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Abstract

In this thesis I present a novel method for constructing large scale mock galaxy and halo

catalogues and apply this model to a number of important topics in modern cosmology.

Traditionally such mocks are created through first evolving a high resolution particle

simulation from a set of initial conditions to the present epoch, identifying bound

structures and their evolution, and finally applying a semi-analytic prescription for

galaxy formation. In contrast to this computationally expensive procedure, I use low

resolution simulations to obtain a density field that traces large scale modes. From this

background I sample the population statistics of halos: the number of halos which are

typically found within a region of a given overdensity, to produce a halo catalogue.

From the halo catalogue I then produce galaxies by appealing to the halo model.

In this model the expected number of galaxies within a halo and the distribution of

their properties is dependent on halo mass alone. By sampling conditional luminosity

functions for a number of populations of galaxies, I produce a galaxy catalogue with

luminosity and colour properties.

The aim of developing algorithm is not to probe the mechanics of galaxy formation

in great detail. It is instead intended as a method of rapidly producing mock galaxy

and halo catalogues rapidly on modern desktop computers. The approach we will take

is to try to distill the minimal algorithm required to achieve this and still provide useful

catalogues for observational cosmologists.

Both the conditional mass function and conditional luminosity functions required

for the algorithm are calibrated from the Millennium Simulation, one of the highest

resolution cosmology simulations to date, and its associated semi-analytic catalogues.

In Chapter 2 I examine these statistics and provide fits to the quantities of interest.

As a test of the method, in Chapter 3 I produce a halo and galaxy catalogue from

the same large scale modes as the Millennium Simulation. The clustering statistics of

galaxies and halos within this re-simulation are calculated and compared with those of

the original.

Confident of the accuracy of the method, in Chapter 4 I populate a number of



simulations, each 8 times the volume of the Millennium Simulation, and study the

evolution of the Baryon Acoustic Oscillation signal. For each population (dark matter,

halos and galaxies) I fit the BAO in the power spectrum to obtain the shift in the BAO

peak.

In Chapter 5 I extend the algorithm to produce lightcones: simulated skies in

which the evolution of the Universe along the line of sight is accounted for. I simulate

the geometry and limitations of a major pending survey and calculate the expected

clustering signature I expect to see in both. The redshift space distortions induced by

peculiar velocities of galaxies along the line of sight are determined and their ability to

distinguish between gravity models is also explored.

In Chapter 6 I detail a further extension to the algorithm for simulating weak grav-

itational lensing surveys. I use the analytic 2D surface density profiles of NFW profiles

to dress each dark matter halo on a lightcone. The sum of these profiles over the entire

population can be used to construct high resolution maps of the convergence. From

these maps I calculate the spectrum of the convergence and compare with theoretical

predictions.

Finally in Chapter 7 I discuss further possible applications and extensions of the

algorithm I have developed in this thesis.
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Chapter 1

Introduction

1.1 Background cosmology

It is widely thought that the Universe that surrounds us today evolved from an

small region through an inflation period in which some mechanism exponentially

expanded a region by around & 1026 times. The same process drives quantum

fluctuations which give rise to a spectrum of inhomogeneities.After the inflation-

ary period ends, the Universe is left in a hot dense state of plasma in which hy-

drogen, helium and a few other trace elements are produced. Within this plasma,

charged baryons are tightly coupled with photons through Compton scattering

leading to pressure supported medium which supports sound like fluctuations.

As the Universe expands further, the plasma cools until it reaches a temper-

ature of T ∼ 0.3eV Kolb et al. (1990) at which point electrons and proton in

the plasma combine to form neutral atoms. Now free to travel, the photons are

observed today as the Cosmic Microwave Background (CMB). Without pressure

support, gravity becomes the dominant force in the Universe and acts on the small

inhomogeneities, amplifying overdense regions and diluting underdense ones.

The resulting arrangement of matter, referred to as the cosmic web, is an

intricate structure made up of sheets, filaments and haloes of dark matter. Within

these dense dark matter haloes, baryons can radiate and condense until they are
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dense and hot enough to ignite nuclear fusion thus forming stars. This initial

population of stars, made of mostly hydrogen and helium, are massive and short

lived and produce a number of the higher mass elements in their cores. Once

they have burned as much of their hydrogen fuel as they can, these stars explode

in powerful supernovae polluting the surrounding gas with heavy elements which

leads to a second generation of less massive, longer lived stars.

Collections of these stars, along with dust, gas and dark matter form galax-

ies, which are initially numerous and small. As the cosmic web evolves, the

dark matter haloes that house the galaxies merge hierarchically; in the process,

galaxies become satellites of one and other or merge together to produce larger

more luminous galaxies. Today, the largest structures which have formed out of

this hierarchical merging are giant super clusters containing many thousands of

galaxies.

1.1.1 Isotropy and homogeneity

One of the founding ideas on which we base our understanding of the Universe is

that of the Cosmological principle. An extension of the Copenician view that we

are not at the centre of the solar system, the cosmological principle states that

our position in the Universe is in no way special and that there is no preferred

location or direction in the Universe. On sufficiently large scales we observe this

to be true: the distribution of galaxies is broadly isotropic and homogeneous.

Even more compellingly, the microwave light we observe from the early Universe

as the cosmic microwave background is homogeneous to a level of one part in

100,000. While on small scales this is clearly not true, it serves as a good starting

point from which the evolution of non-uniform structures can be thought of as

perturbations.

1.1.2 Robertson-Walker metric

The theoretical framework used to understand the large scale Universe is that of

General Relativity, in which gravity is described as a geometrical effect: the warp-

ing of 4D space time by the presence of matter. This distortion is described by a

metric which relates the proper time interval between events, δτ , to infinitesimal

2
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displacements along the four directions in spacetime : δx, δy, δz, δt. We begin

by considering a truly isotropic and homogeneous Universe with no fluctuations.

In such a Universe the curvature of space-time must be the same everywhere and

this constraint forces the form of the metric to be :

c2δτ = −gφϕdxφdxϕ = c2dt−R(t)(dr2 + S2
k(r)(dθ

2 + sin2(r)dφ2)), (1.1)

where R(t) is the scale factor which represents the evolution of the separation of

any two particles and we have taken r to be the comoving separation between

objects. The three possible geometric solutions which obey the constraints of

homogeneity and isotropy are encapsulated in Sk(r) which takes on the values:

Sk(r) =





sin(r) if k = 1

r if k=0

sinh(r) if k=-1

, (1.2)

for a Universe with positive constant curvature (k = 1), no curvature (k = 0), and

negative constant curvature (k = −1). In the positive curvature case the Universe

is wrapped around back on itself in such a way that it is finite in extent and two

parallel geodesics, the paths of light through the metric will eventually converge.

In both the k = 0 and k = −1 cases the Universe is infinite in extent and parallel

geodesics will remain parallel in the first case and diverge from each other in the

second. Space time is curved in response to the presence of energy and matter

so to complete the description of the Universe we have to also specify the matter

it contains and how it relates to its curvature. In General Relativity, the various

contents of the Universe are described by the energy-momentum tensor T µν which

is related to the metric via :

Gµ
ν + Λgµν =

8πG

c4
T µν , (1.3)

where Gµν is a tensor of the metric components and their derivatives. The con-

stant Λ was originally introduced by Einstein to counteract the attractive force of

gravity to allow a solution to the equation in which the Universe was static. We

now know that the Universe is expanding and that the expansion is getting faster

which might be attributed to the inclusion of a non-zero cosmological constant.

In general, the above equation must be solved for the Universe and its contents

and the solution to this equation for a homogenous Universe is discussed in the
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next section. However, our Universe is not entirely homogenous and the equations

above are hard if not impossible to solve for this more general case. Thankfully we

can treat the dynamics of our Universe as small perturbations to the homogeneous

case and appeal to Newtonian gravity in many cases.

It is useful at this point to define a few dimensionless quantities related to the

metric: the dimensionless scale factor a(t) and the conformal time η:

a(t) =
R(t)

R(0)
(1.4)

dη

dt
=

1

a
, (1.5)

where R(0) is the value of the scale factor today.

1.1.3 Friedmann Equation

Solving the equations of general relativity for the simple case of a homogenous

Universe amounts to determining the time evolution of the scale factor. The

derivation will not be explicitly given here but can be found in Robertson (1935).

The result is the Friedmann equation:

(
Ṙ

R

)2

=
8πG

3
ρ− kc2

R2
, (1.6)

where ρ is the combined energy density of the contents of the Universe and

(kc2)/(a2) is the effect of curvature. It is clear from equation 1.6 that the curva-

ture of the Universe is linked with its density. For the critical case where k = 0

we find we require the density of the Universe to be :

ρc =
3H2

8πG
, (1.7)

where we have introduced :

H =
Ṙ

R
=
ȧ

a
(1.8)

If the density of the Universe is greater than ρc, the Universe is spatially

closed and the evolution of the scale factor is also bound: rising to a maximum

and then being halted and reversed by gravity, decreasing to zero in a big crunch.

Conversely if the density is less than ρc, the Universe is spatially unbound and

there is insufficient mass to stop the expansion.
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The evolution of the scale factor is therefore dependent on the contents of the

Universe ρ and its curvature k. We define the density parameter

Ω =
ρ

ρc
, (1.9)

which can be split in to the various components which make up the Universe.

1.1.4 Components of the Universe

We have seen in the previous section that the dynamics of the scale factor depend

on the energy density of the Universe. This energy density is split up in to a

number of components ρi and for each we can define a density parameter:

Ωi =
ρi
ρc

(1.10)

Figure 1.1: Current and past contributions to the energy budget

During the Universe’s history the dominant contribution to the energy budget

has evolved. Initially when the Universe was still filled with plasma, the dominant

contribution came from radiation. As the Universe expanded the energy density

of radiation was diluted away and the dominant factor became the cold dark

matter which drove the gravitational collapse of matter forming structures. At
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the current epoch the expansion of the Universe has diluted the contribution

from dark matter enough that dark energy now dominates and is in the process

of accelerating the expansion. Each of forms of matter/energy respond to the

expansion, and contribute to the Friedman equations in different ways.

Radiation and relativistic matter

We observe the Universe through the radiation which baryons emit, absorb and

reflect and as such it is an important component. However, in terms of struc-

ture formation: radiation is only dominant at early times. Their are two main

sources of radiation in our Universe: primordial photons from the cosmic mi-

crowave background and those emitted by astrophysical processes. In terms of

energy density the primordial contribution is dominant. However, at the current

epoch this component is negligible, ωrh
2 ' 4.2× 10−5. As the Universe expands

the number of photons in a given volume is diluted by a3 and the photons are

redshifted by the expansion of the Universe by another factor of a leading to a

relation of :

ρr(a) = ρr0a
−4 (1.11)

While negligible now at early times the energy density in radiation equalled

and surpassed that matter with the redshift of equality being :

1 + zeq ' 23.900(Ωmh
2)−1 (1.12)

Baryons

The component of the Universe which is most familiar to us is the matter which

makes up galaxies, stars and planets. Consisting of baryons: quarks, electrons

and other particles of the standard model of particle physics, baryonic matter

interacts with itself through the four known forces: electromagnetic, strong, weak

and gravity. Despite being responsible for every visible object in the night sky,

luminous matter is only a fraction of the baryons in the Universe, with most

existing as the gas which is present between stars and galaxies. In total the baryon

content is currently believed to make up only 4% of the total energy budget of
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the Universe and only 10% of this is in the form of stars, with a further 20%

as hot gas and the remanning 70% as cold gas. Like radiation, the contribution

of baryons to the energy density of the Universe is diluted by the expansion in

terms of number density :

ρb(a) ∝ a−3 (1.13)

Despite consisting of a small fraction of the global energy budget, in some

regions of the Universe the baryonic content is dominant. The ability of baryons

to interact through the electromagnetic force mean that they are collisional and

can radiate energy through the emission of photons. This allows baryons in a

sufficiently dense potential well to condense to form the compact dense structures

of stars and galaxies.

Dark matter

Dark matter is thought to be the most dominant form of matter in the Universe.

Although not as of yet observed directly, a growing body of indirect evidence

points to a component of the Universe not described by the standard model of

particle physics.

Originally proposed by Zwicky in the 1930s to explain the discrepancy in

the velocities of galaxies in the Coma cluster and the observed mass in baryons

dark matter has gained general acceptance with further evidence coming from

the rotation curves of galaxies (de Blok and McGaugh, 1997), the perturbations

of the CMB and the clustering of galaxies.

Perhaps the most striking evidence to date comes from gravitational lensing

(see chapter 6) measurements of merging clusters. The bullet cluster shown in

Figure 1.2 is a pair of colliding clusters which has been imaged in the optical and

x-ray wavelengths, and has also had its mass distribution determined using weak

gravitational lensing. This allows us to map the locations of the three components

of the cluster, stars and cold gas in the form of galaxies visible in the optical, hot

gas which is visible in the x-ray and the total mass distribution, including dark

matter from the weak lensing analysis.

As the two clusters have collided the galaxies have passed by each other, while
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2

Fig. 1.— Shown above in the top panel is a color image from the Magellan images of the merging cluster 1E0657−558, with the white
bar indicating 200 kpc at the distance of the cluster. In the bottom panel is a 500 ks Chandra image of the cluster. Shown in green contours
in both panels are the weak lensing κ reconstruction with the outer contour level at κ = 0.16 and increasing in steps of 0.07. The white
contours show the errors on the positions of the κ peaks and correspond to 68.3%, 95.5%, and 99.7% confidence levels. The blue +s show
the location of the centers used to measure the masses of the plasma clouds in Table 2.

nated by collisionless dark matter, the potential will trace
the distribution of that component, which is expected
to be spatially coincident with the collisionless galax-
ies. Thus, by deriving a map of the gravitational po-
tential, one can discriminate between these possibilities.
We published an initial attempt at this using an archival
VLT image (Clowe et al. 2004); here we add three addi-
tional optical image sets which allows us to increase the
significance of the weak lensing results by more than a
factor of 3.

In this paper, we measure distances at the redshift of
the cluster, z = 0.296, by assuming an Ωm = 0.3, λ =
0.7, H0 = 70km/s/Mpc cosmology which results in 4.413
kpc/′′ plate-scale. None of the results of this paper are
dependent on this assumption; changing the assumed
cosmology will result in a change of the distances and
absolute masses measured, but the relative masses of
the various structures in each measurement remain un-
changed.

2. METHODOLOGY AND DATA

We construct a map of the gravitational poten-
tial using weak gravitational lensing (Mellier 1999;
Bartelmann & Schneider 2001), which measures the dis-
tortions of images of background galaxies caused by the
gravitational deflection of light by the cluster’s mass.
This deflection stretches the image of the galaxy pref-
erentially in the direction perpendicular to that of the
cluster’s center of mass. The imparted ellipticity is typi-
cally comparable to or smaller than that intrinsic to the
galaxy, and thus the distortion is only measurable statis-
tically with large numbers of background galaxies. To do
this measurement, we detect faint galaxies on deep op-
tical images and calculate an ellipticity from the second
moment of their surface brightness distribution, correct-
ing the ellipticity for smearing by the point spread func-
tion (corrections for both anisotropies and smearing are
obtained using an implementation of the KSB technique
(Kaiser et al. 1995) discussed in Clowe et al. (2006)).
The corrected ellipticities are a direct, but noisy, mea-
surement of the reduced shear "g = "γ/(1 − κ). The shear
"γ is the amount of anisotropic stretching of the galaxy
image. The convergence κ is the shape-independent in-
crease in the size of the galaxy image. In Newtonian

gravity, κ is equal to the surface mass density of the lens
divided by a scaling constant. In non-standard gravity
models, κ is no longer linearly related to the surface den-
sity but is instead a non-local function that scales as the
mass raised to a power less than one for a planar lens,
reaching the limit of one half for constant acceleration
(Mortlock & Turner 2001; Zhao et al. 2006). While one
can no longer directly obtain a map of the surface mass
density using the distribution of κ in non-standard grav-
ity models, the locations of the κ peaks, after adjusting
for the extended wings, correspond to the locations of
the surface mass density peaks.

Our goal is thus to obtain a map of κ. One can combine
derivatives of "g to obtain (Schneider 1995; Kaiser 1995)

∇ ln(1−κ) =
1

1 − g2
1 − g2

2

(
1 + g1 g2

g2 1 − g1

) (
g1,1 + g2,2

g2,1 − g1,2

)
,

which is integrated over the data field and converted into
a two-dimensional map of κ. The observationally un-
constrained constant of integration, typically referred to
as the “mass-sheet degeneracy,” is effectively the true
mean of ln(1−κ) at the edge of the reconstruction. This
method does, however, systematically underestimate κ
in the cores of massive clusters. This results in a slight
increase to the centroiding errors of the peaks, and our
measurements of κ in the peaks of the components are
only lower bounds.

For 1E0657−558, we have accumulated an exception-
ally rich optical dataset, which we will use here to mea-
sure "g. It consists of the four sets of optical images shown
in Table 1 and the VLT image set used in Clowe et al.
(2004); the additional images significantly increase the
maximum resolution obtainable in the κ reconstructions
due to the increased number of background galaxies,
particularly in the area covered by the ACS images,
with which we measure the reduced shear. We reduce
each image set independently and create galaxy cata-
logs with 3 passband photometry. The one exception
is the single passband HST pointing of main cluster,
for which we measure colors from the Magellan images.
Because it is not feasible to measure redshifts for all
galaxies in the field, we select likely background galax-
ies using magnitude and color cuts (m814 > 22 and not
in the rhombus defined by 0.5 < m606 − m814 < 1.5,

Figure 1.2: From Clowe et al. (2006), the bullet cluster showing the initial phases of

two clusters merging. On the left we see the mass contours obtained from gravitational

lensing overlaid on the optical view of the cluster galaxies while the right image shows

the distribution of gas in the cluster. The displacement of lensing contours from the

gas suggests a dominant component of invisible collision-less matter is present in both

clusters.

the gas in the clusters has, due to its collisional nature, lagged behind. The drag

on the gas of smaller of the two clusters has formed a bow shock in the gas of

the larger. The gas in the clusters is more massive than the combined mass of

the galaxies by many times, so if the cluster contained only baryonic matter we

should expect to find most of the mass measured by lensing in the centre of the

collision. What is actually seen, is the mass clustered around the galaxies. This

strongly suggests an unseen collisionless component which constitutes most of the

mass of the cluster.

It is thought that this missing matter is dark matter, a collisionless form of

matter not present in the current standard model of particle physics. Dark matter

is thought to interact only through the weak force and gravity, as a result it is

unlikely to emit or absorb photons and has a small interaction cross-section with

both ordinary matter and itself.

Like ordinary matter the density of dark matter is diluted by the expansion

of the Universe by a factor :

ρcdm(a) ∝ a−3 (1.14)
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Dark energy

Dark energy is perhaps the largest mystery which exists in modern physics. Evi-

dence from supernovae in distant galaxies suggests that there exists a component

of our Universe with negative pressure. Supernove observed by Riess et al. (1998)

and Perlmutter et al. (1999) in high redshift galaxies act as standard candles al-

lowing the distance redshift relation to be probed beyond the local Universe. The

results show a Universe inconsistent with a slowing expansion, instead they point

to a Universe in which the rate of expansion is increasing.

1.1. BACKGROUND COSMOLOGY

Figure 1.4: From Perlmutter et al. (1999): Observations of supernovae give a Hubble diagram that

is strongly inconsistent with a flat matter-dominated Universe. The high redshift supernovae are ob-

served to lie further from us than would be expected in this case, providing evidence for a Dark Energy

component in the Universe.

Assuming for the moment a Dark Energy dominated universe allows us to place an upper limit

on the value of wDE necessary for accelerated expansion from equation (1.11)

ä > 0 ⇒ −4πG

3

(
ρ + 3

p

c2

)
= −4πG

3
ρ(1 + 3wDE) > 0

⇒ wDE < −1

3

A specific form for Dark Energy is the cosmological constant, which has a constant equation

of state wDE = −1. This actually dates back to Einstein who introduced such a component

to allow the Universe to be static – the accepted viewpoint at the time. If we assume that

the equation of state for Dark Energy is constant and that the Universe is flat, then current

constraints on the value of wDE are wDE = −0.97+0.07
−0.09 (Spergel et al., 2006), consistent with

a cosmological constant.

The time evolution of the equation of state is often modelled via the following parametri-

sation of Dark Energy

12

Figure 1.3: From Perlmutter et al. (1999). Inclusion of high redshift galaxies in the

Hubble diagram is strongly inconsistent with a slowing expansion rate. The tendency

of supernovae to be fainter and therefore more distant at high redshift than is predicted

for a world with Λ = 0 provides evidence of a component of Dark Energy in the Universe

increasing the rate of the expansion.

Not much is known about the nature of dark energy and so a general model

in which it is described as a spatially uniform and possessing an equation of state

w which relates its density to its pressure :

9
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p(x) = w(x)ρ(x)c2 (1.15)

To exhibit an accelerating Universe, left hand side of the Friedman equation

is required to be > 0 (ie ρ+ 3P/c2 > 0) leading to the condition w < −1/3 :

− 4πG

3
(1 + 3w) > 0. (1.16)

A large number of models have been proposed for dark energy attributing its

effects to one or many quantum scalar fields, a break down of general relativity on

large scales or the interaction of brane worlds. However, the simplest explanation

was originally proposed by Einstein as a constant term to General Relativity. In

this theory, known as the cosmological constant λ, the effects of dark energy are

attributed to a non-zero vacuum energy. As it is associated with empty space this

model has w = −1. Such a vacuum energy can be caused by the constant but brief

creation and annihilation of particle/ antiparticle pairs in empty space. However,

calculations from particle physics currently puts the value of the cosmological

constant on the order of 10120 times greater than that required for the observed

expansion rate.

In more complicated theories the equation of state of dark energy is not nec-

essarily a constant but may evolve in time. A simple parameterisation of this

evolution is one in which the equation of state varies linearly with the expansion

factor a

w(a) = w0 + (1− a)wa (1.17)

Putting all of the above contributions together, for the case where w is con-

stant, we can write the Friedmann Equation in terms of present day observable

quantitates

H2 = H2
0 (Ωma

−3 + Ωra
−4 + (1− Ω)a−2 + Ωva

−3(1+w)) (1.18)

where the (1− Ω)a−2 term comes from curvature.

10
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1.2 Structure formation

Until now we have modelled the Universe as completely homogeneous and

isotropic. However in such a Universe no structures can ever form. To proceed

we consider perturbations around this background.

As we have already quantified the evolution of the scale factor with the Fried-

mann equation we want to remove the effects of the expansion from the description

of perturbations. To this end we use the comoving coordinate system in which

we factor out the expansion of the Universe :

x(t) = a(t)r(t) (1.19)

∂v(t) = a(t)u(t) (1.20)

where the comoving peculiar velocity u is the time derivative of r and so ẋ =

ȧr+aṙ = Hx+aṙ which is just the Hubble flow plus the peculiar velocity δv = au

.

Linear Theory

We measure the departure from homogeneity of the Universe as the overdensity

field: δ:

δ(x) =
ρ(x)

ρ̄(x)
− 1. (1.21)

The equation of motion for this field can be found by first differentiating

x = ar twice to obtain

ẍ = au̇ + 2ȧu +
ä

a
x = go + g, (1.22)

where g0 is the acceleration a particle feels in a homogeneous universe and g

is the peculiar acceleration field. Subtracting off the equation of motion in a

homogeneous universe (ä/a)x = g0 and using the linear approximation for the

continuity equation as experienced by fundamental observers moving with the

Hubble flow:

δ̇ = −5 · u, (1.23)

we obtain the equation for the evolution of δ as :

δ̈ + 2Hδ̇ = 4πGρδ. (1.24)

11
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A solution to this can be seen to be:

d ln δ

d ln a
≈ Ωm(a)γ (1.25)

In general relativity γ ' 0.55 (Linder, 2005; Guzzo et al., 2008). However,

a large number of alternative gravity theories : Brane worlds, modified gravity

etc the growth of perturbations can be shown to agree with the above expression

but with varying values of γ. This implies the rate of growth of structures, is a

potentially important probe of alternative gravity.

Figure 1.4: Fluctuation in the early Universe as seen in the cosmic microwave back-

ground radiation

1.3 Statistics of the Density field

1.3.1 Power Spectrum

The primordial density fluctuations are thought to be very close to a Gaussian

random field, and as such its properties are totally characterised by a single

function: the power spectrum with all higher order moments equal to zero. As

the Universe evolves and gravity produces non linear structures this will not

always be true and the bispectrum, trispectrum and higher become significant.

However the power spectrum remains the most natural statistic with which to

describe the density field.

12
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The power spectrum is defined as the ensemble average of the Fourier modes

of wave vector k :

P (k) = 〈δ2(k)〉 (1.26)

However as we expect the density field to be isotropic we usually simplify the

power spectrum to P (k) = 〈|δ2
k|(k)〉.

Expressed in this way the density field can be seen to be a superposition

of waves each with amplitude that has the expectation value of
√
P (k) and a

random phase. While any two realisations or any two sufficiently large regions of

the Universe will have the same power spectra, if they have different phases the

structures present in each will be different.

It is more common to find the the power spectrum expressed in a dimensionless

form as the variance per ln(k) giving:

∆2(k) =
V

(2π)3
4πk3P (k) (1.27)

which unlike P (k) is now independent of the normalisation volume V . The

functional form of the power spectrum can be thought of as being a combination

of two factors: the initial spectrum of fluctuations produced at inflation and the

imprint of physical processes that have occurred in the Universe since the end

of inflation. At time of writing, the mechanism which drove the initial rapid

expansion of the Universe and seeded the perturbations from homogeneity in our

Universe is unknown. However most predict a power law distribution with a

power index ns of very close to 1 and the current best measurements of the CMB

fluctuations place 1− ns = 0.037+0.015
−0.014 (Dunkley et al., 2009).

While the initial fluctuations lack any features the subsequent evolution of

the Universe through the radiation dominated era subjects the density field to

physical processes which imprints a number of signatures on the power spectrum.

These departures from a power law are encapsulated in the the transfer func-

tion T (k, z). Taking both these contributions together let us express the power

spectrum as :

P (k) ∝ kns|T (k, z)|2 (1.28)

13
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A full fitting formula for the power spectrum which includes all of the effects

described below is presented in Eisenstein and Hu (1998) and shown in figure 1.6.

Baryon Acoustic Oscillations

While still in a hot plasma state, the early Universe supported sound waves

within the tightly coupled baryon photon fluid. These compression waves are

free to travel through the Universe until recombination at z ' 1000 at which

point free electrons and protons combine to form neutral atoms, and pressure

support within the Universe is lost. At this point the furthest a pressure wave

could have travelled is simply the speed of sound in the medium multiplied by

the age of the Universe. This gives a sound horizon at recombination of :

s =

∫ t(zd)

0

cs(1 + z)dt (1.29)

=
2

3keq

√
6

Req

ln

√
1 +Rd +

√
Rd +Req

1 +
√
Req

(1.30)

where zd is the redshift of decoupling, cs is the sound speed, keq the equality

wavenumber and Req, Rd are the weighted ratio of the density of baryons and

radiation evaluated at the redshift of equality and decoupling respectively, which

can be evaluated with (Eisenstein and Hu, 1998):

R(z) =
3ρb(z)

4ργ(z)
. (1.31)

One of the most interesting aspects of the Baryon Acoustic Oscillations is their

role as a standard ruler. After recombination the frozen in sound waves form a

excess of matter of scales of around the fundamental mode. These excesses are

where we would expect to see galaxies forming and so in the galaxy correlation

we expect a similar BAO bump. Indeed this has been detected by both the SDSS

and 2dF galaxy surveys Figure 1.5

As the Universe expands the physical scale of the BAO signature will increase,

which implies that if we have a measurement of the BAO scale at a number of

redshifts we can directly probe the expansion rate of the Universe. This promises

to give precise measurements of the equation of state and evolution of dark energy.

We discuss this aspect more in chapter 4.
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1.3. STATISTICS OF THE DENSITY FIELD

Baryon Acoustic Oscillations 5

Fig. 2.— The large-scale redshift-space correlation function of the
SDSS LRG sample. The error bars are from the diagonal elements
of the mock-catalog covariance matrix; however, the points are cor-
related. Note that the vertical axis mixes logarithmic and linear
scalings. The inset shows an expanded view with a linear vertical
axis. The models are Ωmh2 = 0.12 (top, green), 0.13 (red), and
0.14 (bottom with peak, blue), all with Ωbh

2 = 0.024 and n = 0.98
and with a mild non-linear prescription folded in. The magenta
line shows a pure CDM model (Ωmh2 = 0.105), which lacks the
acoustic peak. It is interesting to note that although the data ap-
pears higher than the models, the covariance between the points is
soft as regards overall shifts in ξ(s). Subtracting 0.002 from ξ(s)
at all scales makes the plot look cosmetically perfect, but changes
the best-fit χ2 by only 1.3. The bump at 100h−1 Mpc scale, on the
other hand, is statistically significant.

two samples on large scales is modest, only 15%. We make
a simple parameterization of the bias as a function of red-
shift and then compute b2 averaged as a function of scale
over the pair counts in the random catalog. The bias varies
by less than 0.5% as a function of scale, and so we conclude
that there is no effect of a possible correlation of scale with
redshift. This test also shows that the mean redshift as a
function of scale changes so little that variations in the
clustering amplitude at fixed luminosity as a function of
redshift are negligible.

3.2. Tests for systematic errors

We have performed a number of tests searching for po-
tential systematic errors in our correlation function. First,
we have tested that the radial selection function is not in-
troducing features into the correlation function. Our selec-
tion function involves smoothing the observed histogram
with a box-car smoothing of width ∆z = 0.07. This cor-
responds to reducing power in the purely radial mode at
k = 0.03h Mpc−1 by 50%. Purely radial power at k = 0.04
(0.02)h Mpc−1 is reduced by 13% (86%). The effect of this
suppression is negligible, only 5 × 10−4 (10−4) on the cor-
relation function at the 30 (100) h−1 Mpc scale. Simply
put, purely radial modes are a small fraction of the total
at these wavelengths. We find that an alternative radial
selection function, in which the redshifts of the random

Fig. 3.— As Figure 2, but plotting the correlation function times
s2. This shows the variation of the peak at 20h−1 Mpc scales that is
controlled by the redshift of equality (and hence by Ωmh2). Vary-
ing Ωmh2 alters the amount of large-to-small scale correlation, but
boosting the large-scale correlations too much causes an inconsis-
tency at 30h−1 Mpc. The pure CDM model (magenta) is actually
close to the best-fit due to the data points on intermediate scales.

catalog are simply picked randomly from the observed red-
shifts, produces a negligible change in the correlation func-
tion. This of course corresponds to complete suppression
of purely radial modes.

The selection of LRGs is highly sensitive to errors in the
photometric calibration of the g, r, and i bands (Eisenstein
et al. 2001). We assess these by making a detailed model
of the distribution in color and luminosity of the sample,
including photometric errors, and then computing the vari-
ation of the number of galaxies accepted at each redshift
with small variations in the LRG sample cuts. A 1% shift
in the r − i color makes a 8-10% change in number den-
sity; a 1% shift in the g − r color makes a 5% changes in
number density out to z = 0.41, dropping thereafter; and
a 1% change in all magnitudes together changes the num-
ber density by 2% out to z = 0.36, increasing to 3.6% at
z = 0.47. These variations are consistent with the changes
in the observed redshift distribution when we move the
selection boundaries to restrict the sample. Such photo-
metric calibration errors would cause anomalies in the cor-
relation function as the square of the number density vari-
ations, as this noise source is uncorrelated with the true
sky distribution of LRGs.

Assessments of calibration errors based on the color of
the stellar locus find only 1% scatter in g, r, and i (Ivezić
et al. 2004), which would translate to about 0.02 in the
correlation function. However, the situation is more favor-
able, because the coherence scale of the calibration errors
is limited by the fact that the SDSS is calibrated in regions
about 0.6◦ wide and up to 15◦ long. This means that there
are 20 independent calibrations being applied to a given
6◦ (100h−1 Mpc) radius circular region. Moreover, some
of the calibration errors are even more localized, being
caused by small mischaracterizations of the point spread
function and errors in the flat field vectors early in the
survey (Stoughton et al. 2002). Such errors will average
down on larger scales even more quickly.

The photometric calibration of the SDSS has evolved

Figure 1.5: The detection of the BAO peak in the Luminous Red Galaxy catalogue

of the Sloan Digital Sky Survey (SDSS) (Eisenstein et al., 2005).

The location of the BAO peak at de-coupling is determined by both the matter

density and the baryon density and is given in k-space by (Eisenstein and Hu,

1998)

kpeak =
5π

2s
(1 + 0.217Ωoh

2), (1.32)

where

s =
44.5 ln (9.83/Ω0h

2)√
1 + 10(Ωbh2)3/4

Mpc (1.33)

1.3.2 Correlation function

While the power spectrum is usually the theorist choice of description, for most

observational data its real space counterpart, the correlation function is preferred

:

ξ(r) = 〈δ(x)δ(x+ r)〉 (1.34)

The correlation function can be thought of as the fractional over-density of

the number of pairs with a shell of radius r. The correlation function and power
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Figure 1.6: Power Spectrum of fluctuations as calculated by the fitting formula in

Eisenstein and Hu (1998)
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spectrum are related by:

ξ(r) =

∫ ∞

0

∆2dk

k

sin r

kr
(1.35)

1.4 Dark Matter haloes

1.4.1 Non-linear models of collapse

As gravitational forces act on matter in the Universe, regions of high density will

evolve from the linear to non-linear regime. The end point of this process for

the highest peaks in the density field is the formation of gravitationally bound

structures. To follow this process in detail requires numerical simulations, but

there are two well known models which are worth discussing here, which try and

probe beyond the linear regime. The spherical collapse model follows the growth

of an isolated perturbation and is useful for defining a number of characteristics of

the collapsed structures we expect to observe, while the Zeldovich approximation

attempts to follow the formation of structures using a kinematical approach,

essentially evolving the particle’s along their initial velocity vector.

Zeldovich approximation

In the Zeldovich approximation (Zel’Dovich, 1970) we attempt to follow the for-

mation of structure by identifying the initial displacement of a particle and as-

suming it will continue to move in that direction. We write the proper coordinate

of a particle as

x(t) = a(t)q + b(t)f(q), (1.36)

where q is the Lagrangian coordinate of the particle which at time t = 0 is simply

the particles comoving coordinate, f(q) is the time independent displacement field

and b(t) simply scales the displacement field. If we neglect the second term this

is simply a Hubble expansion.

In the Lagrangian coordinate system, the density is by definition constant

in time. To convert to the usual Eulerian density we use the Jacobian of the

transformation between x and q to give

ρ

ρ0

=

[(
1− b

a
α

)(
1− b

a
β

)(
1− b

a
γ

)]−1

, (1.37)
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where α, β and γ are the eigenvalues of the tensor ∂fi/∂qi. We see then that

the collapse of an overdense region occurs along the axis with the largest positive

eigenvalue. If only one of the eigenvalues is negative the region will collapse to

form a sheet of matter known a pancake. If a further eigenvalue is negative the

collapse can continue along two axes to form a filament and if all three eigenval-

ues are negative then the collapse occurs along each axis, forming a spherically

collapsed structure known as a halo.

The Zeldovich approximation works well, out performing Eulerian linear the-

ory in accuracy, but eventually breaks down when the particles streams’ cross

each others’ paths. At this point, where gravity would first halt and eventually

reverse the direction of particles, in the Zeldovich approximation they continue

along the same path. The result is that bound structures fly apart and the approx-

imation becomes unreliable. Aside from illustrating the process of collapse, the

Zeldovich approximation has an important practical application. The Zeldovich

approximation can be re-written as

x(t) = a(t)[q +D(t)f(q)], (1.38)

where D(t) is the linear density growth factor. This is an incredibly useful expres-

sion and it allows us to set up the initial particle conditions for n-body simulations

in the following way. Given particles distributed randomly within cells, we can

displace them from their positions q by a factor D(t)f(q) to obtain a particle

distribution which conforms to a density field with a given power spectrum. This

is accomplished by noting that the Fourier modes of the displacement field, fk are

related to the Fourier modes of the density field, δk as

fk = −i δ
2
k

k2
k. (1.39)

.

The Spherical collapse model

The Zeldovich approximation shows us that the inevitable fate of overdense re-

gions of the Universe is to form collapsed structures, with the most dense of these

forming dark matter halos. It does not tell us what happens after collapse, as
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structures will fly apart after first crossing. To gain further insight into the pro-

cess of structure formation we appeal to a simple model of an isolated spherical

overdensity. This problem is entirely analogous to a closed Universe which has

the parametric solution

r = A(1− cos(θ))t = B(θ − sin(θ)) (1.40)

where A = GMB2. Expanding these relations to fifth order in θ gives

r ' A

2

(
6t

B

)2/3
[

1− 1

20

(
6t

B

)2/4
]
. (1.41)

From this we can identify the density within the sphere as

δ ' 3

20

(
6t

B

)2/3

. (1.42)

At early times the overdensity expands with the Hubble flow until it reaches turn

around, the point at which the radius is briefly stationary. This occurs when

θ = π and t = πB giving a density enhancement relative to the background of

around 5.55. Gravity then forces the sphere to collapse in on itsself potentially

to a singularity at the halos’ centre. This does not happen in practice as small

offsets of particles from a true sphere will cause the kinetic infall motion of the

particles to be converted into random thermal motions. Once the condition for

equilibrium, the virial theorem (ie the potential energy of the system is twice the

kinetic) , is met the halo becomes a stable body. This occurs at θ = 3π/2 and

corresponds to a density enhancement of 147.

A key use of this model is to define the density in linear theory which corre-

sponds to the collapse threshold of a halo. By taking the time of collapse in the

model and computing the equivalent linear density perturbation, we can define

a collapse threshold δsc ' 1.63. As we will see this is useful when we want to

calculate the abundance of haloes. We can use linear theory and simply identify

haloes are regions which have a density greater than the collapse threshold.

1.4.2 Halo density profiles

In numerical simulations haloes are found with a wide range of shapes for a

given mass and can be irregular. However when spherically averaged they are
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well described by simpler density profiles. One of the most successful and widely

adopted of these is the Navarro Frenk and White (NFW) profile Navarro et al.

(1997):

ρ(r)

ρ
=

δc
(r/rs)(1 + r/rs)2

, (1.43)

where rs = r200/c is the scale radius, r200 is the radius at which the average density

of the halo is 200ρ and c is the concentration. ρ(z) can either be taken as the

mean density of the Universe or the critical density for collapse obtained from the

spherical collapse model. In this work we will take ρ to be the background (mean)

density of the Universe. The main motivation for this is that we want to compare

with halos identified from simulations using a Friends of Friends algorithm which

links particles together with a linking length designed to find structures with a

contrast of 200 times the mean background particle distribution. Each halo is

therefore described as a slowly varying power law with a shallow inner slope and

a steeper outer with the transition radius controlled by the concentration c.

Massive haloes are typically more centrally concentrated than smaller ones,

the general trend is described by Bullock et al. (2001) as

c(m) ≈ 9

(1 + z)

(
m

m∗

)−0.13

(1.44)

Obviously there is a large variation in the actual shape of haloes of a given mass

but this can be broadly taken in to account by having a lognormal distribution

with variance ∆(log c) ≈ 0.2.

p(c|m, z)dc =
d ln c√
2πσ2

c

exp

(
ln2[c/c̄]

2σ2
ln c

)
(1.45)

In this work we will treat, unless otherwise stated, all haloes as having an NFW

profile with a concentration selected with the mean and variance described by

the distribution given above.

Both the concentration and overall normalisation of the density profile are

correlated with the formation redshift of the halo. This usually refers to the

epoch at which the halo had assembled half its present day mass. The overall

normalisation of the profile, δc, is related to the formation redshift of the halo as

δc = 3000(1 + zf )
3. (1.46)
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1.4.3 Abundance

The most fundamental question we can ask about dark matter haloes is how

many of them should we expect to find in our Universe of a given mass. This

amounts to counting the peaks in the density field which are greater than some

threshold for collapse δc when the density field is smoothed over a scale Rf .

As the density field is Gaussian, the probability that a region has attained this

collapse threshold is

p(δ > δc|Rf ) =
1

2

[
1− erf

(
δc√

2σ(Rf )

)]
, (1.47)

where σ(Rf ) is the rms fluctuations on the filtering scale. These regions will have

therefore have a mass of M ∼ ρ0R
3
f . Press and Schechter (1974) argued that

this could be taken to be proportional to the probability that a given point has

even been part of a collapsed object of scale Rf . This argument tends to only

count those regions which are overdense and therefore misses half the mass in the

Universe. To account for this we multiply by a factor of 2. Therefore the fraction

of the Universe which is contained in objects with a mass > M is

F (> M) = 1− erf(ν/
√

2), (1.48)

where we have defined

ν =
δc

σ(M)
(1.49)

Another way of arriving at the PS result is to consider a point in the density

field and calculate the density when smoothed over a region Rf around it. If

we take the filtering function to have a sharp truncation in k space then as we

decrease the filtering scale from Rf = ∞ at which point δ = 0 we are simply

adding new spherical shells in k space. As the field is Gaussian the trajectory of

δ will therefore execute a random walk. We want to find is the first value of Rf at

which it crosses the collapse threshold. After initially crossing the threshold the

field can increase or decrease on its random walk. However, this doesn’t matter

as the point will still be associated with an object of the first crossing scale.

After crossing the threshold the field is just as likely to increase as decrease and

all points which lie over the threshold at some point R1 must have previously

crossed at a higher value of R. The survival probability is then
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dPs
dδ

=
1√
2πσ

[
exp

(
− δ2

2σ2

)
− exp

(
−(δ − 2δc)

2

2σ2

)]
(1.50)

giving

1− Ps = 1− erf

(
δc√
2σ

)
(1.51)

The abundance of haloes is usually quoted in the form of the multiplicity

function which is the fraction of mass contained by objects in a unit range of

lnM . We can write the multiplicity function in a general form:

M2f(M)

ρ0

=

∣∣∣∣
d lnσ

dlnM

∣∣∣∣Fps(ν) (1.52)

where

Fps =
2

π
ν exp

(
−ν

2

)
(1.53)

In the PS approach the threshold is taken to be a constant corresponding

to linear collapse threshold we obtained previously from the spherical collapse

argument :

δsc = 1.69(1 + z). (1.54)

However in comparisons with numerical simulations this prescription tends to over

predict the abundance of low mass haloes while under predicting the number of

high mass ones. A number of authors have attempted to improve on the PS

result by considering different forms for the collapse threshold. Most notably

Sheth et al. (2001) considered the effect of using a threshold corresponding to

elliptical collapse which results in replacing Fps in eqn 1.52 with the form:

fst(σ) = A
√

2aπ

[
1 +

(
1

2ν2

)p]
ν exp

(
−aν

2

2

)
(1.55)

On fitting this form to numerical simulations we obtain the best fit parameters

A = 0.3222, a = 0.707 and p = 0.3. This achieves a much better match to what

is seen in numerical simulations. Figure 1.7 shows a comparison of the these two

multiplicity functions.
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Figure 1.7: The Press-Schecter and Sheth - Torman z = 0 multiplicity functions
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1.5 Peak background split

As gravity acts on the early smooth Universe it causes over-dense regions to

collapse though successive spatial dimensions to form sheets, filaments and finally

gravitationally bound dark matter haloes. On small scales then the non-linear

dynamics of these structures become hard to follow and we require high resolution

particle simulations to accurately calculate their structure and evolution. Even

at present redshift however the large scale dynamics are largely linear. We can

treat these two components separately as a background of near linear large scale

fluctuations and small scale density peaks.

As I discussed previously, the dark matter field can be described as a super-

position of Fourier modes with random phase and amplitudes given by the power

spectrum P(k):

δ(x) =
∑

k

δke
−ix·k (1.56)

It is helpful to think of this field as consisting of two components: the high

frequency fluctuations which are boosted by a low frequency background as shown

schematically in Figure 1.8

In standard cosmological simulations the strategy is to use a large number

of simulation particles to map these small high density fluctuations. An alter-

native approach which both PTHALOS (described below) and my own algo-

rithm(described in Chapter 3) take is to describe the statistics of these fluctu-

ations relative to a smooth background, developing a Monte Carlo approach to

sampling these statistics.

1.5.1 Conditional Mass Function

We have examined expressions for the mass functions of haloes which describe the

expected number of haloes of a given mass in the Universe. The mass function

only applies to the halo population when averaged over scales where the density

field could be considered uniform, in smaller local volumes with an over-density

δ, the halo mass function will not in general be a simple scaling of the universal
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x

(x)
sc

Figure 1.8: An illustration of the peak background split. The small scale peaks in

the density field which represent the locations of dark matter haloes are boosted by

a slowly varying background. In regions where this boost is present the peaks will

reach the collapse threshold (the dotted line) earlier than similar small scale peaks in

underdense regions.
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one. If we wish to accurately populate the density field then we need to describe

these local variations in the distribution of haloes.

Formally the statistic we seek is the conditional mass function CMF(Mh|δ), the

number of haloes of mass Mh which reside in a region of space with a background

density contrast of δ.

If a region of space with a density δ > 0 is considered, then the local small

scale fluctuations which will collapse to form haloes are embedded within a larger

scale density fluctuation effectively boosting the small scales’ fluctuations’ den-

sity compared with that of a low density region. This boost implies that small

fluctuations within a dense region will cross the critical threshold for collapse δsc

before similar fluctuations in under-dense regions. These regions therefore form

their haloes earlier in the history of the Universe, and once formed, these haloes

have more time to merge to produce higher mass haloes.

This way of thinking has led a number of authors (Bond et al., 1991; Lacey and

Cole, 1993) to adapt the universal mass function of haloes to a local Conditional

Mass function through a rescaling of the variance and collapse criteria:

δsc(x) → δ(x) + δ0(x) (1.57)

σ2(x) → σ2(x)− σ2
0(x) (1.58)

where δ0(x) is the density of the cell and σ0 is the variance of fluctuations within

the cell and dsc is the collapse threshold in the spherical collapse model. For

example the conditional Press-Schecter mass function becomes:

CMFps(m|δ0, σ0) =

√
2

π

ρ̄

m

∣∣∣∣
dσ

dm

∣∣∣∣
σ(δsc − δ0)

(δ2 − δ2
0)3/2

exp

{
−(δsc − δ0)2

(σ2 − σ2
0)

}
. (1.59)

This scaling is valid for mass functions which are related to the crossing of a

constant barrier. However, a number of Universal Mass Functions (UMF’s) are

more accurate than that of Press Schecter. In recent work by Rubiño-Mart́ın

et al. (2008), the authors develop a more general approach to rescaling.

Later we will want to compare these theoretical predictions with those mea-

sured from simulations, and so we need a way of relating the non-linear densities

measured in the simulations to the linear quantities used in excursion set theory

and thus the expressions above. If the density of a region of a simulation is given
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as : 1 + δ = M/(V ρ̄) and δ0 is the density that we would have expected from

linear theory, the two are related by the fitting formula proposed by Mo and

White (1996) and modified by Scoccimarro and Sheth (2002) :

δ0 =

[
1.68647− 1.35

(1 + δ)2/3
− 1.12431

(1 + δ)1/2
+

0.78785

(1 + δ)0.58661

]
δsc(z)

1.68647
(1.60)

where δ0 is the density we would expect in linear theory and δsc is the spherical

collapse density threshold (which introduces a dependence on cosmology).

Halo Bias

As a result of the dependence of halo properties on local density, the haloes of

different masses will be biased tracers of the underlying mass field. The most

massive haloes will typically live in the rarest peaks of the density field while

smaller massed halos are more evenly distributed. This affects the clustering of

haloes and the galaxies they contain. The number of haloes within a region of

density δ, n(M, δ|z) can be modelled as (Cole and Kaiser, 1989; Mo and White,

1996; Sheth and Tormen, 1999)

n(M, δ|z) = [1 + b(M |z)δ]n(M |z), (1.61)

where b(m|z) is bias of a halo of mass m and n(M |z) is the universal mass function.

In the ellipsoidal collapse modelb(m|z) can further be shown to be

b(m|z) = 1 +
αν2 − 1

δsc(z)
+

2p/dsc(z)

1 + (aν2)p
, (1.62)

where ν = δsc/σ(M) δsc is the collapse threshold from the spherical collapse

model, σ(M) is the variation of the density field on scales corresponding to M”,

and p and a are free parameters to be fit to simulations (Cole and Kaiser, 1989)Mo

and White (1996)Sheth and Tormen (1999).

This has a big implication for how we think about tracers of the dark matter

field. Often it is easiest to calculate predictions for the dark matter in our Uni-

verse, but in reality we observe galaxies which inhabit haloes and so require a

clear understanding of the bias between these two populations to be able to link

observations and theory.
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1.6 Galaxies and haloes

The current model of galaxy formation was put forward by White and Rees

(1978). They argue, that hot baryonic gas in the Universe requires a large poten-

tial well in which it can radiate and cool to form stars and galaxies. They suggest

that dark matter haloes provide such a place and so galaxies should form within

and be associated with dark matter haloes.

The population of galaxies within haloes is described by the halo model. The

basic assumption of which is that the luminous contents of a halo is a function of

haloes’ mass alone. The number of galaxies per halo and their luminosity distri-

bution are modeled by the halo occupancy N(M) and the conditional luminosity

function CLF (M,mag), the total number of haloes within each halo and the

distribution of their absolute magnitudes. From such statistics it is possible to

predict galaxy clustering and by comparing these predictions to real world mea-

surements it is possible to determine the parameters of the halo model Cooray

(2006)

If we consider a limiting luminosity: Lcut then we expect the number of galax-

ies brighter than this that a halo contains to increase with its mass. There will

also be a mass at which haloes will simply lack the baryon content to produce a

Lcut galaxy. Larger haloes will have enough gas to have collapsed a single blue

galaxy at their cores with larger haloes still having multiple satellite galaxies.

We follow Cooray and Milosavljević (2005) and Cooray (2006) who proposed

the following model for the conditional luminosity function. In this model central

galaxies (the dominant galaxy which resides at the centre of the dark matter

halo) and satellite galaxies (smaller galaxies which orbit within the potential well

of the halo) are treated separately as Φcent(L|M, z) and Φsat(L|M, z) :

Φ(L|M, z) = Φcent(L|M, z) + φsat(L|M, z) (1.63)

Φcent(L|M, z) =
fcen(M, z)√

2π log10(σcenL
) (1.64)

× exp

(
log10[L/Lc(M, z)]2

2σcent

)
(1.65)

Φsat(L|M, z) = A(M, z)Lγ(M)gs(L) (1.66)
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where fcen(M, z) is the selection function which accounts for the efficiency of

galaxy formation taking in to account the inability of some low mass haloes to

produce a galaxy at all

fcent =
1

2

[
1 + erf

(
log(M)− log(Mcent−cut(z))

σ

)]
, (1.67)

and gs is

gs(L) = 0.5

[
1 + erfc

(
log(Lc/2.0)− log(L)

σs

)]
(1.68)

Mcent−cut takes a numerical value of 1010Msun and σ = 0.5

Lc = L0(1 + z)α
(M/M1)a

[b+ (M/M1)cd(1+z)ν ]1/d
(1.69)

For the normalisation of the satellite portion of the formula see Cooray (2006).

Figure 1.9 shows the conditional luminosity function for a number of different halo

masses:

1.7 Galaxy Surveys

To test the predictions of the theories described in this chapter and of the ΛCDM

cosmology as a whole we need to compare these results with the Universe around

us. The primary way this has been achieved is through galaxy redshift surveys.

Despite their dominant role in the formation of structure and evolution of the

Universe, dark matter and dark energy are not visible to us. The more physically

complex luminous baryons in our Universe are the most readily available probes

of structure we have out our disposal. To that end, a number of large galaxy

surveys have been undertaken to map the Universe around us and provide data

to test against theories.

The challenge of galaxy surveys is to find as many galaxies as possible in the

sky and determine their position on the sky and their distance from us. Obtaining

the location of a galaxy on the sky is relatively straight forward but to obtain

a measure of the distance of a galaxy from us is harder. We cannot measure

the distance directly and so have to infer the distance of the galaxy from other

factors. The most widely used is that of redshift. Due to the expansion of the
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Figure 1.9: Conditional luminosity functions used by Cooray (2006). The black

line shows the entire galaxy population, while solid blue and red lines represent the

contribution of blue and red central galaxies and dotted lines their satellite equivalents.
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Universe, there is a direct relation between the recessional velocity (measured as

its redshift) of a galaxy and its comoving distance from us

R0dr =
c

H(z)
dz (1.70)

=
c

H0

[
(1− Ω)(1 + z)2 + Ωv + Ωm(1 + z)4

]−1/2
dz (1.71)

where we have used the expression for the Hubble parameter in equation 1.18

and taken Ωr << 1.

It is also useful to be able to calculate various physical properties of an object

at a given redshift. The two most important of these quantities are relations

which allow us to calculate the proper transverse size of an object, and the relation

between the flux density and luminosity of an object at redshift z. The proper

transverse size of an object with comoving size Sk(r)dφ is given by

d` =
dφR0Sk(r)

(1 + z)
(1.72)

while the relation between the luminosity of a galaxy and its flux density is given

by

Sν(ν0) =
Lν([1 + z]ν0)

4πR2
0S

2
k(1 + z)

, (1.73)

where ν0 is the frequency of the emitted photon, and Lν is measured in units of

WHz−1. The second relation is valid only for isotropic emission and takes into

account not only the effect of the increased proper surface area over which the

radiation has spread, 4π[R0Sk(r)]
2, but also the effect of redshift on the photon.

Form these two equations we can define two effective distances, the angular

diameter distance and the luminosity distance :

DA = (1 + z)−1R0Sk(r) angular-diameter distance (1.74)

DL = (1 + z)R0Sk(r) luminosity distance. (1.75)

The main complication with redshift surveys is that we do not measure the

position of galaxies exactly but rather we measure their recessional velocity and

imply a distance from the Hubble flow. Galaxies also have peculiar velocities

which also contribute to the redshift giving

(1 + zobs) = (1 + zcos)(1 + zvel), (1.76)
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where zcos is the redshift induced by the Hubble flow and zvel that of its peculiar

velocity. This leads to an incorrect estimate of galaxy distance which is more

pronounced in regions of high peculiar velocity, usually around large clusters.

Figure 1.10, a slice of the 2dFGRS survey (Colless, 1999), illustrates this effect

well. Along the radial direction the position of galaxies in clusters have a tendency

to be smeared out, giving distinctive “fingers of god” features.

Figure 1.10: A slice through the 2dFGRS (Colless, 1999) survey. The cosmic web can

clearly be seen along with the radial smearing of galaxy positions due to the peculiar

velocities of galaxies

.

1.8 Numerical Simulations

Theoretical models can help us predict the statistics of the halo and galaxy popu-

lation, but as we have seen in the previous section the practicalities of measuring

these quantities in the real Universe can often complicate things. It is there-

fore useful, both to check the predictions of theoretical results and to better

approximate what is actually being measured in galaxy surveys, to use computer

modelling to produce realisations of the Universe. As the physics of baryonic
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matter is complicated and heavily dependent on the cosmic web placed down

by dark matter, the natural starting point is to simulate a Universe in which

dark matter is the only dynamic component. The dominance of dark matter over

baryonic matter, means that it is the primary driver of structure formation after

pressure support for baryons is lost at recombination. This is fortunate as the

weakly interacting properties of dark matter simplify its dynamics considerably:

with no way in which to interact with the electromagnetic field, dark matter can

be treated as a collisionless fluid with gravity as the only relevant force. On a

discrete system such as modern computers we sample this fluid with a number of

simulation particles and evolve these particles through a number of small discrete

time steps.

As with all numerical work, we require that the quantities involved in the

simulation, the particle comoving positions and peculiar velocities, are dimen-

sionless. The natural way of obtaining this is to scale the particle position by the

width of the simulation box L, the scaling choice for the peculiar velocities are

less clear and in this work we take them to be in units of the expansion velocity

across the box HL (where H is the Hubble factor) to give:

X = x/L U = u/HL (1.77)

In these co-ordinates the equation of motion becomes:

d

d ln a
(f(a)U) =

3

8π
Ωm(a)f(a)

1

N

∑

i

Xi −X

|Xi −X|3 (1.78)

where f(a) is proportional to a2H(a) and has arbitrary normalisation (which we

take to be unity at the initial epoch). The largest computational task involved

in evolving the density field is the calculation of forces. We need to compute

the contribution of the force on a given particle over every other particle in the

simulation. This is a processes which has computational complexity of O(N2): if

we double the number of particles in a simulation we increase the run time by a

factor of 4. This is clearly prohibitive to running simulations with high enough

resolution to resolve detailed structures. A number of methods exist to overcome

this N2 problem and we discuss the workings of an advanced code, GADGET2,

in chapter 2. Most of the simulations which we will run in this thesis will use a

simpler scheme than that of GADGET2 which it is worth detailing here.
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Instead of calculating the force directly we can implement what is known

as a particle mesh (PM) code. A PM code (Efstathiou et al., 1985) utilises

the existence of fast algorithms for computing Fourier Transforms to turn the

problem from O(N2) to a more manageable O(N logN). The particle field is

first binned on to a mesh of a given size N producing a density field. This is

then Fourier transformed, the three Fourier components of force computed and

then finally transformed back to real space. The resulting force field can then

be interpolated to the position of each particle and their velocities and position

updated appropriately. This is repeated until we reach the desired epoch.

The other ambiguous step is in how we assign the mass of each particle to the

grid. There are many different schemes to accomplish this, the simplest of which

is simply to assign the entire particle to the nearest grid point. As ultimately

the resolution of the simulation is governed by the resolution of the mass/force

mesh, this simple approximation is sufficient. In other cases within this thesis,

we will want to map mass to a regular grid with more care. In these cases we

will typically use the cloud in cell (CIC) scheme which distributes the mass of

the particle between the surrounding cells. If i and j are cell indices, and x,y

and z are the particles’ position such that xi < x < xi+1, yj < y < yj+1 and

zk < z < zk+1, then the (CIC) algorithm maps mass as

Mi,j,k =
Mp

dxdydz
|(x− xi)||(y − yj)||(z − zk)|, (1.79)

where dx = xi+1− xi etc, Mi,j,k is the mass assigned to the cell (i, j,k) and Mp is

the mass of the particle.

This smooths the particle out between cells, which is desirable as each particle

actually represents not a point but a region of space.

1.8.1 Initial Conditions

Having described a method to evolve the particles we need to set up their initial

positions and velocities. As the linear density field is Gaussian this consists of

ensuring the initial field has the correct power spectrum at the initial redshift.

As we discussed before the Zeldovich approximation of structure formation gives

a good way of accomplishing this. If the initial redshift is high enough then the
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initial displacements of the particles are simply proportional to the velocities :

δX ∝ U (1.80)

and the Zeldovich approximation relates the modes of the displacement field f to

the power spectrum through:

fk = −i δk
k2

k (1.81)

Given a power spectrum it is possible to populate a grid in Fourier space at

which each mode has a power given by the power spectrum and random phase.

This can then be Fourier transformed to obtain a displacement field. Particles

placed at random within cells can then be displaced by the correct amount to

obtain a particle population with the correct power spectrum.

1.8.2 Hierarchical clustering and Semi-analytics

Over the years the standard cosmological model has become that of ΛCDM or

cold dark matter with dark energy. If the dynamic mass in the Universe is in

the form of cold dark matter, then in the early Universe it undergoes very little

free streaming and small scale fluctuations in the primordial power spectrum are

preserved (Eisenstein and Hu, 1998). In this scenario it is the smallest fluctuations

which are the first to undergo gravitational collapse and, these collapsed haloes

merge to form larger and larger structures. This bottom up formation of structure

if known as the hierarchical clustering model and it has seen a number of great

successes. Most notable of these is the incredibly accurate predictions that ΛCDM

makes for power spectrum of the CMB. Figure 1.11 show the tight agreement

between the theoretical predictions and the CMB power spectrum as measured

by the WMAP satellite. Another area where ΛCDM has produced good results

is that of galaxy clustering. Again ΛCDM agrees to a high level of accuracy

with large surveys such as the SDSS and 2dFGRS, which measure the clustering

spectrum of galaxies in the Universe. The agreement of the model in both the

early and late Universe and over so many orders of magnitude, as depicted in

Figure 1.11 is compelling evidence.

While the ΛCDM model is successful at recovering the characteristics of the

large scale structure of the Universe, there is still some debate about how well it
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A primer on hierarchical galaxy formation 5

Figure 1. Top panel: The power spectrum of temperature fluctuations in the CMB as

shown by a compilation of recent data (WMAP - Hinshaw et al. 2003; CBI – Readhead

et al. 2004; VSA – Dickinson et al. 2004; ACBAR – Kuo et al. 2004). The solid and

dashed lines show variants of the best fitting CDM model in which the spectral index

of primordial fluctuations is held at n = 1 (solid) or allowed to float (n < 1, dashed

line). Bottom panel: The power spectrum of density fluctions. The solid line shows

the best fit CDM model with n = 1. The circles show the galaxy power spectrum

measured from the final 2dFGRS (Cole et al. 2005). The triangles show the first year

temperture power spectrum measured by WMAP plotted in the same units. Adapted

from Sanchez et al. (2006).

Figure 1.11: Top: The power spectrum of fluctuations in the CMB (Hinshaw et al.,

2003; Readhead et al., 2004; Dickinson et al., 2004; Kuo et al., 2004) and the best fitting

CDM model. Bottom: The power spectrum of density fluctuations measured from the

2dFGRS (Cole et al., 2005) and WMAP combined on the same plot. Plot taken from

(Sánchez et al., 2006)

.
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performs on the smaller scales. The two main challenges are the abundance of

sub-haloes within galactic sized halos (also known as the satellite problem) and

the shape of the inner profile of dark matter haloes (the ”cuspy core” problem).

In high resolution simulations of dark matter, galactic sized halos have a

tendency to form a large number of sub-haloes which should correspond to a

large number of satellite galaxies. The observed number of satellite galaxies

around the Milky Way and Andromeda is over an order of magnitude less than

those found in simulations (Moore et al., 1999a) .

The ”cuspy core” problem can be seen when looking at the rotations curves of

low surface brightness galaxies which are dominated by dark matter. The rotation

curves from these galaxies fail to match predictions of CDM haloes, implying that

the CDM haloes are too cuspy (Moore et al., 1999b).

While both of these issues pose challenges to the CDM model, on these small

galactic scales baryonic matter has an important role to play. It may be, as

some authors (Benson et al., 2002b,a; Somerville, 2002) have suggested, that

these issues might be solved with a better treatment of the astrophysics of these

environments.

It is easy to study the hierarchical build in dark matter using simulations

however following the luminous matter in the Universe poses a tougher challenge.

While dark matter interacts only through the gravitational force, baryons in the

Universe take part in many processes including shock heating, star formation,

supernovae , ionisation and turbulence. Producing a simulation that includes all

these effects accurately while still maintaining a high enough resolution to be able

to resolve galaxies in a cosmological context is a hard task.

Instead an alternative approach known as Semi-Analytics has become popu-

lar. Instead of following the gas particles directly, Semi-Analytics uses numerical

approximations and a description of the merger history of a dark matter halo to

try to calculate the properties of the luminous material it contains. The sets of

equations used to accomplish this are obtained either from theory or from scaling

relations seen in real galaxies, and can contain a number of free parameters which

can be tuned to match the present dat Universe.

One of Semi-Analytics notable successes has been to explain the shape of

the galaxy luminosity function in the local Universe. A simple prediction of the
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galaxy luminosity function can be achieved by taking the halo mass function and

applying a constant light to mass ratio. Doing this severely over predicts the

abundance of small and large galaxies. Semi-Analytic models, such as Croton

et al. (2006), which incorporate methods of feedback, notably supernova and

AGN, can suppress the formation of galaxies on both large and small scales and

provide an excellent reproduction of the local galaxy luminosity function.

While Semi-Analytics have been good at predicting properties of galaxies in

the low redshift Universe, they are increasingly under attack from observations

at high redshift. A number of authors (Drory et al., 2005; Glazebrook et al.,

2004) have begun to see massive red galaxies at high redshift. This poses a

problem for Semi-Analytics and the hierarchical clustering model in general. Such

large galaxies should take time to merge and so are unlikely in the high redshift

Universe. A number of models have been proposed to deal with these observations

(Nagamine et al., 2004, 2005), however they have yet to match the high redshift

and low redshift results at the same time.

1.8.3 PTHALOS

The problem of the prohibitive expense of computing time is not a new one.

With each new advance in computing power comes higher resolution simulations

which in turn pose questions which require even more computing power. One

obvious approach to this problem is to simply hope that the availability of faster

computers will increase with time. Other authors have tried to devise algorithms

which can achieve equivalent results with less computing power. This is the

approach that Scoccimarro and Sheth (2002) have taken in their PTHALOS

algorithm. This approach argues that with sufficient knowledge of the large scale

fluctuations of the density field, the small scale peaks, the halos and galaxies, can

be added using a statistical approach.

To avoid the computationally intensive N-body codes normally required to

explore galaxy statistics, the PTHALOS approach instead evolves a set of N

particles, where N is the number of dark matter haloes we would expect to find in

the simulation volume, from their initial conditions using second order Lagrangian

perturbation theory.
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4 R. Scoccimarro and R. K. Sheth

Figure 1. A slice of 2LPT, 150 Mpc/h a side and 6 Mpc/h thick.

Figure 2. The same slice as previous figure for PTHalos.

Because the density run depends on halo mass m, the
trick is to identify those positions in the 2LPT density field
which should be identified with the centres-of-masses of m-
haloes. The next subsection describes how to do this.

3.2 Halo masses and positions

Imagine comparing the 2LPT density and velocity fields
with those from an n-body simulation which started from
the same initial fluctuation field. One might imagine that the
2LPT density and velocity fields contain information about
where bound objects in the n-body simulation formed. For
example, perhaps the densest 2LPT regions are those regions
which, in the n-body simulation, collapsed to form bound

c© 0000 RAS, MNRAS 000, 000,000

Figure 1.12: A plot of the density field created using Lagrangian perturbation theory

(top) and the mass field reconstructed by the halos created with the PTHALOS method.

Taken from Scoccimarro and Sheth (2002)

.
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These particles can then be binned to produce a density field as seen in Figure

1.12. This density field contains only the large scale modes. The small scale

density fluctuations of haloes can be populated by randomly drawing halo masses

from a conditional mass function and associating each mass with a perturbation

theory particle. In this way a full description of the density field can be obtained

with dramatically less computational effort than an equivalent N-body approach.

The main aim of this thesis is to update the PTHALOS approach to use statis-

tics measured from large modern N-body simulations and semi-analytic methods

which are run in tandem with them. We will use coarse N-body simulations

instead of perturbation theory and use models fit to simulations, rather than

theory, as our statistical description. The philosophy of achieving efficiency by

only doing what we have to obtain an accurate and consistent, galaxy and halo

catalogue will remain intact.

1.9 Thesis outline

One of the main aims of this thesis is to devise a new method of producing large

scale mock galaxy catalogues with modest computational resources to aid in ex-

ploring the parameter space of current cosmological models and to produce the

large scale mock catalogues needed by next generation surveys. As mentioned be-

fore the main inspiration for this work is taken from the work of Scoccimarro and

Sheth (2002) and their algorithm PTHALOS. The key idea is to admit that for a

lot of work what is required is not a comprehensive attempt to model the detailed

physics of galaxy formation but simply a statistically accurate mock galaxy cata-

logue. With this in mind it makes sense to try to produce an algorithm which uses

our knowledge of galaxy and halo statistics to populate a simulation rather than

trying to follow the complicated and computationally intensive process of galaxy

formation. The loss of knowledge about the individual history of a galaxy and

its evolution is balanced by the speed of this approach, allowing larger areas of

parameter space to be probed and larger computational volumes to be examined.

Our strategy will be to utilise the excellent work that has been carried out by

those working on semi analytics galaxy models. These models (discussed in more

detail in Chapter 2) can be used to populate high resolution simulations allowing
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us to follow galaxy formation in tandem with structure formation. In Chapter 2

we will use the Millennium simulation (MS) and the semi-analytic galaxy cata-

logues of DeLucia, publicly available through the MS database (http://www.mpa-

garching.mpg.de/millennium/), to construct the relevant statistics of how haloes

populate the dark matter field and how galaxies, in turn, populate dark matter

halos. We will quantify and provide fits for the conditional luminosity function of

galaxies in two populations, red and blue. We then detail an algorithm to scale

up these results in Chapter 3, allowing the population of low resolution simula-

tions with haloes and galaxies. As a test of our algorithm we recreate the MS

from scratch, starting with a low resolution version of the MS with a particle load

600 times less than that of the MS. We compare the clustering of galaxies and

halos in the resimuation and the original MS to determine the accuracy of our

method. In Chapters 4-6 we put the algorithm through its paces by populating

larger volumes and using these to explore a number of topics. In chapter 4 we

analyse the shift in the location of the baryon acoustic oscillation peak for galax-

ies, halos and dark matter. In chapter 5 we detail how the method can be applied

to multiple simulation outputs in order to construct light cones. We construct

a 5◦ × 5◦ light cone and populate it with haloes and galaxies. We also explore

the use of redshift space distortions to probe gravity models and the topology of

galaxies, halos and dark matter in the Universe. Finally in Chapter 6 we detail a

novel approach to producing lensing maps, involving the dressing of haloes on a

lightcone with surface mass density profiles. We compare the results obtained by

this method to a dark matter particle only run and show that not only can we

recover the convergence spectrum, but that we can extend the dynamic range of

this measurement by a number of orders of magnitude without having to resort

to higher resolution simulations.
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Chapter 2

Millennium Simulation

In this chapter we will discuss a number of statistics calculated from the Mil-

lennium Simulation and its associated semi-analytic galaxies. These statistics

will ultimately be used to calibrate our halo model for use in populating larger

volumes. The required statistics are the typical halo occupancy and variance of

a cell of overdensity δ, the conditional mass function, the conditional luminosity

function for various types of galaxy and the small scale bias of galaxies relative

to the dark matter in their host haloes.

2.1 Simulation Overview

The Millennium Simulation (MS) is a landmark numerical calculation of cosmo-

logical structure formation. It uses the publicly available GADGET2 (Springel,

2005) numerical integration code to follow 21603 particles in a cubic region of

500h−1 Mpc from a redshift of z = 127 until the present day. This unprece-

dented resolution allows the MS to resolve and follow structures over almost

6 orders of magnitude in mass from the dark matter haloes of dwarf galaxies

(Mh = 1010h−1M�) through to the largest clusters that are just forming in our

Universe (Mh = 1016h−1M�).
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Figure 2.1: A 15h−1 Mpc slice of the Millennium Simulation showing a large dark

matter cluster
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To calculate the forces on simulation particles the GADGET2 code employs

a dual approach. On small scales it adopts a tree code in which the forces are

calculated by recursively dividing the volume into sub-regions. Starting with a

root node which encompasses the entire simulation volume, each node is examined

to determine if the force contribution of the particles it contains can be reasonably

approximated by a multipole expansion. This will be true of groups of particles

which are either small enough or far away enough from the current particle. If

this criterion (usually referred to as the opening angle of the cell), is met then

the multipole expansion is used; if it is not, then the current node is subdivided

along the halfway point of each of its axis (Barnes and Hut, 1986). The same

criteria is then applied to the 8 new daughter nodes. If the algorithm reaches a

leaf node, one that contains a single particle, the force is calculated explicitly.

The order of the multipole expansion used within GADGET is a monopole

requiring that at each node the total mass and centre of mass vector be stored.

The accuracy of the algorithm is determined by the tuning of the opening criteria.

The deeper the tree is traversed the more accurate the force calculation becomes.

In GADGET2 the opening criteria for a cell containing mass M at a distance r

and with extent l is taken to be:

GM

r2

(
`

r

)2

≤ α|a|, (2.1)

where |a| is the acceleration calculated in the last iteration and α is used to

control the required force accuracy.

On larger scales, GADGET2 uses a more traditional particle mesh scheme

in which the forces are calculated by constructing the density field of the vol-

ume by binning the particles. Using a cloud in cell (CIC) scheme, each parti-

cle’s mass is assigned to a point on the mesh which is then Fourier transformed

and multiplied by the Green’s function for the potential: −4πG/k2. To sup-

press the small scale forces which are being calculated by the tree part of the

code, the force is damped at small scales. To account for the cloud-in-cell bin-

ning and the subsequent force interpolation the mesh is then divided by two

factors of sinc2(kxL/2Ng)sinc2(kyL/2Ng)sinc2(kzL/2Ng). Following a second in-

verse Fourier transform GADGET2 obtains the potential which is then 4 way

differenced to approximate the force in each Cartesian coordinate. The Millen-
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Table 2.1: Millennium simulation parameters

σ8 0.9 Power spectrum normalisation

h0 0.73 Hubble parameter

Ωm 0.25 Matter fraction

Ωb 0.045 Baryon fraction

Ωλ 0.75 Dark energy

w −1 Equation of state of dark energy

ns 1 Spectral index of primordial power spectrum

nium Simulation used a force mesh of 25603 cells.

Once the force has been calculated and interpolated to each particle position,

the particles are updated using a leapfrog integration scheme. The size of each

timestep was limited to constrain:

∆t ≤
√

2µ/|a|, (2.2)

where again a is the particles acceleration and µ controls the integration accuracy.

Using this criterion more than 11000 individual times steps where required to

evolve the simulation to the current epoch.

To this dark matter framework prescriptions of semi-analytic galaxy formation

have been applied to populate the density field with galaxies.

2.1.1 Properties of the MS Density Field

Often it will be useful for us to consider density fluctuations in cells of a given size

and the distribution of cell densities. We measure this from the MS by binning

each particle from the simulation into cells using the Cloud in cell algorithm

discussed previously to assign each cell a density.

The distribution of cell densities for a number of scales can be seen in Figure

2.2 and follows the predicted lognormal distribution (Coles and Jones, 1991).
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Figure 2.2: The distribution of cell densities calculated in cubic cells of size 15h−1 Mpc

and their evolution with time (top) and scale (bottom).
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2.2 Haloes in the MS

2.2.1 Identifying haloes from the density field

All semi-analytic galaxy codes require two inputs to work with: 1) A halo merger

tree and 2) physical properties of the haloes: mass, radial profile, angular mo-

mentum etc. The merger tree is a representation of the history of each halo

at redshift z = 0, recording when progenitor haloe’s merged. To accomplish it,

haloes must first be identified from the dark matter field; this is a relatively in-

tensive task and there is no definitive way to accomplish this, with many group

finding algorithms in existence. Most authors (Kim and Park, 2006) attack the

problem with Friends of Friends (FOF) halo finders which attempt to identify

gravitationally bound structures by linking together chains of particles which are

closer than a given distance from each other. The resulting structures will have

a mean density which is determined by the linking length used in the algorithm.

This is usually taken to be b = 0.2n̄−1/3 where n is the particle number density.

This particular choice corresponds to a mean density of the order that we expect

virialised groups to have. Practically this can be achieved by starting each par-

ticle in its own chain; if a candidate particle is found within the linking length,

both chains are merged into one and the process continues.

Using a FOF algorithm it is possible, to identify dark matter haloes at each

timestep, allowing a detailed picture of the merger history of haloes to be created.

As a given halo can merge with another but in general will not split apart to form

two separate new halos, the construction of a merger tree is the identification of

the unique decedent of a given halo at each time step. This is accomplished by

identifying the structures in which the particles which make up the current halo

reside at a future time step. For each of these structures the number of identified

particles is weighted by how gravitationally bound it is, and the structure with

the highest value is labeled the descendent. Figure 2.3 shows an example of one

such merger tree, showing clearly how larger haloes are hierarchically build up of

smaller ones. Using these merger trees, semi-analytic codes are able to populate

these haloes with galaxies

While on the whole successful, this approach can occasionally mistakenly iden-

tify structure. In some cases haloes passing close to each other can be combined
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2.2. HALOES IN THE MS

into one large halo when in fact the two structures are not dynamically bound.

This has implications for both the measured properties of the haloes and can

introduce phantom merger events into the tree.

The hierarchical formation of BCGs 5

Figure 1. BCG merger tree. Symbols are colour–coded as a function of B - V colour and their area scales with the stellar mass. Only
progenitors more massive than 1010 M! h−1 are shown with symbols. Circles are used for galaxies that reside in the FOF group inhabited
by the main branch. Triangles show galaxies that have not yet joined this FOF group.

Figure 2. Merger tree of the FOF group in which the BCG sits at redshift zero. Only the trees of subhalos with more than 500 particles
at z = 0 are shown. Their progenitors are shown down to a 100 particle limit. Symbol coding is the same as in Fig. 1. The left-most tree
is that of the main subhalo of the FOF, while the trees on the right correspond to other substructures identified in the FOF group at
z = 0. In green, we mark the subhalo that contains the main branch of the BCG.

c© 2006 RAS, MNRAS 000, 1–13

Figure 2.3: A merger tree from De Lucia and Blaizot (2007), showing the build up of

a 1012h−1M� halo at current redshift from a large number of smaller progenitors

The FOF algorithm is, however, not the only structure-finding algorithm em-

ployed by the MS. Substructure is also found using the SUBFIND algorithm

(Springel et al., 2001). SUBFIND works in two stages: the identification of topo-

logically distinct regions with a local overdensity and a subsequent gravitational

unbinding processes. The first stage takes a catalogue of particles previously iden-

tified by a FOF algorithm and computes the local density at each particle. By

kernel interpolation over particle neighbours, locally overdense regions are iden-

tified by defining an isodensity contour with a given threshold. As this threshold

is lowered most regions of overdensity will simply grow in volume until they en-

counter another local region of overdensity and merge with it. At this point there

exists a saddle point at the intersection. Each local overdense region bounded

by an isodensity surface which traverses a saddle point is then considered a can-

didate for substructure. Each particle within a candidate region is then tested

to determine if the particle is gravitationally bound to the region. This involves

calculating the particles’ total energy in physical coordinates. If this energy is

negative then the particle is gravitationally bound, if positive it is removed from
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the group. If a threshold number of particles survive this process they are iden-

tified as a sub-halo. At the end of this process we are left with particles within

the FOF halo which belong to substructures and the remaining particles which

are said to form the smooth background of the halo.

In this work, as we are concerned with halos themselves rather than their

substructure, we will generally work with catalogues of halos determined from

the FOF method.

2.2.2 Mass Functions

We use the MS halo catalogues produced by the Durham and MPA groups, which

contain haloes from as small as 1010h−1M� to 1016h−1M�. We measure the mass

function of these haloes at a number of redshifts by counting the comoving number

density of halos in a mass range M < Mhalo < M + dM . Figure 2.4 shows the

results in terms of the multiplicity function: the fractional mass contained in a

unit range of lnM . As is consistent with the hierarchical view of halo formation,

as the redshift increases we see larger and larger structures being formed.

As we discussed in chapter 1 the mass function within regions where the mean

density is not unity and will differ from the global mass function. While we have

presented a number of theoretical models for this quantity none are guaranteed to

give the correct answers and so we wish to compare with the distribution of haloes

in the Millennium simulation. This poses a problem as the densities we measure

from the Millennium simulation are non-linear while all previous expressions we

presented for the conditional mass function are calculated from linear theory.

We need to relate the non-linear density δ to the density that would have been

obtained in a linear growth model. Mo and White (1996) and Scoccimarro and

Sheth (2002) give a fitting formula for this relation to be :

δ0 =

[
1.68647− 1.35

(1 + δ)2/3
− 1.12431

(1 + δ)1/2
+

0.78785

(1 + δ)0.58661

]
δsc(z)

1.68647
, (2.3)

where δsc is the collapse threshold obtained from the spherical collapse model

and this final term was added by Scoccimarro and Sheth (2002) to account for

the dependence of this quantity on cosmology. We check that this holds for the

cosmology used in the MS by taking an early output of the simulation when
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Figure 2.4: The evolution of the halo multiplicity function in the MS for a number of

redshifts. The sharp fall-off at large halo mass at each redshift represents the largest

objects to have formed by that epoch. As is consistent with the hierarchical model of

halo formation larger halos are constructed form smaller ones at later epochs.
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the dynamics are still linear and evolve the measured density to the present day

using linear theory. The conditional mass function (CMF) is measured by binning

haloes into cells of side 15h−1 Mpc and constructing the mass function in each cell

before averaging the mass function over cells which have densities in the range δ

to δ+dδ. At the same time we also construct the occupation number of each cell

and the fraction of mass contained within haloes.

In PS theory the conditional mass function can be expressed in a universal

form as:

m2N(M |δ)
ρ̄

=

∣∣∣∣
d ln ν12

d lnm

∣∣∣∣ f(v12). (2.4)

What we measure from the simulation is N(M |δ), the average comoving number

density of haloes in cells of a given size. However the functional form of the mass

function is more easily seen if we express it in the universal form using:

ν12 =
δsc − δ0√
σ2
M − σ2

m

, (2.5)

as the variable of interest.

We calculate the conditional mass function of haloes by counting the number

of haloes in a given mass range M < Mhalo < M + dm contained in a cell with

overdensity in the range δ < δcell < δcell + dδ. Normalising by the frequency of

such cells gives us a measure of the expected number of haloes in a given cell of

a given mass. This quantity is displayed for cells of side 15h−1 Mpc for the z = 0

output of the MS in Figure 2.5 and the associated number of haloes contained in

a cell of over-density δ and the scatter in this quantity is displayed in Figure 2.6.

As Figure 2.5 shows, the mass function split by cell density is not a straight

forward scaling of the universal mass function. Less dense cells lack sufficient

dark matter to produce the haloes with extreme masses, and so we see a sharp

cut off of the mass function at some threshold value. As an example, the lowest

density cell in the sample has overdensity δ + 1 = 0.13. This corresponds to a

mass within that cell of roughly 5 × 1012h−1M�. As expected we find no halos

greater than this mass contained within cells of this overdensity. This may at

first seem trivial. However, as we are computing the conditional mass function

by assigning a halo to a given cell by binning its centre of mass, there could arise
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Figure 2.5: The conditional mass function as measured in the MS halo catalogue at

z=0. The cells used to calculate the CMF are 15h−1 Mpc on each side. We see the

distribution of halo masses within a cell is not a direct scaling and contains a cut off at

a given mass. Lower density cells do not contain enough dark matter to produce larger

mass halos.
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a case where a halo of a given mass Mh could reside within a cell which contains a

mass M < Mh. We expect this to become a problem when the size of our cells is

comparable to the sizes of the largest haloes. If the cells used are too small they

could essentially be entirely contained within a large halo. In this case the halo

centre would be assigned to a conditional mass function bin with a misleading

overdensity. We have found that cells of side 15h−1 Mpc are around the smallest

that can be used to ensure that no cell contains a halo with more mass than the

cell.

The dip at halo masses Mh < 3 × 1010h−1M� illustrates the incompleteness

in the halo catalogues used by the MS. In this work will typically err on the side

of caution and take the confidence limit in terms of halo mass to be 1011h−1M�.

Figure 2.6: The scatter in the halo cell occupation number, the number of haloes

contained within a cell of density δ. As expected the larger density cells contain many

more halos than cells contained in voids. The scatter is well modelled by a Poisson

distribution.
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2.2.3 Velocity Statistics of haloes

From the continuity equation the peculiar velocity field (defined in Equation 1.23)

in Fourier space is related to the density field by

vk = −iHf(Ω)a
δkk̂

|k| . (2.6)

The power of 1/|k| tells us that the velocity field is driven by large scale modes

of the density field: the motion of matter in the Universe is dominated by bulk

flows. This implies that on small local scales it does not in general matter if we

consider an individual particle or the centre of mass of a collection of particles. We

therefore expect the velocity distribution of dark matter haloes to be independent

of their mass. Figure 2.7 shows the measured distribution of halo velocities in

the Millennium simulation for a number of mass bins, as expected we see very

little evidence of a dependence on halo mass.

2.3 Hierarchal clustering and Semi-analytic

Models

In the hierarchal clustering model, most of the dynamic mass in the Universe

is in the form of cold dark matter (CDM). One of the most important features

of CDM is that it preserves small scale fluctuations in the primordial power

spectrum, while if the Universe contained warm dark matter particles, much of

the small scale structure is erased by free streaming in the early Universe. This

means that in the CDM model the smaller fluctuations are the first to collapse

and the formation of structure proceeds in a bottom up manner. The smaller

fluctuations gradually over time merge to form larger and larger structures. This

bottom up

While it is relatively easy to use dark matter simulations to follow the hi-

erarchical merging of dark matter haloes, simulations which include baryons, to

follow the merging of luminous material such as galaxies becomes much harder.

Both in terms of the required computational resolution and having a good enough

model with which to incorporate the varied gas physics (shocks, star formation

etc).
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Figure 2.7: The distribution of centre of mass velocities of haloes of various masses

found in the Millennium Simulation. The distribution is virtually identical for haloes

of all masses.
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Figure 7. A schematic overview of the ingredients of a hierarchical galaxy formation

model. Adapted from Cole et al. (2000).

Figure 2.8: A schematic of the semi-analytic taken from Cole et al. (2000). The role

of merger activity in the formation of spherical galaxies compared with the passive

evolution of disk galaxies is highlighted by the branching paths each takes.
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Understanding the formation and evolution of galaxies from the primordial

fluctuation of the CMB is perhaps one of the key goals of modern cosmology. In

contrast to the clean simple physics of dark matter, understanding the process

of galaxy formation is a complicated task. Not only do we need to contend with

a fluid with pressure and viscosity, but we also have to take into account the

fact that baryons can emit and absorb photons, chemically interact with the

surrounding gases, ionize, form stars and undergo shocks from supernova winds.

This makes full simulations of galaxy formation a hard task.

However, the hope has been that through analytic and semi-analytic treat-

ments progress can be made. The key observation in both these approaches is

that of White and Rees (1978) to note that baryons need to cool and condense

to form stars and the only regions which have potential wells large enough to

facilitate this process are dark matter haloes.

This ties the formation and evolution of the galaxy population to that of dark

matter haloes. The approach taken by De Lucia and Blaizot (2007) , Bower

et al. (2006) and others is to follow this process by following the collapse of dark

matter haloes in high resolution simulations and then applying these semi-analytic

algorithms.

In this section I will examine the main ingredients of various semi-analytic

models and how they differ before moving on to compare the statistics of the

resulting galaxy populations which will form the basis of the input parameters

for my algorithm.

2.3.1 Galaxy Formation

Galaxy formation within the semi-analytic model takes place at the centre of

dark matter haloes. The construction of stars requires the hot virialised gas in

the dark matter halo to cool and condense onto the central galaxy. This is the

main method by which new material becomes available to form stars. The gas

can be thought of as having two states, the hot gas, which is shock-heated during

mergers between haloes, to the virial temperature:

Tvir =
1

2

µmH

k
V 2
H , (2.7)
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where µ = 1/1.71 is the mean molecular mass of the gas, mh is the mass of a

hydrogen atom

Figure 2.9: The cooling rate of hot halo gas as a function of metallically and temper-

ature taken from Sutherland and Dopita (1993). As the gas temperature decreases the

main cooling mechanism changes from thermal Bremsstrahlung radiation to the more

complicated model of cooling through the recombination of metal ions.

Once there is a reservoir of cold gas available, the rate at which it can become

stars needs to be estimated. In theory to calculate this rate would require a

detailed understanding of the star formation process. A good approximation to

the rate can however be obtained from a dimensional argument as:

Ṁ? ∝
Mcold

τ
, (2.8)

which balances the characteristic time-scale of star formation with the mass of

cold gas available to the star formation process. The time-scale is taken to be a
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typical dynamic time-scale of the galaxy τdyn = rgal/vgal but may also include a

dependence on the circular velocity of the galaxy.

2.3.2 Mergers

In the ΛCDM model, hierarchical mergers are the principal driving forces which

control the growth of of galaxies. In addition major mergers (those in which the

smaller of the two galaxies is greater than half the mass of the larger) are thought

to be the cause of changes in morphology and colour of blue spiral galaxies into red

elliptical galaxies. In semi-analytic algorithms the role of halo mergers is clear,

but to apply these to galaxies requires extra physics. Galaxies are associated with

the centres of bound structures and substructures. When these structures merge

together the galaxy in the largest substructure becomes located at the centre of

the new structure; this leaves any of the remaining galaxies to be dealt with.

The remaining galaxies, both the central galaxy in the less massive halo and the

satellite galaxies in both halos, become satellite galaxies within the new halo.

If there are substructures within the main halo, the satellite galaxies are asso-

ciated with these sub-halos. These clumps of sub-structure are eroded over time

by dynamical friction until they can no longer be identified. The galaxies them-

selves are thought to survive this process, as they are more compact than the dark

matter structures they are embedded in. After a galaxy can no longer be associ-

ated with a given dark matter sub-structure, the assumption is that the galaxy

decays in its orbit and will merge with the central galaxy in a dynamical-friction

time scale.

2.3.3 Role of feedback

If the cooling of hot gas onto the central galaxy was the only mechanism of growth

of galaxies then the galaxy luminosity function would have to be a scaled version

of the halo mass function. In reality this is not the case, with the number density

of both small and large galaxies being suppressed. To suppress the growth of these

galaxies requires a mechanism by which the flow of gas to the central galaxy in a

halo can be slowed. This is thought to come from feedback. There are a number

of different sources of feedback which can affect the cooling of gas in small and
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large haloes.

In small haloes the gas is heated and ionised by a background of UV photons

generated by quasars and massive stars. These photons both heat the gas to

≈ 104K, increasing the pressure of baryons in halos with virial temperatures of

less than this. The radiation also ionises the gas removing the efficient cooling

by the excitation of atoms/ions in the gas, by collisions (Benson et al., 2002b,a).

In massive haloes the cooling rate is reduced by the injection of energy into

the hot gas via two main mechanisms: supernovae winds and the accretion of

material onto a central black hole. As the stars in a galaxy age, a number of

them will eventually become supernovae, the largest creating high energy winds

with the ability to eject and heat gas from the cold reservoir surrounding the

galaxy (Larson, 1974; Dekel and Silk, 1986). Depending on the strength of these

winds, the material may be ejected into the hot gas halo, to cool at a later time

or it may be blown out of the halo all together.

2.4 Empirical Galaxy Properties in the MS

Having characterised how the dark matter haloes populate the density field, we

now move on to examining the properties of the semi-analytic catalogues produced

by applying the DeLucia and Bower models to the Millennium Simulation. In

each case we will only consider galaxies with a rest frame magnitude brighter than

Mr < −18 which is roughly the completeness limit within the MS. We split the

galaxy properties into global: the colour distribution and over number density of

galaxies of a given luminosity and local properties : the number density of galaxies

of a given luminosity in haloes of a given mass and the spatial distribution of

galaxies within haloes.

It is natural to split galaxies into two populations : star-forming and non star-

forming galaxies. While we could do this using star-formation rates directly from

the semi-analytic catalogues, most surveys we will be considering in this chapter

do not have spectroscopy and so we cannot determine this quantity directly.

Instead we take the two populations to be split by colour into red and blue galaxies

using a colour cut of Mb −Mv = 0.7. While the precise level of this cut should

depend on galaxy luminosity (Bell et al., 2004), the trend is gradual enough that
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in this work we will take it to be static. To test if this is a sensible place at which

to cut at, we calculate the colour distributions from the catalogues, which clearly

show a bi-modal distribution. Figure 2.10 shows the colour-magnitude diagram

and the distribution of galaxy colours obtained from the DeLucia model.

2.4.1 Luminosity Functions

The primary statistic of galaxies obtained from surveys is the luminosity function.

The comoving number density of galaxies of a given magnitude is one of the most

fundamental quantities for any model to compute. Semi-analytic models are

usually tuned to reproduce the luminosity function at a specific epoch and for a

specific class of galaxy. At redshift z = 0 both models agree well with each other

for some bands but not others.

Most notably the De Lucia b band shows a slight excess at bright luminosities

compared with Bower and a deficit at low luminosities. At higher redshift where

the luminosity functions have not been tuned to give the right result the models

predict differing numbers of galaxies in multiple bands. This can be up to a factor

of 10 in density as demonstrated in Figures 2.11 and 2.12.

2.4.2 Conditional Luminosity Functions in the Millen-

nium Simulation

As we have discussed previously the conditional luminosity function characterises

the contents of haloes as a function of their mass. There is a clear distinction in

both theory and the prescription of semi-analytics as to the role of central galaxies:

those which reside at the bottom of the potential well of their parent halo, and

satellite galaxies. In our analysis then we will consider these along with the colour

of galaxies as four separate populations. We proceed by associating each galaxy

with its parent halo and for each halo calculate its individual luminosity function

for each of the four populations. We then proceed to average the individual

luminosity functions over all haloes that reside in a log bin of width ∆ logM =

0.1h−1M�. We also compute the integrated quantity of occupation numbers: the

expected number of galaxies that reside in a halo of a given mass.

As can be seen in Figures 2.13 and 2.14 the total number of galaxies a halo
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Figure 2.10: The distribution of galaxies with colour Mb−Mv for the DeLucia semi-

analytic mode (top). The red/blue galaxy modality can be clearly seen in the galaxy

population. This split can also be clearly seen in the colour magnitude diagram of the

same galaxy catalogue in the lower plot.
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Figure 2.11: The z=0 luminosity function of the Bower and De Lucia models in the

b,v,i and r bands.
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Figure 2.12: The z = 1 luminosity function of the Bower and De Lucia models in the

b,v,i and r bands.
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Figure 2.13: The evolution of the halo occupancy measured from the Millennium

simulation and the DeLuica semi-analytic galaxy catalogues.

contains depends strongly on its mass and this dependence evolves with redshift.

Below a mass of Mh = 1011h−1M� haloes are typically not large enough to contain

enough baryons to produce a galaxy brighter than our magnitude limit, but due

to the variation in baryon fraction from halo to halo, the drop off at small mass

is not infinitely sharp. These galaxies are dominated as we would expect by blue

central galaxies with an increasing number of satellites as the halo mass rises to

that of the Milky Way. Around a halo mass of Mh = 1012h−1M� there is a change

in the most likely colour of the central galaxy with the probability of its being

blue gradually decreasing until a halo mass of 1013h−1M� when virtually every

central galaxy is red. Above 1013h−1M� we begin to probe the region of galaxy

clusters, which are dominated by red galaxies with a reasonably constant ratio of

red to blue galaxies of 5.

At higher redshift the biggest change is the dominance of blue galaxies until

much higher halo masses, where as at z = 0 the switch from blue to red central

galaxies occurs at a higher mass Mh = 3 × 1012 while the ratio of red to blue

satellite galaxies becomes almost equal.

Moving now to the luminosity functions of haloes we present in Figure 2.15
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Figure 2.14: The halo occupation number as a function of halo mass split by type and

colour as measured from the DeLucia semi-analytic model. Galaxies are split using the

criteria Mb −Mv < 0.7 for red galaxies, Mb −Mv > 0.7 for blue galaxies. An overall

magnitude cut of Mr < −18 is used.
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Figure 2.15: The conditional luminosity function for haloes of various masses

the breakdown of galaxy luminosities for haloes of 1011h−1M�, 1012h−1M�,

1013h−1M� and 1014h−1M�. In practice we calculate the CLF in bins much

finer than this but for clarity we will only present these cases as examples.

Figures 2.16 and 2.17 show the breakdown of halo contents as a function of

galaxy magnitude, colour and type. The general shape of the CLF is a combina-

tion of a single peak around the mean central galaxy luminosity and a Schecter

like function for the satellite galaxy. At around Mh = 1012h−1M� we see that

this description breaks down. Below this mass haloes are dominated by blue

galaxies and above it red galaxies dominate. At the transition mass the central

galaxy distribution is a mix of red and blue galaxies and becomes a double peaked

function.

To model the CLF then we use the sum of 4 separate populations

CLF (Mr,Mh) = CLFcr(Mr,Mh) + CLFcb(Mr,Mh)

+CLFsr(Mr,Mh) + CLFsb(Mr,Mh), (2.9)

where c or s denotes central or satellite respectively and r and b denote red and

blue galaxies. As we have stated above we take the central galaxies to have a
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Figure 2.16: The r-band conditional luminosity function measured from the Delucia

model. The contribution from central and satellite galaxies and both red and blue

galaxies to the CLF are shown for haloes of various masses. The central galaxy contri-

bution is roughly Gaussian for most masses while the satellite contribution is similar

to a Schechter function. The distorted form of haloes around 1012h−1M� is due to the

contribution of both red and blue galaxies to the central galaxy.
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Figure 2.17: Continued from figure 2.16
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Gaussian distribution, so we need to specify its mean and variance.

Following Cooray (2006) we take the form of the satellite galaxies CLF to be

:

CLFsat(Mr|Mh) =
As
2

10γMr

(
1− erf

(
M∗ −Mr

σs

))
, (2.10)

and fit As , γ, M∗ and σs to the values measured. Figures 2.20 and 2.21 show

the fit we obtain to the satellite galaxy distribution.

2.4.3 Local light to mass ratios

The final quantity we measure from the galaxy population is the radial bias

function we introduced in Eqn (3.8), which measures the departure of the radial

distribution, of galaxies from an NFW profile. Here we want to measure how the

galaxy population is spatially distributed relative to the dark matter field. Here

we will make the assumption that each halo has an NFW profile correct for its

mass with a concentration given by that in eqn (1.44); this will not always be

strictly correct but as we are looking for an average trend over many haloes with

similar masses it is a good approximation. We assume that all central galaxies

sit exactly at the halo centre and do not include those galaxies in this analysis.

We first identify the halo in which each galaxy resides and bin them in shells

of scaled radius r∗ = rg/R200 from the halo centre. This gives us a number

density profile of galaxies within that halo, Ng(r
∗), which we then divide by the

halo’s NFW profile to give a single halo bias function gh(r|M) . We then take

the average of this quantity over haloes Nhaloes(M) in the range M to M + dM

to obtain the expectation value of the radial bias:

〈g(r∗,M)〉 =

∑
haloesNg(r

∗)/ρNFW (r,M, c)

Nhaloes(M)
(2.11)

We tend to find as in figure 2.22, that galaxies are less concentrated than the

dark matter within the halo’s NFW profile with a power law which evolves slowly

with the mass of the halo.
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Figure 2.18: The r-band conditional luminosity function measured from the DeLucia

model. The contribution from central and satellite galaxies and both red and blue

galaxies to the CLF are shown for haloes of various masses. The central galaxy contri-

bution is roughly Gaussian for most masses while the satellite contribution is similar

to a Schechter function. The distorted form of haloes around 1012h−1M� is due to the

contribution of both red and blue galaxies to the central galaxy
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Figure 2.19: Continued from Figure 2.18
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Figure 2.17: The r-band conditional conditional Luminosity function for satellite

galaxies measured from the Delucia model. The contribution from red and blue galaxies

is shows with their corresponding best fits.

59

Figure 2.20: The r-band conditional luminosity function for satellite galaxies mea-

sured from the DeLucia model. The contribution from red and blue galaxies are

shown with their corresponding best fits. The halo masses are 2.58 × 1011h−1M�,

2.26× 1012h−1M�, 1.97× 1011h−1M� and 5.07× 1014h−1M�
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Figure 2.18: Continued from figure 2.4.2
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Figure 2.21: Continued from figure 2.20
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2.4.4 Velocity Statistics of galaxies

In galaxy surveys the velocity of galaxies is a quantity almost as important as

their positions. The velocity of galaxies contributes to the line of sight redshift,

distorting the position of the galaxy which would have otherwise been inferred

due to the Hubble flow. This distortion has serious implications for the clustering

measured in surveys and must be modeled and accounted for (Kaiser, 1987). We

can describe the velocity of galaxies in terms of two components: the velocity of

their parent halo plus the velocity relative to the halos’ centre of mass. A number

of authors have claimed that the distribution of the three components of internal

velocities can be described by three independent Gaussians. We want to check

this assumption and find the exact mapping between parent halo mass and the

variance of the Gaussian distribution. Each component of the velocity of a galaxy

is subtracted from that of its parent haloes to give :

vi = vg,i − vh,i, (2.12)

which are binned up for each halo and averaged over haloes in log10Mh bins.

As with the radial bias profile we assume that central haloes share the same

velocity as their parent halo and so will have the same velocity profile as the

haloes discussed previously.

As expected the profiles are Gaussian with a width which is consistent with

the relation found by (Bryan & Norman 1998; Sheth & Diaferio 2001) :

σvir = 476fvir[∆nlE
2(z)]1/6

(
m

1015h−1M�

)1/3

kms−1 (2.13)

where fvir = 0.9 , ∆nl = 18π2 + 60x − 32x2 with x = Ω(z) − 1 and E2 =

Ω0(1 + z)3 + ΩR(1 + z)2 + ΩΛ. This seems to break down at low halo mass where

the velocity seems to become roughly constant.
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Chapter 3

Monte Carlo population of the dark

matter field

There have been some successful attempts to apply the semi-analytic approach

to volumes of ∼ 1h−1 Gpc, but the amount of computing power and time is

prohibitive, placing limits on the number of realisations which can be produced.

Instead we note that the largest haloes contained in the Millennium Simulation

volume have masses of order Mh = 1 × 1016h−1M�. At the current epoch these

represent the largest, rarest fluctuations of the dark matter density field, corre-

sponding in galaxies to rich systems such as the Virgo Cluster. The sharp fall off

in the number count of haloes more massive than this (Figure 2.4) implies that

even in a much larger volume the probability of finding more massive objects is

negligible. As we increase the size of our simulation volume, we are not prob-

ing new structures but rather increasing the number counts of structures already

contained within the volume. Having seen and produced statistics which describe

such structures in high resolution simulations, it is appealing to consider ways we

might use this information to populate larger, lower resolution simulations.

Low resolution simulations are typically undesirable on two counts: the mass

resolution of particles within the simulation is such that it is impossible to identify
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small haloes using friends of friends methods; even attempting to populate the

few large mass haloes using semi-analytic methods fails as we have not resolved

the majority of their progenitors. Monte Carlo merger trees can be produced to

simulate the merger history of haloes, but this really overcomplicates the situation

given the lack of information from the simulation. If we are interested less in the

detailed predictions that a semi-analytic prescription can provide (estimates of

the galaxy bulge size, star formation rate, metallically, black hole mass, etc) and

more interested in producing basic mock galaxy catalogues, then a much simpler

and faster prescription can be used.

If we treat a low resolution simulation as a relatively smooth description

of the dark matter density field, then we can add the lost resolution by hand

by appealing to our knowledge of how haloes populate the background field.

Statistically we know from the calibrated models described in the previous chapter

that a region of space with mean overdensity δ will on average contain haloes

with a distribution given by the conditional mass function CMF(Mh|δ). Having

measured δ from our simulation, we can then Monte Carlo sample the CMF to

obtain a population of haloes for that region and place the haloes within that

region as accurately as we can. In this way, we can increase the effective mass

resolution of the simulation in regions of high density without incurring a large

computational penalty.

Once a catalogue of haloes has been produced, we can in turn populate them

with galaxies using the conditional luminosity function, radial bias and veloc-

ity statistics we obtained from the Millennium Simulation. One of the major

advantages of this approach is that it allows the freedom to “tweak” the reali-

sations produced in a relatively straightforward way and even incorporate halo

occupation statistics obtained from surveys to produce mock catalogues which

correspond well with what has actually been observed. The downsides are that

we cannot follow the evolution, in time, of a halo: at each simulation output

we are producing a new population of haloes distinct from the previous outputs.

In this chapter we will detail the algorithm we have developed to populate the

dark matter field with haloes and in turn the haloes with galaxies. We will then

test this algorithm by recreating the Millennium Simulation volume from a low

resolution re-simulation and comparing the clustering of haloes and galaxies.
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3.1 Probability distributions

The method we detail below is heavily reliant on being able to select random

numbers from a given distribution, so we shall summarise a few of the methods

used to accomplish this. Generating truly random numbers on computers is

virtually impossible due to their deterministic nature. Often we have to settle

for pseudo random number generators: given an initial state, these will always

produce a sequence of numbers which have the appearance of randomness and

will eventually repeat. A good random number generator has a very long period

and low correlation between consecutive numbers. We adopt the algorithm of

L’Ecuyer with a Bays-Durham shuffle (Park and Miller, 1988) algorithm in this

work.

While uniform distributions of numbers are easy to produce, we will also

require the ability to generate numbers which conform to a given probability

density function P (x). A few select probability density distributions have simple

efficient relations which let us take uniformly distributed random numbers and

convert them to the desired distribution. One example which we will use often

here are Gaussian random numbers which can be generated using the Box-Muller

transformation. If x1 and x2 are uniformly distributed random numbers then the

transform

y1 =
√

(−2 ln(x1)) cos (2πx2) (3.1)

y2 =
√

(−2 ln(x1)) sin (2πx2) (3.2)

gives y1 and y2 which are Gaussian random numbers. In general however there will

not be an easy transform between uniform random numbers and the distribution

we desire. Given a probability distribution function we wish to sample, we first

construct the cumulative probability distribution:

y(x) =

∫ x

0

P (x
′
)dx

′
. (3.3)

The idea is to then generate a uniform random number R and invert the cumu-

lative distribution:

x = y−1(R). (3.4)

In practice this is accomplished through the construction and sampling of lookup

tables of the cumulative probability distribution. A uniform random number R
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is generated and the lookup table is then traversed from lowest to highest value

until the criterion R > yi is met, at which point the values in the table can be

linearly interpolated to produce the desired result. For conditional probability

distributions of two variables, R and z, a lookup can be performed by identifying

the rows of the table which bracket the conditional value of interest ie zj < z <

zj+1, performing the lookup operation described above for each row and then

interpolating the result between the rows.

To reduce the computational time involved in traversing the lookup table,

and to increase its accuracy, it is helpful to choose the variable we are trying to

sample to have the highest probability at low values. This ensures that in the

majority of cases only a few iterations are required and increases the accuracy of

the results by avoiding the addition of many small numbers incurring rounding

errors.

3.2 Populating the density field with haloes

We will assume that through some method we already have a low resolution

realisation of the density field at a number of outputs; will detail below how this is

done for both the MS volume, and larger volumes. The first step in the algorithm

is to produce a smoothed density field in cells of a given volume. It is desirable

that these cells are larger than the most massive haloes we expect within the

volume so as not to split large haloes between a number of cells. However if the

cells are too large then we risk smearing out the large scale density fluctuations.

In this work the compromise is taken to be cells with a side of ≈ 15h−1 Mpc.

Halos of a mass 1016h−1M�, which are larger than the limit of structures which

have typically been formed in the Universe at the current epoch, have a virial

radius of r200 ∼ 6h−1 Mpc. The choice of 15h−1 Mpc cells then seems a sensible

one.

The density within each cell is then calculated by particle binning using the

Cloud-In-Cells algorithm discussed previously. This is then used to determine the

expected number of haloes N(M) that each cell should contain and the distribu-

tion of masses which occupy the cell. We need to be careful not to over-populate

a cell with mass, and so as we select each successive halo mass we ensure that
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the total mass in haloes for that cell does not exceed the mass contained within

the cell.

We first obtain for each cell its expected number of haloes by interpolating

the halo occupation function. However, as this is a measure of the expectation

number, this neglects the variance within the halo population. Figure 3.1 shows

the scatter in the N(M) relationship. We find that this scatter is well approx-

imated by a Poisson distribution when it is greater than 1.5 and a sub-Poisson

distribution below this,
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Figure 3.1: Shows the scatter in the number of halos that occupy a cell overdensity

d+ 1

P (N |〈N〉) =

{
b〈N〉c+ P (N) N < 1.5

exp(−N2/(2π(〈N〉))) N > 1.5

}
, (3.5)

where the function P (N) is 1 with a probability equal to the decimal component

of N: N − bNc and zero otherwise.

Once the distribution of masses of haloes is known the next most crucial step

is to place the haloes within the cell. Care has to be taken at this stage as there

is a danger of producing inaccurate spatial statistics. On the largest scales the

83



CHAPTER 3. POPULATING THE DARK MATTER FIELD

clustering properties are sensitive to the contents of each of the simulations cells

much more than the location of objects within that cell; similarly on small scales

correlations are dominated by intra-halo contributions. An inaccurate placement

of haloes within sub-cells is most likely to cause errors on scales comparable to

the cell size.

The most basic approach would be to randomly place haloes within the cell,

but this would obviously wipe out all structures below the cell resolution, replac-

ing them with a Poissonian distribution which is undesirable. Scoccimarro and

Sheth (2002) tuned the number of perturbation theory particles to the expected

number of haloes and then placed each halo centre on a dark matter particle from

the original simulation. This places the largest haloes in the regions of largest

density within each cell and retains sub cell structure. While this works well with

perturbation theory particles, it is impractical when using PM simulations. For

a start, the number of haloes will far outnumber the number of particles within a

simulation and there is an added complication: in a PM simulation, cells with a

large over-density will contain a number of the dark matter particles that belong

to the more massive resolved dark matter haloes. Association of a halo centre

with a DM particle in this case could cause a number of haloes to artificially

clump together as substructure of what should be a larger massive halo. We wish

to identify and remove particles within these regions to ensure that the remaining

particle distribution is from a smooth background.

An algorithm suitable for placing our haloes therefore needs to 1) use as much

information about the subcell geometry as the resolution of the simulation allows

while 2) taking care not to place multiple haloes in regions where particles are

actually resolving high mass haloes and finally 3) take into account the abundance

of haloes compared with DM particles. The general approach will be to first

identify the locations of the largest dark matter haloes by associating them with

the largest over-densities. We then remove all particles which are located within

the virial radius of those halos. This should mostly leave particles which are

associated with no massive haloes which can then be used to place the remaining

smaller mass haloes. As there is a lack of particles compared with haloes we do

this probabilistically, subdividing the cell into a number of subcells and treating

the density within each as a probability density function. We associate as many
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of the haloes as possible with particles until none are left and then place the

haloes randomly within the subcells. The only other care we have to take is with

collisions between dark matter haloes: each halo within the simulation should be

a distinct object and their virial radii should not overlap. Removing particles

within the virial radius in the first stage does not quite ensure this for all other

haloes, so with each new halo added we explicitly check that no collisions occur.

As long as the cell size is small this amounts to at most checking about 100 pairs

of haloes per cell. While this slows down the algorithm it is not prohibitive.

The first step identifies haloes with masses above the expected resolution limit

of the simulation. If for example the mass of each particle within the simulations

is Mp then we select Ml to be 10Mp. This typically gives a threshold of around

1013h−1M� which corresponds to an R200 of around 0.5h−1 Mpc. If we use a sub

cell resolution comparable to this then we would expect to identify and place

them correctly on the resolved regions. Having done so, removing all particles

within the R200 radius eliminates much of the unwanted small scale clustering.

For clarity each of the steps and logic of the algorithm are detailed below:

• Stage 0:

• Rank all haloes contained within the cell from highest to lowest mass.

• Bin all particles in a mesh which divides the current 15h−1 Mpc cell in to

a further n3
s subdivisions

• Stage 1:

• For each halo > Ml

• Identify the sub cell with the largest density

• Identify the haloes centre with a particle within this sub cell

• Remove all particles which are within R200 of the halo centre

• Stage 2:

• For each halo < Ml
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• Randomly select a cell with probability Pcell ∝ ncell the number of simula-

tion particles it contains.

• If the cell contains particles which have not been used, associate the halo

centre with a randomly selected particle

• If the cell contains no remaining particles, randomly place the particle

within the cell

• Subtract the mass of the halo from the density of its current cell and re

compute population probability

The other structural property of each halo we need to determine besides its

mass is its concentration. Equation (1.44) relates the halo mass to the average

concentration with a variance given by equation (1.45). We give each halo a con-

centration simply by sampling this probability. However we note that a number

of authors (Navarro et al., 1997; Neto et al., 2007; Gao and White, 2007) have

found correlations between halo concentration and environment for fixed halo

masses. In future work we would like to extend the method here to include this

dependence.

3.2.1 Limitations to cell and simulations size

Aside from the input statistics, the algorithm has a few adjustable values which

need to be chosen. The two main inputs we have to consider are the size of the

cells used to evaluate the conditional mass functions on and the sub-cell size used

to place the dark matter haloes once they have been assigned a mass. There are

a number of subtitles here which we feel it is useful to discuss in more detail.

Firstly the issue of the size of the box used for the evaluation of the conditional

mass function. This would seem to be arbitrary but as we take the size of this

box too small or too large we can run in to problems. As the box size gets

larger and larger the mass functions of cells of a different δ tend towards the

universal mass function. This reduces the accuracy of the halo mass selection as

we are considering too general a region and also means its harder to determine

the correct location for the dark matter halos in the density field. If we use a
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cell of side of say 30h−1 Mpc to calculate the masses of the haloes and place

them, then subsequently re-measured the conditional mass function using cells of

15h−1 Mpc, we would not recover the correct answer as we have over generalised

by using the 30h−1 Mpc cells.
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Figure 3.2: The halo mass function constructed using the method described in this

chapter using cells of side 4h−1 Mpc and 15h−1 Mpc respectively. The mass function of

the Millennium Simulation halos is shown for comparison. The splitting of high mass

haloes in to many smaller haloes can clearly be seen for the smaller cell size

.

To avoid this loss of detail in the conditional mass function we may be tempted

to make our cells as small as possible. However this too has problems when

we consider the physical size of dark matter halos. The largest haloes’ in the

Universe today are of the order 1× 1016h−1M� which gives them a r200 radius of

approximately 6h−1 Mpc. If we use a cell size of 4h−1 Mpc then we can imagine

a situation where a region of space which should contain a single 1× 1016h−1M�

halo gets covered by 3 or 4 cells. When we calculate the density within these cells,

through the binning of simulation particles, we will tend to get densities which

are lower than a larger cell which fully contained the mass. These cells will be
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mistaken by the algorithm as lower density cells which will therefore be populated

with smaller mass haloes instead of the single large mass halo. This effects the

halo mass function as can be seen in Figure 3.2. A happy medium between these

two extremes, is a cell size of around 15h−1 Mpc. Figure 3.6 shows this choice of

cell size recovers the mass function accurately. As we will be working a lot with

the Millennium Simulation which has a side of 500h−1 Mpc we will actually use

a cell size of 15.625h−1 Mpc which tiles the simulation volume with 323 cells.

It is interesting to ask how large we can make a simulation volume and still

use this algorithm to populate it. The algorithm we have described is essentially

a repeated set of calculations which operate on each cell. One of the nice features

of this algorithm is that the individual cells do not need to interact with each

other. This means if we simply double the number of cells we are required to

generate objects for, then our workload only increases by a factor of only 2. So in

principle given a background density field the algorithm is boundless in the size of

mock catalogue it can generate. The bottleneck in performance for the algorithm

is therefore not the algorithm its-self but the N-Body code used to generate the

underlying density field. We have found that the algorithm will run well for a

simulation with mean particle density of ≈ 0.5 particles per (h−1 Mpc)3. Below

this there is little information on small scales that we can use to place the haloes

and the algorithm fails. We also start to find regions in the voids where the

cells we use for sampling contain only 1 particle. When this happens we are not

sufficiently recovering the distribution of cell densities which can have adverse

effects on the recovered halo mass function.

3.2.2 Halo centre of mass velocity

As we wish to eventually examine clustering in both real and redshift space, we

also need to also assign each halo a centre of mass velocity. In the previous

chapter we illustrated the fact that the velocity distribution of haloes is relatively

insensitive to the halo’s mass, so we will treat each halo as simply a point which

samples the velocity field in which it is embedded. In PTHALOS the velocity of

each halo is taken to be the velocity of the perturbation theory particle on which

it is located. But in assigning a halo a centre of mass velocity using PM particles
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we face a similar problem as with placement of the halo within the density field:

that of particles belonging to resolved massive haloes. Each of these particles

will have two components of velocity, v = vh + vi, where vh is the centre of

mass (COM) velocity of their parent halo and vi is the particles’ internal velocity

within the halo. If unchecked this will mean that in general massive haloes receive

an added dispersion of σv(Mh), broadening the distribution of halo and galaxy

velocities and ultimately leading to inaccurate redshift space distortion effects.

An alternative approach would be to calculate an averaged velocity field within

the cell of interest and then interpolate the velocity field in vx, vy and vz to

the location of a given halo. Computing the average velocity inside each cell

is attractive as it helps solve the issue of resolved haloes, but it will not give

the correct velocity dispersion in the cell. In addition to the average velocity in

the cell we therefore also calculate the variance in each of the three Cartesian

co-ordinates. As we know the masses of each halo within the cell, we also know

the contribution of the internal velocity variance from each which can then be

subtracted from the total variance of the cell:

Vcell(x) =
1

N

∑

i

vi (3.6)

σcell(x) =
1

N

∑

i

(vi −Vcell)
2 (3.7)

As we know the distribution of masses of haloes within this cell, we can estimate

the contribution from each halo to the average internal particle velocity disper-

sion. We can then subtract this from the variance in the particle velocity field

to obtain the scatter of halo velocities. We interpolate all these fields to the po-

sition of the halo and assign the halo a velocity with a Gaussian variance about

the mean for the cell.

3.2.3 From haloes to galaxies

At this stage we have a catalogue of halo positions, velocities, masses and con-

centrations, and we now turn our attention to the population of these haloes

with galaxies. For each halo we treat separately central galaxies, which reside at
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the bottom of the halo potential well, and satellite galaxies which orbit around

the halo as independent populations. In turn we split both these populations

by colour into red and blue subsets. For each dark matter halo we obtain the

number of satellite galaxies by interpolating the occupation number N(M) for

each galaxy colour. The central galaxy is chosen to be red or blue by treating

the central galaxy occupation number for each population as a probability. A

cumulative probability function is then constructed from the conditional lumi-

nosity functions for each population and the magnitudes of each are obtained by

sampling the probability distribution. The central galaxy in each halo is taken

to be the brightest galaxy, of the selected colour, which is produced by sampling

the probability function. This ensures that we do not end up with the case of a

halo having satellite galaxies which are more massive/luminous than their cen-

tral galaxy which is consistent with both observations, theoretical models and

the semi-analytic prescriptions.

Galaxy location and velocity

Once we have a list of galaxy properties, we need to place them within the

halo. The central galaxy is assumed to sit at the centre of mass of the halo:

it is simply assigned the same position as the halo centre and also inherits the

centre of ma ss velocity of its parent halo. Satellite galaxies are a little trickier.

The simplest approach to take would be to assume that the galaxies sample

the density run around the halo, in this case an NFW profile. In other words,

pgal(r)dr ∝ ρNFW(r,Mh, c)r
2dr: the probability of finding a galaxy between r and

r + dr from the halo centre is simply proportional to the fraction of the mass of

the halo contained within that shell. If all galaxies formed out of the gas in their

present day parent halo, this would be a sensible, approach as where there is

more gas it is more likely a galaxy would form. However, in the hierarchical view

galaxies form in isolated haloes which eventually merge to form their parent halo.

In this view we would like to have a way to introduce a radial bias on the galaxies

to encapsulate some of this complicated process and so modify the probability

to:

pgal(r)dr ∝ ρNFW(r,Mh, c)b(r,M)r2dr, (3.8)
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where b(r,M) is a radial bias function for a halo of mass M which we discussed in

chapter 2. Having drawn a radius for a galaxy randomly from this distribution,

we then assign its angular co-ordinates consistent with a spherically symmetric

distribution using

θ = 2πR (3.9)

φ = cos−1(2R− 1), (3.10)

where R is a uniformly distributed random number.

As we saw in the previous chapter, the distribution of velocities within a

halo is well approximated by three independent Gaussian each with a variance

proportional to M2/3.

vgal = vhalo + vvir. (3.11)

A number of studies (Sheth and Diaferio, 2001; Bryan and Norman, 1998)

have found the relative velocities of galaxies in haloes to be well approximated

by an isothermal profile, with each of the Cartesian components of velocity in-

dependently drawn form a Gaussian whose rms depends on the mass of the halo

as σ2
vir ∝ M2/3. If this were accurate for all locations in the halo, then the

equations of hydrostatic equilibrium would force all haloes to have isothermal

sphere profiles. The assumption of an isotropic velocity profile fails at large radii

within the halo, becoming more radial as material falls into the halo from the

surrounding density field. For ease in this work we will ignore this complication,

although one could imagine using a velocity profile dynamically consistent with

an NFW profile.

In detail the σvir(M) relation can be calibrated from semi-analytic models as

is done in the next chapter, or can be obtained from theoretical considerations.

From Sheth and Diaferio (2001) and Bryan and Norman (1998) we again have:

σvir = 476fvir[4nlE
2(z)]1/6

(
m

1015h−1M�

)1/3

kms−1 (3.12)

where fvir = 0.9, E2(z) = Ω0(1 + z)3 + ΩΛ, 4nl = 18π2 + 60x − 32x2 with

x = Ω(z)− 1 and Ω(z) = Ω0(1 + z)3/E2(z).
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Secondary galaxy properties

Beyond the conditional mass function and conditional luminosity functions, we

can envisage adding more information into the galaxy and halo populations. A

number of secondary properties such as galaxy metallicity, morphology and stel-

lar mass could potentially be measured statistically from semi-analytic runs like

the Millennium Simulation and used as conditional probabilities within the al-

gorithm. Perhaps one of the most interesting, and the one we will concentrate

on here is to add galaxy colour to the simulation. The most sophisticated ap-

proach would be to model the dependency of say the b − v colour as a property

of both halo mass and galaxy luminosity, producing a conditional probability

function Pcol(b − v,mag,Mhalo). Using this function, each galaxy could be as-

signed a colour using a Monte Carlo sampling. Although this would be largely

straightforward, here we will take a slightly simpler approach as a proof of con-

cept and simply define a galaxy to be red or blue using a rest frame colour cut of

b− v = 0.7. Treating red and blue galaxies as separate independent populations,

we then construct from the Millennium Simulation two conditional luminosity

functions CLFred(mag,Mhalo) and CLFblue(mag,Mhalo), and their corresponding

halo occupation numbers Nred(Mhalo) and Nblue(Mhalo) . The only place the

assumption of treating the two galaxy populations independently needs to be

modified is when we consider central galaxies. As a central galaxy can only be

red or blue the probabilities are mutually exclusive.

3.3 Repopulation of the Millennium Simulation

Armed with a fully determined set of statistics for the halo population and galaxy

population, we want to ensure that the algorithm works and that any systematic

effects are identified. We use the halo statistics measured in sections 2.2.2 and

2.2.3 and the functional fits obtained to the galaxy properties we measured from

the DeLuicia model in sections 2.4 and 2.4.4 as the required inputs in our algo-

rithm. We construct a new catalogue of galaxies and haloes within the Millennium

Simulation volume using our algorithm. We will compare the mass function, lumi-

nosity function, colour and clustering of the haloes and galaxies produced against

those found in the Millennium Simulation and its associated semi-analytics.
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We will also require a density field as the basis for the algorithm. It would be

possible to bin the original Millennium Simulation particles and calculate a den-

sity field to use as an input to the algorithm however in subsequent applications of

this method we will not have access to such a high resolution simulation. Instead

to keep this as fair a test as possible, we re-simulate the Millennium Simulation

volume with a much reduced particle density.

In addition to a full reconstruction of volume we will also run two more tests

where individual parts of the algorithm, the halo placement algorithm and the

halo population algorithm, are compared with information from the original MS

to illustrate the errors which arise from each process.

3.3.1 Dark Matter properties

As mentioned above, we do not want to rely on the high resolution density fields

of the original simulation as all other realisations will have to utilise much coarser

density fields. We could sparse sample the existing snapshot files from the MS

to obtain the kinds of particle numbers we expect to use in our smaller simula-

tions but this would not address the lower force resolution which is also used in

the simulations. Instead we produce coarse versions of the volume by running

new PM simulations with the same initial conditions but greatly reduced particle

number. The original MS contained N = 21603 giving a spatial sampling, in the

initial conditions, of the order of 0.1h−1 Mpc. As we have already explained, for

this work we simply require the large scale fluctuations and so we re-simulate

with a particle load of N = 2563. The initial conditions for the re-simulation are

obtained by binning the particles of an early (z = 12.9) output of the Millen-

nium Simulation on a 2563 mesh, obtaining three velocity component fields and

a density field. The Zeldovich approximation discussed previously was then used

to evolve the particles of the re-simulation to their starting points and the simu-

lation was then run using the Millennium Simulation cosmological parameters to

the present day.

Figure 3.3 shows the resulting density field of the re-simulation in comparison

to the original Millennium Simulation. As expected the lower particle number has

decreased the definition of small scale structures, but the large scale distribution
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Figure 3.3: A 500 by 500 by 15.6 h−1 Mpc slice of the Millennium Simulation (top)

and the 2563 particle re-simulation (bottom). The large scale structure remains intact

while small scale features are less defined. The grey scale is the logarithm of the density

in the range 0.1 < δ < 15

.
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of matter is largely intact. To determine exact effects of the decreased resolution

we calculate the two point correlation function and compare with that of the

Millenimum Simulation. As can be seen in figure 3.4, we recover the correct

clustering on large scales but at small scales particles are much less clustered as

expected. In terms of the halo model, this is because we still sample some of the

contribution of larger haloes to the single halo term, but the lack of resolved low

mass haloes significantly deteriorates correlations below a few h−1 Mpc. This is

however the ideal starting point for our algorithm: as we will see, by populating

the density field with haloes and then reconstructing the density field from them,

we can reconstruct the full MS clustering measurements.
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Figure 3.4: Comparison of the clustering of dark matter in the coarse density field

and the original MS density field.

Algorithmically one of the main concerns we have is that the distribution of

cell densities should be the same in both cases, as this is the quantity which when

combined with the conditional mass function will give rise to the halo population.

For cells of 15.6h−1 Mpc, which we can see from , Figure 3.5 that the agreement

is extremely good.
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Figure 3.5: Comparison of the distribution of cell densities between the 2563 particle

re-simulation and the original Millennium simulation on a scale of 15.625h−1 Mpc
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Confident that we have a density field which is accurate on large scales, we

apply the algorithm to produce galaxy and halo populations in our volume.

3.3.2 Comparison of halo properties

As the positioning algorithm is an important part of the algorithm, affecting not

only the clustering of haloes, but later galaxies on small scales we want to be sure

it works well. As a test we take the MS halo catalogues, identify which 15h−1 Mpc

cell each halo inhabits and discard their positions. We then apply the positioning

algorithm using a particle field from a low resolution re-simulation of MS (dis-

cussed in more detail below) to assess how well the algorithm copes. Figure 3.6

shows the correlation functions which result from repositioning all halos with a

mass Mh > 1011h−1M�: we see that on scales r < 2h−1 Mpc the repositioned

haloes are overly clustered. The placement algorithm therefore tends to place

haloes too close together within the subcells of the method described above. The

upper two lines in the plot show the correlation function measured after each

halo is individually dressed with an NFW profile by dividing the haloes mass

into an appropriate number of particles with mass Mp = 1011h−1M�. On small

scales, as we would expect given that the correlation function here is dominated

by the 1-halo term, the dressed correlation function gives a good match to what

is observed. On large scales as well both correlation functions agree well with

the minor deviations being seen at the transition from the 1 halo to 2 halo term.

This extra clustering can be seen in Figure 3.6 .

These discrepancies may be worrying, but there are a number of simple mod-

ifications which could be applied to the halo placement algorithm to account

for the extra small scale clumping. The simplest of these would simply be to

manually increase the pair separation of haloes within a cell, compensating for

the close pairs. However, as we have stated before, much of the utility of the

type of algorithm we present here is in testing methods for statistical recovery of

key quantities. It is therefore sufficient to produce a realisation which is broadly

correct and whose underlying statistics we know well.

With an understanding of the limitations of the halo placing algorithm we

move on to a full recreation of the halo catalogue with halos masses sampled from
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Figure 3.6: The clustering of repositioned haloes compared with the original haloes

found in the MS and both populations dressed with particles in an NFW profile. There

is a tendency for haloes to cluster more on small scales which has an effect on the

intermediate scale correlation function. As expected however the small scale power,

which has its main contribution from the 1 halo term, is well recovered as is the large

scale correlation function.
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Figure 3.7: Comparison of the halo mass function generated by the Monte Carlo algo-

rithm compared with the haloes in the original MS. We recover the global distribution

of halo masses well.
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Figure 3.8: A 500 by 500 by 15.6 h−1 Mpc slice of the number density of haloes

Millennium simulation (top) and the repositioned Millennium simulation haloes within

the 2563 particle resimulation (bottom). The pixel resolution of these images is of order

1h−1 Mpc and the greyscale scheme is logarithmic in the overdensity (0.1 < δ < 200).
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the conditional mass function. The first quantity we wish to check we recover

is the mass function which is compared with the MS mass function in Figure

3.7. The global mass distribution is recovered well over the range of masses we

consider. While the MS mass function continues to haloes with masses of the

order of 1010h−1M�, the halo catalogues are only complete down to around 1011,

so we only plot our comparison to this point.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

(r)

Millennium Simulation Haloes 
re-simulated haloes

 0
 0.25

 0.5
 0.75

 1

 0.01  0.1  1  10  100fa
ct

io
na

l d
iff

er
en

ce
 

r(Mpc h-1)

haloes

Figure 3.9: The correlation function of the re-simulated halo distribution compared

with that of the original MS haloes. The same over-clustering at small scales as seen

in Figure 3.6 can be seen here, but outwith this range at larger separations we recover

the halo clustering well.

3.3.3 Comparison of galaxy properties

In a similar vein as with the halos, to obtain a better appreciation of the errors

introduced with each step in the algorithm, we will approach the comparison
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of galaxy clustering in two steps. Initially we will apply the galaxy population

algorithm to the original MS haloes and compare the clustering of both red and

blue galaxies before applying the same algorithm to the halos generated with the

halo algorithm.
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Figure 3.10: The galaxy population algorithm applied to the MS halos split by colour.

The split is taken to be at the boundary Mb −Mv = 0.7. The clustering shows good

agreement with the exception that blue galaxies are more densely clustered at small

radii.

Figure 3.10 shows the correlation function of the red and blue galaxies com-

pared with the original MS galaxies. The results show a good agreement with

the model with the notable exception of the clustering of blue galaxies at separa-

tions r < 0.1h−1 Mpc
−1

. The most likely explanation of this discrepancy may be

because we have not treated the radial bias of the two galaxy populations sepa-

rately, and the higher clustering of red galaxies at small radii is biasing the blue

galaxies. When we consider the total galaxy population as is shown in Figure 3.11
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and compare with the clustering of the DeLucia and Bower models, we see that

the agreement is excellent and any variations are within the scatter between the

two different semi-analytic models. We are confident then that given an accurate

halo population we can successfully produce an accurate galaxy population.

We now bring both methods together with the understanding that the major

source of imperfection is likely to be over clustering of halos introduced by the

halo placement algorithm.
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Figure 3.11: Clustering of all galaxies obtained from the halo re-population algo-

rithm compared with the Bower and DeLucia models. The bottom panel shows the

fractional difference of both the Bower and re-population galaxies when compared with

the Delucia curve.

Having confirmed that we recover the correlation function of galaxies accu-

rately we also want to check that we get the correct results for the luminosity

functions of galaxies. Figure 3.12 shows the comparison between the galaxy lu-

minosity functions in the re-simulated galaxy sample and the original DeLuica
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galaxies. We recover both the full luminosity function and the luminosity func-

tion cut by colour as well. There are small deviations at high luminosity in the

full galaxy luminosity function but these are on the order of the deviations we

saw between semi-analytics in Figure 2.11.

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

-25 -24 -23 -22 -21 -20 -19 -18

φ 
(L

) 
(h

3  M
pc

-3
)

magr

all galaxies
blue galaxies
red galaxies

all Delucia galaxies
blue Delucia Galaxies

red Delucia galaxies

Figure 3.12: The luminosity function comparison between the DeLucia model (lines)

and the re-simulated galaxies (points). The total galaxy population, and population

split by colour, is presented.

3.3.4 Velocity statistics and redshift space

Until now we have only examined the positional and primary physical properties

(halo mass, luminosity and colour) of the mock galaxies and halo populations,

however if we are to successfully model galaxy surveys we also need to assign each

halo and galaxy a velocity.

In Chapter 5 I will explain how the algorithm can be modified to produce

lightcones in which the evolution of the Universe and its halo and galaxy prop-
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erties are interpolated in time to produce a realistic sky. When surveys of real

galaxies are carried out the quantity measured is not the true distance to the

galaxy but rather the redshift. As I discussed in Chapter 1, this is a biased dis-

tance measurement, affected by the peculiar velocity of the galaxy. Any simulated

mock survey must take these effects in to account.

The first thing to check is that the velocity statistics of the haloes and galaxies

within the reproduced MS match those of the original. As there should be no pre-

ferred direction in the simulation, we present the distribution of the components

of velocity, regardless of Cartesian dimension for the halo centres and the galaxy

velocities. Figure 3.13 shows the comparison between the original MS halos and

galaxies, and the reconstructed populations. We obtain an excellent agreement

between the velocity distribution of both halos and galaxies.

From these velocities we can calculate the redshift space co-ordinates of each

of the objects. The boost each receives is:

rs = r +
r̂ · u
H

r̂. (3.13)

When constructing lightcones, this full prescription is necessary but as a test of

the algorithm we will appeal to the fact that the Universe is isotropic and simply

pick one Cartesian direction as the line of sight. In this case the apparent position

of a particle is only modified in one direction (here the z direction) giving :

rzs = rz +
uz
H
. (3.14)

Figure 3.14 shows this calculated for galaxies in our re-simulation and we can

clearly see the characteristics of small scale suppression of power.
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Figure 3.13: A comparison of the velocity distribution of halos (top) and galaxies

(bottom) in the millennium simulation and our re-simulation. The algorithm for pro-

ducing halo velocities from the underlying velocity field and the assignment of velocities

within halos reproduces the velocity distribution well.
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Chapter 4

Application to baryon acoustic

oscillations

One of the most exciting prospects for probing the equation of state and evo-

lution of dark energy is that of Baryon Acoustic Oscillations. As discussed in

Chapter 1, sound waves in the primordial plasma imprint a physical scale on the

power spectrum of the CMB and also the matter distribution, which is trans-

lated into the galaxy power spectrum. Seen as an excess of clustering at around

100h−1 Mpc separation, this feature provides a standard ruler against which the

expansion history of the Universe can be determined. As the Universe expands,

the angle subtended at z = 0 by the BAO scale, is scaled by the angular diameter

distance which depends on cosmology, therefore by measuring the BAO scale at

two separate epochs we can obtain a measure of the expansion between the given

epochs with the precise relation being determined by the Hubble factor (for a flat

Ωk = 0 Universe):

H2(a) = H2
0 (Ωma

−3 + Ωva
−3(w+1)) (4.1)

To determine the value of w to 5% requires a determination of the peak of

the BAO to 1% (Seo and Eisenstein, 2005). At first inspection to reach this

accuracy simply requires us to obtain a large enough sample of galaxies in a large
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enough volume. The accuracy with which the power spectrum can be measured

is commonly approximated by the expression due to Feldman et al. (1994) :

( σ
P

)2

=
2

nmodes

(
1 +

1

Pn

)
, (4.2)

where nmodes is the expected number of modes in |k| space. The first term in this

expression accounts for the variance in the measurement and decreases with the

square root of the surveys volume. The second term accounts for the discrete-

ness of the population with the term Pn measuring the amplitude of the power

spectrum in units of Poisson shot noise.

In an ideal world this would allow us to determine the volume and depth of

a survey required to accurately measure w. However, we are assuming that the

shape of the power spectrum (or correlation function) is unchanged by physical

processes unrelated to the expansion. Such systematic errors need to be under-

stood and controlled to a high level to enssure an accurate measurement of the

dark energy equation of state. In linear theory the shape of the power-spectrum is

fixed between epochs, but this is not true when one begins to consider non-linear

structure formation, the process of galaxy formation and redshift space distor-

tions. Each of these physical effects has the ability to distort the BAO signal and

shift its peak away from the original value (Angulo et al., 2008), introducing a

bias in our measurement of the expansion.

A number of authors have tackled this problem through both theory and

simulation. Eisenstein et al. (2007) argued that the dominant effect on the shape

of the BAO feature comes from the differential motion of particles originally

separated by 100h−1 Mpc. Despite the BAO feature appearing at relatively large

separations, the distortions to the signal by the differential motion of particle

pairs, is on much smaller scales where the dominant physical forces are those of

cluster formation and bulk flows at scales almost 10 times smaller. They follow

the displacement of particles separated by 100h−1 Mpc in numerical simulations

to determine their final displacements and determine that a good model for the

modification to the BAO scale is a suppression to the high k oscillations in the

power spectrum :

P (k) = Plinear(k) exp

(
−
k2
‖

2σ2
‖
− k2

⊥
2σ2
⊥

)
. (4.3)
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Other authors have examined the distortion through large suites of numerical

simulations. Smith et al. (2008) ran a number of numerical simulations with a

volume totalling ∼ 100Gpc3h−3 and examined the effect on the correlation func-

tion BAO peak. Extending the examination into the realm of galaxies, Angulo

et al. (2008) have used semi-analytic methods applied to a very large simulation

volume of 2.41h−3Gpc3 to probe the effect on the BAO scale, finding that the

typical shift in the galaxy power spectrum is of the order of a few percent.

In this chapter we apply the mock galaxy algorithm to the study of these

systematic effects. We produce a number of large h−1 Gpc simulations and pop-

ulate them with halos and galaxies. For each population we measure the power

spectrum and correlation function to determine the location of the BAO signal.

4.1 Correlation function and Power Spectrum

estimation

In what follows we will be trying to locate the BAO scale feature in our sim-

ulations. To accomplish this we need to be confident that we are accurately

recovering clustering information from the simulations. Before we proceed with

an analysis of our simulations we outline how we calculate both the power spec-

trum and correlation function.

4.1.1 Correlation Function Estimation

The estimation of the correlation function is the task of counting pairs of particles

with a given separation. This can be achieved in a straightforward manner by

simply calculating the distances between each pair of particles then binning up

the results. This brute force method, while useful for small numbers of parti-

cles unfortunately scales in computational power as O(N2). Even with modern

machines this quickly becomes computationally prohibitively expensive.

There are however four alternatives we can appeal to aid us: 1) a gridded

correlation function, 2) KDTrees, 3) sparse sampling of the population and 4)

Fourier transforms. Each of these methods are able to speed things up by, in the

first two methods, treating not individual particles but regions of space, and in

111



CHAPTER 4. APPLICATION TO BARYON ACOUSTIC OSCILLATIONS

the final method, discarding particles. We examine each of these methods and

evaluate their merits and drawbacks.

Gridded Correlation Function

In a gridded correlation function approach we divide the density field into a num-

ber of evenly spaced points and assign the mass of each particle in the simulation

to this grid using a CIC algorithm. Then we simply calculate the distance between

each pair of grid points to obtain the correlation function.

Aside from simply the reduction of the number of distances that are needed

to be computed (down from N2
part to N2

grid) we can achieve further speed gains

by taking advantage of the regular nature of the grid. Given a maximum rmax

scale over which we are interested in, it is easy to identify large number of pairs

of cells which will not contribute to the correlation function. This is achieved by

noting that the squared distance between to pairs of cells with index (i1, j1, k1)

and (i2, j2, k2) is r12 = L2
cell((i1 − i2)2 + (j1 − j2)2 + (k1 − k2)2), where L2

cell is the

length of an individual cell. If we hold the first cell constant and iterate over all

other cells in the simulation then we only have to consider cells over a range in

which each individual cartesian contribution to the separation is less than rmax.

The main disadvantage of this method is it is not exact. In binning the

density field we are convolving it with an unknown function which introduces a

smearing of the correlation function as seen in Figure 4.1. The line in this figure

is an exact determination (calculated by the brute force method) of the clustering

around the BAO peak while the points represent the clustering calculated by a

binning method with 322 cells over a 1h−1 Gpc volume.

If we Fourier transform the correlation function we obtained from the brute

force method to obtain FT [ξ(r)], and Fourier transform obtained from the grid

approach to obtain FT [ξgrid], then the two are related by

FT [ξgrid(r)] = FT [ξ(r)]FT [f(r)], f(r) = FT−1[FT [ξgrid(r)]/FT [ξ(r)]], (4.4)

rearranging we find an expression for the convolving function which is shown

in Figure 4.2 . One approach to accurately measuring the correlation function

then would be to fit this function and deconvolve with the result from the grid

algorithm. As we will see, however, there are better methods.
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Figure 4.1: A comparison of the correlation function obtained by an exact brute force

calculation (the line) and a binning method (the points). The gridded method bins

particles in to 322 cells over a 1h−1 Gpc volume and then calculates the correlation

between the mass weighted grid points. The smearing effect caused by the binning

process can be clearly seen as the increase in correlation around 100h−1 Mpc.
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Figure 4.2: Fourier transform of the convolving function in Equation (4.4) obtained

by dividing the FT of the correlation function obtained from the gridding algorithm by

the Fourier transform of the correlation function obtained with a brute force calculation

applied to the same density field.
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KDTrees

The KDTrees algorithm and similar space splitting algorithms have been devel-

oped and applied to a number of problems. Gray et al. (2004) apply this approach

to clustering. The main idea is to reduce the complexity of the problem by ge-

ometrically dividing the volume into nested sub-volumes. Each of these nested

sub volumes can then be examined to see if they contribute significantly to the

correlation function. If they do, the particles the cell contains can then be ac-

counted for without explicitly calculating each particle separation; if not, then

the sub cells of the current cell are considered. In detail the method proceeds as

follows:

The tree is constructed by defining two threshold values Nt and Lt, we then

continually subdivide the simulation volume until each sub region either contains

N < Nt particles or has a principle axis of length L < Lt. The volumes which

satisfy these criteria are known as leaf nodes. We end up with a nested hierarchy

of volumes going from the entire simulation volume down to the leaf nodes. In

regions where there is a higher particle density the tree with have a larger depth

and the volume will be represented by smaller leaf nodes. The recursive function,

Split(s, Nt, Lt) which splits the space down to the lead nodes is as follows in

pseudocode:

Split(s, Nt, Lt)

• Let N be the current number of particles in the current sub-volume

• Let L be the largest dimension of the current sub-volume

• if (N < Nt OR L < Lt)

• Sub-volume is a leaf node return;

• else

• sub-volume needs to be divided further: Bisect the box across its longest

Cartesian axis.

• Let sleft and sright denote the new sub-volumes

• Split (sleft , Nt , Lt)
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• Split (sright, Nt,Lt)

Figure 4.3: An illustration of the production of a KDtree taken from Gray et al.

(2004)

This produces a tree like the one in Figure 4.3 which naturally traces the

density field: regions of high particle number are subdivided into smaller sub-

volumes than those of relatively low particle number. Once a tree has been

constructed we can calculate the number of particles which lie in a distance range,

re < r < rs, from a particle P by walking the tree: descending down through

successive sub-volumes. We can save time on the calculation if any one of the

following criteria are met:
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1. A given sub-volume which has closest and furthest distance to P , Dmin and

Dmax respectively. Figure 4.5

2. If the sub-volume is completely within our search radius (Figure 4.4), rs <

Dmin < Dmax < re, we simply count the number of particles within that

volume.

P

r_s

r_e

Figure 4.4: A node entirely within the search radius. We know that every single one

of these particles contributes to the count. We don’t need to individually check the

distance. Instead we can just add the number of particles in this node directly to the

counts running total.

3. If the entire sub-volume is closer to P than Dmin (Figure 4.5) or more

distant than Dmax (Figure 4.6, we simply ignore all the particles it contains

For volumes which meet neither of these criteria ie those that straddle the

borders of the search radii, we descend another level down the tree and apply

the above criteria to the lower sub-volumes until they are met or we reach a leaf

volume in which case we have to give up and calculate the correlation function

using the brute force method.

The full algorithm is as follows, we define rangeCount(node) as the following

recursive algorithm :
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!

"#$

"#%

Figure 4.5: A node entirely inside the search radius. None of these particles contribute

to the count and so can be ignored without explicitly calculating the distance to each

P

r_s

r_e

Figure 4.6: A node entirely outside the search radius. None of these particles con-

tribute to the count and so can be ignored without explicitly calculating the distance

to each
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• Let n be the cell we are considering which has sub cells n → left and

n→ right.

• Let P be the centre of our search

• Let the range we wish to count particles in be rs < r < re

• Let Dmax be the largest distance between P and n

• Let Dmin be the smallest distance between P and n

• if rs > Dmax then all possible particles in this cell lie closer to P than we

are interested. return 0

• if re < Dmin then all possible particles in this cell lie further away from P

than we are interested. return 0

• if Dmin < rs < re < Dmax then all particles must lie within the range we

are interested in. return ncount

• if n is a leaf node: calculate by brute force the number of particles in this

cell which lie between rs and re from P.

• else return rangeCount(n→ left) + rangeCount(n→ right)

The rangeCount() algorithm is them called on the root note to construct the

tree. As we can see from Figure 4.7, by implementing this pruning of the tree when

sub-cells are not relevant to our search and subsuming cells which fall entirely

within our search criteria we drastically reduce the number of N2 pairs we have

to calculate and so dramatically speed up the correlation function calculation.

Further speed gains can be obtained by using two identical trees and com-

paring cell with cell rather than particle with cell. While this approach is useful

for speeding up the calculation of a correlation function over a small scale, we

found that when applied to the large ranges, rmin to rmax, over which we wanted

results, it was hard to maintain the speed boost. While we still obtain the speed

up from discarding regions which lie completely outside of the range in which we

are interested, to obtain the speed boosts for subsuming particles in cells which

are completely contained within a small distance bin requires navigating down
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Figure 4.7: An illustration of the range search performed on the tree for a position

centred at the blue circle. For an annulus where rs = 0 and re is some constant, the tree

nodes which are entirely within the annulus (purple nodes) can be completely subsumed,

adding the number of particles that node contains to running totally without the need

to perform a distance check. Nodes which lie entirely outside the annulus (green nodes)

are ignored.
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almost to the leaves of the tree. In our experience for small bins, the overhead

of doing this (calculating the maximum and minimum distances between cells)

overwhelms the benefit of subsuming particles.

Hybrid grid / sparse sampling

For the results presented here we settled on a hybrid of both of these methods,

which is simple but effective. In a similar way to the KDTree method we assign

particles to cells, but in this case we simply use a single level regular grid. Then

we examine pairs of cells, calculate their maximum and minimum separations

and discard them if they lie completely outside of our range in much the same

way as the KDTree algorithm. For the remaining cells we calculate the particle

distances directly.

While this still requires some sparse sampling of the population in order to

run in a reasonable timescale, the level of sampling in question is at about the

10% level for the simulation sizes present here. We have confirmed that this is

more than enough particles to accurately determine the large scale features of the

correlation function.

4.1.2 Power Spectrum Estimation

The calculation of the power spectrum is a two stage process: the particles are

binned onto a regular 3D grid to obtain an over-density field; this field is then

Fourier transformed and the resulting modes are spherically averaged in annuli

spanning k to k + dk. There are a number of methods of assigning particle mass

to the 3D grid. In the simplest case the total mass of the particle is assigned

to the grid point nearest to it, but this approach neglects the fact that each

simulation particle actually represents an extended element of the smooth field

we are trying to model. There are a number of schemes which aim to correct for

this by assigning a fraction of the particle mass to each surrounding grid point.

One of these, the cloud in cell (CIC) scheme is the one we adopt here.

There are a number of corrections which need to be made to the resulting

power spectrum:

• Expected number of modes: Depending on the coarseness of our binning in
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shells of |k|, a given grid point in Fourier space will lie either inside of a shell

or outside while the power associated with that point is actually distributed

smoothly between these two extremes. Because of this we correct for the

expected number of modes in a k bin in the continuum limit :

N(k) =

(
L

2π

)3

4πk3, (4.5)

where L is the length of the side of the simulation box.

• The act of binning particles onto a density field means that what we are

actually measuring when we measure the power spectrum is not the true

power of the particle distribution but rather the density field convolved with

a grid of top hat functions. In Fourier space this becomes a multiplication

of sinc function which we correct for with the factor :

P (k) = P̀ (k) ∗ (1 +
L2

12n2
k2), (4.6)

where the n is the number of bins (in each dimension) we are using to

produce the density field and L is the length of the side of the simulation

box.

• Shot noise: Finally the discreteness of particles means that on small scales

the power spectrum is affected by shot noise. For a population of particles

with a spatial density of n, the shot noise is subtracted from the power

spectrum as:

P (k) = Pmeasured −
1

n
. (4.7)

4.1.3 Picking out the BAO signal

Once we have obtained a measure of the power spectrum and correlation function

we are required to model the position of the BAO feature. This is done most

easily in Fourier space for a number of reasons; although the signal is more

complicated there, there are a number of oscillations rather than a single peak

and the background contribution from a smooth spectrum is more easily dealt

with. Our approach is to produce a smoothed version of the underlying power

spectrum with no BAOs and then divide the measured spectrum by the smoothed
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one, leaving a relatively clean BAO signal which can then be fit (Parkinson et al.,

2007).

There are a number of possible ways of producing a smooth reference spec-

trum. We can use a linear zero baryon power spectrum, where the baryons can

either be omitted leaving Ωm less than in the simulation, or the baryons can be

converted to dark matter keeping Ωm the same (Blake and Glazebrook, 2003).

This method has the drawback that it does not account for any large scale non-

linear evolution of the power spectrum. Even when applied to a linear power

spectrum there is a tendency for this approach to introduce a tilt in the resulting

BAO signal. An alternative method is to coarsely re-bin the spectrum into bins

which are large compared with the oscillations. A cubic spline can then be used

to fit the general shape of the spectrum (Percival et al., 2010). The benefit of this

approach is that it produces a level representation of the BAOs and also accounts

for some of the non-linear features in the measured spectrum. In this work we

calculate the coarse power spectrum by resampling the power spectrum into 10

bins from k = 0.005 to k = 1.5. The cubic spline fit is then constrained to pass

through each of these points. Figure 4.8 shows a comparison of both methods

clearly showing the residual tilt in the zero baryon model.

After this reference spectrum has been calculated we are left with the quantity:

PBAO =
P (k)

Pref(k)
. (4.8)

Regardless of how this is done we also require a theoretical model for the expected

BAO signature with some variable shift α. To construct this we take a linear

power spectrum constructed from the fitting formula presented in Eisenstein and

Hu (1998) and apply the same spline fitting method of producing a smoothed

spectrum. We then modify the reference spectrum as :

PBAO
ref (k) = λPBAO

lin (kα) exp(−k2/k2
nl) (4.9)

where α is the variable which will measure the shift in the BAO scale away from

the expected value α = kapp/ktrue, Λ accounts for overall normalisation and k2
nl is

a dampening factor to dampen the large k oscillations. The motivation for using

a linear spectrum to map the non-linear PBAO
ref as opposed to fitting a shift to

the evolved dark matter power spectrum, is that we are trying to compare, for
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Figure 4.8: A comparison of the effect of using a zero baryon model and a spline

fit as the reference spectrum for picking out the BAO signal. The spline fit does a

much better job of producing a BAO signal without imposing an overall gradient and

is therefore much more appealing.
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each of the species of interest, not to the location of the BAO signature in the

underlying evolved dark matter field, but it to the original location of the BAO

signature at high redshift. It is this shift that will ultimately be measured from

surveys as it is hard to probe the power spectrum of the dark matter field.

We define a likelihood function for each combination of λ, α and knl:

− 2 lnL = χ2 =
∑

i

(
PBAO(ki)− PBAO

ref (ki)

σi/P i

)2

, (4.10)

where the error term σi/P i is taken to be the same as in Equation (4.2) and this

equation is valid only in the absence of mode coupling.

4.1.4 Realisations

The Millennium Simulation volume is small in comparison with the BAO scale

of ∼ 100h−1 Mpc containing only a small number of Fourier modes which probe

it. To be able to properly examine the BAO signal we require larger simulation

volumes. To this end we have run a suite of 5 simulations of 1h−1 Gpc and

populate each using the algorithm described previously. The cosmology used in

each simulation is identical to that of the MS and the accuracy characteristics

are identical to those used to create the coarse MS simulation in Chapter 3. 5123

particles are used in each simulation box and the force grid used by the PM

code is also increased to 5123 points. Each realisation is started with a different

random seed and the initial conditions are produced in an identical manner to

the coarse MS simulation. Figure 4.9 shows the mass distribution obtained from

one of the simulation volumes. For each of the 5 simulations we calculate the

power spectrum and divide by a spline curve as explained above. We calculate

the likelihood function on a grid of 1000 by 200 different values of α and λ

in the ranges [0.8,1.2] and [0.5,1.5] respectively. As we appear to have some

systematic effects at large k we only fit over the first two BAO peaks in the range

0.1 < k < 0.15. Figure 4.10 shows the BAO power spectrum with reference to

the linear theory power spectrum while Figure 4.11 shows the same results with

respect to their best fitting curves. The parameters for each best fit is shown in

Table 4.1.5. The recovered values for knl are all at the high end of the fitting

range. This is not surprising as we are fitting only over the first two peaks where
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damping is negligible. The shifts measured in the BAO are in line with what

others (Angulo et al., 2008) have found, a shift of a few per cent. However, the

value for the halo shift is much greater than we would expect. This suggests that

our fitting algorithm may be failing to accurately recover the power spectrum in

this case. Both the red and blue galaxies are shifted at the level of around 2%

and 3% respectively in line with what we would expect. The errors on the values

of the shift are however large and its hard to tell if these results are significant

at all.We note that with a better determination of the power spectrum, we could

fit to higher k which would improve our results. Similarly a larger number of

larger volume simulations is probably required to reduce the cosmic variance on

the largest scales, allowing a better determination of the first BAO peak.

4.1.5 Implications for future studies

Should we be worried about a 1% shift in the position of the acoustic scale in

the local Universe power spectrum? In terms of the corresponding shift in w this

could be a large source of error. If unaccounted for the estimates obtained from

future surveys could be heavily systematically biased by such a shift.

They would be wrong because they have assumed the linear value for the BAO

scale. In practice if we have a good enough model for the shift in α with redshift

and galaxy class we can fit instead to the model prediction of α 6= 1.

Population α knl σα

Dark Matter 0.98 0.38 0.02

Red Galaxies 0.98 0.39 0.015

Blue Galaxies 0.97 0.39 0.02

Halos 0.96 0.398 0.03

Table 4.1: The best fitting parameters for the BAO scale for the different populations.

The first column is the apparent shift in the BAO scale, the second if the fit parameter

for the dampening of the large k oscillations and σα is the standard deviation of the

shift calculated from 5 realisations. There is no statistically significant shift found but

the general trend seems encouraging.
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Figure 4.9: A 1000h−1 Mpc squared 15h−1 Mpc slice from a 1h−1 Gpc simulation.

4.2 Conclusions

We have used out method to probe the BAO signal and have tried to determine

how non-linearities effect the location of the BAO’s for the four populations :

red galaxies, blue galaxies, haloes and dark matter. While it is disappointing

that the simulation sizes we have run struggle to give us good enough statistical

results to say conclusively the magnitude of these shifts, we are encouraged that

this method seems to be capable of modelling the BAO signal and has produced

results which are broadly what other authors have found.

In the future we plan to run a great deal many more simulations to improve the

statistics of the current box size’s and run a much larger boxes up to 3000h−1 Mpc

on a side. This should hopefully let us examine even closer the results of non-

linear structure growth and galaxy formation on the BAO scale. We also hope

to explore other methods for extracting the BAO signal.
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Figure 4.10: The points are a measure of the average power spectrum from 5,

1h−1 Gpc simulations at z = 0 for each population. The power spectrum has been

divided by a smooth power spectrum obtained by fitting with a cubic spline curve.

This was obtained by fitting to a coarse re-binning of the power spectrum into 10 bins

over the range k = 0.005 to k = 1.5. The line is the linear theory prediction for the

simulation which has been divided by a reference spectrum calculated in the same way.
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Figure 4.11: As with Figure 4.10, but now the line represents the best fit. The

parameters for each best fit (over the range 0.1 < k < 0.15 ) value of α and knl can be

found in table 4.1.5.
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Chapter 5

Lightcones

Up till now we have applied the mock algorithm to snapshots of the evolution of

the Universe. This has allowed us to compare with semi-analytic and theoretical

predictions for clustering. However in the real world observers do not simply view

the Universe at a single timestep but rather along a lightcone. In this chapter I

will discuss how the algorithm can be modified to produce realistic skies which

incorporate evolution.

5.1 Box Stacking

If the evolution of the Universe is ignored then the next most immediate problem

with producing lightcones which are comparable in scale and depth to real surveys

is that our boxes do not have the required volume. This becomes even more of a

problem when one considers that future surveys will cover almost the entire sky

to redshifts z > 1.

A single simulation box can therefore not be used to construct the desired

lightcone and we need to stack boxes along the line of sight. This however can

lead to structures repeating along the light of sight which will adversely affect

clustering and lensing statistics as well as producing visible artefacts. To combat

this problem some authors (Kitzbichler and White, 2007; Blaizot et al., 2005)
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adopt the approach of applying a number of transforms to boxes along the line

of site. Both random translations to the centroid, Equation (5.1), and rotations,

Equation (5.2), of the box are designed to ensure that along the light of sight

objects are not repeated:

x́ = x + a (5.1)

x́ = Rx (5.2)

This approach however has its own complications. If large haloes or structures

such as filaments span the edge of the box, rotations and translations will break

up the mass density producing sharp discontinuities. In full particle simulations

there is also the added complication of determining the red-shift at which a halo

comes into being or the redshift at which a merger occurs. As haloes are only

identified at given time-steps we require a high time resolution to be accurate in

determining the state of a halo.

5.2 Constructing a light cone

Our approach to constructing a lightcone is similar to that of populating a single

snapshot, but we need to take into account both the larger volume that is required

and the evolution of structures in the Universe. We start by running a 1h−1 Gpc

simulation, outputting particle positions and velocities every ∆z = 0.3 from a

redshift of z = 3. Given a lightcone geometry: θmin<θmax, φmin<φ<φmax and

z<zmax, we determine the maximum number of boxes required to tile the volume.

For each box we then subdivide the volume into subcells of the same volume as

used in Chapter 3 and determine the distance from the observer to the centre

of that box rb. The redshift at which the observer would view that box, zb, is

then calculated from the distance redshift relation discussed in Chapter 1. This

redshift is used in the subsequent determination of the properties of the halo and

galaxy contents of this region.

(5.3)
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Simulation box

Sub cell 

Figure 5.1: Schematic of the scheme used for light-cone production. Boxes of the size

of the simulation box are repeated to span the extent of the light-cone. Each of these

simulations is divided into a number of sub cells.
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Our cells are small enough that the change in redshift between the point

nearest to the observer and the point furthest from the observer is much smaller

than the output frequency of the simulation. For each cell in the simulation

we next identify the two snapshots that bracket the subcell. We now have the

density and particle distribution at zs2 and zs1 such that zs1<z<zs2. The idea

is to interpolate both of these quantities to the cell redshift and combine them

with interpolated conditional mass function statistics using the same algorithm

prescribed in Chapter 3 to produce a halo catalogue for that cell.

We interpolate the density linearly in the expansion factor between the two

outputs to give:

δb = δ2 +
δ1 − δ2

a2 − a1

(a2 − ab) (5.4)

We need to be more careful however in interpolating the particle positions as

between the initial and final timesteps not all the particles contained within the

cell will be the same at both timesteps. Simulation particles can both move in

and out of the cell during the time step and we need to be aware of this. We

could interpolate the particles contained in 16 surrounding cells to ensure that

any particles entering the cell between z = 2 and zb are accounted for, but we

take the philosophy here that as we are not trying to directly identify haloes from

the particles and instead are only using the particles in the placement algorithm,

we can afford to lose a few of the particles.

Each particle from the simulation is assigned a unique id which allows us to

track them from timestep to timestep, and so for each particle which exists in

the box at both redshifts we have 12 degrees of freedom: 6 Cartesian position

co-ordinates and 6 velocity components. This leads naturally to using a 3rd

order quadratic to interpolate the particle positions. We use equation 5.5 then

to interpolate our particles to the correct redshift for the cell. For each Cartesian

coordinate we set

x(t) = a+ ba(t) + ca(t)2 + da(t)3 v(t) = b+ 2ca(t) + 3da(t)2 (5.5)

where we have differentiated vi = ẋi. This must hold at both timestep a(t1) =

a1 for x1 and v1 and timestep a(t2) = a2 for x2 and v2, so we need to solve for
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the four coefficients a, b, c, d :




x1

x2

v1

v2




=




1 a1 a2
1 a3

1

0 1 2a1 3a2
1

1 a2 a2
2 a3

2

0 1 2a2 3a2
2







a

b

c

d




(5.6)

We can then invert the matrix to obtain a,b,c and d as:




a

b

c

d




= A




x1

x2

v1

v2




(5.7)

where

A =




3a21a
2
2−4a1a32+a42 −a31a22+2a21a

3
2−a1a42 a41−4a31a2+3a21a

2
2 a

4
1a2+2a31a2+3a21a

2
2

−6a21a2+6a1a22 2a31a2−3a21a
2
2+a42 6a21a2−6a1a22 a41−2a21a

2
2−2a1a32

3a21−3a22 −a31+3a1a22−2a32 −3a22+3a22 −2a31+3a22a2−a32
−2a1+2a2 a21−2a1a2+a22 2a1−2a2 a21−2a1a2+a22


 (5.8)

To test how well we do using this prescription we interpolate particles be-

tween two simulation outputs at z1 = 1.35 and z3 = 0.92 to a third output at

z2 = 1.13. The interpolated particles are then compared with their positions in

the simulation itself. Figure 5.2 shows the positional accuracy in the Cartesian

components of the particle positions. Most particles are accurately interpolated

to within a few 100 h−1 kpc and the accuracy in practice will be higher as the

time step used in this test is twice as large as that used in practice. This level

of accuracy would be a problem for schemes where friends of friends codes are

responsible for locating haloes as the typical orbital period of a halo will be much

less than the typical snapshot separation of the simulation. In this case inaccurate

interpolation will typically cause high velocity particles in the halo to leave the

halo as it is hard to interpolate multiple circular orbits. In this case halos tend to

“explode” between outputs leading to incorrect identification of structures. As

we are not using particle positions to identify haloes this is no longer a problem

and we can cope with the lower accuracy of interpolation. This in turn allows us

to use a much coarser spacing of simulation outputs.

135



CHAPTER 5. LIGHTCONES

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

%
 o

f p
ar

tic
le

s

∆ x (Mpch-1)

Figure 5.2: The accuracy of the interpolation algorithm described in Equation (5.7).

The start and end redshifts where z = 1.35 and z = 0.92 interpolating to the inter-

mediate redshift of z = 1.13. Most particles are accurately traced within a few 100

h−1 kpc. The actual accuracy in practice will be higher than this as the timestep of

the simulations will actually be half that used in this test.
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5.2.1 Populating cells

After applying the halo algorithm with evolution as discussed above we need to

populate the haloes with galaxies. This is relatively straightforward as all we

have to do is interpolate the conditional luminosity function to the redshift at

which the halo sits relative to the observer and then apply the galaxy population

algorithm of Chapter 3 as it stands.

Figure 5.3: Logarithmic number density of galaxies in a lightcone of dimensions

5◦ × 5◦ out to a redshift of z = 1. For each individual plot we rescale the y axis while

the x axis shows the redshift. The lightcone is produced for an observer at the centre

of a simulation box face. The orientation of the light cone is a random angle through

the box. Any line of sight passes through at most only 3 replications of the simulation

box.
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Using the method we described above, we produce a lightcone with a similar

geometry to the PAN-STARRS medium deep survey, a 5◦ × 5◦ region of the sky

out to a redshift of z = 1. Figure 5.3 shows the logarithmic number density of

galaxies along the resulting lightcone. Each segment of the plot has had its y axis

rescaled to fit the full lightcone in the plot. At low redshifts we see a number

of small clusters, including a relatively large cluster next to the observer. As

we increase redshift we observe a number of voids and the cosmic web begins to

become more apparent.

5.3 Photometric redshifts and redshift space

distortions

Once we have produced a catalogue of haloes on the lightcone we need to address

the fact that when we measure the distance of a galaxy in a real survey we are not

measuring the physical distance but rather its redshift. A further complication is

that most large scale modern surveys will not determine a galaxy redshift directly

but rather using a photometric redshift estimate. We need a prescription of how

to take these effects into account within our light cone. Redshift space distortions

are relatively easy to apply as each particle’s redshift simply becomes a product

of its cosmological redshift and the shift due to its peculiar velocity v projected

along the line of site between the observer and the object r :

ztotal = (1 + zcos)(1 + zvel) (5.9)

where

1 + zvel = r̂ · v/c (5.10)

There are two main methods for determining the redshifts of galaxies. A spec-

trum of the galaxy can be produced and then multiple features in the spectrum

can be identified and the shift from their rest frame location measured. This

method is very accurate but is time consuming and therefore limits the scope

of surveys. An alternative approach is to use broadband filters in a number of

bands to which a synthetic spectrum can then be fit to obtain an estimate of the

redshift.
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This introduces an error in the redshift which will in general depend on the

particular algorithm that has been used to determine the redshift. It is much

simpler however to bypass many of these complexities and simply model the

probability of obtaining a photometric redshift zp(z) given the actual redshift z

to be a Gaussian with a variance σz and a shift zb(z) in the mean.

p(zp|z) =
1√

2πσz
exp

[
−(z − zp − zb)2

2σ2
z

]
(5.11)

The scatter introduced in the photometric redshift is due to inaccuracies within

the method, but the shift is also important as the photometric redshift estimate is

unbiased in z given zp but not in zp given z. In general it is hard for photometric

redshift methods to achieve an accuracy greater than ∆z ' 0.05, as the filters

used in the photometry have a width of order 20% of their mean wavelength.

While we will not explicitly use photometric redshifts in this work it is trivial to

add them to our model by sampling the probability function in Equation 5.11.

4

FIG. 2.— Spectroscopic vs. photometric redshifts for ANNz applied to
10,000 galaxies randomly selected from the SDSS EDR.

FIG. 3.— A subset of 200 galaxies randomly selected from the results
of Fig. 2, and with the error bars calculated by ANNz shown. These are
a combination of contributions from photometric noise (§2.2) and network
variance (§2.3).

0.0229, which compares well with the results in Table 1. For
clarity the estimated errors on the photometric redshifts are
not shown in Fig. 2. The results for a randomly-selected sub-
set of 200 galaxies are shown with errorbars in Figure 3. Due
to the high quality of the training data in this case, network
variance makes only a small contribution and the errors are
therefore dominated by the photometric noise.
HYPERZ (Bolzonella, Miralles, & Pelló 2000) is a widely

used template-based photometric redshift package. In order
to more directly compare ANNz with the template-matching
method, HYPERZ was applied to the same evaluation set using
the CWW template SEDs (Coleman et al. 1980). It is clear
from the results in Fig. 4 that not only is the rms dispersion
in the photometric redshift considerably greater than that for
ANNz, but there are also systematic deviations in the HYPERZ

FIG. 4.— Photometric redshift estimation using HYPERZ with the CWW
template SEDs. This uses the same 10,000 galaxy sample as figure 2. There
are obvious systematic deviations, with bands apparent above and below the
zphot = zspec line.

results. The SDSS consortium obtained similar accuracies to
HYPERZ in their implementation of the basic template-fitting
technique (the results labelled CWW and Bruzual-Charlot in
Table 1 are for the respective template sets). With more so-
phisticated template-basedmethods they were able to improve
on these errors: the result labelled Interpolated was obtained
by first tuning the templates using the spectroscopic sample
as a training set, then producing a continuous range of tem-
plates by interpolating between the tweaked SEDs. However,
even “hybrid” methods such as this still do not match the ac-
curacy achieved by the purely empirical methods (in the table
these are: Polynomial, which uses a second-order polynomial
as the fitting function, and Kd-tree, in which the training set is
partitioned in colour-space and a separate second-order poly-
nomial is fitted in each cell).

3.2. Extensions to the basic method
In this section more advanced use of ANNz is demonstrated.

These examples use the LRG and main galaxy data from
the SDSS Data Release 1 (DR1; Abazajian et al. 2003), split
into training, validation and evaluation sets of respective sizes
50,000, 10,000 and 64,175. For these data the photometric
redshift accuracy on the evaluation set when using the same
basic method as in §3.1 was σrms = 0.0238.

Using additional inputs
One of the great advantages of empirical photometric red-

shift methods is the ease with which we can introduce addi-
tional observables into our parametrization of the photometric
redshift. This is particularly true for ANNz; we simply add an
extra input to our network architecture for each new parameter
we wish to consider. ANNz treats these new inputs in exactly
the same way as it does the galaxy magnitudes.
If the additional inputs contain useful information then the

ANN will use this to improve the accuracy of its predictions.
However, increasing the number of inputs to the ANN gener-
ally leads to a reduction in the generalization capabilities of
the network (that is, its ability to make predictions for data on

Figure 5.4: An example of the the error in photometric redshifts taken from Collis-

ter and Lahav (2004). In this work the photometric redshifts were obtained from an

artificial neural network approach.
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5.3.1 Redshift space distortions

The distortion of the correlation function along the line of sight by peculiar ve-

locities is a problem when measuring the real clustering of the Universe, but it

does contain information of its own. As structures form in the Universe, they

have to acquire mass from their surrounding. This mass typically streams into

the structure from the outside leading to high peculiar velocities. The rate of the

growth of structure in the Universe can therefore be probed by measuring the

shape of the redshift space distortions.

In linear theory, the growth of perturbations is related to the linear growth

rate by:

f =
d ln δ

d ln a
. (5.12)

The growth rate depends strongly on the matter density Ωm(a) at the epoch

of interest (Heath, 1977; Linder, 2005). For many modified gravity models this

dependence can be approximated by

f ≈ Ωγ
m (5.13)

where γ depends on the gravity model: γ ≈ 0.55 for GR with a cosmological

constant, γ ≈ 0.68 for the DGP brane world model (Linder, 2005; Guzzo et al.,

2008). In general γ is related to the effective equation of state of the model

through γ ≈ 0.55+0.05[1+w(z = 1)]. If one can measure the growth of structure

from redshift space distortions, then the distortions can become a good probe of

alternative gravity models.

To do this we need a good theoretical model of the anisotropies created by the

redshift space distortions. We write the correlation as a function of two variables

ξ(rp, π), where rp is the separation of a pair of galaxies perpendicular to the

line of site while π is their separation parallel to the line of sight. Obviously the

dependence of ξ on rp remains the same, but there exist two main effects which can

affect the line of sight correlations. On small scales, matter and galaxies located

within dark matter haloes will have large line of sight virial velocities which will

lead to galaxies traveling towards us appearing closer while those moving away

appearing further. This effect known as the “fingers of god” has been found to be

well modeled by a convolution of the correlation function with a Gaussian with
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a typical 1D pairwise velocity dispersion of σ12,

φ(v) = (σ12

√
2)−1 exp

√
2|v|
σ12

(5.14)

The second effect is an enhancement of the large scale correlations from the

infall of matter into the cluster. In this case matter further than us from the

halo centre will be falling towards the observer along the line of sight resulting

in an underestimation of the matter’s true position. Conversely, matter closer

to us than the cluster will be falling away from the observer resulting in an

overestimation of its true position. The effect then of infall is to make clusters

appear more compact (Kaiser (1987)). To model this effect we follow Hamilton

(1992) in expanding the correlation function in spherical harmonics

ξ(rp, π) = ξ0P0(µ) + ξ2P2(µ) + ξ4P4(µ), (5.15)

where µ is the cosine of the angle between the separation vector and the line of

sight vector, µ = r · z, and the Pi are the Legendre polynomials and ξi are the

weights:

ξ0 = (1 +
2

3
f +

1

5
f 2ξ(r)) (5.16)

ξ2 = (
4

3
f +

4

7
f 2)[ξ(r)− ξ̄(r)] (5.17)

ξ4 =
8

35
f 2[ξ(r) +

5

2
ξ̄(r)− 7

2
¯̄ξ(r)], (5.18)

where

ξ̄ = 3r−3

∫ r

0

ξ(s)s2ds, (5.19)

and

¯̄ξ = 5r−5

∫ r

0

ξ(s)s4ds. (5.20)

For a power law correlation function ξ ∝ r−n this gives:

ξ0(r) =

(
1 +

2

3
f +

1

5
f 2

)
ξ(r) (5.21)

ξ2(r) = −
(

4

3
f +

4

7
f 2

)
n

3− nξ(r) (5.22)

ξ4(r) =
8

35
f 2 n(2 + n)

(3− n)(5− n)
ξ(r) (5.23)
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To complete the model we convolve the result with the line of sight velocity

distribution as given in Equation (5.14).

5.3.2 Fitting the redshift space distortions

In practice we want to measure the linear redshift distortion parameter

β =
f

bl
, (5.24)

where bl is the linear bias value defined as the ratio between the root mean squared

density contrasts for the galaxy and dark matter distributions. The other free

parameter that exists is the pairwise velocity dispersion, which has to be fit from

the data. The strategy we adopt is to fit the prescription for modelling the

redshift space distortions described in the previous section to that measured in

our simulations to determine the values of σ12 and β. Here to increase our number

statistics and for ease of computation we calculate the correlation function for an

individual simulation output, taking the z axis as our line of sight. At the end

of this chapter we will contrast this wide angle approximation with a full result

from the lightcone. In our modelling we have an additional two parameters, r0,

the normalisation, and n, the slope of the real space correlation function, which

need to be determined. In real surveys (Guzzo et al., 2008) these parameters are

determined by fitting by projecting ξ(rp, π) along the line of sight and inverting

to obtain ξr(y):

wp = 2

∫ ∞

0

ξ(rp, π)dπ = 2

∫ ∞

rp

yξr(y)

y2 − r2
p

dy (5.25)

Here we will simply determine r0 and n by fitting the spherically averaged, real

space correlation function ξ(r) in the range r = 1h−1 Mpc to r = 10h−1 Mpc.

We then proceed to fit the remaining two parameters β and σ12 using the 2D

correlation function. We define our goodness of fit as:

χ2 =
∑

i

∑

j

(
ymodelij − ysim

σij

)2

(5.26)

and then calculate χ2 over the ranges 0h−1 Mpc < π < 20h−1 Mpc and

0h−1 Mpc < rp < 20h−1 Mpc. We do this for 100 values in the range
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0.4 < β < 0.7 and 300km s−1 < σ12 < 700km s−1 to obtain the best fitting

values. Table 5.1 shows the results of the fitting of all 4 parameters for red galax-

ies, blue galaxies and all galaxies and Figures 5.5, 5.6 and 5.7 show the measured

correlation function and the best fit model for all, blue and red galaxies, respec-

tively.

Galaxy Type r0 n β σ12 (kms−1)

red 6.49 ± 0.8 2.56 ± 0.67 0.43 ± 0.23 543.32 ± 102.3

blue 3.95 ± 0.75 1.36 ± 0.52 0.42 ± 0.16 657.85 ± 94.5

Total 5.2 ± 1.2 2.0 ± 0.79 0.69 ± 0.34 405.34 ± 110.2

Table 5.1: Best fit parameters for redshift space distortions. The errors are calculates

from 4 different runs of the algorithm

We compare these results with the results from the 2dFGRS (Madgwick et al.,

2003) which can be found in figure 5.8.

Qualitatively we find similar results, the red passive galaxies have a much

higher central dispersion than the blue galaxies from having a high proportion

of satellite galaxies in massive haloes. The blue galaxies tend to live in smaller

haloes and so have a much less pronounced finger of god effect. The 2dFGRS

survey measured β to be 0.49 for active galaxies and 0.48 for passive galaxies. Our

best fitting value of β for blue galaxies is 0.43 while for red galaxies prefer a value

of 0.42. Our values for β are consistently low when compared with the 2sFGRS

results while our values of σ12 are much higher. Part of this may be because we

are calculating the result in a wide angle approximation, where we simply choose

the z axis in a simulation to be the line of sight, and boost each particle in this

direction. Figure 5.9 shows the equivalent redshift space correlation function for

all galaxies calculated on the lightcone. While we have not fit the redshift space

distortions to it, it has a greater resemblance to the results of Madgwick et al.

(2003).
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Figure 5.5: The 2D correlation function ξ(rp, π) of all galaxies for an individual

simulation output. The contours show the best fit model to the data.
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Figure 5.6: The 2D correlation function ξ(rp, π) of red galaxies for an individual

simulation output. The contours show the best fit model to the data.
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Figure 5.7: The 2D correlation function ξ(rp, π) of blue galaxies for an individual

simulation output. The contours show the best fit model to the data.
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Figure 5.8: The 2D correlation function ξ(rp, π) of a) passive b) active c) all galaxies

measured in the 2dfGRS survey (Madgwick et al., 2003)
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Figure 5.9: The 2D correlation function ξ(rp, π) of all galaxies calculated on the

lightcone.
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5.4 Topology

While the two point correlation function is one of the most natural ways to

measure the growth of structure in the Universe, it is not the only statistic which

can be used. The topology of the density has also been explored to a lesser extent.

The idea is to smooth the density field on a given scale R and then calculate the

genus, a measure of the connectivity of the resulting iso-density surface. For

a given surface in 3 dimensions the topology can take 3 distinct forms, “meat

ball” like which consists of a number of isolated high density regions, “Swiss

cheese” like which have a number of isolated holes or a “sponge” like topology

which consists of a combination of meatball and hole like configurations. The

characteristic which separates the “sponge” topology form the others is that it is

completely connected. Within both the regions contained in the isosurface and

those excluded by it, it is possible to move to any other region of the same class.

The interest of applying these ideas to cosmological density fields comes from

the fact that a Gaussian field should have a “sponge” like topology, and so any

departure from this is a measure of non-Gaussianity of the density field. For more

details see Gott et al. (1986).

There are two ways in which the density field could be non-Gaussian, ei-

ther a primordial non-Gaussianity signal was always present in the density field,

imprinted along with the density perturbations from inflation, or through the

non-linear growth of structure through gravity in the late Universe.

The topology of a field is quantified by its genus: a measure of the number of

connected holes in a surface. For example, a sphere would have a genus of zero

while a mug would have a genus of 1 etc. The genus of a Gaussian random field

is (Gott et al., 1986):

g = N(1− ν2) exp(−ν2/2), (5.27)

where ν is a measure of the mean density contour in units of the standard devi-

ation away from the mean density and N, the normalisation factor, depends on

the power spectrum of the field. Therefore the curve displayed in Figure 5.10 is

sensitive to the power spectrum of the density field but it only effects its overall

amplitude.
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Figure 5.10: The genius function of a Gaussian random field.

5.4.1 Measuring the genus in simulations

To apply the above analysis to simulations we require a way of relating the global

topological property, the genus, to a locally measurable geometric quantity. This

is achieved through the Gauss-Bonnet theorem which relates the curvature of a

surface to its genus. First we define the Gaussian curvature at a point x on the

isodensity surface to be

K(x) =
1

r1(x)r2(x)
, (5.28)

where r1 and r2 are the radii of curvature for the two principal components on the

surface. The Gauss-Bonnet theorem then tells us that the genus is proportional

to the integral of K(x) over the surface

4π(1− g) =

∫
K(x)dA. (5.29)

For example, a sphere has a constant radius of curvature 1/R2 where R is the

radius of the sphere and so the integral of curvature is simply 4π giving a genus

of 0, as expected. To apply the Gauss-Bonnet theorem to a simulation volume

we first have to define the iso-density surface for a given density. This is done

by first binning up the simulation particles to produce a 3D gridded density
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Figure 5.11: The genus of the halo population within the simulation (top). Each

line represents the genus measured after smoothing on a given scale starting with λ =

5h−1 Mpc (black curves)through to λ = 15h−1 Mpc (blue curves). The bottom diagram

shows the result of Hermite decomposition of the genus curve and shows the fractional

contribution of the first ten modes to each smoothing scale.
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Figure 5.12: As for Figure 5.11 but for red galaxies.
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Figure 5.13: As for Figure 5.11 but for blue galaxies.
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field, smoothing on a given scale λ using a Gaussian smoothing kernel and then

classifying each cell as either greater than the density threshold ν (in which case

it is inside the surface) or less than the density threshold ν (in which case it is

outside the surface). The boundary between these surfaces is then approximated

by a number of polygons which are in turn used to calculate the radius of curvature

over the surface. For more details see Gott et al. (1986), Weinberg (1988) and

Gott et al. (1987).

Once the genus has been measured, one method for characterising the de-

partures from the Gaussian case is to decompose the curve in terms of Hermite

functions via:

an(λ) =

∫
gλ(ν)e−v

2/4Hn(ν)dν, (5.30)

where Hn is the nth Hermite function. In a series of papers, (Matsubara, 1994;

Matsubara and Suto, 1996) showed that the correlations between phases intro-

duced by non-linear gravitational evolution lead to disruption of the symmetry

about the mean density contour of the genus curve. Using cosmological pertur-

bation theory they demonstrated that in a Gaussian field all connected moments

higher than n=2 vanish, while in a non-Gaussian field the genus curve can be

expressed as

gWNL ≈ −A exp(−ν2/2)[H2(ν) + σ(P3H3(ν) + P1H1(ν))], (5.31)

where Hn(ν) is the nth polynomial, Pn are their coefficients and σ is the rms

fluctuations of the field.

We apply the genus measurement to each of the three populations in one of

our redshift z = 0 simulation and decompose each into Hermite polynomials.

This is done for a number of smoothing scales to establish the evolution of the

genus with scale, starting from mildly non-linear at 15h−1 Mpc through to the

highly non-linear 5h−1 Mpc scale. This analysis was carried out by Dr Berian

James using data supplied by the author. Figure 5.11 shows the genus of the

halo population and the fractional contribution of the nth Hermite polynomial

to the genus. As we would expect, the halos exhibit a higher clumping than

what would be expected from a Gaussian field. It is interesting to note that

non-Gaussian signals are still present even at the weakly non-linear smoothing
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scale. The galaxy results for red galaxies, Figure 5.12, and blue galaxies, Figure

5.13 showing very different characteristics. The red galaxies display an evolution

with mean density similar to that of the dark matter haloes. In some respects

this is unsurprising: the red galaxies will tend to be central galaxies associated

with halos centres and so we would expect the results to be much the same.

The blue galaxy evolution is very different, however, with the value of the genus

curve for median density being constant with scale, indicating that the filament

structures associated with the median density seem unaffected by non-linearity.

The main deviation from the Gaussian field result comes at higher density scales.

The decomposition into Hermite polynomials shows more significant differences

in the different galaxy populations. Red galaxies have a similar decomposition

to that of the dark matter halos but with a weaker decrease of the n = 2 mode.

There appears to be a ‘bump’ in the results around the 10h−1 Mpc scale which

is likely to be an artefact of the decomposition. In comparison the blue galaxy

decomposition shows an increase in the n = 2 mode at small scales. This is not

consistent with the usual signature of non-linear gravitational evolution.

While these results are interesting they are preliminary in nature and it is

unclear to what extent systematics play a role. We also only have run these results

for a single simulation and so have no idea of the errors on the an values. This will

be part of the aim of future work. Regardless of this it is striking that there exists

such a difference between red and blue galaxies and this could indicate a strong

dependence on environment. The preference of red galaxies to populate high mass

halos in clusters and their increased likelihood of being a central galaxy, while

blue galaxies tend to be satellites and field galaxies may contribute to the distinct

difference in topology results. The dependence of galaxy colour on topology has

been an unexplored area and this result suggests it is worthy of more attention.

5.5 Conclusions

In this Chapter we have extended the use of our algorithm to produce lightcones.

We think our approach gives as a great advantage when it comes to producing

light-cones as the galaxy and halo statistics along with the density field evolve

smoothly along the history of the lightcone. This removes the need for many
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of the methods required to ensure continuity of structure when constructing a

lightcone from N-Body simulations and semi-analytics. While we are happy with

the results, we are also keen to improve the scope of the lightcones we can produce.

This is simply a matter of increasing the simulation size we are using as a seed

and promises to produce full sky mocks with relative ease.

We have also had an initial examination of some of the other statistics used to

characterise structure formation: topology and redshift space distortions. As with

the BAO results in the last chapter we are more interested in the proof of concept

here rather than a rigorous evaluation of these numbers and it is encouraging that

our method is able to produce the required details.

The topological results is however interesting as it gives a distinctly different

result for red and blue galaxies. This indicates they inhabit topologically different

structures. These differences if interpreted correctly could give fresh insight in to

the structure formation process.

Similarly the redshift space distortion results are, while a little off what has

been measured from galaxy redshift surveys, encouraging. If we can refine the

method to further match what is seen in the real Universe this will become a

valuable tool. One exciting prospect which we will discuss more at the end of

this thesis, is the idea that using this method we can produce redshift space

distortions for other theories of gravity. By changing the underlying simulation

which produces the density field and suitably altering the galaxy/halo statistics,

we can quickly cover a number of modified gravities and produce predications on

the distortion signature we would expect to find in each.
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Chapter 6

Applications to Lensing

While the clustering of objects in the Universe allows us to trace the dark matter

in an indirect way, gravitational lensing gives us a direct probe. As light travels

to us from distant galaxies it has to pass through the cosmic web of large scale

structure. The gravitational field created by the inhomogeneities in the Universe

deflects light by distorting geodesics. In regions of large mass density like clusters

the effect of the gravitational field is easily seen, distorting the background image

of stars into large arcs. In less dense regions the distortion is more subtle but

still present. As the level of deflection is proportional simply to the mass present

within a region of space and not the nature of the mass, it can be used to map not

only regular matter but dark matter. The method does not distinguish between

classes of matter, but as can be seen in Figure 6.1 the mass on large scales is

dominated by dark matter.

In regions of low density the effect is seen as subtle changes at around the 1%

level to the ellipticity of galaxies, which is not detectable on a galaxy by galaxy

basis but can be measured statistically by averaging the observed ellipticity of

galaxies over an area of the sky. This regime, where the distortion is small, is

known as weak lensing. Weak lensing is a promising method for not only mapping

the dark matter distribution in both projection and in full 3D distribution (Simon

et al., 2009), but also as a method of determining the nature of dark energy and
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4 

 
 

Figure 3 | Comparison of baryonic and non-baryonic large-scale structure. The total projected mass 

from weak lensing, dominated by dark matter, is shown as contours in panel a and as a linear grey scale 

in panels b, c and d. Independent baryonic tracers comprise (i) stellar mass (blue, colour scale peaks at 

2.3!10
11

 Msun deg
-2

 within !z=0.1), (ii) galaxy number density (yellow, peak at 1.4!10
5
 deg

-2
 within 

!z=0.1) seen in optical and near-IR light (adjusted to the redshift sensitivity function of the lensing mass), 

and (iii) hot gas (red, peak at 2.6!10
-14

 erg/s/cm
2
/arcmin

2
) seen in x-rays after removal of point sources. 

 

Figure 6.1: Dark matter map of the COSMOS field from Massey et al. (2007b). Top

image shows the contours of the recovered mass distribution from lensing while the blue

yellow and red indicate three tracers of baryonic matter: stellar mass, galaxy number

count and hot x-ray gas, respectively.
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can potentially provide signals of departures from General Relativity. However

the method has a number of potential systematic errors which may adversely

affect the results. In this chapter we will discuss the basic methods of gravitational

lensing before discussing how the algorithm used to produce lightcones in the

previous chapter can be extended to explore weak gravitational lensing.

6.1 Lensing basics

In general relativity light travels along geodesics, straight lines in the distorted

space time. If we consider a thin lens, one in which the mass producing the effect

is confined to a small region perpendicular to the line of sight, and introduce a

lensing potential ψ, then the bend angle α is related to this potential through

α = ∇θψ(θ1) (6.1)

and from the Poisson equation the lensing potential is related to the integrated

surface density Σ =
∫
ρdl and the critical surface density Σc by:

∇2
θψ =

DlDls

Ds

8πG

c2
Σ = 2

Σ

Σc

. (6.2)

The bend angle α relates the position of an object on the source plane θ and

the image plane β as

β = θ − α(θ)
Dls

Ds

. (6.3)

In weak lensing we will not in general be able to use a thin lens approximation

as the matter distribution lies continuously along the light of sight. In this case

the convergence field can be constructed as a weighted sum of many individual

thin lens approximation. We slice our simulation up into a series of j onion layers

each of thickness drj and compute for a given pixel position i, the sum

κ(i) =
3H2

0 Ωm

2c2

∑

j

δ(i, j)
(rs − rj)rj

rsaj
drj (6.4)

over simulation slices j which are each at a distance of rj from the observer and

thickness drj. The convergence is the central quantity for lensing from which all

other quantities can be derived. The most important of these when it comes to

weak lensing is the shear, which describes the deformation of circular background
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images by the intervening matter. The shear is decomposed into two orthogonal

directions giving γ1 and γ2 which are related to the lensing potential by

κ = (ψ11 + ψ22)/2 (6.5)

γ1 = (ψ11 − ψ12)/2 (6.6)

γ2 = ψ12. (6.7)

6.1.1 Convergence power spectrum

In much the same way that the density field is the key quantity for clustering

and structure formation, convergence is the key quantity in lensing. The power

spectrum of convergence is therefore one of the most important quantities in

lensing. The theoretical form of the power spectrum can be obtained through the

application of Limber’s equation (Limber, 1953) to the matter power spectrum

with a suitable weighting. We are essentially trying to observe a line integral

through the density field weighted by a function W (y),

δ(θ̂) =

∫ ∞

0

δ(y)W (y)dy, (6.8)

which translates, using the Fourier version of Limber’s equation, to the dimen-

sionless angular power spectrum (assuming a flat cosmological model)

∆2
K =

π

K

9Ω2
m

4

(
c

H0

)−4 ∫
∆2(K/y, y)G2(y)y3dy, (6.9)

where y is the comoving radius, ys is the comoving radius of the source and

G2 = a−1(ys−y)/ys. To compute this we have to provide a matter power spectrum

∆2(y), we want to include some of the non-linear effects of structure growth, so

we use the halofit method (Smith et al., 2003) to generate the matter power

spectrum.

6.1.2 Halo surface densities

We can think of the lensing potential as being produced by the sum of individ-

ual contributions from many individual particles. When constructing the lensing

potential from a simulation, this is exactly what we would do: bin the particles
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onto a regular grid and then Fourier transform this grid to obtain the lensing

potential. In general this requires a high resolution simulation to resolve small

scale structures. If, however, we construct a surface density field from a cata-

logue as we produced in the previous chapter, we can apply the appropriate halo

density profile around each halo centre and thus restore the small scale details to

a relatively coarse simulation.

In principle any halo profile can be chosen to dress the halo centres. Here

we list the surface density profiles of NFW and SIS halo profiles and in general

we will stick to using the NFW profile. The surface density of a given profile is

obtained simply by integrating the density profile along the line of sight:

Σh =

∫
ρ(r⊥ + rs)drs, (6.10)

where r⊥ = Dd

√
(θ2

1 + θ2
2) is the distance from the halo centre perpendicular to

the line of sight (with θ1 and θ2 being the measurement away from the halo centre

in the two components of angular coordinates on the sky) and rs is the separation

from the halo centre parallel to the line of sight. Following Wright and Brainerd

(2000) we define a dimensionless radial distance x = r⊥/rs and integrate the

NFW profile to obtain:

ΣNFW (x) =





2rsδcρc
(x2−1)

[
1− 2√

1−x2 tanh−1
(√

1−x
1+x

)]
x<1

2rsδcρc
3

x = 1

2rsδcρc
(x2−1)

[
1− 2√

x2−1
tan−1

(√
x−1
1+x

)]
x>1

(6.11)

which is displayed for a given halo in Figure 6.2.

Our task is then to combine this profile with haloes contained in the light cone

catalogues we produced in Chapter 5. To produce a gridded surface density for

a number of redshift slices. There are a number of different approaches we could

take to accomplish this. Perhaps the most efficient approach would be to bin all

haloes in a small mass range of M1 < Mh < M2 onto the surface density grid. The

true density field would then be a convolution of the NFW profile appropriate

for a mass of Mmean = (M1 + M2)/2 and the density field. The convolution can

be performed in Fourier space, the process repeated for multiple mass ranges and

the surface density summed to give the true surface mass density. This would be
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Figure 6.2: A scaled surface density of an NFW profile. x here is a dimensionless

radial parameter x = r⊥/rs.
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highly efficient given the existence of fast Fourier transform routines. However,

smaller haloes and larger haloes at high redshift will typically only span one or

a few grid points. In this case the above method becomes superfluous and the

surface density field can be more easily obtained by simply binning haloes as if

they are point particles of mass Mh. This will obviously not work when we have

to deal with halos which span more than one grid point, so we need an extra

strategy to deal with them. The approach we take is as follows:

For each halo in the lightcone:

• given the halo mass, concentration, redshift and location on the sky, project

the halo to the surface density grid and determine the nearest grid point

(θ1, θ2).

• Compute the number of cells on the surface density grid it subtends as

Nc = r200/Da/4θ along each dimension, where 4θ is the separation of grid

points, Da is the angular diameter distance.

• If Nc <= 1 simply assign the halo mass to the surrounding cells using a

cloud in cell algorithm.

• if Nc > 1 Divide the cell into n subcells.

• Generate a NFW surface profile for the halo with appropriate mass, redshift

and concentration parameters.

• At each subcell centre, sample the NFW surface profile and multiply by the

cell area to obtain the contribution of the halo’s mass associated with that

subcell.

• Sum the contributions of each subcell and assign the resulting mass to the

current cell.

• After all summing has been computed divide by the cell volume and the

mean density of the Universe at the slice redshift to obtain an over-density

field.

.
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This ensures that the extended nature of large/close haloes are accounted for

while more distant/smaller haloes can be quickly assimilated into the density field.

A complication with both of the methods described above is that the spacing of

the radial shells must be greater than the diameter of largest haloes. If this is not

true there is a high probability that the projected mass of a halo will be assigned to

an individual redshift slice rather than multiple ones. This could be overcome by

replacing the 2D sampling of the halo surface density profile with a 3D sampling

and then binning the resulting particles onto multiple slices. In practice however

this should not be a concern as the typical redshift range over which evolution

in the density field will occur, or over which the weak lensing properties will be

of interest, will typically be much smaller than even the largest halo’s diameter.

The benefit of sampling a profile in this manner is that it allows us to have in

principle an infinitely resolved density field. The limit of the resolution no longer

depends on the particle density of the simulation, instead solely on the resolution

of the mesh used to measure the density field. As we shall see this is a great

advantage when we come to compute statistics of the convergence field. The lack

of particle binning means that we do not experience a Poisson noise contribution

to the power spectrum at small scales. This in turn lets us probe far beyond the

resolution limit of the supporting simulation.

6.2 Source plane results

As an initial test of our method for producing lensing statistics we assume that

the lensing sources are uniform and distributed regularly on a grid on the sky at

a redshift zs which is located at the end of the current lightcone . The lightcone

is then sliced into a number of shells, each ∆z = 0.2 in width and the surface

density calculated. The surface density is then weighted to give the convergence

which is summed over each slice to produce the convergence field.

Before we present the results obtained by the method described in this chapter,

it is instructive to examine the results of a more traditional method of simulating

lensing. Dr Alina Kiessling (Royal Observatory Edinburgh) has produced lensing

results from dark matter simulations using a method which stacks a number of

simulation boxes, applying to each a centroid shift and rotation as discussed
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in Chapter 5. To model the evolution of the density field, the redshift of the

simulation output used to construct the convergence field is dynamically chosen

to be as close to the current “observed” redshift as possible. Figure 6.3 shows

the convergence power spectrum results obtained using this approach applied

to a dark matter simulation of side 1h−1 Gpc, containing 10243 particles. The

simulation was run using the GADGET2 code.

The red line in Figure 6.3 represents the theoretical prediction of the power

spectrum while the upper black line shows the result from the simulation. Despite

the fact that the particle load used to produce these results is 8 times larger than

that used to produce the simulations which form the basis for the algorithm,

the results at small scales are still dominated by Poisson noise. While Poisson

noise is hard to model in simulations in which we are accumulating power over

a number of simulation slices, the blue line is an attempt to estimate the level

on the noise by appealing to simple 1/n̄ arguments. Attempting to subtract this

component from the power spectrum gives the lower line in Figure 6.3. It is

apparent, then that to probe smaller scale features in the power spectrum we

need to use either vastly more computationally expensive simulations, or develop

approaches like the one described in this thesis. Aside from the issues on small

scales, there is also a notable dip in the power spectrum at the peak between

` ∼ 2000 and ` ∼ 104. While this is getting close to the region in which Poisson

noise dominates, it is a striking feature.

In an attempt to improve on these results, we apply the algorithm described in

this thesis to produce a convergence field. We use a simulation with 8 times less

particles as a starting point and generate the lightcone we presented in Chapter

5, Figure (5.3). We then generate surface densities at a number of redshifts,

and use code written by Alina to generate the convergence maps, shear maps

and convergence power spectrum. Figures 6.4 and 6.5 show the surface density

maps and the cumulative surface density, in slices of width ∆r = 231.27h−1 Mpc.

Unfortunately in the realisation used for this example, there exists a large cluster

(1014h−1M�) very close to the observer which dominates the density field at

low redshift. This cluster is visible in the first density map in Figure 6.4 and

in the lightcone plot (Figure 5.3). From the cumulative density field we then

obtain convergence and shear maps for each redshift slice. Figure 6.6 shows
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Figure 6.3: The convergence power spectrum for a source field at z = 0.1 (top) and

z = 1.0 (bottom), computed by the binning of dark matter particles from a simulation

with 10243 particles in a 1(h−1 Gpc)3 box. The red line is a theoretical prediction of the

convergence power spectrum while the blue line is an estimate of the contribution from

particle discreteness. The lower black line in each plot is the result of subtracting the

Poisson noise estimate from the measured convergence. The power spectrum calculation

was carried out by Dr Alina Kiessling.
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Figure 6.4: The contribution to the surface density field of slices in the radial direction.

As we move to higher and higher redshifts the signal from individual haloes is weakened

and the cosmic web becomes more visible.
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Figure 6.5: The evolution of the cumulative surface density field on a patch of sky

5◦ × 5◦ across, moving out in comoving distance.
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the convergence and shear from a slice centred at a comoving distance of r =

1156h−1 Mpc. The influence of the large low redshift cluster can still be seen but

its contribution to the convergence field is down-weighted as we place our sources

at higher redshift by virtue of the distance factors, DlDls/Ds, in Equation (6.2).

Figure 6.6: A convergence (colour scale) and shear (line elements) map calculated

from the light cone. This is a slice through the light-cone centred on z = 0.5. The

distorting effect of large clusters along with the smaller distortions induced by the large

scale structure are clearly visible

.

The real test of the method however, comes from a comparison of the conver-

gence power spectrums. The power spectrum is computed using the same code

as the dark matter case. Figures 6.7 and 6.8 shows the convergence power spec-
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trum at 4 redshifts. It shows a number of interesting features. Most notably at

high ` the characteristic excess power from Poisson discreteness is absent. This

illustrates one of the great advantages of our method, as we do not use discrete

particles to construct the density field, but rather smooth profiles, the discrete-

ness noise is not a factor. The spectrum appears to be initially high compared

with theory, however we believe this is due to cosmic variance: the unfortunate

presence of the low redshift cluster. Finally we observe the same worrying dip

in power around the peak of the power spectrum. As we also observe hints of

this feature in the more traditional dark matter calculation we believe that ei-

ther again this is due to cosmic variance or some systematic in the convergence

calculation which we have yet to determine.

6.2.1 Accounting for extra mass

The discussion above ignores an important fact which is that the mass in haloes

is only a small fraction of the mass in the Universe. If we integrate the halo

mass function from some threshold halo mass to ∞ we find that the fraction of

the Universe in haloes will approach unity as the threshold approaches 0, but

this convergence is slow. Even using the Monte Carlo approach defined in this

thesis we will have to at some point include a minimum halo mass implying that

when we construct the surface densities above we will in general be missing some

fraction of the mass in the gravitational lens. Figure 6.9 shows the comparison

between the convergence power spectrum for halo mass cuts of 1011h−1M� and

1013h−1M�. The main effect of increasing the mass cut is to reduce the power

at high `. We have removed the contributions to the 1 halo term from small

mass haloes. The scales in our power spectrum calculation are currently limited

by the size of the 2D grid we are using to calculate. The cut off at ` ∼ 40000

is corresponds to this resolution limit, suggesting that even at a halo cut-off of

1011h−1M� we are already getting close to a convergent result. However to be

consistent and complete we require a method to account for this neglected mass.

While we have not fully implemented the following procedure it is one possible

approach to restoring mass. When we populate our lightcone with haloes, we split

the volume into cells of 15h−1 Mpc. If during this process we also take care to
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Figure 6.7: The cumulative convergence power spectrum as a function of distance

from the observer. The sources are taken to be a regularly spaced grid of galaxies

placed at the redshift of the furthest slice. The dashed line is the prediction from linear

theory while the crosses are measured from simulations.
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Figure 6.8: Continued from Figure 6.7.
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Figure 6.9: The cumulative convergence power spectrum up to 1734.49h−1 Mpc along

the light cone (z ∼ 0.6) for minimum mass cuts of 1011h−1M� and 1013h−1M�. The

biggest departure can be see at high ` as a decrease in the convergence. This is due to

missing contributions of the smaller halos from the 1 halo term.
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note the total mass partitioned into haloes, we will know on a cell by cell basis

the exact mass deficit. At this point we know how much mass we need to account

for but we need to know how to place it within the cell. The simplest method

would just be to treat this mass as a constant background within the cell and

distribute it randomly within the cell. The problem with this approach would be

that some of this mass would end up in haloes, artificially producing an enhanced

density and we would see sharp discontinuities at cell walls especially in regions

bordering voids.

Instead we can treat the extra mass in much the same way as we placed the

haloes in the original density field. After each halo has been placed in a cell

the remaining mass can be divided into particles of a given mass Mp and placed

by continuing to use the placement algorithm. This will obey the same collision

rules as applied to haloes ensuring that the particles do not end up within the

virial radius of any dark matter haloes and will in general trace the structure on a

subcell level. When it comes to constructing the surface mass density we simply

add in the extra mass particles along with the haloes.

6.2.2 Full sky survey

We have shown in this chapter that the application of our algorithm to lensing can

not only replicate the results of more traditional particle based simulations, but

can actually help probe the high ` domain. While this lightcone covers a small

area of the sky there are a number of proposed surveys which will measure the

lensing signal over large regions of the sky. The CFHTLS survey (Fu et al., 2008;

Hoekstra et al., 2006) aims to cover an area of 410 square degrees while the PAN-

STARRS survey aims to cover almost the entire visible sky. To produce an all

sky mock, out to a redshift of z = 1, we would require a simulation volume which

entirely encompasses a sphere with a radius of roughly r = 3300h−1 Mpc. To

accomplish this without an excessive amount of replication of boxes, will require

simulation volumes of order ` = 2h−1 Gpc or greater. At the time of writing the

algorithm presented in this thesis can populate an individual simulation box of

length ` = 1h−1 Gpc with halos and galaxies in roughly 3 hours on a modern

desktop computer. If we keep the cell size used to populate these boxes the same,
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and simply increase the size of the box, the computational workload algorithm

should scale linearly with the volume. A box of ` = 2h−1 Gpc we would require

a particle resolution of n = 10243, which is a very modest undertaking for even a

small modern multiprocessor system.

There have already been a number of attempts to characterise the systematics

of lensing on small scales, through projects such as the GREAT08 challenge

(Bridle et al., 2009) and the Shear Testing Program (STEP) (Heymans et al.,

2006; Massey et al., 2007a), both of which provide fake skies with a known matter

density for groups to compare and contrast lensing codes. It is our hope that we

can use this work to produce mock all sky surveys which could contribute to these

programs.

6.3 Conclusions

We have adapted and expanded our method to produce shear maps from light-

cones, and we have shown that we can recover the expected lensing signal well

compared to theoretical predications and to traditional N-Body lensing simula-

tions. Furthermore we have shown the potential of our method to provide a way

of rapidly measuring the shear power spectrum without the worry of Poisson

noise due to particle discreetness. The dressing of haloes with continuous density

profiles allows us to use small simulations to probe much smaller scales than they

would otherwise be able to.

With a little more work this approach can also provide us with a consistent

catalogue of source galaxies. This will allow us to start probing questions about

the systematics of lensing methods. Coupled with raytracing algorithms, this

galaxy catalogue could also be used to produce fake optical observations which

will hopefully prove to be a good data set to asses methods for measuring shear.
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Chapter 7

Conclusions and future work

We have presented a novel method for producing mock catalogues from calibrated

halo models. The accuracy of these models have been shown to be good when

compared to a recreation of a known simulation volume, the Millennium Simu-

lation. We have shown how the model can be extended to produce lightcones

which incorporate evolution of the density field and galaxy properties. In turn

we have shown how this density field can be adapted to produce lensing maps.

The mocks produced by this algorithm have been applied to a number of

topics in modern cosmology; the baryon acoustic oscillation peak, redshift space

distortions, topology and the production of convergence maps. For each applica-

tion there is a scope to improve on the results we have obtained, by extending

our algorithm and applying it to more areas. For the baryon acoustic oscillations

we plan to extend the analysis to a larger number of simulations to get more ac-

curate fits, and calculate the shift in the peak at a number of different simulation

outputs to trace its evolution with time. With redshift space distortions we plan

to refine our calculation of the correlation function to be completely on our light-

cone, rather than in a wide angle approximation, and repeat our analysis of the

distortion parameter β over a number of redshift slices for each galaxy popula-

tion. This will allow limits to be placed on the ability of future surveys to identify

departures from General Relativity. We aim to repeat the measurements we have
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made of topology, extending the analysis to redshift space and for a number of

other epochs to see if the distinction between red and blue galaxies is present in

each, and to obtain a better understanding of how topology evolves with redshift.

We also hope to test our prediction of markedly different topological signatures

for red and blue galaxies on survey data from the 2dFGRS to determine if the

effect is real.

7.1 Improving the model

The model has a number of areas in which it could be improved. By far the largest

deviation from the MS results which the model displays is the excess clustering

on scales r < 2h−1 Mpc. This is obviously a feature of the halo placement model

on a subcell scale. There are a number of ways this might be improved. A basic

empirical fix could be to simply select two halos within a cell and increase their

separation by a small random amount along the line joining their centres . Given

two halos within the same subcell with position vectors r1 and r2, with separation

vector r12, the strategy would be to alter the positions to r1 = r1 +xr̂12, where x

is a small ( x << |r12|) random number. The magnitude of the separation boost

could then be tuned to match the correlation function on small scales. A more

advanced approach would be to model the typical correlations between halos of

given mass within the cell. A number of marked, conditional correlation functions

could be measured from the MS allowing an estimate of the clustering between

haloes of different masses in cells of differing overdensities, ξ(r,M1,M2, δ). The

halo placement algorithm could then be adapted to place the largest halos in the

cell first, as is done currently, and then for the placement of all subsequent haloes

by randomly selecting a partner and sampling a separation for the conditional

correlation function. This would define a radius, about an existing halo, at which

we should place the new halo, but we would still need to select its orientation.

This could be done by selecting the angles for which the sphere the new halo will

sit on passes through the highest density. We aim to explore this and other ideas

for better ways of placing the dark matter haloes.

The second improvement to the model would be to increase the number of

galaxy properties which are calculated. In its present incarnation the algorithm

178



7.2. FUTURE APPLICATIONS

assigns each galaxy 8 properties, three Cartesian position coordinates, three

Cartesian velocity components , an r-band magnitude and a colour. It would

be highly beneficial to be able to select a full colour for a galaxy rather than

simply an assignment to red or blue. This could potentially be done with multi-

ple colours allowing the determination of a number of magnitude bands for the

galaxy. Stellar mass would also be an important property to assign to our galax-

ies. This could either be done in an analogous way to the method currently used

to assign luminosities to galaxies, or it could be obtained by considering a joint

probability distribution between the halo mass, galaxy luminosity and colour of

the galaxy, ie P (M?|Mh, L, b− v). The only limits to the type of galaxy property

we can implement is either, the availability of a theoretical model linking that

galaxy property with the halo mass and having sufficient numbers of objects in

a large simulations like the MS to calibrate the required statistics .

7.2 Future Applications

By far the most attractive properties of the algorithm developed in this thesis is

its speed at producing mock catalogues. On a modern desktop computer we can

produce a full 1h−1 Gpc box, with galaxies and halos, in around 24 hours (in-

cluding the time taken to run the initial simulation). In contrast to semi-analytic

approaches, which can take weeks or even months on large multi-processor ma-

chines, this allows us to produce a large number of realisations in a modest time.

By necessity, semi-analytic simulations usually adopt a given cosmology, typi-

cally the most recent constraints from observations. In reality the dependence of

results on variations in cosmological parameters, and the degeneracies between

these parameters, are as important as the mean values. An attractive use of the

algorithm presented here would be to explore these degeneracies through large

numbers of realisations with varying cosmological parameter sets. The dark mat-

ter component can be easily adjusted to a new set of cosmological parameters

by adjusting the parameters of our simulation. Likewise the halo statistics have

a well defined dependence on cosmology through the conditional mass function

formalism. However galaxy statistics which form the input to our method are cal-

ibrated from the MS, which has a fixed cosmology. To adjust the galaxy statistics
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to accommodate new cosmologies requires either a theoretically motivated model,

or a way of empirically calibrating the statistics. One possible way to proceed,

would be to assume that for small perturbations of the cosmological parameters,

the variation in galaxy properties will be a smooth, progressive variation away

from those of the MS. In this case the modelling which was applied to quantify the

conditional luminosity function would still be valid. To quantify the parameters

of the model we could run a number of small volume simulations, with varying

cosmological parameters, to which semi-analytic codes could be quickly applied

to produce galaxy catalogues. While these simulations would be too small to

quantify the statistics of the full dynamic range of haloes, missing out the rarest

fluctuations, it would allow for the identification of the trends in the halo occupa-

tion statistics. For a large simulation with a given cosmology, the galaxy statistics

can then be interpolated to the parameters in question. This would allow us to

test the dependence of the results in the areas we have explored in this thesis,

redshift space distortions, BAOs, topology and lensing, on the uncertainties in

the cosmological parameters.

The extension of the model to lensing not only recovers the results of more

traditional particle based codes, but can also probe much smaller scales. The

real power of our approach to lensing is that it produces a self-consistent galaxy

and mass distribution. As we have discussed before in Chapter 6, this could be a

valuable tool to allow lensing teams to calibrate and test methods for determining

mass distributions from shear measurements. By placing either ellipsoids or full

images of galaxies at the positions of galaxies within our lightcone, we can ray

trace through the calculated convergence field to determine the distortion induced

by weak lensing on the source. The resulting fake “skies” can then be used to

test lensing codes by comparing the recovered mass distribution to the original

simulation. In this case our model does not need to be perfect, as all that is

required to test the analysis methods is that the lensing effect on the sources and

the density field are consistent.

The analysis of lensing also needs to be concerned with a number of possible

systematic effects. Most calculations and methods assume a number of simplify-

ing conditions apply to the source galaxy distributions. The two most common

assumptions are that the galaxy population itsself is not clustered and that the
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ellipticities of galaxies are uncorrelated and random (Hirata and Seljak, 2004;

Heavens et al., 2000). In practice this is not true. The background galaxy pop-

ulation is clustered to some level, and there are a number of mechanisms which

can introduce correlations between the location and ellipticity of the a galaxy,

such as the effect of large scale tidal fields on galaxy ellipticity. With a consis-

tent dark matter / galaxy population these issues could be addressed. The main

barrier to accomplishing this is that the model we have presented currently does

not include any information about the morphology or orientation of a galaxy. An

approximation which would allow us to include such a property would be to align

each galaxy in the simulation with the tidal field. This could be done in practice

in much the same way as we assign halos a velocity. Another possible method

would be to introduce ellipticities by appealing to correlations between galaxy

spin statistics and the density field (Lee and Pen, 2001).

A further future goal of this work is to make the source code used in our

algorithm publicly available. We believe that this novel approach to modelling the

large scale structure of the Universe will be very valuable to the next generation

of surveys, and that many people, observers and theorists, will find the ability to

populate large volumes quickly invaluable.
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