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Abstract 

The simulation of a Virtual Environment (YE) is an intensive process which is 
severely limited if restricted to one machine. Through distribution it is possible to 
increase the size and accuracy of the simulation, thus permitting multiple users to 
interact with each other and the VIE. 

Existing distributed YE systems have been designed to target a specific level of 
distribution. This level is dictated by the geographical distance over which the 
systems must operate and the communications medium connecting them. The system 
requirements on a tightly-coupled multiprocessor system are not the same as those of 
a system operating over a Wide Area Network (WAN). Consequently, the solution 
for any given level does not scale well to larger or smaller system configurations. 

VE modeling has its heritage in Computer-Aided Design (CAD) and has evolved 
unchecked into its present state. As the amount of information required in a YE 
increases, so the current modeling techniques and tools are put under added stress to 
cope with the extra load. Most modeling techniques are driven by the structure of the 
system upon which the model must execute, rather than capturing the structure of the 
information it should represent. 

This thesis questions the motives behind YE modeling, examines the problems of 
distributing a YE and details the various solutions that have been employed. An 
analysis of the methods used leads to the selection of techniques which may be 
combined to provide a solution unified over all levels of distribution. The proposed 
solution is also integrated with and actively supports the modeling process, thus 
providing a powerful environment for VE designers and participants alike. 

The architecture of this system is presented complete with a description of a 
prototype implementation that demonstrates the key aspects. The thesis concludes 
with an evaluation of the prototype. 
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Chapter 1 

Introduction 

"Research is what I'm doing when I don't know what I'm doing." 

Wernher Von Braun 

The subject matter of this thesis falls in the area commonly described as Virtual Reality 

(VR). Ask anybody to describe what VR is and you will get a different answer. The 

term was originally coined by Jaron Lanier to describe a system using inirnersive 

technology, such as Head-Mounted Displays (HMDs) and data gloves (Pimentel and 

Teixeira, 1993). Since then the perception of what VR is has changed, for better or 

worse, to encompass many different combinations of novel (and not so novel) input 

and output devices. The common factor between all of these is the use of three-

dimensional (313) computer graphics. The layman would therefore be forgiven for 

thinking that anything that uses 3D graphics is VR - a connection often reinforced by 

the media. 

The term Virtual Environment (VE) is used to describe the environment that one enters 

when using a VR system. This has also become popular but it is an inaccurate 

description because there is nothing virtual about the environment (this topic is dealt 

with later). Essentially VR is used to refer to the whole subject area, its hardware, 

software, applications, etc., and a VE is the thing being partly or wholly simulated by 

the VR system. 

This brief introduction describes the author's motivation behind the work presented in 

this thesis. The next section outlines the author's perspective on why yEs are modeled 



the way they are presently, what should change and why distribution is necessary. This 

chapter concludes with a preview of the contents of this thesis. 

1.1 Motivation 

The author first became interested in the field of VR in 1991 whilst working for a 

company that built real-time 3D Computer Image Generators (CIGs). There were two 

stages required to build an application using these CIGs: modeling and coding. First of 

all the geometrical and surface properties, i.e. colour, texture, etc., of the 3D objects 

that would populate the simulated environment were described in a special 3D 

modeling package. These were then converted into the CIG's native model format and 

their behaviour coded into the main body of the application. The variables needed to 

describe the objects' behaviours depended on the nature of the simulation. Some 

objects would be under user control and thus behave as the user wanted. The 

behaviours of the computer controlled objects were often choreographed to obtain the 

best visual effect. This was usually achieved by breaking down the movements into a 

series of parameterised actions which were called in sequence to effect the desired 

behaviour. 

Each time a simulation was developed, as many existing models as possible were 

recycled and organised with new purpose-built models in the standalone modeling 

package. Traditionally the application code was written again from scratch, except for 

a few key routines. After having used this process a couple of times, the author 

designed a core extensible application framework that could be specialised for each 

simulation. Although the properties of objects could be encapsulated and reused where 

possible, they were still held and manipulated separately to their geometrical 

representations. 

After joining the Virtual Environment Laboratory (VEL) at the University of 

Edinburgh a year later, the need for a flexible system to model and support VEs 

became even more apparent. The visual perception experiments undertaken in the 

laboratory required many varied environments. Often these were modified slightly for 
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various trials to provide a basis for comparison of the user's performance. Both 

immersive and non-immersive displays were used, complemented with appropriate 

input devices. The target platform for the system was a network of IBM Personal 

Computer (PC) compatibles. Due to the large number of devices and tasks that were 

required to simulate the YEs, the devices and simulation workload had to be 

distributed amongst these machines. 

The design of the system was constrained by the technology used and it was at this 

point that the concepts underlying a more ideal architecture began to form. This thesis 

represents the development of these initial ideas into a coherent design and a prototype 

implementation for a system capable of modeling and executing VEs on different types 

of machines connected over varying distances. 

1.2 A Modeling Time-Line 

To understand the YE modeling techniques used today, it is beneficial to look at the 

heritage that has influenced the current process. With this knowledge we may reflect 

on existing approaches and speculate on how these will (or should) change in the 

future. 

1.2.1 Past 

The strong relationship that has been established between VR and visuals is not an 

accident. Pictures drawn by computers have fascinated people for the past three 

decades and, shortly after this ability was recognised, they were applied to a real world 

task. Computer-Aided Design (CAD) started its life as a two-dimensional electronic 

technical drawing bench and has, over the years, naturally progressed into the third 

dimension. Initially models were pure geometry, but as the applications of CAD 

increased in step with processing power, so other attributes were added such as 

material properties. Amongst the properties described were the material's visual 

appearance, e.g. colour, texture, reflectivity, etc. Nowadays high quality renderings 

3 



representing realistic materials can be produced from CAD models which are used to 

design everything from bolts to skyscrapers. 

Whilst one branch of computer graphics worked on attaining realism, another 

concentrated on speeding the process up so that interaction with the images was 

possible. The military were one of the first institutions to recognise the possible 

applications for real-time 3D graphics and they had the money required to fund the 

development of the necessary hardware and software. The resulting spectrum of 

solutions covered the high-end, high quality flight simulators (Schachter, 1981) down 

to the (relatively) low-cost SIMNET networked tank simulators (Kanarick, 1991). 

These simulators were built around a fast visual display but now there was also a 

requirement to model additional information. Not just material properties, but the 

attributes of the actual thing being simulated which, by necessity, also included its 

environment. This extra information was typically specified separately from the visual 

model of the simulation and both were managed simultaneously by the simulator 

software. 

1.2.2 Present 

The birth of VR signalled the start of a reintegration of the various areas of computer 

graphics. Technology was sufficiently advanced and at a price which meant that such 

systems were affordable by more people. One of the earliest applications was 

architectural walk-throughs which presented CAD models at interactive rates (Airey et 

al., 1990). The line between the YR and low-end real-time simulation markets has also 

become blurred and, for the most part, has meant absorbing the complexity of the 

simulations. 

Audio is now rated favourably with visuals and sound effects are not limited to plain 

stereo but may be positioned and oriented in 3D space (Wheeler et al., 1993). Single 

projection displays have been joined by many types of stereoscopic displays which 

present a pseudo-3D view on the VE (Rushton and Wann, 1993). There is active 

research into tactile displays which are dependent on surface textures and their 
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properties for the technology's success (Minsky et al., 1990), e.g. softness, apparent 

temperature, etc. Force-feedback devices have also been used in applications, the most 

cited of which is molecular docking (Ouh-young et al., 1988). Subsequently, there is a 

need for Physically-Based Modeling (PBM) of the VE which can rely on a considerable 

number of variables and equations. Of course there is no requirement to develop VEs 

that closely model our own environment, which means the structure and content of the 

information accompanying the seemingly obligatory visuals can vary a great deal. 

Indeed, it may be beneficial to model information that is not part of the YE per se but 

affects how objects interact within it, e.g. medium,, aura, focus, nimbus and adapters 

(Benford and Fahlén, 1993). 

Attempting to meet this sudden increase in information, existing visual modelers have 

been retrofitted with new features to accommodate some of the non-visual information 

that designers want to model, e.g. audio links, behavioural information, physically-

based modeling parameters, etc. The result is often unwieldy and inflexible with 

modeling still centred around visuals instead of approaching the modeling task without 

bias. This is, in fact, the best case; it is still common to find integration of data within 

the application rather than at a higher-level. This is partially due to the fact that each 

YE system uses its own modeling system with a proprietary structure and format. 

Certainly any exchange of information requires an explicit conversion process which 

can often lead to a loss of detail and/or a sub-standard content. 

1.2.3 Future 

The amount and type of information that needs to be modeled will inevitably increase 

and, unless a suitable flexible framework is adopted, the VE model may collapse under 

its own weight. Standardisation of any area is generally a bad idea when that area is 

not well understood, but if each proposed solution is sufficiently flexible then there is 

the possibility of a gradual merging until, eventually, only one form exists. This 

approach can be applied to YE modeling which can take advantage of the benefits of 

standardisation to aid high-level tools development and ease data exchange. A good 

starting point for the development of such a model would be the elimination of the 



emphasis on any one type/medium of information used to build a VE, e.g. visuals, 

audio, etc. 

1.3 Distributing Simulations 

The more complex a model becomes, the more computing power a system will need to 

execute it. Only so much computational power can be squeezed into a single machine 

and, for anything other than small models, it will be necessary to distribute the 

simulation between a number of machines to cope with the extra load. In this way 

more efficient use of each machine's resources can be made and the possibility of 

multiple user interaction is introduced. 

The problems of distributing a simulation over a number of machines are many and are 

compounded by increasing the distance between machines. These problems are slightly 

different depending on the combination of hardware used and the geographical distance 

covered. There is no one technique that can be applied at all levels of distribution that 

will address all of the problems posed. Therefore a suitable multi-level solution is 

needed that applies the right technique in the right place. 

Ideally, the modeling technique should influence the architecture of the simulation 

system but it is not uncommon for this situation to be reversed (DIS, 1994). If 

improvements are to be made to the modeling process, it is essential that the underlying 

system provides the comprehensive support necessary. 

1.4 Interactivity 

The work presented in this thesis first takes a broad look at VE systems and then 

concentrates on a specific aspect: interactivity. The adjective "interactive" is 

commonly used to indicate that the thing it is applied to runs at a fast enough rate to 

form some relationship with the human user. Many of the observations and techniques 

described in this work are valid regardless of the applications such a system is applied 

to, but, in light of the primary concern, the emphasis has been placed on two factors: 

consistency and real-time. 



Consistency refers to the problem of ensuring that the YE each participant is 

interacting with appears the same in spite of the fact that it may be distributed over a 

number machines covering a certain geographical distance. It also deals with the issues 

regarding multiple users and the problems they bring, e.g. two users may not 

simultaneously manipulate the same properties of a given object. 

Whilst interactivity is a goal, "real-time" identifies a set of techniques that may be used 

to realise that goal. The latter term is often confusingly used to describe interactive 

systems as the author will find in chapter 2 when current YE systems are reviewed. 

However, the author has attempted to distinguish the two starting in chapters 3 and 4. 

Consequently, real-time has been applied in two ways to the original work in this 

thesis. Firstly, to describe real-time displays that produce a fast, constant update rate 

to enable effective interaction; and secondly, to describe the fundamental nature of the 

system that permits these types of displays to be realised and support consistency. 

Real-time displays are a requirement of the ideal YE system considered here, but are 

not essential for all the applications that such a system may be used for. For example, 

somebody visualising a complex data set may be happy to tolerate a few display 

updates a second, whereas a pilot in a flight simulator may find his job very difficult if 

the display is updated less than 60 times a second. These examples may also be used to 

scope the importance of consistency. Modification of one part of the data set whilst 

another person views a different portion may be perfectly acceptable if it does not 

affect that person's task. On the other hand, suddenly introducing another plane into a 

networked flight simulation or perhaps removing part of the terrain could have quite 

profound consequences. 

It is very important to understand that a real-time display is not a physical display that 

is just updated fast, e.g. a monitor, it is a display of the YE which itself is updated at a 

fast rate with a constant duration in between updates. Possible types of displays 

include visual, aural and tactile. 
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1.5 Thesis Preview 

Chapter 2 presents a method of classifying the issues involved in the design of a system 

capable of distributing VEs. Existing solutions to this problem are described, including 

their approaches to modeling, and then compared using the classification scheme. 

Chapter 3 looks at the whole concept of environment modeling, reassesses what we are 

trying to accomplish and presents a new approach to the task. During this process, the 

structure of our natural environment is examined in the hope that it will provide 

enlightenment about modeling in general. This section concludes by deriving a suitable 

definition and abstract model for a yE. Finally, an aspect of human-computer 

interaction is highlighted which has implications on how VEs are simulated. Many 

systems today have variable-rate displays that distort some of the information a human 

uses to make decisions. A visual perception theory is used to demonstrate how a 

constant-rate display can resolve this problem. 

Based upon the knowledge gained in the previous chapters, the design of a new 

distributed VE system is presented in chapter 4. First of all, a flexible modeling 

language is described that is integral to the system architecture. Rather than targeting a 

specific set of hardware or geographical distance, the system solution is structured in 

such a way that the correct techniques are applied at the right time, so that all 

configurations may be supported. 

The implementation of a prototype system is described in chapter 5. Not all of the 

design's elements are fully implemented, but it is sufficiently represented to verify the 

viability of the ideas used in the proposed solution. Each of the core system 

components are dealt with in turn, addressing the key decisions taken during 

implementation and the major data structures used. 

Chapter 6 is an evaluation of the prototype which was implemented on a number of test 

platforms. Performance of the building-block components is established before dealing 

with system performance as a whole. The chapter concludes by outlining a number of 



enhancements that could be made to the design and implementation in order to improve 

the prototype's performance. 

The thesis concludes in chapter 7 with the application of the classification scheme to 

the proposed system, a summary of its most important features and suggestions for 

further work. 

1.6 Summary 

This chapter began with a cursory introduction to VR and VEs which is significantly 

expanded in the next two chapters. The author's motivations for this work were based 

purely on practical experience, combined with the wish to make the development of 

and interaction with VEs less painful. The reasons for the current state of VE 

modeling were outlined and their weaknesses exposed. At the centre of any solution to 

this problem is the modeling system. A more flexible approach is required, as well as 

the underlying framework to support this process and an integrated 

modeling/simulation system capable of handling the result. The road to a new software 

architecture begins with an examination of existing system solutions. 



Chapter 2 

Design Issues for Distributed Virtual 
Environment Systems 

"640K ought to be enough for anybody." 

Bill Gates 

When looking at existing systems we are interested in their solutions to two problems: 

how they tackle the problem of VE modeling and how they "execute" a given yE. 

The former is a much more abstract area and in theory may be independent of the 

underlying mechanism of distribution and VE support software. However, in reality 

this is rarely the case. Sometimes the implementation drives the modeling system 

used and vice-versa. Whilst treating these aspects separately is desirable, it is also 

very difficult since describing one aspect cannot be done without referral to features 

of the other. This chapter examines the issues that must be addressed when designing 

a VE system. Existing distributed simulation systems solutions are analysed with 

reference to the outlined issues and comparisons are drawn. 

The term "distributed simulation" is very general and is open to many interpretations. 

"Simulations" can be broadly classified as either off-line/computationally intensive or 

interactive/low fidelity. The first class is the type of simulation that is often called 

discrete event simulation whereas driving and flight simulators would fall into the 

second class. A similar decomposition of "distribution" may also be attempted. It can 

be used to describe a simulation that is distributed over a number of tightly-coupled 

computational nodes with the intention to speed up the calculations. This fits well 

with the first class of simulation and when considering VR and interactive simulations 
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this definition is also valid. However, the emphasis is more on the distribution of the 

simulation over some geographical distance such that multiple people may interact. 

Each of these types have their own requirements and hence their solutions cannot 

necessarily be applied to each other's problems. For example, the fact that there is a 

human being interacting with the simulation brings onboard a number of new 

requirements or, more realistically, constraints on how the simulation may behave. 

2.1 Discrete Event Simulation Heritage 

Before re-inventing the wheel it is beneficial to look at the historically largest form of 

simulation: discrete event simulation. There are two approaches for ensuring the 

correctness of a distributed simulation': optimistic and conservative. 

2.1.1 Optimistic versus Conservative 

Initially, all simulations used a conservative solution to control their progression. 

Each simulation consists of a certain number of processes. Only when all processes 

have completed their work will simulation time increase and the next cycle commence. 

The obvious disadvantage to this approach is that those processes that take 

significantly less time to complete their work will be forced to wait. If each process 

was allocated to a physical processor then this would result in a considerable waste of 

the computational resources. 

To overcome this weakness a different approach was sought. The optimistic solution 

permits each process to progress at their own rate. This would work fine if all 

processes were independent of one another. Unfortunately this is often not true and a 

situation may arise where a slow process communicates with a faster process 

indicating that their previous work was in error. Since all of the fast process' 

subsequent work was based on an invalid state, this must be abandoned and 

recalculated using the correct state. The method to restore this state is known as 

I In discrete event simulation, distribution is almost always used just to increase the simulations 
s—. 
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rollback. This solution is called optimistic because it works on the assumption that 

the situations requiring rollbacks rarely occur. 

2.1.2 Time Warp 

Time Warp (TV/) is an optimistic policy simulation model that is structured as a 

number of processes that each maintain a Local Virtual Time (LVT) (Jefferson and 

Sowizral, 1985). Each process may progress at its own rate, advancing LVT as 

necessary. Each message that is sent between processes indicates the LVT of the 

sender and is used to decide whether a rollback is required of the receiver. Keeping a 

list of what has happened in the past soon eats into the resources of each process, so a 

mechanism for collecting old data has been provided. 

At periodic intervals, the operating system interrogates each process for their LVT. 

Then the system's Global Virtual Time (GVT) is updated to show the progression of 

the simulation, taking into consideration the slowest process. When GVT is updated, 

any data previous to this time may be discarded since rollback may not occur before 

GVT. The choice of algorithm to calculate GVT is crucial to system performance and 

can make the difference between running or not running a simulation if large state lists 

are required (Bellenot, 1990; D'Souza et al., 1994). 

Further optimisation may be made by finding a way to reduce the amount of state 

saved in these lists. A basic mechanism would save the complete process state, 

however this is expensive both in terms of time taken to save the state and the time 

taken to perform a rollback. By performing incremental state saving (Cleary et al., 

1994), i.e. only saving the state that has changed, it is possible to improve efficiency. 

An alternative approach, called adaptive checkpointing, is to adjust the rate at which 

the process state is saved based upon the rollback behaviour (Ronngren and Ayani, 

1994). 
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2.1.3 Discrete Event Simulation Summary 

TW works well in discrete-event simulations and is a very popular model, but there 

are a number of problems. TW was not designed to be used for interactive 

applications which rely on completing all computations in a very small amount of time 

(-33 ms to achieve a 30 Hz update rate). In order to ensure that these strict deadlines 

are met, some notion of predictability must be provided. Rollback is a result of 

processes being allowed to continue at their own rate and can be seen as self defeating 

since the rate of progress is not controlled and the occurrences of rollbacks are 

unpredictable. In addition, one rollback may trigger another rollback in another 

process and so on until, potentially, each process has been rolled back to GVT. 

However, there has been some recent work on the application of TW to real-time 

simulations resulting in the development of a Parallel Optimistic Real-Time Simulator 

(PORTS - Ghosh et al., 1994). In PORTS, GVT is calculated continuously, i.e. after 

each event in the simulation, in order to speed the commitment of 110 operations. 

Incremental state saving is shown to be unpredictable and one proposed solution is to 

save the complete state every n events (where n is a constant for a particular 

simulation) in a similar way to adaptive checkpointing. This enables a bounded value 

for state saving and state restoration, thereby having predictable properties in the 

simulator. Deadline scheduling is also simplified because there is no event-migration 

or explicit load balancing and is done on a per-processor basis. 

Despite this encouraging work, the application of PORTS to interactive simulations is 

unlikely. Take the case of a driving simulator where the driver is monitoring the 

environment and taking actions accordingly. Any rollbacks could interrupt the flow 

of time and would make it seem as though they are being controlled like a video 

recorder - pause, rewind, fast-forward and play - clearly defeating the goal of realism. 

In short, you cannot rollback a human being. 

Conservative solutions ensure that situations that would require a rollback do not 

happen at all by, what proponents of optimistic policy would see as, restricting the 

progress of the simulation. This has the potential to under-utilise the available 

13 



resources, but with a good load-balancing algorithm the impact of such an approach 

can be reduced. The perceived advantage of an optimistic mechanism is that if a 

process requires very little interaction with other processes in the simulation, faster 

progression may be made if it is allowed to go at its own rate (Lipton and Mizell, 

1990). This may also be perceived as a waste of resources that may be better 

allocated to other processes in the simulation. 

Therefore, since there may be many humans interacting with the simulations of VEs, a 

conservative system is the only workable solution. This will also aid predictability and 

scheduling to meet the real-time deadlines that are required of a VE system (discussed 

in section 3.3). 

2.2 Issues 

There are many problem areas to consider when building a VE system and there are 

even more implications. There is no established classification scheme available with 

which these areas can be examined and different solutions compared, so an attempt 

has been made to construct one. Separating one area from another was more difficult 

in some cases than others. Not breaking a problem area down into separate issues 

would make comparison difficult, on the other hand, splitting the area into too many 

issues would provide a distorted representation. There are a lot of interdependencies 

between these issues, but it is hoped that the divisions made will aid comparison 

rather than hinder comprehension. This section looks at each issue in turn and 

assesses the impact they have on system design. 

2.2.1 Real-time 

The largest single constraint on an interactive simulation is that it must operate in 

real-time. As described in section 1.4, a real-time system permits the generation of 

real-time displays which are updated fast enough to allow the participant to effectively 

interact with the simulation and other participants. How fast may vary depending 

upon the exact nature of the simulation, but the goal is to reduce the delays between 

human action and simulation reaction to an imperceptible constant duration. 
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A simulation is composed of a sequence of discrete time steps in between which the 

calculations to update the environment must be completed. Failure to achieve this 

could result in a breakdown of realism (if that is being striven for) or, at the very least, 

a reduction in the efficiency of the participant to interact with the simulation. While it 

is true that simulation time may continue at any rate if there is no human or time-

dependent device involved in the loop, we are primarily interested in interactive 

simulations and therefore the actual time between each simulation time step must be 

constant. We live in a constant world and to require us to interact with anything 

other than this is contrary to all our natural skills and will present us with 

corresponding difficulties (Hawkes et al., 1995). This is discussed further in section 

3.3. 

If these stringent deadlines are to be met then there must be a degree of predictability 

in the simulation's execution. An optimistic solution, as discussed earlier, is not very 

predictable whilst a conservative approach may be seen as a good basis to build upon. 

The design implications of real-time systems are discussed in section 4.3. 

2.2.2 Communications 

The structure of the communications subsystem is usually the most inflexible 

component of any system. The choice of platform and its location dictate what 

communications hardware is available. Consequently, the technique used to manage 

data is often directly influenced by this component. 

2.2.2.1 Point-to-point 

A pointtopoint2  transfer of information may be achieved by either establishing a link 

between sender and receiver at every transmission, or creating a permanent 

connection which is destroyed when there will be no more communications. 

Connection-oriented protocols such as Transmission Control Protocol/Internet 

2 Also known as unicast. 
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Protocol (TCP/IP) are commonly used and provide a reliable service. Unfortunately, 

ensuring that the receiver gets all the information and in the right order generates a 

fair amount of overhead. Furthermore, each receiver must acknowledge receipt of the 

transmission. 

2.2.2.2 Broadcast 

One alternative is to "broadcast" the information on the network and hope that 

anyone interested in that information will hear the broadcast and pick it up. This is 

the exact opposite of the point-to-point mechanism and is supported in the User 

Datagram Protocol (UDP). This connectionless protocol uses self contained, 

addressed packets (or datagrams) which puts the onus on the application to ensure 

that the data is processed in the correct order. The major advantage of this method is 

that there is no need to maintain a large number of connections. Apart from being 

unreliable, its main disadvantage is that it is possible to flood a network with 

broadcast messages which are of no interest to other connected systems and thus 

degrade performance. 

2.2.2.3 Multicast 

An improvement on broadcasting is multicasting. This works in the same way except 

that the packets are only sent to a subset of the network rather than the whole. Nodes 

may belong to one or more multicast groups and hence will only receive transmissions 

that are intended for them. It was originally available on LANs such as Ethernet and 

Fibre Distributed Data Interface (FDDI) but is now available at the network layer 

through the Multicast Backbone (MBONE - Macedonia et al., 1994). MBONE is a 

virtual network which runs on the same physical media as the Internet, but 

encapsulates multicast packets in normal IP packets and uses routers to forward them 

to their correct destinations. Multicast has yet to be standardised and consequently 

few implementations are available. More importantly, multicast per se is unreliable, 

although some research has been done on providing a reliable multicast service 

(Talpede and Ammar, 1995; VerIssimo and Marques, 1990). However, unless 
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othervise stated, any reference to multicast in this thesis is intended to describe the 

more common unreliable mechanism. 

2.2.2.4 Bandwidth 

The amount of data that may be transmitted in a given period of time has more impact 

on system design than any of these other factors. If only one network medium is 

being used then the task of designing an efficient protocol is relatively straightforward 

(but not simple). However, if multiple mediums are being catered for the problem 

becomes considerably more complex. A fast modem can manage approximately 28 

Kbps, Ethernet has a bandwidth of 10 Mbps whilst EDDI and Fast Ethernet can offer 

100 Mbps. It is quite common for this bandwidth to be shared amongst many other 

nodes thus reducing the effective data bandwidth considerably. There is also no way 

to guarantee a fraction of this bandwidth which adds to the problems. The evolving 

Asynchronous Transfer Mode (ATM) technology permits bandwidth to be reserved 

(channels), but this is currently even less available than multicast technology 

(Boisseau et al., 1995). 

2.2.2.5 Latency 

Communications latency is related to bandwidth and geographical distance. No 

matter what technological improvements are made, the speed of light will limit the 

transmission speed such that a latency of —3 ms will be introduced for every 900 Km 

covered3 . Thus design decisions are often based on the geographical distance over 

which the system will have to operate. 

2.2.2.6 Shared Memory 

This is a valid way of communicating between processes on the same node and the 

analogy can even be extended to operate over networks: distributed shared memory. 

This calculation does not take into consideration the extra distance incurred as the light bounces off 
the interior of the optical fibre. 
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However, underlying such functionality is always some form of message passing. 

Bandwidth and latency can still be applied to shared memory. Whereas a message-

passing system has built-in concurrency control, a shared memory system must add 

this itself, usually in the form of semaphores. 

2.2.2.7 Structure 

There are three commonly used models for communication in distributed VR systems: 

client/server, peer and hierarchical. In a client/server model one or more physical 

processes are designated as a server whose responsibility is to receive and process 

requests from clients for any of its published services. A client of one process can 

also be a server to another. This model works well for operating system resources, 

e.g. the filing system, network manager and process manager, where there is a limited 

number of potential clients and the client and server are tightly-coupled. If the 

number of clients gets too high, however, the server soon becomes a bottleneck. 

The peer model essentially makes every process in the system equal in terms of 

functionality. This does not mean that there is any duplication of work between peers 

although this is quite common. 

The hierarchical model uses a system whereby processes communicate with other 

processes in the hierarchy by sending the message to their parent process. The parent 

checks the address on the message and either sends it to one of its other children or to 

its parent process. This repeats until the message has arrived at its destination. 

Messages entering the hierarchy from outside are sent to the root (master) process 

which forwards the message as per normal. As with the client/server model, this 

master process may become a bottleneck if the number of child processes increases 

too far, or there is a large amount of communication with other process hierarchies. 

2.2.3 Data Management 

If the whole YE was managed by one machine then data management is 

straightforward, every process has direct access to the information they need with 

little overhead. If the YE is distributed across more than one machine then the 

19 



situation becomes more complex and requires a different solution. The overriding 

concern is to ensure that the integrity of the data is maintained at all times with 

minimal overhead. Other factors that affect solution selection are bandwidth and fault 

tolerance. 

The nature of the target system and the geographical dispersion of the network 

dictates the type of management commonly used. All of the solutions currently 

offered fall within one of the categories shown in Table 2.1. Although general 

comparisons can be made between them, only those systems in the same category can 

be compared point for point. 

Tightly-Coupled Loosely-Coupled 

Near Parallel Processing Distributed Processing 
High Speed LAN LAN 

Far Impossible? Distributed Access 
WAN 

LAN: Local Area Network 
WAN: Wide Area Network 

Table 2.1 Kleinrock distribution classification scheme.. 

2.2.3.1 Localisation 

When the amount of data is small it is preferable that every process should have direct 

access to it. As the volume of data increases so does the burden on resources; 

memory and backing storage diminish rapidly and the amount of computation required 

to process the data rises dramatically. In a distributed system there is also an increase 

in network traffic as the data is moved around from one node to another. 

It is therefore desirable to segment the data in some logical way such that any given 

process is only interested in one segment at a time (mostly). One common criteria 

used for segmentation is that of space. When the VE covers a large (virtual) distance 

it is broken up into a number of areas which are often allocated by and under the 

control of an Area Manager. The size of the areas can depend on many things, such 

as visibility, memory, speed of movement through the VE, etc., and upon the media, 



e.g. visual, aural, etc. The shape of each area is often kept uniform for simplicity's 

sake. Rectangular areas are often favoured although some work has been done with 

hexagonal areas (Macedonia etal., 1995). However, some research has examined the 

subdivision of model space based on visibility alone (Airey et al., 1990). When 

applied to architectural models, the resulting binary space subdivision algorithm 

creates cells which are bounded by a number of splitting planes and can therefore be 

irregularly shaped. 

2.2.3.2 Complete Distribution 

This approach distributes the complete VE state between every node in the network. 

There is no duplication of information and any intention to change part of the YE 

state not under the control of a given process must be communicated to the process 

managing that data. Unless the state of the VE is distributed amongst all the nodes in 

the network sensibly, it is possible that such an arrangement could be detrimental to 

performance. 

Since a given piece of data is only held in one place this solution is susceptible to 

machine failure or breaks in the communication paths. Such a technique can be 

applied at the near/tightly-coupled level and, perhaps, at the near/loosely-coupled 

level. 

2.2.3.3 Partial Replication 

When using partial replication only the parts of the VE state that will be modified by a 

given process will be held locally and only when needed. There are two sub-

categories of partial replication: active and passive. 

Active replication is where the process wishing to make the state change initiates the 

request for a local copy of the state. Modifications are made locally and the updated 

state is sent back to the originator. 

Passive, or demand replication (Broil, 1995), requires an initial registration of interest 

in part (or all) of the YE state when the process is created. From that moment on it is 
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sent copies of that subset of state when it has been modified by one of the other 

processes. Changes may be made locally and sent back or, alternatively, the owner is 

informed of the desired changes and then makes them itself. A variation on this 

method is that the remote process receives updates of the object's exported 

behavioural model (section 2.2.4.5). In which case the remote process is not 

expected to want to modify the object's state, just monitor it. 

If changes are made locally it would be possible for multiple copies to be taken from 

multiple processes, altered and submitted simultaneously, therefore resulting in an 

inconsistent state. To prevent this from happening a system of read/write locks may 

be employed. Before obtaining a local copy of the state for modification, a write lock 

is requested. This will be granted once any outstanding write locks are relinquished. 

Either the requester must block until the lock is granted, or a time-out can be 

specified which will permit the requester to continue with other work. On submitting 

the changes the modifications are made and the write lock released. If multiple locks 

need to be acquired before proceeding then the problem of deadlock also arises. 

There are several variations on this approach but all are equally complex. However, if 

all changes are made by the owner there is no need for this complex system and the 

modification process is a lot more predictable. This technique is most commonly used 

at the near/loosely-coupled level, although it could be applied at the far/loosely-

coupled level if bandwidth was high enough. 

2.2.3.4 Total Replication 

This solution requires the complete VE state (or the essence of it) to be held at each 

node in the network. The two possible reasons for storing the complete VE state are, 

firstly, that the node's calculations are based upon most or all of that information or, 

secondly, the distance between nodes is so great that latency has become a real 

problem (far/loosely-coupled). This method does not scale well since every node 

must keep each other informed of updates which soon consumes bandwidth. The 

allocation of locks is infeasible so passive replication must be used to receive 

continuous updates on YE state. 
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2.2.4 Computation Management 

Just as data is distributed, so can the computation. By computation we mean any 

work involving a specific object, whether it is an operation within or upon that object. 

Fortunately we can use similar categories to explore the options. 

2.2.4.1 Complete Distribution 

All operations on an object are performed on the same node that holds the object's 

data. If one process wishes to perform an operation on another then it must send a 

message to the other process. The allocation of processes to nodes may be optimised 

by enlisting the help of a load-balancing algorithm (section 4.3.1.4). By monitoring 

resource consumption and communication patterns the optimum allocation may be 

derived. This would permit most objects that often communicate with one another to 

be located on the same node - the movement of processes is commonly known as 

migration. 

Such an approach works well on near/tightly-coupled systems but the latency and low 

bandwidth found in loosely-coupled systems can reduce its efficiency. 

2.2.4.2 Partial Distribution 

This method is similar to complete distribution except that the object's state is usually 

acquired using one of the passive or active partial data replication techniques and the 

changes made locally. There is, however, no duplication of computational effort. 

2.2.4.3 Partial Replication 

To compensate for slower communications links, e.g. near/loosely-coupled, it is 

possible to replicate some of the state computation on some or all of the nodes. 

These "ghost" or proxy processes are typically used to approximate the object's 

behaviour using a method called dead-reckoning (section 2.2.4.5). The process that 

performs the full simulation of that object also runs this model in parallel and when 

the two differ by a pre-defined amount, a copy of the real object's state variables is 
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sent to all of the ghost processes. Subsequent approximations are then based on the 

latest update. 

Dead-reckoning uses a simplified model of the object's behaviour. Typical key state 

variables used in this model are position and velocity which may be linearly. 

extrapolated to provide a low fidelity approximation. Higher fidelity may be achieved 

by incorporating other variables, such as linear acceleration and angular velocity, 

which are often needed by objects with highly dynamic behaviour, e.g. aircraft 

(Harvey etal., 1991; Le Saché and de Medeuil, 1993; McCarty etal., 1994). 

This technique is very effective in reducing the amount of bandwidth required but the 

object behaviour produced in the ghost object can be sufficiently different from the 

normal to attract attention. This may, of course, be improved by increasing the 

complexity of the approximation, but there is a need to strike a careful balance 

between full and approximate simulation. 

2.2.4.4 Total Replication 

Simulating each object on each node may be required if the simulation is running over 

a very large distance (far/loosely-coupled). Receiving periodic updates from other 

processes when using partial replication is not practical when bandwidth is at a 

premium. Instead, only information that changes the behaviour of the mirrored 

objects is sent, thus permitting all calculations to be performed locally. Behaviour 

therefore appears correct everywhere (although maybe not at exactly the same 

moment in time) but at the cost of duplicated calculations. 

2.2.4.5 Behaviour 

What constitutes object "behaviour" and what form this takes is currently a topic of 

debate. In the strict object-oriented sense the data are the attributes, and the methods 

manipulate the attributes in a pre-defined way, e.g. modifying position over time. 

Therefore combining data and methods gives us the impression of behaviour. 
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However, the computational load required to support this object behaviour can be 

quite high, e.g. flight dynamics for an aircraft. 

It is possible to classify object behaviour as either deterministic or non-deterministic. 

In general, objects that do not sample input devices are deterministic, whilst those 

objects that do, including those under the control of humans, are non-deterministic. 

For example, the decisions made by a robot car can be determined in advance whereas 

the behaviour of a virtual car being driven by a human in a driving simulator cannot be 

predicted (Hawkes, 1993). The ability to predict behaviour means that it is possible 

to overcome communication and system latency. 

Roehi (1995) has suggested a refined classification scheme whereby deterministic 

behaviour is split into two sub-categories: static and animated. Similarly, non-

deterministic behaviour can be Newtonian or intelligent. The state of a static object is 

constant and therefore 100% predictable for any give time; an animated object 

changes state over time but this is stilt predictable. A Newtonian object interacts with 

its environment but does so in a straightforward manner, whilst an intelligent object 

can have a complex behaviour and may be as unpredictable as a human. 

In a similar manner, Roehl presents 4 levels of behaviour which may be used to 

classify the type of distribution used: 

0. Direct modification of an object's attributes (static). 

Change in an object's attributes over time (animated). 

Series of calls to level 1 behaviours to achieve a task (Newtonian). 

Top-level decision making (intelligent). 

The most basic form of behaviour distribution takes place between levels 0 and 1, 

when information such as position and orientation are transmitted at every simulation 

update. Dead-reckoning falls between level I and 2. Attempting to distribute 

behaviour any higher is problematic unless the state of the simulation at each node is 

guaranteed to be exactly the same at any given time. Indeed, levels 2 and 3 may not 

even be implemented in software, they could be provided by human interaction. 
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An example of a level 2 behaviour system is the Two-Point Paradigm (Bryson, 1991). 

It is based on interaction in classical physics which may be taken as due to the forces 

that act pair-wise between physical objects. While many forces may act on objects 

simultaneously, the net action of these forces may be represented as the sum of the 

individual forces on that object from the other objects. To keep track of all these 

interactions an Interaction Matrix is used whereby each row and column represents 

an object and the entries are lists of interactions between the objects for that row and 

column. For example, Figure 2.1 shows the simple case of a bouncing ball. The ball 

is acted on by the floor in two ways: gravity pulling it down and bouncing which 

reverses the z component of the velocity. The floor is not acted upon by the ball. 

The ball's cross-reference entry (bottom right) updates its velocity from its 

acceleration and its position from its velocity. 

Object 1 	Object 2 
(floor) 	(ball) 

null 
Gravity 

bounce 

Integrate 
null Equations of 

Motion 

Object 1 
(floor) 

Object 2 
(ball) 

II 

floor 

Figure 2.1 Example interaction matrix. 

This technique can be extended to include other types of interaction including those 

with the user. With regards to distribution, it is only necessary to send changes in the 

interactions between objects and details of any new objects from one node to another. 

Each node can then calculate the evolution of the VE on its own, which reduces the 

network bandwidth required per object. 

2.2.5 VE Modeling 

The issue of modeling the yE will be fully discussed in the next chapter, however 

there are two aspects which can be usefully addressed beforehand. Firstly, whether 

the system can support more than one VE simultaneously and/or how multiple VIEs 
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are structured. Secondly, if any special provisions are made for users or participants 

in the yE. 

2.2.5.1 Multiple VEs 

Support for multiple VEs means that the system is effectively running parallel 

simulations using the same or different VE model. By using the same yE it could be 

possible to maximise the use of specific objects or areas of the VE (Roehl, 1995). For 

example, a virtual town hall could be used for meetings by different groups of people 

simultaneously. 

If multiple, different VEs are supported then there is an opportunity to maximise the 

system's resources. Such an ability does, however, raise extra problems regarding 

scheduling, load balancing, etc. If the concurrent execution of VEs is available then a 

decision must be made as to whether an object may move from one environment to 

another and, if so, how this should be achieved. 

Another possible use for multiple YEs is in the modeling process, where some or all 

of the properties of one VE are used to help speed development of another. The 

nature of the relationship between environments is important, as is the structure 

formed. One possible organisational technique is that of object-oriented inheritance 

where the attributes of one environment are inherited and augmented/extended by 

another environment. 

2.2.5.2 Users 

Typically, either the user is treated as a separate object or they are an integral part of 

the system. Also of interest, is whether multiple users can be supported or if only one 

may be present in a VE at a time. 

Representing the user as an object has the advantage that it implicitly means that 

multiple users are supported, provided that there are enough input and output devices 

available. Added flexibility is provided if devices are not integrated into the user code 

directly, but exist as objects in their own right. The price of this object-oriented 
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structure is, of course, performance - the extra communications overhead increases 

system latency. 

Either the user's representation can be described in the same manner as every other 

object or some extra functionality is provided for just this purpose. The latter case is 

usually used when the user is integrated into the system or a part thereof. 

2.2.6 Time Management 

The relationship between simulation time and real clock time may be any function as 

long as it is constant. The simulation clock is used as the basis for synchronisation of 

the VE either explicitly or implicitly. Implicit progression is when simulation time is 

related to real clock time: as the system clock changes, so does simulation time. 

Explicit progression is change through notification from a remote source, e.g. a 

message timestamp or a special message that only occurs at the beginning of each 

time step. 

An additional requirement in a distributed system when using implicit progression is 

to ensure that the real-time clocks on each node are synchronised. One possible 

option is the use of a Global Positioning System (GPS) receiver built into each node. 

A version of GPS was developed by the military - Precision Position System (PPS) - 

for keeping track of friendly forces. It works by sending a signal to 4 out of 21 active 

satellites which send back information from which both positional and time 

information may be extrapolated. A commercial version is available, Standard 

Positioning System (SPS), with reduced positional accuracy - lOOm horizontally 

instead of 17m, etc. Time accuracy with PPS is 100 nanoseconds (ns) and 167 ns 

with SPS. Detailed information can be found in Dana (1995). 

Alternatively, a software algorithm can be used such as the one presented by Le Saché 

and de Medeuil (1993) where a client requests the time from a central source. The 

client synchronises itself on the time at this central source via a couple of timestamped 

messages. The synchronisation formula is shown in Figure 2.2. After clock 
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synchronisation, delays can be measured as the difference between the send and 

receipt times of any given message. 

t = t2 - to + ti 
2 

new time for client 
to: send time of request time message (client clock) 
t 1: send time of response message (server clock) 
t2: reception time of response message (client clock) 

Figure 2.2 A Clock Synchronisation Formula 

The problem of clock synchronisation is also of interest to the Internet community. 

The Network Time Protocol (NTP) is an extension of the client/server approach such 

that it may be applied in very large networks world-wide. For an in-depth description 

of the protocol the reader should refer to Mills (1992). On the general subject of 

clock synchronisation, Mills notes that the accuracy achieved is directly dependent on 

the time taken to achieve it. In other words, a few measurements will suffice for 

accuracy with a second or so, whilst dozens of measurements over many hours will be 

required to achieve millisecond accuracy. The number and frequency of these 

measurements is, however, perceived to be relatively low and unobtrusive to normal 

network operations. 

However, Liskov (1993) notes that clock synchronisation algorithms are based upon 

assumptions about clock rate and message delay. Clocks are, therefore, only 

synchronised with some probability, albeit very high. Subsequently, she also states 

that algorithms should preferably depend on clocks for performance and not for 

correctness. 

2.2.7 Fault Tolerance 

Kim (1995) describes a fault tolerant computer system as "... a system which can 

continue to operate reliably by producing acceptable outputs in spite of occasional 

occurrences of component failures, including those of both hardware and software 

components". Fault-tolerance comes from reliability and availability (Milenkovic, 

1992). System reliability can be provided by partial replication of important data and 
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duplication of key-hardware, whilst the availability of the system is ensured by keeping 

multiple copies of the system's resources. Furthermore, a system may be deemed 

recoverable if it can revert to a previous state and robust if it is capable of surviving a 

hardware failure. However, one does not imply the other. 

Degree Assumable Damages Recovery Capabilities 

4 No loss of visible actions (i.e. output Action-level fault tolerance 
of actions or database update actions) (recovery of an interrupted visible action) 

3 Loss of one or more visible actions Slow recovery of a service function 
(no loss of hardware) 

2 Loss of one or more service functions Partial recovery of hardware 
_________________________________ (service degradation) 

1 Loss of all but a core set of critical Minimum recovery of core hardware 
service functions (minimum critical services) 

0 Loss of critical service No fault tolerance 

Table 2.2 Degrees of fault tolerance. 

Five degrees of fault-tolerance have been proposed by Kim which are reproduced in 

Table 2.2. Degree-4 is the highest level of fault tolerance (reliability) and ensures that 

all actions are completed successfully regardless of fault occurrences. It is possible 

that recovery from a fault may take so long that there is no choice but to abandon 

execution of visible action(s), restore the system to a previous state and then start 

again. Degree-3 caters for this case whilst degree-2 provides service degradation 

when some less-critical components fail and cannot be recovered. In the worst case, 

only the minimum critical services can be recovered and maintained which gives us 

degree-1 fault tolerance. If even this last stand is not possible then it is not a fault 

tolerant system. 

A common way of providing fault tolerance is redundancy which may be applied to 

both hardware and software components. For the purposes of this thesis we are 

primarily interested in software components. The availability of broadcast 

communications on networks has been a great boon to the implementation of 

redundancy. One solution is to have a node which eavesdrops all inter-node 

communications to keep an up-to-date copy of each node's state. This means that if a 
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node should fail (or a process on that node) then its state may be rebuilt quickly 

without replaying all the messages. 

In distributed real-time systems it is common for the physical network to be 

duplicated, therefore providing a second physical communication path should the 

other fail. In such a system there is also a need for deterministic and reliable delivery 

or messages, which has provoked some researchers into investigating reliable 

multicast protocols (Grunsteidl and Kopetz, 1991). 

2.2.8 Security 

Current efforts in this area have typically been limited to the encryption of the data 

stream between nodes so that no unwanted party can listen in on the simulation. This 

could be done in software at the communications level or utilise special hardware. 

The complexity of the system protocol determines the degree to which security can be 

breached; a simple protocol may even permit unauthorised objects or people to 

participate in the simulation. 

On another level, security also deals with access to sensitive information. Certain 

system services may need to be restricted, e.g. access to backing storage, or a group 

of objects may wish to share information with each other and no one else. 

Obviously, such additions to the system architecture come at a price. Even data 

encryption hardware increases latency and a software-implemented access control 

system can eat away at CPU cycles. 

2.2.9 Issues Summary 

This section has presented a number of issues that must be addressed during the 

design process. Some of these are given higher priority than others and as such may 

not be accounted for in the final design. This is not because they are unimportant, 

merely because the field is new and the problems presented by the few issues 

addressed are quite significant. The next section looks at the current major system 

solutions. 
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2.3 Implementations 

Ensuring a consistent and accurate environment must be the main goal of any human-

in-the-loop simulator. Progressing the simulation at a constant rate, fast enough so 

that the participant may effectively interact with it, is the second goal. It is clear from 

the overview presented in the previous section that many of the design issues are 

entwined with each other. Deriving an architecture that correctly resolves each issue 

is a challenging task. This section examines some of the existing distributed yE 

systems and describes their overall structure. 

2.3.1 SiMulation NETworking System (SIMNET) 

SIMNET was the first system to prototype and demonstrate the feasibility of a 

distributed interactive simulation (Kanarick, 1991). It was initiated by the U.S. 

Defense Advanced Research Projects Agency (DARPA) and funded by the U.S. 

Army. This project involved many different companies but, to the author's 

knowledge, no academic institutions. 

Some of the systems requirements were (Calvin et al., 1993): 

• Capable of supporting lOOs to 100,000s of entities. 

• Entities are geographically distributed. 

• Simulations are heterogeneous. 

• Computations are distributed (no central site). 

• Operates in real-time. 

• Must be low cost. 

In order to meet the last requirement SIMNET was based around an Ethernet 

network. The maximum bandwidth of Ethernet is 10 Mbps and was one factor in the 

failure to support the large numbers of entities originally specified. 250 of the original 

SIMNET simulators (nodes) are currently in operation throughout the world although 

a node is capable of simulating more than one entity. A good example of this was the 

provision for Semi-Automated Forces (SAFs) which are semi-autonomous objects 

that have a certain behaviour and are directed from time to time by a human operator. 
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To make the most of the available bandwidth and reduce the computational overhead 

of point-to-point links between nodes, messages are broadcast to all nodes regardless 

of whether they require the information or not. The SIMNET protocol is designed 

such that if a node should miss a message, it will temporarily hold out-of-date 

information which will be amended upon the next transmission. 

A host processor for a SIMNET node is typically an embedded single-board 

microprocessor-based system., or a workstation. Usually Local Area Networks 

(LANs) are used to link nodes within a single site and geographically dispersed sites 

are linked using Wide Area Networks (WANs). Due to the real-time requirement, the 

WANs are either private lines or packet networks with gateways that provide real-

time allocation abilities. For example, the Defense Simulation Internet (DSI), which 

spans the U.S.A, is a dedicated network that uses the TCP/IP protocol but is not 

considered part of the Internet (Locke, 1992). The need to dedicate a network to a 

simulation indicates the problems of geographically dispersed simulations. 

23.2 Distributed Interactive Simulation (DIS) 

The experiences with SIMNET led to DIS which, unlike SIMNET, is being developed 

as a standard for networked, interactive simulation by a committee. An important 

distinction between the two is that SIMNET is a working system, whereas DIS is only 

a protocol definition with associated guidelines and does not specify how the 

implementation should be structured. Even though its applications are subject to 

security, the standard is not; version 1.0 is now a published standard: IEEE 1278. 
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Version 2.0 of the standard (DIS, 1994) summarises the DIS concept as: 

"... a time and space coherent synthetic representation of world 
environments designed for linking the interactive, free play 
activities of people in operational exercises. The synthetic 
environment is created through real-time exchange of data units 
between distributed, computationally autonomous simulation 
applications in the form of simulations, simulators, and 
instrumented equipment interconnected through standard computer 
communicative services. The computational simulation entities 
may be present in one location or may be distributed 
geographically." 

2.3.2.1 Basic Architecture 

The DIS architecture shows its heritage through its basic concepts: 

• No central computer controls the entire simulation exercise. 

• Autonomous simulation applications are responsible for maintaining the 

state of one or more simulation entities. 

• A standard protocol is used for communicating "ground truth" data. 

• Changes in the state of an entity are communicated by simulation 

applications. 

• Perception of events or other entities is determined by the receiving 

application. 

• Dead-reckoning algorithms are used to reduce communications processing. 

When examining the communication services that DIS must provide (as dictated by 

the standards document), we find that data must be transferred between simulations in 

one operation, with or without first establishing a logical connection with the 

destination node. Data may be sent using broadcast, multicast or point-to-point and, 

on the issue of unreliable service, no acceptable limit is set on the amount of data that 

may be lost. As a comment on the performance requirements of the communications 

architecture we are told that it "... should provide a certain level of performance 

characterised in terms of throughput and delay. Both network delay and network 

delay variance should be minimised". Another document (DIWG, 1993) states that 
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the total network delay for tightly-coupled simulators, such as high-performance 

aircraft, should be less than 100 ms and less than 300 ms for other simulators, e.g. 

ground vehicles. 

Each message, or Protocol Data Unit (PDU), has a 32 bit tirnestamp which specifies 

the time at which the contents of the PDU is valid as units of time past the current 

hour. This provides an accuracy of 1.676 microseconds and the timestamps used 

depend on whether system clocks are synchronised or not. If they are, then the 

timestamp is given in Universal Coordinated Time (UTC), if not, then the time is 

relative to the simulation application that issued the PDU. 

Each PDU has an exercise identity field in the header which is an unsigned 8 bit 

number. A unique exercise identifier is assigned to each exercise occurring 

simultaneously on the same communications medium. In essence, DIS can support up 

to 255 (a value of 0 is not valid) parallel VEs. 

2.3.2.2 Performance 

The total number of entities that may be supported is not only a function of the 

communications medium but the error thresholds which are an integral part of the 

dead-reckoning algorithms. Katz (1994) provides us with a graph (Figure 2.3) 

showing how the number of entities a medium may support can be reduced by 

decreasing the threshold (and hence the computational load of the dead-reckoning 

algorithm) and increased by raising the threshold (which increases computational 

load). The results shown are part empirical data and part prediction based on those 

data. 

A state-of-the-art DIS system is said to manage 8,000 entities on Ethernet (using a lax 

error threshold) and that the most expensive dead-reckoning algorithm in use 

consumes around 100 FLoating-point Operations Per Second (FLOPS) per remote 

entity. Interestingly, it is predicted that the original SIMINET goal of 100,000 entities 

will not even be reached using DIS over an FDDI (100 Mbps) network. In fact, the 

Close Combat Tactical Trainer (CCTT), which is being developed by the U.S. Army 

and Loral Federal Systems using DIS and FDDI, expects to ultimately handle only 
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851 entities plus audio communication traffic (Mastaglio and Callahan, 1995). All this 

assumes, of course, that the simulation node itself has enough computational power to 

simulate 100,000 entities. 

Bandwidth 
(Kbitslsec) 

Key 
1 meter threshold, 
lots of action. 

+ 	1 meter threshold, 
average action. 

# - - 10 meter threshold, 
average action. 

I 	I 

10,000 
Ethernet 

144 
ISDN 

56 
modems 

9.6 

10 	100 	1000 	10,000 100,000 

Number of Entities 

Figure 2.3 DIS performance with different dead-reckoning accuracies. 

2.3.3 Naval Postgraduate School Networked Vehicle 
Simulator IV (NPSNET-IV) 

NPSNET is a research project in the Computer Science Department of the Naval 

Postgraduate School. The project's goal is "... to promote the use, understanding 

and appreciation of VR" (NPSNET, 1995). NPSNET utilises SIMNET databases, 

both SIMNET and DIS networking protocols and has a number of key functional 

components: 

. Terrain database defining the 3D surface, e.g. ground or sea, and the various 

features, e.g. roads. 

• Static models such as buildings, trees, etc. 

• Dynamic models such as vehicles, aircraft, etc. 
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• Display algorithms which perform geometrical and rendering calculations on 

the complete VIE from a given viewpoint. 

• Environmental effects which included smoke, clouds, waves, etc. 

• Heads-Up Display (HUD), a 2D overlay which may be used for 

superimposing information on the 3D view of the yE. 

• Networking component which supports both broadcast and multicast. 

• Input options allowing the device(s) to be matched to the application. 

Despite being DIS-compliant, NPSNET only implements a fraction of the DIS 

Protocol, namely the Entity State, Fire and Detonation PDUs. 

There are a number of software components unique to the NPSNET implementation 

(Zyda et al., 1992b), notably the Physically Based Modeling package. The Physically 

Based Modeller (NPSOFF PBM) models rigid-body dynamics using a Newtonian 

framework (Zyda et al., 1992a). Properties may include linear and angular velocities, 

mass and centre of mass, elasticity and location and orientation information. 

2.3.3.1 Improving DIS 

Macedonia, et al. (1995) correctly note that SIMNET was constructed for small unit 

training and has passed on this heritage to DIS. For this reason simulations do not 

scale well and are not currently suitable for large scale VEs. A number of problems 

are outlined: 

• Bandwidth and computational requirements. 

• Multiplexing media. 

• Managing static objects. 

• Database replication. 

It is predicted that a VE with 100,000 players (entities) would require 375 Mbps of 

network bandwidth to each computer participating in the simulation. Since each node 

needs to maintain the state of every entity in the simulation (albeit using dead-

reckoning models), they will require an inordinate amount of processing power. "We 

conjecture that 1000 entities are the limit to which a single host can realistically 
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manage despite future advances in computer and graphics architectures." These 

figures are in line with the performance graph in Figure 2.3 and also means that a 

more powerful network medium than FDDI will be required. 

DIS goes to great lengths to prevent packet fragmentation by requiring that each 

packet is smaller than the maximum supported by the physical network. 

Unfortunately, this means that video and audio must be treated in the same way rather 

than in their more natural continuous forms. Support for these media at the transport 

or network layers, e.g. through the use of MBONE, relieves the application from the 

overheads of multiplexing and de-multiplexing. 

The simulations usually contain large amounts of static objects, e.g. buildings, that 

must periodically send update messages even though their state has not changed, just 

in case somebody missed the last message. The entire simulation database must also 

be replicated at each node since there is no method of partitioning the database. 

These last two points show the expense of the DIS protocol, both in bandwidth and 

computational terms. 

The reasons offered for these problems are four fold: 

. Event-State paradigm. Since the simulation is stateless (a basic 

requirement for DIS) information has to be sent to every entity. This does 

not take into consideration the fact that the simulated systems "sense" the 

environment in different ways and therefore have different data requirements. 

Two geographically distant entities need not know what each other are doing 

until they are in much closer proximity to one another. By being stateless, 

the simulation is affected less by the unreliable transmission medium being 

used (broadcast). 

• Real-time trade-offs. A real-time environment should avoid point-to-point 

communications between entities since this requires reliable communications 

such as the acknowledgement scheme used in TCP. Centralised databases 

37 



cause 110 contention, so the only course left is to use a connectionless 

method of communication such as UDP. 

• Middleware. There is no software layer to mediate between the simulation 

and the network. DIS must use bridges for large scale simulations which are 

an order of magnitude slower to reconfigure than routers and the number of 

nodes is limited to tens of thousands. A network using routers is limited only 

by the address space. 

• Small scale origins. SIMNET and DIS were only used, until recently, for 

simulating small scale environments. This shows in the choice of 

transmission protocol and monolithic construction suitable for distribution 

over a single LAN. Past simulations have been packed quite densely with 

respect to the size of the environment and this influenced the assumptions 

made about rates of activity and inevitably the DIS protocol itself. 

Complete replication of the database is also grossly inefficient and some means of 

partitioning information is required. The proposed solution to this problem is an Area 

of Interest Manager (AOIM). The VIE is split into a grid of hexagons - since they are 

regular in shape and have uniform orientation and adjacency. The division of entities 

amongst the hexagons is not strict and some entities may belong to more than one 

group at a time to avoid boundary and temporal aliasing. As the user moves through 

the yE, the groups behind them are paged out and more groups ahead of them are 

loaded in. The advantages of such a system include reducing the bandwidth needed to 

maintain the simulation, the localisation of reliability problems and the ability to make 

use of high speed networks such as ATM. ATM will probably support multicasting 

and its high bandwidth might permit the dynamic paging in and out of the hexagonal 

areas containing large amounts of simulation data. 

2.3.3.2 VE Modeling 

Since NPSNET is based on DIS there is little modeling infrastructure. The entities 

may be simulated in full any way the designer sees fit, the only requirement is that its 
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behaviour can be approximated through a dead-reckoning algorithm. All nodes 

connected to the same network simulate the same VE. 

2.3.4 Minimal Reality (MR) Toolkit 

This toolkit is aimed at supporting work involving user interface design and may be 

split into three layers: low-level device support, data processing and high-level 

services (Figure 2.4). 

2.3.4.1 Basic Structure 

The device drivers are provided as a client/server pair, the server directly interfaces 

with the device and the client provides library routines that communicate with the 

server. The second level massages the data received from the device drivers into a 

more usable format as well as providing data sharing services between workstations. 

Complex tasks that are often performed have been encapsulated in a set of high-level 

functions to form the last layer. These include system initialisation and data 

synchronisation. All communications on the same machine uses TCP. 

One application runs on a machine at a time. Each application has a master process 

that initiates the execution of other programs in the application which are designated 

as either slaves or computation. There may be many slave programs which perform 

simple tasks such as rendering images. Computation processes perform compute 

intensive work and are usually located on a dedicated machine connected to the 

master machine via a network. 

2.3.4.2 Packages 

To aid interface design a number of packages are provided to handle some of the 

more complex functions. There are currently four packages: Workspace Mapping, 

Panel, Data Sharing and Peer, but the latter two are of most interest in this context. 

The data sharing package provides a way of managing a data structure that may be 

shared between machines by periodically sending an update copy to the other 
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machines. The structure may be synchronous, in which case the receiving program 

controls its update, or asynchronous where the receiver does not have control (the 

default). 

7 Description 	 JDCAD+
Environment 1' 	Creates OML 

Objects Manager 

Generates Virtual  
Environments 

Object Model Language 

Specifications of geometric 
The 	 modeling and behaviours for three- 

Programmer 	 dimensional objects used in VR 

MR Toolkit and Peer Package 

Supports common VR devices, numerous interaction 
techniques, data distribution and connection level 

communication facilities. 

Figure 2.4 MR Toolkit component structure. 

The peer package is a recent extension to MR Toolkit and provides the functionality 

to allow independent applications to communicate with each other via master 

processes (Shaw and Green, 1993). The slaves receive data from their peers via their 

master, i.e. slaves do not communicate directly with other slaves or computation 

processes. Application-specific information may be shared between machines using 

UDP to send messages to specific addresses. Each machine keeps a peer list which 

indicates their state, either active or inactive. A peer may become inactive 

deliberately, with the intention to join in later or not (as the case may be), or a peer 

may inadvertently become inactive. This happens when the local peer has not 

received any messages from the remote peer in the last 10 seconds. At this point the 

local peer attempts to re-establish communication. All peers are connected directly to 

one another which requires a lot of network traffic to maintain and, as a result, more 

than five networked machines is not recommended by MR Toolkit's authors. 
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2.3.4.3 VE Modeling 	 - 

Platform independent object geometry and behaviour is described in a procedural 

programming language called Object Modeling Language (OML). An OML object 

contains code to generate the 3D geometry, controls how the object appears and code 

for implementing behaviour. The OML compiler produces an intermediate code that 

is executed by the OML interpreter which is embedded into the application program. 

An MR Toolkit program loads compiled OML descriptions, initialises devices, 

coordinates between devices and the objects, and calls the interpreter every graphical 

update. Therefore a program has to be written for every VE built. 

To save time, a generic YE application has recently been added to the suite of 

programs in the form of the Environment Manager (EM). The EM is responsible for 

initialising the YE (using a script file), running both single user and multi-user VEs, 

and also provides facilities for monitoring the execution of the YE (Wang et al., 

1995). Each user in a multi-user VE runs an EM which handles calls to OML code. 

The distribution of the YE is transparent to the OML objects which just see one 

unified YE. The objects may be classed as local - managed by one EM only - or 

shared in which case other EMs may load them. To reduce bandwidth, only those 

shared variables that have changed state are transmitted and the EM also supports 

dead-reckoning by sending OML approximation functions to the other nodes. 

Unusually, it is possible to disconnect from the shared environment, perform some 

work and then reconnect at a later date. 

The user is an integral part of MR Toolkit, in fact the whole system is built around the 

user. It is possible for multiple users to interact within the same environment when 

machines are connected using the peer package. Only one YE is simulated at a time. 

2.3.4.4 Data and Computation Distribution 

Two forms of concurrency control are supported through the use of ownership and 

access permissions; the choice of scheme is left up to the designer. A shared state 

variable may be owned by only one EM at a time and that ownership may, if needed, 
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be transferred from one EM to another at run-time. The solution to the case where 

the transfer message is lost during transmission (possible when using UDP) is left up 

to the programmer to resolve. A shared variable also has one of two possible access 

permissions: writable and readable. If the variable is writable then EMs other than 

the owner, may write to that variable. If it is readable then they may only hold a copy 

of its value and its owner will send out updates when necessary. 

Each EM has its own copy of the entire simulation including the shared variables. 

The identity of the owner is broadcast to every EM whenever ownership changes. 

When a remote EM wants to make a change, it requests ownership of the variable and 

then makes the change. In other words, each machine in the network that has a user 

wanting to interact in the simulation takes it in turns to run the simulation, whilst the 

others get the results and use dead-reckoning. 

OML descriptions may be created and manipulated using the Jiandong Liang 

Computer Aided Design (JDCAD+) which uses a hierarchical modeling system and a 

6 degree of freedom (d.o.f.) input device. 

2.3.5 Distributed Interactive Virtual Environment (DIVE) 

DIVE was developed at the Distributed Systems Laboratory, Swedish Institute of 

Computer Science (SICS) to aid their research into the distribution, collaboration, 

interaction and multi-user aspects of virtual reality (Carlsson and Hagsand, 1993). 

2.3.5.1 Distribution 

The distribution model used in DIVE v2.2 can be conceptualised as a memory that is 

shared over a network. An old version of the ISIS Distribution Package (v2. 1) is 

used to provide a mechanism for data sharing between systems (Birman et al., 1987). 

Version 3.0 of DIVE was in beta-testing at the time of writing and no longer uses 
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ISIS4  which has been substituted for the SICS Distribution Package (SID2 - Hagsand, 

1992) that provides similar functionality. 

The database, which is completely held in memory, is partitioned into worlds. Worlds 

are implemented as ISIS process groups where each process actively manages its own 

replica of the database. A DIVE process can only be a member of one world at a time 

although it may travel between worlds. Each process consists of lightweight threads 

which are allocated a specific task, e.g. rendering, input/output management or 

updating the database. The consistency of the shared database is maintained by using 

mutually exclusive locks, multicast transmissions within the process group and 

distributed object locks. DIVE supports heterogeneous distribution and machines 

that are not equipped with graphics hardware can still run non-rendering components 

of an application. 

2.3.5.2 Applications 

Applications may be created using the provided C libraries and then run on one or 

more systems communicating over an Ethernet link using TCP/IP. Multiple 

applications (implemented as a process) may run simultaneously, modifying the state 

of the world database. The visualizer is a special application that uses selected 

input/output devices and enables the user to interact with the VE. 

Objects in DIVE are allocated a globally unique identifier, a name and a position in 

3D space amongst other information (Andersson et al., 1995). They may also have 

one or more graphical representations. Composite objects are formed by grouping 

objects together hierarchically. Objects are stored locally in main memory, e.g. during 

creation, and may be shared over the network using a replication mechanism, i.e. after 

creation. Object information specific to an application is maintained by the 

application itself and is not distributed to other processes. 

' ISIS is now a commercial package and is no longer free to academic institutions. 
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All DIVE processes communicate with messages which may change an object's state, 

a process' state, or inform the recipient of a specific event. Applications may register 

call-backs for these events which may be used to indicate errors or user interaction. 

Behaviour in DIVE is implemented as a state machine with, each arc referring to a 

particular signal type. A signal may be generated when a collision is detected, some 

form of user interaction has occurred, on some input, or when an application wishes 

to trigger a behaviour directly. A random signal is also available so that some form of 

random behaviour can be simulated. Current supported behaviours are limited to 

manipulating the object's visual properties, spatial translation/orientation changes, 

generating a sound or triggering a behaviour in another object. 

2.3.5.3 Users 

Each user has their own personalised body-icon which is used to represent them in the 

world. The icon may be made of many parts, e.g. head, eyes, ears, hands and a visor. 

Each of these components serves a purpose. For example, each eye specifies a 

viewpoint from which the graphics display is generated and any object manipulated by 

the user is usually attached to one of the hands. 

Vehicles provide a translation between data from input devices to actions in the yE. 

Several simple vehicles are provided with the system such as a mouse vehicle and one 

for monitoring head and hand movement when using an HMD. New vehicles may be 

created using the DIVE Application Programmer's Interface (API). 

I/O handling and user representation is therefore integrated into the user object. 

Multiple users are supported as are multiple worlds which may be entered through 

gateways. Since each world possesses the same properties, there is no problem with 

object migration. 

2.3.5.4 Time 

Clocks in DIVE are not synchronised apart from system-level synchronisation using 

NTP and it is assumed that clock rates are equal on all machines. 
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2.3.6 Distributed Virtual Environment System (dVS) 

Division build their own parallel processing computers which are currently based 

around INMOS Transputers, Intel i860 microprocessors and a number of ASICs. 

Their goal is to provide a seamless software environment to the VIE designer which 

has resulted in the development of dVS (Grimsdale, 1993). Since its conception, dVS 

has been ported to Silicon Graphics, Inc. (SGI), Hewlett Packard and IBM 

workstations. 

dVS v2.0.4 augments existing operating systems to try and provide the best possible 

performance over these platforms. It is organised into processes that perform certain 

tasks called Actors. There are actors for generating visuals, producing audio, 

performing collision detection, monitoring 6D trackers and many other tasks 

(Division, 1994). The user's application is also built from user supplied actors. 
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Figure 2.5 dVS system architecture. 

The essential components of dVS are shown in Figure 2.5. At the core is a 

distributed database (VL) which may be accessed by actors through the VL Library. 

The VC Toolkit provides higher-level functionality for the manipulation of objects and 

makes calls to the VL Library to achieve this task. The Agent is a special actor which 

handles updates to the local database and informs remote systems of the changes. 

One agent assumes the role of the Director and is responsible for coordinating all 

database updates. Communications between agents are performed using the Division 

Session Network (dSN) software layer. 
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2.3.6.1 Database Structure 

An object class in dVS is called an Element. An Instance of an element may be 

created and is the unit of communication between actors. Before elements can be 

defined and instanced, an Environment must be created. A root environment is 

always created by default when an environment database is created (owned by the 

Director) and subsequent environments may be arranged hierarchically. New 

environments may be created by any actor at any agent. Containers can be defined 

which consist of one or more elements and are treated as an atomic quantity. A new 

element definition is written using C-like syntax and passed through a pre-processor 

which produces the relevant VL data structures and library routines as C source code. 

These source code files are compiled and linked into the application executable. 

2.3.6.2 Database Synchronisation 

Actors hold an element and by extracting that element an actor may change the state 

and then commit it using an update. Any actor holding the element will be informed 

of the change in state through an event. An actor can register interest in (hold) either 

elements or instances, an action that is environment specific, i.e. updates to sub-

environments are not reported. This process is complicated if the item of interest is 

part of a container. There are actually 3 cases that must be catered for: 

Interested in a container and a sub-element changes => the whole container 

is reported as having changed. 

Interested in a sub-element and the container changes => the sub-element is 

also reported as having changed. 

Interested in a sub-element which is subsequently changed => report a sub-

element change. 

Application tasks have no direct access to VL to avoid contention when two 

applications try and access the same information. All data accesses to the databases 

are therefore made by copying. dVS provides a choice of three different 

synchronisation methods to help maintain database integrity. 
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None. Updates are sent asynchronously and any duplicate events detected 

before the event reaches its destination are folded into one, i.e. only the most 

recent update will be processed. 

Local. Locks the event and associated data until all destination actors within 

the domain of the local environment database have processed the 

information. This event is also propagated to remote databases if required. 

Global. Similar to a local synchronisation event except the lock is performed 

across all remote databases and as such can be time consuming when 

acquiring the resources. 

Synchronous updates are not supported by VL. These are viewed as expensive, used 

in only a few special circumstances (although no examples are given) and not the way 

to maximise performance (section 2.3.6.4). 

The agent monitors changes to the local database and distributes these changes to 

other agents on other machines if interest in those items has been previously 

registered. Only knowledge about other agents and their current interests is 

maintained by any given agent, which means updates are sent direct to the relevant 

agents thus avoiding the need for broadcast. Since only objects that are being held are 

propagated to remote databases, it is possible for one such object to reference another 

which does not exist locally. It is up to the application to ensure that it has registered 

interest in all necessary objects. Agents are allocated a port number which is held in a 

configuration file, allowing physical machines to connect or disconnect at run-time. 

2.3.6.3 VE Modeling 

The VC Toolkit supports a number of specialised elements which it calls Virtual 

Objects. The basic element is VCObject which may be decomposed further into other 

VCObjects and so on. The other standard elements which are held within a VCObject 

are VCAudio, VCBoundary, VCConstraints, VCLight and VCVisual. Each of these 

describes a certain number of logically related attributes and are often associated with 

a particular actor, e.g. VCAudio elements are monitored by the VSOUND actor. 
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The collision detection actor monitors VCBoundary elements and notifies the two 

relevant parties when a collision has occurred. Whereas the VIZ (visualisation) actor 

is interested in VCObject, VCLight and VCVisual elements. 

Users are represented by a Body actor and therefore there may be multiple users in the 

same environment. The body actor is also abstracted away from the necessary 110 

devices which exist as separate processes and can be assigned a special representation. 

It is unclear whether an actor from one environment can move into another. 

2.3.6.4 Synchronisation 

When a network of machines starts up, the first node to complete initialisation sets the 

time on the other machines to its own. No time synchronisation is performed 

thereafter. All messages are timestamped but this information is used to discard tardy 

messages that have already been superseded. dVS never waits for the arrival of a 

specific message and thus there is no lock-step synchronisation between nodes. 

2.3.7 Waterloo Virtual Environment System (WAVES) 

WAVES was formerly known as Highly Interactive Distributed Real-Time 

Architecture (HIDRA) and is targeted at low-cost platforms that use low-bandwidth 

media for communications, e.g. telephone lines (Kazman, 1993c). 

2.3.7.1 Basic Architecture 

The basic components of the WAVES architecture are shown in Figure 2.6. Each 

Host simulates a subset of objects and provides certain services to each object, e.g. 

collision detection, rendering, etc. Whilst cyclically updating their set of objects, 

hosts periodically broadcast the state of their local objects to other hosts. Major 110 

events, e.g. user input, are communicated each cycle to maximise fidelity. The 

communications between these hosts are done over virtual connections, mediated by a 

number of Message Managers. Connections may also be filtered so only messages of 

interest are sent to the hosts. The message managers are also given the ability to 

delegate direct point-to-point links between hosts in special circumstances, e.g. a line 
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carrying a video signal. Under WAVES, a VE may be distributed over a network of 

message managers, with the allocation of hosts to each manager being determined by 

a dynamic clustering algorithm. Objects have explicit behaviour models which aid 

load balancing, support dead-reckoning and may be used to predict an object's state 

in order to combat latency. The ghost objects that reside on a host are called clones 

in WAVES. As with other dead-reckoning systems, some fault tolerance is provided 

in that if one host should go down, then the others can carry on using their current 

behaviour models. 
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Figure 2.6 Basic WAVES architecture. 

Load balancing is performed on each host based on several criteria: the host's 

processing power, the number of objects on the host and how closely related the 

objects are (Kazman, 1993b). The host sends its current load and their maximum 

possible load to their local message manager. When the host detects its load has risen 

above its maximum, it sends another message to the message manager indicating 

which object it would like to get rid of. Another host is found for the object or, if no 

suitable host can be found, the transfer request is refused. 

Users should be representable as objects providing there are sufficient input/output 

devices on a host and this would also imply that multiple users can be supported. It is 

unclear whether it is possible to execute multiple environments. 
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2.3.7.2 Distribution of Responsibility 

To solve the problem of area management, WAVES uses a special Area Manager 

which is paired with a message manager (Kazman, 1993d). The area manager 

maintains a list of viewable areas for a given viewpoint, one per host. When the list 

changes, the message manager's filtering criteria for a given host is changed so that 

only those objects in the host's viewable areas are sent to it. Since the area manager 

only changes message filters, it can be added or removed from a WAVES system 

without disturbing anything else in the system. To overcome rapid changes in area, 

WAVES proposes to use an object's behaviour model to anticipate the changes and 

send filter requests in advance. To avoid the problem of all users occupying a small 

number of areas and causing a bottleneck, there may be many managers in the system 

and they may balance their loads dynamically. 

Interactions between objects, are specified externally in interaction detection and 

resolution (IDR) agents (Kazman, 1993a). The world view maintainer contains the 

description (world attributes) of the environment that the objects operate in; a view 

controller which dynamically manages the inventory of agents which may be 

interfacing, and an inventory of all the objects which exist in the world (world 

objects). If DR takes too long then the world may be broken into a number of areas, 

each with their own DR facility. Each DR server contains a production system, 

which allows the system designer to create arbitrary constraints on an object's state in 

the form of rules that are evaluated each execution cycle. Each DR server contains a 

"theatre map" that plots the locations of all objects in the theatre and raises an 

exception when two objects attempt to occupy the same space. IDR servers can be 

designed to handle particular types of interactions: spatial, temporal or semantic. 

IIDRs can therefore be used to detect interactions within a spatial threshold as a sort 

of prediction mechanism to accommodate lags in the system. 

In summary, object behaviour is defined within the objects, interactions are defined 

within IDR servers and the environment is defined within the world view. 
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2.3.8 AVIARY 

In the AVIARY model a distinction is made between objects that are presented to the 

user through different media: Demons are the pieces of software that implement an 

object and Artifacts are the manifestation of the demon in the VE (Snowdon et al., 

1993; Snowdon and West, 1994; Snowdon, 1995). 

2.3.8.1 Basic Architecture 

A virtual world is seen as a container for artifacts and a set of constraints on those 

artifacts and behaviour. The sole World Object represents a virtual world, acting as a 

container for artifacts, storing the identities of demons, details on the objects 

providing other services, and information shared by all objects. The actual artifact 

definitions are not held within the world object, but since the artifacts may be 

accessed through it, this information can be obtained indirectly. 

The Environment Database (EDB) provides a spatial management service to other 

objects. When a demon moves, it sends a message to the EDB, which prompts a 

collision check for that object. The EDB then informs the relevant objects of the 

collision and they may then react as they please. To prevent the EDB becoming a 

bottleneck, it may be split into one or more new EDBs which share the existing 

workload (although this has not been implemented yet). In addition, separate EDBs 

may be employed for different media and therefore operate in parallel. 

Object Servers provide an execution environment for demons, handling object 

creation/destruction, messages from other objects, memory management and 

scheduling. Inter Process Communication (IPC) between all types of objects is 

supported without restriction. One object server is allocated to each processor. 

Security-wise, each object controls access to its own data and may therefore protect 

any sensitive information. 
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Figure 2.7 AVIARY component schematic. 

Only one Virtual Environment Manager (VEM) is present in the whole system and 

provides services to ensure that the integrity of the YE is always maintained. This 

includes the assignment of identifiers to objects (aiding dynamic object creation) and 

also to classes and messages. This last mechanism ensures that objects that 

understand the same messages but have been implemented differently can still 

communicate with each other. Complementing the VEM is the World Manager 

which maintains a list of all the available services provided by objects. This enables 

any object to look for another object providing a service that it requires, e.g. visual 

rendering or collision detection. 

The issue of time synchronisation is resolved in AVIARY by making use of real-time 

clocks on each node. Simulation or world-time can, however, be scaled relative to 

real clock time. 

Both synchronous and asynchronous message passing is supported with both 

multicast and point-to-point links used to transfer the message. To prevent deadlock, 

the object server is multi-threaded so that it is always ready to respond to an external 

event. 
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2.3.8.2 VE Modeling 

Behaviour of the artifacts is dictated by the methods defined for the creating demon 

which actually consists of two parts: artifact-specific and world-specific. All features 

that are shared by all objects in the world are held in the world-specific part and those 

unique to each class of demon in the artifact-specific part. This separation of 

attributes aids migration from one world to another. Demons can make use of 

services provided by any other kind of object and can inherit classes or define existing 

classes to extend its capabilities. 

Multiple worlds are an important part of AVIARY's design since each may require a 

different interaction metaphor and it own laws and properties. The user is permitted 

to travel between worlds by using Portal objects that may appear as artifacts in each 

virtual world. When a demon moves between worlds the world-specific part of the 

demon is replaced by that of the new world whilst the artifact-specific part remains 

unchanged. 

A demon may represent an application or a user, either way it is likely to need access 

to input and/or output devices. Input objects control input devices, sending data to all 

interested objects only when there is something new to send. Output objects monitor 

a particular location in the world and display a representation in the chosen media. 

Users are represented by demons and are decoupled from the system and 110 devices. 

Although there does seem to be provision to integrate 110 into the user demon if 

performance dictates. 

The current implementation is written in C with object-oriented features, including 

multiple inheritance added through macros. These macros create an internal data 

structure of class descriptions, object instances, etc. This data may be communicated 

to another machine thus supporting object migration, although no load balancing 

checks are currently made to see whether this is required. 
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2.4 Summary 

All of the systems examined here are trying to achieve interactivity, but none are real-

time in the traditional sense and therefore do not support real-time displays. These 

are important aspects of a VE system and the impact of supporting them is discussed 

in sections 3.3 and 4.3. This classification has therefore been left out of the feature 

summary table (Table 2.3). 

2.4.1 Communication Organisations 

Typically there are n processes in a VE which need to communicate with each other. 

Using a point-to-point communications system, a link must be established between 

every process or a central server established, forming a hub. In the former case this 

will require n(n -1) links and in the latter, n links, although total centralisation can 

place a burden on the central server which can quickly become a performance 

bottleneck. Conversely, administrative processes often need to monitor most (or all) 

transmissions and make according actions, e.g. dVS's Director and the Message 

Managers in WAVES. 

Whilst broadcast relieves the overhead of maintaining links, it floods the network with 

messages which are either an inconvenience (on shared networks), or wasteful (on 

dedicated networks) because in large YEs not every process needs to know what all 

the others are doing. Area management can be used to determine who needs to know 

what, but cannot use broadcast as the transport mechanism. Maintaining a number of 

point-to-point links is one solution but with the complications already outlined above. 

Multicast provides a way of overcoming these disadvantages (as demonstrated by the 

AOIM in NPSNET) whilst still retaining the low transmission overhead, but it is not 

widely available and is, like broadcast, unreliable. 
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Ui 
('I 

Feature DIS/SIMNET NPSNET MR Toolkit DIVE dVS WAVES AVIARY 

Communications Transport Point-to-Point, Multicast Point-to-Point within Multicast Point-to-Point Point-to-Point Point-to-Point and 
Mechanism(s) Broadcast, node and Broadcast Multicast 

or Multicast between nodes 

Targeted Unspecified 10 Mbps + 10 Mbps + 10 Mbps + 10 Mbps + 14Kbps + 10 Mbps + 
Bandwidth 

Structure(s) Peer Peer Hierarchical & Peer Client/Server Client/Server Client/Server 
Client/Server 

internally and Peer 
externally 

Data 
Management 

Organisation Total Replication Total Replication Active & Passive 
Partial Replication 

Total Replication Passive Partial 
 Replication 

Complete 
Distribution 

Complete 
Distribution 

No Yes No No No Yes Yes Localisation 
Support?  

Computation 
Management 

Organisation Partial Replication Partial Replication Total/Partial 
 Replication 

Total Replication Partial Distribution Partial & Complete 
Distribution 

Complete 
Distribution 

1 1 0/1 0 0 1 0 Behaviour Level 

VE Modeling Environment Parallel 
Management  

Parallel Single Multiple Parallel Unknown Multiple 

User Support Multiple Multiple Multiple, Integrated 
(possibly) 

Multiple, Integrated, 
with Representation 

Multiple, Decoupled 
with Representation 

Multiple, Decoupled 
(probably) 

Multiple, Decoupled 

Time 
Management 

Progression 
Method 

Implicit or Explicit Implicit or Explicit None None None Unknown Implicit 

Node UTC or None UTC or None Programmer None None Unknown None 
Synchronisation  

Fault Tolerance Degree 3 3 3/0 0 0 3/0 0 

Security Method(s) 
Employed 

None None None None None None Object Level 
Interface 

Table 2.3 Distributed VE system feature classification summary. 



2.4.2 Transport Mechanisms 

Deciding whether to use a reliable message delivery service or not is a key decision in 

the design of a distributed VE system. NPSNET, MR Toolkit and other DIS-based 

systems use UDP between machines. DIVE uses multicast exclusively and AVIARY 

uses it for messages that need to be sent to many processes, but this is under the 

control of the application programmer. The only two systems that use a reliable 

service exclusively are dVS and WAVES. Both make use of a known network 

configuration and thus known addresses, to distribute the messages. If an unreliable 

service is used then the software protocols must reflect this decision and a degree of 

fault tolerance provided. 

Even with the implementation of these two steps, loss of messages (or their delayed 

reception) will, inevitably, have an affect on the user interface. The effect could be 

anything from a slight glitch or jump in. the display, to temporary loss of service. If 

these counter-measures are not taken then the designer is relying on a large number of 

variables holding true to keep things running, e.g. plenty of bandwidth available, 

network interfaces fast enough to capture packets, etc. Of those systems reviewed 

that use multicastlbroadCast, NPSNET and MR Toolkit account for lost messages. 

Both use exported behavioural models but MR Toolkit actively encourages a machine 

to disconnect and reconnect during a simulation by providing appropriate API 

functionality. To the author's knowledge, DIVE and AVIARY do not make any 

provisions for lost messages, the consequences of which are unknown for both 

systems. 

2.4.3 Bandwidth Implications 

All of the systems use existing networking technology so it is unsurprising that most 

are currently implemented using Ethernet. The DIS standard does not actually specify 

a bandwidth but the author does not know of any implementation using anything less 

than 10 Mbps. WAVES' target of 14 Kbps is laudable but there is precious little 

bandwidth to play with. Without compression, 14.4 Kbps will support a data rate of 
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approximately 1.31 Kbyteslsecond 5 . The compression supported by modern modems 

could improve on this if there were repeating patterns in the data stream, like those 

found in ASCII text. However, the likelihood is that the messages sent between 

nodes will contain extensive binary data and thus compression will do little good. 

This figure does not, of course, include transport protocol overheads which may 

reduce the data transfer rate substantially (section 4.2.3). 

The fact that the available bandwidth for a given process will vary during execution is 

a compounding factor. This affects both reliable and unreliable services and, 

depending on the criticality of the system, can at the very least wreak havoc on system 

performance. The author believes that the ability to allocate channels of fixed 

bandwidth for a fixed period (as supported by ATM), is essential to the development 

of distributed VE systems. Only then will communications become deterministic and 

thus release the designer to concentrate on other issues. 

2.4.4 Distribution & Scaleability 

Communications latency affects all systems, regardless of architecture, however, it is 

the largest enemy of scaleability. As the distance between nodes increases so will the 

latency and unless the system protocol and structure is modified to account for this, 

performance will degrade beyond acceptable levels. 

Each of the current systems reviewed address one of Kleinrock's classes with a 

possibility of application in another if the conditions are right. None attempt to 

address more than two and certainly no changes are made to the system architecture 

to help it adapt. Each form of data and computation distribution has advantages and 

disadvantages. All can be applied successfully in a near/tightly-coupled system but as 

we move through far/tightly-coupled into the far/loosely-coupled classification, so the 

solution weaknesses become more apparent. 

14.4/ 11 = 1.309 Kbytes/second (assuming 8 data bits, 1 start bit, 2 stop bits and no parity). 
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Complete distribution of both data and computation is a victim of increased latency 

since all accesses and data modifications have to be communicated to their source. 

The worst-case task would be the monitoring of a piece of information, performing an 

action when it reaches a certain value and then modifying it. This would require a 

message to get the latest value and possibly another to modify it every simulation 

step. If this task was performed on many objects it could saturate the network. Both 

AVIARY and WAVES use this approach. Active partial replication, as used partly by 

MR Toolkit, also has the same problem. Whereas data would be accessed via an 

object interface with complete distribution, copies of whole chunks of object state can 

be distributed with active replication. 

Partial replication of data provides slight relief from this symptom by supplying a 

mechanism that will send any interested party a copy of the relevant portion of state 

(or behavioural model) only when it changes. Not only does this reduce bandwidth 

consumption, but also the computational load because the task function is only 

executed when an update is received, rather than at every simulation step. 

Modifications can be made by sending the instruction to change data back to the 

source. A slight variation on this is partial computational distribution where changes 

are made locally and communicated back to the owner, or, as in dVS, committed to 

the shared database. If the latter method is used, locks must be used to preserve data 

integrity. Lock acquisition and release can lead to deadlock (section 2.2.3.3) and are 

inherently undeterministic and thus unsuitable for a real-time system. 

Complete data distribution has the advantage that data is only stored in one place, 

while partial data replication duplicates parts of the environment's state, thus 

consuming more resources (DISINPSNET). This pales into insignificance against 

total replication where the complete environment state is duplicated. In a high 

bandwidth configuration this is a waste of resources, but it is the only solution when 

the distance between nodes is large and latency is high. The largest challenge in this 

case is to keep the replicated databases in synchrony. Transmitting modified segments 

of environmental state between databases is not a viable option. Partial computational 

replication would seem to be a possible solution. 



The usefulness of exporting behavioural models can be shown clearly by once again 

considering the goal of distributed \'Es over a 14.4 Kbps telephone line. A level 0 

behaviour system would likely send a position and orientation update for each 

simulation time step. Assuming 6 x 32 bit floating-point numbers (3 for position and 

3 for orientation) plus, say, another 16 bits for an object identifier gives a total of 208 

bits or 26 bytes. Using our previously calculated data rate of 1340 bytes/second we 

can determine that 1340/26 = -51.5 messages that can be sent per second. Assuming 

a modest 15 Hz update rate, this permits us to send updates to -3.4 objects. If more 

bandwidth is available initially then this is quite a tempting, easy solution and is used 

by DIVE, MR Toolkit (at its lowest level), AVIARY and, to a lesser extent, dVS. If 

a higher level behavioural model was supported, such as dead-reckoning, then 

messages would be sent at a much lower rate (depending on the object's behaviour) 

thus permitting more objects to be supported. 

However, level 1 behaviours still require messages to be sent quite often and it would 

be quite easy for the databases to get out of synchrony considering the latency. 

Instead of informing each other of deviations from the predicted behaviour, it would 

be more sensible to totally replicate the computation and only inform each other of 

changes in object behaviour. This could be an update of the behavioural description 

effected by software, e.g. level 2 behaviour, or by a user, e.g. level 3. Bryson's two-

point paradigm (2.2.4.5) is representative of the kind of information that could be 

sent. 

Load balancing and process migration are best applied in a tightly-coupled system. 

There is obvious application for these techniques when using complete computational 

distribution and they can also be applied to systems using partial replication. With a 

large number of ghost processes and area management there are likely to be those that 

are accessed more frequently than others. Spreading the computational load evenly 

whilst minimising the distance between communicating objects could greatly improve 

performance. 



2.4.5 Time 

Most of the systems reviewed do not seem to have any policy on time management. 

AVIARY uses the implicit model for clock synchronisation which is less than full-

proof. Clock oscillators can drift (as any network administrator will testify) and need 

to be constantly corrected. The most common method for doing this is NTP which is 

adequate for non-time-critical work where second accuracy will suffice. When 

dealing with multiple updates per second this clearly will not do. With extra effort 

over a longer period of time it is possible to synchronise clocks to millisecond 

accuracy using NTP, but the author feels that this may be inadequate when dealing 

with 33 ms time spans (for a 30 Hz update rate). Ideally, each node would be 

equipped with a Standard Positioning System which would ensure that all machines 

throughout the world were synchronised to within 167 ns. Unfortunately, the current 

cost of this technology would probably be prohibitive so solutions like NTP are the 

best remaining choice for systems using implicit time models. Indeed, if clock 

synchronisation is needed in MR Toolkit or DIVE, the designers have assumed that 

NTP would be used. 

The explicit time model uses timestamps in messages for various purposes such as 

informing them of the send time, the time at which the message is valid, etc. 

DISINPSNET uses a timestamp format which can specify a time up to an hour after 

the current hour, to within an accuracy of 1.676 microseconds. However, there 

seems to be no suggested methodology of ensuring that each node has the correct 

current time. In this instance there would seem to be a requirement for both models 

to be used together to manage simulation time. 

It might be possible to use explicit time progression exclusively within systems that 

use complete/partial computational distribution or partial replication, but when total 

replication is used a common reference is required. 



2.4.6 Fault Tolerance 

Those systems that export behavioural models (section 2.2.4.5) implicitly support a 

notion of reliability (degree-3). Failure to receive an updated model, because the 

source host is down, can be remedied when the host rejoins. DIS ensures this by 

requiring that no one machine controls the simulation. MR Toolkit permits a node to 

leave and rejoin the simulation but this does not really constitute robustness since 

leaving and rejoining relies on using the correct protocol. WAVES does export 

behavioural models, but there is no mention in the available documentation that states 

fault tolerance as a design goal. 

None of the systems pursue the goal of availability through duplication of resources, 

probably because they are at a premium. Total replication of both data and 

computation is done by DIVE which would put it in the best position to provide fault 

tolerance, although this is not a stated goal. When the faulty node recovers, another 

node in the simulation can send it a complete copy of the current environment state. 

Recoverability is not supported by any of the systems and the only true robust 

systems are those based on SIMNETIDIS. 

If interaction is a high priority then degree-4 fault tolerance is the most desirable and 

may even be considered as the only usable type. Any faults managed at a degree 

below this would be reflected as a disconcerting change in the VE display. This may 

manifest itself as anything from a small "jump" in continuity (degree-3) to a total loss 

of realism (degree-1). 

Rather ironically, the least reliable transport mechanism - broadcast - is also the best 

way of providing fault tolerance: through redundancy. The incorporation of a special 

process/node in the network that listens into every message and maintains a state 

backup using point-to-point links would place an unacceptable overhead on 

communications. It would require two messages to be sent for every communication 

rather than just one. Fortunately the reliability issue is being dealt with (sections 

2.2.2.3, 2.2.7) which will remedy one of the weaknesses of any system that uses 

broadcast techniques. 
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2.4.7 Security 

This is an issue that none of the current systems fully address. This is not too 

surprising since all of these systems are used as tools for researching the field and 

security can get in the way. An encrypted data stream is not particularly helpful if you 

wish to monitor message passing, nor is access control when you are experimenting 

with object interaction metaphors. AVIARY makes a token gesture by putting each 

object in control of its own data. This is not an added feature, this ability comes with 

the adoption of an object-oriented structure. An object's methods may be coded in 

such a way to vet access but AVIARY provides no built-in/automatic security layer. 

2.4.8 Modeling 

With the exception of MR Toolkit and WAVES, all of the systems support the 

concept of multiple VEs in one way or another. DIS supports multiple exercises 

which take place in the same environment, whether these exercises can interact is not 

clear. DIVE assigns a multicast group to each environment so messages are not 

processed unless the user is present in that environment. dVS can support different 

environments but there is no evidence to suggest that elements in one environment 

can move to another at run-time. All objects in AVIARY occupy one of the available 

VEs which are designed as a hierarchy of worlds, each one building on the properties 

of the parent. Objects may also migrate from one world to another, a feature shared 

by DIVE. However, in AVIARY worlds may possess different properties whereas 

DIVE worlds would need to be programmed identically to facilitate migration. 

All the systems support multiple users in differing ways. MR Toolkit might support 

more than one user if each had their own workstation and was sharing the same 

database. The WAVES literature does not specifically state that it can support many 

users, but its general structure of hosts and 110 devices infers that it does. In DIVE 

and MR Toolkit, the user is an integral part of the system, in fact they are built around 

the user. DIS, dVS, WAVES and AVIARY do not distinguish a user from any other 

object except that it may have various I/O devices connected to it. All of these can be 

used to simulate yEs with no human participation whatsoever. Despite this 
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treatment, dVS does seem to emphasise the ability to specify a special user 

representation in the VE in a manner similar to DIVE. The latter, however, also uses 

this representation to configure the required 110 devices. 

2.4.9 System Summaries 

2.4.9.1 DIS-based Systems 

DIS and SIMNET would have originally been classified as near/loosely-coupled but 

DIS is now trying to move on towards far/loosely-coupled. The problems with such a 

move have been discussed in this summary and in section 2.3.2. NPSNET is being 

used by the Naval Postgraduate School as a testing ground for new ideas and 

concepts to help DIS make this transition. Despite the DIS community's advocation 

of the protocol's applicability to non-military VEs, the author feels that it will always 

be of restricted use due to its constrictive definition. All messages sent between 

objects have to be defined in advance and of the dozens already defined only one of 

them is of general use: the Entity State PDU. The other PDUs deal with explosions, 

logistics support, etc., which are inherently military-application specific. 

2.4.9.2 MR Toolkit 

This system is used to aid research into user interfaces and is accordingly designed 

around the user. It does its task well but its lack of generality limits its applications in 

the same way as DIS-based systems. 

2.4.9.3 DIVE 

DIVE is more flexible than DIS and MR Toolkit, but its use of total replication and an 

unreliable message delivery system make scaleability a real issue. 

2.4.9.4 AVIARY 

Of all the systems reviewed, AVIARY is the most flexible but shares another problem 

with the others in that it will have problems scaling up to larger VEs. The use of 
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complete distribution has limits and must be supplemented with other forms of 

data/computation management, requiring changes in the system's architecture. 

2.4.9.5 WAVES 

There is only limited information available on this distributed model although the 

literature states that a prototype implementation is being developed. The inclusion of 

low bandwidth communications is cause for concern and catering for this could 

compromise the design 

2.4.9.6 dVS 

A restriction shared by all of the systems presented here is the difficulty with which 

the VE definition is changed. dVS requires the basic components and structure of the 

environment to be scripted off-line, pre-processed, compiled and linked in with the 

Actors. 

Its exclusive use of point-to-point links may also prove to be detrimental to 

performance when larger networks of dVS machines are attempted. 

2.4.10 A New Architecture 

From the analysis presented in this chapter, it is possible to extract those features that 

effectively resolve the presented issues and derive a new architecture for distributed 

VE systems. This is presented in chapter 4 following a closer look at a couple of 

aspects which deserve more attention: modeling and displaying yEs. 
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Chapter 3 

Modeling and Displaying Virtual 
Environments 

"Only two things are certain: the universe and human stupidity; 
and I'm not certain about the universe." 

Albert Einstein 

In this thesis, not only are we interested in the technical aspects of distributed YE 

systems - their architecture - but also in the methods used to model yEs. To better 

understand what we are trying to achieve when we model a yE, our natural 

environment is examined and ways of defining and classifying YEs are explored. To 

conclude this abstract examination of environments, a number of modeling processes 

that may be used to capture the essence of the environment being modeled are 

discussed. 

As the reader knows, we interact with any environment via our senses. The 

information we gather from these senses is processed by the various perceptual 

systems in our brain. An effective VE system will generate displays that enable 

human perception, e.g. visual and auditory, to operate naturally. If the YE displays 

present the information in a confusing way, then the YE system is not doing the model 

of the environment justice. 

To illustrate this point, the implications of misusing the visual display are discussed - 

currently the norm rather than the exception. Rectifying the problems with the way in 

which this display is used has ramifications for VE system design. These technical 
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details are discussed in this chapter as a prelude to the consideration of the more 

general system requirements presented in the next chapter. 

3.1 A New Modeling Paradigm 

There are many questions that should be asked when designing a VE. What sort of 

information should be provided? How should it be structured? How can it be 

described? These questions face all YE designers, whether the environment is 

intended for data visualisation, teleoperation or vehicle simulation. In the hope of 

gaining a better understanding of the task at hand this section examines our natural 

environment. How we interact with our environment, its important features and its 

implications on YE design are discussed with the aid of several VE defmitions and 

classification schemes. By analysing how we interact with the real world we can gain 

insight into how effective virtual worlds may be constructed. 

For argument's sake, let us say that (for now) a YE is a synthetic version of our 

natural environment. Logically, our next question would be "what is our 

environment?" How do we describe the environment in which we live? This is a 

question that has been given a great deal of thought by many people working in every 

discipline: Physics, Psychology, Physiology, Philosophy, the Arts, just to name a few. 

Each of these disciplines offers its own unique view on the subject. Regardless of 

their defmitions, which can be quite different, they are all valid and each has its own 

place and use. Physics can provide us with information on how the environment is 

constructed in physical terms of force, mass, energy, etc. Physiology deals with how 

our body functions within the environment, Philosophy deals with more abstract 

concepts, whilst Psychology concentrates on the more cerebral activities of our body, 

including our perception of the environment that we are in. 

3.1.1 Definition of a Model 

Before we tackle the thorny issue of defining a YE, it is useful to give some thought 

to what we mean by a "model". 



A model is an implementation 
of a representation 
of an abstraction 
of a thing. 

Barzel (1992), p27. 

The thing being modeled is not part of the model, indeed the model is a simplification 

of the thing, consisting of a subset of the properties that make the thing. This subset 

is the abstraction and can be thought of as the set of ideas that underlie the model. 

As such, the abstraction is an entity without substance and therefore cannot be 

manipulated. The representation is a complete description of the model and is 

concrete in the sense that it may be edited, copied, analysed and contains sufficient 

information to build the model. It is possible to have many representations for any 

given abstraction and a representation to be shared by multiple abstractions. The 

execution of the model is the implementation, of which there may be many for any 

given representation, each with their own quirks. 

This introduces us to a way of describing models referred to by Barzel as an 

Abstraction Representation Implementation (ART) structure. Barzel presents ARI for 

use in physically-based modeling but it can be used to decompose most types of 

model. For example, the model of a computer program may be analysed using the 

ART scheme: the conceptual specification is its abstraction, the design document is its 

representation and, naturally, the software itself is the implementation. If we adopt 

this methodology for the modeling of YEs then we must first find a suitable abstract 

model. From this we should be able to derive a suitable representation, maybe in the 

form of a language, and eventually the implementation of a system which can execute 

our yE. 

3.1.2 An Ecological Approach 

The nature of the environment and how it shapes the evolution of animals contained 

within, was a key concern of the eminent psychologist, James J. Gibson. When 

describing the Gibsonian approach, the key word is affordance (Gibson, 1979). The 

affordances of an environment are what it offers the animal in terms of action and 
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interaction, what it provides or furnishes, for good or bad, e.g. a fire can afford 

warmth but it also has the power to destroy. An important point is that affordances 

do not reside in the environment, they are the result of interactions between the 

animal and the environment. 

Objects within the environment are classified as being either attached or detached. In 

Newtonian physics, all objects in space are detached, but from an alternative 

perspective it is obvious that some items are attached and cannot be moved without 

breakage. In order for an object to afford behaviour, it must be both detached and 

comparable in size to the animal under consideration. Exactly how small or large an 

object has to be until it does not afford behaviour is unclear, but those objects that are 

comparable can afford a wide variety of behaviours. Objects can all be said to have 

properties or qualities, e.g. colour, texture, composition, size, mass, etc. Orthodox 

psychology asserts that we perceive these objects insofar as we discriminate their 

properties or qualities, but Gibson suggests that what we perceive when we look at 

objects are their affordances, not their qualities. However, to perceive an affordance 

is not to classify an object, e.g. a stone is a missile but it can also be a paperweight, 

part of a wall, etc. 

By describing the environment in terms of animals, Gibson rightly makes the point 

that each animal has its own view of the same environment. Or to put it another way: 

given an infinitely detailed environment, each animal will extract only that information 

which it needs. Because different subsets of the environmental properties are being 

used, the animal's perception of the environment (and the objects within in it) will be 

different. For example, when we look at a tree we may be interested in it as a material 

for construction or maybe as shelter from the rain. A dog, on the other hand, may be 

assessing it for more basic needs. 

There is a very simple reason for this situation. If you examine an environment in 

detail it will present properties that are conducive to certain animals and properties 

that make the environment hostile towards others. Look at any species that survives 

today and you will see an animal whose perceptual systems have evolved to 



complement its environment. An animal implies an environment and an environment 

implies an animal. 

If the affordances of a thing are perceived correctly, we say that it looks like what it 

is. However, when evaluating the properties of an object, it is important for us to 

take a step back and view them in the context of the environment and not just from 

the human perspective - a task that is easier to state than accomplish. Gibson's 

ecological framework has already motivated the design of a VE Computer Aided 

Design system (Smets et al., 1993, 1994). Familiar modeling tools such as hammers 

and saws are replicated in the YE and afford behaviours found in everyday life, 

although they are not limited to these functions. 

3.1.3 Tools of the Trade 

We receive information about the environment through our senses. The limitations of 

our senses dictate the parameters to our perception of the environment. We cannot 

decide what an environment is without also examining the capabilities of our own 

senses. 

Sensory Modality Sensitivity/Resolution 

Touch 10-100 micron vibration 
1-2 mm spatial resolution 

Smell 7 dimensions? 

Sight -400-700 nm in the electromagnetic spectrum 
10 minutes of arc at 6 metres 

Sound 20 Hz to 20 KHz depending on the intensity 

--10 dB to 120 dB 

Taste 4 dimensions: salty, sour, sweet, bitter? 

Table 3.1 Common senses and their sensitivity/resolution. 

The five commonly accepted sensory modalities taught at primary school level are 

touch, smell, sight, sound and taste (Table 3.1). However, there are more: 

interoception, proprioception and exproprioception (Lee, 1978). Proprioception is 

the ability to sense the position and movement of body parts relative to each other 



whilst exproprioception is the sense of body position in relation to the environment. 

Interoceptors indicate the internal state of the body, e.g. hunger, thirst, tiredness, 

whilst our vestibular system (in our inner ear) provides us with information to help us 

balance. It has been proposed that taste has four dimensions and arbitrary tastes may 

be synthesised with combinations of these primaries (Carlson, 1986). Similarly, it is 

possible that smell may have many dimensions (possibly as many as seven) and so it 

may also be synthesised. Predictably, the senses commonly stimulated by current VR 

systems have already been quantified more precisely. With the ability to pick out 

millimetre detail at 6 metres, it is unsurprising that most people are disappointed with 

the display technology used in current HMIDs. 

The resolution of our senses would be a good place to start when determining what 

information to use to represent our environment and at what accuracy, but it would 

also be short-sighted. By exclusively adopting the human perspective we will 

inevitably lose some of the environment's actual fidelity, although it would not be 

noticed until an unconventional view was attempted. For example, assuming the 

behaviour of another animal, such as a cat, will involve a different set of 

environmental properties in order for the participant to interact effectively. 

Regardless of the practicalities of this, it is important to realise that the senses of a 

human may be supplemented through various equipment such as infra-red night vision 

goggles. Robinett (1992) also notes that if sensors can detect phenomena that are 

imperceptible to human senses, they could be linked to display devices. This would 

mean that these imperceptible phenomena could be rendered visible, audible, 

touchable or otherwise perceptible to a human being. In a way, creating a synthetic 

sense. 

If we restrict, for example, the modeling of the surface properties of an object to how 

things look in the visible spectrum, we will not be able to simulate it correctly when 

seen through night vision goggles. We may also wish to view the environment from 

another animal's perspective, e.g. a dog sees in monochrome, not colour, and its 

hearing is far more sensitive than our own, to name but two differences. Using the 

knowledge of our sensory abilities to aid the design of human-computer interfaces is 
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essential (Anderson, 1993; Caird and Hancock, 1993; Mon-Williams et al., 1993), but 

as a guide to modeling the environment it can be shown to be ultimately inadequate. 

3.1.4 Virtual Environment Taxonomies 

This section presents four different definitions/classification schemes for yEs. Each 

of them tackle the task at a different level and some are more detailed than others. 

The major points are presented here and comparisons drawn. 

3.1.4.1 A Conceptual Virtual Reality Model 

Latta and Oberg (1994) have proposed a conceptual VR model which embraces 

Gibson's work. VR interface technology is viewed as integrating perceptual and 

muscle systems but it was noted whilst deriving this model that fully integrating these 

systems would be impossible due to the complexity of the human interface. So the 

model only examines some perceptual systems, not all. An operational yR system is 

seen as providing a computer interface to specific human perceptual and muscle 

systems for the purpose of allowing the participant to perform operations that would 

not be possible without aid, e.g. a flight simulator. The model's emphasis is placed 

upon providing an interface to perceptual systems, not on describing what the 

interface looks like. 

The conceptual model consists of a human and a technical view of the VR system. 

The human view is interested in the physical and psychological issues of stimulating 

and detecting the actions of the participant, whilst the technical view is concerned 

with the environment. 

"The environment provides the stimulus that creates sensation 
while the individual takes action through movement. The 
environment ... is the total space, both real and artificial." 

Latta and Oberg (1994), p 25 . 

The definition and integration of the real and artificial environments is viewed as 

defming the participatory experience. The mapping of the physical sensors and 
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effectors supports definition of the participant's perception of the environment and 

their actions on it. 

Model Source 	Artificial 

Dynamic 
Model dynamically changes during 
the participation based on the actions 
of the participant or other events. 
Model database changes dynamically. 

Constructed 
Model is defined a priori as a fixed 
space and objects. Model database 
is static. 

Recorded 
Time recording of the space of 
interface parameters. 

Real 

Direct 
1:1 mapping between the space or 
interface parameters as experienced 
by the participant. 

Sampled 
Limited spatial or interface parameter 
resolution. 

Modified 
Modified space or interface 
parameters such as gain frequency 
response, of time variable. 

Recorded 
Time recording of the space or 
interface parameters. 

I 	 Transparency 
(relative contribution between artificial and 
space components to create the environment) 

Figure 3.1 Confection of artificial and real environments. 

Time 	 Space 

Direct 
1:1 correlation between time in the 
environment and the participant 
environment. 

Multiple 
(nt) time modification between 
participant space and the 
environment. 

Fixed 
(T) fixed time between participant 
space and the environment. 

Remapped 

f(t) functional remapping of time 
between participant and the 
environment. 

Direct 
(x,y) matching of the participant space 
and the environment. 

Distance 
(mz) distance scaling of the participant 
space and the environment. 

Scaled 
I(x, y, z) or (mx, fly, oz) scaling of distance 
for the spatial dimensions between 
participant and the environment. 

Functional 
f(x, y, z) functional remapping of distance 
for the spatial dimensions between 
participant and the environment. 

Figure 3.2 Type of time and space. 
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Technical confection and the real environment make the technical view of a VR 

system. Confecting is the process of preparing or making, especially by combining. 

Latta and Oberg believe that in VR we are confecting a participatory environment by 

combining a real environment with an artificial one (Figure 3.1). The technical 

confection includes a confection model that achieves interface control, defines the 

artificial environment and mediates between the participant and the real environment. 

A confection model can support independent models for each perceptual system. It 

also supports independent models for each muscle system., but the participant's 

detection of the action is usually correlated with perceptual systems. 

Figure 3.2 shows the ways in which space and time may be altered from their natural 

direct state to modif-  y the experience. Latta and Oberg believe that there is a natural 

hierarchy in managing and controlling a VR system based on the parameters of the 

technical confection model. First the mapping of the sensors and effectors supports 

definition of the participant's perception of the environment and their actions on it. 

At the next level the model source defines the static and dynamic aspects of the 

environment. Finally, space and time have equal importance: they are independent of 

each other but dependent on the first two levels of the confection model. 

3.1.4.2 An Experience Taxonomy 

Warren Robinett has proposed a tentative taxonomy to classify all varieties of 

technologically mediated experience (Robinett, 1992). This distinction is offered for 

"experiences": 

. Natural experience. Directly perceiving the properties or behaviour of 

something physically present before the perceiver. 

• Synthetic experience. Perceiving a representation or simulacrum of 

something physically real rather than the thing itself. 

There are nine dimensions to the taxonomy of a synthetic experience: causality, 

model source, time, space, superposition, display type, sensor type, action 

measurement type and actuator type. The first five dimensions deal with the 
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technological aspects of the devices used in the experience, whereas the last four are 

concerned with the sensor and motor channels used. 

Causality refers to the way the VE is experienced, either via a previous recording or 

transmission, e.g. teleoperation, or totally simulated where actions in the YE have no 

effect on the real world. The second dimension states that the human user perceives a 

virtual world that is defined by a possibly changing database called the model. This 

model can be scanned, constructed, computed and edited. Both time and space may 

be either aligned, displaced, differ in scale, or be related by a distortion mapping. The 

time possibilities are 1-to-I time-scale, accelerated (or retarded) time, frozen time and 

distorted time. Space may be registered, displaced or expanded (or miniaturised). 

The last technological dimension, superposition, basically refers to the possibility of 

merging the VE upon the real world, e.g. using a see-through HMD, or at another 

extreme, totally isolating the participant within the VIE. 

Display type and sensor type are the next two dimensions of the classification scheme. 

They present the potential for local input devices to be linked to remote devices in 

order to effect a change in the remote environment. 

3.1.4.3 Multiple Environment Integration 

A proposed definition of a VE, not visibly influenced by Gibson, is: 

"A multi-dimensional experience which is totally or partly 
computer generated and can be accepted by the participant as 
cognitively valid." 

Jense and Kuijper (1993), p50. 

Jense and Kuijper also view a VIE as an integration of environments, in this case, 

three: 

Computer-generated environment. 

Physically modeled environment. 

Real environment. 
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Figure 3.3 Fundamental elements of a Virtual Environment 
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Figure 3.4 A classification scheme for Virtual Environments. 

The computer-generated environment is created using a system consisting of sensor, 

control and actuator subsystems. The physically modeled environment contains 

objects that are also present in the real environment being simulated, e.g. a replica of 

an aircraft cockpit may be used to enhance a flight simulator. The real environment is 
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also viewed as an important component in a VE because it can stimulate senses that 

may be used to add realism to the simulation. However, the difference between the 

stimuli created by the physically-modeled environment and the real environment is not 

an easy distinction to make. 

Another classification scheme is proposed based upon the amount of stimuli created 

by each of these three types of environment (Figure 3.4). A soft VIE does not use any 

physical models to generate stimuli whereas a hard VE uses little else. Immersive 

VEs cut the participant off from the outside world and non-immersive systems use the 

real world in the yE. Most systems fall somewhere in between. 

3.1.4.4 Content, Geometry and Dynamics 

"... we can define virtual environments as interactive, virtual image 
displays enhanced by special processing and by nonvisual display 
modalities, such as auditory and haptic, to convince users that 
they are immersed in a synthetic space." 

Ellis (1994), p 17 . 

A formal definition for the environment, the theatre of human activity, is offered in 

Ellis (1991), which consists of three parts: content, geometry and dynamics. 

The content of the environment is its objects, these are described by state vectors 

which are a description of the properties of the objects. Actors are similar to objects 

but may be distinguished by the fact that in addition to properties they have capacities 

to initiate interactions with other objects. The self is a distinct actor in the 

environment which provides a point of view from which the environment may be 

constructed. Anything outside of the self can be considered the field of action. 

The description of the environmental field of action is called the geometry which has 

dimensionality, metrics and an extent. The dimensionality is the number of 

independent descriptive terms that are needed to specify the position vector for each 

element of the environment. Curved or straight lines are established through metrics 

which are systems of rules that are applied to the position vector. The extent is the 

range of possible values for the elements of the position vector. Following on from 
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this, the field of action can then be described as the product of all the elements of the 

position vector over their possible ranges. Kinematic constraints restrict the vast 

number of possible paths an object may take through the environment. 

The dynamics of an environment are the rules of interaction among its contents. The 

transfer of energy or information that occurs during interaction alters the state vectors 

of the objects involved. All interactions can be reduced to binary interactions which 

may be ordered based on the ranking of the elements involved. Dynamical rules 

describe the result of interactions between the environments contents. 

3.1.5 An Abstract Model 

The definitions of a VE offered by Jense & Kuijper, Latta & Oberg and Robinett all 

acknowledge the integration of different types of environment, whilst Ellis places 

more emphasis on the human interface technologies. By evaluating the amount of real 

and physically modeled stimuli created by each of the three types of environment 

proposed by Jense and Kuijper, it is possible to classify VEs at a high-level and this 

provides a basis for comparison. Although a more detailed evaluation would be better 

undertaken using Latta and Oberg's classification model. Only Robinett and Ellis, 

however, recognise the importance of perspective on the environment. Even though 

our senses are limited, it may be desirable to simulate a wider bandwidth of 

information. This would permit the simulation of sensory-enhancing equipment or for 

the participant to view the environment in an unconventional way. In other words, 

each animal within the environment may have a unique view of that environment and 

hence is concerned with a subset of the environment's total properties. A preferable 

ecological definition for a VE would therefore be: 

A totally or partly computer-generated environment that contains 
enough information so that it may support affordances for different 
animals simultaneously. 

Where an "animal" is an entity that could be a human with 
augmented senses, an object with some notion of artificial 
intelligence, or anything that has a unique perspective on the 
environment. 
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In order for a system to be able to support VEs of very different properties, it must 

have a flexible structure for modeling. Following the Affi decomposition of a model, 

the chosen abstract model of the VE may be represented in many different ways, each 

of which may have strengths and weaknesses. Each representation can also be 

implemented using many different methods, each having good and bad points. 

However, underlying all the possible implementations and representations should be a 

sound abstract model. 

The model presented by Ellis is quite detailed and uses physics-based concepts to the 

point at which it could be confusing, at best, and restrictive, at worst, when 

considering a VE that does not behave according to natural physical laws. Ideally, the 

abstract model should provide a simple and flexible basis of representing any type of 

environment. The author believes that such a model exists in the basic structure of 

our universe and it is the model that should be used. A plausible description of this 

structure is: 

A Universe contains all things that exist. These things may be 
described as Entities. An Entity consists of one or more Properties. 
An Entity may or may not interact with other Entities as dictated by 
Universal Laws. A Universal Law is an equation of constraint 
expressed using Properties, Universal Constants and other 
Universal Laws. A Universal Constant is a quantity that does not 
change throughout the whole Universe. 

3.1.6 Representations 

The use of terminology in the abstract model is meant to reflect its origins and not its 

possible applications, fortunately it fits quite well in the context of describing a VE. 

This model is, in fact, a very basic description of any form of structured data. A 

universe might be compared to a database: an entity is equivalent to a record, the 

properties are the record's fields, the universal laws correspond to the relationships 

between records and so on. 

Given that we have established a suitable abstract model for our yE, the next order of 

business is to find a suitable representation, something we can edit, manipulate and 
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generally play with until we are happy that we have a description that embodies our 

ideas. In essence, a specialised data description language. This task is undertaken in 

chapter 4 but before language design is examined, we should first consider modeling 

methods. 

An entity modeled using the abstract model detailed above may have many different 

representations. There may be a visual representation, an aural representation, tactile, 

thermal, etc. Each of these is interested in a number of properties, some are shared 

between them and often some are unique to the representation. They are all governed 

by a subset of the total universal laws and are applicable to a subset, if not all, of the 

entities in the Universe. 

One possible solution would be to model these representations independently, but this 

can introduce a great deal of data redundancy. For example, the physical appearance 

of an entity would only seem to be of interest if you are building a visual model. 

However, a tactile model is also heavily based on the geometry of the entity and, of 

course, how the entity distorts sound is based on geometry as well as other factors 

(Astheimer, 1993). If the shape of the entity changes then the relevant properties in 

the other models would also have to be changed. A shared structure of information 

would therefore seem appropriate, at least until design decisions for the 

implementation of these models need to be taken and then we are faced with the time 

old battle of distribution versus replication. 

It is at this point that we should also consider the design process. Without doubt 

modeling, whether it is geometrical or mathematical, can be as time consuming as 

developing the code to execute it, if not more so. 

3.2 The Modeling Process 

How the information in the model is organised and shaped into the final form is not 

just dictated by the thing being modeled, but how the model is derived. This section 

takes a cursory glance at the possible approaches to actually building a model and 
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their effect on the design process. Consideration of these factors aids the design of 

the modeling language (representation) and the supporting system. 

There would appear to be three levels of "reality" (for lack of a better term) that can 

be created: 

. An observer-oriented reality would provide adequate simulation of the inputs 

and outputs required by a human at the required accuracy. 

. An environment-oriented reality would provide adequate simulation of all 

inputs and outputs affecting the environment' at the required accuracy. 

. A universe-oriented reality would provide adequate simulation of all inputs 

and outputs at the highest possible accuracy. 

All current systems cater (in one way or another) for the first category, an observer-

oriented reality. Most image generators only model the attributes of a surface which 

are acted upon by visible light. Few give consideration to the rest of the 

electromagnetic spectrum, e.g. ultraviolet, infra-red, radio etc., because it is not 

generally required. In the same way, acoustic systems only deal with the range of 

frequencies that we can hear, even though many others affect us, e.g. ultrasound. The 

technology for the simulation of stimuli for smell, taste and touch are only just starting 

to be developed but clearly an entity's complete set (or subset) of properties must be 

modeled to permit their use. These observer-oriented systems also fail to easily 

accommodate simulation of things that do not directly affect us but we wish to 

visualise, e.g. the path of radio waves, infra-red light, and so on. 

A universe-oriented reality is the ultimate goal and would model everything in fine 

detail and without exception. In this context, "universe" is intended to mean the thing 

that is being modeled, in its entirety. Of course, it is possible that the amount of 

processing power and storage required to simulate the universe would exceed its size 

'In this context environment means the volume of entities surrounding the participant. The size of 

the volume is arbitrary. 



in the first instance! Nevertheless, it should be considered as one of the ultimate goals 

of a YE system, however vain. 

The next best thing would be an environment-oriented reality where the microcosm 

would possess a subset of the properties of the universe. These would be simulated 

to a high enough level of accuracy to allow their examination and a more accurate and 

realistic simulation of the participant's environment. How big the environment should 

be is a good question. Probably any volume that does not encompass the universe 

could be modeled in this way. 

3.2.1 Model Construction 

Some attempts have been made to provide higher-level modeling systems (Hemrnje & 

Strohmer, 1993; Luciana etal., 1991; to name a couple), but these still concentrate on 

a particular type of information or specific application and are not applicable to the 

general task of modeling a YE. There would seem to be two basic approaches: 

Take a very general, flexible and computationally expensive model and 

simplify/remove the parts that are not relevant to the case in hand. 

2. Take a skeleton model and then build on it, successively specialising and 

tweaking. 

Both of these methodologies can be seen to use a hierarchical approach in different 

ways. Using the first method, the designer is given the most complicated model that 

can be described and then they selectively remove/simplify the parts that are not 

relevant for the intended simulation. Each branch of the tree would therefore 

represent a progressively simple subset of the general model. Method 2 does just the 

reverse and could be likened to the object-oriented language feature of inheritance. 

Take a simple abstract class that provides the basic structure and fabric of a YE and 

then derive classes from it that provide it with some "flesh". Each new derived class 

would increase the realism of the simulation and also its computational complexity. 

Each of these approaches is valid and may be compared to the programming design 

methodologies of bottom-up and top-down design respectively. 
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3.2.1.1 Methodology Choice 

However, method 1 requires a lot more initial work because a great deal of 

consideration needs to be given to all of the simulation's goals and requirements. This 

is a potentially impossible task and, if anything, it will be limiting. Its advantage is 

that little or no work needs to be done to the model to get a fully working simulation 

running. Unfortunately, the same cannot be said for the entity descriptions 

themselves, each one must have all of its parameters meticulously evaluated and initial 

values found. 

Method 2 requires that a small extensible structure is derived and represented and 

thus provides the most flexibility. Its disadvantage is that the model's representation 

has yet to be created which, depending on the simulation, may take some time. The 

main advantage is that with smaller models there will be less preparation needed for 

the entities - only those parameters needed by the model will be evaluated. The 

universe could be represented as being composed of sub-universes or microcosms, 

each of which has its own laws to govern. Entities in each of the microcosms will 

possess enough properties such that the microcosm's laws may determine their 

behaviour. But what would happen if an entity from one microcosm would wish to 

move into another? 

Microcosm 
Microcosm  

Vertical 
Migration 

Microcosm 	Microcosm 

Horizontal 
Migration 

Figure 3.5 Universe hierarchy tree showing possible entity migration paths. 



3.2.1.2 Entity Migration 

The issue of entity migration really only exists in the second modeling paradigm. 

With method 1, migration would just mean using a different subset of the entity's 

properties and would require little or no intervention on the part of the designer. 

However, using method 2 the microcosm that the entities immigrate to must have 

sufficient laws to govern them correctly. If it is to do the same job as the emigrated 

microcosm then it must possess its laws and properties, this would mean that the 

emigrated microcosm is a specialisation of the higher level. This sort of migration 

may be thought of as vertical, up the inheritance tree (Figure 3.5). 

It is equally likely that an entity will want to use horizontal migration, i.e. moving 

from one microcosm to another, each with a common ancestor. The implication of 

this action is that some of the entity's properties will be shared, some will be left 

behind and others will be gained when entering the new microcosm. One logical 

course of action is to assign default values to these new parameters, although in 

practice this is unlikely to be a very satisfactory solution. Unfortunately, without 

some insight into the "purpose" of the entity, little else can be done automatically. 

3.2.1.3 Modeling Process Summary 

It would therefore seem sensible to use method 2 to develop VEs because it requires 

less initial work and presents a clear structure to the designer. At a reduced level it 

would be possible to simulate method 1 by redefining inherited laws, etc., to be 

simpler. Program design is often a combination of both bottom-up and top-down so 

it would seem reasonable to expect a similar approach to VE design. 

3.2.2 The Design Process 

All of the systems reviewed in the previous chapter treated the modeling process as an 

independent task that is performed initially, the result of which is executed. Some 

systems permit minor modifications to the model to be made at run-time, but this is 

usually limited to changing the values of selected properties, e.g. entity colour. An 
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entity may leave one VE and enter another through migration but major changes to 

the entity itself or its environment are not possible. 

Such changes may be the addition of new entity properties, the alteration of a law 

governing those properties, changing the value of a constant, etc. The ability to 

change the VE at run-time has several advantages: 

Development. By integrating the modeling and execution phases a prototype 

model can be refined and extended into the finished product without stopping 

the simulation. Whereas existing systems require some description to be 

written in a language, compiled/interpreted and then executed, integrated 

development tools would remove this distinction. 

Experimentation. A better development environment will encourage 

experimentation in the form that the VE takes. This is, of course, currently 

possible but the time cycle is large enough to become frustrating. A friendly 

modeling system increases the likelihood of better VEs and, hopefully, better 

designers. 

Evolution. The ability to modify the YE need not remain in the hands of the 

designer. On a restricted level it could be given to the participants in the VE 

or, more interestingly, to the entities themselves. This reflects an animal's 

ability to influence its environment, especially true in the case of humans. 

3.3 Real-time Virtual Environment Displays 

So far, this chapter has examined the somewhat abstract topic of VE modeling. 

Consideration has been given to our natural environment in the hope that it will add 

some insight into what we are trying to achieve when modeling a YE. A good yE 

should be intuitive to use; in other words the participants should have no trouble 

navigating around the environment, interacting with it, and completing any task that 

they set out to achieve. However, a sound VE model in itself will not achieve these 

goals. Unless interaction is effortless (or "natural") then even the most detailed 



model, built using the most advanced techniques, will fail to deliver the experience 

intended by the designer. This quality assessment is made via our senses and 

perceptual systems. If our perceptual systems are working normally then our energies 

will be expended on the task at hand. However, if we are fed information that 

disrupts the natural processes of our perceptual systems then we will either become 

aware of this problem or our performance will suffer. Therefore it is just as important 

how the environment is displayed, as the type of information contained within it. To 

understand the potential problems with current VE displays we must first establish the 

cause. 

The purpose of a display is to take raw information from the environment, process it, 

interpret its meaning, and then present it in a form that enables the viewer to extract 

some meaning. A suitable practical example is that of a visual display which is driven 

by a CIG - although aural or tactile would also make good examples. A CIG must 

process the geometrical information in the model, including lighting, surface texturing, 

etc. The more information it processes, the longer it takes to complete the rendering. 

If this display is presenting the participant's view on the VIE then the time taken to 

render the view may well depend upon where the participant is looking. Since the 

viewer will make decisions based upon the information the displays show them, e.g. 

what they see, then it is important that things appear where they should, when they 

should. Unfortunately the time between requesting a rendering of a new view and 

actually seeing it can be relatively large. The same statement can be applied to all 

types of displays, each of which may perform at different rates. This is not a situation 

which we have to tolerate when interacting with our natural environment. 

Consequently, at the very least, the viewer is presented with incorrect information for 

any given moment in time and, at worst, interaction with the VE is impossible. 

The remainder of this chapter examines in more detail why the update rate of VE 

displays should be constant. In order to present the two possible solutions to this 

problem it is necessary to consider the workings of a VE system in a little more detail 

than before. This discussion is a precursor to the detailed system design described in 

the next chapter and clarifies one of the primary system requirements. 
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3.3.1 Problems with Variable-Rate Systems 

In this section we present an example of the effects that a variable update rate has on 

interactivity. This is quantified by the application of a visual perception theory. The 

other benefits of a constant update rate are also discussed. 

3.3.1.1 Display Artifacts 

Consider a virtual ball moving straight towards you at a constant velocity of 1 m/s. It 

starts its journey 10 metres from you and you are attempting to catch it. Let us 

assume that a simulation of this will use a typical variable-rate CIG and a monitor 

(showing the catchers view) with a refresh rate of 60 Hz. When the ball is in the 

distance and hence quite small, the CIG manages to generate a new frame 30 times a 

second. This means that every 2 monitor refreshes a new picture will appear. 

If the CIG maintains this frame rate then the velocity of the ball will indeed be 

constant. However, if the CIG should manage to complete its work within a 60th of a 

second then the ball's velocity will appear to have doubled to 2 m/s! On the other 

(more likely) hand, if the CIG's workload takes longer than 33.3 ms to complete and 

hence only produces a new frame every 3 monitor refreshes, then the velocity of the 

ball will appear to reduce by 1/3 to 0.66 rn/s. 

If the frame rate was to go up or down each time an image was being rendered 2  then 

catching the ball will be made more difficult. In this case we are likely to see a drop in 

update rate because as the ball comes towards us, it expands. If the ball was textured 

and the background blank, this would mean that there are more pixels to fill and hence 

more work to do. Certainly, we are not seeing what the designer of this simulation 

wanted us to see. 

2 The word "render" is used in this thesis to embrace both of the classical geometrical and rendering 
stages used to produce an image. 
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Another more practical example is that of a driving simulator. Given the task of 

following a vehicle and ensuring that you do not crash into it would be made difficult 

if the vehicle would seemingly slow down and speed up quite uncharacteristically. 

3.3.1.2 Judging Time-to-contact 

Lee (1976) presented the Tau theory which suggests that our ability to judge our time 

to contact with a given target is based upon the rate of expansion of the target on the 

retina. This may be applied to our ability to catch balls as well as how we control our 

deceleration, among other tasks (Lee, 1993). 

The time-to-contact (TTC) of the virtual ball may be expressed as: 

TTC = Distance I Velocity 

Figure 3.6a shows the TTC assuming that we maintain a constant update rate of 30 

Hz which gives us a perceived constant velocity of 1 rn/s. The impact of a variable 

update rate is shown in Figure 3.6b. Each time the update rate changes so does the 

TTC, forcing the catcher to continuously readjust. In this case, the catcher will 

probably catch the ball because the update rate has slowed down so much that the 

perceived velocity of the ball at 5 Hz is 0.16 m/s, making the task trivial. They are 

unlikely, however, to be using TTC information to help them catch. 

3.3.1.3 Affects on Latency 

If the time between sampling input devices and updating the display is too long it can 

contribute to simulator sickness (Pausch et al., 1992). Just how long is too long is 

not clear, additionally it is not clear whether the systems used provided a constant or 

variable display update rate. There is evidence to suggest that humans can adapt to a 

constant degree of lag (providing that it is not too great) after a reasonable period of 

time, but how effective the interaction is depends on the task being performed. If the 

lag varies then adaptation is less likely and it is possible that this will add to simulator 

sickness. 
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3.3.1.4 Predictive Techniques 

There are methods for reducing the impact of lag on the participant. Kalman filters 

can be used to compensate for the effects of lags within the system (Friedman et al., 

1992; Liang et al., 1991; Dunnett et al., 1995). Such filters have been used to predict 

the movement of 6 d.o.f. sensors attached to parts of the body, e.g. head and hands. 

In the case of Head-Mounted Displays this means that the CIG can be asked to 

generate an image of the participant's viewpoint a short while in the future such that 

the image reaches the display at the right time. The effectiveness of these filters relies 

on the constancy of the lag and hence the update rate, without it the results of the 

filtering would be meaningless. 

If the progression of time happens at a known rate it is also possible to ensure that 

entities within the VIE appear at their correct positions when the image is eventually 

displayed. This is especially useful when trying to compensate for the single frame 

delay introduced in double-buffered CIG systems. 

3.3.1.5 External Device Synchronisation 

It may also be desirable to synchronise the VE display with an external data capture 

system. An example of such a device is the Ober/2TM infra-red eye-tracking system 

(Permobil Meditech AB, Sweden). A lot of effort has been expended by the 

manufacturers to ensure that a fast, constant sample rate is achieved, to such an extent 

that the host machine is configured solely for the purpose of controlling the eye-

tracker. Sample rates over 1000 Hz may be achieved although 180 Hz is sufficient for 

tasks monitoring basic eye movements (Permobil, 1993). In order to determine where 

the participant was looking within the VE display requires the meshing of two data 

sets, each with a different sample rate. Whilst, on a variable-rate system, it would be 

possible to record the update rate and then fit the eye-tracker data set to this, the 

result would be an uneven spread of data points over time. With a constant update 

rate system, the eye-tracker rate can be set at a multiple of the update rate which 

makes meshing much easier and produces a consistent number of data points per 

second. 



3.3.2 The Variable-Rate Paradigm 

A typical simulation processing cycle is: 

Sample input devices. 

Perform dynamics calculations. 

Update output devices. 

The VE system may consist of many components, both software and hardware. With 

each component comes a response time, a best and worst case for receiving data, 

processing it and outputting a result. Exactly where the bottleneck in the system is 

depends on the nature of the YE or application. Typically the bottleneck is the CIG. 

This is especially true in low-end systems where the CIG is more (or totally) 

dependent on the host processor to complete its task. In this case, image generation 

often has to be scheduled along with input/output device handling and the dynamics 

calculations. It is also quite typical for the workload of each component to vary. This 

is especially the case in the CIG where scene complexity may vary drastically (Airey et 

al., 1990). 

3.3.3 The Fixed-Rate Paradigm 

In order to provide a constant update rate there are two possible approaches: 

Derive some predictive algorithms that will enable us to determine the 

workload of each component and thus the system as a whole. 

Restrict the update rate to the worst-case. 

Both these methods are working to complete the 3 steps in our simulation cycle 

before a given deadline. Once this deadline has been met it is recycled and used again 

for the next VE display update. 

If we adopt the first approach then we may use the knowledge of each component's 

performance to degrade the services it offers such that the deadline for each 

component will be met. Alternatively, we can demand less of the system such that, 

even in the worst-case, it always meets its deadline. This inevitably means using some 

all 



components at less than optimum performance. Both of these techniques will now be 

discussed in further detail. 

3.3.3.1 Service Degradation 

This technique requires a scheduler to determine acceptable time-frames within which 

each component in the system must complete its calculations. The addition of a 

scheduler brings us one step closer to a real-time system. Failure to meet a deadline 

will have different consequences depending on the application. A visualisation may be 

content with simply providing a lower update rate (albeit constant) whereas a highly 

interactive application may treat failure to meet the deadline as a fatal condition. 

It should be noted that some systems have decoupled the rate at which component 

services are requested and the update rate of the CIG (Shaw et al., 1992; Wloka, 

1993; UVa, 1995). Therefore the simulation may progress as fast as possible, while 

the CIG generates images as fast as it can. 

However, CIG performance can still benefit from service degradation. Holloway 

(1992) draws as much of the visual scene as possible whilst still attempting to meet 

the deadline. To achieve this, the Viper system uses a special feature in the Pixel-

Planes Programmers Hierarchical Interactive Graphics Standard (PHIGS) 

implementation which allows traversal of a particular part of the database hierarchy to 

be terminated based on a conditional check of a global flag. In addition, visual 

objects3  were given either a high or low priority. High priority objects were always 

drawn and low priority objects only if time allowed. There is no guarantee that the 

image will be rendered within the allotted time since Viper uses successive estimates 

to decide whether it has enough time to render any more and is at the mercy of the 

underlying operating system (OS). 

3 The visual component of an entity. 
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Wioka (1993) proposes a system for time-critical graphics which uses knowledge of 

the dynamics behaviour of the simulation and a modified graphics database model 

combined with a scheduler to implement this technique. 

As Wioka notes, few CIGs support service degradation techniques. The nearest 

facility that most provide is Level Of Detail (LOD) which attempts to reduce 

workload by automatically substituting models of different visual complexity based on 

distance or screen pixel coverage (Reddy, 1995). SGI's IRIS Performer TM  goes one 

step further by providing a mechanism known as dynamic LOD scaling. This provides 

enough basic information for Performer to decide which combination of LOD models 

will complete rendering within a certain amount of time (SGI, 1995). The other work 

done in this area is at the application level as opposed to adding functionality to the 

CIG. Airey et al. use LOD along with other pre-processing techniques to support an 

adaptive refinement system that trades image realism for speed. Funkhouser and 

Sequin (1993) use cost and benefit heuristics to determine which LOD model should 

be used. The cost of an object is the time it takes to render an object with a given 

LOD using a certain rendering algorithm, whilst the benefit is an estimate of the 

contribution of the model to human perception. Encouraging results are obtained 

using this approach, however, even this technique is not sufficient to cope with 

extreme cases such as changing the view from looking at the sky to looking at a fully 

textured model of a town. 

3.3.3.2 Worst-case Operation 

Establishing what the worst-case is for a given VE can be accomplished by either 

working out by hand the worst performance of each component or by "exercising" the 

VE over a period of time. The latter method is very convenient and relatively 

effortless to perform, however its effectiveness is dependent on exercising the parts of 

the system that will present the worst performance, either on their own or combined 

with other components. 

A major advantage of this approach' is that it may be used on systems without real-

time extensions and although scheduling still plays an important part, it is done on a 
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decidedly pessimistic basis. The price paid for this type of predictability is the under 

utilisation of the available services, which is sometimes quite extreme if there is a 

large bottleneck in the system. 

3.3.3.3 Implementation 

Regardless of which method is chosen, the control of the CIG is the same and the 

possible scheduling options limited. A prototype implementation of the ideas 

presented here is given in chapter 5. 

3.3.4 Conclusions 

Producing successive displays of a VE at a variable rate can be shown to cause 

interactivity to suffer. The sense of presence in VEs is another area where variable 

rates may have an effect. In the study performed by Barfield and Hendrix (1995), five 

different update rates were used to examine the sense of presence. Efforts were made 

to ensure a constant update rate but it would also be interesting to see the effect that a 

variable update rate has on presence - which is currently a far more realistic situation. 

Increasingly, other complex standalone hardware (such as eye-trackers) are being 

incorporated into VE systems. Without a common time-frame, attempts to 

synchronise this equipment with a YE system can produce anything from erroneous to 

useless results. 

Whilst a constant update rate permits object positions to be calculated into the future, 

predicting the actions of a human interacting in the YE is another matter. Estimation 

of the participant's head and possibly hand movements may be accomplished using 

Kalman filtering, but there is no way of anticipating what they will do next. Because 

of this there will always be a latency between human action and displayed reaction 

with an order of one or two updates. However, it is surely better to base a judgement 

on a YE whose state is correct for that moment in time, than to base judgements on 

out-of-date information. 



3.4 Summary 

Attempting to define a VE in one sentence is next to impossible but its most important 

features can be expressed concisely. The general consensus is that a yE is actually far 

from virtual. It is a combination of our natural, physical environment and the 

computer-generated environment that is presented to the user through a wide variety 

of displays. It would seem that Virtual Environment is not a suitable term for 

describing such a phenomenon, Artificial Environment or Synthetic Environment 

would probably be more appropriate. However, almost all of the literature talks in 

terms of yEs so it would seem sensible to stick with the most commonly used term. 

After establishing exactly what a model is in the general sense of the word, the search 

for an abstract model began. It is clear that an environment is perceived differently 

depending on the viewer's perspective. This change in perspective may be due to the 

augmentation of our natural senses or even a change in species. Additionally, in order 

to enable unconventional input devices and displays, e.g. tactile, to function correctly, 

it is necessary to model more information than usual. Consequently, a method of 

modeling the diverse information present in the environment must be found. 

As a prologue to finding a suitable representation for the proposed abstract model 

(presented in chapter 4), the modeling and design processes were considered. A 

hierarchical approach using inheritance to extend and specialise successive models 

was the favoured modeling methodology. This increases the flexibility available to the 

designer and, with the correct system support, will hopefully aid them in the 

production of better VEs. 

After dealing with rather esoteric issues, a more down to earth problem was 

discussed. Variable update rates can destroy the visual illusion because this effect is 

not experienced by us when interacting with our natural environment. The 

synchronisation of audio with visuals can also fall victim to such a situation (as will 

most displays). Correct interpretation of data from input devices can also suffer in 

systems that have a variable duration between device sampling and display output. 

The technical details of a constant-rate visual display are presented in chapter 5. 
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Chapter 4 

A Universal Simulation System 

"Everything should be made as simple as possible, but no simpler." 

Albert Einstein 

Given a solution for distributing a VE at any level (near/tightly-coupled to far/loosely-

coupled), it is next to impossible for it to be successfully applied to the other levels 

without, at best, some loss in efficiency and, at worst, complete failure to meet the 

system requirements. DIS, SIMNET, DIVE and MR Toolkit are all designed to 

operate at one level and hence do not scale well. AVIARY has a more flexible design 

but little thought has been given to large-scale distribution. WAVES has been 

specifically targeted at low-end systems and has resulted in an architecture designed 

to compensate for a low bandwidth. 

The remainder of this thesis presents a system architecture which fits the many 

different combinations of computational power and bandwidth that may be found in 

networked simulation systems. This is not done by applying one solution at all levels, 

but by a number of solutions each best applied to a certain level, all of which share an 

underlying structure and philosophy. Deciding how the architecture is applied to a 

particular configuration will be the responsibility of the system designer/administrator. 

Enforcing a strict organisation would present problems considering the diversity of 

hardware that may be used. It is possible, however, to derive a set of guidelines 

which can be used to aid this decision process. 



There are some tasks that do not distribute well. Take, for example, image generation 

which, if it is to be distributed at all, must be done over a tightly-coupled network 

(with current technology) due to the high update rate that is necessary and the large 

volume of data that is generated. Similar arguments may be made for acoustic 

rendering and other local phenomena. It is no coincidence that these tasks are all to 

do with input and output. As section 3.3 showed, a high fidelity VE can be made or 

broken through the participant's view of the environment. Introducing lags and hence 

loss of fidelity by distributing these tasks will work against the intended goal. On the 

other hand, rendering the environment (let alone simulating it) can be a large 

computational burden. Therefore there is a clear need for local distribution of the 

simulation so that larger computational resources may be accessed whilst maintaining 

the fidelity of the simulation. 

Some tasks, however, do distribute well. In fact their distribution is the key to their 

success such as a simulation with a very large number of entities. For example, 

100,000 entities and upwards cannot possibly be simulated locally (with reasonable 

expense) and requires a larger set of resources to complete the task. The ability for 

simulations to operate over large distances is a natural progression and applications 

are easy to foresee, but the implications of such geographically dispersed distribution 

are many and substantial. The delays introduced by bandwidth limitations, switching 

stations, routers and protocol overheads can severely affect interactivity. 

This chapter presents the design for the Universal Simulation System (USS). First of 

all, the system requirements are described, followed by a summary of some design 

restrictions with regards to real-time and distributed systems in general. Before 

describing the system components that constitute the USS, the Universal Modeling 

Language (UML) is presented: a representation of the abstract model presented in 

chapter 3. If a USS is likened to a house, the system's components are the bricks and 

the modeling language is the cement that binds them and permits them to function 

together. The reader should note that use of the term "Universal" reflects the abstract 

model around which the VE is structured, i.e. our Universe. Its use is not intended to 

M. 



convey the impression of a solution that may be used for all types of 

simulations/modeling tasks. 

4.1 System Requirements 

Before proceeding further, let us first state the requirements that must be fulfilled by 

the USS: 

Real-time constraints. The simulation must maintain a level of integrity that 

matches its application. For example, a simulation which must support 

human interaction, e.g. a driving, simulator, must provide a high, constant 

environmental update rate. When modeling a complex system that exceeds 

the computational limits of the hardware, much lower constraints may be set 

that, although not interactive, must still be met. 

Scaleable from small to large scale simulations. It should be possible to 

take the same simulation model and distribute it at all levels with the 

minimum of effort, preferably transparently. 

Multiple human participants. Man-in-the-loop simulations introduce new 

restrictions on the simulation system, e.g. large lags are unacceptable. 

Multiple people interacting within the same VIE increases the complexity of 

executing the simulation proportionally. 

Applicable to a wide range of simulation applications. Rather than 

concentrate on one class of simulation, the system should provide sufficient 

generality in its structure such that it may be applied to many different types 

of simulation. 

Flexible distribution. There should be no enforced structure for distributing 

the simulation and the resources. The system should adapt around the 

simulation and not vice versa. 

Resource optimisation. To maximise the use of available resources the 

simulation workload must be capable of being redistributed where possible. 
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Fault tolerant. A minimum of degree-3 fault tolerance should be supported 

with as little impact on performance as possible. 

Secure. Steps must be taken to ensure that each system component cannot 

be violated thus compromising system security. 

4.2 Design Restrictions 

There are also several limiting factors that must be addressed when considering 

system solutions. 

4.2.1 Finite Memory 

Whether we talk in terms of physical memory or virtual memory there is still a finite 

amount that can be used before performance suffers. At the time of writing, a typical 

IBM PC has on average 4-8 Mbytes of memory. This is often increased for specialist 

applications such as 3D modeling but this is uncommon. By contrast, a middle-range 

SGI Onyx will come with 64 Mbytes as standard. Memory is often the most 

expensive component of any system and therefore physical memory should be seen as 

a precious resource. 

4.2.2 Finite Computational Power 

Some of the systems reviewed used total replication of the VE on each node as a 

solution to some of the issues presented. However, a node can only process so much 

and that limit may easily be exceeded when simulating larger YEs. Excessive 

demands can be placed on the CPU if it also has to process network packets. On 

faster networks or in a large simulation, this can become a bottleneck when the CPU 

fails to keep up with the traffic. This problem may be alleviated if the node has the 

luxury of multiple processors but such systems are more expensive and thus less 

common. 

Even if a CPU was dedicated to communications it would be a wasteful use of 

resources if a change in protocol resulted in much lower traffic. If this was the case 



then it would permit the savings to be applied to the simulation. Regardless, 

maximum use should be made of all available computational resources, whether they 

are on the same node or over a network. 

4.2.3 Finite Communications Bandwidth 

Table 4.1 shows a summary of the more popular systems for forming networks, their 

target network class, bandwidth and the physical medium used for connecting the 

nodes. At first glance it might seem that the larger the geographical distance between 

nodes, the higher the bandwidth available to the node. This is a false picture because 

the number of nodes connected typically increases as we move from LAN through to 

WAN technology. Therefore, in general, the longer the distance covered by a 

network, the smaller the effective bandwidth available to each node. If a yE system 

designed for a LAN saturates the bandwidth then this in itself will be enough to cause 

problems when it is expanded to cover a larger geographical area. 

System Theoretical 
Bandwidth  

Class Mediumt 

V.34 Modem 28.8 Kbps Dedicated link Copper telephone line 

ISDN 64 Kbps per channel Dedicated link Copper telephone line 

Frame Relay 56 Kbps - 1.98 Mbps WAN Coaxial 

Ethernet 10 Mbps LAN Coaxial or twisted-pair 

Fast-Ethernet 100 Mbps LAN Coaxial or twisted-pair 

CDDI 100 Mbps LAN Twisted-pair 

FDDI 100 Mbps LAN - MAN Fibre-optic 

ATM 155 Mbps+ LAN - WAN Fibre-optic 

LAN 	Local Area Network 
MAN 	Metropolitan Area Network 
WAN 	Wide Area Network 

ATM Asynchronous Transfer Mode 
CDDI Copper Distributed Data Interface 
FDDI Fibre Distributed Data Interface 
ISDN Integrated Digital Service 

Network 

This is the medium used to connect the node, it does not reflect the national backbone which would 
likely be fibre-optic. 

Table 4.1 Networking medium properties. 



The actual bandwidth available will vary depending on the protocol used across these 

mediums and the amount of traffic, with the exception of Frame Relay and ATM. 

These two systems permit channels of a specified bandwidth to be allocated and hence 

bandwidth is guaranteed during the existence of that channel. 

4.2.4 Limited Transport Mechanisms 

Since the architecture will be applied to diverse hardware/software platforms no 

assumptions may be made about the type of communications supported. Some may 

provide proprietary messaging systems, others may use TCP or UDP. Point-to-point 

communications are fairly standard although their implementation may not be readily 

conceptualised as message-passing: a multi-processor system may use shared memory 

and semaphores. 

Broadcast facilities are quite specialised and dependent on the transport medium - 

multicast is even more rare. If these forms were available, the issue of reliability must 

still be dealt with. 

4.3 Distributed Real-Time System Implications 

A typical real-time system consists of many processes, each of which has a very 

specific task. Usually a process is dedicated to waiting for a specific event to occur, 

e.g. an interrupt, and then performs some work when it is triggered. There are two 

types of real-time systems: soft and hard. In a soft real-time system each process 

performs its work as fast as possible and if it misses its deadline for completion 

nothing catastrophic will happen. Hard real-time systems, on the other hand, require 

that each process must complete their work before the deadline. Exceeding the 

prescribed finish time is a system failure and can result in disastrous consequences, 

e.g. the fly-by-wire systems found in high-performance aircraft have hard constraints. 



4.3.1 Computation Management 

Section 3.3 discussed a specific problem with current VE systems which may be 

placed in the soft real-time category. We shall therefore only concern ourselves with 

hard real-time systems. Cheng (1988) presents a review of the key scheduling 

algorithms and their application to distributed systems. A more detailed taxonomy 

can be found in Rotithor (1994) but Cheng's taxonomy will suffice for this section 

(Figure 4.1). 

4.3.1.1 Static 

Static scheduling relies on the knowledge that the number of tasks and their 

characteristics will not change at run-lime. This permits off-line scheduling to be 

Real-Time 

Soft 	Hard 

Static 	 Dynamic 

Centralised Distributed 	Centralised Distributed 

Figure 4.1 A taxonomy of real-time scheduling algorithms. 

performed and tested until a suitable schedule is found. One such tool for this is 

generalised rate monotonic scheduling theory (Sha and Sathaye, 1995). The CPU is 

allocated to the highest-level priority process which preempts execution of lower-level 

priority processes when needed. Their priorities are fixed and changing them can be a 

costly process. This process is therefore usually undertaken at the system design 

stage or when considering changes to an established system 

In a YE system, entities may be created and destroyed at run-time and the complexity 

of calculations performed may vary, e.g. collision detection. It is also possible that 

the communication paths between entities will not be static: depending on system 

design, each process may be able to communicate directly with each other. These 

three points defy the application of static scheduling. 
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4.3.1.2 Dynamic 

The dynamic method schedules processes at run-time and permits more processes to 

be added to the schedule and others to be removed. Although dynamic schedulers 

incur higher overheads compared to static schedulers, they are the only type 

applicable to VE systems. A process may be characterised by its timing constraints, 

precedence constraints and its resource requirements. Timing constraints can be 

described by the four parameters: 

. Arrival Time: the time at which the process is invoked in the system. 

• Ready Time: the earliest time at which a process can be executed. 

• Worst Case Computation Time: 

the execution time of the process is always less than this. 

• Deadline: 	the time by which the process must finish. 

Processes may be periodic or non-periodic (aperiodic). A periodic process executes 

once per time period whereas a non-periodic process executes only once and whose 

arrival time and deadline are unknown until run-time. In a simulation a large 

percentage of events will be the same for each time step, e.g. sending update 

messages, updating displays, etc. These events are periodic processes (although 

computational work may still vary) and the remaining unpredictable events likened to 

aperiodic processes. 

Precedence constraints represent the order in which the processes must execute and 

may be described as an acyclic directed graph. This graph may change as new 

processes arrive. An added restriction is whether a given process is preemptable or 

non-preemptable. That is, can it be interrupted after it has started execution and 

resumed afterwards or must it run to completion unhindered? 

The success of a dynamic scheduling policy can be measured by its guarantee ratio 

which is the total number of processes guaranteed to meet their deadline versus the 

total number of processes that arrive. 
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4.3.1.3 Centralised 

Cheng's centralised classification refers to systems where the processors are tightly-

coupled and the cost of Inter Process Communication, IPC, is negligible. A number 

of algorithms have been proposed to solve the problem of dynamic scheduling in a 

centralised system (Locke et at., 1985), the most popular and proven of which is 

earliest deadline first. As the name suggests, the process that needs to finish next is 

executed first. A detailed evaluation of this algorithm can be found in Halang (1992). 

4.3.1.4 Distributed 

The distributed classification refers to systems which use loosely-coupled processors 

and IPC overheads can no longer be dismissed. Scheduling on one node is quite 

different from scheduling a distributed system. When this step is taken two 

fundamental changes take place: 

All resource requests are no longer known to the centralised scheduler. 

Communications latency means that events may be delayed and/or not 

appear in time. 

The transmission delay must be incorporated into the process' schedule to ensure that 

its deadline is still valid. Also, the propagation delay may exceed transmission time on 

larger networks, so both must be accounted for. 

Communications delays also mean that any central scheduling algorithm would be 

working on out-of-date information about each node. For this reason distributed 

systems usually have two scheduling components: a local scheduling algorithm and a 

distributed scheduling algorithm. The local algorithm determines whether the process 

can be executed locally and, if not, the distributed component determines where in the 

system it should run. Centralised scheduling policies may be used as local algorithms 

but new solutions must be used for global scheduling. 

When allocating a process to a node, the target may be selected either by choosing the 

node with the lowest load (focused addressing) or through a bidding process whereby 
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each node bids for the task. The former uses out-of-date information but 

communication latency is low, whereas the latter uses accurate node information but 

incurs high communications latency. Stankovic et al. (1985) present an algorithm 

that combines both of these techniques, including the overheads due to scheduling and 

the communication delays between nodes. To reduce the amount of computation 

required to find an optimum schedule, heuristics and estimation techniques are used. 

Many distributed systems employ load-balancing algorithms (Boutaba and Folliot, 

1993; Gavish and Sridhar, 1994). However, these deal only with workload 

management and do not consider timing constraints. They may, therefore, be seen as 

a simple case of the general distributed scheduling problem. 

Some algorithms are static in that once a process has been allocated to a node, it 

remains there for the duration of its execution. Dynamic algorithms impose no such 

restriction and permit a process to move from one node to another, a technique often 

called process migration. Naturally, there are reasons for moving a process which are 

not based merely on node loading. Migration may be used to great effect if a process 

begins to perform an intensive task over a network link that may be best performed 

local to the resources it needs'. For example, a process interrogating a large database 

of information stored on disk would take much longer and consume large amounts of 

communications bandwidth unless it was located on the node with the actual disk. 

Fault tolerance also provides an incentive for migration (section 4.3.5). 

4.3.1.5 Service Degradation 

Ensuring that the VE appears to be behaving correctly to the participants requires that 

all visible entities and dependent system processes meet their deadlines. In a large yE 

this may be a small subset of the total entities which opens the possibility of enhancing 

the scheduling. If a process was designed to provide different levels of accuracy, e.g. 

loss of calculation accuracy traded for speed, then the guarantee ratio could be 

I If a process uses a resource intensively throughout its lifetime then it should be allocated to the 
node local to that resource from the start. 
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increased by using lower accuracy on those processes that are currently less important 

to the success of the simulation. 

4.3.2 Memory Management 

This is of special concern to real-time systems because memory management can be a 

costly venture. Virtual Memory (VM) is not used in strict real-time systems because 

it introduces a certain amount of unpredictability into the system. VM also requires 

an often significant amount of disk space to be put aside to hold any internal data 

structures that are generated at run-time. This does, of course, permit the execution 

of large processes but the overheads incurred usually degrade system performance too 

much. Whilst there are compromises, such as the use of overlays which the 

application has control over, they are rarely used because disk accesses must still be 

scheduled. 

4.3.3 Locating Resources 

In a distributed system it is necessary to provide a mechanism through which a 

process may locate a resource that it requires during execution. This resource may 

reside on the same node as the process or on another node in the system. The 

solution is a directory of service providers and their location. Any process may then 

interrogate the directory using, for example, the name of the service and retrieve the 

actual address of the service which is then used to communicate with them. Such 

name servers may be either integrated into the operating system kernel or run as 

separate processes (Bowman et al., 1990). So that all system-wide location 

registrations are recorded they must be communicated to the name server. If this 

service is embedded in the operating system kernel then extra name server 

functionality must be added. A separate name server process does not increase kernel 

complexity whilst achieving the same end result. 

If only one name server exists then it is a weak point in the system and its failure (or 

loss of communication with it) could render the system helpless. It is common, 

therefore, to enlist multiple name servers which keep each other informed of 
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registrations (QNX, 1993). Apart from increasing fault tolerance, multiple servers 

also increase the service response time for registration and location requests. 

4.3.4 Location of Backing Store 

No assumptions about the location of backing storage can be made in a distributed 

system. Diskiess workstations are still widely used where all programs and data must 

be sent back and forth along the network link to a central server complex. Typically 

the operating system makes this difference transparent to both the user and the 

applications by providing a local virtual filesystem (QNX, 1993). Therefore any 

system design should bear in mind that this resource may not be readily available. In 

addition, dependency on backing storage will slow any process down and increases 

scheduling complexity. 

4.3.5 Fault Tolerance 

The type of fault-tolerance required in a distributed system is influenced by the form 

of data and computation distribution employed (as discussed in section 2.4.6). 

Complete and partial distribution require full redundancy, i.e. a total duplication of the 

computation and/or the data. Failure to communicate with a given process must 

either result in communication with a backup copy of this process or waiting for 

access to that process to be restored. The same is true for partial data distribution. 

Partial computation replication inherently provides a certain degree of fault-tolerance 

because the high fidelity calculations are approximated on every node with interest in 

that process' work. Total replication, of course, already provides full redundancy. 

Token fault tolerance may be achieved by duplicating the key system components 

such as the name server discussed in the previous section. To prevent such an 

approach having a large detrimental effect on performance it requires a low-overhead 

synchronisation method to keep each duplicate up-to-date. Such a suitable 

mechanism would be the use of multicast communications between duplicates. 
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Failure of all the hardware on one node is quite uncommon, a more realistic scenario 

would be for an individual hardware component to fail. If another functionally 

identical piece of hardware exists on another node then there is the possibility of 

moving the process dependent on this hardware to the other node. Process migration 

driven by hardware failure is a special case of the general load balancing task. In 

order to repair the hardware component it is possible that the node must first be 

powered down, e.g. replacing an integrated component rather than a device hooked 

up to an external 110 port. In this case all processes would have to be migrated to 

another node until the problem was fixed and then the current system load re-

distributed. The same reasoning can also be extended to failure of key software 

components. Except in this case the faulty application could likely be fixed without 

taking the whole system down. 

Unsuccessful attempts to communicate with a hardware or software component can 

be used as an indication of a fault. Alternatively, a failure may result in a partial or 

reduced quality service in which case it would be possible for a component to 

explicitly indicate failure. 

4.3.6 Summary 

A distributed real-time yE system is best equipped with a dynamic deadline scheduler. 

Most processes in such a system will be preemptable due to system can usage such as 

message passing. Two scheduling policies are best employed to work at different 

levels: local and global. The earliest deadline first algorithm provides a proven local 

scheduling policy whilst an effective global policy combines both dictation and 

volunteering techniques. 

Memory is a finite resource and any design should treat it as such whilst system-wide 

resources may be brokered using a number of mirrored name servers. Access to any 

such resource, including backing store, must be carefully scheduled. Finally, the form 

of data and computation distribution used has a direct impact on the degree of fault-

tolerance a system can support. The remainder of this chapter presents a system 

design driven by these observations, starting with the design of a modeling language. 
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4.4 A Universal Modeling Language 

The UML is the representation of the abstraction of our universe. It is a description 

of the universe based on the framework defined in section 3.1.5, but imposing no 

restraints on what information should appear and where. Interpretation of UML and 

the subsequent execution of the model it represents provides us with an 

implementation of our model. Description of the system architecture would be 

impossible without referring to UML because it is integral to the system's design, thus 

it is presented first. 

4.4.1 Language Requirements 

Based on the analysis of modeling techniques in chapter 3, the design issues (chapter 

2) and implications presented in this chapter, the requirements for UML are: 

. Structure based around the abstract model of our universe. 

• Easy data modeling. 

• Easy to learn and familiar in structure. 

• Fast incorporation of changes into the model. 

• Portable across many hardware/software platforms to support process 

migration. 

• Low resource overheads, e.g. memory, computation, etc. 

• Co-operative with the implementation language. 

Fortunately, the abstract model that has been proposed (also) strongly resembles that 

of an object-oriented model. The universe corresponds (using C++ terminology) to 

the class, the constants and properties to the member variables, the laws correspond 

roughly to member functions and entities would be the objects instanced from the 

class. 

The remaining requirements make the choice of language a little more tricky. To 

enable easy modeling of the VE the language must be concise, unambiguous and high 

level. These criteria help narrow the search as does the requirement that the language 

is easily learnt and intuitive. 



On a practical note, in order to promote use of the language, it should be accessible 

by as wide an audience as possible and hence procedural as opposed to functional. 

Whereas functional languages have been used for Virtual Reality "programming 

languages" (Coco, 1992), they are not widely accepted and are often difficult to read. 

An object-oriented based procedural language would therefore seem a fair 

compromise. 

To aid in development, debugging and provide run-time flexibility, it should be 

possible to make changes to the representation at any time. The ability to add 

properties to an object (or remove them), redefine the laws governing the properties 

and possibly even changing the value of (the somewhat inaccurately named) constants 

is potentially immensely powerful. In theory, it could be possible for the complete 

simulation to be re-designed on-line. The implications of such an ability are mainly 

the concern of the implementation but it is evident that the language must have a clear 

structure and well-defined rules to minimise the confusion this could cause. 

4.4.1.1 Compiled 

Permitting the representation to change during run-time gives us two alternatives. 

Firstly, to use a compiled language that permits dynamic loading and secondly, an 

interpreter. Normally, a compiled language takes a number of compiled language files 

(object files) and links them together to produce one executable. Dynamic loading 

refers to the ability to take an object file and link it into the process' executable image 

whilst that process is running. Asides from the considerable problems preserving 

access to the program data, there are two problems with this solution. To create the 

object file a compiler must be used which can be quite expensive with regards to how 

much of the computer's resources it uses, e.g. a C++ compiler performs many 

optimisation and is often dependent on many header files, can generate large 

temporary files, and so on. In fact the presence of local backing storage and sufficient 

memory to run a compiler is by no means certain. Secondly, the process of dynamic 

loading is operating system specific and is rarely done in the same way each time. 

Notably, under real-time operating systems dynamic loading is not available at all 
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since it is undeterministic and hence undesirable. As far as process migration is 

concerned, some additional mechanism must be devised such that the modified code 

may be transmitted to the destination machine. 

4.4.1.2 Interpreted 

The second alternative is not without its negative points either. An interpreted 

language is often slow to execute in comparison to the fast-as-possible execution of a 

precompiled language. It is slow because the program is usually translated into an 

internal code, in which each instruction corresponds to a number of native machine 

code instructions. This weakness is also an interpreter's strength since the language is 

inherently portable across different architectures. If each machine was provided with 

a copy of the interpreter, the same program can run unchanged and execution speed 

may be improved by pre-translating frequently used routines (in a library for example) 

into the internal code which is then stored for later execution. Any further 

optimisation would require the coding of commonly used routines in the 

implementation language (IL) and compiled into the native machine code. 

4.4.1.3 Resource Implications 

If each entity is to be described using an interpreted language then it, is essential that 

the amount of resources consumed by the interpreter is kept at a minimum. For 

example, in a simulation where hundreds or thousands of separate entities are being 

simulated, the overheads per entity soon become a real issue. Ideally, the language 

will be compact, concise and execute quickly. Unfortunately, this requirement 

conflicts with the ability to make modifications to the data description and the code at 

run-time. Such a flexible system will inevitably require more memory for the dynamic 

data structures and more processing time to administer them. 

Even in the best case that we can hope for, the interpreted language will still run 

slower than a compiled language, or will take more memory or any number of other 

disadvantages. It is therefore desirable to code the frequently used or critical routines 

in the IL. In other words the interpreted language will be embedded and therefore 
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some way of sharing code and data structures between the languages must be 

provided. It could be arranged such that the presence of compiled routines would 

override the interpreted definitions and hence this would not affect portability of the 

program, only speed. 

4.4.2 Candidate Languages 

The features we are therefore looking for in our potential candidates are: 

• Interpreted. 

• Procedural. 

• Object-oriented (at least some form of inheritance). 

• Extensible. 

• Fast execution. 

• Compact. 

• Embedded. 

• Available at no financial cost on many platforms. 

Availability of the language at no cost on disparate platforms is essential and, if 

modifications are to be made, the source code is also required. A number of existing 

languages were evaluated to varying levels for their suitability: Bob, Glish, ICI, Lua, 

and Python. Other potential candidates were ruled out at an early stage due to lack of 

features, e.g. Application Executive (Bliss, 1991), or availability. Java (Gosling and 

McGilton, 1995) was released in late 1995 at which time software development for 

this thesis had ceased. Smalitalk is a financially expensive language that shares many 

features with Java such as supporting run-time code changes, but not run-time class 

structure changes. Since classes would be used to structure the model, this also rules 

out Smalltalk and Java as candidates. 

4.4.2.1 Bob 

Bob is an interpreter for a language with C-like syntax and a class system similar to 

C++, but without variable typing and mostly without declarations (Betz, 1991). All 
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class data members are protected by default and may only be modified through a 

member function. Single inheritance is supported (not multiple) and Bob preserves 

the concept of constructors which may, unusually, initialise objects already in 

existence. Bob's interpreter takes the source code and compiles it so that it may be 

interpreted using a stack-oriented byte-code machine. This way, syntax analysis is 

performed only once (at compile time) and speeds up the execution considerably. 

With a little effort it is possible to extend the language to include more built-in types 

and routines written in the implementation language: C. The current implementation 

is written for MS-DOS but there is no reason why this language cannot be ported to 

other operating systems. 

4.4.2.2 GUsh 

Gush is targeted at loosely-coupled distributed systems and the philosophy used is 

that individual programs in a system should be wholly modular, having no knowledge 

of other programs or data types that might exist (Paxson, 1993). Programs may 

communicate without knowing about each other through events which are name/value 

pairs. Gush has three main components: a scripting language for specifying what 

programs to run and how to interconnect them; a C++ class library so that programs 

can generate and receive events and manipulate data; an interpreter for executing the 

scripts. The language is array-oriented and is geared towards the manipulation of 

data sent between programs. By default all IPC is done through the interpreter which 

allows dynamic modification and re-routing of data but it is also possible to establish 

point-to-point links when performance is critical. Glish is written in C++, uses 

TCP/IP for its IPC mechanism and is available on SunOS, Ultrix and other UNIX 

variants. 

4.4.2.3 ICI 

ICI is an interpreted procedural language that represents C with extensions for built-in 

handling of arrays, structures and sets (Long, 1992). Structures are a key element of 

ICI, especially the notion of super structures (analogous to parent classes). If a 

112 



reference to a member of a structure cannot be resolved then a search is made of that 

structure's super structure (if it has one). If the super structure does not contain the 

reference then the search proceeds to its super structure and so on. Although ICI is 

not object-oriented this mechanism provides a method for supporting inheritance 

albeit for data only (functions may not be members of structures). New data 

structures and functions may be defined at run-time but existing structures or 

functions cannot be modified. 

4.4.2.4 Lua 

Designed to be used for extending applications, Lua is a procedural language that 

makes heavy use of associative arrays that may be constructed and manipulated in 

many different ways (de Figueiredo et al., 1994a, 1994b). Unlike ICI, Lua 

distinguishes the functions and data provided by the host application from the data 

and functions defined in the language itself. The other built-in types are strings, 

floating-point numbers and nil - the type of the nil variable. Only a small number of 

built-in functions are provided but embedding C routines from Lua is easily done and 

the Lua program may be extended at runtime. The language itself has very few 

constructs yet proves to be quite expressive. Rather uniquely, persistence of data may 

be provided by writing Lua code that writes Lua code that, when executed, restores 

the values of all global variables. Using a byte-code interpreter similar to the one in 

Bob, it is feasible to pre-compile the programs into byte-code form to decrease 

loading time and reduce runtime support. 

4.4.2.5 Python 

The designer of Python describes it as "... a simple, yet powerful programming 

language that bridges the gap between C and shell programming, ..." which is a very 

fair evaluation (van Rossum, 1994c). Python is rich with the familiar procedural 

programming constructs, provides exception handling as standard and comes with a 

large number of modules which provide interfaces to library routines varying from 

POSIX system calls to Silicon Graphics GL (van Rossum, 1994b). Modules have 
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generally been pre-compiled, which can also be done to user code. A class 

mechanism has been added to the language since conception (with little trouble) and 

supports member variables, functions and multiple inheritance. Writing C functions 

and using them from Python is not an easy task, most of the complexity is to due to 

the memory management system used. To its credit, Python is the only language to 

support dynamic loading of extension modules (van Rossum, 1994a). By only loading 

a module when it is needed the core interpreter can be reduced in size and overheads. 

Unfortunately dynamic loading is currently only supported on some UNIX systems. 

Language Memory (Kbytes) Memory + 
Program (Kbytes) 

CPU 
Time (ms) 

Bob 224 340 7,197 

Id 392 504 13,464 

Lua 264 264t 13,653 

Python 760 856 13,658 

Compiled C n/a 112 100 

§ The implementation used had a memory leak which made accurate 
measurement impossible (this is a "best guess"). 

t Stack, heap and code space is statically allocated when the interpreter is 
compiled. 
486DX 33MHz IBM PC Compatible running the QNX operating system. 

Table 4.2 Interpreter resource evaluation. 

4.4.2.6 Interpreter Performance 

Glish, although ideally suited for the task it was designed for, is not really suitable for 

the task at hand. Adding to the interpreted code at runtime is not possible as the 

package stands currently and it requires that all input/output is routed through the 

Glish interpreter - this is not desirable. Each of the remaining languages, ICI, Bob, 

Lua and Python, fulfil most of the requirements. To determine how they compare 

when memory and Central Processing Unit (CPU) usage is examined, a test 

benchmark was written in each of the languages and measurements taken. The 

chosen benchmark was intended to test the speed of the interpreter with a typical task 

that would be easily represented in each language and not rely on the speed of built-in 

functions. The task was to multiply a four-by-four matrix with a vector 10,000 times 
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(so as to average out the effects of variable lags in the operating system). In Bob and 

Python, the matrix/vector data types and manipulation functions were coded as a 

class, in Lua and ICI they were implemented as an Abstract Data Type (ADT) using 

normal functions and the relevant data structures. The amount of memory used by the 

interpreter (with and without the loaded program) and the CPU usage were measured. 

On the whole there are little surprises in the results shown in Table 4.2. Both Bob 

and Lua offer few features and hence the interpreter is relatively small in size. ICI 

provides more elaborate data structures and language constructs and Python weighs 

in highest, not surprisingly due to its comprehensive range of features. Each 

interpreter takes about the same amount of memory to hold the program (-120 

Kbytes) with the exception of Lua which has a fixed amount of space allocated when 

compiling the interpreter (this may, of course, be changed). The execution times are 

interesting in that all but Bob's time are almost exactly the same. These times do not 

include parsing overheads and so the efficiency of Bob's byte-code interpreter must 

explain its result. The figures for the same test written in C and compiled into 

machine code provide a good indication of how much time each interpreter really 

spends executing their translated code. The large differences in execution speed 

between machine code and interpreted code are not surprising, the machine code is 

optimised for the CPU in question and, for this particular example, so as not to stall 

the CPU pipeline and thus maximise throughput. Whereas the interpreters have to 

work through a considerable number of other instructions in between each language 

instruction, making effective optimisation next to impossible. 

4.4.2.7 Language Selection 

Considering that there will be many processes in the YE system that will make use of 

the UML and hence the interpreter, the amount of memory used is a prime concern. 

Multiple copies of the interpreter itself may be avoided by putting it into a shared 

library which will only be loaded once. The amount of memory used to store the 

program is still an issue however, as is the amount of CPU consumed. If the language 
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is overly complex it can lead to increased memory for storage and longer execution 

times. 

Python suffers from difficult embedding and whilst, in an ideal world, its rich language 

would be very useful, the author believes that for the purposes of this thesis the 

overheads are too large. Since this decision was made, Python has been chosen as the 

programming language for the Alice rapid-prototyping system (UVa, 1995). Alice 

runs exclusively on SGI machines which offer greater CPU power, more memory and 

larger disk storage than is available on the average workstation. Also, Alice does not 

have the same requirements as detailed in section 4.4.3. 

ICI provides little more than multiple inheritance in the way of object-oriented 

features and execution times are too high. Lua is impressive but has no object-

oriented features whatsoever. Bob is the most promising of the group, it has a small, 

useful set of features but lacks a robust implementation and documentation. 

One of the main requirements was the ability to modify code and data structure at 

run-time. None of the languages reviewed enable the data structure to be altered on-

line and strictly speaking, none support code modification either. However, it is 

conceivable that those languages supporting dynamic loading might permit the 

replacement of previously loaded modules. Even then, this would be a heavy-handed 

approach and relatively very slow. 

There is also the issue of transforming the model into code. Using a general-purpose 

language will unavoidably involve using different terminology and possibly a structure 

sufficiently different to cause confusion. To ensure an easy transition from model 

abstraction to representation whilst reducing resource overheads, the author believes 

that a special, optimised language needs to be derived, learning from the languages 

reviewed. 
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4.4.3 Proposed Language 

The features of the surveyed languages that should be kept are: 

• Simplicity of expression. 

• Compactness - both interpreter and intermediate code size. 

• Classes and inheritance. 

• Implementation language interface for embedding. 

• Modules. 

• Use of byte-codes and a byte-code machine for language execution. 

The negative aspects that will not be used are: 

• Inability to alter structure of data and code at run-time. 

• Lack of code/data persistence. 

• Type-less variables/parameters. 

The Universal Modeling Language is a procedural language and possesses some 

object-oriented properties, notably inheritance and operator overloading. Multiple 

inheritance is not supported primarily because it complicates interpreter design 2  (for a 

discussion on this topic see Swawe, 1989; Bretthauer et al., 1989). Its appearance is 

a mix between C/C++ and Pascal. Some of the expression notation has been taken 

from C++ to aid brevity whilst Pascal lends us clarity of description. 

UML can be split into two halves. The statements that describe the data - its 

structure and content - and the code that manipulates that data. The actual language 

statements used to represent these two components are almost completely unique to 

each component. In other words, a UML description can be separated into two 

categories: data definition and instruction code. 

2 That is not to say that it would be inefficient (Tempi, 1993). 
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4.4.3.1 Data Definition 

There are two structural components: the UNIVERSE and the ELEMENT. These are 

used together to form a hierarchical framework within which the other components 

may be placed: CONSTANTS, PROPERTYs, CONVERTERS, FUNCTIONS and other 

ELEMENTS. A simple grammar representing the basic relationships between these 

components is given in Figure 4.2. 

universe : UNIVERSE name ( components ) 

components 	: components component 
I component 

component : constant 
I element 
I converter 
I property 
I function 

element : ELEMENT name ( components } 

Figure 4.2 Backus-Naur Form description showing relationships between 
UML components. 

4.4.3.1.1 Universe 

The starting point of a representation is the definition of the universe which is 

assigned a name for reference purposes (Figure 4.3). Within the universe, properties 

may be defined and grouped into elements for convenience, functions may be written 

to act on the properties of the universe and hence provide a behaviour. The state of a 

universe is made up of entity instances (section 4.4.3.1.8). Three functions are 

mandatory for each entity: Construct, Destruct and Update. Construct is 

called when an entity is created (this is after all only a declaration, not an instance) 

and is typically used to give initial values to the entity's properties. The Destruct 

function is called when the instance is being deleted and may be used to perform any 

last actions. The simulation is progressed through a series of discrete steps, each one 
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beginning with the execution of the Update function. It is also used as a focus for 

the synchronisation of the data within the simulation. 

UNIVERSE Base 

ELEMENT Models 

ELEMENT 	Visual; 
ELEMENT 	Aural; 
ELEMENT 	Tactile; 

PROPERTY 	visual 	Visual; 
PROPERTY 	aural 	: Aural; 
PROPERTY 	tactile 	Tactile; 

PROPERTY 	models 	: Models; 
PROPERTY 	position 	REAL[3]; 
FUNCTION 	time 	: REAL; 

VFtJNCTION Construct; 
VFtJNCTION Destruct; 
VFUNCTION Update; 

Figure 4.3 Example top-level UML description. 

4.4.3.1.2 Types and Constants 

Other components of the language will appear familiar, such as the built-in primitive 

types: REAL, INTEGER, STRING, and BOOLEAN. Classical "user-defined" types 

are in fact supported through elements. 

The only data structure primitive is the list, which may be created from any type, 

built-in or element. If a dimension is given when defined then the size of the list is 

fixed and may not be changed at run-time. If no dimension is given, i.e. an empty pair 

of square brackets, then the list may grow and shrink. Therefore, a fixed list may be 

likened to an array and a variable list compared to a linked-list. 

Constants may be declared at any level of scope within the universe but may only use 

built-in types. 
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4.4.3.1.3 Elements 

While it is possible to embed the definition of elements and functions within the 

universe section, it can soon reduce readability as the number of properties and 

functions increases. It is therefore possible to merely give a stub declaration and 

provide a full definition later on. UML does not require that certain definitions are 

placed in specific files and as such, any completion of a stub declaration must qualify 

which stub it is satisfying. In the example above, the Visual element was defined as 

a stub in the universe called Base. A possible full definition is given in Figure 4.4 

with the name of the element reflecting its origin. This "dot" notation is used in any 

situation where a stub and a full definition need to be associated, i.e. elements, 

functions, etc. It may also be used by the other component types, e.g. properties, to 

modify definitions when using the interpreter directives (section 4.4.3.1.9). 

The Visual element contains two further elements, one of which defines an 

element called Colour. At this point no data is held within the Visual element 

since the colour element is only a declaration. The Surface element has further 

elements nested within it - there is no limit to the level of nesting permitted. The 

Vertex element declares two instances of previously defined elements: Vertex 

(local to Polygon) and Colour (local to Visual). Similar definitions may be 

made for Aural and Tactile. 

Elements may be treated similarly to classes in object-oriented languages - they can 

defme data and code which operates on that data. Even if the element does not defme 

any properties, the element must be instanced before the element's functions may be 

called. 

4.4.3.1.4 Properties 

A property is formed by two parts, the name of the instance and a description of its 

structure separated by a colon. The property's structure may be based on a built-in 

type or an element. Only elements that have already been declared may be used in 

property declarations. A property declaration is an indication that the structure 

defined by an element or type should be instanced and hence take physical form. 
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ELEMENT Base.Models .Visual 
{ 

ELEMENT Colour 

PROPERTY 
	components : REAL[3]; 

FUNCTION 
	

Set( triplet : REAL[3] ); 
FUNCTION 
	

Get( triplet : REAL[3] ); 

ELEMENT Surface 

ELEMENT Polygon 
I 

ELEMENT Vertex 

PROPERTY 	coord : Vector; 

PROPERTY 	vertexList 
	

Vertex[]; 
PROPERTY 	colour 
	Colour; 

PRO PERTY 	polygonList : Poly ;on 

PROPERTY 	surfaceL.ist : Surface[]; 

FUNCTION 
	

Read( filename : STRING 
	

BOOLEAN; 
FUNCTION 
	

Write( filename : STRING 
	

BOOLEAN; 
} 

Figure 4.4 A possible definition for the Visual element. 

4.4.3.1.5 Functions 

A function is identified by its name (using dot notation if necessary), the parameters it 

requires (if any) and a possible return type. All parameters referring to variables and 

properties are passed by reference whilst literals are passed by value. By default a 

function does not have a return type. The contents of the function are made up of one 

or more imperative statements. A pure virtual function may also be declared using the 

VFUNCTION keyword, which means that no definition is provided at that level but 

must be provided by any universe inherited from this base universe. The 

Construct, Destruct and Update functions in this example are all virtual 

functions because the values of the properties are different for each instance, to 

provide default values only to be overridden by derived functions would be wasteful. 

In Figure 4.4 two functions are defined within the Visual element to input and 

output visual representations. 
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4.4.31.6 Inheritance 

Inheritance is used heavily within UML to specialise descriptions of the universe. The 

example in Figure 4.5 shows that the universe PBM (Physically-Based Model) is 

derived from Base. In addition to all the properties, elements, constants and 

functions defined in Base, the new universe defines extra properties and provides a 

definition for the virtual functions. 

UNIVERSE PEM : Base 

CONSTANT 	Gravity 	: REAL[3] = [ 0.0, -10.0, 0.0 ]; 

PROPERTY 	mass 	: REAL; 
PROPERTY 	velocity 	REAL[3); 

FUNCTION 	Construct 

II Assign initial values for the inherited 
II properties. 

position = [ 0.0, 0.0, 0.0 1; 

II Now assign values for the local properties 

mass = 0.0; 
velocity 	[ 0.0, 0.0, 0.0 J; 

FUNCTION 	Update  
FUNCTION 	Destruct  

} 

Figure 4.5 Defining a UNIVERSE by inheritance. 

Inheritance is not limited to universe components, elements can also be derived from 

other elements providing that they have already been declared. The parent element 

could be in the same scope level or even in an ancestor universe. 
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ELEMENT RGBColour : Colour 

CONVERT HLSCoiour 
	 II Convert from RGB to HLS 

ELEMENT HLSColour : Colour 

CONVERT RGBColour { ... } 	// Convert from HLS to RGB 

Figure 4.6 Inheriting from an element. 

4.4.3.1.7 Converters 

With the effective proliferation of a large number of elements (essentially types) it is 

often necessary to convert between one and another. In some cases this may be 

trivial, e.g. converting a string into a real, an integer into a real, etc. In other cases 

the transition may be less straight forward, e.g. converting from one colour model to 

another (Figure 4.6), changing a surface model description into a volumetric 

description, etc. To handle these non-trivial conversions special functions may be 

defined within an element that identify the result of the conversion by giving the 

destination type as their function name. Converters do not take parameters and do 

not return any value. They may be implicitly invoked by the interpreter or explicitly 

by the programmer as shown in Figure 4.7. 

FUNCTION Colours 

PROPERTY 	rgb 	: RGBColour; 
PROPERTY 	his 	: HLSColour; 

rgb.Set( 1.0, 0.0, 0.0 ); 
his = rgb; 

his = HLSColour( rgb ); 

II Bright Red! 
II Interpreter invokes 
II correct conversion 
II function. 
II Force conversion. 

Figure 4.7 Explicit/implicit invocation of a converter. 

In the event that a converter could not be found, an exception would be raised during 

interpretation. 
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4.4.3.1.8 Entities 

The entities are the physical embodiment of the universe. An entity is created by 

specifying the universe in which it belongs and from this information it is furnished 

with a copy of the properties, elements, constants and functions defined for that 

universe. The Construct function is then called to initialise the entity's state. 

Some of this initialisation code may be found in the universe definition but usually this 

is appended to, if not completely specified, in the entity definition. When an entity is 

destroyed its Destruct function is also called. 

ENTITY Ball : PBM 

FUNCTION Construct 

mass = 10.0; 	 II kg 
velocity = [0.0, 1.0, 0.01; 	II 1 m/s upwards 
position = [0.0, 10.0, 0.0 1; II lOm straight up 

II Initialise models... 

FUNCTION Update 

VAR 	force : REAL[3]; 

force 	= Gravity I time; 
velocity 	= velocity + force; 
position 	= position + velocity; 

I 
} 

Figure 4.8 Definition of an entity. 

In the example shown in Figure 4.8 the Construct function overrides the default 

values that were assigned in the Construct function of the PBM universe definition 

given earlier. The Update function represents the actions to be taken at each 

simulation step, thus defining the entity's behaviour. In this case the universal 

function time (defined in Base) is used as the basis for a calculation to determine 

the entity's position after gravity has played its part. 

Entities may also declare their own functions locally without requiring a stub 

declaration in the universe they are derived from. 
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4.4.3.1.9 Interpreter Directives 

An interpreter directive is a special command which may be inserted anywhere in the 

definition and affects what the interpreter does with the following statements. There 

are currently only three directives which change the interpreter's mode of operation: 

insert, replace and delete. 

Insert mode will add the component definition providing that a component with that 

name in that level of scope does not already exist. If it does exist then the operation 

fails. In replace mode the definition is always added, even when there is already a 

component with the same name. In this case, the old definition is removed and the 

new one inserted. When in delete mode the interpreter only uses the name of the 

component in order to locate it in the definition and remove it. If the component does 

not exist then the operation fails and an exception is thrown. The dot notation is used 

when specifying the component names so that they may be used to place/locate the 

component correctly. 

4.4.3.2 Instruction Code 

It was decided early in the design process that the instruction code aspect of UML 

would not be implemented (section 5.5.5). Hence only unique features and those that 

have an impact on the interpreter design and implementation are presented here. 

4.4.3.2.1 Local Variables 

Variables may be declared at the element and function scope level or any level of 

scope therein. The Update function in Figure 4.8 has a local variable which will be 

instanced each time the function is called, unlike property definitions which are 

instanced permanently for a given entity. Variables may be declared as a built-in type 

or an instance of an element defined within the universe it is derived from. In fact, a 

variable declaration is identical to that of a property with one exception: variables may 

be initialised on declaration with an expression as shown in Figure 4.12. Properties 

may only be initialised with a literal or list of literals. 
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4.4.3.2.2 Element Referencing 

When an element has been instanced, as either a property or a variable, then the 

contents may be accessed using the familiar dot notation as shown within function 

Scope in Figure 4.9. If the element has a large structure then referencing the 

contents can become tedious and clouds the expression of logic. UML provides a 

similar mechanism to Pascal by permitting a specified scope to be made temporarily 

local (using the WITH keyword) so the contents may be referenced as if they were 

declared locally. 

ELEMENT Outer 

ELEMENT Inner 

	

PROPERTY 	number : REAL; 

	

PROPERTY 	text 	: STRING; 
} 

	

PROPERTY inner 	Inner; 
PROPERTY number INTEGER; 

FUNCTION Scope 

VAR outer : Outer; 

outer.inner.nurnber = 1.0; 

WITH outer.inner 

number = 2.0; 
text 	= "Hello World"; 

Figure 4.9 Methods for accessing member properties in elements. 

If there should be a name clash when a scope is made local, such as that between the 

number property in the Inner element and the number property in the Outer 

element, then the former would be used. Multiple scopes may be processed by 

presenting them as a parameter list, each name separated by a comma. 
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4.4.3.2.3 Function Calls 

Figure 4.10 shows a call to the function that reads data into a Visual element. The 

Read function only takes one parameter and returns a boolean value indicating 

success or failure. If the function should fail then a special system function is called 

which places a message onto the current output stream and an Input/Output exception 

is generated. 

FUNCTION Construct 

II Initialise the visual model associated 
II with this entity. 

if ( models.visual.Read( "plane" ) == FALSE 

system.Print( "can't open file 'plane'" ); 
throw EXCEP_lO; 	II Fatal error. 

I 

II Rest of construction... 
I 

Figure 4.10 User and system function call execution. 

4.4.3.2.4 Exceptions 

Error handling is done almost completely by exceptions. They may be thrown by the 

interpreter when a severe error occurs or by user-defined routines that wish to pass 

control (and error resolution) back to a previous level of execution. If an exception 

handler does not exist around the call to the routine that generates it, then the next 

level is checked and so on back to the top level. Failure to catch an exception will 

eventually end in a fatal error and the interpreter will stop executing the UML 

description. 

The code above manufacturers an exception by attempting to convert a colour of type 

RGBColour to HSVC01Our when the latter provides no conversion function. A 

number of exceptions are predefined by UML, the conversion exception that is shown 

in Figure 4.11 is one such example. 
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ELEMENT HSVColour Colour 

II Definition without any converters... 

try 

PROPERTY 	rgb 	: RGBColour; 
PROPERTY 	hsv 	HSVColour; 

rgb.Set( 1.0, 0.0, 0.0 ); 	 II Bright Red! 
hsv = rgb; 

catch ( EXCEPT—CONVERTER 

Resolve problem. 

Figure 4.11 Attempting to convert an element without a converter. 

4.4.3.2.5 State Indexing 

A state change occurs on completion of the Update function. It is possible that we 

may wish to reference old values of particular properties when performing the current 

state calculations. Figure 4.12 shows how the time difference between successive 

simulation steps may be derived. The number in the round brackets indicates which 

state should be accessed. A value of zero would be the current state and is implicit, - 

1 would indicate the previous state, -2 the state before that and so on. 

FUNCTION Construct 

VAR 	dt : REAL = time - time(-l); 

II Do something with dt... 
} 

Figure 4.12 Calculating a time delta using state indexing. 

Obviously storing a history for each property would be grossly inefficient and 

unnecessary. It is for this reason that only literals may be used to reference states. 

When interpreting the code it is possible to identify those properties that need to be 

stored and the length of the history list. If variables were permitted to index states, 

the history list could be any length and would impose unattractive time and space 

overheads. If a number of states (only known at run-time) do need to be referenced 
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then conventional methods can still be used, e.g. storing them in a list. In this 

example only one previous state needs to be kept for time. 

II Filename: visual.umm 

ELEMENT Visual 

II Element definitions... 

PROPERTY 	surfaceList : Surface[]; 

FUNCTION 	Read( filename : STRING ) : BOOLEAN; 
FUNCTION 	Write( filename : STRING ) : BOOLEAN; 

II Filename: base.uml 

UNIVERSE Base 

ELEMENT Models 

IMPORT 	"visual .uinm" 

ELEMENT 	Aural; 

PROPERTY 	visual : Visual; 

II Etc... 
} 

Rest of definition... 

Figure 4.13 Importing a module. 

4.4.3.2.6 Modules 

Putting a complete universe definition in one file, complete with entity declarations, 

code, etc. is impractical. Splitting a program into modules is a common practice in 

other languages and this same technique is applied in UML. Each module is a file that 

contains syntactically and grammatically correct UML data definitions and/or 

instruction code. It is quite common, however, for the module to be contextually 

incorrect since it is only after inclusion into a larger UML definition that it will make 

sense. For example, a module could contain the visual model definition given in 

Figure 4.4 which would be imported into the Base universe definition as shown in 

Figure 4.13. Note that the name of the element in the visual. umm file is not 

actually valid because it is not satisfying a previous stub declaration. Therefore, an 
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attempt to parse this file on its own will result in an error. However, when it is 

imported into the definition contained in base. uml the result is perfectly valid. 

The naming of files is left up to the discretion of the user. However, in this example 

the . umi extension is used to indicate a valid UML description, whilst . umm is used 

to indicate a module with potentially contextually invalid contents. 

Code that is often re-used, in much the same way as traditional object-oriented 

classes, may be placed to best effect in modules. These modules may also be 

imported and instanced in the same way. A common use is the encapsulation of 

services, for example basic system calls. Rather than use two statements to import 

and instance the code, both may be done at once using, for example, IMPORT 

"visual. umm "  WITH visual. This takes the top-level element in the file, in 

this case Visual, and declares a property with its type. 

4.4.4 Summary 

This section has presented an analysis of potential candidates for a modeling language. 

Due to some unique requirements the existing languages were deemed inadequate and 

the most important features of a new language, UML, were presented. UML is 

composed of a data definition language and a instruction code language. For a 

complete and formal description of the UML data definition grammar, please refer to 

Appendix A. An implementation of a UML interpreter is presented in chapter 5. The 

rest of this chapter describes the remainder of the integrated modeling/simulation 

system. 

4.5 System Architecture 

This section describes the structure of the proposed solution to distributing the 

universe simulation. A system overview is presented first, followed by a detailed 

description of the system's operation and concludes by separately addressing a couple 

of the key design issues. 
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4.5.1 Universal Simulation Node 

The proposed building block for the Universal Simulation System, USS, is the 

Universal Simulation Node (USN). The USN has some important properties: 

• It is capable of managing a complete simulation on its own without the aid of 

other USNs. 

e Distribution falls within the near/tightly-coupled classification. This may 

range from a tightly-coupled multiprocessor system within a single chassis or 

a fast LAN connecting otherwise independent resources. 

. The amount of bandwidth and computational power consumed by the 

simulation is at its highest at this level. 

• Participants in the universe simulation use a USN as their gateway into the 

simulation. 

User 

ction to 
USSs. 

Figure 4.14 Example structure of a Universal Simulation System. 

Multiple USNs may be connected together to provide interoperability over near 

distances (Figure 4.14). This may be used to distribute an intensive simulation or to 

provide access for multiple participants to a single simulation (one or more 

participants would be present at each USN). The bandwidth used on the connections 

between USNs will be substantially less than at the USN level to reflect the (probable) 

change in network medium and nature of use. Such a grouping of USNs gives us a 
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complete USS. In the remainder of this thesis whenever a node is discussed, it is 

actually referring to a USN and, similarly, a system corresponds to a single USS. 

4.5.2 Universal Simulator System 

A USS may be built from just one USN but this is generally inefficient due to the 

number of tasks that a fully configured USS must perform and the overheads incurred 

by each task. Distributing the workload between several nodes is more efficient. The 

tasks that a USS must perform are: 

• Managing local input/output devices, e.g. joysticks, 3D mice, image 

generators. 

• Handling communication with other USSs. 

• Executing the simulation. 

4.5.2.1 Essential Components 

These tasks are undertaken by a number of different software components which all 

have a defined role. Each USN has a Resource Manager (RM) that is responsible for 

monitoring CPU usage, memory usage, controlling access to backing store and 

moderating the use of input/output devices to those processes that request them 

(Figure 4.15). At any time the RM is capable of providing information on the loading 

of the node and processing requests for other services. In essence, the RM contains 

the local scheduling functionality. 

The Universe Manager (UM) is present in one form or another on every USN in the 

system. The UM of one node in each system is designated master and is responsible 

for communicating with the UMs residing on the other nodes in the system and also 

between other master UMs on other systems. 

A universe consists of many autonomous entities (ENT5) which are implemented as 

separate processes. Each entity falls under the control of the node's UM (working in 

conjunction with the RM) which is responsible for scheduling the ENTs so that they 
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are not starved of resources and can perform their work in time for the next 

simulation time step. 

Ato 

Key 

RM 	Resource Manager 
	 AUR Aural Manager 

UM 	Universe Manager 
	

VIS 	Visual Manager 

CDM 	Collision Detection Manager 
	

ENT 	Entity 

Figure 4.15 Example organisation of a USS complete with populated USNs. 

4.5.2.2 Optional Components 

The three components UM, RM and ENT are the minimum required to form a USN 

and therefore support a simulation. Although entities may sample input devices, the 

simulation has no displays which makes this configuration of limited usefulness. 

Typically a visual and/or aural representation is given to entities within the simulation 

and there must be some way of making use of a CIG or sound equipment. This link 
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between the output devices and the simulation comes in the form of special-purpose 

Managers. A manager monitors the information flow in the simulation and takes 

actions according to its purpose. The three managers described below are commonly 

used although others may be added without restriction. 

If the system requires the use of a CIG then a manager has to be present in order to 

control access to it. One such manager is the Visual Manager (VIS) which runs on 

the node that the image generator is connected to. VIS provides services for 

representing and managing any part of the visual representation of the universe. 

In the same way, the Aural Manager (AUR) is tied to a node with acoustic rendering 

equipment and provides services related to the aural representation of the universe. 

The Spatial Integrity Manager (SIM) monitors the state of the universe being handled 

by the USS and notifies the relevant entities when there has been a breach of their 

spatial integrity, i.e. a collision. Response to these events are handled by the entities 

themselves. 

Each UM can also support a Console which is essentially the hybrid of a manager and 

an entity. A console is forwarded the most important messages and provides a 

convenient way of collecting statistics. It may also be used to trigger certain events in 

the system. 

4.5.3 System Organisation 

There are no restrictions imposed by this architecture on how these components 

should be organised. Multiple specialised managers offering the same services can 

also be supported. The vast range of available processing power and communications 

bandwidth prevent the creation of a set of rules. However, it is possible to speak in 

general terms and provide according guidelines: 
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4.5.3.1 Near Tightly/Loosely-Coupled 

A real-time distributed simulation's two enemies are the lack of bandwidth and 

communications latency. When transmissions between system components occur 

within the same physical machine then a given set of protocols may be used to 

communicate between certain processes. Assuming the configuration in Figure 4.15, 

this would mean that each USN could be attached to one processor, or maybe even a 

small farm of processors, communicating via a high-speed data bus. Passive partial 

data replication and complete computational distribution are used at this level. 

As LANs increase in available bandwidth, it is possible to use these same protocols 

over a larger distance, latency permitting. In such a case each USN may reside on a 

different physical machine using, for example, fibre-optic cable as a transport medium. 

4.5.3.2 Near/Far Loosely-coupled 

There comes a point, however, when either the bandwidth is too small or the latency 

too great. As latency increases, use of the original protocols typically becomes less 

and less practical. To overcome this problem, networked USSs are connected and 

information to maintain synchronicity between these isolated systems is sent between 

them. An example of such information is that representing the interaction of 

participants at one system with other participants on another system and their 

influenced changes in the environment (section 4.5.4.10). In other words, total data 

and computational replication are used. 

4.5.3.3 USS Networking 

Those systems that use broadcast/multicast (section 2.4.4) have adopted a protocol 

that can compensate for the occasional missing packet. Data is sent regularly and is 

sufficiently detailed that the lost information may be reconstituted or replaced by the 

succeeding messages. However, a lost message can result in temporary invalid 

behaviour which may have undesired side-effects. 
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By restricting the information that needs to be sent between systems to the bare 

minimum, i.e. level 2 behaviour distribution, the bandwidth required between systems 

is reduced proportionally. In an ideal world this information would be sent between 

systems using a low-overhead mechanism such as multicast. However, unless a 

reliable datagram protocol is available a lost message could have a profound effect. A 

message containing higher behavioural information is sent less frequently and failing 

to process it would effectively lead to that system running a different simulation to the 

others. Therefore, in both cases, there is a need for a reliable message delivery 

service. 

User 1 User 2 User 3 User n 

Figure 4.16 Hierarchical structuring of USSs. 

Multicast is not widely available and the advent of reliable multicast services will take 

even longer to realise. Therefore it was decided to investigate a solution using point-

to-point links with a view to future reliable multicast availability. If there are a large 

number of systems all participating in the same simulation, then the network of point-

to-point connections between all of these systems would resemble a spider's web 

(section 2.4.1). To reduce communication overheads, a hierarchical network of 

systems may be constructed (Figure 4.16) such that any message to be sent outside a 

USS is sent to its parent and its children. The parent and children then determine if 

the message should progress further. 
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Since it is perceived that the information sent between systems is of relatively low 

bandwidth, the burden placed on each system for routing should be manageable. 

Unfortunately the latency this introduces may be insurmountable if the number of 

systems arranged in the hierarchy becomes too large. However, there is little 

alternative at this point in time. Interestingly, Bhagwat et al. (1994) have proposed a 

tree structure as the solution to scaling the error control mechanism used in reliable 

multicast for WAN usage. Certain nodes in the tree are assigned the responsibility of 

distributing the data reliably to the sub-trees rooted at these nodes. A tree structure is 

already used by the MBONE (Pullen, 1994), therefore there seems to be a need for a 

tree structure, regardless of the communication mechanism used, in order to cope 

with the transmission over long distances, reliable or not. 

The amount of data generated by continuous live streams of audio and video would 

put a significant burden on any such organisation using point-to-point links and 

software routing processes. Fortunately, this is one type of information that can 

tolerate lost packets with few side-effects and therefore must be sent using 

conventional (unreliable) multicast techniques. 

4.5.4 System Operation 

Although each of the basic components (UM, RM, ENT) are separate processes, none 

can operate without the others and their functionality reflects the required interactions 

between them. Therefore, rather than fully describe each process in turn, a more 

function-oriented approach has been taken in this section concluding with some 

information on the common special managers. Implementation issues are discussed in 

the next chapter but a short note is provided in the following descriptions where there 

is an important decision to be made. 

4.5.4.1 System Initialisation 

The first USS started is at the root of the system hierarchy. The first process started 

within any system is the master UM (MUM) which then waits for its child, or slave 
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UMs (SUMs), to connect to it using activation messages3 . When all SUMs have 

connected to their MUM the system is ready to receive connections from its child 

systems in the system hierarchy (if any). Once these have been made it connects with 

its parent system unless, of course, it is the root system in which case the network of 

systems is deemed to be active. All inter-system communications are performed via 

the MUMs in each system. 

Once a UM has connected with its parent, be it another UM or a USS, it starts its 

local RM and any other special managers configured to run on that node. Once the 

managers have established a link with their UM they provide it with a service ID 

which represents the type of manager they are and the nature of their services. The 

same service ID is shared by those managers providing an identical service (although 

their implementations may differ). Apart from the RM which has a service ID of 0, 

the UM does not know what ID matches which service, nor does it need to (section 

4.5.4.5). 

The next stage of the system initialisation is to parse the UML definition of the 

universe. A copy of this definition is sent to each specialised manager and forwarded 

to slave UMs. These managers then register interest in any parts of the definition that 

they wish to monitor with the UM (section 4.5.4.6). At the same time the MUM 

completes the initial process creation stage. 

4.5.4.2 Universe Creation 

At this stage, the only processes left to create are ENTs. The MUM processes each 

ENTITY definition in the UML description and starts an ENT process to represent 

that entity in the simulation. The location of the ENT is determined in conjunction 

with each node's RM as discussed in section 4.5.4.12. The entity creation phase 

concludes with the execution of their Construct function. 

In the following sections, description of the UM's role will represent either a MUM or SUM unless 
stated otherwise. 
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4.5.4.3 Universe Simulation 

After the creation process has finished, the MUM is ready to start the simulation 

proper. The beginning of each simulation step is marked by the transmission of an 

update notification message to each ENT, manager and SUM (Figure 4.17). On 

receipt of this message, the SUMs forward the message to their local ENTs and 

special managers. Each entity executes its Update function, sends any modified 

state back to its local UM and waits for the next update message. 

Manager 
	 Universe Manager 

	
Entity 

update - 	update 
notificatio n Start simulation 	notification 

step 7 Prepare to Send state 
receive state updates. 

updates. Forward state 	 update 
- update updates to 

dependent 
Locate processes. 

component and 
update state 	

update 	When all entities 

complete 	have updated, 
end simulation 

Perform end of 	 step. 
step calculations. 

Figure 4.17 Order of events for a simulation update. 

After receipt of an update notification message, each special manager waits for update 

messages to be forwarded to it via the UM. Once all messages have been forwarded, 

he end of the simulation step is marked by an update complete message which is sent 

to the managers only. When the managers have finished their work the update 

process begins again. 

4.5.4.4 Master/Slave UM Relationship 

Within a USS all information is completely distributed. This means that any event 

which occurs on one USN which may effect the system state must be reflected on the 

other nodes in that system. For example, if a manager on one node registers interest 

in a part of the UML definition with its local UM (section 4.5.4.6), that message must 
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be communicated to the rest of the UMs on the other nodes. Messages sent by local 

processes that are intended for remote nodes are sent to the UM which acts as a 

router and forwards them to the MUM; from here they are sent to the correct node. 

Most messages are intended for all nodes rather than one-to-one communications and 

this mechanism provides a convenient way of implementing a pseudo-multicast facility 

(Figure 4.18). 

(MUM 

Figure 4.18 Possible communication path taken by a message sent from 
an entity to all managers. 

Each UM (and RM) maintains a list of managers and entities on its node but the 

MUM also keeps a running total of the number of entities active on each slave node. 

Another difference between SUMs and the MUM is that the master node performs 

system-wide load balancing. In addition it manages the sole connection with the other 

systems. Live audio and video streams are dealt with separately in that the data 

packets containing this information coexist with simulation traffic but are only 

processed by the intended recipient (probably a special manager). 

4.5.4.5 Locating Services 

All processes throughout the systems, including the UMs, have a unique address 

called a Universal Process IDentifier (UPID). Examination of a UPID will describe 

the exact location of the process, its system, its node and its local address. 

Any entity or manager may issue a location request which is sent to the UM in order 

to locate a particular process. The search may be restricted to the local node or 
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permitted to extend throughout the system. If the search target is an entity then its 

name is given whereas a service ID is used for a manager. Should the service not 

exist locally and a system-wide search has been asked for, then the location request is 

forwarded to the MUM/SUMs. A successful search results in the return of the target 

process' UPID. The decision of which manager to use is left up to the entity to 

negotiate. Searches using a UPID as the key can also be performed and result in the 

return of either an entity name or a manager name and service ID. If multiple 

managers offering the same service are located, then all of their addresses are 

returned. Once a process' address is known, messages may be sent to it either 

directly, if it is on the same node, or indirectly using the UMs as routers. 

Manager Universe Manager Entity 

Register interest 
monitor 

in component. 	
.request 

-Add-component 
dependency and 

return monitor ID 
- unique to manager. 

Associate monitor 
monitor ID with acknowledge Inform all entities if 

component. first dependency on 
component; send 	monito Store monitor ID 
monitor ID unique 	notification with component 

to entity. information.  

Figure 4.19 Procedure for registering interest in a UML component. 

4.5.4.6 State Monitoring 

The state of the simulation is represented entirely by the sum of all the individual 

entity states. The state of each entity is an instance of their local copy of the UML 

definition. 

When a manager registers interest in a particular component of the UML definition it 

is said to be monitoring its change in state. After receiving the UML definition, a 

manager sends monitor request messages to its local UM which associates a 

dependency with the given UML component (Figure 4.19). 
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4.5.4.6.1 Unique State Identifiers 

Somehow, the state sent by each entity to satisfy each dependency must be uniquely 

tagged such that each process. throughout the whole system can identify it. The size 

of this ID can be approximated by the following equation: 

ID size = number of entities system-wide * 
number of entity's dependencies 

Considering the potentially large number of entities system-wide and the number of 

dependencies that could be registered, this ID would have to be very big. How the ID 

is derived is also problematic. A centralised allocator could be used but this would 

not be very fault-tolerant. A network of mirrored allocators would be better but many 

IDs will be allocated and discarded throughout the lifetime of the system. The 

overhead incurred by interrogating such an allocator is too great for this to be a viable 

option. Basing the ID on the location of the entity is also impractical because entity's 

may migrate (section 4.5.4.12). 

The chosen solution uses an ID which is unique between the UM and the process in 

question, whether it is an entity, a manager or another UM. As state updates are 

passed between processes, e.g. from an entity to interested managers, the UM inserts 

the correct ID for the communication. This may seem like an expensive process but, 

as shown in section 5.6.3.2, this may incorporated into the state distribution 

mechanism with negligible overhead. 

This ID, known as a monitor ID, is returned by the UM in a monitor acknowledge 

message and is used in further transactions regarding this component. Multiple 

dependencies may exist for a given component, each one generated by a different 

manager - there is no point in a manager monitoring the same component more than 

once. 

4.5.4.6.2 Synchronisation 

If a given entity was created before monitoring of a particular component was 

registered (and it uses that component), then it will be sent a monitor notification 

message by its UM when that event occurs. It too will be given a monitor ID to be 
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used in further communications. If a component has multiple monitors then only the 

first registration will generate a notification message. Conversely, if the entity is 

created after monitor requests have been processed, then the UM will synchronise it 

with the other entities by sending a stream of monitor notifications. Also, following 

entity migration the destination node's UM synchronises the entity to establish new 

monitor IDs. 

4.5.4.6.3 Distributing Monitors 

A copy of any monitor request received by a UM is forwarded to its MUM or SUMs 

and a similar process is undertaken to allocate a unique monitor ID between UMs. 

The remote UMs will then inform local entities as necessary. In this way, an entity on 

one node will know to send state updates for a component that is being monitored on 

a remote node. However, it does not know where the manager is, only that a 

manager is interested in its state. 

4.5.4.6.4 Construct, Update and Destruct 

At the end of the entity creation sequence, after all relevant data has been instanced, 

the entity's Construct function is executed which, when completed, results in one 

or more construct messages sent to the UM (Figure 4.20). Each message 

corresponds to a monitored component and holds the current state of that instanced 

component. Upon receipt, the UM looks for any dependencies on this component 

and forwards the entire message to the interested managers (with one proviso detailed 

below). At the end of the entity's update phase, similar update messages are sent: 

upon entity termination, a single destruct message is sent. Note that update messages 

are only transmitted if the entity has modified that part of its state since the last update 

notification was received. 
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Figure 4.20 Sequence of events during entity construction. 

When a manager receives a construct message it instances the monitored component 

and copies the state contained within the message. As update messages are received 

it updates its local copy of the state and deletes the instance if it should receive a 

destruct message. Upon receipt of these message types a manager executes its own 

construct/update/destruct functions. These functions perform some action which is 

unique to each manager, e.g. the update function may wait for an entity position 

change so its visual representation may be moved. At any time a manager may also 

get the current state of a entity's component by sending a state request to the UM 

which is forwarded to the entity. The state is returned in a message with the same 

structure as a normal update message. 

As inferred in section 4.5.4.4, the local UM will send a copy of the relevant entity 

construct, update and destruct messages. Obviously, if those nodes do not have any 

managers running on them, then there is no need to send these messages at all. 

4.5.4.6.5 Constraint Functions 

A manager can also supply a constraint function (written in UML) to be associated 

with each component it is monitoring. Every time the UM receives a state update for 

a monitored component it executes the constraint functions (if they are present). If 

the dependency is with a local manager and the constraints are met then the state is 

forwarded to the manager, otherwise no message is sent. All dependencies with 
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remote managers are represented locally as dependencies with other UMs and the 

evaluate-send sequence has two additional conditions. Firstly, if multiple 

dependencies for a single component exist with remote managers on the same node, 

then each function is executed in turn until one succeeds or all have failed. Secondly, 

if one or more of the dependencies for a given node do not have a constraint function 

attached, then the state is sent immediately without executing any of the functions. 

Constraint functions may be updated or added at any time by the manager that owns 

the dependency. 

4.5.4.7 Localisation 

WAVES filters messages upon reception so that only those entities in a viewable area 

associated with a given host are sent to that host. NPSNET splits the environment 

into a mesh of two dimensional hexagonal cells and uses multicast groups to ensure 

that only the entities within the local and neighbouring cells are processed. 

AVIARY's EDB provides a comprehensive range of services including collision 

detection and entity operations based upon volumes of space. One such volumetric 

service is the monitoring of a specified region of space for a client. When an entity 

enters, leaves, moves or changes whilst in that volume the client is notified and may 

take according action. 

A criticism that Snowdon (1995) makes of the approach taken by WAVES is that a 

lot of bandwidth may be consumed for no real reason since all messages are only 

filtered at the destination. This is a valid point which USS does not suffer from. By 

using constraint functions, filtering is done at source which, combined with state 

updates that are only sent when a change has occurred, reduces the required 

bandwidth to an absolute minimum. 

The localisation techniques used by both NPSNET and AVIARY "filter" based solely 

on position and volume. NPSNET does this merely to reduce the amount of entities it 

needs to process whilst the EDB also performs collision detection. However, in a 

USS a constraint function can be imposed on any component, not just one 

representing position. As part of the basic services offered by a USS, the UM has no 
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understanding of what the UML description means, just that it is composed of 

constants, elements, properties, etc. Only the manager that specifies the constraint 

function needs to understand what it means. By abstracting the filtering process in 

this way, it is just as easy to receive information about entities within a given volume 

as it is to restrict messages to changes in an entity's colour. If only position changes 

are wanted for red entities, for example, then it is necessary to encapsulate the 

position and colour properties in another such that the constraint function may 

compare them. 

Consider the common case of an entity moving through space, entering a volume 

monitored by a manager and passing through until it leaves at the other side. When 

the manager starts receiving messages because the entity has entered the volume, it 

needs to know the current state of all the components it is monitoring, not just the 

one that has just changed, i.e. their position. Similarly, when the constraint fails it 

needs to be informed so that the entity can be dropped from its calculations. To 

resolve this problem a constraint function has the optional functionality to issue a 

state request to the entity on behalf of the manager. When entering the volume one or 

more pseudo-construct messages are sent (one for each monitored component) and a 

pseudo-destruct message when leaving. Although the entity is not actually 

constructing and destructing it is as far as the manager is concerned. 

4.5.4.8 Modifying the Universe Definition 

The strongest advantage of using an interpreted language for modeling was that it 

facilitated modifying the definition of the yE. This may involve an addition to a given 

component, the deletion of part of its structure (or the whole component), or the 

definition of a new component (or part thereof). Whenever a change happens, 

regardless of its nature, every process in the system must be informed (with the 

exception of the RM). In addition, since this is a fundamental change in the 

simulation, it must be communicated to other systems simulating the same universe. 

Such a change is introduced by an entity (probably initiated by a user) and sent to the 

MUM in a urn! message. The change is first parsed by the MUM and if this is 
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successful a lock for the portions of the definition being modified is negotiated with 

the other systems. The new definition is then forwarded to the MUM's local entities, 

special managers, slave UMs and to any systems it is in contact with. All 

modifications are made system-wide within one simulation step. When the other 

systems have acknowledged that their modifications are complete, the lock is 

released. To accommodate for lags in the system and between systems, changes may 

be queued and effected at a predetermined time. This allows the changes to be 

transmitted to the furthest node/system and after all nodes/systems have the 

modification request in their position, the change is effected simultaneously. 

If a component is extended then default values must be given to the newly added 

subsection. If part of an existing component is removed then accesses to this old 

information must also be removed. Addition of a new component outside the scope 

of usage by any entity, or not within the components being monitored, does not have 

any side-effects. These issues are dealt with further in section 5.5 which discusses the 

implementation of a UML interpreter. 

4.5.4.9 Multiple Universes 

The purpose of a UM is to manage the execution of simulations of universes 

described using UML. Entities form logical groups reflecting the universes they 

belong to although they may still execute on the same node. In order to support 

multiple universes, it is necessary to tag every message sent with a unique universe ID 

that must be processed every time a message is received by a UM or RM. The UM 

vets messages for entities so that they are never sent a message originating from 

another universe. It would be possible for managers to handle information from 

multiple universes simultaneously, but this might either be impractical, e.g. in the case 

of VIS, or inefficient, e.g. the SIM is a computationally expensive process. On the 

positive side, having the relevant information for all universes in one place simplifies 

the process of entity migration (section 4.5.4.12). Therefore, the designer of special 

managers must make the decision to have one manager for all universes, or one 

manager per universe. 
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When an entity moves from one universe to another a destruct message is issued. The 

parts of its definition that it has in common with the destination universe are preserved 

(and their associated state) whereas the others are destructed as per usual. The entity 

then constructs in the target universe, building upon the partial state it has retained 

from the source universe by instancing those properties that are new to the entity and 

assigning default values. Finally the entity is moved from one universe group to the 

other. Note that there is no need to terminate and recreate the ENT process, just alter 

its state. 

4.5.4.10 Multiple Users 

Users are represented by entities that read input devices and take actions accordingly. 

Multiple users can be supported within the same system without adding any extra 

functionality. This is not true when users on different systems wish to interact. Each 

USS is totally replicating the computation and data yet each system has what are, in 

effect, wildcards - users. A user on one system must be represented on the others and 

their actions reflected, i.e. their behaviour must be modeled in some way. This goal 

represents a level 3 distribution which, as discussed in section 2.2.4.5, is not feasible 

since the decision making process is too complicated. 

Consider the example of a user driving a virtual car. Sending changes in the car's 

position (level 0) over low bandwidth communications links is wasteful but highly 

accurate. Level 1 distribution can be achieved by approximating the dynamics of the 

car, i.e. a dead-reckoning model. This is not very accurate and can result in sudden 

changes in the modeled variables as updated parameters are sent by the real entity. 

Parameterising a user's actions over time, such as turning the steering wheel or 

pressing the pedals is also feasible. By triggering pre-programmed control 

movements it is possible to achieve level 2 distribution and an approximate 

representation. 

However, representing a user that is walking around the environment, moving their 

arms and legs is not as simple. Limb positions could be approximated based on 

velocity but subtle movements would be lost. Given a set of animated behaviours 
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such as "move forward", "turn left", "pick object up", etc., then level 2 distribution 

could be achieved. But this solution shares the same problem with the previous 

example: how do you map the constantly changing data from the input devices into a 

series of pre-programmed movements? 

It appears, therefore, that the level of behaviour modeling required depends on the 

method of interaction and representation utilised by each user. Since this is an area of 

research that requires a great deal of further work, USS does not impose one 

particular method. 

All messages sent by an entity representing a user are tagged accordingly. They are 

processed in exactly the same way, except that when they reach the MUM they are 

also forwarded to any systems that are simulating the same universe. When an entity 

construct is received by the MUM on another system, a new shadow entity is 

constructed and its state taken from the message. This process functions in the 

simulation in the normal way until a destruct message is encountered. These are the 

only two messages that are always sent, any other type of message to be sent to the 

entity's shadow must be specifically indicated. 

By flagging update messages, all component updates made by the entity are 

forwarded to the shadow - use of this option is not recommended. Preferably, when 

modeling the entity a number of UML functions can be written that, when executed, 

will perform an automated manipulation of the entity's properties. This could result 

in a position change or the triggering of a sound, etc. By redefining the shadow's 

update function to exclusively call this function, animated behaviour is possible. Level 

2 distribution may be accomplished by leaving the update function empty and 

remotely invoking these functions in a certain sequence to effect the desired result. 

These last two methods merely use the umi message to send UML code to the 

shadow entities and are issued within the real entity's Update function. 
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4.5.4.11 Entity Lifetimes 

Most entities are created when the initial universe creation occurs but they may also 

be created at run-time. An entity can only be created by a UM but creation requests 

can be made by other entities. 

Entities may terminate (abnormally or naturally) at run-time and new entities not 

originally specified in the universe definition may be created. Notification of entity 

terminations are sent to all managers that were monitoring its state in process 

notification messages. Entity creation follows the usual procedure and requires 

monitor dependency synchronisation. 

An entity may opt to save its current state to backing store before termination so that 

it may be loaded again when it re-enters the simulation. This mechanism is often used 

by users since they are not always present in a simulation. 

4.5.4.12 Scheduling 

When a process (including the UM) is created, it is allocated a Resource Profile (RP) 

which holds information about which resources it needs, how much and (if possible) 

when. A new process is given a default allocation of resources (or a hand-written 

specification) which is modified and tuned during the execution of the simulation. At 

the beginning of each simulation step, all the entities and managers within the 

simulation are given access to the resources through a dynamic deadline scheduler so 

that they may complete their calculations for the current step. 

Upon completion of each entity's calculations, information regarding the amount of 

resources that they consumed is processed by the RM, so it may adjust their 

scheduling parameters, if necessary. When a schedule entry is inserted, deleted or 

changed, some or all of the other entries must also be reallocated. Resource 

contention is accounted for in the scheduling. It is possible that a time will occur 

when completing all the calculations necessary within one time step is impossible. At 

this point there are four choices: 
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Flag that a fatal error has occurred and terminate the simulation. 

Degrade the number or accuracy of calculations currently performed so that 

the final deadline may be met. 

Degrade the simulation by extending the duration of the simulation period 

thus resulting in a lower simulation update rate. 

Migrate the offending process to another node. 

The first option is obviously highly undesirable, the second is fine in theory but 

implementing an entity with alternative computation paths based on complexity is 

more complex in itself and will require more memory to store them. Whilst an 

attractive approach for a manager, e.g. varying the accuracy of collision detection 

based on the time available, this could lead to different outcomes on different systems 

and hence different simulations. However, a slight variation on this technique would 

be to reduce the rate at which each process was updated. If, for example, an entity 

represented a very slow moving entity then updating it at 30 Hz may be excessive if 

no noticeable difference is made at 5 Hz (Wloka, 1993). Such functionality can be 

programmed into the entity without complicating the task of the UM further, i.e. an 

update is not returned until a pre-defined threshold is reached. Extending the duration 

of the simulation step is a valid option but should only be used if the fourth and final 

option is not possible. 

By periodically interrogating each RM, the MUM can determine whether the 

workload on any node is too high and that an ENT should be moved to another node. 

(The RM includes itself in the list of resource consumers when calculating the total 

utilisation for each resource.) The actual entity is chosen by the RM and its current 

RP is sent to the MUM so that it may determine which node has the best chance of 

accommodating it. If the chosen node cannot schedule the entity, e.g. due to resource 

constraints, it rejects the migration order and the MUM chooses another node. 

Alternatively, if the RM determines that a particular ENT will exceed the available 

resources before the next load check, it may send a migration request to the MUM 

containing the entity's RP. Stankovic et al. use an algorithm whereby each node is 
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responsible for finding a new home for a process (section 4.3.1.4); USS takes 

advantage of the fact that all inter-node communications are routed through the 

MUM. It is only a small step from this position to delegating all responsibility for 

locating a new node to the MUM. 

Once a decision has been made to migrate an entity, an ENT process is created on the 

destination node. The entity's complete state is then packaged up (in the same way as 

smaller sections are for construct and update messages), sent to the newly created 

destination ENT process in a migration state message and followed by its current RP. 

After this transfer has been completed the old process is terminated. The migration is 

scheduled to take place after the entity has completed its update so that the current 

simulation step is not affected. All managers that are dependent on any part of the 

entity's state are sent migration notification messages to inform them of the change. 

Any other messages that should slip through this net, e.g. direct communications with 

another entity, are forwarded by the UM and the sender is notified of the move. The 

MUM does not keep track where each entity is, only how many run on each node. 

The only time location information is need is during an entity migration, at which 

point a migration list is maintained. This list details the entity name, source node, 

target node and original address. Once a migration has completed the entity's entry is 

removed from the list. 

Managers may, of course, also consume more and more resources but it is neither 

feasible nor efficient to migrate them to another node. Firstly, they possess a large 

amount of state information, albeit copies, and they may also be tied to specific 

hardware in that node. Finally, the time it takes to move a manager will by far exceed 

the time taken to move a single entity and may, in itself, cause problems with 

scheduling. 

The RPs for UMs reflect that they are more demanding than most of the other 

processes in the system. In fact, the node holding the MUM will most likely have 

fewer managers and entities due to its increased administration responsibilities. 
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4.5.4.13 Resource Profiles 

Process-specific resource consumption and scheduling requirements are held in an RP. 

In fact, a process maintains a resource history which stores a copy of the previous 

RP, the current RP and a prediction of future resource requirements. The RP also 

shows whether exclusive access is required to a resource or whether shared access is 

permissible. 

An RP is composed of the four basic resources that each node can possess: 

computation, memory, backing storage and network. The capacity of a given 

resource is measured in a different way each time. In the same way, determining the 

utilisation is specific to the resource and is represented by a percentage. In all cases, 

the limitations of the node's physical architecture, such as internal bus speed, are 

incorporated into all of the ratings given. 

Computation is gauged by both an integer and a floating-point rating. The CPU type 

and statistics are also held, possible CPU types are: Reduced Instruction Set 

Computer (RISC), Complex Instruction Set Computer (CISC), Vector, (specifying 

size of Data and Instruction Caches) and CPUs with specialised extensions. The 

presence of a Floating Point Unit (FPU) is explicitly indicated since floating-point 

operations may be emulated in software. If a FPU is not present then each rating 

represents the CPUs performance given only an integer or a floating-point workload. 

The CPU statistics are, in general, only used for scheduling purposes. 

Memory is rated by its size in Megabytes (Mb) and its access time in nanoseconds 

(ns). The total amount of memory being used is periodically recorded. 

Backing storage is also rated by how large it is, its average access time in 

microseconds (ps) and cache size - these last two statistics are combined to provide a 

convenient rating. A record is also made of how much disk space is being used. This 

is the only optional resource. 

Network capacity is measured in Megabits per second (Mbps) after taking into 

consideration the protocol overheads. Calculating its utilisation is somewhat tricky 
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without operating system support but can be approximated based on the number of 

messages sent and their average size. In order to support live audio and video feeds, 

it is necessary to include the bandwidth consumed by these transmissions when 

calculating the node's total network utilisation. This information is collated by the 

UM (through which all messages pass) and periodically communicated to the RM. 

Each resource is run at a percentage of its maximum to establish a threshold beyond 

which some load balancing action must be taken. The threshold for each resource is 

set independently, each specified as a percentage of the resource's maximum 

potential. The CPU has two thresholds, one each for integer and floating-point 

capacity. To prevent a situation whereby the slightest change in resource 

consumption results in a migration request being sent to the MUM, a latency factor is 

associated with each resource. If the resource should remain over-utilised for longer 

than the specified time, or there is a continuous dramatic increase, then action is 

taken. 

4.5.4.14 Input/Output Devices 

A node may have one or more peripherals attached to it, such as mice, joysticks, 6 

d.o.f. tracking systems, a sound system, a CIG and so on. All of these are classified 

as resources and access to them is monitored by the RM. The capacity rating of each 

of these resources can differ by so much and can be measured in so many different 

ways that the RM does not attempt to hold this information. Only a percentage 

utilisation is stored which is provided by each of the specific drivers for the given 

resources (as is their initial rating). Such ratings are resource dependent and cannot 

be compared between different resources. 

The device drivers would be best organised as tasks within the RM itself but this can 

cause the RM to become a bottleneck within the system, therefore Device Drivers 

(DDs) have an identity of their own with the system (what form this takes depends on 

the implementation). All access to the devices is through these DDs who keep the 

RM informed on their utilisation. Common roles for DDs are providing access to 

serial and parallel ports, disk controllers, digital 110, Analogue to Digital Converters 
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(ADCs), etc. Often DDs are provided with higher functionality such as a filing 

system, mouse drivers, joysticks, 6 d.o.f. trackers and so on. 

Implementation of the DDs may take the form of a separate process where the 

resource can support servicing multiple requests simultaneously, but more commonly 

it may be provided as a library which may be incorporated into a software component 

with a high level of functionality. For example, VIS requires access to the CIG and 

having a separate process in between it and the CIG hardware will only cause a 

performance loss. It is far more efficient to incorporate the DD into VIS for 

efficiency and the RM would be informed that this resource is no longer available 

since it has exclusive access. 

4.5.4.15 Visual Manager 

The Visual Manager, VIS, provides a standardised interface to all CIGs. These may 

be special hardware attached to the node either as an integral part of the nodes 

hardware or an extension to it. Alternatively, VIS may incorporate a 3D software 

library which is capable of interactive performance such as RealityLabTM (Microsoft 

RenderMorphics Ltd., UK), RenderwareTM (Criterion Software Ltd., UK) or 

BRenderTM (Argonaut, Inc., USA). The actual underlying technology used for image 

generation and their specific interfaces are hidden from the rest of the system. In both 

cases, VIS requests exclusive access to the dedicated hardware or video card via the 

RM. One of the many services that VIS offers is the ability to use more than one CIG 

channel, i.e. it can drive multiple instances of a given CIG and even many different 

makes of CIG simultaneously. 

The introduction of a special manager such as VIS necessitates the inclusion of a 

standardised UML definition to represent the information it needs. For example, the 

property instance models . visual (Figure 4.3) of the Visual element (Figure 

4.4) and the position property. Alter creation, VIS would notify the UM of its 

wish to monitor all instances of these properties. As each entity was constructed, so 

VIS would take the visual representation and construct a new visual object. In most 
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cases an entity would rarely modify its visual representation, so the following updates 

would usually only consist of position changes. 

Each VIS manager associates a viewpoint with one or more CIG channels. For 

example, a non-frame sequential stereoscopic display would use two channels, one for 

each eye. One viewpoint would be used, modified slightly to produce the correct 

projections for each eye. It is likely that there will be more than one VIS manager in a 

given system, e.g. one per user, possibly more than one per node. When an entity 

requests the location of a VIS manager from the UM it receives a list of the active 

VIS managers. A manager may be assigned to an entity after which it will not be 

available for use by other entities until it is released. Once service access has been 

restricted to one entity, that entity may manipulate the viewpoint's parameters, such 

as position, orientation, aspect ratio, etc. 

To prevent itself from receiving information about every entity in the simulation, VIS 

associates a constraint function with the position property that specifies a volume 

around the current viewpoint. As the viewpoint changes, the manager updates the 

constraint function associated with the component dependency held by the UM. In 

order that the network is not flooded with constraint function updates, they are only 

sent when the distance of the viewpoint from the centre of the current volume reaches 

a certain threshold. Upon entering the volume, an entity sends (pseudo-) construct 

messages which hold the entity's current position and its visual representation. When 

leaving the volume a single (pseudo-) destruct message is sent indicating that the 

entity should no longer be considered for rendering. 

To avoid the transmission of visual representations as each entity constructs, it would 

be desirable to provide a library of models, one of which would be referenced in the 

Visual element, thus superseding the detailed geometric description. The library 

would be accessible by all VIS managers and common models could even be cached 

to reduce library access. This technique makes it difficult for an entity to modify its 

representation at the vertex/polygon level and therefore should be provided as an 

option to the current method and not a replacement. 
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4.5.4.16 Aural Manager 

AUR gains exclusive access to the pertinent hardware for generating sounds via the 

RM. Copies of all information regarding the aural representation of the universe is 

held within AUR and changes to it are monitored by the manager. In the same way 

that VIS provides a generic graphics interface, AUR provides a generic interface to 

generating sounds and thus may support many different hardware and software 

solutions. Changes in information that affect how the sound is generated, e.g. 

movement of an entity, are sent automatically to AUR using the usual methods. 

Constraint functions are used in the same way as VIS to restrict the number of entities 

that must be processed. Typically the volume monitored by AUR will be different to 

that used by VIS. For example, when sitting in a closed room with no windows one 

cannot see outside that room but it is probable that one will hear sounds originating 

outside. 

4.5.4.17 Spatial Integrity Manager 

For reasons of speed and efficiency, one of the most computationally expensive 

processes is implemented as an optional manager. No particular method of 

intersection testing is advocated in USS since the methods available consume varying 

amounts of resources (Webb and Gigante, 1992; Bouma and Vanecek Jr., 1991; 

Cameron, 1990). It is important, however, that the same method is used on all 

systems. 

At the minimum, details of the volume that an entity occupies are necessary along 

with position and orientation information, whilst a more ambitious SIM might require 

a velocity vector. For more accurate determination of collisions a detailed 

geometrical description of the entities involved in the collision would also be needed 

so that the exact point of collision may be pinpointed (Zyda et al., 1993). Utilisation 

of behavioural information for each entity is another possible approach and can be 

shown to reduce network traffic since only behaviours need be transmitted rather than 

continuous positional information. Obviously the more accurate collision detection 

used, the more time and space the process requires. By providing a generic interface, 

157 



the type of collision detection method may be changed depending on the resources 

available, taking advantage of more powerful hardware. Once a collision has been 

detected, each colliding entity is sent an entity interaction message which holds the 

UPIDs of the other involved entities. The entity that caused the incident is nominated 

to co-ordinate the resolution process. 

The load placed upon the SJM may be relieved by using multiple co-ordinating 

managers in a manner similar to AVIARY's EDB. When the volume is split the 

original SIM modifies its existing constraint function whilst the new SIM lodges more 

monitor requests complete with its own constraint functions. 

4.5.4.18 Console 

Commands may be entered through a simple command-line interpreter. These are 

mainly interrogative but a console may force the destruction or creation of entities at 

run-time. Other manipulative operations include the purging of references to a given 

process from the UMs internal data structures (and those on other nodes) which is 

useful when a process has abnormally terminated. However, the console does not 

actually take part in the simulation. 

4.5.4.19 System/Node Lifetimes 

Nodes are users' gateways into the simulation and it is probable that they will not be 

powered on all of the time. Therefore a mechanism by which nodes may enter and 

leave the simulation is required. When leaving the system, all entities related 

specifically to users on that node are terminated. Once this is complete the remaining 

entities are migrated to other nodes and any special managers inform their clients that 

they are terminating. Finally, when the only processes that remain are the RM and 

UM, a deactivation message is sent to the MUM and the node ceases activity. 

Re-entering the system is achieved by proceeding through the usual initialisation steps 

(section 4.5.4.1). The MUM may then utilise the node's resources for scheduling 

purposes, resulting in entity migrations. 
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When a system leaves, it sends the master USS a deactivation message which is the 

cue to remove all processes representing users on the parting system from the 

simulation. Joining a running simulation means that the current UML definition must 

be obtained from another USS, complete with current states for all entities. For this 

reason, joining a established network of systems is only practical for very small 

simulations and, even then, not recommended. 

4.5.5 Time Management 

As conjectured in section 2.4.5, an explicit time progression model is used within a 

USS and an implicit time model is used to synchronise multiple systems. 

4.5.5.1 Explicit 

The explicit model takes the form of the update notification/complete message pair 

which are scheduled to occur at the same point in each simulation step. This is not to 

say that the dependency on the system clock has been removed from the system. In 

fact the opposite is true since all the scheduling is performed and monitored in relation 

to clock time. However, there is no need to synchronise the clocks between nodes 

since the execution of the schedule for a node is done locally. Each simulation step 

happens in a relatively small amount of time, especially for real-time simulations. 

Therefore, at this level oscillator drift will not effect the timing of the schedule. 

There is no requirement that time is modeled in the VE but the usefulness of an 

environment that does not use time in some way is dubious. The relationship between 

simulation time and real clock time can be modeled in a UML function, e.g. time () 

in Figure 4.3. This function would use an expression based upon the current real 

clock time and the current step count. Using a function means that this relationship 

may be redefined at run-time by providing a new function definition. This change 

would, of course, be sent to all other processes in the system. 
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4.5.5.2 Implicit 

Synchronisation of time between systems is more problematic. Each system uses total 

replication of computation and data, so it may seem that tight synchrony is not all that 

important. There is one important exception which is that the users are not replicated. 

One user's actions in one system must be reflected in the other systems through their 

shadow and vice versa. In order to prevent lag from destroying effective interaction 

between these users, the systems must be synchronised to the same simulation update. 

Only then is there a chance that behavioural information sent from one system to 

another can be incorporated into the current update. 

There currently seems to be no good solution to this problem. SPS is perfect for the 

task, providing the ability to synchronise with 167 ns, but at the time of writing one 

receiver can cost upward of US$500 (Dana, 1995). NTP is commonly used between 

systems using TCP/IP although this is not a requirement, but access to a machine that 

keeps accurate time is. In fact, a number of the world-wide primary NTP reference 

sources use radio or wire to synchronise with national standard time. Ensuring all 

systems world-wide have the same time would currently necessitate access to the 

Internet. More importantly, the greater the synchronisation accuracy, the longer the 

period required to achieve it (a few hours) and the increased bandwidth. 

4.5.6 Fault Tolerance 

Problems can occur at different points in a system and in different components. The 

policies used to handle these events are presented below. 

4.5.6.1 Software Component Failure 

If a manager has failed then it may be restarted on the same node and its state copies 

gradually reconstituted from the following update messages. If this is not sufficient 

then a state request can be made to the UM for detailed state information from each 

entity. 
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A restarted entity cannot be revived in the same way. Either it must start with its 

original state or obtain the current state from one of its clones in another system. 

4.5.6.2 Hardware Component Failure 

Individual hardware component failure may be tolerated by migration of the 

dependent process to another node in the system. If the failed component's 

functionality is not duplicated anywhere in the system, then either the process must 

attempt to continue execution without it or be terminated. 

Should the replacement of the faulty hardware require the whole node to be shut 

down, then all processes must be redistributed to other nodes. 

4.5.6.3 Node Failure 

Loss of communications with a node requires the simulation to be frozen immediately. 

There are then two options to choose between. Firstly, simply wait until the node has 

been recovered and then continue the simulation. Secondly, the MUM re-creates 

those processes that are on the failed node elsewhere in the system. The current state 

of these entities can then be acquired from another system running the same 

simulation. Once state has been restored the simulation may continue again. When 

the faulty node is restored its entities are removed and the system load re-distributed. 

4.5.6.4 System Failure 

Failure of a communication path with a system will not affect the other systems. If 

only external communications have failed, then the simulation on the isolated system 

is frozen to prevent the users from making any changes to the environment that would 

have to be abandoned. When the link has been re-established the system synchronises 

and enables the simulation again. This synchronisation process can be quite lengthy: 

entity deaths and births must be checked, entity states updated from clones, user 

interactions on other systems reflected locally, etc. In order not to overload any one 

system it would be possible to obtain this information from a number of systems 

throughout the network. 
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4.5.6.5 Summary 

Application of those recovery techniques that require collaboration within another 

system is problematic. Bandwidth between systems will be at a premium and the 

latency greater than node-to-node communications. Therefore these procedures will 

undoubtedly be prolonged affairs but, unfortunately, there is little alternative. Even 

those policies for recovering a single node or software process may take longer than a 

simulation step. Thus the local simulation will suffer until recovery is completed. 

4.5.7 Access Control 

There is no access protocol built into the basic components of a USS. However, 

there are a number of system features that provide some methods of restricting the 

options. 

4.5.7.1 Resources 

At the most basic level, all accesses to system resources are granted by the RM and it 

is not possible for a process to bypass this mechanism if it wishes to be scheduled for 

run-time. Access to specific devices can be pre-allocated to managers and restricted 

by location. For example, a VIS manager is given dedicated access to a CIG and is 

required to run on the same node. 

4.5.7.2 Location 

Each message includes the UPID of the sender and therefore service requests can be 

rejected based on location, e.g. a VIS manager may only want to deal with requests 

from entities on its own node. If an entity or a manager should be concerned about 

the sender's identity then its full identity may be discovered by issuing a location 

request. 

4.5.7.3 Snooping 

The worst security risk is that an unwanted process will examine an entity's state by 

monitoring the state updates. The only process that can do this is a manager and, 
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unlike entities, these cannot be started at run-time. Therefore, to introduce a bogus 

manager into the system would require the alteration of configuration files and a 

system reboot. Neither of which would likely go ahead unnoticed. 

4.5.7.4 Insulation 

Since UML code may be introduced at run-time there is a potential for misuse, 

however, there is very limited access to the system services. A typical entity will only 

require access to the system clock, location requests, sending and receiving UML 

code. UML therefore acts as an insulating layer between deliberate or accidental 

intent and the low-level operation of a USS. 

4.5.8 Feature Summary 

A summary of the system architecture's key aspects is given below. 

4.5.8.1 Structure 

A USS is made up of a network of USNs. The decision of whether to have a group 

of nodes forming one system or a network of one node systems is based upon the 

computational power of each node, the bandwidth of the network and the distance 

between nodes, i.e. the length of the propagation delay. Low computational power 

and high bandwidth lends itself towards a network of nodes whilst high computational 

power and low bandwidth is better suited by a network of systems. Since there is no 

reliable multicast transport mechanism readily available, point-to-point 

communications are used to ensure 100% reliability. 

Passive partial data replication and complete computational distribution is used within 

a system. A network of USSs use total data and computation replication. 

4.5.8.2 Services 

The UM and the RM provide the core services whilst ENTs are used to execute a 

universe simulation written in the modeling language UML. Special managers such as 
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VIS and SIM are not needed to run a simulation but are often used since they can 

encapsulate useful services, e.g. image generation and collision detection. The UM 

understands how the information in a UML definition is structured but does not 

understand what it means. Only ENT processes and special managers know what the 

data means and what to do with it. 

The UM is at the heart of the architecture, either in the shape of the MUM or a SUM. 

The key services that a UM provides are: 

• Message routing between local processes and remote nodes. 

• Process/service location and identification. 

• Processing of monitor requests placed by managers and adhered to by 

entities. 

• Managing the introduction of changes/additions to the VE description. 

• Managing migration of a local entity. 

Additional functionality unique to the MUM: 

• Managing node activation and deactivation. 

• Controlling initial simulation creation. 

• System-wide scheduling including the coordination of entity migrations. 

• Managing general communications with remote systems. 

• Forwarding of local user information to their shadows on remote systems. 

The RM works closely with the UM to provide an execution environment for the 

simulation. Services include: 

• Controlling access to the node's resources. 

• Scheduling of all processes on a node such that they complete execution 

before the end of each simulation step. 

• Advising the local UM and the MUM on the node's loading. 
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4.5.8.3 State Management 

The instance data of a universe is the sum of all the states owned by each entity. The 

owner is the only process that is allowed to modify the state. Managers cannot 

modify any state information directly, they can only examine it. A manager may, 

however, indirectly cause a change in the entity's state through execution of one of 

the entity's UMIL functions. This job demarcation removes the need for any locking 

mechanisms. 

Managers register an interest in a particular component of the universe description. 

Any changes made by an entity to their instance of that component are relayed to the 

managers via the UMs. The information in the universe may be further filtered by 

specifying a constraint function which is applied to each update sent by the entity. If 

the constraints are met then the message is sent to the manager. 

4.6 Summary 

This chapter has presented the requirements of a system capable of distributing and 

simulating a yE, its design restrictions, real-time issues and the implications of these 

features. The proposed design begins with the presentation of the language used to 

model the VE which is based upon an interpreter to provide the utmost flexibility. 

The presented system design exists to execute the simulation described by the 

modeling language whilst transparently distributing it over a network of machines 

(nodes). Nodes are grouped into systems based on their ability to support complete 

computation and passive partial data distribution. Clusters of these systems are 

consequently interconnected by lower bandwidth links and only information unique to 

any given system is communicated to the others. A number of required software 

components run on each node to provide administrative functions and an execution 

framework. Each entity within the simulation is embodied in a process that represents 

part of the universe's state. Managers provide specialised services to entities within 

the system by monitoring changes in portions of the entity's state. All work is 

scheduled using a local scheduling policy and a system-wide policy, ensuring that the 

load across all nodes stays balanced through the use of process migration. 
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Now that both the modeling and simulation execution aspects of the system 

architecture design have been presented we are ready to examine a prototype 

implementation. Subsequent evaluation of the prototype will provide insight into the 

validity of this solution to the task of distributed, interactive, VE simulation. 
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Chapter 5 

A Prototype USS 

"God help us; we're in the hands of engineers." 

Ian Malcolm, Jurassic Park 

This chapter presents the implementation of a prototype USS based on the design 

described in the previous chapter. A full implementation of the design would take a 

considerable amount of time, far in excess of that available to the author. Therefore 

only those components (or parts thereof) that were required to demonstrate the 

architecture's key points were implemented. 

The feasibility of implementing a scheduler on top of a general-purpose operating 

system is explored with the implementation of a solution to the real-time YE displays 

problem. This is followed by a description of the platforms upon which the prototype 

was designed to run. 

The USS implementation details begin with an examination of networking in a 

heterogeneous network, proceeded by configuration control and an implementation of 

a UML interpreter. Following details on each system component, the chapter 

concludes with a list of improvements that can be made to the prototype. 

5.1 Real-Time in the Real World 

The QNX operating system (QNX Software Systems Ltd., Ontario) was used by the 

author to develop the YE Support System (VESS) for experimental work undertaken 
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in the VEL, University of Edinburgh. QNX is a Portable Operating System Interface 

(POSIX') compliant, multi-tasking, distributed, real-time operating system (OS). It 

provides a priority-driven, preemptive scheduler which is certainly suitable for a soft 

real-time system and with great care can be used in a system with static hard real-time 

constraints. Part of VESS's functionality was enforcing the constant update rate of 

the CIG displays. The implementation of this solution is presented in this section and 

was used to explore the viability of implementing a scheduler-based prototype USS. 

Section 4.3 presented a taxonomy of real-time scheduling algorithms. In the field of 

VR, many systems claim to be real-time and can indeed be classified as soft real-time 

systems. The service degradation option for ensuring a constant VE display update 

rate discussed in section 3.3.3.1 requires a deadline scheduler. Unfortunately, 

implementing such a scheduler on top of a normal multi-tasking OS such as UNIX is 

problematic. Most OSs are not suited to real-time purposes, i.e. they do not provide 

ways of guaranteeing response times for certain events such as interrupts, IPC and 

disk 110, etc. Those real-time systems that do provide such guarantees often use 

static schedulers. A YE system is dynamic and therefore a scheduler is required that 

can also cope with changing existing deadlines and the introduction/removal of new 

tasks. Since a dynamic deadline scheduler was not available it was decided to adopt 

the worst-case operation solution (section 3.3.3.2). 

5.1.1 Real-Time Displays 

There are a number of operations and pieces of information that a visuals manager 

needs to enforce a fixed frame rate in the CIG: 

Manual control over buffer swapping 

The time between one display refresh cycle and the next. 

The amount of time that the rest of the system components need to complete 

their work for the next simulation update. 

I The 'X' would appear to have been added to reflect the fact that the interface is based heavily upon 
the UNIX variants. 



5.1.1.1 Manual buffer swapping 

This is essential to the task at hand. Double-buffered systems will display the last 

rendered image until the current one has been finished. At this point the new image is 

displayed and the next image is rendered into the other buffer. The switch actually 

happens during the next vertical retrace (or flyback) phase. On displays such as 

monitors, this is when the electron gun makes its way from the bottom-right corner of 

the tube (as the viewer sees it) to the top-left, ready to start drawing the next picture. 

To achieve a constant frame rate we must be able to choose which vertical retrace is 

used to switch display buffers. 

5.1.1.2 Inter Refresh Time (IRT) 

The IRT is the time it takes to draw one picture on the display including the vertical 

retrace period. For example, say that a 640x480 resolution image is refreshed at 60 

Hz. This means that the IRT is 1000 / 60 = 16.66 ms. The refresh rate varies 

depending on the resolution of the video signal, e.g. an 800x600 pixel image is often 

refreshed at 72 Hz, and different display devices can handle different ranges of refresh 

rates. 

The refresh rate may be provided as a parameter at run-time or, alternatively, this 

information may be obtained from the CIG which is the approach adopted here. Each 

time the CIG generates a vertical retrace it also generates an interrupt which is 

intercepted by the host machine and the time stored. The next time an interrupt is 

caught, the time difference is calculated and this gives us the IRT. 

This technique will only work if the host machine has a clock that can provide 

nanosecond accuracy and the interrupt latency 2  is bounded. The latter point is by no 

means certain in non-real-time operating systems such as UNIX and was one of the 

main reasons QNX was used. 

2The time between the interrupt being generated and the process on the host machine being notified 
of the event. 
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5.1.1.3 Intiar Update Time (IUT) 

The total processing time required for one simulation update is provided by the 

scheduler and the JUT is the nearest multiple of the IRT to the given time. In other 

words, the total work time can be expressed as a number of display refreshes. For 

example, if the IRT is 16.66 ms and the work takes 40 ms, the [UT would be 49.99 

ms, i.e. the work may be done within 3 refreshes of the display. 

5.1.1.4 A comparison of paradigms 

Figure 5.1 shows the various ways of scheduling the work to be done each frame. 

There are three basic stages: calculate, render and display. Figure 5. la shows how 

these stages fit together in a variable-rate system and how they relate to the display 

refresh cycle. The time at which the frame may be displayed varies and rarely 

coincides with a vertical retrace, which means that the actual buffer swap happens 

sometime during the next cycle. As shown in the diagram, most of the time the 

calculation stage may progress immediately and by the time this is finished, the buffers 

have been swapped and the render stage is ready to continue. However, the last 

complete cycle in Figure 5.1 a shows that it may be necessary for the render stage to 

wait until the buffers have been swapped. This is because the buffer that will be filled 

next is currently being displayed. 

The scheduling of the work in a fixed frame rate system is shown in Figure 5. lb. The 

time between the end of the rendering stage and the display will vary depending on 

how long it takes to render the scene. Pseudo-code for this process is given in Figure 

5.2. 

Both these examples assume that all work is being done by one CPU. If the image 

generation can be dedicated to another CPU or the system is equipped with a separate 

graphics subsystem., then time may be saved by scheduling the calculate and render 

stages such that they overlap as shown in Figure 5. 1c. This is best achieved by 

starting the redraw as soon as possible (since it will take the longest time to 

complete). In order that we are rendering the most up-to-date state possible, the 

calculation stage is done before the end of the previous frame. By performing these 
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two stages in parallel it also means that more time can be spent on the simulation 

dynamics. Obviously, failure to complete either of these stages before the designated 

refresh occurs is a system failure. 

____ 	 .- 	 .• M =MM 

- 

.•. 

C) 
I 

I 
t=-1 	 t=O 	 t=l 	 t=2 

Key 

Calculate state 	EJ Refresh cycle 

Render new frame 	- - - Deadline 

Display frame 

Figure 5.1 Simulation cycle scheduling. 
a) buffer swaps happen at unpredictable times during the next 
simulation cycle in a variable-rate system; b) controlled buffer 
swapping in a single CPU fixed-rate system; c) a multiprocessor 
fixed-rate system permits the calculation stage to be done in 
parallel and in advance of the rendering stage resulting in a faster 
update rate. 

Regardless of technique, it is important to understand how the CIG works and the 

latency that it introduces into the process since not all CIGs work the same way. For 

example, an SGI RealityEngine/2TM introduces a one frame latency whilst the Real 

World Simulation Reality3TM PC card produces a two frame latency. The latter 

system was used in this implementation and, to compensate for this latency, state 

calculations must be done two updates before the image needs to be displayed. 
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// Step 1: Initialise key variables 

Calculate IRT 
Calculate IUT based on totalWorkTime 
Enable manual buffer swapping 
displayTime = 0 

// Step 2: Synchronise loop with display 

Wait for refresh 

II Step 3: Enter main processing cycle 

While simulation not complete 

II Step 3.1: Calculate state 

displayTime = displayTime + IUT 
Calculate state of VE for displayTime 

II Step 3.2: Draw new image but don't display 

Redraw display 

II Step 3.2: Display image exactly on time 

Wait for end of IUT period 
Swap buffers 

} 

Figure 5.2 Pseudo-code for the fixed frame rate, worst-case simulation cycle. 

This method of controlling double-buffering can be applied to most CIGs with few 

problems since it utilises existing functionality. It may be necessary, however, for the 

API to be modified to gain access to this functionality. 

5.1.1.5 Further improvements 

It is quite common for the render stage (even in its worst-case) to complete before the 

time that the display stage needs to run (as shown in Figure 5. ic). If this is the case 

then the start of the state calculation, which includes input device sampling and the 

render stage, may be put back such that there is even less delay between calculation 

and display (Figure 5.3a). 
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Figure 5.3 Improved simulation cycle scheduling. 
shifting the calculate and render stages to reduce system latency; 
performance profiling permits the increase/decrease of the 

update rate in a controlled manner. 

A more advanced technique is the controlled increase or decrease of update rate. It 

would be possible to detect whether the CIG is capable of going faster, e.g. making 

the change between 30 Hz and 60 Hz, by maintaining a history of its execution time 

for each update. If, after a small period of time, this new potential performance was 

sustained then the other stages could be rescheduled, if possible, and the switch made 

(Figure 5.3b). In a similar way, by monitoring the performance profile, a slow 

increase in workload could be detected and a decision made to extend the deadline. 

Once a decision is taken to change the deadline, no further changes must be made for 

a reasonable period of time, e.g. a couple of seconds, or things would quickly 

degenerate into a variable-rate system. Such an enhancement could also help 

overcome the fact that the worst-case approach assumes that the environment is quite 

static and does not cope well with the dynamic creation or destruction of objects. 

Some multiprocessor CIGs already monitor image complexity to aid in processor load 

balancing. For example, the Reality3TM system, uses knowledge of the changing 

complexity of each scan-line to predict the load distribution for the next update. With 
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additional functionality in the API, these calculations could be used in the decision-

making process. It is true that simple decision-making logic could be flawed by fast 

increases or decreases in workload, but the potential increase in system fidelity makes 

it worthy of more investigation. 

A deadline-based approach also provides the framework for the application of object 

priority systems within the CIG as well as the visuals manager. Objects may be 

drawn, partially drawn or skipped depending on their priority (as in Holloway's Viper 

system). 

5.1.2 Conclusions 

The problem of presenting a temporally correct view of a VE has implications 

throughout the whole support system architecture. The most important (and often the 

most expensive) component of a VE system is the CIG. Most CIGs provide some 

kind of service degradation in the form of LOD (section 3.3.3.1), but this is 

insufficient and improvements must be implemented via the API. 

The implementation presented above has been used effectively over a number of years 

in the VEL. However, its utilisation is not as simple as "plug and play" since its 

performance is highly dependent on the other processes used to simulate the yE. For 

example, if data logging is added to the simulation then this introduces an execution 

path that passes through the filing system manager and the hard disk device driver. 

Each of these processes have their own timing constraints, are dependent on a number 

of interrupts and must therefore be accounted for in the schedule. Other changes that 

can have large effects on reliability are: communicating with a machine via the 

(dedicated) network, increasing the complexity of the visual database being used, 

adding another input device, synchronising with an external device, etc. 

Even under QNX, which supports POSIX 1003.1b Real-Time Draft Standard Process 

Scheduling, getting an application to schedule every component to meet worst-case 

deadlines can be quite time consuming. The possibility of doing the same under a 

heavyweight OS such as System V Release 4 UNIX is very low. In addition, general 
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OSs use virtual memory and have unbounded interrupt latency to name but two 

confounding features. Since it was the intention to demonstrate USS running on 

different machines and operating systems (albeit UNIX variants), it was decided not 

to attempt a real-time implementation. 

5.2 Target Platforms 

From the outset it was intended that the prototype should be portable to a number of 

different platforms. It was planned to use QNX during initial development; so it was 

a natural progression to use other platforms with similar operating system 

functionality, preferably with some POSIX compliance. These platforms are briefly 

described in this section whilst specific details are dealt with in section 6.2. The 

choice of an Implementation Language, IL, is also discussed. 

5.2.1 IBM Personal Computer Compatibles 

Three PC compatibles on a dedicated network within the VEL were available to the 

author, each running QNX. One of these machines acted as a gateway to the Internet 

thus opening up the possibility of connecting multiple USSs on a heterogeneous 

network. Each machine had between 16 and 24 Mbytes of main memory and ranged 

in power from an Intel 486/50 MHz to an Intel Pentiuml90 MHz. The memory 

capacity is important because QNX does not use virtual memory. Additional 

resources included a dedicated CIG and sound generation equipment. 

5.2.2 Cray T313 

Originally it was intended to use the Edinburgh Parallel Computing Centre's (EPCC) 

Cray T3D super-computer as the second platform to run the prototype. The T3D was 

installed with 160 nodes, each with 2 DEC Alpha 21064 processors running at 150 

MHz and 128 Mbytes of memory (64 per processor). The T31) is connected to the 

real world via a Cray Y-MP host running UNICOS, a POSIX compliant OS. 

Unfortunately use of the Cray had to be abandoned for a number of reasons: 
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1. 	Despite having an 8 MByte "microkernel", no IPC mechanism is 

provided - only shared memory operations are available. To ease this 

problem, three messaging libraries are available: 

Portable Virtual Machine (PVM - Geist & Sunderam, 1991). 

This library makes use of a central server process which runs on 

the T31) host. Unfortunately the central server process does not 

fit with the USS design. 

Message Passing Interface (MPI, 1993). This is an attempt to 

standardise on an IPC mechanism incorporating features of many 

such libraries, including PVM. However, it is very rigid and 

imposes requirements on how the programs must be structured 

that conflict with USS design. 

C) 	Fast Messaging (FM - Karamcheti and Chien, 1994). This 

unsupported library provides a low-level IPC mechanism using 

shared memory routines which provides latency an order of 

magnitude lower than PVM. This would be the library of choice 

but even this could not overcome the other problems detailed 

below. 

	

2. 	A process runs on one physical processor. There is no multi-threading 

support and this can only be achieved by using a large conditional 

statement in a monolithic program to select alternative execution paths. 

To port a multi-process system to a one process per processor 

architecture would have involved major changes and be grossly 

inadequate. The other alternative would be to have one system 

component running on each processor and treat the whole machine as 

one node. This would, of course, be absurdly inefficient since many 

processes, such as entities, are inactive for a large proportion of their 

life. 
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The Cray C++ compiler does not support exceptions which were used 

extensively in the prototype (section 5.2.5). Removing exception 

handling code from a program requires a total re-design and re-write. 

Whilst it was possible to communicate from the T31) to the outside 

world through the Y-MP host using a "message-routing" process, the 

author was advised against trying. The host was so heavily used any 

such routing process would have to wait a long time to gain access to 

the CPU thus shattering any hope of reasonable real-time performance. 

5.2.3 Sun SPARCcenter 

The Sun SPARCcenter 1000E met all of the required criterion and was used to 

develop the prototype in parallel with the QNX version. SunOS v5.4 supports some 

of the POSIX standards which made porting relatively straight forward. However, 

this machine is used by many in the University as a compute server and therefore 

could not be used to evaluate system performance. 

5.2.4 SGI RealityStation 

A network of three SGIs arrived in the Department of Computer Science half way 

through the final year of this project. The most powerful of the machines was a 

RealityStation which is populated with 128 Mbytes of main memory and runs the 

IRIX OS (v5.3) which uses virtual memory. Unfortunately a suitable C++ compiler 

was not installed until a couple of months before submission, limiting work on this 

platform to a minimum. 

5.2.5 Implementation Language 

Development of the prototype started under QNX which supported ANSI C and C++ 

with exceptions and templates. In general, the code generated by a C++ compiler is 

as efficient as a C compiler and since object-oriented techniques lend themselves well 

to the task at hand, C++ was chosen as the implementation language. The availability 
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of templates eased development and exception handling helped produce an easier to 

understand implementation. Watcom C++ v9.52 was used under QNX and Sun 

Professional C++ v3.0.1 was used to initially develop the prototype under SunOS. 

Later, compatibility with GNU C++ v2.7.0 was tested as a precursor to the SGI port 

and to aid debugging (section 6.2.1). 

System 

Node 

Ethernet 

Figure 5.4 Example network configurations of three USSs. 

53 Networking 

The actual organisation of USSs need bear no relation to the physical location of the 

nodes or their internetworking. Figure 5.4 shows three possible configurations of a 

USS, all of which are connected to the same backbone network. System Enterprise is 

constructed from three nodes interconnected by a dedicated network with one node 

acting as a gateway to the backbone. System Voyager only has one node whilst 

Defiant has two nodes but its local communications must share the bandwidth with all 

of the other traffic on the backbone. Whilst this last configuration is not efficient, it is 

functionally valid. 

There is no required medium or protocol for interconnecting systems. In this 

example, however, all the nodes use Ethernet as their communications medium. It is 
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possible that the medium used within USS Enterprise could be totally different 

provided that an Ethernet link to the other systems was still maintained. This would 

be the situation in a multiprocessor system where each processor could correspond to 

a node. 

Each OS has its own mechanism for sending messages to processes within its domain 

of control. On a single processor system this means sending messages between 

logical processes running on the same processor and may be implemented as either 

sharing or copying memory. This is also true in some multiprocessor systems where 

memory is shared, in others communications may use high-speed links between 

processors. In distributed systems the message may also be sent between physical 

machines over a high-speed LAN connection. The one criterion that links all these 

different domains is that the recipient is directly addressable by the operating system. 

5.3.1 IPC Mechanisms 

Most operating systems provide their own method of lightweight message-passing, 

e.g. QNX, but others rely on more heavyweight methods such as TCP/IP, e.g. IRIX. 

Under QNX, multiple machines may be networked together into one virtual machine 

and the system's IPC mechanism works between processes on different nodes as if 

they were on the same physical machine. It can coexist in an Ethernet network with 

other protocols but cannot be used to communicate with systems that are not running 

QNX. In order to communicate with processes outside the native domain of control 

it is necessary to use a different delivery system, such as TCP/IP. This also means 

that a different addressing method must be used. 

To localise the impact of these differences (and those of other OSs), a Process 

Management Layer (PML) is incorporated into each system component which sits in 

between the operating system and the component implementation (Figure 5.5). This 

process layer provides a set of services (presently just IPC) which are independent of 

the underlying operating system. Where more than one delivery system is available 

the layer chooses the right mechanism for the right job. How these decisions are 

made is platform and implementation specific. There is only one requirement, of 
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course: the message delivery must be reliable. The prototype supports QNX IPC, 

TCP/IP and the framework for supporting a shared memory IPC mechanism is present 

but not fully implemented. UNIX domain sockets (which are faster) were not used 

instead of TCP/IP because QNX does not support them and they would complicate 

system performance comparisons (section 6.4). 

Figure 5.5 Position of the Process Management Layer within the 
system software. 

5.3.2 Addresses 

Each process within the system has an address which is unique throughout all USSs. 

The address is made up of three components: the system ID (SD), the node ID (ND) 

within that system and the process ID (PD) within that node (Table 5.1). 

Current sizes are signed 16 bit integers for both the SD and ND, with an unsigned 

32 bit integer allocated for the PD. Valid SDs and NIDs are positive integers - 

negative values are used during the process' initialisation phase. This provides a 

unique address for 32768 systems, each with up to 32768 nodes, each of which may 

have 231  processes running on them. This is truly overkill for the prototype but offers 

a realistic address range when large-scale distribution is a goal. 

L USS ID USN ID L Process ID 
16 bits 16 bits 32 bits 

(signed) (signed) (unsigned) 

Table 5.1 Message address structure. 
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When each system is defined in the systems' configuration file (section 5.4), it is 

allocated a unique SD. Likewise, each USS definition contains a number of USN 

definitions which specify a NIl) that is unique within that system. The PID is different 

because the number used is unique within the given node. It is used to reference the 

process that the message is intended for (or sent by), but how it is used to locate the 

relevant process is implementation and thus node dependent. When using QNX IPC, 

messages are indeed addressed using the operating system's process identifier, 

whereas an implementation using TCP/IP uses the socket number associated with the 

process. A shared memory implementation would use the address of the memory 

block holding the message queue. 

53.3 Messages 

All communication between the components of the USS use a number of pre-defined 

messages whose basic structure is shown in Table 5.2. 

LFrom LTO Message IDt Transport IDt Length 
8 bytes 8 bytes 1 byte 1 byte I 4 bytes nal 

L 
t Aligned on a 2 byte boundary, i.e. requires one padding byte. 

Table 5.2 Message header structure. 

The address of the sender and the intended recipient are the first two fields in the 

message header. The recipient field is necessary because the message may be routed 

through one or more other processes before it arrives at its destination. The message 

ID number is used by all system components to determine whether to deal with the 

message and, if so, how to decode the data (if there is any). The desired method of 

transportation to the recipient is also recorded in the message. 

The size of the associated message data is given in bytes. The interpretation of the 

data depends on the message ID. A list of the defined message types and their 

purpose is given in Table 5.4. Message IDs are often reused for slightly different 

purposes, the exact meaning depending on the receiver, e.g. entity, manager, etc. In 

addition, many messages share the same physical structure with regards to data 
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contents (Table 5.3). For example, all messages that contain UML information 

(binary or ASCII[) use the same structure: 7. 

Type Name Size Description 
-1 - 0 All information required is in the message header. 

o String n Used to send variable length textual information. 

I Notify 4 Holds reason for process termination. 

2 Ping 28 Holds flag indicating whether receiver issued ping or is being 
pinged and timestanip information. 

3 Profile 16+ Holds a variable length RP. 

4 UPID 48 Room for both the name and IJPID of a process. 

5 UPID2 16 Contains just two unnamed UPIDs. 

6 Status 4 Details the status of a previously requested service. 

7 IJML 24+ Holds either an ASCII UIvIL definition or binary state data. 

Table 5.3 Description of the nine physical message structures. 

5.3.4 Hardware Differences 

Sending messages between machines in a homogeneous environment requires no 

additional effort. However, in a heterogeneous network there are hardware 

architecture differences. 

5.3.4.1 Byte Order 

The byte ordering used in CPUs may be classed as either little-endian or big-endian. 

A little-endian CPU, such as those produced by Intel, places the least significant byte 

or a word first. Conversely, a big-endian CPU places the most significant byte first. 

The reasons behind the choice of one ordering over another will not be discussed here 

but recently some CPUs have been built such that the byte ordering used can be 

selected by setting a bit in one of the CPU's registers, e.g. Motorola 88110 

(Motorola, 1992). 
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Message Type Purpose 

GET_UPID 4 Sent to the UM to obtain the sender's UPID. 

SET_IJPID 4 Sent by the UM, containing the recipient's UPID. 

PING 1 	2 Test connection/measure round-trip time to a given process. 

NOTIFY 1 Inform the UM why this process is terminating. 

RPROFILE_NOTIFICATION 3 Holds a process or node RProfile. 

RPROFILE_REQUEST 3 Sent by a process wanting a process or node RProfile. 

LOCATE_REQ 0 Ask the UM to locate a process based on the specified 
search criterion. 

LOCATE_RESP 4 UPI) of the located process returned by the UM. 

STATUS . 	 6 Success/reason for failure of the specified message. 

ACTIVATE UM -1 Notify the MUM that this node is active. 

DEACTIVATE UM -1 Notify the MUM that this node is disconnecting/ tell slave 
node to terminate. 

ACTIVATE_USS -1 Notify the master USS that this system is active. 

DEACTIVATE_USS -1 Notify the master USS that this system is disconnecting/tell 
slave system to terminate. 

TERMINATE -1 Sent by UMs to force termination of any given process. 

CREATE ENT 0 Execute the given process on the recipient UM's node. 

CREATE_ENT_ACK -1 Sent by SUM to MUM when an entity has been created. 

DESTROY—ENT 0 Terminate the given process on the recipient UM's node. 

DESTROY_ENT_ACK -1 Sent by SUM to MUM when an entity has been destroyed. 

IJML 7 Holds valid UML code to be parsed by the recipient. 

UML_INIT -1 Request the sender's UML definition from the UM. 

UML_INIT_DEF 7 New, complete UML definition sent by the UM. 

UML_CONSTRUCT 7 Execute entity's Construct function/entity's initial state 
information. 

UML_UPDATE 7 Execute entity's Update function/send state updates. 

UML_DESTRUCT -1 Execute entity's Destruct function. 

UML_MONITOR 0 Manager's registration of interest in part of the UML 
definition. 

UML_MONITOR_ACK -1 Sent by the UM to confirm acception of a monitor request 
and inform entities of dependency. 

UML_SYNC 0 Request current list of UIvIL dependencies. 

UML_UPDATE_NO11FY -1 Notify entities that they should update and managers that 
they should expect UML_UPDATE messages. 

UML_ UPDATE _COMPLETE -1 Notify managers -that all entities have updated. 

MIGRATION—NOTIFICATION 	5 Informs receiver that a migration has occured - contains the 
process' old and new addresses. 

MIGRATION REQUEST 4 Sent by a RM to the MUM to request an entity migration. 

MIGRATION_STATE_REQ -1 Sent to an entity to obtain a complete copy of its state. 

MIGRATION STATE 7 Complete entity state sent from source to target entity. 

MIGRATION_STATE_ACK -1 Used to inform the MUM that state transfer was successful. 

Table 5.4 Summary of message types and their use. 
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5.3.4.2 Floating-Point Representation 

Another difference may be the representation of floating-point numbers: single-

precision (32 bit), double-precision (64 bit) and extended precision (64 bit and 

upwards). This is less of a problem since most general-purpose CPUs conform to 

IEEE 854 (IEEE, 1987) although they may, of course, have a different byte order. 

5.3.4.3 Memory Alignment 

Some architectures also require certain data types to be aligned on given byte 

boundaries. For example, a 32 bit integer may have to start on a 4 byte boundary. If 

not required then often operations are performed more efficiently if aligned on these 

boundaries. In these cases the alignment is enforced by the compiler or provided as 

an option (Watcom, 1995). 

5.3.4,4 Transfer Format 

The External Data Representation (XDR) library of functions are used to represent 

data structures in a machine-independent form (Bloomer, 1992). This library is 

available on most machines running UNIX and can be used to encode dynamic data 

structures as well as just handling the primitive types. Due to this level of 

functionality it is also quite a bulky library with respect to both memory requirements 

and the API. Even the low-level code used by Snowdon (1995) produced a 

significant overhead. 

Of the platforms available for use by the author, two used big-endian ordering, one 

used little-endian and all of them used the same single and double-precision floating-

point formats. Since the UML data structure traversal routines had already been 

written and the number of messages types sent between machines was relatively low, 

it was decided to provide hand-coded byte-swapping routines. In addition, although 

XDR is a popular library, it may not be available on all systems which would cause 

problems porting USS. 
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The chosen format for sending messages was little-endian because the big-endian 

machines had more powerful CPUs and could better accommodate the overheads 

involved in encoding/decoding. The byte-swapping code was conditionally compiled 

into big-endian systems to minimise code size and maximise execution speed on little-

endian machines. As the process layer receives messages, it encodes/decodes those 

that are destined for/received from other nodes. 

5.3.5 Layer Implementation 

Each process in a USS is both a provider and a consumer of services. A service is 

requested by sending a message to the provider which performs some processing and 

then possibly sends a result back to the consumer. Information flows between 

processes freely and it is possible for two processes to be each other's consumers and 

providers. The PML provides the nuts and bolts that can support this functionality 

and avoid deadlock. 

5.3.5.1 Asynchronous 

Synchronous message transmission is a convenient mechanism for issuing service 

requests but can leave the sender waiting for a response when it could be doing other 

work. In USS, therefore, all processes send a message and then continue immediately 

with other processing. Some time in the future they may receive a response to their 

original request which must be associated with it in some way. This may be explicit 

by including a reference in the response or implicitly because it could only have come 

from one message. 

5.3.5.2 QNX 

Messages are sent between QNX processes using a three stage procedure: Send-

Receive-Reply. Figure 5.6 shows the sequence of these stages and what happens to 

the state of each process. After a message has been sent, the sending process blocks 

until it receives a reply from the message's recipient. Similarly, when a process enters 

the receive state it blocks until it is sent a message at which point it can do some 
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processing and then must issue a reply. It is possible to poll for a message but 

continuous use of this service will seriously degrade system performance. To 

minimise the time that the sender is blocked, a reply is issued immediately after 

receiving the message. 

[__ProcessA__] 	 Process B__] 

Rec±I 

Process blocks 	 Process blocks 

until reply is, 	 until message 

received. 	 L roceied 

* Only when sending to another node. 

Figure 5.6 Send-Receive-Reply procedure for sending messages under QNX. 

Sending a message to another node in a QNX network requires the establishment of a 

virtual circuit between the sender and receiver. The identifier assigned to this circuit 

is then used when sending the message instead of the PD in the message address. 

After the reply has been received the virtual circuit is deleted. It would be more 

efficient to leave the virtual circuit in place and re-use it the next time - an operation 

supported by QNX. However, the burden placed on the operating system by the 

potentially large number of circuits could degrade system performance. The buffer 

used for sending- messages within the operating system grows as needed but it is also 

possible to send multi-part messages which keeps the required buffer size at a 

minimum. 

5.3.5.3 TCPIIP 

Each process obtains a socket number which is used throughout its lifetime as the PD 

component of the UPID. Whilst the contents of the PD field in the message address 

10. 



is enough to send a message under QNX, TCP/IP also requires a hostname to 

establish a socket connection. If the recipient is on the same node then the node's 

hostname can be obtained  from the operating system. Any message destined for 

another node is sent through the UM which maintains a routing table 3  for each node 

in the system. If it is the MUM then it also stores a route for its counterpart in each 

system. A table entry is composed of the SID, ND and hostname. 

The sequence of events required to send a message using TCP/IP as implemented in 

the process layer is shown in Figure 5.7. TCP/IP requires a connection to be 

established before data transfer may commence. A similar phase is the creation of 

virtual circuits in QNX, but whereas QNX provides OS support for maintaining 

virtual circuits, it is up to the application to keep track of established socket 

connections. Each connection has to be periodically polled to check for incoming 

messages compared to issuing a single call to Receive ( ) 4. Since this would 

introduce unwanted complexity and a considerable overhead in the prototype, socket 

connections are established and closed each time a message is sent. 

5.3.5.4 Deadlock 

• problem common to both of these implementations is that of deadlock. If process 

• should send a message to B at the same time as B sends a message to A then both 

will be blocked waiting for the other to receive the message. A solution is to split the 

layer into two processes. The first process holds all the components functionality and 

receives messages as per normal. When it wishes to send a message, it is passed to 

the second child process which actually sends it. Therefore only the child process 

ever becomes send-blocked leaving the parent process to accept incoming service 

requests and perform its usual work (Figure 5.8). 

3 Stored in and administered by the PML. 

' These overheads would not be incurred if an unreliable datagram (connectionless) mechanism were 
used. 
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until message 

- received. 

- Process blocks 
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read and then 

closes its end of 
the connection. 

- 	rai') 

Process closes 
its end ofthe 
connection. 

Figure 5.7 Message transmission sequence using TCP/IP. 

The overheads of this solution can be minimised by using threads (lightweight 

processes) which share both code and data, with a separate stack (Milenkovic, 1992). 

Messages could then be passed from parent to child by exchanging memory pointers. 

Unfortunately threads have not been implemented on all of the chosen platforms. A 

beta version of a threads library was available in QNX but was found by the author to 

be unreliable and so this option was ruled out. 

(T. 
Comp:nerit Functiunal tv 

L 1>r 	Managciiienc Layer  

'i•S 	

Miter 

Figure 5.8 Structure of a logical process consisting of two physical processes. 

The ability to create a child process using fork() is a common feature in UNIX- 

based systems. The child is, in effect, a duplicate of the parent process, sharing code 

but taking a separate copy of the data and stack. Although not strictly an IPC 
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mechanism, pipes are commonly used to send data between two processes on UNIX-

based systems. Pipes fall under the jurisdiction of the filing system but that does not 

require them to occupy disk space and may reside totally in memory. Since both these 

features were available on the target platforms this method of implementation was 

chosen. To reduce the often considerable memory overheads that fork () produces 

through duplication of data and stack, the child process, once created, is replaced by a 

lightweight mailer. This program simply reads messages from the pipe and sends 

them to their intended destination. 

5.3.5.5 Initialisation 

The PML is the first software element to be initialised when a process is created. Its 

first task is to determine the UPID of the process it is executing in. If it is a UM then 

initialisation is temporarily paused whilst the configuration file is parsed and then 

restarted when the node's SD and ND are known (section 5.4). The PD of the UM 

is the actual process identifier under QNX or a pre-defined port when using TCP/IP, 

i.e. 34000. 

If the process is not a UM then it must locate its UM and send it a GET-UP ID 

message. Location of the UM using TCP/IP is simply a case of connecting to the pre-

defined port address. Under QNX the operating system's name server is used to 

locate the process identifier of the UM using a pre-defined name. 

Upon reception, the UM allocates a UPID and returns it in a SET_UPID message 

which is subsequently processed and thus completes the layer initialisation. 

5.35.6 Multiple Mechanisms 

The layer can be initialised to handle both QNX and TCP/IP IPC. If so, connections 

on each mechanism are polled for, in turn, until one is established. This is a CPU 

intensive procedure if done continuously, but it is commonplace for each component 

to poll once for any messages before continuing with the outstanding work (section 

5.6.4). Consequently, multiple mechanisms may be handled with only slightly more 

overhead than just one. 

189 



When there is a choice of methods for communication, the mechanism specified in the 

message is used. If this is left undefined then the best choice is used - the prototype 

will use QNX IPC in preference of TCP/IP. It is, however, uncommon for a 

message's transportation ID to be left blank, since it is accepted practice to respond 

using the same method that the request was sent with. 

5.3.6 Networking Summary 

In order to simplify the transfer of messages between processes and facilitate porting 

to different platforms, each software component has a process management layer. 

The interface to this layer, the message format and message addressing are the same 

regardless of the OS. In a heterogeneous environment, a common binary format must 

be agreed upon to enable machines with different hardware architectures to 

communicate. In the present day, these differences are far fewer and a compromise 

was found quite easily. As messages are sent they are encoded into the common 

format (if necessary) and decoded upon receipt (if necessary). To avoid deadlock the 

PML requires two processes to be used per logical process: one with the component-

specific functionality and a small mailer process used to send messages. The PMIL's 

first action during initialisation is to ascertain its UPID, either through a configuration 

file or by communication with the node's UM. Once initialised, the network of PMLs 

can handle message transmission between nodes using different IPC mechanisms. 

5.4 Configuration Control 

Some of the components in a USS need configuration information when they are 

created. This section presents a simple language that is used to help fulfil this task 

and is followed by an example of its application: system configuration. 

5.4.1 Universal Configuration Language (UCL) 

This minimalist language provides a way of structuring simple information in a 

hierarchical manner. UCL is used by those processes that need configuration 

information upon creation. The UCL parser constructs a small internal data structure 
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which may be read, manipulated by the process and then output again. Currently, this 

information is stored in files which are read by each process but there is no reason 

why this information could not be sent by the UM. 

The basic building blocks of UCL are Components and Variables. A variable is given 

a type of Real, Integer, String or Boolean and lists may have mixed types. Every 

variable is required to have a value, but if this is not needed an empty string may be 

specified (" "). A component can contain variables and zero or more other 

components which form a hierarchy, of which there may be many in each file. Figure 

5.9 shows a contrived example of a UCL description that contains one of each 

possible construct. 

Components are identified by a type name which is followed by an optional name that 

can be used for reference purposes during parsing and when accessing the information 

described therein. 

Container containerName 

SubContainer componentName 

aString 	"hello" 
aReal 	1.0 
anlnteger 2 
aBoolean FALSE 

rnixedList 1, 2.0, TRUE, "goodbye" 
} 

Figure 5.9 The basic elements of UCL. 

UCL permits structuring of non-complex data in which ever way is most suitable for 

the task at hand. In order for a UCL file to be recognised by different programs, the 

type names of components and their structure must be made concrete. Such a process 

was undertaken to provide a configuration file for USSs. 

5.4.2 System Configuration 

Figure 5.10 shows how UCL is used to describe the configuration of the USS 

Enterprise shown in Figure 5.4. The node that has the MUM is indicated by the 
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presence of the MASTER variable which is used as a flag. Likewise, one of the 

systems in the configuration file must be designated as the master system, similar 

entries would be made for the two other systems (section 5.6.2). The SD of the first 

system description in the configuration file is 1, the second system is allocated a SD 

of 2, and so on. 

USS Enterprise 

MASTER 
	

II Master system 

USN Pentium 

HOST "haggis.psy", 	2 II Host name and NID 
IPC "QNX" II Uses QNX IPC 
RN "resnode2.ucl" II Has a Resource Manager 
VISM "" II Has a VIS Manager 

USN Server 

HOST 	"haggis.psy', 1 
IPC 	QNX" 
RN 	"resnodel.ucl" 
CONSOLE 11 11  

II Different node 

II Has a console attached 

USN Gateway 

MASTER °" 	 II Master node 
HOST 	haggis.psy", 3 
IPC 	"QNX°, 'TCPIP" 
RN 	"resnode3 .ucl" 

Figure 5.10 Example USS configuration ifie. 

The HOST variable specifies the hostname of the node and its NID. It is necessary to 

describe the location of the systems/nodes in some meaningful way and the 

hostname's format is dependent upon the protocol used to interconnect systems. In 

the prototype, TCP/IP is used and the hostname is therefore given in Domain Name 

Server (DNS) form. The IPC mechanisms supported by the node are also listed, two 

of the nodes only use QNX IPC whilst the Gateway node also supports TCP/IP. 

Since this node is the link to the other systems it is also designated as the master. 

The remaining entries correspond to the managers that run on each node. All nodes 

have a resource manager entry which takes a file containing its initialisation 
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parameters. The only special manager in this system is VIS which runs on the 

machine with the CIG. However, one node does have the system console attached for 

the administrator's use. 

5.5 A UML Interpreter 

Before examining each system component it is important to understand how the UML 

interpreter works because it has had considerable influence on their implementation. 

There are four stages to interpreting a UML description: 

Lexical analysis. 

Syntactical and grammatical verification. 

Construction of the interpreter's internal data structure. 

Semantic validation of that data structure. 

The first stages were accomplished by using the lex and yacc tools (Levine et al., 

1992). The product of these tools was combined with a series of C++ classes to form 

a UML interpreter library which could be linked into any program requiring that 

ability. Manipulation of the interpreter is possible through the library's API. 

There are two phases when building the data structure: first of all the data definition is 

parsed and then all instruction code is compiled into an intermediate byte-code. This 

section describes the general structure of this library and outlines the processes of 

interpretation. 

5.5.1 Overall Structure 

At the highest level, the structure of UML may be conceptualised as a list of universe 

and entity definitions. Each of these definitions may be linked to one another by 

inheritance or they may just be peers with a common ancestor. Every universe 

definition is itself a hierarchy of other components: elements, constants, properties, 

etc. Each entity is derived from one of the universe definitions and contains a number 

of scope levels with functions, variables, etc., forming yet another tree structure. 
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UMLComponent 

UML 

UMLUniverse 

UMLConstant 

UMLElement 

tJMLConverter 

UMLProperty 

UMLFunct ion 

tiNLEntity 

Figure 5.11 Core UML C++ class hierarchy. 

Each component of UML has been implemented as a C++ class which are all derived 

from a common base class called UNLComponent (Figure 5.11). The base class 

holds data structures that are essential to each component class. 

The UML object5  acts as the top-level interface to the interpreter and the data 

structure representing the UML description. The other objects correspond exactly to 

the UML constructs described in section 4.4. 

5.5.2 Interpreting the Data Definition 

When a component description is encountered, its position within the data structure is 

first determined. At the top-level the parser may encounter any component - all but 

the universe and entity definitions use the dot notation. If the component is a universe 

then it is added to the UNL object whilst an entity description results in its definition 

being added to the object. All other components require their corresponding stub 

declaration to be located and their description modified. Nested component 

definitions may be added to the relevant component data structure directly. 

After all UML statements have been successfully parsed, the data structure undergoes 

a validation process. Universes may be derived from other universes and elements 

from other elements. If a component is derived from another, then that parent 

component is sought for and a link is made between the two components. An entity 

Instancing the UML class creates the interpreter and therefore there is only one UML object per 

process. 
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description is always derived from a universe and a similar link is made between the 

entity and the host universe. Failure to locate a parent component is a fatal error and 

parsing ceases. When an element is specified as the type of a property then a similar 

search is made and a link established. 

The search for a given component starts in the current scope and, if it is not found, 

progresses outwards. If the host universe/element has a parent then this is also 

thoroughly searched and its ancestors, if necessary, until a result is obtained. Failure 

to locate the host component results in an interpreter error. 

The way that the data structure is modified is affected by the current mode of 

operation, i.e. insert, replace or delete (section 4.4.3.1.9). By using these mode 

directives as stream modifiers it is possible to modify the UML definition in the course 

of usual interpretation rather than through the library API. At the completion of the 

interpretation, a single unified data structure has been built which holds all the UML 

descriptions passed to the interpreter, regardless of original physical location. 

5.5.3 Instancing 

At this stage no space has actually been allocated for any data. First an instance of 

the relevant portion of the data structure must be created. This could be the whole 

structure, e.g. instancing a universe, or just one element or built-in type, e.g. 

instancing a property. 

When a compiler, e.g. C++, builds a map of any given data structure, each component 

is allocated a chunk of memory contiguous to the previous allocation. Storing all 

instance data together in such -a container is a sensible- thing to do since the data 

structure is static and will not change at run-time. The same technique is used in 

many interpreters for the same reason. However, this technique will not work with 

UML since the structure is dynamic and may be altered at any time. 

One possible solution would be to use the same contiguous allocation of memory but 

store pointers to the relevant chunks in the UML data structure. In other words, each 

component would know whereabouts its instance data is in the container. When a 
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change is made, e.g. a new component added, then a new container would be 

allocated and the existing components' data copied into it, inserting the new data in 

the process. A complementary technique could be used for deletion. Obviously this 

solution would require an amount of container memory greater in size (for the 

insertion case) than the existing instance data to be allocated before the process could 

commence. If a complex component was being altered then this could potentially be 

very large and at the very least result in a considerable amount of time spent copying 

data from one container to another. 

A better approach would be to scrap the idea of storing all instance data in one place 

and instead store it individually. Whilst this requires a larger overhead in both 

memory and processing time to locate the instance data, it does mean that 

modifications to the UML structure do not require large memory allocations or 

copying. All instance data is kept associated with their definition as indicated in 

Figure 5.12. In this example there is one instance of the Outer element and two of 

Inner, one for the innerinst property and the other for the local function 

variable. Whilst the property instance will exist as long as that property is part of the 

universe definition, the variable instance will be created when the function is entered 

and destroyed when it has completed. 
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UNIVERSE Simple 

ELEMENT Outer 

ELEMENT Inner 

PROPERTY number : INTEGER; 

PROPERTY innerinst : Inner; 

PROPERTY outerinst : Outer; 

FUNCTION Access 
{ 

VAR 	local : Outer.Inner; 

local.nurnber = 1; 
outerinst.innerinst.flUrflber = 2; 

} 

} 

ELEMENT Outer ELEMENT Inner 

Constant list Constant list 

Element list Element list P 

Converter list Converter list 
IPROPERTY number 

Property list Property list __p.j 
: fnstance  list 

Function list lFunction list 

- - -. 	 - - 

[INTEGER 	I 
PROPERTY oJterInt \IPROPERTY innerIn,t 

I instance list 1 [instance list 

UNTVERSE Simple 

Constant list 

Element list 

Converter list 

Property list 

Function list 

FUNCTION Access 

Variable list 	' VAR local 

Code list 	 Instance list 

Definition links 

* Instance links 

Figure 5.12 UML code fragment and the internal data structure used to 
represent it. 

The process of instancing may be directly applied to a universe, property or function 

variable. In fact, for all intents and purposes, a variable and a property are 

functionally equivalent. Instancing a universe actually results in each of the universe's 
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properties being instanced. If the universe has no properties then it has no state. 

Each property has an instance list which maintains a record of each instance of that 

property and they are distinguished through the use of an instance identifier (lID). 

An lID is a signed 32 bit integer, thus supporting 2147483648 instances during the 

life time of the universe 6 . ilDs are allocated to each component in the order in which 

they are instanced. If the property's type is an element then that element's properties 

are also instanced and so on until the bottom of the component tree is reached. For 

example, outerinst would have an III) of 1, innerinst would be 2, number 

would be 3 and local is 4. When a list is instanced each entry is assigned a unique 

lID. 

Consider the case when the definition is altered by the insertion of a new property - 

vector - as shown in Figure 5.13. After the data structure has been modified and 

validated, instancing merely requires allocating liDs and memory for 3 real numbers 

and adding links to them in the instance list. The rest of the data structure has not 

been modified in any way and the original contents of the instance data for Outer 

have been preserved. Similarly, if innerinst was deleted then vector would be 

unaffected. 

In the absence of an initialiser for any given property, the default values assigned are: 

zero for real and integers, false for booleans, and strings are empty. This assignment 

is also repeated within any element that a property may instance. 

State indexing (section 4.4.3.2.5) was not implemented but would require adding an 

extra dimension to the instance list of each property that used the feature. 

6 Negative values are used for internal purposes. 
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ELEMENT Outer { 
ELEMENT Inner 

PROPERTY number INTEGER; 

PROPERTY vector 	: REAL[3]; 
PROPERTY innerinst : Inner; 

ELEMENT Outer 

Constant list 
4 _ Element list 

Converter list 

Property list 

Function list 

ELEMENT Inner 

Constant list 

Element list 

Converter list 

Property list 

Function list 

PROPERTY innerinst 

I Instance list 

PROPERTY number 

Instance list 

INTEGER 

AINTEGER 	I 
PROPERTY vector 	

- .PjINTEGER 

FInstance list 

' I INTEGER  
Key 

Definition links 

* Instance links 

Figure 5.13 Insertion of vector property into element. 

5.5.4 Component Dependencies 

A key feature of UML is the ability to establish a dependency on a particular part of 

the definition (section 4.5.4.6). The functionality to handle dependencies is defined in 

the class from which all components are derived - UNLComponent. Figure 5.14 

shows its structure and that of a skeleton dependency. Just as each of the UML 

components are derived from UNLComponent, so each application uses 

UNLDependency as a basis for the information it needs to store for each 
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dependency. An example of this specialisation is given in section 5.6.3.1 which 

describes how the UM uses this data structure. 

UMLDependency 

tTh1LComponent 	 Name 

Name 
	

State 

Dependency list 

Active count 

* 

Figure 5.14 UMLComponent structure with dependency. 

Dependencies are made on different components with respect to the dependent's 

needs. This mechanism is used internally to detect when functions which access a 

given component may need to be re-interpreted. It is also used by managers to keep 

track of changes in the values of properties, among other things. 

Each dependency may be given the state of active (default) or inactive. A monitor 

may deactivate a dependency to avoid the overhead of removing it and then re-

establishing it later on. A count of the active dependencies is maintained in the 

component. Alter a new dependency has been added or an old one removed, the 

monitor typically builds a dependency list. This list is usually used to process each 

interest in turn and perform some (often recursive) operation. If we had already 

registered interest in innerinst and now we became interested in outerinst, it 

could, at least, result in a duplication of effort and at worst, end in processing 

innerinst twice. There are therefore two ways of building a dependency list. A 

full list includes all components with dependencies, whereas a partial list does not 

include any component which is inherited from another component in the UML 

hierarchy with an active dependency (i.e. below an active dependency). 

5.5.5 Interpreting Instruction Code 

The part of the interpreter that deals with instruction code was given a low 

implementation priority due to time constraints. The author felt that the exact 



features of the programming language should be carefully considered. Also, further 

exploration of existing byte-code engines would be required to derive a sufficiently 

efficient interpreter. Furthermore, implementation was not necessary to prove the 

viability of the system architecture. Consequently the instruction code interpreter has 

not been implemented. However, some of the implementation issues are presented 

here for consideration by the reader. 

There are two common methods for interpreting code. The first performs syntax and 

grammatical analysis each time, effectively interpreting the ASCII statements in their 

raw form. The second compiles those same statements into an intermediate code 

which is then executed by an automata. The overhead of parsing the original 

statements at execution time is large in relation to the execution of a set of pre-

compiled instructions. It is true that less memory is required for the storage of 

intermediate code than the original ASCII text, but this must also be kept in some 

form if future re-interpretation becomes necessary. 

For these reasons UML instruction code is first compiled into an intermediate byte-

code which is stored in the data structure and may be executed by a byte-code engine 

at any time. During the compilation various components will be referenced, either in 

variable declarations, i.e. elements, or expressions modifying state, e.g. properties. If 

these components do not exist or there are any syntactical or grammatical faults then 

an error is flagged. Accesses to instance data refer directly to the data itself and 

therefore do not require any data structure traversal. This means that any additions to 

the element will not require the code to be automatically re-interpreted. Deletions, 

however, can cause havoc. 

The removal of an element or any component within an element that is depended on 

by code requires the re-interpretation of that code. How the functionality of the code 

has been affected by the change in structure cannot be ascertained without some form 

of artificial intelligence. Even then, comprehension of how this code segment fits into 

the larger picture is far more complex and would require human intervention. 

Consider the expression a = b * c. If component b is deleted from the definition 
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we are left with a = c. This may still be valid or it may be wrong, only within the 

context of the rest of the code can a decision be made. Faced with the possibility of 

receiving dozens - if not hundreds - of requests for help from the UMIL interpreter, it 

seems sensible to at least provide some tool to aid the process. The best that can be 

offered is an arbitrary component expression eliminator that would remove references 

to the deleted component(s) whilst still retaining syntactic and grammatical 

correctness. The resultant code could be offered to the modifier as a potential 

solution and then rejected/accepted as required. 

The code may, of course, be changed at any time through the API. The origin of 

these changes may be from a human or another program within the system. 

Thankfully this is a straight-forward task to complete since it is identical to the 

process undertaken when parsing the original code as detailed above. 

5.5.6 Interpreter Embedding 

As development of the simulation progresses, some definitions and associated code 

will be reused over and over again. The Read and Write routines declared in 

section 4.4.3.1.3 for managing visual information could potentially be used in every 

entity. Translation of such UML code into the native IL would be sensible for 

performance reasons. Access to the interpreter's data structures is possible via the 

library API and the execution of native machine code (rather than UMIL) will be 

transparent to the application. The IL routines are usually placed in a library and 

linked in with each application that needs them. The ability for an entity to migrate to 

other nodes need not be affected if: 

The destination node has its own native version of these routines. 

The original UML code is at hand and may be used when native code 

is not available. 

Permitting the interpreter and ILs to interact provides a powerful basis with which 

simulations may be developed. UMIL code may be used for lightweight tasks and 
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rapid prototypmg of more complex functions which, when finalised, may be coded in 

the IL. 

5.5.7 Persistence 

Since the complete definition is either represented by a data structure (in the case of 

the data definition) or by the original text (in the case of the instruction code), it is 

possible to output any part of a UMIL definition at any time. This ability is very useful 

when changes have been made at run-time and the original definition is now incorrect. 

To migrate an entity requires the transfer of its essence from one place, i.e. the UML 

definition and its current state. Fortunately the definition can always be reconstructed 

from the state so it is only necessary to send the latter. The same process is also 

required in order to save the current state of an entity to backing storage so that it 

may be reloaded in the future. 

The state is the sum of all the instance data and packaging it, by necessity, involves 

the manipulation of binary data. If this package will be sent to another node then, in a 

heterogeneous network, it may not share the same architecture. Following the 

decision made in section 5.3.4, three routines are defined in the IL for every 

component: size, pack and unpack. The size routine traverses the given 

definition and estimates the size of each of its components, producing a grand total at 

the end. This figure is used to allocate a buffer into which pack stores the data by 

once again traversing the data structure. Each component's instance data is preceded 

by a small header providing vital information to aid its extraction by unpack. When 

packing or unpacking the data on a little-endian machine no binary conversion is 

necessary, overheads are only incurred on big-endian systems. 

5.6 Universe Manager 

There are three main stages to the execution of the UM. First of all the UM's node 

must be initialised, at which point it is ready to join the network of other nodes 
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comprising the system. Once this connection has been established, it enters an event 

loop which processes service requests that are sent to it and also generated internally. 

5.6.1 Node Initialisation 

As the first process to start, the UM is responsible for configuring its node and if it is 

the MUM, organise the system. After the PML has paused its initialisation, the first 

action taken is to process the configuration file. Its local node and the master node 

information is located, as well as location information for the other systems if it is the 

MUM. As each node/system is processed the UM builds a routing table for those 

systems that are connected via TCP/IP. Now that the SID, ND and PD are known, 

the PML completes the initialisation of the IPC mechanisms. 

At this point the execution paths differ for SUMs and MUMs. If it is running on the 

master node then the location of the UML defmition 7  is verified and interpreted. All 

SUMs locate their MUM and send it an ACTIVATE—UM message. Afterwards, all 

UMs create any managers that are configured for their node, starting with the RM and 

then the specialised managers. The creation of a console is initiated by the 

administrator and may be performed at any time. 

5.6.2 System Initialisation 

After manager creation, system initialisation is completed. The MUM waits for 

activation messages from each SUM which it acknowledges. This acknowledgement 

changes the node's state to alive. When all nodes are alive the system itself is deemed 

to be alive. 

In the prototype a multi-level hierarchical system organisation is not supported, rather 

a simple master/slave structure has been adopted. In the same way that there is one 

master node in a system, there is one master system (MUSS) and zero or more slave 

systems. Any communications that must be sent to other systems are sent directly to 

The filename is passed as a command line parameter. 
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the MUSS which routes them to all the other systems. Therefore, after the MUM has 

initialised its system, the address of the MUSS is sought and stored explicitly for 

future use. 

5.6.2.1 Load Balancing 

Rather than obtain a full RP from each RM, the prototype uses a simple CPU rating in 

the current load-balancing algorithm to determine on which node the declared entities 

in the universe definition should execute. Each time an entity is created, the optimum 

distribution of processes between nodes is recalculated and the entity is allocated to 

the node that has the largest difference to its optimum load. Table 5.5 shows the 

debugging output from the load-balancing algorithm. The figures inside brackets 

represent the ideal number of entities for each node if another entity is created, whilst 

those outside are the current distribution of entities. 

Current 
Entities 

Entities on 
Server 

Entities on 
Gateway 

Entities on 
Pentium 

1 0(0.204) 0 (0.224) 1(0.572) 

2 0(0.408) 1(0.447) 1(1.145) 

3 1(0.612) 1(0.671) 1 (1.718) 

4 1(0.816)  1(0.894) 2(2.290) 

5 1(1.020) 1(1.118) 3(2.863) 

6 1(1.224) 1(1.341) 4 (3.435) 

7 1 (1.427) 2(1.565) 4(4.008) 

8 2(1.631) 2(1.788) 4(4.580) 

9 2(1.835) 2(2.012) 5(5.153) 

10 2(2.040) 2(2.235) 6 (5.725) 

11 2(2.243) 3 (2.459) 6(6.298) 

Loading was based on CPU ratings of 260, 285 & 730 respectively. 
Figures in brackets represent the new optimum load for each node to 
3 sig. fig. 

Table 5.5 Sample entity distribution over three nodes. 

The first row of the table shows that the first entity was allocated to Pentium. The 

fastest and least loaded node is always chosen for the target when the next entity is 

created, which in this case means Gateway with a predicted loading of 0.224. This 

result is confirmed by the second row in the table which also shows that the next 
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entity will be allocated to Server and so on. When there are ten entities the home for 

the new entity is Gateway. This is because Pentium is overloaded by 0.275, Server 

can only handle 0.04 more entities and Gateway has room for 0.235 entities. A total 

of the entities active on each node is kept at all times. 

Currently there is no way of associating an RP with a specific entity so each entity is 

allocated an initial default profile. 

5.6.2.2 Entity Creation 

Originally it was planned for the MUM to extract the relevant portion of the UML 

definition and send it to the destination node's UM. However, if an entity should 

migrate to a node that does not have the entity's definition it must be sent prior to the 

migration, thus increasing the time taken to complete this operation. Therefore each 

UM has a complete copy of the UML definition. Since the instruction code part of 

UML has not been implemented, the entity's functionality is written in the 

implementation language and executed in place of interpreted code (section 5.8.1). 

Normally there would be one generic entity process with a built-in UML interpreter to 

start, but because functionality may differ between entities, a specific executable must 

be identified. The prototype takes the name of the entity and translates this into the 

name of an executable that exists within the search path of each UM 8. A 

CREATE—ENT message is then sent by the MUM to the target node indicating the 

name of the executable. On receipt of this message the process is started, indication 

of success is sent back in a CREATE_ENT_ACK message and entity execution 

continues as usual (section 5.8). Of course, if the entity is executed locally then the 

process is merely started and the MUM moves onto the next entity. 

8 This path can be modified using the ENTPATH variable in the node's configuration section. 
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5.6.3 Managing Processes 

Information about each process running on the node is held by the local UM in a 

process list. The structure of a process entry is shown in Figure 5.15. Every process 

is allocated one of six types: RM, ENT, MAN (special manager), MUM, SUM and 

CON (console). There are three states that processes progress through during their 

lifetime. After execution has started, but before the process has been allocated a 

UPID, it is allocated the state of genesis. When the initial handshaking is over and the 

process is ready to satisfy service requests it is said to be alive. During the 

termination process, after it has ceased to function in the simulation per se, the 

process is said to be dead. When termination is complete the entry and its dependent 

structures are removed from the list. 

Any given UM holds information about every entity and manager running on its node; 

if it is the MUM, information on any SUMs is also held; if it is a SUM, its MUM's 

details are stored. Treating parent and child UMs as processes running on its node 

simplifies certain procedures that the UM must perform, e.g. dependency management 

(described below). 

5.6.3.1 Component Monitoring 

When a manager wishes to monitor a given UML component, its absolute name 

(using dot notation) is sent within a UML_MONITOR message. After verifying that 

this component actually exists the manager's information is found within the process 

list, a new dependency is created and added to the process' dependency pool. The 

pool is essentially a fixed size array which provides fast entry lookup. As 

dependencies are removed, gaps appear but these are filled as new dependencies are 

added. 

The UNDependency information is derived from UNLDependency as described in 

section 5.5.4 and adds a pointer back to the owner's process entry (Figure 5.15). 

This organisation permits any process to locate all of the components it is dependent 

on and any component to determine which processes are dependent on it. Although 
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the framework is here to support dependencies on any component, only monitoring of 

properties is currently implemented. 

The monitor ID returned to the manager is actually the component's index in the 

process' dependency pool. The UM must now inform all relevant processes that a 

new dependency has been established using a UNL_MONITOR_ACK message. As 

each entity is processed a new dependency is also added to their pool; its index 

provides the monitor ID to be used in communications with this entity. Both the 

MUM and the SUMs are also informed using the original message sent by the 

manager. Each add a dependency to the sending UM's process entry and inform the 

sender of the monitor ID to be used in further transactions regarding this component. 

Without keeping a process entry for parent/child UMs, this procedure would be far 

more complex than necessary. If an entity is created after all dependencies have been 

established then a current list is sent as a stream of separate messages. 

Process Entry 

Name 

Type 

UPID 

Dependency pool 
State 

Update flag 

UMLCornponen 

Name 

Dependency list 

Active count 

fjMLDependericy 

NJ a inc 
.4 

State 

I Dependency 	I 
Process 

Figure 5.15 Structure of the information held for each process. 

5.6.3.2 Component Updates 

When an entity sends a state update to the UM, its process information is retrieved 

and the dependency pool entry described by the monitor ID in the message is 

extracted. From this point a list of those processes dependent on this state is 
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available. Each dependent's unique monitor ID is extracted from their pool and 

placed into the message before it is forwarded to it by the UM. Figure 5.16 presents 

an example where the component state has an ID of I when it is sent to the UM, but 

has the values of 4 and 2 when forwarded to the two interested managers. 

No extra space is required to store each monitor ID because it is the index into the 

dependency pool. The only computational overhead incurred is a simple pool lookup 

as each dependent is processed. Constraint functions were not implemented because 

they rely upon the UML instruction code interpreter which was also not implemented. 

Figure 5.16 A state update uses a different monitor ID when 
sent to each dependent. 

5.6.4 Processing Service Requests 

Two features common to all component implementations are the event loop and the 

action queue. When an internal function wishes to perform more than one action, e.g. 

send a message, or can/needs to spread its work over a period of time, then it 

enqueues a token representing the pending action (with parameters) in the action 

queue. The event loop checks if there are any external service requests which it 

processes first to maintain responsiveness. If there is not a message waiting then it 

dequeues the next action and performs it. If there are not any actions to perform then 

the process simply blocks until a service request arrives. It is not uncommon for one 

action to enqueue another during its execution. 
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One action that must be performed in the initial stages of a UMs lifetime is waiting for 

all entities and managers to complete initialisation, the specifics of which are described 

in the following sections. When all entities and managers are alive the simulation loop 

is entered which sends a UNL_UPDATE_NOTIFICATION message to each entity 

and manager. After all entities have updated, a UML_UPDATECOMPLETE message 

is sent to all managers and after they have updated the next notification message is 

sent and so on. The state update process triggered as each entity completes its update 

has already been described and the following sections discuss this and the managers 

actions in more detail. Other service requests/actions that are intermingled with this 

sequence are location requests, entity executions, synchronisation requests, etc. 

If an entity should terminate abnormally and a destruct message has not been issued 

then the UM will do so on behalf of the late entity. This ensures that the simulation 

does not become full of zombie entities whose state copies are still being maintained 

by managers. 

5.6.5 Entity Migration 

In order for entity migration to be implemented it is necessary to have some basis 

upon which to make decisions about node loading. This was done through the use of 

CPU consumption alone. However, without a fixed time frame to relate these 

measurements to, a CPU usage is useless. This fixed period would normally be 

provided by the scheduler and equate to one simulation step, but since a full scheduler 

was not implemented a simple step duration threshold was used for the migration test 

presented in section 6.5.4. The intention is to keep the simulation step duration below 

the threshold through use of migration. Each step, theRM totals the amount of CPU 

used by the entities and if it exceeds the threshold the migration mechanism is be 

triggered. In this prototype the MUM does not decide when migrations should take 

place but relies upon each RM to volunteer entities. 

When the mechanism is invoked, the entity with the largest CPU usage is identified 

and its UPID sent to the MUM in a MIGRATION_REQUEST message. The requests, 

of which there may be more than one generated by different nodes each step, are 
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enqueued and then processed at the end of the current simulation step. The source 

node of each request is excluded from selection in the load-balancing algorithm and 

the optimum distribution is calculated as if the system has one less node. Once a 

suitable target node has been found, an entry is added to the MUM's migration list 

which details those entities in the process of migrating and their current status; 

specifically, their name, source node, target node and source UPID. 

The next stage is to create a copy of the entity on the target node using the normal 

creation procedure. Once this has been done, a MIGRATION—STATE—REQUEST is 

sent to the original entity which packs up its entire state and returns it to the MUM in 

a MIGRATION—STATE message. This is then forwarded by the MUM to the newly 

created entity which unpacks it and, upon success, sends a 

MIGRATION_STATE_ACK back to the MUM. Finally the original entity is 

terminated by sending a DESTROY_ENT message to the entity's UM, 

MIGRATION—NOTIFICATION messages are sent to all managers (including SUMs) 

and the entity's migration list entry is removed. The notification message simply 

contains the old and new UPIDs for the entity and enables the managers to update 

their internal data structures accordingly. The UM on the source node uses this 

information to re-route any messages that are sent by processes unaware of the 

migration. After forwarding the message, the UM sends the originator a migration 

notification message so that this does not happen again. 

Currently any error that occurs during the entity migration, e.g. failure to create the 

target entity, is treated as fatal and the migration request is ignored. 

5.6.6 System interaction 

The multi-system functionality that has been implemented is limited to group 

initialisation, termination and the transmission of changes in the UML definition. 

Inter-system user functionality has not been implemented, e.g. shadow entities, 

because it is hard to demonstrate in a thesis and was therefore given a low priority. 
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5.6.7 System Termination 

A system termination is invoked from the MUM by first sending termination messages 

to each SUM. The MUM and SUMs then send termination messages to their local 

managers and destruct messages to all their entities. Once all processes on a slave 

node have terminated the slave informs the MUM that the node is shutting down with 

a DEACTIVATE_UN message. Finally, when all the local processes on the MUM and 

its slaves have terminated, the MUM ends execution. 

5.7 Resource Manager 

The implementation of the RM is quite simple because there is no scheduler. 

Subsequently the RM keeps track of the resource utilisation for its node and makes 

rudimentary judgements about its loading. 

CPU 

Resource 	
Memory 

Storage 

Network 

Resource Profile 	c) 

CPU list 	Total 

Memory list Total 

Storage list Total 

Network 

source History 

Past RP 

Present RP 

Future RP 

Figure 5.17 Resource consumption representation. 
a) class hierarchy; b) Resource Profile structure; c) 
Resource History structure. 

5.7.1 Resource Consumption 

Each resource has been implemented as a class derived from one base class (Figure 

5. 17a). An RP is composed of these different types: a list of CPU consumption (for 

multiprocessor systems), a list of memory usage (used in those systems with special 

memory architectures) and a record of space used on different storage devices. The 
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totals of each of these are also stored and is supplemented by the network usage 

(Figure 5. 17b). The prototype actually only makes use of the CPU information. 

The RM maintains a resource history for each process (Figure 5.17c) which contains 

the process' last RP, its current profile and a prediction of future resource 

requirements (currently unused). 

RM 

CPU Pentiuin_90MHz 

Manufacturer 	Intel' 

Integer 0.849 II BYTEMark integer index 
FloatingPoint 0.881 II BYTEMark floating index 
ICache 8 II Kb 
DCache 16 II Kb 
IntThreshold 90.0 II % 
FPThreshold 90.0 II % 

MEMORY Main 

Size 24576 II Kb 
Access 70 II ns 
Threshold 80.0 II % 

STORAGE Primary 

Size 524288 II Kb 
Access 12 II ms 
Threshold 95.0 II % 

NETWORK Ethernet 

Bandwidth 6.0 II Mbps 	(Effective) 
Threshold 40.0 II % 

Figure 5.18 Example node resource configuration used by aRM. 

5.7.2 Initialisation 

Each node's resources are detailed in a file (written in UCL) which is passed as a 

command-line parameter to the RM when it is started. Figure 5.18 shows an example 

configuration of the Pentium node which details the CPU type (an Intel 

Pentium/90), the total system memory, backing storage and network link bandwidth. 
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For the migration tests a CYCLE variable was used at the top level to specify the 

threshold duration of the simulation step in milliseconds. 

5.7.3 Services 

After the configuration information has been processed, the main event loop is 

entered. Initial work usually consists of processing the RPs sent by each entity as it is 

created and keeping the UMs informed of the current loading. During the period 

before the system goes live it is not possible for an entity to overload a node since it 

has been carefully allocated by the MUM. However, as soon as the entity starts 

executing it may provide modifications to its RP based on its expected resource 

consumption. Since a full scheduler was not implemented, this detailed information 

was not needed. For the same reasons, the RM does not keep the MUM informed of 

node loading. Instead the RM tells the MUM when load balancing is necessary. 

Since this prototype instills the progression of the simulation with the MUM rather 

than the scheduler in the RM, an UPDATE_NOTIFICATION message is sent to the 

RM at the end of each simulation step. This is the RM's cue for assessing CPU usage 

and when this is complete an UPDATE-COMPLETE message is sent back to the UM. 

The simplest information on a process' execution time under UNIX-based operating 

systems is provided in the form of user and system times. These represent the total 

CPU used by the process when executing system calls (system) and when executing 

application code (user). The current RM adds these figures together to get a CPU 

usage figure for each process. By monitoring the previous usage the process' 

consumption for the last simulation step can be ascertained. 

When the migration mechanism-  is being used, the total of these times is used to decide 

whether the entity with the highest CPU usage should be migrated. Currently the 

CPU thresholds are not used, instead the step duration variable (CYCLE) is consulted 

for the desired time. If the total CPU time used by all entities exceeds this time then a 

migration request is sent to the MUM. The RM is informed of a successful migration 

with a MIGRATION_NOTIFICATION and subsequently removes the entity from its 

calculations. 
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5.8 Entity Library 

The core entity functionality has been placed in a library which works on two levels. 

Once initialised, its event loop enables it to correctly interact with other processes in 

the system and, through the use of a function call-back mechanism, can be tailored for 

a specific purpose. The source code of an example entity can be found in Appendix 

B. 

5.8.1 Initialisation 

Following PML initialisation, the call-back table is reset and specific call-backs may 

be registered. An entity handles all the UML messages in addition to those dealing 

with RPs, location responses and monitor acknowledgements. The first message 

processed by the entity is its RP which can then be modified. After locating the RM, 

the RP is sent to it and a request is made for the entity's UML definition. 

Normally entity behaviour would be exhibited through execution of UML code, but 

since the instruction code interpreter has not been implemented, functions written in 

the IL must be used. Typically the only call-back used is that for the 

UNL_INIT...DEF message which is used to send the entity its definition. At this 

point the entity's UML Construct, Update and Destruct function declarations 

are located and defined as embedded IL routines as opposed to UML code. When 

these functions are executed by the UML interpreter, the IL routine is called. Access 

to the state information is obtained through the UML API. 

5.8.2 Service Requests 

The first external events received by the entity are indications of monitored 

components in the form of UNL_MONITOR_ACK messages. Unlike the UM, the only 

information that the entity need keep track of for each dependency is the monitor ID 

contained in the message. This dependency list is rebuilt each time a new monitor 

notification is received. 
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Upon receipt of a construct message the UML interpreter is instructed to construct 

the entity's state. On completion an instance ID is returned which is used in all 

further accesses to the state information. The Construct function is then executed, 

thus initialising the state and is followed by the enqueuing of the action to send initial 

state updates to the UM. Receipt of an update results in the same execution-action 

sequence. The current component dependency list is used to determine which state 

updates to send. Asides from executing the destruct function, no further action is 

taken when an entity destructs. The PML, by default, informs the UM of the process 

termination and whether it did so naturally or not. 

When a MIGRATION_STATE_REQ message is received by the entity, it packages up 

its complete state and sends it back to the UM in a MIGRATION-STATE message. 

Upon termination the entity destructs as normal. When the target node is sent the 

state message it instances its definition and unpacks the state into the newly created 

instance. The construct function is not called and a UML_CONSTRUCT message is 

not sent to the UM. From this point on, however, the target entity takes over all 

processing from the original and operates normally, issuing state updates as necessary. 

5.9 Manager Library 

The manager functionality has been structured in a similar manner to that of an entity. 

On its own, the library will interact correctly with the other process' in the system but 

does not perform any special manager-specific tasks. This higher-level functionality is 

added through the call-back mechanism. Appendix B contains an example of this 

library's use. 

5.9.1 Initialisation 

Following the usual process initialisation, the manager is sent the complete UML 

definition and (through a call-back) registers interest in the specific components it 

uses. Each manager maintains a monitor list with an entry for each component it is 

monitoring (Figure 5.19). An entry consists of a pointer to the relevant portion of the 

UML data structure for that component and the monitor ID used in communications 
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with the UM. The three other essential call-backs are those for UNL_CONSTRUCT, 

UML_UPDATE and UML_DESTRUCT. It is within these functions that the heart of 

the special manager's functionality is embodied. An example of their use is given in 

section 5.10. 

Entity List 

•1 	I.. 

Entity Entry 

UPID 

Instance ID 	 Monitor Entry 

Monitor 	 Property 	- - - - * 

Monitor ID 

Monitor List 

Figure 5.19 Structures used to keep track of entities and their 
component dependencies. 

At the lowest level the manager keeps an entity list. An entry is added to this list on 

receipt of a construct message, modified by an update message and removed when an 

entity destructs. An entry exists for each monitored component held by each entity. 

When a construct message is received for a component, that part of the UML data 

structure is instanced and the contents of the message unpacked into the state 

instance. The instance ID is stored in the entity list entry along with the entity's UPID 

and a pointer to the relevant entry in the monitor list. This enables the location of all 

state information related to a specific entity with minimal redundancy. 

5.9.2 Simulation Loop 

Each simulation step starts with the reception of a UML_UPDATE_NOTIFY which 

can be used via a call-back to perform preliminary work for each update. When an 

update message is received the monitor entry is located using the message's monitor 

217 



ID. Then the component's state is located by searching the entity list using the 

entity's UPID and the monitor entry as keys. The new state is then unpacked into the 

instance and the update call-back executed if present. When a 

UNL_UPDATE_COMPLETE is sent by the UM the simulation step has concluded and 

the manager may perform (via call-back) any final calculations before the next step. 

The return of a status message to the UM indicates that the manager has completed 

its work. This start/stop message system is necessary because an entity will not send 

an update unless that component has been modified. Therefore there is no way for a 

manager to determine whether all updates it should be sent, have been sent. A 

destruct message results in the deletion of that entity's component instance and then 

the removal of the relevant entry from the entity list. 

When a MIGRATION_NOTIFICATION is received, the manager locates the old 

entity's entry in the entity list and replaces the UPID stored therein with the new 

address in the message. No other action is needed. 

5.10 Visual Manager 

The prototype VIS implementation does not interface to a CIG since it was not 

deemed necessary in order to demonstrate the effectiveness of the USS architecture. 

In fact, it is not used when evaluating the system's performance in the next chapter, 

but it is presented here as an example of a special manager implementation. 

The code used to explore the viability of real-time VE displays was available for use 

(section 5.1.1) but was not utiised for two reasons. Firstly, there is no way to 

satisfactorily demonstrate such a feature in a thesis. Secondly, graphics and API 

speed is totally CIG dependent and would only confuse any analysis of the manager's 

performance. Therefore, everything apart from the actual calls to the CIG's API was 

implemented. 
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5.10.1 Initialisation 

Following the standard manager initialisation the prototype VIS registers interest in 

the Base. models. visual and Base. models. position properties (section 

5.10). At this point the CIG would also be initialised and initial parameters set, e.g. 

viewpoint position, etc. 

VIS registers call-backs for all construct, update, destruct and update-complete 

messages. As each entity constructs, VIS receives a stream of construct messages 

which are acted upon by the call-back function. This is responsible for creating the 

initial visual representation of the entity in the CIG database. 

5.10.2 Simulation Loop 

As updates are sent to VIS, the update call-back is executed which is used to move 

the entity's representation and if necessary, modify it. On receipt of an update 

complete notification the new scene is rendered and the manager has finished its work 

for the current step. Destruct messages result in the removal of the representation 

from the CIG database. 

5.10.3 Entity Enhancement 

The extra functionality needed by any entity wishing to manipulate its visual 

representation is provided in the form of a library. Whereas this could be provided as 

importable UML code, it is currently IL code which is linked into the ENT 

executable. The Read and Write function definitions (section 4.4.3.1.3) are 

supplemented with internal routines which may be used to manipulate the Visual 

element data structure. 

Therefore, an entity's construct call-back function will build the visual representation, 

either from file or by code. The update call-back modifies the state as necessary and 

the destruct call-back closes the library. 
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5.104 VIS Summary 

The current VIS implementation is very basic but it performs the essential operations 

required of it. Since all the complex operations are hidden in the manager library, the 

developer can concentrate on what the manager should be doing and implement it 

with the minimal coding. 

511 Console 

The console implementation is a hybrid of a manager and an entity in that it receives 

most messages in order that it may keep track of the system's status. A command-

line interface provides the opportunity to display this information and issue simple 

commands. An entity creation, destruction or migration request may be sent to the 

UM from the console, as can UML code. The console keeps an up-to-date copy of 

the complete universe definition although it does not maintain any instance data. The 

current functionality is quite limited and was used for testing purposes only. 

5.12 Further Improvements 

At this stage, it is apparent that a number of enhancements can be made to the 

prototype. 

5.12.1 Configuration 

The configuration information required by child processes, e.g. the RM, is currently 

passed to them as a filename in their execution parameters. This has two 

disadvantages: firstly, it introduces a dependency on backing storage and, secondly, it 

increases the process initialisation time. If this information was passed to them by the 

UM, both these problems could be overcome. This would not require changing the 

current configuration file format and could be sent in its native ASCII format. 
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5.12.2 Multi-part Messages 

Presently the PML relies on the operating system to break large messages into smaller 

packets for transmission. This ability is not supported by all IPC mechanisms and 

therefore the addition of PML controlled multi-part messages would be advantageous. 

This would also reduce the amount of buffer space required to send a message and 

permit the construction of messages whose total length is not known when the first 

part is sent. 

5.12.3 State Encoding 

With the ability to gradually build a message, the estimation of state size prior to 

encoding may be removed. Instead the state may be encoded directly into a multi-part 

message thus substantially reducing the time taken to send state updates. 

Alternatively, memory could be allocated during packing, building a linked list which 

is then traversed when copying the state into the fixed size message buffer. This, at 

least, removes the need to estimate size initially. 

5.12.4 Persistence 

The current implementation assumes that a simulation will run to completion before 

the system terminates. Therefore no provision is made for state persistence such that 

a simulation may be saved and reloaded at a later date. In order to realise this, an 

entity could be sent a TERMINATE message before destruction which would be its 

queue to save its state to backing storage. Upon restarting a simulation the entities 

would be created as before (but possibly not on the same node) and during 

construction their state loaded from backing storage. Managers can rebuild their 

internal data structures from the events that would take place upon restarting the 

simulation, e.g. entity creation, initial state transmissions, etc. It may be necessary, 

however, that those structures unique to each manager are also saved for use when 

the manager re-initialises. 
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5.12.5 Message Elimination 

The three messages UML_CONSTRUCT, UML_UPDATE and UML_DESTRUCT sent 

to an entity should be replaced by a UML message which simply executes the 

Construct, Update or Destruct function respectively. The resulting state 

updates generated by these calls would be returned in a standard state message which 

would include the name of the function that generated the data. All such remote code 

executions would operate in the same manner. The current shortcut was taken 

because the UML interpreter was not complete. 

5.12.6 Entity Synchronisation 

Synchronising an entity involves the transmission of multiple messages detailing 

individual monitor notifications. In this special case it would be preferable to send a 

single message containing all notifications, thus reducing the UM's overhead for this 

operation. 

5.12.7 Function Access 

At present, anybody may execute a function in an entity if it knows its name. This 

could be changed by providing a function hiding mechanism, e.g. a PRIVATE 

keyword to be used in the function declaration (not definition). Any attempt by a 

remote process to execute a private function would result in an appropriate exception 

generated by the interpreter. 

This technique could be generalised by ensuring that any private function cannot be 

executed outside its scope. In Figure 5.20, unprotected may call protected 

since it is in the same scope but control may only call Inner. unprotected. 
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ELEMENT Outer 

ELEMENT Inner 
{ 

FUNCTION unprotected; 
FUNCTION protected PRIVATE; 

FUNCTION control; II Can't access protected 

Figure 5.20 Example use of the PRIVATE keyword to reduce function 
access through scope. 

5.13 Summary 

Before the details of the prototype USS were given, the implementation of a simple 

worst-case scheduler was described which has been used to enforce a constant-rate 

display. The experience gained by the author during this implementation and its 

subsequent use indicated that implementing scheduler functionality at the application 

level was not practical. The USS prototype implementation presented therefore did 

not make use of the scheduling aspects detailed in the design. 

A layer of abstraction is introduced in the form of the PML in order to shield the USS 

processes from each operating system's idiosyncrasies. Presently it is only used to 

provide a messaging service between both local and remote processes. The simple 

configuration language was then described and a typical example of its use presented 

in the form of the USS configuration file. The structure of the UML interpreter was 

described in terms of the data definition and instruction code sections. This included a 

detailed explanation of the complex data structure used to hold the model description 

and its instance data. 

Each of the required system processes were dealt with in turn, describing the 

implementation of the basic operations they perform and services they provide. 

Special attention was given to the important data structures and how they are utilised 

at run-time. Most of the UM's functionality was implemented including an 

elementary migration and load-balancing mechanism (using a minimal RM). The bi-

directional data structure used by the UM permits the location of all components that 
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a given process is dependent upon and vice versa. The operations involving state 

transmissions and monitor IDs were described in conjunction with details of the 

relevant parts of the manager and entity implementations. The core entity and special 

manager functionality is provided as libraries which are specialised through the use of 

UMIL code and call-backs. An example of this is given with reference to the Visual 

Manager. 

The chapter concluded with a few improvements that may be made to the current 

implementation. These functional changes will be supplemented by performance 

enhancing suggestions in the next chapter. 
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ChaDter 6 

Prototype Evaluation 

"The mark of a truly civilised human being is the ability to read 
a column of numbers and then weep." 

Bertrand Russell 

Evaluating a system implementation can be undertaken at two levels: component and 

system. A component analysis examines each system component in an isolated 

manner whilst a system analysis is holistic and operates at a higher-level, considering 

more functional problems. Indeed there is a fine balance to be struck between being 

too specific which produces results that do not mean anything useful, and being so 

general that there is no content to the results. The component level provides useful 

information that can aid development and testing but suffers from a lack of relevance 

when a system task is considered. At the system level the whole system is asked to 

perform some useful task and evaluation of its performance can be used to judge its 

overall effectiveness. 

These methods are not mutually exclusive, in fact understanding system performance 

is difficult if the effects that the individual system components have are not fully 

understood. However, a component's behaviour will often change when used in 

conjunction with other components within a system, e.g. its performance may be 

reduced when it has to bid for CPU time with other processes. This chapter, 

therefore, deals with the system as a whole (an approach advocated by Checkland, 

1994) but with a detailed look at the two major components of most (if not all) 

system processes: the UML interpreter and the PML. 
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6.1 System Analysis 

Ideally one would like to compare the performance of this prototype with that of 

other solutions for distributed VE systems. However, the only evaluation of a VE 

system that the author has found is for AVIARY (section 2.3.8), with the exception of 

a predictive performance chart for DIS (Figure 2.3). Even if figures were readily 

available, the problems that must be faced when comparing systems are similar to 

those encountered when comparing CIGs. Each manufacturer presents a list of 

figures which detail the CIG's performance of certain tasks, e.g. rendering a 10 by 10 

grid of polygons, in relatively useful units, e.g. polygons per second. Unfortunately, 

information essential for comparison of the CIG's results with another CIG is often 

not presented, e.g. were the polygons lit? Clipped? Textured? With which texturing 

technique? etc. 

The obvious course of action would be to derive a set of benchmarks that may be 

used to provide a fair basis for comparison of systems. But even this has problems, 

for example some CIGs are optimised for triangles whilst others can handle polygons 

with any number of vertices. Undoubtedly, any test using triangles will give any CIG 

optimised for this type a better rating than the other CIGs. Conversely, a benchmark 

that tested polygon throughput with varying numbers of vertices cannot be run on a 

triangle-only system without extra application processing to split the polygons into 

triangles, thus defeating the objective. There are many other examples of architectural 

differences that confound comparison. 

The architectures of distributed VE systems are even more diverse than that of CIGs 

and presents a challenge when designing benchmarks. In the same way that a 

geometrical model can produce different performance ratings on different CIG's, VE 

system performance is very application specific. This may be a reason why figures are 

not available for existing systems - even the evaluation of AVIARY is based around 

an Air Traffic Control application. No attempt will be made in this chapter to derive a 

set of useful benchmarks since this is a subject suitable for a thesis in itself, a more 

basic approach will be used instead. 
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This thesis has already established that the user is the final judge of the system's 

effectiveness and that certain criteria must be met to provide a usable interface 

(section 3.3). Although this prototype was not built to test these measures, it is 

possible to extract the most important feature of any such system which is the ability 

to progress the simulation as fast as possible. A suitable metric is simulation steps per 

second and is used as the absolute measure of this prototype's performance. 

6.2 Testing Methodology 

All of the benchmarks used in this chapter were run under similar conditions. Normal 

operating system processes were reduced to a working minimum in order to maximise 

ihe available memory and minimise interference with the USS processes. No users 

were permitted access to the machines during testing and normal Internet services 

were suspended. Disk accesses only occurred at the beginning of a test and at the end 

when results were logged. Even then, only local storage was used, which was 

especially important in the case of the SGI where normal user directories are held 

remotely and accessed using the Network Filing System (NFS). This fact combined 

with the presence of virtual memory can drastically affect performance. 

This section documents the relevant characteristics of the machines used to test the 

prototype and highlights a number of issues that affected system performance. 

6.2.1 cpu Performance 

Table 6.1 shows the relative performance of several Intel CPUs present in IBM PCs 

and the MIPS processor used in SGI's RealityStation. The performance ratings are, 

of course, dependent upon the efficiency of the compiler and its ability to generate 

optimised code. The Watcom C++ compiler was used on the Intel-based platforms 

whilst GNU C++ (G++) was used on the SGI machine. The native C++ compiler was 

not used because it did not support exceptions but unfortunately the GNU compiler 

had a number of faults that presented problems. Firstly, the code optimiser could not 

be invoked if the source code used exceptions, subsequently the SGI's performance 

was severely undermined. The figures shown inside the brackets are those of the 
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native C++ compiler with optimisation and those outside the brackets represent the 

results obtained using the GNU compiler without optimisation'. Secondly, the 

implementation of C++ templates is less than efficient with the current release of G++ 

and requires the instantiation of each template within each and every module it is used 

(GNU, 1995). Consequently, the executable sizes produced are much larger than 

necessary which in turn has implications for the amount of paging required during 

execution. 

Gateway Server Pentium Reality 
1486 1486 Pentium MIPS 4400 

50 MHz 66 MHz 90 MHz 200 MHz 

Integer 0.256645 0.330643 0.849287 0.653 (1.537) 

Floating-point 0.173911 0.211827 0.881350 0.517 (1.772) 

Memory 14/20Mb 10/16Mb 17/24Mb 128Mb+ 
(available / total) virtual 

memory 

Bus 16 bit 16 bit 32/16 bit 256 bit 
(ISA) (ISA) (PCl/ISA)  

Bus Speed 50 MHz 33 MHz 30 MHz 47.6 MHz 

Bus Bandwidth 95 63 114/57 1.42 
Mbytes/sec Mbytes/sec Mbytes/sec Gbytes/sec 

Disk 1 Gb 1 Gb 750 Mb 2 Gb 

The CPU speeds were obtained using BYTE Magazine's BYTEmark benchmark 
program. A rating of 1.0 is equivalent to a DELL Pentium 90 MHz PC running DOS. 
The figures given include the machine's multi-tasking operating system overheads. 
Figures in brackets represent the native compiler's performance on the SGI. 
ISA - Industry Standard Architecture 
PCI - Peripheral Connect Interface 

Table 6.1 Resource ratings for each test platform. 

6.2.1.1 QNX 

The total memory available on each platform running QNX is shown in Table 6.1 as 

well as the actual amount that may be used by non-system software. Since QNX does 

not provide any virtual memory this limits the number of system processes that may 

I The benchmark code did not contain exceptions and thus could be optimised, resulting in 
performance only slightly worse than that produced by the native compiler. However, these results 
would not be indicative of the prototype's performance and hence the unoptimised figures are given. 

228 



run at one time. The absolute maximum number of executables running 

simultaneously is 250 which allows for a maximum of 50 virtual circuits 2  (QNX, 

1995). 

Each of the three QNX machines (Pentium, Server and Gateway) are interconnected 

by a private Ethernet LAN using the same make of Ethernet card and the same 

Industry Standard Architecture (ISA) bus. Gateway has a second interface card 

installed which is connected to the university's backbone network. 

6.2.1.1.1 Scheduling 

There are three different scheduling methods that any given process may be assigned 

to under QNX: First In First Out (FIFO), round-robin and adaptive. When using 

FIFO scheduling a process executes until either it voluntarily relinquishes control 

(blocks) or is preempted by a higher-priority process. FIFO is only of real use to 

ensure mutual exclusion when two processes are sharing a resource. Round-robin is 

like FIFO except that each process may also stop executing if it reaches the end of its 

timeslice (100 ms). Adaptive scheduling uses decaying priorities for those processes 

that consume their timeslice and priority boosts for those processes that are starved of 

CPU for one second or more. 

The last scheduling policy is commonly used in systems where interactive and 

compute-intensive processes share the same machine, however it does make 

performance evaluation of a network of interacting processes difficult. All processes 

within the USS application were therefore placed in a round-robin scheduler at the 

same priority. This causes considerable starvation of the normal interactive processes 

(using the adaptive scheduler) but not to USS processes such as the Console. 

2 More virtual circuits may be supported by reducing the number of executables. There will be no 
such limits in the next major release of the operating system (v4.3). 
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6.2.1.2 IRIX 

The limits imposed by IR1X on the number of executables, etc., were not reached by 

the prototype system and therefore did not interfere with the system testing. There 

were, however, two other issues which presented problems. 

6.2.1.2.1 Scheduling 

IRIX also supports different scheduling methods: real-time, deadline, timesharing, 

gang batch and batch. Normal interactive processes run in the timesharing queue 

while the deadline scheduler enables time constraints to be applied to a process - 

although its effectiveness is uncertain when invoked on a single processor system. 

Processes assigned to the real-time queue are guaranteed better performance than 

those in the timesharing and batch queues. Unfortunately, unlike QNX, only the 

super-user may promote processes to queues above the timesharing level. Due to 

present departmental policy, access to the test platform at this level was not granted 

to the author and therefore all USS processes were subject to adaptive scheduling in 

the timesharing queue. 

6.2.1.2.2 Virtual Memory 

Performance can also be compromised through the paging to and from disk that is 

undertaken when using virtual memory. Ideally all of each process' code and data 

would remain in memory, as with QNX. This is possible under IRIX but super-user 

access is again required and therefore all results obtained under IRIX are confounded 

by irregular and uncontrollable paging activity. 

6.2.2 Computation and Communication 

The main emphasis on the resources consumed by the prototype has been split 

between computation and communications. Sending/receiving messages requires 

CPU and therefore any computation rating is affected by communications. This 

relationship is examined when analysing the PML and its results can be used to aid 

estimation of specific service overheads, e.g. registering interest in a particular UML 
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component. The other side of the equation in this example is the time it takes to 

manipulate the interpreter's data structure. Such information is provided by the 

section on UML which also deals with the resource that has, to date, been overlooked 

by system evaluations: memory. 

System OS Code Data Total Required Libraries Executable 

Component  Sizet Sizet Sizet  Sizet 

UML IRIX 247,984 59,904 307,888 - - 

Library QNX 78,191 77,940 156,131 - - 

UCL IRIX 46,768 38,768 85,536 - - 

Library QNX 13,478 37,803 51,281 - - 

PML IRIX 52,270 26,032 78,302 - 

Library QNX 22,385 26,509 48,894 - - 

Entity IRIX 32,496 4,016 36,512 - - 

Library QNX 9,601 3,144 12,745 - - 

Manager IRIX 33,840 3,600 37,440 - - 

Library QNX 36,830 6,838 43,668 - - 

RProfile IRIX 47,776 4,806 52,582 - - 

Library QNX 10,436 2,296 12,732 - - 

Message IRIX . 9,232 . =.............. 
Library QNX 1,822 144 1,966 - - 

Mailer IRIX 6,416 960 7,376 PML, Message 430,984 

QNX 3,756 1,019 4,775  119,704 

RM IRIX 32,976 3,568 36,544 PML, Message, 541,576 

QNX 24,971 5,275 30,246 RProfile, UCL 163,053 

UM IRIX 265,104 27,200 292,304 PML, Message, 1,180,552 
. 

QNX 84,916 18,044 102,960 RProfile, UCL, UML 355,173 

Benchmark IRIX 8,448 1,152 9,600 PML, Message, UML, 787,336 

Manager QNX 4,153 1,192 5,345 Manager, RProfile 269,725 

Benchmark IRDC 10,656 1,424 12,080 PML, Message, UML 787,336 

Entity QNX 4,601 1,482 6,083 RProfile, Entity 265,689 

tAll sizes are given in bytes. 

Table 6.2 Minimum memory usage of USS components. 

6.2.3 Memory 

Table 6.2 gives a breakdown of the sizes of each USS process in terms of code size, 

initialised and uninitialised data, and total executable size. A list of the required USS 

libraries associated with each process is also given in the table. Under IIRIX the 

majority of an executable's size comes from other general-purpose libraries provided 
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with the compiler, e.g. system call library, maths library, C++ iostreams library, etc. 

These libraries are much smaller under QNX, for example the total amount of USS 

code used in the mailer is 48,894 + 1,966 + 4,775 = 55,635 bytes, meaning that the 

system libraries account for 64,069 bytes. This is a worst case scenario since the 

amount of space used by these libraries will remain roughly the same for the larger 

executables The figures for the data given above do not include the memory that the 

process may allocate during execution for dynamic data structures, etc. The large 

difference in IRIX and QNX code sizes is in part due to not using code optimisation 

and also the different CPU instruction sets. 

A simple way to reduce the amount of memory required by each process is to make 

use of shared libraries. Such a mechanism places commonly used routines into a 

special library which is loaded once into main memory. A stub library is also 

compiled and is linked into the executable in place of the larger original. When a 

function in the stub library is called, the equivalent routine in the shared library is 

executed. In theory, the unique overheads incurred by each USS process may be 

reduced substantially since most libraries are used many times, e.g. the PML library 

and the UML interpreter. 

The implementation of shared libraries under QNX is based upon the mechanism used 

by UNIX System V Release 3.2 which has an explicit interface for importing and 

exporting data into and from the shared library (QNX, 1994). Whereas managing 

data and code separately is a perfectly adequate approach for C-based applications, 

the technique cannot be extended to the object-oriented paradigm which deals with 

code and data together. Specifically, problems occur with C++ when virtual 

functions, static- initialisers or exceptions are used. Therefore it was not possible to 

exploit shared libraries with the QNX implementation. 

This is not entirely true because the C system libraries are shared which, for example, 

means that every mailer only needs 55,635 bytes of memory, not 119,704 bytes. With 

USS shared libraries this could be reduced to 4,775 bytes or lower. Similar 

improvements would be seen for the other processes. 
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IRIX does support shared libraries but because the system was not available until very 

late in the project their potential was not explored. It is important to note, however, 

that the use of shared libraries would not only reduce the amount of memory required 

by a USS process, but should also reduce the amount of paging under IRIX. A large 

commonly used shared library has a greater chance of staying in physical memory than 

several large executables, each with their own copies. 

6.2.4 Instrumentation 

All of the data in this chapter was collected by instrumenting key execution paths with 

timing code. A suitable number of iterations were executed for each test case, e.g. 

message size, and the averaged data is used in the charts. The amount of iterations 

and the type of instrumentation used was determined by taking clock resolution and 

(erratic) operating system overheads into consideration. Under QNX, the system 

clock has a resolution of 0.1 ms and the SGI has microsecond accuracy. For events 

that completed faster or close to the clock resolution, such as some of the UML 

interpreter operations, the total time taken to perform all iterations was measured, 

adjusted for loop overheads and then averaged. For longer operations, such as the 

simulation execution stages, each iteration was measured individually and then 

averaged. In all cases the impact that the profiling code had on the measurements was 

taken into consideration. 

6.3 UML 

Quantifying the resources consumed by the interpreter permits the designer to gauge 

the impact their simulation will have on the system. To this end a series of simple 

benchmarks were used to establish resource consumption on each of the test 

platforms. Since these tests were compute bound, the same pattern of relative 

platform performance is evident in each test. Therefore, quite often only the figures 

from one platform will be used in the graphical illustrations of the results. A full table 

of the results upon which this subsection is based, along with the simple UML code 

used, may be found in Appendix C. 
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6.3.1 Code Size 

The one disadvantage of sending UMIL code between processes is that a complex 

description can take an appreciable amount of space. Table 6.3 shows two possible 

techniques for reducing the size of UML code for transmission. Compression is a 

method that can be applied to any kind of data, but those algorithms that work on 

repeating patterns, such as the Free Software Foundation's GZIP, work well with 

textual data. Simply applying compression to the original UML description can result 

in approximately a 60% reduction in size. Another technique which can be used is 

that of tokenisation - it is unlikely that this would be used just before transmission but 

during the initial interpretation. Tokenisation simply replaces the language's ASCII 

keywords by single-byte tokens and reduces the whitespace used to a minimum. If 

the tokenised form is compressed the relative effects are less because tokenisation is a 

simple form of compression. However, compared with just compressing the original, 

the code can be reduced to around 35% of its original size. 

Filename Original Compressed' Tokenised Tokenised & 
Compressedt  

ts.uml 5910 2279 (38.5%) 4950 (83.8%) 2141 (36.2%) 

base.uml 1131 469(41.5%) 825(73.0%) 392(34.7%) 

tThe Free Software Foundation's GZIP was used to compress the ASCII LJML files. 
All sizes are give in bytes; percentages represent the compressed size in relation to the 
original size. 

Table 6.3 Effects of techniques to reduce code size. 

Of course, compression comes at the cost of increased computational requirements. 

There is a minimum code size that compression will have a beneficial effect upon and, 

even then, the computation time sacrificed to achieve this makes the usefulness of 

such an operation dubious. Apart from the initial definition sent to processes upon 

creation, it is predicted that most UML code sent will be quite small, e.g. function 

invocations, minor code redefinitions, etc. It would seem practical, therefore, to 

restrict the use of compression to large messages and then only with hardware 

support. 
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6.3.2 Primitive Types 

Table 6.4 shows how much memory each primitive type uses on the test platforms. 

Although this is dependent on the machine's architecture and compiler rather than the 

operating system, the latter classification is used for convenience in this and some 

subsequent tables. The boolean type is much larger than it could be but alignment on 

a four-byte boundary simplified the state encoding/decoding routines and thus 

improved performance. The difference in the memory used by a string is due to the 

different C-i-i- String class implementations provided with each compiler. 

Name Description Usage (bytes) 
QNX 	flUX 

Integer Integral number 4 4 

Real Floating-point number 4 4 

Boo lean Boolean 4 4 

String Character string 16 + len 4 + len 

Table 6.4 Memory consumption of the four primitive UML types. 

6.3.3 Component Sizes 

Figure 6.1 presents some simple formulae which may be used to estimate the memory 

usage of a UML component, from a literal to all of the modeled universes. Table 6.5 

provides some approximate sizes of each component. The basic overheads are those 

that are needed merely to declare the relevant component; this will include the 

requirements of the base class if it is a derived component. Those overheads that are 

dependent on the definition being interpreted, e.g. adding a property to an element, 

are specified on an individual basis. These figures do not represent the variable 

amounts of dynamic memory that may be used in the basic overheads, e.g. the storage 

of strings representing names, etc. Therefore the total obtained from the use of this 

table will always be less than the actual memory usage. In addition the values given 

are dependent upon the hardware architecture (section 5.3.4) and the C-H- compiler 

used. For example, there is no standard method of implementation to handle virtual 

functions in derived classes. The remainder of this section presents brief textual notes 

on each of the main components. 
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Component = Basic + (number of dependents * (overhead + Dependency)) 
Dependency = Basic + [size of derivatives] 

Literal 	= Basic + [length of string] 
Constant = Basic + Component + (number of literals * (overhead * Literal)) 

Function = Basic + Component + [return type] 

Element 	= Basic + Component + (number of elements * (overhead + Element)) + 
(number of properties * (overhead + Property)) + 
(number of functions * (overhead + Function)) + 
(number of constants * (overhead + Constant)) + 
(number of converters * (overhead + Converter)) 

Property = Basic + Component + (number of instances * (overhead + Instance)) 
Instance 	= Basic + (size of list * overhead per list entry) 

Universe = Basic + Component + (number of elements * (overhead + Element)) + 
(number of properties * (overhead + Property)) + 
(number of functions * (overhead + Function)) + 
(number of constants * (overhead + Constant)) + 
(number of converters * (overhead + Converter)) 

Entity 	= Basic + Component + (number of constants * (overhead + Constant)) 
(number of functions * (overhead + Punc t ion)) 

UML 	= Basic + Component + (number of universes * (overhead + Universe)) 
(number of entities * (overhead + Entity)) 

N.B. Square brackets [] represent optional portions of a component. 

Figure 6.1 Basic relationships between UML components and their memory 
usage. 

6.3.3.1 Component 

All UML components are derived from the one base class, UNLComponent. An 

overhead is incurred for each dependency associated with a component in addition to 

the actual dependency structure. The skeleton dependency provided with the UML 

library only holds a single flag but, as shown in section 5.6.3, the extensions added by 

each application must be incorporated into this figure. 
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6.3.3.2 Literal 

A literal stores either an integer, a floating-point number, a boolean flag or a character 

string. Dynamic memory is only allocated when storing a string, the amount being 

dependent upon its length. 

6.3.3.3 Constant 

A constant may be a list in which case an overhead is present for each list element, 

plus the actual size of each Literal. 

6.3.3.4 Function 

The memory used by a function is substantially increased when a return type has been 

declared. 

6.3.3.5 Element 

As one of the container components, an element can use greatly varying amounts of 

memory. Essentially, each component contained within the element requires 

information to be stored about its location. 

6.3.3.6 Property 

Whilst a property declaration is only held once in memory, the bulk of the memory 

consumption attributed to it is used when instancing it. 

6.3.3.7 Instance 

An instance is a list of pointers to the actual instance data. Therefore, each list entry 

incurs an overhead in addition to the actual data size which can vary from 4 bytes for 

most primitives, to any amount for an element. 
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6.3.3.8 Universe 

The type of overheads detailed in Figure 6.1 are the same as those for an element 

except that the minimum size is slightly smaller. 

Name Description Usage (bytes) 
QNX 	flUX 

Component Basic 48 36 
Overhead per Dependency 12 12 

Dependency Basic 4 4 
Literal Basic 8 6 

Overhead for a string of len characters len len 
Constant Basic + Component 76 56 

Function Basic + Component 76 68 

Optional return type 44 20 

Element Basic+ Component 140 116 

Overhead per Element 12 12 

Overhead per Property 12 12 

Overhead per Function 12 12 

Overhead per Constant 12 12 

Overhead per Converter 12 12 

Property Basic + Component 88 64  

Overhead per Instance 12 12 

Instance Basic 24 24 
Overhead per list entry 12 12 

Universe Basic + Component 128 104 

Overhead per Element 12 12 

Overhead per Property 12 12 

Overhead per Function 12 12 

Overhead per Constant 12 12 

Overhead per Converter 12 12 

Entity Basic + Component 92 68 

Overhead per Constant 12 12 

Overhead per Function 12 12 

UML - Basic + Component 76 64 

Overhead per Universe 12 12 

Overhead per Entity 12 12 

Table 6.5 Approximate memory usage for UML components. 

6.3.3.9 Entity 

The overheads for an entity are relatively small currently because instruction code is 

not stored, only constants and functions. 
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6.3.3.10 U M L 

A single instance of the UML interpreter holds references to all of the universes 

defined and the entities that exist within them. Following the data structure tree from 

this point enables us to determine the amount of memory used by the interpreter. 

6.3.3.11 Example 

Table 6.6 shows a small segment of a UML data definition. Using the data for QNX 

presented above, it shows how much memory would be used to represent the 

definition's structure within the interpreter and hold a single instance of element 

Triangle. Each component within an element automatically generates a 12 byte 

administration overhead in addition to the structure needed to hold that component's 

information. When creating an instance of a property, a 24 byte administration 

overhead is incurred and a further 12 bytes for every entry in a list. In the case of the 

coord array, this means that 60 bytes are used to manage 12 bytes of actual instance 

data, whereas 60 bytes are used to manage 216 bytes of the instance data for 

vertexList. 

UML Definition Representation vertexList coord 

Size Instance Size Instance Size 

ELEMENT Triangle 140 

ELEMENT Vertex 12 +140 

PROPERTY coord : REAL( 31 12+88 24+(3*(12+4)) 
72 

PROPERTY vertexList 	Vertex(3]; 12 +88 24 + (3 * (12 + 72)) 
276  492 

Table 6.6 Example of how much memory is allocated to represent a UML 
definition and hold its instance data under QNX. 

Any instance of a property with a primitive type will have a disproportionate amount 

of memory used to manage the instance versus storing the instance data. The reasons 

for this complexity have already been discussed (section 5.5.3). Although a special 

arrangement might be made for properties of a primitive type, this would make the 

interpreter more complex and probably increase execution time. 
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6.3.4 Interpretation 

Figure 6.2 shows the relative time taken to perform the three basic interpretation 

operations (insert, replace and delete) for three primitive components on each of the 

test platforms. In the case of the element and entity components, the definitions used 

in the test had no contents so that the measurements would be representative of each 

component. The property was given an arbitrary primitive type (integer) for the same 

reasons. Similar measurements were performed for functions and constants but give 

results very close to that of the property because the same amount of memory is 

currently used to represent them internally. Complete details may be found in Table 

DIN 

Component Action Pentium Server Gateway Reality 

(ms) (ms) (ins) (ins) 

ELEMENT Insert 0.308 1.160 1.032 0.284 

Replace 0.376 1.397 1.192 0.314 

Delete 0.313 1.117 0.946 0.244 

CONSTANT Insert 0.339 1.202 1.094 0.303 

Replace 0.381 3.911 1.202 0.318 

Delete 0.297 1.060 0.917 0.230 

PROPERTY Insert 0.342 1.217 1.097 0.301 

Replace 0.372 4.752 1.205 0.316 

Delete 0.298 1.073 0.939 0.230 

FUNCTION Insert 0.320 2.430 1.039 0.288 

Replace 0.353 3.853 1.149 0.304 

Delete 0.288 1.067 0.909 0.226 

ENTITY Insert 0.302 2.102 0.968 0.282 

Replace 0.324 3.237 1.046 0.286 

Delete 0.325 1.156 1.029 : 0.260 

Dependency Add 0.005 0.047 0.059 0.021 

Delete 0.019 0.184 0.076 0.039 

Table 6.7 Fundamental interpreter operations timings for each test platform. 

Figure 6.3 shows how long it takes to add and remove a dependency for any 

component. The actual time taken to perform this operation is dependent on the 

number of existing dependencies on the component and its position within the 

dependency list. The results shown here are, therefore, the best case results. 
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Figure 6.2 Basic interpreter overheads for three primitive types: 
a) Element; b) Property; c) Entity. 

6.3.5 State Management 

The five operations that are performed on a component's state are those for instance 

control: construct-destruct, and those needed for state encoding: size-pack-unpack. 

The duration of these compute-bound operations on an integer, real or boolean is 

241 



shown in Figure 6.4 (an empty string increases the time for these actions marginally 

due to its slightly larger size). There is a linear relationship between state size and 

operation performance, and the time taken to complete any operation is extended if 

the component is an array. 
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Gateway 	 o Dependency Add 
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Figure 6.3 Cost of adding and removing a dependency on a UML component. 
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Figure 6.4 Fundamental state operations on an Integer/Real/Boolean and their 
cost on each platform. 

To examine the impact that state size has on the performance of each operation, the 

length of an array of integers was varied and resultant times recorded. Figure 6.5 

State operation costs based upon state size (Pentium).is a graphical representation of 

the results whilst Table 6.8 details the time increase of operation execution if one 

element is added to the array. 
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Figure 6.5 State operation costs based upon state size (Pentium). 

Operation Pentium 
Time (ms) 

Server 
Time (ms) 

Gateway 
Time (ms) 

Reality 
Time (ms) 

construct 0.008 0.024 0.035 0.006 

destruct 0.006 0.018 0.027 0.005 

size 0.002 0.006 0.009 0.001 

pack 0.003 0.015 0.012 0.002 

unpack 0.003 0.016 0.011 0.002 

Table 6.8 Operation overheads per integer array element. 
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Figure 6.6 State operation overheads for an element with zero and one 
properties (Pentium). 

The performance of the state operations on an empty element compared to that of an 

element with a single property (an integer) may be viewed in Figure 6.6. 
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Unsurprisingly the difference is equal to that of a single property (Figure 6.4), 

therefore the computational cost of managing an element may be calculated by 

totalling the costs of the individual properties contained therein, added to the basic 

element overhead. 

Similarly, nested elements produce predictable results (Figure 6.7), each level comes 

at the price of a single element's overheads. 
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Figure 6.7 State operations on elements with one to ten properties (Pentium). 

The cost of reinterpreting any part of a UML definition may be estimated by 

determining the differences between the current and new definition. Those parts that 

are now obsolete must have their state destructed and then the relevant portion of the 

data structure removed. New component definitions are added in the normal way 

whilst those components that are redefined require partial (or complete) state 

destruction, re-interpretation and re-construction. 

When preparing state information for transmission its total size is estimated and a 

buffer is allocated into which the state is packed. The receiver of the state unpacks 

the transmitted buffer into its data structure. If the sender or receiver uses big-endian 

byte ordering, then a byte swapping operation is performed when packing or 

unpacking respectively. Figure 6.8 shows the performance of each of the test 

platforms when the three state encoding operations are performed on primitive types 

of the same size. Although Reality must always byte-swap its state, the performance 

of these operations without byte-swapping is shown for comparison purposes. 
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Figure 6.8 Costs of state sizing/packing/unpacking a Boolean/Integer/Real on 
all the test platforms. 
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Figure 6.9 State encoding operation overheads for a String of 40 characters. 

The time it takes to perform these same operations on a string with 40 characters is 

about 10 times slower than for the other primitive types (Figure 6.9). The extra time 

is consumed by the larger amount of data that must be copied into the buffer. There 

is no real difference between the performance of the byte-swapped operation and the 

normal version because character strings are not swapped in any way, only the integer 

that is used to hold the size of the variable length string. 
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6.3.6 Summary of UML Analysis 

The amount of memory used by the interpreter is just as important as how fast it can 

interpret and execute UML code. The size of the textual UML definition is of interest 

since it may be sent between processes and thus affects communications performance. 

Whilst compression techniques can greatly reduce the space used by such 

descriptions, the computational overhead is prohibitive unless specialised hardware is 

available to accelerate the compression and subsequent decompression process. A 

compromise could be the transmission of tokenised code but this would reduce 

readability. 

The cost of interpreting such definitions was presented in the previous sub-sections. 

Not only may the computational cost of managing the interpreter's internal data 

structure be estimated, but also the memory it occupies by applying the simple 

equations and empirical data in sections 6.3.2 and 6.3.3. It has been shown that there 

is a simple relationship between the time taken to process a component's state, its size 

and its structure. Such a relationship enables predictions to be made about the time 

required to manage state information. 

6.4 PML 

Performance evaluation of the PML can be conveniently broken into two parts: 

message transmission and message reception. Although the time taken to send a 

message is somewhat dependent on the processing done at the receiver, they can, for 

the most part, be treated separately. All of the charts in this section are based upon 

message size and therefore have only been calculated up to the largest message size 

currently supported: 20 Kbytes 3 . Inmost cases, the performance of only one platform 

will be presented although the full suite of benchmarks were executed on all 

platforms. The equivalent graphs for the other platforms can be found in Appendix D. 

This is an arbitrary limited imposed in the prototype and does not reflect an operating system 

limitations. 
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This section examines the performance of both the QNX IPC and TCP/IP mechanisms 

as utilised by the PML. Only Gateway supported TCP/IP under QNX, this is 

unfortunate because it is also the slowest of all the test platforms. However, the 

relative performance of these two mechanisms can still be compared. 

64,1 Transmission 

Each communication mechanism shares a common need for a separate mailer process 

used purely for message transmission. In addition to the general cost of each IPC 

mechanism, the impact of communications to the mailer and the effect of transmission 

over Ethernet are examined. 
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Figure 6.10 Relative overheads imposed by a pipe on each test platform. 

6.4.1.1 Pipes 

Figure 6.10 shows the time taken to transfer messages with different sizes along pipes 

on each platform used in the evaluation. Under QNX a pipe has a buffer size of 5 

Kbytes, therefore when a message length exceeds a multiple of this buffer size, an 

extra read () system call is required. This extra operation is reflected in the chart as 

small jumps in transfer time at 5, 10 and 15 Kbytes. Despite having the faster CPU 

clock speed, Server has the worst performance. This can be attributed to having a 

slower internal bus speed than Gateway, whereas Pentium benefits from having a 
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much faster CPU. IRIX uses a pipe buffer size of 10 Kbytes but the test results are 

too noisy to identify the relevant shifts in performance. 

6.4.1.2 QNX IPC 

Figure 6.11 shows a simple breakdown of the tasks performed by the PML in order to 

send a message using QNX IPC. The administrative overheads include filling the 

transmission buffer and, for remote communications, establishing and destroying a 

virtual circuit. The time taken to complete the actual Send () system call is also 

shown, including the time that the remote PML needs to receive the message and 

unblock the sender. All message sends must be sent to the mailer via a pipe (section 

5.3.5.4); the delay caused by this is also shown and is added to the other overheads to 

produce a total send time. The proportion of time used by each of these tasks is 

similar for each platform. 

6.4.1.3 Latency 

A comparison of the different QNX platforms used to run the prototype and their 

impact on message transmission latency is shown in Figure 6.12. The plotted data 

includes the latency introduced by the pipe. Figure 6.13 shows the difference in 

latency between local and remote inter-process communications. Unsurprisingly, on 

Pentium, communications with Gateway have the highest latency since it has the 

slowest processor. At the other extreme, when examining the same properties on 

Gateway, the longest delay is experienced when communicating with Server (Figure 

6.13b). This result is forseeable since it is the slowest combination of CPUs within 

the three systems. 

There is, therefore, a large difference between the latency experienced when sending a 

message to a local process and one on a remote node. On Pentium this magnitude 

ranges from 6-30 times longer for a remote communication, whilst Gateway 

experiences anything from 4-15 times greater delay. 
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Figure 6.13 PML message transmission latency between remote processes on: 
a) Pentium and b) Gateway. 

6.4.1.4 TCP/IP 

Figure 6.14 shows the time taken by each of the main stages to send a message using 

TCP/IP (under both QNX and IRIX) to another process on the same node and an 

absolute total which includes the pipe overhead. Establishment of a connection to the 

destination process is the most expensive stage: approximately 11 ms on Gateway and 

1 ms on Reality (shown as dashed lines). The default TCP transmit buffer size under 

QNX is 7300 bytes and the default receive buffer size is 8192 bytes, therefore the 

TCP buffers were set to accommodate the largest message size under QNX to avoid 

unnecessary message segmentation. This action alone accounts for around 4 ms of 

250 



the total time required for buffer control. The IRIX buffer sizes default to 64 Kbytes 

and were not modified for the test. 
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Figure 6.14 PML message transmission times for TCP/IP: a) under QNX 
(Gateway); b) IRIX (Reality). 

The large performance difference between the QNX implementation of the TCP/IP 

protocol stack and its own proprietary IPC mechanism is shown in Figure 6.15. The 

reasons for poor TCP performance are discussed in section 6.4.4. 
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Figure 6.15 Effect of protocol on local PML transmission time (Gateway). 

6.4.2 Reception 

The tests used in this section are based upon the same methodology used in the 

previous section for message transmissions and are decomposed into their constituent 

tasks. Calculations are simplified, however, since the latency introduced by a pipe is 

not present when receiving a message. 

6.4.2.1 QNX 

There are three basic tasks that are performed when receiving a message using QNX 

IPC: actual message reception into the receive buffer, unblocking the sender and 

extracting the message from the buffer. To minimise the transmission latency, the 

sender is unblocked directly after the buffer has been filled. The average time for this 

sequence of events is shown by a dashed line. Figure 6.16 shows how much of the 

total receive time is used by the administration overheads. A slight trend towards 

longer durations is visible in the administration tasks as the message size increases. 

In a similar manner to message transmission, receiving a message from a remote 

process takes a lot longer than from a local process (Figure 6.17): on Pentium 

approximately 6 times longer. 
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Figure 6.17 Comparison between receiving messages from local and remote 
processes (Pentium). 
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Figure 6.18 PML message reception using TCP/IP: a) QNX (Gateway); 
b) IRIX (Reality). 

6.4.2.2 TCP/IP 

Figure 6.18 depicts the duration of the major stages required to receive a message 

using TCP/IP through polling and blocking. When blocking for a message, the 

accept () call is issued immediately; when a connection is made, the message is 

spooled into the receive buffer and then the message is extracted from it. For a polled 

receive, the select () system call is used to check for pending connections and 
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accept () is only called when there is a connection waiting. The chart deceptively 

shows that a blocked receive is faster than a polled receive since it does not include 

the (potentially very long) period when the process is waiting. Under QNX, the 

receive buffer was increased in size in order to accommodate the largest possible 

message. Again we see that Reality outperforms Gateway by approximately 10 times 

for a blocked receive and 2-3 times for a polled receive. The unusual sharp decrease 

in performance experienced at about 9 Kbytes with IRIX TCP/IP is consistently 

repeatable. The only explanation that the author can offer is that this is the result of 

some internal buffering in the IRIX socket daemon and may be connected to the poor 

TCP/IP performance experienced (section 6.4.4). 

6.4.3 Throughput 

A useful metric is the amount of data that can be transmitted in any given period of 

time - throughput. This section discusses two forms of this metric: local throughput 

which refers to data transfer within a machine and network throughput which refers 

exclusively to data transfer between machines. 

6.4.3.1 QNX 

Comparison of local throughput is straight forward when all platforms use the same 

operating system. The maximum throughput at a given point can be calculated as 

follows: 

maximum throughput = (1000 I (send time - receive time)) * 
message size) / 1024 

Using QNX IPC, it is necessary to subtract the time it takes the receiver to unblock 

the sender from the actual send time (not including administration overheads). Then it 

is just a matter of converting the result into Mbytes per second. Figure 6.19 shows 

the maximum amount of data that can be sent within each system based upon message 

size. If throughput was limited by bus speed we would expect to see Gateway slightly 

outperforming Server and an increased throughput for Pentium with its PCI bus. As 

it stands, however, internal throughput seems to be compute bound. The actual 
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throughput will be less if the sender and/or receiver are not getting as much CPU as 

they need. 
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Figure 6.19 Maximum local throughput within each node using QNX IPC. 
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Figure 6.20 Maximum QNX network throughput between node pairs. 

All of the QNX platforms share the same physical LAN and each has the same make 

of network card connected to the same type of internal bus. Therefore, it should be 

possible to estimate maximum network throughput using the same technique used for 

local throughput. Figure 6.20 represents the estimated maximum network throughput 
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between each possible node pair. The calculation was performed each way on the 

link, e.g. Pentium to Server and Server to Pentium, and the result averaged to simplify 

this chart. The results reinforce the conclusion that throughput is compute bound: the 

two fastest machines have the highest throughput, followed by the fastest and slowest 

and then the two slowest machines. 

The uncharacteristic drop in performance when the message size reaches 4 Kbytes is 

caused by a large number of out-of-window collisions being generated by faulty 

Ethernet cards. In fact, throughput should rise dramatically as message size increases 

and start to level out at around 6 Kbytes. This problem had not been noticed until 

these tests were run. 

The largest message transfer gives Pentium a network throughput of 0.762 

Mbytes/sec which may also be expressed as 6.096 Mbps. On a 10 Mbps Ethernet 

network this is a high utilisation rate which may be attributed to QNX's lightweight 

protocol and few collisions due to the controlled manner in which the tests where 

executed. This figure is, in fact, 0.1 Mbytes/sec lower than the manufacturer's own 

performance data for a 20 Kbyte message and is almost certainly due to the 

aforementioned problem. 

6.4.3.2 TCP/IP 

The local message passing throughput for QNX TCP/IP is on the same scale as that of 

QNX IPC network throughput. Reality, however, matches the top QNX message 

passing performance (Figure 6.21). A meaningful value for the network throughput 

between these two machines could not be obtained because they are located two miles 

apart and are separated by two Ethernet LANs, a large FDDI MAN and many routers. 

The traffic on these networks is generated by machines scattered throughout the 

university. 
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Figure 6.21 Maximum TCP/IP message passing throughput for each platform. 
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Figure 6.22 PML message reception test for TCP/IP on Reality with TIME-
WAIT build-up. 

6.4.4 TCP/IP Performance 

The way that TCP is used by PML has highlighted a problem with this protocol. A 

connection passes through various states during its lifetime, the last of which is 

TIME-WAIT. The connection spends long enough in this state to ensure that the 

remote end has received the acknowledgement of the connection termination request 



and that all segment4  duplicates have expired (Postel, 198 Ia). This period is twice the 

Maximum Segment Lifetime (MSL) which is the time a TCP segment can exist in the 

internetwork system. MSL has been arbitrarily defined as 2 minutes although, as 

noted by Jacobson et al. (1992), TIME-WAIT has more to do with the round-trip 

time for the connection than anything else. Regardless, if TIME-WAIT is not long 

enough it is possible for old duplicates to infect a new connection (Braden, 1992). 

Jacobson et al. have noted that this state could cause an indirect performance problem 

if an application repeatedly closes one connection and opens another at a very high 

frequency. The current limit of available TCP ports on any host is 2 16  . PML 

establishes a connection every time a message is sent, consequently there is a rapid 

build-up of connections in the TIME-WAIT state. For simulations with many entities 

this can soon produce thousands of connections in the time-out phase. The results 

shown in Figure 6.18 were obtained by ensuring that the benchmark for each message 

size started when there were no connections still timing out. Figure 6.22 shows what 

happens if connections are made with others still in time-out. When the message size 

is small the benchmark program has a short execution but creates a lot of connections. 

Up until around 8 Kbytes this happens at a rate faster than time-outs occur, but 

afterwards more connections time-out than are established which results in increased 

performance. Under QNX the time-out period is around 30 seconds whilst IRIX uses 

a period around twice that which means that this problem is less pronounced with 

QNX. 

The only way of improving performance using TCP is to maintain fixed connections 

between key processes but at the price of increased memory and computational 

overheads on the part of the PML (section 5.3.5.3). Before any decision is taken on 

whether or not to pursue this solution, it would be prudent to investigate the 

potentially more rewarding problem of a reliable datagram service (section 6.6.3). 

' The user message data is broken into segments by the TCP when sent along a connection. 
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6.4.5 PML Summary 

The tasks of sending and receiving messages using two IPC mechanisms have been 

broken down into their constituent parts and analysed. QNX IPC is very lightweight 

and subsequently outperforms TCP/IP when running under QNX. The faster 

processing power available to the IRIX implementation shows that this protocol can 

be used in systems of this nature. However, its performance is rather unpredictable, 

especially when there is a high connection turnover rate. It would seem, therefore, 

that TCP/IP is best used for communications between nodes in a USS and that an 

alternative local IPC mechanism is used, e.g. based upon shared memory. 

When lightweight threads become readily available it will remove the need for the 

physically separate mailer process and thus the latency introduced by the pipe. This 

would improve transmission times at the most by between 0.5 ms and 3.5 ms 

depending on the platform. 

The dramatic difference between message passing performance locally and remotely 

using QNX IPC was shown in Figure 6.13. This is due to a throughput difference of 

over 10 times and emphasises the importance of reducing to a minimum the amount of 

data that is sent between machines. In this test case the machines were only located 1 

metre from each other, if they had been further apart, e.g. separated by routers, the 

results would have been even worse. 

6.5 Simulation Execution 

A UM provides a number of services, most of which serve to progress the simulation 

as fast as possible. There are a number of factors that dictate performance: 

• Number of entities. 

• Number of managers. 

• Number of monitored components. 

• Frequency of state updates from each entity. 

• Size of the state updates. 
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The contributions made by each of these factors is application dependent and can vary 

quite substantially. For example, an architectural walk-through may have a large 

number of entities but they will be predominantly static and therefore produce few 

state updates. On the other hand, a highly dynamic simulation such as birds flocking 

will require constant state recalculation. To fully explore all of the possible options 

would take a very long time and it is unclear what benefits such a varied and non-

specific analysis would produce, therefore a more pessimistic approach has been 

taken. 

The core sequence of events for one simulation cycle are as follows: 

Send an update notify message to each entity and manager in the system. 

Each entity sends its state updates to its local UM. 

The UM forwards the state messages to interested managers (and other 

UMs). 

When all state updates have been sent, each entity sends an update complete 

message to its local UM. 

When all entities have completed the manager is informed and performs its 

processing. 

The UM waits for all managers (and slave UMs) to finish their work before 

starting again at stage 1. 

The factor that will have the most impact on performance is the amount of state 

updates that the UM must handle. This is directly related to the number of interested 

components and managers in the system. Through examination of a worst-case 

scenario, a more insightful and stable picture is presented of an architecture that 

attempts to reduce state flow as much as possible. 
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Figure 6.23 Activity breakdown of a UM when there is one monitored 
component and: a) no managers; b) 1 manager; 
C) 2 managers (Pentium). 
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To test the affects of state updates, each node was stressed using increasing numbers 

of entities, each of which modified its state every simulation step and was monitored 

by an increasing number of managers. The majority of the charts in this section show 

the duration of the simulation step as it is affected by entity numbers. Under QNX, 

the number of entities that could be used was limited by the amount of memory 

available on each node. The memory consumption varied depending on the amount of 

state information each entity had and the number of managers in the simulation that 

were monitoring that state. The universe definition consisted of one and two 

properties of integer type for the one and two monitor cases respectively. The sizes 

of the actual messages used in the tests were very small, averaging < 100 bytes. This 

is because the state transmissions for the monitored components only contained data 

for one or two integers. If the simulation protocol overheads can be established then 

the impact that an increased state size would have on performance can be 

extrapolated from the knowledge of its structure (section 6.3) and the increased 

message sizes (section 6.4, section 5.3.3). The source code for the benchmark 

manager and entity used in the tests can be found in Appendix B. 

Several configurations of a USS were examined: 

Single node (all nodes were tested in this configuration). 

Two nodes with the Pentium occupying the master node role and 

Server acting as the slave. 

Three nodes - the same as configuration 2 but adding Gateway as 

another slave. 

The test results obtained with these configurations are presented below and are 

followed by an examination of the entity migration mechanism. 

6.5.1 Single Node 

When there are no managers in a system, there is not a need for entities to send state 

updates. Consequently only update notification/complete messages are sent to the 

RM and update messages transmitted to each entity. The idle time shown in Figure 
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6.23 represents the time spent waiting for the entities to inform the UM that they have 

completed their update. When a special manager is introduced and registers interest 

in one component (1 monitor) a considerable time is spent relaying each entity's state 

to it. This does not, of course, affect the amount of time spent idle but does reduce it 

relative to the total simulation step duration. When there are two managers interested 

in the same component the state must also be sent to that manager (Figure 6.23c) 

which, in this case, means more time is spent relaying state than sending the update 

messages. The time needed to send the update complete messages increases slightly 

with each manager but is so small that it barely registers on these charts and is 

therefore not shown. 

Figure 6.24 shows equivalent charts where there are two monitored components. 

When the case with a single manager and two monitors is compared with that of a 

single manager and one monitor, it is clear that the time spent sending state 

information has doubled. The same is true for the equivalent cases with two 

managers. 

Two different perspectives on these results are shown in Figure 6.25: firstly in terms 

of simulation steps per second and, secondly, as a workload relative to the case with 

no managers. An extra case is presented here, that of three managers and I monitor 

whose performance is matched by the 1 manager, 2 monitors case. This may be 

explained by examining the messages sent in each circumstance. 

If there are x managers, y monitored components and z entities, then yz state updates 

are sent by entities to the UM and xy*z state messages received by managers in total 

each step. For 10 entities this results in 10*1  messages originating from entities and 

3*10* 1 messages sent to managers in the former case - a total of 40 message 

transmissions. Applying the equations to the latter case, 20 state messages are sent by 

entities and 20 messages received by the manager. Therefore the same amount of 

bandwidth (40 state messages) is being used every simulation step resulting in the 

same simulation rate. The slight performance discrepancy visible in the charts can be 

attributed to the different numbers of update notification/complete messages that are 
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sent in each case and the difference in total manager overheads. In this case, state 

transmissions are the largest performance limiting factor. 
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Figure 6.24 Activity breakdown of a UM when there are two monitored 
components and: a) 1 manager; b) 2 managers (Pentium). 

The UM's idle time is the sum of the total time spent polling  for an incoming message 

(because there are still pending internal events in the action queue) and the time spent 

blocked, waiting for a message since there is no other work to do. Figure 6.26 shows 

this idle period as a percentage of a simulation step (which gets longer as the number 

of entities increases). For small numbers of entities the amount of time spent idle is 

high but it soon settles into a consistent rate as the number of entities and system 

workload increases. When there is no state to forward, the IJM is idle for around 
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All of the results presented here are from the tests performed on the Pentium 

platform. The results for the other platforms have the same relative proportions but 

are on a smaller scale. Figure 6.27 shows how the baseline UM performance (0 

managers, 1 monitor) compares with the equivalent configuration on Gateway. 

Pentium consistently performs on average 3 times faster than Gateway. Server's 

results (not shown) are very similar to that of Gateway's, reflecting their comparative 

computational power. Complete charts may be found in Appendix E. 
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performance. 

6.5.2 Two Nodes 

To examine the performance effects of a multi-node USS, the same tests used in the 

single node trials were repeated with the entities distributed amongst the nodes. The 

decision of whether to allocate an entity to one node or the other was based upon a 

CPU rating derived from the single node results obtained previously. For example, in 

the case with no managers, the total simulation time for 31 entities on Pentium is —38 
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ms, whereas this same time is used by 9 entities on Server. This would give a CPU 

rating for Pentium of just over 3 times that of Server's, a figure backed up by the cu 
performance figures given in Table 6.1. 
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Figure 6.28 Activity breakdown of UMs in a master-slave configuration 
with no managers: a) SUM (Server); b) MUM (Pentium). 

In this and subsequent multi-node tests the fastest node was used to run the MUM, 

the activity breakdown of which may be found in Figure 6.28b. The total simulation 

time for each node is identical since the SUM must wait for the MUM to send it an 

update notification message before it begins each simulation step. The stepping effect 

is caused by the changes in entity distribution which is measured by the scale on the 

right hand side - at most 40 entities were used system-wide. The somewhat irregular 

shape and downward tilt of the steps is a reflection of the error in the distribution 
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algorithm. That is, whereas an optimum distribution may require fractional parts of an 

entity to be distributed in order to keep the workload exactly balanced, only whole 

entities can be moved. 
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Figure 6.29 Activity breakdown of UMs in a master-slave configuration 
with I manager on the master node: a) SUM (Server); b) 
MUM (Pentium). 

A large portion of the SUM's time is actually spent waiting for the MUM to start the 

next simulation step - 14 ms in this case. The SUM notifies the MUM that it has 

completed its processing for that step and, when all the MUM's local processes have 

finished as well, the MUM sends the next update complete message. The waiting 

time is therefore the sum of two message transmission latencies and some processing 

with the exception of one condition. It is true that a significant portion of the idle 
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time can be attributed to the waiting period. However, it is possible for the SUM to 

wait for a period greater than its idle time if the SUM should be starved of CPU - a 

situation that may occur in a heavily loaded simulation. This aside, if the waiting 

period is subtracted from the simulation time series, the product is the equivalent of a 

single node simulation. 

The same test conditions were used to introduce a manager on the node with the 

MUM and the largest number of entities (Figure 6.29). This reduces the state updates 

sent over the network to a minimum, i.e. the few entities on the SUM send them to 

the MUM. Initially, when there are no entities on the slave node, performance is 

identical to the previous case. However, as soon as an entity is allocated to the slave 

the latency of a state update is incurred. This, added to the additional message 

processing on both nodes significantly increases the duration of the simulation step. 

The effect of placing the manager on the slave node rather than the master node may 

be seen in Figure 6.30. When there are 40 entities in the system, 31 state updates 

must be sent across the network to the SUM and then forwarded to the manager. The 

master's chart (Figure 6.30b) shows that the MUM spends most of its time idle, 

waiting for the slave to process all the state information. The chart is somewhat 

deceptive, however, since the state time does not include the message transmission 

latency which would put it close to the total simulation time and reduce the idle time 

appropriately. Introduction of a second manager on the master node increases total 

simulation time by about 100 ms (when using 40 entities) since state information is 

now also sent from slave to master. 

It is clear, therefore, that not only is computational power an important consideration 

when distributing entities 5 , but also the inter-node communication overheads and the 

location of special managers. With the technology used in this prototype, the network 

is by far the most limiting factor. 

Without resource dependencies, such as input devices. 
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6.5.3 Three Nodes 

Figure 6.31 shows the task durations on three nodes as the simulation is distributed 

amongst them. In contrast to the equivalent case with two nodes (Figure 6.28), the 

wait time has risen to 20 ms and the overall simulation time by 10 ms. The MUMs 

largest workload has been lightened by 8 entities which have been spread between the 

two SUMs. The added processing time incurred by the extra node has caused the 

MUM's increase in simulation and wait times. 
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When a manager is added on the master node, the total simulation step time degrades 

to a maximum of 218 ms which is -40 ms more than the equivalent case with 2 nodes 

(Figure 6.29). However, as Figure 6.32 shows, when the manager is allocated to a 

slave node, the overall system performance is identical to the master-slave case 

depicted in Figure 6.30. On an individual basis, the first SUM (on Server) is 

managing one less entity than previously which results in slightly lower state 

management times. 

Unlike the other slave node, the SUM's waiting period is greater than its idle time, 

indicating that there are other processes on that node that have more urgent need of 

the CPU. The idle time is smaller because some of the time that the SUM would have 

spent idling was consumed when it was waiting for its next timeslice. Therefore, 

despite communication latency hindering performance, this three node configuration, 

with a manager on Server, is as efficient as the master-slave case presented in the 

previous section. 
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6.5.4 Entity Migration 

In order to demonstrate entity migration it is necessary to have some way of 

estimating resource usage for each entity. A measure is not meaningful unless it is 

measured with reference to a fixed time span, i.e. a simulation step. Since full 

scheduling and RM functionality had not been implemented, only CPU usage was 

monitored and a suitable step duration threshold specified (sections 5.6.5, 5.7.3). 

Every step the RM obtained the current CPU usage for each process on the node and 

if the total consumption for all entities exceeded the threshold, the most expensive 

entity was volunteered for migration. The processor usage for the RM and the UM 

was not included in the total to simplify the charts. Unlike the entities used in the 

previous tests which had a uniform workload, a random element was programmed 

into each entity which would trigger a gradual increase in CPU usage. After peaking, 

this consumption would diminish until the entity's original workload level had been 

reached. In all cases a total of 40 entities system-wide was used and the threshold 

was set to 65 ms (with the intent that 70 ms would not be reached), beyond which a 

migration is required. The MUM does not actively load balance in these tests which 

rely on the passive mechanism triggered by a threshold violation. 

Figure 6.33 shows two time series which represent the workloads of the two nodes in 

the test system and the number of entities present on each node (measured using the 

scale on the right). The peaks on Server are much higher since it has the slower CPU 

and at the 30th step exceeds the threshold resulting in a migration. The only place for 

the entity to go is the master node (Pentium) which already has an entity on the 

downward slope of a brief workload increase. Both nodes progress as other entities 

experience increases in workload. The double peaked feature at step 175 represents 

the product of the workload of two entities, one decreasing, the other increasing. 

After 250 steps, the nodes have gone from the same starting workload to one that 

differs by 6 ms. This does leave room for moving a few entities around to improve 

the load balance if the MUM was actively load balancing. 
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Another example of entity migration on two nodes is shown in Figure 6.34 where two 

entities on Server cause the threshold to be exceeded. This time an entity also pushes 

Pentium over the edge at step 120 and it is migrated to the slave node. 
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The charts in Figure 6.35 show entity migrations occurring in a three node system. In 

Figure 6.35a two migrations are required from Gateway and in both cases the chosen 

target node is Server. Each time the target node's CPU also exceeds the threshold, 

this is due to the fact that the state construction performed for each entity directly 

after migration is more expensive than the update function. For this reason, after a 

process has been created a four step period 6  is used to wait for the CPU consumption 

to settle down to normal levels. If this hysteresis period was not in force then the 

target node would immediately reject the new entity; an action which could be 

repeated any number of times resulting in the entity bouncing between nodes and thus 

destroying system performance. The second migration shown in Figure 6.35b is from 

Pentium to Gateway which is clearly a mistake on the part of the load-balancing 

algorithm. Even after the resting period, CPU consumption is far too high and the 

entity is migrated to Server. 

The workload patterns in these tests were contrived but clearly demonstrate the 

migration mechanism. It is also clear that more comprehensive information must be 

used to determine the target node in order to avoid misallocations, i.e. a full RM 

implementation is needed (section 5.7). If some allowance was made for a short burst 

of CPU when the new entity is constructing, it would be possible to remove the 

current four step settling period. 

6.5.5 Process Activity 

Currently the time between starting a process and it reaching alive status is more in 

the region of hundreds of milliseconds rather than a few milliseconds. The most 

intensive part of this time is the creation of the main component process and the 

mailer. Following this the allocation of the UPID must take place and then the 

process' internal initialisation which can vary depending on its purpose, i.e. manager 

or entity. The actual creation time for a process also depends on the number of other 

processes starting at the same time. For example, when initiating a simulation with 40 

6 Discovered by empirical means. 
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entities, all entities and managers may not reach an active state until 30 seconds after 

the UM was started. Creation of a process on a slave node by the MUM is further 

confounded by the communications latency. 

From the UM's perspective, the termination of an entity is quicker because the actual 

process termination is faster and the administration overheads are comparable with 

creation, e.g. informing managers of an entity's death. 

6.5.5.1 Benchmark Entity 

An integral part of the entity process creation/termination is the execution of that 

entity's specialised construct and destruct functions respectively. The duration of 

these functions in the entity that was used in all but the migration benchmarks is 

shown in Figure 6.36. Execution of the entity's destruction routine takes longer than 

construction because constructing a UML component generally takes less time than 

destructing it (section 6.3.5). This does not hold true for Reality in this case, 

probably because the unoptimised code for construction is actually slower than the 

operations needed to free memory. 

Approximately 38% of the time that an entity uses when updating is spent sending the 

state data to the UM. The remainder of the time is used by the invocation of the 

entity's update function prior to the state transmission which, in this case, merely 

toggles the flag to indicate that the component has been modified (although its value 

is not actually changed). 

Measuring the performance of an entity with the current prototype is somewhat 

problematic since the duration of any given task is totally dependent upon scheduling. 

As the number of entities grows the variances in measured duration become more 

profound; despite getting the same amount of CPU each time. The best way to 

measure an entity's performance, therefore, is to restrict the simulation to one entity 

such that it is unlikely to be interrupted during measurement. Figure 6.37 shows that 

the entity used in the benchmarking is idle for —79% of the simulation step under 

QNX, the update taking at the most a few milliseconds. Again, due to poor TCP/IP 
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performance Reality is already idling at 99% along with all the other system 

components. If the number of entities in the simulation was increased we can expect 

to see an increase in both the time it takes to send a state update and the idle time of 

the process. 

Reality 

Gateway 

Server 

Pentium 

Construct 

• Destruct 

o Update 

o State 

0 	I 	2 	3 	4 	5 

Time (ms) 

Figure 6.36 Construct/Update/Destruct times for the entity used during 
benchmarking. 
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Figure 6.37 Average task breakdown for a single entity. 

6.5.5.2 Benchmark Manager 

In the same way that most of the entity's life is spent idle, so is that of the manager 

used in the tests when there is only one entity in the simulation (Figure 6.38). The 

ratio of processing state updates to the total step duration will always be small, 

because a manager only performs its work at the end of the step when all entities have 
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sent their updates. With just one entity the manager is idle around 88% of the time 

under QNX, but an increase in the number of entities will increase the time spent 

processing updates, the step duration and the idle time. 
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Figure 6.38 Activity breakdown for the benchmark manager. 

6.5.5.3 Resource Manager 

The most intensive activity that the current RM performs is obtaining the CPU usage 

of each process on its node. The basic overheads specified in Table 6.9 represent the 

cost of monitoring itself and the UM; the costs of checking CPU usage for an entity 

or manager is also given. Usage of the PML mailer process is included in the 

calculated resource ratings. It is clear that this process is quite computationally 

expensive if performed every simulation step - as it was in the migration benchmarks. 

However, the current version does not attempt to perform any usage predictions that 

may be used to reduce the frequency with which this monitoring is required. 

Overheads Pentium Server Gateway 

Basic (ms) 5.72 20.85 19.17 

per Process (ms) 0.8 2.705 3.84 

Table 6.9 Time penalties incurred when RM monitors CPU usage. 



6.5.6 Simulation Execution Summary 

This section has concentrated on the performance of the USS as a whole. Each of the 

test platforms, with the exception of Reality, were examined as single node systems. 

This provided a basis for evaluating performance when they were combined in two 

and three node systems. Although the same tests were performed on Reality and 

Gateway using TCP/IP, due to the problems with its use, each process spent 99% of 

their time waiting for messages. This issue is dealt with in section 6.6 which looks at 

improving the prototype's performance. 

It was found that the most limiting factor in a distributed configuration was the 

network latency and that it had a substantial impact on performance. By carefully 

allocating processes to nodes, a three node configuration was shown to produce the 

same performance as an equivalent two node configuration. However, for the same 

number of entities this was still many times slower than simulating all the entities 

locally. This is not a common situation since the entities in question did no real work 

and used little memory. Given computationally more expensive or physically larger 

entities, distribution becomes a necessity rather than a luxury. 

Often entities will consume different amounts of resources at different times which has 

the net result of producing a variable node workload. By migrating entities from one 

node to another, the available resources may be utilised to the maximum. To test the 

migration mechanism, multi-node systems were stressed with a number of entities, 

each with a variable computational workload. Finally, it was shown that it is possible 

to monitor resource usage and move entities in order to keep the system workload 

relatively evenly balanced. 

6.6 Improving Performance 

Based upon the knowledge gained from the analysis of the prototype presented in this 

chapter, it is clear that there are a number of improvements that can be made. 
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6.6.1 Message Elimination 

One of the most limiting aspects of the current implementation is the use of point-to-

point communications between processes, especially the UM and its entities. Figure 

6.39 indicates the percentage performance increase that would be experienced if the 

update notification messages could be sent to all entities simultaneously rather than 

sequentially, i.e. an inter-process multicast. This was calculated by replacing the usual 

linear increase of time for the update task with the time taken to update a single 

entity; all other overheads were left untouched. The figure shows that a multicast 

method would produce greater performance benefits as more entities are added to the 

system. If the chart was extended by testing the method with more entities the 

performance increase would remain about 150%. The overall effect is not as dramatic 

with those configurations that transmit more state information. Also, the impact is 

diminished because each entity must still inform the UM that it has completed 

updating every simulation step. 

However, use of both the update notification and complete messages within a node is 

actually mimicking the behaviour of a deadline scheduler. When the scheduler 

triggers the entity to start processing, this may be taken as a cue to begin updating. 

After sending any state updates that were necessary, the entity would reach its 

deadline and this would indicate to the UM that the entity had finished updating. 

Therefore the actions that are currently performed explicitly with messages would be 

replicated implicitly by the nature of the scheduler. The greater the number of 

entities, the more time saved each step by eliminating the update complete message 

(Figure 6.40). 

Nw 



160 

140 

1 120  
100 

80 

60 

40 

OMan., lMtr. 

—lMan.,lMtr. 

----2Man., lMtr. 

—2Man.,2Mtr. 

0 5 10 15 20 25 30 35 40 45 50 55 

Number of Entities 

Figure 6.39 Potential performance increases with a multicast update (Pentium). 
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Figure 6.40 Increases in simulation rate when eliminating both update control 
messages: 0 Managers, 1 Monitor (Pentium). 

6.6.2 Shared-Memory IPC 

QNX IPC essentially copies a block of memory (the message) from one process' 

address space into another, therefore implementation of a shared memory based IPC 

protocol is unlikely to show much improvement. This is not the case when compared 

against the burden of using TCP/IP for local communications. The same simulation 

combinations executed on Gateway when using QNX IPC are a lot faster than when 



using TCP/IP on the same machine, e.g. 24 times for 1 manager/1 monitor, and 34 

times for 2 managers/1 monitor. The idle rates of processes using TCP/IP on both 

Reality and Gateway are very similar (-99%) and a shared-memory IPC system will 

Likely show similar performance to that of QNX IPC. Given this, it is not 

unreasonable to use this speed-up factor as a rough indicator of the performance 

increase we could expect to see on Reality if shared-memory IPC was adopted. 

Figure 6.41 presents a comparison between the predicted performance and that of the 

fastest QNX node using the native IPC. Saying any more than that the two machines 

now present comparable performance would be unwise given the uncertainty of the 

estimation procedure used. 
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Figure 6.41 Comparison of estimated Reality performance with shared 
memory IPC and Pentium using QNX IPC. 

6.6.3 Multicast 

Of course, TCP/IP is still the only available reliable method for communicating 

between heterogeneous machines on a network. This is also an area that could be 

optimised through the adoption of a reliable multicast protocol. A MUM could 

multicast update notification messages to its slaves and its use would also open up the 

possibility of state multicasts. The Single Connection Emulation sublayer presented 

by Talpade and Ammar (1995) is designed to sit between an existing reliable transport 
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protocol and the network layer providing the unreliable multicast capabilities. The 

presented implementation used TCP as the transport protocol and IP as the network 

layer. The existing TCP API is utilised as usual but is supplemented by a direct 

interface to the SCE layer in order to control the multicast-specific variables of the 

multicast connections. One advantage of this approach is that it is possible to modify 

the semantics of multicast connections by changing the SCE without affecting the 

transport protocol. Unfortunately, because TCP is used, this solution also requires 

that prior to transmission a connection is established from the source of the multicast 

to the set of destination nodes. After transmission has concluded the connection must 

be closed. Consequently, in order to make use of this solution, the modifications to 

PML operation discussed in section 5.3.5.3 would have to be made. Nevertheless, of 

the solutions to providing a reliable multicast service that the author has seen, this 

seems like the most promising. In addition, should a more suitable reliable transport 

protocol come to light, SCE could be adapted for use with it. 

The biggest savings that can be made are with the transmission of state information 

which is the most common and often the largest type of message that is sent. Each 

inter-process and inter-node communication pathway has a unique monitor ID 

associated with every component whose state is transmitted along it. This method 

works well for point-to-point links where the monitor ID is modified as the state is 

forwarded to all interested parties, but precludes the use of multicast in any form 7 . A 

possible solution to this problem would be to replace the monitor ID by the 

component's absolute name within the UML definition. The implications of this 

change would be an increase in message size (the absolute name could be potentially 

very long), and an increase in the amount of time needed to identify the component in 

each process' internal data structures prior to unpacking. 

The adoption of multicast communications between machines would remove some of 

the burden from the master USS; it would also use less bandwidth. Consider a system 

Multicast between processes on a node may be simulated through a shared-memory buffer that is 
monitored by all processes. 
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with a master and two slave nodes: currently state information from a slave is sent to 

the master which forwards it to the other slave (if needed). With a multicast only one 

message would be required which would reach both nodes simultaneously. This cuts 

the required bandwidth by half and as message sizes and the number of slaves 

increases, so do the savings. In addition, it is possible that the component dependency 

list could be used to form a multicast group for those machines interested in its state 

updates. Although this would not reduce bandwidth consumption, it would ensure 

that any node not interested in the multicast did not waste time processing the 

message. Using a shared-memory emulation of multicasting, such gains as these 

could also be experienced by processes on the same node. 

The application of this technique promises to yield significant performance increases 

but the computational cost of supporting it is uncertain. It is, however, an area 

worthy of further investigation. 

6.6.4 Accounting for Latency 

Section 6.5.2 presented a situation where the slave node spent a considerable amount 

of time waiting for the next simulation step to begin. Although it is not possible to 

eliminate the time the SUM spends waiting, its counterpart in the MUM may be 

removed if the slave's workload is reduced such that it finishes its work earlier. 

Figure 6.42 shows the current situation on the left hand side where the MUM (with an 

identical workload) has to wait for the SUM to respond before it begins the next 

simulation step. If the SUM's workload is reduced by 14 ms from 30 to 16 ms then 

the MUM no longer has to wait, thus increasing the simulation rate. In the case 

presented in Figure 6.28 this technique would effectively require the reduction of the 

SUM's (and the system's) workload by 5 entities. Thus, when the MUM is managing 

31 entities, the SUM would be coordinating 4. 
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Figure 6.42 Accounting for message latency reduces simulation cycle duration. 

6.6.5 Increased Bandwidth 

Increasing bandwidth would not obviate the need for the technique presented in the 

previous section, but it is the simplest way of improving performance. The results 

presented in this chapter were based upon a dedicated Ethernet link with a theoretical 

speed limit of 10 Mbps. Recently, networking mediums such as FDDI and Fast 

Ethernet, capable of operating at 100 Mbps, have become widely available. Figure 

6.43 shows the impact that using a 100 Mbps link between machines would have on 

messages sent between Pentium and Server. This prediction is based upon three 

assumptions: firstly, that the network throughput would experience a seven-fold 

improvement 8 ; secondly, the bus can cope with the increase in required data transfer 

rate 9 ; thirdly, that the same level of utilisation QNX currently achieves would be 

increased by the same degree (section 6.4.2.2). Whereas it took between 2 and 25 ms 

to send a message between nodes, this now occurs in 0.3 to 3.7 ms. The result is that 

This assumption is based upon manufacturer's data that states a data transfer rate of 7.4 Mbytes/sec 
for lOOBaseT Fast Ethernet as opposed to 0.9 Mbytes/sec for lOBaseT. 

An ISA bus cannot match the demands of a 100 Mbps network, whereas a PCI bus will. 
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latency is now lower than the PML overheads which now account for approximately 

55-65% of the total send time. 

The impact this would have on the master-slave benchmarks presented is difficult to 

estimate due to the unknown scheduling factor, but all messages sent were less than 

I K in size. This would mean that a few milliseconds would be saved on each 

transmission. Considering the case presented in Figure 6.29 this would probably 

result in a latency reduction of around 23 ms (1 update complete + I update notify + 

9 state updates). Currently all processes idle enough to cope with this decrease in 

transmission time but consideration of a more complex case would require further 

investigation. 
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Figure 6.43 Pentium to Server transmission times when using the current 
Ethernet link and a predicted Fast Ethernet link. 

6.7 Summary 

This chapter has presented an evaluation of a prototype USS concentrating on the 

modeling language, the characteristics of the message passing systems and general 

simulation performance. A number of points were made in the section summaries 

throughout this chapter but there are a few observations and aspects worth 

emphasising. 
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6.7.1 Living with TCP/IP 

Although TCP provides a reliable connection, it uses an unreliable medium (IP). 

Positive acknowledgement is used to ensure that packets arrive at their destination - 

failure to do so results in retransmission. The greater the distance between the 

connection's two endpoints (and the more routers, etc.) the longer it will take to 

determine whether a packet has been successively received. The use of a hierarchy to 

connect nodes (and processes) in a USS and a network of USSs provides a more 

robust communications mechanism than requiring a single process to communicate 

with a server over some large distance. Should a link fail then this can be detected far 

quicker because the distance between nodes is far less. Resolution of this problem 

can be handled by the node that detected the problem or the sender can be informed 

and action taken accordingly. 

This information also supplements the determination of whether the destination node 

is still alive. Although routers report when they cannot deliver any given message 

using the Internet Control Message Protocol (ICMP - Postel, 1981b), they may not be 

able to detect all such errors. The ability to detect errors is dependent upon the 

hardware protocol. For example, Ethernet does not acknowledge transmission of 

packets meaning that a node can be disconnected without affecting the rest of the 

network. Unfortunately, this also means that with Ethernet it is not possible to detect 

power failure, etc. 

All of the message size tests are dependent upon the Maximum Transfer Unit (MTU) 

which may be different for all network media. For example, Ethernet has an MTU of 

-1 500 octets 10 , whilst FDDI has an MTU of 4770 octets and ATM uses 9180 octets 

(Laubach, 1994). If a message is transmitted greater than the MTU in size then it is 

fragmented. This fragmentation and corresponding reassembly at the destination 

O Some implementations vary from the Ethernet specification. 

I I ATM could handle 64K octets but has been limited to 9180 so that it is compatible with the older 
Switched Megabit Data Service (SMDS) technology (Piscitello and Lawrence, 1991). 
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inevitably incurs some overhead. In addition, the more fragments the greater the 

chance that one will be lost and the message will be discarded. 

TCP/IP has its faults but it is the backbone protocol of the Internet and, in one form 

or another, it is here to stay. It would seem prudent, therefore, to find some way of 

working with it. 

The Hyper Text Transfer Protocol (HTTP) is used by the World Wide Web (WW\V) 

to retrieve distributed objects. HTTP uses TCP as the transport layer enabling WWW 

servers and clients to communicate. Every time a request is sent from client to server 

a connection is established, e.g. loading a new page, new icon/in-line image, etc. As 

the author discovered when evaluating the performance of the PML, this is an 

inefficient way of using TCP which is designed to handle data transfer over 

connections established for long periods of time, e.g. file transfer. Spero (1996) 

presents a detailed summary of the problems with the way in which TCP is used by 

HTTP, including TCP's TIME-WAIT state (section 6.4.4). A proposed solution to 

these problems is the incorporation of a simple multiplexing protocol to be used with 

HTTP, enabling multiple requests to be dealt with on a single connection (Gettys, 

1996). 

The advantages of shared memory IPC over TCP as a local IPC mechanism have 

already been discussed. However, permanent connections could be established 

between key components on each node using TCP/IP, for example MUM to all SUMs 

and between systems, which are the links that need to be optimised the most. The 

price for this change is increased complexity within the PML which now has to handle 

two different types of connection. Nevertheless, applying TCP/IP in this manner 

would be more efficient than the way it is used now and is the equivalent solution to 

the multiplexing protocol mentioned earlier. 

6.7.2 Resource Management 

The amount of memory used by each program's execution image alone is larger than 

necessary because shared libraries could not be used. Currently each entity process 
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under QNX requires approximately 256 Kbytes of memory (section 6.2.3); with 

shared libraries this could be reduced to the order of 6 Kbytes. Around 330 Kbytes of 

USS shared libraries would be shared amongst all processes in addition to -55 Kbytes 

of system libraries. 

The memory needed to store the UML definition and its instance data is quite large. 

Unfortunately this is the price that must be paid in order to effect modifications at 

run-time with as little disruption as possible. There is a relationship between 

definition structure and the amount of resources that any given operation consumes. 

This type of information could be used by the interpreter to predict how long an 

operation will take or how much memory a definition will require. Accurately 

predicting resource consumption aids the RM in its work. 

The total simulation workload is unlikely to remain the same throughout the 

simulation and local fluctuations are to be expected. The migration mechanism 

presented is currently in a primitive state but adequately demonstrates the benefits 

such a technique can have on system loading. More resource utilisation information is 

needed so that better decisions can be made about a node's loading and predictions of 

an entity's workload. 

6.7.3 Scaleability 

A detailed analysis of the PML proved that communicating between machines is many 

times slower than between processes on the same node. An unexpected problem with 

TCP/IP was encountered which, combined with its use by the PML, made using it as a 

local IPC mechanism impractical. Examination of the PML provided a basis for 

evaluating system performance as a whole and also enabled predictions to be made by 

modifying key variables such as bandwidth. 

A number of simulations were run on single node systems, each one using a different 

number of managers and an increasing number of entities. The results showed that, in 

general, more time is spent processing state information that any other type of data. 

Also, the UM spends a considerable amount of time idle waiting for other processes 
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to complete their work. This analysis of single node systems provided a basis for 

evaluating multi-node configurations. 

6.7.3.1 Standalone USS Performance 

Performance in a USS is dictated by a number of factors (in no particular order): 

Number of special managers. 

Location of the special managers/entity processes. 

Number of entity processes possessing monitored state. 

Size of the state information monitored by those managers. 

Transmission frequency of the monitored state. 

Number of USNs in the USS. 

Latency/bandwidth of the connections between the nodes. 

The more managers that monitor any given part of the whole YE's state, the more 

state information that must be sent between processes, i.e. the more bandwidth 

consumed. The best case is if the manager in question is interested in just the state 

held by entities on its local node: where the available bandwidth is highest and the 

latency lowest. The more common case is when a manager is interested in state held 

by entities that are spread on many nodes within the system. In this case the size of 

the state information that must be sent to the manager(s) becomes even more 

important - the more state information or the smaller the link's bandwidth, the lower 

the performance. If the manager is on a slave node then an entity on another slave 

node will send its state update to its local UM, which forwards it to the MUM, then 

onto the manager's local UM and finally to the manager itself. If the manager is on 

the master node then this procedure takes one stage less. If the entity is on the master 

node and the manager is on a slave node then the procedure is also one step quicker. 

The amount of state data sent is dependent upon the frequency of changes to that 

state made by each entity. It is not possible to calculate in advance what this 

frequency will be since it is semantic specific. A well designed manager will monitor 

information that changes on a periodic basis and make use of constraint functions. 
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These can be used to filter, at source, the state data before it is sent to the manager 

consuming valuable bandwidth and processing time. 

Although the number of nodes in a system and the speed of their communications 

links plays an important part in performance from a state management perspective, 

they are also relevant when considering synchronisation. At the beginning of each 

simulation step the master node synchronises all the slave nodes through an exchange 

of messages. Using unicast, there is a linear relationship between the time taken to 

perform this procedure and the number of nodes in the system. Again, this could be 

partially rectified by replacing the initial master-to-slave synchronisation control 

unicast with a multicast. 

As the reader can see from this list of confounding factors, it is difficult to build a 

clear picture as to exactly how performance will scale as more managers and/or 

entities are added to the system. What is clear from the results presented in this 

chapter, is that performance will fall sharply initially, and then gradually asymptote as 

more processes are added. However, this could be dramatically scaled down if 

multicast was used to send state updates to interested managers (Figure 6.39). Not 

only would bandwidth be saved but the burden on the MUM as a router would be 

reduced significantly, thus removing what would become a major bottleneck in the 

system as state information flow increases. 

6.7.3.2 Networked USS Performance 

Performance between USSs is also dictated in a number of ways: 

Total number Of users across all systems. 

Type of information sent between systems. 

Method used by the user's shadow process to approximate behaviour. 

Number of networked systems executing same simulation. 

The amount of traffic on the inter-system links is mainly due to two related factors. 

Firstly, the more users participating in a given simulation, the more user-specific data 

that must be sent to all systems executing that simulation. Secondly, the amount of 
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information is dependent upon the type of data being transmitted. For example, low-

order information such as position and velocity will be sent almost continuously 

whereas high-order information indicating changes in behaviour will be sent less 

frequently. It would seem therefore that the latter would guarantee better 

performance. Unfortunately this requires a more complex shadow process to 

interpret the information and do something sensible with it. Balancing the amount of 

data and the amount of computation a shadow requires to process it is the key to 

good performance. 

With the current hierarchical structuring of systems performance, there will be a non-

linear degradation in performance as the number of systems increases. Not only will 

the effort expended by the MUM in each system be increased due to routing but the 

time taken to ensure every system gets the transmitted message will also grow. 

Again, multicast will relieve this problem, allowing a single transmission to reach each 

system running the simulation. Using this technique, performance should be mainly 

affected by the number of users in the system, not the transport mechanism. 

6.7.4 Distribution at a Price 

When the author started this work, distribution seemed like the answer to all the 

problems regarding limited resources and multi-user interaction. It is now clear that 

there is a distinct price to pay for distribution and it should only be considered if the 

advantages outweigh the disadvantages. 

Communications latency is presently the largest factor responsible for inhibiting 

progress of a distributed simulation. In simple simulations there is little to be gained 

by spreading the load throughout a network of machines because more time will be 

spent communicating than actually performing simulation work. Only when the 

simulations become more expensive is this cost offset enough to prove beneficial. 

The advantages of distribution include the possibility of multiple users. It should be 

noted, however, that the desire to include more users in a VE may well degrade 

performance due to the problem just mentioned. At the other end of the scale, if the 
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presence of many users generates too much state information flow, then it will not 

matter how much computation there is to perform. 

6.7.5 Conclusions 

The prototype is not perfect and several enhancements that would improve 

performance have already been discussed. Some, such as the deadline scheduler, 

require more specialised operating systems whilst others, such as multicast, need a 

combination of hardware and software protocols that is not currently readily available. 

Fortunately, a shared memory IPC mechanism could be implemented now, as could 

the technique used to account for transmission latency. 

The balance between CPU performance, bus speed, memory capacity and network 

bandwidth (amongst others) is an important one; a well configured system will take all 

of these into account. For example, if only network bandwidth is increased then 

eventually there will come a time when the bus may become the bottleneck, or the 

CPU is incapable of processing data fast enough for transmission. The relationship 

between these factors is influenced by the software system. Unless analysis of the 

type presented in this chapter is performed, i.e. at the component and system levels, 

systems engineers will not be able to deliver the technology capable of supporting 

distributed VE systems. 
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Chapter 7 

Conclusion 

"In my end is my beginning." 

Mary Stuart, Queen of Scotland 

The final chapter of this thesis begins with a brief reminder of the work presented in 

the preceding chapters. Following this, the USS architecture is classified using the 

taxonomy presented earlier on and its most important features are highlighted. A few 

specific research areas that are relevant to distributed VE systems are also described, 

indicating the benefits they may provide. Finally, the current trendy topics in the area 

of distributed VE systems are related to the work presented here. 

7.1 Thesis Review 

The introduction to this thesis gave a brief introduction to the area of VR, highlighted 

the emphasis on interactivity, and described the two cornerstones of a system that 

would support this: real-time and consistency. The services of a real-time system 

enable the generation of real-time displays which are justified in chapter 3. 

Consistency reflects the need to ensure that everything in the VE appears in the right 

place at the right time, to one or more users simultaneously. 

Chapter 2 began with an examination of the issues involved in the design of a system 

capable of distributing VEs. The solutions used by existing systems that have 

attempted to tackle this complex area vary quite substantially. In order to provide a 

way of comparing such systems a classification scheme was derived which strove to 
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categorise each system on the basis of: real-time support, communications, data 

management, computation management, VE modeling, time management, fault 

tolerance and security. There is an intricate web of inter-dependencies connecting 

many of these categories which often makes examination of one difficult without 

referring to another, e.g. data and computation management working together to 

provide consistency. However, the author believes that this taxonomy is a good 

starting point and was applied to the seven distinct systems that were reviewed. The 

results of applying the classification scheme proposed in this thesis to the USS are 

presented later in section 7.2. 

Chapter 3 questions the current way that VEs are modeled and highlights a particular 

aspect of human-computer interaction that is not addressed in most systems. To 

better understand how to model a VE, the structure of the natural environment was 

examined and several taxonomies of varying levels of detail were presented. Based on 

these attempts to classify natural and virtual environments, the author presented a 

suitable definition and abstract model for a VE. Essentially, current modeling 

practices take one perspective on the thing being modeled and concentrate on one 

medium, usually visuals. With this approach the model will function adequately until 

such time as another medium is considered, e.g. sound, or a different perspective has 

to be taken, e.g. infra-red instead of natural light. At this point the model will falter 

because some (or all) of the information that is now needed to simulate this 

perspective/medium will be missing. If a more ecological approach had been taken to 

modeling, then sufficient information would have been modeled initially such that 

similar changes would not require extra work. There are obviously practical limits to 

the amount of information that can be modeled at one time and these are discussed 

with relation to the modeling process as a whole. When looking at the design process 

it was noted that an integrated modeling and simulation system would enable 

development, experimentation and evolution. The ability to develop a simulation on-

line provides much greater flexibility than is available with current systems and also a 

reduced development time cycle. These features will hopefully also encourage the VE 

designer to explore the different forms the model can take. Finally, evolution referred 



to the ability of each entity in the simulation to make changes to the model and create 

other entities. 

Related to the issue of modeling a YE is its display. The purpose of a display is to 

take raw information from the environment, process it, interpret its meaning, and then 

present it in a form that enables the viewer to extract some meaning. A good display 

will permit the natural processing of the presented information and allow the 

participant to concentrate on the task at hand. A bad display will require the 

participant to expend extra effort and will probably degrade their performance. The 

second part of chapter 3 describes how variable-rate visual displays cause problems 

when judging time to contact with a virtual object. The example given is catching a 

virtual ball, but it could equally be braking in a virtual car to avoid a collision on a 

virtual motorway, or attempting to perform in-flight refuelling in a flight simulator. 

Essentially any task that requires the user to make judgements based on velocity and 

acceleration/deceleration can be affected if a constant-rate display is not used. Two 

methods of achieving such a display were presented: one requires special OS support, 

the other will work on normal operating systems. 

Chapter 4 starts with the presentation of the requirements for a USS, a set of realistic 

design restrictions, and a little more detail on key aspects, e.g. distributed real-time 

systems. Having settled on a modeling process using specialisation through 

inheritance in chapter 2, a suitable representation of the yE abstract model is 

presented. Since the abstract model is derived from our universe, an appropriate 

naming scheme was adopted based around "universal". A number of existing 

languages were examined before it was decided that none of them satisfied (or could 

be modified to satisfy) the requirements of a VE modeling language. The proposed 

language, UML, can be broken into two halves: data definition and instruction code. 

The structure of UML is important since it is an integral part of the USS architecture. 

Although UML code can be passed between USS processes, it could have any syntax 

or grammar. The data definition, however, influenced the mechanisms used to 

manage state within the architecture and vice versa. The design is dissected in section 

7.2. 



After outlining the USS design, a prototype implementation was described in chapter 

5. Key to the system is a real-time distributed deadline scheduler which is difficult to 

implement with current hardware/software technology. The author had, prior to USS 

development, implemented a far less complex worst-case scheduler at the application 

level to help enforce a constant-rate graphical display. It was the author's experience 

that, even with a special-purpose operating system, use of such a scheduler was 

problematic due to the difficulty in accommodating actions beyond the application's 

control, e.g. network and disk access. Therefore the architecture's key elements were 

implemented without the scheduling functionality. The PML is used to provide a 

common interface to the various OS services that the USS processes require - mainly 

message passing. Following details of the PML, the structure of the UML interpreter 

was described, including a detailed explanation of the complex data structure used to 

hold the model description and its instance data. The remainder of the chapter dealt 

with each major software component in turn, starting with the UM, and highlighted 

key aspects of their implementation. 

The implementation was evaluated in chapter 6 which started with a characterisation 

of the platforms used for testing. This was followed by a detailed examination of the 

UML interpreter, its performance and memory requirements. The impact inter-

process communications have on performance was analysed in the section dealing 

with the PML. The rest of the chapter examined the simulation performance of the 

system as a whole, in single node, two node and three node configurations. In 

addition the process migration mechanism was demonstrated using the two and three 

node configurations. A number of enhancements that could be made to the design 

and implementation in order to improve the prototype's performance were also 

described. The chapter concluded with a discussion of the factors affecting the 

performance of the prototype and a number of general observations. 

7.2 USS Classification 

Table 7.1 replicates part of Table 2.3 in order to provide some basis for comparison 

of USS's features. USS is the only distributed VE system architecture out of those 



reviewed that has pursued the goal of interactivity through real-time displays and the 

application of real-time systems techniques. 

7.2.1 Communications 

Currently only point-to-point communications are used but there is scope for the 

utilisation of reliable multicast once it becomes available. Although USS was not 

designed with a specific bandwidth in mind, it is clear from the results presented in 

chapter 6 that anything below 10 Mbps would be unsatisfactory due to the associated 

latencies. Two communication structures have been adopted by USS. Firstly, a 

client/server paradigm is used between processes within the same node, but the 

communication paths are heavily influenced by a hierarchical organisation, e.g. 

messages to other nodes are routed through the UM. Secondly, communication 

between nodes is strictly hierarchical. 

7.2.2 Data and Computation Management 

The method of monitoring state updates which are only sent by the owner when 

changes are made can be classified as passive partial replication. This technique is 

used between USS nodes but all data is replicated in each system, with only system-

unique data being transmitted between them. Localisation, which also has 

implications for computation management, is supported through the use of constraint 

functions in the UM. Complementing the choices of data management is the complete 

distribution of computation between processes within a system. Rather than distribute 

computation between systems, it is completely replicated in every system. Process 

migration is supported, thus increasing the scheduling options and hopefully 

efficiency. As discussed in section 4.5.4.10, arguments can be made for the use of all 

3 levels of behaviour distribution. Most of the systems reviewed supported the 

transmission of an entity's state variables, whether continuously, by request, or only 

when a change of value has occurred. Level 1 distribution (commonly called dead-

reckoning) was used exclusively by WAVES and DIS. Despite the potential display 

side-effects of this technique it is quite effective in reducing bandwidth consumption. 

301 



If necessary, it is possible to implement dead-reckoning with USS on top of the basic 

state management system. 

Feature  dVS AVIARY USS 

Real-time Supported? No No Yes 
Constraints  

Communications Transport Point-to-Point Point-to-Point Point-to-Point 
Mechanism(s)  and Multicast (+ Reliable Multicast?) 

10 Mbps + 10 Mbps + 10 Mbps+ Targeted 
Bandwidth  

Client/Server Client/Server Client/Server & Structure(s) 
Hierarchical 

Data Organisation Passive Partial Complete Passive Partial 
Management Replication Distribution Replication 

(within USS) & 
Total Replication  
(between systems) 

No Yes Yes Localisation 
Support?  

Computation Organisation Partial Complete Complete Distribution 
Management Distribution Distribution (within USS) & 

Complete Replication  
(between systems) 

0 0 0, 1, 2 Behaviour Level 

VE Modeling Environment Parallel Multiple Multiple 
Management  

Multiple, Multiple, Multiple, User Support 
Decoupled with Decoupled Integrated or 
Representation  Decoupled 

Time Progression None Implicit Implicit 
Management Method (within USS) & 

Explicit 
(betweensystems) 

None None NTP Node 
Synchronisation  (SPS Idealised) 

Fault Tolerance Degree 0 0 2 through 4 

Security Method(s) None Object Interface Basic Access Control 
Employed  Level  

Table 7.1 Comparison of distributed YE feature classifications including USS. 

7.2.2.1 Dead-Reckoning 

Given an entity whose definition consists of a position vector and a velocity vector, a 

manager would monitor the velocity vector rather than the position. This would mean 
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that rather than sending continuous position updates as the entity moved, the manager 

could extrapolate a position from the velocity vector. If velocity was constantly 

changing then this technique would give little improvement. However, if two velocity 

vectors were maintained by the entity then even this can be accommodated. One 

vector would be used internally for the entity's own calculations and the second 

vector would be its exported property - monitored by the manager. The exported 

version would fuel its own approximated behaviour model (the same as the 

manager's) and updated only when its approximated behaviour differed significantly 

from its actual behaviour. This now replicates the same functionality that 

conventional dead-reckoning systems have. 

7.2.2.2 High-Level Behaviour 

Level 2 behaviour distribution can also be supported through another basic USS 

mechanism, that of remote UML function invocation. A number of functions would 

be defined to achieve some high-level tasks, such as driving around a corner, and then 

executed at the appropriate time. This technique can be used to control a user's 

shadow on a remote system (section 7.4.5). 

7.2.3 VE Modeling 

Multiple universes may be simulated simultaneously by a USS, although the prototype 

only supports one. There can be many users interacting in a simulation and within a 

system there is no special distinction made between an entity representing a user and 

an automated entity. Input devices are sampled from within the user entity, however, 

whether this is mapped into a direct device access or through a server process is an 

implementation decision. 

7.2.4 Time Management 

Both forms of time management are utilised by USS. Explicit time progression is 

almost a by-product when a distributed deadline scheduler is used to coordinate the 

simulation. 	To ensure synchronicity between individual systems, an implicit 
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progression model is used so that behavioural information generated by one system is 

valid in another. 

7.2.5 Fault Tolerance 

Fault tolerance is an expensive goal, best achieved by duplicating hardware and 

software components. However, there are a number of features of USS that lend 

themselves to at least a little reliability and recoverability - at a cost. The state held by 

a manager or entity may be reconstituted gradually through state updates or explicitly 

by request to the UM. If not enough information is held within a system to 

reconstruct the process, then it may be obtained from another system which is also 

simulating the same Universe. If there is a problem with a particular node then entities 

can be migrated to another node. Alternatively, their state can be obtained from 

another system and started locally on another node. 

7.2.6 Security 

Security is another feature that can generally only be realised at a computational price. 

This aspect was not fully investigated because security measures can often hinder 

evaluation of other system features. However, there is basic access control support in 

that a process may locate the originator of any service request and the UML 

interpreter can limit access to OS services. 

7.3 Important Features 

The proposed architecture deals with a number of issues but there are a few aspects 

which are either worthy of note or unique to this solution. 

7.3.1 Real-Time 

A distributed real-time system forms the basis upon which the USS architecture is 

built. In order for the participants to efficiently interact with the environment and 

each other, it is important that they are provided with real-time displays. To keep in 
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step with the constant update rate of the displays, it is necessary to ensure that all 

entities are also updated at a constant rate. Failure to meet this hard deadline is a 

system failure. If all updates are guaranteed to happen within a given time frame it is 

possible to start accommodating for lags in the system by performing predictive 

calculations. When the simulation is distributed over a number of machines the 

network must also have deterministic properties if it is not to upset the processing 

deadlines. Predictability at this level also presents the opportunity to compensate for 

communications latency. It is likely, however, that determinism will be realised at the 

cost of performance and the under-utilisation of resources - a matter of concern to the 

designers of ATM switches where guaranteed bandwidth and bounded latency are 

primary requirements. 

73.2 Scaleability 

All of the distributed VIE systems reviewed chose one mechanism for handling 

computation and one mechanism for handling data within the system. It is not 

possible to scale the system up or down without affecting the performance of such 

mechanisms. DIS, for example, replicates the data making up the VE on each node 

and partially replicates computation on each node through the use of dead-reckoning 

algorithms. Therefore if the YE has 10,000 entities, then each node must handle data 

and computation for each entity. Initially, when the number of entities in the 

simulation was in their low hundreds, this was not a problem. It was only when larger 

simulations were attempted that the idea of using localisation to reduce the workload 

of each node was suggested (section 2.3.3.1). In a similar vein, AVIARY uses a 

system model that works well when on a tightly-coupled network of workstations but 

will require some modifications if it is to support larger simulations. A similar story 

can be told for the other systems. 

Adapting a design after the fact is always undesirable, because the end result is less 

attractive than it could have been if the design had taken a broader perspective to 

begin with. The architecture presented in this thesis is by no means perfect, but it 

does attempt to define a system that may be scaled from tightly-coupled 
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multiprocessors through to large scale networking of machines over large 

geographical distances. 

The decision of when to network a machine as a USN in a larger USS or as a separate 

system requires further investigation. It is clear, though, that there comes a point 

when the network bandwidth between two clusters of machines can no longer handle 

the amount of traffic generated within a system. In order for users on either end of 

this connection to participate in the same simulation, two systems must be configured 

from these nodes that are capable of replicating each other's simulation workload. 

7.3.3 Bandwidth Reduction 

A great deal of effort has gone into reducing the amount of bandwidth used between 

processes and nodes, thus increasing the number of nodes it is practical to have in a 

system. Only those portions of an entity's state information that are of interest to 

managers are transmitted and only when a change in this information has occurred. 

Managers may also specify constraint functions that are applied to the state data the 

entities transmit to their UM. These functions can filter out unwanted data before it is 

sent to managers resulting in unnecessary computation and, more importantly, sent 

over lower bandwidth communication links to other nodes. Further savings could be 

made if a multicast protocol was available. 

7.3.4 Modeling 

The premise with which the process of yE modeling was approached in this thesis 

was that the development of VEs should not be constrained by past technological 

standards. 

The need to model a VE is relatively new and is presently more of an art than a 

scientific practice. It is an exploratory process that often requires many changes 

before the model has reached a satisfactory state. UML is integrated into the USS 

architecture in such a way that the initial VE model can be developed off-line and then 

modified on-line. Any changes are reflected instantaneously throughout the 
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simulation. For example, a function describing the behaviour of an entity may be 

replaced by sending that entity a new UML definition for the relevant function(s). It 

is also possible to add or delete parts of the UML definition without affecting the 

existing state information for the rest of the definition. 

The ability to build upon existing VE models is a powerful tool which can save time 

and cut development costs. Establishing a set of base environments with well defined 

core behaviours would ensure that YEs built by different designers would allow 

entities to move from one VIE to another with reasonable ease. Although the 

movement of entities between universes was not implemented in the prototype, the 

ability to preserve those parts of an entity's state that are common in the source and 

destination universes is already in place. 

Different perspectives on the same environment may be supported through the use of 

managers that monitor different components of the universe definition and display the 

contents in the desired manner. Alternatively, each manager may monitor the same 

information but only process those that meet certain criteria, probably with the aid of 

constraint functions to reduce bandwidth. 

Any type of information may be modeled, subsequently the system has no knowledge 

of space per se and there is no requirement for it to be modeled. In fact, the UM and 

the core entity and manager libraries understand how information is structured, but do 

not expect any particular organisation, or look for any specific component in it. 

Consequently, only when a suitably dimensioned property (such as position) is added 

to the universe definition will space be modeled. Also, the relationship between 

simulation time and real clock time within the environment can be defined arbitrarily 

(section 4.5.5.1). 

7.3.5 Flexibility 

A minimal working system requires a RM, a UM and one or more ENT processes. In 

this state it is possible to run any non-interactive simulation. Although an entity may 

sample input devices, the user would not be able to see the consequences of their own 
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or the simulation's actions unless a manager was present, connected to a display. A 

manager may be introduced to monitor state changes and generate a suitable display. 

For VE simulations the two most commonly used managers would be VIS and AUR. 

However, non-interactive simulation may simply require a text-based display of key 

simulation variables. Managers are not only used for generating displays; for 

example, the SIM checks for violations of an entity's space and informs the involved 

entities so they may resolve the situation. 

The design of USS was driven by the desire to simulate interactive VEs, but due to its 

flexible structure it may be applied to other types of simulation. For example, 

artificial life simulators often use the model of a parallel processing, shared memory 

machine. Each "entity" within the simulation is a program whose instructions may 

mutate or, through breeding, become merged with another entity's code resulting in a 

hybrid. This process continues over and over again. USS lends itself well to this 

problem because: 

I. There is a direct comparison between the beings in the artificial life 

simulation and entities. 

An entity's code may be replaced at run-time and there is nothing 

to prevent the replacement code being generated by another entity. 

In the same way, one entity may spawn another and define its 

behaviour through UML code generation. 

The simulation would still operate within fixed deadlines but the update frequency 

could be reduced to sub-interactive rates. There may well be more efficient task-

specific methods for the other types of simulation but USS at least provides a 

platform for testing ideas before developing the project further. 
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7.4 Areas for Investigation 

A few improvements to the prototype were presented at the ends of chapters 5 and 6, 

but there are a number of areas encroached upon by distributed YE systems in general 

that the author feels need further attention. 

7.4.1 Reliable Multicast 

As a distributed system is scaled up, so the feasibility of using point-to-point 

communication links rapidly disappears. Multicast communications present the only 

practical solution: the overhead of a single transmission is incurred despite sending to 

multiple destinations. Unfortunately, the multicast systems that are becoming 

available now are, like their predecessors, unreliable. For data such as audio streams 

the occasional loss of a packet is acceptable. However, if state or event data is lost 

making its way from one machine to another then this will affect the state of the 

simulation. The consequences of this range from an event occurring on one node and 

not another, to users making a decision based on incorrect information. At the 

operating system level the consequences could be more severe, e.g. invalidation of a 

fault tolerance redundancy mechanism. Research into reliable multicast protocols is 

underway and the author believes that this work should be encouraged. 

7.4.2 Guaranteed Bandwidth 

Distribution over large areas not only increases communications latency between 

system components, but the latency also varies by greater amounts. Although it is 

impossible to totally eliminate latency, steps can be taken to account for it, but only if 

sensible estimates can be made. Fortunately, ATM permits the reservation of 

channels of fixed bandwidth between the communication's endpoints. Adoption of a 

technology that provides this kind of service at all levels, from LANs through to 

WANs, would also seem to be an essential component of future large-scale distributed 

YE systems. 
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7.4.3 Time Synchronisation 

In order to synchronise time between machines there would appear to be two basic 

options: use a software protocol, such as NTP, or a satellite-based system such as 

SPS. If synchronisation over many hours is unacceptable, then the accuracy obtained 

using software protocols is quite low: within a few seconds. If simulation protocols 

can be developed that cope with this level of accuracy then this is sufficient. 

However, the author believes that the same amount of care given to estimating 

communications latency should be applied to that of time synchronisation. There is a 

solution available in the form of SPS which is currently prohibitively expensive 

(section 4.5.5.2) but, given a mass market and a little time, there is no reason why this 

technology would not become cheap enough to incorporate into every machine. 

7.4.4 Real-Time Operating Systems 

At the time of writing there are very few operating systems that can be used for real-

time applications and are therefore expensive in comparison to the plethora of 

general-purpose operating systems. There are even fewer that support deadline 

scheduling and address the problems of distributed scheduling. The popularity of 

real-time systems research has risen somewhat since the widespread availability of 

multimedia workstations, but significantly more work is needed in this area before 

they may be effectively utilised for interactive real-time YE simulation. 

7.4.5 Shadowing the User 

There comes a point when latency is so great that simply reflecting every single 

change in a user's state to all other machines becomes impractical. A solution is to 

only transmit actions between machines and let the user's shadow processes effect 

these changes in the mirrored environments. This presents three problems that must 

be resolved. Firstly, how these actions are recognised; secondly, how they can be 

described in a form suitable for transmission and, thirdly, how these actions are 

interpreted. The first and last problems will be heavily influenced by the type of 

simulation in that the nature of the actions exhibited will vary. For example, 
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parameterised actions in a networked driving simulator may be reduced to accelerate, 

decelerate, turn left, turn right, navigate roundabout, park, etc. Whereas a Computer 

Supported Cooperative Work (CSCW) application might involve more intimate 

interactions between users. Consequently actions may even be required to mimic 

human gestures and facial expressions, e.g. approval, disapproval, happy, sad, etc. 

The format used for transmission of these actions may be as simple as executing a 

parameterised function remotely, or something more complex. 

The choice of technique has implications for maintaining the integrity of the simulated 

environment. Consequently, more work is needed to assess the additional system 

functionality required to aid action recognition, representation and interpretation. 

7.5 Outlook 

The USS architecture has been dealt with in a rather isolated manner over the past 

few chapters. This section attempts to relate it to a few of the current popular topics 

in the area of VE systems. 

7.5.1 Internet 

The work in this thesis is not applicable to the Internet as it stands today: variable 

delays are experienced between communication endpoints and the available bandwidth 

may vary, to name but two problems. IPng (or IPv6) is essentially IPv4 (the current 

version) with some modifications (Bradner and Rankin, 1995). Aside from 

introducing techniques to reduce message fragmentation, preallocation of network 

resources is supported, allowing establishment of connections guaranteeing bandwidth 

and latency. Multicast has also been added as a standard addressing option for IP 

datagrams; in fact it has replaced broadcast as the base service abstraction, which is 

now a special case of multicast. Combined with a suitable transport mechanism from 

desk to desk, such as ATM, it should be possible to apply the USS architecture to the 

future Internet and certainly improve upon the prototype. 
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75.2 Virtual Reality Modeling Language 

The Virtual Reality Modeling Language (VRML) is an attempt to bring interactive, 

3D YEs to the Internet via the WWW (SGI, 1996). From a modeling standpoint, 

VRML is a classic example of a visual-centric approach. SGI's Open Inventor was 

chosen as the starting point for the format which, over the past two years, has been 

adapted to fit the role of a general format for describing VEs. After reconciling the 

representation of visual information with the need to model behaviour and the 

demands on the client browsers, it was decided to alter the way that the Open 

Inventor scene graph is used. This has been just one of many changes to the file 

format. Consequently, VRML has the same basic look as Open Inventor but is used 

in a different way. Audio has been added to the language and at the time of writing 

the more important problem of encapsulating behaviour is being addressed. Most 

people in the VRML community are agreed upon the fact that some form of 

programming language is required to describe object behaviour but no consensus has 

been reached on which language. The fact that this debate is happening at all reflects 

the problems of completely isolating information representation from simulation 

execution. It is exactly these problems that the USS architecture seeks to relieve 

through integrating the modeling process with the system that will execute the VE 

model. 

7.5.3 Java 

Java has been proposed as a language suitable for object behaviour representation 

within VRML. Java is interpreted, platform independent and increasing in popularity 

every day. Unfortunately for VRML browser writers, source code for a Java 

interpreter is not available requiring a lot more development work just to simulate a 

VRML scene. On the positive side, native translators are beginning to appear which 

greatly reduce the execution times of Java code. However, although Java can load 

classes (in byte-code form) at run-time, existing classes/functions cannot be redefined 

and there is no way of modifying data structures at run-time. Without these abilities, 

the yEs modeled using VRML will be very static in nature and require considerable 

amounts of time to develop and maintain. Specifically, if a VE is to be "upgraded" 
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then all users will have to disconnect whilst the new one is installed, possibly followed 

by a conversion of old state data to the new format. Certainly not a quick or easy 

procedure to schedule when the server is accessed by clients throughout the world. 

7.5.4 Consequences 

Some of the problems with the YAW and the Internet have already been described 

(section 6.7.1). In addition to these, VRML is being developed incrementally from a 

visual file format with the intention that it should one day also guide how machines 

should be networked to realise interactive VEs over the Internet. By approaching the 

problem in this way, the author believes that, in its current form, VRML will not fulfil 

the expectations held by so many in the VRML community. For example, moving 

entities from a VE served by one machine to a different YE served by another is not 

possible unless some standardised structure for the information has been adhered to. 

Currently this is not possible unless all the designers agree to conform to a given 

structure and even then there is no way of enforcing such an agreement. A modeling 

mechanism such as inheritance and a common set of base VEs would resolve this 

problem. 

The problems of distributed YEs are so many and varied that they must all be 

addressed simultaneously to reach a well-rounded solution. Inevitably, however, the 

lessons learnt by developing VRML will reinforce the validity of applying certain 

techniques to distributed VE systems and may possibly even disprove others. 

7.6 Summary 

This thesis has attempted to fuse research in distributed systems, real-time systems, 

modeling, languages and human-computer interaction into one system capable of 

distributing real-time interactive simulations. Those issues examined (to varying 

degrees) just within the area of distributed systems support were: message passing, 

marshalling and unmarshalling, naming and name resolution, heterogeneous nodes, 
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scheduling, process migration, configuration management, performance management, 

time, synchronisation, security and persistence. 

The problem domain is so complex that the exploration of the issues and their inter-

dependencies within the time permitted was relatively limited. Many decisions had to 

be made during the design process, all of which were biased towards a system capable 

of supporting multi-user, interactive, VIE simulations. Interactivity demanded a real-

time system and multiple users required a distributed architecture with comprehensive 

techniques to maintain the integrity of the shared VE. Of the requirements presented 

in section 4.2, applicability was represented by the modeling language and its 

integration into the system, whilst fault tolerance and security took a back seat. 

The architecture's structure is based upon the philosophy that the right tool is used 

for the right job. The combination of different distribution techniques, integrated with 

an expressive, flexible modeling language, has resulted in a scaleable system that can 

be used to both develop and simulate VEs in a heterogeneous, distributed computing 

environment. 
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Appendix A 

UML Grammar 

The grammar presented in Figure A. 1 is for the data definition section of the UML. It 
is an extract from the actual yacc description used to implement the interpreter in the 
prototype. 

1* Interpreter directives */ 

%token 	 D_INSERT 
%token 	 D_REPLACE 
%token 	 D_DELETE 

1* Keywords */ 

%token UNIVERSE 
%token ELEMENT 
%token PROPERTY 
%token FUNCTION 
%token VFUNCTION 
%token CONVERT 
%token CONSTANT 
%token ENTITY 

/ Primitive types and their literals / 

%token INTEGER 
%token <integer> LINTEGER 
%token REAL 
%token <real> LREAL 
%token STRING 
%token <string> LSTRING 
%token BOOLEAN 

/ Name of a Universe, Element, variable, etc... 

%token <string> 	NAME 
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I Comment / 

%token <string> 	COMMENT 

/* Constants *1 

%token 	 C_FALSE 
%token 	 C_TRUE 

/ Code constructs / 

%token VAR 
%token FOR 
%token IF 
%token ELSE 
%token WITH 

%token 	 EQUIV_OP 

file 	: 	1* Nothing */ 

	

I 	file file—component 

file—component: universe 

	

I 	element 

	

I 	constant_ext 

	

I 	property_ext 

	

I 	function_def 

	

I 	entity_def 

	

I 	D_INSERT 

	

I 	D_REPLACE 

	

I 	D_DELETE comp_ident dot_name 

comp_ident: 	UNIVERSE 

	

I 	ELEMENT 

	

I 	CONSTANT 

	

I 	FUNCTION 

	

I 	CONVERT 

	

I 	PROPERTY 

	

I 	ENTITY 

	

universe: 	UNIVERSE name_def 'C' univ_body 

univ_body: 	1* Nothing */ 

	

I 	univ_body univ_def 

	

univ_def: 	constant 

	

I 	element 
property 

	

I 	converter 

	

I 	function 
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constant_ext: 	CONSTANT ext_var_decl 	initialjser 

	

constant: 	CONSTANT var_deci 	initialiser 

initialiser: 	literal 

	

I 	 [ literal—list '] 

literal: 	LREAL 

	

I 	LINTEGER 

	

I 	LSTRING 

	

I 	boolean 

literal—list: 	literal—list ', literal 

	

I 	literal 

boolean: 	C_FALSE 
C_TRUE 

element: 	element_dec 1 

	

I 	element_def 

element_def: 	ELEMENT elemriame 	elem_def_body }' 

element_deci: 	ELEMENT elemname 

	

elemname: 	dot_name ': NAME 
I dot—name 

elem_def_body: 1* Nothing */ 

	

I 	elem_def_body elem_def 

	

elem_def: 	constant 

	

I 	element 

	

I 	property 

	

I 	converter 

	

I 	function 

	

property: 	PROPERTY var_decl ; 

property_ext: 	PROPERTY ext_var_decl 

converter: 	converter_def 
converter_dec 1 

converter_decl: CONVERT NAME ; 
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converter_def: CONVERT NAME '{ 	} 

function: 	function_deci 
function_def 

function_deci: FUNCTION function_proto 
I 	VFUNCTION function_proto 

function_def: 	FUNCTION function_proto code_block 
I 	VFUNCTION function_proto code—block 

function_proto: dot_name return_type 
I 	dot_name pararn_list return—type 

param_list: 	 • 
( var_deci_list ') 

var_decl_list: var_deci_list ', var_deci 
I 	var_dec 1 

var_deci: 	NAME 	type_decl 

ext_var_decl: dot_name 	type_deci 

return—type: 	1* Nothing */ 
I 	: type_deci 

code—block: 	{' code_block_body '} 

code—block—body: 	1* Nothing */ 
code—block—body code—statement 

code_statement: variable_deci 

variable_deci: VAR var_decl ; 

entity_def: 	ENTITY NAME : NAME C' entity_def_body } 

entity_def_body: 	1* Nothing */ 
entity_def_body function 

/* Name definition which may involve inheritance */ 

name_def: 	NAME : dot—name 

'Th 



	

dot—name: 	dot—name 	NAME 
NAME 

1* Type declaration *1 

	

type_dec 	1: 	primitive 

	

I 	primitive list_decl 

	

I 	NAME 

	

I 	NAME list_decl 

primitive: 	REAL 

	

I 	INTEGER 

	

I 	STRING 

	

I 	BOOLEAN 

list_decl: 	[' LINTEGER 1' 

	

I 	'[' 	•J' 

Figure A.1 yacc description of UML grammar. 
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Appendix B 

Benchmark Manager, Entity & 
UML Source Code 

The simulation execution benchmarks described in section 6.5 used the minimalistic 
UML definition shown in Figure B. 1. Those tests that monitored two components 
required the introduction of a second property: quanta2. 

UNIVERSE Benchmark 

PROPERTY 	quanta : INTEGER; 

VFUNCT ION Construct; 
VFUNCTION Update; 
VFUNCTION Destruct; 

ENTITY bmarkl : Benchmark 

FUNCTION Construct; 
FUNCTION Update; 
FUNCTION Destruct; 

Figure B.1 UML definition used in the prototype evaluation. 

The source code for the benchmark entity is shown in Figure B.2 and the source code 
for the manager used to monitor the state updates in given in Figure B.3. 
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#include "ENT.h" 

bool 	EinbedFunctions( mt noofParams, ... ); 

bool 	Construct( void ); 
bool 	Update( void ); 
bool 	Destruct( void ); 

static ENT 
static tjMLProperty 
4ifdef TWO—PROPS 
static UMLProperty 
#endif If end TWO_PROPS 
static UNLlnstance 

*eflt = NULL; 
*quanta; 

*quanta2; 

*quafltalflst; 

mt main( mt argc, char *argv[] 
{ 

if ( argc != 3 11 argv[l] [0] 

cerr << "usage: " << argv[O] << 	[-qt] entity_name\n'; 
return ( 1  ); 

Process: :IPCipc = Process ::IPC: :IPC_NONE; 

if ( argv[l] [lJ == 

ipc 1= Process::IPC::IPC_QNX; 

if ( argv[l][l] == 

ipc 1= Process::IPC::IPC_TCPIP; 

try 

ent = new ENT( ipc, argv[2] ); 

(void)ent->.callback( MSG_UNL_INIT_DEF, ErnbedFunctions ); 

ent->serviceEventS ; 

delete ent; 

catch ( ENTCTORErr0r 

cerr << argv[0] << ": construction failed... terminating\n; 
return 

catch ( ENTError 

delete ent; 
cerr << argv[0] << ": terminating\n " ; 
return 

return ( 0 ); 
} 
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bool EmbedFunctions( mt noofParams, 

UMLEntity 	*entity; 

if ( (entity = ent->definitionO) == NULL 

cerr << "EmbedFunctions: can't locate entity definition\n"; 
return ( false ); 

tjMLFunction *construct, *destruct, *update ;  

construct = entity->findFunction( "Construct" ); 
destruct = entity->findFunction( "Destruct" ); 
update = entity->findFunction( "Update" ); 

if ( construct == NULL II destruct == NULL 11 update == NULL 

cerr << "ErnbedFunctions: can't locate functions\n"; 
return ( false  ); 

construct->setCode( Construct ); 
update->setCode( Update ); 
destruct->setCode( Destruct ); 

return ( true ); 
} 

bool Construct( void 

UMLCompType 	 compType; 
UMLlnstance::ID 	id = ent->instancelDO; 

if ( (compType = ent->definitionO->find( "quanta", 
(UMLComponent *&) qijanta,  id )) 	UML_C_PROPERTY 

cerr << "ERROR: can't locate property\n"; 
return ( false ); 

if ( (quantalnst = quanta->instance( id )) == NULL 

cerr << "ERROR: can't locate instance of property\n"; 
return ( false ); 

#ifdef TWO_PROPS 
if ( (compType = ent->definitionO->find( "quanta2", 

(UMLComponent *&)quanta2, id )) 	UML_C_PROPERTY 

cerr << "ERROR: can't locate property\n"; 
return ( false  ); 

#endif II end TWO—PROPS 

return ( true ); 
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bool update( void 

static mt 	 count = 0; 

Don't perform any calculations, just mark the state as having 
II been modified. 
II 

quanta->modifyO; 
#ifdef TWO_PROPS 

quanta2->modify 0; 
#endif // end TWO—PROPS 

return ( true ); 
} 

bool Destruct( void 

return ( true  ); 
} 

Figure B.2 Benchmark entity source code. 

#include <stdarg.h> 
#include "Manager. h" 

bool 	Registerinterest( mt noofParams, ... 

bool 	Construct( mt noofParams, ... ); 
bool 	Destruct( mt noofParams, ... 

bool 	Update( mt noofParams, ... 

Manager 	 *manager ;  

mt main( mt argc, char *argv[J 

if ( argc 	2 II argv[11 [0) 

cerr << "usage: " << argv[0] << " [-qt]\n'; 
return 

Process: : IPC ipc = Process: :IPC: : IPC_NONE; 

if ( argv[l) [1] == q 

ipc 1= Process::IPC::IPC_QNX; 

if ( argv[11 [1) == t ,  

ipc 1= Process::IPC::IPC_TCPIP; 
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try 

manager = new Manager( ipc, argv[O] ); 

manager->callback( MSG_UML_INIT_DEF, Registerinterest ); 
manager->callback ( MSG _UML_CONSTRUCT, Construct ); 
manager->callback( MSG_tJML_DESTRUCT, Destruct ); 
manager->callback( MSG_UML_UPDATE, Update ); 

manager->serviceEvents 0; 

catch ( ManagerCTORError 

cerr << argv[OJ << ": failed to construct... terminating\n; 
return 

catch ( ManagerError 

delete manager; 
cerr << argv[O] << ": terminating\n"; 
return ( 1 ); 

return ( 0 ); 

bool RegisterintereSt( mt noofParams, 

II Identify which elements of the UML description we will want 
II to monitor. 
II 

manager->monitor( "Benchinark.qUanta" ); 
#ifdef TWO_PROPS 

manager->monitor( 1!B enchmark.quaflta2o ); 
#endif II end TWO—PROPS 

return ( true ); 

bool Construct( mt noofParams, 

va_list 	params; 

if ( noofParams 	2 

cerr << "Construct: expecting 2 parameters for callback\n; 
return ( false ); 

va_start( params, noofPararns ); 

Manager: :Monitor 	*mon = va_arg( params, Manager: : Monitor* ); 

Manager: :Entity 	*ent = va_arg( parains, Manager :: Entity* ); 

va_end( params ); 

return ( true ); 
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bool Destruct( mt noofParams, 
{ 

return ( true ); 
} 

bool Update( mt noofPararns, 

va_list 	params; 

if ( noofParams 	2 

cerr << "Update: expecting 2 parameters for callback\n"; 
return ( false ); 

va_start( params, noofParams ); 

Manager: :Monitor 	*mon = va_arg( params, Manager: :Monitor* ); 
Manager::Entity 	*ent = va_arg( params, Manager::Entity* ); 

va_end( parains ); 

return ( true ); 

Figure B.3 Benchmark manager source code. 
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Appendix C 

UML Benchmark Results 

The charts for this appendix and UML source code and UML source code can be 
downloaded via anonymous ftp from: 

ftp://ftp.dcs.ed.ac.uk/pub/rjh/uml  
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Appendix D 

PML Benchmark Results 

The charts for this appendix can be downloaded via anonymous ftp from: 

ftp://ftp.dcs.ed.ac.uk/pub/rjh/pml  
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Appendix E 

UM Benchmark Results 

The charts for this appendix can be downloaded via anonymous ftp from: 

ftp://ftp.dcs.ed.ac.uk/pub/rjhlum  
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Glossary 

Aural Manager (AUR) 	Optional special manager that interfaces to sound 
generation hardware and provides a number of services 
to help manage the aural representations of entities. The 
nature of the hardware is irrelevant since the services 
provided are flexible enough to accommodate all forms 
of sound generation. 

Computer Image 	Special-purpose hardware that is dedicated to the task of 
Generator (CIG) 	generating three-dimensional graphics. A CIG may take 

the form of anything ranging from a stand-alone unit to a 
single printed-circuit board card. A CIG is connected to 
a general-purpose host that runs software controlling 
access to the CIG's features (often in the form of a 
graphics library). 

Console 	 Hybrid special manager and entity used for 
administrative purposes within a USS. It can be used to 
create/terminate system processes, introduce UML code 
into the simulation, etc. 

Entity (ENT) 	 One of the essential system components. The state of 
the simulation is represented by the sum of each entity's 
state. Core ENT functionality is quite simple, primarily 
consisting of processing monitor requests, periodically 
updating its state, and sending state updates for those 
monitored components that have changed value. An 
entity's functionality may be extended through the use of 
UML code. 

Implementation 	The language that the system processes have been 
Language (IL) 	 implemented in, i.e. C++. This term is used to avoid 

confusion with the modeling language used, i.e. UML. 
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Master USS (MUSS) 	The system in the prototype that manages the routing of 
messages from one (slave) system to another. It is also 
the first system to start in the network and is contacted 
by all other systems after they have finished their 
initialisation. 

Master UM (MUM) 	see Universe Manager 

Node ID (NID) 	Unique identifier used to represent a USN within any 
given system. The prototype supports 32,768 nodes in 
one system. 

Process ID (PID) 	Unique identifier for a process within a USN and is used 
to contact and communicate with the specified process. 
The actual meaning of this identifier is implementation 
and node specific. 

Process Management 	Software library used to abstract each operating 
Layer (PML) 	 system's differences to increase portability of the 

prototype USS. Services are currently restricted to 
message passing but could be extended to include time 
management, etc. 

Resource Manager (RM) Required manager that manages access to all resources 
on the node it is executing on. Contains a dynamic 
deadline scheduler to ensure that all processes complete 
their allocated workload on time, each simulation step. 
Aids the MUM in its system-wide load balancing duties 
by nominating processes that are consuming too many 
local resources. 

Resource Profile (RP) 	Data structure that can be used to hold details of the 
resource consumption of either an individual process or 
a node. An RP is the unit of communication between all 
processes when transferring information regarding 
resource usage. The resources monitored are: CPU, 
memory, backing storage and network bandwidth. 

Spatial Integrity 	Special manager that is used to monitor an entity's 
Manager (SIM) 	position and volumetric information. If one or more 

other entities should "collide" with each other, they are 
informed of the event and then left to resolve the 
situation amongst themselves. 



Special Manager 	All special managers are optional system components, 
but the usefulness of a system without them is limited. 
Often managers are used to control displays, e.g. VIS, 
but they may also simply provide essential services to 
entities, e.g. SIM. 

SUM 	 see Universe Manager 

System ID (SID) 	Unique identifier used to represent a USS within a 
network of systems. The prototype permits a maximum 
of 32,768 such systems to be networked together. 

Universal Configuration Simple variable-value language with a hierarchical 
Language (UCL) 	structure that is used to describe all configuration 

information within the prototype system. 

Universal Modeling 	The language used to describe the Virtual Environment 
Language (UML) 	to be simulated. Structured as one or more related 

universes, each containing a number of constants and 
properties that are used by the defined functions. 
Enables description of the entities inhabiting the 
simulation and their unique behaviour. UML code may 
be passed between processes at run-time and, through 
interpretation, issue service requests to managers, 
redefine an entity's behaviour, and so on. 

Universal Process 	Unique address of a process within all systems. This 
IDentifier (UPID) 	identifier is composed of a unique system ID, node ID 

and process ID. Two UPIDs are present in every 
message transmitted between processes, one detailing 
the sender and the other specifying the destination for 
the message. 

Universal Simulator 	The building block of a USS. A single USN can execute 
Node (USN) 	 a complete simulation on its own but is commonly 

networked with other nodes to form a larger, more 
powerful system. The bandwidth available to processes 
is at its highest within a USN and latency is at its lowest. 
A USN is a user's gateway into the simulation of a 
Virtual Environment. Each node supports one UM, one 
RM, a number of entities, and zero or more special 
managers. 
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Universal Simulator 	A USS is composed of one or more USNs and 
System (USS) 	 distributes the simulations amongst them in order to 

increase simulation speed, manage larger simulations, 
increase system fault tolerance, and permit multiple user 
interaction. One node in every system is nominated as a 
master and runs the MUM which manages 
communications with other systems. Each system within 
a network replicates the simulation workload and they 
keep each other informed of their users' actions within 
the simulation. 

Universe Manager (UM) The UM is the heart of each node. 	Most 
communications within a node pass through the UM. 
Those intended for other nodes are sent to the UM at 
the destination through the Master UM (MUM). The 
services that are most in demand are: progressing the 
local simulation; satisfying requests to monitor state 
information issued by managers; routing state 
information sent by entities; routing messages from local 
processes to remote nodes and vice versa. 

The Master UM has the same responsibilities as a 
normal UM, but in addition it also manages system-wide 
scheduling (including the coordination of entity 
migrations from one node to another). Other special 
services include progressing the simulation within the 
system, coordinating communications with other 
systems, and controlling individual node activation and 
deactivation. All UMs on other nodes' in the system are 
known as Slave UMs. 

Visual Manager (VIS) 	Optional special manager that interfaces to a CIG and 
provides a number of services to help manage visual 
representations. 

332 



Bibliography 

Airey J., Rohif J. and Brooks F. (1990) Towards Image Realism with Interactive 
Update Rates in Complex Virtual Building Environments. Computer Graphics 24(1): 
41-50. 

Anderson B. (1993) Graphical Interfaces Considered as Representations of the Real 
World: Implications of an Affordances-Based Model. In Studies in Perception and 
Action II: 89-93. (London: Lawrence Erlbaum Associates). 

Andersson M., Carlsson C., Hagsand 0. and Stahl 0. (1995) DIVE - The Distributed 
Interactive Virtual Environment Technical Reference Manual. 

Astheimer P. (1993) What You See is What You Hear - Acoustics Applied in Virtual 
Worlds. IEEE Symposium on Research Frontiers in Virtual Reality, October 25-36, 
San Jose, CA: 100-107. 

Barfield W. and Hendrix C. (1995) The Effect of Update Rate on the Sense of 
Presence within Virtual Environments. Virtual Reality: Research, Development and 
Applications 1(1): 3-16. 

Barzel R. (1992) Physically-Based Modeling for Computer Graphics: A Structured 
Approach (London: Academic Press). 

Bellenot S. (1990) Global Virtual Time Algorithms. Proceedings of the SCS 
Multiconference on Distributed Simulation: 122-127. 

Benford S. and Fahlén L. (1993) A Spatial Model of Interaction in Large Virtual 
Environments. Proceedings of the Third European Conference on Computer 
Supported Cooperative Work (ECSCW '93), Milano, Italy, September. 

Betz D. (1991) Your Own Tiny Object-Oriented Language. Doctor Dobbs Journal, 
September: 26-33. 

Bhagwat P., Mishra P.P. and Tripathi S.K. (1994) Effect of Topology on 
Performance of Reliable Multicast Communication. IEEE INFOCOM '94: 
Conference on Computer Communications, Ch. 175, Vols 1-3: 602-609. 

333 



Birman K., Joseph T. and Schmuck F. (1987) ISIS - A Distributed Programming 
Environment, Version 2.1 - User's Guide and Reference. 

Bliss B. (1991) Interactive Steering using the Application Executive. On-line paper. 
ftp://sp2.csrd.uiuc.edu/pub/ae.tar.Z  

Bloomer J. (1992) Power Programming with RPC. O'Reilly & Associates, Inc. 
ISBN 0-937175-77-3 

Boisseau M., Demange M. and Munier J. (1995) An Introduction to ATM 
Technology. International Thomson Publishing, London. 

Bouma W.J., Vanecek Jr G. (1991) Collision Detection and Analysis in a Physically 
Based Simulation. Proceedings of the Eurographics Workshop on Animation and 
Simulation, Vienna, Austria: 191-203. 

Boutaba R. and Folliot B. (1993) Load Balancing in Local Area Networks. IFIP 
Transactions C - Communication Systems, 11 67-78. 

Bowman M., Peterson L.L. and Yeatts A. (1990) Univers: An Attribute-based Name 
Server. Software Practice and Experience, 20(4): 403-424. 

Braden R. (1992) TIME-WAIT Assassination Hazards in TCP. RFC 1337. 

Bradner S. and Mankin A. (1995) The Recommendation for the IP Next Generation 
Protocol. Network Working Group, RFC 1752. 

Bryson S. (1991) Interaction of objects in a virtual environment: a two-point 
paradigm. Stereoscopic Displays and Applications II, SPIE Proceedings. Vol. 1457: 
180-187. 

Bretthauer H., Christaller T. and Kopp J. (1989) Multiple vs. Single Inheritance in 
Object-oriented Programming Languages. Microprocessing and Microprogramming 
28: 197-200. 

Broil W. (1995) Interacting in Distributed Collaborative Virtual Environments. 
Proceedings of the IEEE VRAIS'95 - Virtual Reality Annual International 
Symposium: 148-155. 

Caird J.K. and Hancock P.A. (1993). The Application of Ecological Human Factors 
Principles to Virtual Environment Interface Design. In Proceedings of VHth 
International Conference on Event Perception and Action: 36. 

Calvin J., Dickens A., Gaines B., Metzger P., Miller M., Owen D. (1993) The 
SIMNET Virtual World Architecture. Proceedings of the IEEE VRAIS '93 
Conference: 450-455. 

Cameron, S. (1990) Collision Detection by Four-Dimensional Intersection Testing. 
IEEE Transactions on Robotics and Automation, 6(3): 291-302. 

334 



Carlson N.R. (1986) Physiology of Behaviour (3rd Edition). (Allyn and Bacon, Inc.) 

Carlsson C. and Hagsand 0. (1993) DIVE - a Multi-User Virtual Reality System. 
Proceedings of the IEEE VRAIS '93 Conference: 394-400. 

Checkland P. (1994) Systems Thinking, Systems Practice. John Wiley & Sons. 
ISBN 0-471-27911-0 

Cheng S. (1988) Scheduling Algorithms fo Hard Real-Time Systems - A Brief 
Survey. Hard Real-Time Systems (eds.: John A. Stankovic and Krithi Ramamritham). 
ISBN 0-8186-0819-6 

Cleary J., Gomes F., Unger B., Zhonge X. and Thudt R. (1994) Cost of State Saving 
& Rollback. Proceedings of the SCS Multiconference on Distributed Simulation: 94-
101. 

Coco G.P. (1992) The VEOS Project: Tool Builders Manual. Internal Report, 
Human Interface Technology Lab, University of Washington. 

D'Souza L., Fan X. and Wilsey P. (1994) pGVT: An Algorithm for Accurate GVT 
Estimation. Proceedings of the 8th Workshop on Parallel and Distributed Simulation: 
102-109. 

Dana P. (1995) An Overview of the Global Positioning System (GPS). On-line 
document. http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.htmi  

DIWG - Distributed Interactive Simulation Working Group (1993) Communications 
Architecture for DIS. Institute for Simulation and Training, University of Florida, 
U.S.A. 

DIS (1994) Standard for Distributed Interactive Simulation -- Application Protocols. 
Version 2.0, Fourth Draft. Institute for Simulation and Training, University of 
Florida, U.S.A. 

Division (1994) dVS v2.0.4 Technical Overview. Manual. 

Dunnett P., Harwood R.M., Brookes G.R. and Wills D.P. (1995) Use of a Modified 
Kalman Filter for a Visually Coupled System Application. Virtual Reality: Research, 
Development and Applications 1(1): 57-68. 

Ellis S.R. (1991) Pictorial Communication in Virtual and Real Environments. 
(Taylor & Francis Ltd.) 

Ellis S.R. (1994) What Are Virtual Environments? IEEE Computer Graphics & 
Applications, January 1994: 17-22. 

de Figueiredo L.H., Ierusalimschy R., Filho W.C. (1994a) The design and 
implementation of a language for extending applications. On-line paper. 

335 



de Figueiredo L.H., Ierusalimschy R., Filho W.C. (1994b) Reference Manual of the 
Programming Language Lua. On-line paper. 

Friedmann M. Starner T. and Pentland A. (1992) Synchronisation in Virtual Realities. 
Presence Teleoperators and Virtual Environments 1(1): 139-144. 

Funkhouser T. and Sequin C. (1993) Adaptive Display Algorithm for Interactive 
Frame Rates During Visualization of Complex Virtual Environments. Proceedings of 
SIGGRAPH '93: 247-254. 

Gavish B. and Sridhar S. (1994) Algorithms for Load Balancing in Distributed 
Computer Systems. Computers and Operations Research, 21(3): 239-248. 

Geist G.A. and Sunderam V.S. (199 1) The PVM System: Supercomputing Level 
Concurrent Computations on a Heterogeneous Network of Workstations. 
Proceedings of the Sixth Distributed Memory Computing Conference, Portland, OR: 
258-261. 

Gettys J. (1996) Simple MUX Protocol Specification. On-line paper, 
http://www.w3.org/pub/WWW/TR/WD-mux  

Ghosh K., Panesar K., Fujimoto R.M. and Schwan K. (1994) PORTS: A Parallel, 
Optimistic, Real-Time Simulator. Proceedings of the 8th Workshop on Parallel and 
Distributed Simulation (PADS'94), July 6-8, Edinburgh, UK. 

Gibson J.J. (1979) The Ecological Approach to Visual Perception. (London: 
Lawrence Erlbaum Associates). 

GNU (1995) G+-i- FAQ. http://www.cis.ohio-state.edulhypertextlfaq/usenet/g++-
FAQ/plain/faq.html  

Gosling J. and McGilton H. (1995) The Java Language Environment: A White Paper. 
http://java.sun.com/whitePaper/java-whitepaper-l.htn -d  

Grimsdale C. (1993) Virtual Reality Evolution or Revolution. Proceedings of the 
third annual conference on Virtual Reality, London, April: 15-18. 

Grunsteidl G. and Kopetz H. (1992) A Reliable Multicast Protocol for Distributed 
Real-Time Systems. Real Time Programming, 1: 19-23. 

Hagsand 0. (1995) SID2 Interface Specification. On-line document, SICS. 
http://www.sics.se/-.olof/sid2.html  

Halang W.A. (1992) Load Adaptive Dynamic Scheduling of Tasks with Hard 
Deadlines Useful for Industrial Applications. Computing, 47(3): 199-213. 

Harvey E., Schaffer R. and McGarry S. (1991) High Performance Fixed-Wing 
Aircraft Simulation using SIMNET Protocols. Proceedings of the 1991 SCS 
Conference, 23rd Annual Summer Computer Simulation Conference: 965-970. 

336 



Hawkes R. (1993) Virtual Environment Laboratory, University of Edinburgh. 
Proceedings of Virtual Reality Systems Fall '93, New York, October 19-2 1. 

Hawkes R., Rushton S. and Smyth M. (1995) Update Rates and Fidelity in Virtual 
Environments. Virtual Reality: Research, Development and Applications, 1(2): 85-94. 

Hemmje M. and Strohmer P. (1993) Towards Agent-Based Modelling of Time and 
Dynamic Behaviour of Graphical Objects within Virtual Scenes. Eurographics First 
Workshop on Virtual Reality, Barcelona, Spain: 103-112. 

Holloway R. (1992) Viper: A Quasi-Real-Time Virtual-Worlds Application. 
Technical Report TR92-004, UNC, Chapel Hill. 
ftp://ftp.cs.unc.edu/pub/techreportS/92-004.tar.Z  

IEEE (1987) IEEE Standard for Radix-Independent Floating-Point Arithmetic. 

Jacobson V., Braden R. and Borman D. (1992) TCP Extensions for High 
Performance. RFC 1323. 

Jefferson D. and Sowizral H. (1985) Fast concurrent simulation using the time warp 
mechanism. Proceedings of the SCS Multiconference on Distributed Simulation: 63- 
69. 

Jense. G.J. and Kuijper In F. (1993) Virtual Environments for Advanced Trainers 
and Simulators. In Proceedings of the International Training Equipment Conference 
and Exhibition. London, May 4-6: 49-57. 

Kanarick C.M. (1991) A technical overview and history of the SIMNET project. 
Proceedings of the SCS Multiconference on Distributed Simulation: 104-111. 

Karamcheti V. and Chien A. (1994) FM: Fast Messaging on the Cray T3D. 
http: //wwwcsag.cs.uiuc .edu/prOjeCtS/cOmmUflicati0fl/Crayme5Sagiflg.html  

Katz W. (1994) Military Networking Technology Applied to Location-Based, Theme 
Park and Home Entertainment Systems. ACM Computer Graphics 28(2): 110-112. 

Kazman R. (1993a) HIDRA: An Architecture for Highly Dynamic Physically Based 
Multi-Agent Simulations. International Journal of Computer Simulation, 1993. 

Kazman R. (1993b) Load-Balancing and Latency Management in a Distributed 
Virtual World. Proceedings of the 3rd International Conference on Cyberspace, May 
1993. 

Kazman R. (1993c) Making WAVES: On the Design of Achitectures for Low-end 
Distributed Virtual Environments. IEEE Symposium on Research Frontiers in Virtual 
Reality, October 25-36, San Jose, CA: 443-449. 

Kazman R. (1993d) Problems of Scale: Moving Beyond Toy Virtual Worlds. 
Unpublished paper. 

337 



Kim K.H. (1995) Action-Level Fault Tolerance IN Advances in Real-Time Systems. 
(ed. Sang H. Son) Prentice-Hall, Inc. 

Latta J.H. and Oberg D. J. (1994) A Conceptual Virtual Reality Model. IEEE 
Computer Graphics Applications, January 1994: 23-29. 

Laubach M. (1994) Classical IP and ARP over ATM. Network Working Group, 
RFC 1577. 

Le Saché B. and de Medeuil C. (1993) Simulator Networking: An Application for 
Fighter Aircraft Simulators. Proceedings of the International Training Equipment 
Conference and Exhibition (ITEC '93), May 4-6, London: 357-366. 

Lee D.N. (1976) A theory of visual control of braking based on information about 
time to collision. Perception 5: 437-439. 

Lee D.N. (1978) IN Modes of Perceiving and Processing Information. (London: 
Lawrence Eribaum Associates). 

Lee D.N. (1993) Body-environment coupling IN Neisser U. (ed.) The perceived self: 
Ecological and interpersonal sources of self-knowledge (Cambridge University Press): 
43-67. 

Levine J.R, Mason T. and Brown D. (1992) lex & yacc. O'Reilly & Associates, Inc. 
ISBN 1-56592-000-7 

Liang J., Shaw C. and Green M. (1991) On Temporal-Spatial Realism in the Virtual 
Reality Environment. Proceedings of the 4th Annual Symposium on User Interface 
Software and Technology: 19-25. 

Lipton R.J. and Mizell D.W. (1985) Time Warp vs. Chandy-Misra: A Worst-Case 
Comparison. Proceedings of the SCS Multiconference on Distributed Simulation: 
137-143. 

Liskov B. (1993) Practical Uses of Synchronised Clocks in Distributed Systems. 
Distributed Computing, 6: 211-219. 

Locke C.D., Tokuda H. and Jensen H.D. (1985) A Time-Driven Scheduling Model 
for Real-Time Operating Systems. Technical Report, Carnegie-Mellon University. 

Locke J. (1992) An Introduction to the Internet Networking Environment and 
SIMNETIDIS. On-line paper, ftp://taurus.cs.nps.navy .miIJ  

Long T. (1992) ICI Technical Description. On-line paper, 
ftp://ftp.su.edu.au/pub/ici.tar.Z  

Luciani A., Jimenez S., Florens J., Cadoz C., Raoult 0. (199 1) Computational 
Physics: A Modeler - Simulator for Animated Physical Objects. Proceedings of the 
European Computer Graphics Conference and Exhibition: 425-436. 

338 



Macedonia, M., Zyda, M., Pratt, D. and Barham, P. (1995) Exploiting Reality with 
Multicast Groups: A Network Architecture for Large Scale Virtual Environments. 
Proceedings of the IEEE Virtual Reality Annual Symposium, 11-15 March, North 
Carolina. 

Macedonia, M., Zyda, M., Pratt, D., Barham, P. and Zeswitz, S. (1994) NPSNET: A 
Network Software Architecture for Large Scale Virtual Environments. Presence - 
Teleoperators and Virtual Environments 3(4). 

Mastaglio T. and Callahan R. (1995) A Large-Scale Complex Virtual Environment 
for Team Training. Computer 28(7): 49-56. 

McCarty W., Sheasby S., Amburn P., Stytz M. and Switzer C. (1994) A Virtual 
Cockpit for a Distributed Interactive Simulation. IEEE Computer Graphics & 
Applications, January 1994: 49-54. 

Milenkovic M. (1992) Operating Systems - Concepts and Design, Second Edition. 
McGraw-Hill, Inc. 

Mills D. (1992) Network Time Protocol (Version 3) Specification and 
Implementation. Network Working Group, RFC 1305. 

Minsky M., Ouh-young M., Steele 0., Brooks F. and Behensky M. (1990) Feeling 
and Seeing: Issues in Force Display. Computer Graphics, 24(4): 235-243. 

Mon-Williams M., Wann J.P., Rushton S. (1993) Binocular Vision in a Virtual 
World: Visual deficits following the wearing of a head-mounted display. Ophthalmic 
and Physiological Optics 13(4): 387-391. 

Motorola (1992) Motorola 88110 User's Guide. Manual. 

MPI (1993) MPI Final Draft. http://www.mcs.anl.gov/mpilmpi-reportimpi-
report.html  

NPSNET (1995) NPSNET IV.7J System Overview. Manual. 

Ouh-young M., Pique M., Hughes J., Srinivasan N. and Brooks F. (1988) Using a 
Manipulator for Force Display in Molecular Docking. Proceedings of the IEEE 
International Conference on Robotics and Automation: 1824-1829. 

Pausch R., Crea T. and Conway M. (1992) A Literature Survey for Virtual 
Environments: Military Flight Simulator Visual Systems and Simulator Sickness. 
Presence Teleoperators and Virtual Environments 1(3): 344-363. 

Paxson, V. (1993) The Glish User Manual. On-line paper, ftp://ftp.ee.lbl.gov/glishl.  

Permobil Meditech, Inc. (1993) Operating and Installation Manual for the Ober/2 12 
bit Parallel System. 

339 



Pimentel K. and Teixeira K. (1993) Virtual Reality: Through the New Looking Glass. 
Intel/WindcrestfMcGraw Hill. ISBN 0-8306-4064-9 

Piscitello D. and Lawrence P. (1991) The Transmission of IP Datagrams over the 
SMDS Service. Network Working Group, RFC 1209. 

Postel J. (1981 a) Transmission Control Protocol - DARPA Internet Program 
Protocol Specification. RFC 793. 

Postel J. (1981b) Internet Control Message Protocol - DARPA Internet Program 
Protocol Specification. Network Working Group, RFC 792. 

Pullen J.M. (1994) Networking for Distributed Virtual Simulation. Computer 
Networks and ISDN Systems, 27: 387-394. 

QNX (1993) QNX System Architecture. Manual. 

QNX (1994) Using Shared Libraries in QNX 4.21. Technical Note. 

QNX (1995) Technical Note on Configuring the QNX 4.22 Process Manager. 

Reddy M. (1995) A Survey of Level of Detail Support in Current Virtual Reality 
Solutions. Virtual Reality: Research, Development and Applications 1(2): 85-88. 

Robinett W. (1992) Synthetic Experience: A Proposed Taxonomy. Presence 1(2): 
229-247. 

Roehl B. (1995) Some Thoughts on Behaviour in VR Systens. On-line document. 
http:llsunee.uwaterloo.ca/-broehllbehav.html 

ROnngren R. and Ayani R. (1994) Adaptive Checkpointing in Time Warp. 
Proceedings of the SCS Multiconference on Distributed Simulation: 110-117. 

Rotithor H.G. (1994) Taxonomy of Dynamic Task Scheduling Schemes in 
Distributed Computing Systems. IEEE Proceedings - Computers and Digital. 
Techniques, 141(1): 1-10. 

van Rossum G. (1994a) Extending and Embedding the Python Interpreter. On-line 
manual, ftp://ftp.cwi.nl/pub/python/doc/postscript.tar.gz  

van Rossum G. (1994b) Python Reference Manual. On-line manual, 
ftp://ftp.cwi.nl/pub/python/doc/postscript.tar.gz  

van Rossum G. (1994c) Python Library Reference. On-line manual, 
ftp://ftp.cwi.nllpub/pythonldoc/postscript.tar.gz  

Rushton S., Wann J. (1993) Problems in Perception and Action in Virtual Worlds. 
Proceedings of the third annual conference on Virtual Reality. London, April: 43-55. 

340 



Schachter E.J. (198 1) Computer Image Generation for Flight Simulation. IEEE 
Computer Graphics and Applications, 1: 29-68. 

SGI (1995) IRIS Performer Programmers Guide. 

Sha L. and Sathaye S.S. (1995) A Systematic Approach to Designing Distributed 
Real-Time Systems IN Advances in Real-Time Systems (ed.: Sang H. Son). Prentice-
Hall, Inc. ISBN 0-13-083348-7 

Shaw C., Liang J., Green M. and Sun Y. (1992) The decoupled simulation model for 
virtual reality systems. Proceedings of the CHT'92: 321-328. 

Shaw, C. and Green, M. (1993) The MR Toolkit Peers Package and Experiment. 
IEEE Symposium on Research Frontiers in Virtual Reality, October 25-36, San Jose, 
CA: 463-469. 

Smets G.J.F., Overbeeke K.J. and Stappers P.J. (1993) Modelling Objects in a 
Virtual Environment: About Direct Manipulation and Affordances. In Proceedings of 
VIIth International Conference on Event Perception and Action: 34-35. 

Smets G.J.F., Stappers P.J. and Overbeeke K.J. (1994) Designing in Virtual Reality: 
Implementing Perception-Action Coupling with Affordances. In Proceedings of the 
Virtual Reality Software & Technology '94 Conference: 97-110. 

Snowdon D.N. (1995) AVIARY: A Model for a General Purpose Virtual 
Environment. PhD Thesis. Department of Computer Science, University of 
Manchester. 

Snowdon D.N. and West A.J. (1994) AVIARY: Design issues for future large-scale 
Virtual Environments. Presence, 3(4). 

Snowdon D.N., West A.J., Howard T.L.J. (1993) Towards the next generation of 
Human-Computer Interface. Proceedings of Informatique '93: Interface to Real & 
Virtual Worlds. Montpellier, France, March 24-26: 398-408. 

Spero S.E. (1996) Analysis of HTTP Performance Problems. On-line paper, 
http://www.w3 .org/pub/WWWfProtocolsfHTTP-NG/http-prob.html  

Stankovic J.A., Ramamritham K. and Cheng S. (1985) Evaluation of a Flexible Task 
Scheduling Algorithm for Distributed Hard Real-Time Systems. Hard Real-Time 
Systems (eds.: John A. Stankovic and Krithi Ramamritham). ISBN 0-8186-0819-6 

Swawe M. (1989) Is Multiple Inheritance Necessary? Dr. Dobbs Journal 14(3): 107-
110. 

Talpede R. and Ammar M.H. (1995) Single Connection Emulation (SCE): An 
Architecture for Providing a Reliable Multicast Transport Service. Proceedings of the 
International Conference on Distributed Computing Systems, Ch. 62: 144-151. 

341 



Tempi J. (1993) A Systematic Approach to Multiple Inheritance Implementation. 
ACM SIGPLAN Notices, 28(4): 61-66. 

UVa User Interface Group (1995) Alice: Rapid Prototyping for Virtual Reality. 
IEEE Computer Graphics and Applications 15(3): 8-11. 

UVa User Interface Group (1995) Alice: Rapid Prototyping for Virtual Reality. 
IEEE Computer Graphics and Applications 15(3): 8-11. 

SGI (1996) The Virtual Reality Modeling Language Specification 2.0. 
http://www.sgi.com/mOViflg-WOrldS.index.html  

VerIssimo P. and Marques J.A. (1990) Reliable Broadcast for Fault-Tolerance on 
Local Computer Networks. Proceedings of the 9th Symposium on Reliable 
Distributed Systems, Ch. 18: 54-63. 

Wang, Q., Green, M. and Shaw, C. (1995) Environment Manager (EM) - User 
Manual. 

Watcom (1995) Watcom C/C++ Compiler Tools Reference Manual. 

Webb R. and Gigante M. (1992) Using Dynamic Bounding Volume Hierarchies to 
Improve Efficiency of Rigid Body Simulations. Proceedings of CGI '92, Tokyo: 825 
-841. 

Wheeler A., Ellinger J. and Glicker S. (1993) The Design and Implementation of an 
Experimental Virtual Acoustic Display. On-line paper. 

Wloka M. (1993) Dissertation Proposal: Time Critical Graphics. Department of 
Computer Science, Brown University, Providence, Rhode Island. CS-93-50. 

Zyda, M.J., Monahan, J.G. and Pratt, D.R. (1992a) NPSNET: Physically-Based 
Modeling Enhancements to an Object File Format. Chapter in Creating and 
Animating the Virtual World. Springer-Verlag, Tokyo, 1992: 35-52. 

Zyda M.J., Pratt D.R., Monohan J.G. and Wilson K.P. (1992b) NPSNET: 
Constructing a 3D Virtual World. Proceedings of the 1992 Symposium on Interactive 
3D Graphics: 147-155. 

Zyda M.J., Pratt D.R., Osborne W.D. and Monahan J.G. (1993) NPSNET: Real-time 
Collision Detection and Response. The Journal of Visualization and Computer 
Animation, special issue on Simulation and Motion Control, 4(1): 13-24. 

342 


