM cache’s request and propose a controller design that can enhance the schedul-

ing efficiency in DRAM cache.

In chapter 5, we first summarize the key findings and results presented in this the-

sis. Finally, we describe several potential future works and/or possible further studies

related to this thesis.

Chapter 2

Background

2.1 Memory Hierarchy Overview

Figure 2.1: Memory Hierarchy

Memory wall is one of major performance bottlenecks in modern computer sys-

tems, which is caused by the disparity of speed between the processor and the off-chip

memory. To avoid the access of memory, cache is used to bridge this latency gap. A

9

10 Chapter 2. Background

cache is a small memory region that stores partial contents of the main memory. These

caches are usually made of static random access memory (SRAM). SRAM provides an

access latency that can match the speed of processors. However, as the SRAM speed

(latency) is inversely proportional to its size, to match the processor speed, the cache

needs to be on the order of tens of kilobytes [12].

To overcome this problem, modern processors use multiple layers of caches. The

level 1 (L1) cache, which typically small (e.g. 32KB), can complete the access in a few

processor cycles. Lower level caches (level 2 or level 3) are typically larger, ranging

from hundreds of kilobytes to few megabytes. Although L2 and L3 caches are usually

slower (about 10 to 40 processor cycles) than L1 caches, the larger capacity allows

them to further reduce the number of accesses to the off-chip memory, which can incur

a penalty of over 100 processor cycles. This multiple layer design is known as memory

hierarchy.

One disadvantage of SRAM cache is its area cost. SRAM has lower area density

compared to other storage media such as dynamic random access memory (DRAM).

Because of this, the total size of all on-chip caches is usually under 30 MB. There-

fore, to support higher cache capacity, many recent works [3, 13, 14, 15, 4, 9] have

proposed using die-stacked DRAM as an L4 cache. This allows the cache size to be

over hundreds of megabytes. Figure 2.1 shows an overview of the modern memory

hierarchy.

2.2 Cache Overview

The cache mentioned in this paper is a transparent hardware-managed cache, which

means they work independently and the software is not aware of their existence.1. In

this section, we will show how a conventional cache is organized and some of their

optimization techniques.

2.2.1 Organization

Address Mapping and Set-associativity. In the cache, if a given address can be

placed in any cache blocks, this is called fully-associative cache as shown in Fig-

ure 2.2 (a). However, even an L1 cache, which has the smallest size in the cache

1On the other hand, a software-managed cache is a cache that requires the programmer/OS to decide
when to evict the data and where to store the data.

2.2. Cache Overview 11

Figure 2.2: Memory Mapping in Different Cache Structure

hierarchy, will have about 1000 of blocks (assumed a 64KB L1 cache, 64B per block).

In other words, a single cache access will need to search the given address in about

1000 blocks. The access overhead in a fully-associative cache is huge in both energy

and latency perspectives. An extreme solution to this problem is the direct-mapped de-

sign, in which a memory address can only be mapped to one cache block (as shown in

Figure 2.2(b)). In this case, only one location (block) needs to be checked for a cache

access. However, the direct-mapped design gives rise to rise another potential problem.

Considering an access sequence that is repeatedly accessing two blocks (address 1 and

5) in Figure 2.2(b), although our cache has space to store 4 data blocks, the accesses

will always miss in the direct-mapped cache. These are known as conflicts misses2. As

a trade-off, most caches use a set-associative design. In this design, a memory address

can be mapped to multiple blocks (ways) but not all cache blocks. An example of a

two-way design is shown in Figure 2.2(c).

Accessing a set-associative cache. Figure 2.3 shows the flow of accessing a set-

associative cache. When a processor sends a load request to the cache, the cache

controller will use the part of the load address to locate tag/data (1) in the SRAM ar-

ray. Later, the tag in the SRAM array will be checked (2) with the tag part of the load

address. If the check of the tag results in a match, it is a cache hit and the data located

2On the other hand, cache misses caused by insufficient cache blocks is called capacity misses

12 Chapter 2. Background

in (1) will be sent back to the processor (4a). Otherwise, a cache miss will fetch the

data from the lower-level memory (4b).

Figure 2.3: Cache Organization

Cache Replacement. In the cache, a miss will fetch requested block from lower mem-

ory. To store this block, the controller will need to decide a victim block in the cache

and use it to replace with requested block. The algorithm of choosing the victim block

is called replacement policy. One of the popular algorithms is called Least Recently

Used (LRU) [16, 17, 18]. LRU will try to discard the least recently used item inside a

cache set. In addition, many replacement policies [19, 20, 21] are proposed to enhance

the replacement policy in multi-core systems.

2.2.2 Cache Optimizations

As cache hierarchy is a critical factor to the system performance, many optimization

techniques have proposed to improve cache efficiency. In this section, we discuss the

optimization techniques that are related to our work.

Victim Cache As mentioned in the prior discussion, the multiple associativity is used

to reduce the number of conflict misses. However, the increase of cache associativity

means the increase of both energy and access latency. This is because set-associative

2.3. Dynamic Random Access Memory (DRAM) 13

cache needs to search N items (in parallel) in the same cache set. Jouppi[22] proposed

using victim cache to improve performance of a direct-mapped cache. This work is

based on the observation that conflict misses only happen in a small number of cache

sets. The proposed work uses a small fully-associativity cache (victim cache) to hold

blocks that are evicted from the direct-mapped cache.

Hardware Prefetcher Researchers keep looking for different kinds of heuristics in

the cache accesses and exploit them to improve cache efficiency. One of the observed

heuristics is that some of cache access sequences show a specific pattern in a running

program. Hardware data prefetching is a technique that exploits this heuristic. A

hardware data prefetcher captures on-line access heuristic and fetches the data before

they are actually demanded by the processor. One famous prefetcher is the stride

prefecther [23]. Baer and Chen observed that cache accesses show a stride pattern in

a given PC (program counter) address. They use a Reference Prediction Table (RPT)

to capture this pattern and prefetch the data. In addition to the stride accesses, many

other works [24, 25, 26, 27] also work on capturing non-stride access pattern.

2.3 Dynamic Random Access Memory (DRAM)

2.3.1 Introduction

Dynamic random access memory (DRAM) is the storage media which is widely used

as the main memory in today’s computer system. A typical DRAM cell requires one

transistor and one capacitor (1T1C)3 to store one bit of data. Compared to SRAM,

which normally use six transistors for one bit of data, DRAM provides higher density

and has less power leakage.

Figure 2.4: A dual in-line memory module

31T1C is not the only DRAM cell structure. e.g. Intel’s 1103 DRAM device use 3T1C cell structure.

14 Chapter 2. Background

Figure 2.5: A DRAM Device in memory system

2.3.2 Terminologies

In this section, we will explain some DRAM terminologies that we will use in this

thesis.

DRAM Module. The DRAM module is a module that contains multiple DRAM chips

on a small circuit board with pins, and this module can be plugged or embedded (for

portable devices) into a computer motherboard. Figure 2.4 shows a 184-pin dual in-

line memory module (DIMM), which is widely used in today’s desktop computers.

As we can see, this module contains 8 DDR3 (double data rate type three) x8 DRAM

chips which constitute a 64-bit data width.

DRAM Device. In most cases4, a DRAM device is the chip that you can see on your

DRAM module. For example, we can see 8 devices in Figure 2.4. A typically DRAM

device consists of decode/access/IO logic, DRAM arrays, and sense amplifiers (also

known as row buffer) as shown in Figure 2.5.

Channel. The channel in DRAM systems refers to the bus that connects DRAM con-

troller to DRAM modules (Figure 2.6). Today, high-performance computers com-

monly support multiple channels in their IMC (integrated memory controller). For

example, Intel Haswell platform [5] supports two channels of DDR3 memory.

Rank/Bank/Row/Column. In DRAM systems, a rank5 refers to one or more DRAM

devices that operate together in response to a given command. In general, the num-

ber of devices per rank is determined by the width of the DRAM module and DRAM

device. For example, a rank for a 64-bits DRAM module (e.g. DDR3 x64) can be com-

4This is not always true because some of DRAM vendors encapsulate multiple DRAM devices to
the same package. For example, a Micron TwinDieTM chip [28] has two DRAM devices.

5Depends on manufacturers, definition of the rank and bank might vary in their datasheet.

2.3. Dynamic Random Access Memory (DRAM) 15

Figure 2.6: A DRAM memory system with two channels. (IMC: Integrated Memory

Controller.)

posed of 2 32-bits DRAM devices or 4 16-bits DRAM devices in parallel connection.

Figure 2.7 shows the a 64-bit DRAM module that has two ranks of memory and each

rank is consists of two x32 devices. Also, as we can see from the figure, a (logical)

bank in a DRAM module refers to banks in DRAM devices that belong to the same

rank. Similarly, a row will be spanned in multiple DRAM devices that are in the same

rank. A column of data is the minimum addressable memory in the DRAM memory

systems. The size of a column of data usually equals to the width of the data bus that

is 64-bit in our example.

Figure 2.7: The diagram of a x64 DRAM module (with 2 x32 DRAM devices)

16 Chapter 2. Background

Timing Description

tRAS Row Address Strobe

tCAS Column Address Strobe

tCCD Column to Column Delay

tRCD Row to Column Delay

tRP Row Precharge Delay

tRTW Read to Write Delay

tWT R Write to Read Delay

tCWD Column Write Delay

tBURST Data burst

tRFC Refresh Cycle

Table 2.1: DRAM Timing Parameters

2.3.3 DRAM Accesses

In DRAM systems, a complete DRAM access will consist of multiple steps/commands.

In this section, we first introduce the several basic DRAM commands, and the asso-

ciated timing parameters6. Then, we explain a complete DRAM read/write cycle in

detail.

2.3.3.1 Commands

Figure 2.8: A row access in DRAM

Row command As shown in Figure 2.8, a DRAM row access will first move the data

from a DRAM row to the sense amplifiers (row buffer) and then, restore them back

to the DRAM arrays. There are two primary timing parameters associated with this

command. The first one is called row to column delay (tRCD). After tRCD, the data in the

6DRAM timing parameters are commonly used for representing DRAM access protocols. Table2.1
summarizes the timing parameters that we will use in this thesis.

2.3. Dynamic Random Access Memory (DRAM) 17

row will be available by the column command. Therefore, in many academic research

papers [3, 4], tRCD is also called tACT (row activation). Another timing parameter for

row access command is the tRAS (row address strobe). tRAS includes the row activation

time (tRCD) and the time to restore the data from sense amplifiers to the DRAM array.

Figure 2.9: Column Read/Write in DRAM

Column Read/Write/BURST commands As explained in row command, a row data

will be first moved to the row buffer after tRCD. When the row buffer is ready, the col-

umn command can be used to read/write the data into/from the row buffer. Figure 2.9

shows the process of column read/write in column access. In this figure, tBURST is

representing the time to transfer a 64-byte block7 to/from the memory controller com-

pletely. For a column read command, the data will be ready for transferring to the

data bus after tCAS (Column Address Strobe) and the read request can be satisfied af-

ter tBURST . For the column write, data will start to transmit to row buffer after tCWD

(Column Write Delay). tCWD specify the timing between the assertion of column write

command on the command bus and the start of transmitting write data on the data

bus. After the completion of data transferring (tBURST), the data will need tWR before

it writes to DRAM arrays.

Precharge Command As we described in Figure 2.8, a typical row access will first

load the data into sense amplifiers (row buffer) and then restore the data to the DRAM

arrays (after column read/write commands). After the row access, the sense amplifiers

(row buffer) will need to be reset before processing another access. This process is

called precharging and the delay/time for this charging is tRP.

Refresh command As mentioned in §2.3.1, the DRAM uses capacitor to store bits.

Due to the nature of the capacitor’s characteristics, the electrical charge stored in the

capacitor decays over time, and this can lead to the loss of the data. To avoid this

problem, DRAM will periodically refresh itself to prevent the loss of the data. In a

refresh process, row data in all banks will be read out and restored. After that, row
7Generally, the data width of a modern DRAM system equals to the block size of processor caches

which is normally eight words (64 bytes).

18 Chapter 2. Background

buffers in all banks will be precharged. This process will take the refresh cycle time

(tRFC).

2.3.3.2 Full Access Cycle

Read Cycle A complete DRAM read cycle consists of multiple commands. When

a DRAM bank is accessed, a row access command will move the data from DRAM

arrays to the sense amplifiers. After the entire row is loaded to sense amplifiers (tRCD),

the subsequent column command will read/write the requested column data (tCAS +

tBURST) and move them to the DRAM controller.

Figure 2.10: A complete read access in DRAM

Write Cycle A DRAM write cycle in DRAM system is similar to the read cycle.

However, there are few differences. As shown in Figure 2.11, instead of a tCAS after

tRCD, a column write delay (tCWD) is required before transferring data (tBURST) to the

row buffer. After data transfer, tWR is representing for the time that writes data back to

the DRAM arrays.

Figure 2.11: A complete write access in DRAM

2.3.4 Bus Turnaround

In a DRAM system, the DRAM bus can be used to service a read or a write request

at any given time. Switching the bus between read and write modes is known as

2.4. DRAM Cache 19

turnaround, which incurs a latency known as turnaround delay. Typically, write to

read turnaround delay is called tWT R and read to write turnaround delay is called tRTW .

Write caching. To avoid turnaround overheads, conventional DRAM schedulers com-

monly store read and write requests in separate queues — namely, read queue and write

queue. Read queue will be served with a higher priority since read requests are usually

in the critical path of system performance. On the other hand, writeback requests are

handled by a passive flushing scheme. The simplest scheme is only to service the write

queue when the write queue is close to full. By prioritizing reads over writebacks, the

DRAM controller can avoid turnaround overheads and enhance performance.

2.4 DRAM Cache

As mentioned in §2.1, using die-stacking technology to implement a DRAM cache

is widely studied in recent works. Due to the larger capacity, prior works [3, 8, 15]

have proposed to use stacked DRAM as a large cache inside the processor chip. By

exploiting the high density of stacked DRAM, it is possible to have multiple hundreds

of megabytes of on-chip DRAM cache. Ideally, we want to architect this large cache

with same cache block size as conventional L1 or L2 (which typically use a block size

of 32/64 bytes). Consequently, with multiple hundreds of megabytes of DRAM cache,

the overhead of storing tags of conventional blocks requires tens of megabytes. In this

case, because SRAM has low density characteristics, it is unlikely [3] to use SRAM,

which provides faster access latency, as storage media. On the other hand, tag latency

is a critical factor to cache design, as this latency would be added to the critical path of

the total latency, no matter a hit or miss. Therefore, recent DRAM works are divided

into two directions — block-based and page-based DRAM caches.

Page-based DRAM cache: A page-based cache (i.e. a much larger cache block size

of 2KB to 4KB) has been proposed in several works [14, 15]. With a larger block size,

the tag overhead is reduced to hundreds of kilobytes or few megabytes depending on

the cache size. With this cache design, there are two major challenges that prior works

have addressed. First, a larger cache line size means more data to fetch on a miss. A

DRAM cache miss needs to fetch data from a low-bandwidth off-chip memory. This

downside becomes one of the performance bottlenecks of a page-based design. Sec-

ond, a larger cache line might fetch a significant amount of unused data to the cache.

This decreases the effective capacity of the DRAM cache compared to a conventional

block size design. To solve the bandwidth problem, Jevdjic et al. [14] proposed a foot-

20 Chapter 2. Background

Figure 2.12: Block-based DRAM cache in Loh and Hill’s work [3]

print cache which removes the unused blocks from the (page-based) cache line and

shows an effective reduction in bandwidth. Their design enables paged-based DRAM

cache to outperform block-based caches (tags-in-DRAM, with MissMap) in server

workloads [7]. However, in their study, desktop workloads (SPEC 2006) shows about

25% slowdown compared to block-based DRAM cache (with MissMap, 256MB). This

is because the spatial footprint in desktop workloads is generally lower than server

workloads.

Figure 2.13: Block-based DRAM cache in Qureshi and Loh’s work [4]

2.4. DRAM Cache 21

Block-based DRAM cache: Loh and Hill [3, 13] proposed a DRAM cache with con-

ventional block size (64 bytes). In their work, they embedded tags along with their data

in the same row buffer (tags-in-DRAM). They architect a 29-way DRAM cache with a

2KB row buffer (29 tags and 29 blocks) as shown in Figure 2.12 (a). One issue with this

design is that DRAM cache misses have to pay the high cost of accessing the tags from

the DRAM; consequently they also proposed a MissMap, which is an SRAM structure

that tracks the contents of DRAM cache to skip miss accesses. Since MissMap con-

sumes a reasonably large amount of SRAM (in the order of few megabytes) to maintain

the required information, subsequent works [4, 9] proposed miss predictors to predict

cache misses with a lower SRAM overhead (in the order of few kilobytes). Subse-

quently, Qureshi and Loh [4] pointed out that instead of a sequential access of the data

and tag, one could use a wider data width (72 bytes) to read tag and data in parallel as

shown in Figure 2.13. In this design, the hit latency of a direct-mapped DRAM cache

is close to the latency of accessing only the data. Whereas this approach works great

for direct-mapped caches, the downside of this design, however, is its inflexibility in

scaling to set-associative caches. To support a 4-way cache, for example, every access

requires additional three tBURSTs for reading three more blocks from DRAM cache;

assuming a 2.5 ns tBURST for reading a 72-byte block, the additional latency overhead

of supporting a 4-way cache is 23 cycles for a 3 GHz processor.

Part II

SRAM Cache Optimization

23

Chapter 3

Critical-words-Only Cache

3.1 Introduction

As we have shown in the background (§2.1), current processors have multiple levels

of caches. Considering that SRAM is a limited resource inside the processor chip,

choosing the right cache size for each level is critical for performance. In general,

the first-level cache (L1) is typically small, in order to match the speed of the proces-

sor. The lower level caches, on the other hand, are typically large, in order to reduce

capacity misses.

How well a lower level cache is able to reduce capacity misses depends on how

well the working set fits into the cache. Ideally, the cache should be large enough to

fit the working set, but situations may arise in which the size of the lower level cache

is significantly lesser than the working set. For instance, several modern multi-core

processors (including Intel Nehalem and Sandy Bridge) choose to support L2 caches

that are private to each core; although it would be desirable to have a large private L2,

this might not be possible, as increasing the size of per core L2 has a multiplicative

effect on the overall area. Indeed, the above processors support only 256 KB of L2

cache per core.

Does the L2 provide any performance benefit to the overall system? In general, we

would like the L2 cache to reduce capacity misses from the L1 and hence, improve

the overall performance. Therefore, the answer to this question will lead to “is the L2

large enough to avoid capacity misses?” Figure 3.1 shows the miss-rates 1 incurred by

SPEC benchmarks as the size of the L2 cache is varied from 128 KB through 4 MB.
1For clarity, only six programs are shown, but the average is across the 33 programs from the

SPEC2000 and SPEC2006 benchmarks we were able to run. Refer to §3.4 and §3.5 for comprehen-
sive results.

25

26 Chapter 3. Critical-words-Only Cache

As we can see, with a 256 KB L2 cache, the average miss-rate is greater than 50%.

In fact, for programs such as galgel and omnetpp which have a miss-rate of over 90%,

we found that bypassing the L2 cache and directly accessing the LLC can be more

performance-efficient (§3.5) than accessing the L2 cache. This is because accessing

the L2 in such situations ceases to provide any performance benefit since the L2 miss-

rate is high; to make matters worse, it also adds the latency of a wasteful L2 access to

the critical path. As the size of L2 is increased, however, we observe that the miss-rate

significantly decreases in some benchmarks.

Figure 3.1: Miss rate versus L2 cache size: as the size of the L2 cache (8-way) is

increased from 128 KB through 4 MB, the local miss-rate significantly decreases. For

this experiment 32 KB (4-way) L1 cache was used.

From the above example, it is clear that a lower level cache that is too small com-

pared to the working-set size could potentially hurt performance. In such situations, is

there a way in which the cache can be used more effectively? In this work, we propose

a cache design for increasing the effective cache capacity. Although our design is ap-

plicable for any lower level cache, i.e. any cache other than L1, in this work we restrict

ourselves to L2 caches.

We observe that not all words belonging to an L2 cache block are accessed around

the same time – a subset of the words, in fact, are consistently accessed sooner than

the others. We refer to the former as critical words and the latter as non-critical words.

Our key idea stems from the realization that, if the time interval between the critical

word accesses and the non-critical word accesses is at least as high as the latency of

3.1. Introduction 27

accessing the lower level cache (or memory), then an L2 that caches only the critical

words of each block could potentially perform as well as a conventional L2 that caches

the full block. This is because, whenever any of the critical words in L2 is accessed,

the L2 cache could additionally request the full cache block from the lower level and

have it sent to the L1 cache – in time before any of the non-critical words are accessed

by the processor. We call such a cache design that stores only the critical words for ev-

ery block, critical-words-only cache (co-cache), and we denote the number of critical

words per block as the depth of the co-cache. In the ideal case, a co-cache of depth 1

will perform as well as a conventional cache with full-sized blocks.

1 i n t X [8] ;

. . .

3 w h i l e (e x i t)

{
5 . . .

f o r (i n t i =0 ; i <8; i +=2)

7 {
i n 1 = X[i] ; / / l o a d X[0] ,X[2] ,X[4] ,X[6]

9 i n 2 = X[i + 1] ; / / l o a d X[1] ,X[3] ,X[5] ,X[7]

Compute (in1 , i n 2) ; / / 100 c y c l e s o f e x e c u t i o n

11 }
. . . / / X i s e v i c t e d from L1 !

13 }

Code 3.1: Example to illustrate co-cache idea.

An Example. We illustrate our idea with a simple example is shown in Code 3.1.

For this example, let us assume a two-level cache organization with a block size of 8

words. Furthermore, let us assume that the cache block containing array X is cached

in L2 throughout, but is only cached in the L1 when executing the inner for loop (as it

is evicted from the L1 soon after). Consequently, every time X [0] is loaded within the

inner for loop, it causes an L1 miss, which in turn causes block X to be transferred from

L2 to L1 as shown in Figure 3.2 (left). Then, X [0] and X [1] are loaded, and the loaded

values are used to perform some computation that takes 100 cycles. Subsequently, X [2]

and X [3] are loaded (and so on).

In this example, X [0] and X [1] constitute the critical words, as these are accessed

sooner than the other words in the block. This example sheds light on the reason be-

hind this observation of criticality: typically not all words within a block are accessed

28 Chapter 3. Critical-words-Only Cache

Figure 3.2: (left) L1 + conventional L2: (1) X [0] causes a miss in L1 (2) the block is

fetched from L2 (3) X [0],X [1]...X [7] hit in L1. (right) L1 + L2 as co-cache of depth 2:

(1) X [0] causes an L1 miss, accessed in both co-cache and lower-level (2) The first 2

critical words are fetched from co-cache (3) X [0] and X [1] is accessed from L1 (4) The

memory returns the full block into L1 in time for second iteration of for loop(5) X [2] ...

X [7] hit in L1.

together; often one or two words are loaded and the loaded values are used to perform

some computation before loading the subsequent values.

It is also important to note the above pattern repeats itself across each iteration of

the outer while loop. The example also sheds light on the reason for this repeatability:

often, like in this example, the same piece of code is responsible for causing misses to

a given block in the L1 cache. Consequently, critical words for a particular block are

often accessed in regular patterns.

Figure 3.2 (right) illustrates how an L2 that is organized as a co-cache of depth

2 achieves the same performance as that of the conventional L2 with eight words per

block. When X [0] is accessed in the co-cache, it triggers a request to fetch full block

X from memory. By the time the processor requests X [3] after performing the compu-

tation (which takes 100 cycles), the block would have been fetched from the memory,

as the memory latency is 80 cycles.

Contributions and Chapter Organization. In this chapter, we consider the problem

of how best to use a lower-level cache whose size is much smaller than the working-set

size. Our contributions are as follows:

• We observe that a subset of words from a cache block – the critical words – is

consistently accessed sooner than others. We demonstrate this with the help of an

empirical study (§3.2), in which we also demonstrate that the above critical words

are predictable.

3.2. Study and motivation 29

• We exploit this observation by proposing a cache design called co-cache (§3.3),

which is a lower-level cache comprising only the critical words of every cache block,

and thus uses the available cache size more effectively.

• We show how the L2 can be engineered as a co-cache (§3.3.2). For predicting critical

words, we have a simple critical words predictor (§3.3.1), in which we add addi-

tional tag bits to the L1 cache (less than 500 bytes overhead) for remembering the

order in which words are accessed; thus our design requires no complex prediction

table.

• Whereas the co-cache is effective in situations where the size of the L2 is signifi-

cantly smaller than the working-set size, a conventional cache might perform better

in situations where the working-set fits in the cache. For this reason, we propose the

adaptive co-cache (aco-cache), a scheme for reconfiguring back to a conventional

cache if the working set is determined to fit within L2.

• We describe our evaluation methodology in §3.4. Among other things, we discuss

how we model the co-cache access latency (§3.4.1) and the space overhead of the

co-cache (§3.3.4).

• Our experiments (§3.5) with SPEC2000 and SPEC2006 benchmarks show that a 256

KB L2 used as a co-cache (aco-cache) of depth 2 can achieve up to 36.8% (36.8%)

performance improvement and on average 5.3% (6.1%) improvement compared to

a conventional 256 KB L2 cache. As for multi-core workloads, the co-cache (aco-

cache) in a 4-core system shows up to 29.3% (29.3%) improvement and on average

7.3% (8.1%) improvement across 32 randomly generated workload groups.

3.2 Study and motivation

Clearly, the effectiveness of our idea hinges on whether or not each L2 cache block

can be split into critical and non-critical components. In addition to this, we should be

able to predict the critical words for each cache block – only then would we be able to

know what to cache in the proposed co-cache.

30 Chapter 3. Critical-words-Only Cache

Figure 3.3: The word usage in different time intervals (dynamic instruction count); the

time at which the first word is accessed is taken to be 0. Eviction in the graph refers to

the time in which the block is replaced from L1.

3.2.1 Critical Words vs Non-critical Words

We conducted two experiments2 to ascertain whether, for each L1D cache block, a

subset of words (the critical words) are consistently accessed before the others (as

opposed to all words being accessed around the same time).

Word Usage. We first perform a study on the number of words are used (word usage)

in L1 data cache blocks. In this study (Figure 3.3), we measure the word usage of a

block in different time intervals (between the insertion of this block and N dynamic

instructions afterwards). We report the average word usage across all blocks. The

“Eviction” in the figure means the word usage at the time where blocks are replaced/e-

victed. As we can see from Figure 3.3, the average word usage across all benchmarks

is only 2 at 130 dynamic instructions, while 4.3 words end up being accessed at the

time of eviction. In particular, galgel has a word usage of 7.8 at the time of eviction,

but the usage is only 1.4 at 130 dynamic instructions. This result provides a good ev-

idence that words in a block are accessed in different time intervals which are quite

apart from each other.

Study for N critical words. We run another experiment to study the potential of the

critical words idea. Similar to the previous study, we timestamp the cache block at its

insertion into the L1D cache. Then at every subsequent word access in the same cache

2In both experiments, we simulate a 4-way 32KB L1 with 64-byte blocks and run across 33 SPEC
benchmarks. We use the dynamic instruction count as the measure of time.

3.2. Study and motivation 31

Figure 3.4: The percentage of blocks that has accessed less than or equal to N words

with time.

block we measure the time (in dynamic instruction count) elapsed from the initial

timestamp. Each line in Figure 3.4 shows the fraction of blocks with N number of

words touched and its variation over time. As shown in the figure, we found that 75%

(80%) of L1D blocks has only touched up to two words (<= 2/word) at the 280th

(130th) instruction. Assuming a CPI of 1, this would mean, 75% blocks only use the

first two words within the 280 cycles. It is worth noting that, “<=1/word” decrease

25% after 40 instructions and more than 35% of the block already touch more than

one word at the 130th instruction. We can infer from this study that the first 2 words

are generally accessed much earlier than the rest of the words (non-critical words); in

other words, there is very good evidence for the first 2 words being the critical words.

The reason for this behavior can be explained by the fact that applications typically

read a couple of words, after which they would likely use the above words that are

read to perform some computation, before reading the next set of memory words, and

so on.

3.2.2 Critical Words Predictability

To check if the critical words are predictable, we remember for every memory block,

the word address that caused the L1 miss (the 1st critical word) and also the word

subsequently accessed (the 2nd critical word). When the same memory block results

32 Chapter 3. Critical-words-Only Cache

Figure 3.5: Predictabilities of the first critical word, and both first and second combined.

in an L1 miss and is brought back into the L1 again, we compare the recorded addresses

with the actual addresses of the 1st and 2nd critical words.

As we can see from Figure 3.5, the average predictability of the 1st critical word

is 65.4% across all benchmarks. For some benchmarks, such as galgel and omnetpp

the critical words are extremely predictable with close to 100% predictability. On the

other hand, for benchmarks such as mesa and parser the predictabilities are in the

order of 60.0% and 49.4% respectively. It is important to note, however, that even for

benchmarks with relatively poor predictabilities, they are still significantly better than

the expected predictability of 12.5% if the critical words were uniformly distributed.

We also measure the percentage of times both critical words are predicted correctly

– as we can see this is about 62.5% across all benchmarks. From this, we can infer

that, in general, when the first critical word is predicted correctly, the prediction for the

second critical word is also correct. The reason for this behavior can be explained by

the fact that in most cases, the same piece of code is responsible for causing L1 misses

to a given memory block. Consequently, the critical words are accessed in a regular

pattern and hence predictable.

3.3. Methodology and Design 33

3.2.3 Useful Words vs Critical Words

Despite the presence of spatial locality, not always do all the words belonging to a

cache line end up being used; a number of techniques [29, 30, 31, 32, 33] leverage

this observation to improve cache performance. For instance, Line Distillation [31]

attempts to discard such unused words in a cache line to improve cache capacity. While

our idea of exploiting critical words is closely related to the idea of exploiting useful

words, there is one crucial difference. Techniques that exploit useful words benefit

from cache lines in which not all the words in the cache line are used, i.e. the more

unused words, the better. In contrast, our idea exploits the factor of time; for example,

even if all the words from a cache line are used, we can still benefit as long as some of

the words in this cache line are accessed sooner than others. We conduct an experiment

to find out, on average, how many words are accessed in a block before its eviction

(i.e. word usage of the block). As shown in Figure 3.6, the average word usage is

4.3 words per block across all benchmarks, which amounts to 53.8% of the original

block size. Intuitively, this ratio corresponds to the maximum benefit that is possible

by exploiting useful words (the cache that is about half the size of the original cache

can perform as well as the original cache). On the other hand, the benefit that can

be derived by exploiting critical words is dependent on the latency of accessing the

lower level memory: the faster lower level access latency, the less number of critical

words is required. Figure 3.6 shows the word usage for various latencies. As we can

see, even with as high latency as 160 cycles, the number of critical words (and thus

the average word usage) is 2.1 words, which amounts to 26.25% of the original block

size. From the above study, it is clear that exploiting critical words has a potential for

greater savings in comparison to useful words.

3.3 Methodology and Design

A critical component of our design is the critical words predictor, which we introduce

first. Next, we show how to engineer the L2 cache as a critical-words-only cache (co-

cache). A conventional cache might perform better than the co-cache if the cache size

is large enough to fit the working-set; for this reason we introduce a reconfiguration

scheme called adaptive co-cache (aco-cache), for dynamically choosing between co-

cache or conventional cache based on the workload’s miss-rate. Finally, we discuss the

area overhead of our design.

34 Chapter 3. Critical-words-Only Cache

Figure 3.6: Useful words filtering versus critical words filtering

We want to emphasize that, considered in itself, our hardware design is neither

sophisticated nor does it propose anything new with regard to prediction or reconfigu-

ration techniques. Our design is fairly straightforward using well-known ideas. How-

ever, we consider this as a positive – the fact that our critical word caching approach

can be realized using relatively simple hardware.

Figure 3.7: (a) cache block in a conventional cache (b) 4 blocks in a co-cache

3.3. Methodology and Design 35

Figure 3.8: Accessing a co-cache block

Figure 3.9: Block placement – FR: Footprint registers (§ 3.3.1)

3.3.1 Critical Words Predictor

We use a simple predictor, in which we simply remember the order in which the words

of a cache block are accessed in the L1 and use it as our prediction – our approach is

similar to the predictor used in [31]. To remember the identities of the critical words,

we add additional tag bits – the footprint registers – to each L1 cache block. Assum-

ing the processor word is 64-bit, and the cache block size is 64-byte (i.e. each block

contains eight words), each block will need 3-bit (footprint register) for remembering

one critical word. To support the depth of 2 co-cache (which means we need to re-

member two critical words per block), we need two footprint registers per L1 block –

which only amounts to 384 bytes overhead for a 32 KB L1 cache. In general, our pre-

36 Chapter 3. Critical-words-Only Cache

dictor design does not require any prediction table, and its area overhead is relatively

minimal.

3.3.2 Co-cache Structure and Implementation

The co-cache is a cache organization for caching only the critical words for every cache

block. Its organization is similar to a traditional cache, except in the following respects.

For the purpose of this discussion let us assume all caches use write-back policy:

• Checking for hit/miss. Since the co-cache caches only the critical words from each

cache block, we need to be able to identify what words are cached. For this purpose,

each block in the co-cache is associated with additional word-ids which stores the

identities of the words that are currently cached, as shown in Figure 3.7. Note that

the word-ids would also need to be compared as part of tag checking as shown in

Figure 3.8. In other words, adding the word-ids has the same effect of increasing the

tag size of each cache block. We model the delay of this increased tag size in our

experiments (§3.4) and find that this is negligible.

• Accessing the co-cache. It is worth noting that even if the requested word is found

in the co-cache, the request has to be forwarded to the lower level in order to bring

the remaining (non-critical) words to the L1. Consequently, upon an L1 miss, both

the L2 (functioning as a co-cache) and the lower-level are accessed. If the requested

word is found in the co-cache, the requested word, and the other critical words are

sent to the L1; later, the rest of the words would arrive from the lower-level. On the

other hand, if the requested word is not found in the co-cache, the processor will

have to wait until the whole block arrives from the lower-level. Thus, accessing the

co-cache proceeds as detailed in Table 3.1.

• Updating the co-cache (block placement). When a cache block is replaced from

the L1, we need to decide what words from the block need to be cached in the L2

co-cache. We use the output of our critical words predictor (footprint registers) and

only cache those words that are marked as critical (as shown in Figure 3.9). It is

worth noting that all blocks in the L1 should have at least one access that caused the

block to be fetched, so the first footprint register cannot be empty.

• Mis-prediction handling. It is worth noting that since the processor forwards the

request to lower level memory for the full block data, this would automatically han-

dle the case in which the critical words are mispredicted.

3.3. Methodology and Design 37

If there is a miss in L1, the fetching request is sent to both

1 co-cache (for partial block containing the critical words) and the L3

(for the whole block).

If the co-cache access is a hit, the partial block in the co-cache is

2 brought back to L1 and satisfies processor’s request. If the co-cache

access is a miss, the processor waits for the whole block to be

brought from L3.

When the requested (whole) block returns from L3, it will be placed

3 in L1, but not in the co-cache. If the co-cache access had resulted

in a hit (in step 2), the whole block will replace the previously present

partial block in L1.

Table 3.1: Accessing the co-cache

• Handling instruction accesses. In the co-cache, we bypass the L2 for the instruc-

tion accesses and directly access the lower level cache (i.e. L3). This is because,

for an instruction cache, all words in a cache block are usually accessed in a short

period3. Alternatively, all words are critical. Therefore, caching a partial instruction

block will not provide much benefit. It is worth noting that, in this work, we focus

on the desktop workloads (33 SPEC benchmarks) whose data working-set size does

not fit in the L2. In such workloads, we found the L2 is thrashed by the data accesses

and incurs high miss-rate for instructions. Therefore, bypassing the instruction ac-

cesses in co-cache will not result in much performance loss because it would have

been a miss in the L2.

• Handling write backs. When the L1 writes back dirty data to the L2 co-cache,

since the co-cache cannot hold the full block, the dirty block will also have to be

written to the L3.

• Cache coherence. In contrast to conventional cache coherence (with local L1s/L2s

and a shared L3), ensuring cache coherence with an L2 co-cache involves one minor

change. When a block with read-write permissions is evicted from the L1 since the

co-cache cannot hold the full block, the co-cache will in turn have to write the block

back to the L3. However, in doing so, the block in L3 will have to be maintained in

the read-only state as the co-cache continues to hold part of the block.

3Unless the instruction block contains a taken branch, the fetch unit of the processor will prefetch
instructions sequentially.

38 Chapter 3. Critical-words-Only Cache

3.3.3 Adaptive Co-cache

A co-cache targets situations in which the size of L2 is significantly smaller than the

working set size. However, when the working-sets size does fit in the cache, a conven-

tional cache might perform better. Thus, it would be beneficial to have a scheme for

switching back to a conventional cache if the working-sets fit in the L2. We call this

adaptive co-cache (aco-cache).

Obtaining miss-rates. This design requires that we obtain the miss-rate of a conven-

tional cache while we are operating in the co-cache mode. To achieve this, we make

use of shadow tags [34, 35] to monitor the cache miss-rate. In contrast to a conven-

tional cache, the shadow tags only perform tag operations – i.e., they only keep the

information of blocks but not their data.

Scheme. In our proposed aco-cache scheme, we start in co-cache mode but keep

recording the miss-rate of the conventional cache with the shadow tags. When the pro-

gram encounters a reconfiguration point, we compare the miss-rate with a pre-defined

threshold; if the measured miss-rate is lower than a threshold, we reconfigure the cache

back to conventional cache mode (in §3.5.2, we perform detailed sensitivity studies to

determine this threshold). Regarding the reconfiguration points, these can be placed ei-

ther by the software (operating system or compiler) or the hardware. In aco-cache, we

assume the latter – specifically, we assume a hardware monitoring unit [35, 36] which

simply checks the miss rate every fixed number of instructions. It is worth noting that

the OS will take care of reverting L2 to co-cache again if an application is terminated

or encounter the context-switch.

Reconfiguration: hardware. In principle, performing this reconfiguration is as simple

as coalescing the (partial) blocks of the co-cache and turning off [37] the additional

tags and word-ids; for instance, four blocks of the co-cache can be combined into one

conventional block in the example shown in Figure 3.7 (b). There are two ways to do

this: set-based reconfiguration [37, 38, 39] or way-based reconfiguration [40]. While

way-based reconfiguration will require higher associativity(e.g. an 8-way cache will

convert to a 32-way co-cache), it will also increase the tag access latency. To avoid

this, in this work, we use the set-based reconfiguration that configures four co-cache

sets to 1 conventional cache set.

Reconfiguration: single vs multiple transitions. Our reconfiguration scheme allows

only a single transition: from the co-cache to the conventional cache (if the working set

fits L2). Another alternative is to enable multiple back-and-forth transitions between

3.3. Methodology and Design 39

L1 Cache 33.5 KB

L2 cache 267 KB

L1 overhead (predictor+word-ids) 0.75 KB (2.2%)

L2 overhead (w/o shadow tags) 36 KB (13.4%)

L2 overhead (with shadow tags) 44 KB (16.4%)

L1 + L2 overhead (w/o shadow tags) 36.75 KB (12.2%)

L1 + L2 overhead (with shadow tags) 44.75 KB (14.8%)

Table 3.2: Area Overhead

the co-cache and the conventional cache depending on the program phase behavior.

However, we chose the former, primarily because of the cost associated with a single

reconfiguration transition.

Reconfiguration involves the following costs. First, the cost of flushing all dirty L2

blocks 4. Second, invalidating the L2 blocks that were flushed. Third, updating the L3

coherence directories. Fourth, performing the circuit changes associated with the re-

configuration [38]. Since the L2 cache is larger than L1, the reconfiguration cost of the

above steps could be more expensive than Yang’s work [38]. For a 256 KB L2 cache,

the conventional cache and co-cache have 4,096 and 16,384 blocks respectively. As-

suming it costs 100 cycles to flush an L2 block and 30 cycles to update an L3 directory,

the overheads to flush sets and update directory would be in the order of 400000 cycles.

In addition to that, a single transition incurs the cost of associated compulsory misses.

Therefore, frequent transitions between the co-cache and the conventional cache could

hurt performance. In contrast, if we perform only a single transition, we find in our

experiments that the cost of reconfiguration pales into insignificance.

3.3.4 Space Overhead

Each cache block in the co-cache requires additional space for the word-ids. Also, with

the same data array size, a co-cache has more sets compared to a conventional cache –

consequently, more tag and status registers are required for those extra sets. On the L1

side, word-ids are again needed to identify the words brought from the co-cache, in the

transition period before the full block is back from the lower-level. Besides, footprint

registers are also required to remember the critical words for prediction. Thus, for a

4Since all blocks are read-only in co-cache (§3.3.2), flushing operation only applies when transition-
ing from conventional cache to co-cache

40 Chapter 3. Critical-words-Only Cache

Processor ALPHA, 3GHz, 4-core, 4-wide, inorder

L1 I/D caches each 32 KB/4way, 2-cycle

L2 cache 256 KB (512 sets/8 way), 12-cycle

Co-cache 256 KB (2048 SETS/8 WAY), 12-cycle (3.4.1)

Co-cache depth 2

Reconfiguration threshold 40%

Reconfiguration point every 5 million instructions

ToL3 bus 12 GB/s, single core

48 GB/s, four cores

L3 cache 16MB/16way, 4MB per core, 40-cycle

Memory DDR3-2000, 9-9-9

Memory Bus 1GHz, 8-byte, single core

2GHz, 8-byte, 4 cores

1.apsi 2.applu 3.art 4.bzip22k

5.crafty 6.eon 7.facerec 8.galgel

Benchmarks 9.gcc2k 10.gzip 11.mcf 12.mesa

13.mgrid 14.parser 15.perlbmk 16.sixtrack

17.swim 18.twolf 19.vortex1 20.vpr

21.wupwise 22.bzip2 23.gcc 24.gromacs

25.gobmk 26.sjeng 27.leslie3d 28.calculix

29.GemsFDTD 30.milc 31.soplex 32.hmmer

33.omnetpp

Table 3.3: Architectural Parameters

co-cache with a depth of 2, every block in L1 cache needs two word-id registers and

two footprint registers. If we consider a 32 KB L1 (4-way, 64B block), a 256 KB L2

(8-way, 64B block), and 5-bit status registers, as shown in Table 3.2 the additional

overhead of using the L2 as a co-cache amounts to 36.75 KB (including the predictor).

An aco-cache additionally requires shadow tags to monitor the cache miss-rate, which

requires around 8 KB space, bringing the overall overhead to 44.75 KB overall. The co-

cache (aco-cache) only adds 2.2% (2.2%) overhead to L1 and 13.4% (16.4%) overhead

to L2. Thus, the overall (L1 + L2) overhead is 12.2% (14.8%).

3.4. Evaluation Methodology 41

miss-rate 256 KB 512 KB

A (>70%) sixtrack wupwise mcf sixtrack wupwise mcf

galgel mgrid applu galgel mgrid applu

milc omnetpp facerec milc omnetpp facerec

GemsFDTD gcc2k art GemsFDTD art swim

soplex swim

B (40 - 70%) bzip22k hmmer vpr soplex hmmer vpr

twolf gcc apsi twolf gcc apsi

leslie3d bzip2 parser leslie3d

C (<40%) eon gzip crafty gcc2k bzip22k parser

calculix gobmk vortex bzip2 eon gzip

sjeng perlbmk gromacs crafty calculix gobmk

mesa vortex sjeng perlbmk

gromacs mesa

Table 3.4: L2 miss-rates in different workloads

3.4 Evaluation Methodology

We implemented our technique in the gem5 simulator [41] and architectural parameters

are shown in Table 3.3. We evaluated our technique across the SPEC benchmark suite

(21 from SPEC2000 and 12 from SPEC2006) with ref input. We used all programs

except those we could not get to compile and run correctly in our infrastructure. For

the simulation, we first fast-forward 1 billion instructions (4 billion instructions for

SPEC2006) and warm-up for 100 million instructions. Then, we measure the data for

the next 1 billion instructions. Recall that the co-cache is most effective for programs

without sufficient L2 cache capacity to accommodate their working sets (i.e., L2 miss-

rate is high). Accordingly, we show L2 miss-rates for these benchmarks in Table 3.4.

As we can see, with a 256 (512) KB L2 cache, 14 (12) of the 33 programs have an L2

miss-rate of greater than 70%.

Depth of co-cache. In our study, depth 2 of co-cache has about 2% better performance

than depth 1 across our 21 SPEC2000 benchmarks. This is because the second request

of the block is usually closed to first request (within 40 cycles). However, the third

request to the same block is usually taking more than 100 cycles. In other words,

depth of 2 gives us the chance to hide 100 cycles miss latency, Although this cannot

hide the latency of an LLC miss entirely, it can still avoid more than half of the stall

42 Chapter 3. Critical-words-Only Cache

Figure 3.10: Performance Speedup

cycles caused by LLC miss (around 160 cycles in our configuration). Also, depth 2

has lower additional space overhead on L2 cache tags. Compared to depth 2 design,

depth 1 requires additional 36KB (i.e. 72 KB in total, which is 26.8% of L2 size) space

overhead to L2. Therefore, we used a depth of 2 for the co-cache experiments as we

found that this was the depth that gave the best performance/cost results. However, the

depth 1 design point might be preferred because it requires no modifications to the L1

(i.e., the critical word is returned to the core while the full-block fill happens later). In

this work, we consider this design space exploration as future work.

3.4.1 Co-cache’s access latency

The co-cache requires additional tag bits: 6 bits for identifying the critical words, and

also the extra tags bits due to the increase in the number of sets. We use CACTI to

model the effect of the increased tag size on the access latency. The result shows that

the increased tag access latency is negligible (less than 0.1 ns), and can be overlapped

with data access like in the conventional cache.

3.5. Results 43

3.5 Results

3.5.1 Performance Evaluation

The primary goal of our evaluation is to compare the performance of the L2 used as a

co-cache (aco-cache) with the conventional cache. We evaluate the performance of the

following configurations:

• baseline. Conventional cache, 256 KB/8 way/64B.

• L2-320 KB / L2-512 KB. Conventional cache, 320 KB/10 way/64B (resembles the

aco-cache area) and 512 KB/8 way/64B.

• bypassing / auto-bypassing. In the bypassing scheme, the L2 cache is bypassed to

reduce the access latency to the lower level memory (i.e. No L2 cache). Auto-

bypassing automatically selects the better-performing alternative between accessing

L2 and bypassing L2 for that benchmark.

• co-cache / aco-cache. The proposed design, 256 KB/8 way/16B.

The performance speedup (compared to the baseline) are shown in Figure 3.10.

From the result, we can see that bypassing (No L2) provides an improvement for some

benchmarks with high miss-rate (as shown in Table 3.4) such as soplex (2.1%) and

galgel (8.0%). In comparison, we observe that co-cache provides much better im-

provement – for example 36.8% and 29.5% for soplex and galgel respectively. On

average, co-cache provides an improvement of 5.3% whereas bypassing incurs a slight

slowdown (about 1% slower).

However, in some benchmarks, co-cache is slower than the baseline – for example,

gzip is 10.7% slower (17.2% slower for bypassing). This is because the 256 KB L2

in gzip incurs low miss-rate and hence already provides good performance. This is

one of the reasons we proposed aco-cache; recall that aco-cache can switch between

the co-cache design and the conventional design depending on the miss-rate. With

aco-cache, the average improvement is 6.1% that is better than the improvement pro-

vided by doubling the conventional cache size (5.0%). Most of the benchmarks that

incur a performance loss with the co-cache have now improved significantly with the

aco-cache – for example, gzip which was 10.7% slower now performs as well as a

conventional cache. Also, note that the improvement incurred with auto-bypassing is

only 2.7% and is significantly lesser than the improvement in the co-cache/aco-cache.

44 Chapter 3. Critical-words-Only Cache

Figure 3.11: Benchmark preference

3.5.2 Adaptive Co-cache

In this section, we motivate why adaptive co-cache (aco-cache) is required by studying

the conditions under which a benchmark benefits from a co-cache in comparison to

the conventional cache. We also perform sensitivity studies to determine the threshold

(§3.3.3) for when the reconfiguration from co-cache to conventional cache must take

place.

Benchmark preference. In the performance evaluation section, we observed that the

performance in several benchmarks decreased compared to the baseline when we con-

figured the L2 as the co-cache. In Figure 3.11, we show the number of benchmarks that

perform better with co-cache than with conventional cache. We call these benchmarks

co-cache-preferring and the others as conventional-preferring. As we can see in Fig-

ure 3.11, the number of co-cache-preferring benchmarks reduces when the cache size

is increased. This is not surprising as the co-cache is designed primarily for situations

in which the working-set size is greater than the size of the L2. From this we can con-

clude that when most of the benchmarks stop benefiting from the co-cache design (as

the cache size is increased), it is crucial to have a way to reconfigure the cache back

to conventional design. This conclusion serves as the motivation for our aco-cache

approach which is the needing to support the workloads whose working-set sizes are

already fit in the conventional cache.

Reconfiguration threshold. In aco-cache, we use shadow tags to monitor the L2’s

miss-rate and when the miss-rate falls below a threshold we reconfigure it back to a

3.5. Results 45

Figure 3.12: Sensitivity to reconfiguration threshold – 0% threshold means always use

co-cache; 100% means always use conventional cache.

conventional cache. To obtain the correct threshold, we conduct a sensitivity study

by varying the above threshold. In this experiment, we start by using the L2 as a co-

cache and use 5 million instructions interval for the monitoring. We choose a 512 KB

cache size in this experiment because the number of co-cache-preferring benchmarks

is about 50% (Figure 3.11). The performance results with different thresholds are

shown in Figure 3.12. All results are normalized to 512 KB conventional cache. As we

can see, a threshold of 40% gives 6.1% improvement which is very close to the oracle

reconfiguration’s 6.5%. For this reason, we choose 40% as the default threshold.

3.5.3 Sensitivity to L2 Size

Figure 3.13 shows the performance as the size of L2 is varied. As we can see, for the

smaller L2 sizes (128 KB, 256 KB, 512 KB), the co-cache performs better than the con-

ventional cache. However, for the larger sizes (1 MB, 2 MB), the conventional cache

outperforms the co-cache. As we mentioned in the previous section, this is because, as

the size of L2 cache is increased, conventional cache starts becoming more and more

efficient, and its miss-rate drops. On the other hand, the co-cache performance will be

dependent on whether or not the particular benchmark displays criticality. Motivated

by this observation, we show the performance results of aco-cache that could be con-

figured into a conventional L2 or a co-cache depending on benchmark’s miss-rate. As

46 Chapter 3. Critical-words-Only Cache

we can see, this performs consistently better than the other two, especially when the

size is neither too small nor large.

Figure 3.13: Sensitivity to cache size

3.5.4 Sensitivity to Lower Level Latency

In this experiment, we want to examine our technique’s sensitivity to lower level la-

tency. Therefore, instead of a 3-level cache hierarchy, we remove the L3 cache and

vary the memory latency. In our 3-level cache hierarchy, the average latency of L3 +

memory (i.e.L2 miss latency) is about 100 cycles. Therefore, we vary the latency from

30 cycles through 240 cycles.

In this experiment, all results are normalized to the baseline (256 KB conventional

cache). In addition to overall performance results, we also show the improvement

of co-cache under different L2 miss-rate groups that are shown in Table 3.4. As we

can see from Figure 3.14, the improvement of group A benchmarks (high miss-rate)

increase with increase in latency. Since these benchmarks have high miss-rate, a co-

cache hit becomes all the more important with increasing latency. However, for bench-

marks from group C (low miss-rate), co-cache would lose more performance because

most of accesses are already hits in the baseline configuration (as we discussed in

§3.5.2).

Overall, the improvement of the co-cache first increases from 5.2% to 5.9% and

then decreases to 1.1% when the latency is varied from 30 cycles to 240 cycles. Since

the aco-cache enables the L2 to choose between the co-cache and the conventional

3.5. Results 47

designs based on L2 miss-rate, it provides a relatively consistent improvement (from

5.5% to 7.4%). This shows that aco-cache can continue to work even if the access

latency to lower level memory is high such as a no-L3 system.

Figure 3.14: Performance speedups with different latencies – Group A, B, C are defined

in Table 3.4.

3.5.5 Sensitivity to Bandwidth

The major side effect of our technique is the increased L3 accesses – recall that even

for an L2 co-cache hit, we need to access the L3 to fetch the non-critical words. Conse-

quently, the traffic between on-core caches and L3 (we call it toL3 bus) could become

a potential bottleneck to performance. To quantify this, we conduct an experiment to

examine the effect of varying the toL3 bus bandwidth. Figure 3.15 shows the perfor-

mance results as the bandwidth is varied from 4 GB/s through 24 GB/s; all results

are normalized to the performance of baseline (256 KB L2) for the corresponding

bandwidth. As we can see, the improvement of co-cache decreases gracefully with de-

creasing bandwidth. In very low bandwidth setting (4GB/s), we can even see a small

slowdown of 3.0% in co-cache. However, even for this restrictive setting, aco-cache

does relatively well with a 2.3% improvement. This is because aco-cache would only

use the co-cache mode in those benchmarks whose miss-rate is high; in such bench-

marks, most of the L2 accesses would miss in the L2, that would cause the requests

to go to the L3 anyway. Therefore, we believe aco-cache can provide performance

improvement even when the bus bandwidth is limited.

48 Chapter 3. Critical-words-Only Cache

Figure 3.15: Speedup versus Bandwidth

3.5.6 Prefetcher Effects

Hardware data prefetching is a technique to predict miss stream and fetch blocks be-

fore they are accessed. If the prefetcher brings data into the L3, then our technique is

orthogonal to it. However, if the prefetcher brings data into the L2, this cannot directly

apply to our L2 (as a co-cache) as co-cache only holds partial blocks (critical words).

As an alternative, we can have a prefetcher that brings data into the L1 instead, with

a potential downside that the prefetcher may induce L1 cache pollution. In this ex-

periment, we apply a stride prefetcher5 to the L2 in our baseline system to see if our

alternative (co-cache + L1 prefetcher) can still improve over the baseline. We experi-

ment on the following configurations: baseline (prefetcher in L2), L1PF (prefetcher in

L1), and aco-cache6. With the prefetcher included, some of the benchmarks no longer

experience significant capacity misses. In other words, for such benchmarks there is

no problem to solve. Nonetheless, despite using a prefetcher, as shown in figure 3.16,

a significant number of benchmarks (19 out of the 33) continue to suffer from capac-

ity misses. We are able to get 6.3% (up to 36.7%) performance improvement if we

consider these 19 benchmarks (3.4% improvement if we consider all 33 benchmarks).

5In this stride prefetcher, the prefetching distance is 8 and it will prefetch across the OS page bound-
aries.

6In this experiment, the aco-cache is an oracle design which chooses the best-performing alternative
among the co-cache/L1 prefetcher and the baseline.

3.5. Results 49

From this result, we believe that the co-cache/aco-cache can continue to boost perfor-

mance even under the presence of a prefetcher.

Figure 3.16: Performance speedups with a stride prefetcher

3.5.7 Energy Impact

In this section, we discuss the energy impact of our technique. We use CACTI [12]

to model co-cache’s power consumption. In general, the co-cache design potentially

has both static and dynamic energy overheads compared to conventional cache. In our

experiments, we show energy impact of co-cache in all on-chip caches (L1s + L2s +

L3). In CACTI, we use itrs-hp cell and 32 nm technology. The access mode is set to

fast in L1 and normal for L2 and L3.

Static energy. The aco-cache induces additional space overhead of 44.75KB as de-

scribed in §3.3.4. On a 4-core system, this amounts to 179KB overhead, which is a

mere 1% space overhead if we consider the overall cache hierarchy (L1s+L2s+L3).

Therefore, the increase in static power is about 1%. However, since the co-cache (aco-

cache) improves the performance by 5.3% (6.1%), there is an overall reduction in static

energy of 4.2% (5.3%) with the co-cache (aco-cache).

If we only consider L1 + L2 static energy, as we can see from Figure 3.17, the co-

cache in group A (high miss-rate benchmarks as shown in Table 3.4) only increases the

static energy by 3.9%. This is because co-cache provides performance improvement

for these benchmarks. For aco-cache, although the shadow tags require additional

50 Chapter 3. Critical-words-Only Cache

Figure 3.17: Static energy comparison (without L3, the lower the better)

Figure 3.18: Dynamic energy comparison (the lower the better)

overhead (8 KB) and hence increase the energy cost to 9.1% in group A, the recon-

figuration capability enables low miss-rate benchmarks to run in conventional mode,

which leads to almost no increase in static energy in group C.

Dynamic energy. In our proposed designs, the co-cache requires accessing the L3

even for a co-cache hit and aco-cache requires additional accesses to shadow tags

for obtaining miss-rate (as in§3.3.3). Therefore, we examine the dynamic energy

(L1+L2+L3) overheads in our techniques. As we can see from Figure 3.18, because

most of the accesses in group A (high miss-rate benchmarks) miss in the L2 and go

to the L3, the co-cache (aco-cache) only causes a moderate increase of 6.8% (7.5%)

in dynamic energy. In group B and group C, the dynamic energy overhead due to co-

cache increases to 18.5% and 16.9% respectively. However, the aco-cache improves

the energy overhead (compared to co-cache) in group C by reconfiguring back to the

conventional mode and shows almost no energy overhead. It is worth noting that the

3.5. Results 51

monitoring will be turned off [37] after the decision to reconfigure it as a conventional

cache. Overall, the dynamic energy overhead of co-cache (aco-cache) is 12.9% (6.3%).

Total energy. If we consider the total energy impact (static + dynamic), there is a 3.8%

(5.0%) improvement with the co-cache (aco-cache), as the static energy dominates

dynamic energy (the average static/dynamic ratio is 3.0 to 1).

Figure 3.19: Performance comparison with oracle useful words filtering

3.5.8 Comparison with Oracle Useful Words Technique

To quantify our advantage over the useful words [31, 30], we implemented an enhanced

version of WOC and called it useful words cache (UWC). The UWC we implemented

is a cache that can dynamically allocate a variable sized block from 8 to 64 bytes and

reuse the saved space for additional blocks; for example, a cache set in UWC can

contain eight 64-byte blocks, 64 8-byte blocks, or any combinations that equal 512

bytes. Furthermore, to predict useful words in the UWC, we use an oracle predictor

(which always predicts correctly). Thus, the performance results we obtain from UWC

is expected to be better than the actual performance of Qureshi’ work[31]. Note that,

for our aco-cache results, we only use the simple critical words predictor described in

§3.3.1 (we do not use oracle predictor in our results).

In this experiment, we compare aco-cache and UWC for an L2 size of 512 KB.

We ran this with benchmarks from SPEC2000 suite. As we can see from Figure 3.19,

even under this configuration that is a disadvantage to us, aco-cache (7.35%) is still as

good as an oracle UWC (7.43%) on average. Despite using much simpler hardware

(fixed block size design, simpler predictor), we were able to match the performance of

UWC. Thus, this experiment reinforces the conclusion of our earlier limit study – that

our idea of critical words filtering is inherently more powerful than the idea of useful

words filtering.

52 Chapter 3. Critical-words-Only Cache

Groups Workloads

G1 - G4 27-23-10-31, 1-7-9-24, 9-24-33-13, 23-1-20-17

G5 - G8 34-14-20-30, 24-5-5-30, 30-22-20-32, 5-5-5-30

G9 - G12 24-9-8-3, 5-20-9-22, 13-22-7-13, 17-18-4-5

G13 - G16 18-6-27-22, 7-34-19-16, 12-7-10-32, 8-1-22-26

G17 - G20 18-9-1-4, 32-29-20-7, 7-32-8-10, 11-5-32-3

G21 - G24 9-14-25-10, 13-4-32-29, 23-4-1-1, 22-28-5-15

G25 - G28 7-6-12-11, 11-25-7-15, 30-2-33-4, 9-18-9-33

G29 - G32 27-7-33-1, 11-31-11-5, 4-29-27-24, 28-30-3-2

Table 3.5: Workload groupings

Figure 3.20: Performance improvement in multiprogrammed workloads – Please refer

to Table 3.3 and Table 3.5 for workloads’ information.

3.5.9 Multi-core Workloads

In this section, we study how our co-cache design performs under multiprogrammed

workloads. We randomly generate 32 workload groups as shown in Table 3.5, with

each group consisting of 4 workloads (the numbers identify the benchmark programs

as shown in Table 3.3). The performance results are shown in Figure 3.20. We use the

sum of each workload’s IPC7 and normalize them to the 256 KB baseline. As we can

see, the co-cache is up to 29.3% faster than the baseline and on average 7.3% (8.1%

for aco-cache) faster than the baseline, whereas the 320 KB size cache (that resembles

aco-cache in the area) only provides 1.1% improvement. Since it is comparable to

the improvements we obtained with our uniprocessor workloads, this shows that the

co-cache continues to work well under multi-programmed workloads. One interesting

7Instead, if we simply use the gmean to average four workloads’ improvements, the co-cache (aco-
cache) would have an 8.7% (9.7%) improvement compared to the baseline.

3.6. Related Work 53

observation here is that aco-cache performs consistently better than the co-cache with

multiprogrammed workloads for most cases. We believe this is because aco-cache

benefits here from two reasons. First, like before, aco-cache avoids performance loss

for conventional-preferring benchmarks (as in §3.5.2). Second, since conventional

caches cause lesser traffic on the L3 bus, it frees up bandwidth which can be potentially

exploited by co-cache-preferring benchmarks (as in §3.5.5). For example, G21 has

two conventional-preferring workloads (gobmk and gzip) and two co-cache-preferring

workload (gcc2k and parser); by freeing up bandwidth due to conventional-preferring

workloads, aco-cache provides better bus throughput to gcc2k and parser.

3.6 Related Work

Our idea is inspired by the classic critical word first [18] technique for reducing miss

penalty, in which, instead of providing the full cache block, the word causing the miss

(the critical word) is provided first. Gieske [42] adapted this idea to reduce the miss-

penalty of lower level caches by proposing a cache organization that is able to service

the critical words faster. In contrast to the above works which seek to reduce the miss-

penalty, we seek to increase the cache capacity of lower level caches.

Useful words fetching. A number of works exploit the fact that not all words belong-

ing to a cache line end up being used; only a subset of the words – the useful words –

end up being used. Several prior works [32, 30, 29, 33] focus on predicting these use-

ful words and fetching only these. Kumar et al. [29] first observed that not all words

belonging to a cache block end up being used, i.e spatial locality is not always high in

all cache blocks. They exploit this observation to improve the miss-rate of a sectored

cache [43] – which is a design to optimize bandwidth by fetching only sub-blocks.

However, the performance of this technique is still worse than the conventional cache

because of the low useful words predictability. To improve that, Chen et al. [32] and

Pujara et al. [33] proposed more accurate PC-based predictors to provide better pre-

dictability. While the above techniques focus on primarily reducing bandwidth, the

recently proposed amoeba cache [30] also focus on the performance. They do this by

allocating a suitable number of entries for each cache block depending on the number

of consecutive useful words in that block. We consider these techniques to be orthog-

onal to our work. While our co-cache works by retaining the critical words when a

block is replaced from the higher level, the above techniques work by only fetching

54 Chapter 3. Critical-words-Only Cache

useful words. In other words, it would be possible to integrate our method with any of

the above, which we leave for future work.

Useful words filtering. Qureshi et al. [31] proposed Line Distillation to achieve better

performance. They use a separate word-organized cache (WOC) as a victim cache that

caches only the useful words. When a block is replaced from the higher level, they

filter the useful words and put it in the WOC. In doing so, the cache is utilized more

effectively which in turn leads to better performance. The downside to this approach

is the complexity of supporting WOC. WOC is a highly associative cache – compared

to a cache with 64-byte blocks, a WOC with 8-byte words increases associativity eight

times. Our approach, like Line Distillation, is a filtering approach; however, we exploit

critical words rather than useful words.

Even if all words in a cache block end up being used (i.e., spatial locality is high),

we can still benefit as long as the critical words are accessed before the non-critical

words, as we illustrated in the limit study in §3.2.3. We found that for most bench-

marks, the number of critical words is only 2 – which is why caching only these is

sufficient. In other words, we do not need the complexity of having to deal with blocks

of various degrees of spatial locality. Thus, unlike WOC used in Line Distillation, our

approach does not increase associativity.

3.7 Conclusion

In this chapter, we proposed a cache design called critical-words-only cache for in-

creasing cache capacity of an L2 cache. Our design is based on the observation that

for every L2 cache block, a subset of words (the critical words) are accessed sooner

than the others. In contrast to a conventional L2, a co-cache only caches the critical

words for each cache block. Our experimental results provide evidence to support the

hypothesis that a co-cache is able to utilize the cache space more effectively, espe-

cially in situations in which the cache size is significantly less than the working-set

size. However, in situations in which the cache size is larger than the working-set size,

a conventional cache could perform better. For this reason, we also proposed adap-

tive co-cache (aco-cache) that can dynamically choose to behave like a co-cache or

a conventional cache. In our experiments, a 256 KB L2 organized as an aco-cache

performed as well as a 512 KB conventional L2 cache on average.

Although the co-cache can increase effective cache capacity in a private L2 cache,

many modern applications have working-set sizes [6, 7] on the order of tens of megabyte

3.7. Conclusion 55

to hundreds of megabytes. Clearly, a conventional last-level cache is not sufficient for

these applications. Therefore, in the next chapter, we will study how to support a larger

last-level cache based on a recent proposed die-stacked DRAM cache.

Part III

DRAM Cache Optimization

57

Chapter 4

Aggressive Tag Caching for DRAM

Cache

4.1 Introduction

The size of the conventional last-level cache may not be sufficient for many modern

applications’ working-set-size [6, 7]. Recently, 3D-stacking technology has enabled

the option of embedding DRAM chip(s) onto the processor die. Based on that, DRAM

cache [8, 3] have proposed to use exploited this stacked DRAM as a gigantic DRAM

cache. However, because of the larger size1, the size of the tags associated with it can

also be quite large (on the order of tens of megabytes).

The large size of the tags has created a classic space/time trade-off issue. On the

one hand, we would like the latency of a tag access to be small as it would contribute

to both hit latency and miss latency. Accordingly, we would like to store these tags in a

faster media such as SRAM (tags-in-SRAM). However, with hundreds of megabytes of

die-stacked DRAM cache, the space overhead of the tags would be huge. For example,

it would cost around 12 MB of SRAM space to store all the tags of a 256MB DRAM

cache (if we used conventional 64B blocks). Clearly this is too large, considering that

some of the current chip multiprocessors have an L3 that is smaller [5].

To solve the above problem, Loh and Hill [3] proposed an approach for storing the

tags within the DRAM itself (tags-in-DRAM). To make this approach practical, they

proposed a scheme for embedding the tag and data in the same row buffer, which would

enable both tag and data to be accessed in a single compound access. Compared to a

1The size of the DRAM cache proposed in prior works are be from hundreds of megabytes [3] to
few gigabytes [11].

59

60 Chapter 4. Aggressive Tag Caching for DRAM Cache

Figure 4.1: Access latency of different types of DRAM cache.

naive scheme, performing a compound access optimizes the hit latency by obviating

the need to reopen a row to access data as shown in Figure 4.1 (saving on tACT, the

time to activate a row). However, it does not optimize the miss latency, since only

the tag is accessed on a miss. To reduce the miss penalty, Loh and Hill also proposed

a technique for tracking the contents of the DRAM cache in a structure called the

MissMap. This design enables them to avoid a DRAM tag access for misses, with

only a few megabytes of SRAM overhead. Subsequently other works [4, 9] proposed

miss predictors to achieve the same effect as a MissMap, but with significantly lesser

SRAM overhead (in the order of a few kilobytes).

Figure 4.2: Average latency of the DRAM cache (including main memory access la-

tency). The architectural parameters and workloads are shown in Table 4.5.

The impracticality of tags-in-SRAM has led to the above tags-in-DRAM proposals.

However, how does the performance of recently proposed tags-in-DRAM techniques

compare with tags-in-SRAM? We conduct a study to measure the average DRAM ac-

4.1. Introduction 61

cess latency for different configurations of DRAM cache, as shown in Figure 4.2. Here,

tags-in-SRAM refers to a scheme in which tags of all blocks in the DRAM are stored

in the SRAM; tags-in-DRAM refers to a scheme that uses Loh and Hill’s compound

access; MissPred refers to the above, augmented with an oracle miss predictor (100%

accuracy and zero latency). For this study, we use an SRAM access latency of 6 cycles

which we modeled using CACTI (32nm, itrs-hp cell); further, we use 7ns for tACT and

tCAS and 2.5ns for tBURST for stacked DRAM (other architectural parameters used

in this study are shown in Table 4.5). All results are normalized to the access latency

of tags-in-DRAM. As we can see, using the tags-in-SRAM configuration results in a

23.7% reduction in DRAM cache access latency. Furthermore, this latency is 10.2%

lesser than MissPred (which is an oracle miss predictor with zero access latency).

Given that there is a significant gap in performance between tags-in-SRAM and

tags-in-DRAM, we want to benefit from the tags-in-SRAM approach, but without in-

curring the cost of a high SRAM overhead. Our key idea is to maintain the tags in

the DRAM cache, but also cache a small amount of tags in SRAM in a dedicated

cache. We call this Aggressive Tag Cache (ATCache), as we will later show that we

can achieve excellent performance with a small tag cache. In addition to this, having

a small cache is beneficial as this means that ATCache can be accessed faster than a

larger tags-in-SRAM design.

Like a conventional cache, ATCache exploits temporal locality by only caching

the tags of recently accessed DRAM cache sets. In a similar vein, it exploits spatial

locality by prefetching the tags of adjacent DRAM cache sets. One potential problem

is to know how many sets’ tags to prefetch, as prefetching too much can lead to cache

pollution and also increased miss penalty. To deal with this, we propose a cost-effective

prefetching in which we prefetch tags of the adjacent sets only if there is evidence of

spatial locality amongst the sets.

We evaluate our approach on the gem5 cycle-accurate simulator [41]. On memory-

intensive single-threaded SPEC 2006 benchmarks, our ATCache can achieve 10.3%

performance improvement on average compared to a tags-in-DRAM (with compound

access) baseline. This compares favorably with the improvement of 6.8% provided by

adding a high-accuracy miss predictor (MAP-I) to tags-in-DRAM. Our ATCache can

also be integrated with miss predictors. Indeed, on multiprogrammed workloads, our

ATCache is 9.3% faster than the tags-in-DRAM baseline, but 10.9% faster when we

integrate a miss predictor (MAP-I) to ATCache. Finally, our results are almost as good

as a full tags-in-SRAM cache, which provides a performance improvement of 11.9%.

62 Chapter 4. Aggressive Tag Caching for DRAM Cache

Our ATCache only uses 47.375KB space (including the overheads) and around 50KB

if we include the MAP-I as part of our design. Therefore, the overall SRAM space

consumed is only around 0.5% of a tags-in-SRAM design.

4.2 Motivation

In this work, we motivate our idea by studying on the tag size and its access latency.

In this section, we first show how we measure the tag sizes of different DRAM cache

configurations and also their latencies. Later, we show our perspective on the study.

Tag size. A tag for a block refers to several SRAM bits of storage to accommodate not

only the tag for that cache block but also status bits (dirty/valid and cache coherence

states) and state associated with the replacement policy. In our system model, the

DRAM cache is located a level below the cache coherent shared cache. The minimum

requirement of the status register is 2 bits (valid and dirty bits). The number of tag

bits depends on processor’s addressing capability and the associativity of cache. For

a processor with 40-bit address space and 64-byte cache line, a 256MB/16-way cache

requires 16 bits for the tag. Let us assume the state associated with the replacement

policy requires 5 bits. The overall space requirement for each cache block then is 22

bits, which amounts to around 11.5 MB in total.

Latency. We model the latency of tag access using CACTI 6.5 [44]. Specifically, we

use 32nm technology and two types of SRAM cell (itrs-hp and itrs-lstp, which rep-

resent high-performance configuration and low standby power configuration respec-

tively). We report tag latencies for a 3GHz processor cycle. The results are shown in

Table 4.12.

Our perspective. As we can see from Table 4.1, the latency result shows that even

with a low standby power cell, an 11.5MB SRAM tag access (10 processor cycles)

can still be faster than minimum tBURST latency (which is about four memory cycles

which are about 5ns or 15 processor cycles) in DDR3-1600 in DRAM. Substituting

the values for tag latencies computed above, it is clear (as shown in Figure 4.1) that

tags-in-SRAM can provide both better hit (tag + data) and miss (tag) latency than tags-

in-DRAM with compound access. In this work, we are interested in how to benefit

from the low latency that SRAM provided, but without incurring the cost of a high

SRAM overhead.

2In this work, we will use these modeled parameters in Table 4.1 for the tags-in-SRAM approach.

4.3. Methodology and Design 63

Cache size 128MB 256MB 512MB 1024MB

Tag size (per block) 17 bits 16 bits 15 bits 14 bits

Status size (per block) 7 bits

Total tag size 6MB 11.5MB 22MB 42MB

Latency/hp (cycles) 5 6 7 8

Latency/lstp (cycles) 9 10 12 13

Table 4.1: Tag sizes/latencies for different cache sizes.

4.3 Methodology and Design

As our study in Figure 4.2 shows, a tags-in-SRAM design provides an opportunity to

improve both hit and miss latency. The SRAM overhead, however, is a major impedi-

ment that limits its practicality. In this chapter, we propose a hybrid method in which

we maintain full tags in DRAM like Loh and Hill’s work [3] but also cache a small

number of tags in our proposed cache structure called ATCache. To put it simply, sim-

ilar to a conventional cache which caches data from memory, our ATCache caches the

tags of the DRAM cache.

4.3.1 Terminology

Before describing our approach, we first define several terminologies that can help ex-

plain our design.

SetTag: A SetTag refers to the set of tags of the blocks which belong to the same cache

set of a DRAM cache. For example, if the DRAM cache is 16-way associativity, then

SetTag refers to all the 16 tags in each set. It is worth noting that all 16 tags are neces-

sary to check for a hit or miss in DRAM cache, which is why they are cached together

in the ATCache. In other words, a SetTag of an ATCache is analogous to a word of a

conventional cache.

SetID: A SetID is an identifier for ATCache to identify if the SetTag for the correct set

exists in the ATCache. In other words, a SetID of an ATCache is analogous to a tag of

a conventional cache.

64 Chapter 4. Aggressive Tag Caching for DRAM Cache

Caching ratio: The Caching ratio of an AT cache is the ratio of the size of ATCache to

the total size of the tags required by the DRAM cache. For example, a 256MB/16-way

DRAM cache requires 11.5 MB for tags. A caching ratio of 256 corresponds to an

ATCache of size 46KB.

Prefetching granularity (PG): In a conventional cache, whenever a word is accessed

we also (pre)fetch additional adjacent words belonging to a block to exploit spatial

locality. In a similar vein, the prefetching granularity (PG) refers to the number of

adjacent SetTags that the ATCache will fetch on a miss. In other words, the PG of an

ATCache is analogous to a block size of a conventional cache.

4.3.2 Locality of tag accesses

The idea of caching is founded on the principles of spatial and temporal locality, which

a conventional cache exploits. In this section, we want to examine if spatial and tem-

poral localities exist for tag data accesses also. To this end, we conduct a quick study

in which we use a 46KB ATCache (1/256 of total tag size) to store recently accessed

tags. Because tags of the same cache set would be accessed together, we store these

tags in units of a DRAM cache set (and call it SetTag). In addition to this, to exploit

spatial locality we fetch the SetTag of adjacent sets on an ATCache miss; we use the

term prefetching granularity (PG) to refer to the number of adjacent cache sets that the

ATCache will fetch on a miss.

Figure 4.3 shows the average miss ratio of ATCache for different PGs across all

single-thread benchmarks that we studied (§ 4.4) in SPEC 2006. From the figure, the

miss ratio of PG/2 is around 63.4%. This indicates that more than 30% of the tag

accesses can be satisfied (hit) by our ATCache for a PG of 2, which is significantly

better than a uniformly distributed hit ratio (1/256 ' 0.4%). Furthermore, as the PG

is increased from 2 through 64, the miss ratio decreases from 63.4% to 20.5%. These

all indicate the existence of locality amongst tag accesses.

4.3.3 Cost-effective Prefetching

In our prior study, we found that the prefetching granularity (PG) is critical to the per-

formance of ATCache. Prefetching nearby SetTags to the ATCache, generally speak-

ing, is beneficial to hit ratio; however, a large PG can potentially pollute the ATCache,

which could result in a hit ratio drop, in addition to increasing miss-penalty. Besides,

4.3. Methodology and Design 65

m
is

s
ra

tio

0%

25%

50%

75%

100%

Prefetching Granularity
1 2 4 8 16 32 64

hit-prefetching no hit-prefetching

Figure 4.3: Miss ratio with various PG.

prefetching a SetTag that is not going to be eventually used, is wasteful in terms of en-

ergy. Therefore, it is also desirable to avoid such redundant prefetches. In this section,

we propose two techniques for performing prefetching in a cost-effective fashion.

Hit-prefetching We provide a simple solution to achieve a balance between cache

pollution and spatial locality. We start by fetching the SetTags for a relatively small

number of cache sets (say PG/4). Corresponding to the SetTags of each fetched cache

set, we maintain a flag that tracks whether or not the SetTags of the current cache

set is accessed. Even if one of the prefetched SetTags is accessed, we prefetch the

SetTags of the next contiguous four cache sets – in doing so, we achieve the effect of

a larger PG. In case none of the prefetched SetTags are accessed, we do not prefetch

additional SetTags – in doing so, we avoid paying the space and time costs of a larger

PG when a larger PG is not beneficial. It is worth noting that the space overhead of

this technique is small. It only requires one additional bit in ATCache’s SetID. As

shown in Figure 4.3, we conducted a simple experiment to estimate the benefit of hit

prefetching; as shown in Figure 4.3, we find that with hit prefetching the miss ratio of

PG/4 (21.5%) can match the miss ratio of PG/32 (22%) without hit prefetching. Since

hit prefetching provides a significant benefit, we include it in our baseline system.

Dynamic PG tuning

With hit prefetching, we achieve the effect of a larger PG with a smaller PG. How-

ever, what exact PG value should we use? Intuitively, the PG should be a function

66 Chapter 4. Aggressive Tag Caching for DRAM Cache

Figure 4.4: Hardware structure of DPGTable

of the spatial locality of the workload; furthermore, the spatial locality of a workload

can vary: different memory regions can have different spatial localities. Therefore, we

need to have a way to configure the PG dynamically, depending on both the current

workload and the spatial locality of the current memory region. To achieve this, we

divide the physical address space into fixed-size regions (4KB in our implementation).

We use a small hardware structure (DPGTable) to track the spatial locality in different

memory regions as shown in Figure 4.4(a). Each entry in DPGTable consists of (i)

set number (#set), which stores the most recently accessed set in the memory region

and (ii) a counter, which is a measure of the spatial locality of that region. Upon an

ATCache miss, we perform a DPGTable lookup to determine the PG depending on the

counter value as shown in Figure 4.4(b). At the same time, we also update the counter

value as shown in Figure 4.4(c): if the accessed set is close to the last accessed set,

we increment the counter; otherwise, we decrement the counter. In our experimental

evaluation, we find that with dynamic PG tuning, we can remove about 70% additional

tag accesses with negligible performance impact (less than 0.3%).

4.3. Methodology and Design 67

ca
ch

e
si

ze

0MB

3MB

6MB

9MB

12MB

hi
t r

at
io

0%

25%

50%

75%

100%

Caching Ratio
1 2 4 8 16 32 64 128 256 512 1024

hit ratio (amean) Tag cache size

Figure 4.5: Hit ratio, size for different caching ratios.

4.3.4 Size, hit ratio and latency

Another important factor to consider in cache design is the interplay between size and

the access latency. In most cases, a larger cache size can provide a better hit ratio,

but would also mean a higher access latency. In this section, we want to study how

the cache capacity affects the ATCache’s hit ratio and its latency. Figure 4.5 shows

the hit ratio for different caching ratios. For this experiment, we use PG/4 with hit

prefetching turned on. As we can see, the miss ratio degrades gracefully as the caching

ratio is increased. Even with an ATCache size of 11.2KB (caching ratio of 1024), the

ATCache can still satisfy over 50% of tag accesses. On the other hand, an ATCache of

11.2KB will enable it to have a faster access latency of close to 1 cycle in comparison to

about six cycles for a full tags-in-SRAM design (the latency values are computed using

CACTI as discussed in the earlier section). The reduced tag access latency contributes

to better DRAM cache performance as illustrated in Figure 4.1.

Virtualizing the ATCache In this work, we use a dedicated SRAM structure to store

cache tags. Another ATCache design point is to virtualize the storage in the shared

cache [45]. Compared to using a dedicated structure, virtualization gives us the op-

portunity to adjust the size of ATCache dynamically and utilize on-chip SRAM space

more efficiently. However, if we virtualized the ATCache in the L2 (§4.5), the AT-

Cache access latency will increase from dedicated structure’s 2-cycle to L2’s 20-cycle.

This trade-off could be acceptable for the workload that requires larger space to pro-

vide the better hit rate. In this work, while most of the workloads that we used does

not require a large ATCache, we focused on a dedicated ATCache design and left the

virtualized design for the future study.

68 Chapter 4. Aggressive Tag Caching for DRAM Cache

Figure 4.6: Accuracy of prior proposed predictors.

4.3.5 Integration with miss predictor

Prior works have proposed miss predictors [3, 4, 9] which help to improve the per-

formance of a tags-in-DRAM design by reducing the miss penalty. More specifically,

they help avoid a DRAM tag access for (what is predicted to be) a DRAM cache miss.

Although the latency to access a tag in our design is not as high as the tags-in-DRAM

design (since the tags are now stored in the ATCache, which is in the SRAM), we can

still benefit from a miss predictor. In addition to this, because miss accesses can be

handled by the high accuracy predictor, they can skip the ATCache. This means that

the ATCache does not need to store the tags corresponding to misses anymore, which

in turn increases the effective cache capacity of the ATCache. Therefore, we imple-

ment two predictors proposed in prior works – HMP [9] and MAP-I [4]. In our study,

we found that both predictors can provide a very high prediction accuracy (Figure 4.6)

with very small space overhead as prior works have observed. In our design we choose

to integrate with MAP-I as it provides marginally better predictability.

4.3.6 Design of ATCache

The design of our ATCache follows the design principles of a conventional cache: the

full tags in the DRAM array represent the “main memory” and tags in the ATCache

represents the “cached data”. The procedure to access the ATCache is illustrated in

Table 4.2 and the access logic is shown in Figure 4.7. As we can see, the ATCache

requires an additional SetID checking (Step 2A) – which is similar to a tag check

for a conventional cache. Now, this represents an additional check compared to a

4.3. Methodology and Design 69

Steps Description

Step 1 Locate SetID and SetTag in ATCache by a subset of #cache set

(#sub cache sets).

Step 2A Check SetID to determine if ATCache set contains SetTag.

Step 2B Check SetTag to determine if DRAM cache contains requested

data (DRAM cache hit/miss).

Step 3 If step 2A is hit, use step 2B’s result to determine hit/miss in

DRAM cache. Otherwise, issue compound access to DRAM

cache.

Table 4.2: ATCache access procedure (refer to Figure 4.7).

Figure 4.7: The access logic (also refer to Table 4.2).

70 Chapter 4. Aggressive Tag Caching for DRAM Cache

#access #set MAP-I ATCache description

1 0x1 hit miss DRAM compound ac-

cess and prefetch set

0,2,3 due to prefetch-

ing granularity (PG)

2 0x53 miss X predicted miss from

MAP-I, skip the ac-

cess

3 0x2 hit hit prefetch set 4-8 (hit

prefetching)

4 0x3 hit hit access data in DRAM

cache

5 0x10 hit miss DRAM compound ac-

cess and prefetch set

0x11,0x12,0x13 (same

as 1st access)

Table 4.3: Example showing 5 DRAM cache accesses.

conventional full tags-in-SRAM design. However, it is worth noting that this (step 2A)

can be overlapped with step 2B (which is the tag check for DRAM cache). Therefore,

the ATCache does not need additional access cycles for an ATCache hit in comparison

to a full tags-in-SRAM design.

However, on an ATCache miss, the tags in DRAM have to be accessed and fetched

back into the ATCache. So miss processing for ATCache is comparable to a tags-in-

DRAM cache, with one small difference. Since step 2A is still required to identify if

ATCache contains the correct SetTag, we incur one cycle penalty (step 2A is assumed

to take one cycle) to the total access latency when there is an ATCache miss.

4.3.7 Putting it all together

We illustrate how ATCache works with a spatial predictor and a miss predictor (MAP-

I), with the help of an example (Table 4.3). This example consists of 5 consecutive

DRAM cache accesses, and each of them is accessing different cache sets (#sets).

In the 1st access, the outcome of MAP-I is a hit which means DRAM cache might

contain this data. Then, the system accesses the ATCache but it does not contain the

corresponding SetTag. Therefore, similar to the tags-in-DRAM approach, an ATCache

4.3. Methodology and Design 71

issues a DRAM compound access for tag and data. After the compound access, the

ATCache will also fetch the adjacent cache sets. Later, we can see these prefetched ad-

jacent cache sets are accessed in the 3rd access. It is worth noting that a hit prefetching

event (§4.3.3) also is generated in the 3rd access. In the 2nd access, we show a situ-

ation in which MAP-I is predicting the access as a miss. In this case, the system will

skip the access of DRAM cache because of the prediction result and directly fetch data

from main memory. In the 4th access, a prefetched set (set 3) is accessed but the sets

4-8 is already brought back by the 3rd access. Therefore, there is no additional access

required for our design. Finally, the 5th access is a MAP-I hit and an ATCache miss.

Similar to first access, the system will issue a compound access and fetch adjacent sets.

Cache Size 128MB 256MB 512MB 1024MB

Total tag size 6MB 11.5MB 22MB 42MB

ATCache space 24KB 46KB 88KB 168KB

ATCache overhead 704B 1.375KB 2.75KB 5.5KB

DPG Table 2.5KB 2.625KB 2.75KB 2.875KB

Latency (ns) 1.33 1.65 1.85 2.41

Table 4.4: Overhead for different cache sizes.

4.3.8 Area overhead

In this work, we use an ATCache with a caching ratio of 256. In other words, we use

a 46KB cache for caching total tags amounting to 11.5MB (256MB/16-way DRAM

cache). As shown in Figure 4.7, the additional overhead of an ATCache is a bunch of

SetIDs. The size for each SetID actually depends on caching ratio and the associativity

of ATCache. Each ATCache block with the caching ratio of 256 and associativity of 4

needs 8+ 2 bits for storing SetID. In addition to SetID, to implement hit prefetching

(§4.3.3, 1 bit per set), the overhead of SetID for each ATCache block slightly increases

to 11 bits. In a 256MB/16-way cache, there are 256k cache sets. An ATCache with a

caching ratio of 256 would cache only 1k (256k/256) sets. Therefore, the overhead of

ATCache is around 1.375KB (11∗1024/8 bytes). To support the dynamic PG tuning,

DPGTable is required to track the spatial footprint in different memory regions. In

this work, we use a DPGtable of 1024 entry. Each entry in DPGTable requires a

set number (n-bit, depends on a total number of sets in DRAM cache) and a 3-bit

counter. In total, the ATCache requires about 50KB SRAM space that is less than 0.5%

72 Chapter 4. Aggressive Tag Caching for DRAM Cache

SRAM space compared to tags-in-SRAM’s 11.5MB. Table 4.4 shows the overhead for

different cache sizes.

4.4 Experimental Methodology

4.4.1 Baseline system

We use the gem5 cycle-accurate simulator [41] in which we consider the L3 to be the

DRAM cache; accordingly, we implement the DRAM timing model for the L3. For

scheduling DRAM cache’s requests, we use the First-Come-First-Serve-based (FCFS-

based) approach3. The system parameters that we used are shown in Figure 4.54.

We show single-threaded results for 11 benchmarks from SPEC 2006 which are con-

sidered to be memory-intensive in prior works [4, 9]. In addition to single-threaded

benchmarks, we also use the same 11 benchmarks to generate 25 multiprogrammed

workloads (4-core, as shown in Table 4.6) and evaluate their performance.

4.4.2 DRAM cache organizations

In this work, we evaluate the following DRAM cache designs:

Baseline (Tags-in-DRAM): The DRAM cache design we used as baseline follows

Loh and Hill’s work [3]. The SetTag and their data are stored in the same row. With

compound scheduling, a delay of opening a row (' tRCD) can be saved compared

to storing them in separate rows. Our baseline system uses a 4KB row buffer that is

close to a realistic DRAM organization (1KB per device, four devices per rank). In our

system, a 4KB row buffer can store four 15-way cache sets (4 x 15 x 64 bytes) and 4

SetTags (4 x 45 bytes). We use an open page policy to manage DRAM banks because

we found open page policy gives better performance for our baseline.

NoDRAM (No DRAM cache): In this setting, we remove the DRAM cache from

our cache hierarchy. The purpose of this setting is to examine if our system has any

performance benefit from the DRAM cache in the first place.

MAP-I: As mentioned in §4.3.5, we use a MAP-I predictor for predicting misses. We

implement An MAP-I predictor with 256 memory access counter (MAC) entries as

suggested in prior work [4].
3It is worth noting that we will study DRAM cache’s scheduling challenges in the next chapter.
4In the configuration, we use a relatively faster L2 cache access latency (4MB for 9 cycles) compared

to the previous chapter (16MB for 40 cycles). This is because we try to be consistent with the optimal
tag latency that we assumed in tags-in-SRAM design (12MB for 6 cycles).

4.4. Experimental Methodology 73

Processor 3GHz, 4-core, 4-issue OoO, 64 ROB

L1 I/D caches each 32KB/2way, LRU, 2-cycle, private

L2 cache 4MB/8way, 9-cycle, LRU, shared

Stacked DRAM 256MB, 2-bit SRRIP [20]

tRCD-tCAS-tRAS 7-7-25 (ns) tBURST: 2.5ns

16 banks per rank, 1 rank per channel, 4 channel

4KB row buffer, open-page, FCFS

Off-chip DRAM 800MHz (DDR3-1600), x64 interface

tRCD-tCAS-tRAS 13.5-13.5-40.5 (ns) tBURST: 5ns

8 banks per rank, 2 ranks per channel, 1 channel

8KB row buffer, open-page

On-chip bus 3GHz, 256-bit width

System Bus 1.5GHz, 64-bit width

Miss Predictor MAP-I [4], 256 entries, 1-cycle latency

ATCache Caching Ratio:256 (47.375KB incl. overhead)

4-way, 2-cycle latency, hit prefetching

and DPGTable of 1024 entries (§4.3.3)

Table 4.5: System parameters

1-2 soplex-astar-lbm-mcf lbm-omnetpp-leslie3d-bwaves

3-4 milc-leslie3d-leslie3d-gcc milc-libquantum-bwaves-gcc

5-6 libquantum-lbm-soplex-libquantum libquantum-GemsFDTD-soplex-milc

7-8 gcc-milc-libquantum-astar milc-soplex-bwaves-libquantum

9-10 leslie3d-omnetpp-leslie3d-mcf lbm-astar-leslie3d-libquantum

11-12 leslie3d-leslie3d-libquantum-milc mcf-gcc-milc-astar

13-14 omnetpp-libquantum-milc-soplex gcc-libquantum-libquantum-soplex

15-16 soplex-GemsFDTD-omnetpp-milc milc-soplex-leslie3d-libquantum

17-18 lbm-libquantum-omnetpp-bwaves gcc-milc-leslie3d-milc

19-20 omnetpp-omnetpp-libquantum-leslie3d soplex-mcf-gcc-libquantum

21-22 astar-omnetpp-astar-gcc mcf-soplex-astar-leslie3d

23-24 bwaves-lbm-libquantum-leslie3d astar-leslie3d-lbm-mcf

25 bwaves-soplex-bwaves-GemsFDTD

Table 4.6: Workload groupings

74 Chapter 4. Aggressive Tag Caching for DRAM Cache

SRAM (Tags-in-SRAM) We use a tags-in-SRAM design which requires 11.5MB

(§4.2) SRAM space to store all tags for 256MB DRAM cache. The access latency

of the SRAM array is 6 cycles (high performance cell) as we modeled in §4.2. It is

worth noting that the high SRAM overhead makes this design impractical.

ATCache: In our proposed design, we use an ATCache with caching ratio of 256,

prefetching granularity (PG) of 4, and associativity of 4. This means we use 11.5MB/256=

46 KB SRAM tag with 1.375KB overhead. We assume a single cycle latency to iden-

tify if the ATCache contains a correct cache set (step 2A in §4.3.6). A single cycle

latency is reasonable considering that the SetID array is only 1.375KB in our design.

Since the SRAM array of the ATCache is only 46 KB and step 2A and step 2B in §4.3.6

can be overlapped, we use a two cycles for the ATCache hit latency. For a miss in the

ATCache, we add a a one cycle lookup latency (Step 2A) to the total access latency.

It is worth noting that similar to miss-predictors in prior works [4], the ATCache does

not cache SetTags for DRAM cache writes. This is because such writes are not in the

critical path of the performance. Besides, as introduced in §4.3.3, we use dynamic PG

tuning to optimize the tag accesses with a DPG table of 1024 entries (2.675KB over-

head). In summary, in this design we use less than 0.5% of the SRAM space used by

tags-in-SRAM.

Figure 4.8: Performance results.

4.5 Results

4.5.1 Performance

The IPC improvements (normalized to the baseline) are shown in Figure 4.8. From

the results, we can see that a system without DRAM cache is 8.6% slower than the

tags-in-DRAM baseline; from this we can conclude that the DRAM cache is effective

for our system configuration.

4.5. Results 75

Figure 4.9: L3 miss ratio.

Figure 4.10: ATCache hit ratio.

76 Chapter 4. Aggressive Tag Caching for DRAM Cache

We can also observe that a prior proposed miss predictor (MAP-I) improves over

the baseline by 6.8%. In contrast, a tags-in-SRAM approach which consumes an im-

practically large SRAM space (11.5MB) provides an improvement of 12.2%. It is

worth noting that this is the gap that ATCache tries to bridge while consuming much

smaller SRAM space.

We can see that ATCache achieves 10.3% improvement without MAP-I predictor

and 11.9% with the predictor – while consuming only 47.375KB (without MAP-I) and

48KB with MAP-I (256 entries). In other words, we are able to do almost as well as

tags-in-SRAM while consuming 0.5% SRAM overhead compared to a tags-in-SRAM

design.

To understand the speedups in individual benchmarks, we show the miss ratio of

each benchmark program in Figure 4.9. One interesting aspect to note here is that,

by skipping miss accesses, MAP-I can provide a good speedup and even outperforms

a tags-in-SRAM design for high miss ratio workloads such as mcf and bwaves. This

is because the latency of accessing MAP-I structure is only one cycle (in comparison

to 6 cycles access latency we used for a full tags-in-SRAM cache). However, for

benchmarks with a low miss ratio (such as libquantum), MAP-I is not as effective and

even shows a small slowdown due to its cycle lookup penalty.

On the other hand, with our ATCache, we can observe benefit on both high and

low miss ratio benchmarks. This is because ATCache reduces both hit latency and

miss penalty. For example, for libquantum which has a low miss ratio, we are able to

achieve an improvement of 38% over the baseline.

When we integrate MAP-I and ATCache together (ATCache + MAP-I), we can

see a speedup boost in moderate miss ratio workloads such as lbm and milc. This

is because ATCache’s average hit ratio is around 60% (as shown in Figure 4.10), but

the high accuracy of MAP-I predictor (with a predictability of close to 98%) can help

us further in reducing the DRAM miss penalty. In addition to this, with MAP-I the

ATCache can be more effectively used for caching only hit tags. This is exemplified

by milc benchmark where using an ATCache with MAP-I results in an improvement

of 28.9% in comparison with an improvement of 18.9% (MAP-I only) and 11.8%

(ATCache only).

However, for low miss ratio benchmarks such as libquantum, ATCache+MAP-I

shows a small 1% slowdown compared to only ATCache design. This can be attributed

to the increased hit access latency (extra cycle) for looking up the MAP-I table.

4.5. Results 77

Figure 4.11: L2 miss latency reduction (higher the better).

4.5.2 L2 miss latency

Figure 4.11 shows the L2 miss latency reduction (normalized to the baseline) for all

benchmarks. The L2 miss latency here refers to the time it takes for a cache block to be

transferred to the L2 from the lower levels upon an L2 miss. In other words, this only

includes the L3 (DRAM cache) latency and possibly the main memory latency (in the

case of a DRAM cache miss). This latency provides us with a more transparent indica-

tor of the benefit of our proposal as it avoids the obfuscating effects of other parameters

(such as the effects of the our-of-order processor). As we can see from Figure 4.11,

with our ATCache, we can see up to 45.3% (21.2% on average) reduction in L2 miss

latency compared to the baseline. It is worth noting that this is approximately double

the reduction provided by MAP-I, which provides a reduction of 11.9% on average.

Finally, ATCache+MAP-I is able to provide the maximum reduction over the baseline

of 24.5%. From these results, we believe that our technique can effectively improve

the performance of the DRAM cache.

Caching Ratio 2 4 8 16 32

latency (cycles) 5 5 4 4 3

Caching Ratio 64 128 256 512 1024

latency (cycles) 3 2 2 1 1

Table 4.7: Latency in different caching ratios – caching ratio of 1 equals tags-in-SRAM

(6 cycles).

4.5.3 Sensitivity towards caching ratio

In this section, we want to understand the effect of varying the caching ratio. As intro-

duced in §4.3.1, caching ratio represents the area gain of our technique in comparison

to tags-in-SRAM. A caching ratio of 1 refers to a tags-in-SRAM design. Generally,

78 Chapter 4. Aggressive Tag Caching for DRAM Cache

Sp
ee

du
p

107%

109%

110%

112%

113%

Caching Ratio
1 2 4 8 16 32 64 128 256 512 1024

IPC (MAP-I + actual latency) IPC (fixed latency)

Figure 4.12: Performance improvement for different caching ratios. Caching Ratio: 1

means a tags-in-SRAM design.

the miss ratio of ATCache will increase when the caching ratio is increased (smaller

cache). Figure 4.12 shows IPC improvement (average of all benchmarks) for different

caching ratios. Here, “IPC (no MAP-I + fixed latency)” refers to a configuration where

we fixed the access latency of ATCache to 6 cycles. The improvement in terms of IPC

reduces from 12.2% to 9.0% when caching ratio is increased from 1 (tags-in SRAM,

11.5MB) to 256 ('48KB). Even without accounting for (a) faster access latency that

a smaller cache could provide and (b) the miss predictor, we believe this trade-off is

still interesting – a reduction in 99.5% space for 3.2% reduction in performance. “IPC

(MAP-I + fixed latency)” refers to the configuration that we consider the effect of the

miss predictor. As we can see from the figure, the performance gap between caching

ratio 1 and 256 further reduces to 1.5%. This is because the miss predictor can help to

avoid the slowdown caused by increased miss-rate in ATCache. Finally, “IPC (MAP-I

+ actual latency)” refers to the realistic configuration in which we consider the effect

of a faster SRAM latency due to a much smaller cache (Table 4.7 shows latencies for

different caching ratios) and also the MAP-I predictor. As we can see, the gap between

caching ratio 1 and 256 is only less than 1% in this configuration.

4.5.4 Sensitivity towards DRAM cache size

Figure 4.13 shows the effect of varying DRAM cache size. We consider 3 different

sizes (128MB, 256MB, and 512MB). In this experiment, we use the latencies that we

modeled in Table 4.1 for tags-in-SRAM. For ATCache (we fix caching ratio at 256),

4.5. Results 79

we use ATCache latency of 1, 2, and 3 cycles for ATCache size of 24KB (for 128MB

DRAM cache), 46KB (for 256MB DRAM cache), and 88KB (for 512MB DRAM

cache). From the results, we can see that ATCache has a 9% to 10% performance

improvement over its baseline (tags-in-DRAM) for all sizes. With MAP-I predictor,

ATCache+MAP-I is 4% to 5% better than the MAP-I-only.

Figure 4.13: Sensitivity study of DRAM cache sizes.

85%

90%

95%

100%

Prefetching Granularity
1 2 4 8 16 32 64

average latency (normalized to PG/1)

Figure 4.14: Sensitivity study to PG (with MAP-I).

80 Chapter 4. Aggressive Tag Caching for DRAM Cache

4.5.5 Sensitivity towards PG

As our prior studies (§4.3.2 and §4.3.3) show, prefetching granularity (PG) is a key

parameter in our design. In this section, we study the effect of varying the PG. In this

study, we represent the performance of DRAM cache in terms of its average access

latency, normalized to the access latency for PG/1. MAP-I is integrated with ATCache

for this study. As we can see from Figure 4.14, increasing the PG from PG/1 to PG/2,

reduces the average latency of DRAM cache by 8.7%. The average latency reaches a

minimum for PG/4 (10.1% reduction) and PG/8 (10.5% reduction). However, when

we keep increasing PG, ATCache starts to suffer from cache pollution and increased

miss-penalty. The results show a degradation in performance in PG/64, whose average

latency is 2.5% higher than PG/8. This study also vindicates our decision of choosing

PG/4 for our baseline as it is close to the best performing PG.

4.5.6 Effect of Dynamic PG tuning

In this work, ATCache exploits spatial locality by prefetching nearby tags (for example

PG/4 in our baseline). However, this could potentially incur additional wasteful tag

accesses in the DRAM cache, when the fetched tag is not accessed. In this section,

we study the number of tag accesses of our proposed technique. For this experiment,

we use the same baseline configuration as our prior study. We compare ATCache in

two configurations: with Dynamic PG tuning (DPG) and without DPG. We include a

MAP-I in ATCache and normalize our results to tags-in-DRAM + MAP-I. As shown

in Figure 4.15, we can see tag accesses increase by 36% without DPG. With DPG,

the additional tag accesses reduce to 12%. It is important to note that if we consider

overall DRAM cache accesses (tag + data), the additional accesses of our technique is

about 6%. Since the DPG use training to obtain to the PG number of a specific memory

region, this could potentially affect performance. However, we observe that the impact

is minimal – indeed, the performance of ATCache+MAP-I + DPG (11.9%) is almost

as good as ATCache+MAP-I (12.1%). This leads us to believe that including DPG is a

reasonable trade-off for reduced additional accesses for a small drop in performance.

4.5.7 Multiprogrammed workloads

IPC: In this section, we study how our design performs under multiprogrammed work-

loads. We randomly generate 25 workload groups as shown in Table 4.6, with each

4.5. Results 81

Figure 4.15: Tag Accesses

Figure 4.16: Performance improvement in multiprogrammed workloads.

group consisting of 4 workloads. The performance results compared to the baseline

system are shown in Figure 4.16. Each workload group’s result is a geometric mean of

4 workloads’ IPC improvement. The average is geometric mean of 4 x 25 workloads.

As we can see, MAP-I provides 5.4% improvement, and a full tags-in-SRAM design

gives 11.8% improvement over the baseline. It is worth noting that a system without

DRAM cache is 22.0% slower than our baseline. This is because multiprogrammed

workloads have significantly more L2 misses. On the other hand, ATCache+MAP-

I provides up to 12.2% improvement and on average 10.7% improvement over the

baseline. Since this is comparable to the speedups we obtained with our uniprocessor

workloads, this shows that ATCache continues to work well under multiprogrammed

workloads.

L2 miss latency: To sidestep the effect of different speedup metrics that can be po-

tentially used to summarize the performance of multiprogrammed workloads [46, 47],

82 Chapter 4. Aggressive Tag Caching for DRAM Cache

Figure 4.17: L2 miss latency reduction in multiprogrammed workloads (higher the bet-

ter).

we compare the L2 miss latency in Figure 4.17, as it is arguably a more transparent

indicator of the efficacy of ATCache. As we can see from Figure 4.17, ATCache with

MAP-I predictor shows an 18.4% improvement in L2 miss latency over the baseline; in

comparison, tags-in-SRAM shows 21.9% improvement. It is worth noting that a tags-

in-SRAM design consumes about 256 times of SRAM space than our design. Again,

from these results, we can conclude that our design continues to work effectively in a

more memory-intensive scenario.

4.6 Related Work

The idea of caching tags has been explored previously [48, 49]. Mesa et al. proposed

using a tag buffer (TIMBER) to improve the performance of hybrid memories. Com-

pared to their work, the major difference is that ATCache further enhance the caching

efficiency by exploiting cost-effective prefetching and the miss predictor. Wang et

al. [48] also proposed CAT cache for reducing the area overhead of storing tags in the

SRAM cache. CAT cache exploits tag value locality by removing tag value duplication

– in doing so, they are able to reduce the area overhead of the tag array with a small

performance overhead. However, this work is not applicable in the DRAM cache con-

4.7. Conclusion 83

text since CAT involves accessing the data array first before accessing the tag; this is

precisely what works on DRAM cache seek to avoid.

Other works [50, 51] have proposed caching tags to improve cache access latency in

the generic setting of a multilevel SRAM cache hierarchy. The key difference between

this and our work is the new context (DRAM cache) in which target this idea. By

targeting the idea to a novel and concrete context of DRAM caches, we are able to

specialize our technique in ways over and beyond the prior works. For example, hit

prefetching, through which we gain a significant chunk of our performance, has not

been discussed in any of the prior works.

4.7 Conclusion

The advent of the DRAM cache has posed a problem of how to efficiently manage

the tags associated with the DRAM cache. One naive option is to store all the tags

in SRAM; while this would ensure fast access of the tags, the associated storage cost

would render this approach impractical. Consequently, prior works have proposed

innovative techniques to manage the tags efficiently in DRAM. Nonetheless, we ob-

serve, with a help of a study, that it is more performance efficient to manage the tags

in SRAM.

Having established this, we propose a simple idea to cache the tags in SRAM so

that we can achieve the effect of maintaining all tags in SRAM, without paying the

prohibitive cost; we show that there is enough spatial and temporal locality amongst

DRAM cache tag accesses to merit caching the tags. Our experimental results show

that we achieve similar performance (within 2%) to a very fast tags-in-SRAM design (6

cycles access latency for 11.5MB), while consuming less than 1% of the SRAM space.

If we integrate our caching idea with prior proposed miss prediction, we show that we

can come within 0.5% of performance achieved with the tags-in-SRAM approach.

In the next chapter, we will target on a different problem in DRAM caches – the

design of the DRAM cache controller. While many tags-in-DRAM designs are pro-

posed in recent works, we noticed that the study of how to design a DRAM cache

controller is missing. Therefore, our next work will address problems in the DRAM

cache controller and propose a design that adapts to DRAM caches.

Chapter 5

DRAM-cache-aware DRAM controller

5.1 Introduction

While many recent works [10, 11, 3, 4, 52], including our previous work, have pro-

posed storing these cache tags in the stacked DRAM array, storing these tags in the

DRAM array, however, increases the complexity of a DRAM cache request. In con-

trast to a conventional request to DRAM main memory, a request to the DRAM cache

will now translate into multiple DRAM cache accesses (tag and data). In this work,

we address the question of how to schedule these DRAM cache accesses. We start

by exploring whether or not a conventional DRAM controller will work well in this

scenario.

A conventional DRAM controller usually consists of two queues — a read queue

and a write queue. Each read (writeback) request to DRAM memory requires only

one read (write) access to DRAM array; these read (write) requests will be stored in

the read (write) queue respectively. Switching between read and write modes on the

DRAM bus is known as a turnaround, which incurs a latency known as turnaround

delay. Consequently, DRAM controllers strive to avoid frequent turnarounds, as that

can be detrimental to overall performance. Furthermore, DRAM controllers typically

prioritize reads over writes. This is because, read requests tend to be in the critical path

of system performance, whereas write requests are usually not.

Unlike requests to conventional DRAM memory, requests to a DRAM cache will

translate into multiple DRAM accesses. For example, a read request to a set-associative

DRAM cache can translate into three accesses: 1) tag read; 2) data read; and 3) tag

85

86 Chapter 5. DRAM-cache-aware DRAM controller

write1. Similarly, a write request to the DRAM cache2 could translate into one tag

read and two writes (tag and data). In addition, the DRAM cache also needs to handle

refill requests from lower level memory. This complexity increases the challenge of

designing a DRAM cache controller. Therefore, a study on how to design DRAM

cache controllers is a critical step in the adoption of DRAM caches.

Study: Baseline. We start by exploring a baseline design, which is a natural extension

of a conventional DRAM controller. In this design, the DRAM cache controller simply

pushes accesses into the read or write queue depending on the DRAM access type (read

or write). For example, if a DRAM cache read request translates into one read and two

write accesses, the read access will be placed in the read queue and write accesses will

be placed in the write queue. We call this Baseline Design (BD). Unfortunately, BD

suffers from two limitations. First, we observe that a read access from a read request

can be blocked by those read accesses coming from a writeback request. This is not

desirable since read accesses from a read request are usually in the critical path of

system performance. Second, we observe that BD suffers from a large number of row

conflicts, because of interference between a read and writeback requests to the DRAM

cache. We refer to this problem as Read-Write Interference (RWI) and discuss this in

more detail in §5.2.4. It is worth noting that a similar problem has also been observed

in DRAM memory previously [53], but we show how the problem is more severe in

this context.

Study: Enhanced Design. To avoid these limitations, we consider an enhanced design

based on BD, in which the controller pushes accesses into the read or write queue

depending on the request type (and not the access type). Specifically, all accesses

associated with a read (writeback) request will be placed on the read (write) queue.

We call this Request-Oriented Design (ROD). Unfortunately, we observe that ROD

suffers from increased turnaround delays. Furthermore, we observe that ROD suffers

from longer write queue servicing latency compared to BD. This is because ROD will

not schedule read tag accesses for write requests, even when the DRAM cache bus is

idle. These read accesses will be scheduled only when the controller starts servicing

the write queue. This increased servicing time for write queue could eventually hurt

overall system performance.

1Accesses 2 and 3 will only happen if the read request hits in the DRAM cache. It is worth noting
that this translation could vary for different DRAM cache settings. Please see §5.2.2 for details.

2A write to the DRAM cache is actually the result of a writeback from the higher level, since we as-
sume a write-allocate policy in our cache hierarchy. In this work, DRAM cache “write” and “writeback”
are used interchangeably.

5.1. Introduction 87

Proposed Design. Based on the above observations, we come up with a set of princi-

ples that a DRAM cache controller should ideally satisfy. The DRAM cache controller

should: 1) take into account both the access type as well as request type in priori-

tizing accesses; 2) minimize the number of turnarounds; 3) avoid RWI; and 4) avoid

increasing the write queue servicing latency.

We propose DRAM-Cache-Aware (DCA) DRAM controller that is based on the

above principles. Similarly to BD, DCA holds write accesses in a write queue; the

read accesses, however, are held in two distinct read queues: the conventional read

queue (RQ) which serves as a high priority read queue and a low priority read queue

(LPRQ). The RQ holds read accesses that are in the critical path — i.e., tag and data

reads from read requests. The LPRQ allows us to schedule read accesses that are not

in the critical path — i.e. tag reads from DRAM cache writeback requests and cache

refill requests.

Similarly to the write queue, the LPRQ is scheduled passively. Unlike the write

queue, however, servicing requests of the LPRQ is not restricted by turnaround delay

considerations. In the case of the former, we need to ensure that the write queue

services at least a minimum number of writes before returning to the read queue, to

amortize the cost of a turnaround. The LPRQ has no such constraints because bus

turnaround is not required to switch between RQ and LPRQ. This allows us to use

an opportunistic flushing scheme (OFS) for LPRQ. So, instead of using a completely

passive queue servicing scheme which only service requests when the queue is nearly

full, OFS will seek to service/flush LPRQ whenever: 1) the read queue is empty, and

2) RWI cannot happen.

In comparison with BD, DCA ensures that non-critical read accesses do not block

critical read accesses (from read requests); in addition, RWI is explicitly minimized. In

comparison with ROD, DCA experiences reduced servicing times, as part of the write

queue from ROD is moved into the LPRQ in DCA and flushed opportunistically; also,

turnaround delays are explicitly minimized.

Results and Contributions Our experiments on multiprogrammed workloads show

that DCA is 15.6% (14.7%) faster on average in comparison with the baseline when

we use a 16-way (direct-mapped) DRAM cache setting.

The contributions of this work are as follows:

• To our knowledge, this is the first study on the impact of the DRAM cache controller

on the performance of the DRAM cache.

88 Chapter 5. DRAM-cache-aware DRAM controller

• We first establish a baseline DRAM cache controller (§5.2.3.1) that is based on

a conventional DRAM controller. We also introduce an enhanced version of the

baseline design (§5.2.3.2). We study the limitations of these designs.

• We propose DRAM-Cache-Aware (DCA) DRAM controller that addresses the lim-

itations of the above two designs.

• Our work is orthogonal to existing DRAM cache works which strive on improving

DRAM cache’s structure. Therefore, our observations and design can apply to any

of the recently proposed tags-in-DRAM designs [10, 11, 3, 4] (§5.6).

5.2 Motivation

To motivate this work, we first briefly discuss the basics of a DRAM controller (§5.2.1)

and accesses in DRAM cache (§5.2.2). We then study the limitations (§5.2.3 and

§5.2.4) of adapting a conventional DRAM controller for the DRAM cache.

5.2.1 Basics of DRAM Controller Design

In a DRAM system, the DRAM bus can be used to service a read or a write request

at any given time. Switching the bus between read and write modes is known as

turnaround, which incurs a latency known as turnaround delay. Typically, in DDR3-

1600, a write to read turnaround (tWT R) will cost 7.5 ns and a read to write turnaround

(tRTW) will cost 2.5 ns. Frequent bus turnarounds will result in a performance loss due

to these extra latencies. To avoid these turnaround overheads, conventional DRAM

schedulers commonly store read and write requests in separate queues — namely, read

queue and write queue. Read queue will be served with a higher priority since read re-

quests are usually in the critical path of system performance. On the other hand, write

requests are handled by a passive queue management scheme. The simplest scheme is

to service the write queue only when the write queue is close to full.

In our work, we consider an optimized scheme which uses two thresholds — a high

threshold and a low threshold to determine the queue servicing point. On reaching the

high threshold, the DRAM controller will trigger a forced flush of the write queue.

In addition to that, if there are no pending read requests and the occupancy of write

queue is greater than the low threshold, the DRAM controller will also service the write

queue. The pseudo code of how to control these queues is shown in Code 5.13. By
3Is is worth noting that this scheme is implemented in both gem5 [41] and zsim [54]

5.2. Motivation 89

prioritizing reads over writes, the DRAM controller can avoid turnaround overheads

and enhance performance.

1 i f (b u s S t a t e == READ) {
i f (readQueue . empty ()) {

3 / / no pend ing r e a d r e q u e s t

/ / t r y t o s c h e d u l e w r i t e r e q u e s t i f . . .

5 i f (wr i t eQueue . s i z e () > wr i t eLo wT hre sh o ld) {
/ / t u r n b u s S t a t e t o WRITE f o r DRAM w r i t e s

7 b u s S t a t e = WRITE ;

} e l s e {
9 / / n o t h i n g t o do

r e t u r n ;

11 }
} e l s e {

13 s e r v i c e R e q u e s t (readQueue) ;

i f (wr i t eQueue . s i z e () > w r i t e H i g h T h r e s h o l d) {
15 b u s S t a t e = WRITE ;

}
17 }
} e l s e { / / i f b u s S t a t e = WRITE

19 s e r v i c e R e q u e s t (wr i t eQueue) ;

/ / s w i t c h t o r e a d s t a t u s i f . . .

21 i f (wr i t eQueue . empty () | |
wr i t eQueue . s i z e () < wr i t eLo wT hre sh o ld | |

23 ! readQueue . empty ()) {
b u s S t a t e = READ;

25 }
}

27

Code 5.1: Pseudo code for the write queue servicing scheme used in this work

5.2.2 Accesses in DRAM Cache

In conventional DRAM memory, mapping between request and DRAM access is quite

simple — a read request translates to a read access and a write request translates to

a write access. Compared to conventional DRAM memory, a set-associative DRAM

cache requires a more complex mapping. One request typically translates to multiple

DRAM accesses. In this section, we describe mappings for three main type of requests

in the cache:

90 Chapter 5. DRAM-cache-aware DRAM controller

Figure 5.1: Accesses in a cache read and a cache writeback.

Read Request. A read request in a cache will translate to several DRAM accesses as

shown in Figure 5.1: 1) a read tag (RTr) to determine hit/miss and identify the location

of the data, 2) a read data to satisfy processor request (RDr), and 3) a write tag to

update replacement bits (WTr). Step 2 and 3 will only happen if request hits in the

cache. It is worth noting that WTr is not required if replacement bits are stored in the

SRAM, or if the DRAM cache is organized as a direct-mapped cache. In this work, we

assume replacement bits are stored in the SRAM so that our study is independent of

the replacement policy.

Write/WriteBack Request. A cache write request translates to at least three accesses

as shown in Figure 5.1: 1) a read tag to obtain the current tag status (RTw); 2) a write

data (WDw) and 3) a write tag (WTw). It is worth noting that if the dirty flag of the

replaced block is set, a read data is also required (RDw).

Refill Request. A cache refill means a block is brought back from the lower level

memory and it is waiting to be written into the DRAM array. This translation is iden-

tical to write request.

In addition to above requests, there are a small number of other requests to maintain

the coherence. Because the DRAM cache is usually located a level below the coherent

shared cache, these requests are infrequent in the DRAM cache. Most of coherence

overhead is handled at the shared cache level.

5.2.3 Potential Designs

In this section, we propose two adaptations of a conventional DRAM controller. These

designs can be differentiated based on how they classify DRAM accesses correspond-

5.2. Motivation 91

Figure 5.2: How the translated accesses map to queues in BD and ROD.

ing to DRAM cache requests. We then illustrate the limitations of these designs using

examples.

5.2.3.1 Baseline Design (BD)

We first introduced a potential design which is based on DRAM memory controller, we

call it Baseline Design (BD). As described in §5.2.2, a DRAM cache request requires

both read and write accesses to the DRAM array. In BD, DRAM accesses correspond-

ing to a request are classified based on access type. Read accesses will go the the read

queue and write accesses will go to the write queue, irrespective of their request type,

as shown in Figure 5.2 (a). This design is very similar to a conventional DRAM con-

troller design as described in §5.2.1. Using this design, the DRAM cache controller

can minimize the frequency of turnarounds.

However, this design has potential performance issues. Since the read queue con-

tains accesses from both read and write requests, read accesses corresponding to read

requests compete with read accesses corresponding to write requests. This interference

can potentially delay the completion of read requests. In fact, this delay can result in

an overall performance degradation, because read requests are usually in the critical

path of processor execution.

92 Chapter 5. DRAM-cache-aware DRAM controller

Figure 5.3: A case study in baseline design (BD).

Figure 5.3 shows an example of how write interference can delay read requests in

BD. Consider the sequence of cache requests shown in Figure 5.3 (b) (where R* are

read requests and W* are write requests). The DRAM cache first receives requests R1

and W1 at time t1. These requests create three read access entries in the read queue —

read tag for R1 (RTR1), read data for R1 (RDR1) and read tag for W1 (RTW1) — and two

write access entries in write queue — write data for W1 (WDW1) and write tag for W1

(WTW1). BD will first schedule RTR1. On completion of RTR1 it will schedule RDR1.

After request R1 is completed, RTW1 will be scheduled. As shown in Figure 5.3(b),

because R1 and W1 are accessing a different row in the same bank, RTW1 will cause

a row conflict and the controller will have to close the previously opened row and re-

open another row for request W1. Requests R2 and W2 arrive while the controller is

busy handling RTW1. This results in delaying request R2 because it needs to wait for

RTW1 to complete. After completing RTW1, BD will schedule RTR2 and cause another

row conflict.

As we can see from this example, BD will trigger three row conflicts in four ac-

cesses. Moreover, request R2 is delayed because it has to wait for RTW1’s completion.

In the figure, we also show an ideal case in which we avoid scheduling RTW1 between

R1 and R2. Thus, when request R2 arrives it will be scheduled immediately. Also, the

ideal case will trigger only one row conflict in this entire request sequence.

5.2.3.2 Enhanced design: Request-Oriented Design (ROD)

To avoid the issues seen in BD, we show an enhanced alternate design. In this design,

DRAM accesses are classified based on their corresponding request type. Accesses

corresponding to read requests will go to the read queue and accesses corresponding to

5.2. Motivation 93

write requests will go to the write queue 4 as shown in Figure 5.2. We call this design

Request-Oriented Design (ROD).Thus both the read and write queues can contain a

mixture of read and write accesses to the DRAM array. The advantage of this design

is that it will eliminate write interference from delaying read requests.

However, this design also has its own set of limitations. Since the write queue

contains both read and write accesses, the frequency of bus turnarounds will increase.

This in turn will increase the write queue servicing time. Moreover, the increase in

this write queue servicing time can potentially degrade the overall system performance

because it can delay subsequent read requests.

Figure 5.4: A case study in Request-Oriented Design (ROD) — please note that bank

1 and bank 2 are in the same rank/channel and all queues are using FR-FCFS policy.

Figure 5.4 shows an example highlighting this problem. Consider the sequence of

cache requests shown in Figure 5.4 (b) (where R* are read requests and W* are write

requests). The DRAM cache first receives requests R1, W1 and W2 at time t1. These

requests create two read access entries in read queue — read tag for R1 (RTR1) and

read data for R1 (RDR1) — and two read and four write access entries in write queue

— read tag for W1 (RTW1), write data for W1 (WDW1), write tag for W1 (WTW1),

read tag for W2 (RTW2), write data for W2 (WDW2) and write tag for W2 (WTW2).

ROD will first schedule RTR1. On completion of RTR1 it will schedule RDR1. After

request R1 is completed, ROD will not schedule RTW1 until the write queue reaches its

flushing (servicing) condition. Request R2 arrives at time t2. Now, ROD will schedule

RTR2 and RDR2 one after the other. Eventually, ROD starts servicing the write queue.

In addition to the writes, RTW1 and RTW2 also need to be processed. This results in a

longer write queue servicing time.
4With one exception: the write tag for a read request (if present) would go to write queue for perfor-

mance reasons.

94 Chapter 5. DRAM-cache-aware DRAM controller

As we can see from this example, ROD fails to utilize the idle time between pro-

cessing requests R1 and R2 to schedule RTW1 and RTW2. Whereas in the ideal case

shown in the figure, read tags for write requests are scheduled opportunistically and

the overall completion time of the sequence is lower.

Figure 5.5: Row conflict in DRAM cache due to shared cache replacement

5.2.4 Read-Write Interference

In this section, we want to introduce a memory access pattern that could potentially

result in many row conflicts in the DRAM cache. It is worth noting that that a similar

access pattern has also been observed in the memory side [53]. In this work, we refer

to this observation as Read-Write Interference (RWI).

5.3. DRAM-Cache-Aware Controller 95

To explain RWI, we fist consider a cache sub-system with three-levels of cache

hierarchy: private L1s, a shared L2 and an L3 DRAM cache (see Table 5.1 for more

information). Due to set-associativity, a part of any two addresses (say A0 and A1) map-

ping to the same set in L2 will be identical as shown in Figure 5.5. Also, considering

a DRAM cache organization with 4 cache sets in a row, 16 banks, 1 rank per channel,

and 4 channels, addresses A0 and A1 will be located in the same bank/rank/channel. If

we accesses them consecutively, it will lead to a potential row conflict.

In this configuration, when a request (for some address A0) misses in the L2, the

request will be forwarded to DRAM cache. In addition to that, L2 cache will also find

a victim block (say address A1) in the same cache set. If this victim block A1 is dirty,

L2 will issue a writeback request for A1 to DRAM cache. There is a high probability

that these two requests (request for A0 and writeback for A1) will arrive in L3 together

(or within a short interval). And since they arrive within a short interval, it is also likely

that they will be processed consecutively. As described in previous paragraph this will

cause a row conflict.

On the conventional DRAM memory side, many DRAM controllers employ a strat-

egy called write caching [17], which simply buffers the write requests in a write queue.

In our study, this strategy5 can effectively avoid RWI on the memory side.

In the DRAM cache, RWI issue becomes more complex. Every writeback in

DRAM cache requires a read tag to check if the victim (replaced) block is dirty or

not. It is worth noting that this read tag operation is required in the direct-mapped

design [4] also. Therefore, the access sequence in Figure 5.3 will significantly hurt the

performance if we choose BD.

5.3 DRAM-Cache-Aware Controller

In this section, we first propose a set of design principles for designing a DRAM cache

controller. We then propose DRAM-Cache-Aware (DCA) DRAM controller which is

designed based on those principles

5.3.1 Design Principles

Based on our observations in §5.2, we propose a set of principles for designing a

DRAM cache controller as follows:
5For the write queue, we employ a two-threshold write queue servicing scheme (as mentioned in

§5.2.1).

96 Chapter 5. DRAM-cache-aware DRAM controller

• Take into account both the access type as well as request type in prioritizing accesses

(§5.2.1) — this can avoid the scenario where priority reads are delayed by low-

priority reads.

• Minimize turnarounds (§5.2.1) — frequent turnarounds result in a performance

degradation because of adding extra latencies.

• Avoid RWI (§5.2.4 & §5.2.3.1) — RWI will potentially cause row conflicts and

degrade the performance.

• Avoid increasing the write queue servicing latency (§5.2.3.2) — if the time of ser-

vicing the write queue is increased, subsequent read requests might be delayed.

Figure 5.6: How the translated accesses map to queues in DRAM-Cache-Aware design

5.3.2 Low Priority Read Queue (LPRQ)

In our DRAM-Cache-Aware DRAM controller, we first classify read accesses in two

categories — priority reads (PR) and low priority reads (LPR). Read accesses cor-

responding to read requests are classified as PR and read accesses corresponding to

write requests (including cache refill requests) are classified as LPR. We use the exist-

ing read queue to store PR and propose a new low-priority read queue (LPRQ) to store

LPRs. Figure 5.6 shows how accesses corresponding to various requests are stored in

DCA’s queues. LPRQ’s requests will only be scheduled in two conditions — either

LPRQ is full (or close to full) or on a pre-condition specified in §5.3.3.

Difference between LPRQ and ROD. Compared to ROD which simply places writes

in the write queue, LPRQ is like splitting read queue into two parts. Servicing request

5.3. DRAM-Cache-Aware Controller 97

in the LPRQ is not restricted by turnaround delay considerations. In the case of the

write queue, to amortize the cost of a turnaround, we need to ensure that it services at

least a minimum number of writes before returning to read queue. The LPRQ has no

such constraints because bus turnaround is not required to switch between read queue

and LPRQ.

5.3.3 LPRQ Servicing Scheme

When to Service? When to service the LPRQ is an important design decision. In

theory, if LPRQ will be scheduled together with the write queue, our design will be

quite similar to ROD as we described in §5.2.3. On the other hand, if we schedule

LPRQ together with the read queue, LPRQ design will be similar to BD and suffer

from RWI issue as we described in §5.2.4. Therefore, in this work, we strive to strike

a balance in the servicing scheme for LPRQ. In principle, we would like to schedule

LPRQ with the read queue but avoid RWI conflicts. In our observation, RWI conflicts

actually appear due to the spatial locality of DRAM accesses. This can be avoided by

not scheduling those low-priority reads which are accessing recently accessed banks.

Obtain the access footprint for each bank To identify recently accessed banks, we

use a technique similar to the replacement policy to let scheduler determine the recency

of used banks. We use a 3-bit bank re-reference prediction counter (RRPC) to keep

track of the bank re-reference history and use it to determine (predict) whether we

should schedule a particular low priority request or not. This RRPC design is similar

to a cache replacement technique called re-reference interval prediction (RRIP) [20].

In our proposed design, each bank will have a 3-bit RRPC counter which amounts to

24 bytes overhead for a DRAM organization with 64 banks. This counter will only

change when a priority read is accessed. Initially, the counter is set to 0. When there is

a priority read X to the DRAM controller, the system will first decrease the counter in

all banks by 1 (0 will stay at 0) and set the most recently accessed bank’s counter to 7.

By doing this, we can determine the recency of each bank. It is worth noting that the

RRPC will only be modified for priority reads (i.e. requests from read queue).

Opportunistic Flushing Scheme (OFS) With regard to the queue servicing scheme,

we first define that requests in the LPRQ will only be scheduled when read queue

(priority reads) is empty. When the scheduler is ready for scheduling a low priority

read (assumed request A0), we first check if there is a row conflict in corresponding

bank. If there is no row conflict (either row buffer hit or a closed row), A0 will be

98 Chapter 5. DRAM-cache-aware DRAM controller

scheduled. On the other hand, if there is a row conflict in that bank, we will check the

corresponding bank’s RRPC. If the RRPC is lower than a pre-defined threshold that we

call flushing factor (FF), our controller will schedule A0. However, if the request can

not meet any of above criteria, it will not be scheduled and will have to wait for next

available scheduling slot for LPRQ. In our study, we found that the design is not very

sensitive to FF when it is smaller than 5 (FF/5). In our multiprogrammed workloads,

the average performance difference from FF/4 to FF/0 is less than 1%. Therefore, in

this work, we use FF/4 as default value.

Figure 5.7: Working case for Re-Reference Prediction Counter

5.3.4 An example

In this example (as shown in Figure 5.7), we assume three read requests — R1 (bank:

1, row: 20), R2 (bank: 1, row: 20), and LR1 (low priority, bank: 1, row: 1) — come

to the DRAM cache in a short period. R1 and R2 will be stored in the read queue and

LR1 will be stored in LPRQ. Since read queue has higher priority than LPRQ, R1 and

R2 will be scheduled first and will change B1’s RRPC value to 7. After that, when

the bus is available for scheduling another request, we try to schedule the request from

LPRQ. The scheduler first checks if LR1 will cause a row conflict in B1. Since the

last opened row is row 20, serving LR1 will need to close that row and re-open another

row. In this case, we need to check if the B1.RRPC is less than or equal to the FF.

Because B1’s RRPC is 6, the scheduler will not schedule LR1. Later, we received two

more requests R3 (bank:2, row:30) and R4 (bank:3, row:1). Since DRAM bus is idle

at this moment, R3 will be scheduled immediately and R4 will be scheduled after R3.

5.4. Experimental Methodology 99

When R4 is finished and read queue is empty, we try to schedule LR1 again. This time

we can see that B1’s RRPC (4) is less than or equal to the FF (4). Therefore, LR1 is

scheduled.

Processor 4GHz, x86, 8-wide OoO

ROB 192 Entries

L1 I/D caches each 32KB/2way, 2 cycles, private

L2 cache 8MB, 20 cycles, shared

L3 cache DRAM Cache, 256MB, 1/16 way

On-chip bus 4GHz, 256-bit width

Memory latency 50ns

Table 5.1: System parameters

Timing tRCD-tCAS-tRP-tRAS 8-8-8-30 (ns)

Params tWTR-tRTP-tRTW 5-7.5-1.67 (ns)

tWR-tBURST 15-3.33 (ns)

16 banks/rank, 1 rank/channel

Organization 4 channels, 4KB row buffer,

RoBaRaChCo, open-page

Read Queue 32 (64 for BD) entries per channel

FR-FCFS

Write Queue 64 (96 for ROD) entries per channel

low/high flush thres.: 50%/85%

FR-FCFS

LPRQ 32 entries per channel, FF/4

FR-FCFS

Table 5.2: Stacked DRAM parameters

5.4 Experimental Methodology

We use gem5 [41], a cycle-accurate simulator for our evaluations. We model an OoO

x86 core based CMP system with private L1 and shared L2 caches. A 256MB L3

DRAM cache is modeled using a detailed DRAM timing model. The detailed system

parameters and stacked DRAM parameters that we use are shown in Table 5.1 and

100 Chapter 5. DRAM-cache-aware DRAM controller

1-2 soplex-mcf-gcc-libquantum astar-omnetpp-astar-gcc

3-4 mcf-soplex-astar-leslie3d bwaves-lbm-libquantum-leslie3d

5-6 bwaves-soplex-bwaves-GemsFDTD omnetpp-milc-leslie3d-astar

7-8 soplex-astar-lbm-mcf lbm-omnetpp-leslie3d-bwaves

9-10 milc-leslie3d-omnetpp-gcc bwaves-astar-gcc-leslie3d

11-12 omnetpp-libquantum-mcf-gcc gcc-libquantum-lbm-soplex

13-14 gcc-leslie3d-GemsFDTD-soplex lbm-libquantum-omnetpp-bwaves

15-16 gcc-milc-leslie3d-milc omnetpp-mcf-leslie3d-lbm

Table 5.3: Workload groupings

Table 5.2. As the DRAM cache could be organized as either direct-mapped [4] or

set-associative cache [3], our work evaluates both organizations in §5.5.1. Recall that

the major difference between these two designs is the number of accesses per DRAM

cache request (as shown in Figure 5.1). To simplify simulation results, we assume

additional row buffer space for tags. Assuming a cache tag requires 4 bytes, the actual

row buffer size would be 4KB+4∗64bytes = 4.25KB.

We evaluate our proposed DCA DRAM controller (LPRQ+OFS) and compare it

with the baseline BD, the enhanced baseline ROD, and LPRQ-only. For the LPRQ in

the DCA design, we use a queue of 32 entries. To compensate for additional LPRQ en-

tries, we increase the read queue size to 64 entries in BD and the write queue size to 96

entries in ROD. We use benchmarks categorized as memory-intensive [9] from SPEC

2006. Using these memory-intensive benchmarks, we generated 16 4-core workloads

(§5.5.1) and 8 8-core workloads (§5.5.5) for evaluating the controller designs. The

details about these workloads are shown in Table 5.3 and Table 5.4.

5.5 Results

In this section, we first analyze the overall performance of the proposed DCA de-

sign in comparison with BD, and ROD (in both 16-way and direct-mapped organiza-

tions) using multiprogrammed workloads (§5.5.1). We also analyze the magnitude of

turnaround overhead (§5.5.2) for the different designs. This analysis of turnaround

overhead helps in explaining the improvements in performance compared to ROD. We

then conduct a sensitivity study on DRAM cache’s associativity, which quantitatively

highlights the detrimental impact of RWI on BD. We analyze single-core workloads

in §5.5.4 to understand how each benchmark individually performs under the different

designs. In addition, in §5.5.5 we study the effectiveness of different designs when we

5.5. Results 101

increase the number of DRAM cache requests (using 8-core workloads). Finally, we

show a summary of how all techniques compare in various configurations.

Figure 5.8: Performance speedup of all designs (16-way)

Figure 5.9: Performance speedup of all designs (direct-mapped)

5.5.1 Performance

16-way Figure 5.8 shows the speedups of various designs across all multiprogrammed

workloads in 16-way setting, where results are normalized to BD (baseline). As the

figure shows, BD has the worst performance amongst all designs. Furthermore, ROD

has an average improvement of 9.9% and LPRQ has an average improvement of 11.2%.

Among all the designs, our DCA design (LPRQ+OFS) provides the best performance

and achieves an improvement of 15.6% over the baseline.

Considering individual workloads, LPRQ+OFS has an improvement of 25.3% in

G4, whereas the ROD and LPRQ-only only improve 16.0% and 18.1% respectively.

Direct-mapped For the direct-mapped setting, as we can see from Figure 5.9, BD is

still the worst in terms of performance amongst all designs. This is because the RWI

issue (§5.2.4) also manifests in direct-mapped setting due to the additional tag/data

access for writes (Figure 5.1). Similar to 16-way, in direct-mapped setting, ROD has

an average improvement of 9.5% and LPRQ+OFS has an average improvement of

14.7%.

Considering individual workloads, G8 in LPRQ+OFS has the highest improvement

(25.1%) and is 12.8% better than ROD. The figure also shows that LPRQ-only has a

102 Chapter 5. DRAM-cache-aware DRAM controller

small performance degradation compared to the ROD in G1. This is because ROD

(and BD) has additional 32 entries in its write queue (read-queue) for compensating

for LPRQ’s space overhead. As a result, it is possible for ROD to achieve better perfor-

mance improvement in situations when additional write-queue entries provide greater

benefit than the benefit due to prioritizing low priority reads. This appears to be the

case for the G1 workload, although it is important to note that this is not common (other

workloads do not show this behavior). Note, however, that even in G1, LPRQ+OFS

outperforms ROD by 1.1%.

Figure 5.10: Read/Write accesses per turnaround (the higher the better) – 16-way

Figure 5.11: Read/Write accesses per turnaround (the higher the better) – direct-

mapped

5.5.2 Turnarounds

As we discussed in §5.2.1, a DRAM bus can only operate in either read or write mode

at a given point of time. An increase in the number of turnarounds will result in a

5.5. Results 103

performance degradation which we want to minimize. In this experiment, we would

like to analyze the number of accesses per turnaround for all designs. As we can

see from Figure 5.10 (16-way) and Figure 5.11 (direct-mapped), because BD places

all read accesses in the same read queue, the number of read/write accesses that it

processes per turnaround is the best among all designs. On the other hand, ROD is

only able to process about a third of read/write accesses per turnaround, as compared

to BD. Finally, LPRQ is able to process almost the same number of read/write accesses

as BD per turnaround. This is why LPRQ’s (LPRQ+OFS) performance is better than

ROD (Figure 5.8 and Figure 5.9).

Figure 5.12: Average speedup in different associativity

5.5.3 Associativity

In §5.2.4, we discussed how the RWI issue could cause row conflicts. This problem

will translate into a serious performance degradation if the access sequence shows

spatial locality like the example shown in Figure 5.3. In our configuration, we use a

4KB row buffer which allows us to store 64 cache blocks in a row6. A 16-way cache

would store 4 cache sets in a row (16 blocks per set * 4 cache set = 64). Therefore,

it is necessary to perform a sensitivity study on the associativity of DRAM cache. In

this section, we show and analyze how associativity affects the performance of each

design.

Figure 5.12 shows the sensitivity study on associativity in 4-core workloads. we

can see that ROD which can also avoid the RWI issue is actually performs well in low

6In our configuration, we assume we have additional row buffer space for storing tags. Therefore,
the actual row buffer size is 4.25KB

104 Chapter 5. DRAM-cache-aware DRAM controller

associativity (1 or 2-way) cache designs. However, when the associativity gets larger,

we can see the performance gap between BD and ROD is reduced to less than 5% (in

a 32-way cache). On the other hand, LPRQ+OFS can provide over 10% improvement.

Figure 5.13: Performance speedup in single workload

5.5.4 Workload Analysis

Here we analyze how these designs will affect the performance in single workload. In

this experiment, we reduce the number of stacked DRAM’s channel to 1 and reduce

L2 cache size to 4MB and use a 16-way setting as our default setting. As we can see

from Figure 5.13 (results normalized to BD), ROD, LPRQ, and LPRQ+OFS show a

very good speedup (over 29%) in libquantum and leslie3d. Based on the SPEC 2006’s

characteristics [6], we know leslie3D and libquantum have a large working set size

which does not fit in L2 (but fits in the DRAM cache). In this case, the L2 suffers sig-

nificant cache thrashing and creates a lot of cache replacement events. Therefore, RWI

issue (§5.2.4) significantly affects BD’s performance in these two benchmarks. On av-

erage, we can see LPRQ+OFS shows a 15.2% improvement whereas ROD has 11.1%

improvement. The difference in performance improvement between them (4.1%) is

reduced compared to multiprogrammed scenario where it was 5.7%. This is because

some of the workloads do not have too many reads/writes and are less sensitive to the

write queue servicing time. Furthermore, we can see LPRQ is actually performing bet-

ter than LPRQ+OFS in mcf and GemsFDTD. As we can observe similar behavior from

multiprogrammed workload results, because OFS reduces write queue servicing time

by aggressively flushing low-priority reads, there is a possibility that these low-priority

reads are blocking other priority reads. However, we can see the effect of this issue is

not very significant and only causes a slowdown of 1% in mcf and GemsFDTD. On

the other hand, for libquantum in which L2 cache is thrashing and sending a lot of

5.5. Results 105

writebacks to DRAM cache, there is a 10% difference with and without OFS. Overall,

we can see that the single core results are quite similar to multiprogrammed results.

soplex-mcf-gcc-libquantum-astar-omnetpp-astar-gcc

mcf-soplex-astar-leslie3d-bwaves-lbm-libquantum-leslie3d

bwaves-soplex-bwaves-GemsFDTD-libquantum-milc-leslie3d-astar

soplex-astar-lbm-mcf-lbm-omnetpp-leslie3d-bwaves

milc-leslie3d-omnetpp-gcc-milc-libquantum-bwaves-gcc

libquantum-lbm-soplex-libquantum-omnetpp-libquantum-mcf-gcc

soplex-astar-mcf-gcc-bwaves-astar-mcf-libquantum

lbm-libquantum-omnetpp-bwaves-gcc-milc-leslie3d-milc

Table 5.4: 8-core workload groupings

Figure 5.14: Performance speedup in 8-core workload

5.5.5 8-core Workloads

In this section, we analyze how our design will react to higher DRAM cache request

frequency. We simulate this scenario via eight 8-core workloads as shown in Table 5.4

but keep the same setting as previously shown in Table 5.2. As we can see from

Figure 5.14, in the 8-core workloads, the improvement of ROD reduce to 2.8% in

16-way and 2.0% in direct-mapped configuration. This is because high access pres-

sure will reduce the benefits of buffering writes and also, the performance impact due

to turnaround delays is increased. On the other hand, the DCA (LPRQ+OFS) can

continue to provide improvement of 10.6% and 9.2% in direct-mapped and 16-way

respectively. This because in addition to buffering writes, our DCA controller also

optimize for turnarounds.

106 Chapter 5. DRAM-cache-aware DRAM controller

5.5.6 Summary

Based on our experiments, we show a comparison among our designs in Table 5.57.

In both single-core and 4-core results, ROD provides about 10% improvement in low

associativity but the improvement drops to less than 5% in 32-way. Also, in high

access pressure (8-core) workloads, LPRQ+OFS can continue to improve 9 to 10%

when ROD can only provide 2 to 3% improvement.

BD ROD LPRQ LPRQ+OFS

8-core * ** ** ***

Turnaround **** * **** ****

Low assoc. * *** **** ****

High assoc. * ** ** ***

Table 5.5: Techniques comparisons

5.6 Related Work

There has been a number of recent works on die-stacked DRAMs. Prior works have

shown that this technology is a promising step in the direction of bridging the latency

of on-chip cache and off-chip memory. Some of them proposed using this die-stack

DRAM as part of a main memory [55, 56, 57, 58] and many of them proposed to use

it as a cache [10, 11, 14, 15, 3, 4, 9].

As we discussed in previous chapter, where to store cache tags is a non-trivial ques-

tion in DRAM cache and has attracted significant attention [10, 11, 3, 4, 9, 52]. Unlike

prior works, which are focused on the tag problem. In this work, we target a different

problem pertaining to DRAM caches, one that has not been explored previously. More

specifically, we address the problem of how to effectively schedule DRAM cache’s

requests. Although our work is based on the set-up used by Loh’s organization [3]

and Qureshi’s organization [4], our work is orthogonal and can be applied to most of

existing tags-in-DRAM designs. Among the recent proposed works, Chou et al. [52]

have proposed a bandwidth-efficient DRAM cache design, which introduces a number

of techniques to reduce the number of DRAM cache accesses for the direct-mapped

DRAM cache. However, our work is still applicable for effectively scheduling the

residual accesses.
7Higher the number of stars (*), better the design.

5.7. Conclusion 107

Zhang et al. [53] observed that L2 writebacks can cause interference with DRAM

reads, which in turn could result in row conflicts in the DRAM (RWI in DRAM). In-

stead of using a write-buffer-based approach, they propose a permutation-based remap-

ping scheme for mitigating the RWI issue. Based on Rau’s work [59], the permutation-

based scheme generate a new addressing address by XOR the original bank index with

k-bit (first N-bit of page index). Ideally, this scheme can reduce row conflicts by remap-

ping blocks in the same cache set to different memory banks. It is worth noting that

remapping will not preclude the use of the write-buffer in the DRAM controller, and is

therefore orthogonal to our technique. In other words, the remapping scheme can still

apply to our DCA controller to further reduce the RWI problem.

5.7 Conclusion

Recent studies have proposed DRAM cache designs that maintain tags in the DRAM

cache, which increases the complexity of a DRAM cache access. In this work, we

addressed the problem of how to effectively schedule these DRAM cache accesses.

A conventional DRAM controller only classifies accesses into two categories — read

and write. This simple two way classification is not suitable for DRAM cache because

different read accesses can have different priorities depending on the requests they

correspond to.

In this work, we study two potential designs based on conventional DRAM con-

troller and analyze their limitations. We then propose a DRAM-Cache-Aware (DCA)

DRAM controller which uses an additional low-priority read queue. We also propose

an opportunistic flushing scheme (OFS) for this low-priority read queue. In our study,

we found that in a 16-way DRAM cache, LPRQ+OFS improves 15.6% compared to

BD, which is a naive design derived from conventional DRAM controller. We also

study the direct-mapped design, which allows tag and data to be read in one single

DRAM burst. Our experiment shows that LPRQ+OFS achieves 14.7% improvement

compared to BD.

Chapter 6

Summary of Contributions and Future

Work

6.1 Summary of Contributions

In this thesis, we have proposed a number of techniques for enhancing the utilization of

SRAM and DRAM caches. In the first part of this thesis, we proposed critical-words-

only cache (co-cache) which allows us to improve the effective cache capacity of an

L2 cache by only storing critical-words. Our design is based on the observation that

for every L2 cache block, a subset of words (the critical words) are accessed sooner

than the others. In contrast to a conventional L2, a co-cache only caches the critical

words for each cache block. Our experimental results provide evidence to support the

hypothesis that a co-cache is able to utilize the cache space more efficiently, especially

in situations in which the cache size is significantly less than the working-set size.

However, in situations in which the cache size is larger than the working-set size, a

conventional cache could perform better. For this reason, we also proposed adaptive

co-cache (aco-cache) that can dynamically choose to behave like a co-cache or a con-

ventional cache. In our experiments, a 256 kB L2 organized as an aco-cache performed

as well as a 512 kB conventional L2 cache on average.

In the second part of this thesis, we studied the tag issue in the DRAM cache. The

advent of the DRAM cache has posed a problem of how to efficiently manage the tags

associated with the DRAM cache. One naive option is to store all the tags in SRAM;

while this would ensure fast access of the tags, the associated storage cost would ren-

der this approach impractical. Consequently, prior works have proposed innovative

techniques to manage the tags efficiently in DRAM. Nonetheless, we observe, with a

109

110 Chapter 6. Summary of Contributions and Future Work

help of a study, that it is more performance efficient to manage the tags in SRAM. We

proposed aggressive tag caching so that we can achieve the effect of maintaining all

tags in SRAM, without paying the prohibitive cost; we show that there is enough spa-

tial and temporal locality amongst DRAM cache tag accesses to merit caching/prefetch

the tags. In the result, we can see that the ATCache achieves 10.3% speedup on average

across 11 memory-intensive workloads.

While prior works proposed a tags-in-DRAM design, a study on how to sched-

ule DRAM cache requests is missing. In the last part of the thesis, we addressed the

problem of how to effectively schedule these DRAM cache accesses. A conventional

DRAM controller only classifies accesses into two categories — read and write. This

simple two way classification is not suitable for DRAM cache because different read

access can have different priorities depending on the request they correspond to. In

this work, we study two potential naive designs based on conventional DRAM con-

troller and analyze their limitations. We then propose a DRAM-Cache-Aware (DCA)

DRAM controller that uses an additional low-priority read queue. We also propose an

opportunistic flushing scheme (OFS) for this low-priority read queue. In our study, we

found that in a 16-way DRAM cache, LPRQ+OFS improves 15.6% compared to BD,

which is a naive design derived from conventional DRAM controller. We also study

the direct-mapped design, which allows tag and data to be read in one single DRAM

burst. Our experiment shows that LPRQ+OFS achieves 14.7% improvement compared

to the baseline.

6.2 Future Work

Enhanced adaptive co-cache design. In the co-cache work, we proposed a simple

adaptive scheme to switch between co-cache and conventional L2 cache based on the

miss rate of L2. Prior works [60, 61] indicate that the accesses among all cache set are

not uniformly distributed. To exploit this observation, instead of switching the whole

L2 between conventional cache and co-cache, a reconfiguration scheme based on the

cache sets’ miss rate seems promising. Also, our proposed design require additional

tags space (about 13% of L2 size) due to the increased number of cache sets. This

SRAM overhead is acceptable as the L2 cache is normally four to eight times smaller

than L3 cache. However, this overhead could restrict our application if we want to

apply co-cache idea to a larger cache such as L3 cache. Instead of provide co-cache

6.2. Future Work 111

support to all cache sets (i.e. all cache sets will have additional tags/wid), partial

support could be an interesting direction for further study.

Bandwidth-aware tag caching. Our study in §4.3.2 shows that most of tag cache hits

are coming from prefetching. Although our ATCache can satisfy 60% tag requests,

we observed that most tag hits are coming from prefetched tags. If we remove all the

prefetching mechanisms that we used in ATCache (i.e. PG/1 and no hit-prefetching),

only about 4% tag requests are serviced in the ATCache. However, from our study, we

found these prefetching mechanisms result in a 12% to 36% additional tag accesses

compared to a tags-in-DRAM approach. In ATCache work, we try to minimize the

SRAM requirement and gain the maximum performance. However, using tag caching

to minimizing DRAM cache’s tag accesses is also a promising direction.

Bibliography

[1] C. Huang and V. Nagarajan, “Increasing cache capacity via critical-words-only

cache,” in 32nd IEEE International Conference on Computer Design, ICCD

2014, Seoul, South Korea, October 19-22, 2014, pp. 125–132, 2014.

[2] C. Huang and V. Nagarajan, “Atcache: reducing DRAM cache latency via a small

SRAM tag cache,” in International Conference on Parallel Architectures and

Compilation, PACT ’14, Edmonton, AB, Canada, August 24-27, 2014, pp. 51–

60, 2014.

[3] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes for very

large die-stacked dram caches,” in MICRO, pp. 454–464, 2011.

[4] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in architecting

dram caches: Outperforming impractical sram-tags with a simple and practical

design,” in MICRO, pp. 235–246, 2012.

[5] Intel, “Desktop 4th generation intel core processor family, desktop intel pentium

processor family, and desktop intel celeron processor family,” 2012.

[6] A. Jaleel, “Memory characterization of workloads using instrumentation-driven

simulation.”

[7] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee, D. Jevdjic,

C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds:

a study of emerging scale-out workloads on modern hardware,” in ASPLOS,

pp. 37–48, 2012.

[8] L. Zhao, R. R. Iyer, R. Illikkal, and D. Newell, “Exploring dram cache architec-

tures for cmp server platforms,” in ICCD, pp. 55–62, 2007.

113

114 Bibliography

[9] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi, “A mostly-clean

dram cache for effective hit speculation and self-balancing dispatch,” in MICRO,

pp. 247–257, 2012.

[10] N. Gulur, G. R., R. Manikantan, and M. Mehendale, “Bi-modal dram cache:

Improving hit rate, hit latency and bandwidth,” in MICRO, 2014.

[11] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A scalable and

effective die-stacked dram cache,” in MICRO, 2014.

[12] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to model large

caches,” 2009.

[13] G. H. Loh and M. D. Hill, “Supporting very large dram caches with compound-

access scheduling and missmap,” IEEE Micro, vol. 32, no. 3, pp. 70–78, 2012.

[14] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for servers: hit

ratio, latency, or bandwidth? have it all with footprint cache,” in ISCA, pp. 404–

415, 2013.

[15] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, Y. Soli-

hin, and R. Balasubramonian, “Chop: Adaptive filter-based dram caching for cmp

server platforms,” in HPCA, pp. 1–12, 2010.

[16] T. Johnson and D. Shasha, “2q: A low overhead high performance buffer man-

agement replacement algorithm,” in VLDB’94, Proceedings of 20th International

Conference on Very Large Data Bases, September 12-15, 1994, Santiago de

Chile, Chile, pp. 439–450, 1994.

[17] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk. Elsevier

Science, 2010.

[18] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quantitative Ap-

proach (5. ed.). Morgan Kaufmann, 2012.

[19] A. Jaleel, E. Borch, M. Bhandaru, S. C. S. Jr., and J. S. Emer, “Achieving

non-inclusive cache performance with inclusive caches: Temporal locality aware

(TLA) cache management policies,” in 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 2010, 4-8 December 2010, Atlanta,

Georgia, USA, pp. 151–162, 2010.

Bibliography 115

[20] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer, “High performance cache

replacement using re-reference interval prediction (rrip),” in ISCA, pp. 60–71,

2010.

[21] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. S. Jr., and J. S. Emer,

“CRUISE: cache replacement and utility-aware scheduling,” in Proceedings of

the 17th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2012, London, UK, March 3-7,

2012, pp. 249–260, 2012.

[22] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of

a small fully-associative cache and prefetch buffers,” in Proceedings of the 17th

Annual International Symposium on Computer Architecture. Seattle, WA, June

1990, pp. 364–373, 1990.

[23] J. Baer and T. Chen, “An effective on-chip preloading scheme to reduce data

access penalty,” in Proceedings Supercomputing ’91, Albuquerque, NM, USA,

November 18-22, 1991, pp. 176–186, 1991.

[24] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” IEEE Trans.

Computers, vol. 48, no. 2, pp. 121–133, 1999.

[25] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, “AC/DC: an adaptive data cache

prefetcher,” in 13th International Conference on Parallel Architectures and Com-

pilation Techniques (PACT 2004), 29 September - 3 October 2004, Antibes Juan-

les-Pins, France, pp. 135–145, 2004.

[26] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global history

buffer,” IEEE Micro, vol. 25, no. 1, pp. 90–97, 2005.

[27] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-temporal mem-

ory streaming,” in 36th International Symposium on Computer Architecture

(ISCA 2009), June 20-24, 2009, Austin, TX, USA, pp. 69–80, 2009.

[28] Micron, “8gb: x4, x8 1.5v twindie ddr3 sdram.”

[29] S. Kumar and C. B. Wilkerson, “Exploiting spatial locality in data caches using

spatial footprints,” in ISCA, pp. 357–368, 1998.

116 Bibliography

[30] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and L. Shannon,

“Amoeba-cache: Adaptive blocks for eliminating waste in the memory hierar-

chy,” in 45th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 2012, Vancouver, BC, Canada, December 1-5, 2012, pp. 376–388, 2012.

[31] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation: Increasing

cache capacity by filtering unused words in cache lines,” in HPCA, pp. 250–259,

2007.

[32] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate and complexity-

effective spatial pattern prediction,” in HPCA, pp. 276–287, 2004.

[33] P. Pujara and A. Aggarwal, “Increasing the cache efficiency by eliminating

noise,” in HPCA, pp. 145–154, 2006.

[34] R. K, T. Warrier, and M. Mutyam, “Skipcache: miss-rate aware cache manage-

ment,” in PACT, pp. 481–482, 2012.

[35] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches,” in MICRO,

pp. 423–432, 2006.

[36] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and B. Franke, “Co-

operative partitioning: Energy-efficient cache partitioning for high-performance

cmps,” in HPCA, pp. 311–322, 2012.

[37] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, “Gated-v dd

: A circuit technique to reduce leakage in deep-submicron cache memories,” in

ISPLED, pp. 90–95, 2000.

[38] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar, “An inte-

grated circuit/architecture approach to reducing leakage in deep-submicron high-

performance i-caches,” in HPCA, pp. 147–157, 2001.

[39] S.-H. Yang, M. D. Powell, B. Falsafi, and T. N. Vijaykumar, “Exploiting choice

in resizable cache design to optimize deep-submicron processor energy-delay,”

in HPCA, pp. 151–161, 2002.

[40] D. H. Albonesi, “Selective cache ways: On-demand cache resource allocation,”

in MICRO, pp. 248–, 1999.

Bibliography 117

[41] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G. Saidi, A. Basu,

J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Com-

puter Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[42] E. J. Gieske, Critical words cache memory: exploiting criticality within primary

cache miss streams. PhD thesis, Cincinnati, USA, 2008.

[43] A. Seznec, “Decoupled sectored caches: Conciliating low tag implementation

cost and low miss ratio,” in ISCA, pp. 384–393, 1994.

[44] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Architecting efficient

interconnects for large caches with cacti 6.0,” IEEE Micro, vol. 28, no. 1, pp. 69–

79, 2008.

[45] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi, “Predictor virtualization,”

in Proceedings of the 13th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2008, Seattle, WA,

USA, March 1-5, 2008, pp. 157–167, 2008.

[46] P. Michaud, “Demystifying multicore throughput metrics,” IEEE Computer Ar-

chitecture Letters, 2013.

[47] S. Eyerman and L. Eeckhout, “Restating the case for weighted-ipc metrics to

evaluate multiprogram workload performance,” IEEE Computer Architecture

Letters, 2013.

[48] H. Wang, T. Sun, and Q. Yang, “Cat - caching address tags: A technique for

reducing area cost of on-chip caches,” in ISCA, pp. 381–390, 1995.

[49] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling efficient

and scalable hybrid memories using fine-granularity DRAM cache management,”

Computer Architecture Letters, vol. 11, no. 2, pp. 61–64, 2012.

[50] W. Chou, Y. Nain, H. Wei, and C. Ma, “Caching tag for a large scale cache

computer memory system,” Sept. 22 1998. US Patent 5,813,031.

[51] T. Wicki, M. Kasinathan, and R. Hetherington, “Cache tag caching,” Apr. 3 2001.

US Patent 6,212,602.

118 Bibliography

[52] C. Chou, A. Jaleel, and M. K. Qureshi, “Bear: Techniques for mitigating band-

width bloat in gigascale dram caches,” in ISCA, 2015.

[53] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme

to reduce row-buffer conflicts and exploit data locality,” in Proceedings of the

33rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

33, Monterey, California, USA, December 10-13, 2000, pp. 32–41, 2000.

[54] D. Sanchez and C. Kozyrakis, “Zsim: fast and accurate microarchitectural sim-

ulation of thousand-core systems,” in The 40th Annual International Symposium

on Computer Architecture, ISCA’13, Tel-Aviv, Israel, June 23-27, 2013, pp. 475–

486, 2013.

[55] C. Chou, A. Jaleel, and M. K. Quresh, “Cameo:a two-level memory organization

with capacity of main memory and flexibility of hardware-managed cache,” in

MICRO, 2014.

[56] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the processor-

memory performance gapwith 3d IC technology,” IEEE Design & Test of Com-

puters, vol. 22, no. 6, pp. 556–564, 2005.

[57] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim, “Transparent

hardware management of stacked dram as part of memory,” in MICRO, 2014.

[58] D. H. Woo, N. H. Seong, D. L. Lewis, and H. S. Lee, “An optimized 3d-

stacked memory architecture by exploiting excessive, high-density TSV band-

width,” in 16th International Conference on High-Performance Computer Archi-

tecture (HPCA-16 2010), 9-14 January 2010, Bangalore, India, pp. 1–12, 2010.

[59] B. R. Rau, “Pseudo-randomly interleaved memory,” in Proceedings of the 18th

Annual International Symposium on Computer Architecture. Toronto, Canada,

May, 27-30 1991, pp. 74–83, 1991.

[60] F. Bodin and A. Seznec, “Skewed associativity enhances performance pre-

dictability,” in Proceedings of the 22nd Annual International Symposium on Com-

puter Architecture, ISCA ’95, Santa Margherita Ligure, Italy, June 22-24, 1995,

pp. 265–274, 1995.

Bibliography 119

[61] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and associativ-

ity,” in 43rd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 2010, 4-8 December 2010, Atlanta, Georgia, USA, pp. 187–198, 2010.

	cover sheet
	thesis

