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SUMMARY

In this thesis we examine aspects of coherent neutron
scattering from crystals, and show that it is a powerful
method for locating atomic positions in erystals as well as
obtaining information on the frequencies and patterns of
atomic motion in crystal vibrations.

In the first chapter the theory of lattice dynamics in
the harmonic approximation is developed, and expressions pre-
sented for the cross—-sections for neutrons scattered from
non-magnetic crystals under various experimental conditions.
The use of a triple axis spectrometer to measure the energy
versus wave vector relation of the vibrations in a crystal
is described. The idea of instrumental resolution and
focussing is introduced, and its relevance to our measure-
ments is considered.

The measurement of neutron elastic scattering from
perdeuteronaphthalene is described, and the deduction of
elastic structure factors from experimental intensity data
is presented. We perform several constrained refinements of
the data, and show that this approach can often give results
of higher physical significance than a conventional uncon-
strained refinement.

The theoryaof lattice dynamics is then extended to include
molecular crystals. Starting from an interatomic potential in
parametric form, the phonon dispersion curves for naphthalene
are calculated. The dependence of phonon frequencies, on the
potential parameters is examined, and the measurement of these
frequencies. using a triple axis spectrometer is described.

The results of several model calculations are given, and the
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discrepancies between theory and experiment examined.

Ferroelectricity and antiferroelectricity in KHQPOu and
NHMHQPOu is the subject of the second part of this thesis.
The lattice dynamical approach to the problem of ferro-
electricity is stressed, and the use of group theory. in
determining the pattern of atomic displacements in the so=-
called "ferro-electric mode" is described. Experimental
evidence is given., which shows that this mode 1is over-
damped in KDQPO , and neutron scattering from it is quasi-
elastic.

The antiferro-electric and ferro-electric modes in
NDuDzPOu also scatter neutrons quasi-elastically, and we
describe the use of a triple axlis spectrometer to measure
this type of scattering. Its distribution in reciprocal
space is described, and the results of energy analysis of
the scattering are presented.

The determination of the eigenvector of the antiferro-
electric mode from a set of quasi-elastic intensities is
then described. We use both a least squares procedure, and
a Fourier synthesis method to solve this problem and compare
the results with the corresponding calculations for the
KDzPOLL ferro-electric mode. Finally we examine the validity
of our solﬁtion, in the light of the various criticisms of

these methods.
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CHAPTER 1

AN INTRODUCTION TO NEUTRON SCATTERING FROM CRYSTALS

Many excellent review articles have been written on most
of the topics considered in this chapter, However, we attempt
to present,in a fairly logical mamner, the ideas, quantities
and equations which we shall require later, and discuss their
relevance to our work, Of necessity, much is omitted and,
throughout, the reader is referred to the appropriate reviews
if he wishes to read to greater depth in any particular topic.

We consider the theory of atomic vibrations in a crystal
and show how they govern its neutron inelastic scattering pro-
perties. In particular, we use the scattering cross-section
to discuss what processes in the crystal scatter neutrons under
various experimental conditions, We then describe the use of
the triple axis crystal spectrometer to measure the energy
versus wave vector spectrum of crystal vibrations, and con-

clude with a discussion of the instrumental resolution,

1.1 The Lattice Dynamics of Crystals in the Harmonic

Approximation

The theory of lattice dynamics in the harmonic approxima-
tion has been developed by Born and collaborators(l), and we
shall use their notation wherever possible. Review articles.

and recent developments of the theory have been contributed

253,4) (5)

by Cochran( s Cochran and Cowley

(6)

and Maradudin and

others

We assume that, for a crystal with the kth atom in the 6th



unit cell having a displacement u(€k) from its equilibrium

position R(<k), the potential energy may be written

,6 = ﬁO + ,61 + ,62 + tesssen
where By = Z, il ux(f,k) (1.1)
¢kx 0x(ek)
and
2
b, = + Z Z 0 4 u(¢E)u(e'x') ,

ekx <&'k'y ox(<€k)oy(e'k')

Under the adiabatic approximation, ﬁl =0 for a crystal
initially in equilibrium, and we shall only consider the harmonic
approximation in which all terms in the expansion of @4 above
ﬁz are ignored, The equation of motion for atom k in the P
unit cell is then.

2

<

where the ﬁxy replace the second derivatives of equation (1.1),
and are force constants, If we assume that the ux(ﬁk) may be

expressed as a superposition of travelling waves ,each of the form

u (¢k) = ;—;_;Ux(kg)exp i [a-R(¢k) - wa)t] 5 (1.3)

then substitution in equation (1.2) gives

2 ' ' _
0*(Q)U (kg) = 513 M, (kK" )U (k' 0) (1.4)
with Mxy(kk'_q) O - & ;sxy(aka‘k')exp i(_q.[g(&'k')-g(&k)]),

P!
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since R(¢k) = R(£) + R(k) we may includeegﬁGIJﬁfﬂ))fTL
U fe,cqefinine .~ its phase. Then Mxy(kk‘_g) is inde-

pendent of ¢ and is an element of the dynamical matrix, M .

The eqguations of motion are now.
WU = MU g (1.5)

U is a column matrix and M 1is a 3N x 3N matrix if there are
N atoms in the unit cell, Demanding a non=-trivial solution of
equation (1.5) determines 3N values of wjz(g.), each of
which gives an eigenvector Q:}(g) whose components gre the re-
duced (i.e. Vm included) atomic displacements in the mode J,
there being three for each atom,

We may write the displacement of the kth atom, under simul-

taneous excitation of gl1 possible modes, as

1 .
u(ek) = = % U (2)a(gi)exp 1 g.R(¢k) (1.6)

which expresses u(£k) in terms of the 3N normal modes. The
Q(gj) are normal co-ordinates for it may be shown (see for

example reference 5) that the system Hamiltonian is
= ] 2 . A 12
o= ¢ 2 (J&adl? + oXad) laan)l® - (1.7)
a]

The summation is over all possible values of g. We now con-
sider how many distinct values of g there are for a crystal
of N unit cells defined by vectors a,, 85983 and whose
reciprocal lattice is defined by Dby, B, ’9_3. We select a
volume of crystal defined by N.2q5 Noas, N5g3 and impose
periodic boundary conditions, i.e. the displacements of atoms

3
separated by Z Nigi must be the same, Possible values
i=1
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g. By By

of g are then g = where S, are integers, (1.8)

=7 Ni
and each reciprocal lattice cell contains Nl X N2 X N3 distinect
g's. If N, xN,x N, is large these g's are distributed almost
continuously., Tquation (1.4) shows that mj(g) =_wj(9¢'z)
where TE is any reciprocal lattice vector, and so the first
Brillouin zone contains all distinct modes. In equation (1.7)
we sum over all these values of g, and over all 3N values
of J for each g .

Returning to equation (1l.4) we see that we may calculate
the 3N x 3N elements of the dynamical matrix for a particular
g, and find its eigenvalues and eigenvectors, wz(gj) and
U(gj), providing the ﬁxy(ek«&‘k') are known, Each U(gj)
describqs a pattern of atomic vibrations in the crystal which
is independent of all other patterns, U(gj') (j' # j), and
is a normal mode of vibration of the crystal at a particular
instant of time, These normal modes have a time variation
expressed by exp(-iw(gj)t), end are usually called phonon
modes., By repeating the calculation for many q's in the
Brillouin zone, we may obtain w(gj) as a function of g and
build up the phonon dispersion curves of the crystal. Any
pattern of atomic displacements existing in the crystal may be
expressed as a superposition of these normal modes at a par-
ticular time, t .

From equation (1.2) we see that the Axy(ékﬁ'k') give the
force in the x-direction on the atom (£k) when atom (£&'k')
has a small unit displacement along y. There are, in general,
9 independent ﬁxy's for each pair of atoms (£k) and (£2'k'),
and for a crystal with long-range forces we must include distant

neighbour interactions, i.e. a large number of values of (£'k')




P

must be considered, The number of independent ﬁxy's

is then reduced by imposing translational invariance, i.e. there
can be no-nett force on any atom as a direct result of a uniform
translational displacement of the crystal. If all atoms are

given the same displacement, then translational invariance

applied to equation (1.2) requires that

- &%é ﬁw(&kﬂ'k') &= ,dxy(ekak) . (349)
¢'k!
Equation (1.9) defines the "self-terms", i.e., the ﬁxy(aka'k')
for £ =¢' and k = k'. This incidentally ensures that some
modes, the acoustic modes, have frequencies which go to zero as
g—>0 . Crystal symmetry reduces the number of independent
elements of M , Naphthalene is the only crystal for which we
make calculations of the phonon dispersion curves, Since this
crystal has low symmetry, we are not reguired to consider the
ways in which the number of independent ﬁxy's may be reduced
for crystals of high symmetry. The reader is referred to a paper
by Herman(?) for details of the process for the dismond structure,
In Chapter 3 we shall consider this point specifically for the
naphthalene crystal,

We have discussed how the phonon dispersion curves of a
crystal may be calculated from the ﬁxy's. If the number of
independent ﬁxy‘s is not large, experimental phonon frequencies
may be used to find these force constants, usually by comparing
observed and calculated frequencies and using a least squares
procedure to find the best values of the ﬁxy’ These ﬁxy may
then be interpreted in terms of known interactions, such as

Coulomb and Van der Vaals. If there are many ﬁxy's to be




g

determined, an approach giving more meaningful results is to
postulate the form of the interatomic potential as a parametric
function énd use it to calculate the individuai Torce constants.
The dynamical matrix may then be built up and solved to obtain
a set of phonon frequencies for comparison with the experimental
values, The potential function parameters are then varied to
give better agreement between the two sets of frequencies.,

An example of this approach is the treatment of the lattice
dynamics of the molecular crystals naphthalene and anthracene,
Pawley(s) has calculated phonon dispersion curves in these
- erystals starting from a Buckingham potential., This allows
description of an extremely complex system of interactions by
a small number of parameters. The general theory must be
extended slightly for a molecular crystal, and this is presented
in Chapter 3, along_with a discussion of the dispersion curves

for naphthalene,

1.2 Neutron Scattering Cross-Sections

The general theory of neutron scattering has been developed
by Weinstock(9) and other ﬁorkers. Van Hove(lo) has used a
different, but equivalent, approach., We make very little attempt
to derive the results which we require, and the interested reader
is recommended to refer to the original papers for details. The
probability of a particle of wave vector 50 being scattered by

a system for which the interaction Hamiltonian is H'. is
k.M
= 28 gt |2 (13 I
L |Hfil (35) a aEp ARH(Ep - By) .

k, 1s the scattered wave vector, the delta function expresses



energy conservation, and

-ik. . ik .
HL, = > <umle E1E V(g)el'—o = |n> (1.10)
' mn

with V(r) depending on the interaction, | m>land,‘n> are

ﬁko

states of the system., For an incident flux of particles, T

2
the scattering cross-—section is

5 2 2. 2
& W s Ik,

A4 Ba™ —
21 3

2 K
T O Rl - -
dEFdJL 2%52 Ko I 4

- £,°) (1.11)

where EiS and Efv are the initial and final energies of the
system, For thermal neutrons scattered from a non-magnetic
crystal, H' arises only from interaction with nuclei, for

which it is sufficient to consider s-wave scattering. A suitable

form of V(r) is
wz) = (BB 3 v(e) 8z - x(¢)) (1.12)
£

where b(<¢) is a scattering length. For simplicity we consider
one atom in the unit cell only, the extension to k atoms being
fairly obvious., Substituting equation (1.12) in (1.10), it may
be seen that one term arises in which the scattering lengths are
correlated with interference between scattering from atoms of
different <. This is the coherent part, the remainder is the
incoherent part which arises from independent scattering from the
atoms,

The coherent cross-section is

5 coh %
d o 1L 2 coh
FEarx - & PeonS (K w)
(o]

Scoh

where (E, ®w) depends only on the wave vector change K.  and

the energy transfer -fiw, This was first emphasised by Van Hove.
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The atomic positions are functions of time since the
crystal vibrates, and by introducing a space-time correlation

function it may be shown that

Scob.(Is " = & j:a: it expili.(ﬂ(a')- R(¢£))

= y 2%
7y )

K o—iKau(2,0)  iK.u(e't))y o

Expanding the exponential, and using the results of Section 1.2,

coh coh coh
S (Kw) = 8 (Kw) + 8' (KEw) + eoes (1.13)

and we now discuss the form of the leading terms in this

expansion.

a) Bragg Scattering

2" g ) = KA - ore 3 em(igren]® (1.

where W = 12'(1_2.3(&)>2 %

The summation, < 1is over all unit cells in the crystal, and

the experimental conditions for observing this scattering are

- = T
|5l = &l E = X, (1.15)
coh
3 dzd’
Since (m ) contains, for a crystal with several atoms k

in the unit cell, terms with factors such as exp( ig.g(kl)),
exp( ﬂ_g.g(kz)) etc,, it is seen that it is the crystal structure
which governs the relative magnitudes of the cross-sections for
different K . This Bragg or elastic scattering cross-section

only contains the motion of the atoms in the modifying factor,
e—2W



b) One-phonon Scattering

coh n(gj)

' (K o) = N&K -T+ g)8(-E = Hw(gj) a(gj) + 1

x '(ﬁﬁ)%(aT%ET)% E-gj(ﬂ)eXP('W(E))eXP(iE-E(G)) |2 (1.16)

for scattering from mode (gj). The n are thermally averaged
occupation numbers, the upper applying for scattering with neutron
energy gain, the lower for neutron energy loss. Fﬁgm this ex-
pression is obtained the one-phonon "structure factor”, &(K3j)

which, for a crystal with k atoms in the unit cell, is

£ X by em(-bn(Em g lan)en(iTa) (1.17)

(we have written b, for b(k), R, for R(k), and replaced
gj(g) for atom k Dby gk(gj) which is more commonly used in
this context). In general, G(Kj) is a complex quantity, but
the scattering cross-section, proportional to ,G(Ej)lz, is
always real,

Experimental conditions must satisfy

2 2
|k, | [
—— - —— = tmle)
N (1.18)
K + 4 = L .

G(Kj) depends on the product of K with the mode polarisation
vector gk(gj), i.e, it depends explicitly on the motion of the
atoms as well as their positions in the unit cell., If the
gk(gj) are known from symmetry arguments in simple crystals,

or from model calculations in more complicated crystals, we may
select the particular phonon mode from which neutrons are

scattered predominantly, by choosing a T for which &(Kj') is
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considerably larger than G(Kj) for all j # j'. As we show in
Chapter %, calculations of the &(Kj) are essential for the
measurement of phonon freguencies in molecular crystals, which
usually have several modes within a small frequency range.

Thermal neutrons have wavelengths between li and 22, with
corresponding energies of 80 to 20 meV. The energies of the
atomic vibrations of course depend on the strength of the re-
storing forces in the crystal through the ﬁxy's, and vary
considerably. However the range between a few meV and 60 meV
may be taken as typical., The energies of thermal neutrons are
thus of the same order of magnitude as that of atomic vibrations,
and it is possible to resolve the changes in neutron energy
which occur on scattering from these vibrations.

The inverse w-dependence of the cross-section (equation
(1.16)) shows that the scattering peaks, for the acoustic modes,
around the Bragg positions. These acoustic mode contributions
account for most of the so-called "thermal diffuse" scattering
from crystals. This w~dependence also serves to reduce the

intensity of scattering from the higher fregquency modes relative

to that from the acoustic branches,

c) The Inchoherent Scattering

The incoherent part of the scattering may similarly be
expanded to give an elastic term which peaks at ® = 0 and
contains a K-dependence expressed by the Debye-¥aller factor,

e—w. All terms in this expansion depend on the incoherent

scattering length, blneOh, which for most nuclei is considerably
less than b°°B ( typically  aa :% 0.2 bCOh). However,

incoh

b for hydrogen is exceptionally large, being ebout five

times as large as a typical value of bCOh. The coherent phonon
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peaks for hydrogenous materials lie on a strong incoherent back-
ground. Consequently these materials must be deuterated before

attempting coherent scattering experiments,

145 The Measurement of Phonon Dispersion Curves

The triple axis crystal spectrometer presents a convenient
method for measuring the frequencies of phonons with wave vectors
ranging over the whole Brillouin zone. This machine has been
used exclusivelylto perform the energy analysis of neutrons
scattered coherently from naphthalene (Chapter 3) and
ND;D,PO, (Chapter 5).

The instrumental design and operation have been described
by Brockhouse(ll), and we shall only discuss the points which
are relevant to our measurements., Other methods have been des-
cribed and used for measuring phonon frequencies; for example
time—-of-flight machines(12) and infra-red and Raman spectroscopy
(13, 1h). However, the former rarely presents results in such a
convenient form as the triple axis spectrometer and the optical
methods, although they give better resolution than neutron
measurements, are usually restricted to give information on
phonons of only zero wave-vector, A discussion of these methods
is not appropriate here, especially since the reviews give such
an extensive list of references,

To satisfy equations (1.18) and give a peak in the écattered
neutron intensity, corresponding to scattering from a phonon, the
energy ancd wave vector change of the neutrons reaching the
detector must be continuously variable, The orientation of the

sample must also be variable to allow selection of the phonon

wave vector g and the particular branch j, (the latter by
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altering the U of equation (1.17).

In Pigure 1.1 we illustrate a triple axis spectirometer
schematically. A monochromator crystal (table 1) rotates so
that neutrons of any desired energy, say Eo, may be selected
from the reactor Maxwellian distribution by Bragg reflection
to pass along arm 1. The direction of arm 1 and the angle of
the monochromator define ho’ The specimen table (table 2)
is rotated and the angle between arms 1 and 2 is changed so
that, although neutrons. Eo are scattered by various pro-
cesses in the sample, giving a range of scattered wave vectors,
only those travelling in a single direction (along arm 2) fall
on the analyser crystal (table 3). Arm 3 and table 3 are
positioned so that only neutrons of one energy, say Eq,
travelling along arm 2, can be Bragg reflected by the analyser
to pass along arm 3 and so reach the detector. This ensures
that the neutrons, say El’ counted in the detector, have
exchanged wave vector Eo - El and energy Eo - El with the
specimen. Equations (1.18) may be satisfied by keeping Eo
or E1 fixed.

The sensitivity of the analysing system is a function of

E which is difficult to measure or calculate. It is there-—

17
fore better to keep El fixed and vary Eo' Any dependence of
the reflectivity of the monochromator upon Eo is unimportant
since the counting time for each setting of the machine is con—
trolled by a monitor counter placed in the monochromatic beam
between monochromator and sample.

The scan through a chosen phonon peak 1is executed by varying

E, - E and/or kK, — ¥7 1n steps over a range centred about

the expected values of Hhw(gj) and T + g .
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The spectrometer is usually operated in one of two modes,
called "constant-X" and '"constant-E" methods., In the former

k- Ko is fixed and E  1is.varied with E, Tfixed so that

1
neutrons may be scattered by modes of wave vector g, and a
peak is obtained in the count.rate when E - E; = L Bu(gi).
Neutron loss was used exclusively, i.e. E - Ej = + Hw(gj).
In the "constant-E'" mode, the energy transfer to the specimen
is fized, and k - k; varied so that g 1is altered. A peak

in the counting rate occurs when g attains a value for which

there is a phonon of energy (EO - El).

i o1 The Resolution of a Triple Axis Spectrometer

The machine resolution is important in the planning of an
experiment, and it has been discussed by several authors,

(15)

Cooper and Nathans consider the problem in great detail,

and it is to this paper that the reader who requires extensive
knowledge should turn. We have found that restricted considera-
tions presented by Peckham and others(l6) were sufficient for
our phonon measurements. Our investigation of NDhD2POh was
mainly concerned with the instrumental energy resolution, and

we obtain a simple expression for this as a function of various
instrumental parameters. We also discuss the effect on the
K-space resolution of altering éome instrumental parameters.

‘To allow a reasonable number of neutrons fo pass through
the machine, there is finite collimation, in the form of Soller
slits, along arms 1 and 2., This allows neutrons travelling at a
small angle to the direction of k, %o reach the specimen, and
those with wave vector not exactly along 51 to be reflected by

the analyser crystal into the detector., Neutrons reaching the
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detector have therefore a finite spread in energy, and the
energy transfer to the sample is By = El t&SE. The finite
mosaic spreads of monochromator (72n9 and analyser (72a)
also contribute to the energy spread, but we shall show that
their effect may usually be neglected. The finite resolution
causes a broadening of, for example, phonon peaks in the dis-
tribution of scattered neutrons.

We assume that the angular transmission functions for
Soller slits are of Gaussian shape - a good approximation for
systems of divergence greater than 0-5°, (This condition applies
here, since typical collimator widths for the instrument used
are 0.8°). Neutrons scattered at de, to the Bragg angle 6,

for monochromator planes of spacing dm’ have a spread

dlo

2&m cos Qm dem

i

or dk

o ko cot em dem, ds = 2E_ cot Gm_de .

o] o}

T S is the full Gaussian width for the collimator in arm 1

a. ' '
(neutrons at @/2 to the optimum angle have a probability
4
(%;)2 exp(—%) of being transmitted), then we replace @, by
% to give the standard deviation of the Gaussian distribution

of neutron energies arriving at the specimen as

' -
L}Eo = 2E0 cot Qm @, "

The mosaic, 72 Y gives an additional spread

11!
ADO 2Eo cot Qm 7Zm.

The sum of the two independent Gaussians has a total energy

spread

2 4
s 2 z
AE, = 2B cot e, (a.m-l- 7zm) "
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o 0
Typical values of*Q . are 0.l or 0.2, and so

YA EO o 2EO cot Qm Ay o

Similar arguments agpply to the arm 2 collimator, specified

by Qg

A}El = 2E4 cot & a, %

Ignoring effects on the neutron wave vector distribution caused
by scattering from the chosen process in the specimen, the

energy resolution of the spectrometer is

2 2
A E JAEO + AEq .

If the machine is set to measure incoherent elastic scattering,
a plot of the counting rate in the detector as a function of
energy transfer will be a Gaussian, centred at zero energy

transfer, and of width.

S 2 2 2 2\%
A E = 2B (cot“®, o “ + cot'®, a,”) . (1.19)

: m
incoherent

Scattering by the specimen convolutes the neutron wave
vector distribution, and only for incoherent elastic scattering
does equation (1.19) give the exact energy spread. If neutrons
are scattered by phonons in the sample, the width of the
scattered neutron group depends on the g - w relation of the
sample through the.oﬁe—phonon cross—section of equation (1.16).
For Bragg scattering the neutron energy spread should be very
small since, ideally, the neutron distribution is convoluted
with a delta function. Finite sample mosaic spread causes

deviations from this ideal ecase.

Bquation (1.19) shows that the energy resolution may be
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improved by reducing the collimator widths, ensuring that they
still allow a reasonable number of neutrons to reach the sample
and analyser, For our series of measurements it was found that
O and Gy could be reduced to around.o.?o without serious

loss of intensity. The value Eo should be kept as low as
possible; the 1limit is usually fixed by having to choose A

A
so that there are negligible numbers of 9/2 neutrons in the

o

beam incident on the monochromator, If germanium crystals are
available for ﬁQnO?hromator and analyser, second order contamina-
tion of the beagsibe eliminated, and the upper limit on lo is
determined by the Maxwellian distribution of neutrons from the
reactor, Energy resolution is also improved by scattering
neutrons from monochromator and analyser planes, which, at the
chosen wavelength, give small values for cot em and cot Ga,
i.,e, high index planes, The intensity of neutrons Bragg re-
flected from a. aluminium monochromator decreases as the indices
(h,x,£) of the reflection increase, and decreasing collimation
widths results in a further diminution of the neutron intensity
after passing along the collimator. Thus,increased resolution

is inevitably accompanied by & decrease in the number of neutrons
reaching the detector, and the wvalues of the parameters of
equation (1.19) must be chosen to give good energy resolution
while keeping counting times reasonable.

The désign of the instrument reduces the monochromator and
analyser planes available for Bragg scattering of neutrohs of a
given wavelength, For the PLUTO triple axis machine, which was
used exclusively, e, and ©, cannot exceed 55.5o and 5h°

respectively.
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1.5 Focussing a Triple Axis Spectrometer

We have seen that there is a correlation between neutron
wave number and direction of travel, at a particular setting of
the machine, so that the number of neutrons falling on the
analyser shows such a correlation, modified by scattering at-
the sample., The choice of machine parameters to correlate these

effects so that the counting rate at the detector, N is

D’
meximised is called focussing.

By considering, in turn, the effects on wave number and
angular distribution of the neutrons scattered by monochromator,
sample, and analyser, Collins(IT) has obtained an expression for
ND when the machine is set up to observe scattering from a
phonon in the sample., By computing ND for various sets of
machine parameters, the experimental conditions may be chosen

to optimise N Usually, collimation widths and mosaic spreads

D°
are fixed at values giving reasonable focussing over a whole
range of experiments, and onlj dm, da and EO may be varied.
The approximate effect on the K-space resolution. caused
by wave vector spread may be estimated. If neutrons at dem to

the optimum direction for Bragg scattering, em, can reach the

sample because of finite collimation, their wave vector spread is

) g
ey kgl oot &, @ )k, - |kl @y a®,,

1l

(|k,| cot o de ; |k, do) ; (1.20)

M
The first component lies along go, the second is perpendicular
A
to L Hence dgo lies parallel to the monochromator planes
from which the neutrons are scattered, This spread, small for

large ©,,18 also proportional to wave number and collimation
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width (through dem>. For small € , dk = lies approximately
along 50, but for large em} dgo will be almost perpendicular
to 50. A similar spread occurs on reflection from the analyser,

_.l’
but we shall ignore this effect since 7?m. and?Z a were always

Mosaic spread Q i or’7 & alters the lengths of dgo and dk

mich smaller than I and oy in our experiments.

The resolution funection for given instrumental parameters
may be estimated by convoluting the neutron wave vector spreads
at monochromator and analyser. The resulting distribution should
correspond to the distribution of elastically scattered intensity
around a reciprocal lattice point, i.e. the 50% probability
ellipsoid of the resolution function should be of the same shape
as the contours I = 0.510, say, obtained when the instrument is
set with E - E;, =0 and K 1is varied around K = T . This
is illustrated in Figure 1.2, which shows the rotation of the

({4 b

major axis of the resolution ellipse relative to the scattering
vector, K, for large Gm and Ba (corresponding to good
eneréy resolution). The resolution ellipse has an eccentricity
close to unity. If em and ea are small, the ellipse becomes
circular for large K, and if small ©, and &, are associated
with large Kk, and gl, the K-space resolution will become
poorer,

A convenient method by which the instrumental parameters,
corresponding to focussing for phonon scattering, may be chosen
has been presented by Peckham et al.(le). This is the method
which we have adopted for our measurement of phonons in naphthalene.
The broadening of a phonon peak, caused by instrumental resolution,
may be minimised by restricting dEO so that all neutrons scatter-

ed by the sample in a particular direction have the same energy;

i.e. differentiating egs. (1l.18)with respect to k, and using
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equation (1.1), we obtain the condition that

ﬁ - —
gradgm k= /mk .dk 3 d.dk, = O

should be satisfied for all dk . (go is the normal to the
monochromator planes). This requires G% grad w - Eo) to be
parallel to go. Placing a similar restriction on dgl_
requires (% grad w - gl) to be parallel to d;. Perfect
focussing occuré if these two conditions are satisfied simul-
taneously. Figure 1.3 shows these conditions in the form of

a vector diagram in which the distance GD 1is zero under ideal
focussing. The vectors OL, QL, OD and QD are varied to
minimise GD by altering the instrumental parameters.

The width of a phonon peak also depends on the track in
energy-momentum space followed in an individual scan. This width
is a miniﬁum when the track is normal to the phonon dispersion
sﬁrface. In a 2—dimeﬁsional plot, such as Figure 3, this requires
the track to be at right angles to the particular branch of the
phonon dispersion curves. For a spectrometer operated in either
the "constent-E" or ‘“eonstant-K" mode, we may only choose between
a track parallel to the g—axis or to the w-axis., Thus it is un-
necessary to consider this effect in any detail, but it may be
pointed out that,if we wish to measure phonon frequencies in a
particularly steep region of the dispersion curves, a "constant-
E" scan is preferable to a "constant-K" scan,

In Chapter 5 we show that it is important to consider instru-
mental energy resolution. and the distribution of Bragg intensity
in K-space before attempting to observe scattering from very low

frequency modes in ferroelectrics and antiferroelectrics.
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1.6 gpurious Peaks in the Scattered Neutron Count Rate

Various spurious processes can give peaks in ND when a
triple axis machine is set up to observe scattering from a
phonon of wave vector g and energy -hAw(gj). A neutron beam
directed along gl, but of the same energy as the beam in-
qident on the sample,may just give the correct conditions for
Bragg scattering from the sample. If this beam is then
inelastically scattered into the detector, a peak in ND will
occur. The intensity of this process is often of the same order
of magnitude as for phonon scattering, although it is often
considerably sharper in energy. A specilal case occurs when the
machine is set to measure quasi-elastic scattering
(EO - El é: 0; g small). The spread in the neutron wave
vectors may be sufficient for the scattering vector X (includ-
ing experimental spread) to fall very close to the reciprocal
1atticé point being investigated. This means that neutrons.
Bragg scattered from the sample may be recorded in the detector
after elastic scattering in the analyser, If B = El is
increased from zero at small g, Ny will peak and may be con-
fused with scattering from an acoustic phonon, Usually this
peek intensity is several orders of magnitude above that for
typical phonons, and the position of the peak alters as the
incident wavelength is changed. These properties should allow
it to be distinguished from phonon peaks.

Higher order scattering at monochromator and/or analyser

can cause spurious peaks if conditions such as

o~k = T g bE,-m = gy
250 - 3&1 = 1;" + g* ; qu - 9E1 = = ﬁw(gy ")
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are satisfied. The corresponding scattering diasgrams are
given in Figures l.4a and 1l.4b. Then scattering from a phonon
g' of frequency w(q'j') may be recorded. In particular, if

250 - El = 'E' and uEO - B = 0, then spurious Bragg

3
scattering may occur with an intensity similar to that for
phonons.

The second type of spurious process may be eliminated by
using germanium analyser and monochromator, but this may not
always be practicable., If it is not, then careful scattering
diagrams must be drawn to ensure that pesks in ND cannot be
caused by spurious processes. Ideally, these considerations
should be made before beginning measurements, to optimise use-~

ful output. However this may require the very quantities which

are to be measured - the phonon frequencies.

1.7 The Operation of a Triple Axis Spectrometer

In a particular scan, there are six angles to be calculated.
- the three arm positions, and the angles of the crystal tables.
As the scan proceeds, arm 3 and table 3 are usually fixed, but
the others are stepped to follow the chosen track in w and K.
The operation of the machine must be at least partially com-
puterised to cut experimental time.

The design and operation of the PLUTO triple axis spectro-

meter have been described in detail elsewhere(18’19’2o).-

We

shall give an outline of its operation and point out its advan-
tages. The machine is controlled by an on-line PDP-8 computer,
Its zero angles - the angles of the arms when all are aligned
parallel to the primary beam, and the table angles when the chosen

planes, specified by qm and da s lie along the incident
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neutron beam— are measured at the start of the experiment, The
specimen zero angle, defined as the setting when the x-axis of
the sample is parallel to arm 1, is also obtained. To make
these measurements, shaft angles may be typed directly into

the computer and the "manual operating program" sets the shafts
to the specified values,

The reactor neutrons have a broad energy spectrum and are
scattered in all directions by the monochromator. The neutrons
falling on specimen, analyser and detector must be restricted
to those which have passed down the collimators in the three arms.
Thus the monochromator and arm 1 must be heavily shielded, both
for bioclogical and scientific reasons. This shielding is ih
the form of a 3 ft. thick drum, around the monochromator, with
six segments which may be raised individually to allow entry of
the primary beam. The detector is also well shielded giving a
total weight of detector and shielding which exceeds one ton,
and is raised on air bearings when any shaft is to be moved. Once
all six shafts have positioned, the air is turned off, The whole
assembly moves on an accurately machined bed plate,

The type of scan required is chosen ('constant-K" or
"constant-E") and the appropriate angle calculating program is
called down from magnetic tape. The input to these programs
consists of the machine parameters selected and details of the
scan to be performed, These are listed in Table 1l.1l. Once the
six angles for each step of the scan have been calculated, the
shaft-driving program is called from tape and the scan executed.
The shaft angles are measured by optical digitizers which allow
a rotation of each shaft of greater than 6550 before the digitiger
output code loses its identity, and this has the advantage that
the angles for each point in the scan are set up independently

and cumulative positioning errors cannot occur. The six angles
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may be read to 0.01°. This corresponds to an accuracy of 1
in 10” in the mean energy of the incident neutron beam, and at

o}
an average wavelength of 1A, T + g may be obtained to an

accuracy of 1 part in 103. This makes the machine particularly
appropriate for automatic extended runs., A complete set of
instructions allowing the machine to perform a set of scans,
typically occupying 12 —> 2L hours, may be punched on paper
tape in a few minutes,

This method of control is extremely versatile, The results
of one scan may be required to decide some of the details of the
following scan, and were on-line control not available, there
could be a significant delay bhefore the shaft-angles of the new

scan were available,



o
ACO - Pirst lattice parameter (in A)
0

BCO - Second lattice parameter (in A)
0

DAN - Analyser plane spacing (in A)

UDM -~ Monochromator plane spacing (in E)

ZAN -~ Table 3 zero angle

VZM - Table 1 zero angle

GZ1 - Arm 1 gzero angle

Gz2 - Arm 2 zero angle

GZ3 - Arm 3 zero angle

Q00 - Table 2 zero angle

XQQ - Component of K along direction 1 (reduced units)
YQQ - Component of K along direction 2 (reduced units)
WAV = Average value of A (in z)

ow - (E_ - El) for first point in scan

HIG - (E_ - El) for last point in scan

STP - Energy step between consecutive points

KON - Specifies energy units

RXX - Step along first component of K (reduced units)
SYY - Step along second component of K (reduced units)
E®Y - Value of (El - EO) if “constant-E" scan

NOO - Number of steps in "constant-E" scan,

Table 1.1

Parameters required by Computer to
calculate angles for an automatic

scan,



Figure 1.1 = Schematic Diagram of a Triple Axis Spectrometer (page 12)
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Figure 1.2 Resolution Ellipse for Small and Large K (page 18)
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Figure 1.3 Vector Diagram Illustrating Focussing of a Triple Axis Spectrometer
(page 19) ' '

_ e == —— — —— __"







Figure 1.4 Scattering Diagrams Illustrating the Formation of ;‘Spurious Peaks ix
the Scattered Neutron Count Rate of a Triple Axis Spectrometer

(page 20)
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CHAPTER 2

A NEUTRON DIFFRACTION STUDY OF PERDEUTERONAPHTHATENE

2.1 Introduction

In the past, several authors have presented refinements
of the naphthalene crystal structure, Ahmed and Cruickshank(zl)
have refined the extensive data obtained by Abrahams, Robertson
and White(Qz), and an extended refinement has been described
by Cruickshank(gj). The data used were from X-Ray diffraction
studies, and as the scattering factor is proportional to the
atomic number, the carbon contribution is dominant, Therefore
the hydrogen atoms could not be located accurately in this study.
The development of neutron scattering techniques now |
enables us to determine hydrogen nuclear positions in crystals,
since the coherent neutron scatterihg length for hydrogen is
comparable with that for many "heavy" atoms, However, one of the
aims of the structural studies, to be described in this chapter,
was to furnish us with the accurate position co-ordinates and
cell dimensions required for work on the lattice dynamics of
naphthalene, These inelastic scattering studies were to use
a fully deuterated crystal, because of the large incoherent
neutron scattering length for hydrogen, Hence, our elastic

neutron scattering measurements were made on a crystal of

deuterated naphthalene (01038)'

2.2 The Structure Factor for Bragg Scattering of Neutrons

From general scattering theory (Chapter 1) the coherent
part of the intensity of elastically scattered neutrons from

a crystal unit cell depends on the function |FO(E)12 where
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X, the scattering vector, is equal to a reciprocal lattice

vector. FO(E) is the elastic structure factor,

F (K) = zgi%%p(—Wk(E))GXP(i KRy ) (2.1)
k
where the summation is ofer all atoms in the unit cell; each
atom is situated at R,, and has Debye-Waller factor,
exp(—Wk(E)). The crystal symmetry simplifies the expression}
in particular, for a crystal with a centre of symmetry,

equation (2.1) reduces to

Zzbk GXP(-Wk(_IS)) cos (' .. .K.’.B.k) ’
k

where the summation, k, is taken over the asymmetric unit. The
naphthalene crystal structure is monoclinic with space group
P21/c, although the old convention, i.e. le/bq is fre&uﬂntnf
used for naphthalene. There are two molecules in the unit

cell - that af the origin (E-molecule) and the diad related

one at (0% %) (D-molecule). The asymmetric unit is one half
the E-molecule, and the crystal symmetry imposes restrictions

on some structure factors. Using le/b P

if k+t

Fe

2n; Fo(hkzj = F,(hk{) ; F, (hk¢) Fo(hii)

if k+¢

2n+l; F_(hkt) = -F,(nke); F,(hket) -7, (hke)

in the second case these relations imply that F_(K) =0 if
h=€¢=0 or k= 0.
The Debye-Waller factors are, in general, énisotropic
and may be written
exp(~(o¥] b 4+ o i e b%é 2 4 20%, nk + zbgg KL + 2b§;hzn
(2+2)

to take account of the thermal motion of the atoms in the
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crystal. The structure factors are thus functions of the
parameters we wish to determine, and by relating these Fo's

to experimentally measured intensities, a least squares
analysis will give the best values of the Ek's and b?j's.
Unfortunately it is IFO(_Ig)l2 which determines the scattered
intensitj, i.e. phases (or in this case the signs), of the F.'s
cannot be determined experimentally.

The results of Chapter 1 show that the scattered intensity
for |k | = |k, | contains, in addition to coherent elastic
scattering, contributions from incoherent elastic. and thermal
diffuse scattering. In Section 2.4 we discuss these effects

in more detail.

243 Experimental Procedure

All measurements, to be described in this chapter, were
made on a 7 mm diameter sphere, which had been cut from one end
of a large single crystal of 98°/b deuterated naphthalene. This
erystal was grown by Dr. J. Sherwood using the moving vessel tech-
nique(zu). The diffraction data were obtained on a Ferranti
L-circle diffractometer at the DIDO reactor at A.E.R.E.,
Harwell. This diffractometer, illustrated schematically in
Fig. 2.1, has been described by Arndt and Willis(25), and was
used in the moving crystal/moving detector mode.

Off-line computer operation was employed, the control
tape being generated by an Atlas programme. written by N.A. Curry.
The angles for all four diffractometer shafts, which set the
crystal on a Bragg reflection, are input for this programme, and
a tape is generated which steps the shafts to give the required

scan of the Bragg peak as detector output. The shaft-setting

angles are calculated relative to the diffractometer datum
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positions. These datum positions are necessary because the
shaft-setting system is incremental. For two of the shafts
the datum positions may be set by the experimenter, but the
detector datum is set with the detector parallel to the neutron
beam, incident on the specimen. The crystal table (JL) is
at datum when the X -circle is aligned normal to the incident
neutron beam, with the specimen between ) -circle and mono-
chromator.

Since an X-Ray beam was totally absorbed in passing
through our crystal, we used the back reflection technique
to determine the crystal orientation. The crystal was then
mounted, with g;*vertical, inside a soda—-glass bulb to reduce
sublimation losses during the experiment. The accurate align—
ment was then carried out on the four circle machine, to better
than 0:05°.

The cell parameters for ClODS were accurately determined

by measuring the detector angle, 26,, for several reflections

B
*
along a i b and ¢ ® , .and using the relation
251n6
sin ¥ o
-_T?_E = n%a 2 4+ x*? . 820*:2 + 2nta*ce*cos p*.

The results are given in Table 2.1.

From these preliminary measurements, it was found that the
crystal mosaic spread was 0.5° (F.W.H.M.), relative to an
aluminium monochromator of small mosaic, and with fine instru-
mental collimation.

The Bragg intensity profile was measured by moving crystal
table and detector in steps of © : 28 withA8 = 0.0ho, from

8, - 10° to ey + 1:0°. In addition, the background was measured

B
by scanning from QB - 2.0° to QB - 1.0° and from QB + 1-0°

<]
to ©5 + 20« 1n all reflections measured, the average
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background counting rate had been reached at the extremities
of the centre scan, i.e. there were no elastic intensity -
wings outside QB % 3%, The detector aperture was selected
by choosing the smallest which gave the full integrated in-
tensity for the reflections with large OB .

The reflections. to be measured, were divided into groups
of eight separated by a standard reflection, (200) or (110).
These standard reflections were a check on the crystal align-
ment and on the behaviour of the counting chains. After every
two reflections all shafts were returned to datum, and so any
cunmulative errors in the shaft settings could be quickly
recognised. A sequence of positioning orders was included
after every four reflections, which was only executed if a
machine positioning fault had been registered. This caused
all shafts to be driven to their limit switches and then re-
turned to datum.

331 independent reflections were measured at 295°K,

additional scans giving 32 equivalent reflection pairs.

2.4 Determination of Structure Factors from Experimental

Intensity Data

A typical intensity scan is illustrated in Figure 2.2.

The general incoherent background was easily subtracted by
interpolating between the two background scans. In most
cases, the variation in X across the scan was so small that
this background could be considered flat. The remaining in-
tensity arises from elastic scattering and thermal diffuse
scattering. The second contribution peaks at the reciprocal
~lattice point and consists of one, two and higher order

phonon-scattered intensity, but is dominated by the contribution
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from the one-phonon acoustic modes. The contribution from
one-phonon scattering (first order thermal diffuse scattering)
to experimental Bragg intensities depends on the type of scan
used. The problem has been discussed, for cubic crystals,
by Nilsson(26) who has obtained an explicit expression for
the correction factor, % p.g.? for a moving crystal/stationary
detector scan through the Bragg peak, assuming an infinite slit
height. Cooper and Rouse(27) have extended Nilsson's treatment
to include a moving crystal/moving detector scan (w/28), and
have avoided the assumption of an infinite slit. In a later
paper, Cooper and Rouse(zs) have extended their analysis and
present methods and expressions which allow measured Bragg
intensities to be corrected for first and second order thermal
diffuse scattering in crystals of any symmetry. They also con-
sider the effect of instrumental resolution on thermal diffuse
intensities. For a crystal of low symmetry, the computation is
considerable, but may be reduced by making certain assumptions
about the acoustic mode velocities (for example, assuming them
to be independent of direction of propagation in the crystal).
At the time of the data collection and subsequent structure
refinement (Section 2.5), the results of reference (28) were not
available. Using elastic constant measurements for ClOHB’ in
conjunction with our phonon calculations of Chapter 3, applied
to both ClOHB and ClODS’ it should be possible to use the
results of reference (28) to obtain a value for aGn p.S. How-—
ever it was anticipated that a considerably more accurate and
more extensive set of Bragg intensity data would be obtained
using a smaller crystal of GIODS' Thus we have not attempted to
correct our present data for thermal diffuse scattering.

The total integrated intemsity (I_,.) of each reflection,
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i.e. the area under the intensity profile,was calculated by

summing the areas of rectangles of height N, and width W.

ik §
- = o | SO area under scan profile
Tovs 2 (Mp; = Npy) ; = - (background)
3

where W 1is the step-width, in this case 0.0ui M; 1is pro-
_portional to the total number of neutrons from the mono-
chromator which fall on the specimen while NZi counts are
recorded from the detector, and takes account of variations
in counting time and resasctor flux. The summation, i, is
over all points in the scan. Usually Nii’ the background
count, was independent of 1, bDut of course varied with

®2 + x° + £2).

The experimental Bragg intensity is then

ob
1% (B) = I 40 +a) ,

where a 1is a correction factor.

This intensity has been measured by reflecting neutrons
from a macroscopic crystal, and before it can be used to
calculate the observed structure factor, FObs(g), certain

corrections have to be made. The correction factors relate

obs
B

5V, and include absorption, extinction, and Renninger effects.

I “(X¥) to the integrated intensity from a small element,

Absorption

The intensity of any reflection is reduced by attenuation
of the neutron beam in its path through the crystal. The cor-

rected intensity.is

A - obs ” vV 2.3
I5(K) Iz (E) T oy (2.3)
v
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where x 1is the path length of the beam in the crystal for
that particular reflection, u 1is the linear absorption co-
efficient, and V 1is the crystal volume. U was measured

by finding the reduction in intensity of a neutron beam passing
through a ClODS crystal of thickness 1.5 cm. For a 98°/o
deuterated crystal u was 0.43 cm-l.

For a spherical crystal, equation (2,3) is easily inte-

A , Obs
B/TB

. [+
grated for O3 = 0 and GB = 900, and the values of I

= A.* are tabulated in International Tables for X-Ray
Crystallography Vol. II, pp. 302-5, in 5o intervals for various
values of pR, R Dbeing the radius of the sphere. In our case,

° to 1.24

pR was 0.15 and A*: varied from 1.25 for € = 0
for € = 900. Jeffery and Rose(29) have shown that small
deviations from a sphere can cause large uncertainties in A?i
a 2.5°/b uncertainty in R giving an uncertainty in A*'of
QOO/b; for pR = 7.5. However, for MR = 0.15. the uncer-
tainty in A is @; 1.5°/o. Since we are only interested
in relative values of intensity, the maximum difference in
absorption correction between € = o° and @ = 900 is less
than 1°/0 of the intensity of any particular reflection. This
is certainly considerably less than the experimental error,

and we have neglected such corrections.

Extinction

Various authors, Zachariasen(3o’3l), Bacon and Lowde(32),
and James(33) have published theoretical correction factors
for extinction effects. However, for most cases, these cannot
be calculated exactly. We thought that the mosaic spread of
0.5° was sufficiently large that extinction effects could be

ignored in obtaining structure factors from the intensity data.
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Our refinements therefore did not contain an extinction cor-

rection (but see Section 2.6).

Renninger Effect

This effect is a reduction in the intensity of the reflec-
tion from the crystal planes (h k ¢), caused by simultaneous
reflection of the incident and/or scattered neutron beam by
other planes (h' k' £'), (X" k" ¢") etc. The condition for
these additional reflections to occur is that the points
(h* k' ¢') etc. lie on the Ewald sphere as the sphere rotates
about the line (0 0 0) to (h k ¢). It is difficult to cal-
culate the exact effect of all possible simultaneous processes,
although approximate procedures have been developed for some
restricted cases. One method is to select the azimuthal angle,
¥, to minimise the Renninger effect, and a programme has been
written (Powell (1966)), to select the best value of ¢ by
varying the three crystal setting angles.

We now compute the values IFEEile from the integrated

observed intensities. The Igbs(g) will have been corrected,
if necessary, for T.D.S., absorption, extinction, Renninger
effect, and are the intensities expected from a large number
of crystal blocks of volume &v. The total volume of these
blocks is that of the sample , i.e. V. Then, from the

results of Buerger(Bu), which we quote without proof,

2.% 2
Ig(K) = erév where Q = N "ALp Ry, | .
Fhkz = calculated structure factor.
N, = number of cells per unit volume.
= Lorentz factor.
D = polarisation factor .,

N and A are fixed in a particular diffraction experiment,



_33 =
but I and p may vary with X, so

calc,»o
|

IB(;{_) = ch Fry . (2.4)

The observed structure factors are to be compared with the

calculated. It is convenient to correct the FﬁEi

and polarization factors, then it remains to determine the

for Lorentz
. obs calc

scale factor relating Fhkz and Fhkz . ¢ may be found as

a parameter in the refinement, but an experimental value is

useful in detecting extinction effects and in correctly

k

estimating the thermal parameters (obviously ¢ and bij's

are correlated).

The Lorentz factor, which allows for the different times
taken for different reciprocal lattice points to sweep through
the reflecting sphere,is

A S S
sin?2 3
for the geometrical conditions of our experiment (normal-beam
equatorial geometry). For neutrons, p = 1 as there is no

polarization effect. Then

obs ~obs b -
I Frxe = (IB (k))* Vsin 28, (2.5)
andZ' Fﬁ;‘;i = SZ| Fﬁi%c 3 where s is a scale facto?.

Determination of Scale Factor from a Wilson Plot

The statistical resultJTWilson(BB))
- > 22, ' ing fact
<"Fhkz|‘> = Eéi fi > with fi the scattering factor,

is used. The fi should be corrected for thermal effects, but

these are constant over a small range of Slne/l, and the
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constants c¢' 1in each range may be found from
obs |2 2
C!<1Fhkgl ) = Zl(f;') (2.6)

with f{ the theoretical scattering lengths with no Debye-
Waller factor included. ZEquation (2.6) with the mean values

obs,2
£

of 'Fhk over a small range of sin 8, then gives c¢' and

a plot of Ingc") against sin29/12 has &H(Aﬁ) as its inter-
cept at Sing/l = 0. We obtained a valug of s Dbetween
600 and 500.

Since this calculation was highly inaccurate (possibly
because not all reflections in a given range of L wére
included, there being a tendency to measure the stronger re-
flections only), it was decided to estimate s as a para-
meter in the least-squares refinement. Omitting some weak
reflections in each range of Sing/ﬂ would give s too high
a value.

Using equation (2.5), the ,Fﬁﬁi were calculated and
their values are listed in Table 2.2. The standard deviations
o(F) were calculated from the deviations of the integrated

intensities

o(I)

Zi (°'i:12 ¥ 0':21231/é -

% % ,
where o7, and oy, are (Nii) and (Ny;)” respectively.

The observed structure factors of the standards, (200)
and (110), were distributed about their average values of

( standard)

1392 and 1125 with/ld‘.eviai:‘mn well below o(¥F). Figure
2.3 shows the histogram for (200). The 32 equivalent pairs
had PF's which had an average agreement of 1°/0; for all

but three pairs, the F's agreed within the standard deviations.
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2.5 The Structure Refinement

To determine the nuclear positions and thermal parameters
in the ClODB crystal, we performed a least squares refine-

ment in which the function
obs calc| 2
R' = 2. (|7 - |eEe))

is minimised, by varying the parameters used to obtain

cale
Fhkz -

parameters consist of a scattering length bk’ three

From Section 2.2 we see that, in general, these

positional parameters, (X, ¥ Zk) and six anisotropic
temperature factors b?j for each atom, k, in the unit cell.
The six bfj are from a harmonic theory, and in all that
follows we shall ignore any anharmonic contributions to the
temperature factors. For CioPg» this gives a total of 81
parameters to be determined in addition to the scale factor,
s, (in our case the bk's are known). All our refinements
were based on unit weights.

The number of variable parameters may be reduced by
applying constraints to the system. In the course of our
refinement we have imposed various constraints and performed
statistical tests to decide whether or not the removal of
these constraints represents a better fit to the experimental

data.

2.5.1 The Rigid-Body Thermal Motion Constraint

The first constraint imposed was that the internal
molecular vibrations in C10P8 could be ignored compared
with those caused by the molecule performing rigid-body

thermal motions. This was discussed by Cruickshank(36), and
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a least squares programme incorporating these constraints has

been written (Pawley (37)). Under this constraint it has been

shown that
F(K) = ¢ Z b exp(2xi Q.R, Jexp(- h AT (a ey L’ﬁﬁl'z?l'ﬁ)
o'\= X k =*=k =t - =kg*=*=k{ = ‘=
(2.6)
where h = (h,k,¢); X, = A.R, expresses the transforma-

tion from fractional co-ordinates to an orthogonal system in
o)

A.
0 -3 Y

Y = e 0 =% s and
-Y, X 0

I 1is the mean square translational tensor
L 1is the mean square rotational tensor.

The second exponential in (2.65 replaces the conventional

exp(~h.8.h) where

r | ]
P11 P12 Pyp
B = bio Doy Doy .
byz  Poz  Pi3

Imposing the rigid body constraint reduces the 54 thermal
parameters in C,,Dg to twelve, since T and L are
symmetric second-rank tensors.

Using the rigid body thermal parameter constraint pro-
gramme, with the initial parameters taken from the results of
Cruickshank's refinement of the X-Ray data on C, Hg, we
obtained,after refinement, an R-factor of 5.3°/b, which fell
to 5.l°/b when the deuterium scattering length was reduced
to 0.63 to allow for the presence of the 2°/0 hydrogen in .

the erystal. This R-factor is
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_ - 1-0bs calc obs
R o= 2 | |P, |- 18T o ‘Fhml
hki hki
(undexr I symmetry)
In Table 2.3 we listAthe fractional atomic co-ordinates
E
and the thermal parameters obtained in the R.B.T.P. refinement.

These thermal parameters were calculated from the fractional

co-ordinates and the T and L tensors of the refinement

where  _ : - "
Iy, 8L 0.20 -0,09 0.09 0.06 0.08
- 2.29 0.15

S 2 - -

both in A° x 10 <.

- | _
31.59 =3.49 0.11

. ‘,'L TR 18.45 =~1.16 ’
19.12 |
71.98 0.78  1.05 |
(L) = . 0.93 0.73
0.85

both in degg. T and IJ__ are in molecular inertaal sys’tEWL_.

*
2.5.2 Discussion of R.B.T.P. Constrained Refinement

In considering the results of Section 2.5.1 it is ofﬁen
instructive to compare them with those of Cruickshank's refine-
ment of the X-Ray data for OlOHS’ which are included in our
tables of results. It must be remembered, however, that
Cruickshank inserted the hydrogens at 1.093 from the carbons
and assumed isotropic hydrogen temperature factors, whereas
our refinement located the déuteriums and allowed anisotropic
hij's, although the latter were deduced from the rigid body
= Rigi& Body Thermal Motion ( Pavrameter)

o
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T and L . The atomic co-ordinates from neutron diffraction
correspond to the nuclear positions, whereas X-Ray diffraction
locates the centroid of the atomic electron cloud.

From the GloD8 bond lengths, given in Figure 2.4, we see

that the lengths of the bonds cAch and CB - C differ

C
considerably and that the C-D bonds are all of length

(1,078 & 0;005)3 . These differences in C-C bond length

are consistent with Cruickshank's results, and there is no
evidence that the X-Ray determined bonds are significantly

shorter than those determined by neutrons. The carbon ring

bond angles agree with those in ClOHB in showing deviations
from 1200, and our results indicate that the C-D bonds do not
bisect the angle between the neighbouring C-C bonds.

Table 2.4 lists the atomic co-ordinates in the molecular
inertia system, a finite cho-ordinate indicates a deviation
from the plane perpendicular to the axis of greatest inertia.
We see that the carbon atom deviations are of the order of
one standard deviation, and DA and DE have displacements
of two standard deviations. These may possibly be significant
and this point is discussed in Section 2.5.3. Cruickshank
has calculated that the shortest intermolecular distance in
C1otlg is H,(0,0,0) —> Hp(%,~%41) (2. L;oa), and the next
shortest is A(o 0,0) —> Hg(0,0, 1) (8 66A), i.e. they
involve the atoms which show deviations from the mean mole-
cular plane. For ClODB’ from the co -ordinates of Table 2.l4,
these distances are 2. uea and 2. 65A-

The T and L matrices for C,,Dg are seen to be
closely diagonal, showing that their principal axes almost
coincide with the molecular axes. The le s of Table 2.3,
deduced from T and L are related to Cruickshank's Uﬁ?s,s(Ugg)



as follows:—

bij = 2% ay a3 T.Tij

e * e *, * #*
whereal-_-a, a2=b, a3=c

except that the UE? were found from an unconstrained re-

finement and hence contain contributions from internal modes,
whereas our bij's were deduced from T and L and contain
rigid body displacements and a restricted average of the

internal mode displacements. The separate atomic mean square

displacements may be found from the U,.'s, and these are

1J
listed in Table 2.5.
2 2 2
(v ) - (Uak) + (uk) .
Cruickshank rigid-body ™ internal modes

The second term has been calculated for carbon atoms in

(38)

ClOHB by Higgs , and has been shown to be small compared

¢ 2 4
with (uk)Cruickshank’ i.e. the T and L deduced from the

carbon Ugg, uncorrected for internal vibrations,may satis-
factorily be used to discuss the rigid body motion of the
010H8 molecule.

If the principal axes of T and L coincide with the
molecular axes, we may deduce the frequencies of vibrations
about these axes ffom the diagonal elements of L, using

mean square 2 _ h 1 1 by
(amplitude ) rad = 3;52 ) coth (% kT)

which, for hv< kT, reduces to

2 kT
w,; (in rad”) I (2.7)

8x I; vy

where Ii and v; are the moment of inertia and frequency
for angular oscillations about axis 1. These v; are not

necessarily the average of the symmetric and anti-symmetric
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Raman frequencies, since Raman molecular modes are not always
oscillations about these axes. Also, the Raman measurements
give the frequency for a mode with wave vector at the zone
centre, whereas equation (2.7) gives an average of the frequencies
for wave vectors over the whole Brillouin zone. Pawley(39)has
shown that his model for the lattice dynamics of naphthalene
predicts Raman modes in which the molecule oscillates about

axes tilted at up to 300 to the molecular axes. The work on

the phonon dispersion curves for C,,Dg (Chapter 3) shows

that for 0<|g | € 0.5 in the direction [0 1 0], the
variation in frequency of the Raman active modes can be as

much as 30°/o, for at least the higher branches. Our results
from the refinement of Section 2.5.1 give 3.5, 105.2,, ul.B)em”1
for the. vy of equation(2.7). If the off-diagonal terms of L
are significantly different from zero, the vy will differ

slightly from the frequencies for oscillations exactly about

the molecular axes.

2.5.3 Refinement under mmm Symmetry Constraint

A structure refinement was performed with the C10P8
malecule constrained to full mmm symmetry but with the bij's
fixed at the values of Table 2.3. This refinement was per—
formed on the Edinburgh KDF9. We were unable to vary the
bij's because of the limited computer store. Later we were
able to use the S.R.C. Atlas computer at Chilton to perform
refinements requiring a larger computer store. The number
of position ﬁarameters was only 12, namely two position co-
ordinates for each of the atoms CA’ CB’ DA’ DB’ one co-

ordinate for C and three Euler angles which determine the

C
orientation of the molecular plane. Under this symmetry
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constraint the best R-=factor obtained was 5.150/b. The R-
factor with this symmetry constraint relaxed (i.e. that of
Section 2.5.1) showed no significant improvement on the 25°/o
level of the F-distribution. Hence the deviations of atoms

c

C D and D, -discussed in Section 2.5.2 do not appear

B? "D TA

to be statistically significant. The atom co-ordinates
obtained under the symmetry constrained refinement are listed
in Table 2.3, and the corresponding calculated structure fac-

tors are given in Table 2.2,

2.5.4 Refinement under Further Molecular Symmetry Constraint

To test the significance of the differences in bond
lengths and angles found in the rigid body refinement, a
further constrained refinement was carried out. The carbon
rings were constrained to perfect hexagons with the direction
of the C-D bonds at 120° to the neighbouring sides of the
hexagon. These two bond lengths along with the three Euler
angles are the only parameters necessary to determine the
atomic positions. With the bij's fixed at their values from
the rigid body refinement the best R value was 6°/0, which
only fell to 5.8°/0 when the bij's were allowed to vary in-
dependently. These are poorer than all other values so far
obtained, on the 2°/o level of the F-distribution and we may

attach high significance to the variation in bond lengths and

angles.

2.5.5 The Correlation Matrix

The rigid body constrained refinement gave a final cor-
relation matrix with some interesiing properties. The only

Positional parameters which showed significant correlation
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were X and 2z co-ordinates of the same atom, which indicates
for the system of axes chosen, uncertainty in orientating the

molecule. There was a high correlation between elements of

T and L, namely T,; and L22/L33 s Top and . Lyq ;

'I'l3 and L13 ’ le and L12, which is not surprising

when one considers the equations linking the Uij to Tij
and. Lij’ Cruickshank(hol Using the present set of axes

these become.-

_ 2 2 3

Ujp = Tqq + XLy + 7 L33 - 2x:yL23 (2.8a)
U., = T 2, 2.8
op = Top + XIqy (2.8b)
U = T.o + yQL (2.8¢)
33 33 11 y

U = T 2y L (2.8a)
1o ® qg = Tidga * Iy ¢

U = T.p —- yQL + xyL (2.8¢)
13 T 13 13 Jiy0 *

where the Uij’ X, ¥ refer to a particular atom, k. Equation
(2.8b), for example, indicates that it is difficult to dis-
tinguish translational motions along axis 2 from librations

about axis 1.

2.6 Further Refinements of Neutron Diffraction Data

Since our refinements, described above, and reported in
the literature, (Pawley and Yeats(ul)), others have used our
data to obtain some very interesting results.

Speakman (1969) (private communication) has performed an
unconstrained refinement with 82 parameters, and including a

weighting scheme, to take some account of extinction. This
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IFObSIi ob
scheme set \/Wi S e—— for ]F SE'(’p and
‘/Wi = P/]FObSli for ,FObS!i ) P, with p = 290, on our

structure factor scale, i.e. the strong reflections where

extinction was more likely to occur, were given lower weight
Swy (] obs| . |mealel 2
_ i (177773 = |F [1)
ops ‘_Z

S S owy 1F°°5)

was minimised, and the conventional R-value was 3.90/0. The

than the weak ones. R}

corresponding positional co-ordinates were in satisfactory
agreement with ours, and the calculated PFP's had the same
signs as our F's, i.e. this refinement found the same minimum.
Speakman reported that introducing the deuterium scattering
length és an additional parameter gave no significant improve-
ment on his unconstrained R~value, and concluded that there
was no evidence for incomplete deuteration in the observa-
tional data. He has used our data to compute the neutron-
scattering density in the mean molecular plane, and this plot
is included as Figure 2.5.

Pawley (1970) (private communication) has repeated the
refinement of Section 2.5.1, using Speakman's weighting scheme
to obtain R} = 12.3 - with R = 5.1°/0, showing that this
does not lead to any improvement in the constrained refinement.
Pawley then considered an extinction correction which has been |
described by Zachariasen(Bl) (see Duckworth, Willis and Pawleyshz)}
For a spherical crystaiiﬁ

plpoore  _ goore [, o2 o]
incorr.2

where x = c (Fobs

b .
-F:,ﬁmrr = F° 8, uncorrected for ex‘txnction)

and ¢ 1is a constant, which is determined as a parameter of

cosec 28

the refinement. With this additional parameter, R fell to
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h.ho/o and Rﬁ was 9.88  ':, a highly significant drop.
With the rigid body thermal constraint relaxed, R was 3.5°/0,
Rﬁ 6.12° . for 68 parameters, and a completely unconstrzained
refinement (83 parameters) gave an R of 3.3°/o and an

R! of 5.26 .,

W
These results showed that the thermal motion of 010D8
could not be adequately described by the twelve "rigid body"
thermal parameters, and that displacements due to internal
modes could not be neglected. The improvement in R from
4.1°%/% to 3.5%/0 required an increase in the number of para-—
meters from 26 to 68, i.e. 42 extra parameters to take account
of atomic displacements under internal modes, and it is of
interest to know if all those are Ygood" parameters. Perhaps
these mode displacements may be adequately described by a small
number of parameters, having physical significance. The
deuterium atoms, are’'likely to have considerably larger dis-—
placements than the carbon atoms, by virtue of their positions
in the molecule and because of their small mass (the mean square
displacements depend on %). Pawley(QB) has introduced a single
deuterium isotropic temperature factor, (B), to describe their
internal mode thermal displacements, and obtains R = 4°/o,
Rﬁ = 7.6, with B = 0.006332. This agrees satisfactorily
with Johnson's calculations on benzene(uuél where the dif-
ference in carbon and hydrogen mean square displacements was’
0.012632 (this would predict B = 0.0057.22 with hydrogens
replaced by deuterium). This benzene work showed that the
motion was highly anisotropic and so Pawley replaced the
isotropic B by anisotropic temperature factors, Bi ) the
same for all deuteriums , corresponding to squared displace-

)
ments along the C-D bond, across the bond, and out of the

o
molecular plane, to obtain an R value of 3.3 /o. This
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refinement relaxed the mmm symmetry constraint, but gave
Just as good a fit tG the data as the completely unconstrained
refinement. Hence the thermal motion could be described as
well by 12 rigid body parameters with 3 internal mode
deuterium thermal parameters as by 54 independent anisotropic
thermal parameters. Values of ﬁi were 0,005, 0.008 and
0.02132, compared with calculated values for deuterated

o (442)
benzene of 0.002, 0.006 and 0.010A2. 7

Ziei Discussion

The results described in this chapter, bring out the
value of performing constrained refinements, and show that
they may be used as tests of the significance of various
deductions. We must distinguish between statistical signi-
ficance and physical significance — Pawley points out that
the change in R from 3.3%°/0 to 3.50/b, on imposing an mmm
symmetry constraint on an otherwise unconstrained molecule
is statistically significant on thé 0.01 probability level,
but its physical significance cannot be decided until similar
results have been collected for many other solid, aromatic
hydrocarbons. However, the breaking of the rigid body thermal
constraint may be assumed to have physical significance, in '
view 6f the satisfactory description of the additional atomic
thermal motion.

There appears to be good agreement between calculations
of Zgint on benzene and naphthaleng. Spectroscopic data
on benzene predicts values of 0.0139A2 for hydrogen and
0-001322 for carbon, whereas Higgs has obtained values of

o
0.0013 - O.OOQOA2 for carbon in ClOHS’ from force-field
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calculations. We might imagine that this positional variation
of mean square displacement might be reflected in the deuterium
motion, but this is not indicated by the neutron results.

Our earlier refinements, showing a significant decrease
in the deuterium scattering length, are now seen to have
indicated not incomplete deuteration, but a deviation from
the rigid-body thermal motion model. Including the additional
deuterium isotropic B. 1is mathematically approximately
equivalent to giving that atom a X-dependent scattering
length, and our value of 0.63 was simply its average over the
range of experimental measurements. This is now consistent.
with Speakman's conclusions on incomplete deuteration - he
performed an unconstrained refinement, in which the aniso-
tropic temperature factors contained the apparent K-
dependence of bD.

An important fact to emerge from the subsequent refine-
ments is that our data was affected by extinction, although
this was not at all obvious on analysing our results. Of the
obs' >’F

with the remaining three agreeing within

25 strong reflections, 11 had I F and 11 had

o'bsl < 'Fcalc ,’
experimental error. We now realise that the ©&-dependence of

calcl’
| F

extinction effects is important, and makes the effect dif-
ficult to analyse. This is perhaps a cautionary tale -
extinetion correction parameters should be included in a
structure refinement, and a weighting factor which is only
intensity-dependent is no substitute.

One rather interesting fact mesy be seen on comparing the
many constrained refinements (summarized in Table 2.6). In-

creasing the number of parameters does not always improve the

fit, what is important is to choose "good" or significant
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parameters. For example, "increasing the number of parameters

from 25 to 26 by including an extinction correction gave
1
RW(25)
Rﬁ(26)
probability level, showing that the extinction parameter is

= 1.25, compared with a ratio of 1.016 on the 0.1°%/0

a highly significant parameter. Similarly, the 27 parameter

fit gave an R; ratio-of 1.3, again to be compared with 1.016
for the 0.1°%/0 probability level. Model VI with Ll parameters
gave the same R-value as model V which had 83 parameters, and

a statistically better fit than the 68 parameter model IV.
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Parameters for CloD8 at 2957K.

TABLE 2.1

(o]




e e N e e e R ek D00 00 00C00G00000o0000C000EED0G000

soeoo

LI LILats 1 I 3 B B e e e B e e e £ BT O AT LA o o o o G G L B B 3 0 B e e e

whnbedobod b bdunda

'
L O P P B LS B S G Do e e R e

355 a5 113 o3 33 :
1,';:;:3“1 1200 134 : : 2 3 ;:‘f :
1339 439 13-4 34
323 133 233 241 H
i E : 5 <
Ain 140 z A 343 it
Gz P z 4o 2 1.2 g
268 i o4t £ il 3*'5 45'3
als 1 4 = 2 4 2 335 ‘t'p-x
o7 14 4 242 ::i5 S
73 1 4-5 24 04 13573 :'E:l
a5z 1 5=l =4 =3 35-§ P ==
a5 15 e &g 8 37 e
&2 152 52 3 Iy pAE
1y to5 4 B gz 3 -i‘ L]
756 331 72E 1535 253 i A
(o&g._s’;‘% 1?-7 *g'l :o! 51 1
321 3ng 32 1 5 s 3 - =
o gb g 1 63 147 jo3 315
EJ' i;.a 18 1 g 1 2 6 = 4 285
B go & 1 83 16 403 03
L R T 2 09 3 6% R B
75 30 GG 30 ara 180 H
i B 11 RE i1
0 “ 2 =
i 3 72 $:87 e
Vig by 53 2 0 3 25 440 13
1692 1102 1312 2 0 - 2 1 HET 2 -2
W 1o Py i3
22@ 292 303 aq-g iloe ::; 5:*:
1110 1121 1170 2 8- e 3 2-5
12 (12 550 210 ::2 :‘l_{ 3 0
206 20 233 211 3l e 3=t
195 161 195 2 11 343 418 533
405 441 429 2 1 2 o i2a 4 0
Zgi 28 25 2 M-t i 4121 41
ol 113 ik
425 423 442 2 10 320 $a4 i3
32} 24 2 1.7 32 1 4 1'?’
b o i 220 123 4.2 p
704 G50 G 23 1 3’-_! :J i:g
171 gy oz 24 33 3 43 32
492 309 39 2 2z B - 5 R
i7 493 & 223 3130 o 55-3
216 247 #40 2 2-3 i3 4 5 5-
75 B854 8 2z 2 4 A 11 i
75t 335 736 2 2.4 3: 25 i 4 §i%
arg 3sh 356 2 13 334 443 5 01
527 473 491 2 2 33 3 5 6-2
19y 181 176 2.3 0 ]33 :1.‘ 5 6-3
sy 5312 s 231 33 :

The columns are headed (h k ¢), lFobs"

Peb. | ' m om i
! Feale ! Hod ‘Fcalc' |

Observed and Calculated Structure Factors

TABLE 2.2

e L R s

O 0SS 050D 08 DO 50 D N S SR S AN S

[

W L B b e e e G L L R 0 L B B B R e el Bea e B e L b i b e BB R B 4 3 e e



mm  symmetry 1 symmetry

x/a y/b z/c x/a v/b z/c
G(Q) 0.0482 0.1030 0.0359 0.0480 0.1035 0.0352
¢(B) 0.1149 0.1606 0.2205 0.1155 0.1591 0.2206
c(D) 0.0761 0.2476 =-0.0782 0.0755 0.2487 =-0.0777
c(A) 0.0857 0.0174 0.3267 0.0857 0.0164 0.3260
c(E) 0.0099 0.1869 =0.2555 0.0088 0,1876 -0.2566
D(b) 0.1883 0.3185 0.2733 0.1878 0.3178 0.2818
D(a) 0.1499 0.404L3 -0.0213 0.1511 0.4053 =-0.0219
D(a) 0.1368 0.0627 0.4665 0.1353 0.0630 0.L650
D(e) 0.0318 0.2978 -0.3L08 0.0327 . 0.2972 =-0.3414

Rigid body

Pyy boo Pasz by by byp
c(c) 116 163 174 -10 69 0
¢(B) 202 250 187 -50 87 ~31
c(D) 190 200 235 15 118 -18
c(a) 262 357 181 -12 115 3
C(E) 251 311 228 52 145 16
D(b) 328 31L 253 -119 126 -110
D(a) 307 232 338 -6 182 -89
D( a) 132 561 197 -12 163 -17
D(e) Lo2 448 311 113 238 L

TABLE 2.:3.

Fractional co-ordinates of the molecule with and without

the symmetry constraint.

R.B.T.P., refinement,

The thermal parameters are from



c(c)
c(B)
c(D)
c(a)
c(E)
D(B)
D(D)
D(A)
D(E)

X

-0.0088
1.2368
-1.2429
2.4133
-2.4307
1.2043
-1.2461
3+3453
=3.3700

standard deviations are

Y

0.7076
1.3982
1.3991
0.7046
0.6891
2.L760L
2.4800
1.2458
1. 2205

0.0055 for C

Z

-0.0015
0.0055
-0.0055
-0.0008
-0,0031
-0.0005
0.0095
-0.0154
0.0155

0.0079 for D.

Inertia System for clODB'

TABLE _2.L

Atomic Co=-ordinates in Molecular



TABLE 2.5

Thermal parameters from ClODS R.B.T.P. refinement

Usyn Y2 Uiz Uoy  Upz Uz
c(c) 2,81 0.00 1.76 2,98 -0.22 .66
c(B) 4.89 -0.65 2,21 4,56 -1,11 5.00
c(Dp) L,60 -0.38 3.00 3.65 0.33 6.29
c(A) 6.34 0.06 2.93 6.51 =0.27 L.8L
c(E) 6.08 0.34 3.69 5.68 1.15 6.10
D(B) 7.93 -2.31 3o 5.73 =2.63 6.77
D(D) 7.43 -1.87 L.63 L.23 0,13 9.04
D(A) 10.46 -0.36 L.15 10.24 -0.93 527
D(E) 9.73 0.29 6.06 8,18 2.50 8.32

Thermal parameters from Cruickshank's unconstrained

refinement

obs obs obs obs obs obs

Ui Uio Uiz Uso Usz Uas

c(e) 5.7 ~0.22 037 3.84  -0.01 573
c(3B) 5.48 0.82 -0.28 h.79 =0.29 5.63
¢(D) 5,98 -=1,01 0.01 4,86 0.10 .89
c(a) 5.84 0.41 0.10 6.84 -0.19 6.3
C(E) 5,20 =1.51 0. 31 7.57 =0.19 6,08




8(c) 3.5 x 1072 (a2)
¢(B) hoB o 367% (EQ)

5 O
c(A) 6.0 x 10°2 (%)

D( B) 6.8 % 107> (§>2

5 O
Da) 8.7 x 1072 (a)2

Spherically averaged mean sqguare displacements in ClODS' From

rigid body thermal motion constrained refinement.

1l

-2 %
carbon in C, Hg 0.16 x 10 © (A%)

from Johnson's results

I}

_ o
deuterium in C,Dg 0.6 x 10 = (Ag)

from Pawley's results

0
c(c) 0.13 x-10 2 (A2)
o 0
c(B) 0.20 x 1072 (AQ) from Higg's calculations
o
c(A) 0.17 x 1072 (4?)

Mean square displacements in 010H8

and GlOD8 for internal modes.

TABLE 2,



Figure 2.1 Schematic Diagram of a Four-Circle Diffractometer (page 26)

—_— SN — "




DETECTOR
ARCS

— CRYSTAL




Figure 2.2 Typical Bragg Intensity Profile (page 28)
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Figure 2.3

Histogram of Observed Structure Factors for (200) Standard
Reflection (page 34)
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Figure 2.4 \ The Molecule of Naphthalene under T Symmetry Constraint (page 38)
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Figure 2.5 Neutron Scattering Density in the Mean Molecular Plane (page 43)

= - : . —







118

CHAPTER 3

THE LATTICE DYNAMICS OF NAPHTHALENE

In this chapter we discuss the application of the theory of
lattice dynamics to molecular crystals, with particular reference
to naphthalene., '/e describe the measurement of phonon freguencies
in deuterated naphthalene, and compare the results with the pre-
dictions of various models, We discuss the effect on the phonon
dispersion curves of varying the model parameters, and conclude
with a discussion of the measurements which might be made to
resolve the discrepancies between the calculated and experimental
dispersion curves,

In molecular crystals the intra-molecular forces are con-
siderably stronger than those between different molecules, Con-
sequently, some of the crystal normal modes involve only relative
motions befween molecules, with individual molecules behaving as

almost rigid units. We shall refer to these modes as external

modes,

Bk Theoretical Introduction

At present we assume that the molecule vibrates as a com=-
pletely rigid unit in the external modes. Cochran and Pawley(ua)
have shown that a general mode has translational and rotational
components, and for a centrosymmetrical molecule these components
. are % out of phase, The kth molecule in the 6th unit cell,
situated at R(€k), is given a translational displacement

(expressed as a travelling wave).

u(ek) = g$gk) exp {i(g.&(&k) - w(g)t)l (3.1)
and a rotational displacement

e(¢k) = @ (gk) exp{i(_g,.@_(&k) - w(g)t)} . (3.2)

The displacement of the pth atom in the kth molecule is
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wexp) = [Waw) + @ (a1)x &(p) ]

X exp {i(g-éi(&k) - w(g)t)} (3.3)
and
g(p) is the position of the atom, p, relative to the centre

of the kth molecule,
If we combine equations (3.1) and (3.2) to give a six-

component vector u(£k) (u, u u, U u the inter-

molecular force and couple constants are

o

iij(&}w'k‘) = 0° E (3.4)
aui(ék)auj(ﬂ'k‘)

U, is a translational displacement along x-and uB a
rotational displacement about the y-direction. There is no
restriction on the choice of axes, and we choose to express
the displacements relative to the principal inertia system
of the corresponding molecule, This will avoid products
of inertia in the equations of motion. These equations of
motion are, for example,

mux(ek) = -Z %_ (61{6 k' u, (4 k')
b o

Z § (61«:«5 k' )u. (a'k')
4 ki

i

I, u a(ék)

or M, u (¢k) = - 2 % j(exe'k' Ju;(e'k") (3.5)
dJ J 2'k'i

where Mj =(mmm I IB I and the j specifies an x

Y)’
or B, not a particular mode. Substituting equations (3.1)

and (3,2) in equation (3.5) we obtain
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> ¢

e'k'i

1l

w2(g)MjUj(gk) (eke'k')U,(gk) x

J2

exp i g.(R(¢'k") - R(¢k))

or

2 $um) 2 i—ii—-exp ig.(R(¢'k")

k'i L' Hﬁimj

H@F Y (o)

- R(¢k)) (3.6)
where § 4 (gk) veplaces I U (k).
Bquation (3.6) defines an element of the dynamical matrix

g (kk'e) = 5§ (emetk)emp 1 gu(R(e'K') - R(¢K)) -
@ (3.7)

Naphthalene has two molecules in the unit cell, one at the
origin and the diad related one at (% 5 0). Following Pawley,
we label these E and D respectively. The § ‘(gk) have
therefore twelve components and the dynamical matrix is
Hermitian, in general. Using the % phase relationship
between the translational and rotational components of an
eigenvector. reduces this to a real 12 x 12 matrix, giving
twelve values of mz(gj) and twelve eigenvectors g__(g X 3),

with components

$1 = f£L(@m P o= 4 B

0 (3.8)
$u = . 1§am § 10 = 5%
Cochran and Pawley(uu) and. Pawley(u5) have expressed

the dynamicallmatrix for external vibrations in the molecular
crystal hexamethylene tetramine (H.M.T.), in terms of only

four parameters, and obtained sets of dispersion curves for
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various values of these parameters. The high crystal sym-
metry reduced the number of independent parameters specifying
the interactions to eight, and half of these could be deduced
from experimental Raman freguencies and elastic constants.
Experimental phonon frequencies have now been used to deter-
mine all the parameters(u6).

We now consider how symmetry restricts the number of

independent parameters svecifying intermolecular interactions

in naphthalene, Let k denote the E-molecule at the origin,

=

1 a D-molecule at say, (% % 0), k2 a D=-molecule at

naj=
(VS

~

0). Then, crystal symmetry requires %;(k:kl) and

|e?

( k kz) to have components of the same magnitude with
signs differing for xB and oy terms. In addition sym-
metry requires the same relation between components of
%(k’ k") and i(k' k" ), where the molecule k"™ is
jg;lated to k"‘ﬁ;y inversion, and k' is an E molecule if
k" is ®, and D if kX" is D. The derivation of these
relations is given by Pawley(8).

For the naphthalene crystal, in contrast to H.M.T.,
symmetry requirements on the %ij‘s do not reduce the
independent elements of the dynamical matrix to a reasonable
number., A different approach is required. Pawley has cal-
culated phonon dispersion curves in naphthalene and anthracene
by considering the interatomic potential in parametric form.

A suitable potential is the Buckingham potential

A.
Vi(z) S ;% + B exp (—air) (3.9)

where i denotes a particular type of atom pair. This form
of potential has been used to discuss the crystal potential

in some aromatic hydrocarbons(”T). The results of phonon -
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fitting in H,M.T. starting from a potential of this type
are expected soon(ag).

For naphthalene there are three types of atom pair S
¢C -C, C-H and H - H, giving nine parameters to specify
V(r). The j{ ji's are doubl® differentials of the crystal
energy, g; s and may be calculated analytically by swming

forces and couples between all atom pairs in the molecules

(¢k) and (&'k').

5.2 The Preliminary Calculation and its Results

In naphthalene there is only one symmetry direction,
[0 10)]. In this direction there is a difference between
symmetric and antisymmetric branches of the phonon dispersion
curves, In a symmetric mode of vibration, the space group
symnetry is maintained, Consequently, all our calculations
had g in this direction. The axis of greatest inertia.
(Il)’ is that perpendicular to the plane of the molecule.
Axes (2) and (3) lie in the molecular plane, For 1008
I1 = 1072, I2 = 75&@ 13 = 317 in units of 10-&0 om. cm.2.

The direction cosines of these inertis axes relative to the

orthogonal axes [a, b, n csinp] are

-0.8539 0.3964 -0.3371 : Axis 1
-0.2793 -0.8957 -0.3459 : Axis 2
-0.4391 -0.2012 0.8756 : Axis 3

(3.10)
for the E molecule.
The first differentials were performed analytically,
and the molecules were allowed to rotate slightly sco that

there were no resultant forces or couples on them.,

Kitaigorodskii(u9) has shown that there is a minimum in ﬂ; 5




close to the true lattice spacings and orientations of the
molecules., The slight rotation. to obtain a minimum in ’_f-f
ensures eguilibriwa for the initisl structure.

The second differentials were obtained numerically. By
giving the molecule (k') a small displacement, either |
translational or rotational, ths changes in the forces and
couples on the molecule (k) were computed by swmiing over
all atom pairs in the two molecules, The j‘?ji's were cale—
culated for interactions between the molecule at the origin
and those at (0 0 1), (0 10), (£ %20), (-+%0), (¥ % 1)
(8)

-1). Tollowing Pawley's calculations
)
atom-atom contacts of less than 5.P5A were included,since it

)
=
a
—
i
1}
[SES

only

was found that only a 1% variation in the mode frequencies

fo)
occurred when the interaction limit was increased from 5.04
o o
to 5.5A, compared with a 7% variation in the range 3.5A to
0
L.0A,

To satisfy the re@uired symmetry, the interaction tensors
between the molecules at (0 0 0):(0 0 1) and (0 0 0):(0 1 0)
were "symmetrised" after numerical differentiation, since com-
puter round-off errors caused'slight discrepancies between
symmetry related elements, The appropriate elements of
i’(ooo ; % %0) and s%(ooo; -+ £ 0) as well as

(0003 %%1) ang 5$(000 3 =% -1) were averaged

to satisfy the symmetry restrictions on the jE 's. (8 is -1
for xB and ay terms and +1 for terms such as xx, BB).

Pawley has written a computer program which performs these
calculations for naphthalene and this has been used throughout.
The results of the initial calculation for g =0 are

given in Table 3.1l. The model parameters are those used by

Pawleyﬂg). Pawley has pointed out that eigenvectors do not



depend strongly on the model parameters, although the fre-
uencies do. 've may therefore use the eigenvectors of
Table (3.1) to discuss the general properties of the dif-
ferent vibrational modes. We do not exnect these properties
to alter imich during the course of our calculations.

“le have labelled the modes as & or A to correspond
to symmetric and antisymaetric vibrations, TFor an 3 mode

f = +§I and f = -f} in an A

I+6 I+6

mode. Tor g = 0, the modes have either purely translational

or purely rotational character. The branches gT(10), AT(11)

and AT(12) have w > 0 as g -2 0, and are acoustic branches
They represent pure translations, which, for g = 0, are
longitudinal with respect to b for 3T(10) and transverse

to b for AT(1l) and AT(12). The other three translational
branches are infra-red active optic branches.

The six pure rotational modes are Raman active, and the
form of thelr eigenvectors at a=20 ascribes them to lines
observed in the Raman spectrum. Three belong to the symmetry
species Ag (or S in our notation), the others are Bg or A
modes, The polarisability tensors for the different species
have different components which are non—zero(51), and so the
symnetry of the Raman lines may be determined., For fairly
weak intermolecular forces, the energies of the 5 and A
modes for librations about the same inertia axis should be
similar, and the six modes will occur in pairs. If the
restoring forces are the same for all three modes, then the
highest frequency pair should correspond to libration about

the axis of least inertia, and the lowest freguency pair to

libration about the axis of greatest inertia.
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51) R
Ito et al, have measured Raman freguencies in

108
and GlODB at various temperatures, and their results are
given in Table (3.2). 3ince the convention is to quote Raman
frequencies in cmnl, we have used these units in this table.
It is ususl to quote phonon freguencies obtained by neutron
inelastic scattering in THz., and we shall use these units
when appropriate., The conversion is 100 et = 3.,03THz.
SR(3) and AR(5) are separated by about LO cm_1 from SR(1)
and AR(2). By considering the intensities of the Raman lines
in various polarization spectra, Ito has shown that the high
frequency modes correspond to librations predominantly aboutb
axis 3 but the others are for coupled librationéxabout the
axes 1 and 2., The calculated eigenvectors for modes SR(B),
AR(5), SR(6) and AR(8) agree with these conclusions although
there is considerably more coupling in the A modes than in
the S Imodes;* In both the calculated and experimental sets
of frequencies, the 8 species lie above the A, except
for the experimental pair SR(1) and AR(2).

As g 1increases from gzero, the branches remain 35 or
A and at the zone boundary, where |g|= 0.5 along [?O_l OJ,
the modes are degenerate with one mode from the S representa-
tioﬁpaving the same freguency as one from the A representation,
The eigenvectors at |g|= 0.5 may be any linear combina-
tions of the degenerate mode eigenvector pairs, and are in-

determinate. For all values of g other than zero, the modes

are partly translational and partly rotational,

*Footnote

The term "coupled librations" is used in the sense of reference (51)
and does not imply that we consider anharmonicity.
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B The Effect of Molecular Distortion on the Phonon

Frequencies

In many molecular crystals the lowest intramolecular
fregquencies are typically ten times those of the highest
external mode frequencies, For these crystals, the treat-
ment of Section 3,1 should be expected to give the external
mode frequencies very accurately. However, in naphthalene,
the highest external mode is at 141 et at g =0, com-
pared with 176 cm_1 Tor the lowest intramolecular mode,

This result indicates that there will be some molecular dis-
tortion in the low frequency modes. We should, therefore, set
up the eguations of motion 1in terms of displacements of each

of the %6 atoms in the unit cell, and solve the (108 x 108)
Hermitian dynamical matrix to obtaln eigenfreguencies and
eigenvectors, (2 x U48) of these freguencies will be close to,
but gréater than ythe non-zero frequencies obtained from a
calculation of the vibrations of a free molecule of naphthalene.
The other (2 x 6) freguencies correspond to the external modes.
These calculations have been performed for naphthalene by
Pawley and Cyvin(sz), and details are given in their paper.

Pawley and Cyvin find that all branches corresponding
to externsl modes are decreased in freguency throughout the
zone, with frequency shifts of up to 15%. The fractional
shifts vary from branch to branch, and with g. Experimental
phonon freguencies are for a deformable molecule, and in any
attempt to fit these to a model we should compare them with
the results of the calculation for a non-rigid molecule.
Alternatively we may follow Pawley and Cyvin's suggestion

that experimental freguencies may be gltered systematically
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before comparing them with model calculations. This is the
approach which we have adopted, since it simplifies the
computing considerably. Before altering the experimental
frequencies they must 3& assigned to the correct branch of
the dispersion curves. This requires a knowledge of the
mode structure factors, and we consider these in the next
section. The Raman frequencies may be altered systematically,
since we have already identified them with particular branches.
Pawley and Cyvin publish their results in the form of
dispersion curves for both rigid molecule and deformable
molecule calculations, To alter the experimental results we
identify these with the deformable molecule curves, and alter
these proportionately to give frequencies which correspond to

the rigid molecule results.

St The One-Phonon 3tructure Factors for Naphthalene

For scattering of neutrons from the mode (gj), the

structure factor is
&(ki) = K.Z Z £(Kp) exp [i.Ig-P_-(p)J
k p
[I_L(gkj) + ® (gxj) x li(p)] eXPfiI.-lj.(lc)}-(B.ll)

This corresponds to the X-Ray structure factor given by
Cochran and Pawley(uu), and is obtained from it by replacing
the K-devendent scattering factor for I-Raysby a2 neutron
coherent scattering length, “The summation is over all atoms,
D, in the molecule, and over all molecules in the unit cell;
in this case, one E-molecule and one D-molecule, f(Kp)
includes the scattering length, bp, and the Debye-=laller

=¥ (}_{_.) o ‘
factor, e P . The factor[:g(gkj} + EL(QKJ)XE(p)J arises
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from the displacement of atom p, in mdecule k, under the
mode (gj). This is easily obtained in terms of the mode
eigenvector, .ilg&j}, using equations (3.8). Tquation

(3.11) may be written

&(

=

3} = Z[E.&(E5) + ilé-}:(Ejpﬂ [cos o(Ep) + i sin@-(Ep)J
D

+I:E.E(Dj) + ig.g(bjpi][cose(Dp) + i sin@(Dp)] (3.12)

where the sines and cosines incorporate the exponentials, and
f(Ep), and depend on the value of T.. The summation is now

over the atoms in one molecule only,

HEF)

(£ (13); 5’(23);3’(35})F

z(Ejp) (3(5) =x B(p))_

using components 4, 5 and 6 oﬁél, with similar relations for
atoms in the D-molecule. These will involve the components

7 to 12 of E_(j). The ¥ denotes a transformation from the
apvropriate molecular axes to the orthogonal set

[g, b, éc sin B], so that atomic displacements are expressed
as fractions of the cell dimensions. The cross-section is
proportional to ((GR)2 + (GI)Q) where G, and G are the

R
real and imaginary parts of (3.12).

3.5 The lieasurement of Phonon Freguencies in 01028;

Using the £ (gj) of reference (8), and Table 3.1, we
may calculate the one-phonon structure factors. These allow
us to plan the experiment, deciding the 31 at which to observe

scattering from the branch jJ.

e have performed a neutron inelastic scattering experiment
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at 295°K on a crystal of 98°/0 deuterated naphthalene, using
the PLUTO triple-axis spectrometer. Our crystal was a
cylinder of length 3 cm. and diameter l.7 cm., with a mosaic
spread 10, measured relative to an aluminium monochromator of
mosaic 0.2°. We used (Q# - g*) as the scattering plane and
searched for phonons with g along gﬁﬁ Throughout, the
spectrometer was operated in the "constant-K" mode.

W/e have reported the measurement of some anomalously

(53)

low frequency phonons Wle now believe that many of the

corresponding peaks in the count rate, N were caused by

D’
spurious Bragg intensity, by a process described in detail

in Chapter 5 (p. 98 ). This process is particularly trouble-
some in crystals of large mosaic spread. The 2°/0 hydrogen

gave us a very high incoherent background of about 20 counts/
minute, on average. /e observed several weak peaks, which
appeared to be due to scattering from some of the lower optic
branches, but were unable to obtain complete branches.

We concluded that it would be necessary to obtain a
better single crystal of more highly deuterated naphthalene
before continuing our measurements.

Dietrich and Pawley (unpublished) have measured phonon
frequencies in 010D8 at ??OK, using a good single crystal of
99.5° /0 deuterated material. Seven. almost complete. branches
of the dispersion curves have been measured, including the
three acoustic braﬁches. The incoherent background was only
2 counts/minute, but the peak to background ratio for scattering
from the higher frequency optical branches was still too small
to allow measurement.

e have altered these experimental phonon frequencies to

correspond to the results for a completely rigid molecule, and



-59-
these are presented in Figure (3.1). The assignments are
due to Dietrich and Pawley, who have used the cross—sections
predicted from the eigenvectors of reference (8). Figure
(3.1) also includes Raman frequencies from Table 3.2.

These dispersion curves show that a knowledge of the

cross—sections is essential to assign experimental frequencies

to the correct branch.

3.6 The Dependence of Phonon Frequencies on the Model

Parameters

Our aim is to fit the phonon frequencies in GloD8 by
varying the nine parameters of equation (3.9). Rather than
perform a full least-squares refinement at thisstage, it was
decided to vary the parameters independently, and catalogue
their effect on the different branches of the dispersion
curves. One difficulty in programming a least squares refine-

ment of the data. is the inclusion of some selection process

which picks the correct calculated frequency, wcalc(j) s tO
compare with an experimental frequency mexp(n)' The
wgalc(j) are obtained as eigenvalues of the dynamical matrix,

and the corresponding eigenvectors must be used to pair them
with an wexp(n), labelled perhaps "ST" or MAR". 1In

Figure (3.2a, b) we illustrate the branches SR(3) and 8T(L),
obtained for slightly different potential parameters. These
branches belong to the same symmetry species, 8, and therefore
cannot cross. As ¢ 1increases from zero, branch (3) takes on
translational character, and branch (4) rotational. For model
(2), the lower branch is ST, but it is the higher for model (b}
This shows that the order of the branches may alter during a

least-squares refinement, and experimental and calculated
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frequencies cannot be paired correctly, without considering

the eigenvectors at each stage. The significant propertiss

of the g[{j) are their symmetry end degree of translational
and rotational character. The structure factor is continuous
along the broken curve in Figure (3.2a), and it is this w~-g
relation which is followed in a series of experimental measure-
ments.

For each of our model calculations we identified the
different branches by considering the form of the £(gj).

In Table 3.3 we list the percentage change in the mz(j) for
25°/0 changes in the Ai's and 3°/o changes in the mi's.
The relative effect, on the w2, of changing the Bi's
follows that of the corresponding Gy 9 and need not be
tabulated separately. However we include B(3) in Table 3.3,
for reference.

. A1l changes are relative to the model of Table 3.l.

The long-range C - C forces affect the (T) modes more
than the (R) modes. The long-range D - D forces have their
main effect on the (R) modes, with the effect increasing
with decreasing frequency. The long-range C - D forces
affect AR(8) predominately, but otherwise have more effect
on the (T) modes than the (R) modes. The short-range
C - C forces mainly affect the (T) modes, whereas the short-
range D - D forces shift the branches SR(3), AR(5) and .
AR(8) relative to the others. The short-range C - D forces
alter the frequencies of SR(3) and AR(5) much less than
those of the other branches.

In general, we note that different parameters affect the
rotational branches by varying amounts, and it is possible

to raise or lower them, relative to the translational branches.

However,it is not possible to move the acoustic branches
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independently of ST(L).

3.7 Comparison of Zxperimental and Calculated Phonon

Dispersion Curves

We now discuss the results of various calculations and
compare them with the experimental results of Figure (3.1).
" Harada and Shimanouchi(5u) have assigned three weak absorptions,
observed in the low frequency region of the infra-red spectra
of naphthalene crystals, to the three infra-red active trans-—
lational modes of that crystal. These are ungerade modes
(2Au and lBu) in the spectroscopists' notation, and are
the modes ST(4), ST(9) and AT(7) of Table (3.1). These infra-
(55),

red peaks have also been observed by Hadni and we include

them (again altered to correspond to the results for a rigid
molecule) in Figure (3.1). Harada and Shimanouchi have
fitted the Raman and infra-red data available to them(56’ 57)
by determining a set of interatomic force constants for all

H-H and C-H bonds of less than 3.33. However, their treatment
assumes that the force is thg(iifihigﬁnEfsﬁi§£e§JE:§;E£§%?weDHbm&JJ
in the range 3.026 —> 3.OM9A,A Using the parameters of Table

3.1 to calculate these force constants, we find that the

long range change by 30° /o and the short-range by 50°/0 as

r inereases from 3.1&3 to 3.29&. This suggests that the
approximation is not valid. Harada and Shimanouchi conclude

that the C-H interaction is important in a consideration of

the vibrational problem of crystalline hydrocarbons with

short C-H intermolecular distances. These C-H interactions

must be included as well as the H-H interaction of a De Boer

type (98,
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All our calculations, which were to be compared with the
neutron data, incorporated cell dimensions. measured at ?TOK.
These represent a 3.5°/0 increase in a*, g 1.5°/0 increase
X * o . . * 2
in ¢ and a 0.5 /o increase in b . These calculated
showed, on average, a 50°/b increase over the w2 for the
room temperature cell.

e describe our comparison of experimental and calculated

frequencies in terms of a X 2 defined by,

> 1 (Baanq (L) = w5 (1907
R (o(1))°

(3.13)

for n observations and p parameters. There are LO obser-
vations and 9 parameters and 26 of the observed frequencies
belong to optical branches. The o(i) are the estimated
experimental errors. These are 0.03 THz. for acoustic branches
and (0.05 —> 0.06)THz. for optic branches. The Raman measure-
ments for AR(5) and SR(6) are in excellent agreement with
the neutron measurements, and so these were given errors of
only 0.03THz., at g = O. The agreement is not so good for
AR(8), and so this experimental point was given an error of
0.06 THz. e have not included infra-red frequencies in our
}Cz—calculations, as contradictory results have been obtained
for some molecular érystals and there is some support for
ascribing several bands to impurity or defect-induced
absorption(55).

We have used various sets of potential parameters to
calculate the phonon dispersion curves, and found it impossible
to fit the experimental acoustic branches, and the branch
5T(L4), simultaneously. Several of the models fitted either
the optic or the acoustic branches satisfactorily. To

s for the

2
emphasize this we have calculated separate X =i
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acoustic and optic branches, as well as the overall X & of
equation (3.13). The optic and acoustic X 2'5, we call
X gptic and X icoustic’ and for these there are 26 and 14
observations, n. The summation over i of equation (3.13)
is taken over the appropriate observations. The results for
several models are given in Table 3.L4. For reference we quote
the corresponding X 's for the potential parameters of
Table 3.1.

The best overall fit is given by model III, and a list of

observed and calculated frequencies, with the value of
g . 2
(wcalc(l) 3 wexp(l))
A2
o(i)

Table 3.5. The main contribution to ;K e arises from the

for each observation, is given as

acoustic branches, and the branch ST(4). The rather high

value of X is a result of choosing the potential

acoustic
parameters to give a low overall ;( - by obtaining the best -
simultaneous fit to 8T(4), ST(10), AT(11) and AT(12).

The values in Table 3.5 also show that the Raman measure-
ments for SR(1) and AR(2) are not fitted well by the model.
This was a characteristic of every model that we have tried.
The ' calculated separation of these branches is always much
less than experiment suggests, and calculations always give
SR(1) above AR(2). Raman measurements on anthracene(5l)
show that the S and A modes, corresponding to librations
about the axis of least inertia,have frequencies of 131 em?t
and 139 cnst at 77°K. The separation of these branches in
anthracene is much less than in naphthalene. Our model
appears to be unable to account for the order of this pair of

modes, as well as their relatively large separation in naph-

thalene. The solution to this problem may lie in the introduc-

tion of anisotropic forces, and further measurements would be
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helpful, for example tracing the branches SR(1) and AR(2)
out to the zone boundary.

The experimental results show that the branch AR(5) is
almost flat, but this is not a characteristic of our model
calculations. Ve can fit the wexp for this branch for
values of |g| out to 0.25, but the w,,, for [g] > 0.25
increase more rapidly than is found experimentally. This
suggests that, for large ,g l, our model overestimates the
restoring forces for this particular mode of vibration.

The striking discrepancy between theory and experiment
for the branch 3T(L4) merits further investigation. The infra-
red data give the frequency of this branch at g = O as about
3 THZ., compared with the neutron estimate of (2.4l X 0.06)THz.
Although we do not wish to place too much importance on the
infra-red measurements, we should like to point out that this
particular result is in better agreement with the predictions
of our model calculations. The assignment of Figure (3.1)

" may be in error, and the neutron results, labelled by ST(L4),
may in fact belong to some other branch of the dispersion
curves. If we omit ST(L) from our calculations, model II
gives the best fit to the experimental data. Its X for
the optic branches is now 2.5, and the overall X 18 2.0,

In a future experiment. the assignment to S7(4) could
be investigated. by measuring the corresponding intensity at
a series of reciprocal lattice points. Once'the experimental
data had been corrected to allow for the (E%) factor appear-—
ing in the cross-section (equation (1.11)), the least-squares
program, described in Section 6.lc, could be adapted to
determine the eigenvector £(j) for this mode. The structure

factor of equation (3.11) differs from that of equation (6.12)

in having a real and imaginary part. These must be comvputed
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separately, and squared before adding them to obtain an
intensity. The £(j) for naphthalene is described by seven
parameters. These are the six components, £(jl1)—=>&(j6),
and an additional parameter, (41 or -1), which determines
the symmetry of g(j) as M"A"™ or "S"., Intensity data would
have to be obtained for some twenty values of T .

Wle have presented the results of several model calcula-
tions, and compared them with data from neutron inelastic
scattering, Raman and infra-red spectra. Although we have
used a >C2 to describe the fit between experimental and cal-
culated phonon frequencies, we have not attempted a least—
squares refinement of the data. Rather, we have pointed out
the discrepancies which exist and suggested how they may be
resolved. We await, with interest, further experimental

measurements of phonon freguencies and cross-—sections.



Mode @l gg 53 éh 55 €6
SR(1) 0 0 0 59,  -1828 6805
AR(2) 0 0 0 312 668 -7033
SR(3) 0 0 0 753 6806 1763
sT(4) 6325 3027 -913 0 0 0
AR(5) c 0 0 3529 608L 734
SR(6) 0 0 0 7006 -577 -767
AT(7) =2714 6370 1435 0 0 0
AR(8) 0 0 0 6120 =-3542 -65
ST(9) 1431 -921 6863 0 0 0
ST(10) -2818 632l 1437 0 0 0
AT(11) -3011 , 159 -6396 0 0 0
AT(12) -579L ~-3065 2652 0 0 0

2 B a
c~-C 358 112000 3.58
C-D 154 112000 b 12
D~D 57 112000 .86

Eigenvectors, E(j), and Potential

Parsmeters of Reference 8.

ll




lode ClOHS(cm." ) C1 0P8 (cm._l)

290°K 77°k 290°K 77°K
Bgz(3) 125 141 118 128  AR(2)
Ag(3) 109 121 102 110 SR(1)
ag(2 &1) 74 88 69 82 SR(3)
Bg(2 &1) 71 83 66 78  AR(5)
Ag(l & 2) 51 67 49 62  SR(6)
Bg(l & 2) L6 56 12 53 AR(8)

Raman Frequencies in ClOD8

and Cq,Hg from Reference (51).
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Wexp BT £\ branch
el 3 12 22,56 AR( 2)
B¢ 3.83 17.00 SR(1)
2.6 2,68 1.00 SR( 3)
2.l 2,7k 25.00 ST( L) 0.0
2,16 2.66 11.11 " 0.1
2.8 £ il 13,44 " 0.2
2.45 2,60 6.25 ! 03
2,40 2.38 0.11 " 0.h
2. 18 1.8L 26.70 " 0.5
2.3 2.24 6.25 AR( 5) 0.0
23T 2,25 L.00 " 0.1
2.4l 2.33 1.78 " 0.2
2.18 2.4h 0.4l o Qe
2.53 2.55 0.11 " 0.L
259 2.64L 0.69 " O'h
1,91 1.89 0.25 SR( 6) 0.0
1.90 1.89 0.0L i 0.1
1.86 1.87 0.04 L 0.2
1.82 1,82 0.C0 " 043
1,78 1.78 0.00 " O.L
1.84 1.74 2,78 " 0.5
1,62 1.60 0.08 AR(8) 0.0
1.58 1.57 0.03 " 0.1
1455 1.48 1.00 " 0.2
1.59 1.66 1.36 " 0+3
1,67 1,69 0.11 " 0.L
0.61 0.61 0.00 sT(10) 0.1
1.13 1,03 11.11 " 0.2
155 1,36 22,56 " 0.3
.60 1.54 O.L

4..00 "




Wexp Wyolo A branch q
0.41 0.40 0.09 AT(11 W §
0.78 0.74 1.78 S ) 8.2
1.17 1.00 %0.11 it 0.3
1.51 1.34 18.06 " O.L
1.69 1.54 9.00 u 0.5
0.29 0.29 0.00 AT(12) 0.1
0.59 0.60 0.11 " 0.2
0.91 0.84 5.44 " 0.3
1.2% 1.05 16.00 " 0.4
1.51 1.18 43.56 " 0.5

Frequencies in Thz.

(o

(1) - Deale

(e

2 _ SXP
ZS =

o (1)?

Observed and Cslculated Frequencies

For C;qDg (Model III)

TABLE




Figure 3.1 Experimental Phonon Frequencies in Cjp Dg Altered to Correspond
to results for a completely rigid molecule (page 59)
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Figure 3.2 The Effect of altering potential parameters on calculated
branches of the dispersion curves (page 59)
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CHAPTER L

FERRO-KLECTRICITY AND ANTIFERRO-ELECTRICITY IN

KH,PO), AND NH H,PO, .

L1 Introduction

In this chapter we describe the properties of the ferro-
electric potassium dihydrogen phosphate (KHQPOh) and the anti-
ferro-electric ammonium dihydrogen phosphate (NHquPoh).

These materials, along with many other examples of ferro-

(59) (60)

electrics, have been considered by Kanzig and Megaw
and later, from a lattice dynamical view-point, by Cochran
It is with Cochran's approach that we are mainly concerned, and
this, along with a treatment of the scattering properties of
ferroelectric crystals, has been the subject of a review article
The reader is referred to these articles to supplement the
-necessarily restricted review presented in this chapter,

Ferroelectric crystals exhibit a reversible spontaneous
polarization under an applied field, and the direction in the
crystal along which the spontaneous polarization occurs is
called the polar axis,

As the temperature is increased, the thermal motion of the
ions may become sufficient to destroy this spontaneous polariza-
tion, and the crystal will revert to normal dielectric behaviour,
This high temperature phase is often referred to as the para-
electric phase, by analogy with magnetism,

Any phase transition in a ferroelectric may be expected
to be accompanied by an anomaly in the static dielectric constant,

e(0). In some ferro-electrics its behaviour fits the Curie-Weiss

relation;

(61,62).

(63)

Ll



e(o0) + TET (L.1)
c

1l

e(0)

where e(o) includes the electronic contribution, and the
contribution from the lattice modes whose frequencies retain
normal values as T —> T  (see Section 4.4 for details). C
is the Curie constant, and T, the Curie tempersature, However,
many ferroelectric transitions occur for which there is no such
hyperbolic increase in €(0).

if TC coincides with the temperature of the structural

trensition, T then it is a second-order phase transition

o?
with a continuous onset of polarization., Otherwise, the tran-
sition is first order and has an associated latent heat, In
this case the crystal jumps from a state in which the polariza-
tion is zero, to one with a finite value for the polarization,
These aspects are considered in a thermodynamic theory (see,
for example, Devonshire(6u)).

Ye may consider a ferroelectric crystal as an arrangement
of parallel dipoles situated at lattice points, but sometimes.
an anti-parallel arrangement may correspond to a configuration
of lower energy. This gives a low temperature phase which is
anti-polar, Such a transition may not always be detected by
dielectric measurements, and careful structural analysis is
required, If the coupling of these anti-parallel dipoles has
an energy comparable with that of a polar state, then the
crystal is referred to as an anti-ferroelectric. In this case
the free energies of the ferroelectric and the antiferroelectric
are very similar and applying external stresses, in the form of
a very strong electric field, may reduce the polar state free

energy to a value below that of the anti-polar state. The

erystal would then become a ferroelectric, although the polar
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axis may not be in the same direction as the anti-polar,

L,2 The Crystal 3tructures

a) KH,P0),_

The structure of KHQPOM both above and below its tran-
sition has been investigatedyusing X-Ray diffraction, by
West(65), de Quervﬁi&§6) and more recently by Frager and
Pepinsky(6?). In this work, the positions of the hydrogen
atoms had to be inferred from those of the oxygens to which
they were bonded. It was not possible to confirm the basic
hypothesis of Slater's theory of ferroelectricity in KHQPOu -
that the hydrogens became ordered in the low temperature phase,
Later Bacon and Pease(68) used neutron diffraction to locate
the hydrogen atoms in both phases, and established that they
. 8id indeed order in the ferroelectric phase,

The room temperature paraelectric phase is illustrated
in Figure L.,1. Its space group is 124 with four molecules
in the body-centred tetragonal unit cell, Xach Poh group has
its oxygens arranged almost tetrahedrally around the phosphorous
atom, and is spaced ﬁ along the c-direction from neighbouring
groups. These are linked through a system of hydrogen bonds,
very closely perpendicular to the c-axis. The (0 O 1) Fourier
projection obtained from the room temperature data shows the
hydrogen nuclei as contours elongated along the 0-H-0 bond.
However, on viewing these contours in the (01 0) projection,
they are seen to be circular. Bacon and Pease conclude from
this that, in the paraelectric phase, the hydrogens either have
highly anisotropic vibrations along the bond, or are distributed

statistically off-centre in a double potential well with minima



separated by about 0.352.

In the low temperature phase, the tetragonal section on
(00 1) undergoes a shear to become a rhombus. The structure is
now described by axes a'b'e' of Figure L.1, relative to which
it has space group Fdd2. (The paraelectric phase has space
group rh2d relative to the primed axes.) There are now eight
molecules in the face-centred unit cell, but the primitive cells
of both phases contain the same number of atoms,

The (0 0 1) Fourier projection now shows reduced symmetry
for the hydrogen positions., These atoms are now ordered by
being displaced asymmetrically towards one of the oxygens in
the 0-9-0 bond, O0-4 distances are now 1.0&2 or 1.&12, but the
distance 0-0 is almost unchanged. This ordering is accompanied
by a slight shear of the oxygen network and K and P atoms

o} o}
move in opposite directions along the c-axis by 0,0LA and 0,084,

D) I.\T.ﬁ.uﬂ 2&0'14»—
The paraelectric phase of NHthPoh has been studied using

(69) and neutrons(70). Its space group is 1L2d, The main

X-Rays
features of the structure are the same as in KHQPou with
ammonium groups substituted for the potassiums. The NHu groups
are tetrshedrally connected to four POM groups by N-H-0 bonds,
The low temperature antiferroelectric phase has 5nly been
studied with X—Rays(71), and great difficulty is caused by the
shattering of the crystal, which occurs on passing through the
transition. However, the spaée group has been found to be
P212121. The transition results in a slight orthorhombic

distortion of the unit cell of the paraelectric phase, The

Primitive cell has no longer any body-centred conditions on the
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Bragg reflections, and additional reflections appear in the
low temperature phase. 3Some general conclusions on the dif-
ference between the two phases can be drewn from the results.
The oxygen tetrahedra are greatly distorted on going to the
low temperature phase. The nitrogens have large displacements
perpendicular to the c-axis, although the corresponding phos-
phorous displacement is negligible, The hydrogen atoms have

not been located, but it may be assumed that they order

(72) (73),

gccording to the scheme proposed by Nagamiya and Mason

which is illustrated in Figure (4.2).

L.3 The Dielectric Constants as Functions of Temperature

The a-axis and c-axis dielectric constants (ea and ec)
for KH2POM have values of about 50 at room temperature, but
€, increases hyperbolically as the temperature approaches the

structural transition temperature, T_. It then drops sharply

o
but continuously on further cooling. s also shows an anomaly
at To’ but this is much less pronounced and is merely a sub-
sidiary effect., The behaviour of €q within 509& above the

transition may be described by a Curie-ileiss Law,

where T,, the Curie temperature,is identical to T.

These dielectric constants show similar anomalies for
KD,PC), for which the transition temperature is 213°K.

In NHuﬁzPOh, a transition occurs at 148°% which shatters
the crystal., ﬁielectric measurements show that this is not a
ferroelectric transition, but leads to an anti-polar phase with

the anti-polar direction parallel to one of the a-axes of the
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room temperature phase. A large isotope effect is observed,
the transition occurring at 245% in ND)DSP0), .

€gq follows a Curie-jieiss law, with a e of - 559K for
NHuﬁzPOu' Measurements allowing us to obtain the value of Tc
for the deuterated material have not yet been made, In both
materials the on-set of the antiferroelectrié transition pre-

vents the ferroelectric phase being reached,

L. b Ferroelectricity and Low Frequency lModes in Perovskites

To introduce the concept of low frequency modes in ferro-
electrics, we consider the perovskite group of ferroelectrics.
Since these compounds are not central to our work, we do not
include details of various calculations, but refer the reader
to the articles quoted, Perovskites all have symmetry m 3 m
~in their non-polar phase, The perovskite, barium titanate
(BaTiOB), makes a ferroelectric transition at 120°C to a tetra-
gonal phase, with point group U4 m m. There are two further
transitions; to an orthorhombic phase at 500, and to a rhombo-
hedral phase at -9000. These phases are also ferroelectric, and
all three may be described in terms of distortions from the cubic
phase,

The tetragonal phase results from an elongation of one
edge of the original cube and a compression of the other two,
The polar axis is parallel to one of the cubic < 100 ? direc-
tions. The elongation of one face diagonal and compression of
the other gives the orthorhombic phase, and an elongation of the
body diagonal results in the rhombohedral phase, In these
phases the polar directions are along one of the original cubic

phase <110)'s and <111)'s respectively.
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These phase transitions differ from those in KHQPOh and
NHHaZPOh in that the changes in atomic position between the
phases are small compared with the unit cell dimensions, and
the atoms are ordered in all phases. These are often called
displacive transitions.

It was suggested by Gochran(?u)

that a ferroelectric tran-
sition may be accounted for by investigating the lattice
dynamics of the crystsl concerned. The condition for crystal
stability is that the normal modes should have real frequencies,
and if the freguency of one normal mode were to approach zero,
this would be sufficient to explain the onset of a phase tran-
sition.

By considering lattice vibrations in cubic ionic crystals,

(75)

with N atoms in the unit cell, Cochran has obtained a

generalization of the Lyddane-Sachs-Teller relation,

T (0,2

nil. mn L e E(O! (‘}_’-.2)
N—1 5 o( )

T, (8,9

=

where (mn)L and (mn)T are the freguencies of the noB

longitudinal and transverse optical phonons at q = 0. The
derivation was made for the rigid ion model, in which the
short-range ionic interactions are assumed independent of the
polarigzation of the ions and vice versa.

Bquation (L.2) shows that €(0)—> oo if one transverse
optic mode has a frequency which tends to zero as | g|—>0,
all other optic mode freguencies retaining normal values.

To discuss the onset of ferroelectricity in BaTiOB, its
lattice dynamics should be solved for the shell model(76% which

treats each ion as a charged core coupled to a massless charged
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shell, representing the outer electrons, This includes the
effect of ionic polarization on short-range forces. However,
the results are similar to those of the rigid ion model. The
transition may be caused by instability against a transverse
optic mode of long wavelength, This requires an almost exact
cancellation of the short and long-range forces when the atoms
vibrate in that particular mode. Suitable choice of the tempera-
ture dependence of these lattice dynamical parameters will give
the correct behaviour of, for example, the dielectric constant
of BaT103 as the crystal approaches the transition to the
tetragonal phase,

From equation (4.2), it may be seen that, if the frequencies
of all other optic modes remain normal, the anomalous phonon
mode should have g frequency obeying the relation

wp = A(T-Tc)

to give a Curie-Jeiss behaviour of the static dielectric con-
stant, of the form of equation (L.l). The lattice contribution
arises from those modes with frequencies which retain normal

values as T —> T

L]

c

Measurements of the lowest T.0. mode frequency have been
made for strontium titanate (SITi03)(77) and. potassium tantalate
(KTaOB)(TB) using coherent neutron scattering techniques., We
describe the former measurements in more detail in Chapter 6,
These, along with infra-red data on additional perovskite

crystals, confirm the temperature dependence of e (0).
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L.,5 The SigniTicance of the Eigenvectors

In addition to locating a particular mode in a crystal as
it approaches a ferroelectric transition, and measuring the
temperature dependence of its freguency, it is of interest to
determine the mode eigenvectors.

It has been shown(79) that, if the transition is second-
order, there are restrictions on the symmetry of the low tempera-
ture phase, The change in any function. which is invariant
under the crystal space group in each of the two phases_ must
correspond to an irreducible representation of the symmetry
group of the high temperature phase., If we consider the elec-

(80)

tron density as an example, it may be shown that the atomic
displscements in the ferroelectric mode are closely the same

as the changes in atomic position on going from the non-polar

. to the polar phase.

If one mode (the ferroelectric mode) has a frequency con-
siderably lower than that of the other modes for which g = 0,
it is reasonable to assume that the relative atomic displacements
under an applied electric field should be similar to those in
that particular mode, The polarization of the crystal in the
ferroelectric phase may then be estimated to compare with the
measured value, Ilethods of deducing these eigenvectors from
scattered neutron intensities are described in Chapter 6. Such
measurements are an important part of the experimental work on
ferroelectrics, as they lead to the actual pattern of vibration
in the ferroelectric mode. This is fundamental to many theo-

retical approaches which attempt to explain the phenomenon of

ferroelectricity.



4.6 Thc Use of Group Theory

The use of group theory considerably simplifies the
solution of general lattice dynamical problems. To determinc
the crystal normal modes requires the finding of thé eigen-—
values and eigenvectors of an n x n dimensional dynamical
matrix (Section 1.1). One of the basic tenures is that the
effect of applying one of the space group operations to a
crystal vibrating in a particular normsl mode is to produce
a crystal displaced through that specific operation with its
atoms vibrating in such a pattern. that the new system is
identical to the undisplaced crystal vibrating under a linear
combination of normal modes, degenerate in energy with the
original mode. This allows us to choose normal modes which
transform according to the irreducible representations of
the crystal space-group.

For a vibration with wave vector at a symmetry point,

g, use of the group irreducible character table allows us

to determine the number of normal modes in each irreducible
representation. Since sets of basis vectors for these irre-
ducible subspaces have been listed for many of the thirty-two
point groups, the normal modes are easily expressed as linear
combinations of these vectors. In particular the dynamical
matrix is automatically block diagonalized when referred to
these vectors as basis. These blocks are of dimension Cqs
the number of occurrences of each irreducible representation.
Since this is usually small, it is a relatively simple matter
to obtain the eigenvalues and eigenvectors.

For a crystal making a ferroelectric or antiferro-
electric transition as a result of a "condensed" or soft mode,

the results of group theory allow us to deduce useful
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information without solving the complete lattice dynamical
problem. DSince the soft mode must occur for a g-value with
point group symmetry permitting more than the identity
operator, it cannot occur at a general point of the Brillouin
zone. It may be shown that a ferrcelectric mode must occur at
the zone centre and an antiferroelectric mode at the zone
boundary. If the symuetry of the low temperature phase is
known, since the soft mode in the high temperature phase must
be compatible with this, it is possible to deduce the irre-
ducible representation to which the mode belongs. Without
actually finding the explicit combination of basis vectors
which gives the soft mode eigenvector, restrictions on the
atomic motions may be deduced from the list of basis vectors.

Montgomery(al) treats the 3r-dimensional space spanned
by the normal modes as the product of an r-dimensional
"cell-space" , SC, and a 3-dimensional Euclidean space, SE.

He then finds the irreducible representations (in's) of these
separate spaces and hence those of the product space, SC X SE.
The effect of a symmetry operation is to rotate the polariza-
tion vectors as well as to attach them to different sites in
the crystal, and this treatment allows rotation of the vectors
in Euclidean Space, accompanied by the permutation of atoms in
c€ll space with the addition of phase factors. It is then often
immediately obvious which atoms vibrate and what is ‘the nature
of their vibration in the soft mode.

We now consider a specific example - the ferroelectric
mode in KHQPOH, treated by Shur(gz) and also Montgomery(ss).
The transition is associsted with an ordering of the hydrogens
only, this suggests they may be treated as a pseudo-spin

system and all other atomic motions in terms of phonon
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co-ordinates. It is for those atoms experiencing phonon-like

displacements that the factorization into S. and § is

E C

useful.
Sy = (8p + Sg + 8g) x Sy ; (4.3)

The SP, SK, So are invariant subspaces each of which is
spanned by vectors belonging to equivalent atomic sites. Their
dimensions are two, two and eight respectively, there being
twelve heavy atoms in the unit cell.

The character of ecach subspace is

X ol1)= % 'SK,er exp ~i -37_1. Xy :
_jlg%_l = ‘Y_l qa - g a reciprocal lattice vector, ¥y

the rotation caused by operation of a space group element,

and translation E‘Y shifts an atom from site X to «K, the
summation being over all atoms of the same chemical species.
For g at a symmetry point, the number of occurrences, C.,

of each of the s irreducible representations in the decom-

position of the subspace with characters X _(y) 1is

8

c = % %;(_i (v) XO(Y) .

The )CE(Y) are the irreducible characters of the point sym-
metry group concerned, and h the number of its members.
For the [ (0, 0, 0O) point in KHyPO, there are five

irreducible representations

1
o

For S and S

K pr Cp =¢p =1, C¢3=2¢, =C5

and for S =1, Cg = 2

1l

o)
Wl
1

o)
=
1

0’ ¢y = ¢y
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The decomposition of SE under the various symmetry groups
is found by studying the transformation properties of functions
X5 5 Zi In this case 8, transforms as fju +-F’5.

So (SC x 5,)( ?) transforms as:-

((Fl +F2)K + (Fl +F2)P + (Fl +F3 +F}-I- + 2F5)0) X (FL{_+F5)

1l

3P1 + 3F2 2 5F5 o+ 51—-.1]_ # 10F5 .

Since F’l and F’z result from the product SO x SE only,
they correspond to modes in which only oxygens mdve, whereas
f“5,fju andr:'5 involve motions of all the heavy atoms. [~ 3

and F’u involve the products of S, and S, with the fjh‘

B
i.,r. of SE only, the z-direction, and in these modes K and
P are constrained by symmetry to vibrate along 2z only.
Similarly in modes belonging to f?5 K and P atoms vibrate
in the x-y plane only, which corresponds to the rj5 1:2s of
S,. Since f:3, r“!+ and f35 turn up in products of Sp with
[? I + f“5, the oxygens have perfectly general motions. These
restrictions could have been expected "intuitively" since K
and P occupy special positions in the unit cell.space, ‘whereas
oxygens are in general positions.

The hydrogen atoms are treated independently and Montgomery
shows by consideriﬁg the eigenvectors of the proton Hamiltonian,

H = -2.QiZXi s %{2% T35 3%;

where JU is the "tunnelling integral' and Jij represents
interaction between the various hydrogen sites, that they span
the irreducible subspaces.-

e A T
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At the WM-point the i.r.'s are

Moo= Ny, o+ Mg,

At both [T and M these are unigue representations and the
symnetry of the proton tunnelling modes is completely deter—
mined,

The coupling of these tunnelling modes to the lattice
modes involving the heavy atoms has been considered by

(8L4)

Kobayashi and is described in Section 4.8, However, in
(83) the result that coupling can only occur between modes of
the same symmetry is used to find which coupled mode corres-—
ponds to the ferroelectric mode, This restriction is a con-
sequence of demanding that the composite modes transform
irreducibly under the crystal space groﬁp.

The pattern of proton displacements in the mode ftjz has
all four hydrogens approaching a Poh group simultaneously.
This must have a high freguency and cannot be a candidate for
the ferroelectric mode, Some [7 L and fj 5 modes in which
K and P atoms vibrate with an accompanying polarization
have their freguencies affected by depolarizing fields, How-
ever, the A M mode with g —> O along x has polarization
along 2z and will be unaffected by a depolarizing field.
Montgomery argues on stability grounds that it is this mode which
becomes unstable, and the arguments above determine the pattern
of atomic vibrationg in this mode. The hydrogen displacements
in ,j ) are illustrated in Figure (L.3).

In NHqupou Sirotin(85) has argued that the antiferro-
electric mode has MB& symmetry and the motion of the heavy
atoms will be described by modes spanning the i.r. MBQ' We

consider the product space (SN + SP + SO) X SE
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where SN and SP transform as §

(Myp + My + 2Mg). Sy transforms as [° y + P se  since

5 and So as

z), in 8, x 8, arises from products of (M5)N and (M5)P
with [? 5 only, the atoms N and P vibrate in the x-y
plane in MB& modes. The oxygen atoms must be allowed
general motions.

The hydrogens of the ammonium group should be treated
along with the heavy atoms, since they are ordered iﬁ both

phases, by introducing an 8-dimensional subspace, How-

Spe
ever, since they are in general positions crystal symmetry
cannot place any restrictions on their motion in the Mﬁh
modes. The hydrogen motions in the antiferroelectric mode
follow the pattern illustrated by Mbntgomery(aj) or that
postulated by Nagamiya(72). We use these results in

Chapter 6.

Ml Experimental Evidence for Low Frequency Modes in

KH,PO) »
2) Raman measurements
The first quantitative measurements of the predicted

low frequency temperature dependent mode in KHZPou were

reported by Kaminov and Damen(86). They recorded the Raman

spectral density, J(w), over a temperature range extending
from well above the transition temperature to MOOK below

Tc. In addition to the normal Rayleigh line, these spectra
showed a temperature dependent part which increased in strength
and became narrower in ® as *P“*(Qz (see Figure L.L).

Below Tc this part broadened and quickly weakened to

virtually disappear at 82°x.

The experimental arrangement allowed only contributions



to J(w) from modes of the same symmetry as the polarization,

P The complex susceptibility derived from J(@) was fitted

z.
satisfactorily to a damped oscillator function and is

02 X (0)
X = = )
z(m) wg — w2 + 2ilPo

P was independent of temperature and X (0) and w, were

simple functions of temperature

C T-Tc%
X(0) = = , v, = A(—) .

This temperature dependence of Wo is consistent with the
soft-mode model described in Section 4.4 or with a pseudo-spin
tunnelling model., The soft mode frequency predicted by
Cochranﬁcz) from the atomic displacements measured by Bacon and
'Pease(aa) is identical to the w, vhich fits 7(2 (w) at room
temperature., The uncoupled tunnelling frequency should corres-—
rond to the fitted Wy at high temperatures, MlMeasurements on
various samples showed that all frequencies are reduced with
increasing deuteration,although the behaviour is gqualitatively
the same gs in KHQPOh. For high damping, the peak in the
imaginary part of ?(z(m) occurs at wg/QIj which has the

value 0.7 em ™t at room temperature.

b) Coherent Neutron Scattering Data

These measurements, using a triple-axis crystal spectro-
meter, were made on KDQPOH almost simultaneously by groups

at Chalk River(SY) and Brookhaven(SB). The results of(87)
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showed that there was no well-defined peak in the phonon
spectrum whose frequency had the required temperature depen-—
dence for a ferroelectric mode, This was in complete contrast

(77) (78)
3 3

to the results for SrTi0 and KTa0 , but was con-
sistent with the conclusions of (86),

Strongly temperature dependent quasi-elastic scattering
was detected in the _g* - 29* plane around the [~ -point, We
shall describe this type of scattering in more detail in
Chapter 5., From the shape of its intensity contours it could
be deduced that this scattering was from ferro-electric fluc-
tuations and it had an energy spread less than the instrumental
resolution., This corresponded to a %/T: of less than 0.02
THz. and so had a longer time scale than all but the very long
wavelength acoustic phonons. The temperature dependence of the

intensity was
1 = Pfor) down to the transition and fell

rapidly below the transition., This can be interpreted as
scattering from an overdamped mode whose undamped fregquency
varies as (T—Tc)% .

Skalyo et al.(88) measured this intensity at some sixty
points in reciprocal space and used the results of Section L.6
to fit the atomic displacements in the ferroelectric mode, by
finding the linear combination of the seven basis vectors of the
f:14 representation, This work confirmed that the ferroelectric
mode has the symmetry predicted by Montgomery(SB). However ,
they showed that the displacements did not correspond to the

differences in atomic position between the structure immediately

above anéd below the transition, although these provided a good

starting point for the model refinement.
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4,8 Counled Phonon and Tunnelling Modes in KHEPOM and.

Kobayashi's Theory

It is completely artificial to consider the protons in
KI{QPOLL tunnelling in isolation, unaffected by the other atoms
in the lattice. 1In Section 4.6 we considered only the sym-
metry of coupled modes; 1in this section we extend our dis-
cussion,

It was suggested by Cochran(62)

that the tunnelling mode
couples to a low frequency optic phonon mode, which behaves as
the ferroelectric mode in perovskites. Further work has shown
that it is likely that it is the tunnelling mode which has the
expected temperature dependence, and the phonon mode, to which
it couples, which gives the c-axis electric moment, Since the
proton ordering is almost completely in the a - b plane this
. could not give any polarization along ¢ .

Kobayashi(90} has considered the coupling of a proton
tunnelling mode to an optical phonon mode in which K - POu
groups vibrate along ¢, and this is included in a review

article(63). The Hamiltonian consists of three terms

H = g, + Hp oo+ Hp .

H is the tunnelling model Hamiltonian., In the pseudo-spin

P
model of de Gennes(gl)

1
H s wphE K, = b Z T.e B T
P ) EZ 20! 44 L "L
where Xg’ 26 are components of pseudo-spin and the "field"
2 JL 1is the separation of the energy levels in the ground state

of the proton tunnelling system, In terms of Fourier components,



4
s(q) N2 Z& Z, exp(—i_q.gg)

4
s%g) = N7 % X, exp(-ig.r,) .

o

This may be written
Z .0 1
Hp = =-2N°s(0) - 3 % J(g)s(g)s(-g) .

In mean~field and random phase approximations it may be shown
that 3(9,) has a time dependence, with characteristic freguency

Jlo(g) where
1°NH ) = 2d2dn- 3(g) <5°)) (L)

and < 8°> =% tanh BN
It is postulated that
HPL = Z G(Q)S('Q)QJ(Q.)
aji J
for coupling to several lattice modes. HIJ has the usual

form (equation (1.7)). The tunnelling mode freguency, for

small JL, ©becomes zero at the transition temperature

T:) where kBTo' = %LJ(O) u

The coupled mode frequencies may be shown to satisfy
- 2 o
1°(w® -Jlg(g.))(wz - wf(_q)) = 8 |ay(a)l <%  (L.5)

where wj(g) is the uncoupled frequency of the single lattice
mode to which we assume the tunnelling mode couples. The
solutions, w; (g) and w (g), say, satisfy w+(_q)> ma.(_q)
and w_(2)<N (q). Since mj(ﬂ)}>“n“o(9) near T,
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W (g) >> @ (g) so that m+(_g) = wj(_g_), and is mainly phonon-
like. The ©_ mnode is a predominately tunnelling-like mode

and we may set w_(g) = JU(g). If the transition occurs for
a mode with g =0, at T =T

o» then equations (L.L) and

(4.5) combinc to give

2
N 4a.=(0) N
4L - 3(0) tamh £ - —f—tanh 7= = 0 .

B e 0 (0) B'c
If SU is small enough, this gives
2
G.7(0)
m1 —
kB(Tc - J_o) s _% .
w;"(0)

T ' is the Curie temperature for an isolated proton system,

and the proton-lattice intercction raises this to T the

c?

"'system" Curie temperature. The coupled frequency JU (0)
=T
Cﬁé
T L]

This /L (0) mode is that illustrated by Cochran(

tends to zero as (
62)

and shown in Figure (4.5), and is the ferroelectric mode.

The w, mode remains almost unchanged as T-%'Tc and has

the same pattern of ~proton motion as JL(0) but K and P
approach each other and so this mode has a much higher fre-
guency.

Kobayashi makes a rough calculation to estimate T, - Té,
including only Coulomb interactions between protons and lattice,
and obtains a value of 10°K for KH2PDu. He concludes that
the ilsotope effect on Tc occurs from Té through a change
in JL on deuteration. The small changes in T, on replacing

K by Rb or Cs, he attributes to changes in the term
¢,%(0)
which he has shown to be small.

2
kaj (0)

However, Cochran estimates To'gsCPK for KHEN%Land Buyers
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et al.87) obtain a value - 700°K for KD,PO,. The latter
estimate is expected to be inaccurate by a factor of 2—>3
as 1t is evaluated through the dielectric constant, assuming,
for example, that the deuteriums move perpendicular to c.
Both of these results disagree strongly with Kobayashi'®s
estimates. The difference betwesn Té for tunnelling and
no tunnelling is only 1L°/o, which implies, in contradiction
to Kobayashi's results, that it is the proton-lattice inter-
action which mainly determines T,

It is easily seen what is wrong with Kobayashi's
estimates. The Coulomb contribution to the proton-lattice
interaction summed over all proton sites should be zero, and
it is the short-range interactions which govern the value of

#e

_ mt
Gj(O) and hence T, - T; .

¥ Private communication Trom Professor R.A. Cowley.



Figure 4.1 The room temperature paraelectric phase of KHjp PO, (page 68)
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I.-‘igure 4,2 Ordering Scheme for hydrogen atoms in anti-ferroelectric mode
(page 70)
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Figure 4.3 Ordering scheme for hydrogen atoms in ferroelectric mode
(page 79)
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Figure 4.4 Raman Spectral Density ( J(w) ) for KH2 PO4 (page 80)
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Figure 4.5 Displacements of atoms in the ferroelectric mode in KHZ PO,
(page 85)
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CHAPTER 5

EXPERIVMENTAT MAASUREMENTS ON DEUTERATED AMMONIUM

DIHYDROGEN PHOSPHATE (NDuQQPOHl

Although complete dispersion curves have not yet been
obtained for NDMDOPOu, some neutron scattering measurements

'(92)’

have been reported and we now describe our experimental
results for that material,

Acoustic modes have been located with g along gﬂfand
g*kin independent investigations - by lieister et al.(gz), and
by the present author., No well-defined soft phonon mode has
beasn found, but critical scattering in the form of quasi-
elastic intensity from an overdamped mode has been detected(92)
at the M-points of 29 Brillouin Zones, and we have extended
these measurements. In addition, we have found evidence of

gquasi-elastic scattering by a zone-centre mode,

543 Lxperimental

The neutron scattering measurements on NDuDzPOM were all
made using the Pluto triple-axis crystal spectrometer. The
tetragonal structure of this crystal makes the a and Db axes
equivalent, and the g* - 9_* plane was used as the scattering
plane throughout by mounting the crystal with one of the
equivalent g-* axes vertical, say (0 1 0)., We illustrate this
plane in Pigure 5.1 where one Brillouin zone has been drawn to
show the [? -point ((h+¢) even) and an M-point ((h+¢) odd).
We have measured phonon frequencies for g-values throughout

the zone,but the majority of our results were for g close to

a [? or M-point, i.e. around the zone centre or the zone
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boundary,.

The crystal on which all our measurements were made was
supplied with a specified 98% deuteration, although data on
other crystals from the same source has suggested that this
level may only be 93%, The crystal was a rectangular
parallelepiped of volume 30 cec, To nrevent deuterium exchange
with hydrogen in the atmosphere the sample was initially
mounted in an aluminium can, Unfortunately it was found that,
with the spectrometer set to observe quasi-elastic scattering,
the aluminium Debye~Scherrer lines were sufficiently strong to
give a significant counting rate in the detector, For the
later experiments the crystal was wrapped in thin aluminium
foil for which the Lebye-Scherrer lines were of negligible
intensity compared with the scattered intensity from pro-
cesses of interest in the crystal,

_ It was known from structure work that the lengths a and
¢ are almost identical in NHMB2POh and that it would be
difficult to distinguish between them when orientating the
crystal, However the crystal symmetry causes Bragg absences
for (00 2), (00 6) .... and with the incident neutron wave-
length chosen so that second order processes were negligible,
these systematic absences were sufficient to distinguish be-
tween the axes., A calculation of expected Bragg intensities
showed that (2 0 0) and (6 0 0 ) should be strong and could
not be confused with second order (0 O L4) and (0 O 12) reflec-
tions. The lattice parameters were determined accurately by
stepping the crystal table for many values of detector angle,
26, round the approximaste Bragg positions. The peak heights
for these scans were plotted against 28, and the best value

of & was found from the half width. The corresponding lattice
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parameters were found to be a = (7.485 £ 0,005) ana

¢ =(7.50 £ 0.005);. The crystal had a mosaic spread of
0.35° Ralf width at half meximum (H.W.H.M.) against the (1 1 1)
planes of an aluminium monochromator,

The spectrometer had aluminium monochromator and analyser
with a Soller slit collimation of 0.8° F.W.H.M. between mono-
chromator and sample and 0.6o F.W.H.M. between sample and
analyser, The collimation of the analysed beam was uo, and
that of the incident beam on the monochromator was relaxed.

With this collimation, the energy resolution of the
instrument was found by energy analysing the incoherent elastic
scattering from a vanadium sample with the same vertical cross-
section as the NDADQPOu crystal. A least-squares fit of
these scans to a Gaussian gave (0;55 = 0.02) THz, F.W.H.M. for
l.hﬁ neutrons reflected from the (3 1 1) planes of analyser and
' monochromator, and (0.35 = 0.02) THz. for 1.&3 neutrons from the
(3 3 1) planes. Since these values are in very good agreement
with equation (1.19), this expression can be used to find the
energy resolution for any other sets of parameters.

= 4 62) of the aluminium planes increased,

As (h2 + k
their reflectivity of neutrons decreased so that the number
scattered in unit time from the (1 1 1), (31 1) and (3 3 1)
planes was in the ratio 8 : L4 : 1, This considerably increases
the time required to obtain a given number of counts in the
detector wunder better resolution,but there is an accompanying
increase in the peak to background ratio,

There was a germanium analyseroavailable which gave

(0.54 % 0.02)THz resolution with 2A neutrons reflected from

the (1 1 1) planes of an aluminium monochromator and analysed
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by the germanium (1 1 1)'s. The reflectivity of these
germanium planes was one quarter that of the aluminium (3 1 1)
planes, and so no benefit could be obtained by using this par-
ticular germanium crystal.

Considerable difficulty was caused by the insufficient
deuteration of the sample, as the few percent hydrogen present
gave a strong incoherent background. Although its K-dependence
enabled us to subtract the incoherent intensity, it did cause
uncertainty in the measurement of the intensity of coherent
scattering processes in the crystal,

The instrumental resolution chosen depended on the type
of measurement in progress. Low resolution could be used for
guick preliminary scans, and to energy integrate quasi-elastic
scattering, High resolution was necessary in making detailed
measurements close to Bragg reflections, and for energy
analysis of the scattering. In all our measurements A was
sufficiently low so that the number of 3/2 neutrons arriving

at the sample was negligible,

52 Measurement of Quasi-elastic Intensity round the M-point

in NDLI.QZI—)'Q'L[.—"

e now describe the additional measurements which we have
made of scattered neutron intensity from the NDMDZPOM anti-
ferroelectric mode. The triple-axis spectrometer was used in
the constant-E mode, with the energy transfer set at zero to
measure only gquasi-elastic intensity. Since the scattering
has g at the zone boundary, all other phonons have energies
greater than 1 THz, and there is no Bragg scattering to be

subtracted., Consequently, there was no need to use high K



or ® resolution, and we chose the experimental conditions to
maximise the scattered intensity. Most of the measurements
used 1.3; neutrons reflected from the (3 1 1) planes of the
aluminium monochromator and analyser, In all, 9 M-points:were
investigated, two of these being repeats of measurements by
Meister et al. to allow both sets of intensities to be put on
the same scale,

Intensity measurements for a net around six of these M-
points were sufficient to draw a complete set of intensity

* *
contours in these regions of the g - ¢ plane. The net

was constructed by measuring intensity at intervals of 0.1§%or 0.0ii“
along lines parallel to gf* and spaced by 0.0253* . These
measurements were typically over the region (& -0.2, 0,7 -0.5);
(£ -0.2, 0, 7 +0.5); (% +0.2, 0, %7 -0.5); (&§+0.2, 0,7 +0.5).
At the remeining M~-noints, the intensity was recorded along a
line, parallel to g'* and passing through the M-point,

The contours around (5 0 L) and (5 0 8) may be taken as
typical of our scans and we illustrate these in Figures 5.2a
and b, Figure 5.2ais of interest since it may be compared with
the measurements of reference(92). These were at ol ®K with 0.17
THz., resolution and our data were obtained at 29?OK with energy
resolution 0.55 THz. The quasi-elastic contours, with their
strong g-dependence, are superposed on a high background,
mainly incoherent elastic scattering. This background was
measured at (¥ -0.5, 0,7 ) and (§+0.5, 0,7), i.e. halfway
bhetween quasi-elastic contours of (3 , 0,‘?) and Bragg contours

of (51'1,0,72} and (% -1, O,‘Q). From these measurements, the

background close to (%, O,'7) could be estimated.
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The finite energy resolution of the spectrometer could be
assumed to perform the energy integration, and the relative
intensities of the mode at different M points could be obtain-
ed by comparing measured intensities for a particular g. It
may be seen from Figures 5.2a and b that the scattering around
a given M point does not vary rapidly with g, and the shape
of the contours is the same at different lM-points. The inner
contours approximate to ellipses, and the outer have a slight
dumb-bell shape.

The half-widths at half maximum of the ellipse along g‘*
and 2 *(x0 and yo respectively} were found to depend on
the instrumental resolution., As A decreased from 1.32 to
1.12, X, increased from 0.075 to 0,095 recip;ocal lattice
units, and y, from 0.4 to 0.5. The ratio ?yo remained
independent of resolution,

These results show that the intensity contours of the
quasi-elastic scattering are, as expected, elongated along .g*
with very little intensity perpendicular to g", i.e. they
are consistent with scattering from fluctuations polarized
predominantly in the g*'- g* pleane, The ratio yO,/xO was
3,

The intensity, integrated over g, is given for several
M points in Table 5.1. These values may be compared_with
column 2 of the same table, which gives the intensity at
g' = 0 (measured from the M point), to show that the peak
intensity is proportional to the integrated intensity (within

experimental error). This merely shows that the mode eigen-

vectors do not vary repidly with g mnear g' = 0.
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5.3 The ND D.PO, [? —point Scattering

Dielectric constant measurements on NHMHQPOu(93) have
shovn that ey hes a temperature dependence of the form
ber - Té) with Lw = -55%K. As this cannot be attributed to
a temperature dependent phonon mode, there must be some neutron
scattering from rj5 tunnelling modes in NHMH2POM‘ In the
deuterated crystal the mode Curie Temperature will rise, but
will still be below the structural transition temperature,
However, we may still expect to detect scattering from [? -
point modes at temperatures above the antiferro-electric
trensition. It has been shown'®>) that the scattering will
contain a contribution from one branch (transverse) whose
frequency as g —> 0 1is unaffected by depolarizing fields
in addition to one which has an anomaly due to the electric
field set up in the a-direction. Since this Coulomb inter-—
action causes the undamped freguency to vary with the direction
of g, we may expect the scattering to be strongly anisotropic
in g. Since it is the mode with g —=> O along gﬁé which
has its frequency raised by depolarizing flields, the scattering
will be reduced in this direction.

The Curie temperature for this mode at g =0 1in NDQD2POM
has not yet been found, although measurements of ea(T) are in
progress (White - private communication), Comparison with the
deuteration shifts for KHzPOu, KHzAsou, RszPOM, shows that
Tc is unlikely to exceed BOQK. Since quasi-elastic intensity
is proportional to 3Tr - Tg, the value from the ferro-electric
fluctuations, at 245°K is only ¥ 5% higher than that at 295°K.
It was decided that this gain in intensity would be more than

cancelled by absorption in the walls of a crysostat, and all
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measurements were made at room temperature,

5.4 Resolution Considerations

a) For AE = 0.

Round the [? -points of ND)D,PO, ~ we expect intensity from
Bragg reflected neutrons as well as those scattered by low
frequency phonons, To observe quasi-elastic intensity the K
and o resolution must be very good so that the Bragg intensity
is concentrated over a small region of K-space, and only
acoustic phonons of very small wave vector have energies
falling within the instrumental energy resolution, Although
guasi-elastic scattering is considerably less localised in
K-cpace than most phonon scattering, it is only strong within
X 0.25 reciprocal lattice units of the F]-point, and so the
'~ Bragg resolution ellipsoid should be confined to 0.1 or 0,15
reciprocal lattice units from.,j « Similarly, phonons with
g 2 0.15 should have energies outside the half width of the
energy resolution function, For g = 0.15 along g:* and ¢
the corresponding energies are 0.45 and 0.5 THz.; which demands
an energy resolution of, at most, 0.75 THz. F.W.H.M.

Changes in energy resolution are accompanied by changes in
the Bragg resolution function., In general, this has a planar
section which is ellipsoidel, with axes which increase in length
with K, and whose + shape.  alters as the resolution is
changed. At low resolution the major axis lies along the
scattering vector, and it becomes " almost perpendicular
under high resolution. These changes are illustrated in Figures

1.2, Since quasi-elastic scattering was expected to be observed

as intensity extending along E%i it was essential to have the
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major axis of the resolution ellipse tilted away from g*.
This could be arranged by making low resolution measurements
at [ -points with large h and small ¢, ideally with
¢ =03 or else with high resolution at [~ -points close to
the g*—axis.

There is another process which can give intensity ex-
tending along _q*, and this is illustrated in Figure 5.3.
lost of the Bragg intensity is concentrated within an ellipse,
corresponding to the shaded area, and the scattered vector k'
is drawn to a point outside this area. However, due to the
finite instrumental resolution, neutrons with wave vector
k' + dk', which have been elastically scattered from the
sample, may be counted in the detector. Possible values of
dx' 1lie within the cone illustrated, and for dk' lying along
k', |dk'l can be as much as 0.25 reciprocal lattice units
- (under the lowest resolution used). Such a dk' + k' falls
well within the shaded area and under these scattering con-
ditions will give intensity which tends to concentrate about
a line perpendicular to the major axis of the ellipse., Under
low resolution with K around (2 0 0) or (6 0 0) this in-
tensity will extend along ¢ * and may be confused with quasgi-
elastic zone centre scattering., With high resolution, at points
close to g*, some intensity will extend along g'f but it
will be confined to within 0.05 reciprocal lattice units of the
Fl —-point,

A convenient method of estimating the XK-space distribution
of Bragg intensity round the [? =points (h, O, 0) is to compare
their measured intensity with that round the points (0,0,h).

The s:,rfnmetry of the mode causes the structure factors F(h,0,8),
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for h =0, ¢ even, to be identically zero; and, neglecting
phonon contributions, all intensity measured round points

(0 0 £) must be from Bragg scattering, This immediately gives
the shape of the Bragg resolution function for these points.

By rotating this function through 900, and scaling it suitably,
the spatial distribution of Bragg intensity at points along _g*
may be obtained, This distribution will contain the inten-
sity spread of Figure 5.3, The method adopted for this scaling
depends on the actual Bragg intensities of the reflection pair
(h0O0) and (0 0 h). If both are strong, i.e. » 10,000
counts/sec., the quasi-elastic contribution to the (h 0 0)
peak could be considered negligible, and the scaling factor
taken as the ratio of the peak heights. Before scaling, the
general background was subtracted by comparing the background
counting rates midway between the Fl-point and neighbouring

- M-points, If the Bragg intensities are both below 2,000
counts/sec, the scaling factor must be taken as

,FhDOI ?/ lFOOhl2 where the F's are calculated structure
factors, In both cases, all of the Bragg contribution could
be subtracted from the distribution round (h, 0,0), and the
remaining intensity attributed to quasi-elastic scattering.
Ignoring phonon contributions could only overestimate the
Bragg contribution, and with an energy resolution better than
0.75 THz. there can be no phonon intensity outside the range

r = 0,1 reciprocal lattice units round the F]-point. This
method is then sufficient to decide whether or not there is any
quasi-elastic intensity around most points like (h O 0). For
points with Bragg intensity in the intermediate range

({2 —=>10) = 10° counts/sec.), some will be affected by ex-

tinction. This depresses the peak intensity, as well as
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broadening the half width of the Bragg preak, and could lead
to errors in estimating Bragg contributions by comparing s
reflection affected by extinction with one not affected.,
Although expressions exist, which give the correction which
should be applied to the integrated Bragg intensity to take
account of extinction, it is not possible to estimate the
half width increases. at all accurately.

At [¥ -points (h, 0, ¢), the Bragg intensity had to be
estimated by comparison with that at points along gaﬁ. In

'NQEEPQ+ (0 0 2) and (0 0 6) are systematic absences, and the
(2 0 0) and (6 0 0) Bragg intensities had to be estimated from
those for (0 O 4) and (0 0 8).

Juantitative measurements of the quasi-elastic scattering
for g close to zero would reguire detailed measurements of
phonon cross-sections and line shapes for g in the range

1 0.05 > 0.25 ¢ * from the [? =point,with extrapolation to cal-
culate the actual contribution for phonons with g - 0. The
Bragg peaks give typical counting rates of (10— 100 x 103)/
100 secs,, and we know that the M-point quasi~elastic scatter-

(/1005ecs)
ing from the same crystal. gave typically 50 countq&.:Bince the
average atomic displacements in the 2 -point and M-point modes
should be similar near their respective Curie Temperatures, and
our measurements were made considerably closer to the antiferro-

' (/100ses)

electric Curie temperature than to the ferro-electric, 50 countsA

is an upper estimate of the F’-point intensity. To measure the
[ -point quasi-elastic scattering at g =0 to 10% would

require an 0.05% accuracy in the peak Bragg intensity. This

precludes measurement of the mode intensities for g very

close to zero., However, the relative intensities at a given g,
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measured from the F] -point, should be sufficient to determine

the mode eigenvectors. From our messurements, the most suitable
point is 0.15 reciprocal lattice units along gﬂ: since it is the
nearest point to lj at which there is definitely no phonon

scattered intensity.

b) For Energy Analysis

Scans in which the energy transfer to the crystal is varied
will be affected by instrumental resolution., Peaks in these scans
may be caused by incoherent elastic scattering, coherent elastic
scattering, phonons, guasi-elastic scattering and various spurious
processes, For neutron energy transfers less than 1 THz., with
K close to a F]-point,the latter are limited to spurious intensity
from the elastic scattering at that particular P -point, which,
under neutron energy loss, with g positive along gﬁi gives a

(see Figure 54)
~peak on the positive  side of ZETO. » This peak can have a maxi-
mum intensity one or two orders of magnitude higher than that of
low wave vector acoustic phonons, and the poorer the resolution
the closer its centre approaches w = 0., Thus a typical energy
scan at g = O.lgﬁtwith the spectrometer in the configuration with
left scattering at the sample and right scattering at the analyser,
will be of the form shown in Figure 5.4, The degree of overlap of
the individual peaks will increase as the resolution becomes poorer,

To observe any quasi-elastic broadening of the incoherent
elastic peak, the resolution must be high enough to exclude
acoustic phonon contributions. The incoherent elastic scattering

 (sfthe incoherent elastic park)
width must be small so that the guasi-elastic broadeningﬂ}s not
negligible,

By using the methods described, to estimate contributions

from Bragg and phonon scattering, we have found evidence of quasi-
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elastic scattering at five Fj—points. lieasurements were made
with a range of instrumental resolutions, for several values
of ¢, and the results are summarised in Table 5.2 and illus-
trated in Figure 5.5, The most extensive data are for (2 0 0).
Under low resolution it was found that the intensity decreased
less rapidly on going along g‘* from (2 0 0) than along a *
from (0 0 4). Under improved resolution there remained

17 2y counts/10 monitor counts above background at 0.22* com-
pared with zero at 0.22*. To find how much of this intensity
was quasi-elastic, it was energy analysed and its half-width
compared with that of the energy distribution of the elastic
incoherent scattering from vanadium. Under resolutions of
0.55 £ 0.02 THz. and 0.35 ¥ 0.02 THz. there was no spurious
Bragg contribution to the scattering centred at zero energy
transfer, and there was either no overlap with focussed or de-
- focussed acoustic phonons, or else it was so swmall that it was
possible to subtract their contribution, For all values of g,
under both resolutions, the energy distribution caused by

purely incoherent elastic scattering was computed as

(2= x,) T
N(x) = N, exp (= )  with N, the background count

20%

close to the rj-point, and X, and o— the parameters obtained
from the gppropriate vanadium -scan least-squares fit. In all
cases, the height and half-width of the actual scattefing

exceeded those for incoherent elastic scattering, The widths
increased with |g| and the two values for gl = 0.2, ob-
tained under energy resolutions of 0.55 and 0.35 THz. (13E2 ),

are (0.7 = 0.05)$Hz.'and (0.60 £ 0.03) THz. (AlEl) respectively.
These give inelasticities (AE12 - AEze)% of (0.43 T 0.07)THz.

and (0.48 £ 0.05)THz. At | g ) = 0.3, the width under 0.55 THz.
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resolution is (0.83 I 0.08) THz., which implies an inelasticity
of (0.63 % 0.07) THz.

These intensity measurements in K-space with AE = 0 show
that there is neutron scattering near F’-points in NDQDQPOQ
from processes of so low an energy that it cannot be resolved
from the incoherent elastic peak at A E = 0. This scattering
is elongated along the éx-direction, and the energy analysis
has confirmed that spurious Bragg processes and low energy
phonons cannot account for the scattering observed, Some measure-
ments of its inelasticity have been presented.

Our results show that, whereas it is a relatively simple
matter to obtain structure factors for the lM-point mode, this
is not the case for the fj—point mode, It would be of con-
siderable interest to obtain detailed information on-its eigen-
vectors by measuring structure factors at many different P -

- points., However, our chances of success would be greatly
enhanced if we were to use a crystal with a smaller mosaic
spread. (that used for the KDQPOM measurements of reference (87)
was 0:2° compared with our 0-83°)., In addition, it would be useful
to have squeezed germanium monochromators and analysers of high
reflectivity., It might then be possible to obtain intensity
data at different temperatures, which could be extrapolated to

give an estimate of Tc'
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Figure 5.1 The a* - c* plane in ND4 D, PO, with one Brillouin Zone shown
(page 87)
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Figure 5.3 Illustration of a process giving rise to an intensity spread
along a* in ND, Dy PO, (page 95)
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Figure 5.4 Typical Energy Scan obtained with a Triple Axis Spectrometer
(page 98)
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Figure 5.5 Contours in Reciprocal Space and Energy Analysis of Scattered
Neutron Intensity around (200) in N‘Dz‘ D, PO‘,+ (page 99)
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measured four T and three L branches at 9OOK, and three

T and the 1ongitudinal acoustic mode 2t 296°K. TFor a papr-
ticular shell model fit with axially symmetric short-range
forces, it was found that quite small changes in the model
parameters could account for the large changes which occurred
in the frequency, 2t g = 0, of the lowest T.0. mode as the
temperature ranged from 296°K to 90°K. This was obviously
the ferro-electric mode. Its eigenvector, predicted by this
model, should give @ pattern of atomic displacements similar
to that distinguishing the crystal structure= above and below
the phase transition. The main feature of the eigenvector is
a vibration of the Ti atom in antiphase to the other atoms,
and the relative displacements are similar to those found in

the ferro-slectric transition in Ba Ti 03.

b) The ferro-electric mode in ED,20),-

The mode eigenvector may be determined by fitting mode
structure factors. This method may be used when the mode 1is
overdamped as well as when there is an associcted well-
defined peak in the phonon spectrum. We now consider the
ferro-electric mode in KD2P0u.

Tt has been shown, (see reference (63), for example)
that in a tunnelling model, the m;% K. (g3) factor of
equation (1.17) should be replaced by sin K.u, for the

protons. Here we have written

.7 ,
g = m” g (gd)

so that e is an actual displacement. The structure factor
for the ferro-clcctric mode in KDQPOu should contain

sin(g.gk) for the deuterium contribution; however, for
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the K wvalues in typical neutron scattering experiments, it
is unlikely that the difference between K.u, and sin(K.u,)
could be detected. We shall therefore replace sin(g.gk)
by K.u. in our discussions and consider the validity of
this. in a later section, (Section 6.5). The mode structure

factor is,

F(K) = % by exp (- (K) ) (K.wy Jexp (iK.r, ) (6.1)

where the summation is over all atoms in the unit cell.
The F(X) for the ferro-electric mode in KD,P0), . and the
antiferroelectric mode in NDhbzPOu are given explicitly as
equations (6.10) and (6.12). By measuring the intensity of
the quasi-elastic scattering at many reciprocal lattice
points, it may be fitted by the individual atomic displace-
ments, Yyes using a least squares procedure.

A preliminary fit to these intensities for KDQPOu has
been published by Buyers et al.(87), using the displacements

(68). This gave a X e of about

obtained by Bacon and Pease
50 for 11 intensity measurements. The results of a full
least squares analysis have been given by Skalyo et al.(88).
They fitted 60-intensity measurements with eight parameters
with a X2 of 2.1. The u, in the ferroelectric mode are

a linear combination of the seven basis vectors of the [j N
representation, and demanding orthogonality to the [ L
acoustic mode reduces the problem to the determination of

six independent displacement parameters. Since the deuterium
Debye-Waller factors were not considered well enough known

in advance, B11 and B33 for deuterium were obtained as

parameters of the refinement. The final displacements are

illustrated in Figure (6.1) and their values given in Table
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Belo These are those predicted by Cochran(62) with the
addition of a displacement of the deuteriums along ¢ in
phase with the phosphorous atoms and a distortion of the
oxygen tetrahedra. This result shows that the atomic dis—
placements in the ferro-electric mode can only be found by
fitting quasi-elastic intensities, not by considering dif-
ferences in the crystal structure above and below the tran-
sition. The observed and calculated intensities are given in

Table 6.2.

¢) The antiferro-electric mode in ND) Do2O),,.

We have used the method (b) to find the eigenvector of
this mode. Meister et al.(92) have made no attempt to fit
their intensity measurements with atomic displacements. They
argue '"the problem involves determination of 20 amplitude
parameters corresponding to a linear comhination of the 20

modes Zq +‘Zu.“ This paper uses a different notation and

the .Zl

MBH representation of Chapter L. These 20 ampiitude para-

+ Zu representation does in fact correspond to the

meters correspond to a solution of the problem in 3-
dimensions. We confine our attention to the (0 1 0) projec-
tion, in which the amplitude parameters reduce to ten by
using the symmetry restrictions on the displacements of N
and P given in Cliapter L4, and the ordering scheme for the
deuteriums illustrated by Montgomery(83). These are incor-
porated in Figure (6.2). The atomic Debye-Waller factors
for the heavy atoms may bé obtained from the results of
Tenzer et al.(9u), and those for the ordering deuteriums
may be assumed to be the same as for KDQPOu. There is no

iﬁformation on the Bi.'s for the ammonium group deuteriums.
¥ See also P 117 and Table (6-3)
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e have carried out a least-squares refinement of the
36 available quasi-elastic intensities to fit 11 parameters.,
These are ten displacement parameters (illustrated in Figure
(6.2)) and a Debye-Waller factor for the ammonium deuteriums,
which we have assumed is isotropic. .

The 0-D-0 group of atoms at (0.15, 0) have their dis-
placements highly correlated in the [0 1 0] projection, and
give one composite term in the structure factor. For these
atoms we refined the product of a scattering length and a
displacement. Our starting parameters for the heavy atoms
were taken from the results of X-Ray diffraction studies(71).
The deuteriums of the ammonium group were initially assumed
to follow the nitrogen atom. The other deuteriums were given
displacements of the same magnitude as the nitrogen atoms,
since there was no evidence, from the intensity data, that
the deuterium contribution dominated the scattering. The
results for KDQPOu clearly showed that the structure factors
were large when the deuterium contributions were in phase.

The data refined after 1L cycles of least-squares to
give a X 2 of 2.9. The final values for the parameters are
given in Table 6.3. Table 6.4 gives a list of experimental

' 2 ;
and calculated intensities. We used a X defined by

: .\ 2
2 1 Z: (Iobs(l) B I:calc(l))
X = 0
(n"p) i 0-(1)
where i runs over all n observations, and p 1is the
number of variable parameters. The 6(i) are the experi-

mental errors.

The results of Table 6.3 differ from those for Kszou'

1 1 1
The deuterium atoms at (%_E) and (aE-E) do not have con~-

siderably larger displacements than the other atoms. The
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atoms of the ammonium group have relatively large displace-
ments, and these cannot be described by a rigid translation
along x with a superimposed rigid rotation of the four
deuteriums around the nitrogen. The deuterium framework is
greatly distorted; the atoms DAl and DA2 do move closely
perpendicular to the N-D bond in this projection, but the
DA3 and DAM displacements are at almost L45° to the bond.
The O0-D-O composite group has a relatively large displace-
ment along z, but we cannot reach any conclusions on the
separate atomic displacements. Our results for the N and
P atoms agree with those of Keeling and Pepinsky(7l), but
we cannot test the distortion of the oxygen tetrahedra which
they find.

The elements of the correlation matrix were all around
0.2, except for those between the z-displacement of DA3 and
the displacements of N and Ol’ and between I\Tx and Dﬁlx’
These all have values of approximately 0.5. In the (0 1 0)

o

projection. these atoms are separated by less than 0.8 A.

We shall take up this point in Section 6.4(b),

6.2 A Fourier Synthesis Method for Eigenvectors

This method for determining the eigenvector of any .
crystal mode of vibration has been described by Cochran(95),
and we now present the first applications. We illustrate its
use by considering the ferro-electric mode in KD2POu. We
then apply it to the antiferro-electric mode in NDuDQPOu and
use the results in conjunction with our least squares refine-
ment to discuss the validity of our solution of the eigenvector
problem.

Following Cochran, we define the quantity
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D) = § 3 6@-g)exp(-i(T-g).r) . (6.2)
T

—

The notation is the same as in Chapter 1, and G(T -g) and
hence D(r) may be complex quantities. We consider only one
phonon branch and drop the suffix j in the structure factor

of equation (1.17). G(T -g) G(K) may be shown to be

the IFourier transform of

- E% (gk-gradlpkﬁz—gk))exp(ig-zk)

Hence

1 :
D(zr) = -+ ZK (—% Ek.gradfk(g-gk)exp ig.r,) exp-i(t-g).r
(6.3)
which, on comparison with
2 pole-r,) = !“-Z £(T) exp(-it.r)
7 S\ e Vgt =
where f£(T) is the Fourier transform of NF(g)) gives
D(z) = -2 u, gradlfk(g—ggk)exp igeZpe (6.4)
Lk

Hence, D(r), expressed as a Fourier series by equation
(6.3),is a function of the atomic displacements, u,, in
the mode considered. The reader should refer to reference
(95) for details of this derivation.

To simplify the computation and interpretation of D(zr),
we assume that all atoms, k, have the same isotropic Debye-

2
Waller factor, exp(- K /up). We now introduce

Dp(z) = = 7. grad\Pk(g) and find
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grad pp(z) = - 2prp, (z)
where J:)k(_l_’_) = bk(p/?t)B/z BXP("PI'Q)
ad =
all D(E) %& Dk(.{'.“gzk) BXP(J-Q.-.I.’gk) (6'5)
where Dk(g) = Qp(g.gszk(g) §

th(grggk) has appreciable value only when r is close to

an atomic position, Zoys and so

D(z)

n

Ik k =¢k
Hence, using equation (6.2) ,

e = g Dy (z-r )

(6.5")

-:-L.\} 2 G(T-g)exp-iT.r

and D'(r) may be computed by measuring the IGCE—Q)IQ
the scattered neutron intensity from the particular mode, assign-—
ing the correct phase to each term and then summing the Fourier
series.

' The interpretation of D'(z) follows from equations
(6:5)s 4t =D the term in the summation with £ = 11,

—H

k=k is zero. On moving a small distance 5 from r Xk

(r-rzlk ) increases, but ~Fk decreases. Dk(r—rgk) will
reach a maximum at 5 éz k. » Say, and then decrease as

i g
d increases further. Obviously kfk(ﬁé) = Jok(ﬁé), and so

Dk(+é3 = -D&ﬂﬁéj ; in particular, for § along a line

perpendicular to u, Dle§) = O. Thus, this term in the

1’
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sunmation gives a positive and negative peak about s kl with
1
The heights

L
a local plane of anti-symmetry perpendicular to Yy e
of these peaks have equal magnitude, i.e. are proPértional to
bkl |gkl|, under the assumptions preceding equations (6.5).

The contribution (near Eﬂlkl) of the other terms in the
summation over { and k will be small compared with that for
L = zl, k= kl’ providing neighbouring atoms are separated by
greater than 4% 0.85 A. TFor this separation, exp(—p(r~rzk)2)
has a value of around 0.05, compared with unity for L= —zlkl.
This contribution is certainly small compared with fluctuations
in D'(r). caused by errors in the G(T-g). This is not the
case if the summation, EE, is over such a restricted region of
reciprocal space that s;iies termination effects are significant.
Wle assume, at present, that the measurements are extensive enough
that we may ignore these effects; a method for eliminating series
termination effects is discussed in Section 6.3.

In this discussion it has been assumed that the plot of
D'(z) is in a three dimensional space, i.e. both D'(z) and the
u, are real. In general, both are complex and the real parts of
the u,'s are deduced from the real part of D'(z), and the

imaginary parts from the imaginary part of D‘(g).

Rquations (6.5) show that. near 2y

DY) ¥ Dy (rrp) = 2oy (EE ) by (B2 exp(my (2 )) -

(6.6)
For the peak maximum at ék from Lok’
k+\3/2 2
Dmax(-z-‘-zk) L QPK ék'll.k bk(%{') GXP(""PK 'ék,) 8 (6-7)

Under the assumption, D) =D for all k, this reduces to
(const. x Dby | displ. of atom kl), since ék is now O for all
k. TIn Section 6.l4. we shall show that the general expression of
equation (6.7) must be used for KDpP0O), for which the p, for

deuterium is about one quarter that for the heavy atoms in the
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structure. By analogy, the geheral exXpression must be used to

deduce relative atomic displacements in NDhbzPOu.

6.3 Series Termination LEffects

Dkg) is computed as a Fourier series which is, in theory,
summed over all reciprocal lattice vectors, ”Z. In practice, the
Gﬁz—g) are only measured over the region of reciprocal space
defined by 'K] = 8 <'SO. We must consider the errors occurring
in D'(;) when all terms of appreciable magnitude are not in-
cluded in the summation over T. Since D'(z) is related to the
gradient of \P(E)’ we may consider \Pf(g), which is \P(E) modi-
fied by series termination effects, and take grad\Ff(g) as the
modified D'(;)(Df(g)). The effect on \P(g) has been discussed
very fully by Lipson and Cochran(96) and we shall only quote the
relevant results.

The function. LPf(E)’ computed by summing over the limited

range of K, is the sum of two terms. One. peaks at L, @and

o
falls to zero in a distance of the order of 2 A. The second term,
Jl(2ﬂ80r)
\ff , Oscillates as 5ns T ? which has relatively large sub-
2 o}

sidiary maxima.-

J. (2.262)= 0.5 ; Jq (4.8) = = 0.3.

1
The functions l53(_1;), &Pf(z) and Df(g) are illustrated in
Figure (6.3), where we have considered one-dimensio For sim-
plicity. Df(g) also shows what are termed series termination
ripples, but has double the number of subsidiary peaks in a given
range of r. sz decreases as r increases, but the effect of
these series termination "ripples" 1is to give appreciable con-
tributions to D'(r) at neighbouring atomic sites. As 5, in-
increases, the range over which Df2 is significant, decreases.
The effect of using finite SO is to broaden the individual
peaks in D'(r), and meke it almost impossible to estimate the

true heights of the peaks, and hence the true magnitudes of the Upee
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There may also be difficulties in locating the centres of the
peaks, and the local planes of anti-symmetry used to obtain the
directions of the wu,.

Obviously some way of eliminating these series termination
effects must be found, and the most usual method follows thec
vreatment described by Bragg and WEst(g?). A converging factor,
g(s), is introduced, which is included in every Fourier coef-
ficient, and which makes all coefficients with Igl ) Sy~ of
negligible value compared with those for small X. One suitable
4(s) is exp(—asz), where o 1is a numerical constant, to be
chosen according to the particular problem in hand.

To decide on the most suitable value of a, we consider the
effect on D'(r). of including the factor g(S). Let D"(r) be

the density calculated by summing the modified structure factors,

G(K)Z(s). Then

D*(r) = kf D'(r + gﬁ(g)dv (6.8)
v
where y(R) €&—> 4(s8) . (= denotes Fourier Traneformation).
2 2 . 2
Thus, VY(R) = J 68" 2MIRE o35 o (B Pexp(-r® (E)).

For KDpPO ; experimental G(K) exist for he 4 5246 148, and

5, = 1.63 Al Ifa = 0.6, the coefficient with w28 = 148.

is reduced by a factor 0.2 compared with those with (h2 + 52)
small. However, we see from equation (6.8) that D"(z) is D'(z)
convoluted with (R), and the peaks of D"(r) are broadened rela-
tive to those of D'(z). If ¥(R) is sharp, then the effect on the
peaks is small. The half-width of Y(R) is 2 x (Q:égﬁjﬁ, and

so as a is increased to reduce series terminationxrippleS-

¥(R) becomes broader. This in turn broadens the peaks of

D"(r). If the atomic separation is small, @ must be chosen



to reduce the subsidiary peaks of

the main peaks sufficiently

neighbouring atoms .

6.L
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7

to cause overlav of peaks from

without broadening

Applications of the Fourier Synthesis Method

We now apply this method to the KDgPou and NDuDQPOu

sof't mode eigenvectors.

D'(r) is purely real,

a)

In both these examples

we show that

The quasi-elastic structure factor for g =0

from equation (6.1),

-W
M) = > b, e
k

In the (0 1 0) projection,

mation is over all atoms in
of the unit cell at (0 O -
the displacements. An atom
in the ferro-electric mode,

The atoms at -, + (¥ % %)

displacement, u, . The unit
and equation (6.9) becomes
-wk( -E.)

PK) = zz'bk e
-k

where the summation is over

This is ringed in Figure (6.

the expression for F(K),

line parallel to 1z,

K¢

D'(r) for the KD,PO, ferro-electric mode

is,

K)

(T .u

) iz.gk
=k

e Ld

(6-9)

g, =ud+ W kE, and the sum-

the unit cell. Taking the origin

%) we consider the symmetry of
at r, 1s displaced to 1  + 4

and that at =-r, goes to -1 + 4.

and 1, - (¥ £ 2) have the same

cell contains two molecular units

K.z

e )

I
Lol
K.uy (e *

all atoms in the asymmetric unit.

1). In the (0 1 0) projection,

incorporating its symmetry (mirror

and centre of symmetry), reduces to
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P(K) = bP Pzﬁ cos 2w£zP - bK K, ¢ cos 274 Zye

cos 27lzA, )

+ bo 026(2 cos 2xh(x01) + 2 cos 2wh(x0 02

)

- b, D, h sin 2ﬂh(xDl)sin 2ﬁﬂéDl)

+ by Dlz(cos 2ﬂh(zD2) + CcOS 2ﬂh(xDl)cos 216(zp)) o

(6.10)

ile now calculate D(r), wusing equations (6.10) and (6.5),
but dropping the prime on D(r), since it is no longer necessary.

Writing F(K) as P(h,£). and using equation (6.10) we have

®(+h, +¢) = = F(-h, =) = =TF(h, =€) = F(-h, &) .

These relations give

D(r) = Z uw F(h, £) cos 2% hx sin 2% £z o (6.11.)
hé
The summation is over values of h and £ in the first
quadrant, and W, the multiplicity, is ;/2 for h =0
and 1 otherwise, D(g) is entirely real for this mode, and
it follows that the u

k
D(r) 4is computed using equation (6.11). The | F(k,¢) |

are entirely real and in phase,

are the square-rooted intensities, given in reference (88),
and the signs of the F's are those of the calculated structure
factors (obtained by substituting the w, of Table 6.1.ineq. (6.1)).
The results of this calculation are shown in Fig. (6.4),
Bach term in the Fourier expansion contained a factor
exp(—O.Ol(h2+62)), to reduce series termination ripples. With
& »

this overall temperature factor included, the individual peaks

in D(g) are still well separated. Throughout these calculations
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a circular cut-off was used for the Fourier summation, i.e.
all terms with (h2 + 62)‘< 148 were included., If an
intensity, for a K in this range, had not been measured, then
the calculated F(g) was substituted. This required the
inclusion of eight calculated values out of a total of sixty
terms. The calculated structure factors must be on the same
scale as the observed values., We followed Skalyo et al. in
choosing a scaling factor which gave the deuterium atoms a
displacement similar to the x displacement which the
hydrogens experience at the transition in KHQPOQ. This

scaling factor does not result in giving

EZ [Fobsl = ZE [Fcalc, g 25 Iobs :=EZ Icalc

and we shall discuss this in Section 6.6(a).

Wle have calculated the relative values of the u;,
assuming that the peak heights (in D(r)) are proportional
to bk ’Ek | « The results are listed in column 2 of Table

(6.5)., Column three of this tasble lists the ratio
t

k .
/Ny

average of the magnitudes of the positive and negative peaks,

bk |u_ Nk is the veak height, calculated as the

around r = and the EL are the displacements of

Lex?
Teble 6.1, If the assumption of p, = p = constant, for

all atoms, is valid, then these ratios should be constant.

The results of Table 6.5. show that this assumption is invalid.
The full expression for the peak heights in D(r) (equation
(6.7)) should be used, with the Sk deduced from the plot

in Pigure(6.4)., The combined effect of the different Debye-
Waller factors and series termination errors. makes this
method a rather unsatisfactory way of deducing accurate gk's,
may be found with high

We have found that the eI
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accuracy, by comparing two different density funections, The
D(g), computed by including experimental values for the ]Fl's,

we call D (F_ ). fThe corresponding function, with calculated

S

®'s replacing experimental values, we call Dr(F )e Since

calec
both density functions are calculated by including the same
number of Fourlier coefficients, with the same cut-off, the
series termination errors should be the same in both cases.
The corresponding peaks will be modified by the Debye-Valler
factors, in the same manner provided the Debye-Weller factors
used in the calculations are close to the true values, This

will be the situation. if an approximate fit to the intensity

data is taken as the starting point for the calculations of

))= e(x)

\ »
the D(r). Convergence occurs when (Dg(Fobs) Dg(Fcalc

tends to zero, for all r. The u, used to calculate
calc) are then the correct relative cdisplacements,
The final e(r) for KD,PO), is illustrated in Figure

DE( 1

(6.5). The calculations leading to this map of elr) have
used slightly different values of Bqq and 333 from those
of Table (6.1), since these parameters were adjusted to give

) and DP(F ) around

calc

better agreement between Dg(Fobs

the deuterium positions. The final values for B,, and 333
are 3,2 32 and 2.47 32. These agree with the values in
Table (6.1), within the quoted errors. These maps of D(z)
and e(r) will prove useful when judging our fit to the
N})h_iDzPol_L intensity data. We discuss their main features

in Section 6.6.
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b) D(r) for the VD) D, PO, anti-ferroelectric mode

e now compute D(r) for ND)D,PO),. The atomic dis=-
placements have been illustrated in Figure (6.2)., The struc-

ture retains a centre of symmetry in the (0 1 0) projection,

an atom at I, has displacement u.

" 11 i 1" 1

"..I_’k -El{ -

Once ggain, we need only sum over the atoms in the asymmetric

unit which is ringed in Figure (6.2), and find

-, (%
RK) =3 b e B (K. ) [exp(i§-£k> - EXP(‘iE--IIit)] 2
X

For zn atom in a general position, this reduces to

i Car )
i) A -
2bke k= huk cos Qwhxk sin 2ﬂ6zk
..‘irk( I'g) 2. 2 1 2r—r
a4 2bk e 6wk sin 2% nxk cos 27 6zk
¥* *
where v, = 4 2 + W & .
Cof K.2¥in) =, (K)
The coefficientsp F(K) are, with appropriate e ,

bN Nx h sin 2ﬂ5XN + bP Px h sin 2ﬂxP

+ b h Dlx cos 27h xDl sin 27tz

D Dl

- ZbD h DAlx cos 27h XDAl sin 2%6ZDA1

+ QbD h Dij cos 2xhxDA3 sin ZﬂazDAB

+ Zboih le cos 2ﬂhx01 sin 2%6201 i

The coefficients of K.c’ in FCK) are



i sy

bDﬂDlz sin EﬂhXDl cos 2ﬂ£zD1

2 £ i 7
+ bo Olz sin 2%hx01 cos 2%6201

+ 2bD & DAlz sin zﬂhxDAl cos 2W&ZDA1

+ 2b., € D sin QﬁthAB cos 274z

D A3z DA3

2b i T i
+ 0 £ 022 sin 2rh x02 + bD 4 DQZ sin Zﬂhxne . (6.12)

Since = XD2, the last two terms give one composite

%02
term, written € U sin 2rxhx,, « For this mode, F(h,Z)

is an odd function of both h and ¢, so that

D(z) = >  PF(h,£) sin 2z hx sin 2% £z . (6.13)
+h+4
D(g) is again purely real, and has the periodicity of the
lattice, with the asymmetric unit that of Figure (6.2). The
rest of the cell is built up by reflecting D(r) in lines of
anti-symnetry along a and ¢, which meet at (0, 0, - %) -
the origin chosen for Figure (6.2)., This is in contrast to
Figure (6.4), where there is a line of anti-symmetry along
a and one of symmetry along c¢. Hence, atoms situated on
a line of anti-symmetry may only have & displacement per-—
vendicular to this line., Atoms on a line of symmetry have
displacements along this line. This is illustrated for the
0-D=0 atoms at (0.15, 0) in both KDQPOLL and NDMDQPOH, the
N and P atoms in NDuDQPOu, and the K and P atoms in
KDQPOu. Atoms off lines of symmetry or anti-symmetry may
have components of displacement along both a and c¢ .
The experimental intensity data of Table (6.4) are

complete for all values of (h, ¢) in the range
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(2% + £%) € 97. We have computed D,(F ) with this cut-
off for the Fourier summation and the_signs from Fcalcts
using the parameters of “Table(6.3 ). The best bonverging
factor was found to be exp(-0.15 (h2 + 52)). The resulting
plot is given in Figure (6.6). In contrast to the plot for

) contains only experimental structure

KD,PO), this Dz(FobS

factors.

The atoms O0-D-O0 at (0.15, 0) give one positive and
one negative peak. In this projection, they are completely
superimposed. The contributions from N, DA}’ DAl and 01
are not completely resolved. These are the atomic displace-
ments which gave high correlations in the least-squares re-
finement. Increasing the range of the experimental measure-
ments would improve the resolution, and decrease the correla-
tions, but it is unlikely that it would ever be possible to
resolve the N and DA3 peaks. We have not attempted to
deduce the w, from the peak heights of Figure 6.6).

We have computed Dr(F ) and e(r) for this mode.

calce
When the scaling factor used in the least squares refine-

ment of I(obs). was used to calculate Dr(F ), the peaks

calce

) were consistently less than the corresponding

in gg(Fcalc

peaks in Dr(Fobs)' The calculated structure factors had to
be multiplied by a factor 1.1 to give the best agreement

between the two density functions. e(z) is illustrated in

Figure (6.7).

6.5 The Approximation Used to Calculate F(gl

: 1 I
In KD,PO), the deuterium atoms at (%, ﬁ) and (- Tis E)
have relatively large displacements in the ferro-electric mode

D, (z) 1is related to the difference in the structure with the
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atoms in their equilibrium positions, and that with the atoms
displaced in the mode. That is, Dk(£ - gk) is

\Fk(z - (g + 1)) —\Pk(z - r.), and this may be replaced,
for small u, ., by -_k.grad\Pk(g - gk). This is valid, pro-
vided |u, | << width of Py For the deuteriums, we should
use the full expression for D, (r - r, ). In practice, the
best test of the validity of the approximation., is to compute

DP(F ) with the calculated structure factors incorporating

calc
the factor sin(K.w,) for the deuteriums, and compare it with

)s

for which the factor (E.Ek) was used, then the approximation

Dr(F ). If this gives better agreement than the D, (F

obs calc

is invalid.

We have found that, in practice, we cannot separate the
effect of replacing sin(g.gk) by (g.gk) from the effect
of altering the Debye-Waller factors. With the values of

and B,, from Table 6.1 the deuterium peaks around

511 33
(%, %) had a maximum value 53.5 in Dr(Fcalc)’ compared with

). On using the sin(K.w,) factor, the

51.5 for DE(FObS

) fell to 53.3. However, altering the

peak in DP(F
- 2

calc

o o
values of Bll and B:,)3 to 3.2 A and 2.47 A2 gave a

value of 51.5 for the peak in Dr(F ), exactly the value

calc
for DE(FObS).
6.6 Discussion

ﬁe have presented the results of a least square analysis
of quasi-elastic intensities for NDuDQPOu, and calculated
the corresponding density functions, Dr(Fobs) and. Dg(Fcalc)'
The resultsof Fourier synthesis for KD2POu have also been
obtained. However, it is well known that least squares fits

to crystal structures. giving R-factors below 20°/b may
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correspond to an incorrect structure, and Fourier synthesis

is a notoriously unreliable methoé of structure determination.
These points are discussed by Donochue in relation to the
structure of DNA(98)’ (99).

In DNA, the elastic structure factors have phases which
can take on any value between O and 2x, wherecas the mode
structure factors, which we have calculated, can only have
phases O-orTI'. The phases are of overwhelming importance in
obtaining a Fourier map. Donohue illustrates this by con-
sidering three possible synthetic structures for DNA, and
obtains the corresponding electron density maps. In all
cases, the density corresponded, at low fesolution, to the
structure used to determine the phases. By citing examples
of incorrect structures with "good" Fouriers, Donéhue decides
that low resolution cannot be blamed for these discrepancies.

Donohue suggests that the density function should be
inspected for

(i) irregularly shaped contours, corresponding to
resolved atoms,

(ii) unequal peak heights for resolved equal atoms;

(iii) false detail.

These tests may be applied to the plots in Figures (6.4)

and (6.6), with (ii) replaced by unequal positive and negative
peaks about pr,. The difference of the observed and calculated
density functions cannot be relied on to decide the correct-
ness of a particular structure, since the Fobs include
experimental errors. Donohue concludes that the final test

is a comparison of observed and calculated structure factors,
looking for any serious and systematic disecrepancies. 7le now

examine our results in the light of these arguments.
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a)  KDyPQ) .

o
The theoretical resolution is 2~ 0.36A and all atoms,

except the 0-D-0 group, are resolved. 7With the overall

)

calc
had equal peak heights, and a background which was almost

temperature factor included in the calculation, Dr(F

flat. This indicates that all series termination ripples
have been eliminated and cannot give rise to fluctuations

) were regularly shaped.

in e(z). The contours of Dg(Fobs

The magnitudes of the positive and negative peaks for the K P
and O atoms are given in Table 6.6. These show discrepancies
of up to 10°/o. 1In e(r) the contours are drawn at £ 5y

)

to be compared with a maximum peak height of 50 in Dr(Fobs
for the deuteriums, and an average of 20 for the othe; four
atoms. ¢e(r) shows definite features around the oxygen
positions at (0.083, 0.25) and around (0.35, 0.04). This

- suggests that the oxygen displacements are suspect. We have
altered these u,, in an attempt to obtain a featureless
e(z), but without success. We can only attribute these dis-
crepancies to experimental error.

We now consider further the choice of a scale factor
relating observed and calculated structure factors for this
mode. Our calculations so far have used the scale factor
chosen by Skalyo et al., for which 2{ Fobs = 195 and
Zj Foglo = 162.5. Table 6.7 lists the average of the mag-
nitudes of the positive and negative peaks around the Lo

- - ' a t
in D(Fobs) and D(Fcalc)’ for which Skalyo's scale factor

)Zf we have listed the corresponding
peak heights, when the scale factor is chosen to make

was used. Under D(Fcalc

b By z F,o1c+ The peak heights under D(Fcalc) are

mostly in gOOd agreement with those of D(Fo-bs)’ whereas those
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in D(Fcalcqz.are consistently higher except for the atom

0 (0.083, 0.25). The difference function,

e(r) = D(F ) - D(F is of course zero around the

obs’ *calc)
atomic peak positions except for the oxygen position at

(0.083, 0.25) and shows fluctuations in other regions (where

’D(Fobs)' > ID(Fcalc)l'J‘ The function e(zx) s =

'z

other fluctuations would be slightly decreased in magnitude,

D(Fobs) - D(F

saie would have pesks around the ok gnd the

since the increased scale factor would increase DP(F

calc>z

relative to Dr(F ) at all points, =». e(z) corresponds

obs
to a better fit than e(r) if we use the criterion that the

difference function should;Ee zero around the mejority of the
atomic positions.

The fit to observed intensities, presented in Table 6.2,
corresponds to a conventional R-value of about 30%, The ex-
perimental errors are large, but there are discrepancies for
points where h is even and 4 is 4 or 8, The X and P
contributions to the structure factor cancel for these values
of h sand <. VWe have tried to vary the Yy in turn, around
the values given in Table 6.1, but do not obtain any signifi-
cantly betiter agreement between these observed and calculated
structure factors, Since the fit obtained by Skalyo et al..

is generally accepted as correct, we can only cite experimental

error once again as the cause of these disagreements,

5
b)  ND);D,EO).
o
The theoretical resolution is & 0.46A. Since so many
peaks are unresolved, we cannot discuss the shape of the contours

for individual atoms, and camnot compare positive and negative
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peaks around the L. Our investigation of the Fourier syn-
thesis must be based entirely on e(;). The average peak
heights of Figure (6.6) are around LO, i.e. they are almost
double those of DE(FObS) for XD,P0). The plot of e(z)

t 10, ana

for ﬁDuDQPOu has contours drawn at = 5 and
it is the % 10 contours which should be considered in a
comparison with e(r) for KD,FO), (Figure (6.5)). e(z) for
NDuDgPou has some definite features arounc the NDh group.
However, we have been unable to reduce these by varying the
=k

in Table 6.3, correspond to a false minimum in the least sguares

by small amounts., Unless the values for the Yy s given

refinement, we must attribute the fluctuations in the S(Ij
of Figure (6.7) to experimental error, These fluctuations are
certainly no more serious than those for the szpou Fourier
map, when one takes into account the difference in the scale
of the quasi-elastic intensities. (Comparing Tables 6.2 and
6.4, we see that the high intensities for KD2POu are around
70, compared with values around 250 for NDMDZPOM‘ These cor-
respond to F's of 8 and 16, with errors of 0.3 and 1.0
respectively.)
Finglly we compare the observed and calculated intensities
for ND)D,P0, (Tables 6.4). The intensities for (2 0 3),
(LoL), (205), (502), (7ToL), (1 08) show discrepancies,
but these do not appear.to be systematic. '
The Fourier synthesis procedure presents a convenient
method for deducing mode eigenvectors. When individual atomic
peaks are unresolved, conclusions must be based on the dif-
ference function, e(r). Using this method, in conjunction
with a least squares analysis of guasi-elastic intensities,
we have obtained a solution to the u, for the antiferroelectric

mode in NthzPOu. In spite of some discrepancies, the u, pro-
vide a reasonable fit to the limited experimental data available

+o0 us.
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Bll 3.4 = 0.,2A°
+ %5
* X, +0.0066 L 0.0005
P, +0.0055 = 0.0006
+
+
022 +0.0008 =~ 0.0006
D -0.025 L o0.001
1x RS - .
+
Dlz +0.,011 - 0,001

* The d’fé/o/acemerﬂfs are frcchxéna/ co-ordinalés .

Final Parameters From Least Squares

Analysis of KDEPOLL Intensity Data

TARLE 6,1
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6.2

Observed and Calculated Intensities
TABLE

for KDz?Ou Ferroelectric Mode




14+

N - 0.050 0.003

014 + 0.005 % 0.005

01, - 0.013 ¥ 0.005
(0-D-0)g16p1. * Po-p-0 + 0,042 = 0,005
P, - 0.005 ¥ 0.005

By - 0.020 ¥ 0.005

Dy, 0

By - 0.082 0.005

Dy + 0.058 I 0.009

D32 + 0.051 = o.oog

B TR I

Dy3x - 2Ny = Dy, = = 0.019 £ 0.007

(to retain N as centre of mass of NDA)

* Z)fé‘/o/ac-emezz7é ffczf}; e.yres&ec{ /o /705740/;&/ co-c:ro/x)za?’gg_

Final Parameters from Least Sguares

Analysis of NDMDQPOu Intensity Data

TABLE 6.



TABLE 6.4
Observed and Calculated Quasi-elastic Intensities for NDuszol;‘

h o ¢ Iobs ’Fcalc ,2
1 0 2 185 % 25 148
2 0 1 4o T 20 2l
2 0 3 60 £ 20 16
3 0 2 110 £ 20 06
1 0 L 120 £ 20 7L
L o 1 110 < 20 121
3 0 L 50 £ 20 2l
L 0 3 60 = 20 52
2 0 5 4o % 20 79
5 0 2 50 L 20 5
1 0 6 60 T 20 38
6 0 1 < 40 52
L 0 5 < Lo 22
5 0 L 270 £ 30 320
3 0 6 < 20 10
6 0 3 < 20 o
o 0 7 230 £ 30 230
7 0 2 165 £ 25 101
5 0 6 175 t o5 222
b 0 7 9 I 20 113
7 0 L 60 £ 20 2
1 0 8 < 100 0
8 0 1 270 = 30 212
3 0 8 50 L 20 88
8 0 3 70 £ 20 55
5 0 9 110 £ 20 85
9 0 o 220 £ 30 236
b 0 9 70 t 90 L2
9 0 L 120 = 20 83
5 0 8 70 £ 20 93
7 0 6 %5 % o0 X7
6 0 5 50 % 20 T
8 0 5 20 £ 20 2
9 0 6 < 15 11
6 0 7 < 20 E
1 0 10 < 30 19




Lo D(Fobs) ’Bﬁ ‘ bk,EEVD(Fobs)
K 114.6 0.0040  1.67 x 107H
P 210 0.0041 ity oo 1077
D(ﬁ, %—L) 52.5 0.008l 3.2 x 1074
0-D-0(0.15, 0) 27.4h 0.00LL 2.5 x 10 %
0(0.083, 0.25) 10.'0 0.0017 0.7 x 10 5

The u! are on an arbitrary scale and are

K
deduced from D(F

i

obs



Atom D*(Fobs) D_(Fobs)
P + 18.9 % . L1 9
0 (0.083%, 0.25) + 8.9 - 8.6
Positive and Negative Peak Heights
in Dr(Fobs) for KDyPO),.
TABLE 6.6.
Atom D(Fobs) D(Fcalc) D(Fcalc s
0-D-0 27.4 2746 33.7
K 14.6 14.0 16.8
P 21.0 18.L 21,7
0 8.6 3.0 2.7
D 52.5 52.0 6l.1

Averaged Peak Heights for Kszou

in Different D(z).

TABLE 6.7.



Figure 6.1 Atomic Displacements for the ferroelectric mode of KD, PO,
(page 103)
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Figure 6.2

Amplitude parameters for the antiferroelectric mode of
ND, Dp PO, (page 104)



(=)

L
{x)



Figure 6.3 The functions P ), ff ). ])' (r) and :Da‘ ) (page 110)
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':; Figure 6.4 Map of D (r) for the ferroelectric mode of KD, PO, (page 113)
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Correction to Figure 6.4

The deuterium peaks (bl) in this figure have been interchanged between
the left and right quadrants. They appear correctly in the figure above from
~ which the other quadrants may be generated by suitable reflection (see page 1

’
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Figure 6.5

Map of final €(r) for the ferroelectric mode of KD
(page 115)
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Figure 6.6 Map of D(x) for the antiferroelectric mode of ND4 D, P04
(page 118) .
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Figure 6.7 Map of £(z) for the antiferroelectric mode of ND, D, PO,
(page 118) ’
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The crystal structure of perdeuteronaphthalene, Ci0Ds, is very similar to that of CjoHs. The space
group is P2,/a with a= 8266+ 0-008, b= 5-968 + 0-006, c==8:669 + 0-008 A ; #=122-92+0-02°. 331 inde-
pendent observations give an R value of 5:2% in a refinement where the anisotropic temperature factors
were fixed at the best values obtained with the use of the rigid-body thermal-motion constraint, and
the positional parameters were constrained to the mmm symmetry of the free molecule. Statistical tests
showed that no significant improvement is possible on removing the constraints. Consequently, the
molecular geometry resulting from the constrained refinements was better determined than it would
have been from a conventional unconstrained refinement.

Introduction

e present investigation of the crystal structure of
trdeuteronaphthalene, CyDs, is part of the study of
e lattice dynamics of molecular crystals. Measure-
knt of phonon frequencies is best done with neutron

inelastic coherent scattering. Hydrogen is a very strong
incoherent scatterer, and for this reason fully deute-
rated crystals are preferred.

Calculations have been made of phonon frequencies
in naphthalene by Pawley (1967), with the use of the
crystal structure of C;yH; as determined by X-ray dif-
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fraction (Cruickshank, 1957). We expected a slight
change in crystal structure on deuteration and this we
wished to find. Neutron diffraction affords a method of
accurate determination of nuclear positions and is ideal
for obtaining a starting point for lattice dynamical cal-
culations.

The casiest of these calculations to make involves
rigid-body motion of the molecules. Consequently
when the diffraction data are used to refine the crystal
structure, a structure-factor least-squares (SFLS) pro-
cedure incorporating a rigid-body thermal parameter
constraint is appropriate (Pawley, 1964). If the assump-
tion of molecular rigidity is valid we would expect the
molecules to retain in the crystal the symmetry they
have in the free state. Consequently another con-
strained SFLS refinement is of interest, in which the
molecules are kept to nunm symmetry in the crystal
although the molecular site is only centrosymmetric.

Experimental

A large single crystal of 98% deuterated naphthalene
was grown by Dr Sherwood of the University of Strath-
clyde by the moving-vessel technique (Sherwood &
Thomson, 1960). A sphere of diameter 7 mm was cut
from one end of the crystal, and was mounted with
z* vertical, inside a sealed soda-glass bulb to reduce
sublimation losses.

A NEUTRON-DIFFRACTION STUDY OF PERDEUTERONAPHTHALENE

The mosaic spread of the crystal was 0-5° (full width
at half height) which was thought to be sufficient for
extinction effects to be small, therefore no shock cool-
ing was attempted. Rapid cooling in liquid nitrogen
tends to shatter large crystals of this sort.

The unit cell of CjoDy is slightly different from that
of CwHa, being

a=28-266+0-008 A
b=5-968 +0-006
c=8-669 + 0-008
f=122:92 +0-02°

331 independent intensities were measured at 295°K on
the Ferranti four-circle diffractometer on the DIDO
reactor at Harwell. A number of equivalent reflexion
pairs were measured and the average agreement was
1%. Table 1 contains the |Fops| used in the structure
refinements.

in P2/a.

Computational

No attempts were made to correct the data for absorp-
tion, extinction or thermal diffuse scattering. The maxi-
mum of absorption was 7%, owing mainly to the in-
coherent scattering from the 2% of hydrogen. The an-
gular variation in absorption would be much smaller
than this, giving a slight error to the mean-square trans-
lational displacement tensor T. We found no evidence
of extinction when analysing the result of the refine-

Table 1. Observed and calculated structure factors
The columns are hkl, |Fovsl, |F7P-cate|l and |Fmmm gy,
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gent. A thermal diffuse scattering correction (Cooper
¢ Rouse, 1968) was not applied as this requires a reli-
ple lattice dynamical model. The present study is a
eessary step towards this goal. All refinements were
wsed on | Fons| with unit weights.

The first refinements were carried out by the use of
fie rigid-body thermal-parameter constraint program
fawley, 1964). With neutron scattering lengths of 0-66
nd 0:65 for carbon and deuterium atoms the conven-
ional R value reached 5:30%, dropping to 5:10% when
ke scattering lengths for the deuterium positions were
rduced to 0-63 to take account of the 2% of hydrogen
gmaining in the crystal.

Removing the thermal-parameter constraints gave
wsignificant improvement at the 2% level of the F dis-
R initial

2
m) is F distributed

ribution, assuming that (
Pawley, 1966).

We therefore list only the results of the constrained
tinement. In Table 1 the calculated structure factors
e listed as |FEB. |. The mean square rigid-body trans-
htional and librational tensors are

[ 484 020 —0-09]
T= 292 —0:06| A2x 102
| 2:29 |
009 006  0-08]
o(T)= 008  008| A2x10-2
. 015
[31:59 —3-49  0-11]
L= 1845 —1-16 | deg?
’ 19-12 ]
198 078  1:05]
o(L)= 093 0-73| deg?
0-85

The use of L instead of the ® in the original paper
Cruickshank, 1956) seems now to be generally ac-
tpted]. The comparison of these tensors with the cal-
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culations on C,,Hy can only be rough, so we must wait
for phonon measurements and an improved model be-
fore a good comparison can be made.

The nuclear fractional coordinates found in this re-
finement are listed in Table 2 under the columns headed
1 symmetry, the molecular site symmetry, The aniso-
tropic temperature factors in this Table are those de-
rived from T and L and the fractional coordinates just
mentioned.

The nuclear positions in the coordinate system de-
fined by the inertia axes of the molecule are given in
Table 3. The z coordinates are deviations from the
plane perpendicular to the axis of greatest inertia. This
is the mean molecular plane weighted heavily by the
carbon positions. The least-squares standard deviations
are 0-0055 and 0-0079 A for the carbon and deuterium
atom positions respectively. The deviations from the
mean molecular plane are no more than one standard
deviation for the carbon atoms, but about two standard
deviations for two of the deuterium atoms. We need to
know whether this is evidence for molecular distortion
or whether the deviations are insignificant.

To answer this question we should analyse the devi-
ations from mmm symmetry, the symmetry of the mol-
ecule in the free state. Column 2 of Table 3 shows the
x and y coordinates for the symmetry averaged mol-
ecule. We see that in three of the eight coordinate pairs
averaged, namely Cx(A&E), Cy(A&E) and D,(b & d),
the individuals differ by about three standard devia-
tions. The following analysis shows, however, that these
deviations are insignificant.

The most valid test of molecular strain from mmm
symmetry is given by comparing the results of refine-
ments with and without the symmetry imposed. A new
program was written to apply the molecular symmetry
constraint throughout the SFLS refinement. The proce-
dure which has been described by Pawley (1969) has
been followed. A relatively small number of additions
have been made to the usual basic least-squares pro-
gram with the use of the Editor system, written by Dr
J.G.Burns of Edinburgh. Unfortunately, the rigid-
body thermal parameter constraint program is not

Table 2. Fractional coordinates of the molecule with and without the symmeltry constrqint,

and the thermal parameters for the expression
exp [-10-4(h2byy + k2baa+ [2b33+ 2kibas+ 2ihb3y + 2hkb12)] obtained with the rigid body thermal parameter constraint.

mmm symmetry T symmetry Rigid body

x[a »[b zlc " xla »lb zfe b b2z bas bas b3 b12
e 0-0482 0-1030 0-0359 0-0480 0-1035 0-0352 116 163 174 —10 69 0
I(B) 0-1149 0-1606 0-2205 0-1155 0-1591 0:2206 202 250 187 —50 87 =31
(D) 0-0761 02476 —0-0782 0-0755 0-2487 —0-0777 190 200 235 15 118 —18
{4 0-0857 0-0174 0-3267 0-0857 0-0164 0-3260 262 357 181 —12 115 3
E) 0-0099 0-1869 —0-2555 0-0088 0-1876 —0-2566 251 311 228 52 145 16
) 0-1883 0-3185 0-2733 0-1878 0-3178 0-2718 328 314 253 -—119 126 -110
dd) 0-1499 04043 —0-0213 0-1511 0-4053 —0-0219 307 232 338 -6 182 -89
Ya) 0-1368 0:0627 0-4665 01353 0-:0630 04650 432 561 197 —42 163 =17
Xe) 0-0318 02978 —0-3408 0-0327 0:2972 —0-3414 402 448 311 113 238 14
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written in the Editor system, so both constraints are not
possible simultaneously at present.

The number of parameters needed to determine the
nuclear positions for the full-symmetry molecule is 12,
compared with 27 in the unconstrained case. Nine of
these parameters are indicated in Fig. 1, the remaining
three being the three Euler angles necessary to form the
rotation matrix which puts the molecule in the correct
orientation. This matrix is formed as described by Paw-
ley (1969) and the rotated molecule is then transformed
to crystal fractional coordinates by the matrix

1 —cot

z 0 < f
1
0 3 0
cosec
0 o0 5 B
The best starting values for the Euler angles were
p=—1-1707°
0= 4-3952
w= 20597

Refinement was carried out by anisotropic temperature
factors fixed at the values obtained from the rigid body
thermal parameter constraint. The R value reached was
R=5-15%, with

—1:1707 £ 0-0008 °
4-3946 +0-0010
2:0592 £ 0-0012

The calculated structure factors are given in Table 1
under the heading |F7mm|.

The atomic coordinates are listed in Tables 2 and 3.
This R value is not significantly worse than R=5:10%,
obtained with the thermal parameter constraint but
no symmetry constraint.

p=
9:
W=

A NEUTRON-DIFFRACTION STUDY OF PERDEUTERONAPHTHALENE

When the thermal parameters were allowed to v.
mdependently, the R value dropped to R=4-98%, This
improvement is not significant on the 25% level of the
idzsmbutlon, and the results are therefore not given

ere

We see in Fig.1 the large difference between the
lengths of the bonds C(C)-C(D) and C(D)-C(E). Al-
though this is in agreement with the X-ray result on
CyoH;s (Cruickshank, 1957), it is instructive to test the
significance of this variation with yet another con-
strained refinement. Let us take a model for the mol-
ecule determined by two parameters, the C-C and the
C-D bond lengths. Assume that both rings are perfect
hexagons with the C-D bonds pointing radla]ly from
the hexagon centres. All the atomic positions in the
crystal are now determined by five parameters, the two
bond lengths and the three Euler angles.

1207
01

Fig.1. The molecule of naphthalene. The capital letters denote
the carbon atoms, the small letters the deuterium atoms.
The bold arrows indicate the positional parameters con-
sistent with the molecular symmetry. The bond lengths and
angles and their errors come from the refinement incor-
porating the molecular symmetry and using the rigid-body
thermal parameters, and are uncorrected for librational
motion.

Table 3. Coordinates of the molecule in A
The last columns contain unconstrained coordinates transformed into the inertia axes coordinate system.

Constrained Best mmm
Atom mmm molecule
molecule from next
2 columns
C(C) 0-7060 0-7060
1-2420 1-2399
C(B) 1-3995 1-3987
24219 2:4220
C(4) 0-7004 0:6970
12252 12252
D(b) 2-4781 2-4782
3-3575 3-3577
D(a) 1-2359 1-2332
c 00033 Standard
D 0-0046 deviations

Centrosymmetric
molecule, ther- Atom
mal parameter
constraint
—0-0088 X
0-7076 Y coordinates
—0-0015 Z

1-2368 —1-2429

1-3982 1-3991 C(D)

0-0055 —0-0055

2:4133 —2-4307

0-7046 0-6894 C(E)
—0-0008 —0-0031

1:2043 —1-2461

2:4764 2:4800 D(d)
—0-0005 0-0095

3-3453 —3-3700

1-2458 1-2205 D(e)
—0-0154 0-0155

0-0055

0-0079
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A constrained refinement was carried out, giving
-C=1-4056+0-0015 A and C-D=1:073+0-003 A,
put the R values obrained by the rigid-body thermal
prameters and then by variable thermal parameters
were 6.0 and 5-8% respectively. These are both signi-
icantly poorer than previous R values on the 2% level
o the F distribution. We therefore conclude that the
atra constraint is not realistic, and that the differ-
mee between the C(C)-C(D) and C(D)-C(E) bonds
jund earlier is highly significant.

Conclusion

from our statistical tests we have found no evidence
of deviation from either the rigid-body thermal motion
model or the full-molecular-symmetry model. We have
wot attempted to fit the third or fourth cumulants intro-
duced by Johnson (1969) but to the approximation of
econd cumulants (the usual approximation) we should
lave optimized our molecular geometry determination
by applying these physically reasonable constraints.
Indeed, we see that the standard deviations for the pos-
tional parameters are considerably diminished by the
ymmetry constraint, giving bond lengths and angles
with errors as shown in Fig.1. An attempt to simplify
e model further gave a significantly poorer fit, indi-
uting that the C-C bonds differ significantly in length.

We have presented three different constrained refine-
ments specifically to answer three separate questions.
The task of combining these constraint procedures in
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one general program is great indeed, but a system
where this is possible should be aimed at. In the present
example the symmetry constraint gave the least change
in the R value, the symmetry information being incor-
porated in the SFLS refinement. This is in contrast to
the recent work of Maslen (1968) where this assumed
symmetry information is used in ‘phase refinement’
after the fitting procedure is concluded. It will be of
interest to investigate the ‘phase refinement’ by the use
of the results of a symmetry constrained refinement.

We wish to thank Dr John Sherwood of Strathclyde
University for growing the crystal, Mr George Paul for
help in collecting the diffraction data, and the SRC for
the award of a research studentship to one of us
(E.A.Y.). Finally we wish to thank Professor W. Coch-
ran for his continued interest in this work.
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LOW FREQUENCY PHONONS IN NAPHTHALENE

G.S. Pawley and Elizabeth A. Yeats

Department of Natural Philosophy, University of Edinburgh, Edinburgh 8, Scotland

(Received 11 December 1968)

Using neutron inelastic scattering we have measured some phonons

of anomalously low frequency in perdeuteronaphthalene. This supports
results obtained by others studying vibronic transitions. These
phonons occur near the Brillouin zone boundary and therefore would
contribute pronounced peaks in the density of phonon states, at

about 10 cm ' and 30 cm '. We cannot at present identify the form of

molecular motion in these phonons.

. JE made a preliminary study of the
ilispersion curves of perdeuteronaphthalene.
tinique of neutron coherent inelastic
ing' has been used, and it is because
ligh incoherent scattering cross-section
ingen that a fully deuterated crystal was

ay.

¢specimen used was a large single crystal
ucent deuterated naphthalene grown for

I. J. Sherwood of the University of Strath-
sing the moving vessel technique.? It was
fer of length 3cm, dia. 1.7cm, with a
spread of 1° (half-width at half-height).
nounted with the b*—c* plane horizontal,
ntaining the incident.and scattered neut-
lhe measurements were made on the triple
itron spectrometer on the PLUTO reactor
#ll, using the constant-Q mode of opera-
ith neutron energy loss (down scattering).
surements were made at room temperature.

tmodes of vibration which can be measured
technique usually have frequencies con-

Iy lower than those of the internal modes
tion, so we would expect to be able to
tthose modes which involve rigid motions
wlecules. There are two molecules in the
ke unit cell of the crystal, so there will in

lbe twelve modes of vibration. At zero
385

wave-vector there will be six purely translational
modes and six purely librational modes, each set
consisting of three symmetric and three anti-
symmetric modes. With tlie wave-vector along the -
symmetry axis of the crystal we still have
symmetric and antisymmetric modes, but their
character will not be pure translations or pure
librations. We are measuring the modes along
this axis.

It is necessary at the start of such a study
to set up a model for the crystal and calculate
eigenvectors and eigenfrequencies for the model.
This has already been done for naphthalene® and
we have used the eigenvectors f the model to
calculate the coherent neutron scattering. This
we then use as a guide, telling us where in
reciprocal space to make a measurement for any
particular phonon. This assumes that the eigen-
vector calculated from the model is not very
different from the actual eigenvector. We believe
this to be true because the eigenvectors .calcu-
lated for anthracene are very similar to those of
naphthalene, showing that the eigenvectors
change very little while the model changes by a
large amount.

We searched for modes of predominantly
librational character near the Brillouin zone
boundary in the energy region indicated by the



—
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jof the Brillouin zone.

jis is not the first time that the existence
qons of such low frequencies has been

qed. Evidence has been reported from

;. studies of vibronic transitions®’ Maria®
geested that the Raman measurements may
agly interpreted, but there are now availa-
qlts of increased accuracy? It is much more
ictory to explain the u.v. results as evidence
naction with phonons well away from zero

sector, indeed the phonons we have measured.

yiton-phonon coupling giving rise to Maria’s
smust depend on the eigenvector for the

slar phonon concerned. The intensity of the
vband must therefore depend on the crystal
sion. This is not mentioned by Maria, but
explain the result that for some crystals a

i the phonon density of states is suggested
m' while for other crystals 28 cmi' is indi-
| For one set of crystals interaction with one
pbranch is favoured, while for the other set
te other phonon branch which is favoured.

wledgements — We wish to thank Dr. J.

wd of Strathclyde University for growing
sstal, Mr. G. Paul for help in taking the
rements, and the S.R.C. for the award of a
th studentship to one of us (E.A.Y.).

y we wish to thank Professor W. Cochran
sinterest in and support of this work, and
sor A.B. Zahlan for helpful discussion.
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(0-20)

(030)

Counts

o (0-40)

2. The neutron groups for some of the
anomalous phonons.

le 1. Frequencies in THz (10'?c/s) at three points in the Brillouin zone, q = (0,0,0); (0,0.25,0)
i (0,0.5,0). The columns headed CioHs give the frequencies of the modes in Fig. 1 reference 3.
The other columns give the frequencies for the same modes but in C D,

(0,0,0) (0,0.25,0) (0,0.5,0)

Co H, Co D Ci Hy cm D, Cio He Clo D,
4.18 3.83 3.62 3.36 2.97 2.82
3.87 3.55 3.51 3.23 2.97 2.82
2.76 2.59 2.81 2.66 2.73 2.58
2.65 2.57 2.57 2.46 2.73 2.58
2.32 2.18 2.46 2.32 1.92 1.80
1.85 1.73 1.80 1.69 1.92 1.80
1.68 1.63 1.59 1.50 1.67 1.58
1.48 1.38 1.38 1.31 1.67 1.58
1.39 1.35 1.30 1.2 1.49 1.42
C- - 1.19 1.15 1.49 1.42

s - 0.81 0.78 1.17 1.13

- s 0.62 0.60 147 1.13




386 LOW FREQUENCY PHONONS IN NAPHTHALENE Vol.7, No.

THz

[0q0)

F1G. 1. The extent of the measured dispersion curves. The broken lines are the curves expected fo
C,H, as calculated from the elastic constant measurements.*

model calculations, but found modes at much lower
frequencies. The extent of the measured dispersion
curves is shown in Fig. 1. The neutron groups
indicating the anomalously low-frequency phonons
are given in Fig. 2. We have tried to explain these
neutron groups in terms of the various processes
which give rise to spurious results;: Bragg scatter-
ing from satellite crystallites, Bragg scattering at
monochromator harmonic wavelengths, two phonon
scattering. However we can find no reason to
doubt the results.

We cannot say at present what the forms of
the eigenvectors are, but it is most likely that
they have a large librational component. Figure 1
shows the dispersion curves for the acoustic and
therefore translational phonons calculated using
the ultrasonic elastic constant measurements in
C, H,." These branches must be continuous with
those of the anomalous phonons, but it is most

likely that the character of the eigenvector
changes to being mainly librational near the 2
boundary.

The reason for investigating initially in t
energy region suggested by the model is beca
the model gave a good agreement with the Ra
measurements’ It could be argued that there
would be considerable change on deuteration,
a model calculation for perdeuteronaphthalent
shows no great decrease in the phonon freque
(Table 1). We can use the result of this calc
lation to estimate the Raman frequencies in (
by lowering the measured values for C H, p!
portionately. This gives values of 136, 114;
81; 66, 55 cm™', all well above the values of
and 30 cm'. These last values are the frequ
cies for the peaks in the phonon density of s
which would occur if the anomalous phonons
have observed have flat branches over a larg
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Nous avons trouvé, par diffusion inélastique des neutrons, des
phonons de fréquence anormalement basse dans le perdeutéronaph-
taléne. Ceci confirme les résultats d’autres études de transitions
vibroniques. Ces phonons se trouvent prés du bord de la zone de
Brillouin et devraient produire des pics aigus, & 10 cm™' et 30 cm™
dans la courbe de densité d’états des phonons. Nous ne pouvons
pas a présent identifier les mouvements moléculaires qui correspon-
dent & ces phonons.



