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Abstract

Endothelial progenitor cells (EPCs) are bone marrow derived stem cells that contribute

towards neovascularisation. I have primarily used real time polymerase chain reaction

(PCR), but also flow cytometry and cell culture techniques, to investigate the effect of

vascular injury on the expression of the putative markers of EPCs (CD34, CD 133,

VEGFR-2 and VE-cadherin) and their number in peripheral blood.

Preliminary studies were performed in order to optimise the real-time PCR assay, which

was performed using the ABI 7900™ Taqman PCR system. It was shown that the

relative quantities (RQ) of messenger RNA (mRNA) for the markers of EPCs were

stable over a 24-hour period, with no significant reduction in expression when blood

samples were serially sampled under different conditions. In addition, ribosomal 18s was

found to be the best endogenous control. Furthermore, the coefficient of variation for the

real-time PCR assay was shown to be less than 10%. Finally, the RQ of EPC mRNA

was shown to vary depending on the type of source material, but was generally greater

in cord blood, mobilised peripheral blood and bone marrow compared with peripheral

blood.

In the first study I investigated the effect of percutaneous coronary intervention (PCI) on

EPCs in a group of patients with stable coronary disease. After PCI, EPC markers did

not conclusively demonstrate a rise in expression, although the number of VEGFR-2+

I 1



cells did increase. However, the number of EPC colony forming units (CFUs) increased

significantly.

In the next study, I investigated the effect of open aortic aneurysm repair on EPCs in a

group of elective surgical patients. There were changes in the level of expression of EPC

markers, using both real-time PCR and flow cytometry, but statistical significance was

not reached. However, there were significant increases in the mean fluorescent

intensities (MFI) of VEGFR-2 and VE-cadherin expression. EPC-CFUs did not change

significantly.

The next study investigated the effect of type 1 diabetes on EPC levels. The percentage

of CD34+ cells, the RQ of VE-cadherin mRNA and the number of EPC-CFUs were

significantly reduced in the diabetic cohort compared with control groups.

Finally, the effect of chronic renal impairment and administration of human recombinant

erythropoietin (Epo) on EPC levels was investigated. The RQs of CD34, VEGFR-2 and

VE-cadherin mRNA species increased over the period analysed, but this increase did not

correspond with an increase in VEGF expression.

This thesis provides further insight into the effect of endogenous and exogenous causes

of vascular injury on EPCs. It also highlights the difficulty in accurately defining and

measuring EPCs.
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INTRODUCTION
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1.1. General overview and aims of thesis

An intact vascular network is a prerequisite for normal cellular function. As cells and

organs grow this network must adapt to the changing environment. In the embryo, new

blood vessels develop from primitive stem cells, which differentiate into mature

endothelial cells by a process called vasculogencsis. In adults, new blood vessels are not

only required for tissue growth, but also for revascularisation of damaged or ischaemic

tissue. This was originally thought to occur by angiogenesis, which is vascular sprouting

and intussusception, followed by myogenesis. However, recent studies have focussed on

the ability of bone marrow derived stem cells in adults to participate in new vessel

formation, both in physiological and pathological settings, by a process called postnatal

vasculogenesis.

The introduction will begin by defining a stem cell, and distinguishing between

embryonic and adult stem cells. A description of embryonic and adult vasculogenesis

will be made, followed by a phenotypic characterisation of the cell thought to be critical

in the process in the adult, the bone marrow derived endothelial progenitor cell (EPC). A

section will follow this on mobilisation and homing of EPCs to sites to

neovascularisation, including exogenous factors that can affect their release from the

bone marrow. In addition, there will be a summary of the role of EPCs in physiological

and pathological adult vascular development. Finally, there will be a discussion on the

clinical implications of EPCs for therapeutic vasculogenesis.
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The aim of this thesis is to investigate the effect vascular injury has on EPC marker

expression and EPC numbers. Peripheral blood samples, taken from human subjects,

will be analysed using primarily real-time PCR, but also flow cytometry and cell culture

techniques. The subjects will undergo elective percutaneous coronary intervention (PCI)

or aneurysm repair (as examples of exogenous vascular injury), or be patients with

diabetes or chronic renal failure (as examples of endogenous vascular injury). The

specific aims of this thesis are as follows:

1. To design novel assays for quantitation ofmRNA for the putative markers of

EPCs CD34, CD 133, VEGFR-2 and VE-cadhcrin, as well as the marker for

mature endothelial cells (vWF) and monocytes (CD 14).

2. To use these assays in combination with flow cytometric and cell culture

techniques to measure EPCs in patients undergoing PCI or elective aortic

aneurysm repair to see it vascular trauma affects these cells in the post

operative period.

3. To measure EPCs, using the above techniques, in a group of patients with

type 1 diabetes and compare the results with a control group.

4. To measure EPCs using real-time PCR in patients with chronic renal failure

commencing recombinant human erythropoietin (Epo) to determine whether

the hormone can affect mRNA levels of EPC markers.

5. To compare and contrast the different assays employed in the measurement

of EPCs.
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1.2. Stem cells and progenitors: general terms and definitions

Terminology surrounding stem cells and progenitor cells is confusing. Essentially there

are two kinds of stem cell in the body, originating from embryonic or adult tissues. A

working definition of stem cells is primitive entities that are clonal, self-renewing,

pluripotent, and have the ability to repopulate a tissue in vivo. The clonality and self-

renewing capacity of a stem cell refers to its ability to produce more identical stem cells

for the lifetime of the organism; potency refers to the ability of stem cells to produce

multiple differentiated cell types. Tissue repopulation requires a stem cell to home to a

particular site, where it must differentiate into tissue specific cells. This definition can be

readily applied to embryonic stems cells, but it is thought to be too broad for adult stem

cells. These cells have, up until recently, been thought to have a more limited potential

for differentiation, and have been termed multipotent. Furthermore, unipotent adult stem

cells, better defined as progenitor cells, have been shown to be descendents of

multipotent stem cells, with a reduced ability for self-renewal and a reduced potency.

1.3. Embryonic stem cells

Embryonic stem cells are derived from a blastocyst that is developed from an in vitro

fertilised egg. They were first established in the 1980s from murine embryos, and were

derived fro the inner cell mass of an expanded blastocyst at 3.5 days post-coitum under

strict culture conditions. Human embryonic stem cells were first isolated from in vitro

fertilised blastocysts in 1998. They were shown to have a high nuclco-cytoplasmic ratio,
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a high transcriptional activity and to express markers that were down regulated upon

differentiation. The interest surrounding embryonic stem cells arises from the potential

to use them as a therapeutic agent in tissue regeneration. The advantage of these cells is

that they are pluripotent and large numbers of them can be relatively easily obtained in

culture. However, with the ethical and legal concerns surrounding embryonic stem cells,

adult stem cells have become a focus of intense interest, because they can potentially be

expanded in culture and reintroduced into the patient without the risk of immune

rejection.

1.4. Adult stem cells

The origin of adult stem cells is less clear than for embryonic stem cells. Their existence

has been known about since the 1960s, when it was shown that blood or bone marrow

contained cells that could rescue humans and animals from bone marrow failure. Since

then other tissue-specific stem cells have been defined, including neural stem cells found

in the postnatal brain, and mesenchymal stem cells found in the bone marrow and

adipose tissue. They are thought to be responsible for regenerating damaged tissue and

maintaining tissue homeostasis. Until very recently, stem cells from adult tissue were

thought to be restricted to producing cells specific to that particular tissue. However,

recent evidence suggests that adult stem cells, rather than being multipotent in a

particular organ, are "plastic". This means that they have the capacity to differentiate

into cells of unrelated tissue in a similar way to embryonic stem cells. The traditional

paradigm on adult stem cells being lineage restricted and derived from pluripotent stem
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cells very early during development has now been put into question. There are a number

of mechanisms that could underlie plasticity seen in adult stem cells. Firstly, there is

evidence that stem cells for a given organ may exist in a distant organ. For example, it is

known that haematopoietic stem cells can also be harvested from organs such as muscle.

Second, plasticity may result from fusion between donor cells and recipient cells. For

example, it was shown that co culture of embryonic stem cells with either bone marrow

cells or neural stem cells could lead to fused cells with the functional capacity of the

former cell type, whilst maintaining expression of some genes from the latter cell types.

Furthermore, it was shown in an animal model of cirrhosis that bone marrow

transplantation resulted in hepatic regeneration by fusion between haematopoietic stem

cells and hepatocytes [1], Lastly, different stem cell populations may be more

heterogenous than previously thought. For example, it is now known that haematopoietic

stem cells contain a number of subpopulations of cells involved in various aspects of

haematopoietic repopulation. It is likely that earlier stem cells committed to a

haemangioblast or mesodermal fate are also present, with the capacity to differentiate

into non-haematopoietic cells if placed in the appropriate microenvironment. For

example, Grant et al demonstrated both endothelial and blood reconstitution following

single-cell transplant of haematopoietic stem cells (Linneg Sca-lpos c-kitpos) from mice

expressing green fluorescent protein into lethally irradiated recipients [2], One month

after the mice were haematopoietically reconstituted, a retinal injury was induced with a

laser. In every mouse that had haematopoietic reconstitution, the regenerating blood

vessels expressed green fluorescent protein.
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Adult stem cells may therefore be an alternative to embryonic stem cells as a source for

tissue regeneration. The caveat, however, is that adult stem cells appear more difficult to

grow in culture, so that obtaining clinically significant amount for therapeutic purposes

may prove problematic.

1.5. Stem and progenitor cells and the development of new blood vessels

Embryonic development and tissue regeneration in adults rely on new blood vessel

growth, termed neovascularisation. The traditional model of neovascularisation

distinguished between the process in the embryo and in the adult. Embryonic

neovascularisation was thought to occur by maturation of endothelial progenitor cells,

termed embryonic vasculogenesis. In adults neovascularisation happened solely by

sprouting of vessels from the division of differentiated endothelial cells. However, with

the knowledge that tissue specific adult stem cells exist evidence has emerged which

suggests that endothelial progenitor cells can also contribute to neovascularisation in the

adult under various physiological and pathological conditions by a process called

postnatal vasculogenesis. Blood vessel formation in the embryonic and adult will be

summarised in the following sections.

1.6. Embryonic vasculogenesis

The formation of blood vessels occurs early in the embryo, at approximately day 7.5 in

the mouse. It occurs at distinct locations in the yolk sac and within the embryo itself. In
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the yolk sac mesodermal derived cells called haemangioblasts aggregate to form blood

islands. Haemangioblasts are thought to be the common precursor of both

haematopoietic stem cells and endothelial progenitor cells (EPCs), as both cell types

develop in close association within the blood island. Cells from the outer rim develop

into EPCs, whereas inner cells develop into erythrocytes, which are the first primitive

blood cells. EPCs, also termed angioblasts, have the capacity to proliferate, migrate and

differentiate into mature endothelial cells but have not yet acquired a mature phenotype.

Within the embryo, blood vessels develop in a similar fashion from precursors within

different areas of the splanchnic and somatic mesoderm. These blood islands fuse and

grow to produce a primitive vascular plexus (vasculogenesis). Additional mechanisms

for vessel development include "bridging" and "intussusception", termed angiogenesis.

Vessel maturation then involves the endothelial-lined vessels acquiring a basement

membrane and a smooth muscle layer (large vessels) and pericyte layer (small vessels)

by a process called arteriogenesis. The acquisition of a muscular layer is determined by

blood flow and pressure, with low-pressure areas having delayed smooth muscle

differentiation. The vascular cells then acquire specialised characteristics to suit a

particular environment. For example, endothelial cells in the brain are closely associated

to produce an effective blood-brain barrier, whereas endothelial cells in endocrine

glands arc loosely associated to facilitate the passage of hormones. The molecular

mechanisms underlying these processes are not completely understood. However,

several ligand-receptor interactions have been identified that are likely to be important.

In mice the interaction between the receptor tyrosine kinase flk-1 and its high affinity

ligand vascular endothelial growth factor (VEGF) is thought to play a key role in
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haematopoietic and endothelial development. Examination of the expression of flk-1 and

VEGF in mouse embryo has demonstrated that both are present in the blood islands of

the yolk sac of day 8.5-10.5 embryos It has also been shown that mice die in utero at

days 8.5-9.5 if they are made homozygous for deficiency of the flk-1 gene. This has

been shown to be because of a defect in the development of haematopoietic and

endothelial cells. Yolk-sac blood islands are not present, organised blood vessels are not

observed at any stage, and haematopoietic progenitors are markedly reduced.

1.7. Postnatal endothelial progenitor cells

Adult bone marrow contains a sub-population of cells with properties similar to those of

embryonic angioblasts. These cells have the potential to proliferate and differentiate into

mature endothelial cells and have, therefore, been called endothelial progenitor cells

(EPCs). A landmark paper was published by Asahara et al in 1997, when EPCs were

first isolated from peripheral blood [3J. Exploiting the knowledge that there are antigens

shared by angioblasts and HSCs, they used magnetic beads coated with CD34 and Flk-1

to separate out EPCs from the mononuclear cell fraction of human peripheral blood.

These cells were then plated on fibronectin-coated surfaces. It was observed that they

quickly attached, became spindle shaped within three days, with the number of attaching

cells increasing with time. Using a fluorescent dye Dil they demonstrated that these

spindle shaped cells were derived from CD34-positive cells with the ability to form

cellular networks and tube-like structures. After 7 days in culture the attached CD34-

positive cells were seen to express endothelial cell markers by flow cytometry, and at the
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molecular level by qualitative polymerase chain reaction (PCR). Finally, it was shown in

animal models of hind limb ischaemia that these cells could contribute to postnatal

vasculogenesis in-vivo. Circulating EPCs were also identified by other groups using

similar methodologies [4-7]. In addition, it was discovered that these cells were likely to

originate from the bone marrow. Asahara et al used established two murine models of

bone marrow transplantation (BMT) [5], In each case, immunodeficient mice underwent

BMT from transgenic mice constitutively expressing p-galactosidase (lacZ) under

transcriptional regulation of an endothelial cell-specific promoter, FLK-1 or TIE-2.

Reconstitution of the transplanted bone marrow yielded Flk-l/lacZ/BMT or TIE-

2/lacZ/BMT mice, in which lacZ was restricted to bone marrow derived cells expressing

Flk-1 or TIE-2. LacZ expression was not observed in other somatic cells. Localisation of

EPCs, indicated by flk-1/LacZ or TIE-2/LacZ fusion transcripts, was identified in corpus

luteal and endometrial neovasculature after induction ovulation. In addition, injected

mouse syngeneic colon cancer cells, cutaneous wounds and induced hind limb

ischaemia, in the same mouse model, derived new vessel growth from the bone marrow

derived LacZ expressing cell population.

1.8. Characterisation of EPCs

The phenotypic characterisation of EPCs has been difficult to achieve for a number of

reasons. Firstly, it has been confounded by the presence of circulating endothelial cells

(CECs) in the peripheral circulation [8]. CECs are mature cells that are thought to
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originate from sloughing off the vessel wall following some sort of pathological insult.

Elevated numbers of CECs occur in patients with a variety of conditions associated with

vascular injury, including sickle cell anaemia [9], septic shock [10], and lupus [11]. The

features that are thought to separate CECs from EPCs are summarised in table 1,1. In

the peripheral circulation, bone marrow-derived CECs are thought to represent a small

fraction of total CECs [7]. In a series of in-vitro experiments on peripheral blood from

patients who had previously received gender-mismatched bone marrow transplants, it

was found that endothelial cell colonies that appeared in culture within nine days were

predominantly of recipient phenotypc [7]. This suggested that these cells might represent

CECs from the vascular endothelium of the recipient. In contrast, endothelial colonies

that appeared later in culture were of donor origin, suggesting that these cells derived

from bone marrow EPCs. These late outgrowth cells showed a high proliferative

capacity compared to early-outgrowth cells. Quantification of EPCs is often done using

colony-forming assays; these findings suggest that functional assays should include a

pre-plating step to eliminate the background of CECs, as has been done elsewhere and in

the series of experiments in this thesis [4, 12],
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CECs EPCs

Origin Blood vessel wall Bone marrow

Phenotype CD133 -ve CD 133 +ve

Morphology Mature cells of diameter

20-50pM

Immature cells of diameter

less than 20pM

Capacity to form colonies
with high proliferative

potential

No Yes

Pathophysiology Reflective of damage Neovascularisation

CECs= circulating endothelial cells, EPCs= endothelial progenitor cells

Table 1.1. Differences between CECs and EPCs [8].

Attempts to characterise EPCs are further confounded by the fact that they are not one

type of cell but probably represent a heterogenous group of progenitor cells, each at a

different stage of maturation [13], In addition there is considerable overlap between

proteins expressed on EPCs and those expressed on cells of haematopoietic lineages,

including CD31, CD34, and vascular endothelial growth factor receptor-2 (VEGFR-2),

also known as kinase insert domain receptor (KDR) [14, 15]. Moreover, the

characteristic feature of EPCs in culture is their ability to take up acetylated low-density

lipoprotein (LDL) and to bind to specific lectins, but this feature is also shared by non-

endothelial cells [16, 17]. Despite this, however, the earliest EPCs are thought to express

CD 133, CD34, and VEGFR-2 [6, 18]. CD34+/CD133+ cells have been shown to have a

high proliferative capacity and to give rise to endothelial colonies in culture [6, 18, 19].
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CD 133 (also known as AC 133) is an early haematopoietic stem cell marker of unknown

function. It is a 120-kDa transmembrane polypeptide, and is expressed on

haematopoietic stem and progenitor cells from human bone marrow, fetal liver, and

peripheral blood [20], The number of CD 133+ EPCs as a fraction of peripheral blood

mononuclear cells is small, so this immature cell type is more likely to be present in the

bone marrow [19], In the peripheral blood EPCs appear to lose expression of CD 133 as

they mature, but continue to express VEGFR-2 and CD34. Further maturation of EPCs

results in loss of CD34 expression and gain of markers such as vascular endothelial

cadherin (VE-cadherin- CD 144) and von-Willebrand factor. However, no clear

definition exists for when an immature EPC changes into a mature endothelial cell. In

summary, it is possible that CD133+/CD34+/VEGFR-2+ cells represent a more

primitive EPC with high proliferative potential, which then gives rise to a more mature

endothelial cell with the phenotype CD133-/CD34+/VEGFR-2+/ vWF+/VE-cadherin+

with a more limited proliferative capacity. Two separate EPC populations in human

peripheral blood have been described, based on their differing proliferative potentials

[21].

It has recently been demonstrated that cells of monocytic lineage, expressing CD 14, are

a source of EPCs. Monocytes have been shown to co express endothelial lineage

markers such as VEGFR-2 and CD133 and to differentiate into adherent mature

endothelial cells and to form cord like structures in Matrigel [22, 23]. Rchman et al has

also reported that peripheral-blood endothelial-like cells are derived from

monocytes/macrophages and secrete angiogenic growth factors [24]. These cells have
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the ability to form spindle-shaped cells after several days in culture, take up LDL, and

bind a specific lectin. Furthermore, it has been shown that a specific subset of

monocytes, expressing CD 14 and VEGFR-2, have endothelial-like functional capacity,

and exhibit functional competence to improve re-endothelialisation in an animal model

of arterial injury [25],

In summary, it can be seen that at least two cell populations can qualify as EPCs, each

group containing a heterogenous sub-population of cells. A further cell group, with

endothclial-likc functional capacity, known as multipotent adult progenitor cells

(MAPCs), may also represent a further type of EPC [26], although this population is less

well defined. Furthermore, how each of these cell populations relates to the other is

uncertain.

1.9. Mobilisation, release and homing of EPCs

In order that EPCs can contribute effectively towards neovascularisation they must first

be recruited from the "stem cell niche", where stem cells are kept in an undifferentiated

and quiescent state, to the "vascular niche", where progenitor cells arc prepared for

release into the circulation. At some point they must commit to the EPC differentiation

pathway, be mobilised from the bone marrow into the circulation, and then delivered to

the appropriate site. This process is complex and involves a number of triggers,

enzymes, growth factors and cell surface receptors. An early event in mobilisation is the

activation of matrix mctalloproteinase-9 (MMP-9), which transforms membrane bound

26



Kit ligand to a soluble Kit ligand (sKitL). This allows the stem cells and early progenitor

cells to detach from the local environment and to leave the bone marrow via

transendothelial migration. In MMP-9 -/- mice levels of sKitL are low resulting in

impaired progenitor cell motility, while administration of sKitL corrects this [27]. The

bone marrow is also the place where the haemangioblast will commit to either the HSC

or EPC pathways. How this occurs is largely not understood. However, it is likely that

the local cytokine environment plays a role. Certain triggers, such as tissue ischaemia,

are known to increase the levels of endogenous vascular endothelial growth factor

(VEGF), mainly due to the effects of hypoxia-inducible factor-1 (HIF-1) on VEGF

transcription [28-30]. VEGF binds to VEGFR-2, which is expressed on the

haemangioblast. In addition, VEGF has been shown to activate MMP-9 [27], Exogenous

administration of VEGF has been shown to mobilise bone marrow derived EPCs in

animal models [31]. The mobilisation is rapid; EPC levels in the peripheral blood rise

within 24 hours after VEGF administration. Furthermore, studies in humans using

plasmids containing the gene for VEGF show augmentation of circulating EPCs [32]. In

patients with vascular trauma due to severe bum injury or coronary artery bypass

grafting, EPC numbers rise by about 50 times at 12 hours post-injury, and return to

baseline by 48-72 hours [33]. Similarly, in patients with acute myocardial infarction,

levels of CD34+ cells increase one week after MI [34], The kinetics of EPC levels seen

in these patient groups closely mirrors the levels of VEGF detected in the peripheral

circulation. Stromal cell derived factor-1 (SDF-1) is a member of the chemokine CXC

subfamily and binds to CXCR4 positive stem cells. SDF-1/CXCR4 interaction has been

shown to be important in stem cell mobilisation in vivo [35], Other factors may also play
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a role in EPC mobilization, including angiopoictins, endogenous erythropoietin (Epo)

and endothelial nitric oxide synthase (eNOS) [35-40], The intracellular pathways by

which these factors mobilise EPCs have not been fully elucidated. However, it has been

demonstrated that VEGF, Epo and eNOS signal through Akt, which is a tyrosine kinase

belonging to the family of serine/threonine protein kinases [41]. Once mobilised and

released into the peripheral circulation EPCs must home to areas of neovascularisation.

This involves a multistep process beginning with (a) arrest of the EPCs at areas of

neovasculogenesis; (b) adhesion to the endothelial cells lining blood vessels; (c) and

transmigration across this surface into the interstitial space; (d) formation of cellular

clusters; (e) formation of cellular networks; and (f) incorporation into the

microvasculature [42], Using a tumour model and mouse embryonic progenitor cells

(eEPCs) Vajkoczy et al showed that initial cell arrest of eEPC homing was mediated by

E- and P-selectin and P-selectin glycoprotein ligand 1 [42, 43], In addition, it has been

demonstrated that cultured EPCs express L-selectin, and that this adhesion receptor can

interact with its ligand on endothelial cells to promote homing of the EPCs [44], This

mechanism of homing is similar to that of leukocytes with microvascular endothelium,

where intcgrins are known to be important [45, 46]. In particular |32-integrins, found on

haematopoietic cells, and a4[31-integrins, on endothelial cells, are important in cell-cell

interactions. P2 integrins have been shown to be important in adhesion and

transmigration of haematopoietic stem/progenitor cells [47, 48]. Chavakis et al have also

shown that ex vivo expanded and murine Sca-1+/Lin- progenitor cells express P2-

integrins, which mediate the adhesion of EPCs to endothelial cell monolayers and
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transendothelial migration in vitro [49]. They have also shown that in a mouse model of

hind limb ischaemia, progenitor cells from p2-integrin-dcficient mice are less capable of

homing to sites of ischaemia and promoting ncovascularisation. Attraction of the

circulating EPCs to the site of neoangiogenesis is mediate by chemokines. In particular

SDF-1, which is known to be important in homing of stem cells to bone marrow, has

been shown to stimulate recruitment of progenitor cells to sites of tissue ischaemia [50-

52], In addition, VEGF has also been shown to be important as a chemoattractant for

progenitor cells, with increased levels during an ischaemic episode [34], Less is known,

however, about EPC migration and tissue invasion. Recently the protease cathepsin-L

has been found in EPCs, and has been shown to be important in EPC invasion and

matrix degradation in vitro [53]. In addition, this group also showed that mice made

deficient in cathepsin-L had impaired functional recovery following hindlimb ischaemia,

supporting the idea that this protease has an important in-vivo role. The final step is the

differentiation of EPCs to mature endothelial cells, with integration of these cells into

vessels. Although this is not fully understood, it is thought that VEGF plays a crucial

role. This has been demonstrated at the embryonic stage, as well as in ex-vivo culture

systems[54, 55],

1.10. Exogenous factors affecting the recruitment of EPCs to the periphery

The level of circulating EPCs has been shown to vary secondary to various

physiological, pathological and pharmacological factors (table 1.2). For example, age
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and sex hormones are important determinants that need to be taken into account if EPC

numbers and function are being compared between groups in a study. It has been shown

in experimental models that revascularization is impaired in senescent animals. In

addition, older human subjects have lower numbers and impaired mobilization of EPCs

[56], Oestrogen is thought to mediate re-endothelialisation after arterial injury by its

effect on EPC mobilisation. Re-endothelialisation after carotid injury occurred faster in

ovariectomised mice treated with 17|3-oestradiol than in controls [57, 58], The

oestrogen-treated animals had increased levels of circulating EPCs and a significant

increase in bone marrow-derived cells participating in endothelial repair at the site of

injury. Of note is the observation that oestrogen did not increase EPC levels or effect re-

endothelialisation in mice deficient in endothelial nitric oxide synthase (eNOS), a

finding consistent with observations that eNOS expressed in bone marrow plays an

important role in the regulation of EPC release [57, 59], EPC numbers have also been

shown to increase in patients following acute myocardial infarction [34], The number of

CD34+ mononuclear cells increased by day 7 compared to control subjects, who had no

evidence of myocardial ischaemia. Furthermore, patients with vascular trauma from

coronary bypass grafting or burn injury had a transient rise in EPC numbers [33],

Congestive cardiac failure can also affect the number of circulating EPCs [60].

Interestingly there appears to be a biphasic pattern, with elevation in the early (class I

and II) and reduction in the advanced (class III and IV) stages. Patients with diffuse in-

stent restenosis had lower numbers of EPCs, which had an impaired adhesive capacity

in-vitro [61 J. In patients with stable coronary artery disease it has been shown that the
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number and proliferative capacity of EPCs are reduced [62, 63]. In addition, EPC

numbers are reduced in patients with risk factors for coronary artery disease, such as

genetic predisposition or smoking [64], Hill et al showed that in patients with risk

factors for coronary artery disease the ability of EPCs to form colony forming units

(CFUs) was inversely related to the Framingham risk score [12]. In addition, they found

a direct correlation between numbers of EPCs and their function, with cells from high-

risk patients showing increased senescence compared to lower risk patients. They

concluded that EPC number and function could be used as an independent risk factor for

coronary artery disease. Drug therapy can also affect EPC numbers. The best-

characterised group of drugs in this respect are the HMG-CoA (3-hydroxy-3-

methylglutaryl-CoA) reductase inhibitors ("statins"). This class of drugs may have a

beneficial effect on vascular health independent of their ability to lower blood

cholesterol [65], Simvastatin has been shown to increase EPC CFUs from cells taken

from treated animals, and to have migratory effect on mononuclear cells in an in vitro

chemotaxis assay [66], In addition, HMG-CoA reductase inhibitors have been shown to

mobilize EPCs which can help to repair damaged coronary arteries [67], This

mechanism of action is via activation of the PI3-kinase/Akt pathway in EPCs, and

requires the presence of endothelial nitric oxide [68, 69]. Cytokines have been used to

mobilize EPCs and increase their number in the circulation. Granulocyte colony

stimulating factor (G-CSF) administered to humans has been shown to increase the

number of circulating EPCs to 5- to 10-fold [18]. In addition, G-CSF has been used to

increase the number of EPCs in patients with coronary artery disease, where baseline

levels arc lower than in control subjects [70], In animal studies G-CSF has mobilized
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EPCs sufficiently to accelerate vascular repair following injury and to increase

endothelialisation of prosthetic vessels [71, 72], The use of G-CSF for therapeutic

neovascularisation of ischaemic tissue and for ex-vivo expansion of EPCs in patients has

been performed, and will be discussed later [73]. Increased numbers of EPCs can also be

seen in mice and rabbits treated with granulocyte macrophage colony stimulating factor

(GM-CSF), and enhanced neovascularisation with bone marrow-derived cells is seen in

mice treated with GM-CSF in a corneal neovascularisation model [74]
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Condition or factor Changes in number/function of EPCs Reference

Physiological

Age Decreased number [56]

Gender (eg oestrogens) Increased number [58]

Physical training Increased number [75, 76]

Pathological

Coronary artery disease Decreased number and function [62-64]

Smoking Decreased number [64, 77]

Family history of coronary artery disease Decreased number [64]

Hypertension Decreased function [64, 78]

Cumulative cardiovascular risk factor score Decreased number [12]

Myocardial infarction Increased number [34]

Vascular injury Increased number [33]

Congestive cardiac failure (class I-II) Increased number [60]

Congestive cardiac failure (class III-IV) Decreased number [60]

In-stcnt restenosis Decreased number and function [61]

Diabetes Decreased number and function |64, 79,80]

Uraemia Reduced number [81,82]

Hypercholesterolaemia Decreased number and function [83]

Systemic inflammatory conditions Increased numbers |84-86]

Surgery Increased number [87]

Drugs and cytokines

HMG-CoA reductase inhibitors Increased number and function [66-69, 88,

89]

G-CSF Increased number [70,71]

Erythropoietin Increased number [40, 90]

Table 1.2. Exogenous factors affecting the recruitment of EPCs to the periphery.
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1.11. EPCs and tumour angiogenesis

There is a growing amount of evidence from animal models indicating that bone EPCs

contribute to tumour neovascularisation, and that in the peripheral blood of patients with

cancer there is an increased number of circulating CECs that may also participate in

vessel formation [91-94], How EPCs contribute to tumour expansion is uncertain, but it

could be by directly incorporating into the vascular endothelium of the tumour, or by

secretion of proangiogenic growth factors in perivascular sites within the tumour. In one

study, murine colon cells were subcutaneously injected into mice that underwent bone

marrow transplantation from transgenic mice constitutively expressing |3-galactosidase

gene regulated by an endothelial cell-specific promoter [5], Three weeks after tumour

implantation, histological examination of the tumour revealed multiple LacZ-positive

cells in the tumour stroma and in the endothelial layer of tumour blood vessels. Factors

known to mobilise EPCs from the bone marrow have also been shown to alter tumour

growth, probably by regulating tumour angiogenesis. G-CSF has been shown to increase

tumour growth in mice, and this has been attributed to increased tumour

neovascularisation with increased bone marrow-derived cells being observed within

tumour vasculature [95]. A further study has used a transgenic mouse model of multistep

carcinogenesis to look at incorporation of bone marrow-derived cells into the

ncovasculature of a tumour [96], Integration of bone marrow cells into the tumour

vasculature was demonstrated, which correlated with VEGF release by the tumour and

mobilisation of circulating EPCs in the periphery. Further evidence supporting the
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existence of a bone marrow-derived component of tumour neovascularisation has come

from studies of mice with mutations in the Id family of proteins. There are four members

(Id 1 -Id4) that interact with basic-loop-helix transcription factors to regulate

differentiation and cell cycle progression [97], Two members of the Id family, Idl and

Id3, are co expressed in embryonic vasculature. Knocking out both copies of Idl and Id3

is incompatible with life. Mice lacking Id3 and with one functional copy of Id I (Id+/-

Id3-/-) do not die in development but show defects in postnatal angiogenic sprouting and

suppressed tumour growth [92], Overall survival of these mice is increased after tumour

cell implantation compared to wild-type mice. However, tumours grow normally in Id

mutant mice transplanted with bone marrow from wild-type mice. Through genetic

marking, it was determined that 90% of tumour blood vessels of these animals originate

from the bone marrow. Conversely, wild-type mice that receive bone marrow transplants

from Idl+/-Id3-/- animals abnormalities in their ability to support tumour angiogenesis

and growth. Furthermore, Idl+/-Id3-/- mice have lower numbers of circulating EPCs

than wild type mice at baseline, and a decreased EPC response to VEGF or to tumour

implantation. These observations strongly suggest that the failure of bone marrow-

derived EPCs to incorporate into tumour vasculature explains the defect in tumour

angiogenesis seen in Idl+/+ld3-/- mice, and highlights the importance of bone marrow-

derived EPCs in supporting tumour angiogenesis. The importance of Id genes in tumour

angiogenesis has also been observed in PTEN+/- mice, which exhibit spontaneous

lymphomas, uterine carcinomas, prostate intraepithelial neoplasias and

pheochromocytomas [98]. When PTEN+/- mice were crossed with Id mutants tumour

angiogenesis and growth was suppressed. In addition, when PTEN+/-Id wild-type mice
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received bone marrow transplants from LacZ+ bone marrow, 17% of tumour vessels in

uterine tumours were LacZ+. These findings suggest that EPCs make a significant

contribution to tumour neovascularisation in spontaneously arising tumours. However,

contrary to the findings ofmost studies, some reports have found that the contribution of

bone marrow-derived EPCs to tumour vascular growth was minimal [99, 100], This lack

of consensus may be explained in part by different experimental settings, such as type of

cells used to transplant animals (whole bone marrow vs. purified primitive stem cells),

tumour type, and the time frame of the experiment and method of endothelial cell

identification.

1.12. EPCs and endothelial maintenance and regeneration

Damage to the endothelium plays an important part in the development of

atherosclerotic disease. Whereas, previously the endothelium was thought of as merely a

static barrier, the current opinion is that it is a dynamic organ. Furthermore, there is a

continual damage and repair process occurring, with the balance ultimately determining

the rate of atherosclerotic disease progression. EPCs are now thought to be integral in

repairing the damaged endothelium. This potential has been demonstrated in animal

models of mechanical vascular injury [4, 67, 101]. Insights on the role of EPCs in

atherosclerosis have also been obtained from experiments in ApoE-/- mice. Rauscher et

al investigated the effect of aging on EPCs in ApoE deficient mice [102], They found

that injection of bone marrow-derived cells in the mice maintained on high-fat diets

significantly reduced the atherosclerotic burden in these animals compared to controls.
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In addition, they found that old ApoE deficient mouse bone marrow injections did not

prevent atherosclerosis in the high fat diet fed ApoE-/- mice, but young bone marrow

infusions did. Analysis of the young and old bone marrows found reduced vascular

progenitor cells markers in the old marrow with no change in the number of

haematopoietic stem cell markers or generalised murine stem cell markers. This result

suggests an important role for EPCs in endothelial repair and attenuation of

atherosclerosis. It also suggests that older animals may be more prone to atherosclerosis

due to impaired EPC function. Studies in patients with atherosclerosis or with risk

factors for atherosclerosis also suggest an important role for EPCs in maintaining

vascular integrity. Studies have shown that the presence of disease or risk factors for

disease correlate with decreased numbers and diminished functional capacity of

circulating EPCs [12, 62, 64, 79, 81]. Hill et al described a reduction in EPC colony

forming units in healthy individuals with risk factors for cardiovascular disease [12].

Furthermore, they showed that circulating levels of EPCs were better predictors of

preserved vascular reactivity than the presence or absence of traditional cardiovascular

risk factors. In addition, EPCs from patients with multiple cardiovascular risk factors

had higher rates of in vitro senescence than those with few risk factors. Taken together

with the data from the ApoE-/- model, one explanation for this could be that subjects

exposed to continuous endothelial damage exhaust a presumably limited supply of

functional bone marrow-derived EPCs, further increasing their predisposition to

atherosclerosis owing to lower numbers of poorly functioning EPCs that remain in the

bone marrow. It would also explain why an inverse correlation between age and number

of EPCs has been observed, where an increase in cardiovascular mortality is associated
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with normal aging. However, this explanation is undermined by the fact that patients

with coronary artery disease can have their EPCs mobilised by G-CSF, statins or by

exercise with or without ischaemia [75, 103-105], An alternative explanation, therefore,

is that the pathway controlling EPC release is down regulated by exposure to risk factors

rather than EPCs themselves being consumed. Further evidence for the protective effect

that EPCs have on vascular integrity comes from a mouse vein graft model of

atherosclerosis [106], Using this model in transgenic mice carrying LacZ genes driven

by an endothelial TIE2 promoter, and hence expressing P-galactosidase only in

endothelial cells, it was shown that endothelial cells of vein grafts were regenerated

from circulating progenitor cells and not from migration of neighbouring mature

endothelial cells [107], EPCs have also been shown to play a role in arterial injury in a

murine aortic allograft model, where recipient-derived endothelial cells rcpopulated the

graft, although only a small percentage of the cells seemed to come from the bone

marrow [108, 109], Finally, EPCs may be important in maintaining intracoronary stent

patency following coronary angioplasty [61]. In summary, EPCs may be important in

endothelial repair in a variety of contexts, and levels of circulating EPCs may correlate

with the overall vitality of the vascular repair mechanism.

1.13. Clinical applications of EPC mediated neovascularisation

The potential of EPCs to contribute towards neovascularisation in vivo was initially

investigated using animal models of tissue ischaemia. One animal model that has been

38



extensively used is the hind limb ischaemia model. Essentially, in a mouse all flow

through the femoral artery to the limb is diverted by ligating and then transecting the

artery below the ligature. This significantly reduces, but does not stop, blood to the limb.

Another animal model used is the myocardial ischaemia model. Myocardial ischacmia is

induced in rodents by ligating the left anterior descending coronary artery. EPCs can be

obtained from the mononuclear cells fraction of healthy human adult whole blood, for

example, and cultured in appropriate medium before being harvested. The ex-vivo

expanded EPCs are normally labelled with a fluorescent dye (carbocyanine 1,1'-

dioctadecyl-1 to 3,3,3',3'-tetramethylindocarbocyanine percholate, also know as Dil

dye) prior to being injected into the animal model. Certain parameters can then be

measured, for example change in blood flow through the ischaemic tissue or serial

echocardiography, to see if the EPCs have had a beneficial effect on tissue

neovascularisation and function. New blood vessel growth can also be looked at using

immunohistochemistry to determine the fate of the labelled EPCs. When Asahara et al

isolated endothelial cells they also investigated their in vivo ability to form new blood

vessels using the hind limb ischaemia model [3], They injected human Dil labelled

CD34+ cells into mice two days after creating unilateral hind limb ischaemia.

Histological examination of the ischaemic limb 1 to 6 weeks later showed a number of

Dil-labelled cells in the limb, with nearly all labelled cells integrating into capillary

walls. By 6 weeks Dil-labelled cells were arranged into capillaries among preserved

muscle structures. The ability of these cells to have an impact on tissue viability was

demonstrated by Kalka et al [54], They cultured human peripheral blood mononuclear

cells. Differentiating EPCs were identified after 7 days culture by using two fluorescent
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markers (FITC-labelled Ulex europaeus agglutinin and Dil-labelled acetylated low

density lipoprotein). A hind limb ischaemia model was used, and EPCs were injected

into the animal 1 day after femoral ligation. Using serial laser Doppler perfusion

imaging it was observed that there was improvement in blood flow recovery in the

ischaemic limb. More importantly, limb necrosis and auto amputation were reduced by

50% in comparison with control animals, which either received differentiated ECs or

culture media alone. Similar work has been done by Kawamoto using a rat myocardial

ischaemia model [110]. Dil labelled EPCs were injected intravenously 3 hours after

induction of myocardial ischacmia. Seven days later, fluorescence-conjugated

Bandeiraea simplicifolia lectin I (which is a murine-specific EC marker) was given

intravenously, and the rats killed immediately. Microscopy showed that the transplanted

ECs gathered in the ischaemic area and incorporated into foci of neovascularisation.

Furthermore, compared to rats injected with culture media only, when heart function

was assessed by echocardiography rats that received EPCs developed ventricular

dimensions that were significantly smaller and fractional shortening that was

significantly greater. In addition, regional wall motion was significantly greater in the

EPC group. The overall interpretation of these animal studies and others has been

complicated, however, by the fact that many use unfractionatcd bone marrow as the

therapeutic agent, whereas others use different types of purified cell populations that

represent cells with varying degrees of EPC-like properties.

With this background in mind research has now turned towards the therapeutic use of

EPCs in humans with ischaemic disease (table 1.3). Most of these small studies have
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looked at patients with acute myocardial infarction or chronic myocardial ischaemia

with no option for revascularisation by traditional means. Although many report positive

findings with few adverse effects, the follow-up period for most trials has been less than

one year, and few trials have been done in a randomised, controlled fashion. Many of

these studies report increases in myocardial perfusion, consistent with animal data that

suggest that angiogenesis or vasculogenesis may be augmented after cell transplantation.

Moreover, cells injected are generally heterologous, therefore the mechanism of benefit

is unclear, and the relative contribution of EPCs to the observed benefit is difficult to

establish [111]. Another problem with using EPCs in the clinical setting is that they are

found in low numbers in the peripheral blood. There are a number of ways that this can

be overcome, including: (i) the local infusion of autologous bone marrow cell

suspensions without pre-selection, (ii) the mobilisation of autologous EPCs in vivo, or

(iii) the ex vivo transfection with different genes. Infusion of bone marrow cells was

performed on humans with chronic limb ischaemia [112]. Twenty-two patients with

bilateral leg ischaemia were recruited. For each patient one leg was randomly injected

with autologous bone marrow mononuclear cells (BMMCs) and the other leg was

randomly injected with peripheral blood mononuclear cells (PBMCs) as a control.

Patients were assessed for changes in ankle-brachial index (ABI), transcutaneous oxygen

pressure (Tc02), rest pain and pain-free walking time. At 4 weeks ABI was significantly

improved in legs injected with BMMCs compared with those injected with PBMCs.

Similar improvements were seen for TcCE, rest pain and pain-free walking and these

effects were sustained at 24 weeks. Further studies have shown the beneficial effect of

BMMCs or ex vivo expanded autologous EPCs for repair of ischacmic and infarcted
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myocardium in humans. Of particular attention is the MAGIC trial in which 27 patients

with myocardial infarction and requiring coronary stenting were randomized to three

groups; (i) infusion of mobilized PBMCs using G-CSF, (ii) administration of G-CSF

alone and (iii) control group [113]. Exercise capacity myocardial perfusion and systolic

function were significantly improved in the cell infusion group at 6 months follow up.

Importantly, however, an unexpectedly high rate of in-stent restenosis was noted in

patients who received G-CSF, so the trial was stopped prematurely. Similarly suggested

a potential increase in adverse effects in patients with chronic myocardial ischaemia

treated with G-CSF [114]. This has, therefore, raised concerns about the safety of such

procedures, and prompted a search for other agents that can promote EPC mobilisation

without the risk of augmenting a generalised inflammatory response. Another potential

complication of cell therapy for subjects with myocardial ischaemia is intracoronary

administration of the cells. A study in which mesenchymal stromal cells were injected

into the coronary circulation of healthy dogs precipitated ECG changes compatible with

acute myocardial ischaemia 7 days later, with raised cardiac troponin I and histological

evidence ofmyocardial fibrosis [115].

In the treatment of cancer, inhibition of EPC mobilisation from the bone marrow has

tremendous therapeutic potential, as evidenced by the ability of tumours to grow in

animals that lack functional EPCs [92, 116]. Preliminary work in animal models

suggests that agents that inhibit EPC mobilisation may be effective cancer therapeutics

[117]. Further work will be required, however, before this strategy can be applied to

human neoplasms.
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Reference Controls Pathology Patient Cells Mode of Result Adverse Follow-up

numbers used injection effects period

[118] None Chronic 5 BMMCs Intramyocardial Improved None 1 year

myocardial injection while perfusion by

ischacmia performing cardiac

CABG radionuclide

imaging in

3/5 patients

[112] Each Bilateral 22 BMMCs i.m. Improved None 4 weeks

patient limb (n=22, (gastrocnemius) ABI, Tc02, and 24

acting as ischaemia injected rest pain and weeks

own into one pain free

control leg) walking in

PBMCs legs injected

(n=22. with BMMCs

injected

into the

other leg)

|119] 10 Acute MI 10 BMMCs Intracoronary Fewer None 3 months

patients dysfunctional

refusing myocardial

cell segments at 3

therapy months

[120] Matched Acute MI 20 BMMCs Intracoronary Improved EF Stent 4 months

reference (n=11) compared to restenosis

group Ex vivo controls; no in 5/19

expanded difference patients

cells among cell

(n=9) types
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Reference Controls Pathology Patient Cells Mode of Result Adverse Follow-up

numbers used injection effects period

|121] None Chronic 6 CD 133+ Intramyocardial Improved EF, Pericardial 9-16

MI BMMCs during CABG perfusion to effusion in months

peri-infarct 2/6

zone patients

|122] None Chronic 8 BMMCs Percutaneous Decreased None 3 months

myocardial transendocardial angina;

ischaemic increased

heart myocardial

disease perfusion

[111] 7 patients- Chronic 14 BMMCs Percutaneous Reduction in None 2-4

no myocardial transendocardial reversible months

procedure ischaemia defect;

performed decreased

ESV

|113] 7 patients Acute MI 20 Mobilised Intracoronary Exercise Increased 6 months

having PBMCs capacity, restenosis

coronary (n= 10) myocardial in 5/7

stcnting G-CSF perfusion and patients in

only alone systolic cell

(n=10) function infusion

increased in group and

patients after 2/3

PBMC patients in

infusion G-CSF

group
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Reference Controls Pathology Patient Cells used Mode of Result Adverse Follow-

numbers injection effects up

period

[123] 30 Acute MI 30 BMMCs Intracoronary Increased None 6

patients global LVEF months

having in cell

coronary infusion

stenting group

only

|124] None Chronic 14 BMMCs Injection into Improved None 10

myocardial myocardial scar myocardial months

infarction while performance

performing in segments

CAGB receiving

bypass and

cells

[125] None Ischaemic 6 PBMCs Intramyocardial Improved Death 4-10

cardiomyopathy after G-CSF and EF, from months

mobilisation intracoronary improved sepsis

injection while myocardial (1/6),

performing perfusion AF with

CABG RVR

(1/6)

Table 1.3. Current trials involving the use of EPCs as a therapeutic intervention in

patients with vascular disease.
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2. METHODS
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2.1. RNA isolation

Introduction

RNA isolation from whole human blood was performed using the QIAamp® RNA

Blood Mini Kit (Qiagen, Crawley, West Sussex, UK), following the protocol supplied

with the kit. The main reasons for using a kit method as opposed to the acid-guanidium-

thiocyanate method or CsCl step-gradient ultracentrifugation was because of ease of use

and the ability to process multiple blood samples simultaneously in a shorter time

period. The kit contained:

• Spin columns- contained in 2ml collection tubes. For separating out total RNA using

a silica-gel-based membrane.

• Shredder columns- contained in 2ml collection tubes. For homogenization of cell

lysates.

• EL buffer- a hypotonic buffer that facilitates selective lysis of erythrocytes.

• RLT buffer- for cell disruption. P-mercaptoethanol was added prior to use (lOpl to

lml of buffer).

• RW l buffer- wash buffer.

• RPE buffer- wash buffer. 4 volumes of 100% ethanol was added prior to use to

obtain a working solution.

• RNase free water- for elution of total RNA from silica-gel-based membrane.

• 2ml collection tubes.

• 1.5ml collection tubes.
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Method

1. 1ml of EDTA anticoagulated whole blood was mixed with 5ml of EL buffer in a

15ml centrifuge tube.

2. The mixture was then incubated for 15 minutes on ice, and vortexed twice during

incubation. Translucency of the suspension was looked for, indicating that lysis of

erythrocytes had occurred.

3. The mixture was centrifuged at 400xg for 10 minutes at 4°C, and the supernatant

containing lysed erythrocytes was completely removed and discarded.

4. 2ml ofEL buffer was then added to the remaining cell pellet, which was resuspended

by a brief vortex.

5. The mixture was then centrifuged again at 400xg for 10 minutes at 4°C, and the

supernatant was completely removed and discarded to prevent interference with cell

disruption and RNA binding to the spin column.

6. 600pl of RLT buffer was then added to the pelleted leukocytes, and vortexed to mix.

It was ensured that no cell clumps could be seen prior to commencing the

homogenization step.

7. The lysate was then transferred into a shredder column and centrifuged in a micro

centrifuge for 2 minutes at 13,000 rpm to homogenize. The column was then

discarded and the homogenized lysate saved.

8. 600pi of 70% ethanol was then added to the lysate, in order to optimise binding

conditions for the RNA, and mixed by pipetting.
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9. The sample, including any precipitate that may have formed, was then transferred to

a spin column and centrifuged in a micro centrifuge for 15 seconds at 10,000rpm. As

the maximum loading volume of the column is 700pl this step was performed on

successive aliquots of the same sample through the same column. Following

centrifugation the flow-through and collection tube were discarded and the column

saved.

10. The spin column was then transferred to a new 2ml collection tube, and 700pl of

RW1 buffer was applied to the column, which was centrifuged at 10,000rpm for 15

seconds to wash. The flow-through and collection tube were then discarded and the

column saved

11. The spin column was transferred to a new 2ml collection tube, and 500pl of RPE

buffer was applied to the column, which was centrifuged at 10,000rpm for 15

seconds. The flow-through and collection tube were then discarded and the column

saved.

12. The spin column was transferred to a new 2ml collection tube, and a further 500pl of

RPE buffer was added to the column, which was centrifuged at 13,000rpm for 3

minutes.

13. To eliminate any chance of RPE buffer carryover, the spin column was transferred to

a new 2ml collection tube and centrifuged at 13,000rpm for I minute.

14. The spin column was then transferred to a 1.5ml collection tube, and 50pl of RNase-

free water was pipetted directly onto the membrane. The column was spun in a micro
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centrifuge at 10,000rpm for 1 minute to elute the RNA. Step 14 was repeated to

obtain a total volume of 1 OOpl containing eluted RNA.

15. To determine the concentration of RNA present 4pl of the eluted RNA solution was

added to 996pl of distilled water and the optical density was read using UV light at

wavelengths of 260nm and 280nm*.

* The 260nm reading in Absorbance units (A) (calibrated to 0.0A for distilled water)

multiplied by 104 gives an approximate concentration of RNA in nanograms per micro

litre. For example, 0.018A at 260nm = 180ng/pl. This also allows estimation of purity of

the sample from protein contamination. A ratio for the optical density at 260nm: 280nm

of around 2:1 suggests a pure sample with little contamination.
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2.2. Reverse transcription to complementary DNA (cDNA)

Introduction

In order to be able to quantify mRNA in the real-time PCR it first has to be converted

into cDNA. This depends on the enzyme reverse transcriptase (RT) to create a double

stranded DNA copy from the single stranded RNA strand.

Method

All reagents were obtained from Promega, Southampton, UK.

1. lpl (0.5pg/pl) of random hexamers was added to lOpl of RNA (lpg of RNA

made up to lOpl with DEPC distilled water) in a sterile RNase-free micro

centrifuge tube.

2. The tube was heated to 70°C for 5 minutes to melt secondary structure within the

template, then cooled on immediately on ice for 5 minutes to prevent secondary

structure from reforming.

3. On ice the following components were added to the annealed random

hexamers/template: lpl (200units) of M-MLV RT, 0.625pl (40units/pl) of

RNase inhibitor, 5pl of dNTP mix (containing dATP, dCTP, dGTP and dTTP,

each at a concentration of lOnM in water) and 5 pi of 5X RT reaction buffer

(diluted 1:5, containing 50mM Tris-HCL-pH 8.3 @ 25°C, 75mM KCL, 3mM

MgCf and lOmM DTT).
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4. The tube was then incubated for 10 minutes at 25°C followed by a 60 minute

incubation at 37°C
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2.3. Polymerase chain reaction (PCR)

Introduction

Reverse transcriptase PCR (RT-PCR) is used to amplify RNA. The principle underlying

PCR is well known. Traditionally PCR has relied on the detection of product at the end

of the reaction by using agarose gels (end-point PCR) (figure 3.5). Now, with the

advancement in PCR technology, it is possible to detect product while the reaction is

occurring (real-time PCR). This process is summarised in figure 2.1. Measuring the

kinetics of the reaction in the exponential phase of PCR provides distinct advantages

over end-point PCR. The main one is the ability to accurately quantitate an amplicon.

Quantitation of mRNA relies on the use of TaqMan® probes. These probes are

oligonucleotides, which are designed to anneal to a specific sequence of template

between the forward and reverse primers. The probe sits in the path of the DNA

polymerase as it starts to copy cDNA. When the enzyme reaches the annealed probe the

5' exonuclease activity of the enzyme cleaves the probe. The TaqMan® probe is

designed with a high-energy dye termed a reporter at the 5' end, and a low-energy

molecule termed a quencher at the 3' end. When this probe is intact and excited by a

light source, the reporter dye's emission is suppressed by the quencher dye as a result of

the close proximity of the dyes. When the probe is cleaved by the 5' nuclease activity of

the enzyme, the distance between the reporter and the quencher increases causing the

transfer of energy to stop. The fluorescent emissions of the reporter increase and the

quencher decrease. The increase in reporter signal is captured by the sequence detection
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instrument and displayed by the software in the form of an amplification plot. The

amount of reporter signal increase is proportional to the amount of product being

produced for a given sample. The amplification plot displays the threshold line and the

cycle threshold (Ct), both of which are important for the quantitation of RNA. The

threshold line is the level of detection at which a reaction reaches a fluorescent intensity

above background, and is set in the exponential phase of the amplification for the most

accurate reading. The Ct is the cycle at which the sample reaches this level.

There are two main ways of quantifying RNA by real-time PCR. The first is by absolute

quantitation. This is unnecessary in most cases, however, and requires standards whose

concentrations are known absolutely. The second approach is by relative quantitation.

This method compares target signals in different samples to a reference sample. To

correct for differences in the amount of cDNA added to a reaction or to compensate for

different levels of PCR inhibition each target signal is normalised to an endogenous

control. This is a "housekeeping gene" the amount of which will not vary greatly

between samples. The endogenous control used here was ribosomal 18s RNA (see

section 3.2). The relative difference between samples is then calculated. If the

efficiencies of the target and the endogenous control reactions are equivalent then a

standard curve is not needed and the comparative Ct method can be used (see section

3.3). Real time quantitative PCR was performed using the ABI Prism® 7900 system

(Applied Biosystems, Warrington, Cheshire, UK). All reagents were supplied by

Applied Biosystems.
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Primers and probes

All primer and probe sets were ordered through Applied Biosystems Assays-on-

Demand™ service. Each Assay-on-Demand™ gene expression product consisted of a

20X mix of unlabelled PCR primers and TaqMan® MGB probe (FAM™ dye-labelled).

These assays have been specifically designed for the detection and quantitation of

specific human genetic sequences in RNA samples converted to cDNA. Each assay has

been optimized and validated to ensure that there are comparable efficiencies between

target and endogenous control reactions if performed in separate wells (singlcplex

assay). Although the exact primer and probe sequences are not supplied by the company,

each set of assays goes through an 8 point manufacturing process, as shown in table 2.1.

The conditions which must be adhered to for primer/probe design for use of the ABI

7900 quantitative PCR system are shown in table 2.2. The gene expression products

purchased were for quantitation of mRNA of CD34, VEGFR-2, CD133, CD14, VE-

cadherin, vWF and 18s. In addition, each gene expression product has been optimised to

work with pre-developcd TaqMan® Universal PCR master mix.
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Step 1 Benefit

• Obtain transcript sequence, mask Assay designs avoid regions of ambiguity,

repeats, and map to genome resulting in assays with high fidelity

• Mask sequence discrepancies

between public and private

databases

• BLAST transcript sequence versus

Celera SNP database and mask

SNP locations

Step 2 Benefit

• Choose assay target position where Designing assay over an exon-exon

possible over an exon-exon junction helps to prevent the detection of

junction contaminating genomic DNA

Step 3 Benefit

• Apply optimal design parameters High quality 5' nuclease assays

for good 5' nuclease assay

Step 4 Benefit

• BLAST probe and primer designs Chosen assays detect only transcript(s)

versus transcript databases to from the gene of interest

56



ensure specificity

Step 5

• BLAST probe and primer designs

versus genome databases

Benefit

Avoid assays that detect pseudo-genes or

genomic DNA

Step 6

• Apply penalty to assays that span a

small intron

Benefit

Gene-specific assays will not amplify

contaminating genomic DNA

Step 7

• Synthesise and QC probes and

primers: mass spec and yield

Benefit

Proper probe and primers are

manufactured at the correct concentrations

Step 8

• Formulate probe and primers into

single tube at 20X concentration

Benefit

Easy-to-use, convenient, no-optimisation

required

Table 2.1. The TaqMan® gene expression assay design schematic. Taken from

Applied Biosystems website (www.appliedbiosvstems.com).

57



Primer

• Tm (melting temperature) 58-60°C

• 20-80% of nucleotides GC

• Length 9-40 bases

• <2°C difference in Tm between the two primers

• Maximum of 2/5 G or C at 3'end

Probe

• Tm 10°C higher than primer Tm

• 20-80% of nucleotides GC

• Length 9-40 bases

• No G on the 5' end

• <4 contiguous Gs

• Must not have more Gs than Cs

Amplicon

• 50-150bp in length

• 3' end of primer as close to the probe as possible without overlapping

Table 2.2. Conditions, which must be adhered to for design of primers and probes

using the ABI 7900™ quantitative PCR system.
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Method for real-time PCR

1. RNA was reverse transcribed into cDNA as described in section 2.2. Reverse

transcription was performed on the Peltier Thermal Cycler (PTC-225, MJ

research).

2. The reaction components were prepared according to table 2.3. Different

reaction mixes were prepared depending on the primer/probe set used and,

therefore, the gene expression of interest. The pre-developed master mix

contained TaqMan buffer, MgCb, dNTPs and Taq polymerase.

3. 16pl of reaction mix (without the cDNA) was then added to each well of a 96

well reaction plate. Specific reaction mixes, containing different primer/probe

sets, were added to separate wells. Each plate had wells containing reaction mix

with 18s primers/probes.

4. 4pl of cDNA was then added to each well (each cDNA sample was added in

triplicate) using a separate pipette tip each time, and mixed by pipetting gently

up and down to avoid aerosol formation.

5. The plate was sealed with an optical adhesive cover and PCR was performed on

the ABI 7900. The following thermal cycler conditions were used: Initial setup-

hold at 95°C for 10 minutes; Cycle- denature at 95°C for 15 seconds,

anneal/extend at 60°C for I minute. A total of 50 cycles was preformed for each

reaction.
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Reaction component Volume/Well (20pl) Final concentration

TaqMan® Universal PCR

master mix (2X)

10 IX

20X Assays-on-demand™

gene expression assay mix

1 IX

cDNA 4 -

RNase-free water 5 -

Total 20

Table 2.3. Singleplex PCR reaction.
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Figure 2.1. TaqMan® probes and quantitative PCR. The TaqMan® probe anneals to

the corresponding CDNA. When both the fluorophore and quencher are attached there is

no fluorescence. During the subsequent PCR reaction, when the 5' nuclease activity of

the DNA polymerase separates the fluorophore from the quencher it can then fluoresce

and this can be quantified.
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2.4 EPC colony assay

Introduction

Studies to purify and characterize EPCs have been difficult due to the lack of cell

surface antigens or markers that distinguish these cells from mature vessel wall-derived

endothelial cells and from subsets of haematopoietic cells. Alternatively, EPCs can be

defined based on their different growth properties following in vitro culture of peripheral

blood. Colonies that form after 3-7 days in culture have a low proliferative potential (6

fold expansion) and are referred to as early outgrowth colony forming unit- endothelial

cell or CFU-EC. Colonies that form after 2-4 weeks exhibit a higher proliferative

potential (100 fold expansion) and are referred to as late outgrowth CFU-EC. The

EndoCult™ Liquid Medium Kit (StemCell technologies) was used to support the growth

of human EPCs from peripheral blood, and based on the established assay used by Hill

et al.

Reagents

All reagents were supplied by StemCell Technologies, unless otherwise stated.

• The EndoCult™ Liquid medium Kit included the following- basal medium and

supplements. Both are used to make EndoCult™ Liquid medium.

• Phosphate buffered saline (PBS)

• 2% fetal bovine scrum

• 3% acetic acid
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• 6-well and 24-well fibronectin-coated plates (Becton-Dickinson, Oxford, UK).

Preparation of EndoCult™ Liquid Medium

1. EndoCult™ supplements were thawed at room temperature overnight.

2. 20mls of the supplements was added to 80mls of Endocult™ basal medium, to

make a 1/5 dilution.

Method

DayO

1 EDTA anticoagulatcd blood was added to a 50ml tube. A mononuclear cell

suspension was prepared by adding an equal volume of PBS to the 50ml tube.

15ml of Ficoll-Paque® PLUS was added to a new 50ml tube. The diluted blood

sample was then carefully layered over the Ficoll. The tube was centrifuged at

1200rpm for 25 minutes, and then the buffy coat was collected into a new 50ml

tube. The mononuclear cells were resuspended in PBS and 2% FBS up to a final

volume of 40mls, followed by a further spin at 1200rpm for 7 minutes in order to

pellet the cell suspension.

2 The supernatant was decanted and 6mls of PBS/2% FBS was added to the tube.

The pellet was resuspended and transferred to a new 15ml tube. It was then spun

at 1200rpm for 7 minutes to pellet the cell suspension.

3 The supernatant was decanted and the pellet resuspended in l-3mls of

EndoCult™ Liquid Medium. Nucleated cells were counted using 3% acetic acid
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in a 1/20 dilution with the sample (eg. lOpl of cells and 190pl of acetic acid) and

counting using a haemocytometer.

4 2mls of medium was added to a 6-well fibronectin-coated dish. Each experiment

was performed in duplicate using 2 wells of a 6-well dish per sample.

5 5xl06 mononuclear cells were plated per well in the 6-well fibronectin-coated

dish in duplicate and incubated for 2 days at 37°C, 5% CCE with >95% humidity.

This step removed monocytes and mature endothelial cells.

Day2

After 2 days the mature endothelial cells and monocytes adhered to the bottom of the

well. The non-adherent cells contained the EPCs for harvesting at day2 and for further

culturing for 3 days to allow formation of endothelial colonies.

6 The non-adherent cells were collected by pipetting the medium in each well up

and down 3-4 times using a 2ml pipette.

7 These cells were then transferred into individual 5ml tubes and the volume from

each well measured using a 2ml pipette. Nucleated cells were counted as

previously described, but this time a 1/10 dilution was used (lOpl of cells and

90pl of acetic acid).

8 lxl 06 cells/well, from each well of the 6-well dish, were plated in duplicate in a

24-well fibronectin-coated dish. The dish was incubated at 37°C, 5% CCE with >

95% humidity for three days.
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At day 5 of the assay the number of colonies per well for each sample was

counted. Colonies were defined as a central core of "round" cells with elongated

"sprouting" cells at the periphery and were classified as early outgrowth colony

forming unit- CFU-EC.
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2.5. Flow cytometry

Introduction and method

Whole blood cells were phenotyped by flow cytometry using FACS-Calibur flow

cytometer (Becton-Dickinson, Oxford, UK). Cells were directly stained and analysed for

phenotypic expression of surface proteins with monoclonal antibodies (MAbs)

conjugated to phycoerythrin (PE), fluorescein isothiocynate (FITC), Peridin

Chlorophylla protein (PERCP) or Allophycocyanin (APC). The MAbs included anti-

CD34-FITC, PerCP-conjugated anti-human CD45 (Becton Dickinson, Oxford, UK).

Anti-VEGFR2-PE from (R&D systems), anti-VE-cadherin-PE from Santa Cruz

Biotechnology, and anti-CD 133-APC from Myltenyi Biotec, UK. Appropriate negative

controls (Isotype and/or no antibody) were used to establish positive stain boundaries.

lOOul of the sample was stained with the appropriate antibodies for 30 minutes in the

dark; the erythrocytes were lyscd with lysing solution (Becton Dickinson, Oxford, UK)

for 15 minutes in the dark. Afterwards the samples were centrifuged and washed with

PBS at 200g and finally the cells were fixed with Cell Fix solution (Becton Dickinson,

Oxford, UK). 50.000 events were counted and measured by BD FACSCalibur System.
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2.6. ELISA

Introduction

The principle of the ELISA is described in figure 2.2. A commercial kit was used to

perform the assay to determine VEGF levels in patients having angiography ±

angioplasty (see chapter 4) and in patients wit chronic renal failure receiving human

recombinant erythropoietin (see chapter 7) (R&D Systems, MN, USA).

Reagents

• VEGF microplate- 96 well plate coated with a mouse monoclonal antibody

against VEGF.

• VEGF conjugate- polyclonal antibody against VEGF conjugated to horseradish

peroxidase.

• VEGF standard- recombinant human VEGF165 in a buffered protein base

(2000pg/vial).

• Assay diluent RD1W- a buffered protein base.

• Calibrator diluent RD6U- animal serum.

• Wash buffer concentrate- 25-fold concentrated solution of buffered surfactant.

• Colour reagent A- stabilised hydrogen peroxide.

• Colour reagent B- stabilised chromogen (tetramethylbenzidine).

• Stop solution
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Method

1 2.5ml of EDTA anticoagulated whole blood was collected from each patient/at

each time point and centrifuged for 15 minutes at lOOOxg within 30 minutes of

collection. The plasma fraction was then pipetted off and aliquoted and stored at

-20°C.

2 All reagents and samples were brought to room temperature before use. All

samples and standards were assayed in duplicate.

3 1 OOpI of diluent RD1W was added to each well.

4 1 OOpl of standard or sample was add to each well. The plate was then incubated

for two hours at room temperature.

5 Each well was aspirated then washed for a total of three times, using 400pl of

wash buffer. The plate was then inverted and blotted against clean paper towels.

6 200pl of VEGF conjugate was added to each well and the plate was incubated

for a further two hours.

7 The plate was then aspirated and washed as in step 5.

8 200pl of substrate solution was then added to each well and the plate was

incubated for 25 minutes.

9 Then 50pl of stop solution was added to each well.

10 The optical density of each well was then determined using a microplate reader

set at 450nm.
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11 The average of the duplicate readings for each standard and sample was

calculated and the average zero standard optical density subtracted.

12 A standard curve was then constructed by plotting the average absorbance for

each standard against the concentration. Sample concentrations were then read

off the graph.
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suhstrate

I

Figure 2.2. Principle of the ELISA assay. The assay employs the quantitative sandwich

enzyme immunoassay technique. A monoclonal antibody specific for VEGF has been

pre-coated onto a microplate. Standards and samples are pipetted into the wells and any

VEGF present is bound by the immobilised antibody. After washing away any unbound
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substances, an enzyme-linked polyclonal anibody specific for VEGF is added to the

wells. Following a wash to remove any unbound antibody-enzyme reagent, a substrate

solution is added to the wells and colour develops in proportion to the amount of VEGF

bound in the initial step. The colour development is stopped and the intensity of the

colour is measured.
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2.7. Statistical Methods

Age groups, whole blood counts and differential counts passed the Kologorov- Smirnov

(KS) test of normality, and were therefore analysed using parametric tests (unpaired t-

test, paired t-test and repeated measures ANOVA with Tukey post-test analysis). All

other data, including PCR, flow cytometric, cell culture, ELISA and CRP data failed the

KS test and were analysed using non-parametric tests (Mann-Whitney U test, Wilcoxen

matched pairs test and repeated measures ANOVA with Dunn post-test analysis). The

strength of association between two quantitative variables was analysed using

Spearman's correlation coefficient (chapter 5). Where multiple paired data points were

analysed over a time course type 1 errors were a possibility. To reduce this a p value of

<0.01 was considered to be significant. Where one set of paired data was being analysed,

or when ANOVA was performed a p value of <0.05 was considered to be significant.

Results were analysed using GraphPad Instat 3 software (San Diego, CA, USA).
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3. PRELIMINARY STUDIES- PCR
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3.1. Stability of RNA in blood samples

Introduction

Each series of experiments to be described in the subsequent chapters involved the

isolation of cellular RNA from whole blood samples and reverse transcription to cDNA,

prior to performing real-time PCR. The initial isolation of RNA is critical if real-time

PCR is to be accurate. However, RNA is relatively labile and is susceptible to

degradation by ribonucleases present in blood. For optimal results, therefore, blood

samples should be processed soon after collection. To investigate this further various

pre-analytical factors were employed to assess the stability of RNA extracted from

whole blood samples.

Methods

1. 15mls (3x5mls) of EDTA anticoagulated blood were taken from each of 6

control subjects.

2. For each control subject 5mls of blood were kept at room temperature on an

agitator, 5mls of blood were kept on the laboratory bench at room temperature,

and the remaining 5mls of blood were put in the fridge at -4°C.

3. 1ml of blood was taken from each 5ml sample at the following time points:

immediately after venesection (0 hours), at 2 hours, 4 hours, 6 hours and 24

hours after venesection.

4. Total cellular RNA was then immediately extracted from each 1 ml sample,

according to the method described in section 2.1.
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5. lpg of RNA extracted from each 1ml sample was reverse transcribed using the

method in section 2.2.

6. Real-time PCR was then performed on the cDNA using Applied Biosystems

'assay-on-demand' primer/probe sets to amplify CD34, CD 133 and VEGFR-2.

Results

The results for each condition/marker are shown in figure 3.1. There was no statistically

significant change in the median RQs of CD34 mRNA from 0 hour to 24 hours in the

roller samples (p=0.56), in the room temperature samples (p=0.31) and in the 4°C

samples (p=0.81). Furthermore, there was no statistically significant change in the

median RQs of CD 133 mRNA from 0 hour to 24 hours in the roller samples (p=0.12),

from 0 hour to 6 hours in the room temperature samples (p=0.81), and from 0 hour to 24

hours in the 4°C samples (p=0.12). Finally, there was no statistically significant change

in the mean RQ values of VEGFR-2 mRNA from 0 hour to 24 hours in the roller

samples (p=0.25), in the room temperature samples (p=0.50), and in the 4°C samples

(p=0.50).
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4 degrees

Figure 3.1. The median RQ values of CD34, CD133 and VEGFR-2 mRNA species

from 6 control peripheral blood samples each kept at room temperature on the bench (a),

at room temperature on a roller device (b) and at 4oC (c). Each sample was tested at

serial time points, as described in the methods section.
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Discussion

The results presented here suggest that cellular RNA is stable over the period measured.

The most reliable data was that for the RQs of CD34 mRNA. Amplification of this

mRNA species was better in the 6 control subjects studied, compared to that of CD 133

and VEGFR-2. This is reflected in the observation that not all time points in the graphs

are represented for CD 133, and there is highly variable amplification of VEGR-2. Poor

and variable amplification is likely to be due to the relative insensitivity of the technique

in detecting the markers of EPCs in control subjects, where EPCs represent a very small

proportion of the mononuclear cell population. In spite of this, however, the results

highlight an important point, which is that is any changes in RQs of mRNA in the

patient groups tested are likely to be genuine, rather than artefactual and related to

degradation of the mRNA being measured.

There is very little published on the stability of RNA extracted from whole blood

samples. There is some data, however, on the stability of circulating RNA extracted

from plasma. Using real-time PCR, Tsui et al reported the effect of time delay in blood

processing after venesection on plasma GAPDEI mRNA concentrations [126]. 5 EDTA

samples were left at room temperature for 0, 6, and 24 hours, then the plasma was

subjected to RNA extraction. Similarly, 5 EDTA samples were left at 4°C for 0, 6 and 24

hours, following which the plasma was collected and the RNA extracted. From their

results they concluded that plasma RNA was stable over the time period studied, but that

storing samples at 4°C resulted in better RNA stability. All of the whole blood samples
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used in this thesis where RNA extraction was performed were stored at 4°C and

processed within 2 hours of collection.
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3.2. Establishing the best endogenous control

Introduction

An endogenous control is RNA or DNA that is present in each experimental sample. By

using an endogenous control as an active reference, one can normalise quantification of

an mRNA target of interest for differences in the amount of total RNA added to each

reaction. This is important when comparing the relative quantities of an mRNA target in

serial blood samples following a particular intervention. However, several studies have

indicated that the expression of traditional endogenous controls, such as GAPDH and

bcta-actin, varies among tissues and developmental stages. To ensure that the most

appropriate endogenous control would be used for our studies, an ABI TaqMan® human

endogenous control plate was used. This plate is designed to simplify the selection of

endogenous controls for gene expression studies. The plate evaluates the expression of

eleven select housekeeping genes in total RNA samples using the two-step, reverse

transcription-polymerase chain reaction (RT-PCR). The plate also features a unique

internal positive control (IPC) designed to detect the presence of PCR inhibitors in test

samples. The plate itself is an optical 96-well reaction plate divided into 12 columns,

one for every control assay. Each column consists of 8 identical wells containing

TaqMan primers and probes for the detection of one target gene ( figure 3.2).
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Figure 3.2. Assay configurations of the endogenous control plate.
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Methods

1. The series of samples taken from patient 25 in the coronary angiography study

(see chapter 4) were chosen to run on the endogenous control plate. The samples

had been taken before coronary angiography, immediately after, and at 6 hours

and at 24 hours after the procedure. Total cellular RNA had previously been

extracted from the samples and stored at -80°C, according to the protocol

previously described (see section 2.1).

2. 6pg of RNA from each sample was used for reverse transcription, according to

the protocol in section 2.2, which meant that each well would receive 250ng of

RNA per sample.

3. 650pl of TaqMan Universal PCR master mix (2X) was pipetted into 4 micro

centrifuge tubes (for the 4 test samples).

4. The 4 samples were then diluted to a volume of 650pl with RNase-free water.

Each sample tube contained 150pl of cDNA.

5. The samples were then pipetted separately into the micro centrifuge tubes

containing the master mix making a total volume of 1.3mls, and the tubes were

mixed by gentle inversion.

6. The samples plus master mix were pipetted into the wells of the control plate in

50pl aliquots.

7. The wells were sealed over with an optical adhesive cover, and the plate spun to

eliminate any air bubbles.
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8. Quantitative PCR was then performed using the ABI 7900™ sequence detection

system.

Results

The pre-sample was designated the calibrator. Derivation of ACT values from the

average CT values of the calibrator and samples is the final step in comparative gene

expression analysis. The following equation describes the ACT calculation.

ACT (sample) Average CT (calibrator) — Average CT (sample)

The equation above uses the average CT of the calibrator as a baseline for evaluating

target gene expression in each sample. Samples with initial template concentrations

higher than the calibrator have lower average CT values and yield positive numbers.

Samples with lower initial template concentrations have higher average CT values and

yield negative numbers. The results of the Endogenous Control Plate are expressed in

ACT, greater than or less than the calibrator ACT. Thus, the calibrator serves as a

baseline for the assays and is shown as zero on the graph. One ACT is equal to a twofold

difference in initial template concentration. The best control is the one with the least

variation in ACT levels. Ideally, it is expressed at a constant level in all samples

regardless of cell cycle, cell type, or tissue. Because the ACT indicates the level of gene

expression relative to the calibrator, the ACT values of a good control do not vary much

from zero.
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Results for the samples from patient 25 are shown in figure 3.3. From the ACT profile

shown, the 18S ribosomal RNA (18S) phosphglycerokinase (huPGK) and P2-

microglobulin (huP2m) were shown to be good candidate control genes because their

expression remained relatively consistent across the test samples. All three assays

produced ACT values that deviated little from zero, indicating a fairly stable level of

gene expression relative to the other candidate controls. 18s was chosen as the

endogenous control, however, because of its relative abundance and ease of

amplification at relatively low cycle thresholds.
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Figure 3.3. Gene expression profile of patient 25. No bars shown for the calibrator

(ACT= 0). Blue bars represent the post-sample, brown bars represent the 6-hour sample,

and white bars represent the 24-hour sample.
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3.3. Relative quantitation of gene expression- Comparative Cj method

Introduction

Relative quantitation of RNA can be performed using the standard curve method or the

comparative method. It is relatively straightforward to prepare standard curves because

quantity is expressed relative to some basis sample, such as the calibrator. For all

experimental targets, target quantity is determined from the standard curve and divided

by the target quantity of the calibrator. Thus, the calibrator becomes the IX sample, and

all other quantities are expressed as an n-fold difference relative to the calibrator.

Because the sample quantity is divided by the calibrator quantity, the unit from the

standard curve drops out. Thus, all that is required of the standards is that their relative

dilutions are known. Any stock DNA containing the appropriate target can be used to

prepare standards. There are, however, some important points to note when performing

relative quantitation using the standard curve method.

• It is important that stock DNA is accurately diluted.

• For quantitation normalised to an endogenous control, standard curves need to be

prepared for both the target and the endogenous reference. For each experimental

sample, the amount of target and endogenous control is determined from the

appropriate standard curve. Then, the target amount is divided by the endogenous

control amount to obtain the normalised target value. Then the relative

expression levels of the target are derived using a calibrator sample, as

previously described.
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To overcome the relatively labour intensive approach of the standard curve method,

relative quantitation of RNA can be achieved using the comparative Cj method. This

uses the arithmetic formula 2~AACT to obtain RQ values. The exact derivation of the

equation is explained in the Applied Biosystems user bulletin [168]. Essentially it is the

amount of target, normalised to an endogenous control and relative to a calibrator, where

AACt is the ACt of the target minus the ACt of the calibrator. The software used by the

ABI 7900™ analyser automatically calculates these parameters. For the comparative Ct

method to be valid, however, the efficiency of the target amplification and the efficiency

of the endogenous control amplification must be approximately equal. Therefore, when

using custom designed probe and primer sets it is recommended that validation

experiments be performed to demonstrate this. Validation can be done by assessing how

the ACt of a target varies with dilution of the RNA used (see below). Fortunately, the

Applied Biosystems TaqMan gene expression assays used in our experiments have been

extensively tested and validated and found to have very similar efficiencies (close to

100%), so it is not routinely necessary to measure efficiency when using them.

However, to prove that this is the case a validation experiment was performed, using the

'assay-on-demand' primer/probe sets for CD34 and ribosomal 18s.
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Methods

1. RNA was extracted from a sample of bone marrow aspirate according to the

method described in section 2.1. The concentration of the RNA was 170ng/pl,

diluted to a working concentration of lOOng/pl.

2. Serial dilutions of the RNA were made (table 3.1) and each dilution was reverse

transcribed according to the method in section 2.2.

3. Primer/probe sets for amplification CD34 cDNA (as the target) and ribosomal

18s (as the endogenous control) were purchased from the Applied Biosystems

"assay-on-demand" service.

4. Quantitative PCR was performed using the ABI 7900™ analyser.

Results

1. The average Ct values for CD34 and 18s were obtained and the average ACT

values calculated (table 3.1).

2. The average ACT values were then plotted against the log (input RNA) to

generate a linear graph (figure 3.4).

3. The slope of the graph was calculated.
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RNA conc. Ave. CT (CD34) Ave. Ct ACt

(ng) (18s)

1000 27.81 14.35 13.46

800 28.39 14.58 13.81

600 28.14 15.31 12.83

400 29.50 15.85 13.65

200 30.92 17.51 13.41

100 31.77 18.32 13.45

Table 3.1. Average Ct value for CD34 and 18s at different RNA input amounts.

2.5

Log (input RNA)

Figure 3.4. Plot of log input RNA versus ACt.

90



Conclusion

For the efficiencies of the target and endogenous control amplifications to be similar the

slope of the graph should be less than 0.1. The slope of the graph in figure 3.4 is 0.01,

confirming that the efficiencies are very similar. The AACy method of calculation of the

RQ values is the method of choice used in this thesis.
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3.4 Reproducibility Data

Introduction

The coefficient of variation (cv) is a measure of dispersion of a probability distribution,

and is defined as the ratio of the standard deviation to the mean multiplied by 100 to

give a percentage value. It can be used to determine the intra- and inter-variability of a

particular assay, and can be seen as a way of assessing assay reproducibility.

Methods

Ct values for the endogenous control, ribosomal 18s, from a cohort of normal blood

samples were used to calculate the cv for the real-time PCR assay. Ribosomal 18s was

chosen because it has been shown that levels vary little between samples (section 3.2),

implying that any marked variability will be due to methodology.

1. 2.7mls of EDTA anticoagulated blood was drawn from each of 36 control

subjects.

2. Total cellular RNA was extracted from each sample, according to the method

described in section 2.1.

3. lpg of RNA extracted from each sample was reverse transcribed using the

method in section 2.2.
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4. Real-time PCR was then performed on the cDNA using the Applied Biosystems

'assay-on-demand' primer/probe set to amplify 18s. Each sample was run in

triplicate.

5. Ct values were determined for each well/sample and intra- and inter assay cvs

were calculated.

Results and discussion

See Table 3.2. The mean intra-assay cv was 2.74%. The inter-assay cv was 6.68%. Both

cv values are below 10%, which is regarded as the cut-off for acceptable assay

reproducibility. The data from real-time PCR assay used in this thesis can, therefore, be

interpreted with confidence.
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Control Ct Mean intra Ct Intra sd Intra cv

cl 8.914182
cl 8.468726

cl 8.485065 8.62265767 0.25259962 2.929486831

c2 8.323936
c2 8.500703

c2 8.431259 8.41863267 0.08905735 1.05786001

c3 7.559304

c3 7.832469

c3 7.897216 7.76299633 0.17934873 2.310302963

c4 7.115218
c4 6.975356

c4 7.419798 7.170124 0.22725135 3.169420033

c5 8.081259

c5 7.54479

c5 7.990533 7.872194 0.28714602 3.647598356

c6 8.643373

c6 8.631191

c6 8.796629 8.69039767 0.09220045 1.060946236

c7 9.939116

c7 9.842138

c7 9.376766 9.71934 0.30061419 3.092948612

c8 9.186432
c8 9.173496
c8 8.976012 9.11198 0.11792925 1.294221992

c9 8.790575

c9 8.842152

c9 8.923827 8.85218467 0.06719014 0.759023233

clO 8.939893

clO 8.804809

clO 8.046533 8.59707833 0.48154651 5.601280981

cl 1 7.813177

cl 1 8.423806

ell 8.299778 8.17892033 0.32275668 3.946201559

cl2 9.273266

cl2 9.116021

cl2 8.959337 9.116208 0.15696458 1.721818804

c 13 8.226588

c 13 8.387432

c 13 8.795276 8.46976533 0.29314773 3.461108094
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Control Ct Mean intra Ct Intra sd Intra cv

cl4 7.549772

cl4 7.611612

cl4 8.025742 7.729042 0.25880343 3.348454144

cl5 8.847471

cl5 8.508533

c 15 8.663116 8.67304 0.16968679 1.956485717

cl6 8.481077

cl6 8.501577

cl6 8.635908 8.53952067 0.08410084 0.984842612

cl7 7.74364

cl7 7.876286
cl7 8.107315 7.90908033 0.18404205 2.32697161

c 18 8.183282

c 18 7.865273

cl8 8.668533 8.23902933 0.4045213 4.90981743

cl9 8.375304

cl9 8.83628

c 19 7.853721 8.35510167 0.49159094 5.883721767

c20 8.414792

c20 7.811428
c20 7.83649 8.02090333 0.34134768 4.255726117

c21 7.354102

c21 7.266655

c21 7.34779 7.322849 0.04876766 0.665965651

c22 7.423119
c22 7.246335

c22 7.434873 7.368109 0.10562301 1.433515793

c23 8.927596

c23 8.886479

c23 8.860986 8.891687 0.03360901 0.377982365

c24 8.895221

c24 8.864418

c24 8.691408 8.81701567 0.10986433 1.246048919

c25 8.569964

c25 8.693617

c25 8.120214 8.461265 0.30176043 3.566374836

c26 8.803024

c26 8.730175

c26 8.017135 8.516778 0.43423391 5.098570274
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Control Ct Mean intra Ct Intra sd Intra cv

c27 7.901772

c27 7.700288

c27 7.702748 7.76826933 0.11562324 1.488404153

c28 8.449559

c28 8.120722

c28 8.53469 8.36832367 0.21861327 2.612390203

c29 8.427888

c29 8.1801 11

c29 8.260093 8.289364 0.12645534 1.525513223

c30 8.463441

c30 8.441451

c30 8.468628 8.45784 0.0144283 0.170590792

c31 9.3928

c31 9.523085

c31 9.496444 9.47077633 0.06883071 0.726769498

c32 8.626861

c32 8.63723
c32 8.966708 8.74359967 0.19328703 2.210611599

c33 8.010114

c33 8.231137
c33 8.73736 8.32620367 0.37282696 4.477754465

c34 9.025117

c34 9.233336

c34 8.556451 8.93830133 0.34669301 3.878734905

c35 8.112525

c35 8.605731
c35 7.840089 8.186115 0.3880896 4.740827553

c36 7.944379

c36 8.044102

c36 8.991658 8.326713 0.57801389 6.941681449

Table 3.2. Triplicate Ct values for ribosomal 18s from 36 control samples. The intra-

assay co was calculated for each triplicate result. The inter-assay cv was calculated from

the mean standard deviations (sd) of the Ct values divided by their mean, then multiplied

by 100 to give a percentage.
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3.5. End-point PCR

Introduction

In order to demonstrate that the PCR products from a real-time reaction were amplicons

of CD34, CD 133 and VEGFR-2 cDNA, the proposed markers of EPCs, a

polyacrylamide gel electrophoresis (PAGE) was performed on amplified cDNA derived

from a control peripheral blood sample (figure 3.5).

Methods

RNA was extracted from the sample using the protocol described in section 2.1. lpg of

RNA extracted from the sample was then reverse transcribed using the protocol

described in section 2.2. 4pl of cDNA was then used in a real-time reaction using the

protocol and reaction conditions and appropriate primer/probe combinations described in

section2.3. 5pl of the final product was then run on 8% acrylamide gel for 45 minutes at

90 volts. The gel was then stained with ethidium bromide. A high molecular weight

marker was also run on the gel to confirm that the amplicons were of the appropriate

size.
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Results

194

118

72

■

Lane 12 345

Figure 3.5. PCR product run on 8% acrylamide gel. Lane 1- molecular weight marker.

Lane 2- negative control. Lane 3- CD34 band. Lane 4- CD 133 band. Lane 5- VEGFR-2

band.

Conclusions

The real-time system used in this thesis produces pure products that can be detected by

PAGE. This is reassuring and means that the PCR results in subsequent sections can be

interpreted with confidence.
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3.6. Measuring PCR product from different source materials

Introduction

There is growing interest in clinical use of locally injected autologous endothelial

precursor cells (EPC) to promote revascularisation of ischemic tissue. EPCs appear to

share many properties with haematopoietic stem cells (HSC), and sources of HSC such

as bone marrow, or HSC mobilised to peripheral blood following G-CSF administration

are becoming regarded as sources of autologous EPC for clinical use. However while

haematopoietic potential is now assessed by numbers of HSC expressing CD34, there is

no generally recognised unambiguous equivalent determinant for assessment of

vasculogenic potential.

The identification of suitable EPC sources is of the highest importance as a prerequisite

for any clinical EPC use. Freshly isolated bone marrow mononuclear cells, HSC-

mobilised peripheral blood mononuclear cells, and the CD34+ enriched or CD 133+

enriched subpopulations of these cells have been injected locally in infarcted

myocardium or ischaemic limbs with, in most cases, some recorded clinical benefit [121,

127, 128], Shi et al proposed G-CSF administration as a therapy to mobilize and

increase EPCs in circulation [4], and infusion of peripheral blood stem cells after G-CSF

administration was shown to increase vascularisation in patients after myocardial

infarction [113] and in limb ischaemia [129], In a comparative clinical trial of peripheral

blood derived EPC versus bone marrow derived EPC, implantation of both cell

preparations into infarcted myocardium gave similar positive effects showing an
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improvement in regional myocardial contractility and viability [120], While it cannot be

used for autologous EPC transplant, cord blood also has high numbers of HSCs and

these cells have been differentiated to ECs [18, 130]. Different research groups preferred

different sources of EPCs, and reports do not demonstrate any obvious advantage or

disadvantage of any source tested.

Functional assays are of utmost importance to ultimately define a real EPC phenotype.

Hill et al in 2003 have described a colony assay based on mononuclear cell colony

outgrowth on fibronectin coated plates in simple medium [12], This colony assay is

available in a standardized commercial kit which should allow inter-laboratory

comparison of results from in increasing number of studies of different clinical

conditions employing this technique [129, 131-137],

In summary, different research groups prefer different sources of EPCs, and reports do

not demonstrate any obvious advantage or disadvantage of any source tested. In this

section I have attempted to examine the different potential sources of autologous EPCs,

using real-time PCR to measure their markers, in an effort to determine which source

would provide the most plentiful supply of EPCs.

Methods

Venous blood samples (10ml) were collected from patients immediately following cell-

separator leukapheresis collection of G-CSF mobilised PBSC for autologous transplant

and from healthy donors for allogeneic transplant. Cord blood products (20-50 ml) were
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aspirated from the umbilical placental veins from normal cesarean deliveries. Bone

marrow samples (3ml) were obtained by aspiration from the posterior iliac crest of

haematologically normal donors. Peripheral blood samples were drawn form normal

controls. Two different mobilised stem cell samples, three different cord blood samples,

one bone marrow sample and two peripheral blood samples were analysed.

RNA was isolated from lml of each patient sample using the technique described

section 2.1. lOpl of the RNA was then reverse transcribed into complementary DNA

using the method in section 2.2. 4pl of cDNA was then added to each well of a 96 well

reaction plate, which then underwent RT-PCR using reaction conditions described in

section 2.3. Each sample/ primer/probe was run in triplicate and ribosomal 18s was used

as the endogenous control (figure 3.6). The primer/probe sets used were supplied off-

the-shelf from Applied Biosystems (Warrington, UK), and used to detect the following

amplicons: CD34, CD 133, VEGFR-2 (plate 1), CD 14, VE-cadherin and vWF (plate 2).

The relative quantities of these mRNA species in each sample were calculated by the

ABI software using the AACt method described in section 3.3. Results obtained were not

statistically analysed due to the small number of samples involved in this study.
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1 2 3 4 5 6 7 8 9 10 11 12

A PBl PBl PBl PB2 PB2 PB2 CB1 CBl CBl CB2 CB2 CB2

34 34 34 34 34 34 34 34 34 34 34 34

B CB3 CB3 CB3 MB1 MB1 MB1 MB2 MB2 MB2 BM BM BM

34 34 34 34 34 34 34 34 34 34 34 34

C PBl PBl PBl PB2 PB2 PB2 CB1 CBl CBl CB2 CB2 CB2

133 133 133 133 133 133 133 133 133 133 133 133

D CB3 CB3 CB3 MB 1 MB 1 MB 1 MB2 MB2 MB2 BM BM BM

133 133 133 133 133 133 133 133 133 133 133 133

E PBl PBl PBl PB2 PB2 PB2 CB1 CBl CBl CB2 CB2 CB2

V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2

F CB3 CB3 CB3 MB1 MB1 MB1 MB2 MB2 MB2 BM BM BM

V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2

G PBl PBl PBl PB2 PB2 PB2 CB1 CBl CBl CB2 CB2 CB2

18s 18s 18s 18s 18s 18s 18s 18s 18s 18s 18s 18s

H CB3 CB3 CB3 MB1 MB1 MB1 MB2 MB2 MB2 BM BM BM

18s 18s 18s 18s 18s 18s 18s 18s 18s 18s 18s 18s

Figure 3.6. The 96 well plate layout used. Two plates were constructed, the first

containing primers for CD34, CD 133 and VEGFR-2, and the second containing primers

for VE-cadherin, vWF and CD14. Key- PB1: peripheral blood-1, PB2: peripheral blood-

2, CB1: cord blood-1, CB2: cord blood-2, CB3: cord blood-3, MB1: mobilised

peripheral blood-1, MB2: mobilised peripheral blood-2, BM: bone marrow, 34: CD34,

133: CD 133, V2: VEGFR-2, 18s: ribosomal 18s.
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Figure 3.7. The mean RQ of CD34 mRNA in peripheral blood (pb), mobilised

peripheral blood (mpb) and bone marrow (bm). There is a far greater amount of CD34

mRNA in mpb and bm compared with pb. pb= 2 samples, cb= 3 samples, mpb= 2

samples, bm= 1 sample.
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Figure 3.8. The mean RQ of CD 133 mRNA in peripheral blood (pb), cord blood (cb)

and mobilised peripheral blood (mpb). There is a far greater amount ofCD 133 mRNA in

cb and mpb compared with pb. pb= 2 samples, cb= 3 samples, mpb= 2 samples, bm= 1

sample.
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VEGFR-2
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Figure 3.9. The mean RQ of VEGFR-2 mRNA in peripheral blood (pb), cord blood

(cb), mobilised peripheral blood (mpb) and bone marrow (bm). The greatest amount of

VEGFR-2 mRNA appears to be in cb, followed by bm then mpb. Peripheral blood has

the lowest relative amount of VEGFR-2 mRNA. pb= 2 samples, cb= 3 samples, mpb= 2

samples, bm= 1 sample.
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VE-cad

Figure 3.10. The mean RQ ofVE-cadherin mRNA in peripheral blood (pb), cord blood

(cb), mobilised peripheral blood (mpb) and bone marrow (bm). The greatest amount of

VE-cadherin mRNA appears to be in bm, followed by mpb then cb. Peripheral blood has

the lowest relative amount of VE-cadherin mRNA. pb= 2 samples, cb= 3 samples, mpb=

2 samples, bm= 1 sample.
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vWF

Figure 3.11. The mean RQ of vWF mRNA in peripheral blood (pb), cord blood (cb),

mobilised peripheral blood (mpb) and bone marrow (bm). The greatest amount of vWF

mRNA appears to be in mpb, followed by pb then bm. Cord blood has the lowest

relative amount of vWF mRNA. pb= 2 samples, cb= 3 samples, mpb= 2 samples, bm= 1

sample.
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CD14

1.2

pb cb mpb bm

Figure 3.12. The mean RQ of CD 14 mRNA in peripheral blood (pb), cord blood (cb),

mobilised peripheral blood (mpb) and bone marrow (bm). The greatest amount of CD 14

mRNA appears to be in pb, followed by cb then mpb. Bone marrow has the lowest

relative amount of CD 14 mRNA. pb= 2 samples, cb= 3 samples, mb= 2 samples, bm= 1

sample.
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Discussion

Identification and enumeration of angiogenic cells present in the adult remains difficult

and non-standardised. No single markers truly specific for endothelial cells have been

found, therefore it is necessary to utilise marker combinations to best identify CEC and

EPCs before clinical application of such cells is routine. I have attempted to measure the

mRNA levels of the markers of EPCs from the most common potential EPC sources. It

should be remembered that the number of samples studied here was small and the results

not subjected to statistical analysis. Despite this, however, all sources except normal

peripheral blood had high RQ values for CD34, CD133, VEGFR-2 and VE-cadherin

mRNA species, the putative markers of EPCs. In contrast, the RQs of vWF and CD 14

mRNA species were greater in the peripheral blood samples. These results suggest that a

source other than peripheral blood would be more appropriate as a potential source of

EPCs. My observations are similar to those of unpublished results from a collaborative

group (personal communication). They showed, using flow cytometric techniques, that

mobilised peripheral blood contained higher levels of CD34+, CD 133+ and double

positive cells. In addition, and in keeping with my results, they showed that cord blood

contained higher numbers of VEGFR-2+ cells. Most of the samples used in this thesis

were peripheral blood samples. The advantage of using such material is the relative easy

with which it can be obtained compared with cord blood or mobilised peripheral blood.

The disadvantage, however, is the relative paucity of EPC mRNA in such material. This

may explain, in part, the difficulty I have had with reproducibility of triplicate RQ

values for a sample, particularly when CD 133 probe/primer sets were used.
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4. ENDOTHELIAL PROGENITOR CELLS AND ISCHAEMIC HEART DISEASE
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4.1. Introduction

Ischaemic heart disease is a major cause of morbidity and mortality worldwide. Despite

advances in percutaneous coronary intervention (PCI), major adverse cardiac events

occur in 30% of patients following balloon angioplasty and 20% following stenting

[138], Vascular trauma, induced by percutaneous intervention, initiates a sequence of

events in which the release of cytokines and growth factors result in the proliferation of

smooth muscle and deposition of platelets and leucocytes at the site of injury,

accelerating vascular repair. Endothelialisation is necessary to prevent mural thrombus

formation and neointimal hyperplasia, which may result in peri-procedural ischaemic

complications or restenosis.

The discovery by Asahara and colleagues that mononuclear cells in peripheral blood

have the potential to differentiate into endothelial cells has launched a new field of

cardiovascular research [3], Endothelial progenitor cells (EPCs) have been characterised

by their expression of both haematopoietic (CD34) and endothelial cell antigens (CD 133

and VEGFR-2), and by their ability to proliferate, migrate and differentiate into mature

cell types. These putative EPCs form vascular structures in vitro and are incorporated

into the vessel wall in experimental models of ncovascularisation [130], The traditional

paradigm of vascular repair is based on the proliferation and migration of pre-existing

mature endothelial cells from adjacent vasculature [139]. The discovery of circulating

progenitors has altered our view of this process, with progenitor cells potentially playing
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an important role in the maintenance and repair of the vascular endothelium and in the

pathogenesis of atherosclerotic plaque formation and its consequences.

EPCs can be isolated and cultured from a variety of cell populations in peripheral blood

and bone marrow, but as yet no definitive phenotype has been ascribed to EPCs.

Comparisons between clinical studies have been limited by the use of a variety of

phenotypic markers to discriminate EPCs and by the lack of comparable functional

assays. In the face of an uncertain phenotype, the EPC colony forming unit assay (CFU-

EPC) has emerged as an alternative specific enumeration system for EPCs [12].

Increasingly, groups quantify phenotypic EPCs or functional CFU-EPCs, however few

clinical studies report both or comment on the relationship between phenotypc and

function.

EPCs are infrequent in peripheral blood, but numbers have been shown to increase

rapidly in response to myocardial ischaemia and acute myocardial infarction (table 1.2)

[105, 140], Reduced numbers of EPCs have been demonstrated in cigarette smokers

[64], patients with diabetes mellitus [141], and in those with evidence of endothelial

dysfunction [142], These patients are at high risk of complications following PCI.

Furthermore, patients with diffuse in-stent re-stenosis have reduced EPC number and

function in comparison with matched controls at the time of presentation [61].

Inadequate EPC number and function prior to angioplasty, as well as inadequate early

and sustained EPC recruitment may favour a maladaptive response to arterial injury and

result in an increased incidence of in-stent thrombosis, re-stenosis and ischaemic
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complications. The immediate effects of local vascular injury during angioplasty and

stenting on the mobilization of EPCs are not known. The aim of this part of the thesis

was to measure circulating EPCs (using PCR and flow cytometry) and functional CFU-

EPCs following PCI in patients with stable coronary disease.
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4.2 Methods

Forty patients undergoing elective coronary angiography participated in this study,

which was performed with the approval of the local research ethics committee. Written

informed consent was obtained from all volunteers. All patients were recruited from the

Medical Day Case Unit at the Royal Infirmary, Edinburgh following referral for

diagnostic angiography to investigate symptoms suggestive of stable angina. Patients

with a recent acute coronary syndrome or coronary intervention (<3 months), renal or

hepatic failure, or a systemic inflammatory disorder or malignancy were excluded from

the study. Twenty patients underwent diagnostic coronary angiography alone, and 20

required balloon angioplasty and stenting because of flow limiting coronary stenosis

(table 4.1).

All patients were treated for two weeks with 75 mg clopidogrel prior to angiography or

PCI. Coronary angiography was performed via right femoral or radial artery approach

with 6F arterial catheters. Elective PCI was performed in all patients after 7,500 IU

intravenous heparin administration and in one patient after intravenous glycoprotein

Ilb/IIIa inhibitor. Coronary stents (Liberte, Boston Scientific) were implanted in all

patients after balloon predilatation of the lesion without apparent procedural

complications.
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Angiography PCI

n=20 n=20

Age (years) 62 ±2 59 ±3

Sex (male/female) 11/9 14/6

Cigarette smokers 4 3

Diabetes mellitus 7 2

Hypertension 12 12

Previous MI 2 3

Previous PCI 1 7

Prior CABG 0 1

Total cholesterol (mg/dL) 90±7 81±9

LDL-cholesterol (mg/dL) 47±18 43±9

HDL-cholesterol (mg/dL) 22±9 22±2

Triglycerides (mg/dL) 45±5 40±5

Fasting glucose (mg/dL) 151±18 99±40

C-reactive protein n.a. n.a.

Number of diseased vessels

Minor plaque only 12 0

1 vessel disease 0 9

2 vessel disease 4 8

3 vessel disease 4 3

Stent implantation

De novo lesion 0 17

Restenosis 0 3

115



Table 4.1. Clinical characteristics and angiographic findings of patients undergoing

diagnostic angiography or percutaneous coronary intervention (values are presented as

number or mean ± SEM).
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A venous cannula (17-gauge) was inserted into a large subcutaneous vein of the ante-

cubital fossae for blood sampling before, immediately after and at 6 and 24 hours

following angiography. EDTA anti-coagulated blood (Sarstedt-Monovette, Germany)

was collected for real-time PCR, flow cytometry and for preparation of plasma for assay

of VEGF by ELISA. In 24 subjects (12 diagnostic angiograms and 12 PCI), 20 mL of

whole blood was drawn at baseline and 24 hours for mononuclear cell preparation and

cell culture. Whole blood was analysed for total cells, differential count and platelets

using an autoanalyzer (Sysmex, UK). Plasma Troponin 1 concentrations were measured

using an automated immunometric assay (method not described) (Ortho-clinical

Diagnostics, High Wycombe, UK). Serum was prepared for measurement of C-reactive

protein (CRP) concentrations using an immunonephelometric assay (method not

described) (Bchring BN II nephelometer, Marburg, Germany).

RNA isolation

Total leukocyte RNA extraction from 1 mL of whole blood was performed using

Qiagen's RNeasy Mini Kit (Qiagen Ltd., Crawley, UK) (section 2.1). RNA

concentration and purity were estimated by UV absorbance at 260 and 280 nm. The

260:280 nm ratios were all greater than 1.8 indicating that little protein contamination

was present. One microgram of total RNA was transcribed into cDNA (section 2.2) in

each reverse transcription reaction with 200 units ofM-MLV reverse transcriptase for 60

minutes at 37°C in 20 pL reactions containing 1 pL (0.5pg/pl) of random hexamer

primers, with 0.625 pL (40 units/pL) of RNase inhibitor, 5 pL of dNTP mix (containing
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dATP, dCTP, dGTP and dTTP, each at a concentration of 10 nM in water) and 5 pL of

5X RT reaction buffer (containing 50 mM Tris-HCL-pH 8.3 at 25°C, 75 mM KCL, 3

mM MgCE and 10 mM DTT).

Real-time PCR

Real-time PCR was carried out using the ABI Prism ©7900HT system (Applied

Biosystems, Warrington, UK) to determine the relative quantity (RQ) of mRNA for

selected genes (section 2.3). RQ can be defined as a comparison of a target signal in

different samples to a reference sample and normalised to an endogenous control. PCR

primers and probes for amplification of cDNA derived from CD34, CD 14, VE-cadherin

and vWF transcripts were obtained from Applied Biosystems (Foster City, CA, USA).

Each assay contained forward and reverse PCR primers (final concentration of 900 nM

each) and one TaqMan MGB probe (6-FAM dye-labelled, to a final concentration of 250

nM). All primer-probe sets had been quality control checked and validated. The

ribosomal 18s gene was used as an internal control. 4 pL of the reverse transcription

reaction was analysed in each PCR reaction. The PCR reactions were run in triplicate in

20 pL assays, each containing cDNA, 1 pL of primer/probe, 10 pL of universal PCR

master mix and distilled water. The cycling program was as follows: (a) initial activation

for 10 minutes at 95°C; (b) 50 amplification cycles with a 15 second denaturing step at

95°C, and a 1 minute combined annealing and extension step at 60°C. Analysis was

performed using ABI 7900HT SDS software (version 2.1), in order to obtain the relative

quantities (RQ) ofmRNA compared to a calibrator.
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Flow cytometry

Whole blood cells were phenotyped by flow cytometry, according to the protocol in

section 2.5. Cells were directly stained and analysed for phenotypic expression of

surface proteins using anti-human monoclonal antibodies (MAbs) conjugated to

phycoerythrin (PE), fluorescein isothiocynate (FITC), or Peridin Chlorophylla protein

(PerCP). The MAbs used were anti-CD34-FITC, anti-CD 133-APC (Myltenyi Biotec,

UK), anti-CD45-PerCP, (Becton Dickinson, Oxford, UK), anti-VEGFR2-PE (R&D

systems, Minneapolis, USA) and anti-VE-cadherin-PE (Santa Cruz Biotechnology).

Appropriate negative controls (isotype and/or no antibody) were used to establish

positive stain boundaries. Undiluted samples (lOOpL) were stained with antibodies for

30 minutes in the dark. Erythrocytes were lysed (lysing solution, Becton Dickinson), and

samples were centrifiiged at 200 g for 10 minutes, washed with phosphate buffered

saline, and fixed (Cell Fix solution, Becton Dickinson). For each sample, 50,000 events

were acquired in the leucocyte region (as determined by characteristic forward and side

scatter profile), using a FACS Calibur flow cytometer (Becton Dickinson) and data were

analysed using FCS Express (DeNovo Software). EPCs were quantified from the total

white cell count at a given time point and based on the percentage of cells expressing the

above markers, either singly or in combination, and expressed as number of cells per mL

of blood.
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Cell culture

Mononuclear cells were isolated by Ficoll density gradient separation, washed twice

with PBS and resuspended at 2.5x106/mL in Complete Endothelial Culture Medium

(CECM) (comprising EndoCult Basal Medium supplemented with 1/5 dilution of

EndoCult supplements, Stem Cell Technologies, UK). 2 mL of cell suspension was

placed into each of 6-well Fibronectin-coated plates (Becton Dickinson) and incubated

at 37°C, 5% CO2 with 95% humidity (see section 2.4). After two days, mature

endothelial cells and monocytes remain adhered to the bottom of the well and non¬

adherent cells, containing EPCs, were transferred to a fibronectin-coated 24-well plate

(Becton Dickinson) at lxl06/well for three days at 37°C, 5% CO2 with 95% humidity.

Colonies (CFU-EPC, early outgrowth colony forming unit endothelial progenitor cell;

Stem Cell Technologies) were defined as a central core of "round" cells with elongated

"sprouting" cells at the periphery and were counted on day 5 in a minimum of four wells

by observers unaware of the subjects' clinical profiles. In order to confirm endothelial-

ccll lineage, direct staining was performed on colonies using (Fluorochrome-) acetylated

LDL and co-stained with (Fluorochrome-) Lectin (Ulex europaeus I agglutinin).
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ELISA

Plasma was extracted from EDTA anticoagulated blood samples at baseline and 6 hours

after the procedure in patients undergoing angiography alone and those having both

angiography and angioplasty. The concentration of VEGF in each sample was then

determined by ELISA according to the protocol in section 2.6.
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4.3. Results

There were no complications arising from angiography or PCI and all patients (Table

4.1) were discharged home 24 hours after procedure.

Systemic inflammatory response

Results are shown in table 4.2 and depicted graphically in figures 4.1-4.5. Diagnostic

angiography alone did not increase the mean peripheral blood leucocyte count (figure

4.1b), neutrophil count (figure 4.2b), lymphocyte count (figure 4.3b) monocyte count

(figure 4.4b) or the median serum C-reactive protein concentration (figure 4.5b).

Coronary intervention increased the mean total leucocyte count (7.0±0.36x 109/1 to

8.2±0.34x109/1, p<0.005, figure 4.1c), the mean neutrophil count (4.36±0.3 Ixl09/1 to

5.73±0.31xl09/l, p<0.005, figure 4.2c), and median serum C-reactive protein

concentration (l.lmg/1 to 3.1mg/l, p<0.005, figure 4.3c) at 24-hours. There was an

apparent transient reduction in the mean monocyte count immediately following

coronary intervention (0.57±0.03xl09/l to 0.48±0.04x 109/l, p<0.01, figure 4.4c), with a

return to pre-procedure levels by 24 hours. Finally, there was no evidence of significant

myocyte necrosis 24 hours following diagnostic angiography or PCI (table 4.2).
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Pre-procedure Post-procedure 6 hours 24 hours

Angiography

WBC (x 109/L) 7.94±0.45 7.28±0.37 7.63±0.37 6.28±0.37

Neutrophils
(X109/L) 4.54±0.34 4.72±0.32 4.59±0.26 3.72±0.25

Lymphocytes
(X109/L) 2.07±0.14 1.84±0.13 2.19±0.17 1.75±0.16

Monocytes
(X109/L) 0.61±0.04 0.49±0.03 0.63±0.06 0.59 ±0.09

C-reactive

protein (mg/1)
3.62 - - 4.66

Troponin I (g/L) 0.20 ±0.01 - - 0.20 ±0.01

PCI

WBC (x 109/L) 7.0 ±0.36 6.66 ±0.3 7.07 ±0.2 8.2 ±0.34*

Neutrophils
(x 109/L) 4.36 ±0.31 3.97 ±0.29 4.39±0.23 5.73 ±0.31*

Lymphocytes
(xl09/L) 1.81 ±0.1 1.73 ±0.12 1.89 ± 0.14 1.71 ±0.11

Monocytes
(X109/L) 0.57 ±0.03 0.48 ±0.04** 0.57 ±0.03 0.56 ±0.03

C-rcactive

protein (mg/1)
1.14 - - 3.14*

Troponin I (g/L) 0.20 ±0.01 - - 0.40 ±0.11

Values are presented as mean ± SEM, except CRP where values are presented as
median; pre-procedure versus time point, *P<0.005, **P<0.01.

Table 4.2. Markers of inflammation and myocyte necrosis following diagnostic

angiography or percutaneous coronary intervention.
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Change in total WBC -all patients

Total WBC -controls
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Total WBC -intervention

Figure 4.1. Change in the mean total white cell count (WBC±sem) in (a) all patients

undergoing angiography ± angioplasty, (b) in patients undergoing angiography only, and

(c) in patient undergoing angiography plus angioplasty. There was a significant increase

in the total WBC in all patients by 24 hours after the procedure (7.25±0.28 to

7.41±0.3xl09/l, p<0.05 by ANOVA) (a). This increase was confined to those patients

undergoing angiography plus angioplasty (7.00±0.36 to 8.20±0.34xl09/l, p<0.001 by

ANOVA) (c).
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Change in neutrophil count -all patients

Neutrophil count -controls

post
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Neutrophil count -intervention

Figure 4.2. Change in the mean neutrophil count in (a) all patients undergoing

angiography ± angioplasty, (b) in patients undergoing angiography only, and (c) in

patient undergoing angiography plus angioplasty. There was a significant increase in the

neutrophil count in all patients by 24 hours after the procedure (4.45±0.23 to

4.90±0.69x109/1, p<0.05 by ANOVA) (a). This increase was confined to those patients

undergoing angiography plus angioplasty (4.36±0.39 to 5.73±0.31xl09/l, p<0.001 by

ANOVA) (c).
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Change in lymphocyte count -all patients

Lymphocyte count -controls

2.5
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Lymphocyte count -intervention

Figure 4.3. Change in the mean lymphocyte count in (a) all patients undergoing

angiography ± angioplasty, (b) in patients undergoing angiography only, and (c) in

patient undergoing angiography plus angioplasty. There was a significant decrease in the

lymphocyte count in all patients immediately after the procedure followed by a recovery

in the count by 6 hours and then a decrease again by 24 hours after the procedure

(1.94±0.08 to 1.78±0.08 to2.03±0.14 to 1.72±0.74xl09/l, p<0.05 by ANOVA) (a). There

was no significant change in the mean lymphocyte count when control and intervention

groups were analysed (a & b).
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Change in monocyte count -ail patients
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Monocyte count -intervention

Figure 4.4. Change in the mean monocyte count in (a) all patients undergoing

angiography ± angioplasty, (b) in patients undergoing angiography only, and (c) in

patient undergoing angiography plus angioplasty. There was a significant decrease in the

monocyte count in all patients immediately after the procedure followed by a recovery in

the count by 6 hours (0.59±0.02 to 0.49±0.02 to 0.61±0.03xl09/l, p<0.005 by ANOVA)

(a). This change was confined to those patients undergoing angiography plus

angioplasty (0.57±0.03 to 0.48±0.04 to 0.57±0.03xl09/l, p<0.005 by ANOVA) (c).
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Figure 4.5. Change in the median CRP level in (a) all patients undergoing angiography

± angioplasty, (b) in patients undergoing angiography only, and (c) in patient

undergoing angiography plus angioplasty. There was a significant increase in the CRP

level in all patients immediately by 24 hours after the procedure (1.83 to 3.35mg/l,

p<0.001) (a). This increase was confined to those patients undergoing angiography plus

angioplasty (1.14 to 3.14mg/l, p<0.005) (c).
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PCR

The results of the effect of angiography ± PCI on messenger RNA levels are presented

in table 4.3, and depicted graphically in figures 4.6-4.11, There was a significant

reduction in the median RQ of CD34 mRNA immediately following procedure in those

patients undergoing diagnostic angiography only, with a recovery to baseline levels by 6

hours after the procedure (1.71 to 1.17, p<0.005, figure 4.6b). In addition, there was a

significant reduction in the median RQ of VEGFR-2 mRNA by 6 hours following the

procedure in the group undergoing angiography only (9.93 to 8.82, p<0.005, figure

4.8b) (b). Furthermore, there was a significant reduction in the median RQ of VE-

cadherin mRNA immediately following the procedure, followed by a return to baseline

levels by 6 hours in those patients undergoing angiography plus angioplasty (1.18 to

0.77, p<0.001, figure 4.9c). Finally, there was a significant reduction in the median RQ

of CD14 mRNA immediately following the procedure in the group undergoing

angiography only (2.94 to 2.05, p<0.01, figure 4.11b). There was also a significant

reduction in the median RQ of CD 14 mRNA immediately following the procedure, with

a return to baseline then an increase by 24 hours in the group undergoing angiography

plus angioplasty (2.82 to 1.90 immediately post to 3.13 by 24 hours, p<0.05 by

ANOVA, figure 4.11c).
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Pre-procedure Post-procedure 6 hours 24 hours

Median
Value

Inter¬

quartile
Median
Value

Inter¬

quartile
Median
Value

Inter¬

quartile
Median
Value

Inter¬

quartile
Angiography

CD34 1.71 0.80-
1.97

1.17* 0.69-
1.52

1.34 0.80-
2.02

1.38 1.17-
2.88

CD133 2.35 1.37-
3.40

1.08 0.91-
2.00

2.06 1.41-
2.94

1.44 0.75-
2.08

VEGFR-2 9.93 6.58-
26.71

10.24 1.59-
28.76

8.82* 6.67-
14.79

13.71 8.40-
25.16

VE-cadherin 1.61 0.89-
2.62

1.02 0.68-
1.39

0.97 0.74-
1.30

1.13 0.63-
2.61

VWF 2.15 1.64-
3.21

1.57 1.16-
2.13

1.46 1.01-
2.17

2.17 1.20-
3.25

CD14 2.94 2.40-
4.33

2.05** 1.28-
3.08

1.98 1.81-
2.73

2.84 2.07-
3.64

PCI

CD34 1.78 0.77-
3.47

1.14 0.19-
2.87

1.26 0.44-
2.82

2.40 0.52-
3.49

CD133 2.26 1.54-
3.91

2.02 1.09-
5.11

1.85 0.90-
3.51

2.94 1.69-
6.17

VEGFR-2 7.59 4.35-13.00 17.85 1.91-
28.48

2.76 0.38-
22.14

7.97 1.74-
28.89

VE-cadherin 1.18 0.90-
2.26

q 0.56-
1.09

0.89 0.61-
1.67

0.98 0.69-
1.77

VWF 2.06 1.30-
2.47

1.49 1.04-
3.43

1.76 1.12-
2.10

2.34 1.24-
2.93

CD14 2.82 1.57-
4.45

1.90 1.22-
3.20

1.99 1.57-
2.62

3.13 2.50-
6.28

Values relative quantities (median iinterquartile ranges); pre-procedure versus time point, *P<0.005,
**P<0.01, ***P<0.001

Table 4.3. Leucocyte rnRNA levels following diagnostic angiography or percutaneous

coronary intervention

135



CD34 mRNA- all patients

CD34 mRNA- control patients
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CD34 mRNA- PCI patients

C.

Figure 4.6. Changes in the relative quantity (RQ) of CD34 mRNA in (a) all patients

undergoing angiography ± angioplasty, in (b) patients undergoing angiography only and

in (c) patients undergoing both angiography and angioplasty. There was a decrease in

the median RQ of CD34 mRNA immediately following the procedure when all patients

were analysed (a). This decrease was confined to patients undergoing angiography only

(P<0.005) (b).
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CD133 mRNA- all patients

CD133 mRNA- control patients
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CD133 mRNA- PCI patients

C.

Figure 4.7. Changes in the relative quantity (RQ) of CD133 mRNA in (a) all patients

undergoing angiography ± angioplasty, in (b) patients undergoing angiography only and

in (c) patients undergoing both angiography and angioplasty. There was no significant

change in the median RQ ofCD 133 mRNA following angiography and angioplasty.
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VEGFR-2 mRNA- all patients

VEGFR-2 mRNA- control patients
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VEGFR-2 mRNA- PCI patients

C.

Figure 4.8. Changes in the relative quantity (RQ) of VEGFR-2 mRNA in (a) all

patients undergoing angiography ± angioplasty, in (b) patients undergoing angiography

only and in (c) patients undergoing both angiography and angioplasty. There was a

significant reduction in the RQ of VEGFR-2 mRNA immediately following the

procedure in the group undergoing angiography only (p<0.005) (b).
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VE-cadherin mRNA- all patients

VE-cadherin mRNA- control patients
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VE-cadherin mRNA- PCI patients

Figure 4.9. Changes in the relative quantity (RQ) of VE-cadherin mRNA in (a) all

patients undergoing angiography ± angioplasty, in (b) patients undergoing angiography

only and in (c) patients undergoing both angiography and angioplasty. There was a

significant reduction in the RQ of VE-cadherin mRNA immediately following the

procedure with a return to baseline levels by 24 hours when all patients were analysed

(p<0.005, by ANOVA) (a). This change was confined to the group undergoing

angiography plus angioplasty (p<0.005) (c).
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vWF mRNA- all patients

vWF mRNA- control patients
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vWF mRNA- PCI patients

C.

Figure 4.10. Changes in the relative quantity (RQ) of vWF mRNA in (a) all patients

undergoing angiography ± angioplasty, in (b) patients undergoing angiography only and

in (c) patients undergoing both angiography and angioplasty. There was a significant

reduction in the RQ of vWF mRNA immediately following the procedure and by 6

hours when all patients were analysed (p<0.0l) (a). Flowever, no significant changes

were found when the data was analysed according to intervention.
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CD14 mRNA- all patients
14

pre post 6 hours 24 hours

CD14 mRNA- control patients
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CD14 mRNA- PCI patients

Figure 4.11. Changes in the relative quantity (RQ) of CD 14 mRNA in (a) all patients

undergoing angiography ± angioplasty, in (b) patients undergoing angiography only and

in (c) patients undergoing both angiography and angioplasty. There was a significant

reduction in the median RQ of CD 14 mRNA immediately following the procedure

followed by an increase and return to baseline by 24 hours when all patients were

analysed (p<0.01 by ANOVA) (a). There was a significant reduction in the median RQ

of CD 14 mRNA immediately following the procedure in the group undergoing

angiography only (p<0.01) (b). There was a significant reduction in the median RQ of

CD 14 mRNA immediately following the procedure, with a return to baseline then an

increase by 24 hours in the group undergoing angiography and angioplasty (p<0.05, by

ANOVA) (c).
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Flow cytometry

Results are shown in table 4.4. No increase was observed in the number of

CD34+VEGFR-2+ cells following the procedure in patients undergoing angiography

alone or with angioplasty. In addition no correlation was found between EPCs identified

by phenotype and the number of functional EPCs quantified using cell culture (CFU-

EPCs) either before (r=-0.15, p=0.58) or 24 hours (r=0.02, p=0.94) after angiography.

P re-

procedure
Post¬

procedure
6 hours 24 hours

Angiography

CD34+ cells (%
leucocytes)

0.100±0.019 0.082±0.015 0.087±0.016 0.102±0.028

CD34+VEGFR-2+
cells (% leucocytes)

0.030±0.010 0.020±0.005 0.021±0.004 0.026±0.007

CD34+ cells (xlOVml
blood)

6.54±0.92 5.43±0.80 5.98±0.81 5.67±1.15

CD34+VEGFR-2+
cells (xlO'Vml)

2.11±0.69 1,45±0.41 1.47±0.26 1.52±0.38

PCI

CD34+ cells (%
leucocytes)

0.083±0.011 0.105±0.011 0.091±0.012 0.083±0.010

CD34+VEGFR-2+
cells (% leucocytes)

0.019±0.003 0.029±0.006 0.020±0.004 0.021 ±0.004

CD34+ cells (xl03/ml
blood)

5.40±0.61 7.00±0.82 6.33±0.84 6.55±0.76

CD34+VEGFR-2+
cells (xlO'Vml)

1.15±0.19 1.91±0.47 1.28±0.29 1,65±0.36

Table 4.4. Circulating CD34+ and CD34+VEGFR-2+ cells following angiography or

angiography plus percutaneous coronary intervention (PCI). Values expressed as mean ±

SEM.

148



Cell Culture

Results are shown in figures 4.20-4.22. Mononuclear cells plated on fibronectin formed

typical colony forming units (CFU-EPCs), characterized previously as a central cluster

of rounded cells surrounded by radiating thin, flat cells [12]. Although unaffected by

diagnostic angiography, the number and cellularity of CFU-EPCs were increased 24

hours after PCI (from 0.02 to 0.08 xlO4 cells plated, p<0.01, figures 4.20&4.22). Direct

staining confirmed that CFU-EPCs, like mature endothelial cells, bind lectin and

integrate acetylated-LDL. The majority of both small round cells and spindle shaped

cells expressed CD14 (figure 4.21).

Figure 4.20. Phase contrast pictures illustrate a typical CFU-EPC before (a) and 24

hours after coronary angioplasty and stenting (b).
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Figure 4.21. Micrographs of CFU-EPC with direct staining; solitary spindle-shaped

cells from CFU-EPC assay stained for ac-LDL (green) (a) solitary spindle-shaped cells

(b) and CFU-EPC colonies (c) stained for ac-LDL (green) and CD 14 (orange); CFU-

EPC colony stained for lectin (green) and VE-cadherin (orange) (d).

150



EPC-CFUs- all patients

Baseline

EPC-CFUs- control patients
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EPC-CFUs- PCI patients

c.

Figure 4.22. Number of CFU-EPCs before and 24 hours after the procedure in (a) all

patients undergoing angiography ± angioplasty, (b) in patients undergoing angiography

only, and (c) in patient undergoing angiography plus angioplasty. There was a

significant increase in the number of CFU-EPCs in those patients undergoing

angiography plus angioplasty (0.02 to 0.08 per 104 cells, p<0.01) (c).
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ELISA

Results are shown in figure 4.23. The median concentration of VEGF was significantly

higher by 6 hours after the procedure in patients undergoing angiography plus

angioplasty (27 to 34.25pg/ml, p<0.005, figure 4.23a). However, there was no

significant change in the median concentration of VEGF in patients undergoing

angiography alone (40 to 38.9pg/ml, p=0.41, figure 4.23b).
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VEGF- PCI patients

Figure 4.23. VEGF levels at baseline and 6 hours after the procedure in patients having

angiography and angioplasty (a), and in patients having angiography only (b).
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4.4 Discussion

It has been demonstrated in this study that PCI, but not diagnostic angiography, is

associated with a mild systemic inflammatory response and an increase in functional

CFU-EPCs in the peripheral blood. However, there was no associated increase in CD34,

CD 133 or VEGFR-2 mRNA species and no increase in the number of CD34+ or

CD34+VEGFR-2+ cells. In this clinical model of acute vascular injury, it is possible that

the acute response to injury is mediated by more mature EPCs (CFU-EPC) rather than

the primitive CD34+, CD 133+ VEGFR-2+ cells that have hitherto been considered as

the major endothelial progenitor cell source in blood and bone marrow. Circulating

CD34+, CD133+, VEGFR-2+ cells may ultimately be capable of endothelial cell

differentiation, but are rare in peripheral blood. Moreover, the data presented here does

not support the idea that these cells are mobilised rapidly in response to acute vascular

injury and are responsible for CFU-EPC.

CFU-EPC are reduced in those with cardiovascular risk factors and evidence of vascular

impairment, raising the possibility that a limited EPC reserve may contribute to a

maladaptive response to vascular injury and predispose to atheroma formation [12].

Previous studies have demonstrated early mobilisation of EPCs following vascular

injury in patients with acute myocardial infarction [140], major burns and following

CABG surgery [33]. These clinical events involve extensive damage to a number of

tissues in addition to the vasculature, which may contribute to the mobilisation of

progenitors. This study extends this by showing that local, selective vascular injury can
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influence the number of circulating progenitor cells, and provides a rational for the

therapeutic mobilisation of EPCs at the time ofPCI to influence outcome.

Current strategies to reduce the incidence of complications following percutaneous

intervention are based on suppressing cellular proliferation rather than enhancing

vascular repair. Vessel injury during PCI exposes underlying collagen and tissue factor,

activating platelets and the coagulation cascade, and may result in acute or sub-acute

stent thrombosis [143]. In the absence of an intact endothelium, local platelet/platelet

and platelet/leukocyte complexes form, and persistent inflammation encourages smooth

muscle hypertrophy and in-stcnt restenosis. Drug eluting stents have dramatically

reduced the incidence of early in-stent restenosis [144], but local anti-proliferative

therapy may interfere with vascular healing and prevent formation of a functional

endothelial layer [145], In experimental studies, transfusion of EPCs following vascular

injury prevents both thrombus formation and neointimal proliferation [146], Indeed,

patients with diffuse in-stent restenosis have reduced numbers of circulating EPC in

comparison with matched controls [61]. Stents coated with antibody to CD34 may

encourage seeding of the stent and early endothelium formation and in feasibility studies

have been safely deployed in man [147].

Coronary intervention increased the number of CFU-EPCs, but was not associated with

a mobilisation of cells expressing CD34 and VEGFR-2, either at the molecular or

phenotypic levels. These findings initially appear discordant and require further

discussion. The original description of the putative endothelial progenitor cell was based
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on cell culture and adhesion techniques. Asahara et al. described a population of adult

human circulating CD34+ cells that could differentiate into cells with endothelial-like

characteristics in vitro [3], The exact origin and phenotype of these progenitors remains

a matter of debate in part because the purity ofCD34' cells used in this initial study was

only 15% [3], Subsequently the co-expression of transmembrane glycoproteins CD34,

CD 133 and VEGFR-2 has been used in an increasing number of clinical studies to

phenotype and quantify circulating endothelial progenitor cells.

As the field has developed, an increasing number of methods have emerged to define

vascular progenitors and quantify regenerative capacity. The CFU-EPC assay used to

quantify the number of circulating functional endothelial progenitors in this study has

been used widely since it was described by Hill et al. [148], Whilst quantification of

CFU-EPC provides an accurate measure of the capacity of circulating mononuclear cells

to form endothelial cells, it is doubtful whether these colonies primarily arise from the

CD34+ stem cells. No correlation between the number of peripheral blood CD34+ cells

and the number of CFU-EPCs was found in this study (see results section). Studies

addressing the origin of endothelial progenitor lineage in adult peripheral blood have

demonstrated that monocytes also express endothelial lineage markers such as VEGFR-

2 and can differentiate into mature endothelial cells [23]. Rehman et al. found that the

majority of CFU-EPCs expressed monocyte markers such as CD 14, Mac-1, and CD1 lc,

suggesting that peripheral-blood endothelial-like cells are derived from

monocytes/macrophages [24], The concept that functional endothelial cells may

originate from a CD 14* expressing progenitor is supported by reports that mature
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endothelial cells isolated from human umbilical vein express CD 14 [149], Furthermore,

Urbich et al. demonstrate that isolated CD 14' cells also have the capacity to improve

neovascularisation after hind limb ischemia [150].

Direct staining of our colonies demonstrates that CFU-EPCs behave like mature

endothelial cells and incorporate acetylated LDL, but also confirmed that these cells

strongly express CD 14. In keeping with recent reports unpublished observations show

that isolated CD341 cells do not give rise to spontaneous CFU-EPC but instead die in

this assay: in contrast, all CFU-EPC activity is found in CD141 enriched, but not in

CD 14' depleted, fractions of peripheral blood mononuclear cells [25, 151]. This

population of circulating CD 14' monocytes appear more functionally mature than

CD34+ cells, are ready to home to sites of vascular injury, and are more abundant in

normal peripheral blood than in bone marrow. In contrast, while CD34+, CD133+,

VEGFR-2+ cells may ultimately give rise to endothelial cells, they are much less

prevalent in peripheral blood than in bone marrow, and may only be the precursors of

the more functionally mature CFU-EPC-capable cells that appear more crucial for an

immediate response to vascular injury.

Whilst measurement of CD 14+ monocytes by flow cytometry was not performed, total

leucocyte CD 14 mRNA and monocyte numbers were quantified. It was found that there

was a significant and reproducible decrease in both immediately after catheterisation in

the patient group having angiography plus PCI. It is possible that these cells

immediately localise to the site of vessel damage - both at the site of femoral arterial
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puncture and at the site of coronary angioplasty and stenting. This may also explain the

reduction in other molecular and phenotypic markers immediately following the

procedure (see results section). The number of peripheral blood monocytes was restored

to prc-procedural levels by 24 hours, and CD 14 mRNA levels significantly increased by

24 hours after PCI. Mobilisation of CD 14* monocyte-like cells may explain the increase

in CFU-EPC in peripheral blood observed 24 hours after arterial injury. These cells may

contribute to vascular repair either through formation of mature endothelial cells and

incorporation into the vessel wall, or through the release of angiogenic growth factors at

the site of vessel injury. Further studies are required to confirm these observations and to

explore specifically the role ofCD141 monocytes in vascular injury and repair.

In considering the therapeutic potential of mobilised stem cells and stents with cell

specific antibodies, it should be acknowledged that the process of vessel injury and

repair is a complex one. It has been demonstrated that there is an early increase in

circulating neutrophils at 24 hours, and others have observed a later rise in monocyte

numbers 48 hours following PCI [152], These clinical observations mirror the findings

of Wilcox ct al. who demonstrated in a porcine angioplasty model an early influx of

neutrophils into the adventitia of the site of vessel injury at 6-24 hours, and the later

incorporation of monocytes at 72 hours [153]. Interestingly, Fukuda et al., found a

strong correlation between circulating monocyte numbers and in stent restenosis [152].

It is likely that circulating monocytic cells contains sub-populations of bone marrow

derived progenitor cells that may contribute to both re-endothelialisation and neointimal

formation. Autologous cell therapy with unselected mononuclear cells has the potential
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to affect outcome adversely, with a recent study by George et al. suggesting that

repeated intravenous treatment with bone marrow derived mononuclear cells may

actually increase atheroma formation and reduce plaque stability [154].

It is likely that a variety of host factors and persistent localised inflammation will dictate

whether endothelialisation or neointimal expansion will ensue following PCI. Previous

studies have reported a systemic inflammatory response to the vascular injury associated

with percutaneous coronary intervention, with serum IL-6, CRP and SAA levels

elevated following intervention [155], Elevated pre-procedural CRP-levels predict

adverse outcome after coronary stent implantation and are associated with a greater

degree of angiographic restenosis, suggesting systemic inflammation is associated with a

proliferative response [156], Mechanical injury of the atherosclerotic plaque by balloon

inflation triggers local inflammatory mechanisms with leucocyte adhesion, activation

and cytokine release [157], The mobilisation of neutrophils and increase in CRP

concentrations observed following PCI, are presumably systemic manifestations of this

local inflammatory response to arterial injury. Finally the increased VEGF expression

only in patients with local vascular injury following PCI (figure 4.23a) is consistent

with other studies showing that EPC mobilization is cytokine driven [31].

4.5. Conclusion

Local vascular injury following angioplasty and stcnting results in a mild systemic

inflammatory response and increases the number of CFU-EPCs. Circulating
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CD34+VEGFR-2+ cells are rare in peripheral blood, and are not mobilised rapidly in

response to vascular injury. Therefore, the acute response to injury may be mediated by

more mature EPCs (CFU-EPC) rather than the primitive CD34+VEGFR-2+ cells that

have hitherto been considered as the major endothelial progenitor cell source in blood

and bone marrow. A better understanding of the cellular response to vascular injury is

necessary to allow a more sophisticated approach to reducing the complications of

percutaneous coronary intervention with new strategies designed to enhance vessel

repair.
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5. ENDOTHELIAL PROGENITOR CELLS AND AORTIC ANEURYSM REPAIR
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5.1 Introduction

The recent identification of circulating stem cells capable of differentiating into

endothelial cells has lead to a re-evaluation of our understanding of how the vascular

endothelium is repaired [3]. The long held theory that endothelium could only be

replaced by the proliferation of existing mature endothelium has been extended to

include the process of vasculogcnesis from a stem cell population. These stem cells

(endothelial progenitor cells, EPCs) have been identified in a variety of tissues,

including endothelium, and can be isolated from peripheral blood and bone marrow

[158]. In animal models of tissue ischaemia, heterologous and autologous, EPCs derived

from blood and bone marrow have been shown to incorporate into sites of vascular

damage and neovascularisation [3, 5, 6]. Furthermore, autologous transplantation of

mononuclear cells containing EPCs have been used therapeutically to good effect in

patients with ischaemic myocardium and peripheral ischaemia [110, 112]. It is known

that EPCs are mobilised from the bone marrow in response to vascular injury and tissue

ischemia and that this is cytokine driven [4, 74, 159]. Canine models of graft

endothelialisation have demonstrated that endothelial cells, originating from the blood

stream, contribute towards healing of the inner wall of Dacron grafts made impervious

to transmural capillary ingrowths [160, 161]. It has also been shown, in animal models

of carotid artery injury, that autologous EPCs can be harvested from blood and

transplanted into denuded vessels, resulting in preservation of vascular integrity [162,

163], EPCs arc therefore considered an important part of the natural repair mechanism,

helping to maintain vessel wall integrity and blood supply following organ ischaemia.
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EPCs have been identified and characterised using a number of different methodologies,

and these reflect the difficulty in precisely defining this diverse group of cells [4, 6, 7,

18, 164], They may express CD34, vascular endothelial growth factor receptor-2

(VEGFR-2), VE-cadherin, a junctional molecule, and AC 133, a receptor of unknown

function which is lost from EPCs as they mature [18]. VE-cadhcrin (CD 144) is thought

to be a specific marker of endothelial cells and a marker of more mature EPCs [165-

167]. EPCs are also defined functionally by their high proliferative capacity and ability

to form colonies in-vitro [7, 12, 19].

In spite of our understanding that ischemic insults and blood vessel damage are major

stimuli to EPC mobilisation, and the deposition at the site of tissue injury of mature,

functional endothelial cells [33, 74], there is uncertainty over where this maturation

event takes place or how dynamic a process it is. Knowledge of this process is hampered

by the lack of a simple universally agreed marker for EPCs. The objective of this study

was to investigate the dynamics of EPC mobilisation, using elective abdominal aortic

aneurysm repair in patients as a model of tissue ischemia and blood vessel damage. This

patient group undergo a relatively severe ischaemic event, in a controlled situation,

making them a very suitable model. In pre-operative and serial post-operative blood

samples we quantitated EPCs by a variety of techniques. Cell culture assays of

endothelial progenitors were used in combination with measurement of CD34, VEGFR-

2, CD 133, VE-cadhcrin and von Willebrand factor (vWF) expression by flow cytometry,

and real-time PCR assays of their specific mRNAs.
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5.2 Methods

Study patients

15 consecutive patients, who were undergoing elective abdominal aortic aneurysm

repair, were recruited. There were 11 males and 4 females. Their ages ranged from 54 to

85 years (median 72 years). Each patient underwent a laparotomy followed by insertion

of a Dacron graft (Scientific Medi-tech, NJ, USA) at the level of the infra-renal aorta.

5ml of blood was taken into EDTA coated tubes pre-operatively and at the following

times post-operatively: 24 hours, 48 hours and 5 days. A limit of a 5-day follow up was

chosen because patients were discharged on the following day. Furthermore, because the

operations were performed at a regional centre, patients had necessarily travelled long

distances, making it difficult to obtain blood samples after discharge. There were two

control groups used because the study was performed in two different centres. Group A

was the control group for the PCR studies, and group B was the control group for flow

cytometry and colony assay studies. Single samples for control group A were obtained

from patients attending an orthopaedic pre-operative clinic, who were found to have

normal routine full blood counts and serum biochemistry (6 males and 6 females,

median 71 years). Single samples for control group B were obtained from healthy

volunteers in the laboratory (8 males and 7 females, median 51 years). The study was

approved by the local ethics committee, and all patients gave written informed consent.
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Full blood counts

Full blood counts and differential counts, including monocyte counts, were obtained

from each patient, and at each time point, by collecting 2.7ml of EDTA anticoagulated

blood and processing the samples through a Sysmex analyser.

RNA extraction and real-time PCR

Protocols were followed as described in sections 2.1 to 2.3. I ml of whole blood was

subject to total leukocyte RNA extraction using Qiagen's "RNeasy mini-kit". RNA

concentration and purity were estimated by UV absorbance at 260 and 280 nm. The

260:280 nm ratios were all greater than 1.8 indicating that little protein contamination

was present. One microgram of total RNA was transcribed into cDNA in each reverse

transcription reaction with 200 units of M-MLV reverse transcriptase for 60 minutes at

37°C in 20pl reactions containing lpl (0.5pg/pl) of random hexamer primers, with

0.625pl (40units/pl) of RNase inhibitor, 5pl of dNTP mix (containing dATP, dCTP,

dGTP and dTTP, each at a concentration of lOnM in water) and 5pl of 5X RT reaction

buffer (containing 50mM Tris-HCL-pH 8.3 @ 25°C, 75mM KCL, 3mM MgCF and

lOmM DTT).

Real-time PCR was carried out using the AB1 Prism ®7900HT system (Applied

Biosystems, Warrington, Cheshire, UK) to determine the relative quantity (RQ) of

mRNA for selected genes. RQ can be defined as a comparison of a target signal in

different samples to a reference sample and normalised to an endogenous control [168],
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PCR primers and probes for amplification of cDNA derived from CD34, VEGFR2, VE-

cadherin and vWF transcripts were obtained from Applied Biosystems (Foster City, CA,

USA). Each assay contained forward and reverse PCR primers (final concentration of

900nM each) and one TaqMan MGB probe (6-FAM dye-labelled, to a final

concentration of 250nM). All primer-probe sets had been quality control checked and

validated. The ribosomal 18s gene was used as the internal control. 4pi of the reverse

transcription reaction was analysed in each PCR reaction. The PCR reactions were run

in triplicate in 20pl assays, each containing cDNA, 1 pi of primer/probe, lOpl of

universal PCR master mix and distilled water. The cycling program was as follows: (a)

initial activation for 10 minutes at 95°C; (b) 50 amplification cycles with a 15 second

denaturing step at 95°C, and a 1 minute combined annealing and extension step at 60°C.

Analysis was performed using ABI 7900HT SDS software (version 2.1), in order to

obtain the relative quantities (RQ) ofmRNA compared to a calibrator.

Flow cytometry

The protocol in section 2.5 was used. Whole blood cells were phenotyped by flow

cytometry using FACS-Calibur flow cytometer (Becton-Dickinson, Oxford, UK). Cells

were directly stained and analysed for phenotypic expression of surface proteins with

monoclonal antibodies (MAbs) conjugated to phycoerythrin (PE), fluorescein

isothiocynate (FITC), Peridin Chlorophylla protein (PERCP) or Allophycocyanin

(APC). The MAbs included anti-CD34-FITC, PerCP-conjugated anti-human CD45, anti-

VEGFR2-PE, anti—cadherin-PE, and anti-CD 133-APC. Appropriate negative controls
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(Isotype and/or no antibody) were used to establish positive stain boundaries. lOOul of

the sample was stained with the appropriate antibodies for 30 minutes in the dark; the

erythrocytes were lysed with lysing solution for 15 minutes in the dark. Afterwards the

samples were centrifuged and washed with PBS at 200g and finally the cells were fixed

with Cell Fix solution. 50.000 events were counted and measured using the Becton

Dickinson FACSCalibur System. Percentage positivity for a particular marker was

obtained based on the total number of events. An absolute number was obtained using

the total white cell count. The mean fluorescent intensity (MFI) was obtained and

analysed for each marker for the total number of events and for the monocyte gate only.

Endothelial progenitor cell (EPC) colony assay

The protocol in section 2.6 was followed. The EPC colony assay was performed

according to the method specified by the kit manufacturer (Stem cell Technologies) after

the method of Hill et al [12], 3ml of venous blood was used to isolate endothelial

progenitor cells. The peripheral blood mononuclear cell fraction was isolated by Ficoll

density-gradient ceritrifugation. Recovered cells were then resuspended in Endocult.

5xl06 mononuclear cells in 2ml of Endocult were plated in a fibronectin-coated 6-wcll

plate and incubated for two days at 37C, 5% C02 with 95% humidity. After two days

the non-adherent cells were transferred into fibronectin-coatcd 24-well plates at

approximately lxlO6 cells/well for three days more at 37C, 5% C02 with 95% humidity.

2 days culture resulted in the emergence of characteristic endothelial progenitor

colonies. At day 5 of the assay the colonies per well were counted and the number of

EPCs per 106 cells plated in the fibronectin 24-well plate calculated. The colonies are
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defined following Stem Cell Technologies technical manual as a central core of "round"

cells with elongated "sprouting" cells at the periphery and are classified as early

outgrowth colony forming unit - endothelial cell or CFU-EPC.

5.3 Results

Comparison between patients and control subjects prior to aortic

aneurysm repair

Prior to surgery, there was no significant difference between the patient group and

control group A in the relative quantity of mRNA for CD34, VEGFR-2, VE-cadherin

and vWF (table 5.1). Furthermore, there were no significant differences between the

patient group and control group B in the number of EPCs by the colony assay and flow

cytometric measurements ofCD34, CD 133, VEGFR-2 and VE-cadherin (table 5,2).
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Target Control group A (n=12) Patient group (n=15)

Age

Mean 71 70.3

P value 0.82

CD34

Median 2.538 0.984
P value 0.237

VEGFR2

Median 2.089 1.599
P value 0.6454

VE-cadherin
Median 3.373 2.498
P value 0.863

VWF

Median 2.363 2.435

P value 0.99

Table 5.1. Comparison between median RQ values in the control group and pre-

treatment patient group. The control group was cohort matched for age and gender with

the patient group. There were no statistically significant differences found between the

two groups in the RQ values for CD34 mRNA (p=0.237), VEGFR2 (p=0.6454), VE-

cadherin (p=0.863) and vWF (p=0.999).
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Control group B (n=15) Patients (n=15)
Age

Mean 50.5 70.3
P value 0.003

EPC/cells plated (104)
Median 0.2350 0.0175

P value 0.0052

%CD34+ cells
Median 0.065 0.06

P value 0.7

%CD133+cells
Median 0.07 0.08
P value 0.93

%VEGFR2+ cell
Median 1.66 4.24
P value 0.18

% VE-cadherin+ cells
Median 8.415 13.07
P value 0.08

Table 5.2. Comparison of median colony numbers and median percentage positivity of

EPCs in controls versus prc-treatment patient group. The control group was not cohort

matched with the patient group. The control group had a higher median number of cell

colonies (0.23x104±0.06xl04) compared with the patient group (0.017xl04±0.03xl04).

This difference was statistically significant (p=0.005). There were no statistically
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significant differences between the groups in the median percentage of cells expressing

CD34 (p=0.7), CD 133 (p=0.93), VEGFR2 (p=0.18) and VE-cadhcrin (p=0.08).
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Leukocyte and EPC quantitation following surgery

Total white cell count and monocyte count. CD 14 expression by PCR:

Patients demonstrated an increase in the mean total white cell count by 24 and 48 hours

compared to pre-operatively (figure 5.1a). This was followed by a reduction to pre¬

operative levels by day 5. There was also an increase in the mean monocyte count by 48

hours post-operatively, but this did not reach statistical significance (figure 5.1b).

Samples from 14 patients out of 15 patients were assessed for the RQ of CD 14 mRNA.

There was an increase in the mean RQ by 24 and 48 hours, followed by a reduction in

the mean RQ by day 5 post-operatively (figure 5.1c).
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Figure 5.1. Effect of aortic aneurysm repair on the total white cell count (WBC), the

monocyte count and the RQ of CD14 mRNA. (a). Mean (±SEM) WBC increases from a

baseline of 7.13x109/l (±0.55) to 8.71x10'Vl (±0.79) by 24 hours, to a peak of

10.23x109/1 (±0.49) by 48 hours. The WBC then decreases by day 5 to 7.67x109/l (±0.5)

(p=0.0001). (b). Mean (±SEM) monocyte count increases from a baseline of 0.51x109/l

(±0.07) to 0.68x109/l (±0.06) by 48 hours. The monocyte count is 0.64x109/l (±0.05) by

day 5. The change in monocyte count is not significant (p=0.1). (c). The mean (±SEM)

RQ of CD 14 mRNA mirrors the change in the mean WBC count. There is an increase

from a pre-operative value of 1.06 (±0.16) to 1.74 (±0.31) by 24 hours. It increases

further by 48 hours, before falling slightly to 1.48 (±0.22) by day 5 following the

operation (p=0.001).
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CD34 expression by PCR and flow cytometry:

Complete data was obtained on 9 out of 15 patients for the RQ of CD34 mRNA (figure

5.2a). There was a reduction in the median RQ by 24 hours post-operatively, with a

recovery to the median pre-operative level by 48 hours. In addition, there was a

reduction in the median number of CD34+ cells by 24 hours post-operatively, before a

recovery to the pre-operative level by 48 hours (figure 5.2b). There was no significant

change in the MFI of CD34 in the total cell population or in the monocyte population

over the postoperative period (figure 5.3a&b).

CD 133 expression by PCR and flow cytometry:

Complete data was obtained on 6 out of 15 patients for the RQ of CD 133 mRNA. There

was an increase in the median RQ by day 5 following the operation, but this change did

not reach statistical significance (figure 5.2c). Samples from 8 patients were assessed

for surface expression of CD 133. There was a reduction in the median number of

CD 133+ cells by 24 hours, before a return to baseline levels by day 5 post operatively

(figure 5.2d). There was no significant change in the MFI of CD 133 post-opcratively in

the total cell population or in the monocyte population (figure 5.3c&d).
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VEGFR-2 expression by PCR and flow cytometry:

Complete data was obtained on 4 out of 15 patients for the RQ of VEGFR-2 mRNA.

There was a reduction in the median RQ by 24 hours, but this change did not reach

statistical significance (figure 5.2e). Samples from 9 patients were assessed for surface

expression of VEGFR-2. There was an increase in the median number of VEGFR-2+

cells by 48 hours post-operatively, before a return to the pre-operative level by day 5

after the operation, but this change did not reach statistical significance (figure 5.2f).

There was a statistically significant increase in the MFI of VEGFR-2 by 48 hours post¬

operatively in the total cell population and in the monocyte population, before a return to

baseline levels by day 5 (figure 5.3e&f).

VE-cadherin expression by PCR and flow cytometry:

Complete data was obtained on 14 out of 15 patients for the RQ of VE-cadherin mRNA.

There was a significant increase in the median RQ by 24 and 48 hours following

surgery, with a return to the pre-operative level by day 5 post-operatively (figure 5.2g).

Samples from 8 patients were assessed for surface expression of VE-cadherin. There

was no statistically significant change in the median number of VE-cadherin+ cells over

the specified time period (figure 5.2h). The MFI of VE-cadherin increased significantly

by 24 and 48 hours after the operation, when the total events were analysed, and when

the monocyte gate was analysed (figure 5.3g&h).
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VWF expression by PCR:

Complete data was obtained on 14 out of 15 patients for the RQ of vWF mRNA. There

was a significant reduction in the median RQ by 24 hours, followed by a recovery by 48

hours and a significant increase in the median RQ by day 5 following the operation

(figure 5.2i).
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Figure 5.2. Effect of aortic aneurysm repair on markers of EPCs by PCR and flow

cytometry, (a). The median RQ of CD34 mRNA transiently decreases by 24 hours,

before recovering to baseline by 48 hours, but this does not reach statistical significance

(p=0.03). (b). There is a reduction in the median number of CD34+ cells by 24 hours,

with recovery by 48 hours, but this does not reach statistical significance (p=0.04) (c).

The median RQ of CD 133 increases by day 5 following the operation, but this does not

reach statistical significance (p=0.15). (d). The median number of CD 133+ cells

increases from 24 hours to day 5 after the operation, but this does not reach statistical

significance (p=0.05). (e). The median RQ of VEGFR-2 mRNA increases by 48 hours

after the operation, but this does not reach statistical significance (p=0.75). (f). There is

an increase in the median number of VEGFR-2+ cells by 48 hours, but this does not
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reach statistical significance (p=0.5). (g). The median RQ of VE-cadherin mRNA

increases by 24 hours from baseline, and further increases by 48 hours, and by day5.

There is then a reduction in the median RQ of VE-cadherin mRNA from 48 hours to day

5 following the operation (p<0.0001). (h). There is an increase in the median number of

VE-cadherin+ cells by 48 hours after the operation, but this does not reach statistical

significance (p=0.41). (i). The median RQ of vWF mRNA falls significantly by 24 hours

from baseline. It recovers by 48 hours, and increases significantly by day 5 after the

operation (p<0.0001). Note: RQ values for the mRNA species studied were adjusted to

take into account changes in the total white cell count over the post-operative period.
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Figure 5.3. Effect of aortic aneurysm repair on the mean fluorescent intensity (MFI),

by flow cytometry, of the markers of EPCs. (a). There is no significant change in the

MFI of CD34 over the postoperative period when all cells are analysed (p=0.15). (b).

There is no change in the MFI of CD34 in the monocyte gate (p=0.46). (c). There is no

significant change in the MFI of CD 133 post operatively when all cells are analysed

(p=0.15). (d). There is no change in the MFI of CD133 in the monocyte gate (p=0.37).

(e). By analysing all cells, the MFI ofVEGFR-2 increases significantly by 48 hours post

operatively, before reducing back by day 5 (p=0.001). (f). By analysing the monocyte

gate, the MFI of VEGFR-2 increases significantly by 48 hours post operatively, before

reducing back by day 5 (p=0.001). (g). By analysing all cells, the MFI of VE-cadherin

increases significantly by 24 hours post operatively, before reducing back by day 5

(p=0.01). (h). By analysing the monocyte gate, the MFI of VE-cadhcrin increases by 48

hours post operatively, before reducing back by day 5, but this does not reach statistical

significance (p=0.02).
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Dual CD34 and VEGFR-2 expression by flow cytometry:

Complete data was obtained on 8 out of 15 patients for assessment of surface expression

of CD34 and VEGFR-2. There was a transient reduction in the number of CD34+,

VEGFR-2+ cells by 24 hours after the operation when all cells were analysed (figure

5.4a). When the total cell population was analysed, there was found to be an increase in

the number of CD34-, VEGFR-2+ cells by 24 hours post operatively (figure 5.4b). This

increase was sustained over the course of the study. When the monocyte population was

analysed it was also found that the number of CD34-, VEGFR-2+ cells increased by 48

hours following the procedure, but this change did not reach statistical significance

(figure 5.4c). There was a change in the number of CD133+, VEGFR-2+ cells post

operatively in the total cell population, with a doubling by day 5 (figure 5.4d).
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Figure 5.4. Effect of aortic aneurysm repair on EPCs, using dual staining ofmarkers by

flow cytometry, (a). When gated on all cells, the number of CD34+, VEGFR-2+ cells

falls by 24 hours post operatively, before recovering to baseline by 48 hours, but this

does not reach statistical significance (p=0.02). (b). When gated on all cells, the number

ofCD34-, VEGFR-2+ cells increases by 48 hours post operatively, before reducing back

by day 5, but this does not reach statistical significance (p=0.03). (c). When gated on

monocytes only, the number ofCD34-, VEGFR-2+ cells does not vary significantly over

the post operative period (p=0.08). (d). There is an increase in the number of CD133+,

VEGFR-2+ cells by day 5 post operatively, when all cells are analysed, but this does not

reach statistical significance (p=0.03).
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EPC colony assay:

Samples from 10 patients were assessed in the colony assay. There was a transient

reduction in the mean number of EPC colonies by 24 hours after the operation, but the

median change in values did not reach statistical significance over the measured time

period (figure 5.5).

Number of EPC-CFUs

Figure 5.5. The median number of EPCs in culture is reduced by 24 hours after the

operation, but this does not reach statistical significance (p=0.41).
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5.4 Discussion

Endothelial isation of vascular grafts is important in order to provide a non-thrombogenic

surface. Circulating EPCs are thought to play an important part in the vascular repair

process in adults. Therefore, endogenous mobilisation of EPCs after aneurysm repair in

humans is likely to play an important role in preventing potential graft induced thrombo¬

embolic events. The aim of this study was to investigate mobilisation of these cells,

using patients undergoing elective abdominal aortic aneurysm repair with Dacron grafts

as a model of vascular repair. Using three different techniques to investigate EPCs, we

demonstrated that circulating EPC numbers did not differ significantly in patients pre-

operatively compared to control subjects (tables 5.1&2). However, the circulating level

of these progenitor cells was altered following elective abdominal aortic aneurysm

repair.

The observation that there was no statistically significant difference in the level of

circulating EPCs in pre-operative samples compared with control samples is perhaps

surprising, knowing that reduced levels of circulating EPCs have been shown to be an

independent risk factor for the progression of atherosclerotic disease [169, 170]. The

lack of a difference in our study is likely to be due to a number of reasons. The patient

and control groups were not age and sex matched. Both variables are known to affect

EPC numbers, with older people having fewer circulating EPCs [56, 58, 171], Despite

our results showing a reduction in the number of EPC colonies in the patient group, the

median age of this group was significantly higher than that of control group B, and this
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difference is likely to have had an influence on the number of CFU-ECs counted in each

group (table 5.1). In addition, we investigated a different patient group at a time when

their vascular disease was clinically apparent. This is in contrast to the previous studies

investigating cardiovascular outcome events in healthy patients at risk of coronary artery

disease [169, 170],

The increase in the mean total white cell and monocyte counts observed following aortic

aneurysm repair suggests that the bone marrow is being stimulated to produce cells,

probably as part of an acute phase response (figure 5.1 a&b). The data presented in

figures 5.2, 5.3 and 5.4 suggests that EPCs are being mobilised as part of this response.

EPC mobilisation has been demonstrated previously in this patient group, reported by

Eizawa et al. [172], In this latter study, CD34 expression was noted to have doubled by

day 7 following the operation, which is in contrast to our findings (figure 5.2b). One

possible reason for this is that our study did not include this time point and, therefore,

the subsequent increase may have been missed.

Cytokine mobilised EPCs are thought to comprise less that 0.1% of the total circulating

mononuclear cell pool [18]. Therefore, even mobilised EPCs are few in number,

resulting in low levels of detectable mRNA, and consequently difficulty in amplification

of EPC mRNA as the PCR system reaches its limits of detection. This may explain why

there were incomplete data sets for the RQs of the EPC mRNA species studied. This is

particularly relevant to CD 133 and VEGFR-2, where complete data sets were only

achieved in 6 and 4 patients respectively. In contrast, only one patient failed to provide a
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complete data set for CD 14 mRNA, where CD 14 is expressed on a wider population of

cells and is known to be a marker of mature monocytes. Despite this, however, the

increase seen in the RQs of VE-cadherin mRNA, and in the number of cells expressing

surface CD 133, suggests that EPCs arc being mobilised as part of the overall bone

marrow response to tissue injury (figures 5.2d&g). In order to investigate phenotypic

expression on EPCs further we looked at the mean fluorescent intensity of the markers

studied, both in the total cell population and in the monocyte population only (figure

5.3). The reason that the monocyte population was studied is that there is emerging

evidence that monocytes are a major source of EPCs [24, 150, 173], The MFIs of

VEGFR-2 and Cadherin-cadherin were found to increase following the operation, both

in the total cell population and in the monocyte population, adding further evidence in

favour of EPC mobilisation following aortic aneurysm repair (figures 5.3e, f, g, h). We

also looked at cells by flow cytometry that were CD34-, VEGFR-2+ and CD34+,

VEGFR-2+ (figure 5.4). It was found that the number of CD34-, VEGFR-2+ cells

increased following the operation, when the total cell population was analysed (figure

5.4b). In contrast, the number of CD34+, VEGFR-2+ cells decreased transiently after

the procedure (figure 5.4a). Unfortunately, wc did not perform dual staining using

CD 14 and VEGFR-2, which is thought to be the specific subset of monocytes

responsible for cndothclial-like functional capacity [25], However, taken together this

suggests that EPCs are being mobilised from a CD34- pool of cells, which may be

monocytic in origin. The observation that there is a significant correlation between the

monocyte count and the number ofVEGFR-2 + cells in the patient group would seem to

agree with this (table 5.3).
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If CD34 is a marker of EPCs, it is difficult to reconcile the reduction seen in the RQ of

CD34 mRNA and the surface expression of CD34+, VEGFR-2+ cells with mobilisation

of EPCs, where one would expect to see an increase (figures 5.2a&b, figure 5.4a). One

reason for this could be that circulating EPCs are being sequestered in the immediate

post-operative period to the site of vascular injury, followed by a return to baseline

levels as further cells are mobilised and released from the bone marrow (or, just

possibly, as the sequestered cells are released back into the circulation). This would also

explain the transient trend in reduction seen in the number of EPC colonies (figure 5.5).

It is important to note, however, that CD34 is not a marker that is specific for EPCs, but

is also expressed by haematopoietic stem cells and by mature endothelial cells. This was

a limiting factor in the study by Eizawa et al, where CD34 alone was used as a marker of

EPCs [172], It could, therefore, be that there is sequestration of CD34+ cells and that

these cells are not EPCs but mature endothelial cells. This would explain the transient

reduction in the RQ of vWF mRNA observed in the immediate post-operative period

(figure 5.2i). In addition, it would explain why there is a statistically significant

correlation between the RQs of vWF and CD34 mRNA species (table 5.3).

As previously discussed, it has been discovered that the monocyte population in blood is

the main source of EPCs, rather than CD34+ progenitors as previously thought. An

interesting observation of the flow cytometry data was that in the patient group

approximately 90% of monocytes were positive for VE-cadherin (figure 5.6). In

addition, there were significant correlations found between the monocyte counts and

VE-cadherin levels (by PCR and flow cytometry), and between CD 14 and VE-cadherin
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mRNA RQs, but not between CD 14 and CD34 mRNA RQs (figure 5.7, table 5.3). This

suggests that Cadherin-cadherin is not specific to endothelial cells as previously thought,

but can also be expressed on monocytes. Furthermore, it could further demonstrate the

monocytic origin of EPCs.

In summary, we have demonstrated that a major vascular insult, such as aortic aneurysm

repair, results in the mobilisation of EPCs. Furthermore, these EPCs are likely to be

derived from the monocyte pool. Previous work has focussed on the time to mobilisation

of EPCs following a particular stimulus, or in-vitro maturation of EPCs. Our data gives a

more dynamic picture of how EPCs respond to a major vascular insult. It also highlights

the difficulty in measuring these cells using different techniques. This is presumably due

to a combination of small patient numbers, sensitivity of the techniques used to measure

this small population of cells, and the lack of consensus on an appropriate definition of

an EPC. Further work will involve recruiting more patients to the study in order to

extend our preliminary data, and to investigate whether some of the trends observed can

be better characterised. For example, the changes seen in the numbers of EPCs in the

colony assay, and the change in the RQ of VEGFR-2 over the period of the study.
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Correlation R2 value P value

Monocyte count us CD 14 0.1329 0.0057
mRNA RQ
Monocyte count vs VE- 0.0848 0.0295
cadherin mRNA RQ
Monocyte count vs number 0.214 0.0035
of VE-cadherin+ cells

Monocyte count vs number 0.2656 0.0007
of VEGFR-2+ cells
CD 14 mRNA RQ vs VE- 0.3579 <0.0001
cadherin mRNA RQ
CD 14 mRNA RQ vs CD34 4x10~6 0.9892
mRNA RQ
VWF mRNA RQ vs CD34 0.1835 0.003
mRNA RQ

Table 5.3. Correlation studies.
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Figure 5.6. The leukocyte fraction was isolated from a healthy blood donor buffy coat.

Cells were gated on all leukocytes (CD45+). (a). Side-scatter versus CD14. (b). Side-

scatter versus VE-cadherin. (c). CD 14 versus VE-cadherin. Most of the CD14+

monocytes are VE-cadherin positive.
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RQs of CD14mRNA

Figure 5.7. Graph showing a statistically significant correlation between CD14 mRNA

RQs and VE-cadherin mRNA RQs (pO.OOOl).
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6. ENDOTHELIAL PROGENITOR CELLS AND TYPE 1 DIABETES
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6.1 Introduction

People who have type l diabetes experience deficient wound healing secondary to a

lower capacity to form collateral vessels in areas of tissue ischaemia [ 174], Until

recently the reasons for this were not known, but with the identification of bone marrow-

derived endothelial progenitor cells (EPCs), it is now thought that the quantitative and

qualitative changes seen in this cell group in people both with type 1 and type 2 diabetes

are critical to the process of impaired neovascularisation [3, 80, 141, 175], EPCs have

been characterised by a number of methods. The most widely used are measurement of

the phenotypic expression of early (CD34, VEGFR2 and VE-cadherin) and late (VE-

cadherin and vWF) EPC markers, by the ability of EPCs to form mature endothelial cells

in culture, and demonstration of EPC incorporation into new vessels in animal models of

hind limb ischaemia [176], The aim of this study was to investigate the effect of type 1

diabetes on EPCs, using real-time PCR as a novel method of assessment, in addition to

the established methods of flow cytometry and cell culture.

6.2 Methods

EDTA anticoagulated blood samples (5mls) were collected from 45 people with type 1

diabetes attending the diabetes outpatient clinics at the Royal Infirmary of Edinburgh

and from 34 non-diabetic subjects (control group A). Approval was obtained from the

local medical research ethics committee (Lothian), and written informed consent was

obtained from each participant. Glycosylated haemoglobin (as HbAlc) was assayed
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using high-performance liquid chromatography adjusted to the Diabetes Control and

Complications Trial; the local non-diabetic range was 5.0-6.5%. Total leukocyte RNA

(lpg) was extracted from 1ml of blood using an extraction kit (Qiagen, Valencia, CA,

USA) according to the protocol in section 2.1, and transcribed into complementary

DNA using random hexamers (Promega, Madison, WI, USA), as described in section

2.2. Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed

on an ABI PRISM 7900 Sequence Detector (Applied Biosystcms, Warrington, England)

using gene expression kits, containing primers and TaqMan probes for amplification of

CD34, VEGFR-2, VE-cadhcrin and vWF mRNA species (Applied Biosystems, Foster

City, CA, USA) (section 2.3). Ribosomal 18s was used as the endogenous control. The

relative quantity of each mRNA species was calculated as previously described [177].

In a parallel study, performed at a different laboratory, lOOql of the EDTA sample from

each of 21 of the patients with type 1 diabetes and from 15 different non-diabetic control

subjects (control group B) was directly stained and analysed for the phenotypic

expression of CD34, VEGFR2 and VE-cadherin using anti-CD34-FITC (Becton

Dickinson, Oxford, UK), anti-VEGFR2-PE (R&D systems), and anti-VE-cadhcrin-PE

labelled monoclonal antibodies (see section 2.5). Appropriate negative controls (isotype

and/or no antibody) were used to establish positive stain boundaries, and 50.000 events

were counted and measured by flow cytometry using a FACS-Calibur flow cytometer

(Becton-Dickinson, Oxford, UK). The percentage of cells positive for a particular

marker was determined from the events counted.

205



In addition, 2ml of blood from 11 of the people with type 1 diabetes and from the 15

non-diabetic subjects (above) was subjected to centrifugation over a Ficoll gradient to

separate out the mononuclear cell fraction (see section 2.4). The pelleted cells were

resuspended in Endocult (composed from Endocult basal medium plus a 1/5 dilution of

Endocult supplements) (Stem Cell Technologies, UK) and cultured on fibronectin using

the same technique described by Hill et al [12]. At day 5 of the assay the EPC colony

forming units (EPC-CFU) per well were counted and the number of EPC-CFUs per cells

plated was calculated.

6.3 Results

No significant differences were found in the median RQ values of CD34, VEGFR2 and

vWF mRNA species between patients with type 1 diabetes and control group A (figure

6.1a-c, table 6.1). However, the patient group had a significantly lower median RQ of

VE-cadherin mRNA compared with the control group (figure 6.1 d). Furthermore, no

differences were found in the RQ values in patients with or without microvascular

disease or in patients with poorly controlled diabetes (table 6.1). A significant positive

correlation was found between vWF mRNA RQs and duration of diabetes (figure 6.2).

However, no correlations were found between the RQs of the mRNA species of interest

and HbAic levels (data not shown).

The patient group had a significantly lower median percentage of cells positive for

CD34 compared to control group B (figure 6.3). However, there were no differences
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found between the two groups for the other markers or for the percentage of cells

expressing both CD34 and VEGFR2 (table 6.2).

The median number of EPCs detected in control group B was significantly higher than

in the patient group (figure 6.4).
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Non-diabetic
controls (A)

Interquartile
ranges

People with
type 1
diabetes

Interquartile
ranges

p value

Number 37 - 45 - -

Mean Age 40.9 - 37.4 - 0.24

CD34 mRNA RQ 3.660 1.897-8.022 4.015 2.452-6.518 0.5360
MVD+
MVD-

" ■ 3.830
4.156

1.973-5.491
3.00-7.00

0.35

MVD-, HbA,c>8
MVD-, HbAlc<8

4.115
5.090

2.640-5.997
3.204-9.699

0.33

VEGFR2 mRNA

RQ
1.302 0.541-2.660 1.487 1.018-2.603 0.3281

MVD+
MVD-

" " 1.403
1.608

0.905-2.805
1.083-2.212

0.8773

MVD-, HbAlc>8
MVD-, HbA|C<8

0.8283
2.29

0.739-1.201
1.445-4.437

0.2571

VE-cadherin
mRNA RQ

2.919 1.577-7.519 2.244 1.373-3.256 0.0435

MVD+
MVD-

" " 2.930
1.997

1.854-3.447
1.369-2.773

0.1972

MVD-, HbA|C>8
MVD-, HbAlc<8

1.892
2.244

1.499-2.421
1.099-2.803

0.81

VWF mRNA RQ 2.170 1.249-3.595 2.597 1.474-4.229 0.18
MVD+
MVD-

" " 2.230
3.149

2.033-3.067
1.303-4.805

0.48

MVD-, HbAlc>8
MVD-, HbAlc<8

~ ~ 2.091
3.596

1.303-4.362
2.602-4.946

0.42

Table 6.1. Comparison between the diabetic group and non-diabetic group A of the

markers of EPCs detected by real-time PCR. Results are expressed as medians with

interquartile ranges. The unpaired t-test was used to compare mean ages of patient and

control group. MVD: microvascular disease. HbAlc: Haemoglobin Ale.

208



Non-diabetic Interquartile People Interquartile P
controls (B) ranges with type

1 diabetes
ranges value

Number 15 11 (cell
culture)
21 (flow
cytometry)

Mean Age 39.7 39.9 (cell
culture)
34.7 (flow
cytometry)

0.97

0.21

Median number 0.23 0.16-0.335 0.032 0-0.059 0.004
of EPCs (per 104
cells)
Median %CD34+ 0.06 0.05-0.09 0.02 0.02-0.05 0.003
cells

Median 1.89 0.885-3.06 4 1.21-32.33 0.14
%VEGFR2+
cells

Median %VE- 10.55 6.865-13.11 12.6 8.38-16.98 0.26
cadherin+ cells

Median % 24.39 5.73-37.345 15.08 0.222-43.5 0.35
CD34+VEGFR2+
cells

Table 6.2. Comparison between the diabetic group and non-diabetic group B of the

number of EPCs detected by flow cytometry and cell culture. Results are expressed as

medians with interquartile ranges. The unpaired t-test was used to compare mean ages of

patients and control group.
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vWF mRNA RQ controls v diabetics

diabetic

VE-cadherin mRNA RQ controls v diabetics

Patients
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Figure 6.1. The relative quantities of CD34 mRNA (a), VEGFR-2 mRNA (b), vWF

mRNA (c) and VE-cadherin mRNA (d) in the group with diabetes compared to control

group A. The median RQ of VE-cadherin mRNA was significantly reduced in the group

with diabetes compared to non-diabetic group A (2.24 versus 2.9, p<0.05, figure d)
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Duration of Diabetes

Figure 6.2. A positive correlation was observed between relative vWF mRNA level

and duration of type 1 diabetes. This correlation was not related to age (see text).
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% of CD34+ cells

Controls Patients

Figure 6.3. The percentage of cells expressing CD34 was significantly lower in the

diabetic group compared to non-diabetic group B (0.02% versus 0.06%, p<0.0005).
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Number of EPC-CFUs controls v diabetics

Controls Patients

Figure 6.4. The number of EPCs able to form endothelial colonies was significantly

less in the diabetic group compared to non-diabetic group B (0.032xl04 versus 0.23xl04

cells plated, p<0.005).
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6.4 Discussion

The present study has shown that the group of people with type 1 diabetes had lower

amounts of VE-cadherin mRNA, a reduced percentage of CD34+ cells, and lower

numbers of EPC-CFUs in comparison with non-diabetic groups. VE-cadherin is an

adhesion molecule involved in angiogenesis and is specific to vascular endothelium

[ 178], Moreover, it is thought to be a marker ofmature EPCs [165], Reduction in the RQ

of VE-cadherin mRNA may reflect a lower number of EPCs in the diabetic group.

It has been demonstrated previously that the number of CD34+ cells extracted from

people with type 1 diabetes did not differ significantly from the number of CD34+ cells

extracted from non-diabetic control subjects [179]. Our findings contrast with this

observation. The discrepancy may, in part, be a consequence of a lack of effective

matching between diabetic and non-diabetic groups in the present study. In addition,

Schatteman et al used a different technique for quantification of CD34+ cells and quoted

absolute numbers instead of percentages [179]. Elowever, with data showing that CD34+

cclls accelerate vascularisation and healing in diabetic mouse skin wounds, the lower

percentage of CD34+ cells observed in the present group of diabetic patients may have

functional relevance to the number of EPCs capable of participating in

neovascularisation [180], This observation is strengthened by the present data which has

demonstrated fewer EPC-CFUs in culture compared to non-diabetic controls, which is

consistent with previous results [80, 179].
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Although a significant difference in vWF mRNA RQ was not demonstrable between the

diabetic and non-diabetic groups, a direct correlation between vWF mRNA RQ and

duration of diabetes was observed in the patient group (figure 6.2). This was not

apparent when vWF mRNA RQ and age in the non-diabetic subjects were compared

(r=0.30, p=0.07), implying that age itself was not the factor affecting vWF mRNA

levels. This is perhaps unsurprising as vWF is known to be a surrogate marker of

endothelial damage, and can predict the development of microvascular disease in

patients with diabetes [181, 182],

The major limitations of the present study were the lack of reproducibility of results

using markers of EPCs other than VE-cadhcrin and CD34 (tables 6.1&6.2), and the lack

of correlation between the different methods of analysis of the same marker. For

example, although a significant reduction occurred in the percentage of CD34+ cells in

the diabetic group, this was not reflected in the PCR data for CD34. One possible

explanation for this is that two different non-diabetic groups were used. It highlights,

however, the difficulty in measuring EPCs, which comprise a very small subset of the

circulating cell pool.

In summary, using a combination of three different techniques, the present study

suggests that circulating EPC numbers are lower than normal in people with type 1

diabetes. This may have important functional consequences in relation to their ability to

form collateral vessels as part of the vascular repair mechanism.
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7. ENDOTHELIAL PROGENITOR CELLS AND CHRONIC RENAL FAILURE
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7.1 Introduction

Patients with renal disease are known to have high morbidity and mortality rates from

cardiovascular disorders secondary to atherosclerosis, such as myocardial infarction and

stroke [183]. There are a number of potential reasons for this, but the process of

impaired vascular repair secondary to reduced numbers and/or impaired function of

EPCs as a cause has become a focus for further research. It has recently been

demonstrated that the number of EPCs in peripheral blood is significantly reduced in

patients with advanced renal failure when compared to age- and sex- matched controls

[82]. This has also been found to be the case in patients on maintenance haemodialysis

[81, 184], Moreover, it has been observed that uraemic serum can exert an inhibitory

effect on the differentiation capacity of EPCs in vitro, and on their capacity to migrate

and form tube-like (vascular) structures [82], One contributory factor to EPC deficiency

in patients with renal disease could be the lack of erythropoietin (Epo) [185], EPO is an

18-kDa protein consisting of a 166-amino-acid polypeptide chain linked by two

disulphide bonds. It undergoes post-translational glycosylation, which is essential for its

biological activity. It is encoded on a gene on the long arm of chromosome 7 and, in

adult life; this is expressed by the peritubular fibroblast-like interstitial cells of the

kidney. Epo circulates to the bone marrow and binds to Epo receptors (EpoRs) on

eiythroid precursors [186]. Mature endothelial cells have also been shown to express

EpoRs [187], Furthermore, Epo has been shown to induce a proangiogenic response in

cultivated mature endothelial cells, as evidenced by stimulation of endothelial cell

proliferation, migration, endothelin-1 release, and increase in cytosolic-free calcium
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concentration [188-191], With this background in mind, this study has been designed to

assess the effect of Epo on EPCs, by measuring changes in the RQ values of EPC

mRNA in patients with chronic renal failure who are commenced on recombinant

human Epo for the treatment of renal anaemia [192],

7.2 Methods

Five patients with stable CRF, who were felt to be candidates for EPO, were identified.

There were three males and two females, with a mean age of 65 years and a mean serum

creatinine of 327pmol/l. None of the patients had suffered form a recent acute coronary

syndrome or systemic inflammatory condition. 5ml of EDTA anticoagulated blood was

collected from each patient before they were commenced on EPO (Ncorecormon®, with

dose ranges from 4000 to 8000units/week), and then at serial time points up to 8 weeks

after commencement of therapy.

Total leukocyte RNA was extracted from 2.5ml of each sample using a standard

extraction kit (Qiagen) (section 2.1). The amount of RNA was determined by optical

densitometry. The RNA was then reverse transcribed using reverse transcriptase

(Promega), and the complementary DNA used in a real-time PCR system (section 2.2).

Primer-probe sets for CD34, VEGFR-2 and von-Willebrand factor (vWF) were

purchased through Applied Biosystems "assays-on-demand" (Warrington, UK), and the

96 well plates run on an ABI 7900HT thermal cycler. The endogenous control used was
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ribosomal 18s. Data generated was used to calculate the RQ of each mRNA species at

each time point (sections 2.3 & 3.3).

The remainder of each sample was spun down to separate off the plasma fraction, which

was then used in a quantitative sandwich enzyme immunoassay system (R&D Systems)

to measure the amount of VEGF at each time point (section 2.6).

221



7.3 Results

CD34

Patientl Patient2 Patient3 Patient4 Patient5 Median
Value

Pre Epo 1.00 1.09 0.63 0.73 0.71 0.73

Weekl 1.40 0.67 1.63 1.40

Week2 1.11 1.08 - 1.09

Week3 0.68 - 1.05 0.86

Week4 0.45 1.93 0.81 0.81

Week5 0.51 1.51 0.59 0.59

Week6 0.33 2.44 1.75 1.75

Week7 1.81 2.45 1.19 0.74 0.71 1.19

Week8 1.69 12.49 1.13 1.69

Table 7.1. Compared to baseline there is an increase in the median CD34 mRNA level

of 62% (p=0.06) by week 7 after commencement of Epo. This is depicted graphically in

Figures 7.1 a&b. The peak value was observed at week 8 after starting Epo.
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Changes in CD34 mRNA RQ
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Figure 7.1
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CD133

Patientl Patient2 Patient3 Patient4 Patient5 Median
Value

Pre Epo 1.00 - 0.38 - - 0.69

Weekl 0.49 0.34 1.11 0.49

Week2 0.33 - - 0.33

Week3 - - 0.59 0.59

Week4 - 0.46 0.67 0.57

Week5 0.66 0.18 - 0.42

Week6 - 0.90 0.19 0.54

Week7 0.65 0.40 - - - 0.53

Week8 0.73 - 0.22 0.48

Table 7.2. Compared to baseline there appears to be very little change in the level of

CD 133 mRNA. Too few data points were present for statistical analysis. This is

represented graphically in Figure 7.2.
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Figure 7.2

Changes in CD133 mRNA RQ

• Patient 1

—■— Patient 3
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VEGFR-2

Patientl Patient2 Patient3 Patient4 Patient5 Median
Value

Pre Epo 1.00 1.79 1.16 - 2.70 1.47

Weekl 1.94 2.69 2.19 2.19

Week2 2.10 1.39 - 1.75

Week3 5.89 - 2.51 4.20

Week4 3.55 2.24 1.30 2.24

Week5 16.39 1.68 1.11 1.68

Week6 9.11 1.59 5.36 5.36

Week7 2.79 4.67 5.05 - 3.55 4.11

Week8 1.27 - 1.42 1.35

Table 7.3. Compared to baseline there is an increase in the median level of VEGFR-2

mRNA of 179% by week 7 after commencement of Epo (p<0.05). The peak increase

appears to be by week 6 after starting Epo. This is depicted graphically in Figures

7.3a&b.
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Changes in VEGFR-2 mRNA

Patient 1

Patient 2

Patient 3

Patient 5

Median value

a.

Changes in VEGFR-2 mRNA RQ

Figure 7.3
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VE-cadherin

Patientl Patient2 Patient3 Patient4 Patient5 Median
Value

Pre Epo 0.21 0.35 0.48 0.38 0.32 0.35

Weekl 0.13 0.55 0.50 0.50

Week2 0.32 0.48 - 0.40

Week3 - - 0.95 0.95

Week4 0.28 0.68 0.37 0.37

Week5 0.37 0.49 0.37 0.37

Week6 0.15 0.60 0.91 0.60

Week7 0.19 1.28 1.11 0.24 0.30 0.30

Week8 0.82 0.82 1.00 0.82

Table 7.4. Compared to baseline there is no change in the median value of VE-cadherin

mRNA by week 7 after commencement of Epo (figure 7.4a). However, as depicted in

figure 7.4b, there appears to be an upward trend in the level of VE-cadherin expression

in patients 1, 2 and 3 by week 8 after starting Epo.
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Changes in VE-cadherin mRNA RQ

- Patient 1

- Patient 2

Patient 3

- Patient 4

-Patient 5

-Median value

Changes in VE-cadherin mRNA RQ

week8

Figure 7.4
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vWF

Patientl Patient2 Patient3 Patient4 Patient5 Median
Value

Pre Epo 0.15 0.18 0.39 0.32 0.65 0.32

Weekl 0.10 0.25 0.96 0.25

Week2 0.24 0.18 - 0.21

Week3 0.29 - 0.46 0.38

Week4 0.25 0.18 0.68 0.25

Week5 0.65 0.25 0.48 0.48

Week6 0.24 0.21 1.13 0.24

Week7 0.20 0.30 0.38 0.30 0.43 0.30

Week8 0.37 0.23 1 0.37

Table 7.5. Compared to baseline there is no change in the median value of vWF mRNA

by week 7 after commencement of Epo. This is depicted graphically in Figures 7.5a&b.
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Changes in vWF mRNA

Changes in vWF mRNA RQ

Figure 7.5
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VEGF
Patientl Patient2 Patient3 Patient4 Patient5 Median

Value
Pre Epo 474 211 236 238 77 236

Weekl 255 171 325 255

Week2 82 191 356 191

Week3 189 312 0 250

Week4 230 26 345 230

Week5 264 432 272 272

Week6 359 265 302 302

Week7 329 289 298 226 271 289

Week8 160 259 244 244

Table 7.6. Compared to baseline there was no significant change in the median value of

VEGF by week 7 after the commencement of Epo. This is depicted graphically in

Figures 7.6a&b.
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7.4 Discussion

The effect of human recombinant Epo on the transcription of CD34, CD 133, VEGFR-2

and VE-cadhcrin (all markers of EPCs) and vWF (as a marker of mature endothelial

cells) has been investigated in a group ofpatients with chronic renal failure, using a PCR

based technique for quantitation of mRNA for these proteins. In addition, the effect of

Epo on the amount of plasma VEGF protein in the same patients has been investigated,

using an ELISA based technique.

The number of patients recruited to this study was very small. In addition, we did not

examine EPCs by flow cytometry or in cell culture in this study. As a result it was

difficult to draw any firm conclusions from the results that could be based on solid

statistical analysis. However, there appeared to be an increase in the median level of

CD34 mRNA, although this change did not quite reach statistical significance (figure

7.1). In addition, there was a statistically significant increase in the median level of

VEGFR-2 by week 7 after the commencement of Epo (figure 7.3a). Furthermore, there

was an increase in the median level of VE-cadherin by week 8 of EPO treatment, but

this did not reach statistical significance (figure 7.4). These changes in suggest that EPC

levels may be increased following commencement of Epo. The lack of a significant

change in the median amount of vWF mRNA would suggest that mature endothelial

cells arc not affected in the same way (figure 7.5). This would certainly fit with the

current understanding regarding Epo and EPC stimulation, where Epo has been shown to

be a powerful stimulatory agent for EPC proliferation and functional activity [90, 193,
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194], A marked and persistent stimulation of EPC recruitment in vitro and in vivo was

demonstrable even at sub therapeutic doses of Epo when used to treat renal anaemia. In

our study therapeutic doses of Neorecormon® were used. Our data did not show any

change in the amount of plasma VEGF following commencement of Epo (figure 7.6). It

has been known now for some time that VEGF is an important cytokine in the

stimulation of EPCs form the bone marrow [31]. Our results suggest that EPCs may be

mobilised by a VEGF independent route. This would fit with other groups who have

demonstrated that Epo can directly stimulate EPCs via the Akt tyrosine kinase signalling

pathway [90, 193, 195], We could not demonstrate a change in the amount of CD 133

mRNA (figure 7.2). This was due in part to the low subject numbers studied, but also to

the fact that there was failure of amplification at may of the time points in each series.

The reason for this is uncertain, but it may just reflect the very low level of PCR product

from a cell that is found in low numbers in the periphery, resulting in a fall below the

limit of detection in the system used. Another observation that is difficult to explain is

the variation observed in the RQ of a particular marker in a patient over the period of the

study. For example the variation in the amount of vWF mRNA in patient 3 (figure

7.5b), or the transient increase in the level of VEGFR-2 mRNA at week 5 following

commencement of Epo in patient 1 (figure 7.3b). This may be due to natural variation in

the level of these mRNA species, but may also be due to a transient vascular insult in the

patient. Von-Willebrand factor, for example, has been shown to be a surrogate marker of

vascular injury, and VEGFR-2 levels have been shown to increase following an episode

of renal ischaemia-reperfusion [181, 182, 196, 197].
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Stimulation of EPCs by Epo could represent a new therapeutic strategy in cardiovascular

medicine in order to prevent the sequelae of atherosclerotic vascular disease. This

approach may be particularly useful in patients with renal failure, a population at high

risk of cardiovascular complications. In this respect, administration of Epo might be

indicated at an earlier stage of renal failure than currently recommended.

236



8. CONCLUSION
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Identification and enumeration of EPCs present in the adult remains difficult and non-

standardised. The reasons for this are numerous, and may partly explain the discrepancy

in results and lack of correlation between different assays supposedly measuring the

same marker in this thesis. Primarily, it is unclear whether EPCs are truly bone marrow

derived from primitive cells (a putative haemangioblast) or from differentiated cells (like

monocytes) that acquire an endothelial cell-like phenotype [22, 23, 198], Similarly, it

remains to be clearly established to what degree vessel wall derived cells can contribute

to the circulating pool of endothelial progenitors. For example, it has recently been

shown that the vessel wall may also contain highly proliferative EPCs capable of

forming colonies with re-plating potential (HPP-ECs) [199, 200], Furthermore, the

pathway of HSC maturation is not fully defined and it is possible that expression of

CD34 and CD 133 may be continuously up and down-regulated. It has been suggested

that stem cells are continuously altering their phenotype and these alternations are

reversible [201], Thus, many described cell phenotypes could represent a single cell in

different functional states. Finally, it has been suggested that rather than a hierarchical

transition from stem cells to progenitor cells, fluctuation continues to exist in which

stem cells adjust their phenotype depending on the cell kinetic state activated by their

genetic program or micro environmental stimuli [202], The data presented in this thesis

also suggests that no single marker is truly specific for EPCs. Rather, a number of

markers are likely to be needed. This is particularly important when utilising these

marker combinations to best identify CEC and EPCs prior to clinical application of such

cells.
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No single assay appears to reliably measure EPCs, suggesting that either there are

differences in the sensitivity of detection of a particular assay and/or that different cell

populations are being detected. A limitation in using singleplex real-time PCR in the

studies is that the assumption has to be made that each amplicon is being amplified from

the same cell or cell population. This may not be the case, however. One potential way

to confirm this would be to perform in-situ RT-PCR to detect gene expression directly

within a cell population. With the knowledge that the putative population of EPCs is

likely to be less than 1% of the leucocyte pool, a limitation of the flow cytometry assay

used in the studies is that 50,000 events may not have been a sufficient number to

capture this population. Other studies have used nearer 1 million events in such "rare

event analysis". Finally, with recent studies showing that that progenitor cells adherent

to fibronectin after 2 days in culture may contain the definitive EPC population, a

limitation of the "Hill" culture assay used in the studies is that it will detect monocyte -

derived EPCs only [203].

In general, it is very difficult to interpret and compare results between studies because

each group uses their particular EPC definition based on their experimental and/or

clinical outcomes. CD34 and CD133 arc both haematopoietic markers, but these

populations are only partially overlapping. Similarly, VEGFR2 and VE-cadhcrin

antigens are present in subpopulations of each fraction and only a low percentage of

these cells co-express together. Therefore, there is only a small chance that all these

different EPC definitions refer to the same cell population. The combination of the

expression of these three markers could reflect a hierarchy of EPC differentiation or
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cells in different kinetic states, which would explain why different groups achieved

different results. It may also explain why using the in vitro functional EPC assay (EPC-

CFU), which could be thought of as a more global measure of the EPC numbers,

appeared to provide more interpretablc results in this thesis than the real-time PCR or

flow cytometry data, which may have measured different cells at different stages of

maturity. Despite this, however, all three techniques used appeared to demonstrate a

change in EPCs, whether it was due to exogenous vascular insult, or secondary to

endogenous vasculopathy or administration of a recombinant protein. A more accurate

definition for EPCs will be required first before further assay comparisons can be

performed.
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