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Abstract 

Correct pronunciation of spoken language requires the appropriate modulation of acous 
tic characteristics of speech to convey linguistic information at a suprasegmental level. 
Such prosodic modulation is a key aspect of spoken language and is an important compo-
nent of foreign language learning, for purposes of both comprehension and intelligibility. 
Computer aided pronunciation teaching involves automatic analysis of the speech of a 
non-native talker in order to provide a diagnosis of the learner's performance in com-
parison with the speech of a native talker. This thesis describes research undertaken to 
automatically analyse the prosodic aspects of speech for computer aided pronunciation 
teaching. 

It is necessary to describe the suprasegmental composition of a learner's speech 
in order to characterise significant deviations from a native-like prosody, and to offer 
some kind of corrective diagnosis. Phonological theories of prosody aim to describe the 
suprasegmental composition of speech for a specific language. It is argued here that 
the suprasegmental composition of the speech of a non-native talker can be highly influ-
enced by mother-tongue interference thereby rendering a language-specific phonological 
representation of prosody inappropriate. Moreover, languages vary in the way acoustic 
characteristics of speech are modified to manifest prosodic aspects of speech and the 
only secure means available to describe prosody for foreign language teaching therefore 
lies in an acoustic-phonetic representation. The automatic prosodic analysis of speech 
presented in this thesis alms to provide such an acoustic-phonetic representation. 

The prosodic aspects of speech are described in a syllabic domain which is synchro-
nised with a phonetic segmentation. An algorithm is presented which groups acoustic-
phonetic segments into syllabic units. The acoustic-phonetic syllabification is shown to 
correlate with phonological syllabification. The fundamental frequency (Fø) of speech, 
the duration and energy of phonetic units and the vowel quality of syllable nuclei play 
important roles in characterising the prosodic features of stress, rhythm, and intonation. 
The determination of Fø is required as an initial process in the automatic prosodic 
analysis of speech. The problems of determining Fø in a way which minimises errors 
in prosodic analysis are addressed, since the FØ contour of an utterance is affected by 
segmental content, micro-perturbations, the talker's anatomy and physiology together 
with errors involved in its determination from the speech waveform. Methods of speaker 
normalisation and piecewise stylisation of FØ contours are described and a method to 
process the Fø contour in order to locate and characterise pitch accents and thus provide 
an acoustic-phonetic description of intonation, is highlighted. Measurements of duration, 
energy and vowel quality are investigated with respect to their correlation with sentential 
stress. The process of analysing syllable prominence is complicated by the interaction 
of these acoustic features in the manifestation of stress and by the fact that they are 
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also influenced by factors other than stress. The duration, energy and vowel quality of 
phonetic units vary due to acoustic-phonetic context, syllable length and syllable promi-
nence levels. The research described in this thesis aims to normalise acoustic features 
for non-prosodic aspects of speech and to combine the processed acoustic features to 
form a prosodic description of speech. The combination of the acoustic features assumes 
that stress is predominantly marked by variations in duration, energy and vowel quality, 
and that pitch accents are marked by the melody of fundamental frequency. FO can be 
used as a secondary cue to the location of prominent syllables because pitch accents are 
observed to fall on prominent syllables. 

The resultant, automatically determined, prosodic description is shown to be useful 
in comparing the prosodic aspects of the speech of a non-native learner of English with 
the speech of a native English talker. 



Zusammenfassung 

Automatische pro odische 	für Computer-unterstjjtzten 
Ausspracheunterricht 

Die angemessene Modulation der akustischen Merkmale der Sprache ist notwendig 
für die korrekte Aussprache gesprochener Sprache, damit die linguistische Information 
auf suprasegmentaler Ebene vermittelt werden kann. Eine soiche prosodische Modu- 
lation ist Schlüsselaspekt der gesprochenen Sprache und ein wichtiger Bestandteil des 
Lernens von Fremdsprachen, sowohi für das Verstehen als auch für das Verstanden- 
werden. Computerunterstijtzter Ausspracheunterricht beinhaltet autornatische Sprach-
analyse eines Nicht-Muttersprachlers darnit eine Diagnose der Leistung des Schiilers im 
Vergleich zu der eines Muttersprachlers gernacht werden kann. 

Es ist notwendig, die suprasegmentale Zusammentstellung der Sprache eines Schülers 
zu beschreiben, urn die bedeutenden Abweichungen von der rnuttersprachlichen Prosodic 
zu charakterisieren, und urn eine Art korrektive Diagnose zu bieten. Phonologische 
Theorien der Prosodic beabsichtigen die suprasegmentale Zusammenstellung einer bes-
timmten Sprache zu beschreiben. Es wird bier argumentiert, daB die suprasegmentale 
Zusammenstellung der Sprache eines Nicht-Muttersprachlers deutlich durch die eigene 
Muttersprache beeinfiuBt werden kann und daniit eine sprach-spezifische phonologische 
Representation unangemessen macht. AuBerdem varieren Sprachen in der Art in der 
die akustischen Charakteristiken modifiziert werden, urn die prosodischen Aspekte der 
Sprache zu rnanifestieren und die einzig sichere Art, urn Prosodic für Frerndsprache-
nunterricht zu beschreiben, ist deshaib die akustisch-phonetische Representation. Die 
automatische prosodische Sprachanalyse, die in dieser Dissertation vorgesteilt wird, ver-
sucht eine solch akustisch-phonetische Representation zu bieten. 

Die prosodischen Aspekte der Sprache werden in einer Silbendomäne beschrieben, 
weiche mit einer phonetischen Segmentation synchronisiert ist. Ein Algorithmus wird 
vorgesteilt, der akustisch-phonetische Segmente in Silbeneinheiten gruppiert. Es wird 
gezeigt, daB die akustisch-phonetische Versilbung mit der phonologischen Versilbung ko-
rreiert. Die Grundfrequenz (Fø) von Sprache, die Dauer mid Energie phonetischer 
Einheiten und die VokalquaJität vom Silbennuklei spielen eine wichtige Rolle in der 
Charakterisierung der prosodischen Merkmale Rhythmus, Intonation und Betonung. Die 
Feststellung von FØ ist notwendig als anfänglicher Prozefi in der automatischen prosodis-
chen Sprachanalyse. Die Problerne werden addressiert, die auftreten, wenn man versucht 
FØ so festzustellen, daB minimale Fehier in der prosodischen Analyse auftreten, da die 
FØ-Kontur einer AuBerung beeinfluBt wird durch den segmentalen Inhalt, Mikrostörun-
gen, Anatomic und Physiologic des Sprechers und die Fehier, die zusamrnenhängen mit 
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der Determination der Spracliwellenform. Methoden der Sprechernormaiisierung und die 
teilweise Stilisation von FØ Kontouren werden beschrieben und eine Methode wird her-
vorgehoben, urn FØ Kontouren zu verarbeiten damit die Tonhöhenakzente lokalisiert und 
charakterisiert werden können und dadurch eine akustisch-phonetische Beschreibunger 
der Intonation geboten wird. Messungen von Dauer, Energie und Vokalqualität werden 
untersucht hinsichtlich ihrer Korrelation zur Satzbetonung. Der Prozess der Analyse von 
Silbenprorninenz wird verkompliziert durch die Interaktion dieser akustischen Merkmale 
in der Manifestation von Betonung und dadurch, daB sie ebenfalls durch Faktoren aufler 
Betonung beeinfluBt werden. Die Dauer, Energie und Vokalqualität der phonetischen 
Einheiten varieren aufgrund des akustisch-phonetischen Kontextes, Silbenlänge und Sil-
benprominenzhöhen. Die Forschung, die in dieser Arbeit beschrieben wird, versucht die 
akustischen Merkrnaie zu normalisieren für non-prosodische Aspekte der Sprache, und die 
verarbeiteten akustischen Merkmaie zu kombinieren, urn eine prosodisclie Beschreibung 
der Sprache zu bilden. Die Kornbination von akustischen Merkmalen nimrnt an, daB 
Betonung überwiegend durch Variationen in Dauer, Energie und Vokalqualität markiert 
wird, und daB Tonhöhenakzente durch die Melodie der Grundlrequenz gekennzeichnet 
werden. FØ kann als sekundäres Merkrnal für die Lokalisierung von prominenten Silben 
dienen, da festgestellt werden kann, daB die Tonhöhenakzente auf prorninente Silben 
fallen. 

Es wird gezeigt, daB die daraus resultierende, autornatisch determinierte, prosodis-
che Beschreibung nützlich ist, für den Vergleich von prosodischen Aspekten der Sprache 
eines nicht-rnuttersprachlichen Englischschülers mit der Sprache eines englischen Mut-
tersprachlers. 

Translated by Miriam Eckert 



Résumé 

Analyse automatique de la prosodie pour l'ensei 
prononciation a l'aide d'ordinateurs 

de la 

La prononciation correcte du langage oral nécessite la modulation appropriée des 
caractéristiques acoustiques de la parole afin de communiquer l'information linguistique a 
un niveau suprasegmental. Tine telle modulation prosodique est un aspect-clé du langage 
oral et une composante importante de l'apprentissage d'une langue étrangère, pour des 
buts tant de comprehension que d'intelligibilité. L'enseignement de la prononciation a 
l'aide d'ordinateurs nécessite l'analyse automatique de la parole d'une personue dont la 
langue en question n'est pas la langue maternelle afin de procurer un diagnostic de la 
performance de l'élève en comparaison avec la parole d'un locuteur natif. Cette these 
décrit la recherche entreprise afin d'analyser automatiquement les aspects prosodiques 
de la parole pour l'enseignement de la prononciation a l'aide d'ordinateurs. 

II est nécessaire de décrire la composition suprasegmentale de la parole de l'élève 
afin de caractériser des deviations significatives de la prosodie native, et aim d'offrir un 
certain diagnostic de correction. Les theories phonologiques de la prosodie ont pour 
but de décrire la composition suprasegmentale de la parole pour une langue spécifique. 
L'argument considéré dans ce document est que la composition suprasegmentale de 
la parole d'un locuteur non-natif peut être grandement infiuencée par l'interférence 
de sa langue maternelle propre, ceci rendant alors inappropriée une representation 
phonologique de la prosodie spécifique au langage. De plus, les langues varient au 
niveau de la manière dont les caractéristiques acoustiques de la parole sont modifiées 
pour manifester les aspects prosodiques de la parole, et le seul moyen siIr disponible 
pour décrire la prosodie pour l'enseignement d'une langue étrangère se situe donc an 
niveau d'une representation acoustico-phonétique. L'analyse prosodique automatique 
de la parole présentée dans cette these a pour but de procurer une telle representation 
acoustico-phonétique. 

Les aspects prosodiques de la parole sont décrits dans un domaine syllabique qui est 
synchronisé avec une segmentation phonétique. On présente un algorithme regroupant 
les segments acoustico-phonétiques en unites syllabiques. II est démontré que la syl-
labification acoustico-phonétique est en correlation avec la syllabification phonologique. 
La fréquence fondamentale (FØ) de la parole, la duréc et l'énergie des unites phone-
tiques et la quadité vocalique des noyaux syllabiques jouent un role important dans la 
caractérisation des traits prosodiques d'accent, rythme et intonation. II est nécessaire 
de determiner FØ initialement pour l'analyse prosodique automatique de la parole. On 
considère les problèmes poses par la nécessité de determiner FØ de manière a minimiser 
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les erreurs d'anaiyse prosodique, étant donn6 que le contour de FØ d'un énoncé est af-
fecté par le contenu segmental, les micro-pertubations, l'anatomie et la physiologic du 
locuteur ainsi que les erreurs entrainées par sa determination basée sur le signal de la 
parole. On décrit des méthodes de normalisation du locuteur et de stylisation pike par 
pike des contours de Fø et on fait apparaltre une méthode permettant de traiter les 
contours Fø afin de localiser et caractériser les accents intonatifs et par là de procurer 
une description acoustico-phonétique de l'intonation. On examine des mesures de durée, 
énergie, et qualité vocalique du point de vue de leur correlation avec l'accent de phrase. 
Le procédé d'analyse de la proéminence de syliabe est compliqué par l'interaction de ces 
traits acoustiques dans la manifestation de l'accent et par le fait qu'elles sont aussi influ-
encées par des facteurs autres que l'accent. La durée, l'énergie et la qualité vocalique des 
unites phonétiques varient en fonction du contexte acoustico-phonétique, de la longueur 
des syllabes, et des niveaux de proéminence des syllabes. La recherche décrite dans cette 
these a pour but de normaliser les traits acoustiques pour les aspects non-prosodiques 
de la parole, et de combiner les traits acoustiques traités afin de former une description 
prosodique de la parole. La combinaison de traits acoustiques suppose que l'accent est 
caractérisé principalement par des variations de durée, énergie et qualité vocalique, et 
que les accents intonatifs sont caractérisés par la melodic de la fréquence fondamen-
tale. FØ pelt être utilisé comme indice secondaire quant a la localisation des syllabes 
proéminentes étant donné qu'on observe une chute des accents intonatifs sur les syllabes 
proéminentes. 

On démontre que la description prosodique résultante, déterminée automatiquement, 
est utile a la comparaison des aspects prosodiques de la parole d'une personne dont 
l'anglais n'est pas la langue maternelle avec la parole d'une personne dont l'anglais est 
la langue maternelle. 

Translated by Nathalie Vergeynst 
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H0 	null hypothesis. 
h(n) 	Hann window coefficient. 
11MM 	hidden Markov model. 
HPS 	harmonic product spectrum based method of FØ extraction. 
ii,, 	intercept of linear regression line associated with turning-point. 
IFTA 	integrated FØ tracking algorithm. 
IPA 	International Phonetics Association. 
Kdurati 	duration threshold for "peak-picking" technique. 
K energy 	energy threshold for "peak-picking" technique. 
L 	decimation factor. 
L 	low tone. 
1Hanr& 	length of Hann window. 
1medion 	length of median filter. 
LMedS 	least median of squared residuals (linear regression). 
LPC 	linear prediction coding. 
Lx 	laryngograph signal. 
MO,...,4 	types of measuring duration and energy in a unit. 
MItPA 	machine readable phonemic alphabet. 

nuclear accented syllable (primary stress). 
no 	fundamental period (in number of samples). 
nm 	m'th fundamental period candidate (in number of samples). 
Nmai, 	maximum fundamental period (in number of samples). 
Nmin 	minimum fundamental period (in number of samples). 
'NA' 	not available. 
"NP" 	non-prominent syllable ("u"). 

prominent syllable ("n" U "a" U "s"). 
P 	percentage of non-prominent syllables in training data. 
P0, 1 	use of fine and broad phonetic classification. 
pay(fl) 	normalised crosscorrelation coefficient between sections xn  and yn  with 

decimation. 
"PA" 	pitch accented syllable ("n"U"a"). 
PP 	parallel processing method of Fø extraction. 
Qvowet 	quadratic discriminant score for vowel. 

vowel-type normailsed quadratic discriminant score. 
q(n) 	normalised crosscorrelation coefficient between two sections of length nm 

spaced nm  apart. 
r, (n) 	normalised crosscorrelation coefficient between sections x,. and Yn. 

unaccented but stressed syllable (tertiary stress). 
S0,1 	measurements without and with the use of smoothing. 
Si 	duration index. 
SN 	 set of data containing N samples. 
stp 	slope of linear regression line associated with turning-point. 
SCRIBE spoken corpus recordings in British English. 
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"Sd" 	syllable with maximum duration of contour. 
"Se" 	syllable with maximum energy of contour. 
"sd" 	syllable corresponding to a local peak in the duration contour greater than 

Kdurairj,.,. 
"se" 	syllable corresponding to a local peak in the energy contour greater than 

Kenergy. 

SPELL 	interactive system for spoken European language training. 
"sq" 	syllable corresponding to a local peak in the vowel quality contour less 

than 0.0. 
SRFD 	super resolution FØ determinator. 
jnervaI 	interval between successive analysis frames. 

Tarj d 	voicing classification threshold for SRFD. 
T. (i) 	average duration of prominent units which consist of i phones. 

average duration of non-prominent units which consist of i phones. 
measured duration of unit. 

ToBI 	tone and break indices. 
ip 	a turning-point. 

unstressed syllable. 
Ul,...,5 	types of phonetic unit (nucleus, rhyme, ihyme, syllable, nucleus-to-nucleus 

unit). 

unaccented syllable ("s"U"u"). 
unstressed syllable on the basis of duration. 
unstressed syllable on the basis of energy. 

"up" 	unaccented syllable according to pitch accent decision filter. 
unstressed syllable on the basis of vowel quality. 

V1 8 	measures of the degree of spectral change in a vowel. 
x, yr,, z,, three consecutive sets of data, each containing n samples. 
Zmean 	z-score normalised value based on mean value. 
Zper en jje  z-score normalised value based on p'th-percentile value. 



Chapter 1 

Introduction 

The aim of the work presented in this thesis is to automatically analyse the prosodic 

events in utterances of English spoken by native and non-native talkers. The auto-

matic analysis concentrates on generating an acoustic-phonetic representation of senten-

tial stress and intonation. An acoustic-phonetic representation of prosody has a practical 

application as a tool for computer aided pronunciation teaching. 

Learning a foreign language involves acquiring an extensive knowledge of many dif-

ferent aspects of language. Prosody is one of these aspects of language. Prosody refers to 

the modulation of acoustic characteristics of speech above the level of phonemic segments 

in order to convey linguistic and paralinguistic information. This thesis is concerned with 

two prosodic features - stress and intonation. The term stress refers to the relative per-

ceptual prominence of speech units larger than phonemic segments. The term intonation 

refers to the manipulation of pitch for linguistic and paralinguistic purposes above the 

level of phonemic segments. 

In Chapter 2, it is argued that prosodic aspects of speech need to be explicitly 

taught to students who wish to communicate competently in a foreign language. A 

foreign language learner needs to acquire an understanding of native speech patterns 

and the ability to approximate near-native pronunciation because these influence both 

the student's comprehension and intelligibility. In particular, the language-dependent 

nature of stress and intonation is illustrated in Section 2.1 by examples of their functional 

differences and the way in which their acoustic-phonetic realisations differ in exemplar 

languages - English and Italian. 

Computer aided pronunciation teaching involves automatic analysis of the speech of 

1 
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a non-native talker in order to provide a diagnosis of a learner's pronunciation in com-

parison with the speech of a native talker. In order to offer a diagnosis of a learner's 

pronunciation with respect to prosodic features, it is necessary to describe the prosodic 

composition of the learner's speech and to determine any linguistically significant devi-

ations from a near-native pronunciation. 

A review of some phonological theories of prosody which aim to describe stress pat-

terns and intonation in English is presented in Section 2.2. Current phonological theories 

of prosodic aspects of speech are language-specific. The prosody of the speech of a for-

eign learner of English, however, can be highly influenced by the prosody of a student's 

mother-tongue and by a student's stereotypic images of prosody in the English language, 

thereby rendering a language-specific phonological representation of prosody inappropri-

ate in describing the prosodic aspects of the speech of a foreign language learner. More-

over, languages vary in the way acoustic parameters are modified to manifest prosodic 

aspects of speech. Thus, it is argued in Chapter 2, that the only secure means available to 

describe prosody in foreign language teaching lies in an acoustic-phonetic representation. 

The automatic analysis of speech in computer aided pronunciation teaching uses a 

digitally sampled acoustic waveform as the only input parameter. An acoustic-phonetic 

representation of the prosodic aspects of speech is derived from this signal. Chapter 3 

reviews a wide range of research relating to the identification, the extraction and the 

analysis of acoustic parameters which are correlated with prosodic features. 

Research conducted to identify the acoustic parameters required for prosodic analysis 

is reviewed in Section 3.1. Measures of duration, energy, vowel quality and fundamental 

frequency (FØ) are related to sentential stress and intonation. The problem of extracting 

the fundamental frequency from an acoustic speech signal is extensively addressed in the 

literature, relative to the problems of extracting the other three acoustic parameters. 

The functionalities of a selection of fundamental frequency determination algorithms 

are reviewed in detail in Section 3.2, demonstrating the complexity and diversity of the 

methods. 

Syllables somewhat awkwardly fit into prosodic analysis. The definition of a syllable 

is associated with the relative degrees of the sonority of phonemic segments. Energy 

is an acoustic correlate of the sonority of phonemic segments. However, the energy 
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measures related to syllable prominence are dependent upon the definition of a syllable, 

thus creating a circular dependency. In addition to taking on a low-level role in the 

extraction of acoustic measures such as duration (for example, the measured duration 

of a syllable), syllables are used as the fundamental domain for prosodic descriptions. 

Thus, the automatic identification of syllables in connected speech forms an important 

part of prosodic analysis. A number of algorithms to partition speech into syllabic units 

are reviewed in Section 3.3. 

In Chapter 3, it is asserted that the process of locating prominent syllables is com-

plicated both by the interaction of acoustic features (duration, energy, vowel quality 

and fundamental frequency) in the manifestation of stress and by the fact that each of 

the four acoustic features is influenced by factors other than stress. Therefore, these 

acoustic features do not co-exist in a simple relationship to represent stress. In addition, 

the fundamental frequency of speech is affected by the talker's anatomy and physiology 

(macroprosody), the segmental content of an utterance (microprosody), cycle-to-cycle 

jitter (FØ perturbations) generated at the vocal folds, and erroneous FØ estimates gen-

erated by malfunctions in an FØ determination algorithm. Therefore, a raw Fø contour 

does not in itself form a complete representation of intonation. The composite structure 

of fundamental frequency is discussed in Section 3.4. 

Moreover, there are a number of specific problems in measuring acoustic features 

that are required to automatically locate prominent syllables in connected speech. It is 

not evident from the reviewed literature how these acoustic features are best determined, 

over what phonetic domains the acoustic features are related with respect to prosody, 

or how they are best normalised for non-prosodic aspects of speech. A principal aim of 

this thesis is to address these problems. 

Former algorithms proposed to automatically transcribe the prosodic structure of an 

utterance from acoustic parameters are reviewed in Section 3.5. 

Chapters 4, 5, 6 & 7 concentrate on the derivation of duration, energy, and vowel 

quality features which can be used to automatically locate prominent syllables in con-

nected speech, and on the extraction of fundamental frequency from an acoustic speech 

signal. 

The domain of phonetic units whose duration and energy are to be determined as 
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optimal correlates of stress and normalisation techniques applied to them are investigated 

in Chapters 4 & 5. A number of measures of vowel quality are proposed in Chapter 6. 

Vowel quality measures are based on the assumptions that prominent syllables are well 

articulated and are less affected by contextual assimilation than non-prominent syllables, 

and that these properties are reflected in the nuclei of syllables. The underlying principle 

of these investigations is to normalise the acoustic parameters for non-prosodic aspects 

of speech such that the processed acoustic parameters can then be combined to form 

a prosodic description of speech. The data used in the experimental investigations is 

described in Section 4.1. 

Methods to automatically determine the fundamental frequency of a speech waveform 

are addressed in Chapter 7. The most reliable and accurate method of determining the 

fundamental frequency is sought in order to minimise the number of errors occurring 

during FØ extraction from propagating into the prosodic analysis. An enhanced super 

resolution FO determination algorithm (eSRFD) is proposed in Section 7.1. 

Section 7.2 presents a comparative evaluation of the eSRFD algorithm and the FØ 

determination algorithms summarised in Section 3.2. The evaluation is performed by 

comparing FØ estimates with laryngeal frequency (Er) estimates. An algorithm is pre-

sented which enables Fx contours to be generated from laryngograph data recorded 

simultaneously with speech. The modifications made to the super resolution Fø deter-

mination algorithm are shown to radically reduce the number of gross FØ doubling and 

halving errors and to improve the classification of voiced and unvoiced sections of speech. 

A novel de-step filter is proposed in Section 7.3.2 to post-process an FO contour gener-

ated by an FO determination algorithm in a way which further reduces the occurrence of 

errors. The task of reducing the occurrences of FØ perturbations and extraction errors 

is largely accomplished by the post-processing techniques described in Section 7.3. 

The features of duration and energy, and the fundamental frequency extracted from 

the speech waveform need to be abstracted to form an acoustic-phonetic representation 

of sentential stress patterns and intonation in a syllabic domain. This is the aim of the 

automatic prosodic analysis system presented in Chapter 8. 

The syllabification of connected speech forms a central part of automatic prosodic 

analysis, taking on three roles. Firstly, the prosodic aspects of speech are described in a 
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syllabic domain. Stress refers to the relative perceptual prominence of syllables and the 

description of intonation involves the association of pitch accents with prominent sylla- 

bles. Secondly, the extraction of acoustic parameters is dependent upon the definition 

and identification of syllables. The duration feature found to optimally correlate with 

stress in Chapter 4 is dependent upon identifying the syllable ihymes' in an utterance. 

The optimal energy feature determined in Chapter 5 is dependent upon identifying the 

syllable nuclei in an utterance. The third role of the syllabic domain is related to the inte-

gration of the acoustic parameters. The syllabic domain inherently encompasses energy 

and segmental information which can be passed on to the analyses of energy, duration 

and Fø measures. For example, the location of syllable nuclei can serve as potential 

islands of reliability in the extraction of fundamental frequency. FØ estimates made 

within syllable nuclei are generally reliable because the speech signal within syllable nu-

clei is quasi-periodic and has a relatively high signal-to-noise ratio. These conditions are 

generally well suited to the assumptions made by FØ determination algorithms. 

Section 8.1 compares the automatic syllabification of an utterance from its phonetic 

realisation, and the syllabification of an utterance on the basis of a set of abstract 

phonological rules. The proposed automatic syllabification algorithm is unique in its use 

of both a low-band energy contour and the segmentation (phone boundary and label 

information) of an utterance. 

It is proposed in Chapter 8 that an acoustic-phonetic representation of intonation can 

be derived from a post-processed FO contour by removing components of the contour 

which are due to microprosody, cycle-to-cycle jitter, and speaker dependent FØ range. 

The stylisation of an FØ contour aims to prevent microprosodic variations from 

being confused as pitch accents, and hence effectively isolate the microprosodic and 

intonational components. The process of piece-wise linear stylisation of an Fø contour 

is presented in Section 8.2.1. Syllable information is used to aid the stylisation of an FO 

contour since syllable nuclei locations are related to reliable sections of an FØ contour 

and microprosodic variations tend to dominate an FØ contour within the vicinity of 

short syllable nuclei in the context of unvoiced consonants. 

'The lhyrnc of a syllable is defined in this thesis as the composition of syllable onset consonants and 
a syllable nucleus - see Section 4.2. 



CHAPTER 1. INTRODUCTION 	 6 

A stylised contour may contain some microprosodic variations given that the styli-

sation process will not be faultless. A stylised contour also contains macroprosodic and 

intonational components. The stylised contour must be processed with respect to the 

syllables of an utterance in order to eliminate any remaining microprosodic variations, 

to compensate for macroprosodic effects and to form an acoustic-phonetic representation 

of intonation. A process is proposed in Section 8.2.2 which aims to manipulate a stylised 

contour into a schematic form, with these goals in mind. A schematic representation 

of an Fø contour (an FØ schema) is independent of a speaker's fundamental frequency 

range and is derived so as to exhibit only the intonational component of the contour. 

The FØ trajectories of a schema can be associated with syllables to locate the syllables 

which are pitch accented. The integration of syllable information with the stylisation 

and schematisation of an FØ contour is an innovative approach. 

The modular analyses proposed in this thesis are integrated to form a prosodic anal-

ysis system which generates an acoustic-phonetic description of the intonation and the 

sentential stress patterns of speech, in a syllabic domain. An overview of the system is 

described in Section 8.4 and its performance is evaluated in Section 8.5 relative to two 

algorithms formerly proposed in the literature. 

In Chapter 9, the integrated prosodic analysis system is shown to produce prosodic 

descriptions which are useful in comparing the prosodic aspects of the speech of a non-

native learner of English with the speech of a native English talker. 



Chapter 2 

Prosodic Description in Foreign 
Language Teaching 

Learning a foreign language is a complex task which involves acquiring an extensive 

knowledge of the many different aspects of language, including vocabulary, grammar, 

and pronunciation. The relative weighting given to each aspect varies amongst teaching 

practices, but in all cases an understanding of native speech patterns and the ability to 

approximate near-native pronunciation are important components of foreign language 

learning, influencing both the student's comprehension and intelligibility (Kenworthy, 

1987). Pronunciation of a foreign language is not only concerned with the articulation 

of phones (particularly those absent from the mother-tongue) and coarticulatory effects, 

but also with the modulation of acoustic features related to sequences of allophones; that 

is to say, with suprasegrnental phenomena. The suprasegmental phenomena which form 

the subject matter of this thesis are the aspects of speech referred to as prosody. In 

particular, this thesis is concerned with two prosodic features - stress and intonation. 

The term stress refers to the relative perceptual prominence of speech units larger than 

phonemic segments. The term intonation refers to the manipulation of pitch for linguistic 

and paralinguistic purposes above the level of phonemic segments. 

In this Chapter, it is argued that a need exists for the prosodic aspects of speech to be 

explicitly taught to students who wish to communicate intelligibly in a foreign language 

(Section 2.1). The argument will concentrate on two prosodic phenomena - sentential 

stress and intonation. The language-dependent nature of these prosodic phenomena will 

be illustrated by examples of their functional differences and the way in which their 

realisations differ in exemplar languages. 

7 
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In order to teach the prosody of a language to a student, it is essential to under-

stand and describe the suprasegmental phenomena exhibited in that language. It is also 

important to describe the prosodic composition of the student's speech, in order to de-

termine significant deviations from a near-native pronunciation, and to offer some kind 

of corrective diagnosis. A review of some phonological theories of prosody which aim to 

describe stress patterns and intonation in English is presented in Section 2.2. Current 

phonological theories of prosodic aspects of speech are language-specific. The prosody 

of the speech of a non-native talker, however, can be highly influenced by the prosody of 

the source language' and by prosodic stereotypes of the target language. This renders a 

language-specific phonological representation of prosody inappropriate in describing the 

prosodic aspects of the speech of a foreign language learner. Thus this Chapter argues 

that the only secure means available to describe prosody in foreign language teaching 

lies in an acoustic-phonetic representation. There is, however, a problem in being able to 

determine which deviations in the acoustic-phonetic representation are significant at a 

linguistic level. The derivation of a non-language-specific relation between the phonetics 

and phonology of prosody is beyond the scope of this thesis which instead focuses on the 

need for an acoustic-phonetic description of prosodic aspects of speech. 

2.1 The need for prosody in foreign language teaching 

The goal of teaching any aspect of pronunciation in a foreign language course is not 

necessarily to render the student's pronunciation indistinguishable from that of a native 

speaker, but can instead be described as minimising the number of times when the 

student is misunderstood because a native listener erroneously interprets the intended 

meaning of the student's speech (Rivers, 1975; Harmer, 1983; Madsen, 1983; Kenworthy, 

1987). This goal is coupled with teaching the mechanisms of pronunciation to students 

in order to help them to understand the speech of native speakers. 

The following sections will demonstrate the importance of suprasegmental phenom-

ena in language teaching for both a student's comprehension and intelligibility, high- 

'The source language refers to the first language acquired by the student (ie. the language of the 
student's mother-tongue). The target language is the foreign language which is being taught to the 
student. 
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lighting how stress and intonation differ between languages in their functionality and 

realisation. This will support the assertion that prosodic aspects of speech need to be 

taught explicitly in foreign language courses. 

2.1.1 Stress 

The suprasegmental phenomenon, stress, refers to the relative perceptual prominence of 

a syllable or word in a particular context. Stress is subject to several different linguistic 

factors. It can be divided into a number of categories; for example, lexical, grammatical, 

emphatic and contrastive stress2. 

Lexical stress refers to the positioning of relatively prominent syllables in words spo-

ken in isolation, as described by the lexicon of the language. In French, the primary 

lexical stress is placed invariably on the last pronounced syllable (excluding final es) 

with possible secondary (weaker) stresses occurring in polysyllabic words usually being 

positioned in alternate syllables prior to the primary stress (Martineau & McGrivney, 

1973; Tranel, 1987). In English, however, the position of lexical stress (primary or sec-

ondary) is dependent upon the word chosen. The principles which govern the placement 

of lexical stress in English words have previously been investigated in depth (Kingdom, 

1958; Chomsky & Halle, 1968; Fudge, 1984). For the purposes of optimal intelligibility of 

a student's speech, it is important for lexical stress to be placed on the correct syllables 

of a word, as pronounced by a native speaker. 

Grammatical stress refers to the lexical stress patterns which appear in phrases of 

connected speech, as governed by the grammar of the language. In English, the con- 

tent words (though not necessarily all of them) maintain their lexical stress patterns 

in connected speech, whereas the function words do not (although they may carry con-

trastive stress). In French, grammatical stress is only associated with the last pronounced 

syllable in a rhythmic group (Price, 1991). Syntactic distinctions can be made by dis-

tributing grammatical stress at different strengths through an utterance. For example, 

a distinction can be made between "Orange juice carton" (with the strongest gram-

matical stress being applied to the first syllable of orange and the weakest stress to the 

2Thjs list of categories is not intended to be complete, as the different possible types of stress are 
dependent upon the language spoken. The illustration here is concerned only with some stress types 
found in French, Italian, and English. 



CHAPTER 2. PROSODIC DESCRIPTION IN LANGUAGE TEACHING 	10 

word juice) meaning, 'a carton for orange-juice'; and "orange juice carton" (with the 

strongest grammatical stress on juice and the weakest stress on carton) meaning, 'an 

orange coloured carton which is used to contain juice'. These two syntactic variations of 

the phrase orange juice carton and their corresponding patterns of syllable prominence 

are illustrated in Figure 2.1. Accounts of the principles behind the relative strengths 

of prominent syllables in such compounds are given by Chomsky & Halle (1968) and 

Fudge (1984). Improper use of the relative strengths of grammatical stress by a non-

native speaker may result in syntactic ambiguities. 

A syllable may also be made prominent in order to place emphasis on a particular 

word. This type of stress is referred to as emphatic stress. In English, such stress 

is realised by giving additional prominence to syllables already carrying grammatical 
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stress; whereas in French, this effect tends to be produced by applying prominence to 

the first syllable of a word beginning with a consonant, or by the articulation of a 

glottal closure before a word beginning with a vowel (Martineau & McGrivney, 1973; 

Price, 1991). This may pose difficulties for English speakers of French. For instance, 

an English speaker may pronounce "merveilleux" with stress on the first syllable as 

in its English equivalent "marvellous" (example from MacCarthy, 1975). This type of 

mother-tongue interference may be interpreted as emphatic stress by a French listener, 

although emphasis is not intended by the speaker. 

Contrastive stress refers to the positioning of prominent syllables for semantic clar-

ification. In English, contrastive stress can be placed on syllables where grammatical 

stress does or does not already occur, and in both function and content words. It may 

be used to form an explicit contrast between phonetically related words; for example, "I 

said intractable, not interactable;" or to make an implicit contrast; for example, "He 

was going to the shop," rather than, perhaps, "...from the shop". 

The three types of stress which occur in connected speech, grammatical, emphatic, 

and contrastive stress, are collectively referred to in this thesis as sentential stress. The 

patterns in time of the syllables and sentential stress give rise to the rhythm of an 

utterance in some languages, such as English and Italian. The acquisition of rhythm is 

an important aspect of learning a foreign language, since incorrect rhythm can hinder 

a listener's ability to understand the segmental content of a student's speech (Cutler & 

Norris, 1988). 

It can be seen from the above descriptions that the phonetic realisation of different 

types of stress is language dependent and that stress is important from both a syntactic 

and a semantic viewpoint. Therefore, in optimising pronunciation, foreign speakers 

must try to prevent reproducing the stress patterns of their mother-tongue on the target 

language (except where there is a common overlap in the stress patterns of the source 

and target languages). They must also understand the functionality of the different types 

of stress and learn how to realise them in the same way as a native speaker of the target 

language. 

The perceived prominence of syllables is manifested by variations in duration, in-

tensity, pitch and vowel quality (these features will be discussed in detail during the 
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following Chapters). Dauer (1983) proposes that languages vary in the way in which 

these acoustic characteristics of speech are modified in manifesting stress. For example, 

unstressed vowels are often reduced to schwa // or centralised /*/ in English, whereas 

the quality of all vowels tends to be maintained in French and Italian. Furthermore, 

grammatical stress in French is much weaker than that of English and Italian, and is of-

ten overshadowed by emphatic or contrastive stress (Tranel, 1987; Price, 1991). Learning 

how to apply stress in a foreign language is therefore a task which is more complicated 

than just learning stress placement. 

In Italian, lexical stress usually lies on the penultimate syllable of a word. If the stress 

of a word lies on the final syllable, it is marked as such in the lexicon. In some cases, the 

stress can lie on the anti-penultimate syllable. However, anti-penultimate lexical stress 

is not marked in the lexicon (Chapallaz, 1979). A student of Italian must therefore learn 

the lexical stress placement of Italian words, as with words in English. There are some 

homographic words in Italian where a shift in stress from the penultimate syllable to 

the anti-penultimate syllable is associated with a change in meaning - for example; 

ancora /'a ij k o r a/ 'anchor', /a zj 'k o r a/ 'again'; cornpito /'k o m p i t o/ 'task', 

/k o m 'pit o/ 'poised'; turbine /'t u r b i n e/ 'whirlwind', /t u r 'b i n e/ 'turbines'3. 

Figure 2.2 shows the phonemically transcribed speech waveforms, low-band energy 

contours (see Section 5.1) and fundamental frequency (FØ) contours for the Italian word 

turbine spoken in its two lexical forms by a native Italian speaker, and spoken in an 

ambiguous form by a native speaker of English. The prominent syllables are pronounced 

by the Italian speaker with a pitch glide over the vocalic nuclei of the syllables and 

with a long syllable nucleus duration relative to the unstressed syllables. In the English 

speaker's attempt to pronounce the Italian word /t u r 'b i n e/ 'turbines', the ratio of the 

duration of the initial syllable tur- to the duration of the syllable -bi-, and the ratio of the 

peak low-band energy of the syllable tur- to the peak low-band energy of the syllable -bi-

are greater than those of its Italian counterpart. This is analogous to the pronunciation 

of the English word turbines /'t 3 b ai n z/, with the lexical stress on the initial syllable, 

and tends towards the pronunciation of the Italian word ft u r b i 11 e/ 'whirlwind'. In 

Many thanks to Fabrizio Carraro, a native speaker of Italian, for providing these examples, and to 
Dr. Bob Ladd for pointing out that ambiguities can arise from the phonetic realisation of these words 
when spoken by a non-native speaker of Italian. 
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Figure 2.2: Phonetic realisations of the Italian word turbine*. 
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English, however, a pitch glide over the vocalic nucleus of a syllable can act as a strong 

cue to syllable prominence and may outweigh any duration or energy cues (Fry, 1958). 

Thus, in the knowledge that the lexical stress of the Italian word /t ii r 'hi n e/ 'turbines' 

is to be placed on the penultimate syllable, the English speaker produces a pitch glide 

over the syllable -bi-. As far as the non-native speaker is concerned, the lexical stress has 

been realised on the correct syllable, but the resultant utterance lies close to an Italian 

listener's limen between hearing /t u r 'b i ii e/ 'turbines' and /'t u r b i n e/ 'whirlwind'. 

Thus, although a foreign speaker's knowledge of the phonological stress placement may 

be correct, the incorrect phonetic realisation of the stress can result in ambiguity. 

2.1.2 Intonation 

The second suprasegmental phenomenon considered in this thesis, intonation, refers to 

the variations in pitch which give an utterance a characteristic melody. Intonation is 

used to convey linguistic and paralinguistic information (Lehiste, 1970). However, many 

foreign language courses do not include the explicit teaching of intonation as an integral 

part of the syllabus. 

"The majority of course books which include overt instruction on intonation 
use the incidental, not the systematic approach. This means that intonation 
patterns are randomly selected, and do not exemplify intonational categories 
drawn from a linguistic description of intonation choices and their meanings. 
Typically, an intonation contour is simply presented for imitation, without 
any gloss as to meaning, or any contrast with other possibilities." 

(Brazil et al., 1980, pp.115) 

Brazil et al. (1980) suggest that the omission of formal intonation teaching may be 

attributed to the fact that students are expected to absorb intonational phonology im-

plicitly through exposure to the speech of native speakers. Furthermore, many teachers 

take the view that emphasis should be placed on teaching grammatical aspects of a 

language and in expanding a student's active vocabulary, rather than on pronunciation 

training which may always be coloured by mother-tongue interference. It is assumed 

that, if a student does make a mistake in pronunciation, native listeners are usually ca-

pable of adapting to the foreign accent and can assert the meaning of a mispronounced 

utterance through contextual and linguistic cues. This, however, may not always be 
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true. For example, if a non-native English speaker asks a pharmacist, "Could I please 

have some medicine for my /k au/ (cow)?" it is assumed that the foreigner will not be 

directed to a veterinary clinic, rather a native listener is expected to identify the mistake 

of pronouncing the word cough /k t f/ in a similar manner to the word plough /p I au/. 

The argument for omitting explicit teaching of pronunciation on the basis that native 

listeners can detect such graphemic/phonetic confusions is therefore flawed. Moreover 

the omission of explicit pronunciation teaching assumes that students only need to be 

understood. If students are to gain any communicative competence and confidence, they 

will also need to understand contrastive sounds made by a native speaker. 

Although the previous example was concerned with a graphemic/phonetic confusion, 

misinterpretations can also arise through the use of different intonation patterns. For 

example, saying, "That's the bus to Edinburgh," with an interrogative intonation could 

result in a sarcastic reply, "Oh, really. I always wanted to know that," if a foreign listener 

misinterprets it as a declaration. 

Prosody also plays a role in removing the ambiguity from phonetically similar but 

syntactically different utterances (Price et al., 1991). For example, the sentence, "He saw 

that petrol can explode," may be interpreted either as meaning, 'he saw the explosion of 

that specific container of petrol'; or as meaning, 'he understood that petrol as a substance 

is capable of exploding'. In the former interpretation, a prosodic boundary would be 

placed immediately after can; whereas in the latter interpretation, the boundary would 

be placed before can. This shift in the placement of the prosodic boundary is realised 

by variations in pitch and duration. In both cases there is a close relation between the 

prosodic structure and the desired syntactic structure. 

In order to understand a foreign language, students must have at least some knowl-

edge of the contrastive intonational patterns in the language, even if they have difficulty 

in producing the sounds themselves. Furthermore, the learner of a foreign language will 

inherently have less experience of the possible grammatical, intonational and contextual 

variations of utterances than a native listener. The non-native listener will need as many 

cues as possible to interpret an utterance. A knowledge of intonational phonology would 

therefore be of assistance. 
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2.2 	Phonological theories of prosody 

Phonology is traditionally defined as the study of sound units in a language together with 

the study of the structure of the relationship between these units of sound. A student 

of a foreign language is, implicitly, also studying the sound patterns of a language. It 

should therefore be advantageous to make use of phonological theories in teaching a 

language. In particular, if the intonation and stress patterns of a specific language are 

to be taught to a student then it will be necessary to know how to describe intonation 

and stress patterns in that language. It will also be necessary to describe the intonation 

and stress patterns of the student's speech in order to determine significant deviations 

from a native-like prosody, and then to offer some kind of corrective diagnosis. 

Speech is extremely complex and a very large number of different pitch contours 

and sequences of prominent syllables of different strength can exist. Phonology alms to 

reduce the complexity of speech by identifying patterns of sounds in a language. 

Over the last half century (as early as Pike, 1945) researchers of phonology have ad-

dressed the relationships between prosodic events (intonation, stress, rhythm, and paus-

ing patterns) and investigated their interaction with syntactic structure. Chomsky & 

Halle (1968) propose a variety of phonological rules to transform the syntactic represen-

tation of a sentence (surface structure) into a phonetic representation. However, noting 

that syntactic phrases do not always correspond with perceived phrasing in speech, they 

also introduce a number of 'readjustment' rules to relate the surface structure to 'phono-

logical phrases' which differ from the syntactic phrasing. Liberman & Prince (1977) 

propose that a hierarchy of phonological structures, separate from syntactic structures, 

is required to adequately describe prominence relations amongst the words and syllables 

of a sentence. They argue that the differences in syntactic and phonological structures 

are confined to the level of the prosodic word and lower level constituents (the foot and 

syllable) and that syntactic and phonological structures are isomorphic above the level 

of the word. This view is challenged by Selkirk (1984), who presents a phonological 

hierarchy containing an intonational phrase, phonological phrase, prosodic word, foot 

and syllable, which is separate from but related to the syntactic structure. 

Given the view that phonological and syntactic structures are separate from but 

related to each other, and that the relations between these two structures are not yet 
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fully understood, it is inappropriate to teach the prosody of a language in terms of how 

prosodic events are related to grammar. Intonation and stress need to be described in 

their own right. Their relation to syntax and semantics can be taken as a separate issue. 

The following Sections will review some descriptions of stress and intonation in En-

glish. It will be argued that although a phonological description of English may or may 

not be adequate to describe the prosody of a native speaker, the language-specific nature 

of phonology theory prevents it from being used to describe the prosody of English spo-

ken by a non-native speaker. The work considered here focuses on the need for a phonetic 

description of prosodic aspects of speech to be used in foreign language teaching. 

2.2.1 Degrees of stress 

In representing degrees of stress, Fudge (1984) follows the convention of Crystal (1969) 

which uses four degrees of stress distinguishable at an acoustic level. 

"The physical properties which signal stress in English do not enable hearers, 
even trained phoneticians, to distinguish consistently more than three degrees 
of strength [plus an unstressed category]." (my italics) 

(Fudge, 1984, pp.137) 

The syllable which bears the main sentential stress in a phrase or sentence is referred 

to as the primary (or nuclear) stress (marked by the prefix '). The traditional view is 

that nuclear stress falls on the final pitch accented syllable in the phrase. Prominent (and 

pitch accented) syllables occurring before the nuclear stress are described as secondary 

stress (marked by the prefix '). The third level of stress (marked by the prefix ) 

refers to syllables which are usually pronounced with a full vowel rather than a reduced 

vowel, but which are not associated with a pitch accent as in the cases of primary and 

secondary stress. All other syllables are unstressed (and are not marked in any way). The 

occurrences of nuclear, secondary and tertiary stress in phrases are considered further 

in Section 2.2.2. These levels of stress can also be discerned at the word level. For 

example, in the word incompatibility (illustrated in Figure 2.3) the primary (or nuclear) 

lexical stress falls on the syllable -bi-, but weaker, secondary and tertiary stress fall on 

the syllables in- and -pa-, respectively. The remaining syllables may be pronounced with 

a reduced vowel (typically either a schwa // or a centralised /+/) and are unstressed. 
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unstressed 

in corn pati'bi ii ty 
0 

/In kmptbi1t+/ 
LJ 	I 

secondary tertiary primary 

stress stress stress 

Figure 2.3: Degrees of stress in incompatibility. 

An example was given in Section 2.1.1 of the syntactic differences which can be con-

veyed by changing the relative strengths of syllables in a phrase. Chomsky & Halle (1968) 

propose that the relative strengths of each syllable in a phrase may be predicted by ap-

plying a set of phonological rules to the syntactic structure of the phrase. Although, by 

inference, application of Chomsky's phonological rules may predict an unlimited number 

of degrees of stress, especially in phrases which have a complex syntactic structure, it 

is not suggested that each degree of stress will have an equivalent acoustic realisation. 

Chomsky's theory requires that a listener should be able to perceive the predicted stress 

pattern, since the predicted stress patterns describe a perceptual reality, whereas in fact 

a listener will only be capable of transcribing the stress pattern of an utterance when 

given a knowledge of the syntactic structure of the language to which it applies, since 

not all degrees of stress will be discernible from the acoustic speech signal. Lieber-

man (1965) shows that listeners capable of describing the stress pattern of a synthetic 

stimulus conveying only the acoustic correlates of stress (fundamental frequency, dura-

tion and energy) may represent the same acoustic properties quite differently when such 

acoustic dimensions are associated with the words of an utterance. He concludes that the 

listener may be inferring the presence of secondary and tertiary stress from knowledge 

of the grammatical attributes of the words of the utterance, rather than from acoustic 



CHAPTER 2. PROSODIC DESCRIPTION IN LANGUAGE TEACHING 	19 

parameters. It is worth noting, however, that the synthetic stimuli used by Lieberman 

contain the same vowel in all syllables and the absence of reduced vowels in the synthetic 

stimuli may also be contributing to a listener's inconsistency in identifying secondary and 

tertiary stress. 

It is considered that a learner of a foreign language is unlikely to have the same degree 

of knowledge of complex syntactic structures for that language as a native speaker. A 

foreign learner cannot, therefore, be expected to predict the stress pattern of a new 

phrase, even if equipped with a set of relatively simple phonological rules such as those 

proposed by Chomsky & Halle (1968). In teaching English stress, the only way to test 

if a student can produce an utterance with an intelligible stress pattern, is to listen to 

and analyse the acoustics of the student's speech waveform. 

Thus, although there may be many linguistically significant gradations of stress in 

English, there are far fewer which are realised acoustically. A student of the English 

language should be able to produce stress patterns (manifested in the speech waveform) 

in a similar manner to a native speaker. For this reason, the descriptions here will be 

restricted to the three degrees of stress (plus an unstressed category) which are acousti-

cally distinct. If a student is producing the correct stress pattern at an acoustic-phonetic 

level, then it can be assumed that the phonological rules which are being applied are 

adequate. It is not, therefore, necessary to deduce the phonological rules which a stu-

dent uses, or to determine if these rules are the same as the rules employed by a native 

speaker. 

2.2.2 Configuration theory 

The intonation of an utterance can be described in terms of tone units (Crystal, 1969). 

The tone unit is regarded as the primary unit of intonational structure. Most theories of 

intonational phonology include some kind of primary unit of intonational structure which 

has also been called the tone group (Halliday, 1970), the word group (O'Connor & Arnold, 

1973), and the intonation phrase (Pierrehumbert, 1980), although some differences exist 

in the detailed definitions of these constructs. 

Crystal (1969) considers each tone unit to be composed of, at most, four components 

- the prehead, head, nucleus and tail. The nucleus is the only obligatory part of a tone 
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unit. 

Tone unit = (Prehead) (Head) Nucleus (Tail) 

For example, 
Accented syllables 

'Zr 	i J, 
She was 1 going 1home to sleep this afternoon 

Prehead 	Head 	Nucleus 	Tail 

The final, accented, prominent syllable of the tone unit forms the nucleus of the tone 

unit, and is associated with the primary stress (peak of prominence) in the tone unit. 

The tail consists of any additional syllables which may occur after the nucleus. The 

continuation and completion of the nuclear pitch movement carries into the tall. For 

this reason, Halliday (1970) treats the nucleus and tall as one unit, which he refers to as 

the tonic. The first syllable of the tonic is called the tonic syllable and is, by definition, 

prominent. In Halliday's description, the nuclear pitch movement associated with the 

prominence of the tonic syllable includes either a continuous rising and/or falling pitch 

glide on the syllable, or a pitch jump up or down occurring immediately before the 

syllable. 

Crystal proposes four primary types of nuclear pitch movement, 'rise', 'fall', 'rise-fall', 

and 'fall-rise'. Each movement is phonetically represented at a number of different rela- 

tive pitch levels (high onset, mid onset, low onset ...) and pitch ranges (wide, narrow). 

He also postulates the existence of a 'level' tone. There are also four permissible combi-

nations of these primary tones which can occur within a single tone unit and which are 

claimed to be phonologically distinct. The compound nuclear tones proposed are 'rise' 

or 'fall-rise' plus 'fall', and 'fall' or 'rise-fall' plus 'rise'. 

O'Connor & Arnold (1973) describe only seven categories of tone - 'high-rise', 'low-

rise', 'high-fall', 'low-fall', 'rise-fall', 'fall-rise' and 'mid-level' - and discusses only one 

possible compound tone - 'fall-plus-rise'. 

Halliday (1970) classifies pitch movements into five primary tone categories plus two 

primary compound tones which are made up of combinations from these five - tone 1 

'fail', tone 2 'rise' or 'fail-rise (sharp)' involving a sudden change in direction from fall to 
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rise, torte 3 'low rise', tone 4 'fall-rise (rounded)' involving a smooth, gradual transition 

from fail to rise, and tone 5 'rise-fall (rounded)'. The compound tones proposed by 

Halliday are tone 13 'falling plus low rising' and tone 53 'rising-falling (rounded) plus 

low rising'. There is noticeably no 'level' tone in Halliday's description. 

The head (or pretonic in Hal]iday's terms) consists of the syllables from the first 

accented, prominent syllable in the tone unit up to, but not including, the tonic syllable. 

It is assumed in the above configuration theories that individual accented, prominent 

syllables in the head (secondary stress) do not carry any linguistic significance in the 

way that the tonic syllable does. The syllables bearing secondary stress are therefore 

treated and described as a single unit. O'Connor & Arnold distinguish four characteristic 

tone patterns in the head, each having a limited co-occurrence with the nuclear tones 

- a 'low' head which occurs only before a 'low-rise' nuclear tone, a 'high' head which 

occurs before all nuclear tones except the 'fall-rise' tone, a 'falling' head which occurs 

only before a 'fail-rise' nuclear tone, and a 'rising' head which occurs only before a 'high-

fall' nuclear tone. Crystal and Halliday offer more comprehensive descriptions of the 

head. Crystal proposes four types of 'falling' head, two categories of 'rising' head, a 

'falling-rising(-falling)' head and a 'rising-falling(-rising)' head. Unlike the description 

by O'Connor & Arnold, the co-occurrences of head and nuclear tones are unconstrained 

within Crystal's description. 

The prehead represents any syllables bearing tertiary stress and unstressed syllables 

that exist prior to the first accented, prominent syllable (of the head or, if no head 

exists, of the nucleus) in the tone unit. O'Connor & Arnold describe the prehead as 

being either 'high' level or 'low' level. Crystal, however, proposes that the prehead can 

take four distinguishable pitch heights, and mentions evidence for the possibility of a 

fifth level. 

There are a number of problems which arise from these theories of intonational 

phonology. 

The three descriptions cited above are based on the intonation of speech from native 

speakers of (Southern British) English, however the intonation of non-native speakers 

of English will, in most cases, be strongly affected by mother-tongue interference. This 

means that the pitch configurations identified in the above descriptions of English into- 
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nation are probably inadequate to describe a foreigner speaker's intonation. 

Although the nuclear pitch movement of a tone unit is presented by these three 

descriptions of intonation in terms of rising, falling or level pitch, the phonetic differences 

that are treated as linguistically important varies between them. This is particularly 

noticeable of the permissible compound tones. It is disturbing to find such disagreements 

over the phonological categorisation of pitch movements. 

These descriptions of intonation can also be criticised for their inability to capture 

a hierarchical prosodic structure. Ladd (1986) argues that boundaries between prosodic 

constituents are loosely defined, yet they are intended to be made up of well defined 

internal phonological structures. In particular, Ladd argues that the definitions of tone 

unit and nucleus are somewhat interdependent. This makes it difficult to partition speech 

into a linear sequence of one type of prosodic entity and leads to inconsistencies between 

intonational transcriptions of a given utterance (Grice & Barry, 1991). This is also 

reflected in the inconsistent classification of compound tones by Crystal, O'Connor & 

Arnold, and Halliday. 

"The compound tones . . . are really sequences of two tones which have, how-
ever, become fused into a single tone group, so that there is no possibility of 
introducing a pretonic between the two." 

(Halliday, 1970, pp.12) 

It may be possible to draw a distinction between two "fused" tone groups by postulating 

a prosodic entity between the tone group and the prosodic word. This debate of prosodic 

structure will be revisited in the following Section. 

2.2.3 Tone sequence theory 

A phonological model of intonation proposed by Pierrehumbert (1980) describes a pitch 

contour as a series of interpolations between successive pitch targets. This model stems 

from earlier work related to the concept of pitch targets; in particular, that of Liber-

man (1975) and Bruce (1977). The pitch targets are the phonetic realisation of two 

phonologically distinct tone segments, a high tone (H) and a low tone (L). A distinction 

is made between pitch accent related tones, phrase accent tones and boundary tones. 
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Figure 2.4: Finite-state grammar for H/L tone sequences (Pierrehumbert, 1980) 

The permissible sequences of tone segments are specified by a finite-state grammar, as 

shown in Figure 2.4. 

Strong evidence supporting the existence of pitch targets in preference to pitch move-

ments (as in the configuration theory) is provided by Bruce (1977). Bruce finds a reliable 

correlate of Swedish word accent to be a local peak of fundamental frequency which is 

time-aligned to the accented syllable. In some circumstances, however, the rise up to the 

peak, and/or the fall after it, can be reduced, making it difficult to relate the accented 

syllable with a specific pitch movement. Bruce argues that reaching a certain pitch level 

at a particular time is an important correlate of word accent, not the pitch movement. 

A similar observation is also found in Crystal's (1969) argument for the existence of a 

'level' tone, which is inconsistent with having defined nuclear tone as the most prominent 

pitch movement in a tone unit, 

"...in English there is often . . . clear evidence of a tone-unit boundary, but 
no audibly kinetic tone preceding." 

(Crystal, 1969, pp.215) 

Pitch accent related tones are designated to the location of syllables bearing sentential 

stress. In Pierrehumbert's analysis, pitch accents in English are described using single 
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and double tones. A star (*) diacritic is used to identify the tones associated with 

accented, prominent syllables. The six pitch accents are H*, L*, and the four bitonal 

accents, H*+L, H+L*, L*+H, and L+H*. Each pitch accent is realised across any 

number of adjacent syllables, referred to as a prosodic word. There are no restrictions on 

the type of pitch accent which can be associated with an accented, prominent syllable, 

as in Crystal's model (where accented syllables in the head are treated in a different way 

to those in the nucleus). 

Phrase accent tones are specified by the grammar to exist only between the final tone 

related to a pitch accent and a boundary tone. They are marked by a hyphen diacritic 

(H—, L—) and denominate intermediate phrases (Beckman & Pierrehumbert, 1986). 

Boundary tones are associated with a higher level of phrasing than the phrase accent 

tones. They denominate intonational phrases and are marked by a percent diacritic 

(H%, L%). 

Empirical observations of the phonetic realisation of the high and low tones show the 

pitch targets to be of different height. It is believed that there are many factors which 

contribute to this effect. One common observation is an overall downward trend in pitch 

(or more specifically, in fundamental frequency) over the course of an intonational phrase. 

Pierrehumbert (1980) proposes that this global downdrift is mainly attributed to the 

phonological effect of downstep - a stepwise lowering of high pitch targets at moments 

controlled by the speaker. Long term downdrift (possibly over a number of intonational 

phrases, but not spanning an intake of breath) may also be attributed to a physiological 

property referred to as declination (Vaissière, 1983). Downstep is a reduction of pitch 

range that lowers the Fø realisation of any high tones subsequent to a downstep trigger. 

In Pierrehumbert's description of intonation, downstep is triggered by bitonal accents. 

The H— intermediate phrase accent triggers upstep. Downstep is marked explicitly by 

an exclamation mark diacritic (!H). 

The notion of a "strict", layered, hierarchical structure of intonation (strict layer 

hypothesis (Selkirk, 1984)) is implicit within this theory. An intonational phrase consists 

of a number of intermediate phrases (and of no other type of prosodic constituent) which 

are in turn made up of pitch accents across a number of syllables (prosodic words). 

Beckman & Pierrehumbert (1986) suggest that there are at least two, and possibly 
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three 4, levels of prosodic phrasing above the prosodic word. In order to gain some 

insight into the depth of prosodic structure, the lengthening of phrase final syllables 

have previously been studied. Wightman et al. (1992) find that the duration of the vowel 

preceding a prosodic boundary correlates with the strength of the boundary, and that 

vowel duration variations at these boundaries indicate three levels of prosodic phrasing 

above the prosodic word. Ladd & Campbell (1991) show that the distribution of syllable 

durations can be more accurately modelled from data annotated by four levels of phrasing 

than by two-level intonational/intermediate phrasing. Ladd (1992) argues that such 

studies on the realisation of prosodic boundaries provide evidence that prosodic structure 

is of variable depth and, assuming that the variability in the phonetic realisation is not 

due to paralinguistic effects, argues that this is incompatible with the notion of a fixed 

(but unknown) depth of prosodic structure proposed in the strict layer hypothesis. As a 

possible solution to this problem, Ladd suggests that prosodic constituents of the same 

category can be nested. Thus, for example, an intonational phrase can be made up of 

other intonational phrases, thus forming a compound intonational phrase. Ladd's view 

of prosodic structure yields fewer constraints on the mapping of the syntactic domain to 

the prosodic domain than the strict layer hypothesis, and is more compatible with the 

notion of compound syntactic structure. 

The need for some widely acceptable scheme of labelling prosodic aspects of speech 

has only recently been addressed. The conventional labelling of prosodic structure is 

language-specific and dependent on the prosodic theory employed (Barry & Fourcin, 

1992). The task of labelling speech is split between giving the manifestations of speech 

a symbolic transcription and annotating the physical speech signal. 

A transcription scheme for labelling prosodic aspects of speech in American English 

is proposed by Silverman et al. (1992) based on tones and break indices (ToBI). The 

perceived connectivity between adjacent words is represented by a five-value break index 

(Price et al., 1990; Price et al., 1991). A lower value of break index corresponds to a 

greater degree of prosodic coupling between neighbouring words. The break indices 

4 Beckman & Pierrehumbert (1986) suggest the possibility of an accentual phrase level between the 
intermediate phrase and prosodic word levels. 

5Price et al. (1990; 1991) propose a seven-level break index. Level-5 (boundary marking a grouping 
of intonational phrases) and level-6 (sentence boundary) break indices are submerged into level-4 break 
indices in the ToBI transcription scheme. 
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mark the boundaries within a citic group (level-0), normal word boundaries (level-1), 

boundaries between minor groupings of words (level-2), intermediate phrase boundaries 

(level-3) and intonational phrase boundaries (level-4). The break indices are tied to the 

strict layer hypothesis. 

The ToBI transcription scheme lies between being a phonological description and a 

phonetic description of speech. The three sequences of tone segments represented as 11* 

L—L%, L+H* L—L% and L*+H L—L% each describe a rise-fall contour. The peak 

in FØ associated with the high tone occurs at different times relative to the prominent 

syllable in the three tone sequences. It is not clear whether these three tone sequences 

describe three phonological categories which are linguistically contrastive, or whether 

they describe three phonetic variations of a rise-fall contour. 

Empirical observations of the H+L* bitonal pitch accent show the phonetic realisa-

tion of the low tone component to be higher than the low tone in the L* pitch accent 

and in the H*+L, L*+H, and L+H* bitonal accents. The H+L* accent is described 

as H+!H* in the ToBI transcription scheme to reflect this phonetic distinction. 

The relative prominences of syllables within each word of an utterance are not marked 

in the ToBI transcription scheme. This categorical aspect of prosody is omitted because 

it is assumed that the relative prominence of syllables is predictable (for a native speaker 

of English) and that this stress information can be derived from a word's lexical entry. 

If the relative prominence of syllables is not as predicted then a native listener will judge 

the word as being mispronounced. There is, however, no way of transcribing this in the 

ToBI scheme. 

The analysis of intonation in terms of high and low tone sequences has been applied 

to several languages other than (American) English; for example, Dutch (Gussenhoven, 

1984), French (Merten, 1987), Hungarian and Romanian (Ladd, 1983), (Palermo) Italian 

(Grice, 1992), Japanese (Pierrehumbert & Beckman, 1988), Serbo-Croat (Inkelas & Zec, 

1988) and Swedish (Bruce, 1977) - although the pitch accents and prosodic structures 

identified differ somewhat for each language. With this extensive multi-lingual support, it 

seems reasonable to adopt a tone sequence type of description of intonation in preference 

to pitch movement configurations in considering language teaching. It appears that the 

intonation of many languages can be more readily analysed in terms of high and low 
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tones than in terms of pitch movements. Thus it can be assumed that the intonation of 

English spoken by a non-native speaker (coloured by mother-tongue interference) can, 

perhaps, be more robustly described by tone sequences and that the problems associated 

with descriptions based on pitch movement configurations can be avoided. 

Such a description is particularly suited to the phonetically motivated basis for the 

work presented in this thesis, since in the configuration theory, the decision to recognise 

a feature of a pitch contour as a phonologically significant event is based on the observa-

tion that its use has a semantically contrastive function. Tone sequence theory, however, 

tends towards a phonetic specification of intonation; leaving the semantic function to be 

described by a higher level of analysis. The prospect that the language dependent linguis-

tic function of intonation can be isolated from the intonational description is a possible 

contributing factor as to why the intonation of so many languages has been described 

in terms of high and low tone sequences. In describing intonation to a foreign learner 

in terms of semantically contrastive categories, a language dependent approach must 

be followed. However, in order to analyse the student's non-native intonation (which, 

in the worst case, could be the intonation of the student's native language) a language 

independent approach must be adopted. In taking a language independent approach, 

phonetic differences between the intonation of the student's speech and the intonation 

of a native's speech (for the same utterance) may be detectable which, however, are not 
semantically distinct. 

2.2.4 Accented and stressed syllables: Terminology 

At this point it is important to clarify the concepts of an accented syllable and of a 

stressed syllable. Section 2.1.1 referred to the phenomenon of sentential stress as the 

relative prominence of syllables in connected speech, and this thesis has, until now, 

referred to syllables exhibiting this phenomenon as being prominent. Prominent syllables 

are subdivided into accented syllables and stressed (non-accented) syllables. 

The view taken by many researchers (after Bolinger, 1958) has been that pitch move-

ment is the fundamental element of syllable prominence. That is to say, pitch movements 

are taken as the essence of the phenomenon of stress. Beckman (1986) has revived a 

traditional distinction between, what she calls, "stress accent" and "non-stress accent." 
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Prominent 

I- 

I 

Unstressed 
Accent 	 Syllable 

Figure 2.5: Prominent syllables and intonation features 

In Beckman's view (which is adopted here) prominent syllables are initially cued by 

duration, intensity, and vowel quality (and/or some other type of property related to 

spectral quality). Pitch accents, on the other hand, are taken as intonational features. 

However, as described in Section 2.2.3, pitch accents are associated with prominent syl-

lables and therefore serve as a cue to syllable prominence. Prominent syllables which 

are not associated with a pitch accent are called stressed syllables, while those which 

are associated with a pitch accent are called accented syllables. Non-stress accent refers 

to those tones which are intonational features not related to prominent syllables (such 

as those associated with prosodic structure above the level of the prosodic word - H—, 

L—, 11% and L%). All other syllables are simply referred to as being unstressed. This 

terminology is illustrated in Figure 2.5. 

Increases in the average energy of a syllable and/or increases in the duration of an 

entire syllable, and increases in the peak of a syllable's fundamental frequency can be used 

to manifest several degrees of emphasis (Godfrey & Brodsky, 1986). This should not be 

confused with the degrees of sentential stress (see Section 2.2.1) although they are closely 

related. The degrees of emphasis referred to by Godfrey & Brodsky are a continuum of 

phonetic realisations of emphatic stress in pitch accented syllables. Degrees of emphasis 
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are not associated with (unaccented) stressed syllables or unstressed syllables. It is 

assumed in this thesis that such variations in pitch range are primarily paralinguistic 

and beyond the scope of phonological analysis. 

2.3 Discussion 

It is evident from everyday experience that an utterance is perceived as being composed 

of a series of (lexical) words and that there is a linguistic significance to the order in which 

the words are concatenated. When studying a foreign language, a student does not just 

learn to interpret single isolated lexical items. A student must also learn the relations 

that can exist between words, by studying the grammar of the language. However, a 

student is usually not taught a formalised grammar of a language'. Instead, a student can 

learn aspects of grammar implicitly through exposure to carefully selected, illustrative 

examples and by attempting to mimic grammatical structures presented to the student. 

It is also evident from the aforementioned studies on intonational phonology, that an 

utterance is made up of prosodic words (as well as lexical words) that have a linguistic 

significance. In teaching the prosody of a language, it should be possible to apply the 

same paradigm as used in teaching grammatical structures. Thus, the aim of teaching 

prosody is not to explicitly teach a formalised phonology of prosody. Furthermore, it is 

inappropriate to assume that a foreign language student is not naïve of linguistic theory 

or that the student should be made aware of abstract phonological theories which form 

the basis of a course syllabus. This does not, however, mean that prosodic theories can 

be discarded. If the same teaching paradigm is to be used in teaching prosodic structures 

as for teaching grammatical structures, then a knowledge of prosody must be used (say, 

by subscribing to a prosodic theory) to design courseware by which a student can learn 

stress patterns and intonation. 

The theories of intonational phonology remain controversial and are in a field were 

there is much more research to be undertaken. The theories aim to describe a minimal 

set of pitch variations which are semantically contrastive. It is not clear what phonolog-

ically distinct categories a pitch contour can exhibit, but there is consensus that some 

6There is an enormous area of research often referred to as "Natural Language Processing" or "Com-
putational Linguistics" which is concerned with trying to formalise the grammar of languages. 
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patterns exist in the melodies of pitch. The prosodic structure of an utterance will 

convey some meaning. However, the meaning conveyed is dependent on the context of 

the utterance. Therefore, in teaching prosody as part of a foreign language syllabus, 

it is not possible to teach a student to use a single intonation contour to convey one 

specific meaning. Intonation must be taught in the context of well-structured dialogues. 

The courseware must be designed to provide such dialogues whilst subscribing to some 

underlying prosodic theory. 

The prosodic structure of a student's speech must be compared with that of a native 

speaker for assessment purposes, at each stage of the dialogue. Ideally, the prosodic 

structure of a student's speech and a native's speech should be represented within a 

phonological model. Thus, the comparison would allow a student's pitch to differ from 

that of a native speaker only at times where it does not carry any semantically contrastive 

function. A corrective diagnosis could then be offered to a student in order to aid the 

student's pronunciation. 

However, phonological representations of prosodic structure are language-specific. 

The prosodic structure of a student's speech can be highly influenced by mother-tongue 

interference and by prosodic stereotypes of the target language. This renders a language-

specific phonological representation of prosodic structure inappropriate. In order to 

determine if a student can speak a foreign language with a prosody which is unambiguous 

to a native listener, it is proposed in this thesis that it is not necessary to determine if a 

phonological representation of the prosodic aspects of a student's speech is identical to 

that of a native speaker. A comparison of the prosodic aspects of speech at a phonetic 

level should suffice. It is therefore assumed that a higher level of analysis can be used 

to determine which of the detectable phonetic differences do have and do not have a 

semantically contrastive function in a specific language. 

The research presented in this thesis aims to automatically generate a phonetic rep-

resentation of the prosodic aspects of speech from an acoustic waveform. The resultant 

phonetic representation allows the comparison of the stress and intonation of a student's 

speech with that of a native speaker. 



Chapter 3 

Acoustic-Prosodic Analysis: 
An overview of related work 

The automatic analysis of speech in computer aided pronunciation teaching uses a dig-

itally sampled acoustic waveform as the only input parameter. An acoustic waveform 

can be easily captured as an electronic signal with a microphone without being cumber-

some or obtrusive to a speaker. Other characteristic aspects of speech, such as glottal 

activity, nasality and air flow, cannot be measured without using cumbersome (sparsely 

available) transducers such as a laryngograph which ties around the neck, a nasograph 

which pinches below the bridge of the nose, or an obtrusive face mask. 

The acoustic speech signal conveys linguistic and paralinguistic information. The 

acoustic waveform is perceived as a sequence of phonemic segments which constitute the 

words of an utterance. It also exhibits suprasegmental phenomena which are related 

(but not exclusively) to the syntactic and prosodic structures of an utterance. It is 

emphasised, therefore, that the acoustic waveform is an extremely complex signal which 

conveys many aspects of speech other than prosody alone. In order to perform automatic 

prosodic analysis of speech, it is necessary to identify acoustic parameters which are 

correlated with prosody. Research conducted to identify acoustic correlates of stress is 

reviewed in Section 3.1. 

The fundamental frequency of an acoustic speech signal is correlated with both the 

perceived prominence of syllables and the characteristic melody of an utterance. Its 

extraction from the acoustic waveform is therefore a prerequisite for prosodic analysis. 

The functionalities of a selection of fundamental frequency determination algorithms are 

reviewed in detail in Section 3.2. 

31 
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Prosodic aspects of speech are described in a syllabic domain. Thus, the automatic 

identification of syllables in connected speech forms a part of prosodic analysis. A number 

of algorithms to partition speech into syllabic units are reviewed in Section 3.3. 

It is asserted that the acoustic correlates of stress are influenced by factors other than 

stress and interact in the manifestation of stress. The fundamental frequency of speech 

is therefore not a direct representation of intonation and acoustic correlates of stress 

do not co-exist in a simple relationship to represent stress. The composite structure of 

fundamental frequency is discussed in Section 3.4. Algorithms proposed to automatically 

transcribe the prosodic structure of an utterance from acoustic parameters are reviewed 

in Section 3.5. 

3.1 Acoustic parameters for prosodic analysis 

Extensive research has been conducted to identify the acoustic correlates of lexical stress 

in isolated words and of sentential stress in connected speech. 

Fry (1955) examines acoustic features correlated with a shift in lexical stress from 

one syllable to another which is commonly associated with a change in function from 

noun to verb in disyllabic words in English such as digest and permit. Fry's results show 

that the location of the lexical stress is correlated with the ratio of the duration of the 

vowel in the syllables and the ratio of the peak of energy in the syllables (which occurred 

in the vocalic part of the syllables). He also claims that the duration feature is a more 

effective cue to stress location than the energy feature. In a later experiment, Fry (1958) 

investigates the correlation of fundamental frequency with stress shift in the same type of 

words. He finds that the syllable with the greatest fundamental frequency is more likely 

to be perceived as prominent although the extent of the jump in fundamental frequency 

(FØ) between the two syllables is relatively unimportant. Moreover, Fry suggests that 

the occurrence of an FØ glide through a syllable is likely to make it perceptually more 

salient than the other syllable (in the disyllabic words he examines) and that such glides 

may "outweigh" the duration cue. 

Fry also draws attention to a further correlate of stress, vowel quality. 

"[I]n English . . . [t]he substitution of the neutral vowel // for some other 
vowel, the reduction of a diphthong to a pure vowel, or the centralisation of 
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a vowel are all powerful cues in the judgement of stress." 

(Fry, 1958, pp.128) 

The effect of vowel quality on the perception of lexical stress is also investigated by 

Fry (1965). The experiment he conducted examines the relation between stress loca-

tion and changes in the Fl /F2 formant space of monophthongs using synthetic stimuli. 

Although Fry finds that stress judgement is dependent on vowel formant structure, he 

suggests that the perception of stress is affected more by duration and energy cues than 

by vowel quality. 

The four acoustic features associated with the perception of stress (identified by Fry 

as duration, energy, fundamental frequency and vowel quality) have been the subject 

of investigation for many researches (Lieberman, 1960; Morton & Jassem, 1965; Westin 

et al., 1966; Nakatani & Aston, 1978; Aull & Zue, 1985). 

Lieberman (1960) proposes an algorithm to identify the location of the lexical stress 

in minimal noun/verb pairs of disyllabic words such as 'compound and compound, using 

duration, energy and fundamental frequency (but not vowel quality). Lieberman suggests 

that the duration of the entire syllable (cf. the duration of the vowel used by Fry) 

acting as a unidimensional cue for the location of the most prominent syllable is a less 

effective cue than the peak syllable amplitude. This is the converse to the claim of 

Fry (1955). Lieberman also suggests that the peak syllable fundamental frequency is 

a more effective cue to stress location than the peak syllable amplitude. Lieberman 

recognises the complex interaction that exists between these acoustic features. In some 

cases, the prominent syllable has a higher peak FØ, but the unstressed syllable has a 

higher peak amplitude; and in other cases, the prominent syllable has a higher peak 

amplitude, but the unstressed syllable has a higher peak Fø. This is analogous to Fry's 

observation that FØ glide through a syllable may "outweigh" the duration cue. In other 

words, Fø may also "outweigh" the energy cue, or visa versa. By combining these 

acoustic features, Lieberman is able to correctly identify the location of the lexical stress 

in 99.2% of the minimal noun/verb pairs he studies. 

Adams & Munro (1978) examine the acoustic correlates of sentential stress (in con-

nected speech). Their investigation considers fundamental frequency during the course 

of syllables, the absolute duration of entire syllables and the amplitude envelope in sylla- 
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bles. Adams & Munro do not consider the effects of vowel quality mentioned by Fry. The 

results of Adams & Munro suggest that the degree of Fø change is a more significant 

correlate of sentential stress than absolute Fø height. 

"[T]he initial level and the end level were higher in type I [rising FØ] and 
lower in type II [falling FO] for stressed than for unstressed syllables. Fur-
thermore, the amount of rise in type I and fall in type II was found to be 
greater in stressed than in unstressed syllables. ... In type V [level FO), 
the fundamental frequency level was greater in stressed than in unstressed 
syllables, but not significantly so." [my italics] 

(Adams & Munro, 1978, pp.140) 

The results of Adams & Munro also indicate that the amount of fall from a steady peak 

in the amplitude envelope is a more significant correlate of sentential stress than the 

amplitude at the peak of the envelope, and that sentential stress is also signalled by 

syllable duration. 

There is noticeably little reference to vowel quality in these studies on the percep-

tion of stress. Most of the work relating stress with vowel quality is found in studies 

on the perceptual classification of vowels. Such studies take a different view of the re-

lation between vowel quality and stress to the view taken in this thesis, in that they 

are primarily concerned with understanding how stress, and other factors, affect vowel 

quality; whereas here an emphasis is placed on understanding how vowel quality, and 

other factors, affect the perception of stress. 

Tiffany (1959) observes a tendency for the vowel diagram (a conventional plot of 

the first formant Fl against the second formant F2) to grow smaller from vowels enun-

ciated in isolation to prominent vowels to non-prominent vowels. The prominent and 

non-prominent vowels which Tiffany investigates are in a [h]-vowel-[d] phonetic context 

embedded in carrier phrases with and without emphatic stress placed on the word con-

taming the relevant vowel. Tiffany suggests that vowels move towards a neutral, or at 

least a central, point on the vowel diagram as they lose energy. Prominent vowels may 

not merely be longer in duration, higher in fundamental frequency, and greater in energy 

than unstressed vowels; they may also be different in terms of vowel resonance patterns 

as well. 

Shearme & Holmes (1962) observe that F1 /F2 measurements for vowels in connected 
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speech and in varying phonetic contexts are displaced from corresponding measurements 

for vowels in isolated monosyllables towards a central vowel position. They attribute 

this affect to variability in both stress and phonetic context. 

It is argued by Lindblom (1963) that as rate of articulation increases, physical lim-

itations impose less time for the articulators to complete their movements within a 

consonant-vowel-consonant syllable, thus the vowel becomes shorter and hence the vowel 

becomes more susceptible to contextual assimilation. The acoustic consequence of this is 

that the placement of the vowel in the Fl /F2 formant space moves away from a target 

position, typically towards a more central vowel position. Lindblom argues that vowel 

reduction is primarily determined by a duration feature and that it is immaterial to 

discuss whether the duration of a vowel is produced chiefly by the degree of stress or the 

rate of articulation. If Lindblom's explanation of vowel reduction in terms of a shorten-

ing of duration and the physical limitations of the articulators, rather than variations in 

the degree of stress and the rate of articulation per Se, is correct, then it is hypothesised 

that duration acts as a stronger cue to stress than vowel quality and that the correlation 

between duration and vowel quality is positive in their association with stress. In other 

words, no more information about the degree of stress of a syllable will be obtained from 

a measure of vowel quality than can already be obtained from a duration feature. 

Moreover, if Lindblom's explanation is correct then it is inferred that variations in 

the degree of stress and the rate of articulation affect the vowel quality in identical ways. 

Verbrugge & Shankweiler (1977) report that measurements of vowel formant frequencies 

reveal relatively little difference between fast and slow speech, but reveal large vowel 

formant shifts in unstressed syllables relative to stressed syllables. Tuller et al. (1982) 

examine whether stress and speech rate variations involve different transformations of 

physiological signals. The hypothesis that all changes in vowel duration are the product 

of the same production rule, as argued by Lindblom, is not supported by their results. 

Variations in stress and speech rate apparently produced vowel duration changes through 

different effects on muscle (genioglossus and orbicularis oris) activity. Evidence against 

Lindblom's hypothesis is also presented by van Summers (1987) who argues that duration 

lengthening due to final consonant voicing in consonant-vowel-consonant syllables has 

greater effects on articulatory movements and formant structure in the final portions of 
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vowels than on the initial portions, while duration lengthening due to increased syllable 

prominence has a more global influence throughout vowel production. 

Vowel reduction is associated with the degree of stress and the rate of articulation 

(Lindblom, 1963; Tuller et al., 1982; van Summers, 1987). Therefore, if vowel quality is 

to function as a cue to stress location, it is first necessary to understand how vowel quality 

is affected by factors other than stress. If the reduction in the quality of a vowel can be 

attributed to variations in the rate of articulation, for example, rather than variations 

in the degree of stress then there is little possibility of being able to use vowel quality as 

a cue to stress. 

The consensus drawn from these studies is that duration, fundamental frequency, 

energy and the quality of the syllable nucleus correlate with lexical and sentential stress, 

although the degree to which each of these parameters correlates with the stress varies 

considerably from study to study. One of the major problems in the automatic analysis of 

stress is that there are complex interactions between each of these acoustic parameters in 

their association with stress, and variations in each of these parameters can be associated 

with factors other than stress. 

For example, the duration of the vocalic portion of a word is influenced by the 

inherent or intrinsic duration of the intended vowel, phonetic context (Lehiste, 1970), 

rate of articulation, the sentential stress pattern, the position of the word within the 

sentence, and other possible factors such as speaker style. Although duration may be 

ambiguous as an unidimensional cue to stress, syllable final consonant voicing, or any 

of the other factors affecting duration, it may provide useful information for, say, stress 

when used in combination with other acoustic cues. If the presence of stress increases 

vowel duration along with having some specific influence on formant trajectories which 

final consonant voicing does not, then the stress related vowel lengthening could be 

disambiguated from voicing related lengthening. 

Lehiste & Peterson (1959) investigate intrinsic vowel amplitude and suggest that 

energy cues to the type of stress investigated by Fry can be more readily identified by 

first compensating for intrinsic vowel amplitudes. This philosophy can be extended to 

include any acoustic cue to stress. If acoustic features are normalised for variations 

which are due to factors other than stress, then the normalised acoustic features can be 
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combined to form a description of the stress pattern of an utterance. 

In summary, the phenomenon of stress is realised in the speech waveform by vari-

ations in duration, energy, fundamental frequency and vowel quality. The process of 

locating prominent syllables is complicated both by the interaction of these features in 

the manifestation of stress and by the fact that all four features are also influenced by 

factors other than stress. Moreover, there are a number of specific problems in mea-

suring these acoustic features in order to automatically locate prominent syllables. It 

is not clear how the acoustic features are determined, over what phonetic domains the 

acoustic features are related with respect to prosody, or how they are best normalised 

for non-prosodic aspects of speech. A principal aim of this thesis is to address these 

problems. 

Methods to automatically determine the fundamental frequency of a speech waveform 

are addressed in Section 3.2 and in Chapter 7. The domain of phonetic units whose 

duration, energy and vowel quality are to be determined as optimal correlates of stress 

and normalisation techniques applied to them are investigated in Chapters 4, 5 & 6. 

3.2 	Automatic extraction of fundamental frequency 

The fundamental frequency (Fø) of speech is defined as the rate of glottal pulses gen-

erated by the vibration of the vocal folds during the voicing of segments. The pitch of 

speech is the perceptual correlate of Fø. The psychoacoustic scales of pitch are linear 

only at relatively low frequencies. However, it is assumed that there is a linear correlation 

between pitch and Fø at the low ranges of frequency that are relevant to the voicing of 

male and female speech (approximately 50-25011z and 120-40011z respectively). 

It can be concluded from the previous Sections that the fundamental frequency of 

speech plays an important role in the prosodic features of stress and intonation. Its 

extraction from the acoustic speech waveform is therefore necessary as an initial pro-

cess for the analysis of these suprasegmental phenomena. However, determining Fø is 

not a simple task, and many approaches (referred to here as Fundamental frequency 

Determination Algorithms (FDAs)1) have been reported (Hess, 1983). The diversity 

'Methods of extracting fundamental frequency are commonly referred to in the literature as Pitch 
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and complexity of methods used in an attempt to determine Fø stem from the non-

stationarity of speech, characterised by non-uniform intensity, by small variations in 

fundamental frequency between successive periods (such as those particularly noticeable 

in creaky voice (Layer, 1980)) and by a constantly changing spectrum which is dependent 

upon articulation. 

A selection of FDAs are described below. The choice of FDAs reviewed here is influ-

enced by the availability of existing implementations, by the desire to examine methods 

of fundamental frequency extraction which use radically different techniques, and by the 

ease of implementation from the original descriptions of the algorithms. The algorithms 

investigated are: 

Cepstrum-based FØ determinator (CFD) (Noll, 1967). 

Harmonic product spectrum (HPS) (Schroeder, 1968; Noll, 1970). 

Feature-based FØ tracker (FBFT) (Phillips, 1985). 

Parallel processing method (PP) (Gold & Rabiner, 1969). 

Integrated Fø tracking algorithm (IFTA) (Secrest & Doddington, 1983). 

Super resolution FO determinator (SRFD) (Medan et al., 1991). 

The algorithms CFD and HPS make use of frequency domain representations of the 

speech signal. FBFT and PP produce fundamental frequency estimates by analysing 

the waveform in the time domain. IFTA and SRFD uses a waveform similarity metric 

based on a normalised crosscorrelatjon coefficient. This selection of FDAs is considered 

to represent a cross-section of the multitude of algorithms developed over recent years. A 

detailed performance evaluation of these FDAs is described in Section 7.2. The remainder 

of this Section provides a summary of the operation of each of these algorithms in order 

to illustrate their diversity and complexity. 

Determination Algorithms. However, these algorithms do not determine the linguistic phenomenon of 
pitch, which is the perceptual correlate of Fø. 
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3.2.1 Cepstrum-based Fø determinator (CFD) 

Noll (1967) proposes a method to determine the fundamental frequency of a speech 

waveform based on the use of cepsira. A cepstrum is defined as the Fourier transform 

(FFT) of the logarithm power spectrum of a signal. The method assumes that a speech 

signal can be represented by the commonly understood source-filter model (Failside & 

Woods, 1985) in which the speech signal 1(t) is equal to the convolution of the vocal 

source signal s(t) and the impulse response of the vocal tract h(t). 

f(t) = s(t) 0 h(t) 
	

(3.1) 

The objective of the algorithm is to effectively deconvolve the vocal tract response 

from the source signal, and thus find the fundamental frequency of the speech. 

Following from Equation 3.1, the source-filter model can be represented in the fre-

quency domain (by application of the convolution theorem) as, 

F(w) = S(w)_H(w) 
	

(3.2) 

In order to identify or separate the effects of the vocal tract and the vocal source 

signal, a Fourier transform is performed on the logarithm of the power spectrum, IF(w)I 2, 

.FFY {iog I F(w)12} = •F.T7 {log(  Sp)  j 2.H(w) 2) } 

= .TFT{log JS(w)12  + log IH(L,)12 } 

.FFT{log IS(w)121 + ..1FT{log IH(w)12 } 	(3.3) 

Thus, the vocal source and vocal tract effects are now added rather than convolved. 

The effect of the vocal tract appears in the cepstrum as numerous, closely packed peaks 

at the lower quefrency2  end, and the location of a peak occurring at the higher end of 

the cepstrum marks the fundamental period of the vocal source. 

An illustration of the practical application of this method is shown in Figure 3.1. 

Cepstral analysis is performed on successive frames of data. The duration of the analysis 

2The quefrency refers to the frequency of the ripples in a spectrum. Since the ripples are in the 
frequency domain, quefrency is in the time domain. 
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frame must be chosen with care. If the duration is too long, then the non-stationarity 

requirement of the analysis frame for the Fourier transform will be violated, particularly 

during segmental transitions, and spurious artefacts will be produced in the spectra. 

However, if the duration is too short, then the analysis will be inaccurate. In practice, 

a duration of 38.4ms is used as a reasonable compromise, as it corresponds to of the 

data in a 1024-point Fourier transform for data sampled at 20kHz, and corresponds to 

approximately two fundamental periods at the lower levels of FØ for male speech. 

Cepstral analyses of sections of a speech waveform are overlapped by spacing the 

beginnings of successive analysis frames at intervals of 6.4ms ( of the FFT data). An 

estimate of the fundamental frequency at the time which corresponds to the mid-point of 

the analysis frame is therefore made at regular intervals. The Fø estimates are plotted 

against these times to form an FØ contour. 

Each analysis frame is applied through a Blackman window (Harris, 1978) and a 

1024-point Fourier transform is performed on the data with padded zeros. The use of 

a 1024-point FFT results in a cepstrum of 512 coefficients (0-25.6ms) with a quefrency 

resolution of 20  ms (for a speech waveform sampled at a frequency of 20kHz). The 

quantisation error for each estimation of the fundamental period is therefore ms. After 
20 

cepstral analysis of the data, a linear multiplicative weighting is applied over a speaker-

dependent quefrency range. For example, a quefrency range of 4.Oms (250Hz) to 20.Oms 

(50Hz) is selected for the analysis of male speech, and a range of 2.5ms (400Hz) to 8.3ms 

(120Hz) is selected for female speech. Noll (1967) proposes that the amplitude of the 

cepstral coefficients is weighted by 1.0 at the lower quefrency limit and on a linear scale 

up to a weight of 5.0 at the upper quefrency limit. The peak value in the resultant 

weighted cepstrum is located over the selected quefrency range. If the amplitude of the 

peak exceeds a speaker-dependent a priori threshold, then the peak location corresponds 

to the fundamental period for that frame; otherwise the frame is assumed to represent 

unvoiced speech. 

3.2.2 Harmonic product spectrum (HPS) 

The fundamental frequency of a periodic signal can be determined by measuring the fre-

quencies of its higher harmonic components and computing the greatest common divisor 
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of these harmonic frequencies (Schroeder, 1968). The greatest common divisor can be 

determined by making an entry to a frequency histogram for each harmonic frequency 

and at integer divisions of the harmonic frequency. The frequency at the peak of the his-

togram represents the greatest common divisor of the harmonic frequencies, and hence 

the fundamental frequency. However, the task of determining the harmonic frequencies 

is not simple. The problem of determining these frequencies can be avoided by noting 

that the frequency components of a signal represented in the frequency domain have 

higher amplitudes at points near to harmonic frequencies. Each entry to the histogram 

can thus be weighted by a monotonicly increasing function of the component amplitude 

or of the logarithm of the component amplitude. 

The block diagram shown in Figure 3.2 illustrates how the HPS based Fø deter-

minator is arranged in practice. The speech signal is divided into 38.4ms frames with 

an analysis frame shift of 6.4ms, as in the cepstral based approach (CFD). A 4-term 

Blackman-Harris window (Harris, 1978) is applied to each frame in order to filter out 

discontinuities (and hence high frequency artefacts) at the limits of the analysis frame. 

The harmonic histogram is formed from a short term log power spectrum 20 log10  jF(nf)J 

and represented as the 'harmonic product spectrum' (Noll, 1970), 

10910P(f) = E 20.1og10 fF(nf) 	 (3.4) 

P(f) = fl IF(nf)I (+ 1020, which is ignored) 	(3.5) 

The low-quefrency structure of the log power spectrum of speech only adds confusion 

when compressed to form the harmonic product spectrum, so such terms are removed by 

smoothing the spectrum with a window function W(f) (for example, a 4-term Blackman-

Harris window) and then subtracting the smoothed spectrum from the original spectrum 

prior to calculating the harmonic product spectrum. The low-quefrency lifted log spec-

trum is expressed as, 

L(f) = 20 log10  IF(f)I - W(f).20 log10  IF(f)I 	 ( 3.6) 
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and the harmonic product spectrum, as, 

P(f) = 	 (3.7) 

where N is a compression factor (set to 5 in a practical application). If the compression 

factor is set too low, the estimates of Fø will be unreliable, and if the compression factor 

is set too high, the process of determining FØ by this method will be time consuming 

and computationally expensive. 

The fundamental frequency is given by the position of the maxima of P(f), which 

is searched for in the range of 5011z to 25011z for male speech, and between 12011z 

and 40011z for female speech (for compatibility with the other FDAs reviewed in this 

Section). If this maxima has an amplitude that is greater than some speaker-dependent 

a priori threshold, then the section of speech being analysed is assumed to be voiced. 

For a speech waveform sampled at 20kHz and with the use of a 4096-point FFT, the 

fundamental frequency can be estimated by this method with a quantisation error of 

4.8811z (ie. the sampling frequency divided by the number of points in the FFT). 

3.2.3 Feature-based FØ tracker (FBFT) 

An algorithm is proposed by Phillips (1985) which alms to locate glottal pulses in the time 

domain by using a feature-based statistical approach. The algorithm uses perceptually 

motivated features that are designed to capture the same information that a person 

would use to indicate the presence of a glottal pulse from a waveform display. 

As is the case with many FDAs which operate on a time domain representation of 

speech (such as those reviewed in this and the following Sections), the sampled waveform 

is initially low-pass filtered to simplify its temporal structure. The filtering process 

reduces the effects of higher formants (F2, F3, and F) for vowels, and removes the high 

frequency components of voiced fricatives, thus aiding the classification of voiced speech 

by the algorithms. In the studies reported here, low-pass filtered speech is produced 

by a finite impulse response (FIR) filter with a -3dB cut-off at 60011z and rejection 

greater than -85dB above 70011z, though these filter characteristics are not crucial to the 

performance of the FDAs. 
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Peaks are located in the speech waveform under the criteria that they correspond to 

local maxima with signal amplitudes greater than 120 ADC-units' (approximately 50dB 

signal-to-noise level) and that the signal amplitude drops by at least 20% after the local 

maxima. Peaks satisfying these criteria are represented by the set S and are indicated 

on the speech waveform in Figure 3.3 by Viand f. 
A member of S1  is accepted into a subset, S2, if no other peak occurs within the 3ms 

region before it, or if its amplitude is greater than 75% of the amplitude of the largest 

peak within the 3ms region before it. The members of the subset S2  are indicated in 
Figure 3.3 by T. 

Perceptually motivated features are used to identify the first peak of each fundamen-

tal period in the speech waveform during voiced portions of speech. The peaks identified 

in S2  are considered as candidates for the first peak of a fundamental period. The fol-

lowing nineteen measurements {M1  I i E 1,. . ., 19} are made for pairs of candidates, 

Pi, P2  e S2  (illustrated in Figure 3.3); P, at time t j  with amplitude v1: 

. M1  = v1; the waveform amplitude at peak P1. 

M2  = (v2 - vi)/v1; the relative change in amplitude between the candidate peaks. 

M3  = t2 - t; the duration between the candidate peaks. 

M4  = w1; the width at the zero crossing point of the peak P1. 

Locate the largest peak P0  e S within the region of duration 1.5(2 - i) before 
P1. M5  = v0/ min(v1, v2); the amplitude of peak P0  relative to the minimum of the 

amplitudes of the candidate peaks. 

Locate the largest peak P3  E Si  within the region of duration 1.5(t2 - t1) after P2. 
M6  = v3/min(vi,v2). 

M7  = (v3 - v2)/v2. 

M8 = ( t3  - t2)/(t2 - t1). 

Locate the largest peak P. E S within the 3ms region before P1. M9  = (vi - v0  )/vi. 

3Speech signals are quantised by a 16-bit analogue-to-digital converter (ADC). 
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. Locate the largest peak Pb E S1  that lies between the two candidate peaks. 

M10  = Vb/rmfl(Vl,V2). 

Locate the first peak P+' E S after P1  and determine the waveform amplitude v 1  

at the same time after P2. M11  = (i4 - 

Locate the second peak P+2 E S1  after P1  and determine the waveform amplitude 

V+2 at the same time after P2. M12  = (v2 - v+2)/vi. 

Locate the first peak P_ 1  E S1  before P1  and determine the waveform amplitude 

v' 1  at the same time before P2. M13  = (v'1 - v_1)/v1. 

Locate the first local minimum after P1  and determine the waveform amplitude 

V m1 at the same time after P2. v,1  is the amplitude of the first local minimum 

after P1. M14  = (V mi - v+mi)/vi. 

Locate the first local minimum before P1  and determine the waveform amplitude 

V'_ mi at the same time before P2. V_mi is the amplitude of the first local minimum 

before P1 . M15  = (V' mi - V_mi)/Vi. 

Locate the second local minimum before P1  and determine the waveform ampli-

tude V..m 2 at the same time before P2. V_m2 is the amplitude of the second local 

minimum before P1 . M16  = (V —'m2 - V_m2)/V1. 

Determine the maximum waveform amplitude, m_1 over the region t j  to t - 

0.8(t2  - t1 ). M17  = (Vi - m1)/v1. 

Determine the maximum waveform amplitude, m_2 over the region t2  to t2  - 

0.8(t2  - t1 ). M18  = (v2 - m_2)/V2. 

The area A+  is defined as the sum of differences in waveform amplitude and the 

amplitude of the peak P1  over the region t j  to t1  +(t2 —t1). The area A is defined 

as the sum of differences in waveform amplitude and the amplitude of P1  over the 

region ti to t - (i2 - t1 ). M19  = A-/A+. 

These measurements are combined in a statistical classifier that derives the location 

of glottal pulses in the waveform. The set of glottal pulse times generated by this method 
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are considered in chronological order. The duration between adjacent glottal pulses is 

calculated and converted to Hertz. If the value lies within a limited range, it is taken to 

represent the fundamental frequency at the time located between the two glottal pulses; 

otherwise, the duration between the marks is considered to correspond to an unvoiced 

region of speech. The Fø values are limited to lie between 5011z and 25011z for male 

speech, and between 12011z and 40011z for female speech. 

3.2.4 Parallel processing method (PP) 

The parallel processing approach to FØ extraction proposed by Gold & Rabiner (1969) 

uses multiple peak picking in the time domain. An outline of this method is shown 

in Figure 3.4. The speech signal is initially low-pass filtered to simplify the temporal 

structure of the sampled waveform, as in the feature-based algorithm (FBFT). In order 

to make an unbiased comparison of the algorithms being reviewed here, it is necessary 

to set parameters which are common across algorithms to the same values. Thus, the 

signal is divided into a series of 38.4ms duration analysis frames with successive frames 

being separated by a 6.4ms frame shift, as with the other FDAs. Each analysis frame 

is processed by a 'silence' (low energy) detector. If two or more samples in a frame 

have magnitudes that exceed 120 ADC-units (approximately 50dB signal-to-noise level) 

then the frame is assumed not to be silence, and the frame is processed through six 

simple peak/valley detectors, each examining a different aspect of the waveform. The 

six detectors each generate a pulse train in which the magnitude of each pulse is governed 

by the particular aspect of the waveform being measured. The six measurements made 

by the detectors for the local maximum (peak) and the local minimum (valley) in the 

filtered waveform are: 

M1, magnitude of each local maximum (peak). 

M2, magnitude of each local minimum (valley). 

M3, absolute difference in the amplitude of each peak and the amplitude of the 

previous valley. 

M4, absolute difference in the amplitude of each valley and the amplitude of the 

previous peak. 
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M5, difference in the amplitude of each peak and the amplitude of the previous 

peak (never permitted to be negative - ie. this measure is invalid when the peak 

amplitude is less than the amplitude of the previous peak). 

M6, difference in the amplitude of each valley and the amplitude of the previous 

valley (never permitted to be negative - ie. this measure is invalid when the valley 

amplitude is greater than the amplitude of the previous valley). 

The peak/valley detectors are followed by six individual Fø extractors operating 

in parallel. The Fø extractors work in the following way. After each detection of a 

pulse from the preceding peak/valley detector i, a threshold is set to the magnitude of 

the measurement M1. The threshold remains constant for a blanking interval r (during 

which time no subsequent pulse detection is allowed) followed by a single exponential 

decay (with time constant ). Whenever, the magnitude of an incoming pulse exceeds 

the level of the decay threshold value, it is detected and the process is repeated. The 

estimate of the fundamental period is the duration between each consecutive pair of 

detected pulses. The two parameters, r and /3, are made dependent upon a running 

average of the fundamental period. Finally, an overall estimate of fundamental period 

is computed by using a complex majority-wins type algorithm on the three most recent 

estimates of fundamental period from the six extractors (and estimates derived from 

these). A voiced/unvoiced decision is made on the basis of the degree of agreement 

between the six FO extractors. If four or more agree, the frame being analysed is 

classified as voiced. 

This algorithm is somewhat restricted by the fixed analysis frame length of 38.4ms 

in that at least two fundamental periods must reside within this duration for the FØ 

extractors to function adequately. For the frame length specified, the lowest fundamental 

frequency which the algorithm can be expected to extract reliably is approximately 5211z. 

3.2.5 Integrated Fø tracking algorithm (IFTA) 

Secrest & Doddington (1983) propose that the linear prediction coding (LPC) (Markel 

& Gray, 1976) residual error signal mainly contains excitation information and therefore 

should theoretically provide the best signal from which to extract estimates of funda- 
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mental frequency. Inadequacies of the LPC model cause high frequency noise to be in-

troduced into the residual signal, thus complicating the temporal structure of the signal 

and hindering Fø estimation. If the residual signal is low-pass filtered in an attempt to 

overcome this problem, then high frequency energy present in unvoiced regions of speech 

are also removed, rendering the signal suboptimal for making decisions as to whether or 

not the speech is voiced or unvoiced. Secrest & Doddington note that the first reflection 

coefficient of the LPC, K1, is correlated with the high/low frequency energy in the signal 

and propose a single pole de-emphasis filter, F(z) = 1/(1 - Kiz), to low-pass filter the 

residual signal in voiced (low frequency energy) regions of speech and high-pass filter it 

in unvoiced (high frequency energy) regions. 

Estimates of FØ are made from the de-emphasised residual error signal by quantifying 

the degree of similarity between two adjacent, non-overlapping sections. The signal is 

analysed frame-by-frame at intervals of 6.4ms (for compatibility with the other FDAs 

reviewed here). Each frame contains a set of samples, 8N = { s(i) I i E 1,. . ., N}, which 

is divided into two consecutive sections each containing a variable number of samples, n. 

	

Xn 	= {x(i) = s(i) I i E 1,. . . , n} 

	

yn 	= {y(i) 	s(i + n) j  i E 1,. . ., n} 	 (3.8) 

Candidate values of the fundamental period are obtained by locating peaks in the 

normalised crosscorrelation coefficient given by, 

x(j).y(j) 
- 	j=1 
- 	I 	 , 	fl E Nmin,. ..,Nmaz 	(3.9) 

jx(j)2.y(j)2 
j=1 	j=1  

where Nmsn  and Nmax  are the minimum and maximum expected fundamental period 

values (in number of samples) for a given speaker. 

The amplitude of r,(n) quantifies the degree of similarity between x,, and y  inde-

pendently of variations in the signal energy. If Xr, and yn  are in phase and have similar 

temporal structures, then r(n) tends towards +1; and if x and Yn  are out of phase 

or have different temporal structures, then r,(n) tends towards —1. 

V. 
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Secrest & Doddington propose an algorithm to determine the optimal fundamental 

period from the set of candidate values. The approach requires several frames of data to 

be analysed before a decision is made upon the optimal period and voicing classification 

of a frame. Every fundamental period candidate of a frame is compared with each 

candidate obtained for the previous frame. A penalty score is made for each comparison. 

The score penalises large deviations in fundamental period from one frame to the next, 

low values of r,(n) during voiced regions of speech and high values of r,(n) during 

unvoiced regions of speech, and uses a measure of the difference between the spectra 

of the two consecutive frames to penalise changes in the voicing classification when the 

spectrum is relatively unaltered from one frame to the next. For each candidate in a 

frame, there is a candidate in the previous frame for which this penalty score is minimal. 

A trajectory is formed by back-tracking from each candidate in a frame to the optimal 

candidate of the previous frame over a series of frames. The penalty score is cumulated 

at each step in the trajectory. The candidate selected as the optimal fundamental period 

for a frame is the one associated with the trajectory which has the minimum cumulative 

penalty score. 

3.2.6 Super resolution Fø determinator (SRFD) 

Medan et al. (1991) propose an algorithm which also uses a normalised crosscorrelation 

coefficient to quantify the degree of similarity between two adjacent, non-overlapping 

sections, as in the integrated FØ tracking algorithm (IFTA). The speech signal is initially 

low-pass filtered to simplify the temporal structure of the sampled waveform, as in the 

feature-based algorithm (FBFT) and the parallel processing method (PP). 

Each frame of speech data is initially processed by a 'silence' (low energy) detector. 

The silence detector used in this algorithm differs somewhat from the silence detector 

used in the parallel processing method, which is not robust to d.c. offset. The mini-

mum and maximum values of the sample sets XNm,,  and YN,,.,,.  (see Equation 3.8) are 

determined. If the sum of their absolute values is less than some preset threshold (say, 

240 ADC-units to be consistent with the 50dB signal-to-noise level used in PP) for ei-

ther set of samples, then the current frame under analysis is classified as silence and no 

further analysis is done on the frame. 
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If the frame of data is not classified as silence, then candidate values for the funda-

mental period (in number of samples) are sought from values of n within the range Nm jn  

to Nmox  by using the normalised crosscorrelation coefficient pz,y(n) defined in Equa-

tion 3.10. This coefficient is determined for values of n in steps of a decimation factor L 

(a positive integer excluding zero). 

In/LI 
x(jL).y(jL) 

	

pxy(Th) 
= 	J=1 	

(3.10) 

	

\J 

In/L 	In/Li 
x(jL)2. 

	

j=1 	 j=1 

	

= 	r,(n) 	if L = 1 	 (3.11) 

{nNmin+i.LIiE0,1,...;Nmin :5n<Nma } 

The decimation factor L is used to reduce the computational load of the algorithm. If 

L is set too low, then calculation of the normalised crosscorrelation coefficient will be 

computationally expensive and time consuming. If L is set too high, then candidate 

values for the fundamental period of the frame will be determined with less accuracy. 

As a compromise, L is set to four for this investigation (equivalent to down-sampling the 

speech waveform to 5kHz). 

Values of p,y( fl) are only valid if there are four or more zero-crossings in the sample 

set s, = {s(i) I i E 1,. . . , 2n}. This ensures that at least two oscillations occur within 

the section of data 82n•  If there are less than two oscillations in the data, such as for 

low frequency nasal segments, then the value of pr,y(fl)  will be high for low values of 

n. This would erroneously promote fundamental period candidates which correspond to 

high frequencies. 

Candidate values of the fundamental period are obtained by locating peaks in the 

normalised crosscorrelation coefficient for which the value of px,y(n) exceeds a specified 

threshold, T3,/d. The threshold is adaptive and is dependent upon the voicing classifi-

cation of the previous frame and three empirically determined values. If the previously 

analysed frame is classified as 'unvoiced' or as 'silence' (which is the initial state) then 

the threshold is set to 0.88. Otherwise, the previous frame must have been classified as 

'voiced' and the threshold is set equal to 0.85 times the value of p(n'); where n'0  is the 
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fundamental period estimate (in number of samples) of the previous frame, and 

is the set of normalised crosscorrelation coefficients calculated for the previous frame. 

This product is not permitted to drop below 0.75. 

0.88 	 if previous frame 'unvoiced' or 'silent' 
Tarj d = 	 (3.12) 

max(0.75, 0.85p(n)) if previous frame 'voiced' 

If no candidates for the fundamental period are found, the frame is classified as 

'unvoiced'. Otherwise, the frame is assumed to contain 'voiced' speech. In order to find 

the optimal fundamental period from the set of candidate values, the candidates are 

listed in order of increasing fundamental period. The candidate at the end of this list 

represents a fundamental period of nm, and the m'tli candidate represents a period nm . 

A second coefficient, q(nm), is calculated for each candidate. q(nm) is the normalised 

crosscorrelation coefficient between two sections of length nm spaced n,, apart. 

nm 

s(j).s(j+nM  +nm ) 

q(nm) 	2=1 	
(3.13) 

s(j)2.Es(j+nM +nrn )2  

The first coefficient q(n1 ) is then assumed to be the optimal value. If a subsequent 

q(nm ) exceeds this optimal value when multiplied by 0.77 (an empirically determined 

value) then it is in turn assumed to be the optimal value. The candidate for which 

q(nm ) is believed to be the optimal value forms the estimate for the fundamental period, 

no, of the frame being analysed. 

Finally the algorithm obtains an estimate of the fundamental period with a fine 

resolution. A more accurate fundamental period estimate for the frame is determined by 

calculating r(n) (Equation 3.9) for n in the region no  - L to no  + L. The location of 

the maximum within this range corresponds to a more accurate value of the fundamental 

period. This final estimate is then refined to eliminate the effect of time quantisation 

errors, by using an interpolation method which is described in Medan et al. (1991). 
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3.2.7 FDA summary 

Methods of determining the fundamental frequency of a speech waveform operate either 

on a frequency domain representation, a time domain representation or on a function 

of correlation. Time domain and correlation based algorithms make use of filtering 

techniques in an attempt to enhance performance, whereas the frequency based algo-

rithms use the raw speech waveform. The cepstrum-based (CFD) and harmonic product 

spectrum (HPS) algorithms operate on a frequency domain representation and differ 

considerably in the way they estimate the fundamental frequency of a signal from its 

spectral characteristics. The feature-based (FBFT) and parallel processing (PP) meth-

ods operate on a time domain representation. These two methods take a number of mea-

surements directly from the temporal structure of the sampled speech waveform. This 

has the advantage of being less computationally expensive than the frequency domain 

based algorithms. The integrated Fø tracking algorithm (IFTA) and the super resolu-

tion FO determinator (SRFD) use a normalised crosscorrelation function. Although the 

underlying function is similar for these two algorithms, the way in which they determine 

fundamental period estimates from the correlation function differs considerably. 

The most reliable and accurate method of determining the fundamental frequency 

of a speech waveform is sought in order to minimise the number of errors, which occur 

during Fø extraction, propagating into the prosodic analysis. A detailed performance 

evaluation of F0 determination algorithms is described in Section 7.2. 

3.3 Syllabification 

The concept of a syllable revolves round the perceptual prominence of speech sounds in 

sequence (ie. prominence at a segmental level). The number of syllables in a sequence 

of sounds is judged by a listener on the basis of the number of peaks of prominence 

perceived. In general, a peak of prominence is perceived where a speech sound carries 

greater sonority relative to its nearest neighbours. The production of vowels usually 

involves less constriction of the vocal tract than in the production of consonants. Vowels, 

therefore, carry greater sonority and constitute the nucleus of the syllables in which they 

occur. However, relatively prominent consonants can also take on the nucleus of a syllable 
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containing no vowels. The behaviour of the speech sounds between syllable nuclei is of no 

consequence to the number of perceived prominences. The boundaries between syllables 

are therefore ill-defined. 

Each syllable in an utterance holds the potential of being prominent at a supraseg-

mental level. Hence, the automatic identification of syllables in connected speech forms 

a part of prosodic analysis. Several schemes have been devised to partition the speech 

signal into syllable-sized units. 

Mermeistein (1975) uses a loudness function as a measure of sonority across phones. 

The loudness function is a time-smoothed and frequency-weighted (-12dB/octave outside 

the range 50011z-4kHz) summation of a speech signal's short-time power spectrum. A 

"convex-hull" algorithm (ibid.) is employed to locate dips in the loudness function, which 

form potential syllable unit boundaries. The algorithm is dependent upon a significance 

parameter which eliminates small dips (below 2dB) in the loudness function as potential 

boundaries, and a minimum syllable duration of 80ms is imposed. A 90.5% syllable 

detection rate is reported (6.9% syllables missed and 2.6% extra syllables). 

Lea (1980) locates syllable nuclei by seeking dips (4 or 5dB) in a low-band energy 

contour (summation of energy in the frequency band 60Hz-3kHz). The energy dips are 

assumed to be associated with pre-vocalic and post-vocalic consonants. The high energy 

region between dips is considered to be a syllable nucleus if it consists of at least 30ms 

of voiced speech. The algorithm is reported to identify 90% of syllable nuclei (with 1% 

extra and 9% missing). 

The automatic syllabification of isolated words is conducted by Aull & Zue (1985). 

Speech is initially segmented into broad phonetic classes - sonorants (vowels, nasals, liq-

uids and glides), unvoiced obstruents, voiced obstruents, voice bars and silence. Segments 

classified as sonorant are further processed to locate intervocalic nasals, /1/ and /r/, and 

vowel-vowel transitions. The division of sonorant segments uses spectral weighting func-

tions across selected frequencies which are aimed at capturing formant movements. All 

undivided sonorant segments and each vocalic region of the divided sonorant segments 

are taken as syllable nuclei. A performance evaluation of this syllabification scheme is 

not reported. 

Waibel (1988) defines the syllable boundary, for his purposes, as the onset of the 
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vocalic nucleus and proposes two algorithms to determine such boundaries. He reports 

a rule-based algorithm which yields a 90-96% syllable detection and a "Zapdash" based 

algorithm which achieves 90-93% syllable detection. Waibel states, however, that these 

are results of an informal experiment and gives no indication of the criteria used to 

syllabify the test data by hand. 

The syllabification algorithms cited above are used in speech recognition applications 

to aid lexical access. Reliable information about the segmental content of an utterance 

is not available to the syllabification algorithms. In fact, additional information such as 

syllable structure is needed in speech recognition applications to aid lexical access because 

reliable information about the segmental content of an utterance is not available. In the 

application of prosodic analysis for computer aided pronunciation teaching, however, the 

orthographic transcript of an utterance is known because a foreign language learner is 

asked to read a given sentence in the course material. Reliable segmental information is 

therefore available. A syllabification algorithm is described in Section 8.1.1 which uses 

phone boundary and label information in conjunction with a low-band energy contour. 

3.4 	The composite structure of P0 contours 

The raw fundamental frequency contour of a speech waveform does not form an acoustic-

phonetic representation of the utterance intonation. It is assumed that a raw Fø contour 

constitutes four superimposed components. 

The intonation pattern of a sentence uttered by different speakers produces FØ 

contours with different fundamental frequency ranges despite the fact that the 

underlying intonation pattern is identical. Thus, an FØ trajectory in different 

fundamental frequency ranges from different speakers can correspond to the same 

phonological pitch accent. This speaker-dependent component of an Fø contour 

is a consequence of the anatomical and physiological differences of talkers. 

Macroprosodic variations in an Fø contour reflect a speaker's choice of intonation 

pattern for an utterance. The automatic prosodic analysis of speech alms to isolate 

this component in order to locate and identify pitch accents. 
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Microprosodic variations are imposed on an FØ contour by the segmental content 

of an utterance (Silverman, 1987). Silverman argues that microprosodic variations 

of fundamental frequency' occur during and in the immediate vicinity of phonetic 

segments, and that these variations may be greater thanmacroprosodic FØ vari-

ations. 

An FØ contour (produced by any fundamental frequency determination algorithm) 

can be expected to contain values which are inaccurate. An FØ contour also con-

sists of cycle-to-cycle jitter (Fø perturbations) generated at the vocal folds (Huller, 

1985). Methods to reduce errors resulting from the automatic determination of 

fundamental frequency and the smoothing of Fø perturbations are investigated in 

Section 7.3. 

Two schemes to compensate for between-speaker differences in fundamental frequency 

range are reported as relatively successful in a review of normalisation methodologies by 

Rose (1987). 

The first scheme, fraction of range normalisation, involves expressing an observed 

Fø value as a fraction of the difference between range-defining FØ values, 

- 	- FO norm 
- 

Minput  FOmin 
 FØmar - Fømin 	

(3.14) 

This scheme has the disadvantage that calculating satisfactory range-defining parameters 

(that are assumed to be equivalent between speakers) is difficult without first completing 

the normalisation. 

In the second scheme, z-transform normalisation, an observed FØ value is expressed 

as a multiple of a measure of dispersion relative to the mean fundamental frequency. 

The normalised FØ value is given by, 

- 
FØnorm =

Min 	FO 	
(3.15) 

aFØ 

4Silverman (1987) refers to microprosody as segmental perturbations in order to emphasis that this 
component of an Fø contour can influence the perceived naturalness of synthesised speech. He argues 
that the term rnicroprosody misleadingly implies that this component is smaller than suprasegmental 
(macroprosodic) variations. Whilst this thesis acknowledges the importance of rnicroprosody in the 
perceived naturalness of synthesised speech, the term segmental perturbations is not used in order to 
avoid confusion with Fø perturbations related to cycle-to-cycle jitter. 



CHAPTER 3. ACOUSTIC-PROSODIC ANALYSIS: AN OVERVIEW 	 59 

where FO is the long term mean fundamental frequency for a given speaker, and aFØ is 

the long term population standard deviation. Thus the normalised FØ contour is centred 

around the zero with each unit representing a frequency which is one population standard 

deviation from the mean. This scheme has the advantage of reflecting a relatively stable 

statistical distribution from a large number of fundamental frequency values, rather than 

just the two range-defining parameters as is the case with fraction of range normalisation. 

The stylisation of an Fø contour alms to isolate the macroprosodic component by re-

moving the microprosodic component for a given speaker, under the assumption that no 

FØ errors exist because of malfunctions in an FDA. A requirement of the Fø stylisation 

is to ensure that any microprosodic Fø variations which are larger than macroprosodic 

FØ variations are prevented from being confused as pitch accents, and that any macro-

prosodic FØ variations which are smaller than microprosodic Fø variations are not 

removed. 

A number of algorithms have been proposed to automatically stylise an FØ contour 

as a sequence of piece-wise straight lines (Scheffers, 1988), quadratic spline curves (Hirst 

& Espesser, 1993) or rise-fall-connection elements (Taylor & Isard, 1992; Taylor, 1993) 

where the rise elements and fall elements are modelled by a polynomial function, and the 

connection element is a straight line. FO contours which are stylised as a sequence of 

straight lines by hand are used in perceptual studies of the intonation of several European 

languages, including Dutch (Cohen & 't Hart, 1967; 't Hart & Cohen, 1973), British 

English (de Pijper, 1983) and French (Beaugendre et al., 1992). It is argued in these 

studies that a sequence of straight lines produces a "close-copy" stylisation such that 

speech resynthesised using the stylised FO contours cannot be distinguished perceptually 

from speech resynthesised using the original Fø contours. A comparative investigation 

into the use of straight line and parabola stylisation is reported by 't Hart (1991). 

In the generation of an acoustic-phonetic representation of prosodic aspects of speech 

for computer aided pronunciation teaching, the stylisation of an FØ contour aims to 

remove the microprosodic component of the contour. It is therefore immaterial as to 

whether or not the stylisation is based on straight lines or on polynominal functions. 

Linear piece-wise stylisation is employed in Section 8.2.1. 
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3.5 	Automatic transcription of prosodic structure 

Algorithms to extract prosodic features from the speech waveform have previously been 

developed for speech recognition applications. The motivation behind the development 

of such algorithms has been the notion of islands of reliability (Lea, 1980; Aull & Zue, 

1985) where phonetic information is assumed to be more robust. The locations of such 

islands of reliability are provided by prominent syllables. Stress information is also 

required to aid lexical access. A review of the use of prosodic structure in automatic 

speech recognition systems is presented by Vaissière (1988). 

The need to automatically extract prosodic features from a speech waveform is moti-

vated by requirements other than speech recognition and computer aided pronunciation 

teaching applications. It is also potentially valuable for linguistic studies of corpora which 

are too large to analyse consistently by hand. The automatic transcription of prosodic 

aspects of speech, if designed on a cogent linguistic basis, is a useful tool for developing a 

better understanding of the relation between prosodic and syntactic structures and their 

phonetic realisation. 

Lea (1974; 1980) describes an algorithm to annotate syllables as either prominent 

or non-prominent. The algorithm partitions an utterance into syntactic constituents on 

the basis of fluctuations in its Fø contour. Constituent boundaries are placed both 

at the minimum point in a valley of the FØ contour for which there is at least a 7% 

change in Fø at both sides, and at periods of unvoiced speech greater than 350ms. The 

FØ contour within each constituent is assumed to initially rise to some maximal point, 

then gradually fall. A straight threshold line (on a logarithmic scale) is taken from the 

initial peak in Fø to the end of the final fall in the constituent. Automatically located 

syllable nuclei (see Section 3.3) are annotated as prominent if they are associated with 

the initial Fø rise of a constituent, or if the local Fø rises above the threshold line. This 

algorithm is dependent on the performance of the FØ determination algorithm and is 

prone to error because of the unreliable automatically identified location of constituent 

boundaries. Lea's algorithm is reported to annotate 85% of syllables as prominent or 

non-prominent in agreement with human perception. 

The algorithm proposed by Lea does not use duration, energy or vowel quality to 

locate prominent syllables. It terms of the definition of prominence outlined in Sec- 
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tion 2.2.4, this algorithm locates pitch accents which are associated with prominent 

syllables, but it does not locate prominent syllables per se. 

Aull & Zue (1985) propose an algorithm to determine lexical stress from the acous-

tic waveform for multi-syllabic isolated words. Syllables are annotated as prominent, 

non-prominent or reduced with a reported 87% accuracy. A vector of five normalised 

features is calculated for each syllable. The duration of the syllable nucleus (adjusted for 

pre-pausal lengthening according to phonetic context); the logarithmic average syllable 

energy in the frequency bands 400Hz-5.OkHz and 1.2-3.3kHz; the peak fundamental fre-

quency; and a measure of spectral stability are used as features. Syllables bearing stress 

are believed to have spectrally stable nuclei (except diphthongs). A reference vector 

is formed from the maximum value of each vector across the syllables of a word. The 

syllable with the minimum Euclidean distance from its feature vector to the reference 

vector is designated as prominent. The distinction between non-prominent and reduced 

syllables is made using the duration and energy features alone. The Euclidean distance 

provides a measure of the degree of prominence of a syllable relative to other syllables 

in a word. This can be used to provide second candidates for the prominent syllables in 

multi-syllabic words (secondary stress). 

The use of a Bayesian classifier (Appendix B) to assign a probability of stressed- 

ness to syllables in connected speech, rather than a binary decision (prominent or non-

prominent) is described by Waibel (1988). In evaluating the classifier, however, any 

syllable with a higher probability of being prominent than non-prominent is assigned 

as prominent, otherwise it is assigned as non-prominent. A vector of acoustic features 

is used as the input to the classifier. There are a number of possible acoustic features 

which can be selected to form the input vector for each syllable. 

Integral of the peak-to-peak amplitude over the vocalic portion of the syllable 

(ptpint). 

Duration of the vocalic portion of the syllable (sondur). 

Duration of the entire syllable from the onset of the initial vowel to the beginning 

of the next syllable (syldurl). 

9 Duration from the end of the initial vowel of the previous syllable to the end of 
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the initial vowel in the syllable concerned (syldur2). 

Maximum FØ during the syllable (FOrnax). 

Average FØ during the syllable (FOave). 

Offset in F(?) from the syllable concerned to the following syllable (FOoffs). 

Average spectral change (Aull & Zue, 1985) over the syllable nucleus (spchave). 

Waibel uses a training database of connected speech consisting of syllables assigned 

as either prominent (primary and secondary stress) or non-prominent from their lexi-

cal assignment to investigate the correlation of the acoustic features with lexical stress. 

This approach differs from the need for prosodic analysis in computer aided pronunci-

ation teaching proposed in Chapter 2 in that not all lexical stress placements appear 

as sentential stress in phrases of connected speech. Waibel clearly stipulates that the 

stress detection algorithm he proposes, "ignores sentential stress, emphasis, phrase level 

phenomena, and rhythmic/syntactic/semantic phenomena" (ibid, pp.108). 

Bayesian classification is initially performed with an input vector containing just one 

of the acoustic features. Waibel's experimental results show that for this unidimensional 

classifier, sorzdur and FOmax generate the least number of classification errors of all the 

duration and fundamental frequency features, respectively. However, in Waibel's exper-

iments using a Bayesian classifier with a multi-feature vector, he does not report the 

combination of ptpint, sondur, FOmax and spchave as a feature vector. A recalculation 

of Waibel's performance evaluation was conducted, as part of this thesis, to determine 

the performance of the Bayesian classifier under an open test (by excluding the database 

used in training the Bayesian classifier). The recalculation shows the Bayesian classifier, 

at best, to achieve 86.6% correct classification by using the features, ptpint, syldurl, 

FOmax and spchave. The use of any additional features reduces the percentage of cor-

rect classification. The next best performance of 86.4% is achieved by using the features 

ptpint, syldurl , and spchave. This is contrary to Waibel's conclusion which is based on 

an evaluation which includes the training database (closed test). There is no evidence 

to support that the difference in performance of just five syllables (out of 2368) is statis-

tically significant. Therefore, the introduction of the FØ feature has little effect on the 
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classifier's performance. This is surprising given that so much literature (Section 3.1) has 

indicated that fundamental frequency and the placement of pitch accents are correlated 

with stress. It is possible that the features FOmax, FOave and FOoffs do not capture 

the particular aspects of an FØ contour which are associated with pitch accents and 

subsequently with the location of prominent syllables. 

The features that are selected to give the above 86.6% correct classification rate de-

scribe only the acoustic parameters for the syllable in question. The variation of these 

parameters relative to neighbouring syllables is not included as an input parameter to 

the classifier. This exclusion cannot be beneficial to the classifier, given that a syllable's 

prominence is relative to its neighbours by definition. (The prominence of syllable in iso-

lation has no meaning.) In a system designed to extract prosodic information in French, 

Vaissière (1989) uses acoustic parameters which also describe parameter variations from 

one syllable to the next. 

A move towards linguistic knowledge-based rules to locate prominent syllables is 

made by Hieronymus (1989; 1991). The acoustic parameters, duration, energy, and 

fundamental frequency are processed in parallel to determine their unidimensional con- 

tribution to the perceived stress of each vowel in an utterance. A measure of vowel 

quality or spectral stability is not used and a syllabification stage is not included. It is 

assumed that every vowel in an utterance forms the nucleus of a syllable and that no 

syllabic consonants form the nucleus of a syllable. The analysis system proposed by Hi-

eronymus manipulates the duration, energy and FO acoustic parameters in the following 

way. 

Duration: The duration of the final vowel preceding either a section of speech labelled 

as a pause or the end of an utterance, is reduced by a fixed factor (0.6) to compensate 

for pre-pausal lengthening. Each vowel is classed on a broad phonetic basis as either a 

short vowel, a long vowel or a diphthong, and its duration is regarded as contributing to 

the prominence of vowel if it is greater than an a priori threshold duration respective of 

vowel-type (short, long or diphthong). A limit is imposed on the percentage of the vowels 

in the utterance which are marked as potentially prominent on account of duration. 

Energy: The maximum low-band energy in each vowel is used as a measure of its 

intensity. The average of the two highest vowel intensities in the utterance is used as a 
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reference. A vowel with an intensity within 7dB of the reference is regarded as having 

sufficient energy to contribute to its perceived prominence. Vowels with an intensity 

more than 20dB from the reference are taken to be definitely non-prominent, regardless 

of the other acoustic parameters. 

Fundamental frequency: The F0 contour is divided into sections, one section for 

each vowel. The FO section associated with a vowel Vo  is a region of continuously voiced 

speech which runs from the end of the first unvoiced consonant preceding the vowel to 

the beginning of the first unvoiced consonant succeeding the vowel. If another vowel 

V_1  is encounted between the preceding unvoiced consonant and vowel V0, then the Fø 

section starts from the mid-point between the end of vowel V_ 1  and the beginning of 

vowel V0. Similarly, if another vowel V 1  is encounted between the succeeding unvoiced 

consonant and vowel V0, then the Fø section ends at the mid-point between the end of 

vowel Vo  and the beginning of vowel V 1. 

The peak Fø value and the FØ values at the beginning and at the end of each section 

are determined. The initial and final two FØ estimates are ignored during this process 

because they can be highly influenced by the potentially unstable behaviour of the vocal 

folds at the onset and offset of voicing. The overall slope is calculated from the locations 

and values of the FØ readings at the beginning and the end of each section. Each FØ 

section is categorised as a 'fail', 'rise', or 'level' on the basis of the gradient of this slope. 

'fall' if gradient < —100Hz/second 

Slope-type = 	'rise' if gradient> 10011z/second 	 (3.16) 

'level' otherwise 

Each vowel is classified as either 'pitch accented' ("PA") or 'unaccented' ("UA") 

using the decision filter illustrated in Figure 3.5. The decision filter examines three 

consecutive FØ sections for each vowel - the FØ sections associated with the vowel 

and its left and right contexts. The first and last Fø section of an utterance do not 

have a left and a right context respectively. These end points are represented by 'NA' 

(not available). Figure 3.5 shows all three-way combinations of fall, rise, level and 'NA' 

which can arise and the corresponding output of the decision filter. 
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Figure 3.5: Pitch accent decision filter 
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A vowel associated with a level Fø section is classified as pitch accented if, for 

example, its left context is either falling or level and there is a step up of at least Lf 

(Hz)5  from the end of the left context to the beginning of the level FØ section, and if the 

right context is a fall and the end of the level FØ section is not less than the beginning 

of the right context. If, however, the step up from the end of the falling or level left 

context to the beginning of the level Fø section is less than zf (Hz) or if there is a step 

up from the end of the Fø section to the beginning of the right context, then the vowel 

is classified as unaccented. 

Similarly, a vowel associated with a falling Fø section is classified as pitch accented 

if, for example, its left context is a rise and the beginning of the falling FØ section is 

no more than if (Hz) less than the end of the rising left context (the beginning of the 

falling FØ section can be any amount higher than the end of the rising left context). 

The right context is ignored in cases of a falling Fø section. If, however, the step down 

from the end of the rising left context to the beginning of the failing FØ section is more 

than zf (Hz) then the vowel is classified as unaccented. 

If a vowel is associated with a falling FØ section and the left context is not available 

(because the first vowel of an utterance is being classified) then the vowel is always 

classified as unaccented when it is followed by a rise. 

The classification of a vowel as either pitch accented or unaccented can be determined 

from Figure 3.5 for any combination of fall, rise, level and 'NA' in the Fø sections 

associated with a vowel and its left and right contexts. 

The pitch accent decision filter developed by Hieronymus has a number of advantages 

over the Fø features used in the Bayesian classifier technique. Firstly, judgements of 

vowel accentuation are based on trajectories of Fø in and around the vowel, rather than 

being based on static, isolated Fø measurements. Secondly, listeners classify syllables as 

accented if a pitch discontinuity is perceived. The pitch accent decision filter is designed 

to capture such discontinuities. This technique of locating pitch accents is therefore used 

in the system described in Section 8.2.2. 

Prominence judgements for vowels are based on combining the unidimensional con-

tribution to the perceived stress of each vowel obtained from the analyses of duration, 

51n the implementation of the pitch accent decision filter, if  is set to 9Hz. 
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energy and fundamental frequency outlined above. A vowel in an utterance is categorised 

as prominent if at least two-out-of-three of the acoustic parameters are indicative of stress 

in an equal-weight voting procedure. Only the energy parameter is given the power to 

exercise veto against a combined vote for prominence by the duration parameter and an 

Fø 'pitch accented' label. Hieronymus (1991) reports that this procedure agrees with 

77.2% of human judgements of vowel prominence in connected speech. 

Wightman & Ostendorf (1991; 1992) focus on the automatic recognition of prosodic 

boundaries and intonational features as well as determining the relative prominence 

of syllables. Linguistically motivated features are used to automatically determine the 

break index between adjacent words and to label each syllable as one of four categories - 

'default', pitch accented syllable, phrase-final syllable with boundary tone, and boundary 

tone also perceived as pitch accented. The features used are: 

Word dependent information: The lexical stress of a syllable; and a flag indicating 

the location of word-final syllables. The phonetic transcription of an utterance is de-

termined by an automatic segmentation algorithm given an orthographic transcription 

of the sentence. This provides word boundary information which is combined with a 

lexicon to determine the lexical stress of syllables. This algorithm therefore uses the 

information which Waibel's algorithm tries to determine, as one of its input features. 

Duration: The duration of a pause (if one exists) at the end of a word; the average 

Zmean  duration measure of phones in the rhyme of the final syllable in a word; and the 

difference in the average ZmC0fl  duration measure for the syllable rhyme and the syllable 

onset (see Chapter 4 for details of syllable structure and z-score duration measures). 

Energy: The mean energy in a syllable. The energy at the end of an utterance is often 

observed to reduce simply because the speaker is 'running out of breath'. It therefore 

has the potential to being used as a cue for the end of a phrase. 

Fundamental frequency: The initial, final, maximum, minimum and average FØ val- 
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ues are determined for each syllable i. The following relative values are calculated: 

Fømoz(i)/Føaverage(j + 1) 

Føma,(i)/FØmax(j - 1) 

FØmax(i)/Føaverage  (i) 

FØmin  (2)/Føaverage  (i) 

Føisnai (i)/Føaverage  (sentence) 

The shape of the Fø contour during the course of a syllable is described as either a rise, 

a fail, a rise-fall or a fall-rise by comparing the initial, average (mid) and final FØ values. 

These features form the input to a seven-state (one state for each level of break 

index) continuous Hidden Markov Model (11MM) and to a four state (one state for each 

syllable category) discrete 11MM. The HMMs are fully connected in the absence of a 

theory either on the interaction between break indices or on the sequences of syllable 

categories. In evaluating this technique, Wightman & Ostendorf report that 77% of 

boundary tone are correctly detected with a 3% false detection rate, and that 86% of 

pitch accents are correctly detected with a 14% false detection rate. 

3.6 Summary 

The acoustic parameters which are identified by researchers as correlates of prosodic 

phenomena are duration, energy, fundamental frequency, and vowel quality. There is 

relatively little consideration of the effects of vowel quality on the perception of (lexical 

or sentential) stress compared with the extensive research relating duration, energy and 

F0 with stress. 

Studies of the acoustic correlates of stress are not consistent in the features they 

measure. 'Duration' is used by different researchers to refer to the duration of the 

vocalic portion of a syllable (Fry, 1955; Fry, 1958; Waibel, 1988) and to the duration of 

an entire syllable (Lieberman, 1960; Adams & Munro, 1978) with little consideration to 

the definition of a syllable (neither a phonetic definition nor a phonological definition). 

'Energy' is used to refer to the peak amplitude in a syllable (Fry, 1955; Lieberman, 
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1960), to the amount of fall from a peak in the amplitude envelope of a syllable (Adams 

& Munro, 1978), to the integral of the peak-to-peak amplitude over the vocalic portion of 

a syllable (Waibel, 1988), to the average low-band syllable energy (Aull & Zue, 1985), and 

to the maximum low-band vowel energy (Hieronymus, 1989; Hieronymus & Williams, 

1991). 'Fundamental frequency' is used as an acoustic correlate of stress. However, 

fundamental frequency is principally related to the characteristic melody of an utterance. 

Measures of FØ in a syllable are used as acoustic correlates of stress with little or no 

consideration of the intonational role of fundamental frequency. This approach is only 

viable in identifying the prominent syllables of isolated words. Fundamental frequency 

can be used as a secondary cue to the location of prominent syllables in connected speech 

because pitch accents are observed to fall on prominent syllables. 

The fundamental frequency of a speech waveform must be determined as an initial 

process for prosodic analysis. The functionaiities of a selection of FØ determination 

algorithms are described in detail. The performance of FDAs must be considered with 

respect to their application in systems of prosodic analysis and errors arising from the 

malfunctions of FDAs must be prevented from propagating into the subsequent prosodic 

analysis of speech. 

Many of the duration and energy features are related to the definition of a sylla-

ble. Furthermore, prosodic aspects of speech are described in a syllabic domain. The 

automatic syllabification of speech is therefore an important part of prosodic analysis. 

Algorithms devised to partition a speech signal into syllable-sized units use measures of 

sonority based on low-band energy and use spectral characteristics to locate boundaries 

between adjacent sonorants. The reviewed algorithms are applied to speech recognition 

systems. Reliable information about the segmental content of an utterance is therefore 

not available to them. In the application of prosodic analysis for computer aided pronun-

ciation teaching, however, reliable segmental information is available and may be used 

to enhance the syllabification process. 

An emphasis is placed on the fact that the acoustic parameters which are associated 

with prosodic aspects of speech are also influenced by non-prosodic aspects of speech and 

that they interact in the manifestation of stress. It is highlighted that the FO contour 

of an utterance is affected by the talker's anatomy and physiology (speaker-dependent 
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FØ range), the segmental content of an utterance (microprosodic variations), and cycle-

to-cycle jitter (FO perturbation) together with errors involved in its determination from 

the speech waveform. 

The reviewed algorithms for prosodic analysis have not addressed the problems of de-

termining the fundamental frequency of speech and have not comprehensively addressed 

the need to normalise for non-prosodic variations in the acoustic parameters which are 

used in the prosodic analysis. The system of prosodic analysis described in this thesis 

addresses the problems related to the determination of the fundamental frequency of 

speech and focuses on techniques of normalising for variations in acoustic parameters 

which are due to non-prosodic aspects of speech. 



Chapter 4 

Duration measures 

The acoustic parameters used in the analysis of prosodic aspects of speech must be 

extracted from a speech waveform. There are four acoustic parameters which are cor-

related with prosodic phenomena - duration, energy, vowel quality and fundamental 

frequency. This Chapter and Chapters 5, 6 & 7 concentrate on the extraction of each of 

these acoustic parameters from a speech signal. 

The domain of phonetic units whose duration are to be determined as optimal cor-

relates of stress and normalisation techniques applied to them are investigated in this 

Chapter. The phonetic units investigated are related to syllable structure. The nor-

malisation techniques aim to compensate for variations in duration which are due to 

non-prosodic aspects of speech. The underlying principle of these investigations is to 

normalise the acoustic parameters for non-prosodic aspects of speech such that the pro-

cessed acoustic parameters can then be combined to form a prosodic description of 

speech. 

4.1 Database description 

Two databases of hand labelled phonetically balanced sentences are used in the exper-

imental investigations of duration measures (presented in this Chapter) and of energy 

measures and vowel quality measures (presented in Chapters 5 & 6 respectively). The 

first database (referred to as the training data) consists of 200 sentences read by a male 

speaker of British English (South-eastern dialect) with a non-pathological voice. The 

read sentences are recorded in an anechoic studio with a close-talking microphone and a 

71 
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16-bit analogue-to-digital converter sampling at 20kHz. The second database (referred 

to as the test data) consists of 460 sentences read by the same speaker under the same 

conditions. The speaker was unaware during recording that the utterances would be 

used in a study of prosodic analysis. 

The training data sentences are a set of 200 'phonetically rich' sentences designed so 

as to provide almost total coverage of permissible demi-syllables in English (Layer et al., 

1988). The test data sentences are a set of 460 'phonetically compact' sentences designed 

so as to provide as complete a coverage of phoneme pairs as possible (Lamel et al., 1986). 

These 460 sentences are the same as the anglicised TIMIT sentences used in SCRIBE 

(Spoken Corpus Recordings In British English). All the speech data is phonetically 

transcribed by phoneticians using the criteria proposed by Layer et al. (1989). 

Phones are grouped into syllabic units automatically using the algorithm described 

in Section 8.1 and the perceived prominence of each syllable is transcribed by hand. The 

number of degrees of stress that constitute an adequate description of speech is disputed 

amongst linguists (Section 2.2.1). The practical approach taken here is to describe 

syllables as either prominent or non-prominent. If they are prominent, they may or 

they may not be associated with pitch accents. Pitch accented prominent syllables are 

further classed into nuclear and non-nuclear accents. Thus, syllables perceived as bearing 

sentential stress (Section 2.1.1) are transcribed either as nuclear accented "n" (primary 

stress), as non-nuclear accented "a" (secondary stress) or as unaccented but stressed "s" 

(tertiary stress); otherwise they are transcribed as unstressed "u" (Bagshaw & Williams, 

1992). Nuclear and non-nuclear accented syllables are collectively referred to as pitch 

accented "PA" in this thesis. Pitch accented and stressed (but unaccented) syllables are 

collectively referred to as prominent "P". In contrast to prominent syllables, unstressed 

syllables are also referred to as non-prominent "NP". 

The transcription of the perceived prominence of each syllable in the training and 

test data is performed by the author (who is also a native speaker of British English). 

There are inevitably instances when the discrete categorisation of a syllable as prominent 

or non-prominent is ambiguous. Hence, the transcription of the data cannot be regarded 

as definitive. There is therefore some degree of error in the comparisons of prominence 

'See Section 2.2.4 for a definition of these terms. 
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levels labelled by hand and labelled by the automatic procedures discussed below. In 

the prosodic labelling of the Lancaster/IBM spoken English corpus, two phoneticians 

working independently to transcribe syllables as either prominent "F" or non-prominent 

"NP" are reported to achieve 90.8% agreement (Pickering et al., 1994). The transcribers 

are reported to achieve 83.1% agreement in categorising syllables as either pitch accented 

"PA", stressed "a" or unstressed "u". 

4.2 Phonetic units 

The term duration refers to the length of a particular constituent of speech. In the 

context of prosodic analysis, the constituent of speech is usually a type of phonetic or 

phonological unit. Some level of abstraction from the acoustic waveform has, therefore, 

already been applied to derive the unit and so duration is not strictly an acoustic pa-

rameter. However, duration is widely regarded as a fundamental acoustic correlate of 

prosodic phenomena (see Section 3.1). The units whose durations best correlate with 

sentential stress and normalisation techniques which can be applied to them, are in-

vestigated here. The aim of the investigation is to determine a duration feature whose 

distributions for each prominence level have the greatest separability. 

The units whose durations are investigated are: 

U1, the syllable nucleus. 

U2, syllable nucleus and coda (the syllable rhyme). 

U3, the syllable onset and nucleus (which is referred to hereinafter as the syllable 

ihyme - a 'left-hand' equivalent to the rhyme). 

U4, the entire syllable (onset, nucleus and coda). 

U5, a nucleus-to-nucleus unit. 

All the phones within a syllable preceding the nucleus form the onset, and all those 

succeeding the nucleus form the coda. The nucleus-to-nucleus unit starts at the beginning 

of a syllable nucleus and ends either at the beginning of the nucleus of a following syllable, 

or, if it is followed by a pause, at the end of the syllable coda. The structures of these 
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Figure 4.1: Syllable structure 

units are illustrated in Figure 4.1. The clustering of phones into syllable-type units 

is performed automatically using the algorithm described in Section 8.1. The syllable 

nuclei are also identified by this algorithm. 

4.3 Normalisation techniques 

The duration of a unit is influenced by many parameters other than just its relative 

prominence. A normalisation technique is required to compensate for any variations in 

the duration of a unit that result from such parameters. Several approaches to duration 

normalisation are investigated. 

Klatt (1979) describes a rule based system to estimate phonemic segment durations 

for synthesised speech in American English. The application of a set of rules modifies 

the "inherent" durations (specified in a look-up table) of each segment according to its 

phonemic context, its degree of stress and its proximity to syntactic junctures (word, 

phrase and clause boundaries). The prosodic analysis of an utterance involves determin-

ing the contribution made by stress to the duration of a segment. This may be achieved 

by employing Klatt's rules to predict the duration of a segment in an unstressed context. 

The difference between the predicted duration and the actual duration of a segment is 

a theoretical estimate of the contribution made by stress to the segment duration. The 

phonetic context of each segment and the syntactic structure of the utterance need to be 
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known in order to predict the duration of a segment in this way. However, the syntactic 

structure of an utterance is usually not readily available from the speech waveform (with-

out reliable speech recognition and syntactic parsing). Furthermore, there is no simple 

way of automatically determining either the factors by which durations are modified 

under different conditions or the inherent segment durations for a given speaker. This 

approach is therefore not used in the prosodic analysis system proposed in this thesis. 

Fant (1988) proposes the use of duration indices for units in a study of sentential 

stress in Swedish. A duration index Si is derived from the measured duration of a unit 

consisting of i phones, and two reference durations, 7j(i) and 7(i). 	(i) is the 

average duration of non-prominent units which consist of i phones, and 7(i) is the 

average duration of prominent units which consist of i phones. The reference durations 

are empirically determined from the training data and are calculated separately for each 

number of phones i that can exist within a unit. 

- 7(i) 

	

Si =(i)—(i) 	 (4.1) 

Campbell & Isard (1991) note that the distributions of segment durations differ 

by phone-type in terms of both their mean and population standard deviation values. 

The individual phone durations are normalised by applying a zmean-transform which 

expresses the phone duration Tphone in terms of the mean duration for that phone-type 

IAT(phoneiype) and standard deviation for that phone-type aT(phone_type). The values 

Of ILT(phone_type) and aT(phoneype) are empirically determined from the training 

data. 

Tphone - 1zT(phoneiype) 
Zmean  = 

	

crT(phone_type) 	 (4.2) 

The Zmean  duration measure for a segment will be either positive, if the segment 

duration is longer than the mean duration for the given phone-type, or negative, if the 

segment duration is shorter than the mean. Segment durations are thus offset relative 

to the mean durations of their phone-type and scaled relative to the spread of their 

distributions. As noted by Wightman et al. (1992), a positive Zmea,, duration measure 

does not necessarily mean that a segment is lengthened (due to syllable prominence 

and/or prosodic phrasing). This is because the mean duration PT(phone_type) is deter- 
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mined from all occurrences of a particular phone, including unlengthened ones. There 

is generally an inequality in the number of lengthened and unlengthened phones. Thus, 

if there are more lengthened segments than unlengthened segments then there will be 

a tendency for the mean duration to be somewhat larger than the minimum duration 

of lengthened phones. Therefore, lengthened segments may have a negative Zmean du-

ration measure. Conversely, if there are more unlengthened segments than lengthened 

segments then there will be a tendency for the mean duration to be somewhat smaller 

than the maximum duration of unlengthened phones. Therefore, unlengthened segments 

may have a positive Zmeafl duration measure. 

The normalisation procedure which Fant (1988) proposes does not take into account 

the variance of segment duration as a function of phone-type, and the Campbell & 

Isard (1991) normalisation method does not take into account the variance of segment 

duration as a function of the relative prominence of a unit or the number of phones in a 

unit. 

It is proposed in this thesis that the z-transform used by Campbell & Isard can be 

modified so that it also takes the relative prominence of a unit into account. To do 

this, first assume that the duration of a phone in a prominent unit is greater than the 

duration of the same phone-type in a non-prominent unit. Thus, in a distribution of 

durations for a given phone-type containing p percent non-prominent phones, the lower 

p percent of durations are assumed to correspond to the durations of the non-prominent 

phones. Instead of offsetting the segment durations relative to the mean durations of 

their phone-type, the durations are expressed relative to the p'th-percentile duration for 

that phone-type pP(phone_type). This gives rise to a zpercenti:e transform, 

Zpercenile 
-- Tphone  - ç(phone_type) 	

(4.3) 
cTT (phone_type) 

If the assumption is correct, then the Zpercentile duration measure is positive for all 

prominent phones and negative for all others. 

The prominent units in the training database are indicated by a transcription on 

the nucleus of the unit. It is assumed that the prominence level of a unit only affects 

the duration of the phones within that unit. Therefore, a non-nuclear phone inherits 

the prominence level of the nucleus in the same unit for the purpose of calculating its 
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p'th-percentile. All non-nuclear phones that exist outside the definition of the unit are 

assumed to be non-prominent. 

An underlying assumption of the Zmean normalisation (Equation 4.2) is that the 

populations of duration measurements for phone-types are Normal (Gauss-Laplacian) 

distributions. These distributions are modelled by the two parameters ,uT(phone_type) 

and aT(phonetype). The populations of duration measurements for phones are shown 

in Figures 4.2 (vowels) & 4.3 (consonants). These populations have positively skewed 

distributions and can, therefore, only be modelled approximately by the mean and stan-

dard deviation parameters. A more robust set of parameters is desired to model these 

distributions. The Zpercenjje normalisation (Equation 4.3) effectively adjusts the mean 

parameter by considering the population of duration measurements for a phone-type as 

constituting two sub-populations - one population of the non-prominent phones and 

another population of prominent phones. 

The duration of each phone, Tphone  is determined directly from the phonetic transcrip-

tion. This may be a transcription made either by hand or by some automatic procedure. 

The z-transformed phone durations (either Zmeafl  or zpercentile duration measures) derived 

from these are listed in chronological order to form a duration contour for each utterance. 

A duration contour can be smoothed using a non-linear smoother (Section 7.3.1) with a 

window length of 3 phones. Such smoothing alms to iron out boundary placement errors 

between each pair of phones. Boundary placement errors in auto-segmented data are 

superimposed on time quantisation errors which can be as much as 5ms. In order to test 

whether smoothing the duration contour is or is not beneficial to the prosodic analysis, 

the z-transform normalisation techniques are investigated both without smoothing (S0) 

and with smoothing (Si). Note, however, that the training data and test data used in 

this investigation are transcribed by hand. Quantisation errors are therefore negligible. 

Some phones occur infrequently in the training data. There is therefore the possibility 

that the sample of phones in the training data is unrepresentative of the universal set 

of phones. In order to improve the robustness of the data, it may be possible to classify 

phone-types on a broad phonetic basis rather than on a fine phonetic basis. The duration 

distributions for phones classified on a fine phonetic basis are shown in Figures 4.2 

(vowels) & 4.3 (consonants). Phones may be grouped into broad phonetic classes on the 
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Broad phonetic class 	Fine phonetic classes 
reduced monophthong // 
short monophthong /1 U A CD a/ 
long monophthong /i u 0 a. 3/ 

diphthong /eI oi al au au ia U 

sonorant /1 r w j n m 
voiced obstruent / 	d v g Z 	b d3/ 
unvoiced obstruent /0 t f k s f p I h/ 

Table 4.1: Duration: Broad and fine phonetic classes 

basis of phonetic principles (Ladefoged, 1982) and similarities in their observed duration 

distributions, as indicated in Table 4.1. The effect of using either a fine (P0) or broad (P1 ) 

phonetic classification on the z-transform normalisation techniques, and subsequently the 

effect on the prosodic analysis, is investigated. 

Each type of unit Ul ,..., 5  contains a number of phones and each phone duration can 

be normalised by a number of different techniques. One of the following measures can 

be used to represent the duration of a unit in an utterance: 

M0, unnormalised unit duration, 

M1, maximum Zm,, duration measure of the phones in a unit. 

M2, maximum Zpercefltjle  duration measure of the phones in a unit. 

M3, sum Zmeafl  duration measures of all phones in a unit (same as M1  for unit U1 , 

since unit U1  only ever contains one phone). 

M4, sum Zpercen ile  duration measures of all phones in a unit (same as M2  for unit 

U1). 

None of the unit duration measures MO,...,4 normalise for the number of phones in the 

unit, as proposed by Fant. Two methods of normalising for the number of phones in the 

unit are investigated. The first of these methods F1  is identical to the duration index in 

Equation 4.1. Therefore, normalisation method F1  takes into account the variance of unit 

duration measure as a function of the relative prominence of a unit, as well as taking into 
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account the number of phones in a unit. This may be redundant for the unit duration 

measures M2,4 based on the zpercen j,e-transform. A second normalisation method F2 is 

therefore proposed which aims only to compensate for the number of phones in a unit. 

F0, no normalisation for the number of phones in a unit. 

F1, duration index for a unit, Si. 

M —M(i) 
Si 

= 1 (i) — A?(i) 	
(4.4) 

where M E M0 , i represents the number of phones in the unit, Mj(i) is the 

mean value of M for all non-prominent units containing i phones, and M(i) is the 

mean value of M for all prominent units containing i phones. 

F2, duration index for a unit, 5,' (equivalent to F0 for unit-type U1, since unit U1 

only ever contains one phone). 

= M — M(i) 	 (4.5) 

where M € M0_.,4 and M(i) is the mean value of M for all units containing i 

phones. 

The mean unit duration measures Mj(i), ?i) and (i) are determined from the 

training data. If there are only a few examples of the units containing certain numbers 

of phones then the sample set can be unrepresentative of the data. Values for the mean 

unit duration measures are therefore accepted only if there are five or more examples 

of stressed units and five or more examples of unstressed units containing a particular 

number of phones, and if ]W(i) <&1(i) for that number of phones. 

If, in analysing an utterance, a unit is encountered which contains a number of 

phones for which Mj(i), M(i) and M(i) are unknown, then values for these statistics 

are estimated by applying polynomial interpolation and extrapolation to those which are 

known. If Mj(i) ~! M(i) for extrapolated values of i, then the normalisation technique 

breaks down. 

In summary, the investigation examines five different types of unit U1 . There are 

five unit duration measures MO,...,4 of which only three apply to unit-type U1. Four of 
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the unit duration measures Ml ,...,4  are related to the z-transform which can be based on 

either broad or fine phonetic classes - P0,1  - and may or may not involve non-linear 

smoothing - 	Each of the five unit duration measures MO,.,.,4 for unit-types U2,..,5  

may or may not be processed (in one of two ways) to normalise for the number of phones 

in the unit - F0,1,2. The combinations of different units and normalisation techniques 

give rise to 213 possible duration features in all, any one of which is an optimal duration 

correlate of sentential stress. 

4.4 	Evaluation of duration features 

The aim of the investigation is to determine which of these 213 duration features is the 

most effective measure in distinguishing between non-prominent and prominent syllables. 

The investigation uses a technique which classifies each syllable as either non-prominent 

or prominent given a single duration feature. The technique only uses the value of the 

duration feature for the syllable which is to be classified. 

Each syllable is assigned to a category (either as a non-prominent syllable or as a 

prominent syllable) by a unidimensional Bayesian classifier' (see Appendix B) which uses 

the magnitude of a duration feature as its input parameter. In essence, this technique 

involves training models which consist of the mean feature vector and the covariance 

matrix for each category to which a token (in this case, a syllable) can be assigned, and 

the a priori probability of a token existing in a given category. A weighted variance-

normalised distance measure (the quadratic discriminant score) is calculated between 

the feature vector for a given token and the centroid of each trained model. The to-

ken is assigned to the category which results in the shortest distance. A by-product of 

the Bayesian classifier is its entropy score, which is the theoretical number of bits of 

additional information required by the classifier to derive the category of a token (the 

prominence of a syllable) without error. In comparing the performance of the Bayesian 

classifier given different duration features, a lower entropy score indicates a better dura-

tion feature. 

The classification of syllables, using just one duration measure at a time, is applied 

'The Bayesian classifier is sometimes referred to as Quadratic Discriminant Analysis in the literature. 
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to a database in an open test. The training data is used to calculate the models for the 

Bayesian classifier and to determine the mean, percentile and standard deviations of the 

phone durations. The test data is not used in any of the training procedures. 

The entropy scores are determined for the unidimensional Bayesian classifier using 

each of the 213 duration features as the only input parameter. These scores are shown in 

Figures 4.4,4.5,4.6, 4.7 & 4.8. All entropy scores are shown in each Figure. Each column 

shows the entropy scores as a function of one variable for each permissible combination 

of the other four variables. The columns are ranked such that the best combination 

lies to the left-hand side and the worst combination lies to the right-hand side. For 

example, each column of Figure 4.4 shows the entropy scores as a function of unit-type 

Ul ,...,5 for each permissible combination of the variables M0,,4 , Po,1, 50,1  and F0,1,2. The 

combination of phonetic unit and normalisation techniques corresponding to the mini-

mum entropy score (and hence the best combination of those examined) is the syllable 

lhyme U3  with sum ZPer CentI le duration measures M4  trained on broad phonetic classes 

P1  without smoothing of the phone-level duration contour S0  and with normalisation of 

the number of phones in the syllable ihyme using technique F1 . 

Figure 4.4 ranks the phonetic units in order of decreasing correlation with sentential 

stress as the syllable ihyme U3, the syllable nucleus U1, the entire syllable (14, the sylla-

ble rhyme '2  and finally the nucleus-to-nucleus unit U5. The correlation with syllable 

prominence therefore decreases with an increase in the number of phones to the right of 

the syllable nucleus relative to the number of phones to the left of the nucleus. Factors 

other than prominence cause the duration of phones to the right of the nucleus to vary 

more than the duration of phones to the left of the nucleus. This result supports rules for 

the synthesis of segment durations proposed by Klatt (1979). Klatt's rules shorten the 

duration of consonants in a non-word-initial position (phones in the syllable coda) and 

lengthen the duration of the syllable nucleus and any following consonants (phones in the 

rhyme) when they are in a pre-pausal position. It is claimed by Campbell (1990) that du-

ration lengthening due to prominence affects the entire syllable U4  whereas lengthening 

due to prosodic boundaries affects the syllable rhyme U2. Wightman & Ostendorf (1991; 

1992) use the average Zmeafl  duration measure of phones in the rhyme of the final syllable 

in a word as a feature for the automatic assignment of break indices. The break indices 
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are used to represent the strength of boundaries between neighbouring words and are 

thus related to the prosodic structure of an utterance. 

Figure 4.5 shows a clear division between Zmean  based normalisations (represented 

by plusses and crosses) and Zpercentjje based normailsations (represented by octagons and 

shaded squares). The ZPerCen11e duration measures yield the preferable lower entropy 

scores. Lower entropy scores are obtained by using the sum of z-transformed phone 

durations in a unit than are obtained by using the maximum z-transformed phone du-

ration. The Zmean duration measures give consistently higher entropy scores than using 

no normalisation for phone-type. 

There is little difference in the entropy scores shown in Figure 4.6 for z-transformation 

statistics trained on fine and broad phonetic classes. Normalisation for broad phonetic 

classes results in a slightly lower entropy score than normalisation for fine phonetic 

classes. There is therefore only a small possibility that the training data is unrepresen-

tative of the universal set of phones classified on a fine phonetic basis (with respect to 

duration analysis). 

Smoothing of the duration contour causes an increase in entropy, as illustrated in 

Figure 4.7. The smoothing process therefore eliminates information required in the 

prosodic analysis rather than compensating for phone boundary placement errors in a 

way which could aid the analysis. The application of such smoothing is therefore not 

beneficial to the prosodic analysis. 

Figure 4.8 reveals that normalisation for the number of phones in a unit is depen-

dent upon the duration measure and phonetic unit-type used. No normalisation for 

the number of phones F0  gives a lower entropy score for many of the combinations of 

duration measure and phonetic unit-type. However, in the case of the sum Zpercen1jje 

duration measure M4  for the lhyme U3  (shown in the left-most column) the entropy 

score is significantly lower when normalisation for the number of phones in the lhyme 

is incorporated. Normalisation method F1  takes into account the variance of the lhyme 

duration as a function of the relative prominence of the syllable, as well as taking into 

account the number of phones in the lhyme. A degree of redundancy is expected for 

the zpercen* je-based duration measures M24  since the zpereen j:e  -transform also takes into 

account the variance of the lhyme duration as a function of the relative prominence of 
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the syllable. Normalisation method F2  only compensates for the number of phones in the 

ihyme. Figure 4.8 shows that the difference in entropy score between methods F1  and 

F2  is small (but statistically significant), with method F1  resulting in the lower entropy 

score. A difference in entropy exists because the assumptions made about the nature of 

the variation in the thyme duration due to the prominence of a syllable differ in the F1  

normalisation method and the zpercent j,e-transform. Method F1  assumes that the mean 

duration measure for prominent syllables is greater than the mean duration measure for 

non-prominent syllables. The zpercen j,e-transform assumes that all of the lower dura-

tion measures correspond to non-prominent syllables and that all of the higher duration 

measures correspond to prominent syllables. Making both assumptions yields a lower 

entropy score. 

4.5 	Optimisation of a relative duration feature 

The application of a Bayesian classifier assumes that the prominence of a syllable can be 

determined from the magnitude of a duration feature in isolation from its neighbours. 

The variation of a duration feature relative to neighbouring syllables is not included as 

an input parameter to the classifier. This exclusion cannot be beneficial to the Bayesian 

classifier, given that a syllable's prominence is relative to its neighbours by definition. 

A possible solution to this problem is to include the duration measures for neighbouring 

syllables as input parameters to the Bayesian classifier. This might improve the Bayesian 

classifier's performance (in terms of reducing the entropy score) when given the task of 

classifying a syllable as either non-prominent or prominent. However, this approach is not 

investigated here because an emphasis is placed on employing non-statistical methods 

such that the underlying principles used to locate prominent syllables can be easily 

identified. 

A simple "peak-picking" technique is proposed here which classifies the syllable as 

either non-prominent or prominent depending on the magnitude of the duration feature 

relative to its nearest neighbours. A syllable is classified as prominent if its duration 

feature exceeds that of both its neighbours (end-points being inherently lower) and if such 

a local maximum in the duration contour has a magnitude greater than some specified 

threshold Kduroj. Syllables satisfying this criterion are labelled "sd". A syllable is 
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also classified as prominent if it corresponds with the maximum value of the duration 

feature in the contour (independently of the threshold). Syllables corresponding to such 

maxima are labelled "Sd". All other syllables are labelled "ud". 

The duration feature used corresponds to the syllable lhyme U3  with sum ZPerCenIIZe 

durations M4  trained on broad phonetic classes P1  without smoothing of the phone-level 

duration contour So  and with normalisation of the number of phones in the syllable 

thyme using technique F1  - ie. the duration feature with the minimum entropy score 

in the above investigation. Theoretically, this duration feature has a mean value of 2.0 

for prominent syllables and a mean value of 1.0 for non-prominent syllables. Kduratjon  

should therefore be optimal at 1.5. The performance of the peak-picking method is 

evaluated by examining the percentage of syllables which are assigned to the correct 

category  (prominent or non-prominent). The optimal value of Kdurajon  (ie. the value 

corresponding to the greatest percentage of syllables assigned to the correct prominence 

category) is sought in a closed test. The data used to train the ZPerCeniI C  statistics and the 

mean duration measures used in the F1  normalisation method is also used in optimising 

Kduraion. A plot of the percentage of correct categorisation against Kdura jjc,,, is shown 

in Figure 4.9. The optimal value of Kdurojjon  is 1.5, as predicted. 

An entropy score is not produced by the peak-picking method. Its performance is 

therefore compared with the performance of the Bayesian classifier by examining the 

percentage of syllables which are assigned to the correct prominence category in an 

open test. The levels of agreement between the prominence category of a syllable as 

transcribed by hand and as assigned automatically are shown in Tables 4.2 & 4.3 for 

the peak-picking algorithm and for the Bayesian classifier respectively. The simple peak-

picking algorithm has a number of benefits over the Bayesian classifier. The peak-picking 

algorithm yields an improvement in syllable prominence classification over the Bayesian 

classifier, requires less computation (and hence it is faster) than the Bayesian classifier, 

and does not requiring a training stage. 

31t is assumed that the "correct" prominence category is that which is transcribed by hand, despite 
the possibility of human error. 
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Peak-picking algorithm label 
Sd 	.sd 	ud 	 total 

P 	367 (6.9%) 1027 (19.3%) 704 (13.2%) 	2098 (39.4%) Hand Label NP 93 (1.7%) 386(7.3%) 	2742 (51.6%) 3221 (60.6%) 
total 460 (8.6%) 1413 (26.6%) 3446 (64.8%) 5319 (100.0%) 

Correct classification rate = 4136/5319 (77.8%) 

Table 4.2: Duration: Confusion matrix for peak-picking algorithm 
(Sd - syllable with maximum duration of contour; sd - syllable corresponding to a local peak 

in the duration contour greater than Kdurat 	ud - unstressed syllable on the basis of 
duration; P - prominent syllable; NP - non-prominent syllable) 

Bayesian classifier label 
P 	 NP 	total 

P 	1565 (29.4%) 533 (10.0%) 	2098 (39.4%) Hand Label NP 723 (13.6%) 2498 (47.0%) 3221 (60.6%) 
total 2288 (43.0%) 3031 (57.0%) 5319 (100.0%) 

Correct classification rate = 4063/5319 (76.4%) 

Table 4.3: Duration: Confusion matrix for Bayesian classification 
(P - prominent syllable; NP - non-prominent syllable) 

4.6 Summary 

The investigation described above aimed to determine a duration feature whose distri-

butions for prominent and non-prominent syllables have the greatest separability. The 

entropy score obtained by a Bayesian classifier was used as a robust measure of this 

separability for 213 different duration features. The optimal duration feature D feature of 

those investigated is given by: 

M—M(i) 
Df eoure 	

1 + 1M(i) - M(i) 	
(4.6) 
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where, 

M = 	
TP0fl - ç4(broad_phone_class) 

phoneElhyme 	CT (broad-phone-class) (4.7) 

and where i represents the number of phones in the ihyme, Mj(i) is the mean value of 

M for all non-prominent thymes containing i phones, A(i) is the mean value of M for 

all prominent thymes containing i phones in the training data, Tphoe  is the duration of a 

phone, ç4(broad...phone_class) and cJT (broad_phone_class) are the p'th percentile and the 

standard deviation of phone durations grouped on a broad phonetic basis respectively, 

and p is the percentage of non-prominent phones in the training data. 

A simple peak-picking algorithm applied to this duration feature is shown to give an 

improvement of syllable prominence classification over the Bayesian classifier, while re-

quiring less computation and not requiring an additional training stage. In an open test, 

77.8% of syllables are given the same prominence status by the peak-picking algorithm 

as when transcribed by hand. This level of agreement is dependent upon the discrete 

categorisation of syllable prominence perceived by a human transcriber, and as such, is 

regarded in this thesis as a comparative measure only. 

The duration features investigated include the normalisation of variations in duration 

due to phone-type, syllable structure, syllable length in terms of number of phones, and 

the prominence level of syllables within the training data. However, these are not the 

only factors which influence the duration of a segment. The normalisation of segmental 

context effects and pre-pausal lengthening are not included in the investigation (although 

it is argued that the Thyme is not affected by pre-pausal lengthening to as great an 

extent as other syllable components). Further research is required to investigate the 

possible advantages that can be gained by incorporating models of contextual influences 

on segment duration (Bartkova & Sorin, 1987; Crystal & House, 1988; van Santen, 

1993) into the normalisation of non-prosodic effects. The duration of speech segments is 

also affected by variations in the rate of articulation from utterance to utterance. The 

inclusion of compensating for articulation rate differences (Wightman et al., 1992) is also 

a subject of further investigation. 



Chapter 5 

Energy measures 

The formation of a frame-level low-band energy contour is described in Section 5.1. 

The contour is used as an acoustic representation of the perceived variations of intensity 

in an utterance. The frame-level low-band energy contour is reduced to a phone-level 

low-band energy contour so that each phone in an utterance is associated with a single 

measure of intensity. The low-band energy of phones in a variety of phonetic units 

(Section 4.2) and normalisation techniques are investigated in this Chapter with respect 

to forming an energy feature correlated with sentential stress. The methodology used in 

the investigation of duration features is also used in this Chapter. 

5.1 Low-band energy contour 

The energy contour for a speech waveform is calculated from frames of data (at Sms 

intervals) such that energy values are synchronised with the data used in Fø extraction 

(see Chapter 7) and with the formant frequency calculations used in the vowel quality 

analysis (see Chapter 6). Each frame is passed through a Blackman-Harris window 

(Harris, 1978) in order to filter out discontinuities (and hence high frequency artefacts) 

at the boundaries of the analysis frame. The frequency bins of an amplitude spectrum 

(calculated by a 512-point FFT for 20ms frames of data sampled at 20kHz) corresponding 

to the range 5OHz-2kHz are accumulated. The resultant energy values are expressed 

in decibels with respect to the maximum frame energy in the utterance to form an 

utterance-normalised low-band energy contour. Expressing the energy values in these 

95 
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terms normalises for utterance-to-utterance variations in energy which are dependent 

upon recording conditions such as the extent of signal pre-amplification and the distance 

of the microphone from the voice source. The contour is processed by a three-frame 

median filter and five-frame Hann window smoother (Rabiner et al., 1975) in order to 

remove small perturbations which arise during frames of speech with low fundamental 

frequency (typically less than two fundamental periods per analysis frame). 

A phone-level low-band energy contour is generated from the (frame-level) utterance-

normalised energy contour. Each phone in the phonetic transcription of an utterance is 

associated with the energy value of one of the frames within the phone. If one or more 

peaks (local maxima flanked by lower values) in the energy contour occur within the 

phone then the energy value at the highest peak is associated with the phone. If such 

a peak does not exist then either a single valley in the energy contour occurs within 

the phone or the energy contour continuously rises or fails during the phone. If a single 

valley exists then the energy value at the valley is associated with the phone. Otherwise, 

the phone is associated with the energy value at its mid-point. 

An example of a phone-level low-band energy contour and its corresponding (frame-

level) utterance-normalised energy contour and speech waveform are illustrated in 

Figure 5.1. The dots on the frame-level energy contour indicate the frame energy 

peak/valley/mid-point values associated with each of the phones. The phone-level con-

tour follows the same general trends as the frame-level contour. By associating a phone 

with the frame energy value at the point of a local maximum flanked by lower values 

during the phone rather than with the maximum frame energy value in the phone, the 

formation of the phone-level low-band energy contour becomes more robust to variations 

in the placement of phone boundaries. This is illustrated in the cases of the second [f] 

and the [v] in Figure 5.1. The peak/valley/mid-point value associated with a phone is 

also robust to phonetic-context. For example, the value of the valley in the [t] is less 

changeable to variations in the peak energies of the neighbouring vowels than the maxi-

mum frame energy of the phone. Although the peak/valley/mid-point value is robust to 

phone boundary placement and phonetic context, it is not immune to potential errors. 

lithe boundary between the {i} and the [1] is placed beyond the local valley, or if the left 

context of the [I] is a low low-band energy phone such as an /f/, then the [1] would be 
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associated with the higher mid-point frame energy value rather than the frame energy 

value at the local valley. 

5.2 Energy features 

The low-band energy of each phone in an utterance is calculated using the procedure 

described in Section 5.1. The phonetic units whose low-band energy best correlate with 

sentential stress and normalisation techniques which can be applied to them, are studied 

here. As in the investigation of duration (Chapter 4), the aim is to determine an energy 

feature whose distributions for each prominence level have the greatest separability. 

The units whose energies are investigated are the same as those used in the duration 

analysis, U1 	(Section 4.2). The energy of a unit, like the duration of a unit, is 

influenced by many parameters other than just its relative prominence. Normalisation 

techniques are adopted from the duration analysis (Section 4.3) to compensate for any 

variations in the energy of a unit that result from such parameters. 

One of the following measures can be used to represent the low-band energy of a unit 

in an utterance: 

M01  unnormalised unit-level low-band energy, 	The unit-level low-band en- 

ergy is generated from the (frame-level) utterance-normalised energy contour by 

the same peak/valley/mid-point procedure used to determine the phone-level low-

band energy. 

M1 , maximum Zmean low-band energy measure of the phones in a unit. 

Ephone  /1E(phone_type) 
Zmean = 

7E(PhOfle_tYPe) 
 

where 1LE(phonetype) and aE(phone_type) represent the mean and standard de-

viation phone-level low-band energy respectively for each phone-type. 

• 	M2 , maximum ZperCCfljjC low-band energy measure of the phones in a unit. 

pE  
 Zpercentile = 	

- co(phone)-type 	
(5.2) 

aE(phone_type) 
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Broad phonetic class 	Fine phonetic class 
closed vowel /i i U u/ 
half-closed vowel /ua ia el au u/ 
central vowel 
half-open vowel /3 al c ca au A,3/ 
open vowel /i a 
liquid /1 r/ 
glide /W j/ 
nasal /n m)/ 
voiced obstruent /b 3 V g c13 ô d z/ 
unvoiced obstruent /s e t 1ff 5 p k h/ 

Table 5.1: Low-band energy: Broad and fine phonetic classes 

where çcP5(phone_type) is the p'th-percentile phone-level low-band energy for each 

phone-type, and p is the percentage of a phone-type which are non-prominent. 

M3, sum Zmean  low-band energy measures of all phones in a unit (same as M1  for 

unit U1, since unit U1  only ever contains one phone). 

M4, sum 2percenhile  low-band energy measures of all phones in a unit (same as M2  

for unit U1 ). 

As in the duration analysis, phone-types can be classified on either a fine or a broad 

phonetic basis for the z-transform normalisation of phone-level low-band energies. The 

low-band energy distributions for phones classified on a fine phonetic basis are shown in 

Figures 5.2 (vowels) & 5.3 (consonants). Phones may be grouped into broad phonetic 

classes on the basis of phonetic principles (Ladefoged, 1982) and similarities in their 

observed low-band energy distributions, as indicated in Table 5.1. 

Each of the unit low-band energy measures can be normalised for the number of 

phones in the unit by the techniques F0,12  described in Section 4.3. 

In summary, the investigation examines five different types of unit U1  ,...,5•  There 

are five unit low-band energy measures MO,...,4  of which only three apply to unit-type 

U1. Four of the unit low-band energy measures Ml,...,4  are related to the z-transform 

which can be based on either broad or fine phonetic classes - P01. No smoothing is 
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applied to the phone-level low-band energy contour. (Smoothing is applied to the frame-

level low-band energy contour.) Each of the five unit low-band energy measures M0  

for unit-types U2,._5  may or may not be processed (in one of two ways) to normalise 

for the number of phones in the unit - F0,1,2. The combinations of different units and 

normalisation techniques give rise to 113 possible energy features in all, any one of which 

is an optimal energy correlate of sentential stress. 

5.3 	Evaluation of energy features 

The aim of the investigation is to determine which of these 113 energy features is the 

most effective measure in distinguishing between non-prominent and prominent syllables. 

The entropy scores are determined for the unidimensional Bayesian classifier using 

each of the 113 energy features as the sole input parameter. These scores are shown in 

Figures 5.4, 5.5, 5.6 & 5.7. All entropy scores are shown in each Figure. Each column 

shows the entropy scores as a function of one variable for each permissible combination 

of the other three variables. The columns are ranked such that the best combination lies 

to the left-hand side and the worst combination lies to the right-hand side. For example, 

each column of Figure 5.4 shows the entropy scores as a function of unit-type UI_.,5  for 

each permissible combination of the variables M0 , P0, 1  and F0,1,2. The combination 

of phonetic unit and normalisation techniques corresponding to the minimum entropy 

score (and hence the best combination of those examined with respect to energy) is the 

syllable nucleus U1  with ZP€r Ceni1e  low-band energy measures M2  trained on fine phonetic 

classes P0. Normalisation for the number of phones in a unit F1, 2  are not applicable to 

the syllable nucleus. 

Figure 5.4 ranks the phonetic units in order of decreasing correlation with sentential 

stress as the syllable nucleus U1, the syllable rhyme (12, the entire syllable U4, the syllable 

ihyme U3  and finally the nucleus-to-nucleus unit U5. By definition, the syllable nucleus 

is the peak of sonority in a syllable. Sentential stress is therefore correlated with an 

energy feature based on the peak of sonority in a syllable. 

As is observed in the investigation of duration features, Figure 5.5 shows a clear 

division between zmean  based normalisations and zpercentile  based normalisations, in this 

case, with respect to energy. Lower entropy scores are yielded by Zpercenje low-band 



CHAPTER 5. ENERGY MEASURES 
	

103 

x 

FAR 

04 
0 - 

0  

oc 
0 

0 

AX 

x 	 + + 0 

+ 
000A 

11 Nucleus 

C Rhyme 

+ Lhyme 

A Syllable 

X Nucleus to nucleus 

E 	 E E 

Figure 5.4: Energy feature evaluation: Entropy score (U1 



2 

11 

o None 

X max. 
U max. z-percentile 
+ sum 
A sum z-percentile 

CHAPTER 5. ENERGY MEASURES 

0 

4 

0 

N 	N 	•NNNN N N t 	N N t t N .-. 

104 

0 

Figure 5.5: Energy feature evaluation: Entropy score (M0 



CHAPTER 5. ENERGY MEASURES 

L 

11 

—4 

74 

105 

Fine phonetic classes 

0 Broad phonetic classes 

0-0 00t4fl0-t.0...fl.fl0 0-t4-0r4nOr4o 00 	0-0 	0r4.-.r40.-n 00 0flfl0.-.0r4..0r. 

Figure 5.6: Energy feature evaluation: Entropy score (P0,1) 



CHAPTER 5. ENERGY MEASURES 
	

106 

2 a I 

t 0 I 

00 

0 

o 

N N C N C • C N C C NCNCCNNCCflN 	 0 0 - N 
----------------------0 --------00-Co 

Figure 5.7: Energy feature evaluation: Entropy score (F0,1,2) 

None 

C S(i) 

A S'(i) 



CHAPTER 5. ENERGY MEASURES 	 107 

energy and duration measures. An improvement in performance is generally obtained by 

using the maximum Zpercenjje low-band energy measure M2  rather than using the sum 

'percentile low-band energy measure M4  of phones in a unit. Therefore this also provides 

evidence that sentential stress is correlated with an energy feature based on the peak of 

sonority in a syllable. 

There is a significant difference in the entropy scores shown in Figure 5.6 between 

most ZpeTCCn 2IEC  based normalisations with statistics trained on fine phonetic classes and 

Zpercentile based normaiisations trained on broad phonetic classes. Relatively little differ- 

ence in the entropy scores is noticeable between the Zm e.n based normalisations trained 

on fine phonetic classes and broad phonetic classes. Since the optimal energy feature 

uses a zpercen j,e-transform and since the use of fine phonetic classes yields a lower entropy 

score, it is preferable to normalise for phone-types on a fine phonetic basis rather than 

on a broad phonetic basis. Two possible conclusions emerge from this with respect to 

the suitability of the training data - either the data provides a sample of the universal 

set of phone-types classified on a fine phonetic basis which represents the distribution 

of energy in such phone-types; or the broad phonetic classes shown in Table 5.1 form 

suboptimal groups. 

Figure 5.7 reveals that normalisation for the number of phones in a unit has little 

effect on the performance of the Bayesian classifier for a given phonetic unit and low-

band energy measure. Given that the optimal unit-type for the energy measure is the 

nucleus, no normalisation technique for the number of phones in a unit is applicable. 

A final observation to make is in the comparison of the entropy score results for 

the duration and energy features. It is clear that the relative importance of duration 

and energy as cues to syllable prominence is dependent upon the choice of duration and 

energy features. No conclusions can therefore be drawn about the relative importance 

of these features in human perception of stress. Conclusions can only be drawn with 

respect to relative importance of the acoustic features investigated here for computer 

analysis of stress. 
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5.4 	Optimisation of a relative energy feature 

The peak-picking technique proposed in Section 4.5 is used to classify each syllable 

as either non-prominent or prominent depending on the magnitude of the low-band 

energy feature relative to its nearest neighbours. A syllable is classified as prominent 

if its low-band energy feature exceeds that of both its neighbours (end-points being 

inherently lower) and if such a local maximum in the low-band energy contour has 

a magnitude greater than some specified threshold Kenerg.  Syllables satisfying this 

criterion are labelled "se". A syllable is also classified as prominent if it corresponds 

with the maximum value of the low-band energy feature in the contour (independently 

of the threshold). Syllables corresponding to such maxima are labelled "Se". All other 

syllables are labelled "ue". 

The low-band energy feature used corresponds to the syllable nucleus U1  with 

Zpercenjje low-band energy measures M2  trained on fine phonetic classes Po. Theoret-

ically, this low-band energy feature is positive for prominent syllables and negative for 

non-prominent syllables. Kenergy should therefore be optimal at 0.0. A plot of Kener,y 

against the percentage of syllables which are assigned to the correct prominence cate-

gory by the peak-picking technique (in a closed test) is shown in Figure 5.8. The optimal 

value of Kenergy is —0.75. 

There are a number of potential reasons as to why the optimal value of Kenergy is 

not as expected. One possible reason is that the assumption made by the ZperCen 1e  

normalisation technique (that all of the lower low-band energy measures correspond 

to non-prominent syllables and that all of the higher low-band energy measures corre-

spond to prominent syllables) is not valid. There are a number of prominent syllables 

for which the ZPerCentIIe low-band energy measure is negative, and there are a number 

of non-prominent syllables for which the Zpercentile  low-band energy measure is posi-

tive. By definition, there are the same number of prominent syllables with a negative 

Zpercen  tile low-band energy measure as there are non-prominent syllables with a posi-

tive ZPerCentjIe low-band energy measure. It is empirically determined that reducing the 

threshold Kener9y increases the number of non-prominent syllables with a ZPerCentiIe low-

band energy measure greater than the threshold more than it decreases the number of 

prominent syllables with a ZpCrCCfl tjle  low-band energy measure less than the threshold. 
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If it is assumed that a syllable is categorised as prominent only if its corresponding 

Zpercenjje  low-band energy measure is greater than Kenergy, then a greater number of 

syllables should be incorrectly categorised (as either prominent or non-prominent) by 

reducing K ergy. This is contrary to the evidence provided in Figure 5.8. It is therefore 

unlikely that the optimal value of K energy  is less than expected because the assumption 

made by the Zperceng j:e  normalisation technique is not strictly valid. 

The above argument assumes that a syllable is categorised as prominent only if its cor-

responding Zperceng;le  low-band energy measure is greater than Kenerg y. The peak-picking 

technique, however, enforces the additional constraint that the syllable must correspond 

to a local maximum in the low-band energy contour in order to be categorised as promi- 

nent. This is a consequential factor in the optimal value of 	ergy  being lower than 

expected. There are more prominent syllables (22.3%) in the training data which corre-

spond to a local maximum in the low-band energy contour than non-prominent syllables 

(8.0%). Optimisation of the threshold Kenerg y minimises the number of these (22.3% 

+ 8.0%) syllables which are assigned to the incorrect prominence category. Reducing 

Kenergy from 0.0 to —0.75 increases the number of prominent syllables labelled as "se" 

more than it decreases the number of non-prominent syllables labelled as "ue". In other 

words, the optimisation of Kenergy is dependent upon the distributions of the ZperCen  tile 

low-band energy measure which correspond to local maximum in the energy contour for 

prominent and non-prominent syllables. 

The optimisation of the threshold K energy  is also dependent upon the error measure 

used to evaluate the performance of the peak-picking technique. Here, the total-error 

rate is used because it is equally important to classify a given syllable correctly as non-

prominent as it is to classify a given syllable correctly as prominent. If the classification 

criterion was to ensure that the same percentage of prominent syllables are correctly 

classified as non-prominent syllables, then an equal-error rate would be a more appro-

priate measure. A more robust measure (such as the entropy score used for the Bayesian 

classifier) for the performance of the peak-picking technique would produce a different 

optimal value for Kenerg y. 

An entropy score cannot be produced by the peak-picking method. Its performance 

is therefore compared with the performance of the Bayesian classifier by examining the 
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Peak-picking algorithm label 
Se 	se 	 ue 	 total 

P 422 (7.9%) 1101 (20.7%) 575 (10.8%) 	2098 (39.4%) 
Hand Label NP 38 (0.7%) 236(4.4%) 	2947 (55.4%) 3221 (60.6%) 

total 460 (8.6%) 1337 (25.1%) 3522 (66.2%) 5319 (100.0%) 

Correct classification rate = 4470/5319 (84.0%) 

Table 5.2: Energy: Confusion matrix for peak-picking algorithm 
(Se - syllable with maximum energy of contour; se - syllable corresponding to a local peak 
in the energy contour greater than Kenergy; tie - unstressed syllable on the basis of energy; 

P - prominent syllable; NP - non-prominent syllable) 

Bayesian classifier label 
P 	 NP 	 total 

Hand Label 	
P 1650 (31.0%) 448 (8.4%) 	2098 (39.4%) 

NP 516 (9.7%) 	2705 (50.9%) 3221 (60.6%) 
total 2166 (40.7%) 3153 (59.3%) 5319 (100.0%) 

Correct classification rate = 4355/5319 (81.9%) 

Table 5.3: Energy: Confusion matrix for Bayesian classification 
(P - prominent syllable; NP - non-prominent syllable) 

percentage of syllables which are assigned to the correct prominence category in an 

open test. The levels of agreement between the prominence category of a syllable as 

transcribed by hand and as assigned automatically are shown in Tables 5.2 & 5.3 for 

the peak-picking algorithm and for the Bayesian classifier respectively. As well as giving 

an improvement of syllable prominence classification, the simple peak-picking algorithm 

has the additional benefits over the Bayesian classifier in requiring less computation (and 

hence it is faster) and not requiring a training stage. 
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5.5 Summary 

The investigation described above aimed to determine a low-band energy feature whose 

distributions for prominent and non-prominent syllables have the greatest separability. 

The entropy score obtained by a Bayesian classifier was used as a robust measure of this 

separability for 113 different low-band energy features. The optimal low-band energy 

feature E egure  of those investigated is given by: 

- 
Ejeature - 	cc Enucieus - 'E(fine_p hone_class) 

cTE(fzne_p hone-class) 	
(5.3) 

where Enuc jeus  is the low-band energy of a syllable nucleus, çc?(fine_phone_class) and 

7E(fzne_phone_class) are the p'th percentile and the standard deviation of phone-level 

low-band energies for phones classed on a fine phonetic basis respectively, and p is the 

percentage of non-prominent phones in the training data. 

A simple peak-picking algorithm applied to this low-band energy feature is shown 

to give an improvement of syllable prominence classification over the Bayesian classifier, 

while requiring less computation and not requiring an additional training stage. In an 

open test, 84.0% of syllables are given the same prominence status by the peak-picking 

algorithm as when transcribed by hand. 

The transcription (by hand) of the perceived prominence of each syllable in the train-

ing and test data cannot be regarded as definitive because there are instances when the 

discrete categorisation of a syllable as prominent or non-prominent is ambiguous. There 

is therefore some degree of error in the comparisons of prominence levels labelled by 

hand and labelled by the automatic procedures discussed above. The level of agreement 

between the prominence label assigned by the peak-picking algorithm and as transcribed 

by hand, is therefore regarded as a comparative measure only. By comparison to the du-

ration feature Djeaure  (Equation 4.6) with a 77.8% agreement level, it can be concluded 

that the low-band energy feature Ej eaure  (Equation 5.3) has a higher correlation with 

sentential stress for the speech of the one native English talker of the training and test 

data. It is important to emphasis that it cannot be concluded that the energy feature 

Ejeoture  necessarily has a higher correlation with sentential stress than the duration fea-

ture D /Cature for all speakers, or that energy has a greater importance than duration as 
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a cue in the human perception of sentential stress. 



Chapter 6 

Vowel quality measures 

In addition to duration and energy features, it is suggested in Section 3.1 that perceived 

vowel quality is also correlated with sentential stress. A number of measures of vowel 

quality are proposed in this Chapter. Vowel quality measures are based on the assump-

tion that the nuclei of prominent syllables are well articulated and are less affected by 

contextual assimilation, relative to the nuclei of non-prominent syllables. The aim here 

is to devise a measure of vowel quality based on formant frequency trajectories which is 

correlated with the prominence of a syllable. 

The trajectories of formant frequencies through each vowel of an utterance are esti-

mated using a formant tracking algorithm based on generalised centroids (Crowe & Jack, 

1987; Crowe, 1988). The speech waveform, sampled at 20kHz, is Fourier-transformed 

every 5ms using a 512-point FFT with a 20ms Hann window. This ensures that formant 

frequency values are synchronised with the energy contour and FØ contour calculations. 

High-frequency pre-emphasis is applied to the resultant spectrum, and a triple centroid 

is estimated over the frequency range from 234Hz (the 6'th frequency bin) to 2891Hz 

(the 74'th frequency bin). The formants Fl, F2, and F3 are captured within this range 

while Fø and higher formants are excluded. 

The formant contours generated by the generalised centroids algorithm are post-

processed by a five frame median filter and three frame Hann window to remove isolated 

spurious formant frequency estimates (Section 7.3.1). 

114 
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6.1 Vowel context and speaker normalisation 

The perceptual quality of a vowel is correlated with the trajectories of the formant 

frequencies Fl, FE, and F3. However, these trajectories vary depending on phonetic 

context and the individual speaker (Peterson & Barney, 1952). Given that there are phys-

ical constraints on the articulators, two different vowels pronounced in different phonetic 

contexts by the same speaker may have similar formant frequency values. Similarly, a 

vowel perceived as similar when spoken in different contexts by the same speaker may 

have different formant trajectories (phonetic context dependency). The acoustic realisa-

tion of a vowel described by the same phonetic symbol and spoken by two speakers may 

differ because of anatomical and physiological differences between the speakers. This 

may result in different vowels pronounced by different speakers having similar formant 

trajectories, and a vowel perceived as similar when spoken by two different speakers 

having different formant trajectories (speaker dependency). 

A number of normalisation techniques are investigated here which aim to compensate 

for these context-dependent and speaker-dependent variations in the formant trajecto-

ries. In previous investigations of vowel normalisation (Disner, 1980; Syrdal & Gopal, 

1986; Hillenbrand & Gayvert, 1993) the focus is placed on minimising the variance within 

a set of vowels spoken by different speakers which are presumed to correspond to the 

same vowel target, while maximising the separation of sets of vowels which are presumed 

to correspond to different vowel targets. Here, the focus of the vowel normailsation is to 

maximise, for each set of vowels presumed to correspond to the same vowel target, the 

separation of vowels which form the nuclei of prominent and non-prominent syllables. 

The phonetic context dependency of the formant frequency trajectories is compen-

sated for by obtaining one measurement from each trajectory within a vowel. Three 

different trajectory features C123  are investigated. 

C1, the peak/valley/mid-point value of a frame-level formant trajectory. The 

peak/valley/mid-point value of a formant trajectory over a vowel is determined 

using the method proposed in Section 5.1. 

C2, the mid-region mean value of a formant trajectory. The mid-region mean value 

is defined as the average formant frequency value over the central half of a vowel. 
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Formant frequency values in the initial and final quarters of the vowel are assumed 

to be highly influenced by segmental context and are disregarded. 

C3, the stable-region mean value of a formant trajectory. The stable-region of 

a vowel is defined after van Bergem (1988). The Fl, F2, and F3 contours are 

initially transformed to a Mel-scale using Equation 6.1. 

/ 	\ 

	

FM CI = 2595.0 log 1.O+ 
FHZ 

700.0) 	
(6.1) 

A window of quarter of the vowel length is moved through the Fl, F2, and F3 

formant trajectories in search of a region of the vowel for which the pooled variance 

of these (Mel-scaled) formants is a minimum. The average formant frequency values 

(in Hertz) are determined within this region. If the duration of the vowel is so short 

that the window falls to occupy at least two frame-level formant frequency values 

(and hence one is unable to determine a variance) then a break value of infinity 

is associated with the vowel. Since the frame-level formant frequency values are 

specified at intervals of 5ms, vowels shorter than 40ms are associated with the 

break value. 

Syrdal & Gopal (1986) propose that the speaker dependency of the formant frequency 

values can be normalised by use of formant differences on the critical-band-based Bark 

scale, F2 Bark - Fl Bark,  F3BOfk - F2 Bark.  The set of formant frequency measurements 

for each vowel are converted to a Bark-scale using Equation 6.2 (Zwicker & Terhardt, 

1980). 

FBark = 13.Oarctan(O.76FkH2) + 3.5arctan 
(1)kH.2 	 (6.2) 

A problem in using formant differences, however, is that some pairs of phonetically 

distinct vowels have similar formant differences - for example, the pairs /a, 3/ and /u, 

u/ (Hillenbrand & Gayvert, 1993). Syrdal & Gopal address this problem by including the 

difference between Fl and FØ (Fl Bark - FØBark) as a parameter in the normalisation. 

In summary, each vowel in an utterance is characterised by a set of measurements 

derived from FØ and formant frequency trajectories. One value is obtained from each 

frequency trajectory within a vowel by using one of three methods - C1,2,3. For ex- 
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ample, four values can be obtained from the Fø, Fl, F2, and F3 trajectories within 

a vowel by calculating the mid-region mean value C2  for each trajectory. A vowel can 

be characterised by these values converted to a Bark-scale or by the difference between 

them. 

6.2 Vowel target model 

Figure 6.1 shows the clustering of prominent and non-prominent vowels for the twenty 

vowel-types in the training data of English speech. The ellipses indicate the degree 

of spread in the clusters of vowels in prominent syllables (shown in red) and in non-

prominent syllables (shown in black). A 2-dimensional probability density function 

(p.d.f.) is associated with the variables plotted along the axes (in this case, the Bark-

scaled mid-region mean values C2  of Fl and F2). The intersection of this p.d.f. (which 

can be imagined as a 'hill') and a plane at a level of two times the standard deviation 

(a slice through the hill) forms an ellipse when projected onto the zero-zero plane of the 

p.d.f. (the floor of the hill). It is these ellipses which are shown in Figure 6.1. There is 

a tendency for the vowels (at least the monophthongs) in prominent syllables to cluster 

more tightly than corresponding vowels in non-prominent syllables, and a tendency for 

the clusters of vowels in prominent syllables to lie within the clusters of the correspond-

ing vowels in non-prominent syllables. This is not necessarily applicable to diphthongs 

because the inherent glide in their formant trajectories is not modelled by the single 

measurement associated with each formant trajectory. 

The populations of formant frequency measurements approximate a Normal (Gauss-

Laplacian) distribution in the Bark domain. The application of the Bayesian classifier to 

model each type of vowel using Bark-scaled frequency measurements is therefore viable'. 

A Bayesian model is created for each vowel-type. Each vowel is characterised by a 

number of features. The features are a combination of the absolute or the differences in 

Bark-scaled formant frequencies and fundamental frequency, where each of the formant 

frequencies and the Fø value associated with the vowel are obtained using any one of 

'The requirement for the input data to be Normally distributed is generally not a prerequisite of a 
Bayesian classifier. This constraint is imposed here by the implementation of the classifier as described 
in Appendix B 
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Figure 6.1: Vowel targets in prominent and non-prominent syllables 

the trajectory features C1 ,2,3. The vowel target models are calculated from frequency 

measurements of every vowel token (those corresponding to the nuclei of both prominent 

and non-prominent syllables) in the training data. 

The quadratic discriminant score 	is determined for each vowel token in the 

training data with respect to its corresponding vowel target model. This score is a 

weighted variance-normalised distance measure between the vector of features which 

Characterise the vowel and the centroid of the respective vowel target model. Thus, 

Q001 is a measure of how close the vowel is to its target. 

It is assumed that vowels closer to their respective vowel target model correspond 

to the nuclei of prominent syllables. Under this assumption, Q001 for a vowel in a 

prominent syllable is less than Q01 for a vowel in a non-prominent syllable. Thus, in a 
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distribution of Qvowei  for a given vowel-type containing p percent of vowels corresponding 

to non-prominent syllables, the lower (100 - p) percent of Qt,0 , values are assumed to 

correspond to vowels in prominent syllables. The distance of a vowel from its respective 

vowel target model is expressed relative to the (100 - p)'th-percentile of the quadratic 

discriminant scores for its vowel-type 	OO_I(voweLtype).  

QI  - - Q 	
(100—;,) 

- çc 	(vowel-type) 	 (6.3) 

If the assumption is correct then Q' is positive for all vowels in non-prominent sylla-

bles and is negative for all others. The population of Q' does not have a Normal distri-

bution. Since the implementation of the Bayesian classifier (described in Appendix B) 

assumes that the input has a Normal distribution, it is not used to classify the promi-

nence of a syllable on the basis of Q'. 

A simple peak-picking algorithm is used to label the contribution made by vowel 

quality to the perceived prominence of a syllable. A syllable is labelled as "sq" to 

indicated that it is prominent relative to its neighbours on the basis of vowel quality; 

that is, if Q' for the vocalic nucleus of the syllable is less than zero and if Q' for the 

nucleus of the syllable is less than Q' for the nuclei of both neighbouring syllables (end-

points being inherently higher). Otherwise, a syllable is labelled as "uq", indicating that 

is not prominent relative to its neighbours on the basis of vowel quality. Schwa never 

forms the nucleus of a prominent syllable. Hence, Q' is positive for all syllables with a 

schwa nucleus, by definition. They are therefore labelled "uq". Q' is set to 'infinity' for 

any syllables which have a syllabic consonant as the nucleus. They are, therefore, also 

labelled "uq". 

Every syllable in the test data is labelled using the above criteria. These labels 

are compared with prominence levels assigned to syllables by hand and the level of 

agreement between them is determined. Agreement levels are represented in Figure 6.2 

for when the vowel target models are calculated from a number of different combinations 

of features. The highest level of agreement (71.6%) is obtained when the vowel target 

models are calculated from Bark-scaled peak/valley/mid-point (Cl ) frequency differences 

Fl Bark - FøBark, F2 Bark - Fl Bark,  and F3 Bark - F2 Bark.  A confusion matrix for the 

prominence labels assigned using this method versus prominence labels assigned by hand 
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Vowel target label 
sq 	 uq 	 total 

P 963 (18.1%) 	1135 (21.3%) 2098 (39.4%) Hand Label NP 375 (7.1%) 	2846 (53.5%) 3221 (60.6%) 
total 1338 (25.2%) 3981 (74.8%) 5319 (100.0%) 

Correct classification rate = 3809/5319 (71.6%) 

Table 6.1: Vowel quality: Confusion matrix for peak-picking algorithm 
(sq - syllable corresponding to a local peak in the vowel quality contour less than 0.0; 

uq - unstressed syllable on the basis of vowel quality; P - prominent syllable; 
NP - non-prominent syllable) 

is shown in Table 6.1. 

In order to place the agreement levels shown in Figure 6.2 into perspective, consider 

the performance of the peak-picking algorithm given the ZPerCefl 11e  measure of a random 

variable with a Normal distribution. The thresholds for each vowel-type are given by 

the (100 - p)'th-percentile of a Normal distribution, where p represents the percentage 

of vowels which are non-prominent in the training data. Every syllable in the test data 

is associated with a random number from a single Normal distribution. A syllable is 

labelled as prominent if this random number is less than the threshold associated with 

the vowel-type of the nucleus of the syllable. Approximately 69 ± 2% of the syllable 

labels determined by this method are the same as those given by hand. 

If the features used to characterise a vowel include an absolute measure of funda-

mental frequency (ci. Fl Bark - FøBar k) or are based on stable-region mean values (C3 ) 

then the correlation of the vowel target distance Q' with sentential stress is worse than 

the correlation of a zpercensie-transformed, Normally-distributed random variable with 

stress. 

A measure of the distance from a vowel target can, in some cases, be more effective at 

distinguishing between prominent and non-prominent syllables than a random variable 

in the analysis of the speech of a native speaker of English. However, such a measure 

cannot be used in the analysis of the speech of a non-native speaker because of vowel 

pronunciation errors. 
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Figure 6.2: Vowel quality feature evaluation 
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There are two types of vowel pronunciation errors for non-native speakers of a lan-

guage. Firstly, vowels which are assigned the same phonetic symbol in the target lan- 

guage to be acquired by a learner and in the native language of the learner, can differ in 

their phonetic realisation (Disner, 1980). Thus, vowel quality in the target language is 

influenced by the native language of the learner, as well as by context (both segmental 

context and syllable prominence). Secondly, vowels which do not belong to the vowel 

system of the learner's native language tend to be substituted by a vowel in the learner's 

native vowel system which is perceived (in the mind of the learner) to be 'close' to the 

desired vowel in the target language (di Benedetto et al., 1992). 

There is a fundamental problem in using a measure of the quality of a vowel spoken 

by a foreign language learner as a correlate of the perceived prominence of a syllable. 

A measure is required to determine if the quality of the vowel spoken by the learner is 

comparable to that of a native speaker when pronounced in the same context. This may 

be done by comparing the acoustic features which characterise the learner's vowel with 

the vowel system of a native speaker. The problem is that a mismatch between the vowel 

token pronounced by the learner and the intended vowel target for the target language 

can be due to a number of different reasons, other than the perceived prominence of a 

syllable. A mismatch can be due to anatomical and physiological difference between the 

learner and a native speaker, due to differences in the phonetic realisation of the vowel 

in the source and target languages, or due to a pronunciation error by the learner. This 

problem can be avoided only by comparing the acoustic features which characterise the 

learner's vowel with a vowel target modelled in the learner's vowel system (rather than in 

the vowel system of a native speaker of the target language). Therefore, if vowel quality 

is to be used in the automatic analysis of stress in utterances spoken by a non-native 

speaker, the task of learning correct vowel pronunciation and the task of learning the 

prosodic aspects of the target language must be kept separate. 

The results shown in Figure 6.2 indicate that a measure of the distance of a vowel 

from its respective target is comparable to a zpercent jje-transformed, Normally-distributed 

random variable when used as a correlate of the perceived prominence of a syllable. In 

the investigation, a vowel target is modelled from vowel tokens of a native speaker of 

English. The vowels used in the test data are spoken by the same speaker. In is inferred 
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that even if the tasks of learning correct vowel pronunciation and learning the prosodic 

aspects of the target language are kept separate and a non-native speaker has successfully 

learnt to approximate the vowel system of the target language, then it is not possible to 

use the vowel-to-vowel-target distance as a correlate of stress. 

6.3 Vowel stability measure 

It is assumed here that a continuum exists in perceptual vowel quality from when a 

vowel is enunciated in isolation, to when a vowel is pronounced as the nucleus of a 

prominent syllable, to when a vowel is pronounced as the nucleus of a non-prominent 

syllable, to a schwa. Van Bergem (1994) proposes that schwa is, "a vowel without 

articulatory target that is competely assimilated with its [segmental] context" and that 

reductions in perceptual vowel quality (such as that which can occur in the nuclei of non-

prominent syllables) is the partial assimilation of vowels with their segmental context. 

The formant trajectories of schwa are therefore completely dependent upon the position 

of the articulators during the production of surrounding phones, and vowels which have 

a perceptual reduction in quality are subject to some degree of contextual assimilation. 

The hypothesis that formant trajectories (or the spectra) are more changeable in the 

vocalic nuclei of non-prominent syllables (which are subject to vowel reduction) than in 

the vocalic nuclei of prominent syllables, is considered here. 

Seven different measures of the degree of change in formant trajectories and one 

measure of the degree of spectral change through the course of a vowel, are investigated. 

V1. The peak/valley/mid-point values in the Fl and F2 trajectories are determined 

using the method described in Section 5.1. An accumulative score is associated with 

each trajectory based on the type of point which is located - peak (+3),  valley 

(+2), and rise or fall (+1). Thus, for example, if the trajectories of both Fl and 

F2 contain local peaks then a score of +6 is assigned to the syllable; and if the Fl 

trajectory contains a local peak and the F2 trajectory contains a fall then a score 

of +3 is assigned to the syllable. 

V2. Maximum pooled variance of FiMel, F2 Mel,  and F3Me1  is calculated over the 

duration of the vowel using a window of quarter of its length - an 'instability' 
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measure. This measure approximates a log-Normal distribution. 

V3. 	Minimum pooled variance of FI Me!, F2 Mel,  and F3MCI  is calculated over 

the duration of the vowel using a window of quarter of its length - a 'stability' 

measure. This measure approximates a log-Normal distribution. 

V4, 5,6 ,7. Maximum V4, minimum V5, mean V6  or standard deviation V7  (four dif-

ferent measures) is determined for the rate of change of Fl, F2, and F3 from one 

frame to the next, across the entire duration of the vowel. 

V8. The average Euclidean distance of frame-to-frame log-power spectra is calcu-

lated over the central 50%2  of syllable nuclei - a measure of 'spectral change'. 

This measure is determined by performing a Fourier transform to frames (20ms in 

duration) of speech data at regular intervals (every 5ms) in an utterance and calcu-

lating a log-power spectrum for each frame. The Euclidean distance (Equation 6.4) 

is evaluated for adjacent spectra. This distance is averaged over the central 50% 

of each syllable nucleus in the utterance. 

Euclidean11  = 	(x1,. - x1 )2 	 (6.4) 

where N is the number of frequency bins in a spectrum and xi,, is the log-power 

in the n'th frequency bin of the spectrum of the i'th frame (j = i + 1). 

A syllable is labelled as prominent on the basis of vowel stability if V1  equals +6; 

otherwise it is labelled as non-prominent. Each of the measures V2 8 is used as a 

unidimensional feature for the Bayesian classification of syllable prominence. None of the 

measures succeed in classifying syllable prominence better than a zpercent j:e-transformed, 

Normally-distributed random variable. The use of any measure results in more prominent 

syllables being labelled automatically as non-prominent than being correctly labelled as 

prominent. The best performance (68.8% of syllables in agreement with the prominent 

labels transcribed by hand in the test data) is yielded by the measurement V8. 

2The central 50% of a syllable refers to the mid-portion of the syllable, thus excluding 25% at the 
beginning of the syllable and 25% at the end. 
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6.4 Phonological rules 

According to the phonological description of English R.P., none of the lax vowels /1, 

C, A, U, D, (a3)/ can appear in prominent open syllables (Ladefoged, 1982). It may 

seem reasonable to use a rule that labels all lax vowels that occur in open syllables 

as non-prominent. There are, however, two disadvantages to the use of such a rule. 

Firstly, the rule is dependent upon the definition of a syllable. An open syllable defined 

phonologically using the principle of maximal onset (Puigram, 1970) will differ from 

one defined using the principle of maximal coda or one defined using acoustic-phonetic 

criteria (Section 8.1.1). Secondly, foreign speakers may stress any of the vowels /1, C, 

A, U, n, ()/ in open syllables when speaking English if such syllable structures are 

permissible in their mother-tongue. In the training data, spoken by a native speaker of 

British English, the only vowels which form the nucleus of prominent open syllables in 

word final position are long, tense vowels and diphthongs /a, i, 3, U, al, al, el, 31, aU, C, 

i, u/. This does not mean that every speaker of English (including learners of English 

with strong foreign accents) only place stress on word-final open syllables containing this 

set of phones. Recall that the aim here is to identify the location of prominent syllables so 

that a foreign speaker can be informed about incorrect stress placement in English, such 

as placing stress on lax vowels in word-final open syllables. It is therefore inappropriate 

to assign all word-final open syllables with lax vowel nuclei as non-prominent by default. 

6.5 Summary 

The vowel quality of a syllable nucleus is assumed to be an acoustic correlate of stress 

and a number of measures of vowel quality based on formant trajectories are proposed 

in this Chapter. 

A normalised quadratic discriminant score (Equation 6.3) is proposed as a measure 

of how close a vowel is to its target, where a vowel target is a statistically trained model 

based on frequency measurements which aim to be normalised for phonetic context and 

speaker dependencies. This measure is used to label syllables spoken by a native English 

speaker as either prominent or non-prominent and yields a 71.6% agreement level with 

prominence labels based on human perception. It is argued that this measure cannot 
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be used as a correlate of stress in utterances spoken by non-native speakers of English 

because of vowel pronunciation errors. 

A number of different measures of the degree of change in formant trajectories (and 

spectral change) due to contextual assimilation are investigated. The average Euclidean 

distance of frame-to-frame log-power spectra (Equation 6.4) is used as a measure of the 

degree of spectral change in a vowel which is due to contextual assimilation. This measure 

yields a 68.8% level of agreement between prominence labels assigned automatically and 

as transcribed by hand. 

The underlying assumptions made are that, in connected speech, the vocalic nuclei of 

prominent syllables are closer to their respective vowel targets than the vocalic nuclei of 

non-prominent syllables, and that formant trajectories are more changeable in reduced 

vowels than fully articulated vowels because they are subject to greater degrees of con-

textual assimilation. The proposed measures of vowel quality fail to convincingly support 

these assumptions since their use to distinguish prominent syllables from non-prominent 

syllables is comparable with using of a zpercenti,e4ransformed, Normally-distributed ran-

dom variable as an input parameter to a peak-picking algorithm. The application of 

the proposed vowel quality measures as correlates of stress is therefore inappropriate. 

The use of phonological rules to transcribe syllables as non-prominent under certain 

conditions, is also dismissed. 

The formant trajectories of vowels are known to vary within the vowel system of 

a speaker. The cause of these variations are not yet fully understood although it has 

been suggested that segmental context and stress play a role. Duration and articulatory 

constraints may, however, be the means whereby segmental context and stress influence 

formant trajectories (Lindblom, 1963). Whether or not stress affects the perception of 

vowel quality directly, the prominence of a syllable cannot be determined from a measure 

of vowel quality, in the same way as it is not possible to determine the segmental context 

of a vowel from its perceived quality, without first understanding the exact nature of 

the influence of a vowel's context on its formant trajectories in connected speech. It 

is beyond the scope of this thesis to formulate such an understanding. Research to 

systematically measure coarticulatory effects on the formant frequency trajectories of 

the schwa in isolated nonsense words is reported by van Bergem (1994). 
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To conclude, Chapters 4 & 5 and this Chapter have concentrated on optimising 

the extraction of acoustic correlates required for the prosodic analysis of English. The 

underlying principle is to normalise the acoustic parameters for variations due to non-

prosodic aspects of speech. The duration, energy and vowel quality features investigated 

are relevant to spoken English. Thus, the acoustic features presented might not be 

applicable to other languages. For example, the duration feature Djeature  (Equation 4.6) 

might not be related to the syllable thyme for languages which differ from English in 

their syllabic structure, rhythm and timing. The methodology outlined in these Chapters 

can, however, be applied to investigations of the acoustic correlates of prosodic aspects 

of languages other than English. 



Chapter 7 

Fundamental frequency extraction 

Methods to automatically determine the fundamental frequency of a speech waveform 

are addressed in this Chapter. The most reliable and accurate method of determining the 

fundamental frequency of a speech waveform is sought in order to minimise the number 

of errors occurring during FØ extraction from propagating into the prosodic analysis. 

A preliminary evaluation of the FDAs reviewed in Section 3.2 provided evidence 

(which is supported by the evaluation reported in Section 7.2) that the super resolution 

FØ determinator (SRFD) and the feature-based FØ tracker (FBFT) perform most re-

liably and consistently for both male and female speech. A number of modifications to 

the SRFD algorithm (summarised in Section 3.2.6) are proposed in Section 7.1 in order 

to reduce the occurrence of errors such that it is optimised for prosodic analysis. 

The performances of the enhanced SRFD algorithm and the FØ determination al-

gorithms summarised in Section 3.2 are evaluated in Section 7.2. The evaluation uses 

laryngograph data to generate a reference contour and is tailored to identify the most ap-

propriate method of fundamental frequency extraction of adult male and female speech 

recorded with little ambient interference. 

A de-step filter is proposed in Section 7.3.2 to post-process the FØ contour generated 

by an FDA in a way which further reduces the occurrence of errors. 

130 
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7.1 Enhanced super resolution Fø determinator (eSRFD) 

The speech waveform is initially low-pass filtered to simplify the temporal structure of 

the sampled waveform. Each frame of filtered sample data is then processed by the 

'silence' (low energy) detector described in Section 3.2.6. 

The definitions of the segments x,, and y, (Equation 3.8) are refined in order to 

improve the synchronisation of the FØ contour with the speech data. In the unmod-

ified implementation of SRFD, the r'th frame of an utterance starts at tjntervai(r - 1) 

milliseconds into the utterance, where tjfltervol is the interval between successive analysis 

frames (tjntervai = 6.4ms for compatibility with the other FDAs during the evaluation 

and tintervol = 5.Oms to synchronise FØ values with the energy contour during prosodic 

analysis). The analysis of each frame yields an estimated value of the fundamental pe-

riod as no. In other words, the fundamental period for the two cycles following the start 

of the frame is no  samples. Thus, the Fø value produced for a frame describes the data 

centred tjnervaj(T - 1) + no/F5  milliseconds into the utterance (where F5  is the sampling 

frequency in kHz). This is dependent upon the estimated fundamental period of the 

analysis frame. An asynchronous FØ contour is therefore generated. To rectify this 

problem, the first sample of the segment Yn  is defined as the sample s(1), tint ervaj(r - 1) 

milliseconds into the utterance for the r'th frame. Each frame of speech data contains 

a set of samples 8N = {s(i) I i € 	. ., N - Nmax} which is divided into three 

consecutive segments each containing a variable number of samples, n, as illustrated in 

Figure 7.1. 

x. 	= {x(i) = s(i - n) I i E 1,.. ., n} 

Y. 	= {y(i) = s(i) I i € 1,...,n} 

zn 	= {z(i) = s(i + n) I  € 1,. . ., n} 	 (7.1) 

Frames at the beginning of an utterance, for which x,, is not fully defined, are classified 

as 'silent'; likewise frames at the end of an utterance, for which yn  and zn  are not fully 

defined. The use of the third segment of speech, Z, is described later in this Section. 

The analysis of the segments Xn  and Yn  produces an estimate of the Fø value for a 

frame of speech data centred tjnrva,(r - 1) milliseconds into the utterance. This timing 
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Figure 7.1: Analysis segments for the enhanced super resolution FØ determinator 
(eSRFD) 

is independent of the estimated fundamental period of the analysis frame. 

An Fø contour produced by any FØ determination algorithm can be expected to 

contain values which are inaccurate, such as instances of FØ doubling and halving errors 

and instances when voiced sections of speech are classified as unvoiced by an FDA or 

when unvoiced sections of speech are classified as voiced. FØ doubling errors occur when 

the estimated fundamental frequency is an overtone of the true fundamental frequency. 

FØ halving errors occur when the FØ determination algorithm erroneously mistakes 

the correctly estimated fundamental frequency as an overtone of the true fundamental 

frequency and then effectively over-compensates for this by dividing by some multiple 

of two. The remaining modifications made to the SRFD algorithm are designed to 

reduce the occurrences of FØ doubling and halving errors and to improve the voicing 

classification of frames of speech. 

A value of n is sought for each analysis frame such that each segment defined in 
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Equation 7.1 occupies a single fundamental cycle. Candidate values of n are sought 

within the range Nm jn  to Nmax  by using the normalised crosscorrelation coefficient p, 

defined in Equation 3.10. The locations of local maxima in P,y  with values above the 

adaptive threshold T3r fd (Equation 3.12) form candidate values for the fundamental 

period. 

If no candidates for the fundamental period are found, the frame is classified as 

'unvoiced'. Otherwise, the frame is classified as 'voiced' and a second normaiised cross-

correlation coefficient py,z(fl)  is determined for all the fundamental period candidates. 

In/Li 
y(jL).z(jL) 

	

p, (n) 	
j=1 	

(7.2) 

\J 

In/Li 	In/Li 
y(jL)2. 

j=1 	j=1 

In I Pa ,y(fl) > T8rj} 

Those candidates for which py,z(fl)  also exceeds the threshold T3fd  are given a score 

of 2, while the others are given a score of only 1. Candidates with a higher score are more 

likely to represent the true fundamental period, if there are one or more candidates with 

a score of 2, then all those with a score of only 1 are removed from the list of candidates 

and ignored. Following this, if there is only one candidate (with a score of either 1 or 

2) then the candidate is assumed to be the best (and only) estimate of the fundamental 

period for that frame. Otherwise, an optimal fundamental period is sought from the set 

of remaining candidates. The candidates are listed in order of increasing fundamental 

period. The candidate at the end of this list represents a fundamental period of nm, 

and the m'th candidate represents a period of ii,,,. The coefficient q(nm ) (Equation 7.3) 

is calculated for each candidate. q(n n ) is the normalised crosscorrelation coefficient 

between two sections of length nm spaced nm  apart, as illustrated in Figure 7.1. 

nm 
s(j - flM).3(j + nm) 

	

q(nm ) = 	 (7.3) 

js(i - ThM)2.E8(j+ 
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As in the unmodified version of SRFD, the first coefficient q(ni) is then assumed to 

be the optimal value. If a subsequent q(nm ) exceeds this optimal value when multiplied 

by 0.77 (an a priori value) then it is in turn assumed to be the optimal value. The 

candidate for which q(nm ) is believed to be the optimal value forms the estimate for the 

fundamental period, no, of the frame being analysed. 

In the case when there is only one fundamental period candidate with a score of 1 

and no candidates with a score of 2, there is only a small probability that the candidate 

correctly represents the true fundamental period of the frame. if, in such cases, the 

previous frame was classified as either 'silent' or 'unvoiced', then the FØ value describing 

the current 'voiced' frame is held until the state of the subsequent frame is known. If this 

next frame is also not classified as 'voiced', then the frame whose Fø value is on hold 

is an isolated frame which is highly unlikely to be voiced. It is therefore re-classified as 

'unvoiced'. Otherwise, the held Fø value is assumed to be a sufficiently good estimate 

of the fundamental frequency for that frame. 

The above modification dramatically reduces the occurrences of F0 doubling and 

halving errors in the resultant FO contour. However, its implementation also causes a 

greater percentage of voiced regions of speech to be erroneously classified as unvoiced. 

In order to counteract this undesirable effect, an additional modification applies biasing 

to the coefficients p,,y(fl) and pyz(fl)  for values of n where the fundamental period of a 

new frame is expected to lie. Biasing is applied if the following conditions are satisfied: 

The two previously analysed frames were classified as 'voiced'. 

The FØ value of the previous frame is not being temporarily held. 

The fundamental frequency of the previous frame f is less than 1  times the fun- 

damental frequency of its preceding voiced frame f', and greater than 	ie. it 

is highly probable that the fundamental period estimate of the previous frame is 

not an FØ doubling or halving error. 

The fundamental period of the new frame no  is expected to lie within the range of n 

closest to n'0  for which the set of pzy(n) from the previous frame are greater than zero 

(Figure 7.2). The normalised crosscorrelation coefficients pz,y(n) and py,z (Th) are doubled 

for values of ii in this range. This effectively applies a bias on the location of a maxima in 
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Figure 7.2: Example set of p',(n) from previous frame 

the region of the fundamental period for the previous frame to form a candidate for the 

fundamental period of the current frame. Note, however, that the decision to classify 

a frame of speech as voiced or unvoiced is based on the presence or absence of local 

maxima in p(n) which exceed the adaptive threshold T8T1  d•  The biasing therefore 

tends to increase the percentage of unvoiced regions of speech being incorrectly classified 

as 'voiced'. In order to minimise this undesirable side effect, if the unbiased coefficient 

pz,y (n) does not exceed the threshold Tarj d for the candidate believed to be the best 

estimate of the frame fundamental period, then the Fø value for that frame is held until 

the state of the subsequent frame is known. If this next frame is classified as 'silent' or 

'unvoiced', the former frame is re-classified as 'unvoiced'. 

Finally, as in the unmodified version of SRFD, the algorithm obtains an estimate 

of the fundamental period with a fine resolution. A more accurate fundamental period 

estimate for the frame is determined by calculating r(n) (Equation 3.9) for n in the 
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region no  - L to no  + L. The location of the maximum within this range corresponds to 

a more accurate value of the fundamental period. This final estimate is then refined to 

eliminate the effect of time quantisation errors, by using an interpolation method which 

is described in Medan et al. (1991). 

7.2 Evaluation of P0 determination algorithms 

The following evaluation of the algorithms summarised in Section 3.2 and the enhanced 

SItFD algorithm described in the previous Section, is tailored to identify the most ap-

propriate method of fundamental frequency extraction of adult male and female speech 

recorded with little ambient interference. 

A database containing approximately five minutes of speech is used in the evaluation. 

The speech is recorded simultaneously with a close-talking microphone and laryngograph 

in an anechoic studio. The database is formed from fifty sentences each read by one adult 

male (d) and one adult female (v), both with non-pathological voices. The database is 

biased towards utterances containing voiced fricatives, nasals, liquids and glides, since 

these phones are aperiodic in comparison to vowels and FDAs generally find them difficult 

to analyse. 

The sentences are recorded with the use of a laryngograph so that a reference laryn-

geal frequency (Fx) contour can be obtained. The laryngograph measures the impedance 

between two electrodes placed bilaterally across the larynx. The measured impedance 

decreases with an increasing degree of vocal-fold contact. Glottal closure is marked in 

the laryngograph signal (Lx) by a sharp rise to a peak, whereas the opening of the glottis 

is much slower and less marked by a gradual fail in signal amplitude (Baer et al., 1983). 

It is not expected that the laryngograph data can be used to give a perfectly 'correct' 

corresponding Fx contour for the associated speech data. In particular, a contour gener-

ated from laryngograph data may be inaccurate due to effects at the end of voiced speech 

segments for which a small area of vocal-fold contact is insufficient for the glottis activ-

ity to be distinguished from noise in the laryngograph signal, but the speech is periodic 

and low in energy. The extent of such errors will only be over two or three Fx cycles 

and are thus deemed negligible in this study. The laryngograph data provides a simple 

and (relative to FDAs or locating glottal closures from the speech waveform by hand) 



CHAPTER 7. FUNDAMENTAL FREQUENCY EXTRACTION 	 137 

accurate method of producing a contour with which other contours can be compared. 

The functionality of all the algorithms in the evaluation is dependent upon certain 

thresholds and pre-determined parameters, some of which are common across the al-

gorithms. In order to set a degree of similarity between the FDAs, all are required to 

present a computed FØ value at 6.4ms intervals through an utterance. The values are 

limited to the ranges of 5011z-25011z for the male speaker and 12011z-40011z for the fe-

male speaker. In cases where a fixed-length analysis frame is required by an algorithm, 

the frame duration has been set to 38.4ms. A frame of this duration enables at least 

two signal periods to reside within the frame for all fundamental frequencies greater than 

5211z, and allows sufficient data for cepstral and spectral analysis techniques. The speech 

data applied to the algorithms is sampled at 20kHz using a 16-bit analogue-to-digital 

converter (ADC). For those algorithms which operate on a low-pass filtered waveform, 

the low-pass filtered speech is produced by a finite impulse response (FIR) filter with a 

-3dB cut-off at 60011z and rejection greater than -85dB above 70011z, though these filter 

characteristics are not crucial to the performance of the FDAs. 

7.2.1 A laryngeal frequency tracker 

The reference Fx contours are created from the laryngograph data by using a simple 

pulse location algorithm and deriving the duration between successive pulses. Assume 

that the laryngograph data contains a positive-going pulse at the instant of each glottal 

closure and that any acoustic propagation delay between the glottis and the close-talking 

microphone (approximately 0.5ms) has been compensated. 

A 'pulse' is defined as follows (see Figure 7.3): The pulse start time ttart is the first 

sample for which the amplitude is less than zero and less than or equal to the amplitude 

of following samples. The pulse stop time t,,, is the last sample for which the amplitude 

is less than zero and less than or equal to the amplitude of preceding samples. The pulse 

width twjdh is defined as the difference between t,t,,t  and t 0,,. The pulse peak amplitude 

apeak is the maximum amplitude of samples between taar1 and t 0,, (always greater than 

zero). The pulse instant 	is defined as the time of the first of these samples with an 

amplitude apeak. 

For laryngograph data sampled at 20kHz by a 16-bit ADC, a pulse at t,, 	is classed 
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Figure 7.3: Glottal pulses evident in laryngograph data 

as a marker of the glottal closure instant if the pulse width twidth is greater than four 

samples (for data from both speakers) and the pulse peak amplitude apeak is greater than 

a threshold value which is dependent on the recording conditions and which relates to 

the signal-to-noise level in Lx. 

The set of pulse instances generated from the laryngograph data of an utterance are 

considered in chronological order. The duration between one pulse instant 	and 

the next pulse instant 	is calculated and converted to Hertz. If the value is greater puls 

than some lower limit then it is taken to represent the laryngeal frequency at the time 

(t 01  + tj )/2; otherwise, the duration between the pulses is considered to correspond 

to an unvoiced region of speech. The Fx values are limited to >5OHz for the male 

speaker, and >120Hz for the female speaker. There must be at least three laryngograph 

pulses in each voiced section. This final restriction is imposed in order to remove the 

few errors when a 'pulse' in the laryngograph data is formed by events other than glottal 

activity. 

The Fx determined using this algorithm has a mean of 124.19Hz and a population 

standard deviation of 25.61Hz for the male speech, and a mean of 256.02Hz and standard 
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Figure 7.4: Histograms of laryngeal frequency for male and female speech 

deviation of 33.39Hz for the female speech. These statistics indicate that the selection 

of ranges for which FØ is to be determined by the FDAs (d': 50-250Hz; : 120-400Hz) 

is suitable. The histograms of laryngeal frequency in Figure 7.4 for the male and female 

speech both show a single prominent lobe of data centred around the mean. There are 

no smaller lobes to the left or right of the main one, suggesting that Fx doubling and 

halving is not a problem for the algorithm. 

The accuracy with which Er can be determined by this method is limited by the 

time quantisation in sampling the laryngograph signal. The pulse instances can only be 

specified to within a single sample duration. The true laryngeal period T estimated by 

the duration between adjacent pulses d samples apart lies within the range, 

(d— 1).T, < T < d.T, 	 (7.4) 

where T8  is the sampling period. The true laryngeal period can be specified with an 
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error of just T, seconds - note that the error is independent of d. The true laryngeal 

frequency F,, = lIT, lies within the range, 

F. 	 F. 

	

(d— 1) < F. :5 -- 	 (7.5) 

where F, is the sampling frequency. Each value of F, therefore has an error of, 

F. 
d(d-1) 

Hz (7.6) 

This error is dependent upon d and is calculated for the distributions of Fx for the 

two speakers. The quantisation error in determining Er by this method has a mean of 

0.8011z and population standard deviation of 0.3411z for the male speaker, and a mean 

of 3.3311z and standard deviation of 0.86Hz for the female speaker. This error cannot be 

compensated for and affects the evaluation results for the FDAs. 

7.2.2 Comparison of asynchronous frequency contours 

The reference Fx contour of each sentence, generated from the laryngograph data, is 

compared with the FØ contours generated by the six algorithms reviewed in Section 3.2 

and the enhanced Fø determination algorithm eSRFD described in Section 7.1, all of 

which operate on the speech data. 

Frequency contours are described by a sequence of two variables - a time from the 

start of the utterance and a frequency value at that time. The frequency value is set to 

zero to describe regions of silence or unvoiced speech. For the reference Fx contour, the 

times from the start of an utterance (where an Er value is stated) are given by the mid-

point times between pulses detected in the laryngograph data. The laryngeal frequency 

between such times must be inferred by interpolation. Similarly, for the FØ contours 

generated by the FDAs in which an Fø value is only stated at regular intervals; linear 

interpolation is used to form an approximation of the Fø value between times for which 

it is stated. 

For each time a frequency value is stated in either the reference Fx contour or the 

FØ contour, the two values for the contours (one of which may be derived by linear 

interpolation) are compared in the following manner (see Figure 7.5). The frequency 
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value from the reference contour is represented by FXreierence, and that from the Fø 

contour is represented by FOFDA. 

When Fxre jerence  and FOFDA  are zero, both contours describe a silent or unvoiced 

region of the utterance and no error results. 

if FOFDA is non-zero but FXreierence  is zero, then an unvoiced (or silent) region of 

speech has been incorrectly classified as voiced by the FDA. The duration of the 

erroneous region is determined by finding the subsequent time at which either the 

Fø contour becomes zero or the reference Fx contour becomes non-zero. 

If FXr j erence  is non-zero but FOFDA is zero, then a voiced region of speech has 

been incorrectly classified as unvoiced (or silent) by the FDA. The duration of the 

region in error is determined by finding the subsequent time at which either the 

reference Fx contour becomes zero or the Fø contour becomes non-zero. 

When both FOFDA  and FXTS I SrCnCS  are non-zero, the contours represent the correct 

classification of voiced speech. In such cases, if the ratio of, 

FXreierence - FOFDA 

FXrejerence 	
(7.7) 

is greater than 0.2 then the FDA made a gross error in estimating the fundamental 

frequency of more than 20% of the reference Er and the error is categorised as 

Fø 'halving'. If the ratio in Equation 7.7 is less than -0.2, a gross FØ error of 

more than 20% was made which is categorised as FO 'doubling". Otherwise, the 

FDA is assumed to have estimated the fundamental frequency with an acceptable 

accuracy, and the absolute difference between FOFDA and FXrSI erSCS  is noted. The 

+20% threshold of acceptability is chosen because all FDAs are expected to form 

an FØ value within this range with due consideration of time quantisation errors 

and the finite frequency resolution of the analysis technique. 

The durations of unvoiced or silent regions classified in error and the durations of 

voiced sections incorrectly classified as unvoiced or silent by the FDA, are accumulated 

1 F0 'halving' and Fø 'doubling' terms are used here to distinguish between abnormally low and 
abnormally high estimates of Fø rather than referring to exact octave errors. 
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over all the utterances in the database for each speaker. The sum of the individual 

durations of such erroneous regions are expressed as a percentage of the total dura-

tion of unvoiced (or silent) speech and voiced speech respectively. The total number of 

comparisons for which a gross FO doubling error occurs and the total number of gross 

Fø halving errors are also determined. These gross Fø error rates are expressed as 

a percentage of the total number of comparisons for which FOFDA and FXreierenee  are 

non-zero. The final statistics calculated in the evaluation of an FDA are the population 

standard deviation (p.s.d.) and the average, absolute deviation of the reference Fx and 

FØ contours when both represent voiced speech, and the FDA has not made a gross FØ 

error. 

7.2.3 Results and discussion 

Each of the six FDAs reviewed in Section 3.2 and the enhanced SRFD algorithm de-

scribed in Section 7.1 is used to extract the fundamental frequency from the speech 

waveforms of the utterances in the database. The contours generated are then compared 

with the reference Fx contours formed from synchronised laryngograph data, using the 

method described above. The results of the comparison of each pair of contours are 

averaged over the entire set of utterances for each speaker so that the evaluation of the 

FDAs may be assumed to be independent of the segmental and prosodic structures of 

the read utterances. The resultant statistics are presented in Figures 7.6 & 7.7 for the 

two speakers. 

Voiced/Unvoiced Classification: CFD and HPS (which use a frequency domain repre-

sentation of speech) perform considerably poorer for the female speech than for the male 

speech when classifying frames of speech as either voiced or unvoiced. Results reported 

by Rabiner et al. (1976) also find the cepstral-based FØ determination to perform much 

better on lower frequency speech than on higher frequency speech. This is a consequence 

of the frequency domain algorithms basing the voicing classification on the magnitude of 

spectral peaks rather than using the temporal structure of the waveform. The maximum 

cepstral peak magnitude in a given frame is a measure of the degree of voice periodic-

ity; however, voiced speech is only approximately periodic. During sudden changes in 

articulation, the speech waveform can be aperiodic although voiced, for example in the 
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transition from a vowel to a nasal segment. In such cases, a single feature such as the 

cepstral peak magnitude is insufficient to distinguish voiced speech from unvoiced speech 

(Atal & Rabiner, 1976). The time domain approaches, FBFT, PP, IFTA and SRFD, 

are consistently better, with both FBFT and eSRFD having an overall voicing decision 

error rate of less than 17%. 

Gross FO Errors: The outstanding number of Fø halving errors produced by HPS 

for the male speech is unacceptably high. Large sections of aperiodic voiced speech are 

often analysed by the HPS algorithm to have an erroneously low fundamental frequency. 

For the male speech, CFD and HPS generate far more Fø doubling errors than the time 

domain based algorithms. The total gross F0 error rates for the time domain based 

algorithms are less than 2.1% for the male speech and less than 4.2% for the female 

speech, with the exception of the unmodified SRFD which generates 5.6% FØ halving 

errors for the female speech. This error rate is dramatically reduced to 0.2% by the 

modified algorithm eSRFD. 

Frequency Accuracy: The accuracy with which the fundamental frequency is deter-

mined by the FDAs is not of great importance for the analysis of intonation since only 

the general trend of Fø is required. However, it can be seen that the super resolution 

FØ determinator performs consistently better that the other FDAs in this category, with 

the accuracy of its contours being comparable with that of the reference Fx contours. 

Any FDA producing an FO contour suitable for automatic prosodic analysis must 

perform consistently between male and female speech. The resultant contour must ac- 

curately identify voiced sections of speech so that pitch accents are not left undetected, 

and gross Fø errors must be minimal to facilitate correction by FO post-processing 

techniques. CFD and HPS are therefore unsuitable algorithms for the application of 

automatic prosodic analysis. Of the remaining FDAs studied here, FBFT and eSRFD 

form the better voiced/unvoiced classifications and generate the least number of gross 

Fø errors. The enhanced super resolution FØ determination algorithm (eSRFD) is used 

to generate the fundamental frequency contours for the automatic prosodic analysis de-

scribed in this thesis. 
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Gross FO error - low
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Gross FO error - high 

IFx-FOI 	CFD HPS FBFT PP WFA SRFD eSRFD 
mean (Hz) 	2.94 	3.25 	1.86 	2.64 	2.67 	1.78 	1.40 
p.s.d. (Hz) 	3.60 	3.21 	2.89 	3.01 	3.37 	2.46 	1.74 

Figure 7.6: FDA evaluation: Male speech 
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C 	

I Gross FO error - low V//IA I 

IFx-F01 	CFD HPS FBFT PP WFA SRFD eSRFD 
mean (Hz) 	6.39 	4.59 	5.40 	6.11 	4.38 	4.14 	4.17 
p.s.d. (Hz) 	7.61 	5.31 	7.03 	6.45 	5.35 	5.51 	5.13 

Figure 7.7: FDA evaluation: Female speech 
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7.3 Fø contour post-processing 

An attempt is made in the design of the Fø extraction algorithm (eSItFD) to minimise 

the number of FØ doubling and halving errors derived from the speech waveform. It is, 

however, inevitable that some errors of this kind will exist in the FØ contour and that 

they will propagate into subsequent analysis of the contour. The aim of post-processing 

an Fø contour is to eliminate FØ doubling and halving errors whilst maintaining any 

information in the FØ contour which is relevant to the prosodic analysis. Whereas 

the previous attempt (Section 7.1) to reduce the number of errors was based on the 

characteristics of the speech waveform, the post-processing of the contour alms to reduce 

the number of errors by taking into account the characteristics of the contour itself. 

7.3.1 Non-linear smoother 

In an attempt to eliminate FØ doubling and halving errors, the contour can be processed 

by a non-linear filter. Linear smoothing can be applied to remove small perturbations 

in the contour which are not required in the prosodic analysis. Linear smoothing also 

reduces the effects of frequency quantisation in the contour. The non-linear filter and 

linear smoothing proposed by Rabiner et al. (1975) is illustrated in Figure 7.8. 

A non-linear median filter consists of a shift register of length 'median.  The FØ 

values (one for each analysis frame) stored in the elements of the register are sorted into 

ascending order and the middle value is presented at the output of the median filter. 

The length 'median  is always an odd number. 

A linear Hann window is used as a smoothing filter. The window uses 1h  values 

selected from a shift register of length 'Hann  and weights the n'th value by a factor h(n). 

1 ____ 	 2irn \ 

) h(n) = ____  lh+1 (1_cos,+l, 	flEl,...,l h 	 (7.8) 

If the shift register contains more than lHan/2  FO values which represent frames of 

unvoiced speech or silence, then the output of the filter is also set to represent unvoiced 

speech. Breaks in an Fø contour are represented by values equal to zero, which cor-

respond to frames of unvoiced speech and frames of silence. Otherwise, l, is set to the 

number of FØ values in the shift register which represent frames of voiced speech and 
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the filter output is set to the sum of their weighted values. 

The algorithm uses extrapolation for the initial and final values of the contour in 

order to prevent small time shifts due to the delay imposed by the smoothing process. 

By using a Hann window for which 1Hann  is an odd number, the delay (imedian + 1Hann —2) 

imposed by the smoother is always an even number. The extrapolation at the beginning 

of the track accounts for half of this delay, and extrapolation at the end accounts for the 

other half. 

An example of the effects of this non-linear smoothing process is illustrated in Fig-

ure 7.8. In this example, the number of elements in the shift register of the median 

filter and the maximum number of elements in the Hann window are set to 17 frames. 

Although some of the short-term irregularities of the FØ contour which are not relevant 

to prosodic analysis are removed by this process, some of the inflections of the Fø con-

tour which need to be preserved for prosodic analysis are affected. There are two major 

disadvantages in applying a non-linear smoother to an FØ contour prior to prosodic 

analysis. Firstly, short isolated regions of the FØ contour which represent sections of 

voiced speech spanning less than (lmedion + 1)/2 frames are removed if they are flanked 

by sequences of unvoiced speech each spanning (imedian + 1)/2 frames or more. Secondly, 

peaks in the Fø contour related to pitch accents are time-shifted and altered in magni-

tude if they occur near FØ doubling or halving errors. If the numbers of elements in the 

shift registers are reduced in order to preserve FØ inflections relevant to the prosodic 

analysis then fewer Fø doubling and halving errors are removed. If the numbers of 

elements in the shift registers are increased in order to remove larger sections of an FØ 

contour which are subject to doubling and halving errors then the magnitudes of FØ 

peaks are reduced. Changing the magnitudes of the FØ peaks is undesirable because 

they are needed for the prosodic analysis. Another method of removing Fø doubling 

and halving errors is required so that the number of elements in the shift registers can 

be reduced, thus enabling relevant F0 inflections to be preserved whilst still being able 

to smooth Fø micro-perturbations which are irrelevant to the prosodic analysis. 
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7.3.2 De-step P0 filter 

An algorithm is proposed in this Section which eliminates FO doubling and halving 

errors in order to overcome the disadvantages inherent to the non-linear smoother. The 

algorithm is illustrated in Figure 7.9. 

It is necessary to distinguish legitimate frame-to-frame variations of the FØ contour 

from changes which are due to errors in estimating the fundamental frequency. Once this 

distinction is made, the Fø changes which correspond to doubling and halving errors 

can be corrected. It is assumed that FØ can legitimately increase or decrease from 

frame-to-frame by up to 75% during continuously voiced sections of speech, and that Fø 

can change by any amount across unvoiced sections of speech. An Fø increase from one 

frame to the next of more than 75% is defined for this algorithm to be an Fø doubling 

(exact doubling is a 100% increase) superimposed on a legitimate decrease of up to 25%. 

Similarly, an Fø decrease from one frame to the next of more than 75% is defined to be 

an FØ halving superimposed on a legitimate increase of up to 25%. 

Consider each section of voiced speech which is uninterrupted by any frames of un- 

voiced speech. The onset FØ value of a section of voiced speech can correspond to an 

FØ doubling or halving error, or can be a legitimate value. A technique is required to 

determine which of these states the FØ value is in. Each FØ value in the section of 

voiced speech is therefore placed into one of a number of pools. The first FØ value is 

placed into pool P,. If the change in Fø from one frame to the next corresponds to an 

FØ doubling (in terms of the definition above) then all Fø values up to the next FØ 

doubling or halving are placed into a higher pool (x is increased). Similarly, if the change 

in Fø corresponds to an FØ halving then all FØ values up to the next FØ doubling or 

halving are placed into a lower pool (x is decreased). The pool containing the greatest 

number of values is assumed to contain legitimate FØ estimates. This assumption is 

valid only if an FDA makes a majority of the FØ estimates without doubling or halv-

ing errors in any given section of voiced speech. Let x = 0 for the pool containing the 

greatest number of values. Higher pools (x > 0) contain FØ values which are doubling 

errors and lower pools (x < 0) contain FO values which are halving errors. 

To describe this explicitly in mathematical terms, let fi  represent the F0 value of the 

i'th frame in a section of voiced speech. The first FØ value f1 is placed into pool Pr(l). 
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Subsequent values (i> 1) are placed into a pool P(I) where x(i) is given in Equation 7.9. 

Fø values are pooled with the index i in order to keep track of their location in the Fø 

contour. 

x(i - 1) + [l092 (&L_) + ij 	if 1, ~ 
X (i) = 	 .' 	

(7.9) 
x(i - 1) - 11092 (. fi ') + ij 	if 

Let P0 represent the pool containing the greatest number of FO values. The FØ 

values in P(I) are corrected by multiplying each value by 2_x(1). 

1; = 2 ()f 	Vu € P.W 	 (7.10) 

Once the correction factor has been applied, the Fø contour for the voiced section 

is reconstructed from the new F0 values f' and the stored indices i. 

An example of the effects of this de-step FO filter on the performance of the non-linear 

smoothing process is illustrated in Figure 7.9. In this example, the number of elements 

in the shift register of the median filter and the maximum number of elements in the 

Hann window are set to 5 frames. The FØ doubling and halving errors are eliminated 

without affecting inflections of the FO contour relevant to the prosodic analysis. FØ 

micro-perturbations are reduced by applying the non-linear smoother with a reduced 

number of shift register elements (reduced from spanning 17 frames to 5 frames). Short 

sections of voiced speech are therefore preserved for further analysis. 

Some errors in the FØ contour can remain after this post-processing technique has 

been applied. If, in the course of a single voiced section of speech, an Fø doubling 

error is detected but a subsequent F0 halving error is not detected (or visa versa) then 

legitimate FØ values are altered. This produces doubling and halving errors rather than 

eliminating them. Legitimate FØ values are corrupted in this way only when a doubling 

error occurs during a legitimate rapid decrease in F0 such that the overall frame-to-

frame increase is less than 75%, or when a halving error occurs during a legitimate 

rapid increase in FO such that the overall frame-to-frame decrease is less than 75%. 

The possibility of this undesirable effect occurring is small and is far outweighed by the 

benefits of the de-step FØ filter. 

Three other types of error can remain in the F0 contour. Firstly, if an FDA makes 



CHAPTER 7. FUNDAMENTAL FREQUENCY EXTRACTION 	 153 

either more FØ doubling errors or more FØ halving errors than correct estimates of 

the fundamental frequency (in any given section of voiced speech) then pool Po  will not 

contain legitimate values, as assumed. The Fø values in the voiced section will therefore 

be erroneously set to an overtone of the their true values. The only way to remove such 

errors is to improve the FØ determination algorithm. Secondly, the Fø contour may 

contain rapid frame-to-frame changes in frequency of more than 75% which are accurate 

estimates of the rate of glottal pulses, but which are detected as doubling or halving 

errors - such as in creaky voice. Finally, FØ inflections dependent on the segmental 

content of the utterance remain in the contour (such as FØ peaks at the onset of vowels 

occurring after unvoiced stop consonants) although they are not required by the prosodic 

analysis. A further level of post-processing is required, such as FØ contour stylisation 

(Sections 3.4 & 8.2.1), to eliminate these microprosodic variations in the Fø contour. 

An evaluation of the FO contours produced by the eSRFD algorithm when post-

processed by the non-linear smoother and the de-step filter are shown in Figure 7.10. 

This shows that the non-linear filter only decreases FØ doubling errors in the male 

speech, while the de-step filter combined with a non-linear filter using fewer frames 

yields improvements in voicing classification and a reduction in gross Fø errors. These 

improvements are made at the expense of a slight reduction in the accuracy of Fø 

estimates. 

7.4 Summary 

Intonation refers to the manipulation of pitch for linguistic and paralinguistic purposes 

above the level of phonemic segments. The acoustic correlate of pitch is the fundamental 

frequency of speech. The extraction of Fø from a speech signal is therefore a prerequisite 

of prosodic analysis. A number of modifications to the SRFD algorithm (summarised 

in Section 3.2.6) are proposed in this Chapter, which reduce the occurrence of errors 

involved in the extraction of FØ such that it is optimised for prosodic analysis, relative 

to a selection of other algorithms designed to determine FØ. A novel de-step filter is 

proposed to post-process an FØ contour generated by an FDA in a way which further 

reduces the occurrence of discontinuity errors commonly observed in Fø contours. 
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Male speech 

Gross FO error - low 

Gross FO error - high 1\\\\1 
Voiced in error 

Unvoiced in error 

IFx-FU 

mean (Hz) 
p.s.d. (Hz) 

	

eSRFD Post Post 	 eSRFD Post Post 
Smoother De-step 	 Smoother De-step 

	

1.40 	3.50 	1.60 	 4.17 	6.25 	4.22 

	

1.74 	4.09 	2.22 	 5.13 	7.29 	5.33 

Figure 7.10: Evaluation of post-processed Fø contours (for eSRFD) 



Chapter 8 

Automatic Prosodic Analysis 

The features of duration and energy, and the fundamental frequency extracted from the 

speech waveform need to be abstracted to form an acoustic-phonetic representation of 

sentential stress patterns and intonation in a syllabic domain. This is the aim of the 

automatic prosodic analysis system proposed here. 

The syllabification of speech forms a central part of automatic prosodic analysis, 

taking on three roles. Firstly, the prosodic aspects of speech are described in a syllabic 

domain. Stress refers to the relative perceptual prominence of syllables and the de- 

scription of intonation involves the association of pitch accents with prominent syllables. 

Secondly, the extraction of acoustic parameters is dependent upon the definition and 

identification of syllables. The duration feature found to optimally correlate with stress 

in Chapter 4 is dependent upon identifying the syllable thymes in an utterance. The op-

timal energy feature determined in Chapter 5 is dependent upon identifying the syllable 

nuclei in an utterance. The third role of the syllabic domain is related to the integration 

of the acoustic parameters. The syllabic domain inherently encompasses energy and 

segmental information which can be passed on to the analyses of energy, duration and 

FØ measures. For example, the location of syllable nuclei can serve as possible islands 

of reliability in the extraction of fundamental frequency. Section 8.1 addresses the auto-

matic syllabification of an utterance from its phonetic realisation, and the syllabification 

of an utterance on the basis of a set of abstract phonological rules. 

Microprosodic variations in the fundamental frequency of a speech waveform cause 

inflections in an Fø contour which are independent of the underlying intonational com-

ponent. An Fø contour also includes speaker-dependent effects, fluctuations related to 

155 



CHAPTER 8. AUTOMATIC PROSODIC ANALYSIS 	 156 

cycle-to-cycle jitter (Fø perturbations) generated at the vocal folds, and erroneous Fø 

estimates generated by malfunctions in an FDA. It is proposed that an acoustic-phonetic 

representation of intonation can be derived from a raw FØ contour by removing com-

ponents of the contour which are due to rnicroprosody, cycle-to-cycle jitter, speaker 

dependent FØ range and fluctuations induced by erroneous Fø extraction from the 

speech signal. The task of reducing the occurrences of F0 perturbations and extraction 

errors is largely accomplished by the post-processing techniques described in Section 7.3. 

The stylisation of an Fø contour aims to prevent microprosodic variations from being 

confused as pitch accents, and hence effectively isolate the microprosodic and intonational 

components. The process of piece-wise linear stylisation of an FO contour is presented 

in Section 8.2.1. Fø estimates made within syllable nuclei are generally reliable because 

the speech signal within syllable nuclei is quasi-periodic and has a relatively high signal-

to-noise ratio. These conditions are generally well suited to the assumptions made by 

FØ determination algorithms. Furthermore, microprosodic variations tend to dominate 

an FØ contour within the vicinity of short syllable nuclei in the context of unvoiced 

consonants. Syllable information can therefore be used to aid the stylisation of an FØ 

contour. 

A stylised contour may contain some microprosodic variations given that the stylisa-

tion process will not be faultless. A stylised contour also contains speaker-dependent and 

intonational components. The stylised contour must be processed with respect to the 

syllables of an utterance in order to eliminate any remaining microprosodic variations, 

to compensate for speaker-dependent effects and to form an acoustic-phonetic represen-

tation of intonation. A schematisation process alms to manipulate a stylised contour 

with these goals in mind. A schematic representation of an FØ contour is independent 

of a speaker's fundamental frequency range, and aims to exhibit only the intonational 

component of the contour. An algorithm to generate FØ schemata is presented in Sec-

tion 8.2.2. The FØ trajectories of a schema can be associated with syllables to locate 

the syllables which are pitch accented. 

The processed acoustic parameters need to be combined to form a description of the 

intonation and the sentential stress patterns of speech, in a syllabic domain. The modular 

analyses proposed in this thesis are integrated to form a prosodic analysis system which 
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generates such a description. An overview of the system is described in Section 8.4 and 

its performance is evaluated in Section 8.5 relative to two algorithms formerly proposed 

in the literature. 

8.1 Syllabification 

The prosodic aspects of speech are described in a syllabic domain. Thus, the automatic 

identification of syllables in connected speech forms a part of prosodic analysis. An algo-

rithm is proposed in Section 8.1.1 for the syllabification of speech from acoustic-phonetic 

parameters. The algorithm groups phones according to the phonetic realisation of an 

utterance rather than on the basis of a set of abstract phonological rules. A proce-

dural definition of a syllable based on phonological rules is presented in Section 8.1.2. 

The groups of phones produced by the acoustic-phonetic syllabification are shown in 

Section 8.1.3 to correlate with syllables defined on the basis of phonological rules. 

8.1.1 Automatic syllabification from acoustic-phonetic parameters 

The following algorithm is used to group phones into syllable-sized units using a 

(frame-level) utterance-normalised low-band energy contour which is generated using 

the method described in Section 5.1, and the phone boundary and label information of 

an utterance provided either by hand or by an automatic segmentation system. 

In the application of prosodic analysis for computer aided pronunciation teaching, 

the orthographic transcript of an utterance is known because a foreign language learner 

is asked to read a given sentence in the course material. An automatic segmentation 

algorithm can therefore use a network of variant pronunciations (which may also include 

optional interword silences and segmental assimilation) for the known utterance (McInnes 

et al., 1992). The constraints of such a network enable automatic segmentation to be 

performed more reliably than in speech recognition systems where segmentation is either 

constrained only by vocabulary and syntax, or even worse, no vocabulary and syntax 

constraints are imposed (as in phoneme lattice generation). 

The (auto-)segmentation data gives the location of phones and classifies phone-types. 

The low-band energy contour of an utterance is used to determine the degree of syllabic 
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cohesion between two adjacent phones. 

All local minima (valleys) in the low-band energy contour are located. The locations 

of the minima form candidates for syllable boundaries. The areas of silence identified 

by the (auto-)segmentation are respected and the energy minima within such areas are 

believed to be due to variations in background noise. Each segmentation boundary at 

the junction of a silence and a phone label is regarded as a syllable boundary (at either 

the beginning or at the end of a syllable). The nearest candidate (energy minimum) to 

such a segmentation boundary is therefore moved to align with it and all the candidates 

residing within the area of silence are disregarded. 

If word boundary information is known, then syllable boundaries can be forced to 

occur at word boundaries. The nearest syllable boundary candidate to a word boundary 

can be aligned with the word boundary. Word boundary information is not used in 

this study and so phones which are grouped using this algorithm may span across word 

boundaries. None of the analysis techniques described in Chapters 4, 5, 6 & 7 make use 

of word boundary information. 

The regions between all the remaining energy minima (after those within silences 

have been disregarded) are taken to be potential syllables, with a start time given by the 

location of the nearest minimum on the left-hand side, and the location of the nearest 

minimum on the right-hand side giving the stop time. It is then determined whether or 

not the location of each of these potential syllables overlaps more than 50% of any vowel 

segment. If a potential syllable overlaps more than one vowel segment in this way, then 

the vowel segment with the maximum low-band energy is taken to be the nucleus of the 

syllable. If there is more than one vowel in a group of phones then any reduced vowels 

(//) take a lower precedence in forming the syllable nucleus than non-reduced vowels, 

even if the reduced vowel has a greater low-band energy than the other vowel or vowels 

in the group of phones. (It is unlikely that a schwa will really have a higher low-band 

energy than a neighbouring full vowel, but this situation may arise because of errors in 

the automatic segmentation of an utterance.) 

If no such overlap occurs, then it is determined whether or not the location of the 

potential syllable overlaps more than 50% of one of the possible syllabic consonant seg- 
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ments /1, m, n, (r)1 /. Again, if the potential syllable overlaps more than one of these, 

the one with the maximum low-band energy is selected as the syllabic nucleus. 

If there is insufficient overlap, the region between the minima does not correspond to 

a syllable unit (because no syllable nucleus can be found between the low-band energy 

minima) and either the left-hand side or right-hand side minimum is disregarded as a 

syllable boundary candidate - whichever has the highest energy and does not correspond 

to a phone/silence boundary or (if known) a word boundary. The newly formed region 

is then taken to be a potential syllable and the process is repeated. 

The resultant syllabification has boundaries located in the utterance at positions of 

local minima in the low-band energy contour. These boundaries are aligned with the 

(auto-)segmentation by moving each of the boundaries to the nearest phone boundary. 

8.1.2 Syllabification based on phonological rules 

The following procedural definition is used to group phones into syllables on a phono-

logical basis rather than on an acoustic-phonetic basis (Bagshaw & Williams, 1992). 

Consonantal phones (such as /m, a, 1, r, s/) which may result in schwa deletion 

(Gimson, 1970; Dalby, 1986) and take on the syllabic nucleus, are syllabified as if the 

underlying schwa is present. Hence, in rapid speech, shortest may be syllabified as 

t s t] and additional may be syllabified as [ - 'd i - 5 ii - 1]. A glottal stop /?/ that 

may occur before or instead of a word-final stop consonant is treated as an instance of 

the underlying stop consonant, and the glottalised onset to a vowel is considered to be 

part of the vowel. 

Syllable boundaries are formed from the boundaries of words considered in isola-

tion. Although in connected speech consonants at the end of one word can syllabify with 

the initial vowel of the following word (Maddieson, 1985), such resyllabification is not 

necessary in forming a domain in which to describe prosodic events. Thus, for example, 

the syllabification of at all differs to that of a tall even if [t] is aspirated in both cases and 

they are phonetically identical. Similarly, resyllabification is unnecessary across words 

that appear to blend together due to vowel deletion, as may be the case in under a, 

which is syllabified as ['A a - d r - ] rather than ['A Ii - d r ]. The syllabification of 

is included for American English and for rhotic dialects of British English. 
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under a and tundra /'t A ii - d r / therefore differ even though they may be phonetically 

similar. This approach is adopted because the exact boundaries between syllable nuclei 

are not of critical importance, although identifying the syllable nuclei is important. 

The boundaries between syllables are also determined by the presence of morpho-

logical boundaries. The boundary between a free morpheme and an inflectional suffix 

(except -s - eg. -tion, -tician) or a class-II derivational affix (eg. un-, non-, dis-) is 

taken to be a syllable boundary (see Fudge (1984) for details of morpheme prefixes and 

suffixes in English). Thus, hopeless is syllabified as /'h au p - 1 a s/ rather than /'h au - 

p 1 a s/; and uninteresting is syllabified as /A n - 'I n - t a - r c s t -' ij/ rather than 

/A - 'nIn-t-rC-stIU/. 

On the basis of English phonotactics, any cluster of phones forming the onset 

or the coda of a syllable must also be a permissible word-initial or word-final cluster. 

According to this rule, extra may be syllabified as /'c k - s t r /, ft k s - t r /, or 

/'c k s t - r 

The 'maximal onset (and minimal coda) principle' (Pulgram, 1970; Couper-

Kuhlen, 1986) arbitrates between competing syllabifications. According to the principle, 

as many consonantal phones as possible form a syllable onset. Using this principle, extra 

would be syllabified as /'€ k - s t r a/. However, in cases when alternative boundaries 

are possible, stressed syllables tend to attract consonants more than unstressed ones, 

particularly in the case of ambisyllabic consonants such as /s, f/ (Fudge, 1984). When 

this final criterion is applied, the syllabification adopted for extra becomes ic k s - t r 

8.1.3 Evaluation procedure 

An example of the syllabifications produced by the above methods is shown in Figure 8.1 

for the word international, in the phrase "...at the Kyoto International Conference Cen-

tre." The upper part of the Figure shows the speech waveform and its corresponding 

segmental transcription (obtained by auto-segmentation). Phone boundaries are shown 

by dotted lines and the continuous lines show the syllable boundaries derived on a phono-

logical basis. The lower part gives the utterance- normalised low-band energy contour 

and transcription-aligned syllable boundaries derived using the acoustic-phonetic syllab-

ification algorithm described in Section 8.1.1. The phonologically based syllabification 
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gives five syllables, /i n - t a' - ii ae - f a n - a 1/, but the acoustic-phonetic syllabification 

gives only four syllables, [in - t a' - n ae 5 - a ii a 1]. The final syllable [- a n a 1] may 

initially appear to illustrate an error in the acoustic-phonetic syllabification algorithm 

(that of a missing syllable boundary). However, the low-band energy contour shows 

only one peak of intensity in this section of speech, and it is transcribed phonetically 

by a phonetician as [- n a 1] (with schwa deletion). There is an error in the automatic 

segmentation of the utterance, but not in its subsequent syllabification. 

A database of 591 utterances from the English language ATR conference-registration 

dialogues is syllabified automatically using the above acoustic-phonetic algorithm and by 

hand using the syllabification based on phonological rules. The data consists of a series 

of telephone dialogues spoken by a female bilingual speaker of American English and 

Japanese in a variety of styles and registers, ranging from read speech to spontaneous 

speech (see Campbell (1992) for a brief description of this material). 

In order to compare the human and machine syllabifications, it is necessary to define 

when they are regarded as sufficiently similar and when they are not. At the most 

stringent level of comparison, a syllable located automatically is regarded as correct only 

if its boundaries (both at the beginning and at the end of the syllable) match exactly with 

those defined on a phonological basis. This method of comparison is unrepresentative 

of the algorithm's performance as just one miss-matched boundary would correspond to 

two miss-matched syllables. Furthermore, the boundaries between syllables vary even 

between phonological definitions - only, the syllable nuclei are well defined. Therefore, 

the following procedure is used to evaluate the automatic syllabification algorithm. 

Initially assume that all of the syllables located automatically are extra syllables - 

ie. that each auto-syllable is not the single match of a phonological syllable. Also as-

sume that all of the phonological syllables are missing in the automatic syllabification 

- ie. that each hand-syllable is not matched by any syllables located automatically. 

The phonetic transcription of every syllable is known. By definition, there is at least 

one vowel and/or syllabic consonant in each syllable (defined either automatically or 

on a phonological basis). However, the phonetic units which form each syllable nucleus 

are not stipulated (as they may differ from one syllabification scheme to another). The 

comparison proceeds by considering each hand-syllable in turn. Locate the first vowel 
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Acoustic-phonetic syllabification (automatic) 

Figure 8.1: Syllabification of the word international* 

or syllabic consonant (a potential nucleus) in the hand-syllable. Then consider each 

auto-syllable from the beginning of the utterance to determine whether or not it over-

laps with the potential nucleus. If the auto-syllable does overlap and if it has previously 

been assumed to be an extra syllable, then mark the auto-syllable as not being an extra 

syllable, mark the hand-syllable as not missing, and consider the next hand-syllable in 

the utterance. Otherwise, repeat the search for a matching auto-syllable using another 
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Total number of syllables 
from a phonological from an acoustic-phonetic 
basis (by hand) 	basis (automatic) 	Match 	Missing 	Extra 
9322 (100.0%) 	8910 (95.6%) 	 8875 (95.2%) -447 (4.8%) +35 (0.4%) 

Table 8.1: Comparison of syllabifications based on phonological rules (by hand) and on 
acoustic-phonetic parameters (automatic) 

potential nucleus in the hand-syllable until all possible nuclei have been considered. If 

none of the possible nuclei in a hand-syllable are overlapped by an auto-syllable previ-

ously assumed to be an extra syllable, then the hand-syllable is genuinely missing in the 

automatic syllabification. Once every hand-syllable in the utterance has been considered 

in turn, any remaining auto-syllables which have not been found to correspond with a 

hand-syllable are genuinely extra syllables. 

There is a large level of agreement between the syllabic domains generated auto-

matically and by the procedural definition based on phonological rules (see Table 8.1). 

The missing syllable boundaries are due to the occurrences of vowel/vowel boundaries 

between which there is no valley in the low-band energy. When this case arises, often 

one of the vowels is a schwa; for example, the phonological syllabification of my address 

as /m al - - d r c s/ can be grouped on an acoustic-phonetic basis as [m ai - d r c s]. 

Conversely, extra syllable boundaries occur when the low-band energy dips within the 

phonologically based syllable at a vowel/vowel boundary or vowel/syllabic consonant 

boundary; for example, the phones in tour /t u a'/ can be grouped as [t U - a] on an 

acoustic-phonetic basis, and the phones in the word forms /f r m s/ are grouped as 

[f 	- r rn s] when its phonetic realisation tends towards the pronunciation of forums 

with schwa deletion, but with a fall in low-band energy remaining between /o/  and /m/. 

The algorithm described in Section 8.1.1 forms groups of phones with a vowel or 

syllabic consonant as the nucleus of each group. There are no vowel/vowel pairs or 

vowel/syllabic consonant pairs with dips in low-band energy between them, in any of 

the groups. The boundaries between groups are positioned at the point of minimum 

low-band energy between nuclei (aligned to the nearest phone boundary). It is assumed 

that such groups of phones can only ever be perceived as single prominent units in 
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connected speech. These units are shown to correlated closely with syllables defined 

using phonologically based rules. They are, therefore, referred to as syllables. 

8.2 	Processing of P0 for an acoustic-phonetic description 

of intonation 

The fundamental frequency contour of a speech waveform does not form an acoustic-

phonetic representation of the utterance intonation because microprosodic variations are 

also present and the contour is dependent upon a speaker's fundamental frequency range. 

The process of piece-wise linear stylisation of a contour presented in Section 8.2.1 aims 

to prevent microprosodic variations from being confused as pitch accents. A stylised 

contour is processed with respect to the syllables of an utterance in Section 8.2.2 to form 

a schematic acoustic-phonetic representation of intonation. The schematic representation 

is independent of a speaker's fundamental frequency range. 

8.2.1 Linear piece-wise stylisation of an Fø contour 

The algorithm used to perform the stylisation of an FØ contour is based on the technique 

proposed by Scheffers (1988). As with other FØ contour stylisation techniques (Hirst & 

Espesser, 1993; Taylor, 1993), the FØ contour is the only input parameter to Scheffers' 

algorithm. Information about the segmental content of an utterance is not included. The 

algorithm described here to stylise an FØ contour also uses syllable nucleus boundaries 

(which are automatically located using the acoustic-phonetic syllabification algorithm 

described in Section 8.1.1). 

Scheffers partitions an Fø contour into linear piece-wise sections using the least 

(mean of) squares method of regression analysis. The least (mean of) squares method 

of regression analysis produces its best results when the underlying error distribution is 

Gaussian. This method of regression analysis becomes unreliable if the data contains 

spurious outliers (samples which deviate from the local trend by a large amount). Such 

data almost invariably exists amongst FØ contours, where gross measurement errors and 

microprosodic variations can, and often do, occur. A more robust method of regression 

analysis is therefore required. The least median of squares (LMedS) method of regression 
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analysis (Appendix A) is more robust to the presence of outliers (Rousseeuw & Leroy, 

1987). The algorithm described here to stylise an FØ contour incorporates the robust 

least median of squared residuals regression analysis. 

An account is given below which describes how significant turning-points are located 

in sections of an FØ contour (partitioned using syllable nucleus boundaries) then mod-

ified to prevent contour discontinuities other than at the boundaries between unvoiced 

and voiced speech, and how a new, stylised contour is generated by interpolating between 

the turning-points. 

The FØ values describing a contour (excluding values which equal zero to represent 

unvoiced speech) are initially converted to the semitone scale using Equation 8.1. 

\ 
FØsejg,j,, = 12.0 log2 f MHz 

55.0 ) 	
(8.1) 

An FØ contour is partitioned into sections which represent portions of continuously 

voiced speech and which overlap any part of at least one syllable nucleus. Partitioning 

an FØ contour in this way eliminates isolated voiced sections of the contour which do 

not overlap a syllable nucleus from the subsequent processing (which locates significant 

turning-points in the contour). This is required because isolated voiced sections in the 

FØ contour which do not overlap a syllable nucleus are likely to be unreliable since they 

may correspond to unvoiced sections of speech erroneously classified as voiced by an 

FDA. 

Short sections (less than 40ms in length) of an FØ contour partitioned as above 

correspond to short syllable nuclei with unvoiced left and right segmental contexts. Thus, 

niicroprosodic variations at the onset and offset of voicing dominate the FØ trajectory 

in such short sections. Significant turning-points are therefore not located in these short 

sections of a contour. They are stylised by setting the Fø values to the mean value of 

the Fø trajectory within each short section. 

The following process (adapted from Scheffers, 1988) is used to identify the turning-

points in each section of an Fø contour which is longer than 40ms. Starting with the first 

voiced frame, LMedS regression analysis is applied to a window of to frames corresponding 

to voiced speech, where to is initially set to 5. The final frame in this window is taken to 

be a turning-point candidate. The FØ value of the subsequent frame is predicted using 
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the coefficients of the LMedS regression analysis. If the absolute difference between the 

actual and predicted FØ values is less than or equal to some level of permitted variation 

in FØ (1 semitone), then the candidate is not a turning-point, the window length to is 

incremented to include the next voiced frame, and the above process is repeated. The 

repetition of this process terminates when the turning-point candidate is the final voiced 

frame in the section of the FØ contour under analysis. Otherwise, when the absolute 

difference is greater than the permitted Fø variation, either this subsequent Fø value 

constitutes some type of irregularity in the Fø contour or the candidate could be a 

genuine turning-point. In order to determine which is the case, the FØ value of the 

next voiced frame is also predicted. If the absolute difference between the predicted 

value and the actual value is once again greater than the permitted FØ variation, and 

if this situation arises for all following frames up to either the final voiced frame in the 

section of the FØ contour under analysis or such that the duration of this discontinuity 

is greater than some minimum permitted level (lOOms), which ever occurs first, then the 

candidate is said to be a genuine turning-point. Otherwise, the length of the window to is 

increased to include the first frame for which the absolute difference in the actual and the 

predicted FØ values was less than or equal to the permitted variation, but not to include 

those for which it was greater than the permitted variation, and the LMedS regression 

analysis process is repeated. If the candidate was found to be a turning-point and if it 

corresponds to a voiced frame immediately preceding a frame of unvoiced speech, then 

the first frame of the next voiced region is also designated as a turning point. This entire 

process is then repeated with the length of the window to reset to 5 and with the first 

frame of the window set to the frame of the most recent turning-point found. The first 

and final voiced frames of the non-stylised contour are also assigned as turning-points. 

In order to ensure that discontinuities in the stylised FO contour only occur at 

unvoiced sections of speech, the fundamental frequency at each turning-point of the new 

contour is determined in a way which depends upon the voicing state of the frames 

adjacent to it. However, a discontinuity in the stylised FØ contour is allowed within 

a voiced section of speech if the turning-point is an outlier for either of the piece-wise 

sections it joins. (The detection of outliers is a part of the LMedS regression analysis.) 

In such situations, the turning-point is treated as being adjacent to an unvoiced frame of 
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speech. For any given turning-point (tp) at frame fe,, with original fundamental frequency 

the LMedS coefficients s,p  (slope) and i, (intercept) of selected points preceding 

the turning-point are known. The modified fundamental frequency FO is calculated tp 

from Equation 8.2. 

+ ii,,  + s23,+i.f,, + i+,) 	if frames ftp 	& f,,+1 are voiced 

/ 	sp+1 .fp + i4, 1 	if frame fe,, - 1 is unvoiced & frame f, +1 is voiced 
FOtp  - 

s, .f + itp 	 if frame fe,, —1 is voiced & frame fe,, + 1 is unvoiced 

FØ1 	 if frames f, —1 & fe,, + 1 are unvoiced 

(8.2) 

The new stylised contour is then created by linear interpolation of FØ between each 

turning-point (frn, Fø,,) and by resetting each frame that is unvoiced in the non-stylised 

contour to an unvoiced state in the new contour. The resultant data is then coverted 

back to a Hertz scale. 

An example of a linear piece-wise stylised contour produced using the above algo-

rithm is illustrated in Figure 8.2. The stylised FØ contour is aligned with the speech 

waveform and phonetic transcription. The dotted lines across the speech waveform rep-

resent phone boundaries and the solid lines represent syllable boundaries, which are used 

by the stylisation algorithm. Many of the microprosodic Fø variations and Fø pertur-

bations are removed by the stylisation process, however, some remain in sections of the 

contour associated with voiced consonants in a vocalic context. The overall melody of 

the utterance is retained. 

8.2.2 Prosodic schematisation of a stylised P0 contour 

Each piece-wise section in the stylised FØ contour forms a possible pitch accent or a 

possible part of an accent. Some piece-wise sections do not correspond to part of any 

pitch accent, such as those which are a direct consequence of erroneous FØ extraction 

or stylisation. Thus, a piece-wise section is treated as being part of a possible pitch 

accent if either at least 50% of the piece-wise section overlaps a syllable nucleus (where 

FØ estimation is expected to be reliable) or at least 50% of a syllable nucleus is over- 
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lapped by the piece-wise section. The piece-wise sections may therefore extend beyond 

a syllable nucleus but only those crossing a syllable nucleus by a substantial amount are 

selected. This approach compromises between using information about the trajectory 

of FØ through vowels alone (which may be limiting for short nuclei) and using the Fø 

contour of an entire syllable (where FØ discontinuity errors may occur). 

The absolute FØ range in an utterance will vary from speaker to speaker and from 

utterance to utterance (Section 3.4). Fø piece-wise sections are, therefore, normalised for 

each utterance to give relative Fø heights. The relative height of each piece-wise section 

is calculated by first locating a regression line which best fits the contour turning-points 

using LMedS analysis. A by-product of the LMedS is the standard deviation aLMeds of 

the points from the resultant linear model. The absolute Fø at each turning-point is 

then converted by subtracting its modelled value and dividing by the standard deviation, 

0 LMedS• This effectively compensates for any long term declinative tendency that may 

be exhibited in the fundamental frequency contour and expresses the Fø values relative 

to an utterance dependent datum. 

Once the relative height of each piece-wise section has been established, the piece-wise 

sections are combined to form FO trajectory descriptors. The FØ trajectory descriptors 

used are level, fall, rise, fall-rise and rise-fall "-, \, /, V, A". Each piece-wise section 

which crosses a substantial part of a syllable nucleus (as described above) is classified as 

either level, a fall, or a rise. If there is no piece-wise section which crosses a particular 

syllable nucleus by a substantial amount, then the syllable is classified as having an 

"unknown" FØ trajectory. Let FØs  tart represent the relative Fø height at the start of 

the piece-wise section and that at the end of the section be represented by FØed. A 

piece-wise section is classified on the basis of Equation 8.3. 

f \ 
if FØ 0  - Mend > 

FØ trajectory 

= 

/ i f 	- FØend  < 0750LMedS 	 (8.3) 

- otherwise 

When two or more piece-wise sections cross any particular nucleus, they are combined 

by initially taking all adjacent sections with the same FØ trajectory descriptor and 
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joining them into one. A join is made by setting FØ,,,, to that of the first section, Mend 

to that of the second section, and reclassifying using Equation 8.3. In the combined 

training data and test data of 660 utterances (described in Section 4.1) consisting of 8546 

syllables, there are only six syllables for which more than two piece-wise sections remain 

after this process. One of these six syllables contains a section of FØ halving errors, 

two syllables contain extreme FØ perturbations due to creaky voice, and three syllables 

include microprosodic variations which are not successfully removed by the stylisation 

process. If there are two remaining sections (their classifications must differ) and if either 

is classified as level "-", then they too are joined in the same way. Otherwise, one section 

is a fall "\" and the other section is a rise "/". These sections are combined to give a 

single trajectory which is described as either a fall-rise "V" or a rise-fall "A" depending 

on their order, and the relative level at their mid-point is kept for reference. Thus, for 

the fall-rise and rise-fall descriptors, the relative heights of the onset, the mid-point and 

the offset of the trajectory are known. 

Fø schemata are generated from sequencies of FØ trajectory descriptors and their 

internalised relative heights. An example of the processing of a speech waveform to 

generate an FØ schema is illustrated in Figure 8.3. The speech waveform for the sentence, 

"From forty love the score was now deuce and the crowd grew tense," is shown with 

its aligned phonetic transcription represented by MRPA symbols (Appendix D). The 

raw FO contour is extracted using the super resolution FØ determinator (eSRFD) and 

includes FØ doubling and halving errors. These errors are eliminated by the de-step 

filter and non-linear smoothing algorithm (Section 7.3). The linear piece-wise stylisation 

of the post-processed FØ contour removes many of the microprosodic FO variations. 

The FØ schema derived from this exhibits only the intonational component of a raw FØ 

contour. 

Judgements of syllable accentuation are based on the FØ trajectory descriptors us-

ing the pitch accent decision filter developed by Hieronymus (1989) - illustrated in 

Figure 3.5. The decision filter examines three Fø trajectory descriptors for each syllable 

- the first syllable FØ trajectory descriptor which is not classified as "unknown" on the 

left-hand side of the syllable, the FØ trajectory descriptor of the syllable, and the first 

syllable FO trajectory descriptor which is not classifier as "unknown" on the right-hand 
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side of the syllable. If the Fø trajectory of a syllable is either a fall-rise "V" or a rise-

fall "A" then the syllable is classified as being accented. Syllables with an "unknown" 

Fø trajectory are classified as being unaccented. If the Fø trajectory descriptor of the 

left-hand syllable context or the right-hand syllable context is either a fall-rise "V" or a 

rise-fail "A", then only the half of the fall-rise or rise-fall closest to the syllable is used 

by the decision filter. 

Syllables classified as accented by the decision filter are labelled as "ap". A syllable 

is also classified as accented if it corresponds with the maximum relative FØ height 

of an FØ schema. Syllables corresponding to such maxima are labelled "Ap". All 

other syllables are labelled "up". The Fø schema in Figure 8.3 is shown with syllable 

boundaries and the syllable accentuation labels produced by this method. 

The levels of agreement between the categories of syllable accentuation as transcribed 

by hand and as assigned automatically are shown in Table 8.2. Syllables which are 

transcribed by hand as stressed but unaccented "s" or unstressed "u", are collectively 

referred to as unaccented syllables "UA". The syllables which are transcribed by hand 

as pitch accented "PA" do not include non-stress accents. (Refer to Section 2.2.4 for 

a clarification of these terms.) The pitch accent decision filter does not include the 

location of prominent syllables as an input parameter. Syllables transcribed as accented 

"ap" by the decision filter therefore include non-stress accents. This accounts for the 

large number of unaccented syllables "UA" which are confused as pitch accented "ap" 

by the decision filter. 

8.3 	Combination of acoustic parameters 

The unidimensional contribution to the perceived prominence of a syllable made by 

features of duration and energy is investigated in Chapters 4 & 5. Sections 4.5 & 5.4 

show that the duration feature Djea j ure  (Equation 4.6) and the energy feature Ejeaur  

(Equation 5.3) can be used in conjunction with a simple peak-picking algorithm to label 

syllables as either prominent or non-prominence and respectively yield a 77.8% and an 

84.0% agreement level with prominence labels based on human perception (in an open 

test). 

Section 8.2.2 shows that the trajectories of an FØ schema can be used in conjunction 
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Pitch accent algorithm label 
Ap 	ap 	up 	 total 

PA 359 (6.7%) 992 (18.7%) 486 (9.1%) 	1837 (34.5%) 
Hand Label 	UA 101 (1.9%) 864(16.2%) 2517 (47.3%) 3482 (65.5%) 

total 460 (8.6%) 1856 (32.0%) 3003 (56.5%) 5319 (100.0%) 

Correct classification rate = 3868/5319 (72.7%) 

Table 8.2: Fø schema: Confusion matrix for pitch accent decision filter 
(Ap - syllable with maximum Fø in schema; ap - accented syllable according to decision 
filter; up - unaccented syllable according to decision filter; PA - pitch accented syllable; 

UA - unaccented syllable) 

with a pitch accent decision filter to label syllables as either accented or unaccented 

and yield a 72.7% agreement level with syllable accentuation labels based on human 

perception. The accented syllables identified by the pitch accent decision filter include 

non-stress accents. 

Syllable classification labels are generated by the peak-picking algorithm for the 

duration and energy features, and by the pitch accent decision filter for the trajectories 

of the Fø schema. These labels are combined to classify each syllable in an utterance 

as either pitch accented "PA", stressed but unaccented "s", or unstressed "u". These 

labels are assigned using a procedure adapted from the equal-weight two-out-of-three 

voting scheme proposed by Hieronymus (1989). 

A syllable is categorised as prominent if it is associated with an "Sd" label (maximum 

Djeaure), an "Se" label (maximum Ejeajure) or an "Ap" label (maximum in FO schema). 

A syllable is also categories as prominent if it is associated with at least two-out-of-

three of the labels "sd" (local maximum in Djeature  contour), "se" (local maximum 

in E feoture  contour) and "ap" (accented syllable according to the pitch accent decision 

filter). A syllable which is categorised as prominent by these rules is labelled as being 

pitch accented "PA" if it is associated with either an "Ap" or an "ap" label; otherwise 

it is labelled as being stressed but unaccented "s". All other syllables are categorised as 

unstressed and are labelled "u". 

Figure 8.4 shows the confusions between perceived prominence labels (transcribed 
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Figure 8.4: Multi-way confusions across acoustic parameters 
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by hand) and each possible pair of labels generated by the processing of the acoustic pa-

rameters. The combinations of labels which are marked by an asterisk are those which 

result in a syllable being labelled as prominent (both accented and unaccented) by the 

procedure described above. There are more prominent syllables than non-prominent syl-

lables (transcribed by hand) associated with the combinations of automatically assigned 

labels which are marked by asterisks. 

8.4 	Overview of the integrated prosodic analysis system 

The prosodic analysis of speech described in this thesis involves a number of intergated 

modules. An overview of the automatic prosodic analysis system is shown in Figure 8.5. 

There are three underlying channels of analysis - one channel for each acoustic parame-

ter (energy, duration and fundamental frequency). A direct flow of information through 

these channels from the input speech signal to the combination procedure is interrupted 

by the syllabification module. The syllabic domain ties together the information em-

bedded within the three acoustic parameters. The syllabification module incorporates 

information about the low-band energy contour and the segmentation of an utterance. 

This information is passed on in an abstracted form to the normalisation of energy and 

duration measures and to the processing of an FØ contour. 

A summary of the modules which make up this system to form a procedural analysis 

of an utterance is as follows. 

Front-end signal processing: 

. Transform the speech signal from the time domain to a frequency domain repre-

sentation by applying an FFT to 20ms frames of data at 5ms intervals. 

Extract the (frame-level) low-band energy contour from the frequency domain rep-

resentation of the speech signal. 

Cepstral coefficients are required for the automatic segmentation of speech into 

acoustic-phonetic units. The cepstral analysis is performed on 20ms frames of 

data at Sms intervals. 

Segment the speech waveform into acoustic-phonetic units either by hand (for the 
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training data) or by an automatic segmentation system (McInnes et al., 1992). 

This provides the phone boundary and label information of an utterance. 

. Low-pass filter the speech signal using a finite impulse response (FIR) filter with 

a -3dB cut-off at 60011z and rejection greater than -85dB above 700Hz. 

Extract the Fø contour from the low-pass filtered speech waveform using the 

enhanced super resolution FØ determination (eSRFD) algorithm. FØ values are 

generated at 5ms intervals. 

Apply the de-step filter and non-linear smoothing to the raw FØ contour in or-

der to eliminate FØ doubling and halving errors and reduce FØ cycle-to-cycle 

perturbations. 

Phone-level abstraction of acoustic parameters: 

Calculate the phone-level low-band energy contour from the frame-level low-band 

energy contour and the segmentation. A peak/valley/mid-point is selected in the 

energy contour for each phone. 

Obtain an acoustic-phonetic syllabification of the speech from the frame-level low-

band energy contour and the segmentation. The syllabification identifies syllable 

nuclei and provides information about phone grouping. 

Absolute phone durations are obtained from the distance between phone bound-

aries in the segmentation. 

Syllable-level abstraction: 

Calculate the normalised phone-level low-band energy feature Ejeatur e  (Equa-

tion 5.3) for each syllable nucleus. The variations in Ejeature  from syllable to 

syllable form a normalised energy contour. 

Calculate the normalised phone duration feature Djeature  (Equation 4.6) for each 

syllable lhyme. The variations in Djeature from syllable to syllable form a nor-

malised duration contour. 
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Stylise the post-processed FØ contour into a sequence of linear piece-wise sections. 

The stylisation process makes use of syllable nucleus boundaries and reduces ml-

croprosodic variations in the contour. 

Sentential stress and intonation representations: 

Schematise the piece-wise stylised FØ contour to identify FØ trajectories related 

to pitch accents. The FØ schema provides an acoustic-phonetic representation of 

the utterance intonation. 

Apply the pitch accent decision filter to the Fø schema in order to locate accented 

syllables. 

Apply the peak-picking algorithm to the normalised energy contour. This rep-

resents the unidimensional contribution made by energy to the prominence of a 

syllable. 

Apply the peak-picking algorithm to the normalised duration contour. This rep-

resents the unidimensional contribution made by duration to the prominence of a 

syllable. 

Finally, combine the syllable accentuation, energy and duration labels to cate-

gorise each syllable as either pitch accented "PA", stressed but unaccented "s", or 

unstressed "u". 

8.5 	Performance evaluation of prosodic analysis algorithms 

The syllable prominence labels in the training and test data described in Section 4.1 

are transcribed on the basis of human perception. This transcription, however, cannot 

be regarded as definitive. In order to give an objective evaluation of the integrated 

prosodic analysis system proposed in this thesis (referred to as the PCB-system), the 

performance of the system is compared with that of two algorithms formerly proposed 

in the literature, relative to the transcription based on human perception. The two 

former algorithms which are evaluated, are the algorithm based on a Bayesian classifier 

(Waibel, 1988) (referred to as the AW-system) and the algorithm which uses knowledge-

based rules to automatically transcribe syllable prominence levels in connected speech 
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(Hieronymus, 1989; Hieronymus & Williams, 1991) (referred to as the JLH-system). The 

AW-system and the JLH-system are reviewed in Section 3.5. 

Although the AW-system and the JLH-system have been evaluated by their respective 

developers, it is not possible to draw comparisons of their reported performances. Each 

evaluation depends on the form of the prosodic transcription which is taken as a reference 

and on the nature of the test speech and the data used to train the algorithms. In 

the evaluations presented here, the algorithms are both trained and tested using the 

data described in Section 4.1. A direct comparison can therefore be made between the 

performance evaluations of the prosodic analysis system proposed in this thesis and of 

the two former analysis techniques. The statistical significance of the differences in 

performance is determined. 

8.5.1 Integrated prosodic analysis (PCB-system) 

The normalisation statistics used to calculate the duration and energy features are de-

termined from the training data. The statistics are determined from two inspections of 

the training data. 

The first inspection determines the percentage p of non-prominent phones, the dis-

tributions of phone durations in which phones are grouped on a broad phonetic basis 

(Table 4.1), and the distributions of phone-level low-band energies in which phones are 

grouped on a fine phonetic basis. The p'th percentile ça" and the standard deviation 

o are calculated for each of the distributions. These values are shown in Tables 8.3 

(duration) & 8.4 (energy). 

The second inspection of the training data determines the distributions of the sum 

Zpercents( e  duration measures of all phones in the lliyme (Equation 4.7) of prominent and 

non-prominent syllables, for each unique number of phones that are found in a syllable 

lliyme. The calculation of the Zpercefl jje duration measures uses the statistics derived 

from the first inspection of the training data. The mean value is calculated for each of 

the distributions. These values are shown in the lower part of Table 8.3. 

The integrated prosodic analysis system is used to assign sentential stress categories 

to the syllables in the test data (an open test). These categories are compared with those 

transcribed by hand (see Table 8.5). The transcriptions are in agreement for 79.1% of 
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Broad phonetic class 

reduced monophthc 
short monophthong 
long monophthong 
diphthong 
sonorant 
voiced obstruent 
unvoiced obstruent 

PT (broad-phone-class) 	crT (broad_phone_class) 
(ms) 	 (ms) 
126.19 19.90 
78.40 35.89 

109.90 47.65 
126.79 48.58 
73.53 24.58 
91.15 28.85 

117.40 38.37 

No. phones in Ihyme, i M(i) 
1 0.865 -1.483 
2 0.321 -3.312 
3 -1.043 -4.061 
4 -3.172 -6.715 

Table 8.3: Duration feature normalisation statistics 

the syllables. 

8.5.2 Bayesian classifier (AW-system) 

Each syllable (derived using the acoustic-phonetic syllabification algorithm presented in 

Section 8.1.1) is characterised by four features: 

The integral of the low-band energy over the syllable nucleus (ptpint). 

The duration of the syllable nucleus (sorzdur). 

The maximum FO in the entire syllable (FOmax). 

The average Euclidean distance of frame-to-frame log-power spectra over the cen-

tral half of the syllable nucleus (spchave). 

A Bayesian classifier (Appendix B) is trained using the training data to model three 

categories of sentential stress - pitch accented "PA", stressed but unaccented "s", and 

unstressed "u". The Bayesian classifier is used to assign sentential stress categories to 

syllables in the test data (an open test). These categories are compared with those 
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Fine phonetic class (fine-phone-class) cIE (fine_phone_class) 
(dB) (dB) 

[I] -5.885 5.160 
[i] -7.768 3.898 
[u] -7.195 3.374 
[u] -9.406 3.479 
[u] -7.429 2.844 
[ia] -7.010 2.829 
[ell -5.757 3.136 
[eu] -5.075 3.064 
[31] -7.500 3.419 
[] -1.633 4.862 
[] -6.814 3.380 
[ai] -4.026 3.250 
[c] -6.029 3.232 
[e] -5.320 2.708 
[au] -4.474 3.455 
[A] -4.673 3.063 
[3] -4.722 2.799 
ED] -4.869 3.284 
[a] -5.171 2.644 
[a] -4.788 3.908 
[1] -0.615 4.794 
[r] -0.390 5.738 
[w] -5.098 6.173 
[j] -6.702 3.780 
[n] -6.700 4.865 
[m] -5.801 4.450 
[J] -8.446 4.290 
[b] -10.375 10.271 
[] -14.526 9.137 
[v] -9.645 6.205 
[g] -14.094 8.161 
[d3] -10.095 7.426 
[] -5.174 8.643 
[d] -11.093 8.686 
[z] -10.612 6.581 

 -19.290 4.813 
[0] -12.988 6.254 

 -5.275 11.458 
[f] -19.554 9.021 
[1] -16.002 4.676 
[J] -19.851 4.494 
[p] -15.663 11.113 
[k] -10.607 10.747 
[h] -11.507 7.013 

Table 8.4: Energy feature normalisation statistics 
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PCB-system label 
PA s u total 

PA 1264 (23.8%) 293 (5.5%) 280(5.3%) 1837 (34.5%) 
Hand Label 	s 78 (1.5%) 55(1.0%) 128(2.4%) 261(4.9%) 

u 234(4.4%) 100(l.9%) 2887 (54.3%) 3221 (60.6%) 
total 1576 (29.6%) 448(8.4%) 3295 (61.9%) 5319 (100.0%) 

Correct classification rate = 4206/5319 (79.1%) 

Table 8.5: PCB-system: Confusion matrix of prosodic transcription 
(PA - pitch accented; s - stressed but unaccented; u - unstressed) 

AW-system label 
PA 	.s 	u 	 total 

PA 938 (17.6%) 0(0.0%) 899(16.9%) 	1837 (34.5%) 
Hand Label 	s 99(l.9%) 	0(0.0%) 162(3.0%) 	261(4.9%) 

u 384 (7.2%) 	0 (0.0%) 2837 (53.3%) 3221 (60.6%) 
total 1421 (26.7%) 0 (0.0%) 3898 (73.3%) 5319 (100.0%) 

Correct classification rate = 3775/5319 (71.0%) 
(Entropy score = 0.956) 

Table 8.6: AW-system: Confusion matrix of prosodic transcription 
(PA - pitch accented; s - stressed but unaccented; u - unstressed) 

transcribed by hand (see Table 8.6). The transcriptions are in agreement for 71.0% of 

the syllables. No syllables are labelled as stressed but unaccented "s" by the Bayesian 

classifier, and syllables labelled as prominent ("PA" or "s") by hand are labelled as 

non-prominent ("u") more often than they are labelled as prominent by the Bayesian 

classifier. 

8.5.3 Knowledge-based rules approach (JLH-system) 

The duration and energy thresholds used in the knowledge-based rules approach pro-

posed by Hieronymus (1989; 1991) must first be determined from the training data. To 

do this, the vowels are classified on a broad phonetic basis as either reduced [a], short 
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[i, *, C, a, A, U, 0, ], long [i, 3 u, o, a, ti, a.] or a diphthong [ei, al l  31, aul  au, i, ca, 

ua]. For each vowel-type, the distribution of durations is calculated with a fixed adjust-

ment factor (0.6) being applied to all pre-pausal vowels. The percentage p(voweLtype) 

of vowels transcribed by hand as unstressed is determined for each vowel-type. The 

duration threshold for each vowel-type is given by the p(voweLtype) 'th percentile of the 

corresponding distribution. A distribution of maximum intra-vowel low-band energies is 

calculated across all vowels. The energy threshold, above which the intensity is regarded 

as contributing to the prominence of a vowel, is given by the p 11 'th percentile of the 

all-vowel-types energy distribution, where Pall  is the percentage of all vowels which are 

hand transcribed as unstressed. 

Although the knowledge-based rules approach proposed by Hieronymus makes no 

distinction between reduced and short vowels in assigning a level of prominence, the 

reduced vowels are separated from the category of short vowels in determining the du-

ration thresholds. This is done because all the reduced vowels in the training data are 

transcribed as unstressed and would offset the duration threshold if included. 

The distributions of pre-pausal compensated durations and maximum intra-vowel 

low-band energies for the training data are shown in Figure 8.6. The duration and 

energy thresholds derived from these distributions are indicated by the dotted lines. The 

-20.0dB energy threshold is used by the knowledge-based rules approach to annotate all 

low intensity vowels as unstressed, regardless of other acoustic parameters. 

The knowledge-based rules approach is used to assign sentential stress categories to 

the vowels in the test data (an open test). These categories are compared with those 

transcribed by hand (see Table 8.7). The transcriptions are in agreement for 72.6% of 

the syllables. 

8.5.4 Comparison 

It is important to determine if the differences in performance of these algorithms is 

statistically significant before any claims can be made about their relative efficacy. The 

McNemar test (Gillick & Cox, 1989) is used to decide whether or not the difference in 

the classification error rates between any two algorithms is statistically significant. The 

null hypothesis H0  to test is that the true (but unknown) error rates of two algorithms 
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JLH-system label 
PA 	s 	 U total 

PA 1267 (23.8%) 	328(6.2%) 	242(4.5%) 1837 (34.5%) 
Hand Label 	.s 107(2.0%) 	58(l.1%) 	96(1.8%) 261 (4.9%) 

461(8.7%) 	223(4.2%) 	2537 (47.7%) 3221 (60.6%) 
total 1835 (34.5%) 	609(11.4%) 	2875 (54.1%) 5319 (100.0%) 

Correct classification rate = 3862/5319 (72.6%) 

Table 8.7: JLH-system: Confusion matrix of prosodic transcription 
(PA - pitch accented; 8 - stressed but unaccented; ti - unstressed) 

are the same. 

A binary decision is made as to whether an algorithm classifies a syllable correctly 

or incorrectly. A two-by-two cross-performance matrix is used to indicate the number of 

syllables which are correctly classified by two different algorithms, the number of syllables 

which are incorrectly classified by both algorithms, and the number of syllables which 

are correctly classified by one of the algorithms but incorrectly classified by the other 

algorithm (or visa versa). The cross-performance matrices for each two-way selection 

of the algorithms (the PCB-system, the AW-system and the JLH-system) are shown in 

Table 8.8. 

The null hypothesis H0  is tested by applying a two-tailed test to an observation 

drawn from a Binomial distribution. The probability P of the observation is calculated 

from a cross-performance matrix using the method described by Gillick & Cox (1989). 

In comparing the error rates of the PCB-system and the AW-system, and the error 

rates of the PCB-system and the JLH-system, P is negligible. The null hypothesis is 

therefore rejected and there is evidence of a genuine difference. However, in comparing 

the error rates of the AW-system and the JLH-system, P = 0.028. The null hypothesis 

cannot by rejected at the 2% significance level. 

The PCB-system and the JLH-system use the same pitch accent decision filter. There 

are fewer stressed but unaccented and unstressed syllables which are confused as being 

pitch accented by the PCB-system than by the JLH-system. (Compare the left-hand 

column of Tables 8.5 & 8.7.) This reduction in errors is due to the stylisation and 
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AW-system 
Correct 	Incorrect 

Correct 3307 	899 
PCB-system Incorrect 468 	645 

JLH-system 
Correct 	Incorrect 

Correct 3404 	802 
PCB-system Incorrect 458 	655 

AW-system 
Correct 	Incorrect 

Correct 3056 	806 
JLH-system Incorrect 719 	738 

Table 8.8: Cross-performance matrices of algorithm pairs 

schematisation of the FØ contour in the PCB-system. The application of the extensive 

processing of the Fø contour appears to satisfy its goal of preventing microprosodic 

variations from being confused as pitch accents. There is, however, a slight increase 

in the number of pitch accented syllables which are confused as being unstressed by 

the PCB-system in comparison with the JLH-system. Some pitch accent related FO 

variations may also be removed by the stylisation and schematisation processes. 

There are fewer prominent syllables which are confused as being non-prominent syl-

lables by the PCB-system than by the AW-system. There are also fewer non-prominent 

syllables which are confused as being prominent syllables by the PCB-system than by 

either the AW-system or the JLH-system. This marked reduction in errors is due to 

the normalisation of the acoustic parameters for non-prosodic aspects of speech in the 

PCB-system. 

Methods of normalising acoustic parameters for non-prosodic aspects of speech, and 

the techniques of processing FØ contours to isolate the intonational component are 

proposed in this thesis. It is concluded from the above comparison that these techniques 

provide a statistically significant improvement in the performance of automatic prosodic 

analysis systems. 
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8.6 Conclusions 

An automatic prosodic analysis system is described which integrates the unidimensional 

contributions made by features of duration, energy and fundamental frequency. The 

system produces an acoustic-phonetic representation of sentential stress patterns and 

intonation within a syllabic domain. 

An algorithm is proposed to group phones automatically into syllables using acoustic-

phonetic parameters. The syllabification algorithm is unique in its use of both a low-band 

energy contour and the segmentation (phone boundary and label information) of an ut-

terance. Each syllable generated by this algorithm is associated with one local maximum 

in the low-band energy contour per group of potential syllable nuclei (vowels and syllabic 

consonants). It is assumed that such syllables can only ever be perceived as single promi-

nent units in connected speech. This automatic syllabification from acoustic-phonetic 

parameters is shown to have a large level of agreement (95.2%) with a syllabification 

based on abstract phonological rules. The automatic syllabification algorithm has ad-

vantages over the syllabification based on phonological rules in that it is robust to errors 

in the segmentation of an utterance and that it groups phones according to the manner in 

which the speaker produces the utterance rather than according to some predicted man-

ner. This is particularly important for the syllabification of an utterance produced by 

a non-native speaker, where the actual pronunciation may deviate from a pronunciation 

which may be predictable from phonological rules only for a native speaker. 

Syllables are used in the extraction of duration and energy features and in the pro-

cessing of fundamental frequency. The syllabic domain also ties together the information 

embedded within these three acoustic parameters. 

The processing of fundamental frequency is based on the principle that an Fø contour 

has a composite structure (see Section 3.4). The piece-wise stylisation of an Fø contour 

aimed at eliminating microprosodic variations is illustrated. The piece-wise sections 

are abstracted to form FØ trajectory descriptors which are independent of speaker-

dependent effects. This leads to a schematic representation of an FØ contour which 

provides an acoustic-phonetic representation of the intonation of an utterance. The 

analysis of an FØ schema by a pitch accent decision filter provides judgements of syllable 

accentuation. The processing of raw FØ contours to form Fø schemata reduces the 
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number of unaccented syllables which are erroneously classified as being pitch accented 

by the pitch accent decision filter. 

The unidimensional contributions to the perceived prominence of a syllable made by 

features of duration and energy are captured by a peak-picking algorithm. The informa-

tion captured by the peak-picking algorithm and the syllable accentuation information 

are combined to produce a description of the sentential stress patterns of an utterance. 

The intergrated prosodic analysis system yields a 79.1% agreement level with senten-

tial stress categories transcribed by hand. This is shown to be a statistically significant 

improvement over the agreement levels yielded by two former algorithms. This level 

of agreement is comparable with the 83.1% agreement between transcriptions of sylla-

ble prominences made independently by two phoneticians in the Lancaster/IBM spoken 

English corpus (Pickering et al., 1994). 



Chapter 9 

Application to Computer Aided 
Pronunciation Teaching 

This Chapter describes how the integrated prosodic analysis system outlined in Sec 

tion 8.4 can be applied to computer aided pronunciation teaching. Section 9.1 gives a 

general description of the framework of the SPELL' system (Lefèvre et al., 1992; Huller 

et al., 1993) within which the proposed automatic prosodic analysis system can operate. 

An example of the operation of the automatic prosodic analysis within the framework 

of SPELL is described in Section 9.2. 

A short discussion of possible extensions to the work presented in this thesis, is 

presented in Section 9.3. 

9.1 	Framework of the SPELL system 

SPELL is a feasibility study to develop a tool for teaching prosodic and segmental aspects 

of pronunciation to non-native students of English, French and Italian. The SPELL 

workstation is an autonomous teaching system which is used by a student without the 

need for a language teacher to organise the pronunciation tasks. The system is aimed 

for use by students who do not need to be taught the basics of a foreign language as 

well as pronunciation. A student is provided with both audio and visual aids. The 

audio aids enable a student to listen to the pronunciation of utterances. The utterances 

presented to a student may be either the ideal target pronunciation spoken by a native 

'SPELL (Interactive System for Spoken European Language Training) is a project supported by the 
European Community's ESPRIT programme, under contracts No.5192 & No.7153. 
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talker, or a resynthesised version of the student's voice with emphasis placed on a specific 

feature of its pronunciation. The visual aids enable a corrective diagnosis of a student's 

pronunciation to be presented to the student without the student requiring a knowledge 

of the underlying phonological theory or phonetic concepts on which the diagnosis is 

based. The objective of the SPELL system is to improve a student's intelligibility rather 

than to promote fluency in a foreign language or to encourage near-perfect mimicry of a 

native speaker. 

Foreign language pronunciation is taught in the SPELL system under a teaching 

methodology called the DELTA paradigm. This paradigm constitutes four steps: 

Demonstate - A student is presented with audible utterances spoken by a native 

talker which highlight a particular feature of pronunciation. 

Evaluate Listening - The student performs a number of listening tests to en-

sure that the pronunciation feature which was demonstrated in the previous step 

can be perceived by the student. If the student fails to exhibit competence, the 

demonstration phase is repeated. 

Teach - A feature of pronunciation is taught to the student. This involves pre-

senting an exemplar utterance to the student and requesting the student to repro-

duce the utterance whilst concentrating on the pronunciation feature of interest. 

Quantitative feedback and a corrective diagnosis are provided in order to modify 

inadequacies in the student's reproduction of the utterance. 

Assess - The student's ability to generate a particular feature of pronunciation 

is evaluated. This may involve requesting the student to pronounce a number of 

previously unheard utterances containing the pronunciation feature of interest. If 

the student completely fails to exhibit competence, the demonstration phase is 

returned to. If the student shows only some ability, the teaching phase is repeated. 

In teaching prosodic aspects of a language with this methodology, an automatic 

prosodic analysis system is required within the teaching and assessment phases of the 

DELTA paradigm. 

There is an enormous degree of variation in the trajectories of FO contours. It is 

therefore not possible to teach intonation simply by encouraging a student to reproduce 
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exact imitations of isolated contours. A student needs to be familiarised with patterns or 

models of Fø trajectories which can be generalised to utterances of the same type, and 

needs to acquire an ability to select a particular pattern or model to convey a specific 

linguistic function (Rooney et al., 1992). Therefore, in the teaching of intonation within 

the SPELL framework, prompts are used to provide a communicative context for the 

student and to elicit an appropriate pattern or model of Fø trajectories in the student's 

response. In addition, the segmental structure of an utterance is associated with the FØ 

trajectories which make up an intonation pattern. This is required to ensure that pitch 

accents are realised at clearly defined locations in an utterance. 

The intonation teaching within the SPELL framework is primarily limited to two 

patterns of Fø trajectories; one pattern is typically used in syntacticly simple (subject-

verb-object or subject-verb-adverb) declarative statements and wh-questions, and the 

other pattern is used in polar (yes/no) questions. 

9.2 	Example of automatic prosodic analysis applied to the 

SPELL framework 

In this example, an intonation pattern commonly applicable to syntacticly simple declar-

ative statements in English is being taught to a student whose mother-tongue is Italian. 

One of the chief characteristics of the intonation pattern is a falling pitch that is associ-

ated with the focus of the statement. 

The exemplar utterance is, "I enjoy swimming these days." This statement is 

prompted with the question, "What sports do you do?" in order to provide a plausible 

context for the student and to elicit an emphasis on the word swimming. In contrast, 

the prompt question, "Do you hate swimming these days?" may be used to elicit an 

emphasis on the word enjoy. 

In the teaching phase of the DELTA paradigm, the student is provided with a visual 

orthographic transcript of the prompt question. This is accompanied by a recording 

of the question which is played to the student. An audible version of the declarative 

statement pronounced by a native English speaker (referred to as the teacher) is then 

presented. The student may repetitively listen to the teacher's pronunciation of the state- 



CHAPTER 9. APPLICATION TO PRONUNCIATION TEACHING 	 192 

ment. An automatic prosodic analysis of the teacher's utterance is also presented to the 

student as a visual aid. The student attempts to reproduce the statement with the same 

sentential stress pattern and intonation as exhibited in the ideal target pronunciation 

demonstrated by the teacher. An automatic prosodic analysis of the student's utterance 

is performed, by the system outlined in Section 8.4, using the same acoustic parameter 

normalisation statistics that are used in the analysis of the teacher's utterance. This 

ensures that a syllable pronounced by the student is automatically transcribed as promi-

nent only if the relative variations in the duration and energy measures are analogous 

to those in the speech of a native English talker. The automatic prosodic analysis of the 

student's utterance is presented such that the beginning and end points are aligned with 

the analysis of the teacher's utterance (see Figure 9.1). 

In terms of the configuration theory, the target pronunciation of, "I enjoy swimming 

these days," includes a falling nuclear pitch movement beginning on the first syllable 

of the word swimming. In the pronunciation demonstrated by the teacher, the word 

I is stressed but unaccented (part of the prehead) and the second syllable of enjoy is 

accented (the head). The word days is also stressed but unaccented (part of the tail). 

Although the FØ trajectory within the student's pronunciation of I is falling (in 

contrast to the rising trajectory in the target pronunciation) the syllable is categorised 

as stressed but accented. The pronunciation of this word is therefore satisfactory and the 

difference in the shape of the trajectories is not brought to the attention of the student 

during the diagnosis of the pronunciation. There is, however, an underlying error in the 

phonetic realisation of the diphthong /al/. The automatic segmentation of the Italian 

student's pronunciation of I is represented as two monophthongs [a i]. These segmental 

aspects of pronunciation are taught as a separate issue within the SPELL framework. 

Two errors occur in the prosodic aspects of the student's pronunciation. The student 

successfully places the nuclear pitch movement on the first syllable of the word swim-

ming. This is automatically detected as being an accented syllable, however a rising FØ 

trajectory is associated with its realisation. The student also accentuates days with a 

continuation rise. In addition, the word days is associated with a segmental pronunci-

ation error in the diphthong /eI/. The automatic segmentation of the Italian student's 

pronunciation of days is represented as [d c i z]. The student's attention can be drawn 
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I 

Prompt question: "What sports do you do?" 

Teacher (native English speaker) 
I 	I 	 I 	 I 	 I 

I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 
I 	I 	 I 	 $ 	 I 
I 	I 	 I 	 I 	 I 
I 	I I 	 I 
I 	I I 	 I 

I 	 I 

	

I 	 I 	 I 

	

I 	 I 	 I 
I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 

I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 p 
I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 

I 	I 	 I 	 I 	 I 
I 	I 	 I 	 I 	 I 

I 	I 	 I 	 I 	 I 
I 	 I 	 I 	 I 

I 	enjoy 	 swimming 	these 	days 

Isi 	u 	I 	a 	I 	a 	I 	U 	I 	U 	I 	S 

Student (native Italian speaker) 

II  

I 	 I 	 I 

I 	 I 	 I I 	I 
I 	 I 	 I I 	I 
I 	 I 	 I I 	I 
I 	 I 	 I I 	I 

I 	I 

I 	I 

\ lI  

I 	I 
I 	I 
I 	I 
I 	I 

I 	 I 
I 	I 
I 	I 
I 	I 

II \I

I 	I 

I 	 I 	 I 
I 	 I 

I 	 I 	 I 	I 
I 	 I 	 I 	I 
I 	 I 	 I 	$ 

I 	enjoy 	 swimming 	these 	days 

IsI 	UI 	a 	laI 	U 	luluI 	a 

Figure 9.1: Example of prosodic analysis in pronunciation teaching 
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to the prosodic pronunciation errors by highlighting differences in the FØ schemata and 

the transcription of sentential stress. 

The analyses of duration and energy measures are embedded in the sentential stress 

transcription. If a syllable is detected as being unstressed when the target pronunciation 

is to produce a prominent syllable, then a student may be instructed to make a specific 

syllable "longer" and/or "louder" in order to achieve the required prominence. 

The acoustic-phonetic representation makes no references to any phonological theo-

ries. It is therefore suitable for language students who do not need a proficient knowledge 

of linguistic theory. 

9.3 Further work 

There are areas of the integrated prosodic analysis system where the underlying research 

maybe extended. The aim of any further work would be to ensure that a foreign language 

learner is advised to alter the pronunciation of an utterance only in parts where it can 

convey a semantically contrastive function. 

In the low-level analysis of the acoustic parameters, additional normalisation is re-

quired to compensate for contextual influences on the duration and energy of phones. A 

greater understanding of the effects of contextual assimilation on vowels may enable a 

vowel quality measure to be devised which is correlated with the perceived prominence 

of a syllable. 

The unidimensional contributions of the acoustic parameters are integrated after the 

normalisation of non-prosodic aspects of speech. Integration of the acoustic parameters 

at a lower level of the analysis may enable, for example, duration measures to assist in 

the normalisation of energy measures or visa versa. A reduction in energy at the end 

of an intonational phrase may assist in normalising a duration measure for pre-pausal 

lengthening effects. 

The abstraction of an FØ schema to a phonological representation (in terms of high 

and low tones) would enable the intonation of a student's speech to vary only in places 

where it does not convey a semantically contrastive function. Such abstraction must 

be reliable and the phonological representation must have a firm theoretical founda-

tion. Moreover, the phonological representation must consider the mother-tongue of the 
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foreign language learner. 

Other aspects of prosodic structure need to be automatically transcribed in order 

to teach a foreign language learner rhythm and syllable timing differences between lan-

guages. The automatic transcription of break indices (which represent the degree of 

prosodic coupling between neighbouring words) would assist in the analysis of rhythm. 

Finally, the automatic prosodic analysis of the speech needs to be performed as 

quickly as possible to prevent a user of a pronunciation teaching system from growing 

impatient. In the integrated prosodic analysis system presented here, there is a bottle-

neck in the analysis of an FØ contour. The least median of squares regression is time 

consuming even though a Monte Carlo type speed-up technique is applied. Methods 

of reducing the computational work-load involved in the analysis may be worthy of 

investigation. 



Chapter 10 

Summary and Conclusions 

This thesis presents research towards the automatic analysis of prosodic events in ut-

terances of English spoken by native and non-native talkers. The research concentrates 

on the automatic analysis of speech to generate an acoustic-phonetic representation of 

sentential stress and intonation. The acoustic-phonetic representation of prosody is 

demonstrated as a tool for computer aided pronunciation teaching. 

It is argued in Chapter 2 that prosodic aspects of speech need to be explicitly taught 

to students who wish to communicate competently in a foreign language. In summary, 

the argument is that prosodic aspects of speech need to be taught to a student because 

prosody has functional differences between languages, and the acoustic-phonetic reali-

sation of prosodic aspects of speech also differs between languages. Explicit teaching 

is required because a student's comprehension and intelligibility can be influenced by 

prosodic features. Inter-language differences are illustrated in exemplar languages. 

In teaching the prosody of a foreign language, it is suggested that a formalised phono-

logical theory of prosody should not be explicitly taught to a foreign language learner. 

This suggestion is made by taking the analogy that a formalised grammar is usually 

not explicitly taught to a student who needs to acquire a knowledge of the grammatical 

structures of a foreign language. However, phonological theories of prosody are needed 

to design courseware by which a student can learn stress patterns and intonation. 

Ideally, the prosodic composition of the speech of a foreign language learner should 

be described in a manner which allows any linguistically significant deviations from a 

near-native pronunciation to be determined. The theories of intonational phonology 

aim to describe a minimal set of pitch variations which are semantically contrastive. A 
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comparison of the prosodic composition of a student's speech and a native's speech can 

ideally be made by describing the prosody with phonological models. Such a comparison 

would allow a student's pitch to differ from that of a native speaker only at times where 

it does not carry any semantically contrastive function. A corrective diagnosis could 

then be offered to a student in order to aid the student's pronunciation. 

However, it is argued in Chapter 2 that phonological representations of prosodic 

structure are language-specific. The prosodic composition of a student's speech can be 

highly influenced by mother-tongue interference and by a student's stereotypic images 

of prosody in the target language, thereby rendering a language-specific phonological 

representation of prosody inappropriate. Moreover, languages vary in the way acoustic 

characteristics of speech are modified to manifest prosodic aspects of speech. It is there- 

fore proposed in Chapter 2, that the only secure means to describe prosody for foreign 

language teaching lies in an acoustic-phonetic representation. It is assumed that a higher 

level of analysis can be used to determine which of the detectable phonetic differences 

do have and do not have a semantically contrastive function in a specific language. 

In order to derive an acoustic-phonetic representation of prosody from a speech sig-

nal, it is necessary to identify acoustic parameters which are correlated with prosodic 

aspects of speech. In Chapter 3, a review of research conducted to identify acoustic pa-

rameters indicates that duration, energy, fundamental frequency and vowel quality are 

the key correlates of prosodic features. There is relatively little consideration made in the 

literature to the effects of vowel quality on the perception of (lexical or sentential) stress, 

compared with the extensive research relating duration, energy and FØ with stress. 

Studies of the acoustic correlates of stress propose a variety of different features 

for duration and energy. Duration features include the duration of the vocalic portion 

of a syllable and the duration of an entire syllable. Energy features include the peak 

amplitude in a syllable, the amount of fall from a peak in the amplitude envelope of a 

syllable, the integral of the peak-to-peak amplitude over the vocalic portion of a syllable, 

the average low-band syllable energy, and the maximum low-band vowel energy. 

Chapters 4, 5, 6 & 7 concentrate on optimising the extraction of acoustic correlates 

required for the prosodic analysis of English. The duration and energy measures of 

phonetic units are dependent upon the definition of the phonetic units. A number of 
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different phonetic units related to syllable structure are investigated. The phonetic units 

investigated are the syllable nucleus, the syllable rhyme, the syllable thyme, the entire 

syllable and a nucleus-to-nucleus unit. Duration and energy measures are made from 

these units. It is asserted that the duration and energy measures are influenced both by 

prosodic and by non-prosodic aspects of speech. Normalisation techniques are applied 

to the measures in order to compensate for a number of non-prosodic factors, including 

variations in the measures which are due to phone-type, syllable structure, syllable length 

in terms of number of phones, and the prominence level of syllables within the training 

data. A novel zpercenij,e-transform is proposed for the normalisations. 

There are 213 different duration features investigated in Chapter 4. It is shown 

that factors other than sentential stress cause the duration of phones to the right of a 

syllable nucleus (but within the same syllable) to vary more than the duration of phones 

to the left of the nucleus. The syllable thyme is defined as the unit which constitutes 

the onset and the nucleus of a syllable; hence the syllable ihyme contains the parts of 

a syllable which are least affected by factors other than sentential stress. The optimal 

duration feature, of those investigated, is related to the syllable thyme with sum Zperce fl jle 

duration measures trained on broad phonetic classes without smoothing of the phone-

level duration contour and with normalisation of the number of phones in the syllable 

thyme. The optimal energy feature, out of 113 energy features investigated, is related 

to the syllable nucleus with Zpercen*iie low-band energy measures trained on fine phonetic 

classes. 

A simple peak-picking algorithm is used to determine the contribution made by 

each acoustic parameter to the degree of syllable prominence. The optimal duration 

feature is used to label syllables as either prominent or non-prominent and yields a 

77.8% agreement level with prominence labels based on human perception (in an open 

test). The optimal energy feature is used to label syllables as either prominent or non-

prominent and yields an 84.0% agreement level with the prominence labels based on 

human perception. 

A number of measures of vowel quality are proposed in Chapter 6 which are based 

on the assumptions that prominent syllables are well articulated and are less affected 

by contextual assimilation than non-prominent syllables, and that these properties are 
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reflected in the nuclei of syllables. A Bayesian classifier is used to obtain a measure 

of how close a vowel is to its respective vowel target model. This distance measure is 

used to label syllables spoken by a native English speaker as either prominent or non-

prominent and yields a 71.6% agreement level with prominence labels based on human 

perception. It is argued that the distance measure cannot be used as a correlate of stress 

in utterances spoken by non-native speakers of English because of vowel pronunciation 

errors. A number of alternative measures are investigated as features to characterise 

the degree of vowel stability. The average Euclidean distance of frame-to-frame log-

power spectra is used as a measure of the degree of spectral change in a vowel due 

to contextual assimilation. This vowel stability measure is used to label syllables as 

either prominent or non-prominent and yields a 68.8% agreement level with prominence 

labels based on human perception. A higher level of agreement is obtained by using a 

zpercen i,e transformed, normally-distributed random variable as an input parameter to a 

peak-picking algorithm. The application of the vowel stability measure as a correlate of 

stress is therefore inappropriate. The use of phonological rules to transcribe syllables as 

non-prominent under certain conditions, is also dismissed. 

Fundamental frequency is identified as an acoustic correlate of stress, and is used in 

algorithms (reviewed in Section 3.5) to automatically transcribe the location of prominent 

syllables in isolated words and in connected speech. In addition, fundamental frequency is 

principally related to the intonation of an utterance. Nevertheless, many of the reviewed 

algorithms use a measure of FØ as a key acoustic correlate of stress with little or no 

consideration of the intonational role of FØ. However, FØ can be used as a secondary 

cue to the location of prominent syllables in connected speech because pitch accents are 

observed to fall on prominent syllables. 

The fundamental frequency of a speech waveform must be determined as an initial 

process for prosodic analysis, since it is associated with both sentential stress and in-

tonation. The performance of FO determination algorithms (a selection of which are 

reviewed in Section 3.2) must be considered with respect to their application in sys-

tems of prosodic analysis, and errors arising from the malfunctions of FDAs must be 

prevented from propagating into the subsequent prosodic analysis of speech. A number 

of modifications to the super resolution FØ determination algorithm are proposed in 
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Section 7.1. The modifications reduce the occurrence of errors involved in the extraction 

of Fø such that it is optimised for prosodic analysis, relative to the selection of other 

algorithms designed to determine Fø. A novel de-step filter is proposed to post-process 

an FØ contour generated by an FDA in a way which further reduces the occurrence of 

discontinuity errors commonly observed in FØ contours. 

The processing of fundamental frequency is based on the principle that an FØ contour 

has a composite structure (Section 3.4). In particular, the FØ contour of an utterance is 

affected by the talker's anatomy and physiology, the segmental content of an utterance, 

cycle-to-cycle jitter (FØ perturbation) and errors involved in its determination from 

the speech waveform. The piece-wise stylisation of an Fø contour aims to eliminate 

microprosodic variations. An algorithm to stylise an FØ contour into linear piece-wise 

sections with respect to the syllables of an utterance, is illustrated in Section 8.2.1. The 

piece-wise sections are abstracted to form FØ trajectory descriptors which are indepen-

dent of speaker-dependent effects. This leads to a schematic representation of an Fø 

contour which provides an acoustic-phonetic representation of the intonation of an utter-

ance. The FØ trajectories of a schema are associated with syllables and a pitch accent 

decision filter analyses the trajectories to provide judgements of syllable accentuation. 

The integration of syllable information with the stylisation and schematisation of an 

FØ contour is an innovative approach. The processing of raw F0 contours to form Fø 

schemata reduces the number of unaccented syllables which are erroneously classified as 

being pitch accented by the pitch accent decision filter. The judgements of syllable ac-

centuation provided by the pitch accented decision filter yields a 72.7% agreement level 

with syllables labelled as pitch accented by hand. 

Syllables are used in the extraction of duration and energy features and in the pro-

cessing of FØ. The syllabic domain also ties together the information embedded within 

these three acoustic parameters. Furthermore, prosodic aspects of speech are described 

in a syllabic domain. The automatic syllabification of speech is therefore an important 

part of prosodic analysis. Algorithms reviewed in Section 3.3 are devised to partition 

a speech signal into syllable-sized units by using measures of sonority based on low-

band energy and by using spectral characteristics to locate boundaries between adjacent 

sonorants. The reviewed syllabification algorithms are applied to speech recognition sys- 
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tems. Reliable information about the segmental content of an utterance is therefore not 

available to them. In the application of prosodic analysis for computer aided pronunci-

ation teaching, however, reliable segmental information is available and may be used to 

enhance the syllabification process. 

An algorithm is proposed in Section 8.1.1 to group phones automatically into syllables 

using acoustic-phonetic parameters. The syllabification algorithm is unique in its use 

of both a low-band energy contour and the segmentation (phone boundary and label 

information) of an utterance. Each syllable generated by this algorithm is associated 

with one local maximum in the low-band energy contour per group of potential syllable 

nuclei (vowels and syllabic consonants). It is assumed that such syllables can only ever be 

perceived as single prominent units in connected speech. This automatic syllabification 

from acoustic-phonetic parameters is shown to have a large level of agreement (95.2%) 

with a syllabification based on abstract phonological rules. The automatic syllabification 

algorithm has advantages over the syllabification based on phonological rules in that it is 

robust to errors in the segmentation of an utterance and that it groups phones according 

to the manner in which the speaker produces the utterance rather than according to some 

predicted manner. This is particularly important for the syllabification of an utterance 

produced by a non-native speaker, where the actual pronunciation may deviate from 

a pronunciation which may be predictable from phonological rules only for a native 

speaker. 

The unidimensional contributions to the perceived prominence of a syllable made by 

features of duration and energy are captured by a peak-picking algorithm. The pitch 

accent decision filter provides judgements of syllable accentuation. The information 

captured by the peak-picking algorithm and the syllable accentuation information are 

combined to produce a description of the sentential stress patterns of an utterance, in 

a syllabic domain. This yields a 79.1% agreement level with sentential stress categories 

transcribed by hand. This is shown to be a statistically significant improvement over 

the agreement levels yielded by two former algorithms. 

The former algorithms for prosodic analysis reviewed in Chapter 3 have not addressed 

the problems of determining the fundamental frequency of speech and have not compre-

hensively addressed the need to normalise for non-prosodic variations in the acoustic 
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parameters which are used in the prosodic analysis. The system of prosodic analysis 

described in this thesis addresses the problems related to the determination of the fun-

damental frequency of speech and focuses on techniques of normalising for variations in 

acoustic parameters which are due to non-prosodic aspects of speech. 

The integrated prosodic analysis system proposed in this thesis is shown, in Chap-

ter 9, to produce prosodic descriptions which are useful in comparing the prosodic aspects 

of the speech of a non-native learner of English with the speech of a native English talker. 



Appendix A 

Least Median of Squares 
Regression 

A highly robust method of fitting a linear regression model to a set of observations 

(including spurious samples) is least median of squared residuals (LMedS) regression 

analysis; introduced by Rousseeuw (1984). 

Consider a set of N observations, {i, Y} 1 . 

For all pairs of observations, {PU,PV I u E l,...,N;v E 	N; P. = (U,yu)} a 

linear model is computed. There are K = C2 = 2!(N.2)! such pairs of observations. 

The linear model calculated from the k'th pair of observations is represented as, 

ak  = I/u - I/v 

z(i) = ak.i+bk  where 	UV 	 (A.1) 

b' need not be calculated 

The point of intersection, b, is disregarded since it is not a robust value. Let 

a simplified version of the model z fr(i) = ak.i. The set of residuals (offset by b) 

{a, = y. - zk (i)} 1  is computed and a mode-seeking algorithm is applied to it. 

One method of estimating the mode (the sample value which occurs most frequently) 

of a distribution is named "estimating the rate of an inhomogeneous Poisson process by 

(N/2)'th waiting times," (Press et al., 1988, chapter 13.3). The set {a1 } 1  is initially 

sorted into ascending order to give {a }. The smallest window is then sought which 

accommodates half of the data (N/2 points) in the distribution of sorted offset residuals. 
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That is to say, bk  is determine as, 

= 
1. min 

 21=1-.LN/2J (6j+IN,21 - 	
(A.2) 

50% of the observations exist within the window and 50% exist outside the window. 

The evaluation of Equation A.2 is equivalent to shifting this window through the set of 

sorted offset residuals, {a1 },, to locate the area of highest density within its distribu-

tion. Let this point of highest density be located when i = j. A robust value of the point 

of intersection, bk,  is given by the mid-point of the window when i = j, 

ai+N/2J +a 
2 	 (A.3) 

The magnitude of the residuals within the window is always less than bk.  Let 

&,j denote the 50% of sorted offset residuals which reside within the window. Thus, 

(bk - 	< ö. Since O[1] corresponds to 50% of the data, then ö is the median' of 

the squared residuals by definition. Hence 5k = /med(bk - 

This process of determining ak  (from Equation A.1), bk  (from Equation A.3) and bk 

(from Equation A.2) is repeated for all k, giving {ak,bk,ök},.  It is then determined 

which pair of observations gives the minimum median squared residuals. 

	

kmin  = argmin () 	 (A.4) 
k=1-.K 

If significant Gaussian noise is present simultaneously with numerous outliers, then 

the LMedS estimates, {akm ,,, bkmj,} become less reliable. Thus, the LMedS algorithm is 

used for outlier detection and least (mean of) squares regression analysis is employed. 

The data, modelled by z(i) = 	+ bk— j., has a standard deviation, &, from 

the model given by (Rousseeuw & Leroy, 1987), 

	

& = 1.4826 (i + 
N— 2) 	

(A.5) 

'The median, W5o , of a set of samples is a number such that at least 50% of the sample values are 
smaller than or equal to W5o and also at least 50% of those values are larger than or equal to ç'o.  If there 
is more than one such number (in which case there will be an interval of them), the median is defined as 
the average of the numbers (midpoint of the interval). 
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All points for which the magnitude of the residual, IyI—(ak....,.i + bk mjj I is less than 

or equal to 2.5ô are taken to be inliers and all others samples are taken to be outliers. A 

linear model is then determined for all the inliers using least (mean of) squares regression 

analysis (see Press et at., 1988, chapter 4). 

The median computations are applied over the whole data set. Therefore, the LMedS 

estimator remains reliable if less then half of the observations are contaminated by out- 

liers; ie. it has a 0.5 asymptotic breakdown point. The time-complexity of the algorithm, 

however, is high. There are 0(n2) pairs and for each of them a sorting O(n 1092  n) is 

required. Thus, the LMedS algorithm has a time-complexity of the order O(n3  log2  n). 

It is possible to reduce the time-complexity of the algorithm by applying a Monte 

Carlo type speed-up technique. When ,C2  is very large, a random subset of pairs of 

observations (m pairs) are taken, reducing the time-complexity to O(mn 1092  n). In 

order for the LMedS estimates to be reliable, it is necessary for at least one candidate 

model, Zk to carry the correct parameter values. If this condition is not met, the LMedS 

estimator loses its robust properties. Note, however, that in practice, more than one 

such candidate model is preferred, because noise will be present amongst the jailers. 

Let c be the fraction of data contaminated by outliers, and m be the number of 

randomly selected pairs. The probability of all m pairs containing at least one outlier is 

P = [1 - (1 - )2]m and thus Q = 1 - P is the probability that at least one of the m pairs 

contains no outliers. For e < 0.5, taking m = 3000 pairs ( jyC 2  > 3000 for N > 77), gives 

P 	0, Q 1. Hence, there is a high probability of maintaining a high breakdown point 

when the Monte Carlo type speed-up technique is applied (Rousseeuw & Leroy, 1987). 



Appendix B 

Bayesian Classification 

Consider a number of categories, {C1  j  i e 1,. . . , I}, for a population of objects where 

each object is characterised by a set of p features. The aim of a classifier is to partition the 

p-dimensional feature space into regions, one region for each category, with the minimum 

probability of error. 

A classification rule can be regarded as being optimal if the proportion of objects 

that are misclassified to any of the possible categories other than that which it belongs, 

is minimised by its use. Bayes' rule aims to minimise this classification error by assigning 

an object to a category with the highest conditional probability. 

Bayes' rule (see, for example, Duda & Hart, 1973; James, 1985): An object is assigned 

to category C1  if, 

P(C1Jx) > P(C,Ix) 	Vji 	 (B.1) 

where x is a vector of p feature measurements which characterise the object. 

If the conditional probability P(C1 x) is a maximum for more than one category, the 

object is randomly assigned to one of the categories for which P(C1 1x) is a maximum. 

In practice, it is possible to estimate the probability P(xjC1) of getting a particular set 

of features x given a sample of data from a particular category C,. Bayes' theorem (see, 

for example, James, 1985) relates the a posteriori probability P(C1 1x) to the probability 

P(xC1) and the a priori probability P(C1 ) of category C, existing in the population: 

P(C11x) - 	P(xIC1).P(C1) 
(B.2) - 	

all 1P(xIC1)(C1) 

Bayes' rule can be rewritten by substituting Equation B.2 into Equation B.1 as: 
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Assign an object to category C1  if, 

P(xIC1).P(C1) > P(xIC,).P(C) 	V j 54 i 	 (B.3) 

This rule is optimal for classification but requires a large training sample set to 

determine P(xIC1) Vi and the a priori probabilities P(C1) Vi (which may be estimated 

by the proportion of each category in the sample set). 

Let us assume that the measurements being used for classification form a multivariate 

Normal distribution, thus, 

P(xJC1) 
= (27r)P/2.IE1Ih/2 exp [_( - 

iz. )TE-l(x - ii)] 	(B.4) 

where, 

= E [(x - Pi)-(X 
- ,L)TJ (covariance matrix) 

Ai 	= E [x1 ] (mean vector) 

Substituting Equation B.4 into Equation B.3, taking the natural logarithm, cancelling 

common terms, multiplying by -2 and reversing the inequality, gives Bayes' rule for 

multivariate Normal data as: Assign an object to category C1  if, 

Q.(x) < Q(x) 	Vji 	 (B.5) 

where the quadratic discriminant score, Q.(z), is given by, 

Q.(x) = ln 1E11 + (x - it1)TE(x - IL.) - 21n(P(C1 )) 	 (B.6) 

The above rule enables an object to be classified to a category on the basis of a vector 

of features, x, given the mean values of the features, a covariance matrix of the features 

for each of the possible categories, and the a priori probability of an object existing in 

a given category (all of which can be determined from a training set). If the values of 

the features form a Normal distribution, the resultant classification will have a minimum 

probability of error. 
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Note that, 

exp 	 cx P(z1C,).P(C1 ) 	 (B.7) 

Thus, if by applying Bayes' rule expressed in Equation B.5, an object is assigned to 

category C1, then the a posteriori probability that the object has been assigned to the 

correct category (substituting Equation B.7 into Equation B.2), 

exp [_ 1 ]  
P(C1 Jz) =(B.8) 

j1exp[_ 2  

The measure adopted to evaluate the performance of the classification is the entropy 

(Shannon & Weaver, 1949; Pierce, 1962) associated with the task of correctly identifying 

the true category of the input object'. An entropy score can be determined from the 

a priori and the a posteriori probabilities of each class to give an indication of the 

effectiveness of the classification. The entropy score, H, is given as, 

Ni 

 H = 	[P(ci).-_1o 2 P(ci Ixsn )] 	 (B.9) 
all 

where Ni  represents the number of objects of category C, in the sample set and z1,,, is 

the n'th feature vector characterising an object in the sample set which is known to be of 

category C,. The a posteriori probabilities, P(C1 Ix1,), are calculated from Equation B.8. 

If the a priori probabilities, P(C1) Vi, are estimated from the proportion of each 

category in the training sample set, 

	

P(C1 ) = 
Ni 	

(B.10) 

where N is the total number of objects in the sample set. 

Substituting Equation B.10 into Equation B.9, the entropy score reduces to, 

H' = —log2 P(C1 Xi ) 	 (B.11) 

'An entropy measure has previously been used to evaluate the performance of a Hidden Markov 
Model based speech recognition system (McInnes et at., 1989). The entropy score presented here has 
been derived with the assistance of Dr. Fergus McInnes. 
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Thus, the entropy score, H', is the average negative logarithm (to base 2) a posteriori 

probability of an object being assigned to the correct category. The entropy is the 

theoretical number of bits of additional information required by any process whose task 

is to derive the category of the input object without error, subsequent to the Bayesian 

classifier. A lower entropy score indicates a Bayesian classification of better performance. 
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The following published papers by the author are directly connected with the research 

described in this thesis and are appended here. 
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of English speech. Pages 859-862 of: Proc. International Conference on Spoken 

Language Processing, vol. 2. Banff, Canada. 

BAGSHAW, P.C. (1992). An investigation of acoustic events related to sentential 

stress and pitch accents, in English. Pages 808-813 of: Proc. 4th. Australian 

International Conference on Speech Science and Technology. Brisbane, Australia. 

BAGSHAW, P.C., HILLER, S.M., & JACK, M.A. (1993). Enhanced pitch tracking 

and the processing of FO contours for computer aided intonation teaching. Pages 

1003-1006 of: Proc. 3rd. European Conference on Speech Communication and 

Technology, vol. 2. Berlin. 

BAGSHAW, P.C. (1993). An investigation of acoustic events related to sentential 

stress and pitch accents, in English. Speech Communication, 13(3-4), 333_342.1  

'Reproduced with permission from Elsevier Science Publishers B.V., Amsterdam. 
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CRITERIA FOR LABELLING PROSODIC ASPECTS OF ENGLISH SPEECH 

Paul C. Bagshaw 	Briony J. Williams 

Centre for Speech Technology Research, University of Edinburgh 
80 South Bridge, Edinburgh EH1 IHN, Scotland, UK 

ABSTRACT 
We report a set of labelling criteria which have been developed 

to label prosodic events in clear, continuous speech, and propose 
a scheme whereby this information can be transcribed in a ma-
chine readable format. We have chosen to annotate prosody in a 
syllabic domain which is synchronised with a phonemic segmen-
tation. A procedural definition of syllables based on the grouping 
of phones is presented. The criteria for hand labelling the promi-
nence of each syllable, tone-unit boundaries and the pitch move-
ment associated with each accented syllable, are described. Work 
to automate this process is presented and experimental results 
evaluating its performance are included. 

- 

I. INTRODUCTION 
The need for a large corpus of prosodically labelled English 

speech is motivated by the use of prosodic events in training 
speech synthesisers, in automated foreign language pronuncia-
tion 

ronuncia
tion teaching, and to aid parsers used in speech recognition to 
disambiguate phonetically similar, but syntactically different ut-
terances. 

Speech synthesis requires a mapping from prosodic events to 
a set of acoustic parameters for their realisation. Parsers and 
the analysis of language pronunciation, on the other hand, re-
quire 

e
quire the reverse mapping to provide descriptors for the acoustic 
correlates of prosody, and semantic and pragmatic knowledge to 
be extracted from these correlates. The prosodic labelling of a 
language corpus must therefore annotate both the linguistically 
significant features in speech prosody and the inflections of the 
acoustic parameters. 

We aim to transcribe sentential stress (the prominence of syl- 
lables in continuous speech) and the pitch movement associated 
with any accented syllables for such systems. By initially hand la-
belling these prosodic aspects, a set of acoustic features are sought 
which will form a mapping for speech synthesis, and at the same 
time, enable these prosodic events to be labelled automatically 
given the acoustic features, for parsers and language pronuncia-
tion 

ronuncia
tion description. The transcription system we propose is intended 
to be an annotation scheme for linguistically significant prosodic 
events in English. It is not designed to give a detailed description 
of every possible inflection in an FO contour. The set of symbols 
(see table 1) is designed for use by both a hand transcriber of the 
prosodic events and for some automated procedure. 

The labelling scheme described has been used to transcribe, 
by hand, prosodic events in a database of 453 utterances from 
the English language ATR conference-registration dialogues with 
focus'. An acoustic analysis of these labels attempts to estab-
lish a correlation between a set of features chosen to characterise 
the acoustic parameters believed to manifest prosody, and the 

'The ATR dialogues where spoken by a female bilingual speaker of 
Japanese and American English. 

perceived prosodic events that are transcribed. 
Continuous speech is initially segmented into phone units and 

labelled using a HMM-based automatic segmenter (evaluated in 
(181). The phones identified are grouped into syllables. Syllable 
boundaries are thus synchronised with the phone boundaries. The 
procedure employed to group phones into syllables is described in 
section II. Each syllable is labelled by hand as unstressed, stressed 
(but not accented), stressed and accented (but not nuclear), or as 
the nuclear accented syllable of a tone-unit. Each syllable imme-
diately preceding a tone-unit boundary is also marked, in order to 
specify the boundary location. The nuclear accented syllable of 
a tone-unit is (according to the "British School" of intonational 
phonology) the final accented syllable in that tone-unit [5]. This 
definition of nuclear syllables and the criteria used to determine 
syllable prominence are addressed in section III. Each accented 
syllable is associated with an additional label that describes the 
pitch contour movement which marked it. Thus, pitch contour 
labelling is also synchronised with syllable boundaries. The time 
location of this movement may occur before, during and sub-
sequent to the domain of the accented syllable. Pitch contour 
labelling criteria are described in section IV. In section V a set 
of acoustic features are proposed which we intuitively feel will 
describe the acoustic correlates of sentential stress. These acous-
tic features are used to form a tree-based statistical model for a 
small corpus of hand labelled prosodic events. This methodology 
is described in section VI. Its application reveals a low correlation 
between the acoustic features and the events labelled, which poses 
questions regarding the relationship between the theory and the 
acoustics of sentential stress. These are discussed in section VII. 

II. SYLLABIFICATION 
The following procedural definition is used for syllabification. 

Phones are grouped into syllables on a phonological rather 
than phonetic basis. Consonantal phones (such as [m, n, 1, r, s]) 
which may result in schwa deletion (10, pp.297-299] (6] and take 
on the syllabic nucleus, are therefore syllabified as if the vowels 
were present. Hence, shortest in rapid speech is syllabified as 
/'J 	- t # t/, and additional as la - 'd I -J i —  j/. A glottal stop 
that may occur before or instead of a word-final stop is treated 
as an instance of the underlying stop phone, and any glottalised 
onset to vowels is considered to be part of the vowel. 

Syllable boundaries are formed from the boundaries of 
words considered in isolation. Although in continuous speech, 
consonants at the end of one word can syllabify with the initial 
vowel of the following word [13], such resyllabification is not nec-
essary in forming a domain in which to describe prosodic events. 
Thus, for example, the syllabification of at all differs to that of 
a toil even if /t/ is aspirated in both cases and they are pho-
netically identical. This approach has been adopted because the 
exact boundaries between syllable nuclei are not of critical im- 

Proc. International Conference on Spoken Language Processing, 2, 859-862. 
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portance, although identifying the nuclear phone is. Similarly, 
resyllabification is unnecessary across words that appear to blend 
together due to vowel deletion, as may be the case in under a, 
which is syllabified as /'a n - d I - 

The boundaries between syllables are also determined by 
the presence of a morphological boundary. The boundary be-
tween a free morpheme and an inflectional suffix (except -a) or 
a class-11 derivational affix is taken to be a syllable boundary. 
Thus, hopeless is syllabified as /h sa p - I a a/ rather than 
/h an - p 1 a s/; and uninteresting is syllabified as /n n - 1 n - 
s-rc s t - I 	rather than /A - no - t a - r  -s t I yj/. 

On the basis of English phonotactics, any cluster of phones 
forming the onset or the coda of a syllable must also be a per-
missible word-initial or word-final cluster. According to this rule, 
extra may be syllabified as /'e It - s t r u/, /'e k s - t r f, or 
/'e k s t - r 

The maximal onset (and minimal coda) principle' [16] [4, 
pp.10-18] arbitrates between competing analyses. According to 
the principle, as many consonantal phones as possible form a syl-
lable onset. Using this principle, extra would be syllabified as 
/'e It - a t r s/. However, in cases when alternative boundaries 
are possible, stressed syllables tend to attract consonants more 
than unstressed ones, particularly in the case of ambisyllabic con-
sonants such as [s, f] [8, pp.19-23]. When this final criterion 
is applied, the syllabification adopted for the example becomes 
/'e k s - t r 

III. SENTENTIAL STRESS LABELLING 
The salience of each syllable within an utterance is labelled 

as one of {u, s, a, n) (see table 1) on the following basis. 
Sententially stressed syllables are those that are perceived as 

salient due to a prominence of energy and/or duration and/or 
pitch [7] [12, chap 4] within an utterance. The default (and 
therefore intonationally unmarked) pitch movement in English 
is a slight downwards trend in pitch [5, 11]. This movement does 
not give any intonational prominence to the syllable within the 
declination, even if that syllable is stressed on the grounds of 
prominent duration and/or intensity. The same situation occurs 
if a stressed but unaccented syllable is one in a series of gently ris-
ing pitch movements. Where there is no pitch discontinuity, there 
is no accent [5]. An accented syllable must also be a stressed syl-
lable and an accompanying pitch movement must occur during 
the accented syllable or on a syllable before or subsequent to the 
perceived accented syllable [9]. 

Each tone-unit of an utterance will have one peak of promi-
nence in the form of a nuclear pitch movement. The nuclear 
accented syllable is the syllable on which the one obligatory pitch 
movement occurs in a tone-unit. This is traditionally believed to 
be the final accented syllable in a tone-unit [15]. At present, we 
make use of this traditional definition. 

Tone-unit boundaries are marked by placing a diacritic {:} on 
the label {u, a, a, n} of the syllable immediately preceding the 
boundary. The tone-unit boundaries are identified by two pho-
netic features [5, pp.204-207]. Firstly, the presence of junctural 
features, such as slight pauses, final lengthening and rhythmic 
discontinuities, can signal the end of a tone-unit. However, a 
pause does not necessarily correspond with a tone-unit boundary 
in spontaneous speech, particularly in cases of disfluency. Sec-
ondly, given that the first prominent syllable, for the majority 
of tone-units in an utterance, is of approximately the same pitch 
level [5], the boundary may be signaled by some perceivable pitch 
change. This change can be either a step up from a falling pitch 
movement, or a step down from a rising pitch movement. It may 
be difficult to identify such pitch resets when the tone-unit onset 

Table 1: Symbols for Sentential Stress and Pitch Movement La-
belling 
ASCIIt Symbol Description 
a ful — Completely unstressed 
s {,) — Stressed but unaccented 
a {a} — Stressed and accented 
n n) — Nuclear accented 
I pipe {:} — syllable immediately preceding a 

tone-unit boundary 
- pitch accent is a fail 

I {/} — pitch accent is a rise 
v {V) - accent is a fall-rise - hat {A) —accent isarise-fall 

{—) — level tone 

(—} — pitch movement is part of the 
realisation of as accented syllable to 
the left of this syllable 

— pitch movement is part of the 
realisation of an accented syllable to 
the right of this syllable - minus {-) — the range of the pitch movement is 
unusually wide (increased) - underscore {_) - the range of the pitch movement is 
unusually narrow (decreased) 

apostrophe {A) — pitch 	peak" or level tone pitch is 
unusually high 

comma {v) - pitch "peak" or level tone pitch is 
unusually low 

{I 	) — initial part of {V) or {A) pitch 
movement is shallow 

- final part of {v) or {A} pitch 
movement is shallow 

fThe ASCII characters listed are the prosodic labels used in machine 
readable data. 

is low and the final accent of the previous tone-unit ends with a 
pitch fall, or the onset is high and follows a tone-unit whose final 
accent ends with a rise in pitch. 

IV. PITCH MOVEMENT LABELLING 
The pitch contour of an utterance is labelled as a series of 

pitch movements at (or near) each accented syllable. A pitch 
movement is either a continuous pitch glide, for example over a 
long vocalic section of speech, or a discrete pitch jump from one 
level to another over a series of syllables. Each pitch movement in 
an utterance is labelled as one of the five categories {\, /, V, A, —} 
(see table 1). 

A description is associated with each and every syllable la-
belled as accented (or nuclear accented) to mark the direction of 
pitch movement on this and any following unaccented syllables. 
These labels should only be time aligned with an unstressed or an 
accented (nuclear or otherwise) syllable In, a, n}, but not with 
a stressed (but unaccented) syllable {s}. (Any stressed syllable 
corresponding with a time aligned pitch movement label should 
be marked as an accented syllable.) If the pitch movement is 
aligned with an unstressed syllable {u}, a diacritic in applied to 
the pitch movement label in order to indicate whether the pitch 
movement is part of the realisation of the nearest accented sylla-
ble 

ylla
ble {a, n} to the left {4_-} or the nearest one to the right {—e}. 
There may be more than one pitch movement associated with an 
accented syllable; for example, if there is a rise-fall pitch move-
ment in the realisation of an accented syllable but the rise occurs 
on a preceding unstressed syllable and the fall occurs on a suc-
ceeding unstressed syllable. The uses of these diacritics enable the 
inflections of the PD contour to be described while maintaining a 
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transcription of the perceived pitch movement. 
Pitch range markings are used to describe the extent of the 

movement in a pitch glide and the distance between levels of a 
pitch jump, but not for level tone. If the pitch range is distinc-
tively wider or narrower than expected for a particular contrastive 
effect, it is marked with a diacritic {, -} on the pitch direction 
labels. Diacritic, are also applied to these labels if the "peak" 
part of a pitch movement (the initial part of a fall {\}, the final 
part of a rise {/}, and the mid-section of a fall-rise or rise-fall 
{V, A}) or the pitch of a level tone {-} is unusually high [A} or 
low {v'} for the particular speaker. In order to describe occur-
rences of pitch fall-rise and rise-fall with a particularly shallow 
rise or shallow fall, two further diacritic, are included. These are 
used to represent, for example, fall-shallow rise as {\4 J. 

V. ACOUSTIC FEATURES 
A set of acoustic features must be extracted from the raw 

speech waveform in order to automatically identify syllable promi-
nence and pitch movements. In our preliminary stages of produc-
ing an automatic prosodic labelling algorithm, eighteen features 
are used to describe what are we believe to be the acoustic corre-
lates of stress (duration, intensity and fundamental frequency). 

The energy and fundamental frequency of the speech wave-
form (sampled at 20kHz) are measured for 20ms frames of speech 
at Sms intervals so that values are synchronised with the cep-
stral coefficients and lower three formant frequencies used in the 
auto-segmentation process. The fundamental frequency (FO) is 
determined using a slightly enhanced version of the pitch tracker 
described in 114]. In order to measure the signal energy, each 
frame is passed through a Blackman-Harris window and an am-
plitude spectrum is calculated using a 512-point FFT. The to-
tal energy for the frequency range of 5OHz-2kHz is determined 
by summation of the corresponding frequency bins. Each frame 
energy value is then expressed in decibels with respect to the 
maximum frame energy for the utterance. This process forms 
an utterance-normalised sonorant energy contour. Both the raw 
FO contour and the energy contour are smoothed using a 3-point 
non-linear median filter and a 5-point hanning window [17]. 

The phone given by auto-segmentation which forms the nu-
cleus of a given syllable is identified by the following procedure. 
The phones in the syllable are split into two groups on the basis 
of whether or not they are a member of the set of vocalic phones 
and potentially syllabic consonantal phones (currently, all vowels 
plus [I, m, n, rJ). Each phone is associated with the maximum 
sonorant energy within its tenure. If there are phones in the sylla-
ble which are members of this set, then the one whose associated 
energy is greatest, is selected as the syllable nucleus. Otherwise, 
none of the syllable phones are [vowel, 1, rn n, r] and the phone 
with the greatest maximum sonorant energy is selected. The du-
ration associated with any syllable in determining its prominence 
is the duration of its nuclear phone - this will be referred to as 
the "syllable duration". Using the duration of the entire syllable 
or the duration of all consecutive sonorants in the syllable as this 
measure has not yet been investigated. 

Each syllable in an utterance is characterised by the maxi- 
mum soronant energy within its tenure (syllable energy), its "syl-
lable duration", the maximum P0 value within its tenure, the FO 
values at the beginning and at the end of the syllable, and an 
FO slope in Hz per second which describes the rate of change in 
PD through any voiced regions of the syllable. The syllable en-
ergy and "syllable duration" are 2-score normalised to eliminate 
phone-specific effects [2]. For each phone type, the mean and 
population standard deviation of the syllable energy/duration is 
determined. Then, for each token of that phone type, the syllable 

Table 2: Confusion Matrix of Sentential Stress Labelling by Hand 
and by Automation - cyclic exclusion of each utterance during 
training 

Automatic Label 
an 	, 	s 	total 

as 889 72 849 1810 
(12.3%) (1.0%) (11.7%) (25.0%) 

Raid Label 	a 237 72 673 982 
(3.3%) (1.0%) (9.3%) (13.6%) 

s 567 142 3731 4440 

1693 	286 	5253 	1 7232 
(23.4%) (4.0%) (72.6%) 1 (100.0%) 

Misclassification error rate = 2540/7232 (35.1%) 

Table 3: Confusion Matrix of Sentential Stress Labelling by Hand 
and by Automation - all utterances used during training 

Automatic Label 
0,5 	a 	s total 

a,n 1143 	44 	623 1810 
(15.8%) 	(0.6%) 	(8.6%) (25.0%) 

Hand Label 	s 240 	113 	629 982 
(3.3%) 	(1.6%) 	(8.7%) (13.6%) 

s 334 	51 	4055 4440 
(4.6%) 	(0.7%) 	(56.1%) (61.4%) 

total 	1717 	208 	5307 	7232 
(23.7%) 	(2.9%) 	(73.4%)  

Misclassification error rate = 1921/7232 (26.6%) 

energy/duration is normalised by subtracting the mean and di-
viding by the population standard deviation. Hence, for each syl-
lable, there are six acoustic features extracted - phone-normalised 
duration, phone-normalised energy, maximum FO, start-time FO, 
stop-time FO, and P0 slope. In automatically establishing the 
prominence of any syllable in an utterance, these six features for 
the current, previous and next syllable are used, giving a total of 
eighteen features per syllable. 

The P0 features are also normalised so that each movement 
is independent of its absolute FO values. Our intuition suggests 
that FO change is the significant factor, not the absolute PD val-
ues. Normalisation of the nine FO parameters (the maximum FO, 
start-time PD, and stop-time FO for the current, previous and 
subsequent syllables), is performed by determining the minimum 
value of these parameters and subtracting it from each. The 
change in FO through the syllables is therefore described inde-
pendently of the absolute height of the P0 movement. 

VI. APPLICATION OF A TREE-BASED 
STATISTICAL MODEL 

The sentential stress and pitch movements associated with 
accented syllables have been hand labelled in the ATR database 
of 453 utterances using the symbols given in table 1. The prosodic 
transcription was done by only one labeller. 

The automatic prosodic labelling algorithm is still in its in-
fancy and so the acoustic features described in section V are being 
used only to identify any given syllable in an utterances as either 
unstressed, stressed or accented (nuclear or otherwise). Distin-
guishing pitch movement types has not yet been incorporated. 

The acoustic features are used as parameters to a tree-based 
statistical model (using "5" [3]). The model is trained on all 
but one of the utterances in the database. The tree classifies 
each hand-transcribed sentential stress label on the basis of the 
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features given. This tree is then used to predict the labels for 
the utterance that was not included in the training set. These 
automatically generated labels are compared with those given by 
hand. This process is repeated in a cyclic fashion for all the utter-
ances and the comparisons are summed. The confusion matrix 
(table 2) indicates the number of occurrences that each hand-
transcribed label is predicted as accented (a, n}, stressed (a) or 
unstressed (is) using this process. 

In order to give an indication of the dependency of the auto-
matic labels on the method used, table 3 shows a similar confu-
sion matrix generated when the test utterance is included in the 
training data. 

VII. DISCUSSION 
The misclassification error rate of 26.6% is quite promising 

given that the selection of the acoustic features that have been 
used is based on intuition. This, however, may not be the only 
contributing factor to erroneous classifications. It could be that 
the acoustic features are in fact closely related to the prosodic 
events labelled, but that the tree-based statistical model is not 
the most appropriate method to classify these events given the 
acoustic features (this is supported by the considerable difference 
between tables 2 Sr 3). Alternatively, the acoustic features pre-
sented could be insufficient to characterise the prosodic events. 
For example, it is likely that representing FO movements across 
a three-syllable window is restrictive, given that such movements 
can clearly span many or part of syllables. It may be that the 
labelling scheme is an inadequate system for describing sentential 
stress and the pitch movements as perceived by the transcriber. 
This can be illustrated by the fact that sentential stress is not a 
simple binary distinction between stressed and unstressed. In am-
biguous cases, the transcriber uses linguistic knowledge not evi-
dent in the acoustics. For example, the syllable in question will be 
marked as sententially stressed only if it can be lexically stressed. 
This may lead to every occurrence of schwa being marked as un-
stressed regardless of the acoustic evidence. With such linguistic 
knowledge unavailable to the tree-based model, confusions will 
inevitably arise between the hand labels and automatic labels. 

It is most likely that the classification errors are due to some 
combination of all these factors, although the extent to which 
any one factor effects the error rate is difficult to determine. The 
correct-classification rate of 73.4% is, however, close to the per-
centage of correlating labels between two hand labellers - in the 
prosodic labelling of the Lancaster/IBM spoken English corpus, 
transcribers achieved 72% agreement for seven categories of sen-
tential stress labels {\, /, V, A, -, a, is) and 83% agreement for 
the categories "accented"/ "stressed"/ "unstressed" [1]. 

ACKNOWLEDGEMENTS 
Thanks to Keith Edwards, Sally Bates, Alex Monaghan, Nick 

Campbell, Jim Hieronymus, and Bob Ladd for their valuable as-
sistance. This work has been supported by ATR Interpreting 
Telephony Research Laboratories, Kyoto, Japan. 

References 

(1] P. Alderson and G. Knowles. Working with speech. Longman, 
London, in press. 

[2] W.N. Campbell. Evidence for a syllable-based model of 
speech timing. In Proc. International Conference on Spoken 
Language Processing, volume 1, pages 9-12, Robe, Japan, 
1990. 

[3) L.A. Clark and D. Pregibon. Tree-based models. In J.M. 
Chambers and Ti. Iiastie, editors, Statistical Models is 
5, chapter 9, pages 377-419. Wadsworth & Brooks, Pacific 
Grove, California, 1992. 

(4) H. Couper-Kuhlen. An Introduction to English Prosody. Ed-
ward Arnold (Publishers) Ltd., London, 1986. 

(5] D. Crystal. Prosodic Systems and Intonation in English. 
Cambridge University Press, Cambridge, U.K., 1969. 

J.M. Dalby. Phonetic Structure of Fast Speech in American 
English. PhD dissertation, Indiana University Linguistics 
Club, Bloomington, Indiana, 1986. 

D.B. Fry. Duration and intensity as physics correlates of lin-
guistic stress. Journal of the Acoustical Society of America, 
27(4):765-768, 1955. 

E.C. Fudge. English Word-Stress. George Allen & Unwin, 
London, 1984. 

H. Girding and Gerstman. The effect of changes in the lo-
cation 

o
cation of an intonation peak on sentence stress. Studia Lin-
guistica, 14:57-59, 1960. 

A.C. Gimson. An Introduction to the Pronunciation of En-
glish. Edward Arnold, London, second edition, 1970. 

D.R. Ladd. Peak features and overall slope. In A. Cut-
ler and D.R. Ladd, editors, Prosody: Models and Measure-
ments, chapter 4, pages 39-52. Springer-Verlag, Heidelberg, 
Germany, 1983. 

I. Lehiste. Suprasegrnentals. The Massachusetts Institute of 
Technology Press, Cambridge, Massachusetts, 1970. 

I. Maddieson. Phonetic cues to syllabification. In V.A. 
Fromkin, editor, Phonetic Linguistics (essays in honor of 
P.Ladefoged). Academic Press Inc., London, 1985. 

(14] Y. Medan, E. Yaii, and D. Chazan. Super resolution pitch 
determination of speech signals. IEEE Trans. Signal Pro-
cessing, ASSP-39(1):40-48, 1991. 

J.D. O'Connor and G.R. Arnold. Intonation of Colloquial 
English. Longman, London, second edition, 1973. 

E. Pulgraxn. Syllable, Word, Nexus, Cursus. Mouton, The 
Hague, 1970. 

L.R. Rabiner, MR. Sambur, and C.E. Schmidt. Applica-
tions of non-linear smoothing algorithms to speech process-
ing. IEEE Trans. Acoustics, Speech, and Signal Processing, 
A SSP-23(6):552-557, 1975. 

M.S. Schmidt and G.S. Watson. The evaluation and opti-
mization of automatic speech segmentation. In Proc. End. 
European Conference on Speech Communication and Tech-
nology, volume 2, pages 701-704, Genova, Italy, 1991. 

Proc. International Conference on Spoken Language Processing, 2, 859-862. 



APPENDIX C. PUBLICATIONS - SST (1992) 
	

215 

AN INVESTIGATION OF ACOUSTIC EVENTS RELATED TO SENTENTIAL STRESS AND PITCH 
ACCENTS, IN ENGLISH 

Paul C. Bagshaw 
ATR Interpreting Telephony Research Laboratories 

(Visiting from the Centre of Speech Technology Research, University of Edinburgh) 

ABSTRACT - An algorithm is described to abstract acoustic parameters of a speech waveform 
to give a scalar measure of the relative stress and pitch movement of each group of phones 
which can consist of a single prominence. A method of identify such groups using acoustic 
Information Is given. The abstracted parameters are used to locate sentential stress and pitch 
accents in English speech. These are compared with a hand-labelled prosodic transcription. 

INTRODUCTION 

We wish to label prosodic events in English speech. Prosodic events marked by hand vary considerably 
from labeller to labeller and may be marked inconsistently within any labellers transcription. (Pickering, 
et.al, in press) show that two transcribers select the same prosodic label (level, fall, rise, fall-rise, rise-
fall, stressed but unaccented or unstressed) for 72% of syllables. This paper presents a method of 
automaticly transcribing prosodic events with the relative stress of any syllable and the extent of pitch 
movements being described as a scalar rather than as a discrete level. The method involves a series 
of abstractions of acoustic parameters which aims to isolate the prosodic variations In duration, energy 
and fundamental frequency from the microprosodic variations. 

The grouping of phones into syllables which can constitute at most a single prominence In the utterance 
is used as a domain for transcribing prosodic events. The method used to produce the phone groups is 
described in section II. The prosodic content of each phone group is described by giving it a measure of 
its relative stress in the utterance and, if the group is accented, the type of pitch movement (level, fall, 
rise, fall-rise or rise-fall) and the relative extent of the movement. In deducing the relative stress, the 
prosodic variations of duration, energy and fundamental frequency (FO) are abstracted from the speech 
waveform acoustics. The formation of a piece-wise FO contour to remove microprosodic variations Is 
described in section III. The piece-wise units crossing each syllable are abstracted into one of five types 
of pitch movement. Each syllable is then marked as either prominent (sententially stressed) or not 
prominent (sententially unstressed), and if it Is found to be prominent and pitch salient, It Is marked as 
accented (section IV). These markings are compared with those transcribed by hand. 

SYLLABIFICATION FROM ACOUSTIC PARAMETERS 

An algorithm is described to group phones given by an automatic phonemic segmentation system Into 
syllable sized items based on sonorant energy. The syllabification of speech from acoustic parameters 
groups phones according to the manner in which the speaker formed the utterance rather than that 
dictated by a set of phonological rules. The syllabification makes full use of the phone boundary and 
label information given by auto-segmentation and uses the sonorant energy contour of the utterance to 
determine their grouping. 

The energy contour for a speech waveform (sampled at 20kHz) Is calculated from 20ms frames at 
5ms intervals so that values are synchronised with the cepstral coefficients and lower three formant 
frequencies used in the auto-segmentation process. Each frame is passed through a Blackman-Harris 
window and the frequency bins of an amplitude spectrum (512-point FFT) corresponding to the range 
50Hz-2kHz are accumulated. These energy values are expressed in decibels with respect to the 
maximum frame energy in the utterance to form an utterance-normalised sonorant energy contour. 
The contour is processed by a three-frame median filter and five-frame hannlng window smoother 
(Rabiner, et.al, 1975) in order to remove small perturbations which arise during frames of speech with 
low fundamental frequency (typically less than two pitch periods per analysis frame). 

Proc. 4th. Australian International Conf. on Speech Science 6 Technology, 808-813. 



APPENDIX C. PUBLICATIONS - SST (1992) 	 216 

All minima in the energy contour are located and form candidates for syllable boundaries. The areas 
of silence identified by the auto-segmentation are respected and so the minima within the tenure of 
such areas are believed to be due to variations in background noise. Each boundary between a silence 
and a phone label Is taken as either the beginning or the end of a syllable. The nearest candidate to 
such a boundary Is therefore moved to align with it and all those residing within the silence section are 
disregarded. The regions between all the remaining energy minima are taken to be potential syllables 
with a start time given by the nearest left-hand-side minimum's location, and the nearest right-hand-side 
minimum's location giving the stop time. It is determined if the location of each of these potential syllables 
overlaps more than 50% of any auto-segmented vowel. If it overlaps more than one vowel segment in 
this way, then the vowel segment with the maximum sonorant energy Is taken to be the nucleus of the 
syllable. If no such overlap occurs, then it Is determined If the location of the potential syllable overlaps 
more than 50% of one of the possible syllabic consonant segments /1, m, n, r/. Again, If it overlaps more 
than one of these, the one with the maximum sonorant energy is selected as the syllabic nucleus. If 
there is insufficient overlap, the region between the minima does not correspond to a syllable unit and 
either the l.h.s. or r.h.s. minimum is disregarded as a syllable boundary candidate - whichever has the 
highest energy and does not correspond to a phone/silence boundary. The newly formed region Is then 
taken to be a potential syllable and the process is repeated. The resultant syllabification has boundaries 
located at positions of minimum sonorant energy in the utterance. These boundaries may be aligned 
with the auto-segmentation by moving each syllable boundary to the nearest phone boundary. 

A database of 453 utterances from the English language ATR conference-registration dialogues has be 
syllabified using the above algorithm and by using a phonologically based syllabification (Bagshaw & 
Williams, 1992). There is a large correlation between the two resultant syllabic domains (see table 1). 
The missing syllable boundaries are due to the occurrences of vowel/vowel boundaries for which there 
Is no valley in the sonorant energy between them. When this case arises, often one of the vowels Is 
a schwa; for example, the phonological syllabification of "my address" as /m ai - - d r e sI can be 
grouped on an acoustic basis as /m ai a - d r ' SI. Conversely, extra syllable boundaries occur when the 
sonorant energy dips within the tenure of the phonologically based syllable at a vowel/vowel boundary or 
vowel/syllabic consonant boundary; for example the phones in "tour" /t u a'1 can be grouped as It u - a] 
on an acoustical basis, and for the word "forms" If r m SI phones are grouped as I? - r ni 5/ as its 
pronunciation tends towards that of "forums". 

Syllabification using acoustic parameters in this manner clusters phones with a vowel or syllabic conso-
nant as its nucleus and containing a single burst of sonorant energy. The duration of the nucleus and 
the maximum sonorant energy within it are used in determining its relative prominence. The duration 
and energy variations are mainly attributed to phone type. These parameters are therefore Z-score nor-
malised with respect to the phone type of the nucleus in order to compensate for segmental variations. 
(Campbell, 1990) uses a similar normalisation but on a phone by phone basis rather than on the basis of 
syllable nuclei. The mean duration and maximum energy and their population standard deviations are 
determined for each phone type from a training database of 200 phonemically balanced utterances. The 
Z-score normalisation of a nuclear phone's duration or intensity simply involves subtracting the mean 
value and dividing by the population standard deviation for that phone type. 

An example of these processes is shown in figure 1, Part (a) shows the speech waveform and Its 
corresponding automatic segmentation using MRPA labels (Edinburgh University's machine-readable 
phonemic alphabet). Part (b) gives the utterance normalised sonorant energy contour and transcription-
aligned syllable boundaries with a MRPA label indicating the phone forming the nucleus. The Z-score 
normalised duration and energy for each syllable nucleus is given in part (C). These will be discussed 
further in section IV. 

Ill. THE FORMATION OF A PIECE-WISE FO CONTOUR 

A fundamental frequency (FO) contour produced by a pitch determination algorithm (PDA) can be ex-
pected to contain values which are inaccurate, such as instances of pitch octave errors. Any PDA will 
also make erroneous classifications of sections of speech as voiced or unvoiced. A personal evalua-
tion of a slightly enhanced version of the PDA described in (Medan, et.al, 1991) (which is used in this 
study) has been found to estimate FO with consistently less than 1% gross pitch errors and less than 
16% of speech classified as voiced or unvoiced incorrectly, when compared with FO determined from 
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Table 1: Comparison of Phonologically Based and Acoustically Based Syllabificatlons 

Number of syllables 
from a phonological basis from the acoustics Match 	Missing 	Extra 
7299 (100.0%) 	 7011 (96.1%) 	6980 (95.6%) -319(4.4%) +31 (0.4%) 

laryngograph data. In order to eliminate the majority of octave errors and reduce microprosodic pertur-
bations, the contour Is Initially processed by a three-frame median filter and three-frame hanning window 
smoother (Rabiner, et.al, 1975). The frames of speech analysed by the PDA are in synchronisation 
with those used in calculating the sonorant energy contour and In the auto-segmentation. The resultant 
contour Is an excellent estimate of the fundamental frequency of the speech waveform, but It does not 
form a descriptor of utterance Intonation alone as microprosodic variations are also present. A process 
of piece-wise linear stylisation of the contour aims to eliminate such variations. 

The algorithm used to perform the stylisation Is based on the technique described by (Scheffers, 1988) 
and incorporates the robust least median of squared residuals regression (LMedR) (Rousseeuw & Leroy, 
1987). The FO values describing the contour (excluding values which equal zero to represent unvoiced 
speech) are converted to the semitone scale using the relationship FO,r,tjtone - 12log2(F0/55). 
Significant turning-points in the FO contour are located, these points are modified to prevent contour 
discontinuities other than at the boundaries between unvoiced and voiced speech, and a new contour is 
generated by Interpolating between them. 

The following process Is used to identify the turning-points. Starting with the first voiced frame, LMedR 
analysis Is applied to a window of w frames corresponding to voiced speech, where w is initially set to 5. 
The final frame in this window Is taken to be a turning-point candidate. The FO value of the subsequent 
frame is predicted using the coefficients of the LMedR analysis. If the absolute difference between 
the actual and predicted FO values is less than or equal to some level of permitted variation in FO (1 
semitone), then the candidate is not a turning-point, the window length w is incremented to include the 
next voiced frame, and the above process is repeated. The repetition of this process terminates when 
the turning-point candidate is the final voiced frame in the FO contour. Otherwise, when the absolute 
difference is greater than the permitted FO variation, either this subsequent FO value constitutes some 
type of irregularity In the FO contour or the candidate could be a true turning-point. To determine which 
Is the case, the FO value of the next voiced frame is also predicted. If the absolute difference between 
the predicted and actual values is once again greater than the permitted FO variation, and this situation 
arises for all following frames up to either the final voiced frame in the contour or such that the duration 
of this discontinuity is greater than some minimum permitted level (1 OOms), which ever occurs first, then 
the candidate is said to be a true turning-point. Otherwise, the length of the window w is increased 
to Include the first frame for which the absolute difference in actual and predicted FO values was less 
then or equal to the permitted variation, but not those for which it was greater, and the LMedR analysis 
process is repeated. If the candidate was found to be a turning-point and if It corresponds to a voiced 
frame immediately preceding a frame of unvoiced speech, then the first frame of the next voiced region 
is also designated as a turning point. This process is then repeated with the length of the window w 
reset to 5 and the first frame of the window Is set to the frame of the most recent turning-point found. 
The first and final voiced frames of the non-stylised contour are also assigned as turning-points. 

In order to ensure that discontinuities in the stylised FO contour only occur at unvoiced sections of 
speech, the fundamental frequency at each turning-point of the new contour is determined in a way 
which depends upon the voicing state of the frames adjacent to it. For any given turning-point (tp) at 
frame fiT, with original fundamental frequency FO,, the LMedR coefficients s (slope) and f, (intercept) 
of the windowed points preceding the turning-point are known. The modified fundamental frequency 
FO, is given as, 

+L, + 	+ t +1) if frames f-1 & f+1 voiced 
Stp+i.ftp + ttp+i 	 if frame ftr 	unvoiced & frame f,+1 voiced 	q tP 	 + itr 	 It frame ftr  voiced & frame ftr  unvoiced 
Fotr 	 if frames ftr 	&f+1 unvoiced 

The new stylised contour is then created by linear interpolation of FO between each turning-point 
F0) and by reseting each frame that is unvoiced in the non-stylised contour to an unvoiced state In 
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the new one. The resultant data Is then coverted back to a Hertz scale. An example of this piece-wise 
stylisation Is shown in figure 1(d). 

The FO contours produced for the database of 453 utterances have been stylised using this method. 
Cepstral resynthesis of the speech from both the original FO and the piece-wise FO have been compared 
by ear. Of these, I felt that 405 (89.40/6) contain no perceptual difference in prosodic content. 

IV. PROSODIC ABSTRACTION 

The piece-wise FO contour will, for some utterances, contain small units which are erroneous, le. do not 
correspond to part of pitch movements. Only those piece-wise units which, at some time, run through 
any part of a syllable nuclear phone (where FO estimation Is expected to be reliable) are treated as being 
part of a pitch movement. Moreover, the absolute FO range of a piece-wise unit is not of interest as it will 
vary from speaker to speaker, but its extent relative to other units in the utterance is. The relative extent 
of each piece-wise unit is calculated by first locating a regression line which best fits the contour turning 
points using LMedR analysis. A by-product of the LMedR is the standard deviation, cr1 MedR of the points 
from the resultant linear model. The absolute FO at each turning point is then converted by subtracting 
Its modelled value and dividing by the standard deviation, 0 i Med K This effectively compensates for 
any long term declinative tendency that may be exhibited in the fundamental frequency contour, and 
expresses the FO values relative to an utterance dependent datum. 

Once the relative extent of each piece-wise unit has been established, they are combined to form 
pitch movement descriptors. The pitch movements facilitated are level, fall, rise, fall-rise and rise-fall 
(—, \, /, V, A), as given by the "British School" of intonational phonology (Crystal, 1969). Each piece-
wise unit crossing any part of a syllable nuclear phone is classified as either level, fall, or rise. Let Foct0rt  
be the relative FO height at the start of the piece-wise unit and that at the end of the unit be FOd. The 
piece-wise unit is classified on the following basis, 

( \ if FOStart — FOend  > 0.7591  Medk 

	

pitch movement - 	/ If F0.start  F0efld <0.75g1 MedIc 	 (2) 
— otherwise 

When more than one piece-wise unit crosses any particular nucleus, they are combined by initially taking 
all adjacent units with the same pitch movement classification and joining them into one. A join is made by 
setting 	to that of the first unit, FO 	to that of the second unit, and reclassifying using equation 2. 
In the database of 453 utterances, consisting of 7299 syllables, there were only 4 syllables for which 
more than two units remained after this process. These all contained some error which originated in the 
FO estimation and are ignored. If there are two remaining units (their classifications must differ), and if 
either is classified as level {—), then they too are joined in the same way. Otherwise, one is a fall (\) 
and the other is a rise (/). These are combined to give a single movement classified as either a fall-rise 
(v) or rise-fall (A) depending on their order, and the relative level at their mid point is kept. Thus, for the 
fall-rise and rise-fall classifications, the extent of both the onset and coda of the movement are known. 

Having established the shape of the pitch movement of each syllable in this way, and with knowledge 
of the Z-score normalised syllable nucleus duration and intensity measures, we determine if any given 
syllable is prominent in the utterance (sententially stressed (s)) and if it is pitch salient (accented (a)). A 
syllable is marked as prominent if both its normalised duration and its normalised energy are greater than 
that of both its nearest neighbours, and if both are greater than 0.75 standard deviations from the mean 
value. (The value 0.75 is arbitrary.) It is similarly marked if either the normalised duration or normalised 
energy is the maximum for the utterances. A syllable is marked as accented using a decision filter three 
pitch movements wide (Hieronymus, 1989). 

An example of such prominence detection is illustrated at the top of figure 1(d). The database of 453 
utterances has been automatically prosodically marked in this way and compared with those transcribed 
by hand (see table 2). The transcriptions are equal for 61.6% of the syllables. Of the unstressed 
(u} hand labels marked as either accented or stressed automatically, 216 were syllables with a schwa 
nucleus. This indicates that the hand transcriber may be marking syllables as sententially stressed only 
if they can be lexically stressed. There is also a noticeably large number of syllables labelled by hand as 
accented or stressed that are marked as automatically as unstressed, indicating that the hand labeller 
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Table 2: Contusion Matrix of Prosodic Transcription by Hand and by Automation 

Automatic Label 
a s 	 it total 
566(7.8%) 177(2.4%) 	1075(14.7%) 1818(24.9%) 

Hand Label 	s 	128(1.8%) 71(1.0%) 	792(10.9%) 991(13.6%) 
404 (5.5%) 226(3.1%) 	3860 (52.9%) 4490(61.5%) 

Correct classification rate =449717299(61.6%) 

may be using acoustic parameters other than those described previously In this paper. For example, 
syllables whose nucleus Is "fully articulated" are often marked as stressed by hand. Such measures are 
currently unavailable to the automatic prosodic transcription algorithm. 

V. CONCLUSION 

An algorithm to group phones into syllables which can consist of only one prominence has be described. 
This forms a domain in which to transcribe prosodic events. The domain correlates closely with a 
phonologically based syllabification. The piece-wise stylisation of a fundamental frequency contour to 
eliminate micro-prosodic variations in FO has been further abstracted to form pitch movements for each 
syllable. The extend of these movements are known relative to other pitch movements in the utterance. 
The prominence of each syllable has been determined from these parameters and compared with a 
hand-labelled prosodic transcription. Although the correlation between labels (61.60/6) Is lower than 
one would hope, the reason for this may not be because the algorithm performs "poorly" but because 
It appears that the hand labels transcribe aspects of speech that are not apparent In the waveform 
acoustics used. 
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ABSTRACT 

A comparative evaluation of several pitch determination 
algorithms (PDAs) is presented. Fundamental frequency 
estimate,, F0, are compared with laryngeal frequency es-
timates, Lx. An algorithm is presented which enables 
Lx contours to be generated from laryngograph data. We 
seek the most accurate method of FO extraction in order 
to minimise errors propagating into subsequent prosodic 
analysis. The super resolution pitch determinator [3] per-
forms well relative to the other PDAs studied. Modifica-
tions made to this algorithm are described, which radically 
reduce the number of gross FO errors and improve the cia,-
sification of voiced and unvoiced sections of speech. The 
raw P0 contours produced by this enhanced algorithm are 
processed to form schematised contours used in computer 
aided intonation teaching. The series of processes used in 
the schematisatior, is described. 

Keywords: Pitch tracking, Intonation, Language teach-
ing 

1 INTRODUCTION 

The fundamental frequency of speech plays an important 
role in the prosodic features of stress, rhythm, and intona-
tion. The understanding and appropriate use of prosody is 
an important component of foreign language learning, for 
both comprehension and intelligibility. Computer aided 
teaching of intonation therefore requires the determina-
tion of F0 as an initial process in the automated assess-
ment of the speech of a non-native student. Determining 
F0 is not a simple task, and many approaches have been 
reported [2]. The selection of PDAs investigated here cov-
ers a range of techniques which use both time domain and 
frequency domain representations of speech. An evalua-
tion of the algorithms, based on the use of laryngograph 
data, is described in Section 2. A method of forming a 
'reference' contour from laryngograph data is presented. 
FO contours generated by each PDA are compared with 
the 'reference' Lx contours. The evaluation shows that the 
super resolution pitch determinator has the potential to 
form accurate FO contours from low-pass filtered speech. 
Errors occurring during F0 extraction must be minimised 
to prevent them from propagating into the prosodic analy- 

sis. Enhancements described in Section 3 are made to this 
algorithm in order to minimise FO errors. The FO contour 
produced by a PDA is, however, not manipulated solely 
by linguistic and paralinguistic effects. An FO contour is 
also affected by segmental content, micro-perturbations, 
the speaker's anatomy and physiology, and errors involved 
in its determination from the speech waveform. Such FO 
variations need to be removed in order to facilitate the 
comparison ofastudent's intonation with that of a native 
speaker. This is performed by a series of post-processes 
which schematises a raw FO contour and is described in 
Section 4. 

2 EVALUATION OF PITCH 
DETERMINATION ALGORITHMS 

Seven PDAs are investigated. Their selection was influ-
enced by availability, by ease of implementation, and by 
the desire to examine methods of F0 extraction which use 
radically different techniques. 

Cepstrum pitch determination (CPD) [4]. 
Feature-based pitch tracker (FBPT) [6]. 
Harmonic product spectrum (liPS) [11] [5]. 
Integrated pitch tracking algorithm (IPTA) [12]. 
Parallel processing method (PP) [1]. 
Super resolution pitch determinator (SRPD) [3]. 

s 	Enhanced version of SRPD (eSRPD). 

The functionality of all of the algorithms is dependent 
upon certain thresholds and pre-determined parameters, 
some of which are common across algorithms. In order 
to set a degree of similarity between the PDAs, all are 
required to present a computed FO value at 6.4ms inter-
vals. The values are limited to the ranges of 50Hz-250Hz 
for male speakers and 120Hz-400Rz for female speakers. 
In cases where a fixed-length analysis frame is required 
by an algorithm, the frame duration is set to 38.4ms. 
This duration enables at least two signal periods to re-
side within the frame for all FO values greater than 52Hz, 
and allows sufficient data for cepstral and spectral analy-
sis techniques. The speech data is sampled at 20kHz using 
a 16-bit analogue-to-digital converter. Some of the PDAs 
require a low-pass filtered version of this data, which is 
produced by an FIR filter with a -3dB cut-off at 60011z 
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and rejection greater than -85dB above 70011z. 

2.1 A Laryngeal Fequency Tracker 

The reference' contours are created from laryngograph 
data recorded simultaneously with speech by using a sim-
ple pulse' (Fig. 1) location algorithm and deriving the 
duration between successive pulses. 

So.s- 

........

OF  

...... 

Fig. 1: Laryngograph 'Pulse' 

The pulse start time 	is the first sample for which 
the amplitude is less than zero and less than or equal to 
the amplitude of following samples. The pulse stop time 
t,,,,, is the last sample for which the amplitude is less than 
zero and less than or equal to the amplitude of preceding 
samples. The pulse width tioidth is defined as the differ- 
ence between 	and t,,,. The pulse peak amplitude 
ap_k  is the maximum amplitude of samples between t,,,,1  
and t,,,,, (always greater than zero.) The pulse instant 

is defined as the time of the first of these samples 
with an amplitude 	For laryngograph data sampled 
at 20kHz, a pulse at t,.,., is classed as a marker of the 
glottal closure instant if the pulse width 	is greater 
than four samples and the pulse peak amplitude 	is 
greater than some arbitrary threshold value. The dura- 
tion between one pulse instant t,,,,, and the next 	is 
calculated and converted to Hertz. If the value lies within 
a limited range, it is taken to represent the laryngeal fre-
quency at the time (t,,,, + t;)/2; otherwise, the du-
ration between the pulses is considered to correspond to 
an unvoiced region of speech. The Lx limits are >50Hz 
for male speakers, and >120Hz for female speakers. There 
must be at least three laryngograph pulses in each voiced 
section. This final restriction is imposed to remove the few 
errors when a 'pulse' in the laryngograph data is formed 
by events other than glottal activity. 

The accuracy with which Lx can be determined by this 
method is limited by the time quantisation in sampling 
the laryngograph signal. Each value of Lx has an error of 
F./(F,2 /Lx' -1) Hz, where F, is the sampling frequency. 

2.2 Comparative Evaluation 

A database containing approximately 5 minutes of speech 
was used for the evaluation. It was formed from sentences 
read by one male and one female, and was biased towards 
utterances containing voiced fricatives, nasals, liquids and 
glides, since PDAs generally find these difficult to analyse. 
The quantisation error in determining Lx has a mean of 
0.8011z and population standard deviation of 0.34Hz for 

the male speaker, and a mean of 3.3311z and standard 
deviation of 0.8611z for the female speaker. This error 
cannot be compensated for and affects the evaluation re-
sults for the various PDAs shown in Table 1. Durations of 
unvoiced or silent regions incorrectly classified as voiced 
by a PDA, and durations of voiced sections erroneously 
classified as unvoiced, are accumulated over all the utter-
ances in the database for each speaker, and expressed as 
a percentage of the total duration of unvoiced (or silent) 
speech and voiced speech respectively. The total number 
of comparisons for which the difference between FO and 
the reference Lx is higher or lower than 20% of Lx (gross 
errors) are expressed as a percentage of the total num-
ber of comparisons for which FO and Lx represent voiced 
speech. The population standard deviation (p.s.d.) and 
the mean, absolute deviation of the Lx and FO contours 
are given for when both represent voiced speech, and the 
FDA has not made a gross error. 

Us,opced Voiced Cr... error. A4..I.Ic 
FDA as err., s.rr.r M.h Low d..,.1i.s 

1&.  
CPD 

18-11 
19.89 4.09 0.64 2.94 3.60 

FBPT 3.73 13.90 1.27 0.64 1.85 2.99 
SOPS 14.11 7.07 5.34 23.15 3.25 3.21 
[PTA 9.7517.40 1.40 0.83 2.67 3.37 
PP 7.59 16.82 0.22 1.74 2.64 3.01 
SRPD 4.05 18.78 0.62 2.01 1.78 2.46 
'SRPD1 4.63 12.07 0.90 0.56 1.40 1.74 

CPD 2 0.61 3.97 6.39 7.61 
FBPF 16 060 3.55 5.40 7.03 
SOPS 6 

0 
 .4 6 1.61 4.59 6.31 

IPTA 

SnPD[:::L9..133 

3 0.53 3.12 4.38 5.38 
PP 1 0.26 3.20 6.11 6.45 
SRPD 6 0.39 5.56 4.14 6.51 

0.43 0.23 4.17 5.13 

Table 1: PDA evaluation for male speech (top) and female 
speech (bottom) 

Any PDA producing an F0 contour suitable for intona-
tion 

ntona
tion analysis must perform consistently between male and 
female speech. The resultant contour must accurately de-
termine voicing so that pitch accents are not left unde-
tected and gross F0 errors must be minimal for subse-
quent processing. CPD and BPS are therefore unsuit-
able algorithms for the task in hand. Of those remaining, 
FBPT and SRPD form the best voiced/unvoiced classifi-
cations. SRPD would be the most suitable algorithm if 
the voiced/unvoiced classification performance could be 
improved and the number of gross (F0 too low) errors 
reduced. 

3 ENHANCED SUPER RESOLUTION 
PITCH DETERMINATOR (eSRPD) 

The speech is initially low-pass filtered. Frames of data for 
which an F0 estimate is required at the time of sample s(1) 
are divided into three consecutive segments of n samples, 

x,, 

Y. = {y(i)=s(i)Ii=iton) 	(1) 
{z(i) = s(i + n) I = ito n} 

Frames at the beginning of an utterance, for which x5  is 
not fully defined, are classified as 'silent'; likewise frames 
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at the end of an utterance, for which y,, and z are not 
fully defined. 

The value of n is optimised so that each segment occupies 
a fundamental period. The optimisation selects a value of 
n within a limited range, N_ i,, to N,,,,, samples, which is 
directly related to the expected range of FO values for a 
given speaker. The minimum and maximum values of the 
sample sets ZN,,,•, and yj,_,, are determined. If the sum 
of these (absolute) values is less than some preset thresh-
old for either set, then the frame is classified as 'silent'. 
Otherwise, the coefficient p,,,,(n) is determined for the val-
ues of n within the limited range in steps of a decimation 
factor L (L = 4 in this investigation). 

1/LJ 
x(jL).y(jL) 

= 	j=1 	
(2) 

j/LJ 	 In/U 

E z(jL)2.  E y(1L)2 
1=1 	 j=1 

where {n = 	+ i.L jj= 0,1,... ;N,,.,n  < fl < N,,,..) 

p.,,(n) is invalid if the number of zero-crossings in r,, +y,, 
is less than 4. The locations of local maxima in 
with values above an adaptive threshold (as described by 
Medan et al. [3]) form candidates for the optimum value 
of n. If no candidates for the fundamental period are 
found, the frame is classified as 'unvoiced'. Otherwise, the 
frame consists of 'voiced' speech, and a second coefficient, 
p,,(n) is determined for all the fundamental period can-
didates. Those candidates for which p,,,(n) also exceeds 
the threshold value are given a score of 2, while the oth-
ers are given a score of only 1. Candidates with a higher 
score are more likely to represent the true fundamental 
period. If there are one or more candidates with a score 
of 2, then all those with a score of only 1 are removed from 
the list of candidates and ignored. Following this, if there 
is only one candidate (with a score of either 1 or 2,) the 
candidate is assumed to be the best estimate of the funda-
mental period for that frame. Otherwise, the candidates 
are listed in order of increasing fundamental period. The 
candidate at the end of this list is selected to represent 
a fundamental period of nu, and the m'th candidate a 
period n,,,. Another coefficient, g(n,), is calculated for 
each candidate, where q(n-) is the correlation coefficient 
between two segments of length nm spaced n,,, apart. 

> 	a(j - M).1( i + 

q(n-) = 	 (3) 

E'(1 - flM)2.E8(J + 
j=1 	 j=I 

The first coefficient q(n 1 ) is then assumed to be the ideal. 
If a subsequent q(n—) exceeds this ideal when multiplied 
by 0.77 (arbitrary) then it is in turn assumed to be the 
new ideal. The candidate for which the value of g(n—) is 
believed to be ideal is taken as the best estimate for the 
fundamental period of the frame being analysed. 

In the case when there is only one fundamental period can-
didate with a score of 1 and no candidates with a score 
of 2, there is only a small probability that the candidate 
correctly represents the true fundamental period of the 
frame. If, in such cases, the previous frame was classified 
as either 'silent' or 'unvoiced', then the FO value describ-
ing the current, 'voiced' frame is held until the state of 
the subsequent frame is known. If this next frame is also 
not classified as 'voiced', then the frame whose FO value 
is on hold is an isolated frame which is highly unlikely to 
be voiced. It is therefore re-classified as 'unvoiced'. Oth-
erwise, the held FO value is assumed to be a sufficiently 
good FO estimate for that frame. 

Biasing is applied to the coefficients p,,,(n) and p,. (n) for 
values of n where the fundamental period of a new frame is 
expected to lie, if the two previously analysed frames were 
classified as 'voiced,' if the FO value of the previous frame 
is not being temporarily held, and if the fundamental fre-
quency of the previous frame f` is less than 7  times the 
fundamental frequency of its preceding voiced frame j_2, 

and greater than f"2 , ie. if it is highly probable that 
the fundamental period estimate of the previous frame is 
not erroneous. The fundamental period of the new frame 
n' is expected to lie within the range of n closest to n' 
for which the set of p.,,(n) from the previous frame are 
greater than zero (Fig. 2). The coefficients p.,,(n) and 
p,,,(n) are doubled for values of n in this range. This ef-
fectively applies a bias on the location of a maxima in the 
region of the fundamental period for the previous frame to 
form a candidate for the fundamental period of the current 
frame. Note, however, that the voiced/unvoiced decision 
is based on the presence or absence of local maxima in 
p.,(n) which exceed the adaptive threshold. The biasing 
will therefore tend to increase the percentage of unvoiced 
regions being incorrectly classified as 'voiced'. In order 
to minimise this undesirable side effect, if the unbiased 
coefficient p,,(n) does not exceed the threshold for the 
candidate believed to the best estimate of the frame fun-
damental period, then the FO value for that frame is held 
until the state of the subsequent frame is known. If this 
next frame is classified as 'silent' or 'unvoiced', the former 
frame is re-classified as 'unvoiced'. 

J/r j f
rk jr\J[  

Fig. 2: Ezavnpk Set of p.,,(n) from Prev,oss Frame 

The remainder of the processing to refine the accuracy of 
the FO estimate is as described by Medan et al. [3]. The 
results shown in Table I for the enhanced SRPD algorithm 
(eSRPD) demonstrate the effects of these modifications on 
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the performance of the algorithm. 

4 POST-PROCESSING OF FO 

The number of short sections of gross F0 errors that occur 
during FO extraction are reduced by applying a non-linear 
smoother [7] spanning 17 frames (with a 6.4ms interval 
between frames). Linear smoothing, using a hanning win-
dow, is also applied to remove small perturbations in the 
contour, and reduce the effect of any remaining quanti. 
sation errors. A window of length 1 takes l consecutive 
values and weights the n'th value by a factor h(n). The 
output of the linear smoother is the sum of the weighted 
values. 

for l<n<1 	(4) 

A smoothed F0 contour may exhibit an overall downward 
trend in F0 during the course of an utterance. Such decli-
nation may result in two accents which have the same per-
ceived pitch having different FO values. Compensation for 
this effect is attempted by initially applying least median 
of squares regression [10] to all the local maxima and to 
all the local minima in the FO contour. An average line is 
taken between the two resultant linear models and used as 
an estimate of the declination. Declination-compensation 
is only applied if this average line has a negative slope. 
The mean and the population standard deviation of the 
pre-declination-compensated F0 contour are retained by 
using frequency shifting and scaling. 

Z-score normalisation [9] is applied to the declination-
compensated contour to enable different FO values from 
different speakers to correspond to the same phonological 
pitch. An observed FO value is expressed as a multiple 
of a measure of dispersion relative to the mean F0. The 
normalised F0 value is given by, 

F0,,,, = 
	- FO 

01 
(5) 

where F is the long-term mean F0 for a given speaker, 
and a is the long-term population standard deviation. 

Short breaks in continuity of the normalised contour are 
filled by linear interpolation. Breaks are only filled if they 
have a duration of less than 80ms and if the jump in 
FO,,,,m  across the break is less than c/2. The contour 
is then smoothed again through a banning window span-
ning 17 frames. 

This series of processes forms a schematised F0 contour 
which is used in intonation analysis for foreign language 
teaching [8]. 

pitch determination algorithms. The evaluation shows the 
enhanced super resolution pitch determinator (eSRPD) to 
offer improved performance relative to the other PDAs re-
ported in this study, with less than 1.5% gross F0 errors 
and less than 16.7% of speech classified as voiced or un-
voiced incorrectly. The new eSRPD algorithm has been 
shown to perform well independently of a speaker's sex 
and is unlikely to leave pitch accents undetected. This 
PDA is therefore the most suitable of those investigated 
for applications in computer aided intonation teaching 
where a raw FO contour is smoothed, compensated for 
the declination of FO over an utterance, normalised for 
speaker differences in long-term FO level and range, in-
terpolated over small gaps, and smoothed again, to form 
a schematised FO contour. The schematised contour is 
used as one of the main inputs to an automatic system for 
intonation teaching. 
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Abstract. An algorithm is described which abstracts acoustic parameters of a speech waveform to automatically transcribe 
sentential stress and pitch movements. The waveform acoustics used are duration, energy and fundamental frequency. The 
abstractions described aim to isolate the prosodically imposed variations in these parameters. A method of syllabification 
from acoustic parameters is presented. The prominence of each syllable is determined using the automatic process described 
and the resultant transcription is compared with a hand-labelled prosodic transcription. The agreement level of 61.6% 
suggests that acoustic parameters other than those already used by the algorithm may be available to the human labeller. 

Zuaammenfassung. Es wird ein Algorithmus beachneben, der die akustiachen Parameter aus eincm Sprachsignal her-
ausknstallisicrt, urn autosnatiscb die Bewegungen der Satz- und Wortbetonung zu umachreiben. Die verwendeten, akusti-
schen Parameter sind die Zeit, die Energie and die Orundfrequcnz. Die beachnebenen Ableitungen dienen zur Isoherung 
der dutch die Betonung eszwungenen Variationen dieser Parameter. Es wird eine Merhode der Sllbenbildung anhand der 
akustiachen Parameter beschricben. Die Prosninenz jeder Silbe wird anband des beschriebcnen, automatiachen Verfahrcns 
bestimmt und die sich daraus crgcbende Umschreibung wird mit einer handgeschriebenen Umschreibung der Bclonung 
verglichcn. Die Ubereinstimrnung von 61,6% lAsat vermuten, dais zur menachliche Umschrcibung andere akustische 
Parameter verwendet werden ala die an Algorithnius verwendctcn. 

Résumé. On décrit on algonthmc qui transforme des paramitrcs acoustiques du signal de parole en éléments abstraits 
permettant de transcrire automatiquement l' accent de phrase ci lea mouvesnents intonatifa. Lea paramètres acoustiques 
utilizes scot Is durée, rénergie ci Is fréquence fondamentale. Lea traits abstraits qui en Scat dérivéa visent I isoler, an scm 
de ces paramItres, lea variations prosodiquement imposécs. On présentc une mCthodc de syllabification è partir des 
paramètres atx,ustiques. La prominence de cheque syllabe eat dCterminéc de facon automatique ci Is transcription 
résultante eat comparCe I une transcription manuclle. Le saux dc concordance de 61.6% suggère que l'Ctiqueteur humain 
utilise probablement d'autres paramèlres quc ceux pris en cosupte par l'algorithsne. 

Keywords. Prosodic labelling; syllabification; stress; pitch movements. 

I. Introduction 

We wish to automatically label prosodic events 
in English speech. Prosodic events annotated by 
phoneticians vary considerably from labeller to 
labeller and may be annotated inconsistently 
within any labeller's transcription. Pickering et al. 
(in press) show that two transcribers select the 
same prosodic label (level, fall, rise, fail—rise, 
rise—fall, stressed but unaccented or unstressed)  

for 72% of syllables. This paper presents a method 
of automatically transcribing prosodic events with 
the relative stress of any syllable and the relative 
height of pitch movements being described in 
scalar terms rather than as discrete levels. The 
method involves a series of abstractions of acous-
tic parameters, which aim to isolate the prosodic 
variations in duration, energy and fundamental 
frequency from the microprosodic variations. 

Phones are grouped into syllable sized units 

0167-6393/93/$0600 C 1993 - Elsevier Science Publishers B.V. All rights reserved 
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which are assumed to only ever be perceived as a 
single prominent unit in continuous speech. 
Prosodic events are transcribed in terms of these 
units. The method used to produce the phone 
groups is described in Section 2. The prosodic 
content of each phone group is described by 
giving it a measure of its relative stress in the 
utterance and, if the group is accented, the type 
of pitch movement (level, fall, rise, fall—rise or 
rise—fall) and the relative height of the move-
ment. In deducing the relative stress, the acoustic 
parameters, duration, energy and fundamental 
frequency (F0), are abstracted to isolate prosodic 
variations. The formation of a piece-wise F0  con-
tour to remove microprosodic variations is de-
scribed in Section 3. The piece-wise sections 
crossing each syllable are abstracted into one of 
five types of pitch movement. Each syllable is 
then labelled as either prominent (sententially 
stressed) or not prominent (sententially un-
stressed), and if it is found to be prominent and 
pitch salient, it is labelled as accented (Section 4). 
These labels are compared with those transcribed 
by hand. 

2. Syllabification from acoustic parameters 

The algorithm described below is used to group 
phones into syllable sized units using the phone 
boundary and label information given by an auto-
matic segmentation system, and a sonorant en-
ergy contour. The segmentation data gives  the 
location of phones and classifies those phones 
which are potential syllable nuclei (vowels and 
syllabic consonants). The sonorant energy con-
tour of the utterance is used to determine their 
grouping. The syllabification of speech from 
acoustic parameters groups phones according to 
the manner in which the speaker formed the 
utterance rather than that dictated by a set of 
abstract phonological rules. 

21. Syllabification algorithm 

The energy contour for a speech waveform 
(sampled at 20 kHz) is calculated from 20 ma 
frames at 5 ms intervals so that values are syn-
chronised with the cepstral coefficients and lower  

three formant frequencies used in the auto-seg-
mentation process. Each frame is passed through 
a Blackman—Harris window (Harris, 1978) and 
the frequency bins of an amplitude spectrum 
(512-point FF1) corresponding to the range 
50 Hz-2 kHz are accumulated. These energy 
values are expressed in decibels with respect to 
the maximum frame energy in the utterance to 
form an utterance-normalised sonorant energy 
contour. The contour is processed by a three-
frame median filter and five-frame Hanning win-
dow smoother (Rabiner et al., 1975) in order to 
remove small perturbations which arise during 
frames of speech with low fundamental frequency 
(typically less than two pitch periods per analysis 
frame). 

All minima in the energy contour are located 
and form candidates for syllable boundaries. The 
areas of silence identified by the auto-segmenta-
tion are respected and the minima within such 
areas are believed to be due to variations in 
background noise. Each boundary between a si-
lence and a phone label is taken as either the 
beginning or the end of a syllable. The nearest 
candidate (energy minimum) to such a boundary 
is therefore moved to align with the boundary, 
and all those residing within the area of silence 
are disregarded. The regions between all the re-
maining energy minima are taken to be potential 
syllables, with a start time given by the location of 
the nearest minimum on the left-hand side, and 
the location of the nearest minimum on the 
right-hand side giving the stop time. We then 
determine whether or not the location of each of 
these potential syllables overlaps more than 50% 
of any auto-segmented vowel. If a potential sylla-
ble overlaps more than one vowel segment in this 
way, then the vowel segment with the maximum 
sonorant energy is taken to be the nucleus of the 
syllable. If no such overlap occurs, then we deter-
mine whether or not the location of the potential 
syllable overlaps more than 50% of one of the 
possible syllabic consonant segments/I, in, n/ 
(/r/ is included for American English). Again, if 
the potential syllable overlaps more than one of 
these, the one with the maximum sonorant energy 
is selected as the syllabic nucleus. If there is 
insufficient overlap, the region between the min-
ima does not correspond to a syllable unit and 
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either the left-hand side or the right-hand side 
minimum is disregarded as a syllable boundary 
candidate - whichever has the highest energy and 
does not correspond to a phone/ silence bound-
ary. The newly formed region is then taken to be 
a potential syllable and the process is repeated. 
The resultant syllabification has boundaries lo-
cated at positions of minimum sonorant energy in 
the utterance. These boundaries may be aligned 
with the auto-segmentation by moving each sylla-
ble boundary to the nearest phone boundary. 

An example of the syllabification produced 
using this method is shown in Figure 1 for the 
word "International", in the phrase "... at the 
Kyoto international Conference Centre". The 
upper part shows the speech waveform and its 
corresponding phonemic transcription (obtained 
by auto-segmentation) using MRPA labels (a 
machine-readable phonemic alphabet). Phone 
boundaries are shown by dotted lines and the 
continuous lines show the syllable boundaries de- 

rived on a phonological basis. The lower part 
gives the utterance-normalised sonorant energy 
contour and transcription-aligned syllable bound-
aries derived using the algorithm described above. 
The phonologically based syllabification gives five 
syllables, /m—ta'.--n1e—j6—n3l/, but the acousti-
cally based syllabification gives only four sylla-
bles, /In—ta'—iueS—anal/. The final syllable, /-
3n2l/, may initially appear to illustrate an error 
in the syllabification algorithm (that of a missing 
syllable boundary). However, the sonorant energy 
contour shows only one peak of intensity in this 
section of speech, and it is transcribed by a pho-
netician as /—nal/. There is an error in the 
automatic segmentation of the speech, but not in 
its subsequent syllabification. 

22 Evaluation procedure 

A database of 453 utterances from the English 
language ATR conference-registration dialogues 

0 

Fig. 1. Syflabificatiogi of "Inlemationaf'. 
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(see (Campbell, 1992) for a brief description of 
this material) has been syllabified using the above 
algorithm and by hand using a phonologically 
based syllabification (Bagshaw and Williams, 
1992). 

In order to compare the human and machine 
syllabifications, it is necessary to define when 
they are regarded as "sufficiently similar" and 
when they are not. At the most stringent level of 
comparison, a syllable located automatically is 
regarded as correct only if its boundaries (both at 
the beginning and the end of the syllable) match 
exactly with those defined on a phonological ba-
sis. This method of comparison is unrepresenta- 
tive of the algorithm's performance as just one 
miss-matched boundary would correspond to two 
miss-matched syllables. Furthermore, the bound- 
aries between syllables vary even between phono-
logical definitions - only, the syllable nuclei are 
well defined. Therefore, the following procedure 
is used to evaluate the automatic syllabification 
algorithm. 

Initially assume that all of the syllables located 
automatically are extra syllables - i.e., that each 
auto-syllable is not the single match of a phono-
logically defined syllable. Also assume that all of 
the phonologically  defined syllables are missing'  
in the automatic syllabification - i.e., that each 
hand-syllable is not matched by any syllables lo- 
cated automatically. The phonetic transcription 
of every syllable is known. By definition, there 
will be at least one vowel and/or syllabic conso- 
nant in each syllable (defined either automati- 
cally or on a phonological basis). However, the 
phonetic units which form each syllable nucleus 
are not stipulated. The comparison proceeds by 
considering each hand-syllable in turn. Locate 
the first vowel or syllabic consonant in the hand-
syllable. Then consider each auto-syllable from 
the beginning of the utterance to determine 

whether or not it overlaps with the potential 
nucleus. If the auto-syllable does overlap and if it 
has previously been assumed to be an extra sylla-
ble, then mark it as not being an extra syllable, 
mark the hand-syllable as not missing, and con-
sider the next hand-syllable in the utterance. 
Otherwise, repeat the search for a matching 
auto-syllable using another potential nucleus in 
the hand-syllable until all possible nuclei have 
been considered. 

There is a large level of agreement between 
the two resultant syllabic domains (see Table 1). 
The missing syllable boundaries are due to the 
occurrences of vowel/vowel boundaries between 
which there is no valley in the sonorant energy. 
When this case arises, often one of the vowels is a 
schwa; for example, the phonological syllabifica-
tion of "my address" as /m ai-—d r a 5/ can be 
grouped on an acoustic basis as /in at 3—d r a s/. 
Conversely, extra syllable boundaries occur when 
the sonorant energy dips within the phonologi-
cally based syllable at a vowel/vowel boundary or 
vowel/syllabic consonant boundary; for example 
the phones in "tour" /tua'/ can be grouped as 
/to—a-/ on an acoustic basis, and for the word 
"forms" /f3rmz/ phones are grouped as /f3—
rmz/ when its pronunciation tends towards that 
of "forums" with schwa deletion, but a fall in 
energy remaining between /3/ and /m/. 

The above algorithm forms groups of phones 
with a vowel or syllabic consonant as the nucleus 
of each. There are no vowel/vowel pairs or 
vowel/syllabic consonant pairs with dips in sono-
rant energy between them, in any of the groups. 
The boundaries between groups are positioned at 
the point of minimum sonorant energy between 
nuclei (aligned to the nearest phone boundary). It 
is assumed that each such grouping of phones can 
only ever be perceived as a single prominent unit 
in continuous speech. These units have been 

Table I 
Comparison of phonologically based and acoustically based syllabifications 

Total number of syllables 

from a phonological basis 	from the acoustics 

match 	 Musing 	 Extra 

7299(100.0%) 	 7011 (96.1%) 	 6980(95.6%) 	—319(4.4%) 	+31(0.4%) 
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Fig. 2. Example of the abstraction of acoustic features related to prosodic events. 
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shown to correlate closely with syllables defined 
using phonologically based rules. They are, there-
fore, referred to as "syllables." 

2.3. Duration and energy measures 

Duration and sonorant energy measures are 
used in determining the prominence of each syl-
lable. The duration and energy variations are 
mainly attributed to phone type. These parame-
ters are therefore Z-score normalised with re-
spect to the phone type in order to compensate 
for segmental variations (Campbell, 1990). The 
mean duration and energy and their population 
standard deviations are determined for each 
phone type from a training database of 200 utter-
ances which provide almost total coverage of all 
permissible demi-syllables in English (Layer et 
al., 1988). The training database contains speech 
spoken by the same speaker in the ATR database 
of conference-registration dialogues and is pho-
netically transcribed by hand. This data is also 
used to train the Hidden Markov models for the 
automatic segmentation system. The Z-score nor-
malisation of a phone's duration and sonorant 
energy simply involves subtracting the mean value 
and dividing by the population standard deviation 
for that phone type. The maximum phone-nor-
malised duration and the maximum phone-nor-
malised sonorant energy within a syllable are 
used in determining its relative prominence. 
(Campbell (1990) uses a similar normalisation on 
a phone by phone basis.) 

An example of these processes is shown in 
Figure 2. Part (a) shows the speech waveform and 
its corresponding phonemic transcription (ob-
tained by auto-segmentation). Phone boundaries 
are shown by dotted lines and the continuous 
lines show the syllable boundaries derived using 
the syllabification algorithm in Section 2.1. The 
maximum phone-normalised duration and energy 
for each syllable are given in part (b). These will 
be discussed further in Section 4. 

3. The formation of a piece-wise F0  contour 

A fundamental frequency (F0) contour pro-
duced 

ro
duced by a pitch determination algorithm (PDA) 

can be expected to contain values which are inac-
curate, such as instances of pitch octave errors. 
Any FDA will also make erroneous classifications 
of sections of speech as voiced or unvoiced. An 
enhanced version of the FDA described by Medan 
et al. (1991) (which is used in this study) has been 
found to estimate F. with consistently less than 
1% gross pitch errors and less than 16% of speech 
classified as voiced or unvoiced incorrectly, when 
compared with laryngeal frequency estimates, F 
(Bagshaw et al., 1993). In order to eliminate the 
majority of octave errors and reduce micro-per-
turbations, the contour is initially processed by a 
three-frame median filter and three-frame ban-
ning window smoother (Rabiner et al., 1975). The 
frames of speech analysed by the PDA are in 
synchronisation with those used in calculating the 
sonorant energy contour and in the auto-segmen-
tation. The resultant contour is an excellent esti-
mate of the fundamental frequency of the speech 
waveform, but it does not form a descriptor of 
utterance intonation alone as microprosodic vari-
ations are also present. A process of piece-wise 
linear stylisation of the contour aims to eliminate 
such variations. 

The algorithm used to perform the stylisation 
is based on the technique described by Scheffers 
(1988) and incorporates the robust least median 
of squared residuals regression (LMedS) (Rous-
seeuw and Leroy, 1987). The F. values describing 
the contour (excluding values which equal zero to 
represent unvoiced speech) are converted to the 
semitone scale using the relationship 
12 1092(F0 .,,/55). An account is given below 
which describes how "significant" turning-points 
in the F, contour are located, then modified to 
prevent contour discontinuities other than at the 
boundaries between unvoiced and voiced speech, 
and how a new, stylised contour is generated by 
interpolating between the turning-points. 

The following process is used to identify the 
turning-points. Starting with the first voiced 
frame, LMedS analysis is applied to a window of 
w frames corresponding to voiced speech, where 
w is initially set to 5. The final frame in this 
window is taken to be a turning-point candidate. 
The F0  value of the subsequent frame is pre-
dicted using the coefficients of the LMedS analy-
sis, If the absolute difference between the actual 
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and predicted F0  values is less than or equal to 
some Level of permitted variation in F0  (1 semi- 
tone), then the candidate is not a turning-point, 
the window length w is incremented to include 
the next voiced frame, and the above process is 
repeated. The repetition of this process termi- 
nates when the turning-point candidate is the 
final voiced frame in the F0  Contour. Otherwise, 
when the absolute difference is greater than the 
permitted F0  variation, either this subsequent F. 
value constitutes some type of irregularity in the 
F0  contour or the candidate could be a true 
turning-point. To determine which is the case, 
the F0  value of the next voiced frame is also 
predicted. If the absolute difference between the 
predicted and actual values is once again greater 
than the permitted F0  variation, and this situa-
tion arises for all following frames up to either 
the final voiced frame in the contour or such that 
the duration of this discontinuity (including any 
intermediate unvoiced frames) is greater than 
some minimum permitted level (100 ms), which 
ever occurs first, then the candidate is said to be 
a true turning-point. Otherwise, the length of the 
window w is increased to include the first frame 
for which the absolute difference in actual and 
predicted F0  values was less than or equal to the 
permitted variation, but not those for which it 
was greater, and the LMedS analysis process is 
repeated. If the candidate was found to be a 
turning-point and if it corresponds to a voiced 
frame immediately preceding a frame of unvoiced 
speech, then the first frame of the next voiced 
region is also designated as a turning-point. This 
process is then repeated with the length of the 
window w reset to 5 and the first frame of the 
window is set to the frame of the most recent 
turning-point found. The first and final voiced 
frames of the non-stylised contour are also as-
signed as turning-points. 

In order to ensure that discontinuities in the 
stylised F0  contour only occur at unvoiced sec-
tions of speech, the fundamental frequency at 
each turning-point of the new contour is deter-
mined in a way which depends upon the voicing 
state of the frames adjacent to it. However, a 
discontinuity in the stylised contour is allowed 
within a voiced section of speech if the turning-
point is an outlier for either of the piece-wise  

sections it joins. (The detection of outliers is a 
part of the LMedS analysis.) In such situations, 
the turning point is treated as being adjacent to 
an unvoiced frame. For any given turning-point 
(tp) at frame 4, with original fundamental fre-
quency F0 ,, the LMedS coefficicnts s, (slope) 
and i, (intercept) of the windowed points pre-
ceding the turning-point are known. The modi-
fied fundamental frequency F tp  is given as 

0.5(111,4+ SIll  + IPifI,  + 
if frames f4, — 1 and 4, + I are voiced, 

lf frame f,,,-1 is unvoiced and frame f,11 +1 
r01, - 	is voiced, 

3tpltp ttp 
if frame 4,—I is voiced and frame 4, + I 
is unvoiced, 

F011, 

if frames f,-1and f,,,,+l are unvoiced. 

(1) 

The new stylised contour is then created by linear 
interpolation of F0  between each turning-point 
(4,, F,) and by resetting each frame that is 
unvoiced in the non-stylised contour to an un-
voiced state in the new one. The resultant data is 
then coverted back to a Hertz scale. 

An example of this piece-wise stylisation is 
shown in Figure 2(c). The microprosodic varia-
tions in F0  at boundaries of voiced and unvoiced 
segments are eliminated whilst retaining the over-
all melody of the utterance. 

The F0  contours produced for the database of 
453 utterances have been stylised using this 
method. A visual inspection has been made to 
compare the original F0  contours with the piece-
wise F0  contours. The database contains 1818 
syllables transcribed by hand as accented and 
7316 examples of microprosodic perturbations in 
F0  at voiced/unvoiced segment boundaries. The 
piece-wise stylisation erroneously eliminates 356 
of the variations in pitch associated with an ac-
cent syllable as occurrences of short micro-
prosodic perturbations. 610 of the microprosodic 
perturbations observed remain in the F0  contour 
after stylisation. However, only 72 are later con-
fused as being associated with an accented sylla-
ble by the subsequent prosodic abstraction de-
scribed in Section 4. 
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4. Prosodic abstraction 

Each piece-wise section in the stylised F. con-
tour forms a possible pitch movement or part of a 
movement. Some piece-wise sections do not cor-
respond to part of any pitch movement, such as 
those which arc a direct consequence of erro-
neous F0  extraction or stylisation. Thus, only 
those piece-wise sections which, at some time, 
run through any part of a syllable nuclear phone 
(where F0  estimation is expected to be reliable) 
are treated as being part of a pitch movement. 
The piece-wise sections may therefore extend be-
yond the syllable nucleus but only those crossing 
the nucleus, in part or in whole, are selected. 
This approach compromises between using infor-
mation about the movement of F0  through vow-
els alone (which may be limiting for short nuclei), 
and using the F0  contour of an entire syllable 
(where F0  discontinuity errors may occur). 

The absolute F. range in an utterance will 
vary from speaker to speaker and from utterance 
to utterance. F0  piece-wise sections are, there-
fore, normalised for each utterance to give rela-
tive F0  heights. The relative height of each 
piece-wise section is calculated by first locating a 
regression line which best fits the contour turn-
ing-points using LMedS analysis. A by-product of 
the LMedS is the standard deviation, &Lma  of 
the points from the resultant linear model. The 
absolute F0  at each turning-point is then con-
verted by subtracting its modelled value and di-
viding by the standard deviation, aLm.ds. This 
effectively compensates for any long term dec11-
native tendency that may be exhibited in the 
fundamental frequency contour, and expresses 
the F0  values relative to an utterance dependent 
datum. 

Once the relative height of each piece-wise 
section has been established, they are combined 
to form pitch movement descriptors. The pitch 
movement descriptors used are level, fall, rise, 
fall—rise and rise—fall (-,\,/, V. A) (Crystal, 
1969). Each piece-wise section crossing any part 
of a syllable nucleus is classified as either level, 
fall or rise. Let F011., be the relative F0  height at 
the start of the piece-wise section and that at the  

end of the section be F0 . The piece-wise sec-
tion is classified on the following basis: 

pitch movement 

if F0 ,—F01 >0.75u,,, 
-/ 	if F01,.—F0<-0.75 ,, (2) 

1,— otherwise. 

When more than one piece-wise section crosses 
any particular nucleus, they are combined by 
initially taking all adjacent sections with the same 
pitch movement classification and joining them 
into one. A join is made by setting F0 	to that 
of the first section, F0 ,4  to that of the second 
section, and reclassifying using equation (2). In 
the database of 453 utterances, consisting of 7299 
syllables, there were only 4 syllables for which 
more than two sections remained after this pro-
cess. 

ro
cess. These all contained some error which origi-
nated in the F. estimation. If there are two 
remaining sections (their classifications must dif-
fer), and if either is classified as level (-), then 
they too are joined in the same way. Otherwise, 
one is a fall (\) and the other is a rise {/). These 
are combined to give a single movement classified 
as either a fall—rise IV) or rise—fall (A) depend-
ing on their order, and the relative level at their 
mid-point is kept. Thus, for the fall—rise and 
rise—fall classifications, the relative height of both 
the onset and coda of the movement are known. 

Having established the shape of the pitch 
movement over each syllable in this way, and with 
knowledge of the Z-score normalised syllable nu-
cleus duration and energy measures, we deter-
mine if any given syllable is prominent in the 
utterance (sententially stressed (s}) and if it is 
pitch salient (accented (a)). A syllable is labelled 
as prominent if both its normalised duration and 
its normalised energy are greater than that of 
both its nearest neighbours (end-points being in-
herently lower), and if both are greater than 0.75 
standard deviations from the mean value. (The 
value 0.75 is arbitrary.) It is similarly labelled if 
either the normalised duration or normalised en-
ergy measure is the maximum for the utterance. 
A syllable is labelled as accented using a decision 
filter three pitch movements wide developed by 
Hieronymus (1989). This categorisation of the 
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scalar measures of prominence based on duration 
and energy, to a single discrete level (stressed or 
unstressed) is necessary only in order to compare 
the automated annotation with that made by 
hand. 

The database of 453 utterances has been auto-
matically prosodically labelled in this way and 
compared with those transcribed by hand (see 
Table 2). The transcriptions are equal for 61.6% 
of the syllables. Note, however, that the balance 
between syllables being transcribed automatically 
as prominent (accented or otherwise) or as not 
prominent, is dependent upon an arbitrary 
threshold. It is therefore only possible to observe 
general trends from the confusion matrix. Of the 
unstressed (u) hand labels transcribed as either 
accented or stressed automatically, 216 were syl-
lables with a schwa nucleus. This suggests that 
the hand transcriber may be annotating syllables 
as sententially stressed only if they can be lexi-
cally stressed, and that the auto-segmentation 
process may have more confusions in classifying a 
schwa than for some other vowel. There is also a 
noticeably large number of syllables labelled by 
hand as accented or stressed that are labelled 
automatically as unstressed, suggesting that the 
hand labeller may be using acoustic parameters 
other than those described previously in this pa-
per. For example, syllables whose nucleus is "fully 
articulated" are often labelled as stressed by hand. 
Such measures are currently unavailable to the 
automatic prosodic transcription algorithm. These 
errors may also be accounted for by the need to 
refine the Hieronymus decision filter used in 
locating the accented syllables and the need to 
enhance the F0  piece-wise stylisation procedure. 
428 of the confusions between accented and  

non-accented syllables arise because of erroneous 
F0  stylisation. 

S. Conclusions 

An algorithm based on the abstraction of 
acoustic parameters to annotate sentential stress 
and pitch accents has been presented. A method 
of grouping phones into syllables which can con-
sist of only one prominence has been described. 
This forms a domain in which prosodic events are 
transcribed. There is a large level of agreement 
(95.6%) between this domain and a phonologi-
cally based syllabification. The piece-wise stylisa-
tion of a fundamental frequency contour aimed at 
eliminating microprosodic variations has been il-
lustrated. Piece-wise sections of an F0  contour 
are abstracted to describe pitch movements over 
each syllable. The extend of these movements are 
known relative to other pitch movements in the 
utterance and they are used in locating accented 
syllables. The prominence of each syllable has 
been determined using the automatic process de-
scribed and have been compared with a hand-
labelled prosodic transcription. An agreement 
level of 61.6% has been found. This level of 
agreement is lower than one would expect given 
the large body of research which has indicated 
the acoustic correlates of prominence in English 
to be duration, energy and fundamental fre-
quency. it appears that the hand labels transcribe 
aspects of speech that are not apparent in the 
waveform acoustics used. Possible reasons for the 
differences in the hand and automated transcrip-
tions have been discussed. It is an area of on-going 
research to establish what contributes to the er- 

Table 2 
Contusion matrix of prosodic transcription by hand and by automation 

Automatic label 

Total 
s-lana laDel 	 a 	566(7.8%) 177(2.4%) 1075(14.7%) 1818(24.9%) 

a 	128(1.8%) 71(1.0%) 792(10.9%) 99103.6%) 
u 	404(5.5%) 226(3.1%) 3860(52.9%) 4490(613%) 

Total 1098(15.0%) 474(6.5%) 5727(78.5%) 7299 (100.0%) 
ta - accented, a stressed but unaccented, u — unstressed). 
Correct classification rate — 4497/7299 (61.6%). 
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rots and to determine ways of overcoming them 
by refining the algorithm. 
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Appendix D 

MRPA and IPA Symbols 

Symbols have been used in this thesis to represent sound units of speech. The symbols 

used in the body of the text are those of the alphabet of the International Phonetics 

Association (IPA). The limitations of the packages used in producing this thesis have 

forced the symbols of the Machine Readable Phonemic Alphabet (MRPA) to be used in 

some of the illustrative Figures (marked by an asterisk in the Figure caption). Table D.1 

shows the corresponding IPA and MRPA symbols for sound units and gives example 

words in which the sounds occur in the exemplar languages English, French and Italian 

(adopted from filler et al., 1990). 
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Symbol 
IPA MRPA English 

Example Word 
French 	Italian 

[p] p pea par copia' 
[t] t tea tard grato' 
[k] k key car chiaro1  
[b] b bee barre buono1  
[d] d dye dos dove' 
[g] g guy gare gatto' 
[] ch each - città' 
[c13] jh edge - Giorgio' 
[s] s sea si stanco' 
[z] z zoom zebre snello 
[f] sh she chat uscire 
[3] zh beige jeu - 
[] ts - - zio' 
[c] dz - - zero' 
[f] f fan foi faccia' 
[vi v van yin beve1  
[8] th thin - - 
[ô] dli then - - 
[h] h hat - - 
[m] m me mare mangia' 
[n] n knee non vano1  
[u] ng song - - 
[ji] ny - agneau bisogno 
[1] 1 lay le alba1  
[A] ly - - battaglia 
[r] r ray - serata1  
{i] R - roi - 
[jJ y yes billet pi'i 
[q] yw - huit - 
[w] w way oui puô 

continued on next page... 

'The long version of these consonant sounds are marked in MRPA by a colon - [bI] b: 'abbazia'. 
2 Centralised. 
3British English. 
4American English. 
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continued from previous page 
Symbol Example Word 

IPA MRPA English French Italian 
 Ii bead lit pino 

[I] I bid - - 
[*] I bid  - - 
[e] ee - été lesso 
[c] e bed sec letto 
[] en - yin - 
[a] aa bard gras - 
[a] a bad' la faccia 
[a] an - grand - 
[] ah sad  - - 
[3] 00 bird  - - 
[a"] Or word  - - 
[] C about - - 
[A] uh bud - - 
[u] uu boot loup uno 

 u" boot2  - - 
[u] u put - - 
[y] yy - sur - 
[0] eu - feu - 
[ce] oe - coeur - 
[&] oen - commun - 
[o] 0 - eau torre 
[o] on - pont - 
[] 00 port fort tosto 
[D] o pot - - 
[ei] ei bay - quei 
[ai] ai buy - sai 
[oi] oi boy - - 
[au] ou go - - 
[au] au bow - laurea 
[ia] iC beer  - - 
Ica] eC bare  - - 
[u] uC poor  - - 
{?] glottal stop 
['] primary stress 
[] secondary stress 
[j * tertiary stress 

Table D.1: IPA/MRPA Symbols 
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