
A Software Architecture
for Modeling and Distributing

Virtual Environments

Rycharde Hawkes

Doctor of Philosophy

The University of Edinburgh

1996

r.

t)

In memory of

Marlyn "Rocket" Howard

Abstract

The simulation of a Virtual Environment (YE) is an intensive process which is
severely limited if restricted to one machine. Through distribution it is possible to
increase the size and accuracy of the simulation, thus permitting multiple users to
interact with each other and the VIE.

Existing distributed YE systems have been designed to target a specific level of
distribution. This level is dictated by the geographical distance over which the
systems must operate and the communications medium connecting them. The system
requirements on a tightly-coupled multiprocessor system are not the same as those of
a system operating over a Wide Area Network (WAN). Consequently, the solution
for any given level does not scale well to larger or smaller system configurations.

VE modeling has its heritage in Computer-Aided Design (CAD) and has evolved
unchecked into its present state. As the amount of information required in a YE
increases, so the current modeling techniques and tools are put under added stress to
cope with the extra load. Most modeling techniques are driven by the structure of the
system upon which the model must execute, rather than capturing the structure of the
information it should represent.

This thesis questions the motives behind YE modeling, examines the problems of
distributing a YE and details the various solutions that have been employed. An
analysis of the methods used leads to the selection of techniques which may be
combined to provide a solution unified over all levels of distribution. The proposed
solution is also integrated with and actively supports the modeling process, thus
providing a powerful environment for VE designers and participants alike.

The architecture of this system is presented complete with a description of a
prototype implementation that demonstrates the key aspects. The thesis concludes
with an evaluation of the prototype.

Acknowledgements

There are many people that I would like to thank, but this thesis is long enough
already. Therefore I would like to specifically mention just a few: my supervisor, Eric
McKenzie; Martin Reddy and David Stephenson for actually reading the whole thesis;
Pierre duPont for answering many questions; my friends and family for their
understanding and encouragement over the years; my invisible friend Bobo the pink
flying elephant, who prevented me from losing my mind; and last, but not least,
Frederike van Wijck, without whose support I would surely have never finished.

This thesis was undertaken on a part-time basis whilst the author was employed on
the JCIJMRC Grant G9212693: Visual Control of Steering.

Declaration

I declare that this thesis was composed by myself, and that the work
contained therein is my own, except where explicitly stated
otherwise in the text.

Rycharde Hawkes

Contents

1 . INTRODUCTION ... 1

1.1 	MOTIVATION..2
1.2 A MODELING 1'IME-LINE.. 3

1.2.1 	Past...
1.2.2 	Present.. 4

1.2.3 	Future.. 5
1.3 DISTRIBUTING SIMULATIONS...6
1.4 INTERACTIVITY .. 6
1.5 THESIS PREVIEW ... 8

1.6 	SUMMARY.. 9

2. DESIGN ISSUES FOR DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS 10

2.1 DISCRETE EVENT SIMULATION HERITAGE.. 11

2. 1.1 	Optimistic versus Conservative.. 11
2.1.2 	Time 	Warp... 12
2.1.3 Discrete Event Simulation Summary.. 13

2.2 	ISSUES 	... 14

2.2.1 	Real-time... 14
2.2.2 Communications.. 15
2.2.3 Data Management... 18
2.2.4 Computation Management .. 22

2.2.5 	VE Modeling.. 25
2.2.6 Time Management... 27
2.2.7 Fault Tolerance 28
2.2.8 Security ... 30
2.2.9 Issues Summary ... 30

2.3 IMPLEMENTATIONS... 31
2.3.1 SiMulation NETworking System (SIMNET).. 31
2.3.2 Distributed Interactive Simulation (DIS).. 32
2.3.3 Naval Postgraduate School Networked Vehicle Simulator IV (NPSNET-1V) 35
2.3.4 Minimal Reality (MR) Toolkit.. 39
2.3.5 Distributed Interactive Virtual Environment (DIVE).. 42
2.3.6 Distributed Virtual Environment System (dVS)... 45
2.3.7 Waterloo Virtual Environment System (WAVES).. 48
2.3.8 AVIARY ... 51

2.4 	SUMMARY.. 54

2.4.1 Communication Organisations... 54
2.4.2 Transport Mechanisms... 56
2.4.3 Bandwidth Implications ... 56
2.4.4 Distribution & Scaleability.. 57

2.4.5 	Time 	.. 60
2.4.6 Fault Tolerance... 61
2.4.7 Security ... 62
2.4.8 Modeling ... 62
2.4.9 System Summaries.. 63

2.4.10 A 	Universal Architecture ... 64

3. MODELING AND DISPLAYING VIRTUAL ENVIRONMENTS 	 .65

3.1 	A NEW MODELING PARADIGM .. 66
3. 1.1 	Definition of a Model... 66
3.1.2 An Ecological Approach..67
3.1.3 Tools of the Trade..69
3.1.4 Virtual Environment Taxonomies... 71
3.1.5 An Abstract Model... 77
3.1.6 Representations... 78

3.2 THE MODELING PROCESS.. 79
3.2.1 Model Construction... 81
3.2.2 The Design Process.. 83

3.3 REAL-TiME VIRTUAL ENVIRONMENT DISPLAYS.. 84

3.3.1 Problems with Variable-Rate Systems.. 86
3.3.2 The Variable-Rate Paradigm ... 90
3.3.3 The Fixed-Rate Paradigm.. 90
3.3.4 	Conclusions... 93

3.4 	SUMMARY.. 94

4. A UNIVERSAL SIMULATION SYSTEM ... 95

4.1 	SYSTEM REQUIREMENTS ...97
4.2 DESIGN RESTRICTIONS.. 98

4.2.1 	Finite Memory... 98
4.2.2 Finite Computational Power ... 98
4.2.3 Finite Communications Bandwidth... 99
4.2.4 Limited Transport Mechanisms.. 100

4.3 DISTRIBUTED REAL-TIME SYSTEM IMPLICATIONS .. 100

4.3.1 	Computation Management... 101
4.3.2 Memory Management.. 105
4.3.3 Locating Resources.. 105
4.3.4 Location of Backing Store.. 106
4.3.5 	Fault Tolerance... 106
4.3.6 Summary.. 107

4.4 A UNIVERSAL MODELING LANGUAGE ... 108

4.4.1 Language Requirements... 108
4.4.2 Candidate Languages .. 111
4.4.3 Proposed Language... 117
4.4.4 Summary .. 130

4.5 SYSTEM ARCHITECTURE ... 130

4.5.1 	Universal Simulation Node.. 131
4.5.2 	Universal Simulator System... 132
4.5.3 System Organisation.. 134
4.5.4 System 	Operation... 137
4.5.5 	Time Management... 159
4.5.6 	Fault Tolerance... 160
4.5.7 Access 	Control... 162
4.5.8 Feature Summary... 163

4.6 	SUMMARY.. 165

5 . A PROTOTYPE USS.. 167

5.1 REAL-TIME IN THE REAL WORLD ..167

5.].1 Real-Time Displays..168
5.1.2 Conclusions...174

5.2 TARGET PLATFORMS ..175

5.2.1 IBM Personal Computer Compatibles..175
5.2.2 Cray T3D...175

II

5.2.3 Sun SPARCcenter 	 . 177
5.2.4 Sc! RealityStation... 177
5.2.5 Implementation Language.. 177

5.3 	NETWORKING... 178

5.3.1 	IPC Mechanisms.. 179
5.3.2 Addresses... 180
5.3.3 Messages ... 181
5.3.4 Hardware Differences .. 182
5.3.5 Layer Implementation..185
5.3.6 Networking Summary...190

5.4 CONFIGURATION CONTROL... 190
5.4.1 Universal Configuration Language (UCL)... 191
5.4.2 System Configuration ... 192

5.5 A IJML INTERPRETER .. 193

5.5.1 	Overall Structure... 193
5.5.2 Interpreting the Data Definition... 194
5.5.3 Instancing.. 195
5.5.4 Component Dependencies.. 199
5.5.5 Interpreting Instruction Code... 200
5.5.6 Interpreter Embedding... 202
5.5.7 Persistence .. 203

5.6 UNIVERSE MANAGER.. 203

5.6.1 	Node Initialisation... 204
5.6.2 System Initialisation... 204
5.6.3 Managing Processes.. 207
5.6.4 Processing Service Requests.. 209
5.6.5 Entity Migration.. 210
5.6.6 System Interaction ... 211
5.67 System Termination.. 212

5.7 RESOURCE MANAGER ... 212
5.7.1 Resource Consumption .. 212
5.7.2 Initialisation.. 213
5.7.3 	Services... 214

5.8 ENTITY LIBRARY.. 215

5.8.1 	Initialisation.. 215
5.8.2 Service Requests.. 215

5.9 MANAGER LIBRARY.. 216

5.9.1 	Initialisation .. 216
5.9.2 Simulation Loop... 217

5.10 VISUAL MANAGER.. 218

5.10.1 	Initialisation.. 219
5.10.2 Simulation Loop... 219
5.10.3 Entity Enhancement... 219
5.10.4 	V1S Summary... 220

5.11 	CONSOLE ... 220
5.12 FURTHER IMPROVEMENTS ... 220

5.12.1 	Configuration .. 220
5.12.2 Multi-part Messages.. 221
5.12.3 State Encoding... 221
5.12.4 Persistence... 221
5.12.5 Message Elimination.. 222
5.12.6 Entity Synchronisation... 222
5.12.7 Function Access... 222

5.13 	SUMMARY.. 223

111

6. PROTOTYPE EVALUATION ...225

6.1 	SYSTEM ANALYSIS ...226
6.2 TESTING METHODOLOGY.. 227

6.2.1 	CPU Performance .. 227
62.2 Computation and Communication.. 230
62.3 Memory ... 231
6.2.4 Instrumentation.. 233

6.3IJML ... 233

6.3.1 	Code Size... 234
6.3.2 Primitive Types.. 235
63.3 Component Sizes.. 235
63.4 Interpretation... 240
6.3.5 State Management... 241
6.3.6 Summary of UML Analysis... 246

6.4 PML.. 246

6.4.1 	Transmission.. 247
6.4.2 Reception... 252
6.4.3 	Throughput.. 255
6.4.4 TCP/IP Performance .. 258
6.4.5 PML Summary... 260

6.5 SIMULATION EXECUTION .. 260

6.5.1 	Single Node ... 263
6.5.2 Two Nodes... 267
65.3 Three Nodes... 271
6.5.4 Entity Migration.. 275
6.5.5 Process Activity... 278
65.6 Simulation Execution Summary .. 282

6.6 IMPROVING PERFORMANCE ... 282

6.6.1 Message Elimination ... 283

662 Shared-Memory IPC.. 284
6.63 Multicast. ..

.

... 285
66.4 Accounting for Latency.. 287

665 Increased Bandwidth.. 288
6.7 	SUMMARY .. 289

6.7.1 Living with TCP/IP .. 290
6.7.2 Resource Management... 291
6.7.3 Scaleability.. 292
6.7.4 Distribution at a Price... 295
6.7.5 	Conclusions... 296

7. CONCLUSION ..297

	

7.1 THESIS REVIEW ... 	 297

	

7.2 USS CLASSIFICATION .. 	 300

	

7.2.1 Communications... 	 301

	

7.2.2 Data and Computation Management... 	 301

	

72.3 VE Modeling... 	 303

	

7.2.4 Time Management .. 	 303

	

7.2.5 Fault Tolerance.. 	 304

	

7.2.6 Security .. 	 304

	

7.3 IMPORTANT FEATURES... 	 304

	

7.3.1 Real-Time... 	 304

	

7.3.2 Scaleability... 	 305

	

7.3.3 Bandwidth Reduction.. 	 306

	

7.3.4 Modeling .. 	 306

	

7.3.5 Flexibility... 	 307

lv

7.4 AREAS FOR INVESTIGATION 	 .309

7.4.1 	Reliable Multicast.. 309
7.4.2 Guaranteed Bandwidth .. 309
7.4.3 Time Synchronisation... 310
7.4.4 Real-Time Operating Systems .. 310
7.4.5 Shadowing the User... 310

7 .5 	OUTLOOK ... 311
7.4.1 	Internet.. 311
7.4.2 	Virtual Reality Modeling Language... 312
7.4.3 Java... 312
74.4 Consequences.. 313

7.6 	SUMMARY.. 313

APPENDIX A ...315

APPENDIXB ...320

APPENDIXC ...326

APPENDIXD ...327

APPENDIXE ...328

GLOSSARY ..329

BIBLIOGRAPHY ... 333

IYA

List of Figures

FIGURE 2.1 EXAMPLE INTERACTION MATRIX... 25
FIGURE 2.2 A CLOCK SYNCHRONISATION FORMULA...28

FIGURE 2.3 DIS PERFORMANCE WITH DIFFERENT DEAD-RECKONING ACCURACIES............................... 35
FIGURE 2.4 MR TOOLKIT COMPONENT STRUCTURE...40

FIGURE 2.5 DVS SYSTEM ARCHITECTURE . .. 45
FIGURE 2.6 BASIC WAVES ARCHITECTURE . .. 49
FIGURE 2.7 AVIARY COMPONENT SCHEMATIC . .. 52

FIGURE 3.1 CONFECTION OF ARTIFICIAL AND REAL ENVIRONMENTS . .. 72

FIGURE 3.2 TYPE OF TIME AND SPACE...72
FIGURE 3.3 FUNDAMENTAL ELEMENTS OF A VIRTUAL ENVIRONMENT 75
FIGURE 3.4 A CLASSIFICATION SCHEME FOR VIRTUAL ENVIRONMENTS 75

FIGURE 3.5 UNIVERSE HIERARCHY TREE SHOWING POSSIBLE ENTITY MIGRATION PATHS......................82

FIGURE 3.6 THE EFFECT OF UPDATE RATE ON TIME-TO-CONTACT (TFC) ... 88

FIGURE 4.1 A TAXONOMY OF REAL-TIME SCHEDULING ALGORITHMS..101

FIGURE 4.2 BACKUS-NAUR FORM DESCRIPTION SHOWING RELATIONSHIPS BETWEEN UML

COMPONENTS
	

118

FIGURE 4.3 EXAMPLE TOP-LEVEL UML DESCRIPTION
	

119

FIGURE 4.4 A POSSIBLE DEFINITION FOR THE VISUAL ELEMENT
	

121

FIGURE 4.5 DEFINING A UNIVERSE BY INHERITANCE
	

122

FIGURE 4.6 INHERITING FROM AN ELEMENT 123
FIGURE 4.7 EXPLICIT/IMPLICIT INVOCATION OF A CONVERTER . .. 123

FIGURE 4.8 DEFINITIONOF AN ENTITY .. 124

FIGURE 4.9 METHODS FOR ACCESSING MEMBER PROPERTIES IN ELEMENTS 126

FIGURE 4.10 I USER AND SYSTEM FUNCTION CALL EXECUTION...127
FIGURE 4.11 ATTEMPTING TO CONVERT AN ELEMENT WITHOUT A CONVERTER 128

FIGURE 4.12 CALCULATING A TIME DELTA USING STATE INDEXING 128
FIGURE 4.13 IMPORTINGA MODULE . .. 129

FIGURE 4.14 EXAMPLE STRUCTURE OF A UNIVERSAL SIMULATION SYSTEM 131

FIGURE 4.15 EXAMPLE ORGANISATION OF A USS COMPLETE WITH POPULATED USNS 133

FIGURE 4.16 HIERARCHICAL STRUCTURING OF USSS...136
FIGURE 4.17 ORDER OF EVENTS FOR A SIMULATION UPDATE 139

FIGURE 4.18 POSSIBLE COMMUNICATION PATH TAKEN BY A MESSAGE SENT FROM AN ENTITY TO
ALLMANAGERS.. 	140

FIGURE 4.19 PROCEDURE FOR REGISTERING INTEREST IN A UML COMPONENT............................ 	141

FIGURE 4.20 SEQUENCE OF EVENTS DURING ENTITY CONSTRUCTION... 	144

FIGURE 5.1 SIMULATION CYCLE SCHEDULING . .. 171

FIGURE 5.2 PSEUDO-CODE FOR THE FIXED FRAME RATE, WORST-CASE SIMULATION CYCLE................172

FIGURE 5.3 IMPROVED SIMULATION CYCLE SCHEDULING . .. 173

FIGURE 5.4 EXAMPLE NETWORK CONFIGURATIONS OF THREE USSS. .. 178

FIGURE 5.5 POSITION OF THE PROCESS MANAGEMENT LAYER WITHIN THE SYSTEM SOFTWARE 180

FIGURE 5.6 SEND-RECEIVE-REPLY PROCEDURE FOR SENDING MESSAGES UNDER QNX......................186

FIGURE 5.7 MESSAGE TRANSMISSION SEQUENCE USING TCP/IP . .. 188

FIGURE 5.8 STRUCTURE OF A LOGICAL PROCESS CONSISTING OF TWO PHYSICAL PROCESSES...............188

FIGURE 5.9 THE BASIC ELEMENTS OFUCL ... 191

FIGURE 5.10 EXAMPLE USS CONFIGURATION FILE 192

kul

FIGURE 5.11 CORE UML C++ CLASS HIERARCHY 	 .194

FIGURE 5.12 UML CODE FRAGMENT AND THE INTERNAL DATA STRUCTURE USED TO REPRESENT IT... 197

FIGURE 5.13 INSERTION OF VECTOR PROPERTY INTO ELEMENT 199

FIGURE 5.14 UMLCOMPONENT STRUCTURE WITH DEPENDENCY.. 200

FIGURE 5.15 STRUCTURE OF THE INFORMATION HELD FOR EACH PROCESS 208

FIGURE 5.16 A STATE UPDATE USES A DIFFERENT MONITOR ID WHEN SENT TO EACH DEPENDENT 209

FIGURE 5.17 RESOURCE CONSUMPTION REPRESENTATION . .. 212

FIGURE 5.18 EXAMPLE NODE RESOURCE CONFIGURATION USED BY A RM... 213

FIGURE 5.19 STRUCTURES USED TO KEEP TRACK OF ENTITIES AND THEIR COMPONENT

DEPENDENCIES. .. 217

FIGURE 5.20 EXAMPLE USE OF THE PRIVATE KEYWORD TO REDUCE FUNCTION ACCESS

THROUGHSCOPE ... 223

FIGURE 6.1 BASIC RELATIONSHIPS BETWEEN UML COMPONENTS AND THEIR MEMORY USAGE 236

FIGURE 6.2 BASIC INTERPRETER OVERHEADS FOR THREE PRIMITIVE TYPES 241

FIGURE 6.3 COST OF ADDING AND REMOVING A DEPENDENCY ON A UML COMPONENT 242

FIGURE 6.4 FUNDAMENTAL STATE OPERATIONS ON AN INTEGER/REAIJBOOLEAN AND THEIR COST

ONEACH PLATFORM ... 242

FIGURE 6.5 STATE OPERATION COSTS BASED UPON STATE SIZE (PENTIUM).. 243

FIGURE 6.6 STATE OPERATION OVERHEADS FOR AN ELEMENT WITH ZERO AND ONE

PROPERTIES(PENTIUM) ... 243

FIGURE 6.7 STATE OPERATIONS ON ELEMENTS WITH ONE TO TEN PROPERTIES (PENTIUM) 244

FIGURE 6.8 COSTS OF STATE SIZING/PACKING/UNPACKING A BOOLEANIINTEGERJREAL ON ALL

THETEST PLATFORMS ... 245

FIGURE 6.9 STATE ENCODING OPERATION OVERHEADS FOR A STRING OF 40 CHARACTERS 245
FIGURE 6.10 RELATIVE OVERHEADS IMPOSED BY A PIPE ON EACH TEST PLATFORM 247

FIGURE 6.11 DECONSTRUCTED PML OVERHEADS FOR SENDING A MESSAGE UNDER QNX (SERVER).. 249

FIGURE 6.12 PML MESSAGE TRANSMISSION LATENCY BETWEEN LOCAL PROCESSES ON THE

QNXPLATFORMS .. 249

FIGURE 6.13 PML MESSAGE TRANSMISSION LATENCY BETWEEN REMOTE PROCESSES 250

FIGURE 6.14 PML MESSAGE TRANSMISSION TIMES FOR TCP/IP ... 251

FIGURE 6.15 EFFECT OF PROTOCOL ON LOCAL PML TRANSMISSION TIME (GATEWAY). 252

FIGURE 6.16 BREAKDOWN OF A PML MESSAGE RECEIVE UNDER QNX (GATEWAY) 253

FIGURE 6.17 COMPARISON BETWEEN RECEIVING MESSAGES FROM LOCAL AND REMOTE

PROCESSES(PENTIUM). .. 253

FIGURE 6.18 	PML MESSAGE RECEPTION USING TCP/IP ... 254
FIGURE 6.19 MAXIMUM LOCAL THROUGHPUT WITHIN EACH NODE USING QNX IPC 256
FIGURE 6.20 MAXIMUM QNX NETWORK THROUGHPUT BETWEEN NODE PAIRS 256
FIGURE 6.21 MAXIMUM TCP/IP MESSAGE PASSING THROUGHPUT FOR EACH PLATFORM 258

FIGURE 6.22 PML MESSAGE RECEPTION TEST FOR TCP/IP ON REALITY WITH TIME-WAIT

BUILD-UP . 	.. 258

FIGURE 6.23 ACTIVITY BREAKDOWN OF A UM WHEN THERE IS ONE MONITORED COMPONENT 262

FIGURE 6.24 ACTIVITY BREAKDOWN OF A UM WHEN THERE ARE TWO MONITORED COMPONENTS..... 265
FIGURE 6.25 EFFECTS OF VARIOUS FACTORS ON SIMULATION RATE ... 266

FIGURE 6.26 PERCENTAGE IDLE TIME IN THE UM FOR EACH TEST CASE (PENTIUM) 267

FIGURE 6.27 COMPARISON OF PENTIUM AND GATEWAY BASELINE PERFORMANCE 267

FIGURE 6.28 ACTIVITY BREAKDOWN OF UMS IN A MASTER-SLAVE CONFIGURATION WITH

NOMANAGERS .. 268

FIGURE 6.29 ACTIVITY BREAKDOWN OF UMS IN A MASTER-SLAVE CONFIGURATION WITH

1 MANAGER ON THE MASTER NODE .. 269

FIGURE 6.30 ACTIVITY BREAKDOWN OF UMS IN A MASTER-SLAVE CONFIGURATION WITH

1 	MANAGER ON THE SLAVE NODE 271

FIGURE 6.31 ACTIVITY BREAKDOWN OF UMS IN A MASTER AND 2 SLAVES CONFIGURATION WITH

NOMANAGERS .. 273

FIGURE 6.32 ACTIVITY BREAKDOWN OF UMS IN A MASTER AND 2 SLAVES CONFIGURATION WITH

A MANAGER ON SLAVE NODE SERVER ... 274

Will

FIGURE 6.33 SINGLE ENTITY MIGRATION WITHIN A TWO NODE SYSTEM (PENTIUM/SERVER) 276

FIGURE 6.34 MULTIPLE ENTITY MIGRATION WITHIN A TWO NODE SYSTEM (PENTIUM/SERVER) 276

FIGURE 6.35 MULTIPLE ENTITY MIGRATION WITHIN A THREE NODE CONFIGURATION 277

FIGURE 6.36 CONSTRUCT/UPDATE/DESTRUCT TIMES FOR THE ENTITY USED DURING

I3ENCHMARKING 280

FIGURE 6.37 AVERAGE TASK BREAKDOWN FOR A SINGLE ENTITY . .. 280

FIGURE 6.38 AcTivrrY BREAKDOWN FOR THE BENCHMARK MANAGER . .. 281

FIGURE 6.39 POTENTIAL PERFORMANCE INCREASES WITH A MULTICAST UPDATE (PENTIUM) 284

FIGURE 6.40 INCREASES IN SIMULATION RATE WHEN ELIMINATING BOTH UPDATE

CONTROLMESSAGES ... 284

FIGURE 6.41 COMPARISON OF ESTIMATED REALITY PERFORMANCE WITH SHARED MEMORY IPC

AND PENTIUM USING QNX IPC. ... 285

FIGURE 6.42 ACCOUNTING FOR MESSAGE LATENCY REDUCES SIMULATION CYCLE DURATION 288

FIGURE 6.43 PENTIUM TO SERVER TRANSMISSION TIMES WHEN USING THE CURRENT ETHERNET

LINK AND A PREDICTED FAST ETHERNET LINK.. 289

FIGURE A.1 YACC DESCRIPTION OF UML GRAMMAR . .. 319

FIGUREB.1 UML DEFINITION USED IN THE PROTOTYPE EVALUATION ... 320

FIGURE B.2 BENCHMARK ENTITY SOURCE CODE .. 323

FIGURE B.3 BENCHMARK MANAGER SOURCE CODE .. 325

Viii

List of Tables

TABLE 2.1 KLEINROCK DISTRIBUTION CLASSIFICATION SCHEME 19

TABLE 2.2 DEGREES OF FAULT TOLERANCE 29

TABLE 2.3 DISTRIBUTED VE SYSTEM FEATURE CLASSIFICATION SUMMARY ... 55

TABLE 3.1 COMMON SENSES AND THEIR SENSITIVITY/RESOLUTION 69

TABLE 4.1 NETWORKING MEDIUM PROPERTIES 99

TABLE 4.2 INTERPRETER RESOURCE EVALUATION . .. 114

TABLE 5.1 MESSAGE ADDRESS STRUCTURE...180

TABLE 5.2 MESSAGE HEADER STRUCTURE 181

TABLE 5.3 DESCRIPTION OF THE NINE PHYSICAL MESSAGE STRUCTURES . .. 182

TABLE 5.4 SUMMARY OF MESSAGE TYPES AND THEIR USE..183

TABLE 5.5 SAMPLE ENTITY DISTRIBUTION OVER THREE NODES 205

TABLE 6.1 RESOURCE RATINGS FOR EACH TEST PLATFORM 228

TABLE 6.2 MINIMUM MEMORY USAGE OF USS COMPONENTS...231

TABLE 6.3 EFFECTS OF TECHNIQUES TO REDUCE CODE SIZE. .. 234

TABLE 6.4 MEMORY CONSUMPTION OF THE FOUR PRIMITIVE UML TYPES 235

TABLE 6.5 APPROXIMATE MEMORY USAGE FOR UML COMPONENTS 238

TABLE 6.6 EXAMPLE OF HOW MUCH MEMORY IS ALLOCATED TO REPRESENT A UML DEFINITION

AND HOLD ITS INSTANCE DATA UNDER QNX. ... 239

TABLE 6.7 FUNDAMENTAL INTERPRETER OPERATIONS TIMINGS FOR EACH TEST PLATFORM 240

TABLE 6.8 OPERATION OVERHEADS PER INTEGER ARRAY ELEMENT..243

TABLE 6.9 TIME PENALTIES INCURRED WHEN RM MONITORS CPU USAGE 281

TABLE 7.1 COMPARISON OF DISTRIBUTED VE FEATURE CLASSIFICATIONS INCLUDING USS. 302

ix

Chapter 1

Introduction

"Research is what I'm doing when I don't know what I'm doing."

Wernher Von Braun

The subject matter of this thesis falls in the area commonly described as Virtual Reality

(VR). Ask anybody to describe what VR is and you will get a different answer. The

term was originally coined by Jaron Lanier to describe a system using inirnersive

technology, such as Head-Mounted Displays (HMDs) and data gloves (Pimentel and

Teixeira, 1993). Since then the perception of what VR is has changed, for better or

worse, to encompass many different combinations of novel (and not so novel) input

and output devices. The common factor between all of these is the use of three-

dimensional (313) computer graphics. The layman would therefore be forgiven for

thinking that anything that uses 3D graphics is VR - a connection often reinforced by

the media.

The term Virtual Environment (VE) is used to describe the environment that one enters

when using a VR system. This has also become popular but it is an inaccurate

description because there is nothing virtual about the environment (this topic is dealt

with later). Essentially VR is used to refer to the whole subject area, its hardware,

software, applications, etc., and a VE is the thing being partly or wholly simulated by

the VR system.

This brief introduction describes the author's motivation behind the work presented in

this thesis. The next section outlines the author's perspective on why yEs are modeled

the way they are presently, what should change and why distribution is necessary. This

chapter concludes with a preview of the contents of this thesis.

1.1 Motivation

The author first became interested in the field of VR in 1991 whilst working for a

company that built real-time 3D Computer Image Generators (CIGs). There were two

stages required to build an application using these CIGs: modeling and coding. First of

all the geometrical and surface properties, i.e. colour, texture, etc., of the 3D objects

that would populate the simulated environment were described in a special 3D

modeling package. These were then converted into the CIG's native model format and

their behaviour coded into the main body of the application. The variables needed to

describe the objects' behaviours depended on the nature of the simulation. Some

objects would be under user control and thus behave as the user wanted. The

behaviours of the computer controlled objects were often choreographed to obtain the

best visual effect. This was usually achieved by breaking down the movements into a

series of parameterised actions which were called in sequence to effect the desired

behaviour.

Each time a simulation was developed, as many existing models as possible were

recycled and organised with new purpose-built models in the standalone modeling

package. Traditionally the application code was written again from scratch, except for

a few key routines. After having used this process a couple of times, the author

designed a core extensible application framework that could be specialised for each

simulation. Although the properties of objects could be encapsulated and reused where

possible, they were still held and manipulated separately to their geometrical

representations.

After joining the Virtual Environment Laboratory (VEL) at the University of

Edinburgh a year later, the need for a flexible system to model and support VEs

became even more apparent. The visual perception experiments undertaken in the

laboratory required many varied environments. Often these were modified slightly for

2

various trials to provide a basis for comparison of the user's performance. Both

immersive and non-immersive displays were used, complemented with appropriate

input devices. The target platform for the system was a network of IBM Personal

Computer (PC) compatibles. Due to the large number of devices and tasks that were

required to simulate the YEs, the devices and simulation workload had to be

distributed amongst these machines.

The design of the system was constrained by the technology used and it was at this

point that the concepts underlying a more ideal architecture began to form. This thesis

represents the development of these initial ideas into a coherent design and a prototype

implementation for a system capable of modeling and executing VEs on different types

of machines connected over varying distances.

1.2 A Modeling Time-Line

To understand the YE modeling techniques used today, it is beneficial to look at the

heritage that has influenced the current process. With this knowledge we may reflect

on existing approaches and speculate on how these will (or should) change in the

future.

1.2.1 Past

The strong relationship that has been established between VR and visuals is not an

accident. Pictures drawn by computers have fascinated people for the past three

decades and, shortly after this ability was recognised, they were applied to a real world

task. Computer-Aided Design (CAD) started its life as a two-dimensional electronic

technical drawing bench and has, over the years, naturally progressed into the third

dimension. Initially models were pure geometry, but as the applications of CAD

increased in step with processing power, so other attributes were added such as

material properties. Amongst the properties described were the material's visual

appearance, e.g. colour, texture, reflectivity, etc. Nowadays high quality renderings

3

representing realistic materials can be produced from CAD models which are used to

design everything from bolts to skyscrapers.

Whilst one branch of computer graphics worked on attaining realism, another

concentrated on speeding the process up so that interaction with the images was

possible. The military were one of the first institutions to recognise the possible

applications for real-time 3D graphics and they had the money required to fund the

development of the necessary hardware and software. The resulting spectrum of

solutions covered the high-end, high quality flight simulators (Schachter, 1981) down

to the (relatively) low-cost SIMNET networked tank simulators (Kanarick, 1991).

These simulators were built around a fast visual display but now there was also a

requirement to model additional information. Not just material properties, but the

attributes of the actual thing being simulated which, by necessity, also included its

environment. This extra information was typically specified separately from the visual

model of the simulation and both were managed simultaneously by the simulator

software.

1.2.2 Present

The birth of VR signalled the start of a reintegration of the various areas of computer

graphics. Technology was sufficiently advanced and at a price which meant that such

systems were affordable by more people. One of the earliest applications was

architectural walk-throughs which presented CAD models at interactive rates (Airey et

al., 1990). The line between the YR and low-end real-time simulation markets has also

become blurred and, for the most part, has meant absorbing the complexity of the

simulations.

Audio is now rated favourably with visuals and sound effects are not limited to plain

stereo but may be positioned and oriented in 3D space (Wheeler et al., 1993). Single

projection displays have been joined by many types of stereoscopic displays which

present a pseudo-3D view on the VE (Rushton and Wann, 1993). There is active

research into tactile displays which are dependent on surface textures and their

4

properties for the technology's success (Minsky et al., 1990), e.g. softness, apparent

temperature, etc. Force-feedback devices have also been used in applications, the most

cited of which is molecular docking (Ouh-young et al., 1988). Subsequently, there is a

need for Physically-Based Modeling (PBM) of the VE which can rely on a considerable

number of variables and equations. Of course there is no requirement to develop VEs

that closely model our own environment, which means the structure and content of the

information accompanying the seemingly obligatory visuals can vary a great deal.

Indeed, it may be beneficial to model information that is not part of the YE per se but

affects how objects interact within it, e.g. medium,, aura, focus, nimbus and adapters

(Benford and Fahlén, 1993).

Attempting to meet this sudden increase in information, existing visual modelers have

been retrofitted with new features to accommodate some of the non-visual information

that designers want to model, e.g. audio links, behavioural information, physically-

based modeling parameters, etc. The result is often unwieldy and inflexible with

modeling still centred around visuals instead of approaching the modeling task without

bias. This is, in fact, the best case; it is still common to find integration of data within

the application rather than at a higher-level. This is partially due to the fact that each

YE system uses its own modeling system with a proprietary structure and format.

Certainly any exchange of information requires an explicit conversion process which

can often lead to a loss of detail and/or a sub-standard content.

1.2.3 Future

The amount and type of information that needs to be modeled will inevitably increase

and, unless a suitable flexible framework is adopted, the VE model may collapse under

its own weight. Standardisation of any area is generally a bad idea when that area is

not well understood, but if each proposed solution is sufficiently flexible then there is

the possibility of a gradual merging until, eventually, only one form exists. This

approach can be applied to YE modeling which can take advantage of the benefits of

standardisation to aid high-level tools development and ease data exchange. A good

starting point for the development of such a model would be the elimination of the

emphasis on any one type/medium of information used to build a VE, e.g. visuals,

audio, etc.

1.3 Distributing Simulations

The more complex a model becomes, the more computing power a system will need to

execute it. Only so much computational power can be squeezed into a single machine

and, for anything other than small models, it will be necessary to distribute the

simulation between a number of machines to cope with the extra load. In this way

more efficient use of each machine's resources can be made and the possibility of

multiple user interaction is introduced.

The problems of distributing a simulation over a number of machines are many and are

compounded by increasing the distance between machines. These problems are slightly

different depending on the combination of hardware used and the geographical distance

covered. There is no one technique that can be applied at all levels of distribution that

will address all of the problems posed. Therefore a suitable multi-level solution is

needed that applies the right technique in the right place.

Ideally, the modeling technique should influence the architecture of the simulation

system but it is not uncommon for this situation to be reversed (DIS, 1994). If

improvements are to be made to the modeling process, it is essential that the underlying

system provides the comprehensive support necessary.

1.4 Interactivity

The work presented in this thesis first takes a broad look at VE systems and then

concentrates on a specific aspect: interactivity. The adjective "interactive" is

commonly used to indicate that the thing it is applied to runs at a fast enough rate to

form some relationship with the human user. Many of the observations and techniques

described in this work are valid regardless of the applications such a system is applied

to, but, in light of the primary concern, the emphasis has been placed on two factors:

consistency and real-time.

Consistency refers to the problem of ensuring that the YE each participant is

interacting with appears the same in spite of the fact that it may be distributed over a

number machines covering a certain geographical distance. It also deals with the issues

regarding multiple users and the problems they bring, e.g. two users may not

simultaneously manipulate the same properties of a given object.

Whilst interactivity is a goal, "real-time" identifies a set of techniques that may be used

to realise that goal. The latter term is often confusingly used to describe interactive

systems as the author will find in chapter 2 when current YE systems are reviewed.

However, the author has attempted to distinguish the two starting in chapters 3 and 4.

Consequently, real-time has been applied in two ways to the original work in this

thesis. Firstly, to describe real-time displays that produce a fast, constant update rate

to enable effective interaction; and secondly, to describe the fundamental nature of the

system that permits these types of displays to be realised and support consistency.

Real-time displays are a requirement of the ideal YE system considered here, but are

not essential for all the applications that such a system may be used for. For example,

somebody visualising a complex data set may be happy to tolerate a few display

updates a second, whereas a pilot in a flight simulator may find his job very difficult if

the display is updated less than 60 times a second. These examples may also be used to

scope the importance of consistency. Modification of one part of the data set whilst

another person views a different portion may be perfectly acceptable if it does not

affect that person's task. On the other hand, suddenly introducing another plane into a

networked flight simulation or perhaps removing part of the terrain could have quite

profound consequences.

It is very important to understand that a real-time display is not a physical display that

is just updated fast, e.g. a monitor, it is a display of the YE which itself is updated at a

fast rate with a constant duration in between updates. Possible types of displays

include visual, aural and tactile.

7

1.5 Thesis Preview

Chapter 2 presents a method of classifying the issues involved in the design of a system

capable of distributing VEs. Existing solutions to this problem are described, including

their approaches to modeling, and then compared using the classification scheme.

Chapter 3 looks at the whole concept of environment modeling, reassesses what we are

trying to accomplish and presents a new approach to the task. During this process, the

structure of our natural environment is examined in the hope that it will provide

enlightenment about modeling in general. This section concludes by deriving a suitable

definition and abstract model for a yE. Finally, an aspect of human-computer

interaction is highlighted which has implications on how VEs are simulated. Many

systems today have variable-rate displays that distort some of the information a human

uses to make decisions. A visual perception theory is used to demonstrate how a

constant-rate display can resolve this problem.

Based upon the knowledge gained in the previous chapters, the design of a new

distributed VE system is presented in chapter 4. First of all, a flexible modeling

language is described that is integral to the system architecture. Rather than targeting a

specific set of hardware or geographical distance, the system solution is structured in

such a way that the correct techniques are applied at the right time, so that all

configurations may be supported.

The implementation of a prototype system is described in chapter 5. Not all of the

design's elements are fully implemented, but it is sufficiently represented to verify the

viability of the ideas used in the proposed solution. Each of the core system

components are dealt with in turn, addressing the key decisions taken during

implementation and the major data structures used.

Chapter 6 is an evaluation of the prototype which was implemented on a number of test

platforms. Performance of the building-block components is established before dealing

with system performance as a whole. The chapter concludes by outlining a number of

enhancements that could be made to the design and implementation in order to improve

the prototype's performance.

The thesis concludes in chapter 7 with the application of the classification scheme to

the proposed system, a summary of its most important features and suggestions for

further work.

1.6 Summary

This chapter began with a cursory introduction to VR and VEs which is significantly

expanded in the next two chapters. The author's motivations for this work were based

purely on practical experience, combined with the wish to make the development of

and interaction with VEs less painful. The reasons for the current state of VE

modeling were outlined and their weaknesses exposed. At the centre of any solution to

this problem is the modeling system. A more flexible approach is required, as well as

the underlying framework to support this process and an integrated

modeling/simulation system capable of handling the result. The road to a new software

architecture begins with an examination of existing system solutions.

Chapter 2

Design Issues for Distributed Virtual
Environment Systems

"640K ought to be enough for anybody."

Bill Gates

When looking at existing systems we are interested in their solutions to two problems:

how they tackle the problem of VE modeling and how they "execute" a given yE.

The former is a much more abstract area and in theory may be independent of the

underlying mechanism of distribution and VE support software. However, in reality

this is rarely the case. Sometimes the implementation drives the modeling system

used and vice-versa. Whilst treating these aspects separately is desirable, it is also

very difficult since describing one aspect cannot be done without referral to features

of the other. This chapter examines the issues that must be addressed when designing

a VE system. Existing distributed simulation systems solutions are analysed with

reference to the outlined issues and comparisons are drawn.

The term "distributed simulation" is very general and is open to many interpretations.

"Simulations" can be broadly classified as either off-line/computationally intensive or

interactive/low fidelity. The first class is the type of simulation that is often called

discrete event simulation whereas driving and flight simulators would fall into the

second class. A similar decomposition of "distribution" may also be attempted. It can

be used to describe a simulation that is distributed over a number of tightly-coupled

computational nodes with the intention to speed up the calculations. This fits well

with the first class of simulation and when considering VR and interactive simulations

10

this definition is also valid. However, the emphasis is more on the distribution of the

simulation over some geographical distance such that multiple people may interact.

Each of these types have their own requirements and hence their solutions cannot

necessarily be applied to each other's problems. For example, the fact that there is a

human being interacting with the simulation brings onboard a number of new

requirements or, more realistically, constraints on how the simulation may behave.

2.1 Discrete Event Simulation Heritage

Before re-inventing the wheel it is beneficial to look at the historically largest form of

simulation: discrete event simulation. There are two approaches for ensuring the

correctness of a distributed simulation': optimistic and conservative.

2.1.1 Optimistic versus Conservative

Initially, all simulations used a conservative solution to control their progression.

Each simulation consists of a certain number of processes. Only when all processes

have completed their work will simulation time increase and the next cycle commence.

The obvious disadvantage to this approach is that those processes that take

significantly less time to complete their work will be forced to wait. If each process

was allocated to a physical processor then this would result in a considerable waste of

the computational resources.

To overcome this weakness a different approach was sought. The optimistic solution

permits each process to progress at their own rate. This would work fine if all

processes were independent of one another. Unfortunately this is often not true and a

situation may arise where a slow process communicates with a faster process

indicating that their previous work was in error. Since all of the fast process'

subsequent work was based on an invalid state, this must be abandoned and

recalculated using the correct state. The method to restore this state is known as

I In discrete event simulation, distribution is almost always used just to increase the simulations
s—.

11

rollback. This solution is called optimistic because it works on the assumption that

the situations requiring rollbacks rarely occur.

2.1.2 Time Warp

Time Warp (TV/) is an optimistic policy simulation model that is structured as a

number of processes that each maintain a Local Virtual Time (LVT) (Jefferson and

Sowizral, 1985). Each process may progress at its own rate, advancing LVT as

necessary. Each message that is sent between processes indicates the LVT of the

sender and is used to decide whether a rollback is required of the receiver. Keeping a

list of what has happened in the past soon eats into the resources of each process, so a

mechanism for collecting old data has been provided.

At periodic intervals, the operating system interrogates each process for their LVT.

Then the system's Global Virtual Time (GVT) is updated to show the progression of

the simulation, taking into consideration the slowest process. When GVT is updated,

any data previous to this time may be discarded since rollback may not occur before

GVT. The choice of algorithm to calculate GVT is crucial to system performance and

can make the difference between running or not running a simulation if large state lists

are required (Bellenot, 1990; D'Souza et al., 1994).

Further optimisation may be made by finding a way to reduce the amount of state

saved in these lists. A basic mechanism would save the complete process state,

however this is expensive both in terms of time taken to save the state and the time

taken to perform a rollback. By performing incremental state saving (Cleary et al.,

1994), i.e. only saving the state that has changed, it is possible to improve efficiency.

An alternative approach, called adaptive checkpointing, is to adjust the rate at which

the process state is saved based upon the rollback behaviour (Ronngren and Ayani,

1994).

12

2.1.3 Discrete Event Simulation Summary

TW works well in discrete-event simulations and is a very popular model, but there

are a number of problems. TW was not designed to be used for interactive

applications which rely on completing all computations in a very small amount of time

(-33 ms to achieve a 30 Hz update rate). In order to ensure that these strict deadlines

are met, some notion of predictability must be provided. Rollback is a result of

processes being allowed to continue at their own rate and can be seen as self defeating

since the rate of progress is not controlled and the occurrences of rollbacks are

unpredictable. In addition, one rollback may trigger another rollback in another

process and so on until, potentially, each process has been rolled back to GVT.

However, there has been some recent work on the application of TW to real-time

simulations resulting in the development of a Parallel Optimistic Real-Time Simulator

(PORTS - Ghosh et al., 1994). In PORTS, GVT is calculated continuously, i.e. after

each event in the simulation, in order to speed the commitment of 110 operations.

Incremental state saving is shown to be unpredictable and one proposed solution is to

save the complete state every n events (where n is a constant for a particular

simulation) in a similar way to adaptive checkpointing. This enables a bounded value

for state saving and state restoration, thereby having predictable properties in the

simulator. Deadline scheduling is also simplified because there is no event-migration

or explicit load balancing and is done on a per-processor basis.

Despite this encouraging work, the application of PORTS to interactive simulations is

unlikely. Take the case of a driving simulator where the driver is monitoring the

environment and taking actions accordingly. Any rollbacks could interrupt the flow

of time and would make it seem as though they are being controlled like a video

recorder - pause, rewind, fast-forward and play - clearly defeating the goal of realism.

In short, you cannot rollback a human being.

Conservative solutions ensure that situations that would require a rollback do not

happen at all by, what proponents of optimistic policy would see as, restricting the

progress of the simulation. This has the potential to under-utilise the available

13

resources, but with a good load-balancing algorithm the impact of such an approach

can be reduced. The perceived advantage of an optimistic mechanism is that if a

process requires very little interaction with other processes in the simulation, faster

progression may be made if it is allowed to go at its own rate (Lipton and Mizell,

1990). This may also be perceived as a waste of resources that may be better

allocated to other processes in the simulation.

Therefore, since there may be many humans interacting with the simulations of VEs, a

conservative system is the only workable solution. This will also aid predictability and

scheduling to meet the real-time deadlines that are required of a VE system (discussed

in section 3.3).

2.2 Issues

There are many problem areas to consider when building a VE system and there are

even more implications. There is no established classification scheme available with

which these areas can be examined and different solutions compared, so an attempt

has been made to construct one. Separating one area from another was more difficult

in some cases than others. Not breaking a problem area down into separate issues

would make comparison difficult, on the other hand, splitting the area into too many

issues would provide a distorted representation. There are a lot of interdependencies

between these issues, but it is hoped that the divisions made will aid comparison

rather than hinder comprehension. This section looks at each issue in turn and

assesses the impact they have on system design.

2.2.1 Real-time

The largest single constraint on an interactive simulation is that it must operate in

real-time. As described in section 1.4, a real-time system permits the generation of

real-time displays which are updated fast enough to allow the participant to effectively

interact with the simulation and other participants. How fast may vary depending

upon the exact nature of the simulation, but the goal is to reduce the delays between

human action and simulation reaction to an imperceptible constant duration.

14

A simulation is composed of a sequence of discrete time steps in between which the

calculations to update the environment must be completed. Failure to achieve this

could result in a breakdown of realism (if that is being striven for) or, at the very least,

a reduction in the efficiency of the participant to interact with the simulation. While it

is true that simulation time may continue at any rate if there is no human or time-

dependent device involved in the loop, we are primarily interested in interactive

simulations and therefore the actual time between each simulation time step must be

constant. We live in a constant world and to require us to interact with anything

other than this is contrary to all our natural skills and will present us with

corresponding difficulties (Hawkes et al., 1995). This is discussed further in section

3.3.

If these stringent deadlines are to be met then there must be a degree of predictability

in the simulation's execution. An optimistic solution, as discussed earlier, is not very

predictable whilst a conservative approach may be seen as a good basis to build upon.

The design implications of real-time systems are discussed in section 4.3.

2.2.2 Communications

The structure of the communications subsystem is usually the most inflexible

component of any system. The choice of platform and its location dictate what

communications hardware is available. Consequently, the technique used to manage

data is often directly influenced by this component.

2.2.2.1 Point-to-point

A pointtopoint2 transfer of information may be achieved by either establishing a link

between sender and receiver at every transmission, or creating a permanent

connection which is destroyed when there will be no more communications.

Connection-oriented protocols such as Transmission Control Protocol/Internet

2 Also known as unicast.

15

Protocol (TCP/IP) are commonly used and provide a reliable service. Unfortunately,

ensuring that the receiver gets all the information and in the right order generates a

fair amount of overhead. Furthermore, each receiver must acknowledge receipt of the

transmission.

2.2.2.2 Broadcast

One alternative is to "broadcast" the information on the network and hope that

anyone interested in that information will hear the broadcast and pick it up. This is

the exact opposite of the point-to-point mechanism and is supported in the User

Datagram Protocol (UDP). This connectionless protocol uses self contained,

addressed packets (or datagrams) which puts the onus on the application to ensure

that the data is processed in the correct order. The major advantage of this method is

that there is no need to maintain a large number of connections. Apart from being

unreliable, its main disadvantage is that it is possible to flood a network with

broadcast messages which are of no interest to other connected systems and thus

degrade performance.

2.2.2.3 Multicast

An improvement on broadcasting is multicasting. This works in the same way except

that the packets are only sent to a subset of the network rather than the whole. Nodes

may belong to one or more multicast groups and hence will only receive transmissions

that are intended for them. It was originally available on LANs such as Ethernet and

Fibre Distributed Data Interface (FDDI) but is now available at the network layer

through the Multicast Backbone (MBONE - Macedonia et al., 1994). MBONE is a

virtual network which runs on the same physical media as the Internet, but

encapsulates multicast packets in normal IP packets and uses routers to forward them

to their correct destinations. Multicast has yet to be standardised and consequently

few implementations are available. More importantly, multicast per se is unreliable,

although some research has been done on providing a reliable multicast service

(Talpede and Ammar, 1995; VerIssimo and Marques, 1990). However, unless

16

othervise stated, any reference to multicast in this thesis is intended to describe the

more common unreliable mechanism.

2.2.2.4 Bandwidth

The amount of data that may be transmitted in a given period of time has more impact

on system design than any of these other factors. If only one network medium is

being used then the task of designing an efficient protocol is relatively straightforward

(but not simple). However, if multiple mediums are being catered for the problem

becomes considerably more complex. A fast modem can manage approximately 28

Kbps, Ethernet has a bandwidth of 10 Mbps whilst EDDI and Fast Ethernet can offer

100 Mbps. It is quite common for this bandwidth to be shared amongst many other

nodes thus reducing the effective data bandwidth considerably. There is also no way

to guarantee a fraction of this bandwidth which adds to the problems. The evolving

Asynchronous Transfer Mode (ATM) technology permits bandwidth to be reserved

(channels), but this is currently even less available than multicast technology

(Boisseau et al., 1995).

2.2.2.5 Latency

Communications latency is related to bandwidth and geographical distance. No

matter what technological improvements are made, the speed of light will limit the

transmission speed such that a latency of —3 ms will be introduced for every 900 Km

covered3 . Thus design decisions are often based on the geographical distance over

which the system will have to operate.

2.2.2.6 Shared Memory

This is a valid way of communicating between processes on the same node and the

analogy can even be extended to operate over networks: distributed shared memory.

This calculation does not take into consideration the extra distance incurred as the light bounces off
the interior of the optical fibre.

17

However, underlying such functionality is always some form of message passing.

Bandwidth and latency can still be applied to shared memory. Whereas a message-

passing system has built-in concurrency control, a shared memory system must add

this itself, usually in the form of semaphores.

2.2.2.7 Structure

There are three commonly used models for communication in distributed VR systems:

client/server, peer and hierarchical. In a client/server model one or more physical

processes are designated as a server whose responsibility is to receive and process

requests from clients for any of its published services. A client of one process can

also be a server to another. This model works well for operating system resources,

e.g. the filing system, network manager and process manager, where there is a limited

number of potential clients and the client and server are tightly-coupled. If the

number of clients gets too high, however, the server soon becomes a bottleneck.

The peer model essentially makes every process in the system equal in terms of

functionality. This does not mean that there is any duplication of work between peers

although this is quite common.

The hierarchical model uses a system whereby processes communicate with other

processes in the hierarchy by sending the message to their parent process. The parent

checks the address on the message and either sends it to one of its other children or to

its parent process. This repeats until the message has arrived at its destination.

Messages entering the hierarchy from outside are sent to the root (master) process

which forwards the message as per normal. As with the client/server model, this

master process may become a bottleneck if the number of child processes increases

too far, or there is a large amount of communication with other process hierarchies.

2.2.3 Data Management

If the whole YE was managed by one machine then data management is

straightforward, every process has direct access to the information they need with

little overhead. If the YE is distributed across more than one machine then the

19

situation becomes more complex and requires a different solution. The overriding

concern is to ensure that the integrity of the data is maintained at all times with

minimal overhead. Other factors that affect solution selection are bandwidth and fault

tolerance.

The nature of the target system and the geographical dispersion of the network

dictates the type of management commonly used. All of the solutions currently

offered fall within one of the categories shown in Table 2.1. Although general

comparisons can be made between them, only those systems in the same category can

be compared point for point.

Tightly-Coupled Loosely-Coupled

Near Parallel Processing Distributed Processing
High Speed LAN LAN

Far Impossible? Distributed Access
WAN

LAN: Local Area Network
WAN: Wide Area Network

Table 2.1 Kleinrock distribution classification scheme..

2.2.3.1 Localisation

When the amount of data is small it is preferable that every process should have direct

access to it. As the volume of data increases so does the burden on resources;

memory and backing storage diminish rapidly and the amount of computation required

to process the data rises dramatically. In a distributed system there is also an increase

in network traffic as the data is moved around from one node to another.

It is therefore desirable to segment the data in some logical way such that any given

process is only interested in one segment at a time (mostly). One common criteria

used for segmentation is that of space. When the VE covers a large (virtual) distance

it is broken up into a number of areas which are often allocated by and under the

control of an Area Manager. The size of the areas can depend on many things, such

as visibility, memory, speed of movement through the VE, etc., and upon the media,

e.g. visual, aural, etc. The shape of each area is often kept uniform for simplicity's

sake. Rectangular areas are often favoured although some work has been done with

hexagonal areas (Macedonia etal., 1995). However, some research has examined the

subdivision of model space based on visibility alone (Airey et al., 1990). When

applied to architectural models, the resulting binary space subdivision algorithm

creates cells which are bounded by a number of splitting planes and can therefore be

irregularly shaped.

2.2.3.2 Complete Distribution

This approach distributes the complete VE state between every node in the network.

There is no duplication of information and any intention to change part of the YE

state not under the control of a given process must be communicated to the process

managing that data. Unless the state of the VE is distributed amongst all the nodes in

the network sensibly, it is possible that such an arrangement could be detrimental to

performance.

Since a given piece of data is only held in one place this solution is susceptible to

machine failure or breaks in the communication paths. Such a technique can be

applied at the near/tightly-coupled level and, perhaps, at the near/loosely-coupled

level.

2.2.3.3 Partial Replication

When using partial replication only the parts of the VE state that will be modified by a

given process will be held locally and only when needed. There are two sub-

categories of partial replication: active and passive.

Active replication is where the process wishing to make the state change initiates the

request for a local copy of the state. Modifications are made locally and the updated

state is sent back to the originator.

Passive, or demand replication (Broil, 1995), requires an initial registration of interest

in part (or all) of the YE state when the process is created. From that moment on it is

20

sent copies of that subset of state when it has been modified by one of the other

processes. Changes may be made locally and sent back or, alternatively, the owner is

informed of the desired changes and then makes them itself. A variation on this

method is that the remote process receives updates of the object's exported

behavioural model (section 2.2.4.5). In which case the remote process is not

expected to want to modify the object's state, just monitor it.

If changes are made locally it would be possible for multiple copies to be taken from

multiple processes, altered and submitted simultaneously, therefore resulting in an

inconsistent state. To prevent this from happening a system of read/write locks may

be employed. Before obtaining a local copy of the state for modification, a write lock

is requested. This will be granted once any outstanding write locks are relinquished.

Either the requester must block until the lock is granted, or a time-out can be

specified which will permit the requester to continue with other work. On submitting

the changes the modifications are made and the write lock released. If multiple locks

need to be acquired before proceeding then the problem of deadlock also arises.

There are several variations on this approach but all are equally complex. However, if

all changes are made by the owner there is no need for this complex system and the

modification process is a lot more predictable. This technique is most commonly used

at the near/loosely-coupled level, although it could be applied at the far/loosely-

coupled level if bandwidth was high enough.

2.2.3.4 Total Replication

This solution requires the complete VE state (or the essence of it) to be held at each

node in the network. The two possible reasons for storing the complete VE state are,

firstly, that the node's calculations are based upon most or all of that information or,

secondly, the distance between nodes is so great that latency has become a real

problem (far/loosely-coupled). This method does not scale well since every node

must keep each other informed of updates which soon consumes bandwidth. The

allocation of locks is infeasible so passive replication must be used to receive

continuous updates on YE state.

21

2.2.4 Computation Management

Just as data is distributed, so can the computation. By computation we mean any

work involving a specific object, whether it is an operation within or upon that object.

Fortunately we can use similar categories to explore the options.

2.2.4.1 Complete Distribution

All operations on an object are performed on the same node that holds the object's

data. If one process wishes to perform an operation on another then it must send a

message to the other process. The allocation of processes to nodes may be optimised

by enlisting the help of a load-balancing algorithm (section 4.3.1.4). By monitoring

resource consumption and communication patterns the optimum allocation may be

derived. This would permit most objects that often communicate with one another to

be located on the same node - the movement of processes is commonly known as

migration.

Such an approach works well on near/tightly-coupled systems but the latency and low

bandwidth found in loosely-coupled systems can reduce its efficiency.

2.2.4.2 Partial Distribution

This method is similar to complete distribution except that the object's state is usually

acquired using one of the passive or active partial data replication techniques and the

changes made locally. There is, however, no duplication of computational effort.

2.2.4.3 Partial Replication

To compensate for slower communications links, e.g. near/loosely-coupled, it is

possible to replicate some of the state computation on some or all of the nodes.

These "ghost" or proxy processes are typically used to approximate the object's

behaviour using a method called dead-reckoning (section 2.2.4.5). The process that

performs the full simulation of that object also runs this model in parallel and when

the two differ by a pre-defined amount, a copy of the real object's state variables is

22

sent to all of the ghost processes. Subsequent approximations are then based on the

latest update.

Dead-reckoning uses a simplified model of the object's behaviour. Typical key state

variables used in this model are position and velocity which may be linearly.

extrapolated to provide a low fidelity approximation. Higher fidelity may be achieved

by incorporating other variables, such as linear acceleration and angular velocity,

which are often needed by objects with highly dynamic behaviour, e.g. aircraft

(Harvey etal., 1991; Le Saché and de Medeuil, 1993; McCarty etal., 1994).

This technique is very effective in reducing the amount of bandwidth required but the

object behaviour produced in the ghost object can be sufficiently different from the

normal to attract attention. This may, of course, be improved by increasing the

complexity of the approximation, but there is a need to strike a careful balance

between full and approximate simulation.

2.2.4.4 Total Replication

Simulating each object on each node may be required if the simulation is running over

a very large distance (far/loosely-coupled). Receiving periodic updates from other

processes when using partial replication is not practical when bandwidth is at a

premium. Instead, only information that changes the behaviour of the mirrored

objects is sent, thus permitting all calculations to be performed locally. Behaviour

therefore appears correct everywhere (although maybe not at exactly the same

moment in time) but at the cost of duplicated calculations.

2.2.4.5 Behaviour

What constitutes object "behaviour" and what form this takes is currently a topic of

debate. In the strict object-oriented sense the data are the attributes, and the methods

manipulate the attributes in a pre-defined way, e.g. modifying position over time.

Therefore combining data and methods gives us the impression of behaviour.

23

However, the computational load required to support this object behaviour can be

quite high, e.g. flight dynamics for an aircraft.

It is possible to classify object behaviour as either deterministic or non-deterministic.

In general, objects that do not sample input devices are deterministic, whilst those

objects that do, including those under the control of humans, are non-deterministic.

For example, the decisions made by a robot car can be determined in advance whereas

the behaviour of a virtual car being driven by a human in a driving simulator cannot be

predicted (Hawkes, 1993). The ability to predict behaviour means that it is possible

to overcome communication and system latency.

Roehi (1995) has suggested a refined classification scheme whereby deterministic

behaviour is split into two sub-categories: static and animated. Similarly, non-

deterministic behaviour can be Newtonian or intelligent. The state of a static object is

constant and therefore 100% predictable for any give time; an animated object

changes state over time but this is stilt predictable. A Newtonian object interacts with

its environment but does so in a straightforward manner, whilst an intelligent object

can have a complex behaviour and may be as unpredictable as a human.

In a similar manner, Roehl presents 4 levels of behaviour which may be used to

classify the type of distribution used:

0. Direct modification of an object's attributes (static).

Change in an object's attributes over time (animated).

Series of calls to level 1 behaviours to achieve a task (Newtonian).

Top-level decision making (intelligent).

The most basic form of behaviour distribution takes place between levels 0 and 1,

when information such as position and orientation are transmitted at every simulation

update. Dead-reckoning falls between level I and 2. Attempting to distribute

behaviour any higher is problematic unless the state of the simulation at each node is

guaranteed to be exactly the same at any given time. Indeed, levels 2 and 3 may not

even be implemented in software, they could be provided by human interaction.

24

An example of a level 2 behaviour system is the Two-Point Paradigm (Bryson, 1991).

It is based on interaction in classical physics which may be taken as due to the forces

that act pair-wise between physical objects. While many forces may act on objects

simultaneously, the net action of these forces may be represented as the sum of the

individual forces on that object from the other objects. To keep track of all these

interactions an Interaction Matrix is used whereby each row and column represents

an object and the entries are lists of interactions between the objects for that row and

column. For example, Figure 2.1 shows the simple case of a bouncing ball. The ball

is acted on by the floor in two ways: gravity pulling it down and bouncing which

reverses the z component of the velocity. The floor is not acted upon by the ball.

The ball's cross-reference entry (bottom right) updates its velocity from its

acceleration and its position from its velocity.

Object 1 	Object 2
(floor) 	(ball)

null
Gravity

bounce

Integrate
null Equations of

Motion

Object 1
(floor)

Object 2
(ball)

II

floor

Figure 2.1 Example interaction matrix.

This technique can be extended to include other types of interaction including those

with the user. With regards to distribution, it is only necessary to send changes in the

interactions between objects and details of any new objects from one node to another.

Each node can then calculate the evolution of the VE on its own, which reduces the

network bandwidth required per object.

2.2.5 VE Modeling

The issue of modeling the yE will be fully discussed in the next chapter, however

there are two aspects which can be usefully addressed beforehand. Firstly, whether

the system can support more than one VE simultaneously and/or how multiple VIEs

25

are structured. Secondly, if any special provisions are made for users or participants

in the yE.

2.2.5.1 Multiple VEs

Support for multiple VEs means that the system is effectively running parallel

simulations using the same or different VE model. By using the same yE it could be

possible to maximise the use of specific objects or areas of the VE (Roehl, 1995). For

example, a virtual town hall could be used for meetings by different groups of people

simultaneously.

If multiple, different VEs are supported then there is an opportunity to maximise the

system's resources. Such an ability does, however, raise extra problems regarding

scheduling, load balancing, etc. If the concurrent execution of VEs is available then a

decision must be made as to whether an object may move from one environment to

another and, if so, how this should be achieved.

Another possible use for multiple YEs is in the modeling process, where some or all

of the properties of one VE are used to help speed development of another. The

nature of the relationship between environments is important, as is the structure

formed. One possible organisational technique is that of object-oriented inheritance

where the attributes of one environment are inherited and augmented/extended by

another environment.

2.2.5.2 Users

Typically, either the user is treated as a separate object or they are an integral part of

the system. Also of interest, is whether multiple users can be supported or if only one

may be present in a VE at a time.

Representing the user as an object has the advantage that it implicitly means that

multiple users are supported, provided that there are enough input and output devices

available. Added flexibility is provided if devices are not integrated into the user code

directly, but exist as objects in their own right. The price of this object-oriented

all

structure is, of course, performance - the extra communications overhead increases

system latency.

Either the user's representation can be described in the same manner as every other

object or some extra functionality is provided for just this purpose. The latter case is

usually used when the user is integrated into the system or a part thereof.

2.2.6 Time Management

The relationship between simulation time and real clock time may be any function as

long as it is constant. The simulation clock is used as the basis for synchronisation of

the VE either explicitly or implicitly. Implicit progression is when simulation time is

related to real clock time: as the system clock changes, so does simulation time.

Explicit progression is change through notification from a remote source, e.g. a

message timestamp or a special message that only occurs at the beginning of each

time step.

An additional requirement in a distributed system when using implicit progression is

to ensure that the real-time clocks on each node are synchronised. One possible

option is the use of a Global Positioning System (GPS) receiver built into each node.

A version of GPS was developed by the military - Precision Position System (PPS) -

for keeping track of friendly forces. It works by sending a signal to 4 out of 21 active

satellites which send back information from which both positional and time

information may be extrapolated. A commercial version is available, Standard

Positioning System (SPS), with reduced positional accuracy - lOOm horizontally

instead of 17m, etc. Time accuracy with PPS is 100 nanoseconds (ns) and 167 ns

with SPS. Detailed information can be found in Dana (1995).

Alternatively, a software algorithm can be used such as the one presented by Le Saché

and de Medeuil (1993) where a client requests the time from a central source. The

client synchronises itself on the time at this central source via a couple of timestamped

messages. The synchronisation formula is shown in Figure 2.2. After clock

27

synchronisation, delays can be measured as the difference between the send and

receipt times of any given message.

t = t2 - to + ti
2

new time for client
to: send time of request time message (client clock)
t 1: send time of response message (server clock)
t2: reception time of response message (client clock)

Figure 2.2 A Clock Synchronisation Formula

The problem of clock synchronisation is also of interest to the Internet community.

The Network Time Protocol (NTP) is an extension of the client/server approach such

that it may be applied in very large networks world-wide. For an in-depth description

of the protocol the reader should refer to Mills (1992). On the general subject of

clock synchronisation, Mills notes that the accuracy achieved is directly dependent on

the time taken to achieve it. In other words, a few measurements will suffice for

accuracy with a second or so, whilst dozens of measurements over many hours will be

required to achieve millisecond accuracy. The number and frequency of these

measurements is, however, perceived to be relatively low and unobtrusive to normal

network operations.

However, Liskov (1993) notes that clock synchronisation algorithms are based upon

assumptions about clock rate and message delay. Clocks are, therefore, only

synchronised with some probability, albeit very high. Subsequently, she also states

that algorithms should preferably depend on clocks for performance and not for

correctness.

2.2.7 Fault Tolerance

Kim (1995) describes a fault tolerant computer system as "... a system which can

continue to operate reliably by producing acceptable outputs in spite of occasional

occurrences of component failures, including those of both hardware and software

components". Fault-tolerance comes from reliability and availability (Milenkovic,

1992). System reliability can be provided by partial replication of important data and

28

duplication of key-hardware, whilst the availability of the system is ensured by keeping

multiple copies of the system's resources. Furthermore, a system may be deemed

recoverable if it can revert to a previous state and robust if it is capable of surviving a

hardware failure. However, one does not imply the other.

Degree Assumable Damages Recovery Capabilities

4 No loss of visible actions (i.e. output Action-level fault tolerance
of actions or database update actions) (recovery of an interrupted visible action)

3 Loss of one or more visible actions Slow recovery of a service function
(no loss of hardware)

2 Loss of one or more service functions Partial recovery of hardware
_________________________________ (service degradation)

1 Loss of all but a core set of critical Minimum recovery of core hardware
service functions (minimum critical services)

0 Loss of critical service No fault tolerance

Table 2.2 Degrees of fault tolerance.

Five degrees of fault-tolerance have been proposed by Kim which are reproduced in

Table 2.2. Degree-4 is the highest level of fault tolerance (reliability) and ensures that

all actions are completed successfully regardless of fault occurrences. It is possible

that recovery from a fault may take so long that there is no choice but to abandon

execution of visible action(s), restore the system to a previous state and then start

again. Degree-3 caters for this case whilst degree-2 provides service degradation

when some less-critical components fail and cannot be recovered. In the worst case,

only the minimum critical services can be recovered and maintained which gives us

degree-1 fault tolerance. If even this last stand is not possible then it is not a fault

tolerant system.

A common way of providing fault tolerance is redundancy which may be applied to

both hardware and software components. For the purposes of this thesis we are

primarily interested in software components. The availability of broadcast

communications on networks has been a great boon to the implementation of

redundancy. One solution is to have a node which eavesdrops all inter-node

communications to keep an up-to-date copy of each node's state. This means that if a

PTO

node should fail (or a process on that node) then its state may be rebuilt quickly

without replaying all the messages.

In distributed real-time systems it is common for the physical network to be

duplicated, therefore providing a second physical communication path should the

other fail. In such a system there is also a need for deterministic and reliable delivery

or messages, which has provoked some researchers into investigating reliable

multicast protocols (Grunsteidl and Kopetz, 1991).

2.2.8 Security

Current efforts in this area have typically been limited to the encryption of the data

stream between nodes so that no unwanted party can listen in on the simulation. This

could be done in software at the communications level or utilise special hardware.

The complexity of the system protocol determines the degree to which security can be

breached; a simple protocol may even permit unauthorised objects or people to

participate in the simulation.

On another level, security also deals with access to sensitive information. Certain

system services may need to be restricted, e.g. access to backing storage, or a group

of objects may wish to share information with each other and no one else.

Obviously, such additions to the system architecture come at a price. Even data

encryption hardware increases latency and a software-implemented access control

system can eat away at CPU cycles.

2.2.9 Issues Summary

This section has presented a number of issues that must be addressed during the

design process. Some of these are given higher priority than others and as such may

not be accounted for in the final design. This is not because they are unimportant,

merely because the field is new and the problems presented by the few issues

addressed are quite significant. The next section looks at the current major system

solutions.

30

2.3 Implementations

Ensuring a consistent and accurate environment must be the main goal of any human-

in-the-loop simulator. Progressing the simulation at a constant rate, fast enough so

that the participant may effectively interact with it, is the second goal. It is clear from

the overview presented in the previous section that many of the design issues are

entwined with each other. Deriving an architecture that correctly resolves each issue

is a challenging task. This section examines some of the existing distributed yE

systems and describes their overall structure.

2.3.1 SiMulation NETworking System (SIMNET)

SIMNET was the first system to prototype and demonstrate the feasibility of a

distributed interactive simulation (Kanarick, 1991). It was initiated by the U.S.

Defense Advanced Research Projects Agency (DARPA) and funded by the U.S.

Army. This project involved many different companies but, to the author's

knowledge, no academic institutions.

Some of the systems requirements were (Calvin et al., 1993):

• Capable of supporting lOOs to 100,000s of entities.

• Entities are geographically distributed.

• Simulations are heterogeneous.

• Computations are distributed (no central site).

• Operates in real-time.

• Must be low cost.

In order to meet the last requirement SIMNET was based around an Ethernet

network. The maximum bandwidth of Ethernet is 10 Mbps and was one factor in the

failure to support the large numbers of entities originally specified. 250 of the original

SIMNET simulators (nodes) are currently in operation throughout the world although

a node is capable of simulating more than one entity. A good example of this was the

provision for Semi-Automated Forces (SAFs) which are semi-autonomous objects

that have a certain behaviour and are directed from time to time by a human operator.

31

To make the most of the available bandwidth and reduce the computational overhead

of point-to-point links between nodes, messages are broadcast to all nodes regardless

of whether they require the information or not. The SIMNET protocol is designed

such that if a node should miss a message, it will temporarily hold out-of-date

information which will be amended upon the next transmission.

A host processor for a SIMNET node is typically an embedded single-board

microprocessor-based system., or a workstation. Usually Local Area Networks

(LANs) are used to link nodes within a single site and geographically dispersed sites

are linked using Wide Area Networks (WANs). Due to the real-time requirement, the

WANs are either private lines or packet networks with gateways that provide real-

time allocation abilities. For example, the Defense Simulation Internet (DSI), which

spans the U.S.A, is a dedicated network that uses the TCP/IP protocol but is not

considered part of the Internet (Locke, 1992). The need to dedicate a network to a

simulation indicates the problems of geographically dispersed simulations.

23.2 Distributed Interactive Simulation (DIS)

The experiences with SIMNET led to DIS which, unlike SIMNET, is being developed

as a standard for networked, interactive simulation by a committee. An important

distinction between the two is that SIMNET is a working system, whereas DIS is only

a protocol definition with associated guidelines and does not specify how the

implementation should be structured. Even though its applications are subject to

security, the standard is not; version 1.0 is now a published standard: IEEE 1278.

32

Version 2.0 of the standard (DIS, 1994) summarises the DIS concept as:

"... a time and space coherent synthetic representation of world
environments designed for linking the interactive, free play
activities of people in operational exercises. The synthetic
environment is created through real-time exchange of data units
between distributed, computationally autonomous simulation
applications in the form of simulations, simulators, and
instrumented equipment interconnected through standard computer
communicative services. The computational simulation entities
may be present in one location or may be distributed
geographically."

2.3.2.1 Basic Architecture

The DIS architecture shows its heritage through its basic concepts:

• No central computer controls the entire simulation exercise.

• Autonomous simulation applications are responsible for maintaining the

state of one or more simulation entities.

• A standard protocol is used for communicating "ground truth" data.

• Changes in the state of an entity are communicated by simulation

applications.

• Perception of events or other entities is determined by the receiving

application.

• Dead-reckoning algorithms are used to reduce communications processing.

When examining the communication services that DIS must provide (as dictated by

the standards document), we find that data must be transferred between simulations in

one operation, with or without first establishing a logical connection with the

destination node. Data may be sent using broadcast, multicast or point-to-point and,

on the issue of unreliable service, no acceptable limit is set on the amount of data that

may be lost. As a comment on the performance requirements of the communications

architecture we are told that it "... should provide a certain level of performance

characterised in terms of throughput and delay. Both network delay and network

delay variance should be minimised". Another document (DIWG, 1993) states that

33

the total network delay for tightly-coupled simulators, such as high-performance

aircraft, should be less than 100 ms and less than 300 ms for other simulators, e.g.

ground vehicles.

Each message, or Protocol Data Unit (PDU), has a 32 bit tirnestamp which specifies

the time at which the contents of the PDU is valid as units of time past the current

hour. This provides an accuracy of 1.676 microseconds and the timestamps used

depend on whether system clocks are synchronised or not. If they are, then the

timestamp is given in Universal Coordinated Time (UTC), if not, then the time is

relative to the simulation application that issued the PDU.

Each PDU has an exercise identity field in the header which is an unsigned 8 bit

number. A unique exercise identifier is assigned to each exercise occurring

simultaneously on the same communications medium. In essence, DIS can support up

to 255 (a value of 0 is not valid) parallel VEs.

2.3.2.2 Performance

The total number of entities that may be supported is not only a function of the

communications medium but the error thresholds which are an integral part of the

dead-reckoning algorithms. Katz (1994) provides us with a graph (Figure 2.3)

showing how the number of entities a medium may support can be reduced by

decreasing the threshold (and hence the computational load of the dead-reckoning

algorithm) and increased by raising the threshold (which increases computational

load). The results shown are part empirical data and part prediction based on those

data.

A state-of-the-art DIS system is said to manage 8,000 entities on Ethernet (using a lax

error threshold) and that the most expensive dead-reckoning algorithm in use

consumes around 100 FLoating-point Operations Per Second (FLOPS) per remote

entity. Interestingly, it is predicted that the original SIMINET goal of 100,000 entities

will not even be reached using DIS over an FDDI (100 Mbps) network. In fact, the

Close Combat Tactical Trainer (CCTT), which is being developed by the U.S. Army

and Loral Federal Systems using DIS and FDDI, expects to ultimately handle only

34

851 entities plus audio communication traffic (Mastaglio and Callahan, 1995). All this

assumes, of course, that the simulation node itself has enough computational power to

simulate 100,000 entities.

Bandwidth
(Kbitslsec)

Key
1 meter threshold,
lots of action.

+ 	1 meter threshold,
average action.

- - 10 meter threshold,
average action.

I 	I

10,000
Ethernet

144
ISDN

56
modems

9.6

10 	100 	1000 	10,000 100,000

Number of Entities

Figure 2.3 DIS performance with different dead-reckoning accuracies.

2.3.3 Naval Postgraduate School Networked Vehicle
Simulator IV (NPSNET-IV)

NPSNET is a research project in the Computer Science Department of the Naval

Postgraduate School. The project's goal is "... to promote the use, understanding

and appreciation of VR" (NPSNET, 1995). NPSNET utilises SIMNET databases,

both SIMNET and DIS networking protocols and has a number of key functional

components:

. Terrain database defining the 3D surface, e.g. ground or sea, and the various

features, e.g. roads.

• Static models such as buildings, trees, etc.

• Dynamic models such as vehicles, aircraft, etc.

35

• Display algorithms which perform geometrical and rendering calculations on

the complete VIE from a given viewpoint.

• Environmental effects which included smoke, clouds, waves, etc.

• Heads-Up Display (HUD), a 2D overlay which may be used for

superimposing information on the 3D view of the yE.

• Networking component which supports both broadcast and multicast.

• Input options allowing the device(s) to be matched to the application.

Despite being DIS-compliant, NPSNET only implements a fraction of the DIS

Protocol, namely the Entity State, Fire and Detonation PDUs.

There are a number of software components unique to the NPSNET implementation

(Zyda et al., 1992b), notably the Physically Based Modeling package. The Physically

Based Modeller (NPSOFF PBM) models rigid-body dynamics using a Newtonian

framework (Zyda et al., 1992a). Properties may include linear and angular velocities,

mass and centre of mass, elasticity and location and orientation information.

2.3.3.1 Improving DIS

Macedonia, et al. (1995) correctly note that SIMNET was constructed for small unit

training and has passed on this heritage to DIS. For this reason simulations do not

scale well and are not currently suitable for large scale VEs. A number of problems

are outlined:

• Bandwidth and computational requirements.

• Multiplexing media.

• Managing static objects.

• Database replication.

It is predicted that a VE with 100,000 players (entities) would require 375 Mbps of

network bandwidth to each computer participating in the simulation. Since each node

needs to maintain the state of every entity in the simulation (albeit using dead-

reckoning models), they will require an inordinate amount of processing power. "We

conjecture that 1000 entities are the limit to which a single host can realistically

36

manage despite future advances in computer and graphics architectures." These

figures are in line with the performance graph in Figure 2.3 and also means that a

more powerful network medium than FDDI will be required.

DIS goes to great lengths to prevent packet fragmentation by requiring that each

packet is smaller than the maximum supported by the physical network.

Unfortunately, this means that video and audio must be treated in the same way rather

than in their more natural continuous forms. Support for these media at the transport

or network layers, e.g. through the use of MBONE, relieves the application from the

overheads of multiplexing and de-multiplexing.

The simulations usually contain large amounts of static objects, e.g. buildings, that

must periodically send update messages even though their state has not changed, just

in case somebody missed the last message. The entire simulation database must also

be replicated at each node since there is no method of partitioning the database.

These last two points show the expense of the DIS protocol, both in bandwidth and

computational terms.

The reasons offered for these problems are four fold:

. Event-State paradigm. Since the simulation is stateless (a basic

requirement for DIS) information has to be sent to every entity. This does

not take into consideration the fact that the simulated systems "sense" the

environment in different ways and therefore have different data requirements.

Two geographically distant entities need not know what each other are doing

until they are in much closer proximity to one another. By being stateless,

the simulation is affected less by the unreliable transmission medium being

used (broadcast).

• Real-time trade-offs. A real-time environment should avoid point-to-point

communications between entities since this requires reliable communications

such as the acknowledgement scheme used in TCP. Centralised databases

37

cause 110 contention, so the only course left is to use a connectionless

method of communication such as UDP.

• Middleware. There is no software layer to mediate between the simulation

and the network. DIS must use bridges for large scale simulations which are

an order of magnitude slower to reconfigure than routers and the number of

nodes is limited to tens of thousands. A network using routers is limited only

by the address space.

• Small scale origins. SIMNET and DIS were only used, until recently, for

simulating small scale environments. This shows in the choice of

transmission protocol and monolithic construction suitable for distribution

over a single LAN. Past simulations have been packed quite densely with

respect to the size of the environment and this influenced the assumptions

made about rates of activity and inevitably the DIS protocol itself.

Complete replication of the database is also grossly inefficient and some means of

partitioning information is required. The proposed solution to this problem is an Area

of Interest Manager (AOIM). The VIE is split into a grid of hexagons - since they are

regular in shape and have uniform orientation and adjacency. The division of entities

amongst the hexagons is not strict and some entities may belong to more than one

group at a time to avoid boundary and temporal aliasing. As the user moves through

the yE, the groups behind them are paged out and more groups ahead of them are

loaded in. The advantages of such a system include reducing the bandwidth needed to

maintain the simulation, the localisation of reliability problems and the ability to make

use of high speed networks such as ATM. ATM will probably support multicasting

and its high bandwidth might permit the dynamic paging in and out of the hexagonal

areas containing large amounts of simulation data.

2.3.3.2 VE Modeling

Since NPSNET is based on DIS there is little modeling infrastructure. The entities

may be simulated in full any way the designer sees fit, the only requirement is that its

38

behaviour can be approximated through a dead-reckoning algorithm. All nodes

connected to the same network simulate the same VE.

2.3.4 Minimal Reality (MR) Toolkit

This toolkit is aimed at supporting work involving user interface design and may be

split into three layers: low-level device support, data processing and high-level

services (Figure 2.4).

2.3.4.1 Basic Structure

The device drivers are provided as a client/server pair, the server directly interfaces

with the device and the client provides library routines that communicate with the

server. The second level massages the data received from the device drivers into a

more usable format as well as providing data sharing services between workstations.

Complex tasks that are often performed have been encapsulated in a set of high-level

functions to form the last layer. These include system initialisation and data

synchronisation. All communications on the same machine uses TCP.

One application runs on a machine at a time. Each application has a master process

that initiates the execution of other programs in the application which are designated

as either slaves or computation. There may be many slave programs which perform

simple tasks such as rendering images. Computation processes perform compute

intensive work and are usually located on a dedicated machine connected to the

master machine via a network.

2.3.4.2 Packages

To aid interface design a number of packages are provided to handle some of the

more complex functions. There are currently four packages: Workspace Mapping,

Panel, Data Sharing and Peer, but the latter two are of most interest in this context.

The data sharing package provides a way of managing a data structure that may be

shared between machines by periodically sending an update copy to the other

39

machines. The structure may be synchronous, in which case the receiving program

controls its update, or asynchronous where the receiver does not have control (the

default).

7 Description 	 JDCAD+
Environment 1' 	Creates OML

Objects Manager

Generates Virtual
Environments

Object Model Language

Specifications of geometric
The 	 modeling and behaviours for three-

Programmer 	 dimensional objects used in VR

MR Toolkit and Peer Package

Supports common VR devices, numerous interaction
techniques, data distribution and connection level

communication facilities.

Figure 2.4 MR Toolkit component structure.

The peer package is a recent extension to MR Toolkit and provides the functionality

to allow independent applications to communicate with each other via master

processes (Shaw and Green, 1993). The slaves receive data from their peers via their

master, i.e. slaves do not communicate directly with other slaves or computation

processes. Application-specific information may be shared between machines using

UDP to send messages to specific addresses. Each machine keeps a peer list which

indicates their state, either active or inactive. A peer may become inactive

deliberately, with the intention to join in later or not (as the case may be), or a peer

may inadvertently become inactive. This happens when the local peer has not

received any messages from the remote peer in the last 10 seconds. At this point the

local peer attempts to re-establish communication. All peers are connected directly to

one another which requires a lot of network traffic to maintain and, as a result, more

than five networked machines is not recommended by MR Toolkit's authors.

40

2.3.4.3 VE Modeling 	 -

Platform independent object geometry and behaviour is described in a procedural

programming language called Object Modeling Language (OML). An OML object

contains code to generate the 3D geometry, controls how the object appears and code

for implementing behaviour. The OML compiler produces an intermediate code that

is executed by the OML interpreter which is embedded into the application program.

An MR Toolkit program loads compiled OML descriptions, initialises devices,

coordinates between devices and the objects, and calls the interpreter every graphical

update. Therefore a program has to be written for every VE built.

To save time, a generic YE application has recently been added to the suite of

programs in the form of the Environment Manager (EM). The EM is responsible for

initialising the YE (using a script file), running both single user and multi-user VEs,

and also provides facilities for monitoring the execution of the YE (Wang et al.,

1995). Each user in a multi-user VE runs an EM which handles calls to OML code.

The distribution of the YE is transparent to the OML objects which just see one

unified YE. The objects may be classed as local - managed by one EM only - or

shared in which case other EMs may load them. To reduce bandwidth, only those

shared variables that have changed state are transmitted and the EM also supports

dead-reckoning by sending OML approximation functions to the other nodes.

Unusually, it is possible to disconnect from the shared environment, perform some

work and then reconnect at a later date.

The user is an integral part of MR Toolkit, in fact the whole system is built around the

user. It is possible for multiple users to interact within the same environment when

machines are connected using the peer package. Only one YE is simulated at a time.

2.3.4.4 Data and Computation Distribution

Two forms of concurrency control are supported through the use of ownership and

access permissions; the choice of scheme is left up to the designer. A shared state

variable may be owned by only one EM at a time and that ownership may, if needed,

41

be transferred from one EM to another at run-time. The solution to the case where

the transfer message is lost during transmission (possible when using UDP) is left up

to the programmer to resolve. A shared variable also has one of two possible access

permissions: writable and readable. If the variable is writable then EMs other than

the owner, may write to that variable. If it is readable then they may only hold a copy

of its value and its owner will send out updates when necessary.

Each EM has its own copy of the entire simulation including the shared variables.

The identity of the owner is broadcast to every EM whenever ownership changes.

When a remote EM wants to make a change, it requests ownership of the variable and

then makes the change. In other words, each machine in the network that has a user

wanting to interact in the simulation takes it in turns to run the simulation, whilst the

others get the results and use dead-reckoning.

OML descriptions may be created and manipulated using the Jiandong Liang

Computer Aided Design (JDCAD+) which uses a hierarchical modeling system and a

6 degree of freedom (d.o.f.) input device.

2.3.5 Distributed Interactive Virtual Environment (DIVE)

DIVE was developed at the Distributed Systems Laboratory, Swedish Institute of

Computer Science (SICS) to aid their research into the distribution, collaboration,

interaction and multi-user aspects of virtual reality (Carlsson and Hagsand, 1993).

2.3.5.1 Distribution

The distribution model used in DIVE v2.2 can be conceptualised as a memory that is

shared over a network. An old version of the ISIS Distribution Package (v2. 1) is

used to provide a mechanism for data sharing between systems (Birman et al., 1987).

Version 3.0 of DIVE was in beta-testing at the time of writing and no longer uses

42

ISIS4 which has been substituted for the SICS Distribution Package (SID2 - Hagsand,

1992) that provides similar functionality.

The database, which is completely held in memory, is partitioned into worlds. Worlds

are implemented as ISIS process groups where each process actively manages its own

replica of the database. A DIVE process can only be a member of one world at a time

although it may travel between worlds. Each process consists of lightweight threads

which are allocated a specific task, e.g. rendering, input/output management or

updating the database. The consistency of the shared database is maintained by using

mutually exclusive locks, multicast transmissions within the process group and

distributed object locks. DIVE supports heterogeneous distribution and machines

that are not equipped with graphics hardware can still run non-rendering components

of an application.

2.3.5.2 Applications

Applications may be created using the provided C libraries and then run on one or

more systems communicating over an Ethernet link using TCP/IP. Multiple

applications (implemented as a process) may run simultaneously, modifying the state

of the world database. The visualizer is a special application that uses selected

input/output devices and enables the user to interact with the VE.

Objects in DIVE are allocated a globally unique identifier, a name and a position in

3D space amongst other information (Andersson et al., 1995). They may also have

one or more graphical representations. Composite objects are formed by grouping

objects together hierarchically. Objects are stored locally in main memory, e.g. during

creation, and may be shared over the network using a replication mechanism, i.e. after

creation. Object information specific to an application is maintained by the

application itself and is not distributed to other processes.

' ISIS is now a commercial package and is no longer free to academic institutions.

43

All DIVE processes communicate with messages which may change an object's state,

a process' state, or inform the recipient of a specific event. Applications may register

call-backs for these events which may be used to indicate errors or user interaction.

Behaviour in DIVE is implemented as a state machine with, each arc referring to a

particular signal type. A signal may be generated when a collision is detected, some

form of user interaction has occurred, on some input, or when an application wishes

to trigger a behaviour directly. A random signal is also available so that some form of

random behaviour can be simulated. Current supported behaviours are limited to

manipulating the object's visual properties, spatial translation/orientation changes,

generating a sound or triggering a behaviour in another object.

2.3.5.3 Users

Each user has their own personalised body-icon which is used to represent them in the

world. The icon may be made of many parts, e.g. head, eyes, ears, hands and a visor.

Each of these components serves a purpose. For example, each eye specifies a

viewpoint from which the graphics display is generated and any object manipulated by

the user is usually attached to one of the hands.

Vehicles provide a translation between data from input devices to actions in the yE.

Several simple vehicles are provided with the system such as a mouse vehicle and one

for monitoring head and hand movement when using an HMD. New vehicles may be

created using the DIVE Application Programmer's Interface (API).

I/O handling and user representation is therefore integrated into the user object.

Multiple users are supported as are multiple worlds which may be entered through

gateways. Since each world possesses the same properties, there is no problem with

object migration.

2.3.5.4 Time

Clocks in DIVE are not synchronised apart from system-level synchronisation using

NTP and it is assumed that clock rates are equal on all machines.

44

2.3.6 Distributed Virtual Environment System (dVS)

Division build their own parallel processing computers which are currently based

around INMOS Transputers, Intel i860 microprocessors and a number of ASICs.

Their goal is to provide a seamless software environment to the VIE designer which

has resulted in the development of dVS (Grimsdale, 1993). Since its conception, dVS

has been ported to Silicon Graphics, Inc. (SGI), Hewlett Packard and IBM

workstations.

dVS v2.0.4 augments existing operating systems to try and provide the best possible

performance over these platforms. It is organised into processes that perform certain

tasks called Actors. There are actors for generating visuals, producing audio,

performing collision detection, monitoring 6D trackers and many other tasks

(Division, 1994). The user's application is also built from user supplied actors.

Actor n 	Actor n+1 \ Actor n+2

'C Toolkit 	VC Toolkit]) VC Toolkit

LLihrarv 	VLLihrarv V V11ihraj

Sharcd Vj. I)atase ! 	VL Dtab

4 VL lihnry4\ &L Library
I IVC Toolkit I I (Ivc Toolkit

Agent 	 Agent

4_~_
/ 	 /

Figure 2.5 dVS system architecture.

The essential components of dVS are shown in Figure 2.5. At the core is a

distributed database (VL) which may be accessed by actors through the VL Library.

The VC Toolkit provides higher-level functionality for the manipulation of objects and

makes calls to the VL Library to achieve this task. The Agent is a special actor which

handles updates to the local database and informs remote systems of the changes.

One agent assumes the role of the Director and is responsible for coordinating all

database updates. Communications between agents are performed using the Division

Session Network (dSN) software layer.

45

2.3.6.1 Database Structure

An object class in dVS is called an Element. An Instance of an element may be

created and is the unit of communication between actors. Before elements can be

defined and instanced, an Environment must be created. A root environment is

always created by default when an environment database is created (owned by the

Director) and subsequent environments may be arranged hierarchically. New

environments may be created by any actor at any agent. Containers can be defined

which consist of one or more elements and are treated as an atomic quantity. A new

element definition is written using C-like syntax and passed through a pre-processor

which produces the relevant VL data structures and library routines as C source code.

These source code files are compiled and linked into the application executable.

2.3.6.2 Database Synchronisation

Actors hold an element and by extracting that element an actor may change the state

and then commit it using an update. Any actor holding the element will be informed

of the change in state through an event. An actor can register interest in (hold) either

elements or instances, an action that is environment specific, i.e. updates to sub-

environments are not reported. This process is complicated if the item of interest is

part of a container. There are actually 3 cases that must be catered for:

Interested in a container and a sub-element changes => the whole container

is reported as having changed.

Interested in a sub-element and the container changes => the sub-element is

also reported as having changed.

Interested in a sub-element which is subsequently changed => report a sub-

element change.

Application tasks have no direct access to VL to avoid contention when two

applications try and access the same information. All data accesses to the databases

are therefore made by copying. dVS provides a choice of three different

synchronisation methods to help maintain database integrity.

46

None. Updates are sent asynchronously and any duplicate events detected

before the event reaches its destination are folded into one, i.e. only the most

recent update will be processed.

Local. Locks the event and associated data until all destination actors within

the domain of the local environment database have processed the

information. This event is also propagated to remote databases if required.

Global. Similar to a local synchronisation event except the lock is performed

across all remote databases and as such can be time consuming when

acquiring the resources.

Synchronous updates are not supported by VL. These are viewed as expensive, used

in only a few special circumstances (although no examples are given) and not the way

to maximise performance (section 2.3.6.4).

The agent monitors changes to the local database and distributes these changes to

other agents on other machines if interest in those items has been previously

registered. Only knowledge about other agents and their current interests is

maintained by any given agent, which means updates are sent direct to the relevant

agents thus avoiding the need for broadcast. Since only objects that are being held are

propagated to remote databases, it is possible for one such object to reference another

which does not exist locally. It is up to the application to ensure that it has registered

interest in all necessary objects. Agents are allocated a port number which is held in a

configuration file, allowing physical machines to connect or disconnect at run-time.

2.3.6.3 VE Modeling

The VC Toolkit supports a number of specialised elements which it calls Virtual

Objects. The basic element is VCObject which may be decomposed further into other

VCObjects and so on. The other standard elements which are held within a VCObject

are VCAudio, VCBoundary, VCConstraints, VCLight and VCVisual. Each of these

describes a certain number of logically related attributes and are often associated with

a particular actor, e.g. VCAudio elements are monitored by the VSOUND actor.

47

The collision detection actor monitors VCBoundary elements and notifies the two

relevant parties when a collision has occurred. Whereas the VIZ (visualisation) actor

is interested in VCObject, VCLight and VCVisual elements.

Users are represented by a Body actor and therefore there may be multiple users in the

same environment. The body actor is also abstracted away from the necessary 110

devices which exist as separate processes and can be assigned a special representation.

It is unclear whether an actor from one environment can move into another.

2.3.6.4 Synchronisation

When a network of machines starts up, the first node to complete initialisation sets the

time on the other machines to its own. No time synchronisation is performed

thereafter. All messages are timestamped but this information is used to discard tardy

messages that have already been superseded. dVS never waits for the arrival of a

specific message and thus there is no lock-step synchronisation between nodes.

2.3.7 Waterloo Virtual Environment System (WAVES)

WAVES was formerly known as Highly Interactive Distributed Real-Time

Architecture (HIDRA) and is targeted at low-cost platforms that use low-bandwidth

media for communications, e.g. telephone lines (Kazman, 1993c).

2.3.7.1 Basic Architecture

The basic components of the WAVES architecture are shown in Figure 2.6. Each

Host simulates a subset of objects and provides certain services to each object, e.g.

collision detection, rendering, etc. Whilst cyclically updating their set of objects,

hosts periodically broadcast the state of their local objects to other hosts. Major 110

events, e.g. user input, are communicated each cycle to maximise fidelity. The

communications between these hosts are done over virtual connections, mediated by a

number of Message Managers. Connections may also be filtered so only messages of

interest are sent to the hosts. The message managers are also given the ability to

delegate direct point-to-point links between hosts in special circumstances, e.g. a line

EV

carrying a video signal. Under WAVES, a VE may be distributed over a network of

message managers, with the allocation of hosts to each manager being determined by

a dynamic clustering algorithm. Objects have explicit behaviour models which aid

load balancing, support dead-reckoning and may be used to predict an object's state

in order to combat latency. The ghost objects that reside on a host are called clones

in WAVES. As with other dead-reckoning systems, some fault tolerance is provided

in that if one host should go down, then the others can carry on using their current

behaviour models.

- - Il/ODevicel

J UO Device

Message •'
£:::IIIEEIEII:I:) ----- I I/O Device

- - -

	
Manager

- Il/ODevicel

Key 	 - Il/ODevicel

- - - 	Direct link 	 I I/O Device I
- - 	Network link

Figure 2.6 Basic WAVES architecture.

Load balancing is performed on each host based on several criteria: the host's

processing power, the number of objects on the host and how closely related the

objects are (Kazman, 1993b). The host sends its current load and their maximum

possible load to their local message manager. When the host detects its load has risen

above its maximum, it sends another message to the message manager indicating

which object it would like to get rid of. Another host is found for the object or, if no

suitable host can be found, the transfer request is refused.

Users should be representable as objects providing there are sufficient input/output

devices on a host and this would also imply that multiple users can be supported. It is

unclear whether it is possible to execute multiple environments.

49

2.3.7.2 Distribution of Responsibility

To solve the problem of area management, WAVES uses a special Area Manager

which is paired with a message manager (Kazman, 1993d). The area manager

maintains a list of viewable areas for a given viewpoint, one per host. When the list

changes, the message manager's filtering criteria for a given host is changed so that

only those objects in the host's viewable areas are sent to it. Since the area manager

only changes message filters, it can be added or removed from a WAVES system

without disturbing anything else in the system. To overcome rapid changes in area,

WAVES proposes to use an object's behaviour model to anticipate the changes and

send filter requests in advance. To avoid the problem of all users occupying a small

number of areas and causing a bottleneck, there may be many managers in the system

and they may balance their loads dynamically.

Interactions between objects, are specified externally in interaction detection and

resolution (IDR) agents (Kazman, 1993a). The world view maintainer contains the

description (world attributes) of the environment that the objects operate in; a view

controller which dynamically manages the inventory of agents which may be

interfacing, and an inventory of all the objects which exist in the world (world

objects). If DR takes too long then the world may be broken into a number of areas,

each with their own DR facility. Each DR server contains a production system,

which allows the system designer to create arbitrary constraints on an object's state in

the form of rules that are evaluated each execution cycle. Each DR server contains a

"theatre map" that plots the locations of all objects in the theatre and raises an

exception when two objects attempt to occupy the same space. IDR servers can be

designed to handle particular types of interactions: spatial, temporal or semantic.

IIDRs can therefore be used to detect interactions within a spatial threshold as a sort

of prediction mechanism to accommodate lags in the system.

In summary, object behaviour is defined within the objects, interactions are defined

within IDR servers and the environment is defined within the world view.

50

2.3.8 AVIARY

In the AVIARY model a distinction is made between objects that are presented to the

user through different media: Demons are the pieces of software that implement an

object and Artifacts are the manifestation of the demon in the VE (Snowdon et al.,

1993; Snowdon and West, 1994; Snowdon, 1995).

2.3.8.1 Basic Architecture

A virtual world is seen as a container for artifacts and a set of constraints on those

artifacts and behaviour. The sole World Object represents a virtual world, acting as a

container for artifacts, storing the identities of demons, details on the objects

providing other services, and information shared by all objects. The actual artifact

definitions are not held within the world object, but since the artifacts may be

accessed through it, this information can be obtained indirectly.

The Environment Database (EDB) provides a spatial management service to other

objects. When a demon moves, it sends a message to the EDB, which prompts a

collision check for that object. The EDB then informs the relevant objects of the

collision and they may then react as they please. To prevent the EDB becoming a

bottleneck, it may be split into one or more new EDBs which share the existing

workload (although this has not been implemented yet). In addition, separate EDBs

may be employed for different media and therefore operate in parallel.

Object Servers provide an execution environment for demons, handling object

creation/destruction, messages from other objects, memory management and

scheduling. Inter Process Communication (IPC) between all types of objects is

supported without restriction. One object server is allocated to each processor.

Security-wise, each object controls access to its own data and may therefore protect

any sensitive information.

5J
A

Applications

Input Objects

Speech
	 Output Objects

4Renderer

nSounudt Outv

'0
0 User

Objects

Figure 2.7 AVIARY component schematic.

Only one Virtual Environment Manager (VEM) is present in the whole system and

provides services to ensure that the integrity of the YE is always maintained. This

includes the assignment of identifiers to objects (aiding dynamic object creation) and

also to classes and messages. This last mechanism ensures that objects that

understand the same messages but have been implemented differently can still

communicate with each other. Complementing the VEM is the World Manager

which maintains a list of all the available services provided by objects. This enables

any object to look for another object providing a service that it requires, e.g. visual

rendering or collision detection.

The issue of time synchronisation is resolved in AVIARY by making use of real-time

clocks on each node. Simulation or world-time can, however, be scaled relative to

real clock time.

Both synchronous and asynchronous message passing is supported with both

multicast and point-to-point links used to transfer the message. To prevent deadlock,

the object server is multi-threaded so that it is always ready to respond to an external

event.

'J Head
 (Communications

System

Data
Glove)

Object
 Servers 	 - - -

52

2.3.8.2 VE Modeling

Behaviour of the artifacts is dictated by the methods defined for the creating demon

which actually consists of two parts: artifact-specific and world-specific. All features

that are shared by all objects in the world are held in the world-specific part and those

unique to each class of demon in the artifact-specific part. This separation of

attributes aids migration from one world to another. Demons can make use of

services provided by any other kind of object and can inherit classes or define existing

classes to extend its capabilities.

Multiple worlds are an important part of AVIARY's design since each may require a

different interaction metaphor and it own laws and properties. The user is permitted

to travel between worlds by using Portal objects that may appear as artifacts in each

virtual world. When a demon moves between worlds the world-specific part of the

demon is replaced by that of the new world whilst the artifact-specific part remains

unchanged.

A demon may represent an application or a user, either way it is likely to need access

to input and/or output devices. Input objects control input devices, sending data to all

interested objects only when there is something new to send. Output objects monitor

a particular location in the world and display a representation in the chosen media.

Users are represented by demons and are decoupled from the system and 110 devices.

Although there does seem to be provision to integrate 110 into the user demon if

performance dictates.

The current implementation is written in C with object-oriented features, including

multiple inheritance added through macros. These macros create an internal data

structure of class descriptions, object instances, etc. This data may be communicated

to another machine thus supporting object migration, although no load balancing

checks are currently made to see whether this is required.

53

2.4 Summary

All of the systems examined here are trying to achieve interactivity, but none are real-

time in the traditional sense and therefore do not support real-time displays. These

are important aspects of a VE system and the impact of supporting them is discussed

in sections 3.3 and 4.3. This classification has therefore been left out of the feature

summary table (Table 2.3).

2.4.1 Communication Organisations

Typically there are n processes in a VE which need to communicate with each other.

Using a point-to-point communications system, a link must be established between

every process or a central server established, forming a hub. In the former case this

will require n(n -1) links and in the latter, n links, although total centralisation can

place a burden on the central server which can quickly become a performance

bottleneck. Conversely, administrative processes often need to monitor most (or all)

transmissions and make according actions, e.g. dVS's Director and the Message

Managers in WAVES.

Whilst broadcast relieves the overhead of maintaining links, it floods the network with

messages which are either an inconvenience (on shared networks), or wasteful (on

dedicated networks) because in large YEs not every process needs to know what all

the others are doing. Area management can be used to determine who needs to know

what, but cannot use broadcast as the transport mechanism. Maintaining a number of

point-to-point links is one solution but with the complications already outlined above.

Multicast provides a way of overcoming these disadvantages (as demonstrated by the

AOIM in NPSNET) whilst still retaining the low transmission overhead, but it is not

widely available and is, like broadcast, unreliable.

54

Ui
('I

Feature DIS/SIMNET NPSNET MR Toolkit DIVE dVS WAVES AVIARY

Communications Transport Point-to-Point, Multicast Point-to-Point within Multicast Point-to-Point Point-to-Point Point-to-Point and
Mechanism(s) Broadcast, node and Broadcast Multicast

or Multicast between nodes

Targeted Unspecified 10 Mbps + 10 Mbps + 10 Mbps + 10 Mbps + 14Kbps + 10 Mbps +
Bandwidth

Structure(s) Peer Peer Hierarchical & Peer Client/Server Client/Server Client/Server
Client/Server

internally and Peer
externally

Data
Management

Organisation Total Replication Total Replication Active & Passive
Partial Replication

Total Replication Passive Partial
 Replication

Complete
Distribution

Complete
Distribution

No Yes No No No Yes Yes Localisation
Support?

Computation
Management

Organisation Partial Replication Partial Replication Total/Partial
 Replication

Total Replication Partial Distribution Partial & Complete
Distribution

Complete
Distribution

1 1 0/1 0 0 1 0 Behaviour Level

VE Modeling Environment Parallel
Management

Parallel Single Multiple Parallel Unknown Multiple

User Support Multiple Multiple Multiple, Integrated
(possibly)

Multiple, Integrated,
with Representation

Multiple, Decoupled
with Representation

Multiple, Decoupled
(probably)

Multiple, Decoupled

Time
Management

Progression
Method

Implicit or Explicit Implicit or Explicit None None None Unknown Implicit

Node UTC or None UTC or None Programmer None None Unknown None
Synchronisation

Fault Tolerance Degree 3 3 3/0 0 0 3/0 0

Security Method(s)
Employed

None None None None None None Object Level
Interface

Table 2.3 Distributed VE system feature classification summary.

2.4.2 Transport Mechanisms

Deciding whether to use a reliable message delivery service or not is a key decision in

the design of a distributed VE system. NPSNET, MR Toolkit and other DIS-based

systems use UDP between machines. DIVE uses multicast exclusively and AVIARY

uses it for messages that need to be sent to many processes, but this is under the

control of the application programmer. The only two systems that use a reliable

service exclusively are dVS and WAVES. Both make use of a known network

configuration and thus known addresses, to distribute the messages. If an unreliable

service is used then the software protocols must reflect this decision and a degree of

fault tolerance provided.

Even with the implementation of these two steps, loss of messages (or their delayed

reception) will, inevitably, have an affect on the user interface. The effect could be

anything from a slight glitch or jump in. the display, to temporary loss of service. If

these counter-measures are not taken then the designer is relying on a large number of

variables holding true to keep things running, e.g. plenty of bandwidth available,

network interfaces fast enough to capture packets, etc. Of those systems reviewed

that use multicastlbroadCast, NPSNET and MR Toolkit account for lost messages.

Both use exported behavioural models but MR Toolkit actively encourages a machine

to disconnect and reconnect during a simulation by providing appropriate API

functionality. To the author's knowledge, DIVE and AVIARY do not make any

provisions for lost messages, the consequences of which are unknown for both

systems.

2.4.3 Bandwidth Implications

All of the systems use existing networking technology so it is unsurprising that most

are currently implemented using Ethernet. The DIS standard does not actually specify

a bandwidth but the author does not know of any implementation using anything less

than 10 Mbps. WAVES' target of 14 Kbps is laudable but there is precious little

bandwidth to play with. Without compression, 14.4 Kbps will support a data rate of

h1;4

approximately 1.31 Kbyteslsecond 5 . The compression supported by modern modems

could improve on this if there were repeating patterns in the data stream, like those

found in ASCII text. However, the likelihood is that the messages sent between

nodes will contain extensive binary data and thus compression will do little good.

This figure does not, of course, include transport protocol overheads which may

reduce the data transfer rate substantially (section 4.2.3).

The fact that the available bandwidth for a given process will vary during execution is

a compounding factor. This affects both reliable and unreliable services and,

depending on the criticality of the system, can at the very least wreak havoc on system

performance. The author believes that the ability to allocate channels of fixed

bandwidth for a fixed period (as supported by ATM), is essential to the development

of distributed VE systems. Only then will communications become deterministic and

thus release the designer to concentrate on other issues.

2.4.4 Distribution & Scaleability

Communications latency affects all systems, regardless of architecture, however, it is

the largest enemy of scaleability. As the distance between nodes increases so will the

latency and unless the system protocol and structure is modified to account for this,

performance will degrade beyond acceptable levels.

Each of the current systems reviewed address one of Kleinrock's classes with a

possibility of application in another if the conditions are right. None attempt to

address more than two and certainly no changes are made to the system architecture

to help it adapt. Each form of data and computation distribution has advantages and

disadvantages. All can be applied successfully in a near/tightly-coupled system but as

we move through far/tightly-coupled into the far/loosely-coupled classification, so the

solution weaknesses become more apparent.

14.4/ 11 = 1.309 Kbytes/second (assuming 8 data bits, 1 start bit, 2 stop bits and no parity).

57

Complete distribution of both data and computation is a victim of increased latency

since all accesses and data modifications have to be communicated to their source.

The worst-case task would be the monitoring of a piece of information, performing an

action when it reaches a certain value and then modifying it. This would require a

message to get the latest value and possibly another to modify it every simulation

step. If this task was performed on many objects it could saturate the network. Both

AVIARY and WAVES use this approach. Active partial replication, as used partly by

MR Toolkit, also has the same problem. Whereas data would be accessed via an

object interface with complete distribution, copies of whole chunks of object state can

be distributed with active replication.

Partial replication of data provides slight relief from this symptom by supplying a

mechanism that will send any interested party a copy of the relevant portion of state

(or behavioural model) only when it changes. Not only does this reduce bandwidth

consumption, but also the computational load because the task function is only

executed when an update is received, rather than at every simulation step.

Modifications can be made by sending the instruction to change data back to the

source. A slight variation on this is partial computational distribution where changes

are made locally and communicated back to the owner, or, as in dVS, committed to

the shared database. If the latter method is used, locks must be used to preserve data

integrity. Lock acquisition and release can lead to deadlock (section 2.2.3.3) and are

inherently undeterministic and thus unsuitable for a real-time system.

Complete data distribution has the advantage that data is only stored in one place,

while partial data replication duplicates parts of the environment's state, thus

consuming more resources (DISINPSNET). This pales into insignificance against

total replication where the complete environment state is duplicated. In a high

bandwidth configuration this is a waste of resources, but it is the only solution when

the distance between nodes is large and latency is high. The largest challenge in this

case is to keep the replicated databases in synchrony. Transmitting modified segments

of environmental state between databases is not a viable option. Partial computational

replication would seem to be a possible solution.

The usefulness of exporting behavioural models can be shown clearly by once again

considering the goal of distributed \'Es over a 14.4 Kbps telephone line. A level 0

behaviour system would likely send a position and orientation update for each

simulation time step. Assuming 6 x 32 bit floating-point numbers (3 for position and

3 for orientation) plus, say, another 16 bits for an object identifier gives a total of 208

bits or 26 bytes. Using our previously calculated data rate of 1340 bytes/second we

can determine that 1340/26 = -51.5 messages that can be sent per second. Assuming

a modest 15 Hz update rate, this permits us to send updates to -3.4 objects. If more

bandwidth is available initially then this is quite a tempting, easy solution and is used

by DIVE, MR Toolkit (at its lowest level), AVIARY and, to a lesser extent, dVS. If

a higher level behavioural model was supported, such as dead-reckoning, then

messages would be sent at a much lower rate (depending on the object's behaviour)

thus permitting more objects to be supported.

However, level 1 behaviours still require messages to be sent quite often and it would

be quite easy for the databases to get out of synchrony considering the latency.

Instead of informing each other of deviations from the predicted behaviour, it would

be more sensible to totally replicate the computation and only inform each other of

changes in object behaviour. This could be an update of the behavioural description

effected by software, e.g. level 2 behaviour, or by a user, e.g. level 3. Bryson's two-

point paradigm (2.2.4.5) is representative of the kind of information that could be

sent.

Load balancing and process migration are best applied in a tightly-coupled system.

There is obvious application for these techniques when using complete computational

distribution and they can also be applied to systems using partial replication. With a

large number of ghost processes and area management there are likely to be those that

are accessed more frequently than others. Spreading the computational load evenly

whilst minimising the distance between communicating objects could greatly improve

performance.

2.4.5 Time

Most of the systems reviewed do not seem to have any policy on time management.

AVIARY uses the implicit model for clock synchronisation which is less than full-

proof. Clock oscillators can drift (as any network administrator will testify) and need

to be constantly corrected. The most common method for doing this is NTP which is

adequate for non-time-critical work where second accuracy will suffice. When

dealing with multiple updates per second this clearly will not do. With extra effort

over a longer period of time it is possible to synchronise clocks to millisecond

accuracy using NTP, but the author feels that this may be inadequate when dealing

with 33 ms time spans (for a 30 Hz update rate). Ideally, each node would be

equipped with a Standard Positioning System which would ensure that all machines

throughout the world were synchronised to within 167 ns. Unfortunately, the current

cost of this technology would probably be prohibitive so solutions like NTP are the

best remaining choice for systems using implicit time models. Indeed, if clock

synchronisation is needed in MR Toolkit or DIVE, the designers have assumed that

NTP would be used.

The explicit time model uses timestamps in messages for various purposes such as

informing them of the send time, the time at which the message is valid, etc.

DISINPSNET uses a timestamp format which can specify a time up to an hour after

the current hour, to within an accuracy of 1.676 microseconds. However, there

seems to be no suggested methodology of ensuring that each node has the correct

current time. In this instance there would seem to be a requirement for both models

to be used together to manage simulation time.

It might be possible to use explicit time progression exclusively within systems that

use complete/partial computational distribution or partial replication, but when total

replication is used a common reference is required.

2.4.6 Fault Tolerance

Those systems that export behavioural models (section 2.2.4.5) implicitly support a

notion of reliability (degree-3). Failure to receive an updated model, because the

source host is down, can be remedied when the host rejoins. DIS ensures this by

requiring that no one machine controls the simulation. MR Toolkit permits a node to

leave and rejoin the simulation but this does not really constitute robustness since

leaving and rejoining relies on using the correct protocol. WAVES does export

behavioural models, but there is no mention in the available documentation that states

fault tolerance as a design goal.

None of the systems pursue the goal of availability through duplication of resources,

probably because they are at a premium. Total replication of both data and

computation is done by DIVE which would put it in the best position to provide fault

tolerance, although this is not a stated goal. When the faulty node recovers, another

node in the simulation can send it a complete copy of the current environment state.

Recoverability is not supported by any of the systems and the only true robust

systems are those based on SIMNETIDIS.

If interaction is a high priority then degree-4 fault tolerance is the most desirable and

may even be considered as the only usable type. Any faults managed at a degree

below this would be reflected as a disconcerting change in the VE display. This may

manifest itself as anything from a small "jump" in continuity (degree-3) to a total loss

of realism (degree-1).

Rather ironically, the least reliable transport mechanism - broadcast - is also the best

way of providing fault tolerance: through redundancy. The incorporation of a special

process/node in the network that listens into every message and maintains a state

backup using point-to-point links would place an unacceptable overhead on

communications. It would require two messages to be sent for every communication

rather than just one. Fortunately the reliability issue is being dealt with (sections

2.2.2.3, 2.2.7) which will remedy one of the weaknesses of any system that uses

broadcast techniques.

1I

2.4.7 Security

This is an issue that none of the current systems fully address. This is not too

surprising since all of these systems are used as tools for researching the field and

security can get in the way. An encrypted data stream is not particularly helpful if you

wish to monitor message passing, nor is access control when you are experimenting

with object interaction metaphors. AVIARY makes a token gesture by putting each

object in control of its own data. This is not an added feature, this ability comes with

the adoption of an object-oriented structure. An object's methods may be coded in

such a way to vet access but AVIARY provides no built-in/automatic security layer.

2.4.8 Modeling

With the exception of MR Toolkit and WAVES, all of the systems support the

concept of multiple VEs in one way or another. DIS supports multiple exercises

which take place in the same environment, whether these exercises can interact is not

clear. DIVE assigns a multicast group to each environment so messages are not

processed unless the user is present in that environment. dVS can support different

environments but there is no evidence to suggest that elements in one environment

can move to another at run-time. All objects in AVIARY occupy one of the available

VEs which are designed as a hierarchy of worlds, each one building on the properties

of the parent. Objects may also migrate from one world to another, a feature shared

by DIVE. However, in AVIARY worlds may possess different properties whereas

DIVE worlds would need to be programmed identically to facilitate migration.

All the systems support multiple users in differing ways. MR Toolkit might support

more than one user if each had their own workstation and was sharing the same

database. The WAVES literature does not specifically state that it can support many

users, but its general structure of hosts and 110 devices infers that it does. In DIVE

and MR Toolkit, the user is an integral part of the system, in fact they are built around

the user. DIS, dVS, WAVES and AVIARY do not distinguish a user from any other

object except that it may have various I/O devices connected to it. All of these can be

used to simulate yEs with no human participation whatsoever. Despite this

62

treatment, dVS does seem to emphasise the ability to specify a special user

representation in the VE in a manner similar to DIVE. The latter, however, also uses

this representation to configure the required 110 devices.

2.4.9 System Summaries

2.4.9.1 DIS-based Systems

DIS and SIMNET would have originally been classified as near/loosely-coupled but

DIS is now trying to move on towards far/loosely-coupled. The problems with such a

move have been discussed in this summary and in section 2.3.2. NPSNET is being

used by the Naval Postgraduate School as a testing ground for new ideas and

concepts to help DIS make this transition. Despite the DIS community's advocation

of the protocol's applicability to non-military VEs, the author feels that it will always

be of restricted use due to its constrictive definition. All messages sent between

objects have to be defined in advance and of the dozens already defined only one of

them is of general use: the Entity State PDU. The other PDUs deal with explosions,

logistics support, etc., which are inherently military-application specific.

2.4.9.2 MR Toolkit

This system is used to aid research into user interfaces and is accordingly designed

around the user. It does its task well but its lack of generality limits its applications in

the same way as DIS-based systems.

2.4.9.3 DIVE

DIVE is more flexible than DIS and MR Toolkit, but its use of total replication and an

unreliable message delivery system make scaleability a real issue.

2.4.9.4 AVIARY

Of all the systems reviewed, AVIARY is the most flexible but shares another problem

with the others in that it will have problems scaling up to larger VEs. The use of

63

complete distribution has limits and must be supplemented with other forms of

data/computation management, requiring changes in the system's architecture.

2.4.9.5 WAVES

There is only limited information available on this distributed model although the

literature states that a prototype implementation is being developed. The inclusion of

low bandwidth communications is cause for concern and catering for this could

compromise the design

2.4.9.6 dVS

A restriction shared by all of the systems presented here is the difficulty with which

the VE definition is changed. dVS requires the basic components and structure of the

environment to be scripted off-line, pre-processed, compiled and linked in with the

Actors.

Its exclusive use of point-to-point links may also prove to be detrimental to

performance when larger networks of dVS machines are attempted.

2.4.10 A New Architecture

From the analysis presented in this chapter, it is possible to extract those features that

effectively resolve the presented issues and derive a new architecture for distributed

VE systems. This is presented in chapter 4 following a closer look at a couple of

aspects which deserve more attention: modeling and displaying yEs.

MM

Chapter 3

Modeling and Displaying Virtual
Environments

"Only two things are certain: the universe and human stupidity;
and I'm not certain about the universe."

Albert Einstein

In this thesis, not only are we interested in the technical aspects of distributed YE

systems - their architecture - but also in the methods used to model yEs. To better

understand what we are trying to achieve when we model a yE, our natural

environment is examined and ways of defining and classifying YEs are explored. To

conclude this abstract examination of environments, a number of modeling processes

that may be used to capture the essence of the environment being modeled are

discussed.

As the reader knows, we interact with any environment via our senses. The

information we gather from these senses is processed by the various perceptual

systems in our brain. An effective VE system will generate displays that enable

human perception, e.g. visual and auditory, to operate naturally. If the YE displays

present the information in a confusing way, then the YE system is not doing the model

of the environment justice.

To illustrate this point, the implications of misusing the visual display are discussed -

currently the norm rather than the exception. Rectifying the problems with the way in

which this display is used has ramifications for VE system design. These technical

65

details are discussed in this chapter as a prelude to the consideration of the more

general system requirements presented in the next chapter.

3.1 A New Modeling Paradigm

There are many questions that should be asked when designing a VE. What sort of

information should be provided? How should it be structured? How can it be

described? These questions face all YE designers, whether the environment is

intended for data visualisation, teleoperation or vehicle simulation. In the hope of

gaining a better understanding of the task at hand this section examines our natural

environment. How we interact with our environment, its important features and its

implications on YE design are discussed with the aid of several VE defmitions and

classification schemes. By analysing how we interact with the real world we can gain

insight into how effective virtual worlds may be constructed.

For argument's sake, let us say that (for now) a YE is a synthetic version of our

natural environment. Logically, our next question would be "what is our

environment?" How do we describe the environment in which we live? This is a

question that has been given a great deal of thought by many people working in every

discipline: Physics, Psychology, Physiology, Philosophy, the Arts, just to name a few.

Each of these disciplines offers its own unique view on the subject. Regardless of

their defmitions, which can be quite different, they are all valid and each has its own

place and use. Physics can provide us with information on how the environment is

constructed in physical terms of force, mass, energy, etc. Physiology deals with how

our body functions within the environment, Philosophy deals with more abstract

concepts, whilst Psychology concentrates on the more cerebral activities of our body,

including our perception of the environment that we are in.

3.1.1 Definition of a Model

Before we tackle the thorny issue of defining a YE, it is useful to give some thought

to what we mean by a "model".

A model is an implementation
of a representation
of an abstraction
of a thing.

Barzel (1992), p27.

The thing being modeled is not part of the model, indeed the model is a simplification

of the thing, consisting of a subset of the properties that make the thing. This subset

is the abstraction and can be thought of as the set of ideas that underlie the model.

As such, the abstraction is an entity without substance and therefore cannot be

manipulated. The representation is a complete description of the model and is

concrete in the sense that it may be edited, copied, analysed and contains sufficient

information to build the model. It is possible to have many representations for any

given abstraction and a representation to be shared by multiple abstractions. The

execution of the model is the implementation, of which there may be many for any

given representation, each with their own quirks.

This introduces us to a way of describing models referred to by Barzel as an

Abstraction Representation Implementation (ART) structure. Barzel presents ARI for

use in physically-based modeling but it can be used to decompose most types of

model. For example, the model of a computer program may be analysed using the

ART scheme: the conceptual specification is its abstraction, the design document is its

representation and, naturally, the software itself is the implementation. If we adopt

this methodology for the modeling of YEs then we must first find a suitable abstract

model. From this we should be able to derive a suitable representation, maybe in the

form of a language, and eventually the implementation of a system which can execute

our yE.

3.1.2 An Ecological Approach

The nature of the environment and how it shapes the evolution of animals contained

within, was a key concern of the eminent psychologist, James J. Gibson. When

describing the Gibsonian approach, the key word is affordance (Gibson, 1979). The

affordances of an environment are what it offers the animal in terms of action and

67

interaction, what it provides or furnishes, for good or bad, e.g. a fire can afford

warmth but it also has the power to destroy. An important point is that affordances

do not reside in the environment, they are the result of interactions between the

animal and the environment.

Objects within the environment are classified as being either attached or detached. In

Newtonian physics, all objects in space are detached, but from an alternative

perspective it is obvious that some items are attached and cannot be moved without

breakage. In order for an object to afford behaviour, it must be both detached and

comparable in size to the animal under consideration. Exactly how small or large an

object has to be until it does not afford behaviour is unclear, but those objects that are

comparable can afford a wide variety of behaviours. Objects can all be said to have

properties or qualities, e.g. colour, texture, composition, size, mass, etc. Orthodox

psychology asserts that we perceive these objects insofar as we discriminate their

properties or qualities, but Gibson suggests that what we perceive when we look at

objects are their affordances, not their qualities. However, to perceive an affordance

is not to classify an object, e.g. a stone is a missile but it can also be a paperweight,

part of a wall, etc.

By describing the environment in terms of animals, Gibson rightly makes the point

that each animal has its own view of the same environment. Or to put it another way:

given an infinitely detailed environment, each animal will extract only that information

which it needs. Because different subsets of the environmental properties are being

used, the animal's perception of the environment (and the objects within in it) will be

different. For example, when we look at a tree we may be interested in it as a material

for construction or maybe as shelter from the rain. A dog, on the other hand, may be

assessing it for more basic needs.

There is a very simple reason for this situation. If you examine an environment in

detail it will present properties that are conducive to certain animals and properties

that make the environment hostile towards others. Look at any species that survives

today and you will see an animal whose perceptual systems have evolved to

complement its environment. An animal implies an environment and an environment

implies an animal.

If the affordances of a thing are perceived correctly, we say that it looks like what it

is. However, when evaluating the properties of an object, it is important for us to

take a step back and view them in the context of the environment and not just from

the human perspective - a task that is easier to state than accomplish. Gibson's

ecological framework has already motivated the design of a VE Computer Aided

Design system (Smets et al., 1993, 1994). Familiar modeling tools such as hammers

and saws are replicated in the YE and afford behaviours found in everyday life,

although they are not limited to these functions.

3.1.3 Tools of the Trade

We receive information about the environment through our senses. The limitations of

our senses dictate the parameters to our perception of the environment. We cannot

decide what an environment is without also examining the capabilities of our own

senses.

Sensory Modality Sensitivity/Resolution

Touch 10-100 micron vibration
1-2 mm spatial resolution

Smell 7 dimensions?

Sight -400-700 nm in the electromagnetic spectrum
10 minutes of arc at 6 metres

Sound 20 Hz to 20 KHz depending on the intensity

--10 dB to 120 dB

Taste 4 dimensions: salty, sour, sweet, bitter?

Table 3.1 Common senses and their sensitivity/resolution.

The five commonly accepted sensory modalities taught at primary school level are

touch, smell, sight, sound and taste (Table 3.1). However, there are more:

interoception, proprioception and exproprioception (Lee, 1978). Proprioception is

the ability to sense the position and movement of body parts relative to each other

whilst exproprioception is the sense of body position in relation to the environment.

Interoceptors indicate the internal state of the body, e.g. hunger, thirst, tiredness,

whilst our vestibular system (in our inner ear) provides us with information to help us

balance. It has been proposed that taste has four dimensions and arbitrary tastes may

be synthesised with combinations of these primaries (Carlson, 1986). Similarly, it is

possible that smell may have many dimensions (possibly as many as seven) and so it

may also be synthesised. Predictably, the senses commonly stimulated by current VR

systems have already been quantified more precisely. With the ability to pick out

millimetre detail at 6 metres, it is unsurprising that most people are disappointed with

the display technology used in current HMIDs.

The resolution of our senses would be a good place to start when determining what

information to use to represent our environment and at what accuracy, but it would

also be short-sighted. By exclusively adopting the human perspective we will

inevitably lose some of the environment's actual fidelity, although it would not be

noticed until an unconventional view was attempted. For example, assuming the

behaviour of another animal, such as a cat, will involve a different set of

environmental properties in order for the participant to interact effectively.

Regardless of the practicalities of this, it is important to realise that the senses of a

human may be supplemented through various equipment such as infra-red night vision

goggles. Robinett (1992) also notes that if sensors can detect phenomena that are

imperceptible to human senses, they could be linked to display devices. This would

mean that these imperceptible phenomena could be rendered visible, audible,

touchable or otherwise perceptible to a human being. In a way, creating a synthetic

sense.

If we restrict, for example, the modeling of the surface properties of an object to how

things look in the visible spectrum, we will not be able to simulate it correctly when

seen through night vision goggles. We may also wish to view the environment from

another animal's perspective, e.g. a dog sees in monochrome, not colour, and its

hearing is far more sensitive than our own, to name but two differences. Using the

knowledge of our sensory abilities to aid the design of human-computer interfaces is

70

essential (Anderson, 1993; Caird and Hancock, 1993; Mon-Williams et al., 1993), but

as a guide to modeling the environment it can be shown to be ultimately inadequate.

3.1.4 Virtual Environment Taxonomies

This section presents four different definitions/classification schemes for yEs. Each

of them tackle the task at a different level and some are more detailed than others.

The major points are presented here and comparisons drawn.

3.1.4.1 A Conceptual Virtual Reality Model

Latta and Oberg (1994) have proposed a conceptual VR model which embraces

Gibson's work. VR interface technology is viewed as integrating perceptual and

muscle systems but it was noted whilst deriving this model that fully integrating these

systems would be impossible due to the complexity of the human interface. So the

model only examines some perceptual systems, not all. An operational yR system is

seen as providing a computer interface to specific human perceptual and muscle

systems for the purpose of allowing the participant to perform operations that would

not be possible without aid, e.g. a flight simulator. The model's emphasis is placed

upon providing an interface to perceptual systems, not on describing what the

interface looks like.

The conceptual model consists of a human and a technical view of the VR system.

The human view is interested in the physical and psychological issues of stimulating

and detecting the actions of the participant, whilst the technical view is concerned

with the environment.

"The environment provides the stimulus that creates sensation
while the individual takes action through movement. The
environment ... is the total space, both real and artificial."

Latta and Oberg (1994), p 25 .

The definition and integration of the real and artificial environments is viewed as

defming the participatory experience. The mapping of the physical sensors and

71

effectors supports definition of the participant's perception of the environment and

their actions on it.

Model Source 	Artificial

Dynamic
Model dynamically changes during
the participation based on the actions
of the participant or other events.
Model database changes dynamically.

Constructed
Model is defined a priori as a fixed
space and objects. Model database
is static.

Recorded
Time recording of the space of
interface parameters.

Real

Direct
1:1 mapping between the space or
interface parameters as experienced
by the participant.

Sampled
Limited spatial or interface parameter
resolution.

Modified
Modified space or interface
parameters such as gain frequency
response, of time variable.

Recorded
Time recording of the space or
interface parameters.

I 	 Transparency
(relative contribution between artificial and
space components to create the environment)

Figure 3.1 Confection of artificial and real environments.

Time 	 Space

Direct
1:1 correlation between time in the
environment and the participant
environment.

Multiple
(nt) time modification between
participant space and the
environment.

Fixed
(T) fixed time between participant
space and the environment.

Remapped

f(t) functional remapping of time
between participant and the
environment.

Direct
(x,y) matching of the participant space
and the environment.

Distance
(mz) distance scaling of the participant
space and the environment.

Scaled
I(x, y, z) or (mx, fly, oz) scaling of distance
for the spatial dimensions between
participant and the environment.

Functional
f(x, y, z) functional remapping of distance
for the spatial dimensions between
participant and the environment.

Figure 3.2 Type of time and space.

72

Technical confection and the real environment make the technical view of a VR

system. Confecting is the process of preparing or making, especially by combining.

Latta and Oberg believe that in VR we are confecting a participatory environment by

combining a real environment with an artificial one (Figure 3.1). The technical

confection includes a confection model that achieves interface control, defines the

artificial environment and mediates between the participant and the real environment.

A confection model can support independent models for each perceptual system. It

also supports independent models for each muscle system., but the participant's

detection of the action is usually correlated with perceptual systems.

Figure 3.2 shows the ways in which space and time may be altered from their natural

direct state to modif- y the experience. Latta and Oberg believe that there is a natural

hierarchy in managing and controlling a VR system based on the parameters of the

technical confection model. First the mapping of the sensors and effectors supports

definition of the participant's perception of the environment and their actions on it.

At the next level the model source defines the static and dynamic aspects of the

environment. Finally, space and time have equal importance: they are independent of

each other but dependent on the first two levels of the confection model.

3.1.4.2 An Experience Taxonomy

Warren Robinett has proposed a tentative taxonomy to classify all varieties of

technologically mediated experience (Robinett, 1992). This distinction is offered for

"experiences":

. Natural experience. Directly perceiving the properties or behaviour of

something physically present before the perceiver.

• Synthetic experience. Perceiving a representation or simulacrum of

something physically real rather than the thing itself.

There are nine dimensions to the taxonomy of a synthetic experience: causality,

model source, time, space, superposition, display type, sensor type, action

measurement type and actuator type. The first five dimensions deal with the

73

technological aspects of the devices used in the experience, whereas the last four are

concerned with the sensor and motor channels used.

Causality refers to the way the VE is experienced, either via a previous recording or

transmission, e.g. teleoperation, or totally simulated where actions in the YE have no

effect on the real world. The second dimension states that the human user perceives a

virtual world that is defined by a possibly changing database called the model. This

model can be scanned, constructed, computed and edited. Both time and space may

be either aligned, displaced, differ in scale, or be related by a distortion mapping. The

time possibilities are 1-to-I time-scale, accelerated (or retarded) time, frozen time and

distorted time. Space may be registered, displaced or expanded (or miniaturised).

The last technological dimension, superposition, basically refers to the possibility of

merging the VE upon the real world, e.g. using a see-through HMD, or at another

extreme, totally isolating the participant within the VIE.

Display type and sensor type are the next two dimensions of the classification scheme.

They present the potential for local input devices to be linked to remote devices in

order to effect a change in the remote environment.

3.1.4.3 Multiple Environment Integration

A proposed definition of a VE, not visibly influenced by Gibson, is:

"A multi-dimensional experience which is totally or partly
computer generated and can be accepted by the participant as
cognitively valid."

Jense and Kuijper (1993), p50.

Jense and Kuijper also view a VIE as an integration of environments, in this case,

three:

Computer-generated environment.

Physically modeled environment.

Real environment.

74

Real
Environment

Physical
Model of the ,
Environment

Computer
Generated

Environment

Virtual Environment

Figure 3.3 Fundamental elements of a Virtual Environment

percentage physically
modeled environment stimuli

soft 	 hard

0% 	 I 	 100%

immersive
0%

Generated) 	 (piysicai)
\mnnt

percentage
real 	fl

environment
stimuli 	

. 	-.
Reality

non-immersive
100%

Figure 3.4 A classification scheme for Virtual Environments.

The computer-generated environment is created using a system consisting of sensor,

control and actuator subsystems. The physically modeled environment contains

objects that are also present in the real environment being simulated, e.g. a replica of

an aircraft cockpit may be used to enhance a flight simulator. The real environment is

75

also viewed as an important component in a VE because it can stimulate senses that

may be used to add realism to the simulation. However, the difference between the

stimuli created by the physically-modeled environment and the real environment is not

an easy distinction to make.

Another classification scheme is proposed based upon the amount of stimuli created

by each of these three types of environment (Figure 3.4). A soft VIE does not use any

physical models to generate stimuli whereas a hard VE uses little else. Immersive

VEs cut the participant off from the outside world and non-immersive systems use the

real world in the yE. Most systems fall somewhere in between.

3.1.4.4 Content, Geometry and Dynamics

"... we can define virtual environments as interactive, virtual image
displays enhanced by special processing and by nonvisual display
modalities, such as auditory and haptic, to convince users that
they are immersed in a synthetic space."

Ellis (1994), p 17 .

A formal definition for the environment, the theatre of human activity, is offered in

Ellis (1991), which consists of three parts: content, geometry and dynamics.

The content of the environment is its objects, these are described by state vectors

which are a description of the properties of the objects. Actors are similar to objects

but may be distinguished by the fact that in addition to properties they have capacities

to initiate interactions with other objects. The self is a distinct actor in the

environment which provides a point of view from which the environment may be

constructed. Anything outside of the self can be considered the field of action.

The description of the environmental field of action is called the geometry which has

dimensionality, metrics and an extent. The dimensionality is the number of

independent descriptive terms that are needed to specify the position vector for each

element of the environment. Curved or straight lines are established through metrics

which are systems of rules that are applied to the position vector. The extent is the

range of possible values for the elements of the position vector. Following on from

IfIl

this, the field of action can then be described as the product of all the elements of the

position vector over their possible ranges. Kinematic constraints restrict the vast

number of possible paths an object may take through the environment.

The dynamics of an environment are the rules of interaction among its contents. The

transfer of energy or information that occurs during interaction alters the state vectors

of the objects involved. All interactions can be reduced to binary interactions which

may be ordered based on the ranking of the elements involved. Dynamical rules

describe the result of interactions between the environments contents.

3.1.5 An Abstract Model

The definitions of a VE offered by Jense & Kuijper, Latta & Oberg and Robinett all

acknowledge the integration of different types of environment, whilst Ellis places

more emphasis on the human interface technologies. By evaluating the amount of real

and physically modeled stimuli created by each of the three types of environment

proposed by Jense and Kuijper, it is possible to classify VEs at a high-level and this

provides a basis for comparison. Although a more detailed evaluation would be better

undertaken using Latta and Oberg's classification model. Only Robinett and Ellis,

however, recognise the importance of perspective on the environment. Even though

our senses are limited, it may be desirable to simulate a wider bandwidth of

information. This would permit the simulation of sensory-enhancing equipment or for

the participant to view the environment in an unconventional way. In other words,

each animal within the environment may have a unique view of that environment and

hence is concerned with a subset of the environment's total properties. A preferable

ecological definition for a VE would therefore be:

A totally or partly computer-generated environment that contains
enough information so that it may support affordances for different
animals simultaneously.

Where an "animal" is an entity that could be a human with
augmented senses, an object with some notion of artificial
intelligence, or anything that has a unique perspective on the
environment.

77

In order for a system to be able to support VEs of very different properties, it must

have a flexible structure for modeling. Following the Affi decomposition of a model,

the chosen abstract model of the VE may be represented in many different ways, each

of which may have strengths and weaknesses. Each representation can also be

implemented using many different methods, each having good and bad points.

However, underlying all the possible implementations and representations should be a

sound abstract model.

The model presented by Ellis is quite detailed and uses physics-based concepts to the

point at which it could be confusing, at best, and restrictive, at worst, when

considering a VE that does not behave according to natural physical laws. Ideally, the

abstract model should provide a simple and flexible basis of representing any type of

environment. The author believes that such a model exists in the basic structure of

our universe and it is the model that should be used. A plausible description of this

structure is:

A Universe contains all things that exist. These things may be
described as Entities. An Entity consists of one or more Properties.
An Entity may or may not interact with other Entities as dictated by
Universal Laws. A Universal Law is an equation of constraint
expressed using Properties, Universal Constants and other
Universal Laws. A Universal Constant is a quantity that does not
change throughout the whole Universe.

3.1.6 Representations

The use of terminology in the abstract model is meant to reflect its origins and not its

possible applications, fortunately it fits quite well in the context of describing a VE.

This model is, in fact, a very basic description of any form of structured data. A

universe might be compared to a database: an entity is equivalent to a record, the

properties are the record's fields, the universal laws correspond to the relationships

between records and so on.

Given that we have established a suitable abstract model for our yE, the next order of

business is to find a suitable representation, something we can edit, manipulate and

W.

generally play with until we are happy that we have a description that embodies our

ideas. In essence, a specialised data description language. This task is undertaken in

chapter 4 but before language design is examined, we should first consider modeling

methods.

An entity modeled using the abstract model detailed above may have many different

representations. There may be a visual representation, an aural representation, tactile,

thermal, etc. Each of these is interested in a number of properties, some are shared

between them and often some are unique to the representation. They are all governed

by a subset of the total universal laws and are applicable to a subset, if not all, of the

entities in the Universe.

One possible solution would be to model these representations independently, but this

can introduce a great deal of data redundancy. For example, the physical appearance

of an entity would only seem to be of interest if you are building a visual model.

However, a tactile model is also heavily based on the geometry of the entity and, of

course, how the entity distorts sound is based on geometry as well as other factors

(Astheimer, 1993). If the shape of the entity changes then the relevant properties in

the other models would also have to be changed. A shared structure of information

would therefore seem appropriate, at least until design decisions for the

implementation of these models need to be taken and then we are faced with the time

old battle of distribution versus replication.

It is at this point that we should also consider the design process. Without doubt

modeling, whether it is geometrical or mathematical, can be as time consuming as

developing the code to execute it, if not more so.

3.2 The Modeling Process

How the information in the model is organised and shaped into the final form is not

just dictated by the thing being modeled, but how the model is derived. This section

takes a cursory glance at the possible approaches to actually building a model and

79

their effect on the design process. Consideration of these factors aids the design of

the modeling language (representation) and the supporting system.

There would appear to be three levels of "reality" (for lack of a better term) that can

be created:

. An observer-oriented reality would provide adequate simulation of the inputs

and outputs required by a human at the required accuracy.

. An environment-oriented reality would provide adequate simulation of all

inputs and outputs affecting the environment' at the required accuracy.

. A universe-oriented reality would provide adequate simulation of all inputs

and outputs at the highest possible accuracy.

All current systems cater (in one way or another) for the first category, an observer-

oriented reality. Most image generators only model the attributes of a surface which

are acted upon by visible light. Few give consideration to the rest of the

electromagnetic spectrum, e.g. ultraviolet, infra-red, radio etc., because it is not

generally required. In the same way, acoustic systems only deal with the range of

frequencies that we can hear, even though many others affect us, e.g. ultrasound. The

technology for the simulation of stimuli for smell, taste and touch are only just starting

to be developed but clearly an entity's complete set (or subset) of properties must be

modeled to permit their use. These observer-oriented systems also fail to easily

accommodate simulation of things that do not directly affect us but we wish to

visualise, e.g. the path of radio waves, infra-red light, and so on.

A universe-oriented reality is the ultimate goal and would model everything in fine

detail and without exception. In this context, "universe" is intended to mean the thing

that is being modeled, in its entirety. Of course, it is possible that the amount of

processing power and storage required to simulate the universe would exceed its size

'In this context environment means the volume of entities surrounding the participant. The size of

the volume is arbitrary.

in the first instance! Nevertheless, it should be considered as one of the ultimate goals

of a YE system, however vain.

The next best thing would be an environment-oriented reality where the microcosm

would possess a subset of the properties of the universe. These would be simulated

to a high enough level of accuracy to allow their examination and a more accurate and

realistic simulation of the participant's environment. How big the environment should

be is a good question. Probably any volume that does not encompass the universe

could be modeled in this way.

3.2.1 Model Construction

Some attempts have been made to provide higher-level modeling systems (Hemrnje &

Strohmer, 1993; Luciana etal., 1991; to name a couple), but these still concentrate on

a particular type of information or specific application and are not applicable to the

general task of modeling a YE. There would seem to be two basic approaches:

Take a very general, flexible and computationally expensive model and

simplify/remove the parts that are not relevant to the case in hand.

2. Take a skeleton model and then build on it, successively specialising and

tweaking.

Both of these methodologies can be seen to use a hierarchical approach in different

ways. Using the first method, the designer is given the most complicated model that

can be described and then they selectively remove/simplify the parts that are not

relevant for the intended simulation. Each branch of the tree would therefore

represent a progressively simple subset of the general model. Method 2 does just the

reverse and could be likened to the object-oriented language feature of inheritance.

Take a simple abstract class that provides the basic structure and fabric of a YE and

then derive classes from it that provide it with some "flesh". Each new derived class

would increase the realism of the simulation and also its computational complexity.

Each of these approaches is valid and may be compared to the programming design

methodologies of bottom-up and top-down design respectively.

.31

3.2.1.1 Methodology Choice

However, method 1 requires a lot more initial work because a great deal of

consideration needs to be given to all of the simulation's goals and requirements. This

is a potentially impossible task and, if anything, it will be limiting. Its advantage is

that little or no work needs to be done to the model to get a fully working simulation

running. Unfortunately, the same cannot be said for the entity descriptions

themselves, each one must have all of its parameters meticulously evaluated and initial

values found.

Method 2 requires that a small extensible structure is derived and represented and

thus provides the most flexibility. Its disadvantage is that the model's representation

has yet to be created which, depending on the simulation, may take some time. The

main advantage is that with smaller models there will be less preparation needed for

the entities - only those parameters needed by the model will be evaluated. The

universe could be represented as being composed of sub-universes or microcosms,

each of which has its own laws to govern. Entities in each of the microcosms will

possess enough properties such that the microcosm's laws may determine their

behaviour. But what would happen if an entity from one microcosm would wish to

move into another?

Microcosm
Microcosm

Vertical
Migration

Microcosm 	Microcosm

Horizontal
Migration

Figure 3.5 Universe hierarchy tree showing possible entity migration paths.

3.2.1.2 Entity Migration

The issue of entity migration really only exists in the second modeling paradigm.

With method 1, migration would just mean using a different subset of the entity's

properties and would require little or no intervention on the part of the designer.

However, using method 2 the microcosm that the entities immigrate to must have

sufficient laws to govern them correctly. If it is to do the same job as the emigrated

microcosm then it must possess its laws and properties, this would mean that the

emigrated microcosm is a specialisation of the higher level. This sort of migration

may be thought of as vertical, up the inheritance tree (Figure 3.5).

It is equally likely that an entity will want to use horizontal migration, i.e. moving

from one microcosm to another, each with a common ancestor. The implication of

this action is that some of the entity's properties will be shared, some will be left

behind and others will be gained when entering the new microcosm. One logical

course of action is to assign default values to these new parameters, although in

practice this is unlikely to be a very satisfactory solution. Unfortunately, without

some insight into the "purpose" of the entity, little else can be done automatically.

3.2.1.3 Modeling Process Summary

It would therefore seem sensible to use method 2 to develop VEs because it requires

less initial work and presents a clear structure to the designer. At a reduced level it

would be possible to simulate method 1 by redefining inherited laws, etc., to be

simpler. Program design is often a combination of both bottom-up and top-down so

it would seem reasonable to expect a similar approach to VE design.

3.2.2 The Design Process

All of the systems reviewed in the previous chapter treated the modeling process as an

independent task that is performed initially, the result of which is executed. Some

systems permit minor modifications to the model to be made at run-time, but this is

usually limited to changing the values of selected properties, e.g. entity colour. An

83

entity may leave one VE and enter another through migration but major changes to

the entity itself or its environment are not possible.

Such changes may be the addition of new entity properties, the alteration of a law

governing those properties, changing the value of a constant, etc. The ability to

change the VE at run-time has several advantages:

Development. By integrating the modeling and execution phases a prototype

model can be refined and extended into the finished product without stopping

the simulation. Whereas existing systems require some description to be

written in a language, compiled/interpreted and then executed, integrated

development tools would remove this distinction.

Experimentation. A better development environment will encourage

experimentation in the form that the VE takes. This is, of course, currently

possible but the time cycle is large enough to become frustrating. A friendly

modeling system increases the likelihood of better VEs and, hopefully, better

designers.

Evolution. The ability to modify the YE need not remain in the hands of the

designer. On a restricted level it could be given to the participants in the VE

or, more interestingly, to the entities themselves. This reflects an animal's

ability to influence its environment, especially true in the case of humans.

3.3 Real-time Virtual Environment Displays

So far, this chapter has examined the somewhat abstract topic of VE modeling.

Consideration has been given to our natural environment in the hope that it will add

some insight into what we are trying to achieve when modeling a YE. A good yE

should be intuitive to use; in other words the participants should have no trouble

navigating around the environment, interacting with it, and completing any task that

they set out to achieve. However, a sound VE model in itself will not achieve these

goals. Unless interaction is effortless (or "natural") then even the most detailed

model, built using the most advanced techniques, will fail to deliver the experience

intended by the designer. This quality assessment is made via our senses and

perceptual systems. If our perceptual systems are working normally then our energies

will be expended on the task at hand. However, if we are fed information that

disrupts the natural processes of our perceptual systems then we will either become

aware of this problem or our performance will suffer. Therefore it is just as important

how the environment is displayed, as the type of information contained within it. To

understand the potential problems with current VE displays we must first establish the

cause.

The purpose of a display is to take raw information from the environment, process it,

interpret its meaning, and then present it in a form that enables the viewer to extract

some meaning. A suitable practical example is that of a visual display which is driven

by a CIG - although aural or tactile would also make good examples. A CIG must

process the geometrical information in the model, including lighting, surface texturing,

etc. The more information it processes, the longer it takes to complete the rendering.

If this display is presenting the participant's view on the VIE then the time taken to

render the view may well depend upon where the participant is looking. Since the

viewer will make decisions based upon the information the displays show them, e.g.

what they see, then it is important that things appear where they should, when they

should. Unfortunately the time between requesting a rendering of a new view and

actually seeing it can be relatively large. The same statement can be applied to all

types of displays, each of which may perform at different rates. This is not a situation

which we have to tolerate when interacting with our natural environment.

Consequently, at the very least, the viewer is presented with incorrect information for

any given moment in time and, at worst, interaction with the VE is impossible.

The remainder of this chapter examines in more detail why the update rate of VE

displays should be constant. In order to present the two possible solutions to this

problem it is necessary to consider the workings of a VE system in a little more detail

than before. This discussion is a precursor to the detailed system design described in

the next chapter and clarifies one of the primary system requirements.

85

3.3.1 Problems with Variable-Rate Systems

In this section we present an example of the effects that a variable update rate has on

interactivity. This is quantified by the application of a visual perception theory. The

other benefits of a constant update rate are also discussed.

3.3.1.1 Display Artifacts

Consider a virtual ball moving straight towards you at a constant velocity of 1 m/s. It

starts its journey 10 metres from you and you are attempting to catch it. Let us

assume that a simulation of this will use a typical variable-rate CIG and a monitor

(showing the catchers view) with a refresh rate of 60 Hz. When the ball is in the

distance and hence quite small, the CIG manages to generate a new frame 30 times a

second. This means that every 2 monitor refreshes a new picture will appear.

If the CIG maintains this frame rate then the velocity of the ball will indeed be

constant. However, if the CIG should manage to complete its work within a 60th of a

second then the ball's velocity will appear to have doubled to 2 m/s! On the other

(more likely) hand, if the CIG's workload takes longer than 33.3 ms to complete and

hence only produces a new frame every 3 monitor refreshes, then the velocity of the

ball will appear to reduce by 1/3 to 0.66 rn/s.

If the frame rate was to go up or down each time an image was being rendered 2 then

catching the ball will be made more difficult. In this case we are likely to see a drop in

update rate because as the ball comes towards us, it expands. If the ball was textured

and the background blank, this would mean that there are more pixels to fill and hence

more work to do. Certainly, we are not seeing what the designer of this simulation

wanted us to see.

2 The word "render" is used in this thesis to embrace both of the classical geometrical and rendering
stages used to produce an image.

We

Another more practical example is that of a driving simulator. Given the task of

following a vehicle and ensuring that you do not crash into it would be made difficult

if the vehicle would seemingly slow down and speed up quite uncharacteristically.

3.3.1.2 Judging Time-to-contact

Lee (1976) presented the Tau theory which suggests that our ability to judge our time

to contact with a given target is based upon the rate of expansion of the target on the

retina. This may be applied to our ability to catch balls as well as how we control our

deceleration, among other tasks (Lee, 1993).

The time-to-contact (TTC) of the virtual ball may be expressed as:

TTC = Distance I Velocity

Figure 3.6a shows the TTC assuming that we maintain a constant update rate of 30

Hz which gives us a perceived constant velocity of 1 rn/s. The impact of a variable

update rate is shown in Figure 3.6b. Each time the update rate changes so does the

TTC, forcing the catcher to continuously readjust. In this case, the catcher will

probably catch the ball because the update rate has slowed down so much that the

perceived velocity of the ball at 5 Hz is 0.16 m/s, making the task trivial. They are

unlikely, however, to be using TTC information to help them catch.

3.3.1.3 Affects on Latency

If the time between sampling input devices and updating the display is too long it can

contribute to simulator sickness (Pausch et al., 1992). Just how long is too long is

not clear, additionally it is not clear whether the systems used provided a constant or

variable display update rate. There is evidence to suggest that humans can adapt to a

constant degree of lag (providing that it is not too great) after a reasonable period of

time, but how effective the interaction is depends on the task being performed. If the

lag varies then adaptation is less likely and it is possible that this will add to simulator

sickness.

I "Constant Hzj
35

30

25

20
Hz

15

10

5

(1

10 	8

I True TTCI

- 12

6 	4 	2 	0
Distance

10

8

6 Seconds

4

2

0

Actual Hz
	 r Actual TC

35

30
	

10

25
	

8

Hz 20 	
I
	

6 Seconds
I

15
	

-

4
10
	 :-I- 	

2

0 ¼!
10 	8 	6 	4 	2 	0

Distance

Figure 3.6 The effect of update rate on time-to-contact (TTC).
a) with a constant update rate 'FTC decreases correctly at a fixed
rate (top); b) a variable update rate causes a continuous
readjustment of 'FTC (bottom).

3.3.1.4 Predictive Techniques

There are methods for reducing the impact of lag on the participant. Kalman filters

can be used to compensate for the effects of lags within the system (Friedman et al.,

1992; Liang et al., 1991; Dunnett et al., 1995). Such filters have been used to predict

the movement of 6 d.o.f. sensors attached to parts of the body, e.g. head and hands.

In the case of Head-Mounted Displays this means that the CIG can be asked to

generate an image of the participant's viewpoint a short while in the future such that

the image reaches the display at the right time. The effectiveness of these filters relies

on the constancy of the lag and hence the update rate, without it the results of the

filtering would be meaningless.

If the progression of time happens at a known rate it is also possible to ensure that

entities within the VIE appear at their correct positions when the image is eventually

displayed. This is especially useful when trying to compensate for the single frame

delay introduced in double-buffered CIG systems.

3.3.1.5 External Device Synchronisation

It may also be desirable to synchronise the VE display with an external data capture

system. An example of such a device is the Ober/2TM infra-red eye-tracking system

(Permobil Meditech AB, Sweden). A lot of effort has been expended by the

manufacturers to ensure that a fast, constant sample rate is achieved, to such an extent

that the host machine is configured solely for the purpose of controlling the eye-

tracker. Sample rates over 1000 Hz may be achieved although 180 Hz is sufficient for

tasks monitoring basic eye movements (Permobil, 1993). In order to determine where

the participant was looking within the VE display requires the meshing of two data

sets, each with a different sample rate. Whilst, on a variable-rate system, it would be

possible to record the update rate and then fit the eye-tracker data set to this, the

result would be an uneven spread of data points over time. With a constant update

rate system, the eye-tracker rate can be set at a multiple of the update rate which

makes meshing much easier and produces a consistent number of data points per

second.

3.3.2 The Variable-Rate Paradigm

A typical simulation processing cycle is:

Sample input devices.

Perform dynamics calculations.

Update output devices.

The VE system may consist of many components, both software and hardware. With

each component comes a response time, a best and worst case for receiving data,

processing it and outputting a result. Exactly where the bottleneck in the system is

depends on the nature of the YE or application. Typically the bottleneck is the CIG.

This is especially true in low-end systems where the CIG is more (or totally)

dependent on the host processor to complete its task. In this case, image generation

often has to be scheduled along with input/output device handling and the dynamics

calculations. It is also quite typical for the workload of each component to vary. This

is especially the case in the CIG where scene complexity may vary drastically (Airey et

al., 1990).

3.3.3 The Fixed-Rate Paradigm

In order to provide a constant update rate there are two possible approaches:

Derive some predictive algorithms that will enable us to determine the

workload of each component and thus the system as a whole.

Restrict the update rate to the worst-case.

Both these methods are working to complete the 3 steps in our simulation cycle

before a given deadline. Once this deadline has been met it is recycled and used again

for the next VE display update.

If we adopt the first approach then we may use the knowledge of each component's

performance to degrade the services it offers such that the deadline for each

component will be met. Alternatively, we can demand less of the system such that,

even in the worst-case, it always meets its deadline. This inevitably means using some

all

components at less than optimum performance. Both of these techniques will now be

discussed in further detail.

3.3.3.1 Service Degradation

This technique requires a scheduler to determine acceptable time-frames within which

each component in the system must complete its calculations. The addition of a

scheduler brings us one step closer to a real-time system. Failure to meet a deadline

will have different consequences depending on the application. A visualisation may be

content with simply providing a lower update rate (albeit constant) whereas a highly

interactive application may treat failure to meet the deadline as a fatal condition.

It should be noted that some systems have decoupled the rate at which component

services are requested and the update rate of the CIG (Shaw et al., 1992; Wloka,

1993; UVa, 1995). Therefore the simulation may progress as fast as possible, while

the CIG generates images as fast as it can.

However, CIG performance can still benefit from service degradation. Holloway

(1992) draws as much of the visual scene as possible whilst still attempting to meet

the deadline. To achieve this, the Viper system uses a special feature in the Pixel-

Planes Programmers Hierarchical Interactive Graphics Standard (PHIGS)

implementation which allows traversal of a particular part of the database hierarchy to

be terminated based on a conditional check of a global flag. In addition, visual

objects3 were given either a high or low priority. High priority objects were always

drawn and low priority objects only if time allowed. There is no guarantee that the

image will be rendered within the allotted time since Viper uses successive estimates

to decide whether it has enough time to render any more and is at the mercy of the

underlying operating system (OS).

3 The visual component of an entity.

91

Wioka (1993) proposes a system for time-critical graphics which uses knowledge of

the dynamics behaviour of the simulation and a modified graphics database model

combined with a scheduler to implement this technique.

As Wioka notes, few CIGs support service degradation techniques. The nearest

facility that most provide is Level Of Detail (LOD) which attempts to reduce

workload by automatically substituting models of different visual complexity based on

distance or screen pixel coverage (Reddy, 1995). SGI's IRIS Performer TM goes one

step further by providing a mechanism known as dynamic LOD scaling. This provides

enough basic information for Performer to decide which combination of LOD models

will complete rendering within a certain amount of time (SGI, 1995). The other work

done in this area is at the application level as opposed to adding functionality to the

CIG. Airey et al. use LOD along with other pre-processing techniques to support an

adaptive refinement system that trades image realism for speed. Funkhouser and

Sequin (1993) use cost and benefit heuristics to determine which LOD model should

be used. The cost of an object is the time it takes to render an object with a given

LOD using a certain rendering algorithm, whilst the benefit is an estimate of the

contribution of the model to human perception. Encouraging results are obtained

using this approach, however, even this technique is not sufficient to cope with

extreme cases such as changing the view from looking at the sky to looking at a fully

textured model of a town.

3.3.3.2 Worst-case Operation

Establishing what the worst-case is for a given VE can be accomplished by either

working out by hand the worst performance of each component or by "exercising" the

VE over a period of time. The latter method is very convenient and relatively

effortless to perform, however its effectiveness is dependent on exercising the parts of

the system that will present the worst performance, either on their own or combined

with other components.

A major advantage of this approach' is that it may be used on systems without real-

time extensions and although scheduling still plays an important part, it is done on a

92

decidedly pessimistic basis. The price paid for this type of predictability is the under

utilisation of the available services, which is sometimes quite extreme if there is a

large bottleneck in the system.

3.3.3.3 Implementation

Regardless of which method is chosen, the control of the CIG is the same and the

possible scheduling options limited. A prototype implementation of the ideas

presented here is given in chapter 5.

3.3.4 Conclusions

Producing successive displays of a VE at a variable rate can be shown to cause

interactivity to suffer. The sense of presence in VEs is another area where variable

rates may have an effect. In the study performed by Barfield and Hendrix (1995), five

different update rates were used to examine the sense of presence. Efforts were made

to ensure a constant update rate but it would also be interesting to see the effect that a

variable update rate has on presence - which is currently a far more realistic situation.

Increasingly, other complex standalone hardware (such as eye-trackers) are being

incorporated into VE systems. Without a common time-frame, attempts to

synchronise this equipment with a YE system can produce anything from erroneous to

useless results.

Whilst a constant update rate permits object positions to be calculated into the future,

predicting the actions of a human interacting in the YE is another matter. Estimation

of the participant's head and possibly hand movements may be accomplished using

Kalman filtering, but there is no way of anticipating what they will do next. Because

of this there will always be a latency between human action and displayed reaction

with an order of one or two updates. However, it is surely better to base a judgement

on a YE whose state is correct for that moment in time, than to base judgements on

out-of-date information.

3.4 Summary

Attempting to define a VE in one sentence is next to impossible but its most important

features can be expressed concisely. The general consensus is that a yE is actually far

from virtual. It is a combination of our natural, physical environment and the

computer-generated environment that is presented to the user through a wide variety

of displays. It would seem that Virtual Environment is not a suitable term for

describing such a phenomenon, Artificial Environment or Synthetic Environment

would probably be more appropriate. However, almost all of the literature talks in

terms of yEs so it would seem sensible to stick with the most commonly used term.

After establishing exactly what a model is in the general sense of the word, the search

for an abstract model began. It is clear that an environment is perceived differently

depending on the viewer's perspective. This change in perspective may be due to the

augmentation of our natural senses or even a change in species. Additionally, in order

to enable unconventional input devices and displays, e.g. tactile, to function correctly,

it is necessary to model more information than usual. Consequently, a method of

modeling the diverse information present in the environment must be found.

As a prologue to finding a suitable representation for the proposed abstract model

(presented in chapter 4), the modeling and design processes were considered. A

hierarchical approach using inheritance to extend and specialise successive models

was the favoured modeling methodology. This increases the flexibility available to the

designer and, with the correct system support, will hopefully aid them in the

production of better VEs.

After dealing with rather esoteric issues, a more down to earth problem was

discussed. Variable update rates can destroy the visual illusion because this effect is

not experienced by us when interacting with our natural environment. The

synchronisation of audio with visuals can also fall victim to such a situation (as will

most displays). Correct interpretation of data from input devices can also suffer in

systems that have a variable duration between device sampling and display output.

The technical details of a constant-rate visual display are presented in chapter 5.

94

Chapter 4

A Universal Simulation System

"Everything should be made as simple as possible, but no simpler."

Albert Einstein

Given a solution for distributing a VE at any level (near/tightly-coupled to far/loosely-

coupled), it is next to impossible for it to be successfully applied to the other levels

without, at best, some loss in efficiency and, at worst, complete failure to meet the

system requirements. DIS, SIMNET, DIVE and MR Toolkit are all designed to

operate at one level and hence do not scale well. AVIARY has a more flexible design

but little thought has been given to large-scale distribution. WAVES has been

specifically targeted at low-end systems and has resulted in an architecture designed

to compensate for a low bandwidth.

The remainder of this thesis presents a system architecture which fits the many

different combinations of computational power and bandwidth that may be found in

networked simulation systems. This is not done by applying one solution at all levels,

but by a number of solutions each best applied to a certain level, all of which share an

underlying structure and philosophy. Deciding how the architecture is applied to a

particular configuration will be the responsibility of the system designer/administrator.

Enforcing a strict organisation would present problems considering the diversity of

hardware that may be used. It is possible, however, to derive a set of guidelines

which can be used to aid this decision process.

There are some tasks that do not distribute well. Take, for example, image generation

which, if it is to be distributed at all, must be done over a tightly-coupled network

(with current technology) due to the high update rate that is necessary and the large

volume of data that is generated. Similar arguments may be made for acoustic

rendering and other local phenomena. It is no coincidence that these tasks are all to

do with input and output. As section 3.3 showed, a high fidelity VE can be made or

broken through the participant's view of the environment. Introducing lags and hence

loss of fidelity by distributing these tasks will work against the intended goal. On the

other hand, rendering the environment (let alone simulating it) can be a large

computational burden. Therefore there is a clear need for local distribution of the

simulation so that larger computational resources may be accessed whilst maintaining

the fidelity of the simulation.

Some tasks, however, do distribute well. In fact their distribution is the key to their

success such as a simulation with a very large number of entities. For example,

100,000 entities and upwards cannot possibly be simulated locally (with reasonable

expense) and requires a larger set of resources to complete the task. The ability for

simulations to operate over large distances is a natural progression and applications

are easy to foresee, but the implications of such geographically dispersed distribution

are many and substantial. The delays introduced by bandwidth limitations, switching

stations, routers and protocol overheads can severely affect interactivity.

This chapter presents the design for the Universal Simulation System (USS). First of

all, the system requirements are described, followed by a summary of some design

restrictions with regards to real-time and distributed systems in general. Before

describing the system components that constitute the USS, the Universal Modeling

Language (UML) is presented: a representation of the abstract model presented in

chapter 3. If a USS is likened to a house, the system's components are the bricks and

the modeling language is the cement that binds them and permits them to function

together. The reader should note that use of the term "Universal" reflects the abstract

model around which the VE is structured, i.e. our Universe. Its use is not intended to

M.

convey the impression of a solution that may be used for all types of

simulations/modeling tasks.

4.1 System Requirements

Before proceeding further, let us first state the requirements that must be fulfilled by

the USS:

Real-time constraints. The simulation must maintain a level of integrity that

matches its application. For example, a simulation which must support

human interaction, e.g. a driving, simulator, must provide a high, constant

environmental update rate. When modeling a complex system that exceeds

the computational limits of the hardware, much lower constraints may be set

that, although not interactive, must still be met.

Scaleable from small to large scale simulations. It should be possible to

take the same simulation model and distribute it at all levels with the

minimum of effort, preferably transparently.

Multiple human participants. Man-in-the-loop simulations introduce new

restrictions on the simulation system, e.g. large lags are unacceptable.

Multiple people interacting within the same VIE increases the complexity of

executing the simulation proportionally.

Applicable to a wide range of simulation applications. Rather than

concentrate on one class of simulation, the system should provide sufficient

generality in its structure such that it may be applied to many different types

of simulation.

Flexible distribution. There should be no enforced structure for distributing

the simulation and the resources. The system should adapt around the

simulation and not vice versa.

Resource optimisation. To maximise the use of available resources the

simulation workload must be capable of being redistributed where possible.

97

Fault tolerant. A minimum of degree-3 fault tolerance should be supported

with as little impact on performance as possible.

Secure. Steps must be taken to ensure that each system component cannot

be violated thus compromising system security.

4.2 Design Restrictions

There are also several limiting factors that must be addressed when considering

system solutions.

4.2.1 Finite Memory

Whether we talk in terms of physical memory or virtual memory there is still a finite

amount that can be used before performance suffers. At the time of writing, a typical

IBM PC has on average 4-8 Mbytes of memory. This is often increased for specialist

applications such as 3D modeling but this is uncommon. By contrast, a middle-range

SGI Onyx will come with 64 Mbytes as standard. Memory is often the most

expensive component of any system and therefore physical memory should be seen as

a precious resource.

4.2.2 Finite Computational Power

Some of the systems reviewed used total replication of the VE on each node as a

solution to some of the issues presented. However, a node can only process so much

and that limit may easily be exceeded when simulating larger YEs. Excessive

demands can be placed on the CPU if it also has to process network packets. On

faster networks or in a large simulation, this can become a bottleneck when the CPU

fails to keep up with the traffic. This problem may be alleviated if the node has the

luxury of multiple processors but such systems are more expensive and thus less

common.

Even if a CPU was dedicated to communications it would be a wasteful use of

resources if a change in protocol resulted in much lower traffic. If this was the case

then it would permit the savings to be applied to the simulation. Regardless,

maximum use should be made of all available computational resources, whether they

are on the same node or over a network.

4.2.3 Finite Communications Bandwidth

Table 4.1 shows a summary of the more popular systems for forming networks, their

target network class, bandwidth and the physical medium used for connecting the

nodes. At first glance it might seem that the larger the geographical distance between

nodes, the higher the bandwidth available to the node. This is a false picture because

the number of nodes connected typically increases as we move from LAN through to

WAN technology. Therefore, in general, the longer the distance covered by a

network, the smaller the effective bandwidth available to each node. If a yE system

designed for a LAN saturates the bandwidth then this in itself will be enough to cause

problems when it is expanded to cover a larger geographical area.

System Theoretical
Bandwidth

Class Mediumt

V.34 Modem 28.8 Kbps Dedicated link Copper telephone line

ISDN 64 Kbps per channel Dedicated link Copper telephone line

Frame Relay 56 Kbps - 1.98 Mbps WAN Coaxial

Ethernet 10 Mbps LAN Coaxial or twisted-pair

Fast-Ethernet 100 Mbps LAN Coaxial or twisted-pair

CDDI 100 Mbps LAN Twisted-pair

FDDI 100 Mbps LAN - MAN Fibre-optic

ATM 155 Mbps+ LAN - WAN Fibre-optic

LAN 	Local Area Network
MAN 	Metropolitan Area Network
WAN 	Wide Area Network

ATM Asynchronous Transfer Mode
CDDI Copper Distributed Data Interface
FDDI Fibre Distributed Data Interface
ISDN Integrated Digital Service

Network

This is the medium used to connect the node, it does not reflect the national backbone which would
likely be fibre-optic.

Table 4.1 Networking medium properties.

The actual bandwidth available will vary depending on the protocol used across these

mediums and the amount of traffic, with the exception of Frame Relay and ATM.

These two systems permit channels of a specified bandwidth to be allocated and hence

bandwidth is guaranteed during the existence of that channel.

4.2.4 Limited Transport Mechanisms

Since the architecture will be applied to diverse hardware/software platforms no

assumptions may be made about the type of communications supported. Some may

provide proprietary messaging systems, others may use TCP or UDP. Point-to-point

communications are fairly standard although their implementation may not be readily

conceptualised as message-passing: a multi-processor system may use shared memory

and semaphores.

Broadcast facilities are quite specialised and dependent on the transport medium -

multicast is even more rare. If these forms were available, the issue of reliability must

still be dealt with.

4.3 Distributed Real-Time System Implications

A typical real-time system consists of many processes, each of which has a very

specific task. Usually a process is dedicated to waiting for a specific event to occur,

e.g. an interrupt, and then performs some work when it is triggered. There are two

types of real-time systems: soft and hard. In a soft real-time system each process

performs its work as fast as possible and if it misses its deadline for completion

nothing catastrophic will happen. Hard real-time systems, on the other hand, require

that each process must complete their work before the deadline. Exceeding the

prescribed finish time is a system failure and can result in disastrous consequences,

e.g. the fly-by-wire systems found in high-performance aircraft have hard constraints.

4.3.1 Computation Management

Section 3.3 discussed a specific problem with current VE systems which may be

placed in the soft real-time category. We shall therefore only concern ourselves with

hard real-time systems. Cheng (1988) presents a review of the key scheduling

algorithms and their application to distributed systems. A more detailed taxonomy

can be found in Rotithor (1994) but Cheng's taxonomy will suffice for this section

(Figure 4.1).

4.3.1.1 Static

Static scheduling relies on the knowledge that the number of tasks and their

characteristics will not change at run-lime. This permits off-line scheduling to be

Real-Time

Soft 	Hard

Static 	 Dynamic

Centralised Distributed 	Centralised Distributed

Figure 4.1 A taxonomy of real-time scheduling algorithms.

performed and tested until a suitable schedule is found. One such tool for this is

generalised rate monotonic scheduling theory (Sha and Sathaye, 1995). The CPU is

allocated to the highest-level priority process which preempts execution of lower-level

priority processes when needed. Their priorities are fixed and changing them can be a

costly process. This process is therefore usually undertaken at the system design

stage or when considering changes to an established system

In a YE system, entities may be created and destroyed at run-time and the complexity

of calculations performed may vary, e.g. collision detection. It is also possible that

the communication paths between entities will not be static: depending on system

design, each process may be able to communicate directly with each other. These

three points defy the application of static scheduling.

101

4.3.1.2 Dynamic

The dynamic method schedules processes at run-time and permits more processes to

be added to the schedule and others to be removed. Although dynamic schedulers

incur higher overheads compared to static schedulers, they are the only type

applicable to VE systems. A process may be characterised by its timing constraints,

precedence constraints and its resource requirements. Timing constraints can be

described by the four parameters:

. Arrival Time: the time at which the process is invoked in the system.

• Ready Time: the earliest time at which a process can be executed.

• Worst Case Computation Time:

the execution time of the process is always less than this.

• Deadline: 	the time by which the process must finish.

Processes may be periodic or non-periodic (aperiodic). A periodic process executes

once per time period whereas a non-periodic process executes only once and whose

arrival time and deadline are unknown until run-time. In a simulation a large

percentage of events will be the same for each time step, e.g. sending update

messages, updating displays, etc. These events are periodic processes (although

computational work may still vary) and the remaining unpredictable events likened to

aperiodic processes.

Precedence constraints represent the order in which the processes must execute and

may be described as an acyclic directed graph. This graph may change as new

processes arrive. An added restriction is whether a given process is preemptable or

non-preemptable. That is, can it be interrupted after it has started execution and

resumed afterwards or must it run to completion unhindered?

The success of a dynamic scheduling policy can be measured by its guarantee ratio

which is the total number of processes guaranteed to meet their deadline versus the

total number of processes that arrive.

102

4.3.1.3 Centralised

Cheng's centralised classification refers to systems where the processors are tightly-

coupled and the cost of Inter Process Communication, IPC, is negligible. A number

of algorithms have been proposed to solve the problem of dynamic scheduling in a

centralised system (Locke et at., 1985), the most popular and proven of which is

earliest deadline first. As the name suggests, the process that needs to finish next is

executed first. A detailed evaluation of this algorithm can be found in Halang (1992).

4.3.1.4 Distributed

The distributed classification refers to systems which use loosely-coupled processors

and IPC overheads can no longer be dismissed. Scheduling on one node is quite

different from scheduling a distributed system. When this step is taken two

fundamental changes take place:

All resource requests are no longer known to the centralised scheduler.

Communications latency means that events may be delayed and/or not

appear in time.

The transmission delay must be incorporated into the process' schedule to ensure that

its deadline is still valid. Also, the propagation delay may exceed transmission time on

larger networks, so both must be accounted for.

Communications delays also mean that any central scheduling algorithm would be

working on out-of-date information about each node. For this reason distributed

systems usually have two scheduling components: a local scheduling algorithm and a

distributed scheduling algorithm. The local algorithm determines whether the process

can be executed locally and, if not, the distributed component determines where in the

system it should run. Centralised scheduling policies may be used as local algorithms

but new solutions must be used for global scheduling.

When allocating a process to a node, the target may be selected either by choosing the

node with the lowest load (focused addressing) or through a bidding process whereby

103

each node bids for the task. The former uses out-of-date information but

communication latency is low, whereas the latter uses accurate node information but

incurs high communications latency. Stankovic et al. (1985) present an algorithm

that combines both of these techniques, including the overheads due to scheduling and

the communication delays between nodes. To reduce the amount of computation

required to find an optimum schedule, heuristics and estimation techniques are used.

Many distributed systems employ load-balancing algorithms (Boutaba and Folliot,

1993; Gavish and Sridhar, 1994). However, these deal only with workload

management and do not consider timing constraints. They may, therefore, be seen as

a simple case of the general distributed scheduling problem.

Some algorithms are static in that once a process has been allocated to a node, it

remains there for the duration of its execution. Dynamic algorithms impose no such

restriction and permit a process to move from one node to another, a technique often

called process migration. Naturally, there are reasons for moving a process which are

not based merely on node loading. Migration may be used to great effect if a process

begins to perform an intensive task over a network link that may be best performed

local to the resources it needs'. For example, a process interrogating a large database

of information stored on disk would take much longer and consume large amounts of

communications bandwidth unless it was located on the node with the actual disk.

Fault tolerance also provides an incentive for migration (section 4.3.5).

4.3.1.5 Service Degradation

Ensuring that the VE appears to be behaving correctly to the participants requires that

all visible entities and dependent system processes meet their deadlines. In a large yE

this may be a small subset of the total entities which opens the possibility of enhancing

the scheduling. If a process was designed to provide different levels of accuracy, e.g.

loss of calculation accuracy traded for speed, then the guarantee ratio could be

I If a process uses a resource intensively throughout its lifetime then it should be allocated to the
node local to that resource from the start.

104

increased by using lower accuracy on those processes that are currently less important

to the success of the simulation.

4.3.2 Memory Management

This is of special concern to real-time systems because memory management can be a

costly venture. Virtual Memory (VM) is not used in strict real-time systems because

it introduces a certain amount of unpredictability into the system. VM also requires

an often significant amount of disk space to be put aside to hold any internal data

structures that are generated at run-time. This does, of course, permit the execution

of large processes but the overheads incurred usually degrade system performance too

much. Whilst there are compromises, such as the use of overlays which the

application has control over, they are rarely used because disk accesses must still be

scheduled.

4.3.3 Locating Resources

In a distributed system it is necessary to provide a mechanism through which a

process may locate a resource that it requires during execution. This resource may

reside on the same node as the process or on another node in the system. The

solution is a directory of service providers and their location. Any process may then

interrogate the directory using, for example, the name of the service and retrieve the

actual address of the service which is then used to communicate with them. Such

name servers may be either integrated into the operating system kernel or run as

separate processes (Bowman et al., 1990). So that all system-wide location

registrations are recorded they must be communicated to the name server. If this

service is embedded in the operating system kernel then extra name server

functionality must be added. A separate name server process does not increase kernel

complexity whilst achieving the same end result.

If only one name server exists then it is a weak point in the system and its failure (or

loss of communication with it) could render the system helpless. It is common,

therefore, to enlist multiple name servers which keep each other informed of

105

registrations (QNX, 1993). Apart from increasing fault tolerance, multiple servers

also increase the service response time for registration and location requests.

4.3.4 Location of Backing Store

No assumptions about the location of backing storage can be made in a distributed

system. Diskiess workstations are still widely used where all programs and data must

be sent back and forth along the network link to a central server complex. Typically

the operating system makes this difference transparent to both the user and the

applications by providing a local virtual filesystem (QNX, 1993). Therefore any

system design should bear in mind that this resource may not be readily available. In

addition, dependency on backing storage will slow any process down and increases

scheduling complexity.

4.3.5 Fault Tolerance

The type of fault-tolerance required in a distributed system is influenced by the form

of data and computation distribution employed (as discussed in section 2.4.6).

Complete and partial distribution require full redundancy, i.e. a total duplication of the

computation and/or the data. Failure to communicate with a given process must

either result in communication with a backup copy of this process or waiting for

access to that process to be restored. The same is true for partial data distribution.

Partial computation replication inherently provides a certain degree of fault-tolerance

because the high fidelity calculations are approximated on every node with interest in

that process' work. Total replication, of course, already provides full redundancy.

Token fault tolerance may be achieved by duplicating the key system components

such as the name server discussed in the previous section. To prevent such an

approach having a large detrimental effect on performance it requires a low-overhead

synchronisation method to keep each duplicate up-to-date. Such a suitable

mechanism would be the use of multicast communications between duplicates.

106

Failure of all the hardware on one node is quite uncommon, a more realistic scenario

would be for an individual hardware component to fail. If another functionally

identical piece of hardware exists on another node then there is the possibility of

moving the process dependent on this hardware to the other node. Process migration

driven by hardware failure is a special case of the general load balancing task. In

order to repair the hardware component it is possible that the node must first be

powered down, e.g. replacing an integrated component rather than a device hooked

up to an external 110 port. In this case all processes would have to be migrated to

another node until the problem was fixed and then the current system load re-

distributed. The same reasoning can also be extended to failure of key software

components. Except in this case the faulty application could likely be fixed without

taking the whole system down.

Unsuccessful attempts to communicate with a hardware or software component can

be used as an indication of a fault. Alternatively, a failure may result in a partial or

reduced quality service in which case it would be possible for a component to

explicitly indicate failure.

4.3.6 Summary

A distributed real-time yE system is best equipped with a dynamic deadline scheduler.

Most processes in such a system will be preemptable due to system can usage such as

message passing. Two scheduling policies are best employed to work at different

levels: local and global. The earliest deadline first algorithm provides a proven local

scheduling policy whilst an effective global policy combines both dictation and

volunteering techniques.

Memory is a finite resource and any design should treat it as such whilst system-wide

resources may be brokered using a number of mirrored name servers. Access to any

such resource, including backing store, must be carefully scheduled. Finally, the form

of data and computation distribution used has a direct impact on the degree of fault-

tolerance a system can support. The remainder of this chapter presents a system

design driven by these observations, starting with the design of a modeling language.

107

4.4 A Universal Modeling Language

The UML is the representation of the abstraction of our universe. It is a description

of the universe based on the framework defined in section 3.1.5, but imposing no

restraints on what information should appear and where. Interpretation of UML and

the subsequent execution of the model it represents provides us with an

implementation of our model. Description of the system architecture would be

impossible without referring to UML because it is integral to the system's design, thus

it is presented first.

4.4.1 Language Requirements

Based on the analysis of modeling techniques in chapter 3, the design issues (chapter

2) and implications presented in this chapter, the requirements for UML are:

. Structure based around the abstract model of our universe.

• Easy data modeling.

• Easy to learn and familiar in structure.

• Fast incorporation of changes into the model.

• Portable across many hardware/software platforms to support process

migration.

• Low resource overheads, e.g. memory, computation, etc.

• Co-operative with the implementation language.

Fortunately, the abstract model that has been proposed (also) strongly resembles that

of an object-oriented model. The universe corresponds (using C++ terminology) to

the class, the constants and properties to the member variables, the laws correspond

roughly to member functions and entities would be the objects instanced from the

class.

The remaining requirements make the choice of language a little more tricky. To

enable easy modeling of the VE the language must be concise, unambiguous and high

level. These criteria help narrow the search as does the requirement that the language

is easily learnt and intuitive.

On a practical note, in order to promote use of the language, it should be accessible

by as wide an audience as possible and hence procedural as opposed to functional.

Whereas functional languages have been used for Virtual Reality "programming

languages" (Coco, 1992), they are not widely accepted and are often difficult to read.

An object-oriented based procedural language would therefore seem a fair

compromise.

To aid in development, debugging and provide run-time flexibility, it should be

possible to make changes to the representation at any time. The ability to add

properties to an object (or remove them), redefine the laws governing the properties

and possibly even changing the value of (the somewhat inaccurately named) constants

is potentially immensely powerful. In theory, it could be possible for the complete

simulation to be re-designed on-line. The implications of such an ability are mainly

the concern of the implementation but it is evident that the language must have a clear

structure and well-defined rules to minimise the confusion this could cause.

4.4.1.1 Compiled

Permitting the representation to change during run-time gives us two alternatives.

Firstly, to use a compiled language that permits dynamic loading and secondly, an

interpreter. Normally, a compiled language takes a number of compiled language files

(object files) and links them together to produce one executable. Dynamic loading

refers to the ability to take an object file and link it into the process' executable image

whilst that process is running. Asides from the considerable problems preserving

access to the program data, there are two problems with this solution. To create the

object file a compiler must be used which can be quite expensive with regards to how

much of the computer's resources it uses, e.g. a C++ compiler performs many

optimisation and is often dependent on many header files, can generate large

temporary files, and so on. In fact the presence of local backing storage and sufficient

memory to run a compiler is by no means certain. Secondly, the process of dynamic

loading is operating system specific and is rarely done in the same way each time.

Notably, under real-time operating systems dynamic loading is not available at all

109

since it is undeterministic and hence undesirable. As far as process migration is

concerned, some additional mechanism must be devised such that the modified code

may be transmitted to the destination machine.

4.4.1.2 Interpreted

The second alternative is not without its negative points either. An interpreted

language is often slow to execute in comparison to the fast-as-possible execution of a

precompiled language. It is slow because the program is usually translated into an

internal code, in which each instruction corresponds to a number of native machine

code instructions. This weakness is also an interpreter's strength since the language is

inherently portable across different architectures. If each machine was provided with

a copy of the interpreter, the same program can run unchanged and execution speed

may be improved by pre-translating frequently used routines (in a library for example)

into the internal code which is then stored for later execution. Any further

optimisation would require the coding of commonly used routines in the

implementation language (IL) and compiled into the native machine code.

4.4.1.3 Resource Implications

If each entity is to be described using an interpreted language then it, is essential that

the amount of resources consumed by the interpreter is kept at a minimum. For

example, in a simulation where hundreds or thousands of separate entities are being

simulated, the overheads per entity soon become a real issue. Ideally, the language

will be compact, concise and execute quickly. Unfortunately, this requirement

conflicts with the ability to make modifications to the data description and the code at

run-time. Such a flexible system will inevitably require more memory for the dynamic

data structures and more processing time to administer them.

Even in the best case that we can hope for, the interpreted language will still run

slower than a compiled language, or will take more memory or any number of other

disadvantages. It is therefore desirable to code the frequently used or critical routines

in the IL. In other words the interpreted language will be embedded and therefore

110

some way of sharing code and data structures between the languages must be

provided. It could be arranged such that the presence of compiled routines would

override the interpreted definitions and hence this would not affect portability of the

program, only speed.

4.4.2 Candidate Languages

The features we are therefore looking for in our potential candidates are:

• Interpreted.

• Procedural.

• Object-oriented (at least some form of inheritance).

• Extensible.

• Fast execution.

• Compact.

• Embedded.

• Available at no financial cost on many platforms.

Availability of the language at no cost on disparate platforms is essential and, if

modifications are to be made, the source code is also required. A number of existing

languages were evaluated to varying levels for their suitability: Bob, Glish, ICI, Lua,

and Python. Other potential candidates were ruled out at an early stage due to lack of

features, e.g. Application Executive (Bliss, 1991), or availability. Java (Gosling and

McGilton, 1995) was released in late 1995 at which time software development for

this thesis had ceased. Smalitalk is a financially expensive language that shares many

features with Java such as supporting run-time code changes, but not run-time class

structure changes. Since classes would be used to structure the model, this also rules

out Smalltalk and Java as candidates.

4.4.2.1 Bob

Bob is an interpreter for a language with C-like syntax and a class system similar to

C++, but without variable typing and mostly without declarations (Betz, 1991). All

111

class data members are protected by default and may only be modified through a

member function. Single inheritance is supported (not multiple) and Bob preserves

the concept of constructors which may, unusually, initialise objects already in

existence. Bob's interpreter takes the source code and compiles it so that it may be

interpreted using a stack-oriented byte-code machine. This way, syntax analysis is

performed only once (at compile time) and speeds up the execution considerably.

With a little effort it is possible to extend the language to include more built-in types

and routines written in the implementation language: C. The current implementation

is written for MS-DOS but there is no reason why this language cannot be ported to

other operating systems.

4.4.2.2 GUsh

Gush is targeted at loosely-coupled distributed systems and the philosophy used is

that individual programs in a system should be wholly modular, having no knowledge

of other programs or data types that might exist (Paxson, 1993). Programs may

communicate without knowing about each other through events which are name/value

pairs. Gush has three main components: a scripting language for specifying what

programs to run and how to interconnect them; a C++ class library so that programs

can generate and receive events and manipulate data; an interpreter for executing the

scripts. The language is array-oriented and is geared towards the manipulation of

data sent between programs. By default all IPC is done through the interpreter which

allows dynamic modification and re-routing of data but it is also possible to establish

point-to-point links when performance is critical. Glish is written in C++, uses

TCP/IP for its IPC mechanism and is available on SunOS, Ultrix and other UNIX

variants.

4.4.2.3 ICI

ICI is an interpreted procedural language that represents C with extensions for built-in

handling of arrays, structures and sets (Long, 1992). Structures are a key element of

ICI, especially the notion of super structures (analogous to parent classes). If a

112

reference to a member of a structure cannot be resolved then a search is made of that

structure's super structure (if it has one). If the super structure does not contain the

reference then the search proceeds to its super structure and so on. Although ICI is

not object-oriented this mechanism provides a method for supporting inheritance

albeit for data only (functions may not be members of structures). New data

structures and functions may be defined at run-time but existing structures or

functions cannot be modified.

4.4.2.4 Lua

Designed to be used for extending applications, Lua is a procedural language that

makes heavy use of associative arrays that may be constructed and manipulated in

many different ways (de Figueiredo et al., 1994a, 1994b). Unlike ICI, Lua

distinguishes the functions and data provided by the host application from the data

and functions defined in the language itself. The other built-in types are strings,

floating-point numbers and nil - the type of the nil variable. Only a small number of

built-in functions are provided but embedding C routines from Lua is easily done and

the Lua program may be extended at runtime. The language itself has very few

constructs yet proves to be quite expressive. Rather uniquely, persistence of data may

be provided by writing Lua code that writes Lua code that, when executed, restores

the values of all global variables. Using a byte-code interpreter similar to the one in

Bob, it is feasible to pre-compile the programs into byte-code form to decrease

loading time and reduce runtime support.

4.4.2.5 Python

The designer of Python describes it as "... a simple, yet powerful programming

language that bridges the gap between C and shell programming, ..." which is a very

fair evaluation (van Rossum, 1994c). Python is rich with the familiar procedural

programming constructs, provides exception handling as standard and comes with a

large number of modules which provide interfaces to library routines varying from

POSIX system calls to Silicon Graphics GL (van Rossum, 1994b). Modules have

113

generally been pre-compiled, which can also be done to user code. A class

mechanism has been added to the language since conception (with little trouble) and

supports member variables, functions and multiple inheritance. Writing C functions

and using them from Python is not an easy task, most of the complexity is to due to

the memory management system used. To its credit, Python is the only language to

support dynamic loading of extension modules (van Rossum, 1994a). By only loading

a module when it is needed the core interpreter can be reduced in size and overheads.

Unfortunately dynamic loading is currently only supported on some UNIX systems.

Language Memory (Kbytes) Memory +
Program (Kbytes)

CPU
Time (ms)

Bob 224 340 7,197

Id 392 504 13,464

Lua 264 264t 13,653

Python 760 856 13,658

Compiled C n/a 112 100

§ The implementation used had a memory leak which made accurate
measurement impossible (this is a "best guess").

t Stack, heap and code space is statically allocated when the interpreter is
compiled.
486DX 33MHz IBM PC Compatible running the QNX operating system.

Table 4.2 Interpreter resource evaluation.

4.4.2.6 Interpreter Performance

Glish, although ideally suited for the task it was designed for, is not really suitable for

the task at hand. Adding to the interpreted code at runtime is not possible as the

package stands currently and it requires that all input/output is routed through the

Glish interpreter - this is not desirable. Each of the remaining languages, ICI, Bob,

Lua and Python, fulfil most of the requirements. To determine how they compare

when memory and Central Processing Unit (CPU) usage is examined, a test

benchmark was written in each of the languages and measurements taken. The

chosen benchmark was intended to test the speed of the interpreter with a typical task

that would be easily represented in each language and not rely on the speed of built-in

functions. The task was to multiply a four-by-four matrix with a vector 10,000 times

114

(so as to average out the effects of variable lags in the operating system). In Bob and

Python, the matrix/vector data types and manipulation functions were coded as a

class, in Lua and ICI they were implemented as an Abstract Data Type (ADT) using

normal functions and the relevant data structures. The amount of memory used by the

interpreter (with and without the loaded program) and the CPU usage were measured.

On the whole there are little surprises in the results shown in Table 4.2. Both Bob

and Lua offer few features and hence the interpreter is relatively small in size. ICI

provides more elaborate data structures and language constructs and Python weighs

in highest, not surprisingly due to its comprehensive range of features. Each

interpreter takes about the same amount of memory to hold the program (-120

Kbytes) with the exception of Lua which has a fixed amount of space allocated when

compiling the interpreter (this may, of course, be changed). The execution times are

interesting in that all but Bob's time are almost exactly the same. These times do not

include parsing overheads and so the efficiency of Bob's byte-code interpreter must

explain its result. The figures for the same test written in C and compiled into

machine code provide a good indication of how much time each interpreter really

spends executing their translated code. The large differences in execution speed

between machine code and interpreted code are not surprising, the machine code is

optimised for the CPU in question and, for this particular example, so as not to stall

the CPU pipeline and thus maximise throughput. Whereas the interpreters have to

work through a considerable number of other instructions in between each language

instruction, making effective optimisation next to impossible.

4.4.2.7 Language Selection

Considering that there will be many processes in the YE system that will make use of

the UML and hence the interpreter, the amount of memory used is a prime concern.

Multiple copies of the interpreter itself may be avoided by putting it into a shared

library which will only be loaded once. The amount of memory used to store the

program is still an issue however, as is the amount of CPU consumed. If the language

115

is overly complex it can lead to increased memory for storage and longer execution

times.

Python suffers from difficult embedding and whilst, in an ideal world, its rich language

would be very useful, the author believes that for the purposes of this thesis the

overheads are too large. Since this decision was made, Python has been chosen as the

programming language for the Alice rapid-prototyping system (UVa, 1995). Alice

runs exclusively on SGI machines which offer greater CPU power, more memory and

larger disk storage than is available on the average workstation. Also, Alice does not

have the same requirements as detailed in section 4.4.3.

ICI provides little more than multiple inheritance in the way of object-oriented

features and execution times are too high. Lua is impressive but has no object-

oriented features whatsoever. Bob is the most promising of the group, it has a small,

useful set of features but lacks a robust implementation and documentation.

One of the main requirements was the ability to modify code and data structure at

run-time. None of the languages reviewed enable the data structure to be altered on-

line and strictly speaking, none support code modification either. However, it is

conceivable that those languages supporting dynamic loading might permit the

replacement of previously loaded modules. Even then, this would be a heavy-handed

approach and relatively very slow.

There is also the issue of transforming the model into code. Using a general-purpose

language will unavoidably involve using different terminology and possibly a structure

sufficiently different to cause confusion. To ensure an easy transition from model

abstraction to representation whilst reducing resource overheads, the author believes

that a special, optimised language needs to be derived, learning from the languages

reviewed.

116

4.4.3 Proposed Language

The features of the surveyed languages that should be kept are:

• Simplicity of expression.

• Compactness - both interpreter and intermediate code size.

• Classes and inheritance.

• Implementation language interface for embedding.

• Modules.

• Use of byte-codes and a byte-code machine for language execution.

The negative aspects that will not be used are:

• Inability to alter structure of data and code at run-time.

• Lack of code/data persistence.

• Type-less variables/parameters.

The Universal Modeling Language is a procedural language and possesses some

object-oriented properties, notably inheritance and operator overloading. Multiple

inheritance is not supported primarily because it complicates interpreter design 2 (for a

discussion on this topic see Swawe, 1989; Bretthauer et al., 1989). Its appearance is

a mix between C/C++ and Pascal. Some of the expression notation has been taken

from C++ to aid brevity whilst Pascal lends us clarity of description.

UML can be split into two halves. The statements that describe the data - its

structure and content - and the code that manipulates that data. The actual language

statements used to represent these two components are almost completely unique to

each component. In other words, a UML description can be separated into two

categories: data definition and instruction code.

2 That is not to say that it would be inefficient (Tempi, 1993).

117

4.4.3.1 Data Definition

There are two structural components: the UNIVERSE and the ELEMENT. These are

used together to form a hierarchical framework within which the other components

may be placed: CONSTANTS, PROPERTYs, CONVERTERS, FUNCTIONS and other

ELEMENTS. A simple grammar representing the basic relationships between these

components is given in Figure 4.2.

universe : UNIVERSE name (components)

components 	: components component
I component

component : constant
I element
I converter
I property
I function

element : ELEMENT name (components }

Figure 4.2 Backus-Naur Form description showing relationships between
UML components.

4.4.3.1.1 Universe

The starting point of a representation is the definition of the universe which is

assigned a name for reference purposes (Figure 4.3). Within the universe, properties

may be defined and grouped into elements for convenience, functions may be written

to act on the properties of the universe and hence provide a behaviour. The state of a

universe is made up of entity instances (section 4.4.3.1.8). Three functions are

mandatory for each entity: Construct, Destruct and Update. Construct is

called when an entity is created (this is after all only a declaration, not an instance)

and is typically used to give initial values to the entity's properties. The Destruct

function is called when the instance is being deleted and may be used to perform any

last actions. The simulation is progressed through a series of discrete steps, each one

118

beginning with the execution of the Update function. It is also used as a focus for

the synchronisation of the data within the simulation.

UNIVERSE Base

ELEMENT Models

ELEMENT 	Visual;
ELEMENT 	Aural;
ELEMENT 	Tactile;

PROPERTY 	visual 	Visual;
PROPERTY 	aural 	: Aural;
PROPERTY 	tactile 	Tactile;

PROPERTY 	models 	: Models;
PROPERTY 	position 	REAL[3];
FUNCTION 	time 	: REAL;

VFtJNCTION Construct;
VFtJNCTION Destruct;
VFUNCTION Update;

Figure 4.3 Example top-level UML description.

4.4.3.1.2 Types and Constants

Other components of the language will appear familiar, such as the built-in primitive

types: REAL, INTEGER, STRING, and BOOLEAN. Classical "user-defined" types

are in fact supported through elements.

The only data structure primitive is the list, which may be created from any type,

built-in or element. If a dimension is given when defined then the size of the list is

fixed and may not be changed at run-time. If no dimension is given, i.e. an empty pair

of square brackets, then the list may grow and shrink. Therefore, a fixed list may be

likened to an array and a variable list compared to a linked-list.

Constants may be declared at any level of scope within the universe but may only use

built-in types.

119

4.4.3.1.3 Elements

While it is possible to embed the definition of elements and functions within the

universe section, it can soon reduce readability as the number of properties and

functions increases. It is therefore possible to merely give a stub declaration and

provide a full definition later on. UML does not require that certain definitions are

placed in specific files and as such, any completion of a stub declaration must qualify

which stub it is satisfying. In the example above, the Visual element was defined as

a stub in the universe called Base. A possible full definition is given in Figure 4.4

with the name of the element reflecting its origin. This "dot" notation is used in any

situation where a stub and a full definition need to be associated, i.e. elements,

functions, etc. It may also be used by the other component types, e.g. properties, to

modify definitions when using the interpreter directives (section 4.4.3.1.9).

The Visual element contains two further elements, one of which defines an

element called Colour. At this point no data is held within the Visual element

since the colour element is only a declaration. The Surface element has further

elements nested within it - there is no limit to the level of nesting permitted. The

Vertex element declares two instances of previously defined elements: Vertex

(local to Polygon) and Colour (local to Visual). Similar definitions may be

made for Aural and Tactile.

Elements may be treated similarly to classes in object-oriented languages - they can

defme data and code which operates on that data. Even if the element does not defme

any properties, the element must be instanced before the element's functions may be

called.

4.4.3.1.4 Properties

A property is formed by two parts, the name of the instance and a description of its

structure separated by a colon. The property's structure may be based on a built-in

type or an element. Only elements that have already been declared may be used in

property declarations. A property declaration is an indication that the structure

defined by an element or type should be instanced and hence take physical form.

120

ELEMENT Base.Models .Visual
{

ELEMENT Colour

PROPERTY
	components : REAL[3];

FUNCTION
	

Set(triplet : REAL[3]);
FUNCTION
	

Get(triplet : REAL[3]);

ELEMENT Surface

ELEMENT Polygon
I

ELEMENT Vertex

PROPERTY 	coord : Vector;

PROPERTY 	vertexList
	

Vertex[];
PROPERTY 	colour
	Colour;

PRO PERTY 	polygonList : Poly ;on

PROPERTY 	surfaceL.ist : Surface[];

FUNCTION
	

Read(filename : STRING
	

BOOLEAN;
FUNCTION
	

Write(filename : STRING
	

BOOLEAN;
}

Figure 4.4 A possible definition for the Visual element.

4.4.3.1.5 Functions

A function is identified by its name (using dot notation if necessary), the parameters it

requires (if any) and a possible return type. All parameters referring to variables and

properties are passed by reference whilst literals are passed by value. By default a

function does not have a return type. The contents of the function are made up of one

or more imperative statements. A pure virtual function may also be declared using the

VFUNCTION keyword, which means that no definition is provided at that level but

must be provided by any universe inherited from this base universe. The

Construct, Destruct and Update functions in this example are all virtual

functions because the values of the properties are different for each instance, to

provide default values only to be overridden by derived functions would be wasteful.

In Figure 4.4 two functions are defined within the Visual element to input and

output visual representations.

121

4.4.31.6 Inheritance

Inheritance is used heavily within UML to specialise descriptions of the universe. The

example in Figure 4.5 shows that the universe PBM (Physically-Based Model) is

derived from Base. In addition to all the properties, elements, constants and

functions defined in Base, the new universe defines extra properties and provides a

definition for the virtual functions.

UNIVERSE PEM : Base

CONSTANT 	Gravity 	: REAL[3] = [0.0, -10.0, 0.0];

PROPERTY 	mass 	: REAL;
PROPERTY 	velocity 	REAL[3);

FUNCTION 	Construct

II Assign initial values for the inherited
II properties.

position = [0.0, 0.0, 0.0 1;

II Now assign values for the local properties

mass = 0.0;
velocity 	[0.0, 0.0, 0.0 J;

FUNCTION 	Update
FUNCTION 	Destruct

}

Figure 4.5 Defining a UNIVERSE by inheritance.

Inheritance is not limited to universe components, elements can also be derived from

other elements providing that they have already been declared. The parent element

could be in the same scope level or even in an ancestor universe.

122

ELEMENT RGBColour : Colour

CONVERT HLSCoiour
	 II Convert from RGB to HLS

ELEMENT HLSColour : Colour

CONVERT RGBColour { ... } 	// Convert from HLS to RGB

Figure 4.6 Inheriting from an element.

4.4.3.1.7 Converters

With the effective proliferation of a large number of elements (essentially types) it is

often necessary to convert between one and another. In some cases this may be

trivial, e.g. converting a string into a real, an integer into a real, etc. In other cases

the transition may be less straight forward, e.g. converting from one colour model to

another (Figure 4.6), changing a surface model description into a volumetric

description, etc. To handle these non-trivial conversions special functions may be

defined within an element that identify the result of the conversion by giving the

destination type as their function name. Converters do not take parameters and do

not return any value. They may be implicitly invoked by the interpreter or explicitly

by the programmer as shown in Figure 4.7.

FUNCTION Colours

PROPERTY 	rgb 	: RGBColour;
PROPERTY 	his 	: HLSColour;

rgb.Set(1.0, 0.0, 0.0);
his = rgb;

his = HLSColour(rgb);

II Bright Red!
II Interpreter invokes
II correct conversion
II function.
II Force conversion.

Figure 4.7 Explicit/implicit invocation of a converter.

In the event that a converter could not be found, an exception would be raised during

interpretation.

123

4.4.3.1.8 Entities

The entities are the physical embodiment of the universe. An entity is created by

specifying the universe in which it belongs and from this information it is furnished

with a copy of the properties, elements, constants and functions defined for that

universe. The Construct function is then called to initialise the entity's state.

Some of this initialisation code may be found in the universe definition but usually this

is appended to, if not completely specified, in the entity definition. When an entity is

destroyed its Destruct function is also called.

ENTITY Ball : PBM

FUNCTION Construct

mass = 10.0; 	 II kg
velocity = [0.0, 1.0, 0.01; 	II 1 m/s upwards
position = [0.0, 10.0, 0.0 1; II lOm straight up

II Initialise models...

FUNCTION Update

VAR 	force : REAL[3];

force 	= Gravity I time;
velocity 	= velocity + force;
position 	= position + velocity;

I
}

Figure 4.8 Definition of an entity.

In the example shown in Figure 4.8 the Construct function overrides the default

values that were assigned in the Construct function of the PBM universe definition

given earlier. The Update function represents the actions to be taken at each

simulation step, thus defining the entity's behaviour. In this case the universal

function time (defined in Base) is used as the basis for a calculation to determine

the entity's position after gravity has played its part.

Entities may also declare their own functions locally without requiring a stub

declaration in the universe they are derived from.

124

4.4.3.1.9 Interpreter Directives

An interpreter directive is a special command which may be inserted anywhere in the

definition and affects what the interpreter does with the following statements. There

are currently only three directives which change the interpreter's mode of operation:

insert, replace and delete.

Insert mode will add the component definition providing that a component with that

name in that level of scope does not already exist. If it does exist then the operation

fails. In replace mode the definition is always added, even when there is already a

component with the same name. In this case, the old definition is removed and the

new one inserted. When in delete mode the interpreter only uses the name of the

component in order to locate it in the definition and remove it. If the component does

not exist then the operation fails and an exception is thrown. The dot notation is used

when specifying the component names so that they may be used to place/locate the

component correctly.

4.4.3.2 Instruction Code

It was decided early in the design process that the instruction code aspect of UML

would not be implemented (section 5.5.5). Hence only unique features and those that

have an impact on the interpreter design and implementation are presented here.

4.4.3.2.1 Local Variables

Variables may be declared at the element and function scope level or any level of

scope therein. The Update function in Figure 4.8 has a local variable which will be

instanced each time the function is called, unlike property definitions which are

instanced permanently for a given entity. Variables may be declared as a built-in type

or an instance of an element defined within the universe it is derived from. In fact, a

variable declaration is identical to that of a property with one exception: variables may

be initialised on declaration with an expression as shown in Figure 4.12. Properties

may only be initialised with a literal or list of literals.

125

4.4.3.2.2 Element Referencing

When an element has been instanced, as either a property or a variable, then the

contents may be accessed using the familiar dot notation as shown within function

Scope in Figure 4.9. If the element has a large structure then referencing the

contents can become tedious and clouds the expression of logic. UML provides a

similar mechanism to Pascal by permitting a specified scope to be made temporarily

local (using the WITH keyword) so the contents may be referenced as if they were

declared locally.

ELEMENT Outer

ELEMENT Inner

	

PROPERTY 	number : REAL;

	

PROPERTY 	text 	: STRING;
}

	

PROPERTY inner 	Inner;
PROPERTY number INTEGER;

FUNCTION Scope

VAR outer : Outer;

outer.inner.nurnber = 1.0;

WITH outer.inner

number = 2.0;
text 	= "Hello World";

Figure 4.9 Methods for accessing member properties in elements.

If there should be a name clash when a scope is made local, such as that between the

number property in the Inner element and the number property in the Outer

element, then the former would be used. Multiple scopes may be processed by

presenting them as a parameter list, each name separated by a comma.

126

4.4.3.2.3 Function Calls

Figure 4.10 shows a call to the function that reads data into a Visual element. The

Read function only takes one parameter and returns a boolean value indicating

success or failure. If the function should fail then a special system function is called

which places a message onto the current output stream and an Input/Output exception

is generated.

FUNCTION Construct

II Initialise the visual model associated
II with this entity.

if (models.visual.Read("plane") == FALSE

system.Print("can't open file 'plane'");
throw EXCEP_lO; 	II Fatal error.

I

II Rest of construction...
I

Figure 4.10 User and system function call execution.

4.4.3.2.4 Exceptions

Error handling is done almost completely by exceptions. They may be thrown by the

interpreter when a severe error occurs or by user-defined routines that wish to pass

control (and error resolution) back to a previous level of execution. If an exception

handler does not exist around the call to the routine that generates it, then the next

level is checked and so on back to the top level. Failure to catch an exception will

eventually end in a fatal error and the interpreter will stop executing the UML

description.

The code above manufacturers an exception by attempting to convert a colour of type

RGBColour to HSVC01Our when the latter provides no conversion function. A

number of exceptions are predefined by UML, the conversion exception that is shown

in Figure 4.11 is one such example.

127

ELEMENT HSVColour Colour

II Definition without any converters...

try

PROPERTY 	rgb 	: RGBColour;
PROPERTY 	hsv 	HSVColour;

rgb.Set(1.0, 0.0, 0.0); 	 II Bright Red!
hsv = rgb;

catch (EXCEPT—CONVERTER

Resolve problem.

Figure 4.11 Attempting to convert an element without a converter.

4.4.3.2.5 State Indexing

A state change occurs on completion of the Update function. It is possible that we

may wish to reference old values of particular properties when performing the current

state calculations. Figure 4.12 shows how the time difference between successive

simulation steps may be derived. The number in the round brackets indicates which

state should be accessed. A value of zero would be the current state and is implicit, -

1 would indicate the previous state, -2 the state before that and so on.

FUNCTION Construct

VAR 	dt : REAL = time - time(-l);

II Do something with dt...
}

Figure 4.12 Calculating a time delta using state indexing.

Obviously storing a history for each property would be grossly inefficient and

unnecessary. It is for this reason that only literals may be used to reference states.

When interpreting the code it is possible to identify those properties that need to be

stored and the length of the history list. If variables were permitted to index states,

the history list could be any length and would impose unattractive time and space

overheads. If a number of states (only known at run-time) do need to be referenced

128

then conventional methods can still be used, e.g. storing them in a list. In this

example only one previous state needs to be kept for time.

II Filename: visual.umm

ELEMENT Visual

II Element definitions...

PROPERTY 	surfaceList : Surface[];

FUNCTION 	Read(filename : STRING) : BOOLEAN;
FUNCTION 	Write(filename : STRING) : BOOLEAN;

II Filename: base.uml

UNIVERSE Base

ELEMENT Models

IMPORT 	"visual .uinm"

ELEMENT 	Aural;

PROPERTY 	visual : Visual;

II Etc...
}

Rest of definition...

Figure 4.13 Importing a module.

4.4.3.2.6 Modules

Putting a complete universe definition in one file, complete with entity declarations,

code, etc. is impractical. Splitting a program into modules is a common practice in

other languages and this same technique is applied in UML. Each module is a file that

contains syntactically and grammatically correct UML data definitions and/or

instruction code. It is quite common, however, for the module to be contextually

incorrect since it is only after inclusion into a larger UML definition that it will make

sense. For example, a module could contain the visual model definition given in

Figure 4.4 which would be imported into the Base universe definition as shown in

Figure 4.13. Note that the name of the element in the visual. umm file is not

actually valid because it is not satisfying a previous stub declaration. Therefore, an

129

attempt to parse this file on its own will result in an error. However, when it is

imported into the definition contained in base. uml the result is perfectly valid.

The naming of files is left up to the discretion of the user. However, in this example

the . umi extension is used to indicate a valid UML description, whilst . umm is used

to indicate a module with potentially contextually invalid contents.

Code that is often re-used, in much the same way as traditional object-oriented

classes, may be placed to best effect in modules. These modules may also be

imported and instanced in the same way. A common use is the encapsulation of

services, for example basic system calls. Rather than use two statements to import

and instance the code, both may be done at once using, for example, IMPORT

"visual. umm " WITH visual. This takes the top-level element in the file, in

this case Visual, and declares a property with its type.

4.4.4 Summary

This section has presented an analysis of potential candidates for a modeling language.

Due to some unique requirements the existing languages were deemed inadequate and

the most important features of a new language, UML, were presented. UML is

composed of a data definition language and a instruction code language. For a

complete and formal description of the UML data definition grammar, please refer to

Appendix A. An implementation of a UML interpreter is presented in chapter 5. The

rest of this chapter describes the remainder of the integrated modeling/simulation

system.

4.5 System Architecture

This section describes the structure of the proposed solution to distributing the

universe simulation. A system overview is presented first, followed by a detailed

description of the system's operation and concludes by separately addressing a couple

of the key design issues.

130

4.5.1 Universal Simulation Node

The proposed building block for the Universal Simulation System, USS, is the

Universal Simulation Node (USN). The USN has some important properties:

• It is capable of managing a complete simulation on its own without the aid of

other USNs.

e Distribution falls within the near/tightly-coupled classification. This may

range from a tightly-coupled multiprocessor system within a single chassis or

a fast LAN connecting otherwise independent resources.

. The amount of bandwidth and computational power consumed by the

simulation is at its highest at this level.

• Participants in the universe simulation use a USN as their gateway into the

simulation.

User

ction to
USSs.

Figure 4.14 Example structure of a Universal Simulation System.

Multiple USNs may be connected together to provide interoperability over near

distances (Figure 4.14). This may be used to distribute an intensive simulation or to

provide access for multiple participants to a single simulation (one or more

participants would be present at each USN). The bandwidth used on the connections

between USNs will be substantially less than at the USN level to reflect the (probable)

change in network medium and nature of use. Such a grouping of USNs gives us a

131

complete USS. In the remainder of this thesis whenever a node is discussed, it is

actually referring to a USN and, similarly, a system corresponds to a single USS.

4.5.2 Universal Simulator System

A USS may be built from just one USN but this is generally inefficient due to the

number of tasks that a fully configured USS must perform and the overheads incurred

by each task. Distributing the workload between several nodes is more efficient. The

tasks that a USS must perform are:

• Managing local input/output devices, e.g. joysticks, 3D mice, image

generators.

• Handling communication with other USSs.

• Executing the simulation.

4.5.2.1 Essential Components

These tasks are undertaken by a number of different software components which all

have a defined role. Each USN has a Resource Manager (RM) that is responsible for

monitoring CPU usage, memory usage, controlling access to backing store and

moderating the use of input/output devices to those processes that request them

(Figure 4.15). At any time the RM is capable of providing information on the loading

of the node and processing requests for other services. In essence, the RM contains

the local scheduling functionality.

The Universe Manager (UM) is present in one form or another on every USN in the

system. The UM of one node in each system is designated master and is responsible

for communicating with the UMs residing on the other nodes in the system and also

between other master UMs on other systems.

A universe consists of many autonomous entities (ENT5) which are implemented as

separate processes. Each entity falls under the control of the node's UM (working in

conjunction with the RM) which is responsible for scheduling the ENTs so that they

132

are not starved of resources and can perform their work in time for the next

simulation time step.

Ato

Key

RM 	Resource Manager
	 AUR Aural Manager

UM 	Universe Manager
	

VIS 	Visual Manager

CDM 	Collision Detection Manager
	

ENT 	Entity

Figure 4.15 Example organisation of a USS complete with populated USNs.

4.5.2.2 Optional Components

The three components UM, RM and ENT are the minimum required to form a USN

and therefore support a simulation. Although entities may sample input devices, the

simulation has no displays which makes this configuration of limited usefulness.

Typically a visual and/or aural representation is given to entities within the simulation

and there must be some way of making use of a CIG or sound equipment. This link

133

between the output devices and the simulation comes in the form of special-purpose

Managers. A manager monitors the information flow in the simulation and takes

actions according to its purpose. The three managers described below are commonly

used although others may be added without restriction.

If the system requires the use of a CIG then a manager has to be present in order to

control access to it. One such manager is the Visual Manager (VIS) which runs on

the node that the image generator is connected to. VIS provides services for

representing and managing any part of the visual representation of the universe.

In the same way, the Aural Manager (AUR) is tied to a node with acoustic rendering

equipment and provides services related to the aural representation of the universe.

The Spatial Integrity Manager (SIM) monitors the state of the universe being handled

by the USS and notifies the relevant entities when there has been a breach of their

spatial integrity, i.e. a collision. Response to these events are handled by the entities

themselves.

Each UM can also support a Console which is essentially the hybrid of a manager and

an entity. A console is forwarded the most important messages and provides a

convenient way of collecting statistics. It may also be used to trigger certain events in

the system.

4.5.3 System Organisation

There are no restrictions imposed by this architecture on how these components

should be organised. Multiple specialised managers offering the same services can

also be supported. The vast range of available processing power and communications

bandwidth prevent the creation of a set of rules. However, it is possible to speak in

general terms and provide according guidelines:

134

4.5.3.1 Near Tightly/Loosely-Coupled

A real-time distributed simulation's two enemies are the lack of bandwidth and

communications latency. When transmissions between system components occur

within the same physical machine then a given set of protocols may be used to

communicate between certain processes. Assuming the configuration in Figure 4.15,

this would mean that each USN could be attached to one processor, or maybe even a

small farm of processors, communicating via a high-speed data bus. Passive partial

data replication and complete computational distribution are used at this level.

As LANs increase in available bandwidth, it is possible to use these same protocols

over a larger distance, latency permitting. In such a case each USN may reside on a

different physical machine using, for example, fibre-optic cable as a transport medium.

4.5.3.2 Near/Far Loosely-coupled

There comes a point, however, when either the bandwidth is too small or the latency

too great. As latency increases, use of the original protocols typically becomes less

and less practical. To overcome this problem, networked USSs are connected and

information to maintain synchronicity between these isolated systems is sent between

them. An example of such information is that representing the interaction of

participants at one system with other participants on another system and their

influenced changes in the environment (section 4.5.4.10). In other words, total data

and computational replication are used.

4.5.3.3 USS Networking

Those systems that use broadcast/multicast (section 2.4.4) have adopted a protocol

that can compensate for the occasional missing packet. Data is sent regularly and is

sufficiently detailed that the lost information may be reconstituted or replaced by the

succeeding messages. However, a lost message can result in temporary invalid

behaviour which may have undesired side-effects.

135

By restricting the information that needs to be sent between systems to the bare

minimum, i.e. level 2 behaviour distribution, the bandwidth required between systems

is reduced proportionally. In an ideal world this information would be sent between

systems using a low-overhead mechanism such as multicast. However, unless a

reliable datagram protocol is available a lost message could have a profound effect. A

message containing higher behavioural information is sent less frequently and failing

to process it would effectively lead to that system running a different simulation to the

others. Therefore, in both cases, there is a need for a reliable message delivery

service.

User 1 User 2 User 3 User n

Figure 4.16 Hierarchical structuring of USSs.

Multicast is not widely available and the advent of reliable multicast services will take

even longer to realise. Therefore it was decided to investigate a solution using point-

to-point links with a view to future reliable multicast availability. If there are a large

number of systems all participating in the same simulation, then the network of point-

to-point connections between all of these systems would resemble a spider's web

(section 2.4.1). To reduce communication overheads, a hierarchical network of

systems may be constructed (Figure 4.16) such that any message to be sent outside a

USS is sent to its parent and its children. The parent and children then determine if

the message should progress further.

136

Since it is perceived that the information sent between systems is of relatively low

bandwidth, the burden placed on each system for routing should be manageable.

Unfortunately the latency this introduces may be insurmountable if the number of

systems arranged in the hierarchy becomes too large. However, there is little

alternative at this point in time. Interestingly, Bhagwat et al. (1994) have proposed a

tree structure as the solution to scaling the error control mechanism used in reliable

multicast for WAN usage. Certain nodes in the tree are assigned the responsibility of

distributing the data reliably to the sub-trees rooted at these nodes. A tree structure is

already used by the MBONE (Pullen, 1994), therefore there seems to be a need for a

tree structure, regardless of the communication mechanism used, in order to cope

with the transmission over long distances, reliable or not.

The amount of data generated by continuous live streams of audio and video would

put a significant burden on any such organisation using point-to-point links and

software routing processes. Fortunately, this is one type of information that can

tolerate lost packets with few side-effects and therefore must be sent using

conventional (unreliable) multicast techniques.

4.5.4 System Operation

Although each of the basic components (UM, RM, ENT) are separate processes, none

can operate without the others and their functionality reflects the required interactions

between them. Therefore, rather than fully describe each process in turn, a more

function-oriented approach has been taken in this section concluding with some

information on the common special managers. Implementation issues are discussed in

the next chapter but a short note is provided in the following descriptions where there

is an important decision to be made.

4.5.4.1 System Initialisation

The first USS started is at the root of the system hierarchy. The first process started

within any system is the master UM (MUM) which then waits for its child, or slave

137

UMs (SUMs), to connect to it using activation messages3 . When all SUMs have

connected to their MUM the system is ready to receive connections from its child

systems in the system hierarchy (if any). Once these have been made it connects with

its parent system unless, of course, it is the root system in which case the network of

systems is deemed to be active. All inter-system communications are performed via

the MUMs in each system.

Once a UM has connected with its parent, be it another UM or a USS, it starts its

local RM and any other special managers configured to run on that node. Once the

managers have established a link with their UM they provide it with a service ID

which represents the type of manager they are and the nature of their services. The

same service ID is shared by those managers providing an identical service (although

their implementations may differ). Apart from the RM which has a service ID of 0,

the UM does not know what ID matches which service, nor does it need to (section

4.5.4.5).

The next stage of the system initialisation is to parse the UML definition of the

universe. A copy of this definition is sent to each specialised manager and forwarded

to slave UMs. These managers then register interest in any parts of the definition that

they wish to monitor with the UM (section 4.5.4.6). At the same time the MUM

completes the initial process creation stage.

4.5.4.2 Universe Creation

At this stage, the only processes left to create are ENTs. The MUM processes each

ENTITY definition in the UML description and starts an ENT process to represent

that entity in the simulation. The location of the ENT is determined in conjunction

with each node's RM as discussed in section 4.5.4.12. The entity creation phase

concludes with the execution of their Construct function.

In the following sections, description of the UM's role will represent either a MUM or SUM unless
stated otherwise.

138

4.5.4.3 Universe Simulation

After the creation process has finished, the MUM is ready to start the simulation

proper. The beginning of each simulation step is marked by the transmission of an

update notification message to each ENT, manager and SUM (Figure 4.17). On

receipt of this message, the SUMs forward the message to their local ENTs and

special managers. Each entity executes its Update function, sends any modified

state back to its local UM and waits for the next update message.

Manager
	 Universe Manager

	
Entity

update - 	update
notificatio n Start simulation 	notification

step 7 Prepare to Send state
receive state updates.

updates. Forward state 	 update
- update updates to

dependent
Locate processes.

component and
update state 	

update 	When all entities

complete 	have updated,
end simulation

Perform end of 	 step.
step calculations.

Figure 4.17 Order of events for a simulation update.

After receipt of an update notification message, each special manager waits for update

messages to be forwarded to it via the UM. Once all messages have been forwarded,

he end of the simulation step is marked by an update complete message which is sent

to the managers only. When the managers have finished their work the update

process begins again.

4.5.4.4 Master/Slave UM Relationship

Within a USS all information is completely distributed. This means that any event

which occurs on one USN which may effect the system state must be reflected on the

other nodes in that system. For example, if a manager on one node registers interest

in a part of the UML definition with its local UM (section 4.5.4.6), that message must

139

be communicated to the rest of the UMs on the other nodes. Messages sent by local

processes that are intended for remote nodes are sent to the UM which acts as a

router and forwards them to the MUM; from here they are sent to the correct node.

Most messages are intended for all nodes rather than one-to-one communications and

this mechanism provides a convenient way of implementing a pseudo-multicast facility

(Figure 4.18).

(MUM

Figure 4.18 Possible communication path taken by a message sent from
an entity to all managers.

Each UM (and RM) maintains a list of managers and entities on its node but the

MUM also keeps a running total of the number of entities active on each slave node.

Another difference between SUMs and the MUM is that the master node performs

system-wide load balancing. In addition it manages the sole connection with the other

systems. Live audio and video streams are dealt with separately in that the data

packets containing this information coexist with simulation traffic but are only

processed by the intended recipient (probably a special manager).

4.5.4.5 Locating Services

All processes throughout the systems, including the UMs, have a unique address

called a Universal Process IDentifier (UPID). Examination of a UPID will describe

the exact location of the process, its system, its node and its local address.

Any entity or manager may issue a location request which is sent to the UM in order

to locate a particular process. The search may be restricted to the local node or

140

permitted to extend throughout the system. If the search target is an entity then its

name is given whereas a service ID is used for a manager. Should the service not

exist locally and a system-wide search has been asked for, then the location request is

forwarded to the MUM/SUMs. A successful search results in the return of the target

process' UPID. The decision of which manager to use is left up to the entity to

negotiate. Searches using a UPID as the key can also be performed and result in the

return of either an entity name or a manager name and service ID. If multiple

managers offering the same service are located, then all of their addresses are

returned. Once a process' address is known, messages may be sent to it either

directly, if it is on the same node, or indirectly using the UMs as routers.

Manager Universe Manager Entity

Register interest
monitor

in component. 	
.request

-Add-component
dependency and

return monitor ID
- unique to manager.

Associate monitor
monitor ID with acknowledge Inform all entities if

component. first dependency on
component; send 	monito Store monitor ID
monitor ID unique 	notification with component

to entity. information.

Figure 4.19 Procedure for registering interest in a UML component.

4.5.4.6 State Monitoring

The state of the simulation is represented entirely by the sum of all the individual

entity states. The state of each entity is an instance of their local copy of the UML

definition.

When a manager registers interest in a particular component of the UML definition it

is said to be monitoring its change in state. After receiving the UML definition, a

manager sends monitor request messages to its local UM which associates a

dependency with the given UML component (Figure 4.19).

141

4.5.4.6.1 Unique State Identifiers

Somehow, the state sent by each entity to satisfy each dependency must be uniquely

tagged such that each process. throughout the whole system can identify it. The size

of this ID can be approximated by the following equation:

ID size = number of entities system-wide *
number of entity's dependencies

Considering the potentially large number of entities system-wide and the number of

dependencies that could be registered, this ID would have to be very big. How the ID

is derived is also problematic. A centralised allocator could be used but this would

not be very fault-tolerant. A network of mirrored allocators would be better but many

IDs will be allocated and discarded throughout the lifetime of the system. The

overhead incurred by interrogating such an allocator is too great for this to be a viable

option. Basing the ID on the location of the entity is also impractical because entity's

may migrate (section 4.5.4.12).

The chosen solution uses an ID which is unique between the UM and the process in

question, whether it is an entity, a manager or another UM. As state updates are

passed between processes, e.g. from an entity to interested managers, the UM inserts

the correct ID for the communication. This may seem like an expensive process but,

as shown in section 5.6.3.2, this may incorporated into the state distribution

mechanism with negligible overhead.

This ID, known as a monitor ID, is returned by the UM in a monitor acknowledge

message and is used in further transactions regarding this component. Multiple

dependencies may exist for a given component, each one generated by a different

manager - there is no point in a manager monitoring the same component more than

once.

4.5.4.6.2 Synchronisation

If a given entity was created before monitoring of a particular component was

registered (and it uses that component), then it will be sent a monitor notification

message by its UM when that event occurs. It too will be given a monitor ID to be

142

used in further communications. If a component has multiple monitors then only the

first registration will generate a notification message. Conversely, if the entity is

created after monitor requests have been processed, then the UM will synchronise it

with the other entities by sending a stream of monitor notifications. Also, following

entity migration the destination node's UM synchronises the entity to establish new

monitor IDs.

4.5.4.6.3 Distributing Monitors

A copy of any monitor request received by a UM is forwarded to its MUM or SUMs

and a similar process is undertaken to allocate a unique monitor ID between UMs.

The remote UMs will then inform local entities as necessary. In this way, an entity on

one node will know to send state updates for a component that is being monitored on

a remote node. However, it does not know where the manager is, only that a

manager is interested in its state.

4.5.4.6.4 Construct, Update and Destruct

At the end of the entity creation sequence, after all relevant data has been instanced,

the entity's Construct function is executed which, when completed, results in one

or more construct messages sent to the UM (Figure 4.20). Each message

corresponds to a monitored component and holds the current state of that instanced

component. Upon receipt, the UM looks for any dependencies on this component

and forwards the entire message to the interested managers (with one proviso detailed

below). At the end of the entity's update phase, similar update messages are sent:

upon entity termination, a single destruct message is sent. Note that update messages

are only transmitted if the entity has modified that part of its state since the last update

notification was received.

143

orward state to
ldependent
processes. 	 construct

- 	 construct

Look- up
 Replace entity

monitor ID Aith
.c)rnpol1ent based correct one for
I upon monitor ID , dependent.
and update statc.

Construct ZI 	construct
Send one state entities. 	

2 update for every
dependency; use

monitor ID to
identify component.

Manager 	 Universe Manager 	 Entity

Figure 4.20 Sequence of events during entity construction.

When a manager receives a construct message it instances the monitored component

and copies the state contained within the message. As update messages are received

it updates its local copy of the state and deletes the instance if it should receive a

destruct message. Upon receipt of these message types a manager executes its own

construct/update/destruct functions. These functions perform some action which is

unique to each manager, e.g. the update function may wait for an entity position

change so its visual representation may be moved. At any time a manager may also

get the current state of a entity's component by sending a state request to the UM

which is forwarded to the entity. The state is returned in a message with the same

structure as a normal update message.

As inferred in section 4.5.4.4, the local UM will send a copy of the relevant entity

construct, update and destruct messages. Obviously, if those nodes do not have any

managers running on them, then there is no need to send these messages at all.

4.5.4.6.5 Constraint Functions

A manager can also supply a constraint function (written in UML) to be associated

with each component it is monitoring. Every time the UM receives a state update for

a monitored component it executes the constraint functions (if they are present). If

the dependency is with a local manager and the constraints are met then the state is

forwarded to the manager, otherwise no message is sent. All dependencies with

144

remote managers are represented locally as dependencies with other UMs and the

evaluate-send sequence has two additional conditions. Firstly, if multiple

dependencies for a single component exist with remote managers on the same node,

then each function is executed in turn until one succeeds or all have failed. Secondly,

if one or more of the dependencies for a given node do not have a constraint function

attached, then the state is sent immediately without executing any of the functions.

Constraint functions may be updated or added at any time by the manager that owns

the dependency.

4.5.4.7 Localisation

WAVES filters messages upon reception so that only those entities in a viewable area

associated with a given host are sent to that host. NPSNET splits the environment

into a mesh of two dimensional hexagonal cells and uses multicast groups to ensure

that only the entities within the local and neighbouring cells are processed.

AVIARY's EDB provides a comprehensive range of services including collision

detection and entity operations based upon volumes of space. One such volumetric

service is the monitoring of a specified region of space for a client. When an entity

enters, leaves, moves or changes whilst in that volume the client is notified and may

take according action.

A criticism that Snowdon (1995) makes of the approach taken by WAVES is that a

lot of bandwidth may be consumed for no real reason since all messages are only

filtered at the destination. This is a valid point which USS does not suffer from. By

using constraint functions, filtering is done at source which, combined with state

updates that are only sent when a change has occurred, reduces the required

bandwidth to an absolute minimum.

The localisation techniques used by both NPSNET and AVIARY "filter" based solely

on position and volume. NPSNET does this merely to reduce the amount of entities it

needs to process whilst the EDB also performs collision detection. However, in a

USS a constraint function can be imposed on any component, not just one

representing position. As part of the basic services offered by a USS, the UM has no

145

understanding of what the UML description means, just that it is composed of

constants, elements, properties, etc. Only the manager that specifies the constraint

function needs to understand what it means. By abstracting the filtering process in

this way, it is just as easy to receive information about entities within a given volume

as it is to restrict messages to changes in an entity's colour. If only position changes

are wanted for red entities, for example, then it is necessary to encapsulate the

position and colour properties in another such that the constraint function may

compare them.

Consider the common case of an entity moving through space, entering a volume

monitored by a manager and passing through until it leaves at the other side. When

the manager starts receiving messages because the entity has entered the volume, it

needs to know the current state of all the components it is monitoring, not just the

one that has just changed, i.e. their position. Similarly, when the constraint fails it

needs to be informed so that the entity can be dropped from its calculations. To

resolve this problem a constraint function has the optional functionality to issue a

state request to the entity on behalf of the manager. When entering the volume one or

more pseudo-construct messages are sent (one for each monitored component) and a

pseudo-destruct message when leaving. Although the entity is not actually

constructing and destructing it is as far as the manager is concerned.

4.5.4.8 Modifying the Universe Definition

The strongest advantage of using an interpreted language for modeling was that it

facilitated modifying the definition of the yE. This may involve an addition to a given

component, the deletion of part of its structure (or the whole component), or the

definition of a new component (or part thereof). Whenever a change happens,

regardless of its nature, every process in the system must be informed (with the

exception of the RM). In addition, since this is a fundamental change in the

simulation, it must be communicated to other systems simulating the same universe.

Such a change is introduced by an entity (probably initiated by a user) and sent to the

MUM in a urn! message. The change is first parsed by the MUM and if this is

146

successful a lock for the portions of the definition being modified is negotiated with

the other systems. The new definition is then forwarded to the MUM's local entities,

special managers, slave UMs and to any systems it is in contact with. All

modifications are made system-wide within one simulation step. When the other

systems have acknowledged that their modifications are complete, the lock is

released. To accommodate for lags in the system and between systems, changes may

be queued and effected at a predetermined time. This allows the changes to be

transmitted to the furthest node/system and after all nodes/systems have the

modification request in their position, the change is effected simultaneously.

If a component is extended then default values must be given to the newly added

subsection. If part of an existing component is removed then accesses to this old

information must also be removed. Addition of a new component outside the scope

of usage by any entity, or not within the components being monitored, does not have

any side-effects. These issues are dealt with further in section 5.5 which discusses the

implementation of a UML interpreter.

4.5.4.9 Multiple Universes

The purpose of a UM is to manage the execution of simulations of universes

described using UML. Entities form logical groups reflecting the universes they

belong to although they may still execute on the same node. In order to support

multiple universes, it is necessary to tag every message sent with a unique universe ID

that must be processed every time a message is received by a UM or RM. The UM

vets messages for entities so that they are never sent a message originating from

another universe. It would be possible for managers to handle information from

multiple universes simultaneously, but this might either be impractical, e.g. in the case

of VIS, or inefficient, e.g. the SIM is a computationally expensive process. On the

positive side, having the relevant information for all universes in one place simplifies

the process of entity migration (section 4.5.4.12). Therefore, the designer of special

managers must make the decision to have one manager for all universes, or one

manager per universe.

147

When an entity moves from one universe to another a destruct message is issued. The

parts of its definition that it has in common with the destination universe are preserved

(and their associated state) whereas the others are destructed as per usual. The entity

then constructs in the target universe, building upon the partial state it has retained

from the source universe by instancing those properties that are new to the entity and

assigning default values. Finally the entity is moved from one universe group to the

other. Note that there is no need to terminate and recreate the ENT process, just alter

its state.

4.5.4.10 Multiple Users

Users are represented by entities that read input devices and take actions accordingly.

Multiple users can be supported within the same system without adding any extra

functionality. This is not true when users on different systems wish to interact. Each

USS is totally replicating the computation and data yet each system has what are, in

effect, wildcards - users. A user on one system must be represented on the others and

their actions reflected, i.e. their behaviour must be modeled in some way. This goal

represents a level 3 distribution which, as discussed in section 2.2.4.5, is not feasible

since the decision making process is too complicated.

Consider the example of a user driving a virtual car. Sending changes in the car's

position (level 0) over low bandwidth communications links is wasteful but highly

accurate. Level 1 distribution can be achieved by approximating the dynamics of the

car, i.e. a dead-reckoning model. This is not very accurate and can result in sudden

changes in the modeled variables as updated parameters are sent by the real entity.

Parameterising a user's actions over time, such as turning the steering wheel or

pressing the pedals is also feasible. By triggering pre-programmed control

movements it is possible to achieve level 2 distribution and an approximate

representation.

However, representing a user that is walking around the environment, moving their

arms and legs is not as simple. Limb positions could be approximated based on

velocity but subtle movements would be lost. Given a set of animated behaviours

148

such as "move forward", "turn left", "pick object up", etc., then level 2 distribution

could be achieved. But this solution shares the same problem with the previous

example: how do you map the constantly changing data from the input devices into a

series of pre-programmed movements?

It appears, therefore, that the level of behaviour modeling required depends on the

method of interaction and representation utilised by each user. Since this is an area of

research that requires a great deal of further work, USS does not impose one

particular method.

All messages sent by an entity representing a user are tagged accordingly. They are

processed in exactly the same way, except that when they reach the MUM they are

also forwarded to any systems that are simulating the same universe. When an entity

construct is received by the MUM on another system, a new shadow entity is

constructed and its state taken from the message. This process functions in the

simulation in the normal way until a destruct message is encountered. These are the

only two messages that are always sent, any other type of message to be sent to the

entity's shadow must be specifically indicated.

By flagging update messages, all component updates made by the entity are

forwarded to the shadow - use of this option is not recommended. Preferably, when

modeling the entity a number of UML functions can be written that, when executed,

will perform an automated manipulation of the entity's properties. This could result

in a position change or the triggering of a sound, etc. By redefining the shadow's

update function to exclusively call this function, animated behaviour is possible. Level

2 distribution may be accomplished by leaving the update function empty and

remotely invoking these functions in a certain sequence to effect the desired result.

These last two methods merely use the umi message to send UML code to the

shadow entities and are issued within the real entity's Update function.

149

4.5.4.11 Entity Lifetimes

Most entities are created when the initial universe creation occurs but they may also

be created at run-time. An entity can only be created by a UM but creation requests

can be made by other entities.

Entities may terminate (abnormally or naturally) at run-time and new entities not

originally specified in the universe definition may be created. Notification of entity

terminations are sent to all managers that were monitoring its state in process

notification messages. Entity creation follows the usual procedure and requires

monitor dependency synchronisation.

An entity may opt to save its current state to backing store before termination so that

it may be loaded again when it re-enters the simulation. This mechanism is often used

by users since they are not always present in a simulation.

4.5.4.12 Scheduling

When a process (including the UM) is created, it is allocated a Resource Profile (RP)

which holds information about which resources it needs, how much and (if possible)

when. A new process is given a default allocation of resources (or a hand-written

specification) which is modified and tuned during the execution of the simulation. At

the beginning of each simulation step, all the entities and managers within the

simulation are given access to the resources through a dynamic deadline scheduler so

that they may complete their calculations for the current step.

Upon completion of each entity's calculations, information regarding the amount of

resources that they consumed is processed by the RM, so it may adjust their

scheduling parameters, if necessary. When a schedule entry is inserted, deleted or

changed, some or all of the other entries must also be reallocated. Resource

contention is accounted for in the scheduling. It is possible that a time will occur

when completing all the calculations necessary within one time step is impossible. At

this point there are four choices:

150

Flag that a fatal error has occurred and terminate the simulation.

Degrade the number or accuracy of calculations currently performed so that

the final deadline may be met.

Degrade the simulation by extending the duration of the simulation period

thus resulting in a lower simulation update rate.

Migrate the offending process to another node.

The first option is obviously highly undesirable, the second is fine in theory but

implementing an entity with alternative computation paths based on complexity is

more complex in itself and will require more memory to store them. Whilst an

attractive approach for a manager, e.g. varying the accuracy of collision detection

based on the time available, this could lead to different outcomes on different systems

and hence different simulations. However, a slight variation on this technique would

be to reduce the rate at which each process was updated. If, for example, an entity

represented a very slow moving entity then updating it at 30 Hz may be excessive if

no noticeable difference is made at 5 Hz (Wloka, 1993). Such functionality can be

programmed into the entity without complicating the task of the UM further, i.e. an

update is not returned until a pre-defined threshold is reached. Extending the duration

of the simulation step is a valid option but should only be used if the fourth and final

option is not possible.

By periodically interrogating each RM, the MUM can determine whether the

workload on any node is too high and that an ENT should be moved to another node.

(The RM includes itself in the list of resource consumers when calculating the total

utilisation for each resource.) The actual entity is chosen by the RM and its current

RP is sent to the MUM so that it may determine which node has the best chance of

accommodating it. If the chosen node cannot schedule the entity, e.g. due to resource

constraints, it rejects the migration order and the MUM chooses another node.

Alternatively, if the RM determines that a particular ENT will exceed the available

resources before the next load check, it may send a migration request to the MUM

containing the entity's RP. Stankovic et al. use an algorithm whereby each node is

151

responsible for finding a new home for a process (section 4.3.1.4); USS takes

advantage of the fact that all inter-node communications are routed through the

MUM. It is only a small step from this position to delegating all responsibility for

locating a new node to the MUM.

Once a decision has been made to migrate an entity, an ENT process is created on the

destination node. The entity's complete state is then packaged up (in the same way as

smaller sections are for construct and update messages), sent to the newly created

destination ENT process in a migration state message and followed by its current RP.

After this transfer has been completed the old process is terminated. The migration is

scheduled to take place after the entity has completed its update so that the current

simulation step is not affected. All managers that are dependent on any part of the

entity's state are sent migration notification messages to inform them of the change.

Any other messages that should slip through this net, e.g. direct communications with

another entity, are forwarded by the UM and the sender is notified of the move. The

MUM does not keep track where each entity is, only how many run on each node.

The only time location information is need is during an entity migration, at which

point a migration list is maintained. This list details the entity name, source node,

target node and original address. Once a migration has completed the entity's entry is

removed from the list.

Managers may, of course, also consume more and more resources but it is neither

feasible nor efficient to migrate them to another node. Firstly, they possess a large

amount of state information, albeit copies, and they may also be tied to specific

hardware in that node. Finally, the time it takes to move a manager will by far exceed

the time taken to move a single entity and may, in itself, cause problems with

scheduling.

The RPs for UMs reflect that they are more demanding than most of the other

processes in the system. In fact, the node holding the MUM will most likely have

fewer managers and entities due to its increased administration responsibilities.

152

4.5.4.13 Resource Profiles

Process-specific resource consumption and scheduling requirements are held in an RP.

In fact, a process maintains a resource history which stores a copy of the previous

RP, the current RP and a prediction of future resource requirements. The RP also

shows whether exclusive access is required to a resource or whether shared access is

permissible.

An RP is composed of the four basic resources that each node can possess:

computation, memory, backing storage and network. The capacity of a given

resource is measured in a different way each time. In the same way, determining the

utilisation is specific to the resource and is represented by a percentage. In all cases,

the limitations of the node's physical architecture, such as internal bus speed, are

incorporated into all of the ratings given.

Computation is gauged by both an integer and a floating-point rating. The CPU type

and statistics are also held, possible CPU types are: Reduced Instruction Set

Computer (RISC), Complex Instruction Set Computer (CISC), Vector, (specifying

size of Data and Instruction Caches) and CPUs with specialised extensions. The

presence of a Floating Point Unit (FPU) is explicitly indicated since floating-point

operations may be emulated in software. If a FPU is not present then each rating

represents the CPUs performance given only an integer or a floating-point workload.

The CPU statistics are, in general, only used for scheduling purposes.

Memory is rated by its size in Megabytes (Mb) and its access time in nanoseconds

(ns). The total amount of memory being used is periodically recorded.

Backing storage is also rated by how large it is, its average access time in

microseconds (ps) and cache size - these last two statistics are combined to provide a

convenient rating. A record is also made of how much disk space is being used. This

is the only optional resource.

Network capacity is measured in Megabits per second (Mbps) after taking into

consideration the protocol overheads. Calculating its utilisation is somewhat tricky

153

without operating system support but can be approximated based on the number of

messages sent and their average size. In order to support live audio and video feeds,

it is necessary to include the bandwidth consumed by these transmissions when

calculating the node's total network utilisation. This information is collated by the

UM (through which all messages pass) and periodically communicated to the RM.

Each resource is run at a percentage of its maximum to establish a threshold beyond

which some load balancing action must be taken. The threshold for each resource is

set independently, each specified as a percentage of the resource's maximum

potential. The CPU has two thresholds, one each for integer and floating-point

capacity. To prevent a situation whereby the slightest change in resource

consumption results in a migration request being sent to the MUM, a latency factor is

associated with each resource. If the resource should remain over-utilised for longer

than the specified time, or there is a continuous dramatic increase, then action is

taken.

4.5.4.14 Input/Output Devices

A node may have one or more peripherals attached to it, such as mice, joysticks, 6

d.o.f. tracking systems, a sound system, a CIG and so on. All of these are classified

as resources and access to them is monitored by the RM. The capacity rating of each

of these resources can differ by so much and can be measured in so many different

ways that the RM does not attempt to hold this information. Only a percentage

utilisation is stored which is provided by each of the specific drivers for the given

resources (as is their initial rating). Such ratings are resource dependent and cannot

be compared between different resources.

The device drivers would be best organised as tasks within the RM itself but this can

cause the RM to become a bottleneck within the system, therefore Device Drivers

(DDs) have an identity of their own with the system (what form this takes depends on

the implementation). All access to the devices is through these DDs who keep the

RM informed on their utilisation. Common roles for DDs are providing access to

serial and parallel ports, disk controllers, digital 110, Analogue to Digital Converters

154

(ADCs), etc. Often DDs are provided with higher functionality such as a filing

system, mouse drivers, joysticks, 6 d.o.f. trackers and so on.

Implementation of the DDs may take the form of a separate process where the

resource can support servicing multiple requests simultaneously, but more commonly

it may be provided as a library which may be incorporated into a software component

with a high level of functionality. For example, VIS requires access to the CIG and

having a separate process in between it and the CIG hardware will only cause a

performance loss. It is far more efficient to incorporate the DD into VIS for

efficiency and the RM would be informed that this resource is no longer available

since it has exclusive access.

4.5.4.15 Visual Manager

The Visual Manager, VIS, provides a standardised interface to all CIGs. These may

be special hardware attached to the node either as an integral part of the nodes

hardware or an extension to it. Alternatively, VIS may incorporate a 3D software

library which is capable of interactive performance such as RealityLabTM (Microsoft

RenderMorphics Ltd., UK), RenderwareTM (Criterion Software Ltd., UK) or

BRenderTM (Argonaut, Inc., USA). The actual underlying technology used for image

generation and their specific interfaces are hidden from the rest of the system. In both

cases, VIS requests exclusive access to the dedicated hardware or video card via the

RM. One of the many services that VIS offers is the ability to use more than one CIG

channel, i.e. it can drive multiple instances of a given CIG and even many different

makes of CIG simultaneously.

The introduction of a special manager such as VIS necessitates the inclusion of a

standardised UML definition to represent the information it needs. For example, the

property instance models . visual (Figure 4.3) of the Visual element (Figure

4.4) and the position property. Alter creation, VIS would notify the UM of its

wish to monitor all instances of these properties. As each entity was constructed, so

VIS would take the visual representation and construct a new visual object. In most

155

cases an entity would rarely modify its visual representation, so the following updates

would usually only consist of position changes.

Each VIS manager associates a viewpoint with one or more CIG channels. For

example, a non-frame sequential stereoscopic display would use two channels, one for

each eye. One viewpoint would be used, modified slightly to produce the correct

projections for each eye. It is likely that there will be more than one VIS manager in a

given system, e.g. one per user, possibly more than one per node. When an entity

requests the location of a VIS manager from the UM it receives a list of the active

VIS managers. A manager may be assigned to an entity after which it will not be

available for use by other entities until it is released. Once service access has been

restricted to one entity, that entity may manipulate the viewpoint's parameters, such

as position, orientation, aspect ratio, etc.

To prevent itself from receiving information about every entity in the simulation, VIS

associates a constraint function with the position property that specifies a volume

around the current viewpoint. As the viewpoint changes, the manager updates the

constraint function associated with the component dependency held by the UM. In

order that the network is not flooded with constraint function updates, they are only

sent when the distance of the viewpoint from the centre of the current volume reaches

a certain threshold. Upon entering the volume, an entity sends (pseudo-) construct

messages which hold the entity's current position and its visual representation. When

leaving the volume a single (pseudo-) destruct message is sent indicating that the

entity should no longer be considered for rendering.

To avoid the transmission of visual representations as each entity constructs, it would

be desirable to provide a library of models, one of which would be referenced in the

Visual element, thus superseding the detailed geometric description. The library

would be accessible by all VIS managers and common models could even be cached

to reduce library access. This technique makes it difficult for an entity to modify its

representation at the vertex/polygon level and therefore should be provided as an

option to the current method and not a replacement.

156

4.5.4.16 Aural Manager

AUR gains exclusive access to the pertinent hardware for generating sounds via the

RM. Copies of all information regarding the aural representation of the universe is

held within AUR and changes to it are monitored by the manager. In the same way

that VIS provides a generic graphics interface, AUR provides a generic interface to

generating sounds and thus may support many different hardware and software

solutions. Changes in information that affect how the sound is generated, e.g.

movement of an entity, are sent automatically to AUR using the usual methods.

Constraint functions are used in the same way as VIS to restrict the number of entities

that must be processed. Typically the volume monitored by AUR will be different to

that used by VIS. For example, when sitting in a closed room with no windows one

cannot see outside that room but it is probable that one will hear sounds originating

outside.

4.5.4.17 Spatial Integrity Manager

For reasons of speed and efficiency, one of the most computationally expensive

processes is implemented as an optional manager. No particular method of

intersection testing is advocated in USS since the methods available consume varying

amounts of resources (Webb and Gigante, 1992; Bouma and Vanecek Jr., 1991;

Cameron, 1990). It is important, however, that the same method is used on all

systems.

At the minimum, details of the volume that an entity occupies are necessary along

with position and orientation information, whilst a more ambitious SIM might require

a velocity vector. For more accurate determination of collisions a detailed

geometrical description of the entities involved in the collision would also be needed

so that the exact point of collision may be pinpointed (Zyda et al., 1993). Utilisation

of behavioural information for each entity is another possible approach and can be

shown to reduce network traffic since only behaviours need be transmitted rather than

continuous positional information. Obviously the more accurate collision detection

used, the more time and space the process requires. By providing a generic interface,

157

the type of collision detection method may be changed depending on the resources

available, taking advantage of more powerful hardware. Once a collision has been

detected, each colliding entity is sent an entity interaction message which holds the

UPIDs of the other involved entities. The entity that caused the incident is nominated

to co-ordinate the resolution process.

The load placed upon the SJM may be relieved by using multiple co-ordinating

managers in a manner similar to AVIARY's EDB. When the volume is split the

original SIM modifies its existing constraint function whilst the new SIM lodges more

monitor requests complete with its own constraint functions.

4.5.4.18 Console

Commands may be entered through a simple command-line interpreter. These are

mainly interrogative but a console may force the destruction or creation of entities at

run-time. Other manipulative operations include the purging of references to a given

process from the UMs internal data structures (and those on other nodes) which is

useful when a process has abnormally terminated. However, the console does not

actually take part in the simulation.

4.5.4.19 System/Node Lifetimes

Nodes are users' gateways into the simulation and it is probable that they will not be

powered on all of the time. Therefore a mechanism by which nodes may enter and

leave the simulation is required. When leaving the system, all entities related

specifically to users on that node are terminated. Once this is complete the remaining

entities are migrated to other nodes and any special managers inform their clients that

they are terminating. Finally, when the only processes that remain are the RM and

UM, a deactivation message is sent to the MUM and the node ceases activity.

Re-entering the system is achieved by proceeding through the usual initialisation steps

(section 4.5.4.1). The MUM may then utilise the node's resources for scheduling

purposes, resulting in entity migrations.

158

When a system leaves, it sends the master USS a deactivation message which is the

cue to remove all processes representing users on the parting system from the

simulation. Joining a running simulation means that the current UML definition must

be obtained from another USS, complete with current states for all entities. For this

reason, joining a established network of systems is only practical for very small

simulations and, even then, not recommended.

4.5.5 Time Management

As conjectured in section 2.4.5, an explicit time progression model is used within a

USS and an implicit time model is used to synchronise multiple systems.

4.5.5.1 Explicit

The explicit model takes the form of the update notification/complete message pair

which are scheduled to occur at the same point in each simulation step. This is not to

say that the dependency on the system clock has been removed from the system. In

fact the opposite is true since all the scheduling is performed and monitored in relation

to clock time. However, there is no need to synchronise the clocks between nodes

since the execution of the schedule for a node is done locally. Each simulation step

happens in a relatively small amount of time, especially for real-time simulations.

Therefore, at this level oscillator drift will not effect the timing of the schedule.

There is no requirement that time is modeled in the VE but the usefulness of an

environment that does not use time in some way is dubious. The relationship between

simulation time and real clock time can be modeled in a UML function, e.g. time ()

in Figure 4.3. This function would use an expression based upon the current real

clock time and the current step count. Using a function means that this relationship

may be redefined at run-time by providing a new function definition. This change

would, of course, be sent to all other processes in the system.

159

4.5.5.2 Implicit

Synchronisation of time between systems is more problematic. Each system uses total

replication of computation and data, so it may seem that tight synchrony is not all that

important. There is one important exception which is that the users are not replicated.

One user's actions in one system must be reflected in the other systems through their

shadow and vice versa. In order to prevent lag from destroying effective interaction

between these users, the systems must be synchronised to the same simulation update.

Only then is there a chance that behavioural information sent from one system to

another can be incorporated into the current update.

There currently seems to be no good solution to this problem. SPS is perfect for the

task, providing the ability to synchronise with 167 ns, but at the time of writing one

receiver can cost upward of US$500 (Dana, 1995). NTP is commonly used between

systems using TCP/IP although this is not a requirement, but access to a machine that

keeps accurate time is. In fact, a number of the world-wide primary NTP reference

sources use radio or wire to synchronise with national standard time. Ensuring all

systems world-wide have the same time would currently necessitate access to the

Internet. More importantly, the greater the synchronisation accuracy, the longer the

period required to achieve it (a few hours) and the increased bandwidth.

4.5.6 Fault Tolerance

Problems can occur at different points in a system and in different components. The

policies used to handle these events are presented below.

4.5.6.1 Software Component Failure

If a manager has failed then it may be restarted on the same node and its state copies

gradually reconstituted from the following update messages. If this is not sufficient

then a state request can be made to the UM for detailed state information from each

entity.

IMI]

A restarted entity cannot be revived in the same way. Either it must start with its

original state or obtain the current state from one of its clones in another system.

4.5.6.2 Hardware Component Failure

Individual hardware component failure may be tolerated by migration of the

dependent process to another node in the system. If the failed component's

functionality is not duplicated anywhere in the system, then either the process must

attempt to continue execution without it or be terminated.

Should the replacement of the faulty hardware require the whole node to be shut

down, then all processes must be redistributed to other nodes.

4.5.6.3 Node Failure

Loss of communications with a node requires the simulation to be frozen immediately.

There are then two options to choose between. Firstly, simply wait until the node has

been recovered and then continue the simulation. Secondly, the MUM re-creates

those processes that are on the failed node elsewhere in the system. The current state

of these entities can then be acquired from another system running the same

simulation. Once state has been restored the simulation may continue again. When

the faulty node is restored its entities are removed and the system load re-distributed.

4.5.6.4 System Failure

Failure of a communication path with a system will not affect the other systems. If

only external communications have failed, then the simulation on the isolated system

is frozen to prevent the users from making any changes to the environment that would

have to be abandoned. When the link has been re-established the system synchronises

and enables the simulation again. This synchronisation process can be quite lengthy:

entity deaths and births must be checked, entity states updated from clones, user

interactions on other systems reflected locally, etc. In order not to overload any one

system it would be possible to obtain this information from a number of systems

throughout the network.

161

4.5.6.5 Summary

Application of those recovery techniques that require collaboration within another

system is problematic. Bandwidth between systems will be at a premium and the

latency greater than node-to-node communications. Therefore these procedures will

undoubtedly be prolonged affairs but, unfortunately, there is little alternative. Even

those policies for recovering a single node or software process may take longer than a

simulation step. Thus the local simulation will suffer until recovery is completed.

4.5.7 Access Control

There is no access protocol built into the basic components of a USS. However,

there are a number of system features that provide some methods of restricting the

options.

4.5.7.1 Resources

At the most basic level, all accesses to system resources are granted by the RM and it

is not possible for a process to bypass this mechanism if it wishes to be scheduled for

run-time. Access to specific devices can be pre-allocated to managers and restricted

by location. For example, a VIS manager is given dedicated access to a CIG and is

required to run on the same node.

4.5.7.2 Location

Each message includes the UPID of the sender and therefore service requests can be

rejected based on location, e.g. a VIS manager may only want to deal with requests

from entities on its own node. If an entity or a manager should be concerned about

the sender's identity then its full identity may be discovered by issuing a location

request.

4.5.7.3 Snooping

The worst security risk is that an unwanted process will examine an entity's state by

monitoring the state updates. The only process that can do this is a manager and,

162

unlike entities, these cannot be started at run-time. Therefore, to introduce a bogus

manager into the system would require the alteration of configuration files and a

system reboot. Neither of which would likely go ahead unnoticed.

4.5.7.4 Insulation

Since UML code may be introduced at run-time there is a potential for misuse,

however, there is very limited access to the system services. A typical entity will only

require access to the system clock, location requests, sending and receiving UML

code. UML therefore acts as an insulating layer between deliberate or accidental

intent and the low-level operation of a USS.

4.5.8 Feature Summary

A summary of the system architecture's key aspects is given below.

4.5.8.1 Structure

A USS is made up of a network of USNs. The decision of whether to have a group

of nodes forming one system or a network of one node systems is based upon the

computational power of each node, the bandwidth of the network and the distance

between nodes, i.e. the length of the propagation delay. Low computational power

and high bandwidth lends itself towards a network of nodes whilst high computational

power and low bandwidth is better suited by a network of systems. Since there is no

reliable multicast transport mechanism readily available, point-to-point

communications are used to ensure 100% reliability.

Passive partial data replication and complete computational distribution is used within

a system. A network of USSs use total data and computation replication.

4.5.8.2 Services

The UM and the RM provide the core services whilst ENTs are used to execute a

universe simulation written in the modeling language UML. Special managers such as

163

VIS and SIM are not needed to run a simulation but are often used since they can

encapsulate useful services, e.g. image generation and collision detection. The UM

understands how the information in a UML definition is structured but does not

understand what it means. Only ENT processes and special managers know what the

data means and what to do with it.

The UM is at the heart of the architecture, either in the shape of the MUM or a SUM.

The key services that a UM provides are:

• Message routing between local processes and remote nodes.

• Process/service location and identification.

• Processing of monitor requests placed by managers and adhered to by

entities.

• Managing the introduction of changes/additions to the VE description.

• Managing migration of a local entity.

Additional functionality unique to the MUM:

• Managing node activation and deactivation.

• Controlling initial simulation creation.

• System-wide scheduling including the coordination of entity migrations.

• Managing general communications with remote systems.

• Forwarding of local user information to their shadows on remote systems.

The RM works closely with the UM to provide an execution environment for the

simulation. Services include:

• Controlling access to the node's resources.

• Scheduling of all processes on a node such that they complete execution

before the end of each simulation step.

• Advising the local UM and the MUM on the node's loading.

Ls

4.5.8.3 State Management

The instance data of a universe is the sum of all the states owned by each entity. The

owner is the only process that is allowed to modify the state. Managers cannot

modify any state information directly, they can only examine it. A manager may,

however, indirectly cause a change in the entity's state through execution of one of

the entity's UMIL functions. This job demarcation removes the need for any locking

mechanisms.

Managers register an interest in a particular component of the universe description.

Any changes made by an entity to their instance of that component are relayed to the

managers via the UMs. The information in the universe may be further filtered by

specifying a constraint function which is applied to each update sent by the entity. If

the constraints are met then the message is sent to the manager.

4.6 Summary

This chapter has presented the requirements of a system capable of distributing and

simulating a yE, its design restrictions, real-time issues and the implications of these

features. The proposed design begins with the presentation of the language used to

model the VE which is based upon an interpreter to provide the utmost flexibility.

The presented system design exists to execute the simulation described by the

modeling language whilst transparently distributing it over a network of machines

(nodes). Nodes are grouped into systems based on their ability to support complete

computation and passive partial data distribution. Clusters of these systems are

consequently interconnected by lower bandwidth links and only information unique to

any given system is communicated to the others. A number of required software

components run on each node to provide administrative functions and an execution

framework. Each entity within the simulation is embodied in a process that represents

part of the universe's state. Managers provide specialised services to entities within

the system by monitoring changes in portions of the entity's state. All work is

scheduled using a local scheduling policy and a system-wide policy, ensuring that the

load across all nodes stays balanced through the use of process migration.

165

Now that both the modeling and simulation execution aspects of the system

architecture design have been presented we are ready to examine a prototype

implementation. Subsequent evaluation of the prototype will provide insight into the

validity of this solution to the task of distributed, interactive, VE simulation.

166

Chapter 5

A Prototype USS

"God help us; we're in the hands of engineers."

Ian Malcolm, Jurassic Park

This chapter presents the implementation of a prototype USS based on the design

described in the previous chapter. A full implementation of the design would take a

considerable amount of time, far in excess of that available to the author. Therefore

only those components (or parts thereof) that were required to demonstrate the

architecture's key points were implemented.

The feasibility of implementing a scheduler on top of a general-purpose operating

system is explored with the implementation of a solution to the real-time YE displays

problem. This is followed by a description of the platforms upon which the prototype

was designed to run.

The USS implementation details begin with an examination of networking in a

heterogeneous network, proceeded by configuration control and an implementation of

a UML interpreter. Following details on each system component, the chapter

concludes with a list of improvements that can be made to the prototype.

5.1 Real-Time in the Real World

The QNX operating system (QNX Software Systems Ltd., Ontario) was used by the

author to develop the YE Support System (VESS) for experimental work undertaken

167

in the VEL, University of Edinburgh. QNX is a Portable Operating System Interface

(POSIX') compliant, multi-tasking, distributed, real-time operating system (OS). It

provides a priority-driven, preemptive scheduler which is certainly suitable for a soft

real-time system and with great care can be used in a system with static hard real-time

constraints. Part of VESS's functionality was enforcing the constant update rate of

the CIG displays. The implementation of this solution is presented in this section and

was used to explore the viability of implementing a scheduler-based prototype USS.

Section 4.3 presented a taxonomy of real-time scheduling algorithms. In the field of

VR, many systems claim to be real-time and can indeed be classified as soft real-time

systems. The service degradation option for ensuring a constant VE display update

rate discussed in section 3.3.3.1 requires a deadline scheduler. Unfortunately,

implementing such a scheduler on top of a normal multi-tasking OS such as UNIX is

problematic. Most OSs are not suited to real-time purposes, i.e. they do not provide

ways of guaranteeing response times for certain events such as interrupts, IPC and

disk 110, etc. Those real-time systems that do provide such guarantees often use

static schedulers. A YE system is dynamic and therefore a scheduler is required that

can also cope with changing existing deadlines and the introduction/removal of new

tasks. Since a dynamic deadline scheduler was not available it was decided to adopt

the worst-case operation solution (section 3.3.3.2).

5.1.1 Real-Time Displays

There are a number of operations and pieces of information that a visuals manager

needs to enforce a fixed frame rate in the CIG:

Manual control over buffer swapping

The time between one display refresh cycle and the next.

The amount of time that the rest of the system components need to complete

their work for the next simulation update.

I The 'X' would appear to have been added to reflect the fact that the interface is based heavily upon
the UNIX variants.

5.1.1.1 Manual buffer swapping

This is essential to the task at hand. Double-buffered systems will display the last

rendered image until the current one has been finished. At this point the new image is

displayed and the next image is rendered into the other buffer. The switch actually

happens during the next vertical retrace (or flyback) phase. On displays such as

monitors, this is when the electron gun makes its way from the bottom-right corner of

the tube (as the viewer sees it) to the top-left, ready to start drawing the next picture.

To achieve a constant frame rate we must be able to choose which vertical retrace is

used to switch display buffers.

5.1.1.2 Inter Refresh Time (IRT)

The IRT is the time it takes to draw one picture on the display including the vertical

retrace period. For example, say that a 640x480 resolution image is refreshed at 60

Hz. This means that the IRT is 1000 / 60 = 16.66 ms. The refresh rate varies

depending on the resolution of the video signal, e.g. an 800x600 pixel image is often

refreshed at 72 Hz, and different display devices can handle different ranges of refresh

rates.

The refresh rate may be provided as a parameter at run-time or, alternatively, this

information may be obtained from the CIG which is the approach adopted here. Each

time the CIG generates a vertical retrace it also generates an interrupt which is

intercepted by the host machine and the time stored. The next time an interrupt is

caught, the time difference is calculated and this gives us the IRT.

This technique will only work if the host machine has a clock that can provide

nanosecond accuracy and the interrupt latency 2 is bounded. The latter point is by no

means certain in non-real-time operating systems such as UNIX and was one of the

main reasons QNX was used.

2The time between the interrupt being generated and the process on the host machine being notified
of the event.

169

5.1.1.3 Intiar Update Time (IUT)

The total processing time required for one simulation update is provided by the

scheduler and the JUT is the nearest multiple of the IRT to the given time. In other

words, the total work time can be expressed as a number of display refreshes. For

example, if the IRT is 16.66 ms and the work takes 40 ms, the [UT would be 49.99

ms, i.e. the work may be done within 3 refreshes of the display.

5.1.1.4 A comparison of paradigms

Figure 5.1 shows the various ways of scheduling the work to be done each frame.

There are three basic stages: calculate, render and display. Figure 5. la shows how

these stages fit together in a variable-rate system and how they relate to the display

refresh cycle. The time at which the frame may be displayed varies and rarely

coincides with a vertical retrace, which means that the actual buffer swap happens

sometime during the next cycle. As shown in the diagram, most of the time the

calculation stage may progress immediately and by the time this is finished, the buffers

have been swapped and the render stage is ready to continue. However, the last

complete cycle in Figure 5.1 a shows that it may be necessary for the render stage to

wait until the buffers have been swapped. This is because the buffer that will be filled

next is currently being displayed.

The scheduling of the work in a fixed frame rate system is shown in Figure 5. lb. The

time between the end of the rendering stage and the display will vary depending on

how long it takes to render the scene. Pseudo-code for this process is given in Figure

5.2.

Both these examples assume that all work is being done by one CPU. If the image

generation can be dedicated to another CPU or the system is equipped with a separate

graphics subsystem., then time may be saved by scheduling the calculate and render

stages such that they overlap as shown in Figure 5. 1c. This is best achieved by

starting the redraw as soon as possible (since it will take the longest time to

complete). In order that we are rendering the most up-to-date state possible, the

calculation stage is done before the end of the previous frame. By performing these

170

two stages in parallel it also means that more time can be spent on the simulation

dynamics. Obviously, failure to complete either of these stages before the designated

refresh occurs is a system failure.

____ 	 .- 	 .• M =MM

-

.•.

C)
I

I
t=-1 	 t=O 	 t=l 	 t=2

Key

Calculate state 	EJ Refresh cycle

Render new frame 	- - - Deadline

Display frame

Figure 5.1 Simulation cycle scheduling.
a) buffer swaps happen at unpredictable times during the next
simulation cycle in a variable-rate system; b) controlled buffer
swapping in a single CPU fixed-rate system; c) a multiprocessor
fixed-rate system permits the calculation stage to be done in
parallel and in advance of the rendering stage resulting in a faster
update rate.

Regardless of technique, it is important to understand how the CIG works and the

latency that it introduces into the process since not all CIGs work the same way. For

example, an SGI RealityEngine/2TM introduces a one frame latency whilst the Real

World Simulation Reality3TM PC card produces a two frame latency. The latter

system was used in this implementation and, to compensate for this latency, state

calculations must be done two updates before the image needs to be displayed.

171

// Step 1: Initialise key variables

Calculate IRT
Calculate IUT based on totalWorkTime
Enable manual buffer swapping
displayTime = 0

// Step 2: Synchronise loop with display

Wait for refresh

II Step 3: Enter main processing cycle

While simulation not complete

II Step 3.1: Calculate state

displayTime = displayTime + IUT
Calculate state of VE for displayTime

II Step 3.2: Draw new image but don't display

Redraw display

II Step 3.2: Display image exactly on time

Wait for end of IUT period
Swap buffers

}

Figure 5.2 Pseudo-code for the fixed frame rate, worst-case simulation cycle.

This method of controlling double-buffering can be applied to most CIGs with few

problems since it utilises existing functionality. It may be necessary, however, for the

API to be modified to gain access to this functionality.

5.1.1.5 Further improvements

It is quite common for the render stage (even in its worst-case) to complete before the

time that the display stage needs to run (as shown in Figure 5. ic). If this is the case

then the start of the state calculation, which includes input device sampling and the

render stage, may be put back such that there is even less delay between calculation

and display (Figure 5.3a).

172

	

wtiiai ir 	ii 	I

t=-1 	 t=O 	 t=1 	 t=2

I 	I 	I

t=21 	 t=22 	t=22.5 	t=23 	t=23.5 	 t=24.5

Key

Calculate state 	 Refresh cycle

Render new frame Deadline

Display frame

Figure 5.3 Improved simulation cycle scheduling.
shifting the calculate and render stages to reduce system latency;
performance profiling permits the increase/decrease of the

update rate in a controlled manner.

A more advanced technique is the controlled increase or decrease of update rate. It

would be possible to detect whether the CIG is capable of going faster, e.g. making

the change between 30 Hz and 60 Hz, by maintaining a history of its execution time

for each update. If, after a small period of time, this new potential performance was

sustained then the other stages could be rescheduled, if possible, and the switch made

(Figure 5.3b). In a similar way, by monitoring the performance profile, a slow

increase in workload could be detected and a decision made to extend the deadline.

Once a decision is taken to change the deadline, no further changes must be made for

a reasonable period of time, e.g. a couple of seconds, or things would quickly

degenerate into a variable-rate system. Such an enhancement could also help

overcome the fact that the worst-case approach assumes that the environment is quite

static and does not cope well with the dynamic creation or destruction of objects.

Some multiprocessor CIGs already monitor image complexity to aid in processor load

balancing. For example, the Reality3TM system, uses knowledge of the changing

complexity of each scan-line to predict the load distribution for the next update. With

173

additional functionality in the API, these calculations could be used in the decision-

making process. It is true that simple decision-making logic could be flawed by fast

increases or decreases in workload, but the potential increase in system fidelity makes

it worthy of more investigation.

A deadline-based approach also provides the framework for the application of object

priority systems within the CIG as well as the visuals manager. Objects may be

drawn, partially drawn or skipped depending on their priority (as in Holloway's Viper

system).

5.1.2 Conclusions

The problem of presenting a temporally correct view of a VE has implications

throughout the whole support system architecture. The most important (and often the

most expensive) component of a VE system is the CIG. Most CIGs provide some

kind of service degradation in the form of LOD (section 3.3.3.1), but this is

insufficient and improvements must be implemented via the API.

The implementation presented above has been used effectively over a number of years

in the VEL. However, its utilisation is not as simple as "plug and play" since its

performance is highly dependent on the other processes used to simulate the yE. For

example, if data logging is added to the simulation then this introduces an execution

path that passes through the filing system manager and the hard disk device driver.

Each of these processes have their own timing constraints, are dependent on a number

of interrupts and must therefore be accounted for in the schedule. Other changes that

can have large effects on reliability are: communicating with a machine via the

(dedicated) network, increasing the complexity of the visual database being used,

adding another input device, synchronising with an external device, etc.

Even under QNX, which supports POSIX 1003.1b Real-Time Draft Standard Process

Scheduling, getting an application to schedule every component to meet worst-case

deadlines can be quite time consuming. The possibility of doing the same under a

heavyweight OS such as System V Release 4 UNIX is very low. In addition, general

174

OSs use virtual memory and have unbounded interrupt latency to name but two

confounding features. Since it was the intention to demonstrate USS running on

different machines and operating systems (albeit UNIX variants), it was decided not

to attempt a real-time implementation.

5.2 Target Platforms

From the outset it was intended that the prototype should be portable to a number of

different platforms. It was planned to use QNX during initial development; so it was

a natural progression to use other platforms with similar operating system

functionality, preferably with some POSIX compliance. These platforms are briefly

described in this section whilst specific details are dealt with in section 6.2. The

choice of an Implementation Language, IL, is also discussed.

5.2.1 IBM Personal Computer Compatibles

Three PC compatibles on a dedicated network within the VEL were available to the

author, each running QNX. One of these machines acted as a gateway to the Internet

thus opening up the possibility of connecting multiple USSs on a heterogeneous

network. Each machine had between 16 and 24 Mbytes of main memory and ranged

in power from an Intel 486/50 MHz to an Intel Pentiuml90 MHz. The memory

capacity is important because QNX does not use virtual memory. Additional

resources included a dedicated CIG and sound generation equipment.

5.2.2 Cray T313

Originally it was intended to use the Edinburgh Parallel Computing Centre's (EPCC)

Cray T3D super-computer as the second platform to run the prototype. The T3D was

installed with 160 nodes, each with 2 DEC Alpha 21064 processors running at 150

MHz and 128 Mbytes of memory (64 per processor). The T31) is connected to the

real world via a Cray Y-MP host running UNICOS, a POSIX compliant OS.

Unfortunately use of the Cray had to be abandoned for a number of reasons:

175

	

1. 	Despite having an 8 MByte "microkernel", no IPC mechanism is

provided - only shared memory operations are available. To ease this

problem, three messaging libraries are available:

Portable Virtual Machine (PVM - Geist & Sunderam, 1991).

This library makes use of a central server process which runs on

the T31) host. Unfortunately the central server process does not

fit with the USS design.

Message Passing Interface (MPI, 1993). This is an attempt to

standardise on an IPC mechanism incorporating features of many

such libraries, including PVM. However, it is very rigid and

imposes requirements on how the programs must be structured

that conflict with USS design.

C) 	Fast Messaging (FM - Karamcheti and Chien, 1994). This

unsupported library provides a low-level IPC mechanism using

shared memory routines which provides latency an order of

magnitude lower than PVM. This would be the library of choice

but even this could not overcome the other problems detailed

below.

	

2. 	A process runs on one physical processor. There is no multi-threading

support and this can only be achieved by using a large conditional

statement in a monolithic program to select alternative execution paths.

To port a multi-process system to a one process per processor

architecture would have involved major changes and be grossly

inadequate. The other alternative would be to have one system

component running on each processor and treat the whole machine as

one node. This would, of course, be absurdly inefficient since many

processes, such as entities, are inactive for a large proportion of their

life.

176

The Cray C++ compiler does not support exceptions which were used

extensively in the prototype (section 5.2.5). Removing exception

handling code from a program requires a total re-design and re-write.

Whilst it was possible to communicate from the T31) to the outside

world through the Y-MP host using a "message-routing" process, the

author was advised against trying. The host was so heavily used any

such routing process would have to wait a long time to gain access to

the CPU thus shattering any hope of reasonable real-time performance.

5.2.3 Sun SPARCcenter

The Sun SPARCcenter 1000E met all of the required criterion and was used to

develop the prototype in parallel with the QNX version. SunOS v5.4 supports some

of the POSIX standards which made porting relatively straight forward. However,

this machine is used by many in the University as a compute server and therefore

could not be used to evaluate system performance.

5.2.4 SGI RealityStation

A network of three SGIs arrived in the Department of Computer Science half way

through the final year of this project. The most powerful of the machines was a

RealityStation which is populated with 128 Mbytes of main memory and runs the

IRIX OS (v5.3) which uses virtual memory. Unfortunately a suitable C++ compiler

was not installed until a couple of months before submission, limiting work on this

platform to a minimum.

5.2.5 Implementation Language

Development of the prototype started under QNX which supported ANSI C and C++

with exceptions and templates. In general, the code generated by a C++ compiler is

as efficient as a C compiler and since object-oriented techniques lend themselves well

to the task at hand, C++ was chosen as the implementation language. The availability

177

of templates eased development and exception handling helped produce an easier to

understand implementation. Watcom C++ v9.52 was used under QNX and Sun

Professional C++ v3.0.1 was used to initially develop the prototype under SunOS.

Later, compatibility with GNU C++ v2.7.0 was tested as a precursor to the SGI port

and to aid debugging (section 6.2.1).

System

Node

Ethernet

Figure 5.4 Example network configurations of three USSs.

53 Networking

The actual organisation of USSs need bear no relation to the physical location of the

nodes or their internetworking. Figure 5.4 shows three possible configurations of a

USS, all of which are connected to the same backbone network. System Enterprise is

constructed from three nodes interconnected by a dedicated network with one node

acting as a gateway to the backbone. System Voyager only has one node whilst

Defiant has two nodes but its local communications must share the bandwidth with all

of the other traffic on the backbone. Whilst this last configuration is not efficient, it is

functionally valid.

There is no required medium or protocol for interconnecting systems. In this

example, however, all the nodes use Ethernet as their communications medium. It is

178

possible that the medium used within USS Enterprise could be totally different

provided that an Ethernet link to the other systems was still maintained. This would

be the situation in a multiprocessor system where each processor could correspond to

a node.

Each OS has its own mechanism for sending messages to processes within its domain

of control. On a single processor system this means sending messages between

logical processes running on the same processor and may be implemented as either

sharing or copying memory. This is also true in some multiprocessor systems where

memory is shared, in others communications may use high-speed links between

processors. In distributed systems the message may also be sent between physical

machines over a high-speed LAN connection. The one criterion that links all these

different domains is that the recipient is directly addressable by the operating system.

5.3.1 IPC Mechanisms

Most operating systems provide their own method of lightweight message-passing,

e.g. QNX, but others rely on more heavyweight methods such as TCP/IP, e.g. IRIX.

Under QNX, multiple machines may be networked together into one virtual machine

and the system's IPC mechanism works between processes on different nodes as if

they were on the same physical machine. It can coexist in an Ethernet network with

other protocols but cannot be used to communicate with systems that are not running

QNX. In order to communicate with processes outside the native domain of control

it is necessary to use a different delivery system, such as TCP/IP. This also means

that a different addressing method must be used.

To localise the impact of these differences (and those of other OSs), a Process

Management Layer (PML) is incorporated into each system component which sits in

between the operating system and the component implementation (Figure 5.5). This

process layer provides a set of services (presently just IPC) which are independent of

the underlying operating system. Where more than one delivery system is available

the layer chooses the right mechanism for the right job. How these decisions are

made is platform and implementation specific. There is only one requirement, of

179

course: the message delivery must be reliable. The prototype supports QNX IPC,

TCP/IP and the framework for supporting a shared memory IPC mechanism is present

but not fully implemented. UNIX domain sockets (which are faster) were not used

instead of TCP/IP because QNX does not support them and they would complicate

system performance comparisons (section 6.4).

Figure 5.5 Position of the Process Management Layer within the
system software.

5.3.2 Addresses

Each process within the system has an address which is unique throughout all USSs.

The address is made up of three components: the system ID (SD), the node ID (ND)

within that system and the process ID (PD) within that node (Table 5.1).

Current sizes are signed 16 bit integers for both the SD and ND, with an unsigned

32 bit integer allocated for the PD. Valid SDs and NIDs are positive integers -

negative values are used during the process' initialisation phase. This provides a

unique address for 32768 systems, each with up to 32768 nodes, each of which may

have 231 processes running on them. This is truly overkill for the prototype but offers

a realistic address range when large-scale distribution is a goal.

L USS ID USN ID L Process ID
16 bits 16 bits 32 bits

(signed) (signed) (unsigned)

Table 5.1 Message address structure.

180

When each system is defined in the systems' configuration file (section 5.4), it is

allocated a unique SD. Likewise, each USS definition contains a number of USN

definitions which specify a NIl) that is unique within that system. The PID is different

because the number used is unique within the given node. It is used to reference the

process that the message is intended for (or sent by), but how it is used to locate the

relevant process is implementation and thus node dependent. When using QNX IPC,

messages are indeed addressed using the operating system's process identifier,

whereas an implementation using TCP/IP uses the socket number associated with the

process. A shared memory implementation would use the address of the memory

block holding the message queue.

53.3 Messages

All communication between the components of the USS use a number of pre-defined

messages whose basic structure is shown in Table 5.2.

LFrom LTO Message IDt Transport IDt Length
8 bytes 8 bytes 1 byte 1 byte I 4 bytes nal

L
t Aligned on a 2 byte boundary, i.e. requires one padding byte.

Table 5.2 Message header structure.

The address of the sender and the intended recipient are the first two fields in the

message header. The recipient field is necessary because the message may be routed

through one or more other processes before it arrives at its destination. The message

ID number is used by all system components to determine whether to deal with the

message and, if so, how to decode the data (if there is any). The desired method of

transportation to the recipient is also recorded in the message.

The size of the associated message data is given in bytes. The interpretation of the

data depends on the message ID. A list of the defined message types and their

purpose is given in Table 5.4. Message IDs are often reused for slightly different

purposes, the exact meaning depending on the receiver, e.g. entity, manager, etc. In

addition, many messages share the same physical structure with regards to data

181

contents (Table 5.3). For example, all messages that contain UML information

(binary or ASCII[) use the same structure: 7.

Type Name Size Description
-1 - 0 All information required is in the message header.

o String n Used to send variable length textual information.

I Notify 4 Holds reason for process termination.

2 Ping 28 Holds flag indicating whether receiver issued ping or is being
pinged and timestanip information.

3 Profile 16+ Holds a variable length RP.

4 UPID 48 Room for both the name and IJPID of a process.

5 UPID2 16 Contains just two unnamed UPIDs.

6 Status 4 Details the status of a previously requested service.

7 IJML 24+ Holds either an ASCII UIvIL definition or binary state data.

Table 5.3 Description of the nine physical message structures.

5.3.4 Hardware Differences

Sending messages between machines in a homogeneous environment requires no

additional effort. However, in a heterogeneous network there are hardware

architecture differences.

5.3.4.1 Byte Order

The byte ordering used in CPUs may be classed as either little-endian or big-endian.

A little-endian CPU, such as those produced by Intel, places the least significant byte

or a word first. Conversely, a big-endian CPU places the most significant byte first.

The reasons behind the choice of one ordering over another will not be discussed here

but recently some CPUs have been built such that the byte ordering used can be

selected by setting a bit in one of the CPU's registers, e.g. Motorola 88110

(Motorola, 1992).

182

Message Type Purpose

GET_UPID 4 Sent to the UM to obtain the sender's UPID.

SET_IJPID 4 Sent by the UM, containing the recipient's UPID.

PING 1 	2 Test connection/measure round-trip time to a given process.

NOTIFY 1 Inform the UM why this process is terminating.

RPROFILE_NOTIFICATION 3 Holds a process or node RProfile.

RPROFILE_REQUEST 3 Sent by a process wanting a process or node RProfile.

LOCATE_REQ 0 Ask the UM to locate a process based on the specified
search criterion.

LOCATE_RESP 4 UPI) of the located process returned by the UM.

STATUS . 	 6 Success/reason for failure of the specified message.

ACTIVATE UM -1 Notify the MUM that this node is active.

DEACTIVATE UM -1 Notify the MUM that this node is disconnecting/ tell slave
node to terminate.

ACTIVATE_USS -1 Notify the master USS that this system is active.

DEACTIVATE_USS -1 Notify the master USS that this system is disconnecting/tell
slave system to terminate.

TERMINATE -1 Sent by UMs to force termination of any given process.

CREATE ENT 0 Execute the given process on the recipient UM's node.

CREATE_ENT_ACK -1 Sent by SUM to MUM when an entity has been created.

DESTROY—ENT 0 Terminate the given process on the recipient UM's node.

DESTROY_ENT_ACK -1 Sent by SUM to MUM when an entity has been destroyed.

IJML 7 Holds valid UML code to be parsed by the recipient.

UML_INIT -1 Request the sender's UML definition from the UM.

UML_INIT_DEF 7 New, complete UML definition sent by the UM.

UML_CONSTRUCT 7 Execute entity's Construct function/entity's initial state
information.

UML_UPDATE 7 Execute entity's Update function/send state updates.

UML_DESTRUCT -1 Execute entity's Destruct function.

UML_MONITOR 0 Manager's registration of interest in part of the UML
definition.

UML_MONITOR_ACK -1 Sent by the UM to confirm acception of a monitor request
and inform entities of dependency.

UML_SYNC 0 Request current list of UIvIL dependencies.

UML_UPDATE_NO11FY -1 Notify entities that they should update and managers that
they should expect UML_UPDATE messages.

UML_ UPDATE _COMPLETE -1 Notify managers -that all entities have updated.

MIGRATION—NOTIFICATION 	5 Informs receiver that a migration has occured - contains the
process' old and new addresses.

MIGRATION REQUEST 4 Sent by a RM to the MUM to request an entity migration.

MIGRATION_STATE_REQ -1 Sent to an entity to obtain a complete copy of its state.

MIGRATION STATE 7 Complete entity state sent from source to target entity.

MIGRATION_STATE_ACK -1 Used to inform the MUM that state transfer was successful.

Table 5.4 Summary of message types and their use.

183

5.3.4.2 Floating-Point Representation

Another difference may be the representation of floating-point numbers: single-

precision (32 bit), double-precision (64 bit) and extended precision (64 bit and

upwards). This is less of a problem since most general-purpose CPUs conform to

IEEE 854 (IEEE, 1987) although they may, of course, have a different byte order.

5.3.4.3 Memory Alignment

Some architectures also require certain data types to be aligned on given byte

boundaries. For example, a 32 bit integer may have to start on a 4 byte boundary. If

not required then often operations are performed more efficiently if aligned on these

boundaries. In these cases the alignment is enforced by the compiler or provided as

an option (Watcom, 1995).

5.3.4,4 Transfer Format

The External Data Representation (XDR) library of functions are used to represent

data structures in a machine-independent form (Bloomer, 1992). This library is

available on most machines running UNIX and can be used to encode dynamic data

structures as well as just handling the primitive types. Due to this level of

functionality it is also quite a bulky library with respect to both memory requirements

and the API. Even the low-level code used by Snowdon (1995) produced a

significant overhead.

Of the platforms available for use by the author, two used big-endian ordering, one

used little-endian and all of them used the same single and double-precision floating-

point formats. Since the UML data structure traversal routines had already been

written and the number of messages types sent between machines was relatively low,

it was decided to provide hand-coded byte-swapping routines. In addition, although

XDR is a popular library, it may not be available on all systems which would cause

problems porting USS.

184

The chosen format for sending messages was little-endian because the big-endian

machines had more powerful CPUs and could better accommodate the overheads

involved in encoding/decoding. The byte-swapping code was conditionally compiled

into big-endian systems to minimise code size and maximise execution speed on little-

endian machines. As the process layer receives messages, it encodes/decodes those

that are destined for/received from other nodes.

5.3.5 Layer Implementation

Each process in a USS is both a provider and a consumer of services. A service is

requested by sending a message to the provider which performs some processing and

then possibly sends a result back to the consumer. Information flows between

processes freely and it is possible for two processes to be each other's consumers and

providers. The PML provides the nuts and bolts that can support this functionality

and avoid deadlock.

5.3.5.1 Asynchronous

Synchronous message transmission is a convenient mechanism for issuing service

requests but can leave the sender waiting for a response when it could be doing other

work. In USS, therefore, all processes send a message and then continue immediately

with other processing. Some time in the future they may receive a response to their

original request which must be associated with it in some way. This may be explicit

by including a reference in the response or implicitly because it could only have come

from one message.

5.3.5.2 QNX

Messages are sent between QNX processes using a three stage procedure: Send-

Receive-Reply. Figure 5.6 shows the sequence of these stages and what happens to

the state of each process. After a message has been sent, the sending process blocks

until it receives a reply from the message's recipient. Similarly, when a process enters

the receive state it blocks until it is sent a message at which point it can do some

185

processing and then must issue a reply. It is possible to poll for a message but

continuous use of this service will seriously degrade system performance. To

minimise the time that the sender is blocked, a reply is issued immediately after

receiving the message.

[__ProcessA__] 	 Process B__]

Rec±I

Process blocks 	 Process blocks

until reply is, 	 until message

received. 	 L roceied

* Only when sending to another node.

Figure 5.6 Send-Receive-Reply procedure for sending messages under QNX.

Sending a message to another node in a QNX network requires the establishment of a

virtual circuit between the sender and receiver. The identifier assigned to this circuit

is then used when sending the message instead of the PD in the message address.

After the reply has been received the virtual circuit is deleted. It would be more

efficient to leave the virtual circuit in place and re-use it the next time - an operation

supported by QNX. However, the burden placed on the operating system by the

potentially large number of circuits could degrade system performance. The buffer

used for sending- messages within the operating system grows as needed but it is also

possible to send multi-part messages which keeps the required buffer size at a

minimum.

5.3.5.3 TCPIIP

Each process obtains a socket number which is used throughout its lifetime as the PD

component of the UPID. Whilst the contents of the PD field in the message address

10.

is enough to send a message under QNX, TCP/IP also requires a hostname to

establish a socket connection. If the recipient is on the same node then the node's

hostname can be obtained from the operating system. Any message destined for

another node is sent through the UM which maintains a routing table 3 for each node

in the system. If it is the MUM then it also stores a route for its counterpart in each

system. A table entry is composed of the SID, ND and hostname.

The sequence of events required to send a message using TCP/IP as implemented in

the process layer is shown in Figure 5.7. TCP/IP requires a connection to be

established before data transfer may commence. A similar phase is the creation of

virtual circuits in QNX, but whereas QNX provides OS support for maintaining

virtual circuits, it is up to the application to keep track of established socket

connections. Each connection has to be periodically polled to check for incoming

messages compared to issuing a single call to Receive () 4. Since this would

introduce unwanted complexity and a considerable overhead in the prototype, socket

connections are established and closed each time a message is sent.

5.3.5.4 Deadlock

• problem common to both of these implementations is that of deadlock. If process

• should send a message to B at the same time as B sends a message to A then both

will be blocked waiting for the other to receive the message. A solution is to split the

layer into two processes. The first process holds all the components functionality and

receives messages as per normal. When it wishes to send a message, it is passed to

the second child process which actually sends it. Therefore only the child process

ever becomes send-blocked leaving the parent process to accept incoming service

requests and perform its usual work (Figure 5.8).

3 Stored in and administered by the PML.

' These overheads would not be incurred if an unreliable datagram (connectionless) mechanism were
used.

187

[

Process 	

] [

Process 	

]

Process blocks
, luntil connection

established Process blocks
until message

- received.

- Process blocks
until message
read and then

closes its end of
the connection.

- 	rai')

Process closes
its end ofthe
connection.

Figure 5.7 Message transmission sequence using TCP/IP.

The overheads of this solution can be minimised by using threads (lightweight

processes) which share both code and data, with a separate stack (Milenkovic, 1992).

Messages could then be passed from parent to child by exchanging memory pointers.

Unfortunately threads have not been implemented on all of the chosen platforms. A

beta version of a threads library was available in QNX but was found by the author to

be unreliable and so this option was ruled out.

(T.
Comp:nerit Functiunal tv

L 1>r 	Managciiienc Layer

'i•S 	

Miter

Figure 5.8 Structure of a logical process consisting of two physical processes.

The ability to create a child process using fork() is a common feature in UNIX-

based systems. The child is, in effect, a duplicate of the parent process, sharing code

but taking a separate copy of the data and stack. Although not strictly an IPC

188

mechanism, pipes are commonly used to send data between two processes on UNIX-

based systems. Pipes fall under the jurisdiction of the filing system but that does not

require them to occupy disk space and may reside totally in memory. Since both these

features were available on the target platforms this method of implementation was

chosen. To reduce the often considerable memory overheads that fork () produces

through duplication of data and stack, the child process, once created, is replaced by a

lightweight mailer. This program simply reads messages from the pipe and sends

them to their intended destination.

5.3.5.5 Initialisation

The PML is the first software element to be initialised when a process is created. Its

first task is to determine the UPID of the process it is executing in. If it is a UM then

initialisation is temporarily paused whilst the configuration file is parsed and then

restarted when the node's SD and ND are known (section 5.4). The PD of the UM

is the actual process identifier under QNX or a pre-defined port when using TCP/IP,

i.e. 34000.

If the process is not a UM then it must locate its UM and send it a GET-UP ID

message. Location of the UM using TCP/IP is simply a case of connecting to the pre-

defined port address. Under QNX the operating system's name server is used to

locate the process identifier of the UM using a pre-defined name.

Upon reception, the UM allocates a UPID and returns it in a SET_UPID message

which is subsequently processed and thus completes the layer initialisation.

5.35.6 Multiple Mechanisms

The layer can be initialised to handle both QNX and TCP/IP IPC. If so, connections

on each mechanism are polled for, in turn, until one is established. This is a CPU

intensive procedure if done continuously, but it is commonplace for each component

to poll once for any messages before continuing with the outstanding work (section

5.6.4). Consequently, multiple mechanisms may be handled with only slightly more

overhead than just one.

189

When there is a choice of methods for communication, the mechanism specified in the

message is used. If this is left undefined then the best choice is used - the prototype

will use QNX IPC in preference of TCP/IP. It is, however, uncommon for a

message's transportation ID to be left blank, since it is accepted practice to respond

using the same method that the request was sent with.

5.3.6 Networking Summary

In order to simplify the transfer of messages between processes and facilitate porting

to different platforms, each software component has a process management layer.

The interface to this layer, the message format and message addressing are the same

regardless of the OS. In a heterogeneous environment, a common binary format must

be agreed upon to enable machines with different hardware architectures to

communicate. In the present day, these differences are far fewer and a compromise

was found quite easily. As messages are sent they are encoded into the common

format (if necessary) and decoded upon receipt (if necessary). To avoid deadlock the

PML requires two processes to be used per logical process: one with the component-

specific functionality and a small mailer process used to send messages. The PMIL's

first action during initialisation is to ascertain its UPID, either through a configuration

file or by communication with the node's UM. Once initialised, the network of PMLs

can handle message transmission between nodes using different IPC mechanisms.

5.4 Configuration Control

Some of the components in a USS need configuration information when they are

created. This section presents a simple language that is used to help fulfil this task

and is followed by an example of its application: system configuration.

5.4.1 Universal Configuration Language (UCL)

This minimalist language provides a way of structuring simple information in a

hierarchical manner. UCL is used by those processes that need configuration

information upon creation. The UCL parser constructs a small internal data structure

190

which may be read, manipulated by the process and then output again. Currently, this

information is stored in files which are read by each process but there is no reason

why this information could not be sent by the UM.

The basic building blocks of UCL are Components and Variables. A variable is given

a type of Real, Integer, String or Boolean and lists may have mixed types. Every

variable is required to have a value, but if this is not needed an empty string may be

specified (" "). A component can contain variables and zero or more other

components which form a hierarchy, of which there may be many in each file. Figure

5.9 shows a contrived example of a UCL description that contains one of each

possible construct.

Components are identified by a type name which is followed by an optional name that

can be used for reference purposes during parsing and when accessing the information

described therein.

Container containerName

SubContainer componentName

aString 	"hello"
aReal 	1.0
anlnteger 2
aBoolean FALSE

rnixedList 1, 2.0, TRUE, "goodbye"
}

Figure 5.9 The basic elements of UCL.

UCL permits structuring of non-complex data in which ever way is most suitable for

the task at hand. In order for a UCL file to be recognised by different programs, the

type names of components and their structure must be made concrete. Such a process

was undertaken to provide a configuration file for USSs.

5.4.2 System Configuration

Figure 5.10 shows how UCL is used to describe the configuration of the USS

Enterprise shown in Figure 5.4. The node that has the MUM is indicated by the

191

presence of the MASTER variable which is used as a flag. Likewise, one of the

systems in the configuration file must be designated as the master system, similar

entries would be made for the two other systems (section 5.6.2). The SD of the first

system description in the configuration file is 1, the second system is allocated a SD

of 2, and so on.

USS Enterprise

MASTER
	

II Master system

USN Pentium

HOST "haggis.psy", 	2 II Host name and NID
IPC "QNX" II Uses QNX IPC
RN "resnode2.ucl" II Has a Resource Manager
VISM "" II Has a VIS Manager

USN Server

HOST 	"haggis.psy', 1
IPC 	QNX"
RN 	"resnodel.ucl"
CONSOLE 11 11

II Different node

II Has a console attached

USN Gateway

MASTER °" 	 II Master node
HOST 	haggis.psy", 3
IPC 	"QNX°, 'TCPIP"
RN 	"resnode3 .ucl"

Figure 5.10 Example USS configuration ifie.

The HOST variable specifies the hostname of the node and its NID. It is necessary to

describe the location of the systems/nodes in some meaningful way and the

hostname's format is dependent upon the protocol used to interconnect systems. In

the prototype, TCP/IP is used and the hostname is therefore given in Domain Name

Server (DNS) form. The IPC mechanisms supported by the node are also listed, two

of the nodes only use QNX IPC whilst the Gateway node also supports TCP/IP.

Since this node is the link to the other systems it is also designated as the master.

The remaining entries correspond to the managers that run on each node. All nodes

have a resource manager entry which takes a file containing its initialisation

192

parameters. The only special manager in this system is VIS which runs on the

machine with the CIG. However, one node does have the system console attached for

the administrator's use.

5.5 A UML Interpreter

Before examining each system component it is important to understand how the UML

interpreter works because it has had considerable influence on their implementation.

There are four stages to interpreting a UML description:

Lexical analysis.

Syntactical and grammatical verification.

Construction of the interpreter's internal data structure.

Semantic validation of that data structure.

The first stages were accomplished by using the lex and yacc tools (Levine et al.,

1992). The product of these tools was combined with a series of C++ classes to form

a UML interpreter library which could be linked into any program requiring that

ability. Manipulation of the interpreter is possible through the library's API.

There are two phases when building the data structure: first of all the data definition is

parsed and then all instruction code is compiled into an intermediate byte-code. This

section describes the general structure of this library and outlines the processes of

interpretation.

5.5.1 Overall Structure

At the highest level, the structure of UML may be conceptualised as a list of universe

and entity definitions. Each of these definitions may be linked to one another by

inheritance or they may just be peers with a common ancestor. Every universe

definition is itself a hierarchy of other components: elements, constants, properties,

etc. Each entity is derived from one of the universe definitions and contains a number

of scope levels with functions, variables, etc., forming yet another tree structure.

193

UMLComponent

UML

UMLUniverse

UMLConstant

UMLElement

tJMLConverter

UMLProperty

UMLFunct ion

tiNLEntity

Figure 5.11 Core UML C++ class hierarchy.

Each component of UML has been implemented as a C++ class which are all derived

from a common base class called UNLComponent (Figure 5.11). The base class

holds data structures that are essential to each component class.

The UML object5 acts as the top-level interface to the interpreter and the data

structure representing the UML description. The other objects correspond exactly to

the UML constructs described in section 4.4.

5.5.2 Interpreting the Data Definition

When a component description is encountered, its position within the data structure is

first determined. At the top-level the parser may encounter any component - all but

the universe and entity definitions use the dot notation. If the component is a universe

then it is added to the UNL object whilst an entity description results in its definition

being added to the object. All other components require their corresponding stub

declaration to be located and their description modified. Nested component

definitions may be added to the relevant component data structure directly.

After all UML statements have been successfully parsed, the data structure undergoes

a validation process. Universes may be derived from other universes and elements

from other elements. If a component is derived from another, then that parent

component is sought for and a link is made between the two components. An entity

Instancing the UML class creates the interpreter and therefore there is only one UML object per

process.

194

description is always derived from a universe and a similar link is made between the

entity and the host universe. Failure to locate a parent component is a fatal error and

parsing ceases. When an element is specified as the type of a property then a similar

search is made and a link established.

The search for a given component starts in the current scope and, if it is not found,

progresses outwards. If the host universe/element has a parent then this is also

thoroughly searched and its ancestors, if necessary, until a result is obtained. Failure

to locate the host component results in an interpreter error.

The way that the data structure is modified is affected by the current mode of

operation, i.e. insert, replace or delete (section 4.4.3.1.9). By using these mode

directives as stream modifiers it is possible to modify the UML definition in the course

of usual interpretation rather than through the library API. At the completion of the

interpretation, a single unified data structure has been built which holds all the UML

descriptions passed to the interpreter, regardless of original physical location.

5.5.3 Instancing

At this stage no space has actually been allocated for any data. First an instance of

the relevant portion of the data structure must be created. This could be the whole

structure, e.g. instancing a universe, or just one element or built-in type, e.g.

instancing a property.

When a compiler, e.g. C++, builds a map of any given data structure, each component

is allocated a chunk of memory contiguous to the previous allocation. Storing all

instance data together in such -a container is a sensible- thing to do since the data

structure is static and will not change at run-time. The same technique is used in

many interpreters for the same reason. However, this technique will not work with

UML since the structure is dynamic and may be altered at any time.

One possible solution would be to use the same contiguous allocation of memory but

store pointers to the relevant chunks in the UML data structure. In other words, each

component would know whereabouts its instance data is in the container. When a

195

change is made, e.g. a new component added, then a new container would be

allocated and the existing components' data copied into it, inserting the new data in

the process. A complementary technique could be used for deletion. Obviously this

solution would require an amount of container memory greater in size (for the

insertion case) than the existing instance data to be allocated before the process could

commence. If a complex component was being altered then this could potentially be

very large and at the very least result in a considerable amount of time spent copying

data from one container to another.

A better approach would be to scrap the idea of storing all instance data in one place

and instead store it individually. Whilst this requires a larger overhead in both

memory and processing time to locate the instance data, it does mean that

modifications to the UML structure do not require large memory allocations or

copying. All instance data is kept associated with their definition as indicated in

Figure 5.12. In this example there is one instance of the Outer element and two of

Inner, one for the innerinst property and the other for the local function

variable. Whilst the property instance will exist as long as that property is part of the

universe definition, the variable instance will be created when the function is entered

and destroyed when it has completed.

196

UNIVERSE Simple

ELEMENT Outer

ELEMENT Inner

PROPERTY number : INTEGER;

PROPERTY innerinst : Inner;

PROPERTY outerinst : Outer;

FUNCTION Access
{

VAR 	local : Outer.Inner;

local.nurnber = 1;
outerinst.innerinst.flUrflber = 2;

}

}

ELEMENT Outer ELEMENT Inner

Constant list Constant list

Element list Element list P

Converter list Converter list
IPROPERTY number

Property list Property list __p.j
: fnstance list

Function list lFunction list

- - -. 	 - -

[INTEGER 	I
PROPERTY oJterInt \IPROPERTY innerIn,t

I instance list 1 [instance list

UNTVERSE Simple

Constant list

Element list

Converter list

Property list

Function list

FUNCTION Access

Variable list 	' VAR local

Code list 	 Instance list

Definition links

* Instance links

Figure 5.12 UML code fragment and the internal data structure used to
represent it.

The process of instancing may be directly applied to a universe, property or function

variable. In fact, for all intents and purposes, a variable and a property are

functionally equivalent. Instancing a universe actually results in each of the universe's

197

properties being instanced. If the universe has no properties then it has no state.

Each property has an instance list which maintains a record of each instance of that

property and they are distinguished through the use of an instance identifier (lID).

An lID is a signed 32 bit integer, thus supporting 2147483648 instances during the

life time of the universe 6 . ilDs are allocated to each component in the order in which

they are instanced. If the property's type is an element then that element's properties

are also instanced and so on until the bottom of the component tree is reached. For

example, outerinst would have an III) of 1, innerinst would be 2, number

would be 3 and local is 4. When a list is instanced each entry is assigned a unique

lID.

Consider the case when the definition is altered by the insertion of a new property -

vector - as shown in Figure 5.13. After the data structure has been modified and

validated, instancing merely requires allocating liDs and memory for 3 real numbers

and adding links to them in the instance list. The rest of the data structure has not

been modified in any way and the original contents of the instance data for Outer

have been preserved. Similarly, if innerinst was deleted then vector would be

unaffected.

In the absence of an initialiser for any given property, the default values assigned are:

zero for real and integers, false for booleans, and strings are empty. This assignment

is also repeated within any element that a property may instance.

State indexing (section 4.4.3.2.5) was not implemented but would require adding an

extra dimension to the instance list of each property that used the feature.

6 Negative values are used for internal purposes.

FvI;

ELEMENT Outer {
ELEMENT Inner

PROPERTY number INTEGER;

PROPERTY vector 	: REAL[3];
PROPERTY innerinst : Inner;

ELEMENT Outer

Constant list
4 _ Element list

Converter list

Property list

Function list

ELEMENT Inner

Constant list

Element list

Converter list

Property list

Function list

PROPERTY innerinst

I Instance list

PROPERTY number

Instance list

INTEGER

AINTEGER 	I
PROPERTY vector 	

- .PjINTEGER

FInstance list

' I INTEGER
Key

Definition links

* Instance links

Figure 5.13 Insertion of vector property into element.

5.5.4 Component Dependencies

A key feature of UML is the ability to establish a dependency on a particular part of

the definition (section 4.5.4.6). The functionality to handle dependencies is defined in

the class from which all components are derived - UNLComponent. Figure 5.14

shows its structure and that of a skeleton dependency. Just as each of the UML

components are derived from UNLComponent, so each application uses

UNLDependency as a basis for the information it needs to store for each

199

dependency. An example of this specialisation is given in section 5.6.3.1 which

describes how the UM uses this data structure.

UMLDependency

tTh1LComponent 	 Name

Name
	

State

Dependency list

Active count

*

Figure 5.14 UMLComponent structure with dependency.

Dependencies are made on different components with respect to the dependent's

needs. This mechanism is used internally to detect when functions which access a

given component may need to be re-interpreted. It is also used by managers to keep

track of changes in the values of properties, among other things.

Each dependency may be given the state of active (default) or inactive. A monitor

may deactivate a dependency to avoid the overhead of removing it and then re-

establishing it later on. A count of the active dependencies is maintained in the

component. Alter a new dependency has been added or an old one removed, the

monitor typically builds a dependency list. This list is usually used to process each

interest in turn and perform some (often recursive) operation. If we had already

registered interest in innerinst and now we became interested in outerinst, it

could, at least, result in a duplication of effort and at worst, end in processing

innerinst twice. There are therefore two ways of building a dependency list. A

full list includes all components with dependencies, whereas a partial list does not

include any component which is inherited from another component in the UML

hierarchy with an active dependency (i.e. below an active dependency).

5.5.5 Interpreting Instruction Code

The part of the interpreter that deals with instruction code was given a low

implementation priority due to time constraints. The author felt that the exact

features of the programming language should be carefully considered. Also, further

exploration of existing byte-code engines would be required to derive a sufficiently

efficient interpreter. Furthermore, implementation was not necessary to prove the

viability of the system architecture. Consequently the instruction code interpreter has

not been implemented. However, some of the implementation issues are presented

here for consideration by the reader.

There are two common methods for interpreting code. The first performs syntax and

grammatical analysis each time, effectively interpreting the ASCII statements in their

raw form. The second compiles those same statements into an intermediate code

which is then executed by an automata. The overhead of parsing the original

statements at execution time is large in relation to the execution of a set of pre-

compiled instructions. It is true that less memory is required for the storage of

intermediate code than the original ASCII text, but this must also be kept in some

form if future re-interpretation becomes necessary.

For these reasons UML instruction code is first compiled into an intermediate byte-

code which is stored in the data structure and may be executed by a byte-code engine

at any time. During the compilation various components will be referenced, either in

variable declarations, i.e. elements, or expressions modifying state, e.g. properties. If

these components do not exist or there are any syntactical or grammatical faults then

an error is flagged. Accesses to instance data refer directly to the data itself and

therefore do not require any data structure traversal. This means that any additions to

the element will not require the code to be automatically re-interpreted. Deletions,

however, can cause havoc.

The removal of an element or any component within an element that is depended on

by code requires the re-interpretation of that code. How the functionality of the code

has been affected by the change in structure cannot be ascertained without some form

of artificial intelligence. Even then, comprehension of how this code segment fits into

the larger picture is far more complex and would require human intervention.

Consider the expression a = b * c. If component b is deleted from the definition

201

we are left with a = c. This may still be valid or it may be wrong, only within the

context of the rest of the code can a decision be made. Faced with the possibility of

receiving dozens - if not hundreds - of requests for help from the UMIL interpreter, it

seems sensible to at least provide some tool to aid the process. The best that can be

offered is an arbitrary component expression eliminator that would remove references

to the deleted component(s) whilst still retaining syntactic and grammatical

correctness. The resultant code could be offered to the modifier as a potential

solution and then rejected/accepted as required.

The code may, of course, be changed at any time through the API. The origin of

these changes may be from a human or another program within the system.

Thankfully this is a straight-forward task to complete since it is identical to the

process undertaken when parsing the original code as detailed above.

5.5.6 Interpreter Embedding

As development of the simulation progresses, some definitions and associated code

will be reused over and over again. The Read and Write routines declared in

section 4.4.3.1.3 for managing visual information could potentially be used in every

entity. Translation of such UML code into the native IL would be sensible for

performance reasons. Access to the interpreter's data structures is possible via the

library API and the execution of native machine code (rather than UMIL) will be

transparent to the application. The IL routines are usually placed in a library and

linked in with each application that needs them. The ability for an entity to migrate to

other nodes need not be affected if:

The destination node has its own native version of these routines.

The original UML code is at hand and may be used when native code

is not available.

Permitting the interpreter and ILs to interact provides a powerful basis with which

simulations may be developed. UMIL code may be used for lightweight tasks and

202

rapid prototypmg of more complex functions which, when finalised, may be coded in

the IL.

5.5.7 Persistence

Since the complete definition is either represented by a data structure (in the case of

the data definition) or by the original text (in the case of the instruction code), it is

possible to output any part of a UMIL definition at any time. This ability is very useful

when changes have been made at run-time and the original definition is now incorrect.

To migrate an entity requires the transfer of its essence from one place, i.e. the UML

definition and its current state. Fortunately the definition can always be reconstructed

from the state so it is only necessary to send the latter. The same process is also

required in order to save the current state of an entity to backing storage so that it

may be reloaded in the future.

The state is the sum of all the instance data and packaging it, by necessity, involves

the manipulation of binary data. If this package will be sent to another node then, in a

heterogeneous network, it may not share the same architecture. Following the

decision made in section 5.3.4, three routines are defined in the IL for every

component: size, pack and unpack. The size routine traverses the given

definition and estimates the size of each of its components, producing a grand total at

the end. This figure is used to allocate a buffer into which pack stores the data by

once again traversing the data structure. Each component's instance data is preceded

by a small header providing vital information to aid its extraction by unpack. When

packing or unpacking the data on a little-endian machine no binary conversion is

necessary, overheads are only incurred on big-endian systems.

5.6 Universe Manager

There are three main stages to the execution of the UM. First of all the UM's node

must be initialised, at which point it is ready to join the network of other nodes

203

comprising the system. Once this connection has been established, it enters an event

loop which processes service requests that are sent to it and also generated internally.

5.6.1 Node Initialisation

As the first process to start, the UM is responsible for configuring its node and if it is

the MUM, organise the system. After the PML has paused its initialisation, the first

action taken is to process the configuration file. Its local node and the master node

information is located, as well as location information for the other systems if it is the

MUM. As each node/system is processed the UM builds a routing table for those

systems that are connected via TCP/IP. Now that the SID, ND and PD are known,

the PML completes the initialisation of the IPC mechanisms.

At this point the execution paths differ for SUMs and MUMs. If it is running on the

master node then the location of the UML defmition 7 is verified and interpreted. All

SUMs locate their MUM and send it an ACTIVATE—UM message. Afterwards, all

UMs create any managers that are configured for their node, starting with the RM and

then the specialised managers. The creation of a console is initiated by the

administrator and may be performed at any time.

5.6.2 System Initialisation

After manager creation, system initialisation is completed. The MUM waits for

activation messages from each SUM which it acknowledges. This acknowledgement

changes the node's state to alive. When all nodes are alive the system itself is deemed

to be alive.

In the prototype a multi-level hierarchical system organisation is not supported, rather

a simple master/slave structure has been adopted. In the same way that there is one

master node in a system, there is one master system (MUSS) and zero or more slave

systems. Any communications that must be sent to other systems are sent directly to

The filename is passed as a command line parameter.

204

the MUSS which routes them to all the other systems. Therefore, after the MUM has

initialised its system, the address of the MUSS is sought and stored explicitly for

future use.

5.6.2.1 Load Balancing

Rather than obtain a full RP from each RM, the prototype uses a simple CPU rating in

the current load-balancing algorithm to determine on which node the declared entities

in the universe definition should execute. Each time an entity is created, the optimum

distribution of processes between nodes is recalculated and the entity is allocated to

the node that has the largest difference to its optimum load. Table 5.5 shows the

debugging output from the load-balancing algorithm. The figures inside brackets

represent the ideal number of entities for each node if another entity is created, whilst

those outside are the current distribution of entities.

Current
Entities

Entities on
Server

Entities on
Gateway

Entities on
Pentium

1 0(0.204) 0 (0.224) 1(0.572)

2 0(0.408) 1(0.447) 1(1.145)

3 1(0.612) 1(0.671) 1 (1.718)

4 1(0.816) 1(0.894) 2(2.290)

5 1(1.020) 1(1.118) 3(2.863)

6 1(1.224) 1(1.341) 4 (3.435)

7 1 (1.427) 2(1.565) 4(4.008)

8 2(1.631) 2(1.788) 4(4.580)

9 2(1.835) 2(2.012) 5(5.153)

10 2(2.040) 2(2.235) 6 (5.725)

11 2(2.243) 3 (2.459) 6(6.298)

Loading was based on CPU ratings of 260, 285 & 730 respectively.
Figures in brackets represent the new optimum load for each node to
3 sig. fig.

Table 5.5 Sample entity distribution over three nodes.

The first row of the table shows that the first entity was allocated to Pentium. The

fastest and least loaded node is always chosen for the target when the next entity is

created, which in this case means Gateway with a predicted loading of 0.224. This

result is confirmed by the second row in the table which also shows that the next

205

entity will be allocated to Server and so on. When there are ten entities the home for

the new entity is Gateway. This is because Pentium is overloaded by 0.275, Server

can only handle 0.04 more entities and Gateway has room for 0.235 entities. A total

of the entities active on each node is kept at all times.

Currently there is no way of associating an RP with a specific entity so each entity is

allocated an initial default profile.

5.6.2.2 Entity Creation

Originally it was planned for the MUM to extract the relevant portion of the UML

definition and send it to the destination node's UM. However, if an entity should

migrate to a node that does not have the entity's definition it must be sent prior to the

migration, thus increasing the time taken to complete this operation. Therefore each

UM has a complete copy of the UML definition. Since the instruction code part of

UML has not been implemented, the entity's functionality is written in the

implementation language and executed in place of interpreted code (section 5.8.1).

Normally there would be one generic entity process with a built-in UML interpreter to

start, but because functionality may differ between entities, a specific executable must

be identified. The prototype takes the name of the entity and translates this into the

name of an executable that exists within the search path of each UM 8. A

CREATE—ENT message is then sent by the MUM to the target node indicating the

name of the executable. On receipt of this message the process is started, indication

of success is sent back in a CREATE_ENT_ACK message and entity execution

continues as usual (section 5.8). Of course, if the entity is executed locally then the

process is merely started and the MUM moves onto the next entity.

8 This path can be modified using the ENTPATH variable in the node's configuration section.

206

5.6.3 Managing Processes

Information about each process running on the node is held by the local UM in a

process list. The structure of a process entry is shown in Figure 5.15. Every process

is allocated one of six types: RM, ENT, MAN (special manager), MUM, SUM and

CON (console). There are three states that processes progress through during their

lifetime. After execution has started, but before the process has been allocated a

UPID, it is allocated the state of genesis. When the initial handshaking is over and the

process is ready to satisfy service requests it is said to be alive. During the

termination process, after it has ceased to function in the simulation per se, the

process is said to be dead. When termination is complete the entry and its dependent

structures are removed from the list.

Any given UM holds information about every entity and manager running on its node;

if it is the MUM, information on any SUMs is also held; if it is a SUM, its MUM's

details are stored. Treating parent and child UMs as processes running on its node

simplifies certain procedures that the UM must perform, e.g. dependency management

(described below).

5.6.3.1 Component Monitoring

When a manager wishes to monitor a given UML component, its absolute name

(using dot notation) is sent within a UML_MONITOR message. After verifying that

this component actually exists the manager's information is found within the process

list, a new dependency is created and added to the process' dependency pool. The

pool is essentially a fixed size array which provides fast entry lookup. As

dependencies are removed, gaps appear but these are filled as new dependencies are

added.

The UNDependency information is derived from UNLDependency as described in

section 5.5.4 and adds a pointer back to the owner's process entry (Figure 5.15).

This organisation permits any process to locate all of the components it is dependent

on and any component to determine which processes are dependent on it. Although

207

the framework is here to support dependencies on any component, only monitoring of

properties is currently implemented.

The monitor ID returned to the manager is actually the component's index in the

process' dependency pool. The UM must now inform all relevant processes that a

new dependency has been established using a UNL_MONITOR_ACK message. As

each entity is processed a new dependency is also added to their pool; its index

provides the monitor ID to be used in communications with this entity. Both the

MUM and the SUMs are also informed using the original message sent by the

manager. Each add a dependency to the sending UM's process entry and inform the

sender of the monitor ID to be used in further transactions regarding this component.

Without keeping a process entry for parent/child UMs, this procedure would be far

more complex than necessary. If an entity is created after all dependencies have been

established then a current list is sent as a stream of separate messages.

Process Entry

Name

Type

UPID

Dependency pool
State

Update flag

UMLCornponen

Name

Dependency list

Active count

fjMLDependericy

NJ a inc
.4

State

I Dependency 	I
Process

Figure 5.15 Structure of the information held for each process.

5.6.3.2 Component Updates

When an entity sends a state update to the UM, its process information is retrieved

and the dependency pool entry described by the monitor ID in the message is

extracted. From this point a list of those processes dependent on this state is

208

available. Each dependent's unique monitor ID is extracted from their pool and

placed into the message before it is forwarded to it by the UM. Figure 5.16 presents

an example where the component state has an ID of I when it is sent to the UM, but

has the values of 4 and 2 when forwarded to the two interested managers.

No extra space is required to store each monitor ID because it is the index into the

dependency pool. The only computational overhead incurred is a simple pool lookup

as each dependent is processed. Constraint functions were not implemented because

they rely upon the UML instruction code interpreter which was also not implemented.

Figure 5.16 A state update uses a different monitor ID when
sent to each dependent.

5.6.4 Processing Service Requests

Two features common to all component implementations are the event loop and the

action queue. When an internal function wishes to perform more than one action, e.g.

send a message, or can/needs to spread its work over a period of time, then it

enqueues a token representing the pending action (with parameters) in the action

queue. The event loop checks if there are any external service requests which it

processes first to maintain responsiveness. If there is not a message waiting then it

dequeues the next action and performs it. If there are not any actions to perform then

the process simply blocks until a service request arrives. It is not uncommon for one

action to enqueue another during its execution.

209

One action that must be performed in the initial stages of a UMs lifetime is waiting for

all entities and managers to complete initialisation, the specifics of which are described

in the following sections. When all entities and managers are alive the simulation loop

is entered which sends a UNL_UPDATE_NOTIFICATION message to each entity

and manager. After all entities have updated, a UML_UPDATECOMPLETE message

is sent to all managers and after they have updated the next notification message is

sent and so on. The state update process triggered as each entity completes its update

has already been described and the following sections discuss this and the managers

actions in more detail. Other service requests/actions that are intermingled with this

sequence are location requests, entity executions, synchronisation requests, etc.

If an entity should terminate abnormally and a destruct message has not been issued

then the UM will do so on behalf of the late entity. This ensures that the simulation

does not become full of zombie entities whose state copies are still being maintained

by managers.

5.6.5 Entity Migration

In order for entity migration to be implemented it is necessary to have some basis

upon which to make decisions about node loading. This was done through the use of

CPU consumption alone. However, without a fixed time frame to relate these

measurements to, a CPU usage is useless. This fixed period would normally be

provided by the scheduler and equate to one simulation step, but since a full scheduler

was not implemented a simple step duration threshold was used for the migration test

presented in section 6.5.4. The intention is to keep the simulation step duration below

the threshold through use of migration. Each step, theRM totals the amount of CPU

used by the entities and if it exceeds the threshold the migration mechanism is be

triggered. In this prototype the MUM does not decide when migrations should take

place but relies upon each RM to volunteer entities.

When the mechanism is invoked, the entity with the largest CPU usage is identified

and its UPID sent to the MUM in a MIGRATION_REQUEST message. The requests,

of which there may be more than one generated by different nodes each step, are

210

enqueued and then processed at the end of the current simulation step. The source

node of each request is excluded from selection in the load-balancing algorithm and

the optimum distribution is calculated as if the system has one less node. Once a

suitable target node has been found, an entry is added to the MUM's migration list

which details those entities in the process of migrating and their current status;

specifically, their name, source node, target node and source UPID.

The next stage is to create a copy of the entity on the target node using the normal

creation procedure. Once this has been done, a MIGRATION—STATE—REQUEST is

sent to the original entity which packs up its entire state and returns it to the MUM in

a MIGRATION—STATE message. This is then forwarded by the MUM to the newly

created entity which unpacks it and, upon success, sends a

MIGRATION_STATE_ACK back to the MUM. Finally the original entity is

terminated by sending a DESTROY_ENT message to the entity's UM,

MIGRATION—NOTIFICATION messages are sent to all managers (including SUMs)

and the entity's migration list entry is removed. The notification message simply

contains the old and new UPIDs for the entity and enables the managers to update

their internal data structures accordingly. The UM on the source node uses this

information to re-route any messages that are sent by processes unaware of the

migration. After forwarding the message, the UM sends the originator a migration

notification message so that this does not happen again.

Currently any error that occurs during the entity migration, e.g. failure to create the

target entity, is treated as fatal and the migration request is ignored.

5.6.6 System interaction

The multi-system functionality that has been implemented is limited to group

initialisation, termination and the transmission of changes in the UML definition.

Inter-system user functionality has not been implemented, e.g. shadow entities,

because it is hard to demonstrate in a thesis and was therefore given a low priority.

211

5.6.7 System Termination

A system termination is invoked from the MUM by first sending termination messages

to each SUM. The MUM and SUMs then send termination messages to their local

managers and destruct messages to all their entities. Once all processes on a slave

node have terminated the slave informs the MUM that the node is shutting down with

a DEACTIVATE_UN message. Finally, when all the local processes on the MUM and

its slaves have terminated, the MUM ends execution.

5.7 Resource Manager

The implementation of the RM is quite simple because there is no scheduler.

Subsequently the RM keeps track of the resource utilisation for its node and makes

rudimentary judgements about its loading.

CPU

Resource 	
Memory

Storage

Network

Resource Profile 	c)

CPU list 	Total

Memory list Total

Storage list Total

Network

source History

Past RP

Present RP

Future RP

Figure 5.17 Resource consumption representation.
a) class hierarchy; b) Resource Profile structure; c)
Resource History structure.

5.7.1 Resource Consumption

Each resource has been implemented as a class derived from one base class (Figure

5. 17a). An RP is composed of these different types: a list of CPU consumption (for

multiprocessor systems), a list of memory usage (used in those systems with special

memory architectures) and a record of space used on different storage devices. The

212

totals of each of these are also stored and is supplemented by the network usage

(Figure 5. 17b). The prototype actually only makes use of the CPU information.

The RM maintains a resource history for each process (Figure 5.17c) which contains

the process' last RP, its current profile and a prediction of future resource

requirements (currently unused).

RM

CPU Pentiuin_90MHz

Manufacturer 	Intel'

Integer 0.849 II BYTEMark integer index
FloatingPoint 0.881 II BYTEMark floating index
ICache 8 II Kb
DCache 16 II Kb
IntThreshold 90.0 II %
FPThreshold 90.0 II %

MEMORY Main

Size 24576 II Kb
Access 70 II ns
Threshold 80.0 II %

STORAGE Primary

Size 524288 II Kb
Access 12 II ms
Threshold 95.0 II %

NETWORK Ethernet

Bandwidth 6.0 II Mbps 	(Effective)
Threshold 40.0 II %

Figure 5.18 Example node resource configuration used by aRM.

5.7.2 Initialisation

Each node's resources are detailed in a file (written in UCL) which is passed as a

command-line parameter to the RM when it is started. Figure 5.18 shows an example

configuration of the Pentium node which details the CPU type (an Intel

Pentium/90), the total system memory, backing storage and network link bandwidth.

213

For the migration tests a CYCLE variable was used at the top level to specify the

threshold duration of the simulation step in milliseconds.

5.7.3 Services

After the configuration information has been processed, the main event loop is

entered. Initial work usually consists of processing the RPs sent by each entity as it is

created and keeping the UMs informed of the current loading. During the period

before the system goes live it is not possible for an entity to overload a node since it

has been carefully allocated by the MUM. However, as soon as the entity starts

executing it may provide modifications to its RP based on its expected resource

consumption. Since a full scheduler was not implemented, this detailed information

was not needed. For the same reasons, the RM does not keep the MUM informed of

node loading. Instead the RM tells the MUM when load balancing is necessary.

Since this prototype instills the progression of the simulation with the MUM rather

than the scheduler in the RM, an UPDATE_NOTIFICATION message is sent to the

RM at the end of each simulation step. This is the RM's cue for assessing CPU usage

and when this is complete an UPDATE-COMPLETE message is sent back to the UM.

The simplest information on a process' execution time under UNIX-based operating

systems is provided in the form of user and system times. These represent the total

CPU used by the process when executing system calls (system) and when executing

application code (user). The current RM adds these figures together to get a CPU

usage figure for each process. By monitoring the previous usage the process'

consumption for the last simulation step can be ascertained.

When the migration mechanism- is being used, the total of these times is used to decide

whether the entity with the highest CPU usage should be migrated. Currently the

CPU thresholds are not used, instead the step duration variable (CYCLE) is consulted

for the desired time. If the total CPU time used by all entities exceeds this time then a

migration request is sent to the MUM. The RM is informed of a successful migration

with a MIGRATION_NOTIFICATION and subsequently removes the entity from its

calculations.

214

5.8 Entity Library

The core entity functionality has been placed in a library which works on two levels.

Once initialised, its event loop enables it to correctly interact with other processes in

the system and, through the use of a function call-back mechanism, can be tailored for

a specific purpose. The source code of an example entity can be found in Appendix

B.

5.8.1 Initialisation

Following PML initialisation, the call-back table is reset and specific call-backs may

be registered. An entity handles all the UML messages in addition to those dealing

with RPs, location responses and monitor acknowledgements. The first message

processed by the entity is its RP which can then be modified. After locating the RM,

the RP is sent to it and a request is made for the entity's UML definition.

Normally entity behaviour would be exhibited through execution of UML code, but

since the instruction code interpreter has not been implemented, functions written in

the IL must be used. Typically the only call-back used is that for the

UNL_INIT...DEF message which is used to send the entity its definition. At this

point the entity's UML Construct, Update and Destruct function declarations

are located and defined as embedded IL routines as opposed to UML code. When

these functions are executed by the UML interpreter, the IL routine is called. Access

to the state information is obtained through the UML API.

5.8.2 Service Requests

The first external events received by the entity are indications of monitored

components in the form of UNL_MONITOR_ACK messages. Unlike the UM, the only

information that the entity need keep track of for each dependency is the monitor ID

contained in the message. This dependency list is rebuilt each time a new monitor

notification is received.

215

Upon receipt of a construct message the UML interpreter is instructed to construct

the entity's state. On completion an instance ID is returned which is used in all

further accesses to the state information. The Construct function is then executed,

thus initialising the state and is followed by the enqueuing of the action to send initial

state updates to the UM. Receipt of an update results in the same execution-action

sequence. The current component dependency list is used to determine which state

updates to send. Asides from executing the destruct function, no further action is

taken when an entity destructs. The PML, by default, informs the UM of the process

termination and whether it did so naturally or not.

When a MIGRATION_STATE_REQ message is received by the entity, it packages up

its complete state and sends it back to the UM in a MIGRATION-STATE message.

Upon termination the entity destructs as normal. When the target node is sent the

state message it instances its definition and unpacks the state into the newly created

instance. The construct function is not called and a UML_CONSTRUCT message is

not sent to the UM. From this point on, however, the target entity takes over all

processing from the original and operates normally, issuing state updates as necessary.

5.9 Manager Library

The manager functionality has been structured in a similar manner to that of an entity.

On its own, the library will interact correctly with the other process' in the system but

does not perform any special manager-specific tasks. This higher-level functionality is

added through the call-back mechanism. Appendix B contains an example of this

library's use.

5.9.1 Initialisation

Following the usual process initialisation, the manager is sent the complete UML

definition and (through a call-back) registers interest in the specific components it

uses. Each manager maintains a monitor list with an entry for each component it is

monitoring (Figure 5.19). An entry consists of a pointer to the relevant portion of the

UML data structure for that component and the monitor ID used in communications

216

with the UM. The three other essential call-backs are those for UNL_CONSTRUCT,

UML_UPDATE and UML_DESTRUCT. It is within these functions that the heart of

the special manager's functionality is embodied. An example of their use is given in

section 5.10.

Entity List

•1 	I..

Entity Entry

UPID

Instance ID 	 Monitor Entry

Monitor 	 Property 	- - - - *

Monitor ID

Monitor List

Figure 5.19 Structures used to keep track of entities and their
component dependencies.

At the lowest level the manager keeps an entity list. An entry is added to this list on

receipt of a construct message, modified by an update message and removed when an

entity destructs. An entry exists for each monitored component held by each entity.

When a construct message is received for a component, that part of the UML data

structure is instanced and the contents of the message unpacked into the state

instance. The instance ID is stored in the entity list entry along with the entity's UPID

and a pointer to the relevant entry in the monitor list. This enables the location of all

state information related to a specific entity with minimal redundancy.

5.9.2 Simulation Loop

Each simulation step starts with the reception of a UML_UPDATE_NOTIFY which

can be used via a call-back to perform preliminary work for each update. When an

update message is received the monitor entry is located using the message's monitor

217

ID. Then the component's state is located by searching the entity list using the

entity's UPID and the monitor entry as keys. The new state is then unpacked into the

instance and the update call-back executed if present. When a

UNL_UPDATE_COMPLETE is sent by the UM the simulation step has concluded and

the manager may perform (via call-back) any final calculations before the next step.

The return of a status message to the UM indicates that the manager has completed

its work. This start/stop message system is necessary because an entity will not send

an update unless that component has been modified. Therefore there is no way for a

manager to determine whether all updates it should be sent, have been sent. A

destruct message results in the deletion of that entity's component instance and then

the removal of the relevant entry from the entity list.

When a MIGRATION_NOTIFICATION is received, the manager locates the old

entity's entry in the entity list and replaces the UPID stored therein with the new

address in the message. No other action is needed.

5.10 Visual Manager

The prototype VIS implementation does not interface to a CIG since it was not

deemed necessary in order to demonstrate the effectiveness of the USS architecture.

In fact, it is not used when evaluating the system's performance in the next chapter,

but it is presented here as an example of a special manager implementation.

The code used to explore the viability of real-time VE displays was available for use

(section 5.1.1) but was not utiised for two reasons. Firstly, there is no way to

satisfactorily demonstrate such a feature in a thesis. Secondly, graphics and API

speed is totally CIG dependent and would only confuse any analysis of the manager's

performance. Therefore, everything apart from the actual calls to the CIG's API was

implemented.

218

5.10.1 Initialisation

Following the standard manager initialisation the prototype VIS registers interest in

the Base. models. visual and Base. models. position properties (section

5.10). At this point the CIG would also be initialised and initial parameters set, e.g.

viewpoint position, etc.

VIS registers call-backs for all construct, update, destruct and update-complete

messages. As each entity constructs, VIS receives a stream of construct messages

which are acted upon by the call-back function. This is responsible for creating the

initial visual representation of the entity in the CIG database.

5.10.2 Simulation Loop

As updates are sent to VIS, the update call-back is executed which is used to move

the entity's representation and if necessary, modify it. On receipt of an update

complete notification the new scene is rendered and the manager has finished its work

for the current step. Destruct messages result in the removal of the representation

from the CIG database.

5.10.3 Entity Enhancement

The extra functionality needed by any entity wishing to manipulate its visual

representation is provided in the form of a library. Whereas this could be provided as

importable UML code, it is currently IL code which is linked into the ENT

executable. The Read and Write function definitions (section 4.4.3.1.3) are

supplemented with internal routines which may be used to manipulate the Visual

element data structure.

Therefore, an entity's construct call-back function will build the visual representation,

either from file or by code. The update call-back modifies the state as necessary and

the destruct call-back closes the library.

219

5.104 VIS Summary

The current VIS implementation is very basic but it performs the essential operations

required of it. Since all the complex operations are hidden in the manager library, the

developer can concentrate on what the manager should be doing and implement it

with the minimal coding.

511 Console

The console implementation is a hybrid of a manager and an entity in that it receives

most messages in order that it may keep track of the system's status. A command-

line interface provides the opportunity to display this information and issue simple

commands. An entity creation, destruction or migration request may be sent to the

UM from the console, as can UML code. The console keeps an up-to-date copy of

the complete universe definition although it does not maintain any instance data. The

current functionality is quite limited and was used for testing purposes only.

5.12 Further Improvements

At this stage, it is apparent that a number of enhancements can be made to the

prototype.

5.12.1 Configuration

The configuration information required by child processes, e.g. the RM, is currently

passed to them as a filename in their execution parameters. This has two

disadvantages: firstly, it introduces a dependency on backing storage and, secondly, it

increases the process initialisation time. If this information was passed to them by the

UM, both these problems could be overcome. This would not require changing the

current configuration file format and could be sent in its native ASCII format.

220

5.12.2 Multi-part Messages

Presently the PML relies on the operating system to break large messages into smaller

packets for transmission. This ability is not supported by all IPC mechanisms and

therefore the addition of PML controlled multi-part messages would be advantageous.

This would also reduce the amount of buffer space required to send a message and

permit the construction of messages whose total length is not known when the first

part is sent.

5.12.3 State Encoding

With the ability to gradually build a message, the estimation of state size prior to

encoding may be removed. Instead the state may be encoded directly into a multi-part

message thus substantially reducing the time taken to send state updates.

Alternatively, memory could be allocated during packing, building a linked list which

is then traversed when copying the state into the fixed size message buffer. This, at

least, removes the need to estimate size initially.

5.12.4 Persistence

The current implementation assumes that a simulation will run to completion before

the system terminates. Therefore no provision is made for state persistence such that

a simulation may be saved and reloaded at a later date. In order to realise this, an

entity could be sent a TERMINATE message before destruction which would be its

queue to save its state to backing storage. Upon restarting a simulation the entities

would be created as before (but possibly not on the same node) and during

construction their state loaded from backing storage. Managers can rebuild their

internal data structures from the events that would take place upon restarting the

simulation, e.g. entity creation, initial state transmissions, etc. It may be necessary,

however, that those structures unique to each manager are also saved for use when

the manager re-initialises.

221

5.12.5 Message Elimination

The three messages UML_CONSTRUCT, UML_UPDATE and UML_DESTRUCT sent

to an entity should be replaced by a UML message which simply executes the

Construct, Update or Destruct function respectively. The resulting state

updates generated by these calls would be returned in a standard state message which

would include the name of the function that generated the data. All such remote code

executions would operate in the same manner. The current shortcut was taken

because the UML interpreter was not complete.

5.12.6 Entity Synchronisation

Synchronising an entity involves the transmission of multiple messages detailing

individual monitor notifications. In this special case it would be preferable to send a

single message containing all notifications, thus reducing the UM's overhead for this

operation.

5.12.7 Function Access

At present, anybody may execute a function in an entity if it knows its name. This

could be changed by providing a function hiding mechanism, e.g. a PRIVATE

keyword to be used in the function declaration (not definition). Any attempt by a

remote process to execute a private function would result in an appropriate exception

generated by the interpreter.

This technique could be generalised by ensuring that any private function cannot be

executed outside its scope. In Figure 5.20, unprotected may call protected

since it is in the same scope but control may only call Inner. unprotected.

222

ELEMENT Outer

ELEMENT Inner
{

FUNCTION unprotected;
FUNCTION protected PRIVATE;

FUNCTION control; II Can't access protected

Figure 5.20 Example use of the PRIVATE keyword to reduce function
access through scope.

5.13 Summary

Before the details of the prototype USS were given, the implementation of a simple

worst-case scheduler was described which has been used to enforce a constant-rate

display. The experience gained by the author during this implementation and its

subsequent use indicated that implementing scheduler functionality at the application

level was not practical. The USS prototype implementation presented therefore did

not make use of the scheduling aspects detailed in the design.

A layer of abstraction is introduced in the form of the PML in order to shield the USS

processes from each operating system's idiosyncrasies. Presently it is only used to

provide a messaging service between both local and remote processes. The simple

configuration language was then described and a typical example of its use presented

in the form of the USS configuration file. The structure of the UML interpreter was

described in terms of the data definition and instruction code sections. This included a

detailed explanation of the complex data structure used to hold the model description

and its instance data.

Each of the required system processes were dealt with in turn, describing the

implementation of the basic operations they perform and services they provide.

Special attention was given to the important data structures and how they are utilised

at run-time. Most of the UM's functionality was implemented including an

elementary migration and load-balancing mechanism (using a minimal RM). The bi-

directional data structure used by the UM permits the location of all components that

223

a given process is dependent upon and vice versa. The operations involving state

transmissions and monitor IDs were described in conjunction with details of the

relevant parts of the manager and entity implementations. The core entity and special

manager functionality is provided as libraries which are specialised through the use of

UMIL code and call-backs. An example of this is given with reference to the Visual

Manager.

The chapter concluded with a few improvements that may be made to the current

implementation. These functional changes will be supplemented by performance

enhancing suggestions in the next chapter.

224

ChaDter 6

Prototype Evaluation

"The mark of a truly civilised human being is the ability to read
a column of numbers and then weep."

Bertrand Russell

Evaluating a system implementation can be undertaken at two levels: component and

system. A component analysis examines each system component in an isolated

manner whilst a system analysis is holistic and operates at a higher-level, considering

more functional problems. Indeed there is a fine balance to be struck between being

too specific which produces results that do not mean anything useful, and being so

general that there is no content to the results. The component level provides useful

information that can aid development and testing but suffers from a lack of relevance

when a system task is considered. At the system level the whole system is asked to

perform some useful task and evaluation of its performance can be used to judge its

overall effectiveness.

These methods are not mutually exclusive, in fact understanding system performance

is difficult if the effects that the individual system components have are not fully

understood. However, a component's behaviour will often change when used in

conjunction with other components within a system, e.g. its performance may be

reduced when it has to bid for CPU time with other processes. This chapter,

therefore, deals with the system as a whole (an approach advocated by Checkland,

1994) but with a detailed look at the two major components of most (if not all)

system processes: the UML interpreter and the PML.

225

6.1 System Analysis

Ideally one would like to compare the performance of this prototype with that of

other solutions for distributed VE systems. However, the only evaluation of a VE

system that the author has found is for AVIARY (section 2.3.8), with the exception of

a predictive performance chart for DIS (Figure 2.3). Even if figures were readily

available, the problems that must be faced when comparing systems are similar to

those encountered when comparing CIGs. Each manufacturer presents a list of

figures which detail the CIG's performance of certain tasks, e.g. rendering a 10 by 10

grid of polygons, in relatively useful units, e.g. polygons per second. Unfortunately,

information essential for comparison of the CIG's results with another CIG is often

not presented, e.g. were the polygons lit? Clipped? Textured? With which texturing

technique? etc.

The obvious course of action would be to derive a set of benchmarks that may be

used to provide a fair basis for comparison of systems. But even this has problems,

for example some CIGs are optimised for triangles whilst others can handle polygons

with any number of vertices. Undoubtedly, any test using triangles will give any CIG

optimised for this type a better rating than the other CIGs. Conversely, a benchmark

that tested polygon throughput with varying numbers of vertices cannot be run on a

triangle-only system without extra application processing to split the polygons into

triangles, thus defeating the objective. There are many other examples of architectural

differences that confound comparison.

The architectures of distributed VE systems are even more diverse than that of CIGs

and presents a challenge when designing benchmarks. In the same way that a

geometrical model can produce different performance ratings on different CIG's, VE

system performance is very application specific. This may be a reason why figures are

not available for existing systems - even the evaluation of AVIARY is based around

an Air Traffic Control application. No attempt will be made in this chapter to derive a

set of useful benchmarks since this is a subject suitable for a thesis in itself, a more

basic approach will be used instead.

226

This thesis has already established that the user is the final judge of the system's

effectiveness and that certain criteria must be met to provide a usable interface

(section 3.3). Although this prototype was not built to test these measures, it is

possible to extract the most important feature of any such system which is the ability

to progress the simulation as fast as possible. A suitable metric is simulation steps per

second and is used as the absolute measure of this prototype's performance.

6.2 Testing Methodology

All of the benchmarks used in this chapter were run under similar conditions. Normal

operating system processes were reduced to a working minimum in order to maximise

ihe available memory and minimise interference with the USS processes. No users

were permitted access to the machines during testing and normal Internet services

were suspended. Disk accesses only occurred at the beginning of a test and at the end

when results were logged. Even then, only local storage was used, which was

especially important in the case of the SGI where normal user directories are held

remotely and accessed using the Network Filing System (NFS). This fact combined

with the presence of virtual memory can drastically affect performance.

This section documents the relevant characteristics of the machines used to test the

prototype and highlights a number of issues that affected system performance.

6.2.1 cpu Performance

Table 6.1 shows the relative performance of several Intel CPUs present in IBM PCs

and the MIPS processor used in SGI's RealityStation. The performance ratings are,

of course, dependent upon the efficiency of the compiler and its ability to generate

optimised code. The Watcom C++ compiler was used on the Intel-based platforms

whilst GNU C++ (G++) was used on the SGI machine. The native C++ compiler was

not used because it did not support exceptions but unfortunately the GNU compiler

had a number of faults that presented problems. Firstly, the code optimiser could not

be invoked if the source code used exceptions, subsequently the SGI's performance

was severely undermined. The figures shown inside the brackets are those of the

227

native C++ compiler with optimisation and those outside the brackets represent the

results obtained using the GNU compiler without optimisation'. Secondly, the

implementation of C++ templates is less than efficient with the current release of G++

and requires the instantiation of each template within each and every module it is used

(GNU, 1995). Consequently, the executable sizes produced are much larger than

necessary which in turn has implications for the amount of paging required during

execution.

Gateway Server Pentium Reality
1486 1486 Pentium MIPS 4400

50 MHz 66 MHz 90 MHz 200 MHz

Integer 0.256645 0.330643 0.849287 0.653 (1.537)

Floating-point 0.173911 0.211827 0.881350 0.517 (1.772)

Memory 14/20Mb 10/16Mb 17/24Mb 128Mb+
(available / total) virtual

memory

Bus 16 bit 16 bit 32/16 bit 256 bit
(ISA) (ISA) (PCl/ISA)

Bus Speed 50 MHz 33 MHz 30 MHz 47.6 MHz

Bus Bandwidth 95 63 114/57 1.42
Mbytes/sec Mbytes/sec Mbytes/sec Gbytes/sec

Disk 1 Gb 1 Gb 750 Mb 2 Gb

The CPU speeds were obtained using BYTE Magazine's BYTEmark benchmark
program. A rating of 1.0 is equivalent to a DELL Pentium 90 MHz PC running DOS.
The figures given include the machine's multi-tasking operating system overheads.
Figures in brackets represent the native compiler's performance on the SGI.
ISA - Industry Standard Architecture
PCI - Peripheral Connect Interface

Table 6.1 Resource ratings for each test platform.

6.2.1.1 QNX

The total memory available on each platform running QNX is shown in Table 6.1 as

well as the actual amount that may be used by non-system software. Since QNX does

not provide any virtual memory this limits the number of system processes that may

I The benchmark code did not contain exceptions and thus could be optimised, resulting in
performance only slightly worse than that produced by the native compiler. However, these results
would not be indicative of the prototype's performance and hence the unoptimised figures are given.

228

run at one time. The absolute maximum number of executables running

simultaneously is 250 which allows for a maximum of 50 virtual circuits 2 (QNX,

1995).

Each of the three QNX machines (Pentium, Server and Gateway) are interconnected

by a private Ethernet LAN using the same make of Ethernet card and the same

Industry Standard Architecture (ISA) bus. Gateway has a second interface card

installed which is connected to the university's backbone network.

6.2.1.1.1 Scheduling

There are three different scheduling methods that any given process may be assigned

to under QNX: First In First Out (FIFO), round-robin and adaptive. When using

FIFO scheduling a process executes until either it voluntarily relinquishes control

(blocks) or is preempted by a higher-priority process. FIFO is only of real use to

ensure mutual exclusion when two processes are sharing a resource. Round-robin is

like FIFO except that each process may also stop executing if it reaches the end of its

timeslice (100 ms). Adaptive scheduling uses decaying priorities for those processes

that consume their timeslice and priority boosts for those processes that are starved of

CPU for one second or more.

The last scheduling policy is commonly used in systems where interactive and

compute-intensive processes share the same machine, however it does make

performance evaluation of a network of interacting processes difficult. All processes

within the USS application were therefore placed in a round-robin scheduler at the

same priority. This causes considerable starvation of the normal interactive processes

(using the adaptive scheduler) but not to USS processes such as the Console.

2 More virtual circuits may be supported by reducing the number of executables. There will be no
such limits in the next major release of the operating system (v4.3).

229

6.2.1.2 IRIX

The limits imposed by IR1X on the number of executables, etc., were not reached by

the prototype system and therefore did not interfere with the system testing. There

were, however, two other issues which presented problems.

6.2.1.2.1 Scheduling

IRIX also supports different scheduling methods: real-time, deadline, timesharing,

gang batch and batch. Normal interactive processes run in the timesharing queue

while the deadline scheduler enables time constraints to be applied to a process -

although its effectiveness is uncertain when invoked on a single processor system.

Processes assigned to the real-time queue are guaranteed better performance than

those in the timesharing and batch queues. Unfortunately, unlike QNX, only the

super-user may promote processes to queues above the timesharing level. Due to

present departmental policy, access to the test platform at this level was not granted

to the author and therefore all USS processes were subject to adaptive scheduling in

the timesharing queue.

6.2.1.2.2 Virtual Memory

Performance can also be compromised through the paging to and from disk that is

undertaken when using virtual memory. Ideally all of each process' code and data

would remain in memory, as with QNX. This is possible under IRIX but super-user

access is again required and therefore all results obtained under IRIX are confounded

by irregular and uncontrollable paging activity.

6.2.2 Computation and Communication

The main emphasis on the resources consumed by the prototype has been split

between computation and communications. Sending/receiving messages requires

CPU and therefore any computation rating is affected by communications. This

relationship is examined when analysing the PML and its results can be used to aid

estimation of specific service overheads, e.g. registering interest in a particular UML

230

component. The other side of the equation in this example is the time it takes to

manipulate the interpreter's data structure. Such information is provided by the

section on UML which also deals with the resource that has, to date, been overlooked

by system evaluations: memory.

System OS Code Data Total Required Libraries Executable

Component Sizet Sizet Sizet Sizet

UML IRIX 247,984 59,904 307,888 - -

Library QNX 78,191 77,940 156,131 - -

UCL IRIX 46,768 38,768 85,536 - -

Library QNX 13,478 37,803 51,281 - -

PML IRIX 52,270 26,032 78,302 -

Library QNX 22,385 26,509 48,894 - -

Entity IRIX 32,496 4,016 36,512 - -

Library QNX 9,601 3,144 12,745 - -

Manager IRIX 33,840 3,600 37,440 - -

Library QNX 36,830 6,838 43,668 - -

RProfile IRIX 47,776 4,806 52,582 - -

Library QNX 10,436 2,296 12,732 - -

Message IRIX . 9,232 . =..............
Library QNX 1,822 144 1,966 - -

Mailer IRIX 6,416 960 7,376 PML, Message 430,984

QNX 3,756 1,019 4,775 119,704

RM IRIX 32,976 3,568 36,544 PML, Message, 541,576

QNX 24,971 5,275 30,246 RProfile, UCL 163,053

UM IRIX 265,104 27,200 292,304 PML, Message, 1,180,552
.

QNX 84,916 18,044 102,960 RProfile, UCL, UML 355,173

Benchmark IRIX 8,448 1,152 9,600 PML, Message, UML, 787,336

Manager QNX 4,153 1,192 5,345 Manager, RProfile 269,725

Benchmark IRDC 10,656 1,424 12,080 PML, Message, UML 787,336

Entity QNX 4,601 1,482 6,083 RProfile, Entity 265,689

tAll sizes are given in bytes.

Table 6.2 Minimum memory usage of USS components.

6.2.3 Memory

Table 6.2 gives a breakdown of the sizes of each USS process in terms of code size,

initialised and uninitialised data, and total executable size. A list of the required USS

libraries associated with each process is also given in the table. Under IIRIX the

majority of an executable's size comes from other general-purpose libraries provided

231

with the compiler, e.g. system call library, maths library, C++ iostreams library, etc.

These libraries are much smaller under QNX, for example the total amount of USS

code used in the mailer is 48,894 + 1,966 + 4,775 = 55,635 bytes, meaning that the

system libraries account for 64,069 bytes. This is a worst case scenario since the

amount of space used by these libraries will remain roughly the same for the larger

executables The figures for the data given above do not include the memory that the

process may allocate during execution for dynamic data structures, etc. The large

difference in IRIX and QNX code sizes is in part due to not using code optimisation

and also the different CPU instruction sets.

A simple way to reduce the amount of memory required by each process is to make

use of shared libraries. Such a mechanism places commonly used routines into a

special library which is loaded once into main memory. A stub library is also

compiled and is linked into the executable in place of the larger original. When a

function in the stub library is called, the equivalent routine in the shared library is

executed. In theory, the unique overheads incurred by each USS process may be

reduced substantially since most libraries are used many times, e.g. the PML library

and the UML interpreter.

The implementation of shared libraries under QNX is based upon the mechanism used

by UNIX System V Release 3.2 which has an explicit interface for importing and

exporting data into and from the shared library (QNX, 1994). Whereas managing

data and code separately is a perfectly adequate approach for C-based applications,

the technique cannot be extended to the object-oriented paradigm which deals with

code and data together. Specifically, problems occur with C++ when virtual

functions, static- initialisers or exceptions are used. Therefore it was not possible to

exploit shared libraries with the QNX implementation.

This is not entirely true because the C system libraries are shared which, for example,

means that every mailer only needs 55,635 bytes of memory, not 119,704 bytes. With

USS shared libraries this could be reduced to 4,775 bytes or lower. Similar

improvements would be seen for the other processes.

232

IRIX does support shared libraries but because the system was not available until very

late in the project their potential was not explored. It is important to note, however,

that the use of shared libraries would not only reduce the amount of memory required

by a USS process, but should also reduce the amount of paging under IRIX. A large

commonly used shared library has a greater chance of staying in physical memory than

several large executables, each with their own copies.

6.2.4 Instrumentation

All of the data in this chapter was collected by instrumenting key execution paths with

timing code. A suitable number of iterations were executed for each test case, e.g.

message size, and the averaged data is used in the charts. The amount of iterations

and the type of instrumentation used was determined by taking clock resolution and

(erratic) operating system overheads into consideration. Under QNX, the system

clock has a resolution of 0.1 ms and the SGI has microsecond accuracy. For events

that completed faster or close to the clock resolution, such as some of the UML

interpreter operations, the total time taken to perform all iterations was measured,

adjusted for loop overheads and then averaged. For longer operations, such as the

simulation execution stages, each iteration was measured individually and then

averaged. In all cases the impact that the profiling code had on the measurements was

taken into consideration.

6.3 UML

Quantifying the resources consumed by the interpreter permits the designer to gauge

the impact their simulation will have on the system. To this end a series of simple

benchmarks were used to establish resource consumption on each of the test

platforms. Since these tests were compute bound, the same pattern of relative

platform performance is evident in each test. Therefore, quite often only the figures

from one platform will be used in the graphical illustrations of the results. A full table

of the results upon which this subsection is based, along with the simple UML code

used, may be found in Appendix C.

233

6.3.1 Code Size

The one disadvantage of sending UMIL code between processes is that a complex

description can take an appreciable amount of space. Table 6.3 shows two possible

techniques for reducing the size of UML code for transmission. Compression is a

method that can be applied to any kind of data, but those algorithms that work on

repeating patterns, such as the Free Software Foundation's GZIP, work well with

textual data. Simply applying compression to the original UML description can result

in approximately a 60% reduction in size. Another technique which can be used is

that of tokenisation - it is unlikely that this would be used just before transmission but

during the initial interpretation. Tokenisation simply replaces the language's ASCII

keywords by single-byte tokens and reduces the whitespace used to a minimum. If

the tokenised form is compressed the relative effects are less because tokenisation is a

simple form of compression. However, compared with just compressing the original,

the code can be reduced to around 35% of its original size.

Filename Original Compressed' Tokenised Tokenised &
Compressedt

ts.uml 5910 2279 (38.5%) 4950 (83.8%) 2141 (36.2%)

base.uml 1131 469(41.5%) 825(73.0%) 392(34.7%)

tThe Free Software Foundation's GZIP was used to compress the ASCII LJML files.
All sizes are give in bytes; percentages represent the compressed size in relation to the
original size.

Table 6.3 Effects of techniques to reduce code size.

Of course, compression comes at the cost of increased computational requirements.

There is a minimum code size that compression will have a beneficial effect upon and,

even then, the computation time sacrificed to achieve this makes the usefulness of

such an operation dubious. Apart from the initial definition sent to processes upon

creation, it is predicted that most UML code sent will be quite small, e.g. function

invocations, minor code redefinitions, etc. It would seem practical, therefore, to

restrict the use of compression to large messages and then only with hardware

support.

234

6.3.2 Primitive Types

Table 6.4 shows how much memory each primitive type uses on the test platforms.

Although this is dependent on the machine's architecture and compiler rather than the

operating system, the latter classification is used for convenience in this and some

subsequent tables. The boolean type is much larger than it could be but alignment on

a four-byte boundary simplified the state encoding/decoding routines and thus

improved performance. The difference in the memory used by a string is due to the

different C-i-i- String class implementations provided with each compiler.

Name Description Usage (bytes)
QNX 	flUX

Integer Integral number 4 4

Real Floating-point number 4 4

Boo lean Boolean 4 4

String Character string 16 + len 4 + len

Table 6.4 Memory consumption of the four primitive UML types.

6.3.3 Component Sizes

Figure 6.1 presents some simple formulae which may be used to estimate the memory

usage of a UML component, from a literal to all of the modeled universes. Table 6.5

provides some approximate sizes of each component. The basic overheads are those

that are needed merely to declare the relevant component; this will include the

requirements of the base class if it is a derived component. Those overheads that are

dependent on the definition being interpreted, e.g. adding a property to an element,

are specified on an individual basis. These figures do not represent the variable

amounts of dynamic memory that may be used in the basic overheads, e.g. the storage

of strings representing names, etc. Therefore the total obtained from the use of this

table will always be less than the actual memory usage. In addition the values given

are dependent upon the hardware architecture (section 5.3.4) and the C-H- compiler

used. For example, there is no standard method of implementation to handle virtual

functions in derived classes. The remainder of this section presents brief textual notes

on each of the main components.

235

Component = Basic + (number of dependents * (overhead + Dependency))
Dependency = Basic + [size of derivatives]

Literal 	= Basic + [length of string]
Constant = Basic + Component + (number of literals * (overhead * Literal))

Function = Basic + Component + [return type]

Element 	= Basic + Component + (number of elements * (overhead + Element)) +
(number of properties * (overhead + Property)) +
(number of functions * (overhead + Function)) +
(number of constants * (overhead + Constant)) +
(number of converters * (overhead + Converter))

Property = Basic + Component + (number of instances * (overhead + Instance))
Instance 	= Basic + (size of list * overhead per list entry)

Universe = Basic + Component + (number of elements * (overhead + Element)) +
(number of properties * (overhead + Property)) +
(number of functions * (overhead + Function)) +
(number of constants * (overhead + Constant)) +
(number of converters * (overhead + Converter))

Entity 	= Basic + Component + (number of constants * (overhead + Constant))
(number of functions * (overhead + Punc t ion))

UML 	= Basic + Component + (number of universes * (overhead + Universe))
(number of entities * (overhead + Entity))

N.B. Square brackets [] represent optional portions of a component.

Figure 6.1 Basic relationships between UML components and their memory
usage.

6.3.3.1 Component

All UML components are derived from the one base class, UNLComponent. An

overhead is incurred for each dependency associated with a component in addition to

the actual dependency structure. The skeleton dependency provided with the UML

library only holds a single flag but, as shown in section 5.6.3, the extensions added by

each application must be incorporated into this figure.

236

6.3.3.2 Literal

A literal stores either an integer, a floating-point number, a boolean flag or a character

string. Dynamic memory is only allocated when storing a string, the amount being

dependent upon its length.

6.3.3.3 Constant

A constant may be a list in which case an overhead is present for each list element,

plus the actual size of each Literal.

6.3.3.4 Function

The memory used by a function is substantially increased when a return type has been

declared.

6.3.3.5 Element

As one of the container components, an element can use greatly varying amounts of

memory. Essentially, each component contained within the element requires

information to be stored about its location.

6.3.3.6 Property

Whilst a property declaration is only held once in memory, the bulk of the memory

consumption attributed to it is used when instancing it.

6.3.3.7 Instance

An instance is a list of pointers to the actual instance data. Therefore, each list entry

incurs an overhead in addition to the actual data size which can vary from 4 bytes for

most primitives, to any amount for an element.

237

6.3.3.8 Universe

The type of overheads detailed in Figure 6.1 are the same as those for an element

except that the minimum size is slightly smaller.

Name Description Usage (bytes)
QNX 	flUX

Component Basic 48 36
Overhead per Dependency 12 12

Dependency Basic 4 4
Literal Basic 8 6

Overhead for a string of len characters len len
Constant Basic + Component 76 56

Function Basic + Component 76 68

Optional return type 44 20

Element Basic+ Component 140 116

Overhead per Element 12 12

Overhead per Property 12 12

Overhead per Function 12 12

Overhead per Constant 12 12

Overhead per Converter 12 12

Property Basic + Component 88 64

Overhead per Instance 12 12

Instance Basic 24 24
Overhead per list entry 12 12

Universe Basic + Component 128 104

Overhead per Element 12 12

Overhead per Property 12 12

Overhead per Function 12 12

Overhead per Constant 12 12

Overhead per Converter 12 12

Entity Basic + Component 92 68

Overhead per Constant 12 12

Overhead per Function 12 12

UML - Basic + Component 76 64

Overhead per Universe 12 12

Overhead per Entity 12 12

Table 6.5 Approximate memory usage for UML components.

6.3.3.9 Entity

The overheads for an entity are relatively small currently because instruction code is

not stored, only constants and functions.

238

6.3.3.10 U M L

A single instance of the UML interpreter holds references to all of the universes

defined and the entities that exist within them. Following the data structure tree from

this point enables us to determine the amount of memory used by the interpreter.

6.3.3.11 Example

Table 6.6 shows a small segment of a UML data definition. Using the data for QNX

presented above, it shows how much memory would be used to represent the

definition's structure within the interpreter and hold a single instance of element

Triangle. Each component within an element automatically generates a 12 byte

administration overhead in addition to the structure needed to hold that component's

information. When creating an instance of a property, a 24 byte administration

overhead is incurred and a further 12 bytes for every entry in a list. In the case of the

coord array, this means that 60 bytes are used to manage 12 bytes of actual instance

data, whereas 60 bytes are used to manage 216 bytes of the instance data for

vertexList.

UML Definition Representation vertexList coord

Size Instance Size Instance Size

ELEMENT Triangle 140

ELEMENT Vertex 12 +140

PROPERTY coord : REAL(31 12+88 24+(3*(12+4))
72

PROPERTY vertexList 	Vertex(3]; 12 +88 24 + (3 * (12 + 72))
276 492

Table 6.6 Example of how much memory is allocated to represent a UML
definition and hold its instance data under QNX.

Any instance of a property with a primitive type will have a disproportionate amount

of memory used to manage the instance versus storing the instance data. The reasons

for this complexity have already been discussed (section 5.5.3). Although a special

arrangement might be made for properties of a primitive type, this would make the

interpreter more complex and probably increase execution time.

239

6.3.4 Interpretation

Figure 6.2 shows the relative time taken to perform the three basic interpretation

operations (insert, replace and delete) for three primitive components on each of the

test platforms. In the case of the element and entity components, the definitions used

in the test had no contents so that the measurements would be representative of each

component. The property was given an arbitrary primitive type (integer) for the same

reasons. Similar measurements were performed for functions and constants but give

results very close to that of the property because the same amount of memory is

currently used to represent them internally. Complete details may be found in Table

DIN

Component Action Pentium Server Gateway Reality

(ms) (ms) (ins) (ins)

ELEMENT Insert 0.308 1.160 1.032 0.284

Replace 0.376 1.397 1.192 0.314

Delete 0.313 1.117 0.946 0.244

CONSTANT Insert 0.339 1.202 1.094 0.303

Replace 0.381 3.911 1.202 0.318

Delete 0.297 1.060 0.917 0.230

PROPERTY Insert 0.342 1.217 1.097 0.301

Replace 0.372 4.752 1.205 0.316

Delete 0.298 1.073 0.939 0.230

FUNCTION Insert 0.320 2.430 1.039 0.288

Replace 0.353 3.853 1.149 0.304

Delete 0.288 1.067 0.909 0.226

ENTITY Insert 0.302 2.102 0.968 0.282

Replace 0.324 3.237 1.046 0.286

Delete 0.325 1.156 1.029 : 0.260

Dependency Add 0.005 0.047 0.059 0.021

Delete 0.019 0.184 0.076 0.039

Table 6.7 Fundamental interpreter operations timings for each test platform.

Figure 6.3 shows how long it takes to add and remove a dependency for any

component. The actual time taken to perform this operation is dependent on the

number of existing dependencies on the component and its position within the

dependency list. The results shown here are, therefore, the best case results.

240

Reality

Gateway

Server

Pentium

o ELEMENT Insert

• ELEMENT Replace

O ELEMENT Delete

0.0
	

0.5 	 1.0 	1.5

lime (rd)

Reality

Gateway

Server

Pentium

0 PROPERTY Insert

•PROPERTY Replace

O PROPERTY Delete

0.0
	

0.5 	 1.0 	 1.5

lime (ins)

Reality

Gateway
C)

Server

Pentium

0 ENTITY Insert

•ENTITY Replace

O ENTITY Delete

0.0 	 0.5 	 1.0 	1.5

'flme(n)

Figure 6.2 Basic interpreter overheads for three primitive types:
a) Element; b) Property; c) Entity.

6.3.5 State Management

The five operations that are performed on a component's state are those for instance

control: construct-destruct, and those needed for state encoding: size-pack-unpack.

The duration of these compute-bound operations on an integer, real or boolean is

241

shown in Figure 6.4 (an empty string increases the time for these actions marginally

due to its slightly larger size). There is a linear relationship between state size and

operation performance, and the time taken to complete any operation is extended if

the component is an array.

Reality

	

Gateway 	 o Dependency Add

• Dependency Delete

	

Server
	

1111
Pentium

0.00 	0.02 	0.04 	0.06 	0.08

TInne

Figure 6.3 Cost of adding and removing a dependency on a UML component.

0.35

0.30

0.25

1 0.20

• 	0.15

0.10

0.05

0.00

• construct

El destruct

o size

U pack

D unpack

Pentium 	Server 	Gateway 	Reality

Figure 6.4 Fundamental state operations on an Integer/Real/Boolean and their
cost on each platform.

To examine the impact that state size has on the performance of each operation, the

length of an array of integers was varied and resultant times recorded. Figure 6.5

State operation costs based upon state size (Pentium).is a graphical representation of

the results whilst Table 6.8 details the time increase of operation execution if one

element is added to the array.

242

0.7

0.6

0.5

0.4

. 0.3

0.2

0.1

0.0

construct

0 destruct

C3 size

M pack

0 unpack

INTEGER 	INTEGER 	INTEGER 	INTEGER

[tO] 	[20] 	[30]

Figure 6.5 State operation costs based upon state size (Pentium).

Operation Pentium
Time (ms)

Server
Time (ms)

Gateway
Time (ms)

Reality
Time (ms)

construct 0.008 0.024 0.035 0.006

destruct 0.006 0.018 0.027 0.005

size 0.002 0.006 0.009 0.001

pack 0.003 0.015 0.012 0.002

unpack 0.003 0.016 0.011 0.002

Table 6.8 Operation overheads per integer array element.

unpacK

pack

size

destruct

construct

[0 Empty

•1 Property

0.00 	0.02 	0.04 	0.06 	0.08 	0.10

Mme (rm)

Figure 6.6 State operation overheads for an element with zero and one
properties (Pentium).

The performance of the state operations on an empty element compared to that of an

element with a single property (an integer) may be viewed in Figure 6.6.

243

Unsurprisingly the difference is equal to that of a single property (Figure 6.4),

therefore the computational cost of managing an element may be calculated by

totalling the costs of the individual properties contained therein, added to the basic

element overhead.

Similarly, nested elements produce predictable results (Figure 6.7), each level comes

at the price of a single element's overheads.

1.2

1.0

._ 0.8

I
v 0.6
E

0.4
0.2
0.0

UII!I1 • construct

O destruct

0 size

•pack

0 unpack

one 	two 	three 	four 	five 	ten

Figure 6.7 State operations on elements with one to ten properties (Pentium).

The cost of reinterpreting any part of a UML definition may be estimated by

determining the differences between the current and new definition. Those parts that

are now obsolete must have their state destructed and then the relevant portion of the

data structure removed. New component definitions are added in the normal way

whilst those components that are redefined require partial (or complete) state

destruction, re-interpretation and re-construction.

When preparing state information for transmission its total size is estimated and a

buffer is allocated into which the state is packed. The receiver of the state unpacks

the transmitted buffer into its data structure. If the sender or receiver uses big-endian

byte ordering, then a byte swapping operation is performed when packing or

unpacking respectively. Figure 6.8 shows the performance of each of the test

platforms when the three state encoding operations are performed on primitive types

of the same size. Although Reality must always byte-swap its state, the performance

of these operations without byte-swapping is shown for comparison purposes.

244

Reality (Byte-
Swapped)

Reality

Gateway

Server

Pentium

• size

• pack

0 unpack

0 	0.0005 	0.001 	0.0015 	0.002

Tinie(nis)

Figure 6.8 Costs of state sizing/packing/unpacking a Boolean/Integer/Real on
all the test platforms.

Reality (Byte-
Swapped)

Reality

Gateway

Server

Pentium

•size

• pack

0 unpack

0 	0.005 	0.01 	0.015 	0.02 	0.025

Time (ms)

Figure 6.9 State encoding operation overheads for a String of 40 characters.

The time it takes to perform these same operations on a string with 40 characters is

about 10 times slower than for the other primitive types (Figure 6.9). The extra time

is consumed by the larger amount of data that must be copied into the buffer. There

is no real difference between the performance of the byte-swapped operation and the

normal version because character strings are not swapped in any way, only the integer

that is used to hold the size of the variable length string.

245

6.3.6 Summary of UML Analysis

The amount of memory used by the interpreter is just as important as how fast it can

interpret and execute UML code. The size of the textual UML definition is of interest

since it may be sent between processes and thus affects communications performance.

Whilst compression techniques can greatly reduce the space used by such

descriptions, the computational overhead is prohibitive unless specialised hardware is

available to accelerate the compression and subsequent decompression process. A

compromise could be the transmission of tokenised code but this would reduce

readability.

The cost of interpreting such definitions was presented in the previous sub-sections.

Not only may the computational cost of managing the interpreter's internal data

structure be estimated, but also the memory it occupies by applying the simple

equations and empirical data in sections 6.3.2 and 6.3.3. It has been shown that there

is a simple relationship between the time taken to process a component's state, its size

and its structure. Such a relationship enables predictions to be made about the time

required to manage state information.

6.4 PML

Performance evaluation of the PML can be conveniently broken into two parts:

message transmission and message reception. Although the time taken to send a

message is somewhat dependent on the processing done at the receiver, they can, for

the most part, be treated separately. All of the charts in this section are based upon

message size and therefore have only been calculated up to the largest message size

currently supported: 20 Kbytes 3 . Inmost cases, the performance of only one platform

will be presented although the full suite of benchmarks were executed on all

platforms. The equivalent graphs for the other platforms can be found in Appendix D.

This is an arbitrary limited imposed in the prototype and does not reflect an operating system

limitations.

246

This section examines the performance of both the QNX IPC and TCP/IP mechanisms

as utilised by the PML. Only Gateway supported TCP/IP under QNX, this is

unfortunate because it is also the slowest of all the test platforms. However, the

relative performance of these two mechanisms can still be compared.

64,1 Transmission

Each communication mechanism shares a common need for a separate mailer process

used purely for message transmission. In addition to the general cost of each IPC

mechanism, the impact of communications to the mailer and the effect of transmission

over Ethernet are examined.

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 1 2 3 45 67 8 9 10 11 12 13 14 15 16 17 18 19 20

Issage Size (Kbytes)

Server

- Gateway

- Pentium

------Reality

Figure 6.10 Relative overheads imposed by a pipe on each test platform.

6.4.1.1 Pipes

Figure 6.10 shows the time taken to transfer messages with different sizes along pipes

on each platform used in the evaluation. Under QNX a pipe has a buffer size of 5

Kbytes, therefore when a message length exceeds a multiple of this buffer size, an

extra read () system call is required. This extra operation is reflected in the chart as

small jumps in transfer time at 5, 10 and 15 Kbytes. Despite having the faster CPU

clock speed, Server has the worst performance. This can be attributed to having a

slower internal bus speed than Gateway, whereas Pentium benefits from having a

247

much faster CPU. IRIX uses a pipe buffer size of 10 Kbytes but the test results are

too noisy to identify the relevant shifts in performance.

6.4.1.2 QNX IPC

Figure 6.11 shows a simple breakdown of the tasks performed by the PML in order to

send a message using QNX IPC. The administrative overheads include filling the

transmission buffer and, for remote communications, establishing and destroying a

virtual circuit. The time taken to complete the actual Send () system call is also

shown, including the time that the remote PML needs to receive the message and

unblock the sender. All message sends must be sent to the mailer via a pipe (section

5.3.5.4); the delay caused by this is also shown and is added to the other overheads to

produce a total send time. The proportion of time used by each of these tasks is

similar for each platform.

6.4.1.3 Latency

A comparison of the different QNX platforms used to run the prototype and their

impact on message transmission latency is shown in Figure 6.12. The plotted data

includes the latency introduced by the pipe. Figure 6.13 shows the difference in

latency between local and remote inter-process communications. Unsurprisingly, on

Pentium, communications with Gateway have the highest latency since it has the

slowest processor. At the other extreme, when examining the same properties on

Gateway, the longest delay is experienced when communicating with Server (Figure

6.13b). This result is forseeable since it is the slowest combination of CPUs within

the three systems.

There is, therefore, a large difference between the latency experienced when sending a

message to a local process and one on a remote node. On Pentium this magnitude

ranges from 6-30 times longer for a remote communication, whilst Gateway

experiences anything from 4-15 times greater delay.

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

0 2 4 	6 	8 	10 12 14 	16 18 20

ssage Size (Kbytes)

- Total

—SendO

- Administration

Pipe

8.0

RM

0.0

0 	2 	4 	6 	8 	10 12 	14

Nsse Size (lUrtes)

16 18 20

• 	Gateway

- Server

- Pentium

v 6.0 =
4,0

Figure 6.11 Deconstructed PML overheads for sending a message
under QNX (Server).

12.0

io.o T

Figure 6.12 PML message transmission latency between local processes
on the QNX platforms.

249

10.0

0.0

0 	2 	4 	6 	8 	10 12 14

Nss age Size (Kbytes)

16 18 20

40.0

130.0
b)

! 20.0

- Local (Gateway)

-To Server

-To Pentium

a)

35.0 T

30.0

25.0

520.0

. 15.0

10.0

5.0

0.0

0 2 	4 	6 	8 	10 12 	14 	16 18 20

Message Size (Kbytes)

Local (Pentium)

-To Gateway

-To Server

Figure 6.13 PML message transmission latency between remote processes on:
a) Pentium and b) Gateway.

6.4.1.4 TCP/IP

Figure 6.14 shows the time taken by each of the main stages to send a message using

TCP/IP (under both QNX and IRIX) to another process on the same node and an

absolute total which includes the pipe overhead. Establishment of a connection to the

destination process is the most expensive stage: approximately 11 ms on Gateway and

1 ms on Reality (shown as dashed lines). The default TCP transmit buffer size under

QNX is 7300 bytes and the default receive buffer size is 8192 bytes, therefore the

TCP buffers were set to accommodate the largest message size under QNX to avoid

unnecessary message segmentation. This action alone accounts for around 4 ms of

250

the total time required for buffer control. The IRIX buffer sizes default to 64 Kbytes

and were not modified for the test.

40.0

35.0

30.0

25.0

20.0 7

15.0

10.0

5.0

00 1 	 I

0 	2 	4 	6 	8 	10 	12 	14 16 	18 20

ssage Size (Kbytes)

IJI]

2.5

2.0

1.5

1.0

0.5

0.0

0
	

2 	4 	6 	8 	10 12 	14 16 	18 20

Message Size (Kbytes)

—Total

connect()

- write()

Buffer control

- 	Pipe

Total

- connect()

- write()

Buffer control

Pipe_______

Figure 6.14 PML message transmission times for TCP/IP: a) under QNX
(Gateway); b) IRIX (Reality).

The large performance difference between the QNX implementation of the TCP/IP

protocol stack and its own proprietary IPC mechanism is shown in Figure 6.15. The

reasons for poor TCP performance are discussed in section 6.4.4.

251

40.0

35.0

30.0

	

25.0 	
- TCP/IP

	

20.0± 	-

	

15.0
	 —QNXIPC

10.0

5.0

0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1\4ssage Size (Kbytes)

Figure 6.15 Effect of protocol on local PML transmission time (Gateway).

6.4.2 Reception

The tests used in this section are based upon the same methodology used in the

previous section for message transmissions and are decomposed into their constituent

tasks. Calculations are simplified, however, since the latency introduced by a pipe is

not present when receiving a message.

6.4.2.1 QNX

There are three basic tasks that are performed when receiving a message using QNX

IPC: actual message reception into the receive buffer, unblocking the sender and

extracting the message from the buffer. To minimise the transmission latency, the

sender is unblocked directly after the buffer has been filled. The average time for this

sequence of events is shown by a dashed line. Figure 6.16 shows how much of the

total receive time is used by the administration overheads. A slight trend towards

longer durations is visible in the administration tasks as the message size increases.

In a similar manner to message transmission, receiving a message from a remote

process takes a lot longer than from a local process (Figure 6.17): on Pentium

approximately 6 times longer.

252

2 	4 	6 	8 	10 12 14 16 18 20

Nssage Size (Kl'tes)

0.50

0.45

0.40

0.35

10.30
0.25

0.20

0.15

0.10

0.05

0.00

0

Local

FromGateway

From Server

°°

-----Total

0.15 	 -Receiveo&Reply()

0.10 	
-Administration

0.05 1
000 	 1

	
IIIl

0 	2 	4 	6 	8 	10 12 14 16 18 20

Message Size (Kl'tes)

Figure 6.16 Breakdown of a PML message receive under QNX (Gateway)

Figure 6.17 Comparison between receiving messages from local and remote
processes (Pentium).

253

a)

25 T
20 1
15

10

I 	II 	III 	II 	1111111

0 	2 	4 	6 	8 	10 	12 	14 	16 18 20

Message Size (Kbytes)

- Polled Receive

- Blocked Receive

- selectO

accept()
 -- - readO -

b)

10

9

8

7

5

1-4

3

2

0

- Polled Receive

- Blocked Receive

- sect0

accept()

- 	rad()

0 	2 	4 	6 	8 	10 12 14 16 18 20

Nssage Size (Kbytes)

Figure 6.18 PML message reception using TCP/IP: a) QNX (Gateway);
b) IRIX (Reality).

6.4.2.2 TCP/IP

Figure 6.18 depicts the duration of the major stages required to receive a message

using TCP/IP through polling and blocking. When blocking for a message, the

accept () call is issued immediately; when a connection is made, the message is

spooled into the receive buffer and then the message is extracted from it. For a polled

receive, the select () system call is used to check for pending connections and

254

accept () is only called when there is a connection waiting. The chart deceptively

shows that a blocked receive is faster than a polled receive since it does not include

the (potentially very long) period when the process is waiting. Under QNX, the

receive buffer was increased in size in order to accommodate the largest possible

message. Again we see that Reality outperforms Gateway by approximately 10 times

for a blocked receive and 2-3 times for a polled receive. The unusual sharp decrease

in performance experienced at about 9 Kbytes with IRIX TCP/IP is consistently

repeatable. The only explanation that the author can offer is that this is the result of

some internal buffering in the IRIX socket daemon and may be connected to the poor

TCP/IP performance experienced (section 6.4.4).

6.4.3 Throughput

A useful metric is the amount of data that can be transmitted in any given period of

time - throughput. This section discusses two forms of this metric: local throughput

which refers to data transfer within a machine and network throughput which refers

exclusively to data transfer between machines.

6.4.3.1 QNX

Comparison of local throughput is straight forward when all platforms use the same

operating system. The maximum throughput at a given point can be calculated as

follows:

maximum throughput = (1000 I (send time - receive time)) *
message size) / 1024

Using QNX IPC, it is necessary to subtract the time it takes the receiver to unblock

the sender from the actual send time (not including administration overheads). Then it

is just a matter of converting the result into Mbytes per second. Figure 6.19 shows

the maximum amount of data that can be sent within each system based upon message

size. If throughput was limited by bus speed we would expect to see Gateway slightly

outperforming Server and an increased throughput for Pentium with its PCI bus. As

it stands, however, internal throughput seems to be compute bound. The actual

255

throughput will be less if the sender and/or receiver are not getting as much CPU as

they need.

I
12.0

'E
4.0

2.0

0.0

Pentium

- Server

- Gateway

0 	2 	4 	6 	8 10 12 14 16 18 20

Message Size (Kbytes)

Figure 6.19 Maximum local throughput within each node using QNX IPC.

0.8

0.7

0.6

0.5

0.4

. 0.3

0.2

0.1

0.0

Pentium-Server

Pentium-Gateway

Server-Gate way

0 	2 	4 	6 	8 10 12 14 16 18 20

Nssage Size (Kbytes)

Figure 6.20 Maximum QNX network throughput between node pairs.

All of the QNX platforms share the same physical LAN and each has the same make

of network card connected to the same type of internal bus. Therefore, it should be

possible to estimate maximum network throughput using the same technique used for

local throughput. Figure 6.20 represents the estimated maximum network throughput

256

between each possible node pair. The calculation was performed each way on the

link, e.g. Pentium to Server and Server to Pentium, and the result averaged to simplify

this chart. The results reinforce the conclusion that throughput is compute bound: the

two fastest machines have the highest throughput, followed by the fastest and slowest

and then the two slowest machines.

The uncharacteristic drop in performance when the message size reaches 4 Kbytes is

caused by a large number of out-of-window collisions being generated by faulty

Ethernet cards. In fact, throughput should rise dramatically as message size increases

and start to level out at around 6 Kbytes. This problem had not been noticed until

these tests were run.

The largest message transfer gives Pentium a network throughput of 0.762

Mbytes/sec which may also be expressed as 6.096 Mbps. On a 10 Mbps Ethernet

network this is a high utilisation rate which may be attributed to QNX's lightweight

protocol and few collisions due to the controlled manner in which the tests where

executed. This figure is, in fact, 0.1 Mbytes/sec lower than the manufacturer's own

performance data for a 20 Kbyte message and is almost certainly due to the

aforementioned problem.

6.4.3.2 TCP/IP

The local message passing throughput for QNX TCP/IP is on the same scale as that of

QNX IPC network throughput. Reality, however, matches the top QNX message

passing performance (Figure 6.21). A meaningful value for the network throughput

between these two machines could not be obtained because they are located two miles

apart and are separated by two Ethernet LANs, a large FDDI MAN and many routers.

The traffic on these networks is generated by machines scattered throughout the

university.

257

12.0

10.0

8.0

6.0
V

. 	4.0

2.0

0.0

0 2 	4 	6 	8 	10 12 14 16 18 20

Message Size (KJ'tes)

Gateway Throughput

-Reality Throughput

Figure 6.21 Maximum TCP/IP message passing throughput for each platform.

0

0

8

7

6

4

Polled Receive

- Blocked Receive

- select()

acceptO

reado

2 	4 	6 	8 	10 	12 	14 	16 	18 	20

1frssage Size (Kbytes)

Figure 6.22 PML message reception test for TCP/IP on Reality with TIME-
WAIT build-up.

6.4.4 TCP/IP Performance

The way that TCP is used by PML has highlighted a problem with this protocol. A

connection passes through various states during its lifetime, the last of which is

TIME-WAIT. The connection spends long enough in this state to ensure that the

remote end has received the acknowledgement of the connection termination request

and that all segment4 duplicates have expired (Postel, 198 Ia). This period is twice the

Maximum Segment Lifetime (MSL) which is the time a TCP segment can exist in the

internetwork system. MSL has been arbitrarily defined as 2 minutes although, as

noted by Jacobson et al. (1992), TIME-WAIT has more to do with the round-trip

time for the connection than anything else. Regardless, if TIME-WAIT is not long

enough it is possible for old duplicates to infect a new connection (Braden, 1992).

Jacobson et al. have noted that this state could cause an indirect performance problem

if an application repeatedly closes one connection and opens another at a very high

frequency. The current limit of available TCP ports on any host is 2 16 . PML

establishes a connection every time a message is sent, consequently there is a rapid

build-up of connections in the TIME-WAIT state. For simulations with many entities

this can soon produce thousands of connections in the time-out phase. The results

shown in Figure 6.18 were obtained by ensuring that the benchmark for each message

size started when there were no connections still timing out. Figure 6.22 shows what

happens if connections are made with others still in time-out. When the message size

is small the benchmark program has a short execution but creates a lot of connections.

Up until around 8 Kbytes this happens at a rate faster than time-outs occur, but

afterwards more connections time-out than are established which results in increased

performance. Under QNX the time-out period is around 30 seconds whilst IRIX uses

a period around twice that which means that this problem is less pronounced with

QNX.

The only way of improving performance using TCP is to maintain fixed connections

between key processes but at the price of increased memory and computational

overheads on the part of the PML (section 5.3.5.3). Before any decision is taken on

whether or not to pursue this solution, it would be prudent to investigate the

potentially more rewarding problem of a reliable datagram service (section 6.6.3).

' The user message data is broken into segments by the TCP when sent along a connection.

259

6.4.5 PML Summary

The tasks of sending and receiving messages using two IPC mechanisms have been

broken down into their constituent parts and analysed. QNX IPC is very lightweight

and subsequently outperforms TCP/IP when running under QNX. The faster

processing power available to the IRIX implementation shows that this protocol can

be used in systems of this nature. However, its performance is rather unpredictable,

especially when there is a high connection turnover rate. It would seem, therefore,

that TCP/IP is best used for communications between nodes in a USS and that an

alternative local IPC mechanism is used, e.g. based upon shared memory.

When lightweight threads become readily available it will remove the need for the

physically separate mailer process and thus the latency introduced by the pipe. This

would improve transmission times at the most by between 0.5 ms and 3.5 ms

depending on the platform.

The dramatic difference between message passing performance locally and remotely

using QNX IPC was shown in Figure 6.13. This is due to a throughput difference of

over 10 times and emphasises the importance of reducing to a minimum the amount of

data that is sent between machines. In this test case the machines were only located 1

metre from each other, if they had been further apart, e.g. separated by routers, the

results would have been even worse.

6.5 Simulation Execution

A UM provides a number of services, most of which serve to progress the simulation

as fast as possible. There are a number of factors that dictate performance:

• Number of entities.

• Number of managers.

• Number of monitored components.

• Frequency of state updates from each entity.

• Size of the state updates.

260

The contributions made by each of these factors is application dependent and can vary

quite substantially. For example, an architectural walk-through may have a large

number of entities but they will be predominantly static and therefore produce few

state updates. On the other hand, a highly dynamic simulation such as birds flocking

will require constant state recalculation. To fully explore all of the possible options

would take a very long time and it is unclear what benefits such a varied and non-

specific analysis would produce, therefore a more pessimistic approach has been

taken.

The core sequence of events for one simulation cycle are as follows:

Send an update notify message to each entity and manager in the system.

Each entity sends its state updates to its local UM.

The UM forwards the state messages to interested managers (and other

UMs).

When all state updates have been sent, each entity sends an update complete

message to its local UM.

When all entities have completed the manager is informed and performs its

processing.

The UM waits for all managers (and slave UMs) to finish their work before

starting again at stage 1.

The factor that will have the most impact on performance is the amount of state

updates that the UM must handle. This is directly related to the number of interested

components and managers in the system. Through examination of a worst-case

scenario, a more insightful and stable picture is presented of an architecture that

attempts to reduce state flow as much as possible.

261

70

60

50

40

.30

20

10

0

0 5 10 15 20 25 30 35 40 45 50 55

Number of Entities

a)

S irmlation

Update

- Idle

140

120

100

80

jZ 60

40

20

0

0

Sülation

- Update

-- State

—Idle

b)

5 10 15 20 25 30 35 40 45 50 55

Number of Entities

Pentium: 0 1%'knagers, 1 Mnitor

Pentium: 1 Manager, 1 1%bnitor

Pentium: 2 Nnagers, 1 Nnitor

c)

150

100

50

Simulation

- Update

State

—Idle

0 	TT i 	i 	I

0 5 10 15 20 25 30 35 40 45 50 55

Number of Entities

Figure 6.23 Activity breakdown of a UM when there is one monitored
component and: a) no managers; b) 1 manager;
C) 2 managers (Pentium).

MIN

To test the affects of state updates, each node was stressed using increasing numbers

of entities, each of which modified its state every simulation step and was monitored

by an increasing number of managers. The majority of the charts in this section show

the duration of the simulation step as it is affected by entity numbers. Under QNX,

the number of entities that could be used was limited by the amount of memory

available on each node. The memory consumption varied depending on the amount of

state information each entity had and the number of managers in the simulation that

were monitoring that state. The universe definition consisted of one and two

properties of integer type for the one and two monitor cases respectively. The sizes

of the actual messages used in the tests were very small, averaging < 100 bytes. This

is because the state transmissions for the monitored components only contained data

for one or two integers. If the simulation protocol overheads can be established then

the impact that an increased state size would have on performance can be

extrapolated from the knowledge of its structure (section 6.3) and the increased

message sizes (section 6.4, section 5.3.3). The source code for the benchmark

manager and entity used in the tests can be found in Appendix B.

Several configurations of a USS were examined:

Single node (all nodes were tested in this configuration).

Two nodes with the Pentium occupying the master node role and

Server acting as the slave.

Three nodes - the same as configuration 2 but adding Gateway as

another slave.

The test results obtained with these configurations are presented below and are

followed by an examination of the entity migration mechanism.

6.5.1 Single Node

When there are no managers in a system, there is not a need for entities to send state

updates. Consequently only update notification/complete messages are sent to the

RM and update messages transmitted to each entity. The idle time shown in Figure

263

6.23 represents the time spent waiting for the entities to inform the UM that they have

completed their update. When a special manager is introduced and registers interest

in one component (1 monitor) a considerable time is spent relaying each entity's state

to it. This does not, of course, affect the amount of time spent idle but does reduce it

relative to the total simulation step duration. When there are two managers interested

in the same component the state must also be sent to that manager (Figure 6.23c)

which, in this case, means more time is spent relaying state than sending the update

messages. The time needed to send the update complete messages increases slightly

with each manager but is so small that it barely registers on these charts and is

therefore not shown.

Figure 6.24 shows equivalent charts where there are two monitored components.

When the case with a single manager and two monitors is compared with that of a

single manager and one monitor, it is clear that the time spent sending state

information has doubled. The same is true for the equivalent cases with two

managers.

Two different perspectives on these results are shown in Figure 6.25: firstly in terms

of simulation steps per second and, secondly, as a workload relative to the case with

no managers. An extra case is presented here, that of three managers and I monitor

whose performance is matched by the 1 manager, 2 monitors case. This may be

explained by examining the messages sent in each circumstance.

If there are x managers, y monitored components and z entities, then yz state updates

are sent by entities to the UM and xy*z state messages received by managers in total

each step. For 10 entities this results in 10*1 messages originating from entities and

3*10* 1 messages sent to managers in the former case - a total of 40 message

transmissions. Applying the equations to the latter case, 20 state messages are sent by

entities and 20 messages received by the manager. Therefore the same amount of

bandwidth (40 state messages) is being used every simulation step resulting in the

same simulation rate. The slight performance discrepancy visible in the charts can be

attributed to the different numbers of update notification/complete messages that are

RMI

sent in each case and the difference in total manager overheads. In this case, state

transmissions are the largest performance limiting factor.

1

!JJ

a)
100

50

0

Pentium: 1 Manager, 2 Nnitors

o s 10 15 20 25 30 35 40 45 50 55

Number of Entities

Simulation

—Update

State

—Idle

Pentium: 2 Managers, 2 l'4,nitors

03

LU

250

! 200
• 	150

100

I

Simu1ation

—Update

------State

- Idle

0 5 10 15 20 25 30 35 40 45 50 55

Number of Entities

Figure 6.24 Activity breakdown of a UM when there are two monitored
components and: a) 1 manager; b) 2 managers (Pentium).

The UM's idle time is the sum of the total time spent polling for an incoming message

(because there are still pending internal events in the action queue) and the time spent

blocked, waiting for a message since there is no other work to do. Figure 6.26 shows

this idle period as a percentage of a simulation step (which gets longer as the number

of entities increases). For small numbers of entities the amount of time spent idle is

high but it soon settles into a consistent rate as the number of entities and system

workload increases. When there is no state to forward, the IJM is idle for around

265

b)

100
90
80
70
60
50

30% of the time, but when there is one or more managers in the system, the UM idles

approximately 16% of the time.

1000

f
100

a) 	
j

10

OMan., lMtr.

—IMan.,lMtr.

---2Man.,1Mtr.

—3 Man., lMtr.

1Man.,2Mtr.

—2Man.,2Mtr

0 5 10 15 20 25 30 35 40 45 50 55

Number of Entities

0 	I 	I 	i 	I 	I 	I

0 5 10 15 20 25 30 35 40 45 50 55

Number of Entities

0 Man., lMtr.

—lMan.,lMtr.

2 Man., 1 Mir.

—3 Man., 1 Mtr.

1Man.,2Mtr.

—2Man.,2Mtr.

Figure 6.25 Effects of various factors on simulation rate: a) steps per
second; b) percentage of basic performance (Pentium).

All of the results presented here are from the tests performed on the Pentium

platform. The results for the other platforms have the same relative proportions but

are on a smaller scale. Figure 6.27 shows how the baseline UM performance (0

managers, 1 monitor) compares with the equivalent configuration on Gateway.

Pentium consistently performs on average 3 times faster than Gateway. Server's

results (not shown) are very similar to that of Gateway's, reflecting their comparative

computational power. Complete charts may be found in Appendix E.

FM

MIJ

50

. 40

30

20
E

0
c.

' 	10

----0Man., lMtr.

—lMan.,lMir.

—2 Man., lMtr.

3Man., IMtr.

lMan.,2Mir.

—2Man.,2Mtr.

0 5 10 15 20 25 30 35 40 45 50 55

Number of Entities

Figure 6.26 Percentage idle time in the UM for each test case
(Pentium).

350

300

250

200

& 150

100

50

0

Pentium

— Ga tewayJ

0 	5 	10 	15 	20 	25 	30

Number of Entities

Figure 6.27 Comparison of Pentium and Gateway baseline
performance.

6.5.2 Two Nodes

To examine the performance effects of a multi-node USS, the same tests used in the

single node trials were repeated with the entities distributed amongst the nodes. The

decision of whether to allocate an entity to one node or the other was based upon a

CPU rating derived from the single node results obtained previously. For example, in

the case with no managers, the total simulation time for 31 entities on Pentium is —38

267

ms, whereas this same time is used by 9 entities on Server. This would give a CPU

rating for Pentium of just over 3 times that of Server's, a figure backed up by the cu
performance figures given in Table 6.1.

60

50

40

4o 30

1 20

10

0

05

60

50

40

30

20

10

0

05

9

8
_7 	.e

6

4 :
3

0
2z

0

10 15 20 25 30 35 40

No. of Entities in System

35

30 w,

25

20 	 MUM Simulation

15 	—Idle

o -- Update
10

Z - No. of Entits
5

0

10 15 20 25 30 35 40

No. of Entities in System

SUM Simulation

—Idle

Update

Waiting

—No. of Entities

Figure 6.28 Activity breakdown of UMs in a master-slave configuration
with no managers: a) SUM (Server); b) MUM (Pentium).

In this and subsequent multi-node tests the fastest node was used to run the MUM,

the activity breakdown of which may be found in Figure 6.28b. The total simulation

time for each node is identical since the SUM must wait for the MUM to send it an

update notification message before it begins each simulation step. The stepping effect

is caused by the changes in entity distribution which is measured by the scale on the

right hand side - at most 40 entities were used system-wide. The somewhat irregular

shape and downward tilt of the steps is a reflection of the error in the distribution

RM

algorithm. That is, whereas an optimum distribution may require fractional parts of an

entity to be distributed in order to keep the workload exactly balanced, only whole

entities can be moved.

180
160
140

120

!ioo
180

60

40

20

0

180

160
140

-120

100

80

60

40

20

0

8
-7

6

5 .

4

3
0

22:

35

30

25

20

15

10
2:

5

SUM Simulation

—Idle

Update

Waiting

- State

—No. of Entities

0 5 10 15 20 25 30 35 40

No. of Entities in System

MUM Simulation

—Idle

- Update

- State

—No. of Entities

0 5 10 15 20 25 30 35 40

No. of Entities in System

Figure 6.29 Activity breakdown of UMs in a master-slave configuration
with I manager on the master node: a) SUM (Server); b)
MUM (Pentium).

A large portion of the SUM's time is actually spent waiting for the MUM to start the

next simulation step - 14 ms in this case. The SUM notifies the MUM that it has

completed its processing for that step and, when all the MUM's local processes have

finished as well, the MUM sends the next update complete message. The waiting

time is therefore the sum of two message transmission latencies and some processing

with the exception of one condition. It is true that a significant portion of the idle

269

time can be attributed to the waiting period. However, it is possible for the SUM to

wait for a period greater than its idle time if the SUM should be starved of CPU - a

situation that may occur in a heavily loaded simulation. This aside, if the waiting

period is subtracted from the simulation time series, the product is the equivalent of a

single node simulation.

The same test conditions were used to introduce a manager on the node with the

MUM and the largest number of entities (Figure 6.29). This reduces the state updates

sent over the network to a minimum, i.e. the few entities on the SUM send them to

the MUM. Initially, when there are no entities on the slave node, performance is

identical to the previous case. However, as soon as an entity is allocated to the slave

the latency of a state update is incurred. This, added to the additional message

processing on both nodes significantly increases the duration of the simulation step.

The effect of placing the manager on the slave node rather than the master node may

be seen in Figure 6.30. When there are 40 entities in the system, 31 state updates

must be sent across the network to the SUM and then forwarded to the manager. The

master's chart (Figure 6.30b) shows that the MUM spends most of its time idle,

waiting for the slave to process all the state information. The chart is somewhat

deceptive, however, since the state time does not include the message transmission

latency which would put it close to the total simulation time and reduce the idle time

appropriately. Introduction of a second manager on the master node increases total

simulation time by about 100 ms (when using 40 entities) since state information is

now also sent from slave to master.

It is clear, therefore, that not only is computational power an important consideration

when distributing entities 5 , but also the inter-node communication overheads and the

location of special managers. With the technology used in this prototype, the network

is by far the most limiting factor.

Without resource dependencies, such as input devices.

270

450

400

350

300

!250

• 200

150

1(X3

50

0

05

450

400

350

300

!250

200

150

too
50

0

05

9

8
-, V

6

5 .

4

3

2Z

0

10 15 20 25 30 35 40

'4o. of Entities in System

35

30 w,
V

25

20

'5ø

10
z

5

0

10 15 20 25 30 35 40

No. of Entities in System

SUM Simulation

—Idle

Update

- State

Waiting

No. of Entities

MUM Simulation

- Idle

Update

State

- No. of Entities

Figure 6.30 Activity breakdown of UMs in a master-slave configuration
with 1 manager on the slave node: a) SUM (Server); b) MUM
(Pentium).

6.5.3 Three Nodes

Figure 6.31 shows the task durations on three nodes as the simulation is distributed

amongst them. In contrast to the equivalent case with two nodes (Figure 6.28), the

wait time has risen to 20 ms and the overall simulation time by 10 ms. The MUMs

largest workload has been lightened by 8 entities which have been spread between the

two SUMs. The added processing time incurred by the extra node has caused the

MUM's increase in simulation and wait times.

271

When a manager is added on the master node, the total simulation step time degrades

to a maximum of 218 ms which is -40 ms more than the equivalent case with 2 nodes

(Figure 6.29). However, as Figure 6.32 shows, when the manager is allocated to a

slave node, the overall system performance is identical to the master-slave case

depicted in Figure 6.30. On an individual basis, the first SUM (on Server) is

managing one less entity than previously which results in slightly lower state

management times.

Unlike the other slave node, the SUM's waiting period is greater than its idle time,

indicating that there are other processes on that node that have more urgent need of

the CPU. The idle time is smaller because some of the time that the SUM would have

spent idling was consumed when it was waiting for its next timeslice. Therefore,

despite communication latency hindering performance, this three node configuration,

with a manager on Server, is as efficient as the master-slave case presented in the

previous section.

272

- ----- SUM2 Simulation

Idle

Update

Waiting

—No. of Entities

0

70

60

50

40 1:
20

10

0

b)

a)

70

60

.50

!40

• 30

20

10

0

05

8
7

6n

4

3 3

2
1 z

0

10 15 20 25 30 35 40

No. o(Entities in System

SUM1 Simulation

—Idle

Update

Waiting

—No. of Entities

05 10 15 20 25 30 35 40

No. of Entities in System

25

20n

15 ----- - - MUM Simulation

—Idle
10

Update

5 —No. of Entities

0

0 	5 10 15 20 25 30 35 40

No. of Entities in System

Figure 6.31 Activity breakdown of UMs in a master and 2 slaves
configuration with no manager: a) SUM! (Server);
b) SUM2 (Gateway); C) MUM (Pentium).

C)

70

60

50

40

30

20

10

273

450

400

350
j300

5250

200

150
100

50

0

0 5

a)

450
400

350
300

5 250

200

- 150
100

50

0

0

b)

C)

450

400

350

300
250

200

150

100

50

0

0

8

7

4 : 3

2
1 z

0

10 15 20 25 	30 35 40

No. of Entities in System

p7J t 8

J7:2
6

0

10 15 20 25 30 35 40

No. of Entities in System

25

20

15

10.

50

0

10 15 20 25 30 35 40

No. of Entities in System

SUM Simulation

—Idle

- Update

- 	Waiting

State

- No. of Entities

SUM2 Simulation

—Idle

--Update

Waiting

State

No. of Entities

MUM Simulatio

—Idle

Update

State

- No. of Entities

Figure 6.32 Activity breakdown of UMs in a master and 2 slaves configuration
with a manager on slave node Server: a) SUM! (Server);
b) SUM2 (Gateway); c) MUM (Pentium).

274

6.5.4 Entity Migration

In order to demonstrate entity migration it is necessary to have some way of

estimating resource usage for each entity. A measure is not meaningful unless it is

measured with reference to a fixed time span, i.e. a simulation step. Since full

scheduling and RM functionality had not been implemented, only CPU usage was

monitored and a suitable step duration threshold specified (sections 5.6.5, 5.7.3).

Every step the RM obtained the current CPU usage for each process on the node and

if the total consumption for all entities exceeded the threshold, the most expensive

entity was volunteered for migration. The processor usage for the RM and the UM

was not included in the total to simplify the charts. Unlike the entities used in the

previous tests which had a uniform workload, a random element was programmed

into each entity which would trigger a gradual increase in CPU usage. After peaking,

this consumption would diminish until the entity's original workload level had been

reached. In all cases a total of 40 entities system-wide was used and the threshold

was set to 65 ms (with the intent that 70 ms would not be reached), beyond which a

migration is required. The MUM does not actively load balance in these tests which

rely on the passive mechanism triggered by a threshold violation.

Figure 6.33 shows two time series which represent the workloads of the two nodes in

the test system and the number of entities present on each node (measured using the

scale on the right). The peaks on Server are much higher since it has the slower CPU

and at the 30th step exceeds the threshold resulting in a migration. The only place for

the entity to go is the master node (Pentium) which already has an entity on the

downward slope of a brief workload increase. Both nodes progress as other entities

experience increases in workload. The double peaked feature at step 175 represents

the product of the workload of two entities, one decreasing, the other increasing.

After 250 steps, the nodes have gone from the same starting workload to one that

differs by 6 ms. This does leave room for moving a few entities around to improve

the load balance if the MUM was actively load balancing.

275

80

70

rA 60

50

I
I-

40

Cl) 30

20

10

0

Pentium Workload

(Left scale)

- Server Workload

(Left scale)

Pentium Processes

(Right scale)

Server Processes

(Right scale)

34

30

26.

=
22

18

14

10

6

50 	100 	150 	200

Simulation Step

Figure 6.33 Single entity migration within a two node system
(Pentium/Server).

80

70

60

50
I

I 40

Cl) 30

20

10

0 50 	100 	150 	200

Simulation Step

34

30

26

22
I

18

14

10

6

250

Pentium Workload

(Left scale)

- 	Server Workload
(Left scale)

Pentium Processes

(Right scale)

Server Processes
(Right scale)

Figure 6.34 Multiple entity migration within a two node system
(Pentium/Server).

Another example of entity migration on two nodes is shown in Figure 6.34 where two

entities on Server cause the threshold to be exceeded. This time an entity also pushes

Pentium over the edge at step 120 and it is migrated to the slave node.

276

MOM 24

22.

20

18 •
a)

0
12 Z

- 10

250 200 50 	 100 	 150

Simulation Step

Pentium Workload

(Left scale)
- Server Workload

(Left scale)

-Gateway Workload

(Left scale)

Pentium Processes

(Right scale)

- Server Processes

(Right scale)

Gateway Processes

(Right scale)

70

60

50

40

Z20 	- -----

10

0

10 	 10
0
	

50 	 100 	 ISO
	

250

Simulation Step

h)

c 60

50

40

30

20-

90

80

70

C
-- 12 Z

22

20

18

16

14 o

24
Pentium Workload

(Left scale)

-Server Workload

(Left scale)

-Gateway Workload

(Left scale)

Pentium Processes

(Right scale)

Server Processes

(Right scale)

Gateway Processes

(Right scale)

Figure 6.35 Multiple entity migration within a three node configuration: a) migration between slaves
only; b) migration between all nodes.

The charts in Figure 6.35 show entity migrations occurring in a three node system. In

Figure 6.35a two migrations are required from Gateway and in both cases the chosen

target node is Server. Each time the target node's CPU also exceeds the threshold,

this is due to the fact that the state construction performed for each entity directly

after migration is more expensive than the update function. For this reason, after a

process has been created a four step period 6 is used to wait for the CPU consumption

to settle down to normal levels. If this hysteresis period was not in force then the

target node would immediately reject the new entity; an action which could be

repeated any number of times resulting in the entity bouncing between nodes and thus

destroying system performance. The second migration shown in Figure 6.35b is from

Pentium to Gateway which is clearly a mistake on the part of the load-balancing

algorithm. Even after the resting period, CPU consumption is far too high and the

entity is migrated to Server.

The workload patterns in these tests were contrived but clearly demonstrate the

migration mechanism. It is also clear that more comprehensive information must be

used to determine the target node in order to avoid misallocations, i.e. a full RM

implementation is needed (section 5.7). If some allowance was made for a short burst

of CPU when the new entity is constructing, it would be possible to remove the

current four step settling period.

6.5.5 Process Activity

Currently the time between starting a process and it reaching alive status is more in

the region of hundreds of milliseconds rather than a few milliseconds. The most

intensive part of this time is the creation of the main component process and the

mailer. Following this the allocation of the UPID must take place and then the

process' internal initialisation which can vary depending on its purpose, i.e. manager

or entity. The actual creation time for a process also depends on the number of other

processes starting at the same time. For example, when initiating a simulation with 40

6 Discovered by empirical means.

IM

entities, all entities and managers may not reach an active state until 30 seconds after

the UM was started. Creation of a process on a slave node by the MUM is further

confounded by the communications latency.

From the UM's perspective, the termination of an entity is quicker because the actual

process termination is faster and the administration overheads are comparable with

creation, e.g. informing managers of an entity's death.

6.5.5.1 Benchmark Entity

An integral part of the entity process creation/termination is the execution of that

entity's specialised construct and destruct functions respectively. The duration of

these functions in the entity that was used in all but the migration benchmarks is

shown in Figure 6.36. Execution of the entity's destruction routine takes longer than

construction because constructing a UML component generally takes less time than

destructing it (section 6.3.5). This does not hold true for Reality in this case,

probably because the unoptimised code for construction is actually slower than the

operations needed to free memory.

Approximately 38% of the time that an entity uses when updating is spent sending the

state data to the UM. The remainder of the time is used by the invocation of the

entity's update function prior to the state transmission which, in this case, merely

toggles the flag to indicate that the component has been modified (although its value

is not actually changed).

Measuring the performance of an entity with the current prototype is somewhat

problematic since the duration of any given task is totally dependent upon scheduling.

As the number of entities grows the variances in measured duration become more

profound; despite getting the same amount of CPU each time. The best way to

measure an entity's performance, therefore, is to restrict the simulation to one entity

such that it is unlikely to be interrupted during measurement. Figure 6.37 shows that

the entity used in the benchmarking is idle for —79% of the simulation step under

QNX, the update taking at the most a few milliseconds. Again, due to poor TCP/IP

279

performance Reality is already idling at 99% along with all the other system

components. If the number of entities in the simulation was increased we can expect

to see an increase in both the time it takes to send a state update and the idle time of

the process.

Reality

Gateway

Server

Pentium

Construct

• Destruct

o Update

o State

0 	I 	2 	3 	4 	5

Time (ms)

Figure 6.36 Construct/Update/Destruct times for the entity used during
benchmarking.

Reality

Gateway

Server

Pentium

• Update%

o Idle %

0.1 	 I 	 10 	 100

Percentage of Simulation Step

Figure 6.37 Average task breakdown for a single entity.

6.5.5.2 Benchmark Manager

In the same way that most of the entity's life is spent idle, so is that of the manager

used in the tests when there is only one entity in the simulation (Figure 6.38). The

ratio of processing state updates to the total step duration will always be small,

because a manager only performs its work at the end of the step when all entities have

WE

sent their updates. With just one entity the manager is idle around 88% of the time

under QNX, but an increase in the number of entities will increase the time spent

processing updates, the step duration and the idle time.

Reality

Gateway

Server

Pentium

U Step

Oldie

State Updates

0.01 	0.1 	I 	10 	100 	1000

Tine(ms)

Figure 6.38 Activity breakdown for the benchmark manager.

6.5.5.3 Resource Manager

The most intensive activity that the current RM performs is obtaining the CPU usage

of each process on its node. The basic overheads specified in Table 6.9 represent the

cost of monitoring itself and the UM; the costs of checking CPU usage for an entity

or manager is also given. Usage of the PML mailer process is included in the

calculated resource ratings. It is clear that this process is quite computationally

expensive if performed every simulation step - as it was in the migration benchmarks.

However, the current version does not attempt to perform any usage predictions that

may be used to reduce the frequency with which this monitoring is required.

Overheads Pentium Server Gateway

Basic (ms) 5.72 20.85 19.17

per Process (ms) 0.8 2.705 3.84

Table 6.9 Time penalties incurred when RM monitors CPU usage.

6.5.6 Simulation Execution Summary

This section has concentrated on the performance of the USS as a whole. Each of the

test platforms, with the exception of Reality, were examined as single node systems.

This provided a basis for evaluating performance when they were combined in two

and three node systems. Although the same tests were performed on Reality and

Gateway using TCP/IP, due to the problems with its use, each process spent 99% of

their time waiting for messages. This issue is dealt with in section 6.6 which looks at

improving the prototype's performance.

It was found that the most limiting factor in a distributed configuration was the

network latency and that it had a substantial impact on performance. By carefully

allocating processes to nodes, a three node configuration was shown to produce the

same performance as an equivalent two node configuration. However, for the same

number of entities this was still many times slower than simulating all the entities

locally. This is not a common situation since the entities in question did no real work

and used little memory. Given computationally more expensive or physically larger

entities, distribution becomes a necessity rather than a luxury.

Often entities will consume different amounts of resources at different times which has

the net result of producing a variable node workload. By migrating entities from one

node to another, the available resources may be utilised to the maximum. To test the

migration mechanism, multi-node systems were stressed with a number of entities,

each with a variable computational workload. Finally, it was shown that it is possible

to monitor resource usage and move entities in order to keep the system workload

relatively evenly balanced.

6.6 Improving Performance

Based upon the knowledge gained from the analysis of the prototype presented in this

chapter, it is clear that there are a number of improvements that can be made.

282

6.6.1 Message Elimination

One of the most limiting aspects of the current implementation is the use of point-to-

point communications between processes, especially the UM and its entities. Figure

6.39 indicates the percentage performance increase that would be experienced if the

update notification messages could be sent to all entities simultaneously rather than

sequentially, i.e. an inter-process multicast. This was calculated by replacing the usual

linear increase of time for the update task with the time taken to update a single

entity; all other overheads were left untouched. The figure shows that a multicast

method would produce greater performance benefits as more entities are added to the

system. If the chart was extended by testing the method with more entities the

performance increase would remain about 150%. The overall effect is not as dramatic

with those configurations that transmit more state information. Also, the impact is

diminished because each entity must still inform the UM that it has completed

updating every simulation step.

However, use of both the update notification and complete messages within a node is

actually mimicking the behaviour of a deadline scheduler. When the scheduler

triggers the entity to start processing, this may be taken as a cue to begin updating.

After sending any state updates that were necessary, the entity would reach its

deadline and this would indicate to the UM that the entity had finished updating.

Therefore the actions that are currently performed explicitly with messages would be

replicated implicitly by the nature of the scheduler. The greater the number of

entities, the more time saved each step by eliminating the update complete message

(Figure 6.40).

Nw

160

140

1 120
100

80

60

40

OMan., lMtr.

—lMan.,lMtr.

----2Man., lMtr.

—2Man.,2Mtr.

0 5 10 15 20 25 30 35 40 45 50 55

Number of Entities

Figure 6.39 Potential performance increases with a multicast update (Pentium).

im

Foo

&150

go

DO

Cunt

- No Update Notification

-- & No Update Complete

0 S 10 15 20 25 30 35 40 45 50 55

Number of Entities

Figure 6.40 Increases in simulation rate when eliminating both update control
messages: 0 Managers, 1 Monitor (Pentium).

6.6.2 Shared-Memory IPC

QNX IPC essentially copies a block of memory (the message) from one process'

address space into another, therefore implementation of a shared memory based IPC

protocol is unlikely to show much improvement. This is not the case when compared

against the burden of using TCP/IP for local communications. The same simulation

combinations executed on Gateway when using QNX IPC are a lot faster than when

using TCP/IP on the same machine, e.g. 24 times for 1 manager/1 monitor, and 34

times for 2 managers/1 monitor. The idle rates of processes using TCP/IP on both

Reality and Gateway are very similar (-99%) and a shared-memory IPC system will

Likely show similar performance to that of QNX IPC. Given this, it is not

unreasonable to use this speed-up factor as a rough indicator of the performance

increase we could expect to see on Reality if shared-memory IPC was adopted.

Figure 6.41 presents a comparison between the predicted performance and that of the

fastest QNX node using the native IPC. Saying any more than that the two machines

now present comparable performance would be unwise given the uncertainty of the

estimation procedure used.

1000

. 100

(1:1 	10

1

0 	5 	10 	15

Number oftities

Reality OMan., 1 Mir.

—Reality iMan., lMtr.

--Pentium 0Man., lMtr.

Pentium 1 Man., 1 Mu.

Figure 6.41 Comparison of estimated Reality performance with shared
memory IPC and Pentium using QNX IPC.

6.6.3 Multicast

Of course, TCP/IP is still the only available reliable method for communicating

between heterogeneous machines on a network. This is also an area that could be

optimised through the adoption of a reliable multicast protocol. A MUM could

multicast update notification messages to its slaves and its use would also open up the

possibility of state multicasts. The Single Connection Emulation sublayer presented

by Talpade and Ammar (1995) is designed to sit between an existing reliable transport

285

protocol and the network layer providing the unreliable multicast capabilities. The

presented implementation used TCP as the transport protocol and IP as the network

layer. The existing TCP API is utilised as usual but is supplemented by a direct

interface to the SCE layer in order to control the multicast-specific variables of the

multicast connections. One advantage of this approach is that it is possible to modify

the semantics of multicast connections by changing the SCE without affecting the

transport protocol. Unfortunately, because TCP is used, this solution also requires

that prior to transmission a connection is established from the source of the multicast

to the set of destination nodes. After transmission has concluded the connection must

be closed. Consequently, in order to make use of this solution, the modifications to

PML operation discussed in section 5.3.5.3 would have to be made. Nevertheless, of

the solutions to providing a reliable multicast service that the author has seen, this

seems like the most promising. In addition, should a more suitable reliable transport

protocol come to light, SCE could be adapted for use with it.

The biggest savings that can be made are with the transmission of state information

which is the most common and often the largest type of message that is sent. Each

inter-process and inter-node communication pathway has a unique monitor ID

associated with every component whose state is transmitted along it. This method

works well for point-to-point links where the monitor ID is modified as the state is

forwarded to all interested parties, but precludes the use of multicast in any form 7 . A

possible solution to this problem would be to replace the monitor ID by the

component's absolute name within the UML definition. The implications of this

change would be an increase in message size (the absolute name could be potentially

very long), and an increase in the amount of time needed to identify the component in

each process' internal data structures prior to unpacking.

The adoption of multicast communications between machines would remove some of

the burden from the master USS; it would also use less bandwidth. Consider a system

Multicast between processes on a node may be simulated through a shared-memory buffer that is
monitored by all processes.

NW

with a master and two slave nodes: currently state information from a slave is sent to

the master which forwards it to the other slave (if needed). With a multicast only one

message would be required which would reach both nodes simultaneously. This cuts

the required bandwidth by half and as message sizes and the number of slaves

increases, so do the savings. In addition, it is possible that the component dependency

list could be used to form a multicast group for those machines interested in its state

updates. Although this would not reduce bandwidth consumption, it would ensure

that any node not interested in the multicast did not waste time processing the

message. Using a shared-memory emulation of multicasting, such gains as these

could also be experienced by processes on the same node.

The application of this technique promises to yield significant performance increases

but the computational cost of supporting it is uncertain. It is, however, an area

worthy of further investigation.

6.6.4 Accounting for Latency

Section 6.5.2 presented a situation where the slave node spent a considerable amount

of time waiting for the next simulation step to begin. Although it is not possible to

eliminate the time the SUM spends waiting, its counterpart in the MUM may be

removed if the slave's workload is reduced such that it finishes its work earlier.

Figure 6.42 shows the current situation on the left hand side where the MUM (with an

identical workload) has to wait for the SUM to respond before it begins the next

simulation step. If the SUM's workload is reduced by 14 ms from 30 to 16 ms then

the MUM no longer has to wait, thus increasing the simulation rate. In the case

presented in Figure 6.28 this technique would effectively require the reduction of the

SUM's (and the system's) workload by 5 entities. Thus, when the MUM is managing

31 entities, the SUM would be coordinating 4.

287

step nil

MUM

Step

SUM

30 ms

- 14 ms

MUM 	 SUM

step n+ 	

•6nis

Original 	 Latency Adjusted

Waiting 	 Active

Figure 6.42 Accounting for message latency reduces simulation cycle duration.

6.6.5 Increased Bandwidth

Increasing bandwidth would not obviate the need for the technique presented in the

previous section, but it is the simplest way of improving performance. The results

presented in this chapter were based upon a dedicated Ethernet link with a theoretical

speed limit of 10 Mbps. Recently, networking mediums such as FDDI and Fast

Ethernet, capable of operating at 100 Mbps, have become widely available. Figure

6.43 shows the impact that using a 100 Mbps link between machines would have on

messages sent between Pentium and Server. This prediction is based upon three

assumptions: firstly, that the network throughput would experience a seven-fold

improvement 8 ; secondly, the bus can cope with the increase in required data transfer

rate 9 ; thirdly, that the same level of utilisation QNX currently achieves would be

increased by the same degree (section 6.4.2.2). Whereas it took between 2 and 25 ms

to send a message between nodes, this now occurs in 0.3 to 3.7 ms. The result is that

This assumption is based upon manufacturer's data that states a data transfer rate of 7.4 Mbytes/sec
for lOOBaseT Fast Ethernet as opposed to 0.9 Mbytes/sec for lOBaseT.

An ISA bus cannot match the demands of a 100 Mbps network, whereas a PCI bus will.

10Mbps

100 Mbps Link

0 	5 	10 	15 	20

latency is now lower than the PML overheads which now account for approximately

55-65% of the total send time.

The impact this would have on the master-slave benchmarks presented is difficult to

estimate due to the unknown scheduling factor, but all messages sent were less than

I K in size. This would mean that a few milliseconds would be saved on each

transmission. Considering the case presented in Figure 6.29 this would probably

result in a latency reduction of around 23 ms (1 update complete + I update notify +

9 state updates). Currently all processes idle enough to cope with this decrease in

transmission time but consideration of a more complex case would require further

investigation.

35

30

,25

20

E 15

10

5

0

Message Size (KI'tes)

Figure 6.43 Pentium to Server transmission times when using the current
Ethernet link and a predicted Fast Ethernet link.

6.7 Summary

This chapter has presented an evaluation of a prototype USS concentrating on the

modeling language, the characteristics of the message passing systems and general

simulation performance. A number of points were made in the section summaries

throughout this chapter but there are a few observations and aspects worth

emphasising.

289

6.7.1 Living with TCP/IP

Although TCP provides a reliable connection, it uses an unreliable medium (IP).

Positive acknowledgement is used to ensure that packets arrive at their destination -

failure to do so results in retransmission. The greater the distance between the

connection's two endpoints (and the more routers, etc.) the longer it will take to

determine whether a packet has been successively received. The use of a hierarchy to

connect nodes (and processes) in a USS and a network of USSs provides a more

robust communications mechanism than requiring a single process to communicate

with a server over some large distance. Should a link fail then this can be detected far

quicker because the distance between nodes is far less. Resolution of this problem

can be handled by the node that detected the problem or the sender can be informed

and action taken accordingly.

This information also supplements the determination of whether the destination node

is still alive. Although routers report when they cannot deliver any given message

using the Internet Control Message Protocol (ICMP - Postel, 1981b), they may not be

able to detect all such errors. The ability to detect errors is dependent upon the

hardware protocol. For example, Ethernet does not acknowledge transmission of

packets meaning that a node can be disconnected without affecting the rest of the

network. Unfortunately, this also means that with Ethernet it is not possible to detect

power failure, etc.

All of the message size tests are dependent upon the Maximum Transfer Unit (MTU)

which may be different for all network media. For example, Ethernet has an MTU of

-1 500 octets 10 , whilst FDDI has an MTU of 4770 octets and ATM uses 9180 octets

(Laubach, 1994). If a message is transmitted greater than the MTU in size then it is

fragmented. This fragmentation and corresponding reassembly at the destination

O Some implementations vary from the Ethernet specification.

I I ATM could handle 64K octets but has been limited to 9180 so that it is compatible with the older
Switched Megabit Data Service (SMDS) technology (Piscitello and Lawrence, 1991).

WE

inevitably incurs some overhead. In addition, the more fragments the greater the

chance that one will be lost and the message will be discarded.

TCP/IP has its faults but it is the backbone protocol of the Internet and, in one form

or another, it is here to stay. It would seem prudent, therefore, to find some way of

working with it.

The Hyper Text Transfer Protocol (HTTP) is used by the World Wide Web (WW\V)

to retrieve distributed objects. HTTP uses TCP as the transport layer enabling WWW

servers and clients to communicate. Every time a request is sent from client to server

a connection is established, e.g. loading a new page, new icon/in-line image, etc. As

the author discovered when evaluating the performance of the PML, this is an

inefficient way of using TCP which is designed to handle data transfer over

connections established for long periods of time, e.g. file transfer. Spero (1996)

presents a detailed summary of the problems with the way in which TCP is used by

HTTP, including TCP's TIME-WAIT state (section 6.4.4). A proposed solution to

these problems is the incorporation of a simple multiplexing protocol to be used with

HTTP, enabling multiple requests to be dealt with on a single connection (Gettys,

1996).

The advantages of shared memory IPC over TCP as a local IPC mechanism have

already been discussed. However, permanent connections could be established

between key components on each node using TCP/IP, for example MUM to all SUMs

and between systems, which are the links that need to be optimised the most. The

price for this change is increased complexity within the PML which now has to handle

two different types of connection. Nevertheless, applying TCP/IP in this manner

would be more efficient than the way it is used now and is the equivalent solution to

the multiplexing protocol mentioned earlier.

6.7.2 Resource Management

The amount of memory used by each program's execution image alone is larger than

necessary because shared libraries could not be used. Currently each entity process

291

under QNX requires approximately 256 Kbytes of memory (section 6.2.3); with

shared libraries this could be reduced to the order of 6 Kbytes. Around 330 Kbytes of

USS shared libraries would be shared amongst all processes in addition to -55 Kbytes

of system libraries.

The memory needed to store the UML definition and its instance data is quite large.

Unfortunately this is the price that must be paid in order to effect modifications at

run-time with as little disruption as possible. There is a relationship between

definition structure and the amount of resources that any given operation consumes.

This type of information could be used by the interpreter to predict how long an

operation will take or how much memory a definition will require. Accurately

predicting resource consumption aids the RM in its work.

The total simulation workload is unlikely to remain the same throughout the

simulation and local fluctuations are to be expected. The migration mechanism

presented is currently in a primitive state but adequately demonstrates the benefits

such a technique can have on system loading. More resource utilisation information is

needed so that better decisions can be made about a node's loading and predictions of

an entity's workload.

6.7.3 Scaleability

A detailed analysis of the PML proved that communicating between machines is many

times slower than between processes on the same node. An unexpected problem with

TCP/IP was encountered which, combined with its use by the PML, made using it as a

local IPC mechanism impractical. Examination of the PML provided a basis for

evaluating system performance as a whole and also enabled predictions to be made by

modifying key variables such as bandwidth.

A number of simulations were run on single node systems, each one using a different

number of managers and an increasing number of entities. The results showed that, in

general, more time is spent processing state information that any other type of data.

Also, the UM spends a considerable amount of time idle waiting for other processes

292

to complete their work. This analysis of single node systems provided a basis for

evaluating multi-node configurations.

6.7.3.1 Standalone USS Performance

Performance in a USS is dictated by a number of factors (in no particular order):

Number of special managers.

Location of the special managers/entity processes.

Number of entity processes possessing monitored state.

Size of the state information monitored by those managers.

Transmission frequency of the monitored state.

Number of USNs in the USS.

Latency/bandwidth of the connections between the nodes.

The more managers that monitor any given part of the whole YE's state, the more

state information that must be sent between processes, i.e. the more bandwidth

consumed. The best case is if the manager in question is interested in just the state

held by entities on its local node: where the available bandwidth is highest and the

latency lowest. The more common case is when a manager is interested in state held

by entities that are spread on many nodes within the system. In this case the size of

the state information that must be sent to the manager(s) becomes even more

important - the more state information or the smaller the link's bandwidth, the lower

the performance. If the manager is on a slave node then an entity on another slave

node will send its state update to its local UM, which forwards it to the MUM, then

onto the manager's local UM and finally to the manager itself. If the manager is on

the master node then this procedure takes one stage less. If the entity is on the master

node and the manager is on a slave node then the procedure is also one step quicker.

The amount of state data sent is dependent upon the frequency of changes to that

state made by each entity. It is not possible to calculate in advance what this

frequency will be since it is semantic specific. A well designed manager will monitor

information that changes on a periodic basis and make use of constraint functions.

293

These can be used to filter, at source, the state data before it is sent to the manager

consuming valuable bandwidth and processing time.

Although the number of nodes in a system and the speed of their communications

links plays an important part in performance from a state management perspective,

they are also relevant when considering synchronisation. At the beginning of each

simulation step the master node synchronises all the slave nodes through an exchange

of messages. Using unicast, there is a linear relationship between the time taken to

perform this procedure and the number of nodes in the system. Again, this could be

partially rectified by replacing the initial master-to-slave synchronisation control

unicast with a multicast.

As the reader can see from this list of confounding factors, it is difficult to build a

clear picture as to exactly how performance will scale as more managers and/or

entities are added to the system. What is clear from the results presented in this

chapter, is that performance will fall sharply initially, and then gradually asymptote as

more processes are added. However, this could be dramatically scaled down if

multicast was used to send state updates to interested managers (Figure 6.39). Not

only would bandwidth be saved but the burden on the MUM as a router would be

reduced significantly, thus removing what would become a major bottleneck in the

system as state information flow increases.

6.7.3.2 Networked USS Performance

Performance between USSs is also dictated in a number of ways:

Total number Of users across all systems.

Type of information sent between systems.

Method used by the user's shadow process to approximate behaviour.

Number of networked systems executing same simulation.

The amount of traffic on the inter-system links is mainly due to two related factors.

Firstly, the more users participating in a given simulation, the more user-specific data

that must be sent to all systems executing that simulation. Secondly, the amount of

294

information is dependent upon the type of data being transmitted. For example, low-

order information such as position and velocity will be sent almost continuously

whereas high-order information indicating changes in behaviour will be sent less

frequently. It would seem therefore that the latter would guarantee better

performance. Unfortunately this requires a more complex shadow process to

interpret the information and do something sensible with it. Balancing the amount of

data and the amount of computation a shadow requires to process it is the key to

good performance.

With the current hierarchical structuring of systems performance, there will be a non-

linear degradation in performance as the number of systems increases. Not only will

the effort expended by the MUM in each system be increased due to routing but the

time taken to ensure every system gets the transmitted message will also grow.

Again, multicast will relieve this problem, allowing a single transmission to reach each

system running the simulation. Using this technique, performance should be mainly

affected by the number of users in the system, not the transport mechanism.

6.7.4 Distribution at a Price

When the author started this work, distribution seemed like the answer to all the

problems regarding limited resources and multi-user interaction. It is now clear that

there is a distinct price to pay for distribution and it should only be considered if the

advantages outweigh the disadvantages.

Communications latency is presently the largest factor responsible for inhibiting

progress of a distributed simulation. In simple simulations there is little to be gained

by spreading the load throughout a network of machines because more time will be

spent communicating than actually performing simulation work. Only when the

simulations become more expensive is this cost offset enough to prove beneficial.

The advantages of distribution include the possibility of multiple users. It should be

noted, however, that the desire to include more users in a VE may well degrade

performance due to the problem just mentioned. At the other end of the scale, if the

295

presence of many users generates too much state information flow, then it will not

matter how much computation there is to perform.

6.7.5 Conclusions

The prototype is not perfect and several enhancements that would improve

performance have already been discussed. Some, such as the deadline scheduler,

require more specialised operating systems whilst others, such as multicast, need a

combination of hardware and software protocols that is not currently readily available.

Fortunately, a shared memory IPC mechanism could be implemented now, as could

the technique used to account for transmission latency.

The balance between CPU performance, bus speed, memory capacity and network

bandwidth (amongst others) is an important one; a well configured system will take all

of these into account. For example, if only network bandwidth is increased then

eventually there will come a time when the bus may become the bottleneck, or the

CPU is incapable of processing data fast enough for transmission. The relationship

between these factors is influenced by the software system. Unless analysis of the

type presented in this chapter is performed, i.e. at the component and system levels,

systems engineers will not be able to deliver the technology capable of supporting

distributed VE systems.

296

Chapter 7

Conclusion

"In my end is my beginning."

Mary Stuart, Queen of Scotland

The final chapter of this thesis begins with a brief reminder of the work presented in

the preceding chapters. Following this, the USS architecture is classified using the

taxonomy presented earlier on and its most important features are highlighted. A few

specific research areas that are relevant to distributed VE systems are also described,

indicating the benefits they may provide. Finally, the current trendy topics in the area

of distributed VE systems are related to the work presented here.

7.1 Thesis Review

The introduction to this thesis gave a brief introduction to the area of VR, highlighted

the emphasis on interactivity, and described the two cornerstones of a system that

would support this: real-time and consistency. The services of a real-time system

enable the generation of real-time displays which are justified in chapter 3.

Consistency reflects the need to ensure that everything in the VE appears in the right

place at the right time, to one or more users simultaneously.

Chapter 2 began with an examination of the issues involved in the design of a system

capable of distributing VEs. The solutions used by existing systems that have

attempted to tackle this complex area vary quite substantially. In order to provide a

way of comparing such systems a classification scheme was derived which strove to

297

categorise each system on the basis of: real-time support, communications, data

management, computation management, VE modeling, time management, fault

tolerance and security. There is an intricate web of inter-dependencies connecting

many of these categories which often makes examination of one difficult without

referring to another, e.g. data and computation management working together to

provide consistency. However, the author believes that this taxonomy is a good

starting point and was applied to the seven distinct systems that were reviewed. The

results of applying the classification scheme proposed in this thesis to the USS are

presented later in section 7.2.

Chapter 3 questions the current way that VEs are modeled and highlights a particular

aspect of human-computer interaction that is not addressed in most systems. To

better understand how to model a VE, the structure of the natural environment was

examined and several taxonomies of varying levels of detail were presented. Based on

these attempts to classify natural and virtual environments, the author presented a

suitable definition and abstract model for a VE. Essentially, current modeling

practices take one perspective on the thing being modeled and concentrate on one

medium, usually visuals. With this approach the model will function adequately until

such time as another medium is considered, e.g. sound, or a different perspective has

to be taken, e.g. infra-red instead of natural light. At this point the model will falter

because some (or all) of the information that is now needed to simulate this

perspective/medium will be missing. If a more ecological approach had been taken to

modeling, then sufficient information would have been modeled initially such that

similar changes would not require extra work. There are obviously practical limits to

the amount of information that can be modeled at one time and these are discussed

with relation to the modeling process as a whole. When looking at the design process

it was noted that an integrated modeling and simulation system would enable

development, experimentation and evolution. The ability to develop a simulation on-

line provides much greater flexibility than is available with current systems and also a

reduced development time cycle. These features will hopefully also encourage the VE

designer to explore the different forms the model can take. Finally, evolution referred

to the ability of each entity in the simulation to make changes to the model and create

other entities.

Related to the issue of modeling a YE is its display. The purpose of a display is to

take raw information from the environment, process it, interpret its meaning, and then

present it in a form that enables the viewer to extract some meaning. A good display

will permit the natural processing of the presented information and allow the

participant to concentrate on the task at hand. A bad display will require the

participant to expend extra effort and will probably degrade their performance. The

second part of chapter 3 describes how variable-rate visual displays cause problems

when judging time to contact with a virtual object. The example given is catching a

virtual ball, but it could equally be braking in a virtual car to avoid a collision on a

virtual motorway, or attempting to perform in-flight refuelling in a flight simulator.

Essentially any task that requires the user to make judgements based on velocity and

acceleration/deceleration can be affected if a constant-rate display is not used. Two

methods of achieving such a display were presented: one requires special OS support,

the other will work on normal operating systems.

Chapter 4 starts with the presentation of the requirements for a USS, a set of realistic

design restrictions, and a little more detail on key aspects, e.g. distributed real-time

systems. Having settled on a modeling process using specialisation through

inheritance in chapter 2, a suitable representation of the yE abstract model is

presented. Since the abstract model is derived from our universe, an appropriate

naming scheme was adopted based around "universal". A number of existing

languages were examined before it was decided that none of them satisfied (or could

be modified to satisfy) the requirements of a VE modeling language. The proposed

language, UML, can be broken into two halves: data definition and instruction code.

The structure of UML is important since it is an integral part of the USS architecture.

Although UML code can be passed between USS processes, it could have any syntax

or grammar. The data definition, however, influenced the mechanisms used to

manage state within the architecture and vice versa. The design is dissected in section

7.2.

After outlining the USS design, a prototype implementation was described in chapter

5. Key to the system is a real-time distributed deadline scheduler which is difficult to

implement with current hardware/software technology. The author had, prior to USS

development, implemented a far less complex worst-case scheduler at the application

level to help enforce a constant-rate graphical display. It was the author's experience

that, even with a special-purpose operating system, use of such a scheduler was

problematic due to the difficulty in accommodating actions beyond the application's

control, e.g. network and disk access. Therefore the architecture's key elements were

implemented without the scheduling functionality. The PML is used to provide a

common interface to the various OS services that the USS processes require - mainly

message passing. Following details of the PML, the structure of the UML interpreter

was described, including a detailed explanation of the complex data structure used to

hold the model description and its instance data. The remainder of the chapter dealt

with each major software component in turn, starting with the UM, and highlighted

key aspects of their implementation.

The implementation was evaluated in chapter 6 which started with a characterisation

of the platforms used for testing. This was followed by a detailed examination of the

UML interpreter, its performance and memory requirements. The impact inter-

process communications have on performance was analysed in the section dealing

with the PML. The rest of the chapter examined the simulation performance of the

system as a whole, in single node, two node and three node configurations. In

addition the process migration mechanism was demonstrated using the two and three

node configurations. A number of enhancements that could be made to the design

and implementation in order to improve the prototype's performance were also

described. The chapter concluded with a discussion of the factors affecting the

performance of the prototype and a number of general observations.

7.2 USS Classification

Table 7.1 replicates part of Table 2.3 in order to provide some basis for comparison

of USS's features. USS is the only distributed VE system architecture out of those

reviewed that has pursued the goal of interactivity through real-time displays and the

application of real-time systems techniques.

7.2.1 Communications

Currently only point-to-point communications are used but there is scope for the

utilisation of reliable multicast once it becomes available. Although USS was not

designed with a specific bandwidth in mind, it is clear from the results presented in

chapter 6 that anything below 10 Mbps would be unsatisfactory due to the associated

latencies. Two communication structures have been adopted by USS. Firstly, a

client/server paradigm is used between processes within the same node, but the

communication paths are heavily influenced by a hierarchical organisation, e.g.

messages to other nodes are routed through the UM. Secondly, communication

between nodes is strictly hierarchical.

7.2.2 Data and Computation Management

The method of monitoring state updates which are only sent by the owner when

changes are made can be classified as passive partial replication. This technique is

used between USS nodes but all data is replicated in each system, with only system-

unique data being transmitted between them. Localisation, which also has

implications for computation management, is supported through the use of constraint

functions in the UM. Complementing the choices of data management is the complete

distribution of computation between processes within a system. Rather than distribute

computation between systems, it is completely replicated in every system. Process

migration is supported, thus increasing the scheduling options and hopefully

efficiency. As discussed in section 4.5.4.10, arguments can be made for the use of all

3 levels of behaviour distribution. Most of the systems reviewed supported the

transmission of an entity's state variables, whether continuously, by request, or only

when a change of value has occurred. Level 1 distribution (commonly called dead-

reckoning) was used exclusively by WAVES and DIS. Despite the potential display

side-effects of this technique it is quite effective in reducing bandwidth consumption.

301

If necessary, it is possible to implement dead-reckoning with USS on top of the basic

state management system.

Feature dVS AVIARY USS

Real-time Supported? No No Yes
Constraints

Communications Transport Point-to-Point Point-to-Point Point-to-Point
Mechanism(s) and Multicast (+ Reliable Multicast?)

10 Mbps + 10 Mbps + 10 Mbps+ Targeted
Bandwidth

Client/Server Client/Server Client/Server & Structure(s)
Hierarchical

Data Organisation Passive Partial Complete Passive Partial
Management Replication Distribution Replication

(within USS) &
Total Replication
(between systems)

No Yes Yes Localisation
Support?

Computation Organisation Partial Complete Complete Distribution
Management Distribution Distribution (within USS) &

Complete Replication
(between systems)

0 0 0, 1, 2 Behaviour Level

VE Modeling Environment Parallel Multiple Multiple
Management

Multiple, Multiple, Multiple, User Support
Decoupled with Decoupled Integrated or
Representation Decoupled

Time Progression None Implicit Implicit
Management Method (within USS) &

Explicit
(betweensystems)

None None NTP Node
Synchronisation (SPS Idealised)

Fault Tolerance Degree 0 0 2 through 4

Security Method(s) None Object Interface Basic Access Control
Employed Level

Table 7.1 Comparison of distributed YE feature classifications including USS.

7.2.2.1 Dead-Reckoning

Given an entity whose definition consists of a position vector and a velocity vector, a

manager would monitor the velocity vector rather than the position. This would mean

302

that rather than sending continuous position updates as the entity moved, the manager

could extrapolate a position from the velocity vector. If velocity was constantly

changing then this technique would give little improvement. However, if two velocity

vectors were maintained by the entity then even this can be accommodated. One

vector would be used internally for the entity's own calculations and the second

vector would be its exported property - monitored by the manager. The exported

version would fuel its own approximated behaviour model (the same as the

manager's) and updated only when its approximated behaviour differed significantly

from its actual behaviour. This now replicates the same functionality that

conventional dead-reckoning systems have.

7.2.2.2 High-Level Behaviour

Level 2 behaviour distribution can also be supported through another basic USS

mechanism, that of remote UML function invocation. A number of functions would

be defined to achieve some high-level tasks, such as driving around a corner, and then

executed at the appropriate time. This technique can be used to control a user's

shadow on a remote system (section 7.4.5).

7.2.3 VE Modeling

Multiple universes may be simulated simultaneously by a USS, although the prototype

only supports one. There can be many users interacting in a simulation and within a

system there is no special distinction made between an entity representing a user and

an automated entity. Input devices are sampled from within the user entity, however,

whether this is mapped into a direct device access or through a server process is an

implementation decision.

7.2.4 Time Management

Both forms of time management are utilised by USS. Explicit time progression is

almost a by-product when a distributed deadline scheduler is used to coordinate the

simulation. 	To ensure synchronicity between individual systems, an implicit

303

progression model is used so that behavioural information generated by one system is

valid in another.

7.2.5 Fault Tolerance

Fault tolerance is an expensive goal, best achieved by duplicating hardware and

software components. However, there are a number of features of USS that lend

themselves to at least a little reliability and recoverability - at a cost. The state held by

a manager or entity may be reconstituted gradually through state updates or explicitly

by request to the UM. If not enough information is held within a system to

reconstruct the process, then it may be obtained from another system which is also

simulating the same Universe. If there is a problem with a particular node then entities

can be migrated to another node. Alternatively, their state can be obtained from

another system and started locally on another node.

7.2.6 Security

Security is another feature that can generally only be realised at a computational price.

This aspect was not fully investigated because security measures can often hinder

evaluation of other system features. However, there is basic access control support in

that a process may locate the originator of any service request and the UML

interpreter can limit access to OS services.

7.3 Important Features

The proposed architecture deals with a number of issues but there are a few aspects

which are either worthy of note or unique to this solution.

7.3.1 Real-Time

A distributed real-time system forms the basis upon which the USS architecture is

built. In order for the participants to efficiently interact with the environment and

each other, it is important that they are provided with real-time displays. To keep in

304

step with the constant update rate of the displays, it is necessary to ensure that all

entities are also updated at a constant rate. Failure to meet this hard deadline is a

system failure. If all updates are guaranteed to happen within a given time frame it is

possible to start accommodating for lags in the system by performing predictive

calculations. When the simulation is distributed over a number of machines the

network must also have deterministic properties if it is not to upset the processing

deadlines. Predictability at this level also presents the opportunity to compensate for

communications latency. It is likely, however, that determinism will be realised at the

cost of performance and the under-utilisation of resources - a matter of concern to the

designers of ATM switches where guaranteed bandwidth and bounded latency are

primary requirements.

73.2 Scaleability

All of the distributed VIE systems reviewed chose one mechanism for handling

computation and one mechanism for handling data within the system. It is not

possible to scale the system up or down without affecting the performance of such

mechanisms. DIS, for example, replicates the data making up the VE on each node

and partially replicates computation on each node through the use of dead-reckoning

algorithms. Therefore if the YE has 10,000 entities, then each node must handle data

and computation for each entity. Initially, when the number of entities in the

simulation was in their low hundreds, this was not a problem. It was only when larger

simulations were attempted that the idea of using localisation to reduce the workload

of each node was suggested (section 2.3.3.1). In a similar vein, AVIARY uses a

system model that works well when on a tightly-coupled network of workstations but

will require some modifications if it is to support larger simulations. A similar story

can be told for the other systems.

Adapting a design after the fact is always undesirable, because the end result is less

attractive than it could have been if the design had taken a broader perspective to

begin with. The architecture presented in this thesis is by no means perfect, but it

does attempt to define a system that may be scaled from tightly-coupled

305

multiprocessors through to large scale networking of machines over large

geographical distances.

The decision of when to network a machine as a USN in a larger USS or as a separate

system requires further investigation. It is clear, though, that there comes a point

when the network bandwidth between two clusters of machines can no longer handle

the amount of traffic generated within a system. In order for users on either end of

this connection to participate in the same simulation, two systems must be configured

from these nodes that are capable of replicating each other's simulation workload.

7.3.3 Bandwidth Reduction

A great deal of effort has gone into reducing the amount of bandwidth used between

processes and nodes, thus increasing the number of nodes it is practical to have in a

system. Only those portions of an entity's state information that are of interest to

managers are transmitted and only when a change in this information has occurred.

Managers may also specify constraint functions that are applied to the state data the

entities transmit to their UM. These functions can filter out unwanted data before it is

sent to managers resulting in unnecessary computation and, more importantly, sent

over lower bandwidth communication links to other nodes. Further savings could be

made if a multicast protocol was available.

7.3.4 Modeling

The premise with which the process of yE modeling was approached in this thesis

was that the development of VEs should not be constrained by past technological

standards.

The need to model a VE is relatively new and is presently more of an art than a

scientific practice. It is an exploratory process that often requires many changes

before the model has reached a satisfactory state. UML is integrated into the USS

architecture in such a way that the initial VE model can be developed off-line and then

modified on-line. Any changes are reflected instantaneously throughout the

II1Ii

simulation. For example, a function describing the behaviour of an entity may be

replaced by sending that entity a new UML definition for the relevant function(s). It

is also possible to add or delete parts of the UML definition without affecting the

existing state information for the rest of the definition.

The ability to build upon existing VE models is a powerful tool which can save time

and cut development costs. Establishing a set of base environments with well defined

core behaviours would ensure that YEs built by different designers would allow

entities to move from one VIE to another with reasonable ease. Although the

movement of entities between universes was not implemented in the prototype, the

ability to preserve those parts of an entity's state that are common in the source and

destination universes is already in place.

Different perspectives on the same environment may be supported through the use of

managers that monitor different components of the universe definition and display the

contents in the desired manner. Alternatively, each manager may monitor the same

information but only process those that meet certain criteria, probably with the aid of

constraint functions to reduce bandwidth.

Any type of information may be modeled, subsequently the system has no knowledge

of space per se and there is no requirement for it to be modeled. In fact, the UM and

the core entity and manager libraries understand how information is structured, but do

not expect any particular organisation, or look for any specific component in it.

Consequently, only when a suitably dimensioned property (such as position) is added

to the universe definition will space be modeled. Also, the relationship between

simulation time and real clock time within the environment can be defined arbitrarily

(section 4.5.5.1).

7.3.5 Flexibility

A minimal working system requires a RM, a UM and one or more ENT processes. In

this state it is possible to run any non-interactive simulation. Although an entity may

sample input devices, the user would not be able to see the consequences of their own

307

or the simulation's actions unless a manager was present, connected to a display. A

manager may be introduced to monitor state changes and generate a suitable display.

For VE simulations the two most commonly used managers would be VIS and AUR.

However, non-interactive simulation may simply require a text-based display of key

simulation variables. Managers are not only used for generating displays; for

example, the SIM checks for violations of an entity's space and informs the involved

entities so they may resolve the situation.

The design of USS was driven by the desire to simulate interactive VEs, but due to its

flexible structure it may be applied to other types of simulation. For example,

artificial life simulators often use the model of a parallel processing, shared memory

machine. Each "entity" within the simulation is a program whose instructions may

mutate or, through breeding, become merged with another entity's code resulting in a

hybrid. This process continues over and over again. USS lends itself well to this

problem because:

I. There is a direct comparison between the beings in the artificial life

simulation and entities.

An entity's code may be replaced at run-time and there is nothing

to prevent the replacement code being generated by another entity.

In the same way, one entity may spawn another and define its

behaviour through UML code generation.

The simulation would still operate within fixed deadlines but the update frequency

could be reduced to sub-interactive rates. There may well be more efficient task-

specific methods for the other types of simulation but USS at least provides a

platform for testing ideas before developing the project further.

308

7.4 Areas for Investigation

A few improvements to the prototype were presented at the ends of chapters 5 and 6,

but there are a number of areas encroached upon by distributed YE systems in general

that the author feels need further attention.

7.4.1 Reliable Multicast

As a distributed system is scaled up, so the feasibility of using point-to-point

communication links rapidly disappears. Multicast communications present the only

practical solution: the overhead of a single transmission is incurred despite sending to

multiple destinations. Unfortunately, the multicast systems that are becoming

available now are, like their predecessors, unreliable. For data such as audio streams

the occasional loss of a packet is acceptable. However, if state or event data is lost

making its way from one machine to another then this will affect the state of the

simulation. The consequences of this range from an event occurring on one node and

not another, to users making a decision based on incorrect information. At the

operating system level the consequences could be more severe, e.g. invalidation of a

fault tolerance redundancy mechanism. Research into reliable multicast protocols is

underway and the author believes that this work should be encouraged.

7.4.2 Guaranteed Bandwidth

Distribution over large areas not only increases communications latency between

system components, but the latency also varies by greater amounts. Although it is

impossible to totally eliminate latency, steps can be taken to account for it, but only if

sensible estimates can be made. Fortunately, ATM permits the reservation of

channels of fixed bandwidth between the communication's endpoints. Adoption of a

technology that provides this kind of service at all levels, from LANs through to

WANs, would also seem to be an essential component of future large-scale distributed

YE systems.

309

7.4.3 Time Synchronisation

In order to synchronise time between machines there would appear to be two basic

options: use a software protocol, such as NTP, or a satellite-based system such as

SPS. If synchronisation over many hours is unacceptable, then the accuracy obtained

using software protocols is quite low: within a few seconds. If simulation protocols

can be developed that cope with this level of accuracy then this is sufficient.

However, the author believes that the same amount of care given to estimating

communications latency should be applied to that of time synchronisation. There is a

solution available in the form of SPS which is currently prohibitively expensive

(section 4.5.5.2) but, given a mass market and a little time, there is no reason why this

technology would not become cheap enough to incorporate into every machine.

7.4.4 Real-Time Operating Systems

At the time of writing there are very few operating systems that can be used for real-

time applications and are therefore expensive in comparison to the plethora of

general-purpose operating systems. There are even fewer that support deadline

scheduling and address the problems of distributed scheduling. The popularity of

real-time systems research has risen somewhat since the widespread availability of

multimedia workstations, but significantly more work is needed in this area before

they may be effectively utilised for interactive real-time YE simulation.

7.4.5 Shadowing the User

There comes a point when latency is so great that simply reflecting every single

change in a user's state to all other machines becomes impractical. A solution is to

only transmit actions between machines and let the user's shadow processes effect

these changes in the mirrored environments. This presents three problems that must

be resolved. Firstly, how these actions are recognised; secondly, how they can be

described in a form suitable for transmission and, thirdly, how these actions are

interpreted. The first and last problems will be heavily influenced by the type of

simulation in that the nature of the actions exhibited will vary. For example,

310

parameterised actions in a networked driving simulator may be reduced to accelerate,

decelerate, turn left, turn right, navigate roundabout, park, etc. Whereas a Computer

Supported Cooperative Work (CSCW) application might involve more intimate

interactions between users. Consequently actions may even be required to mimic

human gestures and facial expressions, e.g. approval, disapproval, happy, sad, etc.

The format used for transmission of these actions may be as simple as executing a

parameterised function remotely, or something more complex.

The choice of technique has implications for maintaining the integrity of the simulated

environment. Consequently, more work is needed to assess the additional system

functionality required to aid action recognition, representation and interpretation.

7.5 Outlook

The USS architecture has been dealt with in a rather isolated manner over the past

few chapters. This section attempts to relate it to a few of the current popular topics

in the area of VE systems.

7.5.1 Internet

The work in this thesis is not applicable to the Internet as it stands today: variable

delays are experienced between communication endpoints and the available bandwidth

may vary, to name but two problems. IPng (or IPv6) is essentially IPv4 (the current

version) with some modifications (Bradner and Rankin, 1995). Aside from

introducing techniques to reduce message fragmentation, preallocation of network

resources is supported, allowing establishment of connections guaranteeing bandwidth

and latency. Multicast has also been added as a standard addressing option for IP

datagrams; in fact it has replaced broadcast as the base service abstraction, which is

now a special case of multicast. Combined with a suitable transport mechanism from

desk to desk, such as ATM, it should be possible to apply the USS architecture to the

future Internet and certainly improve upon the prototype.

311

75.2 Virtual Reality Modeling Language

The Virtual Reality Modeling Language (VRML) is an attempt to bring interactive,

3D YEs to the Internet via the WWW (SGI, 1996). From a modeling standpoint,

VRML is a classic example of a visual-centric approach. SGI's Open Inventor was

chosen as the starting point for the format which, over the past two years, has been

adapted to fit the role of a general format for describing VEs. After reconciling the

representation of visual information with the need to model behaviour and the

demands on the client browsers, it was decided to alter the way that the Open

Inventor scene graph is used. This has been just one of many changes to the file

format. Consequently, VRML has the same basic look as Open Inventor but is used

in a different way. Audio has been added to the language and at the time of writing

the more important problem of encapsulating behaviour is being addressed. Most

people in the VRML community are agreed upon the fact that some form of

programming language is required to describe object behaviour but no consensus has

been reached on which language. The fact that this debate is happening at all reflects

the problems of completely isolating information representation from simulation

execution. It is exactly these problems that the USS architecture seeks to relieve

through integrating the modeling process with the system that will execute the VE

model.

7.5.3 Java

Java has been proposed as a language suitable for object behaviour representation

within VRML. Java is interpreted, platform independent and increasing in popularity

every day. Unfortunately for VRML browser writers, source code for a Java

interpreter is not available requiring a lot more development work just to simulate a

VRML scene. On the positive side, native translators are beginning to appear which

greatly reduce the execution times of Java code. However, although Java can load

classes (in byte-code form) at run-time, existing classes/functions cannot be redefined

and there is no way of modifying data structures at run-time. Without these abilities,

the yEs modeled using VRML will be very static in nature and require considerable

amounts of time to develop and maintain. Specifically, if a VE is to be "upgraded"

312

then all users will have to disconnect whilst the new one is installed, possibly followed

by a conversion of old state data to the new format. Certainly not a quick or easy

procedure to schedule when the server is accessed by clients throughout the world.

7.5.4 Consequences

Some of the problems with the YAW and the Internet have already been described

(section 6.7.1). In addition to these, VRML is being developed incrementally from a

visual file format with the intention that it should one day also guide how machines

should be networked to realise interactive VEs over the Internet. By approaching the

problem in this way, the author believes that, in its current form, VRML will not fulfil

the expectations held by so many in the VRML community. For example, moving

entities from a VE served by one machine to a different YE served by another is not

possible unless some standardised structure for the information has been adhered to.

Currently this is not possible unless all the designers agree to conform to a given

structure and even then there is no way of enforcing such an agreement. A modeling

mechanism such as inheritance and a common set of base VEs would resolve this

problem.

The problems of distributed YEs are so many and varied that they must all be

addressed simultaneously to reach a well-rounded solution. Inevitably, however, the

lessons learnt by developing VRML will reinforce the validity of applying certain

techniques to distributed VE systems and may possibly even disprove others.

7.6 Summary

This thesis has attempted to fuse research in distributed systems, real-time systems,

modeling, languages and human-computer interaction into one system capable of

distributing real-time interactive simulations. Those issues examined (to varying

degrees) just within the area of distributed systems support were: message passing,

marshalling and unmarshalling, naming and name resolution, heterogeneous nodes,

313

scheduling, process migration, configuration management, performance management,

time, synchronisation, security and persistence.

The problem domain is so complex that the exploration of the issues and their inter-

dependencies within the time permitted was relatively limited. Many decisions had to

be made during the design process, all of which were biased towards a system capable

of supporting multi-user, interactive, VIE simulations. Interactivity demanded a real-

time system and multiple users required a distributed architecture with comprehensive

techniques to maintain the integrity of the shared VE. Of the requirements presented

in section 4.2, applicability was represented by the modeling language and its

integration into the system, whilst fault tolerance and security took a back seat.

The architecture's structure is based upon the philosophy that the right tool is used

for the right job. The combination of different distribution techniques, integrated with

an expressive, flexible modeling language, has resulted in a scaleable system that can

be used to both develop and simulate VEs in a heterogeneous, distributed computing

environment.

314

Appendix A

UML Grammar

The grammar presented in Figure A. 1 is for the data definition section of the UML. It
is an extract from the actual yacc description used to implement the interpreter in the
prototype.

1* Interpreter directives */

%token 	 D_INSERT
%token 	 D_REPLACE
%token 	 D_DELETE

1* Keywords */

%token UNIVERSE
%token ELEMENT
%token PROPERTY
%token FUNCTION
%token VFUNCTION
%token CONVERT
%token CONSTANT
%token ENTITY

/ Primitive types and their literals /

%token INTEGER
%token <integer> LINTEGER
%token REAL
%token <real> LREAL
%token STRING
%token <string> LSTRING
%token BOOLEAN

/ Name of a Universe, Element, variable, etc...

%token <string> 	NAME

315

I Comment /

%token <string> 	COMMENT

/* Constants *1

%token 	 C_FALSE
%token 	 C_TRUE

/ Code constructs /

%token VAR
%token FOR
%token IF
%token ELSE
%token WITH

%token 	 EQUIV_OP

file 	: 	1* Nothing */

	

I 	file file—component

file—component: universe

	

I 	element

	

I 	constant_ext

	

I 	property_ext

	

I 	function_def

	

I 	entity_def

	

I 	D_INSERT

	

I 	D_REPLACE

	

I 	D_DELETE comp_ident dot_name

comp_ident: 	UNIVERSE

	

I 	ELEMENT

	

I 	CONSTANT

	

I 	FUNCTION

	

I 	CONVERT

	

I 	PROPERTY

	

I 	ENTITY

	

universe: 	UNIVERSE name_def 'C' univ_body

univ_body: 	1* Nothing */

	

I 	univ_body univ_def

	

univ_def: 	constant

	

I 	element
property

	

I 	converter

	

I 	function

316

constant_ext: 	CONSTANT ext_var_decl 	initialjser

	

constant: 	CONSTANT var_deci 	initialiser

initialiser: 	literal

	

I 	 [literal—list ']

literal: 	LREAL

	

I 	LINTEGER

	

I 	LSTRING

	

I 	boolean

literal—list: 	literal—list ', literal

	

I 	literal

boolean: 	C_FALSE
C_TRUE

element: 	element_dec 1

	

I 	element_def

element_def: 	ELEMENT elemriame 	elem_def_body }'

element_deci: 	ELEMENT elemname

	

elemname: 	dot_name ': NAME
I dot—name

elem_def_body: 1* Nothing */

	

I 	elem_def_body elem_def

	

elem_def: 	constant

	

I 	element

	

I 	property

	

I 	converter

	

I 	function

	

property: 	PROPERTY var_decl ;

property_ext: 	PROPERTY ext_var_decl

converter: 	converter_def
converter_dec 1

converter_decl: CONVERT NAME ;

317

converter_def: CONVERT NAME '{ 	}

function: 	function_deci
function_def

function_deci: FUNCTION function_proto
I 	VFUNCTION function_proto

function_def: 	FUNCTION function_proto code_block
I 	VFUNCTION function_proto code—block

function_proto: dot_name return_type
I 	dot_name pararn_list return—type

param_list: 	 •
(var_deci_list ')

var_decl_list: var_deci_list ', var_deci
I 	var_dec 1

var_deci: 	NAME 	type_decl

ext_var_decl: dot_name 	type_deci

return—type: 	1* Nothing */
I 	: type_deci

code—block: 	{' code_block_body '}

code—block—body: 	1* Nothing */
code—block—body code—statement

code_statement: variable_deci

variable_deci: VAR var_decl ;

entity_def: 	ENTITY NAME : NAME C' entity_def_body }

entity_def_body: 	1* Nothing */
entity_def_body function

/* Name definition which may involve inheritance */

name_def: 	NAME : dot—name

'Th

	

dot—name: 	dot—name 	NAME
NAME

1* Type declaration *1

	

type_dec 	1: 	primitive

	

I 	primitive list_decl

	

I 	NAME

	

I 	NAME list_decl

primitive: 	REAL

	

I 	INTEGER

	

I 	STRING

	

I 	BOOLEAN

list_decl: 	[' LINTEGER 1'

	

I 	'[' 	•J'

Figure A.1 yacc description of UML grammar.

319

Appendix B

Benchmark Manager, Entity &
UML Source Code

The simulation execution benchmarks described in section 6.5 used the minimalistic
UML definition shown in Figure B. 1. Those tests that monitored two components
required the introduction of a second property: quanta2.

UNIVERSE Benchmark

PROPERTY 	quanta : INTEGER;

VFUNCT ION Construct;
VFUNCTION Update;
VFUNCTION Destruct;

ENTITY bmarkl : Benchmark

FUNCTION Construct;
FUNCTION Update;
FUNCTION Destruct;

Figure B.1 UML definition used in the prototype evaluation.

The source code for the benchmark entity is shown in Figure B.2 and the source code
for the manager used to monitor the state updates in given in Figure B.3.

320

#include "ENT.h"

bool 	EinbedFunctions(mt noofParams, ...);

bool 	Construct(void);
bool 	Update(void);
bool 	Destruct(void);

static ENT
static tjMLProperty
4ifdef TWO—PROPS
static UMLProperty
#endif If end TWO_PROPS
static UNLlnstance

*eflt = NULL;
*quanta;

*quanta2;

*quafltalflst;

mt main(mt argc, char *argv[]
{

if (argc != 3 11 argv[l] [0]

cerr << "usage: " << argv[O] << 	[-qt] entity_name\n';
return (1);

Process: :IPCipc = Process ::IPC: :IPC_NONE;

if (argv[l] [lJ ==

ipc 1= Process::IPC::IPC_QNX;

if (argv[l][l] ==

ipc 1= Process::IPC::IPC_TCPIP;

try

ent = new ENT(ipc, argv[2]);

(void)ent->.callback(MSG_UNL_INIT_DEF, ErnbedFunctions);

ent->serviceEventS ;

delete ent;

catch (ENTCTORErr0r

cerr << argv[0] << ": construction failed... terminating\n;
return

catch (ENTError

delete ent;
cerr << argv[0] << ": terminating\n " ;
return

return (0);
}

321

bool EmbedFunctions(mt noofParams,

UMLEntity 	*entity;

if ((entity = ent->definitionO) == NULL

cerr << "EmbedFunctions: can't locate entity definition\n";
return (false);

tjMLFunction *construct, *destruct, *update ;

construct = entity->findFunction("Construct");
destruct = entity->findFunction("Destruct");
update = entity->findFunction("Update");

if (construct == NULL II destruct == NULL 11 update == NULL

cerr << "ErnbedFunctions: can't locate functions\n";
return (false);

construct->setCode(Construct);
update->setCode(Update);
destruct->setCode(Destruct);

return (true);
}

bool Construct(void

UMLCompType 	 compType;
UMLlnstance::ID 	id = ent->instancelDO;

if ((compType = ent->definitionO->find("quanta",
(UMLComponent *&) qijanta, id)) 	UML_C_PROPERTY

cerr << "ERROR: can't locate property\n";
return (false);

if ((quantalnst = quanta->instance(id)) == NULL

cerr << "ERROR: can't locate instance of property\n";
return (false);

#ifdef TWO_PROPS
if ((compType = ent->definitionO->find("quanta2",

(UMLComponent *&)quanta2, id)) 	UML_C_PROPERTY

cerr << "ERROR: can't locate property\n";
return (false);

#endif II end TWO—PROPS

return (true);

322

bool update(void

static mt 	 count = 0;

Don't perform any calculations, just mark the state as having
II been modified.
II

quanta->modifyO;
#ifdef TWO_PROPS

quanta2->modify 0;
#endif // end TWO—PROPS

return (true);
}

bool Destruct(void

return (true);
}

Figure B.2 Benchmark entity source code.

#include <stdarg.h>
#include "Manager. h"

bool 	Registerinterest(mt noofParams, ...

bool 	Construct(mt noofParams, ...);
bool 	Destruct(mt noofParams, ...

bool 	Update(mt noofParams, ...

Manager 	 *manager ;

mt main(mt argc, char *argv[J

if (argc 	2 II argv[11 [0)

cerr << "usage: " << argv[0] << " [-qt]\n';
return

Process: : IPC ipc = Process: :IPC: : IPC_NONE;

if (argv[l) [1] == q

ipc 1= Process::IPC::IPC_QNX;

if (argv[11 [1) == t ,

ipc 1= Process::IPC::IPC_TCPIP;

323

try

manager = new Manager(ipc, argv[O]);

manager->callback(MSG_UML_INIT_DEF, Registerinterest);
manager->callback (MSG _UML_CONSTRUCT, Construct);
manager->callback(MSG_tJML_DESTRUCT, Destruct);
manager->callback(MSG_UML_UPDATE, Update);

manager->serviceEvents 0;

catch (ManagerCTORError

cerr << argv[OJ << ": failed to construct... terminating\n;
return

catch (ManagerError

delete manager;
cerr << argv[O] << ": terminating\n";
return (1);

return (0);

bool RegisterintereSt(mt noofParams,

II Identify which elements of the UML description we will want
II to monitor.
II

manager->monitor("Benchinark.qUanta");
#ifdef TWO_PROPS

manager->monitor(1!B enchmark.quaflta2o);
#endif II end TWO—PROPS

return (true);

bool Construct(mt noofParams,

va_list 	params;

if (noofParams 	2

cerr << "Construct: expecting 2 parameters for callback\n;
return (false);

va_start(params, noofPararns);

Manager: :Monitor 	*mon = va_arg(params, Manager: : Monitor*);

Manager: :Entity 	*ent = va_arg(parains, Manager :: Entity*);

va_end(params);

return (true);

324

bool Destruct(mt noofParams,
{

return (true);
}

bool Update(mt noofPararns,

va_list 	params;

if (noofParams 	2

cerr << "Update: expecting 2 parameters for callback\n";
return (false);

va_start(params, noofParams);

Manager: :Monitor 	*mon = va_arg(params, Manager: :Monitor*);
Manager::Entity 	*ent = va_arg(params, Manager::Entity*);

va_end(parains);

return (true);

Figure B.3 Benchmark manager source code.

325

Appendix C

UML Benchmark Results

The charts for this appendix and UML source code and UML source code can be
downloaded via anonymous ftp from:

ftp://ftp.dcs.ed.ac.uk/pub/rjh/uml

326

Appendix D

PML Benchmark Results

The charts for this appendix can be downloaded via anonymous ftp from:

ftp://ftp.dcs.ed.ac.uk/pub/rjh/pml

327

Appendix E

UM Benchmark Results

The charts for this appendix can be downloaded via anonymous ftp from:

ftp://ftp.dcs.ed.ac.uk/pub/rjhlum

328

Glossary

Aural Manager (AUR) 	Optional special manager that interfaces to sound
generation hardware and provides a number of services
to help manage the aural representations of entities. The
nature of the hardware is irrelevant since the services
provided are flexible enough to accommodate all forms
of sound generation.

Computer Image 	Special-purpose hardware that is dedicated to the task of
Generator (CIG) 	generating three-dimensional graphics. A CIG may take

the form of anything ranging from a stand-alone unit to a
single printed-circuit board card. A CIG is connected to
a general-purpose host that runs software controlling
access to the CIG's features (often in the form of a
graphics library).

Console 	 Hybrid special manager and entity used for
administrative purposes within a USS. It can be used to
create/terminate system processes, introduce UML code
into the simulation, etc.

Entity (ENT) 	 One of the essential system components. The state of
the simulation is represented by the sum of each entity's
state. Core ENT functionality is quite simple, primarily
consisting of processing monitor requests, periodically
updating its state, and sending state updates for those
monitored components that have changed value. An
entity's functionality may be extended through the use of
UML code.

Implementation 	The language that the system processes have been
Language (IL) 	 implemented in, i.e. C++. This term is used to avoid

confusion with the modeling language used, i.e. UML.

329

Master USS (MUSS) 	The system in the prototype that manages the routing of
messages from one (slave) system to another. It is also
the first system to start in the network and is contacted
by all other systems after they have finished their
initialisation.

Master UM (MUM) 	see Universe Manager

Node ID (NID) 	Unique identifier used to represent a USN within any
given system. The prototype supports 32,768 nodes in
one system.

Process ID (PID) 	Unique identifier for a process within a USN and is used
to contact and communicate with the specified process.
The actual meaning of this identifier is implementation
and node specific.

Process Management 	Software library used to abstract each operating
Layer (PML) 	 system's differences to increase portability of the

prototype USS. Services are currently restricted to
message passing but could be extended to include time
management, etc.

Resource Manager (RM) Required manager that manages access to all resources
on the node it is executing on. Contains a dynamic
deadline scheduler to ensure that all processes complete
their allocated workload on time, each simulation step.
Aids the MUM in its system-wide load balancing duties
by nominating processes that are consuming too many
local resources.

Resource Profile (RP) 	Data structure that can be used to hold details of the
resource consumption of either an individual process or
a node. An RP is the unit of communication between all
processes when transferring information regarding
resource usage. The resources monitored are: CPU,
memory, backing storage and network bandwidth.

Spatial Integrity 	Special manager that is used to monitor an entity's
Manager (SIM) 	position and volumetric information. If one or more

other entities should "collide" with each other, they are
informed of the event and then left to resolve the
situation amongst themselves.

Special Manager 	All special managers are optional system components,
but the usefulness of a system without them is limited.
Often managers are used to control displays, e.g. VIS,
but they may also simply provide essential services to
entities, e.g. SIM.

SUM 	 see Universe Manager

System ID (SID) 	Unique identifier used to represent a USS within a
network of systems. The prototype permits a maximum
of 32,768 such systems to be networked together.

Universal Configuration Simple variable-value language with a hierarchical
Language (UCL) 	structure that is used to describe all configuration

information within the prototype system.

Universal Modeling 	The language used to describe the Virtual Environment
Language (UML) 	to be simulated. Structured as one or more related

universes, each containing a number of constants and
properties that are used by the defined functions.
Enables description of the entities inhabiting the
simulation and their unique behaviour. UML code may
be passed between processes at run-time and, through
interpretation, issue service requests to managers,
redefine an entity's behaviour, and so on.

Universal Process 	Unique address of a process within all systems. This
IDentifier (UPID) 	identifier is composed of a unique system ID, node ID

and process ID. Two UPIDs are present in every
message transmitted between processes, one detailing
the sender and the other specifying the destination for
the message.

Universal Simulator 	The building block of a USS. A single USN can execute
Node (USN) 	 a complete simulation on its own but is commonly

networked with other nodes to form a larger, more
powerful system. The bandwidth available to processes
is at its highest within a USN and latency is at its lowest.
A USN is a user's gateway into the simulation of a
Virtual Environment. Each node supports one UM, one
RM, a number of entities, and zero or more special
managers.

331

Universal Simulator 	A USS is composed of one or more USNs and
System (USS) 	 distributes the simulations amongst them in order to

increase simulation speed, manage larger simulations,
increase system fault tolerance, and permit multiple user
interaction. One node in every system is nominated as a
master and runs the MUM which manages
communications with other systems. Each system within
a network replicates the simulation workload and they
keep each other informed of their users' actions within
the simulation.

Universe Manager (UM) The UM is the heart of each node. 	Most
communications within a node pass through the UM.
Those intended for other nodes are sent to the UM at
the destination through the Master UM (MUM). The
services that are most in demand are: progressing the
local simulation; satisfying requests to monitor state
information issued by managers; routing state
information sent by entities; routing messages from local
processes to remote nodes and vice versa.

The Master UM has the same responsibilities as a
normal UM, but in addition it also manages system-wide
scheduling (including the coordination of entity
migrations from one node to another). Other special
services include progressing the simulation within the
system, coordinating communications with other
systems, and controlling individual node activation and
deactivation. All UMs on other nodes' in the system are
known as Slave UMs.

Visual Manager (VIS) 	Optional special manager that interfaces to a CIG and
provides a number of services to help manage visual
representations.

332

Bibliography

Airey J., Rohif J. and Brooks F. (1990) Towards Image Realism with Interactive
Update Rates in Complex Virtual Building Environments. Computer Graphics 24(1):
41-50.

Anderson B. (1993) Graphical Interfaces Considered as Representations of the Real
World: Implications of an Affordances-Based Model. In Studies in Perception and
Action II: 89-93. (London: Lawrence Erlbaum Associates).

Andersson M., Carlsson C., Hagsand 0. and Stahl 0. (1995) DIVE - The Distributed
Interactive Virtual Environment Technical Reference Manual.

Astheimer P. (1993) What You See is What You Hear - Acoustics Applied in Virtual
Worlds. IEEE Symposium on Research Frontiers in Virtual Reality, October 25-36,
San Jose, CA: 100-107.

Barfield W. and Hendrix C. (1995) The Effect of Update Rate on the Sense of
Presence within Virtual Environments. Virtual Reality: Research, Development and
Applications 1(1): 3-16.

Barzel R. (1992) Physically-Based Modeling for Computer Graphics: A Structured
Approach (London: Academic Press).

Bellenot S. (1990) Global Virtual Time Algorithms. Proceedings of the SCS
Multiconference on Distributed Simulation: 122-127.

Benford S. and Fahlén L. (1993) A Spatial Model of Interaction in Large Virtual
Environments. Proceedings of the Third European Conference on Computer
Supported Cooperative Work (ECSCW '93), Milano, Italy, September.

Betz D. (1991) Your Own Tiny Object-Oriented Language. Doctor Dobbs Journal,
September: 26-33.

Bhagwat P., Mishra P.P. and Tripathi S.K. (1994) Effect of Topology on
Performance of Reliable Multicast Communication. IEEE INFOCOM '94:
Conference on Computer Communications, Ch. 175, Vols 1-3: 602-609.

333

Birman K., Joseph T. and Schmuck F. (1987) ISIS - A Distributed Programming
Environment, Version 2.1 - User's Guide and Reference.

Bliss B. (1991) Interactive Steering using the Application Executive. On-line paper.
ftp://sp2.csrd.uiuc.edu/pub/ae.tar.Z

Bloomer J. (1992) Power Programming with RPC. O'Reilly & Associates, Inc.
ISBN 0-937175-77-3

Boisseau M., Demange M. and Munier J. (1995) An Introduction to ATM
Technology. International Thomson Publishing, London.

Bouma W.J., Vanecek Jr G. (1991) Collision Detection and Analysis in a Physically
Based Simulation. Proceedings of the Eurographics Workshop on Animation and
Simulation, Vienna, Austria: 191-203.

Boutaba R. and Folliot B. (1993) Load Balancing in Local Area Networks. IFIP
Transactions C - Communication Systems, 11 67-78.

Bowman M., Peterson L.L. and Yeatts A. (1990) Univers: An Attribute-based Name
Server. Software Practice and Experience, 20(4): 403-424.

Braden R. (1992) TIME-WAIT Assassination Hazards in TCP. RFC 1337.

Bradner S. and Mankin A. (1995) The Recommendation for the IP Next Generation
Protocol. Network Working Group, RFC 1752.

Bryson S. (1991) Interaction of objects in a virtual environment: a two-point
paradigm. Stereoscopic Displays and Applications II, SPIE Proceedings. Vol. 1457:
180-187.

Bretthauer H., Christaller T. and Kopp J. (1989) Multiple vs. Single Inheritance in
Object-oriented Programming Languages. Microprocessing and Microprogramming
28: 197-200.

Broil W. (1995) Interacting in Distributed Collaborative Virtual Environments.
Proceedings of the IEEE VRAIS'95 - Virtual Reality Annual International
Symposium: 148-155.

Caird J.K. and Hancock P.A. (1993). The Application of Ecological Human Factors
Principles to Virtual Environment Interface Design. In Proceedings of VHth
International Conference on Event Perception and Action: 36.

Calvin J., Dickens A., Gaines B., Metzger P., Miller M., Owen D. (1993) The
SIMNET Virtual World Architecture. Proceedings of the IEEE VRAIS '93
Conference: 450-455.

Cameron, S. (1990) Collision Detection by Four-Dimensional Intersection Testing.
IEEE Transactions on Robotics and Automation, 6(3): 291-302.

334

Carlson N.R. (1986) Physiology of Behaviour (3rd Edition). (Allyn and Bacon, Inc.)

Carlsson C. and Hagsand 0. (1993) DIVE - a Multi-User Virtual Reality System.
Proceedings of the IEEE VRAIS '93 Conference: 394-400.

Checkland P. (1994) Systems Thinking, Systems Practice. John Wiley & Sons.
ISBN 0-471-27911-0

Cheng S. (1988) Scheduling Algorithms fo Hard Real-Time Systems - A Brief
Survey. Hard Real-Time Systems (eds.: John A. Stankovic and Krithi Ramamritham).
ISBN 0-8186-0819-6

Cleary J., Gomes F., Unger B., Zhonge X. and Thudt R. (1994) Cost of State Saving
& Rollback. Proceedings of the SCS Multiconference on Distributed Simulation: 94-
101.

Coco G.P. (1992) The VEOS Project: Tool Builders Manual. Internal Report,
Human Interface Technology Lab, University of Washington.

D'Souza L., Fan X. and Wilsey P. (1994) pGVT: An Algorithm for Accurate GVT
Estimation. Proceedings of the 8th Workshop on Parallel and Distributed Simulation:
102-109.

Dana P. (1995) An Overview of the Global Positioning System (GPS). On-line
document. http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.htmi

DIWG - Distributed Interactive Simulation Working Group (1993) Communications
Architecture for DIS. Institute for Simulation and Training, University of Florida,
U.S.A.

DIS (1994) Standard for Distributed Interactive Simulation -- Application Protocols.
Version 2.0, Fourth Draft. Institute for Simulation and Training, University of
Florida, U.S.A.

Division (1994) dVS v2.0.4 Technical Overview. Manual.

Dunnett P., Harwood R.M., Brookes G.R. and Wills D.P. (1995) Use of a Modified
Kalman Filter for a Visually Coupled System Application. Virtual Reality: Research,
Development and Applications 1(1): 57-68.

Ellis S.R. (1991) Pictorial Communication in Virtual and Real Environments.
(Taylor & Francis Ltd.)

Ellis S.R. (1994) What Are Virtual Environments? IEEE Computer Graphics &
Applications, January 1994: 17-22.

de Figueiredo L.H., Ierusalimschy R., Filho W.C. (1994a) The design and
implementation of a language for extending applications. On-line paper.

335

de Figueiredo L.H., Ierusalimschy R., Filho W.C. (1994b) Reference Manual of the
Programming Language Lua. On-line paper.

Friedmann M. Starner T. and Pentland A. (1992) Synchronisation in Virtual Realities.
Presence Teleoperators and Virtual Environments 1(1): 139-144.

Funkhouser T. and Sequin C. (1993) Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual Environments. Proceedings of
SIGGRAPH '93: 247-254.

Gavish B. and Sridhar S. (1994) Algorithms for Load Balancing in Distributed
Computer Systems. Computers and Operations Research, 21(3): 239-248.

Geist G.A. and Sunderam V.S. (199 1) The PVM System: Supercomputing Level
Concurrent Computations on a Heterogeneous Network of Workstations.
Proceedings of the Sixth Distributed Memory Computing Conference, Portland, OR:
258-261.

Gettys J. (1996) Simple MUX Protocol Specification. On-line paper,
http://www.w3.org/pub/WWW/TR/WD-mux

Ghosh K., Panesar K., Fujimoto R.M. and Schwan K. (1994) PORTS: A Parallel,
Optimistic, Real-Time Simulator. Proceedings of the 8th Workshop on Parallel and
Distributed Simulation (PADS'94), July 6-8, Edinburgh, UK.

Gibson J.J. (1979) The Ecological Approach to Visual Perception. (London:
Lawrence Erlbaum Associates).

GNU (1995) G+-i- FAQ. http://www.cis.ohio-state.edulhypertextlfaq/usenet/g++-
FAQ/plain/faq.html

Gosling J. and McGilton H. (1995) The Java Language Environment: A White Paper.
http://java.sun.com/whitePaper/java-whitepaper-l.htn -d

Grimsdale C. (1993) Virtual Reality Evolution or Revolution. Proceedings of the
third annual conference on Virtual Reality, London, April: 15-18.

Grunsteidl G. and Kopetz H. (1992) A Reliable Multicast Protocol for Distributed
Real-Time Systems. Real Time Programming, 1: 19-23.

Hagsand 0. (1995) SID2 Interface Specification. On-line document, SICS.
http://www.sics.se/-.olof/sid2.html

Halang W.A. (1992) Load Adaptive Dynamic Scheduling of Tasks with Hard
Deadlines Useful for Industrial Applications. Computing, 47(3): 199-213.

Harvey E., Schaffer R. and McGarry S. (1991) High Performance Fixed-Wing
Aircraft Simulation using SIMNET Protocols. Proceedings of the 1991 SCS
Conference, 23rd Annual Summer Computer Simulation Conference: 965-970.

336

Hawkes R. (1993) Virtual Environment Laboratory, University of Edinburgh.
Proceedings of Virtual Reality Systems Fall '93, New York, October 19-2 1.

Hawkes R., Rushton S. and Smyth M. (1995) Update Rates and Fidelity in Virtual
Environments. Virtual Reality: Research, Development and Applications, 1(2): 85-94.

Hemmje M. and Strohmer P. (1993) Towards Agent-Based Modelling of Time and
Dynamic Behaviour of Graphical Objects within Virtual Scenes. Eurographics First
Workshop on Virtual Reality, Barcelona, Spain: 103-112.

Holloway R. (1992) Viper: A Quasi-Real-Time Virtual-Worlds Application.
Technical Report TR92-004, UNC, Chapel Hill.
ftp://ftp.cs.unc.edu/pub/techreportS/92-004.tar.Z

IEEE (1987) IEEE Standard for Radix-Independent Floating-Point Arithmetic.

Jacobson V., Braden R. and Borman D. (1992) TCP Extensions for High
Performance. RFC 1323.

Jefferson D. and Sowizral H. (1985) Fast concurrent simulation using the time warp
mechanism. Proceedings of the SCS Multiconference on Distributed Simulation: 63-
69.

Jense. G.J. and Kuijper In F. (1993) Virtual Environments for Advanced Trainers
and Simulators. In Proceedings of the International Training Equipment Conference
and Exhibition. London, May 4-6: 49-57.

Kanarick C.M. (1991) A technical overview and history of the SIMNET project.
Proceedings of the SCS Multiconference on Distributed Simulation: 104-111.

Karamcheti V. and Chien A. (1994) FM: Fast Messaging on the Cray T3D.
http: //wwwcsag.cs.uiuc .edu/prOjeCtS/cOmmUflicati0fl/Crayme5Sagiflg.html

Katz W. (1994) Military Networking Technology Applied to Location-Based, Theme
Park and Home Entertainment Systems. ACM Computer Graphics 28(2): 110-112.

Kazman R. (1993a) HIDRA: An Architecture for Highly Dynamic Physically Based
Multi-Agent Simulations. International Journal of Computer Simulation, 1993.

Kazman R. (1993b) Load-Balancing and Latency Management in a Distributed
Virtual World. Proceedings of the 3rd International Conference on Cyberspace, May
1993.

Kazman R. (1993c) Making WAVES: On the Design of Achitectures for Low-end
Distributed Virtual Environments. IEEE Symposium on Research Frontiers in Virtual
Reality, October 25-36, San Jose, CA: 443-449.

Kazman R. (1993d) Problems of Scale: Moving Beyond Toy Virtual Worlds.
Unpublished paper.

337

Kim K.H. (1995) Action-Level Fault Tolerance IN Advances in Real-Time Systems.
(ed. Sang H. Son) Prentice-Hall, Inc.

Latta J.H. and Oberg D. J. (1994) A Conceptual Virtual Reality Model. IEEE
Computer Graphics Applications, January 1994: 23-29.

Laubach M. (1994) Classical IP and ARP over ATM. Network Working Group,
RFC 1577.

Le Saché B. and de Medeuil C. (1993) Simulator Networking: An Application for
Fighter Aircraft Simulators. Proceedings of the International Training Equipment
Conference and Exhibition (ITEC '93), May 4-6, London: 357-366.

Lee D.N. (1976) A theory of visual control of braking based on information about
time to collision. Perception 5: 437-439.

Lee D.N. (1978) IN Modes of Perceiving and Processing Information. (London:
Lawrence Eribaum Associates).

Lee D.N. (1993) Body-environment coupling IN Neisser U. (ed.) The perceived self:
Ecological and interpersonal sources of self-knowledge (Cambridge University Press):
43-67.

Levine J.R, Mason T. and Brown D. (1992) lex & yacc. O'Reilly & Associates, Inc.
ISBN 1-56592-000-7

Liang J., Shaw C. and Green M. (1991) On Temporal-Spatial Realism in the Virtual
Reality Environment. Proceedings of the 4th Annual Symposium on User Interface
Software and Technology: 19-25.

Lipton R.J. and Mizell D.W. (1985) Time Warp vs. Chandy-Misra: A Worst-Case
Comparison. Proceedings of the SCS Multiconference on Distributed Simulation:
137-143.

Liskov B. (1993) Practical Uses of Synchronised Clocks in Distributed Systems.
Distributed Computing, 6: 211-219.

Locke C.D., Tokuda H. and Jensen H.D. (1985) A Time-Driven Scheduling Model
for Real-Time Operating Systems. Technical Report, Carnegie-Mellon University.

Locke J. (1992) An Introduction to the Internet Networking Environment and
SIMNETIDIS. On-line paper, ftp://taurus.cs.nps.navy .miIJ

Long T. (1992) ICI Technical Description. On-line paper,
ftp://ftp.su.edu.au/pub/ici.tar.Z

Luciani A., Jimenez S., Florens J., Cadoz C., Raoult 0. (199 1) Computational
Physics: A Modeler - Simulator for Animated Physical Objects. Proceedings of the
European Computer Graphics Conference and Exhibition: 425-436.

338

Macedonia, M., Zyda, M., Pratt, D. and Barham, P. (1995) Exploiting Reality with
Multicast Groups: A Network Architecture for Large Scale Virtual Environments.
Proceedings of the IEEE Virtual Reality Annual Symposium, 11-15 March, North
Carolina.

Macedonia, M., Zyda, M., Pratt, D., Barham, P. and Zeswitz, S. (1994) NPSNET: A
Network Software Architecture for Large Scale Virtual Environments. Presence -
Teleoperators and Virtual Environments 3(4).

Mastaglio T. and Callahan R. (1995) A Large-Scale Complex Virtual Environment
for Team Training. Computer 28(7): 49-56.

McCarty W., Sheasby S., Amburn P., Stytz M. and Switzer C. (1994) A Virtual
Cockpit for a Distributed Interactive Simulation. IEEE Computer Graphics &
Applications, January 1994: 49-54.

Milenkovic M. (1992) Operating Systems - Concepts and Design, Second Edition.
McGraw-Hill, Inc.

Mills D. (1992) Network Time Protocol (Version 3) Specification and
Implementation. Network Working Group, RFC 1305.

Minsky M., Ouh-young M., Steele 0., Brooks F. and Behensky M. (1990) Feeling
and Seeing: Issues in Force Display. Computer Graphics, 24(4): 235-243.

Mon-Williams M., Wann J.P., Rushton S. (1993) Binocular Vision in a Virtual
World: Visual deficits following the wearing of a head-mounted display. Ophthalmic
and Physiological Optics 13(4): 387-391.

Motorola (1992) Motorola 88110 User's Guide. Manual.

MPI (1993) MPI Final Draft. http://www.mcs.anl.gov/mpilmpi-reportimpi-
report.html

NPSNET (1995) NPSNET IV.7J System Overview. Manual.

Ouh-young M., Pique M., Hughes J., Srinivasan N. and Brooks F. (1988) Using a
Manipulator for Force Display in Molecular Docking. Proceedings of the IEEE
International Conference on Robotics and Automation: 1824-1829.

Pausch R., Crea T. and Conway M. (1992) A Literature Survey for Virtual
Environments: Military Flight Simulator Visual Systems and Simulator Sickness.
Presence Teleoperators and Virtual Environments 1(3): 344-363.

Paxson, V. (1993) The Glish User Manual. On-line paper, ftp://ftp.ee.lbl.gov/glishl.

Permobil Meditech, Inc. (1993) Operating and Installation Manual for the Ober/2 12
bit Parallel System.

339

Pimentel K. and Teixeira K. (1993) Virtual Reality: Through the New Looking Glass.
Intel/WindcrestfMcGraw Hill. ISBN 0-8306-4064-9

Piscitello D. and Lawrence P. (1991) The Transmission of IP Datagrams over the
SMDS Service. Network Working Group, RFC 1209.

Postel J. (1981 a) Transmission Control Protocol - DARPA Internet Program
Protocol Specification. RFC 793.

Postel J. (1981b) Internet Control Message Protocol - DARPA Internet Program
Protocol Specification. Network Working Group, RFC 792.

Pullen J.M. (1994) Networking for Distributed Virtual Simulation. Computer
Networks and ISDN Systems, 27: 387-394.

QNX (1993) QNX System Architecture. Manual.

QNX (1994) Using Shared Libraries in QNX 4.21. Technical Note.

QNX (1995) Technical Note on Configuring the QNX 4.22 Process Manager.

Reddy M. (1995) A Survey of Level of Detail Support in Current Virtual Reality
Solutions. Virtual Reality: Research, Development and Applications 1(2): 85-88.

Robinett W. (1992) Synthetic Experience: A Proposed Taxonomy. Presence 1(2):
229-247.

Roehl B. (1995) Some Thoughts on Behaviour in VR Systens. On-line document.
http:llsunee.uwaterloo.ca/-broehllbehav.html

ROnngren R. and Ayani R. (1994) Adaptive Checkpointing in Time Warp.
Proceedings of the SCS Multiconference on Distributed Simulation: 110-117.

Rotithor H.G. (1994) Taxonomy of Dynamic Task Scheduling Schemes in
Distributed Computing Systems. IEEE Proceedings - Computers and Digital.
Techniques, 141(1): 1-10.

van Rossum G. (1994a) Extending and Embedding the Python Interpreter. On-line
manual, ftp://ftp.cwi.nl/pub/python/doc/postscript.tar.gz

van Rossum G. (1994b) Python Reference Manual. On-line manual,
ftp://ftp.cwi.nl/pub/python/doc/postscript.tar.gz

van Rossum G. (1994c) Python Library Reference. On-line manual,
ftp://ftp.cwi.nllpub/pythonldoc/postscript.tar.gz

Rushton S., Wann J. (1993) Problems in Perception and Action in Virtual Worlds.
Proceedings of the third annual conference on Virtual Reality. London, April: 43-55.

340

Schachter E.J. (198 1) Computer Image Generation for Flight Simulation. IEEE
Computer Graphics and Applications, 1: 29-68.

SGI (1995) IRIS Performer Programmers Guide.

Sha L. and Sathaye S.S. (1995) A Systematic Approach to Designing Distributed
Real-Time Systems IN Advances in Real-Time Systems (ed.: Sang H. Son). Prentice-
Hall, Inc. ISBN 0-13-083348-7

Shaw C., Liang J., Green M. and Sun Y. (1992) The decoupled simulation model for
virtual reality systems. Proceedings of the CHT'92: 321-328.

Shaw, C. and Green, M. (1993) The MR Toolkit Peers Package and Experiment.
IEEE Symposium on Research Frontiers in Virtual Reality, October 25-36, San Jose,
CA: 463-469.

Smets G.J.F., Overbeeke K.J. and Stappers P.J. (1993) Modelling Objects in a
Virtual Environment: About Direct Manipulation and Affordances. In Proceedings of
VIIth International Conference on Event Perception and Action: 34-35.

Smets G.J.F., Stappers P.J. and Overbeeke K.J. (1994) Designing in Virtual Reality:
Implementing Perception-Action Coupling with Affordances. In Proceedings of the
Virtual Reality Software & Technology '94 Conference: 97-110.

Snowdon D.N. (1995) AVIARY: A Model for a General Purpose Virtual
Environment. PhD Thesis. Department of Computer Science, University of
Manchester.

Snowdon D.N. and West A.J. (1994) AVIARY: Design issues for future large-scale
Virtual Environments. Presence, 3(4).

Snowdon D.N., West A.J., Howard T.L.J. (1993) Towards the next generation of
Human-Computer Interface. Proceedings of Informatique '93: Interface to Real &
Virtual Worlds. Montpellier, France, March 24-26: 398-408.

Spero S.E. (1996) Analysis of HTTP Performance Problems. On-line paper,
http://www.w3 .org/pub/WWWfProtocolsfHTTP-NG/http-prob.html

Stankovic J.A., Ramamritham K. and Cheng S. (1985) Evaluation of a Flexible Task
Scheduling Algorithm for Distributed Hard Real-Time Systems. Hard Real-Time
Systems (eds.: John A. Stankovic and Krithi Ramamritham). ISBN 0-8186-0819-6

Swawe M. (1989) Is Multiple Inheritance Necessary? Dr. Dobbs Journal 14(3): 107-
110.

Talpede R. and Ammar M.H. (1995) Single Connection Emulation (SCE): An
Architecture for Providing a Reliable Multicast Transport Service. Proceedings of the
International Conference on Distributed Computing Systems, Ch. 62: 144-151.

341

Tempi J. (1993) A Systematic Approach to Multiple Inheritance Implementation.
ACM SIGPLAN Notices, 28(4): 61-66.

UVa User Interface Group (1995) Alice: Rapid Prototyping for Virtual Reality.
IEEE Computer Graphics and Applications 15(3): 8-11.

UVa User Interface Group (1995) Alice: Rapid Prototyping for Virtual Reality.
IEEE Computer Graphics and Applications 15(3): 8-11.

SGI (1996) The Virtual Reality Modeling Language Specification 2.0.
http://www.sgi.com/mOViflg-WOrldS.index.html

VerIssimo P. and Marques J.A. (1990) Reliable Broadcast for Fault-Tolerance on
Local Computer Networks. Proceedings of the 9th Symposium on Reliable
Distributed Systems, Ch. 18: 54-63.

Wang, Q., Green, M. and Shaw, C. (1995) Environment Manager (EM) - User
Manual.

Watcom (1995) Watcom C/C++ Compiler Tools Reference Manual.

Webb R. and Gigante M. (1992) Using Dynamic Bounding Volume Hierarchies to
Improve Efficiency of Rigid Body Simulations. Proceedings of CGI '92, Tokyo: 825
-841.

Wheeler A., Ellinger J. and Glicker S. (1993) The Design and Implementation of an
Experimental Virtual Acoustic Display. On-line paper.

Wloka M. (1993) Dissertation Proposal: Time Critical Graphics. Department of
Computer Science, Brown University, Providence, Rhode Island. CS-93-50.

Zyda, M.J., Monahan, J.G. and Pratt, D.R. (1992a) NPSNET: Physically-Based
Modeling Enhancements to an Object File Format. Chapter in Creating and
Animating the Virtual World. Springer-Verlag, Tokyo, 1992: 35-52.

Zyda M.J., Pratt D.R., Monohan J.G. and Wilson K.P. (1992b) NPSNET:
Constructing a 3D Virtual World. Proceedings of the 1992 Symposium on Interactive
3D Graphics: 147-155.

Zyda M.J., Pratt D.R., Osborne W.D. and Monahan J.G. (1993) NPSNET: Real-time
Collision Detection and Response. The Journal of Visualization and Computer
Animation, special issue on Simulation and Motion Control, 4(1): 13-24.

342

