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Abstract

We present an analysis framework for performance evaluation of large-scale resource-

bound (LSRB) computer systems. LSRB systems are those whose resources are con-

tinually in demand to serve resource users, who appear in large populations and cause

high contention. In these systems, the delivery of quality service is crucial, even in

the event of resource failure. Therefore, various techniques have been developed for

evaluating their performance. In this thesis, we focus on the technique of quantitative

modelling, where in order to study a system, first its model is constructed and then the

system’s behaviour is analysed via the model.

A number of high level formalisms have been developed to aid the task of model

construction. We focus on PEPA, a stochastic process algebra that supports composi-

tionality and enables us to easily build complex LSRB models. In spite of this advan-

tage, however, the task of analysing LSRB models still poses unresolved challenges.

LSRB models give rise to very large state spaces. This issue, known as the state

space explosion problem, renders the techniques based on discrete state representa-

tion, such as numerical Markovian analysis, computationally expensive. Moreover,

simulation techniques, such as Gillespie’s stochastic simulation algorithm, are also

computationally demanding, as numerous trajectories need to be collected.

Furthermore, as we show in our first contribution, the techniques based on the

mean-field theory or fluid flow approximation are not readily applicable to this case.

In LSRB models, resources are not assumed to be present in large populations and

models exhibit highly noisy and stochastic behaviour. Thus, the mean-field deter-

ministic behaviour might not be faithful in capturing the system’s randomness and is

potentially too crude to show important aspects of their behaviours. In this case, the

modeller is unable to obtain important performance indicators, such as the reliability

measures of the system. Considering these limitations, we contribute the following

analytical methods particularly tailored to LSRB models.

First, we present an aggregation method. The aggregated model captures the evo-

lution of only the system’s resources and allows us to efficiently derive a probability

distribution over the configurations they experience. This distribution provides full

faithfulness for studying the stochastic behaviour of resources. The aggregation can be

applied to all LSRB models that satisfy a syntactic aggregation condition, which can

be quickly checked syntactically. We present an algorithm to generate the aggregated
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model from the original model when this condition is satisfied.

Second, we present a procedure to efficiently detect time-scale near-complete de-

composability (TSND). The method of TSND allows us to analyse LSRB models at

a reduced cost, by dividing their state spaces into loosely coupled blocks. However,

one important input is a partition of the transitions defined in the model, categorising

them into slow or fast. Forming the necessary partition by the analysis of the model’s

complete state space is costly. Our process derives this partition efficiently, by relying

on a theorem stating that our aggregation preserves the original model’s partition and

therefore, it can be derived by an efficient reachability analysis on the aggregated state

space. We also propose a clustering algorithm to implement this reachability analysis.

Third, we present the method of conditional moments (MCM) to be used on LSRB

models. Using our aggregation, a probability distribution is formed over the configu-

rations of a model’s resources. The MCM outputs the time evolution of the conditional

moments of the marginal distribution over resource users given the configurations of

resources. Essentially, for each such configuration, we derive measures such as con-

ditional expectation, conditional variance, etc. related to the dynamics of users. This

method has a high degree of faithfulness and allows us to capture the impact of the

randomness of the behaviour of resources on the users.

Finally, we present the advantage of the methods we proposed in the context of a

case study, which concerns the performance evaluation of a two-tier wireless network

constructed based on the femto-cell macro-cell architecture.
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Lay Summary

These days most of the applications that we run on our computers or smart phones

rely heavily on communication with external services running on clouds or server

farms, and many service providers serve millions of users. Users demand respon-

siveness and low latency unconditionally and at all times. Thus, it is important for

service providers to continually assess the performance of their infrastructure, allocate

resources if needed and adjust the system parameters to meet users’ demands.

Various mechanisms exist that claim to offer intelligent system tuning and accu-

rate performance evaluation. A key requirement however, is that a valid mechanism

needs to be reliable and robust. The operation of a computer system is usually affected

by many factors such as outsourced services, user load, resource failure. When tun-

ing a system or predicting its behaviour, the performance evaluation mechanism must

take all such factors into account and give us the system’s true behaviour. It is naive

to assume that a system under study always follows an average or most commonly

observed path. In contrast, real systems usually experience large variations in their

operation (arrival of peak demand, failure of critical and bottleneck resources), giv-

ing rise to optimal and potentially many sub-optimal or critical situations. A reliable

performance evaluation detects all such situations and investigates user satisfaction in

each of them separately.

In this thesis, we propose a performance evaluation framework that promises a

high degree of reliability and robustness. Our approach is based on mathematical and

quantitative modelling. A model is an abstract, formal representation of a real system

and its mathematical analysis provides us with valuable insight on how the system and

its users interact. Our models are specified in a high-level modelling language called

PEPA that can be easily used to build models of complex computer systems. Given a

model, we analyse it to extract the system’s optimal and sub-optimal modes of oper-

ation using ideas from Markov chain theory. Since the model is formal, this step can

be done automatically, and thus we can deal with very complex systems which fea-

ture complicated dependencies between parameters. In the second step, the quality of

the service provided to the users is measured for each of the operational modes experi-

enced by the system using the theory of differntial equations. Our framework allows us

to understand how the system’s optimal and sub-optimal configurations affect users’

experience. Our framework helps system designers to efficiently tune their systems

such that they present satisfactory service in both the ideal and critical circumstances.
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Chapter 1

Introduction

1.1 Motivation

Recent advances in communication technology have enabled us to design and build

computer systems with unprecedented scales. In contrast with traditional information

processing systems which performed on stand-alone and isolated machines, nowadays

we envisage systems which inherently rely on the assumptions of inter-connectivity

and information flow. The sheer scale of these systems gives rise to a number of

key features. Their development path follows a bottom-up approach, as opposed to

traditional top-down methods. Thus, a key part of their development concerns the

composition of existing systems and platforms. Consequently, the parts that comprise

the system are usually heterogeneous. In contemporary systems, control is highly de-

centralised; different parts of the system are managed by different teams and with

different configurations and goals. The traditional boundary between the infrastruc-

ture and users is blurred. Users, who usually appear in different groups with different

populations, have to be considered when designing the system and their behaviour is

integrated with that of the infrastructure. Due to the presence of different entities (hard-

ware, software, services and users) the successful operation of these systems depends

on complex and multi-layered dependencies. In contrast with small-scale systems

where the design is based on a predefined requirement specification and the behaviour

must deterministically follow the specification, the behaviour of today’s complex sys-

tems is emergent, continually changing and stochastic. Because of the distinct features

associated with the scale, the software engineering community introduced the notion

of large-scale systems [39].

1
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This thesis identifies one important and broad class of large-scale systems referred

to as large-scale resource-bound (LSRB) systems. This class consists of systems

whose interacting entities are conceptually categorised as either being resources or

resource users. The populations of users are usually significantly larger than the pop-

ulations of resources. In these systems, the users introduce heavy contention on re-

sources and inevitably, some components become the bottlenecks. The dynamics of

these components significantly affect the system’s overall behaviour and its quality of

service. This conceptually defined class encompasses a wide range of systems. Ex-

amples include a cloud platform where clusters of servers serve millions of users un-

der peak demand, data centres where the virtualised servers deal with the continuous

stream of transactions or a router in the Internet, which is dealing with a continuous

flow of incoming packets.

The usability of LSRB systems strongly depends on their performance. Having

considered users as key participants, the performance is affected by the system’s pro-

cesses and architecture, resource provisioning, and user demand (load). The systems

are expected to be robust, that is, the users’ demand needs to be met both when the sys-

tem is running in the optimal operational mode when there is normal user load and all

resources are healthy and active, and also in sub-optimal circumstances, when the peak

or bursty load arrives and some of the resources are in failure mode. To achieve this,

continuous monitoring and adaptive resource allocation are intertwined in the systems’

operation [4].

Resource procurement and maintenance is expensive. Therefore, for a LSRB sys-

tem to achieve both its economic values and user satisfaction we need rigorous perfor-

mance evaluation mechanisms that can scale with the system size; analyse the com-

plex dependencies within its sub-components and also the relevant cost-performance

trade-offs; and provide us with the system-wide optimal configurations and associated

performance predictions. In this thesis, we are concerned with the development of such

mechanisms.

The performance evaluation of LSRB systems profoundly benefits from the process

of formal and quantitative modelling [88]. Using modelling, the complexity caused by

the scale is tackled by the power of abstraction. The model is an abstract representation

of a real system which captures its key dynamics of interest. The more details added

to the model, the more complex and closer to reality it becomes. The performance

analysis based on modelling then has two steps. First, the model is formally specified.
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Second, the key aspects of the real system are studied via the relevant performance

metrics derived from the analysis of the model. As formal models are unambiguous,

they are amenable to automatic, complex and rigorous mathematical analyses, such as

studying their temporal properties or solving cost-performance trade-offs, which are

impossible to do manually.

1.2 Modelling Requirements

Quantitative modelling of computer systems gained substantial interest in the 60’s with

the developments in the field of queueing theory [64, 71]. The goal was to analyse,

what in retrospect would be considered simple, information processing systems. Ever

since, advances in our computational power have expanded the boundaries of mod-

elling capabilities. However, at the same time the scale of systems has also continually

increased, which constantly outstrips our capabilities. The distinct features of LSRB

systems impose the following requirements for our quantitative modelling processes:

1. Efficient model construction. The model needs to be built in a timely manner

and is required to be maintainable. Compositionality is key to achieving these

goals, as it simplifies the construction of complex models and allows us to alter

sub-components without the need to change the whole model.

2. Faithfulness in specification. The behaviour of sub-components, which are di-

vided into different layers (hardware, software, user), and their emergent evo-

lutions are all stochastic. The model should allow us to express and capture

stochastic evolutions at all layers and easily specify the probabilistic decisions

made within the sub-components [39].

3. Efficiency in analysis. The modelling framework needs to be equipped with

analysis methods which can, using the existing computational capacities, effi-

ciently evaluate our models. Often, the model is even required to be analysed

quickly and within few seconds to assist real-time decision making [1].

4. Faithfulness in analysis. The analysis output should provide information that

captures key aspects of the system’s evolution in sufficient detail [39]. It is im-

perative to reveal the performance for both the optimal and sub-optimal configu-

rations. The analysis is required to show how the failures propagate through the
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system, and in particular, how the user experience is affected.

The above requirements have triggered extensive research in modelling. In re-

sponse to the first two requirements, high level modelling languages or formalisms

such as queueing networks [17], Petri nets [80, 9, 97] and process algebras [75, 62,

48, 13] have been proposed. Furthermore, there have been many evaluation techniques

such as enhanced algorithms for analysis of discrete and continuous time Markov

Chains [90, 29]; discrete event stochastic simulations [44, 27, 28]; and determinis-

tic approximation (based on mean-field theory) [11, 16] for the last two requirements.

One important outcome of this research is the evaluation framework based on perfor-

mance evaluation process algebra or shortly known as PEPA [58].

PEPA is a compositional stochastic process algebra and it has promising features

for the construction of models of large-scale systems. The support for compositional-

ity makes PEPA more appealing when compared to queueing networks and Petri nets.

In PEPA, models are constructed by defining sequential processes which undertake

stochastically timed actions with the possibility of probabilistic choice. This allows

us to express and capture timed stochastic evolution at the layer of the system’s con-

stituent entities and also its emergent behaviour. Furthermore, PEPA is formal and has

been equipped with semantics in terms of continuous time Markov chains (CTMC),

stochastic simulation and ordinary differential equations [94]. These features identify

PEPA as a suitable candidate for performance evaluation of LSRB systems.

1.3 Statement of Problem

One area in which the PEPA framework can be fruitfully extended is in its analysis

capabilities to enable efficient and faithful evaluation for LSRB models. The major

analysis methods that can currently be applied, at least in theory, are divided into three

categories: exact Markovian analysis based on the construction of the complete un-

derlying discrete state space; sampling methods based on Gillespie’s stochastic sim-

ulation; and deterministic approximation based on mean-field theory and fluid flow

approximation [59]. The shortcomings of these methods when applied in practice are

the following:

1. Exact Markovian Analysis. PEPA has semantics in terms of labelled transition

systems. Using the exact method, the model’s underlying discrete state space
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is constructed. This is treated as the state space of a CTMC and is analysed by

numerical methods to find the evolution of the model’s underlying probability

distribution. Not only is the complete state space generated, but also the prob-

ability of being in every single state is derived. Thus, the method offers the

highest degree of analytical faithfulness. However, the problem of state space

explosion hampers its practicality; since for large-scale models the state spaces

are usually massive, the analysis becomes very computationally expensive or

even infeasible. This means that the method is very poor in terms of efficiency.

2. Methods Based on Stochastic Simulation. The model is executed programati-

cally to produce numerous realisations or trajectories across its state space. The

trajectories are then used to derive the evolution of an approximate probability

distribution with respect to the exact one. The more simulation runs are per-

formed, the more accurate and faithful the approximation becomes. Applying

this method has two shortcomings. First, it is computationally expensive; in or-

der to obtain accurate results a very large number of simulations need to be run.

This is exacerbated when the system has dynamics at multiple time scales and is

affected by rare events. Second, there is an intrinsic unavoidable error associated

with simulation. The observations made on generated trajectories do not provide

any guarantee of what has not been observed. The evidence that an event has

not been observed in past trajectories by no means implies its impossibility [91].

For instance, the transitive implications (knock-on effects) of a failure may not

be witnessed at all due to its low probability and hence, not having covered the

state space path that triggers the failure. In this method, one cannot determine if

enough simulations have been run unless there is firm a priori knowledge about

the system’s behaviour. These features mean that although stochastic simulation

can be partially useful, it does not guarantee a faithful analysis in the general

case.

3. Deterministic Approximation of Stochastic Evolution. The first method in this

class is based on the mean-field theory and in particular the well-known Kurtz

convergence theorem [67]. The theorem is used to prove that in a system with

interacting entities, when their populations tend to infinity, the stochastic be-

haviour tends to a deterministic limit behaviour. The limit can be obtained by

solving a set of ordinary differential equations (ODEs) and therefore, the analysis

is efficient. However, in realistic large-scale systems the assumption of having
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infinitely large populations is not fully adhered to. In these systems we have dif-

ferent types of entities with different population scales, and often the emergent

behaviour is highly stochastic. Therefore, analyses based on the deteministic

limit behaviour is not faithful in capturing the randomness.

The second method in this class is the fluid flow approximation and is closely re-

lated to moment closure techniques [59, 56]. The method is based on a simplify-

ing assumption that the probability distribution underlying a large-scale system

are globally and densely clustered around the average1 and it can be faithfully

and sufficiently captured by its first few moments such as mean, variance, skew-

ness, etc. The model is analysed by solving a set of ODEs derived directly from

the model and the solution (moments) provides the basis for characterising the

underlying distribution. The method is efficient, but the simplifying assumption

imposed on the probability distributions is again potentially too crude or abstract

to reflect many realistic scenarios. The scale and randomness in large-scale sys-

tems makes them inevitably exhibit distinct performance profiles related to opti-

mal and sub-optimal modes of operation, across which users experience different

levels of quality of service. As a result, the underlying distribution potentially

has arbitrary shapes, including multiple modes (multi-modal distributions) and

heavy tail. In such cases, the fluid flow moments fail to faithfully capture the

highly stochastic dynamics and may lead to misjudged performance decisions

about the reliability of the system. The analysis based on the dynamics being

clustered around a single average is not faithful.

In this thesis, we consider these problems and extend the PEPA framework with

new analysis methods which are particularly suitable for performance evaluation of

LSRB systems. Our methods collectively offer a high degree of efficiency and faith-

fulness. The summary of our contributions follows.

1.4 Summary of Contributions

Our first contribution is to provide evidence of the shortcomings of existing analysis

methods for performance evaluation of LSRB systems. This highlights the benefits of

the new analysis methods that we present as our next contributions.
1Similar to bell-curved normal distributions where the probabilities exponentially decrease as we

move away from the distribution’s mean.
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1.4.1 The Issue of Faithfulness and Efficiency

In this contribution (published in [79]), we consider a simple scenario for a client-

server system, where a small population of servers (resources) are serving a relatively

larger population of clients (resource users) under contention. The servers are suscep-

tible to failures and the system has multiple operational modes related to the different

number of broken servers. The underlying probability distribution is multi-modal,

which cannot be qualitatively or quantitatively captured by its moments. We show

that both the exact Markovian analysis and stochastic simulations are computationally

expensive, and that fluid flow moments are too crude to capture the highly stochastic

emergent behaviour. Using the result of this experiment, we show that existing crite-

ria in the literature that determine the appropriate analysis based on the model are not

robust. The experiment provides an intuitive basis for our next contributions.

Next, we propose four new analysis methods for LSRB models.

1.4.2 An Aggregation Method for LSRB Models

State space aggregation is an effective technique for tackling the problem of state space

explosion. One class of aggregation methods develops notions of state equivalence

and then, when applied to a large state space, they generate more compact state spaces

where the states which were equal are captured by a single canonical state [25]. This

results in a reduced computational cost in analysis. Another interesting class consists

of methods that develop notions of behavioural equivalence at the level of modelling

languages and based on their syntax and structural attributes [32, 37, 81, 60]. For

a conforming model, its aggregated model is constructed which can then be used to

directly generate the aggregated state space. Here, the generation of the complete state

space is fully bypassed. In our first contribution, we propose an aggregation technique

which falls in the second class and aggregates LSRB PEPA models (published in [78]).

In LSRB systems, the small populations of resources deal continually with the rel-

atively larger populations of resource users, and the probability of observing situations

where resources are waiting idle for users is close to zero. This assumption forms the

basis of our aggregation technique. From the original model, this method generates an

aggregated model which abstracts from the behaviour of resource users and captures

the dynamics of resources only. The aggregated model is analysed to obtain a marginal
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probability distribution over all configurations that the resources may experience. This

distribution provides information sufficiently detailed on the dynamics of resources

and can be used to perform a faithful resource analysis, beyond deriving only their av-

erage evolution. For instance, it can be used to derive important reliability measures; to

detect the resources’ significant optimal, sub-optimal and critical operational modes;

and to analyse the service throughput offered to the users. The technique is applicable

to both the transient and steady state analyses.

1.4.3 Efficient Detection of Time-Scale Decomposability

LSRB systems can exhibit dynamics and transitions that take place across different

time scales. When analysing such a model, it is important to detect if its transitions

can be categorised onto a slow / fast spectrum, the condition formally known as time-

scale near-complete decomposition (TSND) [87]. The importance is two-fold. First,

it alerts us to analyse the evolution comprehensively for both time-scales and incor-

porate both the short and long term phenomena. Second, it opens the possibility of

using enhanced analysis methods, which by exploiting this feature can efficiently and

accurately, approximate the model’s exact underlying distribution. Examples of such

techniques can be found in the queueing network literature [33] and in the stochastic

process algebra literature [61, 73]. Automatic detection of TSND in a LSRB model

requires an upfront reachability analysis of its state space. Since this state space is

massive, the reachability analysis becomes computationally expensive. This prohibits

our evaluation from taking advantage of the enhanced solution methods.

As our second contribution, we propose a scalable and efficient algorithm for ef-

ficient detection of TSND condition in the context of LSRB models. This algorithm

is based on hierarchical bottom-up clustering [54] and efficiently gives us a partition

on the model’s actions dividing them into slow and fast. We present a theorem that

supports our approach. We show how our clustering tool can be embedded within a

decomposability-based solution method presented in [61] that significantly improves

the efficiency of the analysis of LSRB models. This contribution aids the model anal-

ysis when the equilibrium behaviour is being investigated.

In the next contributions, we present the method of conditional moments for analy-

sis of LSRB models. This analysis has two parts: analysis of conditional expectations

(conditional means or averages) and analysis of higher-order conditional moments.
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Our analysis method is closely related to a class of methods developed for biological

processes in [53, 72, 38], and is particularly useful for deriving the models’ transient

behaviours2.

1.4.4 Analysis Using Conditional Expectations

For LSRB models, it is computationally too costly to study the behaviour of users

by deriving the model’s complete underlying probability distribution. Instead, using

the method of conditional moments we study their stochastic behaviour through the

moments of the conditional probability distributions associated with users given the

different configurations of resources. Expectations or averages are regarded as the first-

order moments of a probability distribution. In the analysis of first-order moments, we

derive the conditional expectations related to the stochastic evolution of users given the

stochastic evolution of resources, which is captured by the aggregated state space. In

contrast with the fluid flow approximation, where the evolution of users is studied by a

single expectation, here we calculate many expectations corresponding to the different

configurations that the resources experience.

The input is the model and the aggregated state space. These are combined to con-

struct a set of differential algebraic equations (DAEs) whose solution is the transient

evolution of conditional expectations. A mode of operation is defined as a subset of

states within the aggregated state which satisfy a property of interest (for instance,

number of resources in failure mode). We show that the DAE solution can be used

to derive coarse-grained conditional expectations for any mode of operation. We il-

lustrate that the analysis of conditional expectations can capture the potentially many

locations within the complete state space where significant probability masses are clus-

tered. This information is highly useful for qualitative and quantitative representation

of the system’s underlying probability distribution.

1.4.5 Analysis Using Higher-Order Conditional Moments

The stochastic behaviour of users potentially makes deviations from the conditional

expectations. As our fourth contribution, we expand the analysis of conditional mo-

ments by including higher-order conditional moments. These include the conditional

2Our future work will investigate the applicability of the method to the case of steady state analysis.
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variances, conditional skewness, etc. given the different configurations of resources.

The higher-order moments enable us to obtain a richer representation of the condi-

tional distributions stated above. The derivation of these moments is critical in tasks

such as capacity planning, where in addition to the most expected path (average) we

also need to know how the system deviates from that path.

Similarly to the previous case, we illustrate how the DAEs related to higher-order

moments can be automatically derived from the model. This set of DAEs is larger

than that constructed for conditional expectations; as the order increases, the set of

equations is augmented with more equations and finding the solution becomes compu-

tationally more expensive. We provide an analytical expression for the size of this set

of equations and show that, given the capabilities of current DAE solvers, the analysis

for up to the third-order (conditional skewness) is practically possible for most models.

We illustrate the usefulness of the technique of conditional moments in the context of

a simple scenario of a client-server system, and also for a more complex model where

we study the dynamics of a two-tier wireless network, whose construction is based on

the femto-cell macro-cell architecture [26].

1.5 Thesis outline

The thesis is structured as follows:

• In Chapter 2, we introduce PEPA.

• In Chapter 3, we consider the issue of analysis faithfulness and in the context of

an experiment show in detail the shortcomings of the existing analysis methods.

• In Chapter 4, we show our aggregation method.

• In Chapter 5, our algorithm for the detection of time-scale decomposability fea-

tures is presented.

• In Chapter 6, we describe our analysis of conditional expectations.

• Chapter 7 shows an example, where the analysis of conditional expectations is

applied to the evaluation of our client-server model.

• In Chapter 8, we present the analysis of higher-order conditional moments.
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• In Chapter 9, we show the application of the analysis of higher-order conditional

moments to the client-server system.

• In Chapter 10, as a case study we consider a more complex model related to a

two-tier wireless network and show the usefulness of the analysis of conditional

moments in a wider context.

• Chapter 11 describes our conclusion and directions for future work.





Chapter 2

Preliminaries

The practice of quantitative modelling is supported by a number of modelling lan-

guages. One appealing option is Performance Evaluation Process Algebra, abbrevi-

ated as PEPA. In our first chapter, we provide an overview of this language. To cope

with the increasing complexity of evaluation of modern systems, the PEPA framework

has been continually extended. A number of the recent extensions that are relevant to

modelling LSRB systems will be described. This description provides preliminary def-

initions to be used in the next chapter where we explain the key challenges confronted

when evaluating LSRB systems.

2.1 PEPA Language

In PEPA, a system is modelled by specifying the behaviour of its constituent compo-

nents and the way they interact. In order to specify this information, we use process

combinators. We review PEPA combinators in the next section.

2.1.1 PEPA Combinators

PEPA offers the following combinators:

1. Prefix: This is represented by “.” and is used to express the sequence of activi-

ties; the term (α,r).P represents a process which undertakes an activity of type

α with rate r and then moves into the state P. Each activity is specified as a pair

(α,r) where α is its action type and r is its rate, which describes how fast the

13
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activity is performed. The time it takes to perform an activity (α,r) is captured

by an exponentially distributed random variable with parameter r; the activity

takes on average 1
r time units to finish.

2. Choice: The choice combinator allows us to describe a behaviour which in-

cludes probabilistic choices and branching; the term P+Q represents a process

that exhibits the behaviour of either process P or process Q. Thus, P+Q can per-

form any activity that P or Q enable. However, the first activity that is finished

identifies the change that the process experiences.

3. Cooperation: Computer systems are usually composed of different types of

components that work together and interact. The interactions are expressed us-

ing the cooperation combinator. The term PBC
L

Q represents a process composed

of two processes P and Q that cooperate on action types within set L, also known

as the cooperation set. An action type α ∈ L is enabled only if both P and Q si-

multaneously enable it (through their α activities). When a shared action α is

enabled, the participants can simultaneously perform their corresponding α ac-

tivities and as a result, their internal states change. The actions that a component

enables can be divided into being individual or shared. For an individual action

the component can proceed independently. For a shared one, it needs to wait

until the other participants also enable the action type.

When two or more components undertake a shared activity, the rate at which the

activity is performed is determined by the principle of bounded capacity. This

states that no component should be made to perform an activity faster than its

capacity (its rate). Therefore, the rate assigned to the shared activity is defined to

be the minimum of the rates that the participants offer. For instance, in a system

where a buffer is connected to a processor which continually reads the buffer,

the rate of the data transfer is determined by the component which is slower.

A PEPA component can participate passively in a cooperation, denoted by the

rate >, meaning that it is willing to cooperate at the rate decided by other par-

ticipants. In the final model, cooperations that involve passive components must

include at least one component that is not passive. Otherwise, the model is said

to be incomplete.

Two components can run in parallel without cooperating. This can be specified

as PBC
/0

Q where the cooperation set is empty. As syntactic sugar, this is expressed
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as P || Q. The combinator is especially useful when we have repeated replicas

of the same component which do not interact with each other and only interact

with the components in the rest of the system.

4. Constant Definition: The complex process expressions that we build can be

referred to by a short name. The combinator def
= is used for this purpose. The

term E def
= F assigns the behaviour captured by F to the constant process E.

This combinator is also used for defining cyclic behaviours. For instance, F =

(α,r1).(β,r2).F is a process which cycles through activities (α,r1) and (β,r2).

5. Hiding: The activities that a component undertakes are visible, in terms of their

action type and durations, to the rest of the components within the model. The

hiding combinator is used to hide activities from being globally visible. The

term P/L represents a process whose activities with types in L are only visible to

P and hidden externally. Hidden activities still cause time delays but their action

types become unknown. There is a special type τ associated with such activities,

which would be witnessed by external components. It is assumed that τ cannot

appear in any of the cooperation sets.

In almost all performance evaluation studies carried out with PEPA, the first four

combinators (prefix, choice, cooperation, constant) were sufficient to build the models,

and the last one was rarely used. In this thesis, we are also restricting ourselves to the

first four.

2.1.2 PEPA Syntax

A common approach for building a PEPA model is to first specify the behaviour of

the constituent sequential processes using prefix, choice and constant, and then use the

cooperation combinator to compose them to build the description of the system as a

whole. A two level grammar defining the syntax of PEPA supports this approach:

S ::= (α,r).S | S+S | CS

P ::= PBC
L

P | C | S (2.1)

where S represents a sequential process, CS stands for a process constant which repre-

sents a sequential process, P stands for the composition of components, and C repre-

sents a constant that specifies either a sequential or composed process. A composed

process is also referred to as a model process.
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Example

Let us present an example of a PEPA model. The following model captures the dy-

namics of a client-server system. In spite of being simple, this model is capable of

exhibiting numerous important and interesting features that will be introduced as we

proceed in the thesis.

The system consists of two types of components: clients and servers. A client is

represented by the process Cthink and a server is represented by the process Sidle. The

behaviour of a system with three clients and two servers is expressed by the following

PEPA model:

Cthink
def
= (think,rt).Creq Creq

def
= (req,rc).Cthink

Sidle
def
= (req,rs).Slog Slog

def
= (log,rl).Sidle

CS def
= ( Sidle || Sidle ) BC

{req}
( Cthink ||Cthink||Cthink ) (2.2)

A client starts in the state Cthink where it is performing some independent thinking.

This can reflect doing some offline computational job which does not require a server.

The thinking activity is performed at rate rt . When the activity is done, the client moves

into the state Creq where it requests service from a server. The client can perform

the action req, which represents communication with a server, at rate rc. When the

communication is over, the client returns to its initial state and repeats the above cycle.

A server starts in state Sidle where it is waiting and ready to serve a client. An idle

server can perform the action req at rate rs. When the server has finished serving a

client, it enters the state Slog where it logs the service just provided. This happens at

rate rl . When logging is done, the server returns to state Sidle.

The last line of the model is called the system equation. Here, the behaviours

defined for the sequential components Cthink and Sidle are composed together and the

action types on which instances of those processes cooperate are specified. In our

example, the clients and servers synchronise on activities of type req. The instances of

clients and those of the servers do not cooperate within themselves.

We can replace the behaviour of a client as:

Cthink
def
= (think,rt).Creq Creq

def
= (req,>).Cthink
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This suggests that while cooperating with a server, a client undertakes req passively

and the rate is determined by the server. To illustrate the use of the choice combinator,

we change the behaviour of a server as follows:

Sidle
def
= (req,rs).Slog +(brk,rb).Sbroken

Slog
def
= (log,rl).Sidle Sbroken

def
= (fix,r f ).Sidle

In this system servers are susceptible to failure; a server that is idle either serves a client

or breaks down (activity (brk,rb)). The choice is resolved by a race condition. As-

suming that the server makes a transition, the activity (req,rs) occurs with probability
rs

rs+rb
and the activity (brk,rb) with probability rb

rs+rb
.

2.2 Structured Operational Semantics

The structured operational semantics (SOS) of PEPA are a set of rules that determine

the set of activities that a process enables and how the process changes as a result of

performing them. When the rules are repeatedly applied, we derive a labelled transi-

tion system (LTS) which captures the states that the process visits. In order to present

the SOS first we introduce the notion of apparent rates.

2.2.1 Apparent Rate

A process, whether sequential or composed, can enable multiple activities that have the

same action type (P = (α,r1).P′+(α,r2).P′′+ · · · ). We define the notion of apparent

rate, as a way to describe the maximum capacity that a process offers for an action type.

This capacity is observed from the point of view of an external observer or component.

Definition 1. (Apparent rate of an action type with respect to a process) The apparent

rate of an action type α with respect to the process P is denoted as rα(P) and is defined
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as the total rate that P offers for activities of type α :

rα(P) =



0 P≡ (β,r).P′ , α 6= β

r P≡ (α,r).P′

rα(Q)+ rα(R) P≡ Q+R

rα(Q) P is a constant: P def
= Q

min(rα(Q),rα(R)) P≡ QBC
L

R and α ∈ L

rα(Q)+ rα(Q) P≡ QBC
L

R and α 6∈ L

(2.3)

In the next definition, we define the capacity of a process P with respect to α

activities that take P to a particular state P′ :

Definition 2. (Apparent rate of an action type with respect to two states) We define

rα(P,P′) to be the apparent rate of an action type α in P restricted to α activities

leading P to P′ :

rα(P,P′) =


r if P≡ (β,r).Q ∧ (β = α ∧ P′ ≡ Q)

0 if P≡ (β,r).Q ∧ (β 6= α ∨ P′ 6≡ Q)

rα(Q,P′)+rα(R,P′) if P≡ Q+R

P might be passive with respect to α and enable more than one passive α activity.

In such a case, each activity is given a weight (ω∈N), clarifying its relative probability

with respect to all such activities. These are handled appropriately in the passive rate

arithmetic:

1. (ω1>+ω2>) = (ω1 +ω2)> ∀ ω1,ω2 ∈ N

2. ω1× (ω2>) = (ω1×ω2)>
3. >= 1×>
4. min(ω1×>,ω2×>) = min(ω1,ω2)×>

2.2.2 Semantic Rules

The rules of PEPA’s SOS are shown in Fig. 2.1. As an example, we describe the coop-

eration rules: co1, co2 and co3. Rule co1 states that the processes that are constrained

within a cooperation can freely and independently proceed with the action types that

are not in the cooperation set. When two processes E and F synchronise on actions
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Prefix

(α,r).E
(α,r)
−−−→ E

Choice

ch1 :
E

(α,r)
−−−→ E ′

E +F
(α,r)
−−−→ E ′

ch2 :
F

(α,r)
−−−→ F ′

E +F
(α,r)
−−−→ F ′

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A def
= E)

Cooperation

co1 :
E

(α,r)
−−−→ E ′

E BC
L

F
(α,r)
−−−→ E ′BC

L
F

(α /∈ L)

co2 :
F

(α,r)
−−−→ F ′

E BC
L

F
(α,r)
−−−→ E BC

L
F ′

(α /∈ L)

co3 :
E

(α,r1)−−−→ E ′ F
(α,r2)−−−→ F ′

E BC
L

F
(α,R)
−−−→ E ′BC

L
F ′

(α ∈ L)

where R =
r1

rα(E)
r2

rα(F)
min(rα(E),rα(F))

Figure 2.1: PEPA structured operational semantics

within set L, if E can perform (α,r) (this is stated as E
(α,r)−→ E ′) with α 6∈ L, then the

composed process can do the same activity where E changes its state and F remains

unchanged. Rule co2 is the symmetric version of co1 related to the second process F .

Rule co3 states that the cooperating processes change synchronously when undertaking

shared activities. If E can perform (α,r1) and become E ′, and F does (α,r2) and be-

comes F ′, and α ∈ L, then we infer that the composed process E BC
L

F can perform the

activity (α,R), R = r1
rα(E)

r2
rα(F)min(rα(E),rα(F)), and as a result both E and F change

their state.

The calculation of the rate R reflects the fact that in the most general case each

of the processes E and F might offer multiple activities of type α; E can be E =

(α,r1).E ′+(α,r2).E ′′+ · · · and F can be F = (α,r′1).F
′+(α,r′2).F

′′+ · · · . Thus PBC
L

Q

may evolve through multiple α activities, one of which is E → E ′ and F → F ′. Each

cooperating process independently decides which α activity it performs within the
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cooperation. The bounded capacity principle requires that the capacity of PBC
L

Q in

offering α is min(rα(P),rα(Q)) where rα(P) and rα(Q) are respectively the capacities

(apparent rates) of α within P and Q. This capacity is also the sum of the rates of all

one step α activities PBC
L

Q enables. The rate R associated with activity PBC
L

Q
(α,r)−→

P′BC
L

Q′ is a proportion of min(rα(P),rα(Q)) and is affected by the probability that the

particular activities P
(α,r1)−→ P and Q

(α,r2)−→ Q′ happen among all plausible α activities.

The probability of P performing its activity is r1
rα(P)

and similarly, the probability of

F performing its part is r2
rα(F) . Given the independence of these components, the total

rate associated with the shared activity is R = r1
rα(E)

r2
rα(F)min(rα(E),rα(F)).

2.2.3 Labelled Transition System

Having reviewed the semantics, now we formally characterise the underlying LTS of a

model. For this purpose, we need the following definition:

Definition 3. (Derivative set of a process) The derivative set of a process P is denoted

as ds(P) and is the smallest set of processes such that:

• if P def
= P′, then P′ is in ds(P).

• if Pi ∈ ds(P) and there exists an activity a = (α,r) such that Pi
a−→ Pj, then Pj is

in ds(P).

Intuitively, the derivative set of a process P consists of the states that the process

may visit. When P is one of the model’s sequential processes, we call ds(P) the set

of local states or local derivatives of P. Using Def. 3, we characterise the LTS that is

constructed for a PEPA model.

Definition 4. (Labelled transition system of a process) For a process P with the deriva-

tive set ds(P), the labelled transition system LT SP is defined as the tuple 〈S,Λ,→〉
where S = ds(P) is the set of states, Λ is the alphabet of the activities enabled by such

states, and→⊆ S×Λ× S is the transition relation. For two states Si,S j ∈ ds(P), we

have (Si,(α,r),S j) ∈→, if and only if, there exists an activity (α,r) connecting Si to

S j. For each distinct activity that takes Si to S j, one element is added to→.

The original definition of a model’s LTS in [58] constructs a muti-relation→. How-

ever, throughout this thesis we restrict ourselves to the class of split-free models which
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give rise to relations with no duplicate transitions. This class of models will be for-

mally introduced in Sec.2.5.

For a model M, the LT SM represents its state space. This can be presented as a

graph, where the nodes are the members of ds(C) and the arcs are the elements of the

relation→. For every activity that takes a state Si to S j a separate arc is added. This

graph is referred to as the derivation graph. The node corresponding to M’s system

equation is regarded as the initial node.

2.3 Underlying Continuous Time Markov Chain

The analysis of a model written in a high-level modelling language involves the deriva-

tion of its underlying stochastic process. A PEPA model is mapped to its underlying

continuous time Markov chain (CTMC). In this section, we review this mapping.

2.3.1 Continuous Time Markov Chain

A CTMC is a family of random variables X = {Xt : t ≥ 0} which take values from a

countable set of states S and are indexed by time t ∈ R≥0. The behaviour of a CTMC

is illustrated by a graph where the nodes are the elements of S and the arcs are the

transitions that Xt experiences as time proceeds. Each transition has a rate: if there

exists a transition from i to j, i, j ∈ S, with rate r, then assuming that Xt = i, the time

it takes for the transition to occur is an exponentially distributed random variable T

with the distribution P(T < x) = 1−e−rx. The transition rates between the pairs (i, j)

are specified by the infinitesimal generator matrix Q = (qi j), i, j ∈ S. Here, each off-

diagonal element qi j, i 6= j is the rate of the transition from i to j. Each diagonal

element qii is chosen as the negative sum of elements in row i : qii =−∑ j 6=i qi j.

For any time t, the behaviour of Xt is captured by a probability distribution Πt =

〈P(Xt = i)〉 defined over its state space. The analysis of a CTMC typically involves

deriving the evolution of distributions Πt or their important measures, such as their

mean, variance, etc.
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2.3.2 Mapping, From PEPA Model to CTMC

For a PEPA model M its underlying CTMC is denoted as XM and can be constructed

using LT SM in the following way. Each process in ds(M) is regarded as a state of

XM. Thus, S = ds(M). Moreover, the rate between any two states i, j ∈ S, which are

respectively related to processes Pi,Pj ∈ ds(M), is derived by summing up the rates r

of all activities that take Pi to Pj:

∀ i, j , i 6= j : qi j = ∑

(α,r) : Pi
(α,r)−→Pj

r (2.4)

Theorem 3.5.1 in [58] is key in this mapping. The theorem expresses that the assump-

tion that PEPA sequential processes undertake activities with exponentially distributed

delays can be used to prove that the delays associated with the transitions of the un-

derlying Markov chain are exponentially distributed. This means that the summation

of Eq.(2.4) is valid in the sense that the model’s temporal evolution within the states in

ds(M) accurately matches the evolution derived by the analysis of XM.

Example

Consider the client-server model where two clients are served by one server:

CS def
= Sidle BC

{req}
( Cthink ||Cthink ) (2.5)

This reflects a system where clients compete over receiving the service. The derivation

graph is shown in Fig. 2.2. Each state in this graph is regarded as a state of the model’s

underlying CTMC. For this model, there is a one-to-one relation between the activities

of the derivation graph and the transitions of the CTMC. Thus, the state space of the

model’s CTMC is the same graph with the labels of the action types removed.

2.4 Models of Large-Scale Systems

In this section, we introduce some of the key extensions of the PEPA framework that

are useful when building models of large-scale systems.
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Si BC
req

(Ct‖Ct)

Sl BC
req

(Ct‖Ct)Si BC
req

(Cr‖Ct) Si BC
req

(Ct‖Cr)

Si BC
req

(Cr‖Ct) Si BC
req

(Cr‖Cr) Sl BC
req

(Ct‖Cr)

Sl BC
req

(Cr‖Cr)

(think,rt) (think,rt)

(req,min(rc,rs))

(think,rt)

(log,rl)

(req,min(rc,rs))

(think,rt)(log,rl)

(think,rt)

(req, 1
2min(2rc,rs)) (req, 1

2min(2rc,rs))

(log,rl)

(think,rt)(log,rl)

Figure 2.2: The state space of the client-server system with one server and two clients.

These abbreviations are used: Si : Sidle, Sl : Slog, Ct : Cthink and Cr : Creq.

2.4.1 Grouped PEPA Syntax

Large-scale systems are composed of components which are replicated many times to

form populations. When modelling them, we are content to abstract away from the be-

haviour of individual components, and study the behaviour at the level of populations.

For instance, consider the client-server system shown in Eq.(2.2) and assume that the

system has 100 clients and 10 servers. When evaluating the system, we capture the

count of the clients or servers in each of the states Sidle, Slog, Cthink, Creq, as opposed to

focusing separately on the state of each individual entity. Also, when modelling their

interaction, we do not care exactly which client is being served by which server; the

interactions are regarded as happening between the group of clients and the group of

servers. The shift from the detailed focus on the evolution of individual entities to the

higher level of populations is referred to as the counting abstraction [59].

The syntax of PEPA has been extended by the Grouped PEPA (GPEPA) syntax so

that a model’s populations can be explicitly expressed [56]. The GPEPA syntax is:

S = (α,r).S | S+S |CS P = PBC
L

P | S
D = D || D | P M = MBC

L
M | Y{D}

Here the terms S, CS, P are the same as those in Eq.(2.1). D represents the paral-

lel composition of instances of a sequential component. These instances constitute a
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group and a unique label is assigned to each group, denoted by Y . M represents the

composition of groups. We restrict ourselves to GPEPA models in which all groups are

strictly simple; i.e. each group contains instances of one sequential component only.

The models with groups of multiple sequential components can be easily mapped to

their corresponding model in which groups are simple. In GPEPA models, we often use

the syntactic sugar P[n] to denote the parallel composition of n identical P processes,

P[n] = P || P || . . . || P︸ ︷︷ ︸
n times

.

Example

Here is a version of the client-server system where the groups of clients and servers

are explicitly specified in the model, as group Clients and group Servers:

Cthink
def
= (think,rt).Creq Creq

def
= (req,rc).Cthink

Sidle
def
= (req,rs).Slog Slog

def
= (log,rl).Sidle

CS def
= Servers { Sidle[10] } BC

{req}
Clients {Cthink[100] } (2.6)

2.4.2 State Space Representation for Large-Scale Models

The state of a large-scale model is captured using numerical vectors with integer ele-

ments. In order to introduce these vectors, we need the following definitions.

Definition 5. (Set of groups of a model). For a grouped PEPA model M, we define

G(M) to denote its set of group labels. This can be derived as:

G(M) =

 G(M1)∪G(M2) if M≡M1 BC
L

M2

Y if M≡ Y{D}
(2.7)

Definition 6. (Sequential Component of a Group) Let CM represent the set of sequen-

tial components defined in the model M. We define function sc : G(M)→ CM which

relates a group’s label to the sequential component whose instances form that group.

We assume that a sequential component is represented by its initial state.

Definition 7. (Derivative set of a group) Let ds(P), P ∈ CM be the set of local deriva-

tives of a sequential component P. We define ds∗(H) as the derivative set of group

H ∈ G(M), and is derived as ds∗(H) = ds(sc(H)).
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Using the above definitions, now we characterise the numerical vector that captures

the state of a group H within a model M.

Definition 8. (Numerical vector capturing state of a group) Let H be a group in G(M)

with the derivative set ds∗(H). At any given time, the state of the instances in group H

is captured by the vector:

ξξξ(H) = 〈 ξ(H,P) | P ∈ ds∗(H) 〉

where ξ(H,P) is a variable capturing the number of instances in H that are currently

in state P.

For a group H, ξξξ(H) expresses how the population of sequential processes within

H are distributed across the local states ds∗(H). The state of the model is captured by

putting together the vectors constructed for groups H ∈ G(M):

Definition 9. (Numerical vector underlying a large-scale model) The numerical vector

used for the state representation of model M is

ξξξ = 〈 ξξξ(H) | H ∈ G(M) 〉

where ξξξ(H) is the numerical vector defined as above.

2.4.3 Population-Based State Space

The GPEPA syntax is regarded as a convenient means of specifying the model’s pop-

ulations, and introduces no additional layer of expressiveness. Therefore, we can use

the same semantics of Fig. 2.1 to generate the model’s underlying state space. How-

ever, this state space would not be readily expressed in terms of numerical vectors. For

this purpose, all states that have the same numerical vector are lumped into their cor-

responding numerical vector. The theoretical basis of the corresponding lumpability

condition is laid out in [47, 59]. The result is a state space fully expressed in numerical

vector form.

Example

Consider the client-server system shown in Eq.(2.5). The numerical vector for captur-

ing the state of the system is 〈Si,Sl,Ct ,Cr〉 where Si is the number of servers being idle,

Sl is the number of servers logging, Ct is the number of clients thinking and Cr is the
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〈1,0,2,0〉

〈1,0,1,1〉

〈1,0,0,2〉

〈0,1,2,0〉

〈0,1,1,1〉

〈0,1,0,2〉

(think,2rt)

(req,min(rc,2rs))

(think,rt)

(req,min(rc,rs))

(log,rl)

(think,2rt)
(log,rl)

(think,rt)
(log,rl)

Figure 2.3: The state space of the client-server system with one server and two clients

represented using numerical vector 〈Si,Sl,Ct ,Cr〉.

number of clients requesting. The model’s original state space was shown in Fig 2.2.

The state space built using the notion of numerical vectors is shown in Fig 2.3.

2.4.4 Count-Oriented Semantics

The count-oriented semantics is an extension of SOS and enables us to directly gen-

erate the state space in the numerical vector form. The semantics will be formally

introduced in Sec. 4.3.2, but to help with our presentation let us informally describe it

here and briefly explain what it achieves. First, we extend the notion of apparent rate

functions to make them applicable to numerical vectors.

Definition 10. (Apparent rate of an action with respect to a group for two specific

local states) Let H be a group in G(M) with derivative set ds∗(H), and P,P′ be two

local states within ds∗(H). The total rate observed in group H for α activities that take

instances of P into P′ is denoted by rα(H,P,P′) and is derived as:

rα(H,P,P′) = ξ(H,P)× rα(P,P′) (2.8)

where rα(P,P′) is defined using Def. 2. For any α, P and P′ the function rα(H,P,P′) is

a linear function with respect to the population count ξ(H,P).

Next, we consider the capacity of a whole group in performing an action type α.

Recall that in the most general case, there might be more than one local state in ds∗(H)

which enables α.

Definition 11. (Apparent rate of an action type offered by a group) Let H be a group
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in G(M) with the derivative set ds∗(H). The apparent rate of an action type α with

respect to H is denoted by rα(H) and is defined as:

rα(H) = ∑
P∈ds∗(H)

ξ(H,P)× rα(P)

where rα(P) is derived using Def.1. For any action α and group H the function rα(H)

is a linear function with respect to the population counts ξ(H,P) where each P is a

local state that enables α .

The numerical state vectors can evolve due to the transitions made by the individual

instances. Consider a group H with P ∈ ds∗(H), P = (α,r1).P′+(α,r2).P′′+ · · · . A

state change such as P
(α,rα)−→ P′ by any individual P causes the whole vector ξξξ(H) to

change:

ξξξ(H) = 〈 · · · ,ξ(H,P) , · · · ,ξ(H,P′) , · · · 〉 (α,R)−→
ξξξ
′
(H) = 〈 · · · ,ξ(H,P)−1, · · · ,ξ(H,P′)+1, · · · 〉 (2.9)

where R is evaluated by Eq.(2.8). When instances in two distinct groups cooperate (say,

P1 instances in H1 cooperate with P2 instances in H2 on a shared α activity becoming

P′1 and P′2 respectively) the update to the numerical state vector will make changes

analogous to those outlined above, i.e. the subvectors corresponding to the two groups

will simultaneously be updated. Then, the rate of the shared activity will be:

R =
rα(H1,P1,P′1)

rα(H1)

rα(H2,P2,P′2)
rα(H2)

min(rα(H1),rα(H2)) (2.10)

In general, the rate R is a function which includes rational divisions of linear functions

and (possibly recursive) minimum expressions between linear functions. The con-

struction of this expression follows a similar reasoning to the one shown on Page. 19.

Given a model’s initial state in the numerical vector form, the count-oriented se-

mantics takes into account the activities of the model’s sequential processes and derives

the set of changes or transitions (such as Eq.(2.9)) that the initial state may experience.

This is used to infer the set of states, also expressed in the numerical form, that the

system visits next. The rates associated with the transitions are obtained using the

population-based apparent rate functions defined as above. By applying the semantic

rules repeatedly, we derive the model’s transition system that shows a state space in

numerical vector form. The transition system is used to derive the model’s underlying

population-based CTMC.
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In a model with state vector ξξξ = 〈ξ(H,P)〉, H ∈ G(M), P ∈ ds∗(H), each state

variable ξ(H,P) is regarded as a random variable. Furthermore, the state vector ξξξ is

a vector of dependent random variables. To the model’s underlying CTMC we assign

a joint probability distribution Pt(ξξξ) for capturing the evolution of the state variables.

The goal of the model analysis is to obtain different quantitative measures over this

distribution, such as some marginal distributions of interest, or the moments such as

expectation, variance, etc.

2.5 Split-Free Models

In the derivation of population-based apparent rate functions (Eq.(2.8) and Eq.(2.10))

we imposed no restriction on the structure of PEPA models. In particular, we accom-

modated cases where an action type shared within a cooperation could be split into

multiple activities of that type in the context of the participating components. An ex-

ample of this is the process P[n]BC
α

Q[m] where instances of process P = (α,r1).P′+

(α,r2).P′′+ · · · cooperate with instances of Q = (α,r′1).Q
′+(α,r′2).Q

′′+ · · · on α ac-

tions. Assuming that P and Q have no further α activities, the cooperation on α is split

into four combinations; each α activity by a P is connected to one of the α activities in

Q and vice versa. The cooperation is divided into different activities, each with a dif-

ferent impact (update) on the numerical vector. A model in which there exist a splitting

cooperation is called a splitting model [55].

The existence of a splitting cooperation has one important consequence. The ap-

parent rate of a splitting action will include divisions of linear functions and hence, the

function as a whole becomes non-linear. As illustrated in Eq.(2.10), the non-linearity is

due to the probability expressions that assign weights to all possible transitions enabled

by that action.

The presence of such non-linear terms introduces unnecessary and otherwise avoid-

able complications when developing rate function approximations in the context of

analysis methods (e.g. different classes of moment closure techniques). For models

which do not include splitting cooperation, the probability fractions reduce to one and

the rate functions are piece-wise linear. Consequently, in their analysis it is possible to

apply many accurate and useful approximations that are well studied and significantly

improve the efficiency. However, for splitting models such techniques become inap-

plicable and if used, the results would be poor in accuracy. Since there are potentially
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many models that capture the dynamics of a given system, we prefer our models not to

be splitting.

The complications of the splitting cooperations are avoided by the design principle

of split-freeness [55]. Let G represent a group or a composition of groups, and
→
A∗ (G)

be the set of action types enabled by sequential instances within G. We regard a model

M to be split-free if ∀ α ∈
→
A∗ (M) : s f (M) = true, where the boolean function s f (·)

is defined as:

s f (M1 BC
L

M2) =



s f (M1,α) if α ∈
→
A∗ (M1) ∧ α 6∈

→
A∗ (M2)

s f (M2,α) if α 6∈
→
A∗ (M1) ∧ α ∈

→
A∗ (M2)

f alse if α ∈
→
A∗ (M1) ∧ α ∈

→
A∗ (M2) ∧ α 6∈ L

s f (M1,α)∧ s f (M2,α) if α ∈
→
A∗ (M1) ∧ α ∈

→
A∗ (M2) ∧ α ∈ L

s f (H{D} , α) = true if there exists at most one local derivative P ∈ ds∗(H)

which enables at most one α activity P
(α,·)−→ P′

Intuitively, the condition means that if an action type α is not shared, then it only

appears within a single sequential process in the model. On the other hand, if it is

shared, then it gives rise only to a single combination of activities.

The majority of the models we build in practice are split-free. Furthermore, non-

conformance of a model can be flagged by an initial syntactic analysis and the model

can be transformed into a split-free one through simple preprocessing such as action

renaming. Outlining the full extent of such transformations is not within the scope

of this thesis. However, since the split-freeness imposes no restriction on the expres-

siveness of PEPA and does not conceptually restrict the scope of systems that can be

modelled, in this thesis we assume that our models are split-free. Based on this con-

sideration, we introduce the following definitions related to population-based apparent

functions.

Definition 12. (Local state of a sequential process enabling an action) Let
→
A∗ (M)

be the set of actions defined in the sequential processes of model M. For an action

α ∈
→
A∗ (M) and a sequential process P ∈ CM we define enα(P) as the local derivative

in ds(P) that enables α.

Definition 13. (Apparent rate of an action with respect to a group) For a group H ∈
G(M) and an action α ∈

→
A∗ (M), the apparent rate rα(H) is expressed by a linear



30 Chapter 2. Preliminaries

function as:

rα(H) = ξ(H,P′)× rα(P′) (2.11)

where P′ = enα(P) and P = sc(H).

Definition 14. (Local states of a group or group composition enabling an action) Let

H be a group with P = sc(H). For an action type α, we define enα(H) as the local

derivative in ds∗(H) which enables α. Furthermore, let G be a group composition with

G(G) as its set of group labels. The set of local derivatives of instances within G(G)

that are involved in performing α is denoted by enα(G) and is derived as:

enα(G) = { (H,P) | H ∈ G(G) , P = enα( sc(H) ) } (2.12)

Definition 15. (Apparent rate of an action with respect to a group or group composi-

tion) For a group or group composition G, the apparent rate of α with respect to G is

expressed by a linear function as:

rα(G) = min
(H,P)∈enα(G)

rα(H) = min
(H,P)∈enα(G)

ξ(H,P)× rα(P) (2.13)

where ξ(H,P) is the element of the state vector associated with the local derivative

(H,P).

We will use the above definitions in the next chapters.
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Faithfulness in the Analysis of LSRB

Models

3.1 Introduction

We focus on LSRB models, one class of large-scale models in which the groups in-

volved are divided into two categories: resources or resource users. We assume that the

groups of users are significantly larger than those of the resources. The categorisation

of groups is indeed conceptual and adaptive. Modern computer systems have complex

architectures with components that represent various roles. Nonetheless, it is usually

possible to form, for a defined set of analysis goals, a dependency hierarchy among

the components which captures their reliance on each other. Within this hierarchy, the

resources, on whose services others rely, reside towards the bottom, and resource users

which rely on lower level components, reside towards the top. A system is then mapped

to a LSRB model when a horizontal cut is specified on the hierarchy; the components

above the line are regarded as users and those below are taking the role of resources.

When the level of abstraction or the performance questions of interest change, a new

cut and a new categorisation is specified.

In this chapter, we describe some of the key behavioural features that LSRB mod-

els exhibit. These features give a sharp contrast to these models against the class of

large-scale models where all groups are uniformly large (for example, a peer-to-peer

network where the nature of cooperation is more distributed and there is no notion of

resource / resource users.). Then we illustrate some shortcomings of the existing anal-

31
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ysis methods when applied to LSRB models. The context of our presentation will be

an experiment performed on the model of a client-server system, where a small group

of servers (resources) serve the large groups of clients (resource users). We show that

for LSRB models, the methods that are typically prescribed for large-scale models

potentially fail to simultaneously provide high degrees of efficiency and faithfulness.

We use the observations made during the experiment to propose a framework (a

number of new analysis methods) particularly tailored for LSRB models. In this chap-

ter, an overview of this framework will be provided. The last part of our chapter

concerns the related work. Indeed, the problem of the analysis of large-scale models

with highly stochastic behaviours is not new. We present alternative methods such as

hybrid simulation, Langevin expansion, conditional linear noise approximation, etc.

and compare them with our framework.

Our presentation follows this structure. In Sec. 3.2 we describe some notation used

when building LSRB models. In Sec. 3.3, we describe the existing analysis methods

of the PEPA framework. In Sec. 3.4, we report the results of an experiment which

shows the pitfalls of utilising those methods for LSRB models1. We also provide an

overview of our new analysis methods. In Sec. 3.6, we describe the related work and

differentiate our contribution from the previous work.

3.2 Notation - LSRB Models

A LSRB model is specified by a pair 〈M,∆G〉 where M is a grouped PEPA model and

∆G = {Gs(M) , Gl(M)} is a partition over the set G(M) of the model’s groups. The set

Gs(M) consists of the labels of the small groups and Gl(M) consists of labels related

to the large groups. Based on the conceptual categorisation of the entities, the small

groups capture the dynamics of resources and the large ones capture the dynamics of

the resource users. We assume that the modeller provides ∆G by considering the role of

components and comparing the size of a system’s groups against a defined threshold.

Example

Consider the following client-server model and assume that ns = 2 and nc = 150; the

1The content presented in Sec. 3.4 has been published in [79].
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servers form a small group and the clients a large one.

Cthink
def
= (think,rt).Creq Creq

def
= (req,rc).Cthink

Sidle
def
= (req,rs).Slog Slog

def
= (log,rl).Sidle

CS def
= Servers{ Sidle[ns] } BC

{req}
Clients{Cthink[nc] } (3.1)

The associated LSRB model is specified as 〈CS,∆G〉 where Gs(CS) = Servers and

Gl(CS) =Clients.

3.2.1 Partition on State Variables

Recall that ξξξ denotes the model’s underlying numerical state vector. The partition

∆G is used to form a partition over variables of ξξξ. Without loss of generality, ξξξ is

reformulated as ξξξ = 〈ξξξs
, ξξξ

l〉, where ξξξ
s
= 〈ξξξ(H) | H ∈ Gs(M)〉 consists of the state

variables related to the small groups and ξξξ
l
= 〈ξξξ(H) |H ∈Gl(M)〉 consists of the state

variables associated with large groups.

Example

The state vector capturing the state of the above client-server model is ξξξ= 〈Si,Sl,Ct ,Cr〉,
where Si captures the number of servers being idle, Sl captures the number of servers

logging, Ct is the number of clients thinking and Cr is the number of clients request-

ing. Given the partition ∆G as above, we have ξξξ = 〈ξξξs
, ξξξ

l〉, where ξξξ
s
= 〈Si,Sl〉 and

ξξξ
l
= 〈Ct ,Cr〉.

3.2.2 Impact Vectors

On Page 27, we showed how the values of the state variables in ξξξ change as a result

of individual or shared actions. The variables experience transitions such as Eq.(2.9),

where those related to the local states enabling the action decrease by one and the

variables related to the next local states are increased by one. We define the notion of

impact vectors to capture the net change or influence caused by an action type on the

elements of vector ξξξ. Here, our presentation will be brief. For the formal construction

of impact vectors, see [35, Chapter 3].
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Impact vector : Vα

V s
α V l

α

Action α Si Sl Ct Cr

req −1 +1 +1 −1

log +1 −1 0 0

think 0 0 −1 +1

Table 3.1: Impact vectors of the actions defined in the client-server model.

Definition 16. (Impact vectors) Let
→
A∗ (M) denote the set of action types of model

M. For any α ∈
→
A∗ (M), the impact vector Vα = 〈V

α,(H,P) | H ∈ G(M),P ∈ ds∗(H)〉
represents the net change induced on ξξξ when an α activity is performed. The impact

vector Vα is derived as:

∀ H ∈ G(M) , P ∈ ds∗(H) :

V
α,(H,P) =



−1 ∃ P,P′ ∈ ds∗(H) : P
(α,·)−→ P′

if performing α requires a component in local state (H,P)

+1 ∃ P,P′ ∈ ds∗(H) : P′
(α,·)−→ P

if performing α produces a component in local state (H,P)

0 otherwise

Example

The set of impact vectors of the client-server model are shown in Table 3.1. For each

of the actions req, log, think its impact vector captures how a transition of that type

changes the state vector 〈Si,Sl,Ct ,Cr〉.

In order for an action α to be enabled, there must be at least one instance in each of

the local states that enable α. Obviously, if the activity is individual, the requirement is

simpler and we would be concerned with only one local state. We define the notion of

negative impact vector to capture the requirement of an action being enabled in terms

of the numerical values of the state variables.

Definition 17. (Negative impact vectors) For any action type α, its negative impact
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Impact vector : Vα

V s
α V l

α

Action α Si Sl Ct Cr

req 1 0 0 1

log 0 1 0 0

think 0 0 1 0

Table 3.2: Negative impact vectors

of the actions defined in the client-

server model.

Impact vector : Vα

V s
α V l

α

Action α Si Sl Ct Cr

req 0 1 1 0

log 1 0 0 0

think 0 0 0 1

Table 3.3: Positive impact vectors of

the actions defined in the client-server

model.

vector is V −α = 〈 V −
α,(H,P) | H ∈ G(M) , P ∈ ds∗(H) 〉 where:

V −
α,(H,P) =

{
+1 if performing α requires a component in local state (H,P)

0 otherwise

For α ∈
→
A∗ (M), the vector V −α is zero everywhere, except the elements ξ(H,P)

corresponding to local states that enable α.

Example

The negative impact vectors of the client-server model are shown in Table 3.2.

It is useful to define also the positive impact of an action. This captures the state

variables that increase as a result of performing the action.

Definition 18. (Positive impact vectors) For any activity α, its positive impact vector

is V +
α = 〈 V +

α,(H,P) | H ∈ G(M) , P ∈ ds∗(H) 〉 where:

V
α,(H,P) =

{
+1 if performing α generates a component in local state (H,P)

0 otherwise

For α, the vector V +
α is zero everywhere, except the elements ξ(H,P) correspond-

ing to local states that are one step derivatives of α activities within the sequential

components. For any action type α ∈
→
A∗ (M), we have:

Vα = V +
α −V −α (3.2)

Example

The positive impact vectors of the client-server model are shown in Table 3.3.
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3.2.3 Partition on an Impact Vector

Similarly to ξξξ being divided into two sub-vectors ξξξ = 〈ξξξs
, ξξξ

l〉, the partition ∆G is

used to divide the impact vectors into two parts. For example, Vα is formulated as

Vα = 〈V s
α,V l

α〉, where V s
α is the impact of α on the vector ξξξ

s, and V l
α is the impact on

ξξξ
l . A similar partitioning is possible for V −α and V +

α resulting respectively in V −,sα ,

V −,lα , V +,s
α and V +,l

α .

Example

The partitions related to the impact vectors of the client-server model are shown in

Table 3.1, 3.2 and 3.3 over the columns. For each impact vector, we have specified

how it affects ξξξ
s
= 〈Si,Sl〉 and ξξξ

l
= 〈Ct ,Cr〉 in two separate parts.

3.3 Analysis Methods for Large-Scale Models

In this section, we review the main analysis techniques available in the PEPA frame-

work. For each technique we describe its assumptions, algorithm, output and computa-

tional cost. In the following, we assume that a model M has the state space denoted by

D which is built based on the counting abstraction. Also, each numerical state Si ∈ D

has the state vector ξξξi ; this is expressed as Si = ξξξi.

3.3.1 Exact Markovian Analysis

Exact Markovian analysis is the standard technique for deriving the evolution2 of the

model’s underlying probability distribution Pt(Si), Si ∈ D. The distribution is the so-

lution of the set of Chapman-Kolmogorov (C-K) equations associated with the CTMC

whose state space is captured by D [50, Chapter 6]. The assumption of applying the

method is that D is small enough such that it can be fully constructed. Then, the prob-

ability of being in each state Si ∈ D is governed by:

d Pt(Si)

d t
= ∑

α :S j
(α,rα(S j))−−−−−−→Si

rα(S j) · Pt(S j) − ∑

α :Si
(α,rα(Si))−−−−−→S j

rα(Si) · Pt(Si) (3.3)

2Here, we are focusing on the transient evolution.
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For any state Si, its equation captures how the probability of being in the state

evolves as a result of the probability fluxes in and out of Si. Using an initial distribu-

tion Pt0(Si), the system of equations is solved and the evolution of probability distri-

bution Pt(Si) is derived for the time period of interest. A common solution method

is uniformisation [102], which avoids using differential integration and offers a higher

degree of numerical stability.

The method offers the highest degree of analytical faithfulness; at any time t, the

probability of being in any state that the model may be in is derived. The probability

distribution that is obtained captures the model’s stochastic behaviour in full detail.

However, for realistic large-scale systems, their underlying state spaces are usually

massive, even after the counting abstraction, and this type of analysis is intractable or

if applied, is computationally very expensive.

3.3.2 Stochastic Simulation

The method of stochastic simulation relies on the assumption that instead of the con-

struction of the complete state space, the behaviour of the model can be analysed by

observing a large number of traces or trajectories across its state space. Often, the al-

gorithm used for trajectory generation is Gillepie’s SSA [44] or its extensions [46, 84].

Given an initial state S ∈ D, the time ∆t until the next transition is sampled by consid-

ering the rates of the actions enabled in S. Having decided on ∆t and the action that

occurs first, the clock is moved forward by ∆t and the state is updated according to

the impact of the fired action. By following the above steps repeatedly, a trajectory is

generated. By producing a large number of trajectories, the approximate distribution

Papx
t (S), S ∈ D is derived.

The computational cost of the analysis by stochastic simulation depends on the

scale of the model. As the scale grows, the frequency of events occurring increases,

and to accurately generate the trajectories we need to consider smaller time steps. This

increases the cost of generating each trajectory. Also, to obtain statistically accurate

results, we often need to run a very large number of simulations, even when the goal

of analysis is focused on a single set of parameter values. These features mean that

although the stochastic simulation makes the analysis tractable, but it is still considered

to be a computationally expensive method.



38 Chapter 3. Faithfulness in the Analysis of LSRB Models

3.3.3 Fluid Flow Approximation

Fluid flow approximation is based on one very important observation made when the

scale of PEPA models increases [94]. To describe this, we introduce the notion of

Lipschitz continuity [83], density dependent Markov chains (DDMC) [10], and the

convergence property of DDMCs [66].

3.3.3.1 Lipschitz Continuity

Let E denote an open set in Rd . A function f : Rd →R is Lipschitz continuous in E if

there exists a real constant K ≥ 0 such that:

∀ ξξξi , ξξξ j ∈ E ,
|| f (ξξξi)− f (ξξξ j) ||
|| ξξξi−ξξξ j ||

≤ K (3.4)

Lipschitz continuity is a strong form of continuity and a conforming function features

a number of interesting features, including:

1. It is globally differentiable across E.

2. The change of the function between any two points in E is bounded and thus, the

function changes happen in a relatively slow and controlled way (as a counter-

example, consider f (x) = x2, which is not Lipschitz in R).

3.3.3.2 Density Dependent Markov Chains

Let {X (N)(t)} be a family of population-based CTMCs defined over state space D⊂Zd

where d is the dimension of the state vector. Here, N denotes the scaling factor; X (N)

has the same set of jumps (experiences the same impact vectors) as X (1), but its popu-

lations are N times larger. The family {X (N)(t)} is referred to as density dependent if

there exists a function ϕ : Rd×Rd→R that expresses the elements of the infinitesimal

generator matrices Q(N) as:

∀ ξξξi ∈ D : q(N)

ξξξi ,ξξξi+V = ϕ(ξξξi , V ) = N×ϕ

(
ξξξi
N
,V
)

(3.5)

Obviously, the rate of a jump that a state enables depends on the values of its population

counts (state variables). In DDMCs, however, such rates can also be formulated in

terms of population densities. Assuming that N is the scaling factor (representing the
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system size) the density vector associated with each state ξξξi is captured by
ξξξi
N

. Studying

the sequence of CTMCs X (1), X (2), · · · , X (N) through their density vectors allow us to

compare them and observe the effect of increasing scale in the sequence.

3.3.3.3 Convergence of DDMCs

Let {X (N)(t)} be a family of DDMCs in Zd with the function ϕ defined as above. Sup-

pose that ϕ is Lipschitz continuous in Rd . Also, consider the vector field F : Rd → Rd:

∀ x ∈ Rd : F(x) = ∑
V

V ×ϕ(x , V ) (3.6)

with the associated ODE problem:

d x(t)
d t

= F(x) (3.7)

Then we observe that when N→ ∞, the sequence X (1)(t), X (2)(t),· · · , X (N) converges

to a deterministic limit in the sense that:(
lim

N→∞

X (N)(t0)
N

= δ

)
=⇒ ∀ ε > 0 : lim

N→∞

(
sup

t
||X

(N)(t)
N

− x(t)||> ε

)
= 0 (3.8)

Intuitively, this means that when N → ∞ and the initial densities X (N)(t0)
N converge to

δ, the behaviour of the discrete state process X (N)(t)
N is approximated by the evolution

of a continuous process x(t), which is the solution of Eq.(3.7) given the initial value

x(t0) = δ.

NB. The original convergence theorem of Kurtz in [67] for DDMC is slightly more

precise than the version above, in the sense that it considers the convergence only with

respect to open set E ⊂ Rd ×Rd where ϕ is strictly Lipschitz. In this thesis we are

considering PEPA models which have bounded state spaces that can be enclosed in

Rd , and have piece-wise linear rate functions with simple behaviours. Thus, we can

safely assume that E = Rd×Rd , and relax the other necessary conditions imposed by

the original theorem. A detailed discussion of the additional conditions is provided

in [18].

3.3.3.4 Convergence of PEPA Models

Consider the sequence of models M(1), M(2), · · · , M(N). A model M(N) has the same

sequential processes and groups as M, but its groups contain populations which are N
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times larger. Tribastone et al. [94] established that the convergence property of DDMC

can be used to form a convergence property for PEPA models of increasing scales,

which then forms the basis of fluid flow approximation. Recall that the state vector

ξξξ evolves in Zd where d is the number of state variables. We define the vector field

F : Rd → Rd :

∀ x ∈ Rd : F(x) = ∑
α∈
→
A∗(M)

Vα · rα(x) (3.9)

and the associated ODE problem d x(t)
d t = F(x(t)). Then we observe that the above

sequence of models gives rise to a sequence of DDMCs X (1), X (2), · · · , X (N), with the

asymptotic probabilistic convergence property of Eq.(3.8). The initial value associated

with δ is derived by dividing the initial state of the models M(N) by N. For increasing

N, X (N)(t)
N converges to a deterministic limit.

One important corollary is that the re-scaled solution N · x(t) captures the mean

evolution of XN(t) (expectation of Et [ξξξ
(N)

]), and for large N, the stochastic process

X (N)(t) can be written in terms of this mean and a normally distributed random variable

EN (which captures the dispersion around the mean) multiplied by
√

N [89]:

XN(t)≈
Et [ξξξ

(N)]︷ ︸︸ ︷
N · x(t)+

√
N ·EN(t) (3.10)

According to Eq.(3.10), the expectation E[X (N)] grows by the factor N, and the noise

decreases by the factor
√

N
N and for N→ ∞, the noise is close to zero.

Eq.(3.10) express that as the scale enlarges, the models exhibit wider variance.

However, at the same time the behaviour gets increasingly more robust in terms of be-

ing clustered around the mean and the impact of these variations becomes increasingly

negligible when compared against the mean and the domain of the vector field. More

formally, the index of dispersion (i.e. the ratio between the variance and the mean)

gradually vanishes. Thus, for models where all populations are large, the stochastic

behaviour can be faithfully captured by the deterministic evolution of the mean E[ξξξ]
whilst abstracting from variance [96, Chapter 6]. The deterministic evolution is found

by solving the fluid flow approximation equations, a set of differential equations based

on Eq.(3.7).

The fluid flow analysis offers the maximum efficiency. The deterministic behaviour

is obtained by solving a system of ODEs whose size does not depend on the popula-

tions of the instances within the groups. Therefore, the method is particularly useful
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for experimental analyses where one needs to sweep a large parameter space to find

the optimal configurations.

3.3.4 Moment Closure Techniques

The moment closure technique acknowledges the limitation that the systems we build

in practice never have infinitely large populations and aims at quantifying the variance.

Assuming that a model’s populations are all large and the probability distribution P(ξξξ),

ξξξ ∈D, is densely clustered around the expectation E[ξξξ], the moment closure technique

allows us to derive higher-order moments, such as variance and skewness to capture

noise and gain a more detailed representation of the shape of P(ξξξ). The moments

are derived by solving a system of ODEs derived directly from the model. The ODEs

constructed for the first-order moment E[ξξξ] resemble Eq.(3.7): d Et [ξξξ]
d t = F(Et [ξξξ]). To

account for the second-order moments and above, the system of ODEs is augmented

with additional equations. The construction of these equations is complex and is not

included here. The details can be found in [56]. The solution is the evolution of the

central moments (with respect to the mean) of the distribution Pt(ξξξ).

The complexity of applying the method depends on the moment order of interest;

the higher the order, the more equations are added and the higher is the analysis cost. In

practice, assuming that the underlying distribution is uni-modal the analysis involves

the derivation of moments of up to the fourth order as the moments beyond, which

are costly to derive, add little meaningful information with respect to the shape of the

distribution. In spite of the cost incurred by addition of the higher-order moments, the

moment closure technique is still considered as an efficient method, since the genera-

tion of the complete state space is completely bypassed and the structure of the ODEs

does not depend on the population levels. An example is presented in the next section.

3.4 Investigating Analytical Faithfulness

In this section, we report the result of an experiment where the analysis methods pre-

sented above were applied to two versions of a client-server model. Here, we illustrate

the general steps and key findings. The full description can be found in our paper

“Don’t just go with the flow, cautionary tales of the fluid flow approximation” [79].
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Parameter rs rl rc rt ns nc

Value 500 120 2 0.06 10 l0000

Table 3.4: Parameters used for the first version of the client-server model.

3.4.1 First Model - Client-Server Model Revisited

The first model we consider is the one shown on Page 33. We use the synthesized

parameters shown in Table 3.4 to initialise the model. The system has 10000 clients

that are served by 10 fast servers. The parameters are chosen in a way that the servers

perform under heavy contention, and the length of the client waiting queue (clients in

state Cr) is strongly sensitive to the number of available servers. The goal is to evaluate

the number of clients waiting given the service profile of the servers.

3.4.2 First Model - Analysis

Exact Markovian Analysis. First, we tried to analyse the model using the exact

Markovian analysis. The time span of interest is 0 < t < 100 (hours) which covers

the transient evolution until the system settles into the stationary phase. The system

gives rise to a state space with 110011 states and 310010 transitions. The machine

we used for our analysis was equipped with 4G Ram and 2.3Ghz processors. The

tool we used was the PRISM’s hybrid engine [68], which applies complex techniques

for compact storage of the state space and uniformisation for transient analysis. The

model, with its modest state space size, could unfortunately not be analysed within the

maximum allocated time of 24 hours.

Stochastic Simulation. Second, we used stochastic simulation and the tool PEPA

Eclipse Plug-in [93]. The result with respect to state variable Si and Cr is shown in

Fig 3.1A and 3.1B. In this analysis we ran 20000 simulation runs, which results in the

confidence interval E[Si]± 0.6 and E[Cr]± 20 (acceptable for this experiment) at the

confidence level 95%. The analysis took nearly 4.5 hours. Here, note the distribution

of Cr; it is densely clustered around the expectation E[Cr] = 319.

Fluid Flow Approximation and Moment Closure. Finally, we applied the fluid flow

approximation and analysis of higher-order moments up to the second order. The set
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Figure 3.1: The results of the applying the fluid flow approximation and stochastic sim-

ulation on the first version of the model.

of equations constructed for the first-order mean approximation is:

d Et [Ct ]

dt
= −rt×Et [Ct ]+min(rc×Et [Cr],rs×E[Si])

d Et [Cr]

dt
= −min(rc×Et [Cr],rs×Et [Si])+ rt×E[Ct ]

d Et [Si]

dt
= −min(rc×Et [Cr],rs×E[Si])+ rl×E[Sl]

d Et [Sl]

dt
= +min(rc×Et [Cr](t),rs×E[Si])− rl×Et [Sl]

The system of equations was solved with the initial condition E[Si] = 10, E[Sl] = 0,

E[Cr] = 10000 and E[Ct ] = 0. The solution with respect to E[Si] and E[Cr] is shown in

Fig. 3.1C and 3.1D. Note that E[Cr] accurately captures the value within the domain of

Cr where the distribution is densely clustered. For second-order moments, we derived
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the variances and then standard deviations of the state variables using the Grouped

PEPA Analyser [23] which provides the automatic derivation of the related equations.

The code which runs GPA is available at the our online supplements [77].

For this model, we have the knowledge that the underlying distribution is uni-modal

and close to being normally distributed. By exploiting this, we are able to build 95%

confidence bounds of the underlying distribution by combining the first and second-

order moments. For any normally distributed random variable X with the mean µ(X)

and the standard deviation σ(X), we have:

P( µ(X)−2σ(X)≤ X ≤ µ(X)+2σ(X) )≈ 95% (3.11)

This means that 95% of the observations lie within the interval µ(X)− 2σ(X) ≤ X ≤
µ(X)+2σ(X). Applying this rule, we combine E[Si] and σt(Si), and E[Cr] and σt(Cr)

to build confidence bounds associated with the marginal distributions P(Si ) and P(Cr ).

These are also shown in Fig. 3.1C and 3.1D.

The analysis of moments took approximately 30 seconds. Compare this with 24

hours of waiting for the exact Markovian analysis and the 4.5 hours of the stochastic

simulation. Also, compare the confidence bounds at t = 100 with the distributions of

Si and Cr. We observe that the combination of the expectations and the bounds allows

us to build a faithful representation of the model’s underlying distribution at any given

time (this has been checked for all 0≤ t ≤ 100 but we only show the result for t = 100).

These show the importance of approaches based on the deterministic approximation.

When applicable, the randomness can be faithfully studied very efficiently.

3.4.3 Second Model - Unfaithfulness Emerges

Next, we consider the second version of the client-server model:

Cthink
def
= (think,rt).Creq Creq

def
= (req,>).Cthink

Sidle
def
= (req,rs).Slog +(brk,rb).Sbroken

Slog
def
= (log,rl).Sidle Sbroken

def
= (fix,r f ).Sidle

CS def
= Servers { Sidle[ns] } BC

{req}
Clients {Cthink[nc] }

Here, each server is susceptible to failure. The parameters used are the same as the

previous one except those shown in Table 3.5. We have chosen r f < rb; the average
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Parameter rs rt rb r f

Value 200 0.05 0.0006 0.0004

Table 3.5: Parameters used in the extension of the client-server model where the

servers can break down.

time a fix takes is longer than the time it takes to break down. This helps us study

situations where the failure of one server increases the contention on the others and it

becomes more likely to see more servers breaking down before the broken ones get

fixed.

The state vector used for constructing the state space is ξξξ = 〈Si,Sl,Sb,Ct ,Cr〉; the

variable Sb is added which captures the number of servers in state Sbroken. The model

is assumed to start from state 〈10,0,0,10000,0〉. The time of interest is 0≤ t ≤ 16000;

for this version, the mixing time of the underlying CTMC is much longer.

3.4.4 Second Model - Analysis

The aforementioned analysis techniques were also applied to this version of the model.

Again, the state space was too large to be analysed by the exact Markovian analysis.

The next method was stochastic simulation, which gave us the evolution of the approx-

imate distribution over 〈Si,Sl,Sb,Ct ,Cr〉. We used this to extract the marginal distribu-

tions of Si, Sl , Sb and Cr. For a time point of interest t = 16000, these are respectively

shown in Fig. 3.2A, 3.2B, 3.2C and 3.3A. Finally, the fluid flow analysis and moment

closure technique were used to derive the expectation and standard deviations of the

state variables. These are shown in Fig. 3.2D, 3.2E, 3.2F and 3.3B.

Fig. 3.3A illustrates that the behaviour of this second version is very distinct, both

qualitatively and quantitatively, compared to the first version. A server can experience

failure; when this happens (by undertaking the brk action), the throughput offered by

the collection of servers for the req action decreases and it causes a rapid spike in Cr.

On the other hand, when a broken server becomes active again (by undertaking f ix

action), the service rate increases and as a result Cr considerably decreases. These

fluctuations are illustrated in Fig. 3.4, which shows a trajectory with respect to state

variables Sb and Cr. The system has distinct modes of operation associated with the

different number of servers that are currently broken. In each mode, the clients observe

a different service level and variable Cr clusters around different values.
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Figure 3.2: The results of applying the fluid flow approximation and stochastic simula-

tion on the model with break-downs.

3.4.5 Experiment Outcome

The aim of the experiment was to investigate the efficiency and faithfulness of the

PEPA framework’s analysis techniques for LSRB models. Given the computational

cost of the exact Markovian analysis and stochastic simulation, the natural choice is to

use fluid flow approximation and the moment closure technique. For the first model,

the behaviour was closely clustered around a single average (the underlying distribu-

tion was uni-modal) and the moments could faithfully capture the model’s stochastic

behaviour. However, for the second model this is not the case. Compare Fig. 3.3A

and 3.3B. Observe that the combination of the expectation and standard deviation does

not capture the mutli-modality of Cr’s distribution. Whilst the clients appear in a large

population and exhibit a robust behaviour in each of the operational modes, once the

servers change the current mode, the clients exhibit a distinctively different behaviour.

In this case, the central moments are too crude to faithfully capture important qual-

itative and quantitative aspect of the model’s dynamics. This is the direct result of
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Figure 3.3: The result of the analysis with respect to the clients.
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Figure 3.4: A trajectory of the system projected on the state variables Sb and Cr.

abstracting away from the highly noisy behaviour of servers, and ignoring the associ-

ated impact on the emergent behaviour by only considering their average evolution.

3.5 The Issue of Faithfulness for LSRB Models

The outcomes of the experiment can be carefully generalised to all LSRB models. Re-

call that the analysis of a LSRB model is essentially boiled down to understanding

the behaviour of the sub-vectors ξξξ
s and ξξξ

l , which respectively capture the state of the

model’s small and large groups (respectively, resources and resource users). Given

that the scale of ξξξ
l causes the explosion of the state space, and that exact Markovian

analysis and stochastic simulation are computationally expensive, the use of the mo-

ment based techniques (fluid flow approximation and moment closure technique) is the
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natural choice. The pitfall however, is that in doing so, a key modelling requirement

is violated; these methods are guaranteed to be faithful and informative for models

where all groups are large and the emergent behaviour is densely clustered around a

single average (see Eq.(3.10)). Indeed, the majority of evaluation studies where the

fluid flow approach has been particularly useful involved models with uniformly large

populations [22, 8, 2, 52]. For LSRB models though, this assumption is not read-

ily respected and the underlying distribution can exhibit arbitrary properties, such as

multi-modality. Applying these methods means that the noisy behaviour of ξξξ
s and its

knock-on effects on the emergent evolution is completely ignored. For these models,

there is no justification for moment based techniques and their application can poten-

tially be insufficient and even misleading in understanding the true behaviour of the

real system.

Thus, the faithful analysis of LSRB models requires the PEPA framework to be

extended by methods which, whilst being efficient, incorporate the highly random be-

haviour of ξξξ
s into the analysis.

The analysis methods should provide the machinery to enable us to capture

the potential noise induced departures from the fully deterministic behaviour

whilst keeping up with the efficiency standards.

With this in mind, we propose the analysis framework of Conditional Moments

For LSRB PEPA Models, which proposes a number of new methods. The outline of

this framework is shown in Fig. 3.5. The input, shown in grey, is a LSRB model M
and the partition ∆G on set G(M). The first step, shown in green, is an aggregation

method, which is applied to the model and produces a sub-model which captures the

dynamics of small groups only. This sub-model is used to obtained detailed informa-

tion about the stochastic evolution of resources. One key information is the presence

of dynamics at slow / fast time scales. We show that for detecting this feature one can

run a quick reachability analysis on the state space of ξξξ
s and then extend the conclu-

sion to the original model and the whole emergent behaviour. The second step, shown

in red, is the computation of conditional expectations. Using the descriptions of the

original and aggregated models, a system of differential algebraic equations (DAEs)

is constructed which captures the evolution of conditional expectations E
[

ξξξ
l |ξξξs

]
, the

average behaviour of the large groups given the different configurations that the small

groups may experience. The third step, shown in blue, is the analysis of higher-order
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conditional moments. Here, the DAEs are augmented with additional equations which

capture further moments of the conditional distributions P(ξξξ
l | ξξξ

s
). The core idea

of the framework is simple: instead of calculating one set of moments which cover

all of the system’s significant and distinct modes of operation, we calculate one set

of moments for each single mode separately. The conditional moments enable us to

build rich representation of the model’s underlying probability distribution and capture

phenomenon such as multi-modality.

Our framework promotes transparency. The analysis methods added, as we will

see, are based on heavy algebraic derivations. Nevertheless, we have integrated them

with PEPA’s syntax. Thus, the modeller works at the highly convenient level of mod-

elling language and the results are calculated and presented seamlessly in terms of the

model’s entities. The framework also supports adaptivity; when there is more computa-

tional power available for analysis, the modeller supplies a new partition ∆G with more

groups identified as small, and the amount of discreteness in the analysis is increased.

The details of each of the framework’s steps are explained in the next chapters.

3.6 Related Work

In the performance evaluation literature, there is ample evidence suggesting that the

highly random behaviour of many systems cannot be faithfully captured by the central

moments of their stochastic processes [49, 36, 98, 20, 86]. This issue has absorbed

much attention in the last few years and the development of efficient and faithful anal-

ysis methods is currently subject to active research. In this section, we present some of

the techniques that are related to our methods. For each method, we explain its input,

an overview of mathematical steps, its output and its computational cost.

3.6.1 Hybrid Semantics and Hybrid Stochastic Simulation

Hybrid stochastic simulation (HSS) [84] is an extension of the conventional SSA algo-

rithm which aims to reduce the cost of trajectory generation. HSS relies on the observa-

tion that transitions enabled by a system’s large populations occur at high frequencies

and the state variables related to those populations evolve nearly continuously. On the

other hand, the transitions affecting small populations happen at lower frequencies and

have somewhat discrete impacts. The transitions are thus categorised as either having a
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continuous or discrete effect. In contrast with the conventional SSA where the impact

of every individual transition is recorded discretely, in HSS the impact of the contin-

uous transitions is captured by numerical integration and only the small populations’

transitions are derived by the next jump detection of SSA. The speed up is achieved

by capturing the impact of a sequence of fast jumps related to the large populations at

once within the individual steps of the numerical integrator.

Previous work has explored the possibility of applying HSS to models specified

in high level formalisms [42, 21, 69, 3]. One can systematically apply HSS to PEPA

models through the PEPA hybrid semantics [19]. The input is a model and a partition

on its actions, which divides them between the continuous / discrete categories. The

hybrid semantics then generates a transition-driven stochastic hybrid automaton [21]

(an extension of hybrid automaton [57]) T = (Co,X ,T C ,T S , init) where Co is the

set of control modes (states affected only by the discrete jumps), X is the set of state

variables changing continuously, T C is the set of continuous transitions or flows, T S
is the set of stochastic transitions and init is the initial state. The hybrid trajectories

are generated as follows. Assuming the current mode Cm, the time ∆t until the next

discrete jump is sampled given Cm and the value of X . The evolution of X for [t, t+∆t]

is derived using numerical integration. The clock proceeds ∆t units and the above steps

are repeated again. Using HSS, the exact behaviour of the model is approximated by

obtaining a large number of hybrid trajectories.

Previous experiments show that HSS offers a high degree of faithfulness. How-

ever, this comes at the price of deriving a large number of trajectories. Although HSS

generates trajectories much more efficiently than the conventional SSA, the fact that

many trajectories are needed makes the whole approach computationally expensive.

HSS was one of the early developments which aimed to incorporate noise and ran-

domness into the analysis of large-scale systems. The method showed that including

an interplay between discrete jumps and continuous flows leads to a feasible and ac-

curate (quantitatively and qualitatively) approach. This view gave rise to interesting

methods which emerged later that employed solely numerical analysis and calculus of

stochastic processes, and avoided running repeated simulations. Two such methods

will be described in the following.
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3.6.2 Using Stochastic Differential Equations

The use of stochastic differential equations (SDE) is traced back to the field of sta-

tistical physics and the derivation of approximate solutions to the so-called chemical

master equation (CME) [45], which is the analogous version of the C-K equation in

that field. SDEs appear in different forms. Here, we focus on how they are used for

the evaluation of systems that give rise to density dependent Markov chains. Kurtz’s

derivations in [67] show that the behaviour of CTMC XN(t) with set of impact vectors

l ∈ L can be approximated by the continuous-valued random variable Y N(t) that is the

solution of:

dY N(t) = F(Y N(t)) ·dt︸ ︷︷ ︸
drift

+ ∑
l∈L

co-efficient of noise︷ ︸︸ ︷√
rl(Y N(t)) ·dWl(t)︸ ︷︷ ︸

noise

(3.12)

Here F is a vector field defined similarly to Eq.(3.6), rl is the rate of jump l happening

in Y N , and {Wl(t)}l are independent Brownian motions. Eq.(3.12) is also referred to

as the Langevin equation. The approximation assumes that the stochastic behaviour is

formulated in terms of a deterministic term (drift) and a noise term that captures the

process’s fluctuations. The solution of the SDE of Eq.(3.12) is a CTMC.

It is obvious that the expression of a stochastic behaviour by a single deterministic

drift and the fluctuations around it cannot account for important phenomena such as

multi-modality (recall our argument on Page 47 for unfaithfulness of fluid flow approx-

imation). To account for randomness, the SDE approach has been recently extended. In

the next two sections, we describe two relevant extensions, namely Langevin approxi-

mation with discrete switches [7] and conditional linear noise approximation [92].

3.6.2.1 Langevin Approximation with Discrete Switches

The method of SDE with switches [7] is similar to hybrid stochastic simulation. The

system’s transitions are partitioned into discrete and continuous, with some of the vari-

ables evolving according to the discrete jumps and the others continuously. The differ-

ence here is that for the continuous parts we use SDEs as opposed to ODEs.

The input of the method is a CTMC X and a partition L = {LD,LC} on set L of

the CTMC’s jumps. The behaviour of X is to be approximated by the evolution of a

hybrid automaton where YD is the set of control modes and YC is continuous stochastic
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processes. For each mode, the evolution of YC is derived by integrating an SDE of

the form of Eq.(3.12) related to that mode. The approximate solution is obtained by

running multiple hybrid simulations. In [7], Angius et al. provide hybrid semantics for

Stochastic Petri nets, which applies the above steps automatically on models written in

this modelling formalism, thus improving the method’s applicability.

The method offers a high degree of faithfulness and has been shown to be more

efficient than stochastic simulation. However, the disadvantage is that it still relies on

producing numerous trajectories; for systems where the switching process has a large

state space, the method is still computationally demanding, especially if the switching

occurs at multiple time scales and there are rare but not absent events.

3.6.2.2 Conditional Linear Noise Approximation

Linear noise approximation (LNA) [76] is a technique used in systems biology to find

an approximate solution to the CME by introducing a very simplifying assumption that

its underlying distribution is normal. Borrowing some biology terminology, assuming

that a biological system has volume Ω, the transient evolution of its stochastic process

X that counts the population of interacting species is expressed as:

X ≈Ω ·φ+
√

Ω · ε (3.13)

where φ is the solution of an ODE approximation (drift) and ε is a fluctuation process

formed based on particular properties of the system’s kinetics [100, Chp. 8]. Note

the similarity of Eq.(3.13) to Eq.(3.12). Our focus is on a very recent extension of

LNA presented in [92], where the goal is to capture multi-modality in gene regulatory

networks by the method of conditional LNA. The extension is based on the assumption

that multi-modal distributions are mixtures of normal ones and can be characterised by

calculating the means and widths associated with each mode.

The analysis requires the state vector to be partitioned as 〈D,C〉 where D and C

respectively capture the counts of species with low and high abundance (respectively,

promoters and proteins). The variability, i.e. multiple peaks, is caused by the dynamics

of the low population entities. Thus the evolution of D is studied by jumps concerning

low copy entities only. On the other hand, the marginal distributions over the abundant

entities are studied by the mean and variance of the conditional distributions P(C | D),

derived by solving SDEs of the form in Eq.(3.13). The approximate complete proba-

bility distribution is derived by the weighted sum of the conditional distributions based
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on the marginal distribution over D.

The method of conditional LNA is more efficient than stochastic simulation. Its

core idea is very similar to our framework of conditional moments, namely, that the

large groups are studied in terms of some conditional distributions. The main short-

coming of the conditional LNA is its excessive reliance on the requirement that the

underlying distribution is a mixture of normal modes. As stated, the method was devel-

oped very recently and its validity was supported by one example of a gene regulatory

network which was previously shown to give rise to mixture of normal distributions.

Although the method is acceptable for such cases, it is expected to lead to unacceptable

inaccuracy once the modes of the multi-modal distributions have any shape other than

normal, such as being slightly skewed to one side. The benefit of our framework is

that without imposing any restriction on the shape of the distributions, we are able to

calculate their conditional moments up to any order, which then allows us to capture a

wider class of distributions.

3.6.3 Conditional Moments of Chemical Master Equation

The last piece of related work we describe is the method of conditional moments

(MCM) [53] designed for reaction networks that follow the Michaelis-Menten kinet-

ics and have the presence of some species with low copy numbers. This method was

the basis of our development (and inspired the above conditional LNA as well), and is

traced back to the work of Engblom in [38].

The assumption of this version of MCM is similar to the previous method; the

variability in the emergent behaviour is caused by the species with low copy numbers.

The state vector of the stochastic process is reformulated into 〈D,C〉 where D and C

follow the description given above. Similarly to the previous case, the evolution of D

is derived by considering transitions which affect D only. However, the evolution of C

is studied by the expectation and higher-order moments of the conditional distributions

Pt(C |D). The higher the order, the better becomes the representation of the variability

of C.

One appealing feature of MCM is that it imposes no particular restriction on the

shape of the underlying distribution. The most important drawback is that when con-

structing the moment equations the evolution of moments of any given order depends

on moments which have higher orders (in conditional LNA this is avoided by exploit-
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ing the assumption on the shape of the distribution). The dependency gives rise to an

unbounded hierarchy of equations, a well-known curse which moment closure prac-

tices suffer from. To close the system, the hierarchy is cut at some order and the mo-

ments above are considered to contribute zero. The quality of approximation depends

on the depth of the equations [70].

The question of which layer to cut the hierarchy at is an important one and was

considered recently by Schnoerr et al. in [85]. The authors show that the validity

of the moment closure techniques highly depends on the parameters of the system:

rates defined for the reactions and the population assigned to the species. For a set of

parameters, if the equation hierarchy is cut too early, the solution becomes erroneous

or might even include imaginary numbers for species populations, which obviously

supports no physical interpretation. In other words, for any cutting order the method

is valid only with respect to a critical subset of the parameter space. The experiments

in [85] show that obtaining physically credible and accurate solutions for some realistic

systems requires going up to the fourth or fifth order, which drastically increases the

cost of analysis.

The negative feature above highlights an important advantage of our framework of

conditional moments presented for LSRB PEPA models. In our derivations in Chap. 6

and 8, we show that for PEPA models, the moments of each order III depend on mo-

ments with orders less than or equal to III. Thus, the system of equations becomes easily

closed and no hierarchy cut is needed. This feature is due to the transition rates in PEPA

being expressed by piece-wise linear functions which then enable us to perform accu-

rate approximations that eventually avoid the unbounded growth in dependency. Our

observation is in compliance with the findings of Engblom, suggesting that moment

closure techniques give rise to more accurate results for reaction networks with linear

rate functions.

A final point which differentiates our work is the fact that we have lifted MCM

to the level of PEPA models. The derivation of conditional moments involves tedious

algebra, and we believe its use is only viable if it is seamlessly integrated into the high-

level modelling languages. To analyse LSRB models, the only additional information

needed is the partition ∆G on group labels; the next steps are automatically done by

software. To our knowledge, we are currently the first group who offers the MCM on

an easily usable high-level platform, specifically, that of the PEPA framework.





Chapter 4

An Aggregation Method for

Large-scale Resource-bound Models

4.1 Introduction

In this chapter, we propose an aggregation algorithm for LSRB models. For a given

model, the method quickly checks if it satisfies a syntactic condition. If so, an aggre-

gated CTMC is generated directly from the model, bypassing the construction of the

complete state space. The aggregated CTMC captures the evolution of the model’s

small groups and can be used for efficient derivation of an approximate marginal prob-

ability distribution over them. We demonstrate the steps of the algorithm and as an

example, describe how it is applied in the context of a client-server system.

Our presentation follows this structure. In Section 4.2 we formally introduce the

aggregation condition. In Sections 4.3 and 4.4 we show the aggregation steps and the

way the marginal probability distributions is derived. In Section 4.5, we describe the

usefulness of the method in the context of an example.

The content of this chapter has been published in [78].

4.2 Aggregation Condition

In order to describe the syntactic aggregation condition, first we present the definitions

of cooperation hierarchy and synchronisation inteface.

57
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4.2.1 Some Definitions

4.2.1.1 Group Hierarchy

In the system equation of a model, the operator BC
L

is used to compose the model’s

groups and form cooperations. The instances of two groups which are composed are

restricted to synchronise on actions specified in the associated cooperation set. These

groups, however, can be subjected to further compositions and synchronisations with

other groups within the model. Thus, a system equation introduces a hierarchy of

cooperation among groups and assigns to each group, a set of actions that the instances

within that group must synchronise on. To clarify, consider the process (G1{·}BC
L′

G2{·})BC
L
(G3{·}BC

L′′
G4{·}). Here G1 and G2 cooperate on set L′; similarly, G3 and

G4 cooperate on actions in set L′′. Additionally, these component groups are also

combined in cooperation on set L. The cooperation on L′ restricts the instances in

groups G1 and G2 and does not affect G3 or G4; but all instances are restricted by L.

The notion of cooperation hierarchy in a model M can be formally captured by a

partial order relation <∗M. For group compositions Mi and M j, we have Mi<
∗
MM j, if

and only if Mi is composed when constructing M j. If Mi<
∗
MM j, all cooperation sets

applied to M j are also enforced on Mi. The following rules construct <∗M using M’s

system equation.

1. H{·}<∗M H{·}
2. X <∗M A , if A def

= X

3. H{·}<∗M Mi{·}BC
L

M j{·} , if H <∗MMi∨H <∗MM j

4.2.1.2 Synchronisation Interface

For a group H ∈ G(M), we define I (M,H) as the set of actions on which instances

in H are required to synchronise. I (M,H) is defined recursively from the system

equation, using the subsidiary function J ; I (M,H) = J (M,H, /0).

J (M,H,K) =


K if M ≡ H{·}
J (M1,H,K∪L)∪ J (M2,H,K∪L) if M ≡M1 BC

L
M2

J (A,H,K), if M def
= A
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We also define sync(M,H,α), the set of groups in M whose instances synchronise on

α activities with instances in H. Using <∗M , sync(M,H,α) can be derived as:

sync(M,H,α)=



/0 if M ≡ H{·}
sync(M1,H,α)∪{Hi∈G(M) |Hi{·}<∗MM2}

if M ≡M1 BC
L

M2,α ∈ L,H <∗M M1

sync(M2,H,α)∪{Hi∈G(M) |Hi{·}<∗MM1}
if M ≡M1 BC

L
M2,α ∈ L,H <∗M M2

sync(M1,H,α)

if M ≡M1 BC
L

M2,α 6∈ L,H <∗M M1

sync(M2,H,α)

if M ≡M1 BC
L

M2,α 6∈ L,H <∗M M2

4.2.2 Syntactic Condition

As a LSRB model is assumed to be a large-scale model, its complete CTMC is very

large and its construction and analysis are computationally expensive. We show that if

the model satisfies the following condition, then we can perform an aggregation which

results in an aggregated CTMC for M.

Condition 1. (Syntactic aggregation condition) Let
→
A (Cu) represent the set of actions

that a sequential process enables. A model M can be aggregated with respect to its

small groups Gs(M) if for any shared activity α , synchronised on by one or more

large groups and one or more small group, the rate of the shared activity is completely

decided by the small groups:

∀ H l∈Gl(M) ∀ α∈I (M,H)

[ ( sync(M,H l,α) ∩ Gs(M) ) 6= /0 =⇒

∀Cu ∈ ds∗(H l) s.t. α ∈
→
A (Cu) , ∃ ω ∈ N , rα(Cu) = ω> ]

The condition expresses that in any synchronisation on a shared action α, if both

small and large groups are involved, then all instances in the involved large groups

need to undertake α passively. As an example, consider a variant of the client-server

model with the client components modified as:

Cthink
def
= (think,rt).Creq Creq

def
= (req,>).Cthink
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We assume Clients constitutes a large group, and Servers, a small one. They synchro-

nise on the req activity which the clients undertake passively. Thus the model now

satisfies Condition 1. We will see that this implies that in any state of the system, the

count-oriented apparent rate of req depends only on the configuration of the servers

given that clients have a large population.

4.2.3 The CTMC Structure

The CTMC of a LSRB model that satisfies Condition 1 exhibits important lumpability

[63] properties which can be exploited in order to build an aggregated CTMC. We

introduce these properties and illustrate them in the CTMC of the client-server model

initialised with two servers and two clients.

In order to show the structural properties, first we need to describe how the partition

∆G on the group labels is used to partition the set of action types into three categories.

This will be described in the next sub-section, and then we continue the discussion.

4.2.3.1 Partitioning Actions

In Sec. 3.2, we showed that using ∆G , we can partition the state vector as ξξξ = 〈ξξξs
, ξξξ

l〉,
and similarly, the impact vectors as Vα = 〈V s

α,V l
α〉, α ∈

→
A∗ (M). Using ∆G , we can

also partition the set of actions where each action is categorised based on whether it

changes the state of only one or more small groups, the state of only one or more large

groups, or simultaneously, the state of both small and large groups.

For H ∈ G(M), let
→
A∗ (H) represent the set of all the actions enabled by instances

within H. Then,
→
A∗i (H) =

→
A∗ (H)− I (M,H) represents the set of actions not offered

in H’s interface and related to individual activities undertaken by instances in H.

First, assume that H∈Gl(M). We define
→
A∗l (H) to be the set of actions that in-

stances in H perform individually or in cooperation with other large groups.

→
A∗l (H) = { α | α ∈

→
A∗i (H) ∨ (sync(M,H,α) ∩ Gs(M)) = /0 }

Based on
→
A∗l (H), we can derive

→
A∗l (M) =

⋃
H∈Gl(M)

→
A∗l (H) as the set of actions related

to the dynamics of the large groups only.
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Second, assume that H∈Gs(M) and define
→
A∗s (H) analogously for small groups:

→
A∗s (H) = { α | α ∈

→
A∗i (H) ∨ (sync(M,H,α) ∩ Gl(M)) = /0 }

As above, we define
→
A∗s (M) =

⋃
H∈Gs(M)

→
A∗s (H) to be the actions in which the large

groups do not participate.

Finally, for H ∈ Gs(M) we define
→

A∗sl (H) to represent the set of actions shared

between instances of H and instances of one or more large groups.

→
A∗sl (H) = { α | α ∈ I (M,H)∧ (sync(M,H,α) ∩ Gl(M)) 6= /0}

Similarly, for model M,
→

A∗sl (M) =
⋃

H∈Gs(M)

→
A∗sl (H) is defined to be the set of actions

in which both small and large groups participate.

Using the above categorisation, the partition
→
A∗ (M) = {

→
A∗s (M),

→
A∗sl (M),

→
A∗l (M)}

is constructed over the set of model’s actions
→
A∗ (M). It is easy to see that for any

α∈
→
A∗ (M), if α∈

→
A∗s (M), then V l

α = 0; if α∈
→
A∗l (M), then V s

α = 0; and if α∈
→

A∗sl (M),

then V s
α 6= 0 and V l

α 6= 0. For the client-server system,
→
A∗l (CS)={think},

→
A∗sl (CS)=

{req} and
→
A∗s (CS) = {log , brk , fix}.

4.2.3.2 Identifiable Sub-chains

Consider a model M and assume that it respects Condition 1. In Fig. 4.1, we illustrate

the impact of a transition of type α ∈
→
A∗ (M) on a symbolic state Si = 〈γγγ , ξξξ

l
i〉. Here, γγγ

represents the configuration of the small groups; i.e. ξξξ
s
i = γγγ. Depending on α, one of

the following is the case:

1. α ∈
→
A∗s (M). In this case V s

α 6= 0, V l
α = 0. The transition only affects the config-

uration of the small groups and its rate is determined by ξξξ
s: rα(Si) = rα(γγγ). For

the target state Sk = 〈ξξξs
k , ξξξ

l
k〉 we have: ξξξ

s
k = γγγ+V s

α and ξξξ
l
k = ξξξ

l
i . This transition

exists if γγγ > V s,−
α ; the small groups satisfy the requirements of performing α.

2. α ∈
→

A∗sl (M): In this case V s
α 6= 0, V l

α 6= 0. The transition changes the configura-

tions of both small and large groups. In this case, ξξξ
s
k = γγγ+V s

α and ξξξ
l
k = ξξξ

l
i +V l

α.

This transition exists if both ξξξ
s
i and ξξξ

l
i enable it, that is, when Si ∈ D, ξξξ

s
i ≥ V s,−

α

and ξξξ
l
i ≥V l,−

α . Since the large groups are passive with respect to
→

A∗sl (M) actions,

rα(Si) = rα(γγγ).
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〈γγγ , ξξξ
l
i〉

〈γγγ,ξξξl
i +V l

α〉

〈γγγ+V s
α , ξξξ

l
i〉

〈γγγ+V s
α,ξξξ

l
i +V l

α〉

Yγγγ Yγγγ+V s
α

Si

α∈
→
A∗l (M)

α ∈
→
A∗s (M)

α ∈
→

A∗sl (M)

Figure 4.1: The impact of outward transitions with different types on the state vector.

Si
(α,·)−−→ Sk , Si = 〈ξξξs

i , ξξξ
l
i〉 , Sk = 〈ξξξs

k , ξξξ
l
k〉

α ∈
→
A∗s (M) α ∈

→
A∗sl (M) α ∈

→
A∗l (M)

necessary

condition

ξξξ
s
i ≥ V s,−

α ξξξ
s
i ≥ V s,−

α

ξξξ
l
i ≥ V l,−

α

ξξξ
l
i ≥ V l,−

α

impact ξξξ
s
k = ξξξ

s
i +V s

α

ξξξ
l
k = ξξξ

l
i

ξξξ
s
k = ξξξ

s
i +V s

α

ξξξ
l
k = ξξξ

l
i +V l

α

ξξξ
s
k = ξξξ

s
i

ξξξ
l
k = ξξξ

l
i +V l

α

rate rα(ξξξ
s
i ) rα(ξξξ

s
i ) rα(ξξξ

l
i)

Table 4.1: The properties of the outward transitions from a state Si

3. α ∈
→
A∗l (M): In this case V s

α = 0 and V l
α 6= 0. ξξξ

s
k = ξξξ

s
i = γγγ, ξξξ

l
k = ξξξ

l
i +V l

α. The

rate of the transition is determined by ξξξ
l
i . This transition exists if Si ∈ D and

ξξξ
l
i ≥ V l,−

α .

The properties of these transitions are summarised in Table.4.1.

Let us focus on transitions of type
→
A∗l (M). These transitions only change the state

of ξξξ
l and leave ξξξ

s unchanged. Thus, D can be divided into a number of sub-chains

where the states within each sub-chain are connected by
→
A∗l (M) transitions and for

which ξξξ
s remains the same. From a state S ∈ D a sub-chain Yi can be derived using

the rules:

1. S ∈ Yi ∧ S
(α,·)−→ S′ ∧ α ∈

→
A∗l (M) =⇒ S′ ∈ Yi

2. S ∈ Yi ∧ S′′
(α,·)−→ S ∧ α ∈

→
A∗l (M) =⇒ S′′ ∈ Yi
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The sub-chain Yi associated with a state S consists of S itself, the states from which S

can be reached by
→
A∗l (M) transitions, and the states reachable from S by such transi-

tions. The states within each sub-chain have the same configuration for small groups.

Thus, each sub-chain is identified by the configuration it captures for ξξξ
s; the sub-chain

associated with states S = 〈γγγ , ξξξ
l〉 ∈ D is denoted by Yγγγ. For model M its set of sub-

chains is denoted by YM.

As an example, in Fig. 4.2A, we show the CTMC of the client-server model with

two clients and servers and the sub-chains identified. In each sub-chain, the clients

change their state via think activities without affecting the servers. For a model with

a larger client population, the same partition, but with longer sub-chains would be

observable.

The next structural property we present concerns the rate regularity that we observe

with respect to the cross-sub-chain transitions.

4.2.3.3 Unlikely Boundary States and Rate Regularities

Let us consider a sub-chain Yi in YM and an action α ∈
→

A∗sl (M). The action represents

cooperation between resources (small groups) and resource users (large groups). In

Yi , we can identify a subset of states where α activities are not enabled because there

are no instances in one or more relevant large groups to participate. Extending this to

all actions in
→

A∗sl (M), in each sub-chain Yi we can find a subset of states where one or

more actions α ∈
→

A∗sl (M) remain disabled specifically due to the lack of cooperation

from the instances in the large groups. We refer to this subset as the boundary states

of Yi and define them formally below.

Definition 19. (Boundary states of an action) For any action α ∈
→

A∗sl (M), the set of

boundary states in a sub-chain Yi ∈ YM is denoted by bl(Yi,α) and is derived as:

bl(Y,α) = { Si | Si = 〈ξξξs
i , ξξξ

l
i〉 ∈ Y , ξξξ

s
i ≥ V s,−

α , ξξξ
l
i 6≥ V l,−

α } (4.1)

Definition 20. (Boundary states of a sub-chain) The set of boundary states of a sub-

chain Y ∈ YM is defined as bl(Y) =
⋃

α∈
→

A∗sl(M)
bl(Y,α).

The boundary states show the configurations of the system where the small groups

(resources) are ready to cooperate (provide the service), but the required instances in

the large groups (resources users) are not asking for the service. For instance, in the
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(A) Complete CTMC.
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(B) Aggregated CTMC.

Figure 4.2: Complete and aggregated CTMC for the client-server system with two

servers and two clients (shorthand tnk = think is used). Each state of the complete

CTMC is a vector 〈Si,Sl,Sb,Cr,Ct〉, where Si counts the number of idle servers, Sl the

number of logging servers, Sb the number of broken servers, Cr the number of request-

ing clients and Ct the number of thinking clients. Each state of the aggregated CTMC

follows this state descriptor: 〈Si,Sl,Sb〉.
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client-server example the boundary states are those where action req is enabled by at

least one server, but there are no clients to make a request. These states are highlighted

in Fig. 4.2A in red.

In large-scale and resource-bound systems, the users appear in large populations

and resources are unlikely to remain idle. Thus, the probability of being in the bound-

ary states can be assumed to be negligible:

∀ Y ∈ YM , ∀ S ∈ bl(Y) : Pt(S)≈ 0 (4.2)

4.2.3.4 Rate Regularities

If we ignore boundary states as above, then we can observe an important structural

property with respect to the rate of cross-sub-chain transitions.

Proposition 4.2.1. (Rate regularity for non-boundary states). The non-boundary states

of each sub-chain exhibit the same behaviour with respect to the actions in
→
A∗s (M) and

→
A∗sl (M):

∀ α ∈ (
→
A∗s (M) ∪

→
A∗sl (M) ) , ∀ Si ∈ Yi , ∀ S j ∈ Y j(

Si
(α,R)−→ S j =⇒ ∀ S′i ∈ (Yi−bl(Yi,α)) ,[

rα(S′i > 0) =⇒ ∃ S′j ∈ Y j S′i
(α,R)−→ S′j

] )
Intuitively, the proposition expresses that in any Yi, all non-boundary states enable

the same set of actions (see Fig. 4.3A). Also, the states offer the same rate with respect

to each action. Thus, for any α ∈
→
A∗s (M) ∪

→
A∗sl (M) we define r(α,Yi,Y j), the rate of

any α transition from any Si ∈Yi to another state S j ∈Y j, Yi 6= Y j.

r(α,Yi,Y j) =

 r if ∃ Si ∈ Yi ∃ S j ∈ Y j : Si
(α,r)−→ S j

0 otherwise

Between any two sub-chains Yi and Y j, transitions of more than one type might con-

nect their states (see Fig. 4.3B). We define r(Yi,Y j) =∑
α∈(

→
A∗s (M) ∪

→
A∗sl(M))

r(α,Yi,Y j)

to represent the total rate at which non-boundary states in Yi transition into a corre-

sponding state in Y j (see Fig. 4.3B).

In Fig. 4.2A, we can observe the above regularities. The transitions enabled by ac-

tions
→
A∗s (CS) ∪

→
A∗sl (CS) = {req,log,brk,fix} cause the system to leave its current sub-

chain to move into a new one. The rate of such a transition depends only on the
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Si

S j

S′i

S′j

Yi

Y j

(α,r)

(β,r′)

(α,r)

(β,r′)

(A) The non-boundary states in

a sub-chain presenting similar be-

haviours.

Si

S j

S′i

S′j

Yi

Y j

r(α,Yi,Y j)

r(β,Yi,Y j)

r(Yi,Y j)

(B) The rates for any one cross-sub-

chain transitions.

Figure 4.3: Rate regularities for cross-sub-chain transitions.

configuration of the servers. Since in each sub-chain the state of the servers does not

change, the rates of those transitions, if enabled, is the same.

4.2.4 Construction of Aggregated CTMC

For a large-scale model M that satisfies Condition 1, we can construct its CTMC and

use
→
A∗s (M),

→
A∗l (M), and

→
A∗sl (M) to detect the sub-chains formed and observe the rate

regularities for transitions between sub-chains. These regularities and the assumption

that the probability of experiencing the boundary states is negligible, enable us to build

an aggregated CTMC for the model. In this CTMC, each sub-chain is represented by

a single aggregate state, that captures the configuration of ξξξ
s in that sub-chain. The

aggregated CTMC captures the evolution of the small groups only and is used as the

basis of evaluating the behaviour of a system’s resources. The downfall is that the

information about the behaviour of large groups is lost.

Fig. 4.2B shows the aggregated CTMC of the client-server model. It shows the

configurations that the servers experience by performing actions {req, log,brk, f ix}.

We showed the condition which makes a LSRB model amenable to an aggregation.

In the next section we will describe how the aggregated state space is directly derived

from the model.
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4.3 Aggregation Algorithm

The structure of the aggregated CTMC of a model M that respects Condition 1 is inde-

pendent of the size of the population levels of the large groups. Therefore, we propose

an algorithm which builds the aggregated CTMC directly from the model. At first, in

a reduction step, our algorithm transforms the system equation of the original model

M into MR, a reduced form of the equation which captures M’s structure only with

respect to the groups in Gs(M). In the next step, using MR and the count-oriented se-

mantics developed for PEPA population models, the aggregated CTMC is generated.

Note that the reduced system equation faithfully captures the synchronisation restric-

tions imposed on any of the small groups; the reduction rules guarantee the behaviour

derived for ξξξ
s within MR matches the one observed in the original CTMC.

4.3.1 Reduction

These rules will be applied to the system equation of an input model M in order to

produce the reduced model MR:

red(G) =



red(G1)BC
L

red(G2), if G≡G1 BC
L

G2

H{·}, if G≡ H{·} , H ∈ Gs(M)

Nil, if G≡ H{·} , H ∈ Gl(M)

red(X), if G def
= X

(4.3)

The process Nil represents a sequential process which does not undertake any activity.

The following rules remove Nil processes to find the minimal reduced system equation:

Nil BC
·

Nil = Nil Nil BC
·

P = P PBC
·

Nil = P

4.3.2 Count-Oriented Semantics

Having built the reduced form of M’s system equation, we apply the count-oriented

structured operational semantics presented below to derive the model’s underlying

labelled transition system (LTS) directly in numerical vector form.
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Promotion. Promotion of a sequential component’s transition to the group level:

Cu
(α,rα)−→ C′u

ξξξ(H)
(α,rα(H))

// Θ(ξξξ(H),Cu,C′u)
ξ(H,Cu)> 0

rα(H) = apparent rate of α in group H, See Def. 11

Cooperation. Cooperation between groups:

ξξξ(Hi)
(α,r(ξξξ(Hi)))

// ξξξ
′
(Hi)

ξξξ(Hi)BC
L

ξξξ(H j)
α,r(ξξξ(Hi)))

// ξξξ
′
(Hi)BC

L
ξξξ(H j)

α 6∈L

ξξξ(H j)
(α,r(ξξξ(H j)))

// ξξξ
′
(H j)

ξξξ(Hi)BC
L

ξξξ(H j)
α,r(ξξξ(H j)))

// ξξξ(Hi)BC
L

ξξξ
′
(H j)

α 6∈L

ξξξ(Hi)
(α,r1(ξξξ(Hi)))

// ξξξ
′
(Hi) ∧ ξξξ(H j)

(α,r2(ξξξ(H j)))
// ξξξ
′
(H j)

ξξξ(Hi)BC
L

ξξξ(H j)
(α,R)

// ξξξ
′
(Hi)BC

L
ξξξ
′
(H j)

α∈L

R = min(r∗α(Hi),r∗α(H j))

Constant. Process constants:

M
(α,r)

// M′

A
(α,r)

// M′
A def
= M

The transition relation constructed by the above rules is denoted by // and in its

construction, we use the transition relation→ built by the original PEPA semantics [58]

(see the premise of the first rule). However, note that → needs to be constructed

only at the level of the model’s sequential processes; for each sequential process one

automaton is constructed expressing the states and transitions each instance of that

sequential process experiences.

The semantics formally captures the impact of the completion of an action on each
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of the state variables by the update function Θ:

Θ(ξξξ(H),Cu,C′u)=〈Θ′(ξξξ(H),Cu,C′u,ξ(H,C′′u )) |C′′u ∈ds∗(H)〉

Θ
′(ξξξ(H),Cu,C′u,ξ(H,C′′u )=


ξ(H,C′′)−1, if C′′=Cu

ξ(H,C′′)+1, if C′′=C′u
ξ(H,C′′), otherwise

Such an impact was shown in Eq.(2.9); as a result of each transition, a number of state

variables decrease and a number of them increase.

4.3.3 Generating the Aggregated CTMC

In the aggregation algorithm we apply the count-oriented semantics to the reduced

system equation to obtain its numerical aggregated state space Dagg. This is formalised

below.

Definition 21. (Aggregated Derivative Set) The aggregated derivative set of a state S,

denoted by dsagg(S), is the smallest set of states satisfying the following conditions.

1. S ∈ dsagg(S).

2. If S1 ∈ dsagg(S) and S1
(α,·)
// S2, then S2 ∈ dsagg(S).

Intuitively, Dagg(S) finds all the aggregated states reachable from S using // .

Definition 22. (Aggregated Labelled Transition System) For a LSRB model M which

satisfied Condition 1, its aggregated labelled transition system is defined as a tuple

(dsagg(S0),Ω, //). S0 is the model’s initial aggregate state. Ω = (A ×F ) is the

alphabet of transitions’ labels where A is the set of actions defined in M and F is a

function space defined over ZdMR
+ . dMR is the dimension of the reduced system equation,

i.e. the number of state variables appearing in ξξξ
s. Each function in F corresponds to

one action type: Fα defines the apparent rate of action α given the vector space ξξξ
s.

The combination of dsagg(S0) and transition relation // enable us to build the

aggregated derivation graph. Here, each node is one of the states and each arc rep-

resents one element of the transition relation. The derivation graph is then used to

build the model’s underlying CTMC, based on a similar approach to that explained in

Sec. 2.3.2.

As an example, consider Fig. 4.2B. This shows the aggregated CTMC constructed

for the client-server system when initialised with two idle servers.
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4.4 Marginal Distribution over Model’s Resources

The aggregated state space Dagg is analysed to study the behaviour of a model’s re-

sources. The analysis involves constructing the set of C-K equations underlying Dagg

and finding the solution which captures the transient evolution of a probability distri-

bution over ξξξ
s. In the system of C-K equations, for each state γγγ ∈Dagg one equation is

constructed of the form:

d Pt(γγγ)

d t
= − ∑

α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V −,sα

rα(γγγ) ·Pt(γγγ) + ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V +,s
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) (4.4)

The equations are solved subject to an initial probability distribution over Dagg.

4.4.1 Validity of C-K Equations of Aggregated State Space

The aggregation scheme presented above and the derivation of Eq.(4.4) depends on

negligibility of boundary states. Obviously, the probability distribution obtained by

solving C-K equations of Dagg is required to match the marginal distribution over ξξξ
s

derived from solving the C-K equations of the original and complete state space. In

this section, we formally establish the connection between the two systems of the C-K

equations.

Let Si = 〈ξξξs
i , ξξξ

l
i〉 represent a state in D and in sub-chain Yγγγ ∈YM. We have ξξξ

s
= γγγ.

The C-K equations constructed for Si is:

d Pt(Si)

d t
= − ∑

Si
(α,rα(Si))−−−−−→S j

rα(Si) ·Pt(Si)

︸ ︷︷ ︸
outward transitions

+ ∑

S j
(α,rα(S j))−−−−−−→Si

rα(S j) ·Pt(S j)

︸ ︷︷ ︸
inward transitions

(4.5)

In this equation, we have annotated the terms based on being related to the transitions

coming into Si or the ones leaving Si.

We aim to calculate Pt(Yγγγ), the probability of being in the sub-chain Yγγγ. This is

equal to the sum of the probabilities of being in any of the states Si in Yγγγ :

Pt(Yγγγ) = ∑
Si∈Yγγγ

Pt(Si)
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To find Pt(Yγγγ), we sum over instances of equations Eq.(4.5) constructed for Si ∈ Yγγγ:

∑
Si∈Yγγγ

d Pt(Si)

d t
= ∑

Si∈Yγγγ

[
− ∑

Si
(α,rα(Si))−−−−−→S j

rα(Si) ·Pt(Si) + ∑

S j
(α,rα(S j))−−−−−−→Si

rα(S j) ·Pt(S j)

]
(4.6)

The left hand side is transformed as:

∑
Si∈Yγγγ

d Pt(S)
d t

=

d ∑
Si∈Yγγγ

Pt(Si)

d t
=

d Pt(Yγγγ)

d t
(4.7)

In Eq.(4.7), the term associated with Pt(Yγγγ) now appears. The right hand side is trans-

formed below so that the whole equation becomes closed in terms of the probability

distribution over the sub-chains.

In our first transformation, we rewrite Eq.(4.6) using the impact vectors:

d Pt(Yγγγ)

d t
= ∑

Si∈Yγγγ

[
− ∑

α :Si≥V −α

rα(Si) ·Pt(Si)︸ ︷︷ ︸
outward transitions

+ ∑
α :S j≥V −α
Si=S j+Vα

rα(S j) ·Pt(S j)

︸ ︷︷ ︸
inward transitions

]
(4.8)

In Eq.(4.8), consider the expression related to the outward transitions. This consists

of two summations. The outer sums over states Si ∈ Yγγγ , and the inner sums over the

action types that enable the transitions leaving Si. These summations are independent

and we can swap their ordering. Note that when swapping, for each action we sum

over only the states in which the action is enabled. A state Si = 〈ξξξs
i , ξξξ

l
i〉 ∈D enables α

if Si ≥ V −α , i.e. ξξξ
s
i ≥ V −,sα and ξξξ

l
i ≥ V −,lα .

A similar step is applied to the expression related to the inward transitions. Here,

the outer summation sums over the states Si ∈Yγγγ, and the inner over the states S j such

that S j
(α,·)−−→ Si. For a state Si, there is a subset of

→
A∗ (M) entering Si. There exists a

state S j = Si−Vα enabling an inward transition into Si with action α when S j ≥ V −α .

The equivalent form of this necessary condition is Si≥V +
α . This constraint means that

when swapping the position of the summations in this expression, for each action type

α, we are restricted to sum only over the valid S j states, which enable an α transition

leaving S j and entering Si.

Given the above considerations, we swap the summations and obtain:

d Pt(Yγγγ)

d t
= ∑

α∈
→
A∗(M)

[
− ∑

Si :Si≥V −α

rα(Si) ·Pt(Si)+ ∑
S j :S j≥V −α
Si=S j+Vα

rα(S j) ·Pt(S j)

]
(4.9)
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Abstracting Away From Transitions of Large Groups

In the state space D, we observe that the
→
A∗l (M) transitions only cause the system to

change its state within its current sub-chain and do not affect probability fluxes at the

level of the whole sub-chain. This is used as the basis of the next transformation.

Consider Eq.(4.9). We can use the partition ∆A = {
→
A∗s (M),

→
A∗sl (M),

→
A∗l (M)} to

expand the summation over the action into two separate parts. The first is related to

α ∈
→
A∗l (M) and the second to α ∈

→
A∗s (M) ∪

→
A∗sl (M).

d Pt(Yγγγ)

d t
= ∑

α∈
→
A∗l(M)

[ reduces to zero︷ ︸︸ ︷
− ∑

Si :Si≥V −α

rα(Si) ·Pt(Si) + ∑
S j :S j≥V −α
Si=S j+Vα

rα(S j) ·Pt(S j)

]
+

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

[
− ∑

Si :Si≥V −α

rα(Si) ·Pt(Si) + ∑
S j :S j≥V −α
Si=S j+Vα

rα(S j) ·Pt(S j)

]
(4.10)

For each α ∈
→
A∗l (M) the terms in the first line cancel each other, as each

→
A∗l (M) tran-

sition in Yγγγ is counted twice with opposite signs. Therefore, we only consider the

second line and move to the next transformations.

Negligibility of Boundary States

First, we consider the term related to the outward transitions. Recall that any state

Si ∈Yγγγ is written as Si = 〈γγγ , ξξξ
l
i〉, and since our model respects Condition 1, the rate of

any α ∈
→
A∗s (M)∪

→
A∗sl (M) in Si depends on γγγ, rα(Si) = rα(γγγ). Thus, we transform the

term related to the outward transition as:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

∑
Si :Si≥V −α

rα(Si) ·Pt(Si) = ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

∑
Si=〈γγγ ,ξξξl

i〉
γγγ≥V −,sα ,ξξξl

i≥V −,lα

rα(γγγ) ·Pt(〈γγγ , ξξξ
l
i〉)

(4.11)

For any α∈
→
A∗s (M), V −,lα = 0. For such actions, in the inner summation it is enough

to check γγγ≥ V −,sα . However, for any α ∈
→

A∗sl (M), both γγγ≥ V −,sα and ξξξ
l
i ≥ V −,lα must

hold. Here, we bring in the idea of boundary states. In Yi, the probability of being in

bl(Yi) is close to zero; these are the states where γγγ≥V −,sα and ξξξ
l
i 6≥V −,lα . Thus, in the

summation we can remove the restriction on ξξξ
l
i ≥ V −,lα and assume that those where
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ξξξ
l
i 6≥ V −,lα add negligible contribution to the equation. We then obtain:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

∑
Si :Si≥V −α

rα(Si) ·Pt(Si) ≈

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

∑
Si=〈γγγ ,ξξξl

i〉 ,γγγ≥V −,sα

rα(γγγ) ·Pt(〈γγγ , ξξξ
l
i〉) (4.12)

By factoring out rα(γγγ) from the inner summation on the right hand side and using the

substitution ∑
Si=〈γγγ ,ξξξl

i〉 ,γγγ≥V −,sα

Pt(〈γγγ , ξξξ
l
i〉) =

(
Pt(Yγγγ)

)
γγγ≥V −,sα

we have:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

∑
Si :Si≥V −α

rα(Si) ·Pt(Si) ≈ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V −,sα

rα(γγγ) ·Pt(Yγγγ)

(4.13)

Eq.(4.13) is substituted into Eq.(4.8) as the term related to the outward transitions.

We apply similar steps to the term related to inward transitions. By considering the

probability of being in boundary states in all sub-chain to be close to zero, this term is

approximated by:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

∑
S j :S j≥V −α
Si=S j+Vα

rα(S j) ·Pt(S j) ≈ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V +,s
α

rα(γγγ−V s
α) ·Pt(Y(γγγ−V s

α)
)

(4.14)

Having applied the above transformations, Eq.(4.8) is reformulated in the following

form that is closed in terms of the probability distribution defined over the sub-chains:

d Pt(Yγγγ)

d t
≈ ∑

α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V −,sα

rα(γγγ) ·Pt(Yγγγ) + ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V +,s
α

rα(γγγ−V s
α) ·Pt(Y(γγγ−V s

α)
)

(4.15)

As the final step, we observe that each sub-chain Yγγγ in D is represented by γγγ in Dagg.

This means that Pt(γγγ) = Pt(Yγγγ). We use this equality Pt(γγγ) = Pt(Yγγγ) in Eq.(4.15) and

finally derive Eq.(4.4).

With the above transformations, we showed that the analysis of the aggregated

model gives rise to a distribution that approximates the exact marginal distribution

over ξξξ
s. Since Dagg abstracts away from the transitions of the large groups, it can be
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efficiently analysed, and we can then obtain the stochastic behaviour of the model’s

small groups with maximum faithfulness. In doing this, the construction of the com-

plete state space and the transformations exhibited above are completely avoided, as

we have shown for any LSRB model, the paths through the transformations and the

aggregation give rise to the same set of equations.

In the next section, we consider an experiment where the accuracy of the approxi-

mate probability distribution is investigated.

4.5 Accuracy of the Aggregation

The accuracy of the marginal probability distribution derived via the aggregation de-

pends on the the negligibility of the probability of being in the boundary states. If, at

all times, the small groups in the model are under heavy load and their cooperation ca-

pacity is saturated by the demand of the large groups, one would expect to get highly

accurate approximate marginal probability distribution. Conversely, the approxima-

tion method leads to an erroneous marginal distribution if the probability of being in

boundary states is not negligible. In this section, we report the results of an experiment

where we investigate the accuracy of the aggregation method.

We consider the following client-server model:

Cthink
def
= (think,rt).Creq Creq

def
= (req,>).Cthink

Sidle
def
= (req,rs).Slog +(brk,rb).Sbroken

Slog
def
= (log,rl).Sidle Sbroken

def
= (fix,r f ).Sidle

CS def
= Servers { Sidle[ns] } BC

{req}
Clients {Cthink[nc] }

and assume that the small group, Servers, contains five servers and the large group,

Clients, 100 clients. Recall that the state vector which captures the state of the system

is 〈Si,Sl,Sb,Ct ,Cr〉 and the one for the aggregated model is 〈Si,Sl,Sb〉. In the complete

state space, the boundary states are those where at least one server enables action req

(Si ≥ 0) but no client requests it (Cr = 0). We constructed three versions of the model

and across these, the following parameters were the same: ns = 5, nc = 100, rs = 10,

rl =50, rb=0.005, r f =0.005 and rc=>. For the rate of a client’ think action, in the

first version rt = 15, in the second rt = 0.2 and in the third rt = 0.1. The change in rt

causes a gradual increase in the probability of being in boundary states (see Fig. 4.4).
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Figure 4.4: Probability of being in boundary states (Pt(Si ≥ 0,Cr = 0)) for each case of

the experiment.

For each version, we calculated an approximate probability distribution over the

state space of the servers via the aggregation and compared it with a similar distribution

derived from the exact analysis of the complete state space using PRISM [68]. There

are multiple ways for comparing two probability distributions. For simplicity, we chose

three different representative states from the distributions and compared the distribu-

tions only with respect to those representative states. Our comparison could readily be

extended to the complete distributions. In this section, Z denotes the stochastic pro-

cess represented by the client-server model’s complete state space and Za denotes the

stochastic process associated with the model’s aggregated state space.

The parameters of the first version (rt = 15) cause the servers to be under heavy

contention at all times; the probability of Cr = 0 is close to zero. Fig. 4.5A shows

a comparison between probabilities calculated for three representative states 〈5,0,0〉,
〈3,1,1〉 and 〈0,0,5〉. As an example, Pt(Z ⊂ (3,1,1)), denotes the probability that in

the complete state space, the system resides in a state where there are three idle, one

logging and one broken server and Pt(Za = (3,1,1)) captures the probability of being

in the associated state in the aggregated state space.

In the second case, rt = 0.2, thinking has a longer duration which slows the flow

of clients into the state of requesting communication. Thus, the probability of Cr = 0

becomes higher. The same measures were calculated for the second case and the results

are reported in Fig. 4.5B. Since the probability of being in the boundary states is higher

the discrepancy between the results obtained via the aggregation and the exact method

is larger. In the third case rt = 0.1 and the probability of Cr =0 is relatively high (see

Fig. 4.4). Hence, the deviation of the approximate distribution from the exact one is

significantly larger than the previous cases. The outputs for this case are shown in
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(A) P(Z⊂(5,0,0)), P(Z⊂(3,1,1), P(Z⊂(0,0,5)) first case.
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(B) P(Z⊂(5,0,0)), P(Z⊂(3,1,1)), P(Z⊂(0,0,5)) second case.
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(C) P(Z⊂(5,0,0)), P(Z⊂(3,1,1)), P(Z⊂(0,0,5)) third case.

Figure 4.5: Comparison of exact and approximate probabilities of being in three repre-

sentative states across the experimental cases.
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First Case Second Case Third Case

exact aprox. error exact aprox. error exact aprox. error

P〈Za=500〉 0.011 0.011 0 0.015 0.011 26 0.016 0.011 31

P〈Za=311〉 0.056 0.056 0 0.038 0.056 47 0.020 0.056 180

P〈Za=005〉 0.034 0.034 0 0.035 0.034 2 0.039 0.034 12

P〈Za⊂E5〉 0.028 0.028 0 0.023 0.028 21 0.02 0.028 40

P〈Za⊂E2〉 0.310 0.317 2 0.328 0.317 3 0.336 0.317 5.6

P〈Za⊂E1〉 0.161 0.165 2.48 0.171 0.165 3.5 0.189 0.165 12

Table 4.2: Comparion of the experiment results calculated separately by the approxi-

mate and exact methods. The error is presented as a percentage.

Fig 4.5C.

The aggregated state space can be used for deriving further performance indica-

tors, such as dependability measures concerning systems’ resources. Assume that the

measure of interest is the number of working servers, i.e. those which are not broken.

Formally, let EK denote the probabilistic event that there are K servers running. For

instance, when K=5:

P
(

Z ⊂ E5
)
=P(Z ⊂ (5,0,0))+P(Z ⊂ (4,1,0))+ . . . +P(Z ⊂ (0,5,0))≈

P
(

Za ⊂ E5
)
=P(Za = (5,0,0))+P(Za = (4,1,0))+ . . . +P(Za = (0,5,0))

Using the aggregation method, the steady state values of P
(
Z ⊂ EK) ,K = 1,2,5

and the previously presented outputs were calculated and compared against the corre-

sponding exact results (see Table 4.2). The comparison provides evidence that a higher

probability of being in the model’s boundary states corresponds to a less accurate ag-

gregation.

In this experiment, using a machine with 4G of RAM and 2.3GHz processors the

derivation of the approximate steady state marginal distribution through the aggre-

gated CTMC took 10–15 seconds. Deriving the same distribution by the exact analysis

took 650–700 seconds. The former takes advantage of the possibility of aggregation

whereas the latter, derives the marginal distribution from a state space where the de-

tailed dynamics of the clients are also captured. The number of states in the complete

state space of the model is 2121 whereas the aggregated one has 21 states. Note that

the latter is invariant with respect to the number of clients, highlighting the scalability
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advantage provided by the aggregation method.

Applying the aggregation method relies on prior knowledge about the model’s be-

haviour with respect to its boundary states. Such knowledge can be supplied by the

domain experts or by monitoring the real system. In large-scale resource-bound com-

munication networks, the resources are almost continuously under contention; e.g. pro-

cessing input transactions or dealing with a frequent incoming flow of packets. Thus,

for such systems, the probability of resources waiting for the users is close to zero and

the aggregation algorithm proposed can be safely used.



Chapter 5

Efficient Detection of Time-Scale

Near-Complete Decomposability

5.1 Introduction

One important method that is suitable for the analysis of CTMCs with large state spaces

is time-scale near-complete decomposability (TSND) [33]. The method is applicable

to CTMCs whose transitions occur across slow and fast time scales. Given a CTMC,

its state space is divided into a number of blocks in such a way that the transitions

within the blocks capture the fast dynamics and those across the blocks are related to

changes happening over the slow time scale. Then the CTMC is analysed by the TSND

solution method that comprises of the following steps:

1. Decomposition. Each block is treated as one CTMC by disregarding the cross-

block transitions. For each block, its CTMC is evaluated in isolation to obtain a

partial solution associated with that block.

2. Block level analysis. A CTMC is constructed by disregarding the transitions

within the blocks and only considering the cross-block transitions. Here, each

block is represented by a single state. The CTMC is analysed to give us the block

level solution.

3. Re-composition. The partial solutions and the block level solution are recom-

posed to derive an approximate probability distribution over the complete state

space.

79
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The main advantage of the TSND approach is that the blocks are focused upon one at

a time, and therefore, the construction of the complete state space is avoided.

As we stated in Sec. 1.1, LSRB models are composed of different types of com-

ponents which potentially exhibit behaviours evolving at different time scales. Ad-

ditionally, the state spaces of such models are massive. These features identify the

TSND method as an appropriate analysis approach for LSRB models. Note that for

the method to be useful, it needs to be integrated into the high-level formalism; the

slow and fast actions (which give rise to slow and fast transitions) need to be specified

at the level of the model description, and then these must be automatically used for

exploration of the blocks of the underlying state spaces [73].

When applying the TSND to LSRB models, we are confronted with one challeng-

ing question: given that the state space cannot be fully constructed, what is the partition

on the model’s action which divides them into slow and fast categories? Which actions

cause the inner block transitions and which ones cause the cross-block transitions? The

trivial approach is that the partition is specified manually by the modeller. However,

this approach does not scale up and limits the automatic application of TSND method.

Answering the question is a key part of the TSND method and any procedure which

helps with efficient detection of the partitions is of great importance [5].

In this chapter, we consider the above questions and present an efficient procedure

for deriving the slow / fast partition in the context of LSRB models. Our procedure

relies on the aggregation method that was presented in the previous chapter and has

two main steps. First, given a model M and its aggregated state space Dagg, we apply

a reachability analysis based on the hierarchical clustering [12] on Dagg. This gives

us a slow / fast partition over
→
A∗s (M) ∪

→
A∗sl (M), the set of actions in which the small

groups are involved. Then, the partition corresponding to the original model is derived

by keeping the set of slow actions the same and adding the actions related to the large

group
→
A∗l (M) to the set of fast transitions derived via Dagg. The intuition is that since

the
→
A∗l (M) are enabled by large populations, they continually occur at high rates and

belong to the fast time scale. The output is a slow / fast partition on
→
A∗ (M) which can

then be fed into the TSND solution method described above.

Our time-scale detection algorithm is supported by a theorem regarding our ag-

gregation method. The theorem formally proves that under some mild conditions, the

same slow / fast categorisation observed for
→
A∗s (M) ∪

→
A∗sl (M) transitions of the aggre-

gated state space is observable within the original state space. This means that when
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searching for the decomposable TSND blocks, instead of a prohibitively expensive

reachability analysis of the complete state space, one can search for them significantly

more efficiently within the aggregated state space. The blocks found will be valid in

the complete state space. The slow / fast partitioning algorithm is efficient and also

automated. This means that it enables us to easily apply the TSND solution to LSRB

models in an automatic fashion.

The structure of this chapter is the following. In Sec. 5.2, we introduce the basics

of TSND. We describe how it is applied to CTMCs and LSRB models. In Sec. 5.3,

we introduce our enhanced procedure for detecting the slow and fast partition. In

Sec. 5.4, we report the results of an experiment, where we investigated the procedure’s

scalability and usefulness.

5.2 Time-Scale Near-Complete Decomposability

In this section, we review the steps involved when applying the TSND method to

DTMCs and CTMCs. The method is mainly used for steady state analysis. This type

of analysis will be the focus of this section. The method of TSND was originally de-

veloped for DTMC [5], where the notion of time is captured via predefined discrete

time steps. In our presentation, first we review the method for the case of DTMCs and

then introduce how it is adapted for CTMCs.

5.2.1 Decomposability Condition for DTMCs

In general, the steady state distribution of a DTMC with n states is obtained by solving

the following system of linear equations.

Π R = Π subject to
n

∑
i=1

Π(i) = 1 (5.1)

where the vector Π with dimension 1× n captures the steady state distribution of the

DTMC and R is the associated transition matrix. The structure of R is important in

solving the system of equations. To illustrate this, we introduce the following defini-

tions.

Definition 23. (Block Diagonal Matrix). A block diagonal matrix is a square matrix in

which the principal diagonal consists of block matrices and the off-diagonal elements
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are zero. A block diagonal matrix E has the form

E =


E1 0 . . . 0

0 E2 . . . 0
...

... . . . ...

0 0 · · · ENB

 (5.2)

where each Ek is a square matrix.

Let ord(·) be a function defined on the square matrices which returns the number

of rows or columns of a given matrix. Given E in the above form:

N

∑
i=1

ord(Ei) = ord(E)

Using Def. 23, we describe how a DTMC is completely decomposable. Consider

a DTMC XD with stochastic matrix1 R of order n. The vector xxxD(k) describes the

probability distribution of XD at step k. xxxD(k+1) can be obtained by:

xxxD(k+1) = xxxD(k)×R (5.3)

Here element xD
l in xxxD(k) is the probability of the system being in state l at step k and

element rD
hl in R shows the conditional probability that XD is in state l at step k given

that it was in state h at step (k− 1). In general, xxxD(k) can be obtained by repetitive

multiplication of the initial state xxxD(0) by R:

xxxD(k) = xxxD(0)×Rk (5.4)

Definition 24. (Completely Decomposable DTMC). The matrix R is said to be com-

pletely decomposable if the rows and columns of R can be identically rearranged so

that R = R∗ where R∗ is a block diagonal matrix with the following form:

R∗ =


R∗1 0 . . . 0

0 R∗2 . . . 0
...

... . . . ...

0 0 · · · R∗NB

 (5.5)

Moreover, a DTMC is said to be completely decomposable if its transition matrix is

completely decomposable.

1We assume that our stochastic matrices are right stochastic, i.e. the matrices consist of elements
between zero and one and the sum of the elements in each row is equal to one.
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The state space of a completely decomposable DTMC can be partitioned into a

number of blocks where the states within each block are not reachable from states of

the other blocks. If XD is completely decomposable, its state vector xxxD = xxxD∗(t) =

[x∗l (t)] can be divided into a set of subvectors:

xxxD∗(k) = [x∗l (k)] =
[
[x∗i1(k)], . . . , [x

∗
iI(k)], . . . , [x

∗
iN (k)]

]
where if, x∗iI(k) = x∗l (k), then l = ∑

I−1
J=1 ord(J)+ i. Each subvector [x∗iI(t)] is related to

the corresponding square matrix R∗I . When analysing XD , instead of using Eq.(5.4),

the distribution of the decomposable DTMC at any step k or at the equilibrium can

be obtained by solving a number of simpler equations. The subvector [x∗iI(k)] depends

only on [x∗iI(0)] and R∗I , and is independent of [x∗iJ(k)] and R∗J , J 6= I for any step k.

Using the notion of completely decomposable DTMC, next we introduce the notion

of near-completely decomposable DTMC.

Definition 25. (Near-completely Decomposable DTMC)-(Chp. 2, [87]). A DTMC XD

is near-completely decomposable if the rows and columns of its transition matrix R can

be identically rearranged such that:

R = R∗ + ε
D · C (5.6)

where:

1. R∗ is a stochastic matrix of the same order as R in block structure.

2. εD is a real positive number, close to zero and small compared to elements of R∗.

3. C is a square matrix of the same order as R with the property of keeping both R

and R∗ stochastic (all R∗I , I = 1 . . .N are square and stochastic).

Intuitively, in order for R to satisfy Eq.(5.6), it should consist of principal square

sub-matrices, the elements of which are significantly larger than the elements outside.

Equivalently, the DTMC satisfies Eq.(5.6) when its state space can be partitioned in

such a way that the probabilities related to the transitions within each block are at least

an order of magnitude larger than the probabilities associated with the cross-block

transitions.

Eq.(5.6) is a formal characterisation of the property of near-complete decomposi-

tion. For a DTMC whose transition matrix exhibits the required structural property an
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instance of this equation with concrete values of R∗ and C can be constructed. In fact,

it is usually the case that for such a DTMC, many instances of Eq.(5.6) can possibly be

introduced. Here, we show a systematic construction of a solution in which εD and C

exhibit certain properties. This construction will be used in a theorem presented later.

5.2.2 Construction of a Solution

We define εD as a measure that captures the maximum probabilistic coupling between

any two different blocks in R. The measure is derived by considering the probabilities

associated with the cross-block transitions:

ε
D
m = max

iI
(

N

∑
J=1,J 6=I

ord(J)

∑
j=1

riI jJ ) (5.7)

where iI represents the i th state in block I and riI j j , an element of R, is the probability

associated with the transition from state iI into state jJ which resides in a different

block J. Substituting εD
m in Eq.(5.6), we show that the equation has at least one solu-

tion.

Defining εD = εD
m causes all elements of C to be between −1 and 1, |ciI jJ | ≤ 1:

max
iI

(
N

∑
J=1,J 6=I

ord(J)

∑
j=1

ciI jJ

)
=−max

iI

(
ord(J)

∑
k=1

ciIkI

)
= 1 (5.8)

Since matrices R and R∗I , I = 1,2, . . .N are required to be stochastic, the row sums of

C are equal to zero. We choose non-positive values for all elements ciIkI and positive

values for all elements ciIkJ , I 6= J [33]. In C, for each row iI associated with state iI
we have:

ord(I)

∑
k=1

ciIkI =−
N

∑
J=1,J 6=I

ord(J)

∑
j=1

ciI jJ (5.9)

Using εD and C, we can construct the instance of R = R∗ + εD ·C with the following

entities:

r∗iI jJ =


0 if I 6= J

riI jJ +
riI jJ

(∑
ord(I)
j=1 riI jJ)

N

∑
J=1,J 6=I

ord(J)

∑
j=1

rii jJ if I = J
(5.10)

c∗iI jJ =


+

1
εD × riI jJ if I 6= J

− 1
εD ×

riI jJ

(∑
ord(I)
j=1 riI jJ)

×
N

∑
J=1,J 6=I

ord(J)

∑
j=1

rii jJ if I = J
(5.11)
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The construction assumes that the cross-block transitions are disregarded. Thus, for

any block I the probability flux associated with its cross-block transitions is distributed

across the states within the block. In other words, the rate riI jJ , I = J in R∗ is adjusted

by adding the fraction
riI jJ

(∑
ord(I)
j=1 riI jI )

of the total rate ∑
N
J=1,J 6=I ∑

ord(J)
j=1 rii jJ associated with

transitions leaving block I. We can prove that using the above solution the matrix RD∗

is block diagonal and each R∗I is stochastic, thus, respecting the requirements defined

for the solution. The proof is shown in Appendix. A.1.

Example

Consider the stochastic matrix:

R =


0.5 0.45 0.05

0.6 0.375 0.025

0.025 0.025 0.95


Using εD = (0.025+0.025), the solution of R = R∗ + εD C is given by:


0.5 0.45 0.05

0.6 0.375 0.025

0.025 0.025 0.95

=


0.5263 0.4737 0

0.6154 0.3846 0

0 0 1

+

0.05


−0.5263 −0.4737 1

−0.3077 −0.1923 0.5

0.5 0.5 −1

 (5.12)

5.2.3 Decomposability Condition in CTMCs

We presented the notion of decomposability for DTMCs. PEPA models have semantics

in terms of CTMCs. Using the definitions above and considering that each CTMC can

be represented by its uniformised DTMC, we extend the notion for CTMCs.

Definition 26. (Uniformised DTMC of a CTMC [102]) Consider a CTMC XC with the

infinitesimal generator matrix Q. Note that in Q, qii = −∑
n
j=1, j 6=i qi j. Let λ(i) = −qii

denote the exit rate of state i. The uniformised process XD with stochastic matrix R is

a DTMC derived by the linear transformation:

R = I +
Q
λ

(5.13)



86 Chapter 5. Efficient Detection of Time-Scale Near-Complete Decomposability
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C

Figure 5.1: The aggregated state space of the client-server system initialised with one

server. The state vector is 〈Si,Sl,Sb〉.

where λ is a constant satisfying λ≥ max(λ(i)).

We refer to λ as the uniformisation factor. In this thesis, for simplicity we assume

λ = max(λ(i)). Using Def. 25, we define the notion of decomposability for CTMCs.

Definition 27. (Near-completely decomposable CTMC). A CTMC XC is regarded to

be near-completely decomposable if its uniformised process XD is near-completely

decomposable.

In the infinitesimal generator matrix Q of a near-completely decomposable CTMC

XC, the rows and columns can be rearranged into a quasi block structure in a way

that the rates within each diagonal block are substantially larger than the off-diagonal

elements. The expression R = R∗+εD×C is used to form an analogous expression for

Q. By substituting the elements of the former using the uniformisation, we have:

R = I +
Q
λ

= R∗+ ε
D C =⇒ Q = (λ R∗−λ I)+(λ ε

D) C

Then, using I + Q∗
λ
= R∗ and εC = λ εD we obtain the following for the CTMC:

Q = Q∗+ ε
C · C (5.14)

Note that C was not required to change. Similarly to the case of DTMC, Eq.(5.14)

admits multiple solutions. We can follow a procedure similar to the DTMC one to

construct one solution. The details of this is not presented again. Instead, we only

present the following example.

Example

Consider the client-server model of Page 44 initialised with only one server. Fig. 5.1

shows the model’s aggregated state space. This characterises the process XCSagg with
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infinitesimal matrix QCSagg that appears on the left hand side of Eq.(5.15). XCS respects

the decomposability condition with the blocks highlighted in Fig. 5.1. The transitions

of types break and f ix take place on a slower time scale than those of types req and

log. Thus QCSagg can be reformulated as:


A B C

A −10.1 10 0.1

B 5 −5 0

C 0.2 0 −0.2

 = 10.1




0 1 0
5

10.1
5.1

10.1 0

0 0 1

−


1 0 0

0 1 0

0 0 1





+ (10.1)(
0.2

10.1
)


0 −0.1

0.2
0.1
0.2

0 0 0

1 0 −1

 (5.15)

=


−10.1 10.1 0

5 −5 0

0 0 0

+(0.2)


0 −0.1

0.2
0.1
0.2

0 0 0

1 0 −1


In general, dealing with completely decomposable processes is trivial. In this chap-

ter, we are focusing on those being near-completely decomposable (NCD).

5.2.4 Solution Methods - Application to LSRB Models

A DTMC (or CTMC) that satisfies the near-complete decomposability condition can be

analysed by the decomposition / re-composition method that we presented on Page 79.

The method can also be extended such that it can also be directly applied to the process

algebra models. In this section, first we propose the details of the solution method when

applied to near-completely decomposable DTMCs and then describe how the it is used

for LSRB models.

5.2.4.1 Solving Nearly Decomposable Markov Chains

We consider DTMC XD with transition matrix R that satisfies R = R∗+ ε ·C. Suppose

that R∗ has the form shown in Eq.(5.5). Let BI represent the set of states associated
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with the block R∗I , I ∈ [1 · · ·NB]. Each BI has ord(I) individual states. Let Π= [πk]
ord(R)
k=1

denote XD’s steady state distribution and ΠI = [πiI ]
ord(I)
i=1 be the projection of Π onto

BI . We define θI to be the steady state probability of XD being in block BI , θI =

∑
ord(I)
i=1 πiI . We define the vector pppI to represent the steady state distribution of the

DTMC whose states are expressed by BI and transitions are governed by R∗I . The

decomposability of XD means that it reaches short term quasi-equilibrium between

pairs of events happening on the slow time scale (the cross-block transitions). This

means that the distribution ΠI can be accurately approximated as:

∀ I ∈ [1 · · ·NB] : ΠI ≈ pppI×θI (5.16)

Eq. (5.16) suggests a decomposition / re-composition algorithm for obtaining an

approximation to Π. First, for each I ∈ [1, · · · ,N] we derive pppI by considering the

transition matrix R∗I . Second, we derive the block level DTMC XD
block with transition

probabilities:

rIJ =
ord(I)

∑
i=1

piI ×
ord(J)

∑
j=1

piI jJ (5.17)

For any I,J ∈ B, rIJ is the sum of the cross-block transitions connecting the states in I

to J (the details of this is shown in Appendix. A.2). We analyse XD
block and obtain θI .

Finally, Eq.(5.16) is used to find Π.

The procedure above is more efficient than the analysis of the complete state space

as at any given time, only one block is actively analysed. In the following, we show an

example of this procedure.

Example

Consider Eq.(5.12). The transition matrices related to the blocks are:

R∗1 =

[
0.5263 0.4737

0.6154 0.3846

]
R∗2 =

[
1
]

with equilibrium distributions p1 = [0.5651 0.4349], p2 = [1]. The transition matrix

of the block level DTMC is

[
0.9609 0.0391

0.05 0.95

]



5.3. Automatic Detection of Slow / Fast Categorisation 89

At the equilibrium, θ1 = 0.5612 and θ2 = 0.4388. Using Eq. (5.16) we have: Π ≈
[ p11×θ1 p21×θ1 p12×θ2 ] = [ 0.3171 0.2441 0.4388 ]. The exact steady

state distribution is Π = [ 0.3161 0.2452 0.4387 ].

5.2.4.2 Application on LSRB Models

Mertsiotakis [73] developed an algorithm that enables us to apply the solution method

explained above to models expressed in stochastic process algebra. We used the algo-

rithm’s main idea to devise one suitable for LSRB models. Our algorithm is shown in

Alg. 1.

The input is a model M and partition ∆T = {
→
A∗slow,

→
A∗f ast} over M’s set of actions

→
A∗ (M). The actions in

→
A∗slow enable the transitions that happen on the slow time scale

and
→
A∗f ast are related to those happening on the fast time scale. The initial state is used

to derive the initial block which will be the first one to be analysed. For each block its

set of internal states are derived by considering the transitions of type
→
A∗f ast . Moreover,

while exploring the block we are simultaneously tracking the
→
A∗slow transitions that

cause the system to leave the current block, and update the list of blocks that need

to be explored later. The blocks are progressively analysed and collected, with the

effect that at any given time the states of at most one block are kept in the memory.

When all blocks have been internally explored, the block-level CTMC is constructed

and analysed. Finally, the re-composition step is performed.

5.3 Automatic Detection of Slow / Fast Categorisation

In the previous section, we proposed an algorithm for applying the TSND solution

method to LSRB models and observed that one of the inputs of the solution algorithm

is the partition ∆T = {
→
A∗slow,

→
A∗f ast} over the set

→
A∗ (M). Specifying such a partition

is a difficult task and needs to be done rigorously, as it has consequences in terms of

the accuracy of the approximation. In this section first we introduce a naive procedure

for the automatic derivation of ∆T . Although it supports automation, the procedure

suffers from a high computationally cost. Then we present the enhanced procedure,

that by taking advantage of our aggregation technique, eliminates the shortcomings of

the first one and allows us to automatically and efficiently obtain ∆T .
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Algorithm 1 Given a model M and Partition ∆T , return approximate distribution Π.
1: function TSND SOLUTION( model M , partition ∆T )

2: init block← // using the initial state of M, derive the initial block;

3: explored←{} // the set of blocks that have been explored ;

4: Qblock = [qIJ] // the transition matrix capturing block level transitions;

5: agenda = {init block} // the set of blocks to be explored;

6: // analysing internal dynamics of each block

7: while (agenda 6= /0) do

8: BI ← head(agenda); // data structure representing a block

9: DI ← the state space of BI derived by transitions of type
→
A∗f ast ;

10: pppI ← analyse DI and derive the steady state distribution of BI;

11: newBlocks =← derive the set of blocks that are reachable by

12:
→
A∗slow transitions;

// exploring new blocks

13: for (newBlock ∈ newBlocks & newBlock 6∈ explored) do

14: if (newBlock 6∈ agenda) then

15: agenda← agenda+newBlock ;

16: end if

17: end for

18: Qblock← set qIJ for all J ∈ (agenda∪ explored) using Eq.(5.17);

19: explored← explored +BI;

20: agenda← agenda−BI;

21: end while

22: θ← derive solution of the block level CTMC using Qblock;

// Re-composition Step

23: for (BI ∈ explored) do24:

25: Πi← Use Eq.(5.16), θ and pppI to derive the steady state associated with BI:

26: Π← update Π by appending the distribution Πi to Π ;

27: end for

28: return Π ;

29: end function
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Figure 5.2: Steps of the naive application of TSND on a LSRB models.

5.3.1 Naive Procedure

The naive procedure follows a simple path illustrated in Fig. 5.2. Given a model, first

we constructs its complete state space. This is then analysed by a reachability analysis

that has the goal of detecting the decomposable blocks based on a given threshold that

represents slow rates. Using the blocks that are identified, we infer the sets
→
A∗slow

and
→
A∗f ast ; the actions enabling the cross-block transitions belong to

→
A∗slow and those

enabling intra-block transitions are allocated to
→
A∗f ast . The partition ∆T = {

→
A∗slow

,
→
A∗f ast} is then plugged into Alg. 1.

A wide range of algorithms can be used in the reachability analysis, including those

that work directly on rearranging the lines and columns of the underlying infinitesimal

matrix [33, Chp.1] or those based on the idea of clustering [54]. In this thesis, we em-

ploy the method formally known as agglomerative hierarchical clustering (AHC) [12].

5.3.2 Agglomerative Hierarchical Clustering

The method of AHC has roots in machine learning and is particularly useful for par-

titioning discrete state spaces based on their structural properties. An AHC clustering

task is formed by specifying two functions metric (mtr) and linkage criterion (lc) on a

discrete state space D. The function mtr : D×D→ R captures the logical distance as-

sociated with any two states in D. The function lc : 2D×2D→R captures the distance

between two subsets of D. Having specified the functions and a state space D, the
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clustering follows this procedure. Initially, one small cluster is constructed for each of

the states in D (for n states, n clusters are formed). Then, the clusters are progressively

examined and merged in a bottom-up manner; when two clusters are merged, a higher

level parent cluster is agglomerated with an attribute that captures the distance between

its children. As the procedure proceeds, increasingly larger clusters are generated and

in each one the distance between children is derived using mtr and lc.

The iterations continue until no new cluster can be formed. The output is a binary

tree that contains clusters of larger sizes (accommodating longer distances) as we move

towards the root. To obtain the set of blocks, a distance threshold is specified, which

defines a horizontal line in the tree. By construction, children of the clusters that reside

above the line have distances larger than the threshold, and children of the clusters

below the line have the distances less than the threshold. The state space is divided

into blocks by cutting the tree at the level of the clusters immediately above the line.

The AHC can be used for deriving the partition ∆T in the following way. Consider

a model M with infinitesimal generator matrix Q = [qi j]i, j∈D. The required ingredients

are:

1. Function mtr. For any two states i and j we define the function mtr to represent

the average time it takes to move from i to j via a one-step transition. Thus,

mtr(i, j) = 1
qi, j

.

2. Function lc. The linkage criterion between two sets of states D1 and D2 is de-

fined to be the minimum of the distances across the members of D1 and D2:

lc(Di,D j) = mini∈D1, j∈D2 mtr(i, j). This is known as the minimum linkage.

3. Distance threshold. We specify max dis to capture the average time associated

with actions happening on the slow time scale. For two sets of states D1 and

D2, if lc(D1,D2)≤max dis, then the sets are connected by transitions occurring

on the fast time scale. Conversely, if lc(D1,D2) ≥ max dis, then the sets are

connected by slow transitions.

The output of the clustering method is a partition on D in which all blocks are

separated by at least max dis time units. In the final step, we check whether the rates of

the transitions within the blocks are at least an order of magnitude larger than max dis.

If true, then the set of blocks satisfy near-complete decomposability and the partition

∆T is derived by examining the cross-block and intra-block transitions. In the negative
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case, a higher value of max dis is specified and a new clustering task is formulated.

We assume that the modeller handles the task of providing max dis.

It is important to comment on the computational cost of running the naive proce-

dure. The complexity of running one clustering task is O(n3), where n is the size of the

state space [34]. This means that the procedure becomes computationally expensive

for large-scale models. Therefore, we developed the enhanced procedure that finds ∆T

with more efficiency.

5.3.3 Enhanced Procedure

The enhanced approach is based on the fact that in LSRB models the rate observed

for each action depends strongly on the sizes of the groups that enable the action.

Recall that the groups are divided based on their sizes, G(M) = {Gs(M),Gl(M)} , and

actions are divided as
→
A∗ (M) = {

→
A∗s (M),

→
A∗sl (M),

→
A∗l (M)}. Assuming that actions are

to be divided into slow and fast categories, we make the following observations when

a LSRB model is running:

1. The actions in
→
A∗l (M) are enabled at high rates and their associated transitions

occur continually with high frequencies. The rate that an individual instance in

Gl(M) offers for an α ∈
→
A∗l (M) might not be high. However, when individuals

are replicated and form large populations, the rates are accumulated and conse-

quently, the action gets frequently performed. The dense occurrence of
→
A∗l (M)

actions means that they belong to dynamics happening on the fast time scale.

2. There exist a subset of actions in
→
A∗s (M) ∪

→
A∗sl (M) that also belong to the fast

time scale. These actions occur frequently due to the components in Gs(M) that

in spite of being part of small populations, still manage to individually enable the

actions at high rates. Note that this is in contrast with the previous case where

the high frequencies were due the presence of large supportive populations.

3. There remains a subset of
→
A∗s (M) ∪

→
A∗sl (M) that are neither supported by large

populations, nor enabled at high rates by instances in Gs(M). These actions

occur considerably less frequently and give rise to the dynamics happening on

the slow time scale.

These observations suggest that when categorising a model’s actions, the set of fast

actions
→
A∗f ast can be considered to consist of

→
A∗l (M) and a subset of

→
A∗s (M) ∪

→
A∗sl (M)
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Figure 5.3: Steps of the smarter and more efficient application of TSND on a LSRB

PEPA model.

related to the second case. Furthermore, the set of slow actions
→
A∗slow can be regarded

as what remains from
→
A∗s (M) ∪

→
A∗sl (M); i.e.

→
A∗slow= (

→
A∗s (M) ∪

→
A∗sl (M)) −

→
A∗f ast .

Thus, assuming that
→
A∗l (M) ⊂

→
A∗f ast the problem of forming the partition ∆T over

→
A∗(M) can be reduced to that of finding the slow / fast partition over

→
A∗s (M)∪

→
A∗sl (M).

Now recall that the evolution of the model by
→
A∗s (M) ∪

→
A∗sl (M) actions is captured by

its aggregated model Magg. Hence, finding ∆T can be done by a reachability analysis

of Dagg, which is significantly smaller than the complete state space D. This is the

basis of our enhanced method.

The steps of the enhanced method are shown in Fig. 5.3. Given a model M, first

the aggregation step is performed. The results is Magg and its state space Dagg, which

captures the evolution of M in terms of its sub-chains and
→
A∗s (M) ∪

→
A∗sl (M) tran-

sitions. The second step has two parts. First, a reachability analysis is performed

where our clustering algorithm is applied to Dagg. Since Dagg is relatively small the

clustering algorithm efficiently generates the blocks, and provides partition ∆
agg
T =

{
→
A∗agg,slow ,

→
A∗agg, f ast} over

→
A∗s (M) ∪

→
A∗sl (M). Second, we expand ∆

agg
T to the level

of the original model. Using ∆
agg
T , we construct the partition ∆T = {

→
A∗slow,

→
A∗f ast} as:

→
A∗slow =

→
A∗agg,slow

→
A∗f ast =

→
A∗agg, f ast ∪

→
A∗l (M) (5.18)

Finally, partition ∆T and the model are fed into the TSND solution algorithm.
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Model State

Space

Process Infinitesimal

matrix

Uniformised

process

Stochastic

matrix

Set of

blocks

A block

M D XC Q XD R B BI

Magg Dagg XC
agg Qagg XD

agg Ragg Bagg Bagg,I

Table 5.1: Notation used for construction of blocks in the complete and aggregated

state spaces.

Using the enhanced approach, we are essentially detecting the blocks within the

aggregated state space, and then extending their validity to the complete state space.

Such an expansion can be formally justified. In the next section, we present a theorem

that supports our enhanced procedure.

5.3.4 Enhanced Procedure - Supporting Theorem

For convenience, the notation used in the theorem is summarised in Table 5.1. We

assume that Dagg respects NCD, and consists of NB blocks. This is specified as Bagg =

{Bagg,I}I∈[1···NB] where each Bagg,I consists of a number of aggregated states γγγ ∈ Dagg.

One other key assumption we make is that when the model is running in its stationary

phase the transitions related to large groups happen on the fast time scale, i.e. transi-

tions of types α∈
→
A∗l (M) occur at high rates.

Theorem 5.3.1. (Expanding NCD from Magg to M) Consider the LSRB model M
and its aggregated model Magg. If Dagg respects NCD with maximum probabilistic

coupling εagg and the transitions of type
→
A∗l (M) occur with rates at least one order of

magnitude larger than εagg, then the original state space D is decomposable with the

same coupling measure εagg. Furthermore, Dagg and D have a similar block structure,

in the sense that:

∀ Bagg,I ∈ Bagg ∃ BI ∈ B : BI = { S ∈ Yγγγ | Yγγγ ⊂ D , γγγ ∈ Bagg
I } (5.19)

That is, for each block Bagg,I in Dagg, we have one corresponding block BI in D that

consists of states that constitute the sub-chains Yγγγ : γγγ ∈ Bagg
I .

Proof. The proof is by construction and its outline is shown in Fig. 5.4. We start with

model Magg. Since it satisfies the decomposability condition, we can construct the
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R = R∗+ εagg ·C∗

M

Ragg = R∗agg + εagg ·C∗agg

Magg
Aggregation

Decomposability

Expansion

Decomposability

Figure 5.4: Outline of the proof for extending decomposability from Dagg to D.

equation:

Ragg = R∗agg + εagg ·C∗agg (5.20)

where the elements R∗agg, εagg and C∗agg respect the structural conditions enumerated on

Page 83 and are derived using the solution construction method of Sec. 5.2.2.

Next, we focus on R = [ri j]i, j∈D associated with M. Using the matrix R and the

solution of Eq.(5.20) we construct equation:

R = R∗+ εagg ·C (5.21)

where R∗ = [r∗i j]i, j∈D and C = [ci j]i, j∈D are respectively derived using Eq.(5.22) and

Eq.(5.23):

r∗i j =



ri j if i ∈ Yγγγ , j ∈ Yγγγ

(a transition related to the

dynamics of the large populations)

0 if i ∈ Yγγγ , j ∈ Yβββ ,Yγγγ 6= Yβββ ,γγγ ∈ Bagg,I , βββ ∈ Bagg,J , Bagg,I 6= Bagg,J

(a cross sub-chain transition which is regarded as

cross-block transition in Dagg.

ri j +
ri j(

∑
γγγ∈Bagg,I

∑
h∈Yγγγ

rih

) ×( ∑
Bagg,J∈Bagg

Bagg,J 6=Bagg,I

∑
ωωω∈Bagg,J

∑
k∈Yωωω

rik

)

if i ∈ Yγγγ , j ∈ Yβββ , Yγγγ 6= Yβββ , γγγ ∈ Bagg,I , βββ ∈ Bagg,I

(a transition from state i to j which is in a

different sub-chain but in the same block in Dagg)

(5.22)
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ci j =



0 if i ∈ Yγγγ , j ∈ Yγγγ

1
εD ×

ri j(
∑

Bagg,J∈Bagg
Bagg,J 6=Bagg,I

∑
ωωω∈Bagg,J

∑
k∈Yωωω

rik

)

if i ∈ Yγγγ , j ∈ Yβββ ,Yγγγ 6= Yβββ ,γγγ ∈ Bagg,I , βββ ∈ Bagg,J ,

Bagg,I 6= Bagg,J

− 1
εD ×

ri j(
∑

γγγ∈Bagg,I

∑
h∈Yγγγ

rih

) × ( ∑
Bagg,J∈Bagg

Bagg,J 6=Bagg,I

∑
ωωω∈Bagg,J

∑
k∈Yωωω

rik

)

if i ∈ Yγγγ , j ∈ Yβββ , Yγγγ 6= Yβββ , γγγ ∈ Bagg,I , βββ ∈ Bagg,I

(5.23)

Our construction guarantees that:

1. R∗ is a block diagonal matrix with stochastic blocks on the diagonal.

2. Each matrix block R∗agg,I associated with Bagg,I is mapped to one matrix block

R∗I in R∗.

3. The elements of R∗ are significantly larger than εagg.

The reformulation of R in terms of Eq.(5.21) means that XD is near-completely de-

composable with the same coupling measure εagg. Furthermore, by construction the

property of Eq.(5.19) is respected.

Note that we presented the proof in terms of the model’s underlying DTMC. The

proof can be readily extended to the case of CTMCs using Eq.(5.14).

Although seemingly complex, the calculations in Eq.(5.22) and Eq.(5.23) follow a

simple logic. To assist with their understanding, we present the following example.

5.3.5 Extending Decomposability - Example

Consider Fig. 5.5, the complete state space of the client-server model initialised with

one server, one client and parameters rs = 10, rl = 5, rb = 0.1, r f = 0.2, rc = >,

rt = 3. Note that the states are numbered. The underlying DTMC of this model has the
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0,1,0,1,0

1

2 3

4

5

0,1,0,0,1

1,0,0,0,1

1,0,0,1,0

0,0,1,1,0

0,0,1,0,1

think, rt

think, rt

think, rt

req, rs

log, rl

6

log, rl

brk, rb

fix, rf

brk, rb

fix, rf

A

B

C

Figure 5.5: The complete state space of a client-server system initialised with one client

and one server.
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stochastic matrix shown on the left hand side of Eq.(5.25). The model is amenable to

the aggregation and as a result we derive the aggregated state space shown in Fig. 5.1.

The sub-chains are named in Fig. 5.5 by letters A, B and C. Note the correspondence

between these labels and those for aggregated states in Fig. 5.1.

We showed on Page 87 that the DTMC of the aggregated model is decomposable:

Ragg =


A B C

A 0 10
10.1

0.1
10.1

B 5
10.1

5.1
10.1 0

C 0.2
10.1 0 9.9

10.1

=


0 1 0
5

10.1
5.1
10.1 0

0 0 1



+
0.2

10.1


0 −0.1

0.2
0.1
0.2

0 0 0

1 0 −1

 (5.24)

The set of blocks identified on Dagg is: Bagg = {Bagg,1 = {A,B},Bagg,2 = {C}}. This

means that transitions of type req, log are fast and the transitions of type break, f ix are

slow. The maximum coupling factor is 0.2
10.1 associated with the probability of break

happening in state A.

Assuming that the rates of the transitions related to the client (the transitions of

type think) are greater than the coupling factor, we use the blocks Bagg,1 and Bagg,2,

and Eq.(5.22) and Eq.(5.23) to construct the decomposability equation of R as shown

in Eq.(5.25). Here the transitions of type think are used to expand the blocks.
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Version 1 Version 2 Version 3 Version 4

ns 1 2 5 8

nc 150 300 350 500

Table 5.2: Population parameters associated with the clients and servers.

Time (Sec) Memory (Byte)

Aggregated Model Original Model Aggregated Model Original Model

Ver. 1 3 225 2336 788304

Ver. 2 5 596 4120 2281320

Ver. 3 8 1405 6448 4970784

Ver. 4 12 2833 9408 9239992

Table 5.3: Running time and memory used by clustering method when applied to four

versions of the model. The measures are extracted from the Java virtual machine.

5.4 Enhanced Procedure - Experiment Results

5.4.1 Experiment Scenario

In this final section, we report the results of an experiment where we applied the en-

hanced procedure to four versions of our client-server model. The model is shown on

Page. 44. The population parameters are shown in Table. 5.2. These are chosen in a

way that the models have increasingly larger state spaces. The rate parameters are:

rs = 10, rl = 50, rb = 0.01, r f = 0.1, rc =>, rt = 30.

We implemented an agglomerative clustering tool using Java and applied it to our

models and their aggregated versions. The coupling measure was set to ε = 1. We

chose this as it corresponds to a value one order of magnitude smaller than the rate at

which a client is served. We measured the run-time and memory usage of our clustering

tool and report these measurements in Table 5.3. The evaluation of D and Dagg had the

same result; it showed that transitions of type {req , log, think} are fast and those of

type {break , log} are slow. However, the clustering through the aggregated state space

achieved the result faster whilst consuming less memory, and showed that it is capable

of being used in much larger models.
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5.4.2 Final Remarks

We acknowledge that in this simple example, we could easily form partition ∆T =

{
→
A∗f ast= {req, log, tnk},

→
A∗slow= {break, f ix}} without going through the trouble of

using the enhanced approach at all. Here, we could examine the behaviour of a single

server and observe that break and f ix happen at a much slower rate than the rest of the

actions. Generalising this view, one might propose the conjecture that the infrequency

of an action within one sequential component implies its occurrence over the slow time

scale within the emergent behaviour. The conjecture might be true for specific models,

but it turns out to be naive and generally wrong. As a counter-example, we considered

a client-server system with the rate parameters as above and population parameters

ns = 20 and nc = 10000. In this case, the group of servers is still small, but their pop-

ulations has grown just enough that transitions of type f ix happen at higher rates and

potentially fill the gap between previously distinct time scales. Here, the model does

not respect NCD, the partition ∆T = {
→
A∗f ast= {req, log, tnk},

→
A∗slow= {break, f ix}}

becomes invalid and applying the TSND solution results in an erroneous approximate

solution. These all happen even though looking at one individual server still derives

the said partition.

The observation above highlights one important aspect of our enhanced procedure.

For a given model M, the successful derivation of ∆T quantitatively justifies the pres-

ence of muti-scale dynamics and rigorously validates the use of the TSND method

as an accurate analysis approach. However, if M is not decomposable, the method

alerts that the TSND must not be applied. The efficiency of the method enables us to

make the validity decision quickly and through the aggregated state space. In this ap-

proach, we are not limited to the behaviour of individual processes in small groups, but

rather, we form our judgment more informatively by taking into account the collective

dynamics of instances within the small groups.

5.4.3 Requirement Imposed on Actions of Large Groups

Our enhanced approach relies heavily on the assumption that the transitions related

to large groups (resource users) occur at fast rates. One possible way to check this

is to observe the behaviour of the real system under study. Perhaps we could use

techniques based on machine learning to infer the distributions of the apparent rates of

actions in
→
A∗l (M) and compare them against the similar distributions derived for those
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in
→
A∗slow. Alternatively, we may be able to use the model’s expected behaviour (fluid

flow moments and MCM conditional moments) to assert that α ∈
→
A∗l (M) are always

supported by large number of instances in Gl(M).

However, an interesting alternative is to verify the assumption syntactically by tak-

ing into account the model’s structure and its parameters regarding actions’ rates and

populations. For instance, our preliminary work shows that it is possible to derive

upper and lower bound constant for the rates of actions across the states where they

are enabled. If, for an α ∈
→
A∗l (M) the lower bound is much larger than the highest

rate of the actions happening on the slow time scale, then one can safely assume that

α belongs to the fast dynamics, as its rate only gets faster when enabled by multiple

instances in large groups. Criteria such as this need to be developed to accompany our

enhanced method. However, given the time constraint of this project, this aspect of our

method could not be explored further and we leave the development of such criteria as

a future task.





Chapter 6

Analysis of LSRB Models Using

Conditional Expectations

6.1 Introduction

In this chapter, we present the method of conditional expectations, the first part of the

method of conditional moments (MCM). Similarly to the near-complete decomposi-

tion, the aim of the MCM is to provide an evaluation tool for efficient and faithful

analysis of LSRB models.

Given a model M with the set of groups G(M) = {Gs(M),Gl(M)} and the state

vector ξξξ = 〈ξξξs
, ξξξ

l〉 we observe that the small groups experience a relatively small

number of configurations (limited number of sub-chains, aggregated states) and the

main reason causing the problem of state space explosion is the very large number

of states related to the transitions of large groups within each sub-chain. Thus, to

achieve efficiency while keeping faithfulness, we study the behaviour of ξξξ
s in terms

of the discrete aggregated state space and the evolution of ξξξ
l by using the moments

of the conditional distributions P(ξξξ
l | ξξξ

s
). Assuming that ξξξ

s represents the system’s

resources and ξξξ
l the resource users, the MCM guarantees that the correlation between

the internal dynamics of resources and the behaviour experienced by users is preserved.

Using MCM, the construction of the internal states of the sub-chains is completely

avoided. Thus, the method can be used for models which, even after applying the

decomposability, give rise to blocks that are too large to be efficiently analysed.

As a preliminary example, consider the client-server system where five servers co-

105
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operate with 100 clients on the req action. The aggregated state space of this system

Dagg
CS is analysed to derive Pt(〈Si,Sl,Sb 〉) for all 〈Si,Sl,Sb 〉 ∈ Dagg

CS . In this system, the

method of conditional moments allows us to derive the conditional moments of 〈Ct ,Cr〉
such as the conditional expectations Et [〈Ct ,Cr〉 | 〈Si,Sl,Sb〉 ] and conditional variances

VARt [〈Ct ,Cr 〉 | 〈Si,Sl,Sb 〉 ], given the different configurations of the servers. These

moments are useful for studying the stochastic behaviour of the clients given the dif-

ferent performance profiles associated with the servers’ distinct modes of operation.

We will describe the details of this example in Chap. 7.

In this chapter, we focus on the derivation of the first-order conditional moments,

i.e. the conditional expectations. In Chap. 8, we describe the derivation of the higher-

order conditional moments and co-moments.

The calculation of the conditional expectation is possible through the derivation

of a system of differential algebraic equations (DAEs) from the model. In Sec.6.2,

we formally introduce the conditional expectations and describe how the DAEs are

derived. The equations are regarded as an initial value problem and can be solved

when supplied with the required initial values. Finding such values is not trivial for

DAEs underlying LSRB models. In Sec. 6.4, we present an algorithm for deriving the

initial values.

The content presented in this chapter has not been published yet and we are in the

process of preparing the related paper. The content of this chapter will be combined

and integrated with those presented in chapters 5, 7, 8 and 9 and the paper will be

submitted to a suitable journal.

6.2 Definitions

First, let us formally define the notion of conditional expectation related to the stochas-

tic behaviour of the large groups. Consider the sub-chain Yγγγ consisting of states

Si = 〈ξξξs
i , ξξξ

l
i〉 where ξξξ

s
i = γγγ. The probability of being in each Si at time t is denoted

by Pt(Si) = Pt(〈γγγ , ξξξ
l
i〉). The probability of being in the sub-chain Yγγγ at time t is de-

noted by Pt(γγγ) and is derived by:

Pt(γγγ) = ∑
〈γγγ ,ξξξl

i〉∈D

Pt(〈γγγ , ξξξ
l
i〉) (6.1)
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Definition 28. (Conditional expectation of the vector ξξξ
l given a configuration γγγ for ξξξ

s)

The conditional expectation of the vector of random variables ξξξ
l at time t, given that

at t the state of the small groups is γγγ , is denoted by Et

[
ξξξ

l | γγγ
]

and is defined as:

Et

[
ξξξ

l | γγγ
]
= ∑

Si=〈γγγ ,ξξξl
i〉∈Yγγγ

ξξξ
l
i ·Pt(ξξξ

l | γγγ) = ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i ·
Pt(〈γγγ , ξξξ

l
i〉)

Pt(γγγ)
(6.2)

In this definition, we use Bayes’ Law [15, Chp. 1] to expand the conditional prob-

ability Pt(ξξξ
l | γγγ). According to this law, for two probabilistic events ε1 and ε2 with

non-zero probabilities:

Pt(ε2 | ε1 ) =
Pt(ε1 , ε2)

Pt(ε1)
(6.3)

In Def. 28, we focused on the conditional expectation of the vector ξξξ
l . A similar

definition is described below, which concentrates on reward functions defined over

Si = 〈ξξξs
i , ξξξ

l
i〉 ∈ D.

Let T (ξξξl
, t) : Nn(M,l) ×R≥0 → R≥0 be a polynomial function defined over the

Markov Chain of model M1. This function represents a time dependent instantaneous

reward associated with the states in D; at any point of time t, to any state 〈ξξξs
i , ξξξ

l
i〉 ∈ D

the reward T (ξξξl
i, t) is assigned.

Definition 29. (Conditional expectation of a reward function) At time t, the condi-

tional expectation of a reward function T (ξξξl
, t) given that at t, ξξξ

s
= γγγ , is denoted by

Et

[
T (ξξξl

, t) | γγγ
]

and is defined as:

Et

[
T (ξξξl

, t) | γγγ
]
= ∑

Si=〈γγγ ,ξξξl
i〉∈Yγγγ

T (ξξξl
i, t) ·Pt(ξξξ

l | γγγ) (6.4)

where Pt(ξξξ
l
i | γγγ) is derived using Eq.(6.3).

Using the definitions above, we are ready to describe the derivation of the condi-

tional expectation of ξξξ
l .

6.3 Conditional Expectations - Derivation of Equations

Given a model, the time evolution of the model’s underlying probability distribution is

derived by solving the associated system of Chapman-Kolmogorov (C-K) equations. In

1Recall that n(M, l) represents the number of state variables in ξξξ
l .
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this system, for each state Si ∈D there is one ODE which captures how Pt(Si) changes

in an infinitesimal time interval as the result of probability fluxes into and out of Si.

We can start by considering the symbolic representation of the model’s C-K equations

and then derive the equations that describe the conditional expectations related to the

model’s large groups.

For each state Si, one C-K equation is constructed of the form:

∀ Si ∈ D :
d Pt(Si)

d t
= − ∑

Si
(α,rα(Si))−−−−−→S j

rα(Si) ·Pt(Si)

︸ ︷︷ ︸
outward transitions from Si

+ ∑

Sk
(α,rα(Sk))−−−−−−→Si

rα(Sk) ·Pt(Sk)

︸ ︷︷ ︸
inward transitions into Si

(6.5)

where for each state Si = 〈ξξξs
i , ξξξ

l
i〉, the first and second term on the right hand side

describe respectively the probability fluxes out of and into Si due to outward and inward

transitions related to this state.

Let us assume that for each state Si = 〈ξξξs
i , ξξξ

l
i〉, the two sides of Eq.(6.5) are multi-

plied by ξξξ
l
i to obtain:

∀ Si ∈ D : ξξξ
l
i ·

d Pt(Si)

d t
= − ξξξ

l
i · ∑

Si
(α,rα(Si))−−−−−→S j

rα(Si) · Pt(Si)

+ ξξξ
l
i · ∑

Sk
(α,rα(Sk))−−−−−−→Si

rα(Sk) ·Pt(Sk). (6.6)

We focus on the sub-chain Yγγγ and all states Si = 〈γγγ , ξξξ
l
i〉 ∈ Yγγγ. Summing the right

and left hand sides of Eq.(6.6) over Si ∈ Yγγγ , we obtain:

∀ γγγ ∈ Dagg : ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i ·

d Pt(Si)

d t
=

− ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i · ∑

Si
(α,rα(Si))−−−−−→S j

rα(Si) ·Pt(Si)

+ ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i · ∑

Sk
(α,rα(Sk))−−−−−−→Si

rα(Sk) ·Pt(Sk) (6.7)
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First, we consider the left hand side of Eq.(6.7) and apply Bayes’ Law:

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i ·

d Pt(Si)

d t

= ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i ·

d
(
Pt(〈γγγ , ξξξ

l
i〉)
)

d t
= ∑

Si=〈γγγ ,ξξξl
i〉∈Yγγγ

ξξξ
l
i ·

d
(
Pt(ξξξ

l
i | γγγ) ·Pt(γγγ)

)
d t

=
d
d t

 ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i ·Pt(ξξξ

l
i | γγγ) ·Pt(γγγ)

=
d
d t

Pt(γγγ) ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i ·Pt(ξξξ

l
i | γγγ)



=
d
d t

(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
] )

(6.8)

We apply the product rule for differentiation to the last line of Eq.(6.8) to derive:

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i ·

d Pt(Si)

d dt
=

d
(
Pt(γγγ)

)
d t

·Et

[
ξξξ

l | γγγ
]

+ Pt(γγγ) ·
d
(
Et

[
ξξξ

l | γγγ
])

d t
(6.9)

When we substitute Eq.(6.9) in the left hand side of Eq.(6.7) we can derive Eq.(6.10).

Note that as a result of this transformation, the left hand side is now fully written in

terms of the conditional expectations and the marginal distribution over Dagg.

∀ γγγ ∈ Dagg :
d
(
Pt(γγγ)

)
d t

·Et

[
ξξξ

l | γγγ
]

+Pt(γγγ) ·
d
(
Et

[
ξξξ

l | γγγ
])

d t
=

− ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i · ∑

Si
(α,rα(Si))−−−−−→S j

rα(Si) ·Pt(Si)

︸ ︷︷ ︸
outward transitions

+ ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i · ∑

Sk
(α,rα(Sk))−−−−−−→Si

rα(Sk) ·Pt(Sk)

︸ ︷︷ ︸
inward transitions

(6.10)

Having transformed the left hand side, we now consider the right hand side with

the aim of finding closed form expressions in terms of the conditional expectations and
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the marginal probability distribution over Dagg. The derivations for the right hand side

are lengthier, and for clarity a map of these transformations is shown in Fig. 6.1.

Each line on the right hand side of Eq.(6.10) has two summations; the outer over

the states in Yγγγ and the inner over transitions. In each line, it is possible to move ξξξ
l
i

into the inner summation. We apply this transformation to derive:

∀ γγγ ∈ Dagg :
d
(
Pt(γγγ)

)
d t

·Et

[
ξξξ

l | γγγ
]

+ Pt(γγγ) ·
d
(
Et

[
ξξξ

l | γγγ
])

d t
=

− ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

∑

Si
(α,rα(Si))−−−−−→S j

ξξξ
l
i · rα(Si) ·Pt(Si)

︸ ︷︷ ︸
outward transitions

+ ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

∑

Sk
(α,rα(Sk))−−−−−−→Si

ξξξ
l
i · rα(Sk) ·Pt(Sk)

︸ ︷︷ ︸
inward transitions

(6.11)

In Eq.(6.11), consider the expression related to the outward and inward transitions.

Each consists of two summations. These summations are independent and we can swap

their ordering, similarly to the transformation we applied in our aggregation technique

to Eq.(4.8). We transform Eq.(6.11) into the following:

∀ γγγ ∈ Dagg :
d
(
Pt(γγγ)

)
d t

·Et

[
ξξξ

l | γγγ
]

+Pt(γγγ) ·
d
(
Et

[
ξξξ

l | γγγ
])

d t
=

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,Si≥V −α

ξξξ
l
i · rα(Si) ·Pt(Si)

︸ ︷︷ ︸
outward transitions

+ ∑
α∈
→
A∗(M)

∑
Sk≥V −α ,Si=〈ξξξs

i ,ξξξ
l
i〉=Sk+Vα

ξξξ
l
i · rα(Sk) ·Pt(Sk)

︸ ︷︷ ︸
inward transitions

(6.12)

In the next steps, we transform the expressions related to the outward and inward

transitions separately and plug the results back into Eq.(6.12).
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6.36

6.29

6.20

6.19

6.16

6.13

6.28

6.24

6.22

6.21

6.12

6.11

6.10

Transformations

related to outward

transitions

Transformations

related to inward

transitions
Expansion

Using ∆A

Expansion

Using ∆A

Boundary state

approx (Eq.6.15))

Bayes’

Law

(Eq.(6.17))

Def. 28 and 29

Variable substitu-

tion (renaming)

Boundary state

approx (Eq.(6.23))

Distributivity of

multiplication over

addition

Approximation Step (Eq.(6.32)),

Lemma 6.3.1 and 6.3.2

Simplification

Figure 6.1: Transformations applied to the right hand side of Eq.(6.10). The boxes

contain the numerical identifier of the equations which we progressively derive.



112 Chapter 6. Analysis of LSRB Models Using Conditional Expectations

〈γγγ , ξξξ
l
i〉

〈γγγ,ξξξl
i +V l

α〉

〈γγγ+V s
α , ξξξ

l
i〉

〈γγγ+V s
α,ξξξ

l
i +V l

α〉

Yγγγ Yγγγ+V s
α

α∈
→
A∗l (M)

α ∈
→
A∗s (M)

α ∈
→

A∗sl (M)

Figure 6.2: The impact of outward transitions with different types on the state vector.

6.3.1 Outward Transitions

First, we consider the expression related to the outward transitions. The impact of a

transition of a type α is shown in Fig. 6.2., when α ∈
→
A∗s (M), α∈

→
A∗sl (M) or α∈

→
A∗l (M).

In this figure, consider the three transitions leaving the state 〈γγγ , ξξξ
l
i〉. If α ∈

→
A∗s (M),

then V s
α 6= 0, V l

α = 0, the transition only affects the configuration of the small groups

and its rate is determined by this configuration: rα(Si) = rα(γγγ). For the target state

Sk = 〈ξξξs
k , ξξξ

l
k〉 we have: ξξξ

s
k = γγγ+V s

α and ξξξ
l
k = ξξξ

l
i . In the state space, this transition

exists if Si ∈ D and γγγ > V s,−
α . As the second case, if α ∈

→
A∗sl (M), then the transition

changes the configurations of both small and large groups. In this case, ξξξ
s
k = γγγ+V s

α

and ξξξ
l
k = ξξξ

l
i +V l

α. This transition exists if both ξξξ
s
i and ξξξ

l
i enable it, that is, when Si ∈D,

ξξξ
s
i ≥ V s,−

α and ξξξ
l
i ≥ V l,−

α . Since the large groups are passive with respect to
→

A∗sl (M)

actions, rα(Si) = rα(γγγ). As the last case, if α ∈
→
A∗l (M), then V s

α = 0 and V l
α 6= 0. In

this case, ξξξ
s
k = ξξξ

s
i = γγγ, ξξξ

l
k = ξξξ

l
i +V l

α and the rate of the transition is determined by ξξξ
l
i .

This transition exists if Si ∈ D and ξξξ
l
i ≥ V l,−

α . The properties of these transitions are

summarised in Table.6.1.

In Eq.(6.12) and in the term related to the outward transitions, we can use the

partition ∆A = {
→
A∗s (M),

→
A∗sl (M),

→
A∗l (M)} over

→
A∗ (M) to expand the summations

over
→
A∗ (M) given the different categories in ∆A :
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Si
(α,·)−−→ Sk , Si = 〈ξξξs

i , ξξξ
l
i〉 , Sk = 〈ξξξs

k , ξξξ
l
k〉

α ∈
→
A∗s (M) α ∈

→
A∗sl (M) α ∈

→
A∗l (M)

necessary

condition

ξξξ
s
i ≥ V s,−

α ξξξ
s
i ≥ V s,−

α

ξξξ
l
i ≥ V l,−

α

ξξξ
l
i ≥ V l,−

α

impact ξξξ
s
k = ξξξ

s
i +V s

α

ξξξ
l
k = ξξξ

l
i

ξξξ
s
k = ξξξ

s
i +V s

α

ξξξ
l
k = ξξξ

l
i +V l

α

ξξξ
s
k = ξξξ

s
i

ξξξ
l
k = ξξξ

l
i +V l

α

rate rα(ξξξ
s
i ) rα(ξξξ

s
i ) rα(ξξξ

l
i)

Table 6.1: The properties of the outward transitions from a state Si

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i · rα(Si) ·Pt(Si) =

− ∑
α∈
→
A∗s (M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,γγγ≥V s,−
α

ξξξ
l
i · rα(γγγ) ·Pt(Si)

− ∑
α∈

→
A∗sl(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,ξξξ
s
i≥V s,−

α

ξξξ
l
i≥V l,−

α

ξξξ
l
i · rα(γγγ) ·Pt(Si) ?

− ∑
α∈
→
A∗l(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,ξξξ
l
i≥V l,−

α

ξξξ
l
i · rα(ξξξ

l
i) ·Pt(Si) (6.13)

Boundary state approximation. In the next transformation, we focus on the expres-

sion in Eq.(6.13) related to
→

A∗sl (M) action types (marked with a star). We assume that

in any sub-chain Yγγγ the probability of being in boundary states is close to zero. These

are states Si = 〈γγγ , ξξξ
l
i〉 where there is at least one action type α∈

→
A∗sl (M) enabled by the

small groups (i.e. γγγ≥ V s,−
α ), but not by the cooperating large groups (i.e. ξξξ

l
i 6≥ V l,−

α ).

As stated in Section 4.2.3.3, this assumption can be formally specified as:

∀ α ∈
→

A∗sl (M) , ∀ Si = 〈γγγ , ξξξ
l
i〉 ∈ Yγγγ :(

(γγγ≥ V s,−
α ) =⇒ (ξξξ

l
i 6≥ V l,−

α )
)

=⇒ Pt(Si)≈ 0 (6.14)

For all states Si ∈ Yγγγ, the configuration of the small groups is identical. Therefore,

for any α ∈
→

A∗sl (M), if there exists any state Si ∈Yγ which enables α at rα(γγγ) 6= 0, then

across all states in this sub-chain, if α is enabled, it would only be at the same rate

rα(γγγ). The inner summation in Eq.(6.14) sums over only the states Si = 〈γγγ , ξξξ
l
i〉 ∈ Yγγγ
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where both γγγ≥V s,−
α and ξξξ

l
i ≥V l,−

α (both small and large groups enable the transition).

Since the probability of being in boundary states (γγγ+V s
α ≥ 0 and ξξξ

l
i +V l

α 6≥ 0) is

close to zero we can drop the restriction over the configuration of the large groups

and only focus only on the configuration of the small groups. Here, for the boundary

states: ξξξ
l
i · rα(γγγ) ·Pt(Si)≈ 0, their contribution becomes negligible and therefore, such

contributions can be safely added to the summation:

∑
α∈

→
A∗sl(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,γγγ≥V s,−
α

ξξξ
l
i≥V l,−

α

ξ
l
i · rα(γγγ) ·Pt(Si) ≈

∑
α∈

→
A∗sl(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,γγγ≥V s,−
α

ξξξ
l
i · rα(γγγ) ·Pt(Si) (6.15)

By substituting Eq.(6.15) in Eq.(6.13) we obtain:

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i · rα(Si) ·Pt(Si) ≈

− ∑
α∈
→
A∗s (M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,γγγ≥V s,−
α

ξξξ
l
i · rα(γγγ) ·Pt(Si)

− ∑
α∈

→
A∗sl(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,γγγ≥V s,−
α

ξξξ
l
i · rα(γγγ) ·Pt(Si)

− ∑
α∈
→
A∗l(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,ξξξ
l
i≥V l,−

α

ξξξ
l
i · rα(ξξξ

l
i) ·Pt(Si) (6.16)

For an action α and a state Si = 〈γγγ , ξξξ
l
i〉, if α is not enabled we have: rα(Si) = 0; if

α ∈
→
A∗s (M)∪

→
A∗sl (M) then γγγ 6≥ V −,sα and rα(γγγ) = 0 , and if α ∈

→
A∗l (M) then ξξξ

l
i 6≥ V l,−

α

and rα(ξξξ
l
i) = 0. In each line of Eq. 6.16, the inner summations are respectively over

the states where the relevant actions are enabled. Since for each action type α the

non-enabling states add zero to this expression, we can relax the constraint currently

imposed on these states to include all states in each sub-chain; when α ∈
→
A∗s (M), the

constraint Si = 〈γγγ , ξξξ
l
i〉 ∈ Yγγγ , γγγ ≥ V s,−

α is replaced by Si = 〈γγγ , ξξξ
l
i〉 ∈ Yγγγ, a similar re-

placement is applied when α ∈
→

A∗sl (M) and α ∈
→
A∗l (M); the constraint Si = 〈γγγ , ξξξ

l
i〉 ∈

Yγγγ , ξξξ
l
i ≥ V l,−

α is replaced by Si = 〈γγγ , ξξξ
l
i〉 ∈ Yγγγ. We call this transformation the inclu-

sion of non-enabling states which is also used in later transformations. The constraints

on the summations are updated in the equations that follow.

Using Bayes’ Law. Using the Bayes’ Law, the joint probability Pt(Si), Si = 〈ξξξs
i , ξξξ

l
i〉,
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can be written in the conditional form:

Pt(Si) = Pt(ξξξ
s
i ) ·Pt(ξξξ

l
i | ξξξs

i ) (6.17)

By substituting ξξξ
s
i = γγγ, we obtain:

∀ γγγ ∈ Dagg : Pt(〈γγγ , ξξξ
l
i〉) = Pt(γγγ) ·Pt(ξξξ

l
i | γγγ) (6.18)

Using Eq.(6.18), we transform Eq.(6.16) into the following:

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i 〉∈Yγγγ

ξξξ
l
i · rα(Si) ·Pt(Si) ≈

−Pt(γγγ) ·

 ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξ
l
i ·Pt(ξξξ

l
i | γγγ)

+ ∑
α∈
→
A∗l(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i · rα(ξξξ

l
i) ·Pt(ξξξ

l
i | γγγ)

 (6.19)

Given Def.(28), we have:

∀ γγγ : Et

[
ξξξ

l | γγγ
]
= ∑

Si=〈γγγ ,ξξξl
i〉∈Yγγγ

ξξξ
l
i ·Pt(ξξξ

l
i | γγγ)

and by Def.(29) we obtain:

∀ γγγ : Et

[
ξξξ

l · rα(ξξξ
l
i) | γγγ

]
= ∑

Si=〈γγγ ,ξξξl
i〉∈Yγγγ

ξξξ
l
i · rα(ξξξ

l
i) ·Pt(ξξξ

l
i | γγγ) .

Thus, we transform Eq.(6.19) into:

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i 〉∈Yγγγ

ξξξ
l
i · rα(Si) ·Pt(Si) ≈

−Pt(γγγ) ·

 ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·Et

[
ξξξ

l | γγγ
]

+ ∑
α∈
→
A∗l(M)

Et

[
ξξξ

l · rα(ξξξ
l
) | γγγ

]  (6.20)

Eq.(6.20) is substituted in Eq.(6.12) as the term related to the outward transitions.

Thus far, we have been considering the term related to the outward transitions.

Now we consider the term in Eq.(6.12) related to the inward transitions.
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〈γγγ−V s
α,ξξξ

l
i−V l

α〉

〈γγγ−V s
α,ξξξ

l
i〉

〈γγγ,ξξξl
i−V l

α〉

〈γγγ , ξξξ
l
i〉

Yγγγ−V s
α

Yγγγ

α∈
→
A∗l (M)

α∈
→
A∗s (M)

α∈
→

A∗sl (M)

Figure 6.3: Inward transitions into a state Si and the impact of these transitions on the

state vector.

6.3.2 Inward Transitions

Let us consider Fig. 6.3. We focus on state Si = 〈γγγ , ξξξ
l
i〉 in sub-chain Yγγγ and the tran-

sitions into Si from different states Sk = 〈ξξξs
k , ξξξ

l
k〉. These transitions can be categorised

based on their type. If Sk
(α,·)−−→ Si, α ∈

→
A∗s (M), then V s

α 6= 0, V l
α = 0 and ξξξ

s
k = γγγ−V s

α,

ξξξ
l
k = ξξξ

l
i , Sk ∈ Yγγγ−V s

α
. This transition exists if ξξξ

s
k ≥ V s,−

α . When α ∈
→

A∗sl (M), V s
α 6= 0

and V l
α 6= 0, ξξξ

s
k = γγγ−V s

α, ξξξ
l
k = ξξξ

l
i−V l

α and Sk ∈ Yγγγ−V s
α
. This transition exists if both

small and large groups enable it, ξξξ
s
k ≥ V s,−

α and ξξξ
l
k ≥ V l,−

α . Finally, when α ∈
→
A∗l (M),

V s
α = 0, V l

α 6= 0, ξξξ
s
k = γγγ, ξξξ

l
k = ξξξ

l
i−V l

α and Sk is in the same sub-chain as Si. This transi-

tion exists if ξξξ
l
k ≥V l,−

α . The properties of the inward transitions into Si are summarised

in Table.6.2.

The categorisation above is useful when applying the transformations to the term

related to the inward transitions in Eq.(6.12). Consider the fourth line in this equation.

Sk
(α,·)−−→ Si , Sk = 〈ξξξs

k , ξξξ
l
k〉 , Si = 〈ξξξs

i , ξξξ
l
i〉

α ∈
→
A∗s (M) α ∈

→
A∗sl (M) α ∈

→
A∗l (M)

necessary

condition

ξξξ
s
k ≥ V s,−

α (ξξξ
s
i ≥ V s,+

α ) ξξξ
s
k ≥ V s,−

α (ξξξ
s
i ≥ V s,+

α )

ξξξ
l
k ≥ V l,−

α (ξξξ
l
i ≥ V l,−

α )

ξξξ
l
k ≥ V l,−

α (ξξξ
l
i ≥ V l,+

α )

impact ξξξ
s
i = ξξξ

s
k +V s

α

ξξξ
l
i = ξξξ

l
k

ξξξ
s
i = ξξξ

s
k +V s

α

ξξξ
l
i = ξξξ

l
k +V l

α

ξξξ
s
i = ξξξ

s
k

ξξξ
l
i = ξξξ

l
k +V l

α

rate rα(ξξξ
s
k) rα(ξξξ

s
k) rα(ξξξ

l
k)

Table 6.2: The properties of the inward transitions into a state Si
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The outer summation sums over the actions. By expanding this with respect to the

partition ∆A and using the Bayes’ Law we have:

∑
α∈
→
A∗(M)

∑
Sk≥V −α ,Si=〈γγγ ,ξξξl

i〉=Sk+Vα

ξ
l
i · rα(Sk) ·Pt(Sk)

= ∑
α∈
→
A∗s (M)

γγγ≥V s,+
α

∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

ξξξ
l
k · rα(γγγ−V s

α) · Pt(ξξξ
l
k | γγγ−V s

α ) ·Pt(γγγ−V s
α)︸ ︷︷ ︸

Pt(〈γγγ−V s
α ,ξξξ

l
k〉)

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

ξξξ
l
k≥V l,−

α ,ξξξl
i=ξξξ

l
k+V l

α

(ξξξ
l
k +V l

α) · rα(γγγ−V s
α) · Pt(ξξξ

l
k | γγγ−V s

α ) · Pt(γγγ−V s
α)

+ ∑
α∈
→
A∗l(M)

∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

ξξξ
l
k≥V l,−

α

(ξξξ
l
k +V l

α) · rα(ξξξ
l
k) ·Pt(ξξξ

l
k | γγγ) · Pt(γγγ)

(6.21)

In Eq.(6.21) we factor out the terms related to the marginal distribution over ξξξ
s and

the apparent rates of
→
A∗s (M) and

→
A∗sl (M) actions to obtain:

∑
α∈
→
A∗(M)

∑
Sk≥V −α ,Si=〈γγγ ,ξξξl

i〉=Sk+Vα

ξ
l
i · rα(Sk) ·Pt(Sk)

= ∑
α∈
→
A∗s (M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) · ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

ξξξ
l
k ·Pt(ξξξ

l
k | γγγ−V s

α )

︸ ︷︷ ︸
Et

[
ξξξ

l |γγγ−V s
α

]

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

ξξξ
l
k≥V l,−

α

(ξξξ
l
k +V l

α) ·Pt(ξξξ
l
k | γγγ−V s

α ) ?

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

ξξξ
l
k≥V l,−

α

(ξξξ
l
k +V l

α) · rα(ξξξ
l
k) · Pt(ξξξ

l
k | γγγ) (6.22)

Boundary state approximation. The probability of being in boundary states is as-

sumed to be close to zero. Thus, an approximation similar to Eq.(6.15) is possible

with respect to the term in Eq.(6.22) related to
→

A∗sl (M) actions (marked with a star

sign). This approximation states that if there is a transition Sk
(α,R)−−−→ Si, α ∈

→
A∗sl (M),

from a state Sk∈Yγγγ−V s
α

to a state Si∈Yγγγ , then we assume that all S
′
k∈Yγγγ−V s

α
enable
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similar transitions S′k
(α,R)−−−→ S′i , S′i∈Yγγγ to their corresponding S′i.

∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

ξξξ
l
k≥V l,−

α

(ξξξ
l
k +V l

α) ·Pt(ξξξ
l
k | γγγ−V s

α ) ≈

∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(ξξξ
l
k +V l

α) ·Pt(ξξξ
l
k | γγγ−V s

α )

(6.23)

We substitute Eq.(6.23) in Eq.(6.22). Also, in the last line of Eq. (6.22), which is

related to
→
A∗l (M), we apply the technique of inclusion of non-enabling states to change

the constraints of the summation over the states from Sk = 〈γγγ , ξξξ
l
k〉 ∈Yγγγ , ξξξ

l
k ≥ V l,−

α into

Sk = 〈γγγ , ξξξ
l
k〉 ∈ Yγγγ .

∑
α∈
→
A∗(M)

∑
Sk≥V −α ,Si=〈γγγ ,ξξξl

i〉=Sk+Vα

ξ
l
i · rα(Sk) ·Pt(Sk)

≈ ∑
α∈
→
A∗s (M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·Et

[
ξξξ

l | γγγ−V s
α

]

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(ξξξ
l
k +V l

α) ·Pt(ξξξ
l
k | γγγ−V s

α )

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(ξξξ
l
k +V l

α) · rα(ξξξ
l
k) · Pt(ξξξ

l
k | γγγ) (6.24)

In the final step, using the distributive property of multiplication over addition we

expand the terms underlined in Eq.(6.24). Considering the first term we have:

∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(ξξξ
l
k +V l

α) ·Pt(ξξξ
l
k | γγγ−V s

α ) =

∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

ξξξ
l
k ·Pt(ξξξ

l
k | γγγ−V s

α ) + ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(
V l

α ·Pt(ξξξ
l
k | γγγ−V s

α )
)
(6.25)
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where:

∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(
V l

α ·Pt(ξξξ
l
k | γγγ−V s

α )
)

= V l
α · ∑

Sk=〈γγγ−V s
α ,ξξξ

l
k〉∈Yγγγ−V s

α

Pt(ξξξ
l
k | γγγ−V s

α ) =

V l
α · ∑

Sk=〈γγγ−V s
α ,ξξξ

l
k〉∈Yγγγ−V s

α

Pt(γγγ−V s
α,ξξξ

l
k)

Pt(γγγ−V s
α)

= V l
α ·

Pt(γγγ−V s
α)

Pt(γγγ−V s
α)

= V l
α (6.26)

Also, for the second underlined term in Eq. (6.24), we have:

∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(ξξξ
l
k +V l

α) · rα(ξξξ
l
k) · Pt(ξξξ

l
k | γγγ) =

∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

ξξξ
l
k · rα(ξξξ

l
k) · Pt(ξξξ

l
k | γγγ) + ∑

Sk=〈γγγ ,ξξξl
k〉∈Yγγγ

V l
α · rα(ξξξ

l
k) · Pt(ξξξ

l
k | γγγ)

(6.27)

We substitute Eq.(6.25) and Eq.(6.27) in Eq.(6.24). Then, we use the definition of

conditional expectation (Def. 28) to obtain:

∑

Sk
(α,rα(Sk))−−−−−−→Si

∑
Si∈Yγγγ

ξ
l
i · rα(Sk) ·Pt(Sk)

≈ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·Et

[
ξξξ

l | γγγ−V s
α

]

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·V l
α

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · Et

[
ξξξ

l · rα(ξξξ
l
) | γγγ

]

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · V l
α · Et

[
rα(ξξξ

l
) | γγγ

]
(6.28)

The transformations applied to the term related to the inward transitions in Eq.(6.12)
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led to Eq.(6.28). Now we substitute this result into Eq.(6.12) to obtain:

∀ γγγ ∈ Dagg :
d
(
Pt(γγγ)

)
d t

·Et

[
ξξξ

l | γγγ
]

+ Pt(γγγ) ·
d
(
Et

[
ξξξ

l | γγγ
])

d t
≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

Pt(γγγ) · rα(γγγ) ·Et

[
ξξξ

l | γγγ
]

− ∑
α∈
→
A∗l(M)

Pt(γγγ) · Et

[
ξξξ

l · rα(ξξξ
l
) | γγγ

]
?

outward

transitions

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·Et

[
ξξξ

l | γγγ−V s
α

]

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·V l
α

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · Et

[
ξξξ

l · rα(ξξξ
l
) | γγγ

]
?

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · V l
α · Et

[
rα(ξξξ

l
) | γγγ

]

inward

transitions

(6.29)

In Eq.(6.29), one important simplification is possible; the two terms marked by ?

are equal but with opposite signs and therefore, reduce to zero. As this will be high-

lighted later in the case of higher-order moments, this simplification implies that the

system can become closed in terms of the conditional expectations (first-order condi-

tional moments) and the equations for the higher-order moments are not required for

obtaining these first-order moments.

In Eq.(6.29) – after simplification – all expressions are closed in terms of the

marginal probability distribution over Dagg and the conditional expectations of ξξξ
l , ex-

cept the term underlined, which is related to the conditional expectations of the appar-

ent rate functions of the actions in
→
A∗l (M). This term needs to be transformed so that

the whole system becomes closed in terms of the said primitives. For this transforma-

tion, we present Lemma 6.3.1, one approximation step and Lemma 6.3.2.

Lemma 6.3.1. (Expectation of a linear function of a random variable) Let X be a
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random variable and F : X → R be a linear function defined on X. The expectation of

F, denoted by E[F(X)], is equal to the function F evaluated at E[X ]:

E[F(X)] = F(E[X ]) (6.30)

The proof of this lemma is simple and presented in Appendix B.1. We use the

Taylor expansion of F(X) around E[X ] and in this sense, our proof is different from

the more straightforward one usually presented in the literature. Reading the proof

helps with understanding of our more complex derivations in the next sections.

Next, we present an approximation step required for our transformation.

Approximating rate functions. Consider a shared action type α ∈
→
A∗l (M). Since α

is shared, the apparent rate function of α contains the minimum expression: rα(ξξξ
l
) =

min
(H,C)∈enα(M)

rα(ξξξ(H)). The conditional expectation of rα(ξξξ
l
), given that ξξξ

s
= γγγ , is

denoted by Et

[
rα(ξξξ

l
) | γγγ

]
:

Et

[
rα(ξξξ

l
) | γγγ

]
= Et

[
min

(H,C)∈enα(M)

(
rα(ξξξ(H))

)
| γγγ
]

(6.31)

We will approximate Et

[
rα(ξξξ

l
) | γγγ

]
by swapping the position of the min and expecta-

tion operators in Eq.(6.31):

Et

[
rα(ξξξ

l
) | γγγ

]
≈ min

(H,C)∈enα(M)

(
Et

[
rα(ξξξ(H)) |γγγ

] )
Since our models respect split-freeness, ∀ α ∈

→
A∗ (M) , ∀ H ∈ ên(α), the function

rα(ξξξ(H)), i.e. the apparent rate of α with respect to group H, is a linear function.

Thus, using Lemma 6.3.1:

Et

[
rα(ξξξ

l
) | γγγ

]
≈ min

(H,C)∈enα(M)

(
Et [rα(ξξξ(H)) | γγγ ]

)
= min

(H,C)∈enα(M)

(
rα

(
Et [ξξξ(H) | γγγ ]

) )
(6.32)

For each shared action type α ∈
→
A∗l (M), Eq.(6.32) approximates Et

[
rα(ξξξ

l
) | γγγ

]
by an

expression closed in terms of the conditional expectations.

Lemma 6.3.1 and the approximation step above lead us to Lemma 6.3.2. In Lemma 6.3.2,

we propose an approximation to the conditional expectation of the rate functions.

Lemma 6.3.2. (Approximating conditional expectation of apparent rate function) Let

α be an action type in
→
A∗l (M) and Yγγγ a sub-chain in D. At time t, given that ξξξ

s
= γγγ,
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the conditional expectation Et

[
rα(ξξξ

l
) | γγγ

]
can be approximated as:

Et

[
rα(ξξξ

l
) | γγγ

]
≈ rα

(
Et

[
ξξξ

l | γγγ
])

(6.33)

Proof. The proof follows from Lemma 6.3.1 and Eq.(6.32). In the case when α is an

individual action, rα(ξξξ
l
) is a linear function and Eq.(6.33) follows from Lemma 6.3.1.

In this case, the approximation is exact. In the case when α is a shared action, we use

Eq.(6.32) to obtain Eq.(6.33):

Et

[
rα(ξξξ

l
) | γγγ

]
≈ min

(H,C)∈enα(M)

(
rα

(
Et [ξξξ(H) | γγγ ]

) )
= rα

(
Et

[
ξξξ

l | γγγ
])

(6.34)

Now we consider the expression underlined in Eq.(6.29). Using Lemma 6.3.2 we

can transform the expression as:

∑
α∈
→
A∗l(M)

Pt(γγγ) · V l
α · Et

[
rα(ξξξ

l
) | γγγ

]
≈ ∑

α∈
→
A∗l(M)

Pt(γγγ) · V l
α · rα

(
Et

[
ξξξ

l | γγγ
])

(6.35)

By substituting Eq.(6.35) in Eq.(6.29), we derive:

∀ γγγ ∈ Dagg : Pt(γγγ) ·
d
(
Et

[
ξξξ

l | γγγ
])

d t
+

d
(
Pt(γγγ)

)
d t

· Et

[
ξξξ

l | γγγ
]
≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

Pt(γγγ) · rα(γγγ) ·Et

[
ξξξ

l | γγγ
]

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·Et

[
ξξξ

l | γγγ−V s
α

]

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·V l
α

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · V l
α · rα

(
Et

[
ξξξ

l | γγγ
])

(6.36)

As a result of this substitution, Eq.(6.36) finally becomes closed in terms of the

marginal distribution over Dagg and the conditional expectations of ξξξ
l .
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In Eq.(6.36), the conditional expectations of ξξξ
l are presented in the vector form;

given that ξξξ
l consists of a number of state variables the equation illustrates how the

expectation of the whole vector ξξξ
l evolves. It is also useful to derive an alternative sys-

tem of equations that is at a finer granularity and captures the conditional expectation

of each of the state variables in ξξξ
l . The new system is particularly useful for software

implementation purposes.

Assuming ξξξ
l
= 〈ξ(H,C)〉, H ∈ Gl(M), C ∈ ds∗(H), at any time t the conditional

expectation of each state variable ξ(H,C), given that at t, the configuration of small

groups is γγγ, is denoted by Et

[
ξ(H,C) |γγγ

]
:

Et

[
ξ(H,C) |γγγ

]
= ∑

Si=〈γγγ ,ξξξl
i〉∈Yγγγ

ξi(H,C) ·Pt(ξξξ
l
i | γγγ) (6.37)

Def. 28 implies that Et

[
ξ(H,C) |γγγ

]
is the element in the expectation vector Et

[
ξξξ

l | γγγ
]

corresponding to the state variable ξ(H,C). Therefore, Et

[
ξξξ

l | γγγ
]

can be written as

the indexed vector of element-wise conditional expectations:

Et

[
ξξξ

l | γγγ
]
=
〈
E(H,C) , t

[
ξξξ

l |γγγ
] 〉

, H ∈ Gl(M) , C ∈ ds∗(H) ,

E(H,C) , t

[
ξξξ

l |γγγ
]
= Et

[
ξ(H,C) |γγγ

]
(6.38)

Using Eq.(6.29) and Eq.(6.38) we now present our alternative system of equations.

Here, the following notation is used:

µ(γγγ, t) = Et

[
ξξξ

l | γγγ
]

∀ γγγ ∈ Dagg

µ(H,C)(γγγ, t) = E(H,C) , t

[
ξξξ

l |γγγ
]

∀ γγγ ∈ Dagg , ∀ H ∈ Gl(M) ,∀C ∈ ds∗(H)
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∀ γγγ ∈ Dagg , ∀ (H,C) : ξ(H,C) ∈ ξξξ
l :

Pt(γγγ) ·
d
(

µ(H,C)(γγγ, t)
)

d t
+

d
(
Pt(γγγ)

)
d t

· µ(H,C)(γγγ, t) ≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

Pt(γγγ) · rα(γγγ) ·µ(H,C)(γγγ, t)

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·µ(H,C)(γγγ−V s
α, t)

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·V l
α,(H,C)

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · V l
α,(H,C) · rα

(
µ(γγγ, t)

)
(6.39)

6.4 Construction of Initial Values

The analysis through the MCM gives rise to a system of DAEs where for each γγγ∈Dagg

one equation is formed (in the vector form) capturing the evolution of the conditional

expectation Et

[
ξξξ

l | γγγ
]
. The DAEs can be regarded as an initial value problem and

in order to numerically obtain the solution a set of initial values needs to be speci-

fied. In this case, the initial values required consist of the initial conditional expec-

tations, i.e. Et=t0

[
ξξξ

l |γγγ
]
, γγγ ∈ Dagg, and the initial derivatives of these expectations,

i.e.
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t=0

.

Typically, the initial values are obtained by a simple procedure which processes

an initial probability distribution that the modeller specifies over the complete state

space. This procedure, which will be called simple initial value extraction (SIVE), has

the following steps:

1. Using the initial distribution, for each γγγ ∈ Dagg the initial marginal distribution

Pt0(γγγ) and the initial conditional distribution Pt=t0(ξξξ
l | γγγ) are derived.
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2. Using the definition of the conditional expectation (Def. 28) and evaluating it at

t = t0, Et0

[
ξξξ

l |γγγ
]

is obtained.

3. Finally Pt0(γγγ) and Et0

[
ξξξ

l |γγγ
]

are substituted in the instance of Eq.(6.35) that

captures the evolution of Et

[
ξξξ

l | γγγ
]

to derive the initial derivative
d Et

[
ξξξ

l |γγγ
]

d t |t=t0 .

Although simple, in practice the application of SIVE is not trivial. The potential

difficulty arises when there are sub-chains in the initial distribution with zero initial

probability. This makes calculation of their conditional probability distributions (first

step) impossible. In this section we discuss this issue and propose a solution.

6.4.1 Types of the initial distribution

Let us consider the application of SIVE under two scenarios. Depending on the initial

distribution given, one of the following is the case.

Case 1 - ∀ γγγ ∈ Dagg : Pt0(γγγ) 6= 0 : At t = t0 each aggregated state is allocated a

non-zero probability mass. In this case, no difficulty arises when applying SIVE and

it successfully constructs the initial values. As an example, suppose that at t = t0,

ξξξ
s and ξξξ

l are independently distributed, where ξξξ
s follows a normal distribution N γγγ

t0

(truncated to have bounded support) with f as its probability density function (PDF),

and in each sub-chain Yγγγ , ξξξ
l follows a multivariate normal distribution N (µγγγ,Σγγγ)

(again, with bounded support) with µγγγ as its mean vector, Σγγγ as its covariance matrix

and gγγγ(ξξξ
l
) as its PDF. Given the independence of ξξξ

s and ξξξ
l , in the initial distribution,

for all 〈γγγ , ξξξ
l〉 ∈ D : Pt0(〈γγγ , ξξξ

l〉) = f (γγγ) ·gγγγ(ξξξ
l
). Also, since Pt0(γγγ) 6= 0 the conditional

probability distribution Pt0(ξξξ
l | γγγ) is derivable by Bayes’ Law as:

∀ γγγ ∈ Dagg : Pt0(ξξξ
l | γγγ) = Pt0(γγγ,ξξξ

l
)

Pt0(γγγ)
=

f (γγγ) ·gγγγ(ξξξ
l
)

f (γγγ)
= gγγγ(ξξξ

l
) (6.40)

Next, using the conditional probabilities, the initial conditional expectations are de-

rived as:

∀ γγγ ∈ Dagg : Et0

[
ξξξ

l |γγγ
]
= ∑
〈γγγ ,ξξξl

i〉∈Yγγγ

ξξξ
l
i ·Pt0(ξξξ

l
i | γγγ) = ∑

〈γγγ ,ξξξl〉∈Yγγγ

ξξξ
l
i ·gγγγ(ξξξ

l
i) = µγγγ (6.41)

Having Pt0(γγγ) and µγγγ, for a γγγ these are substituted in the conditional expectation equa-

tion related to Et

[
ξξξ

l | γγγ
]

and the equation is evaluated at t0. As a result, the only
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unknown variable remaining is
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t=t0

, which can be easily obtained by the re-

ordering of the terms. Repeating for all γγγ ∈ Dagg, we obtain all the required initial

values.

Case 2 - ∃ γγγ ∈ Dagg : Pt0(γγγ) = 0 : In the initial distribution, there are a number

of aggregated states with zero initial probability. This case, for instance, includes the

situation where the system is assumed to start from one initial state Sinit and in the

initial distribution, all probability mass is allocated to that state. Here, when building

the initial marginal distribution over the aggregated state space, the aggregated state

γγγ : Sinit ∈ Yγγγ (whose related sub-chain in the complete state space encompasses Sinit)

has Pt0(γγγ) = 1 and all other aggregated states have zero probability.

For an analysis of this case, we construct the partition ∆Z = {Dagg
z ,Dagg

nz } over Dagg

where Dagg
z is the set of aggregated states with zero initial probability and Dagg

nz is the

set of aggregated states γγγ such that Pt0(γγγ) 6= 0. When constructing the initial values,

for any state in Dagg
nz we follow SIVE, and obtain the related initial values straight-

forwardly. However, for any aggregated state γγγ ∈ Dagg
z the conditional probabilities

Pt0(ξξξ
l | γγγ) cannot be determined by Bayes’s Law, and consequently, neither the initial

conditional expectations nor their derivatives may be obtained by considering the ini-

tial distribution. For γγγ ∈ Dagg
z , due to the division by zero, the initial values Et0

[
ξξξ

l |γγγ
]

and
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t=t0

become undetermined.

6.4.2 Solver Requirement

The numerical solvers used for solving DAEs require a complete set of initial val-

ues; i.e. conditional expectations and their derivative for all aggregated states and at

t = t0. This is a necessary requirement for the iterative integration step within the

solvers [24]. For analyses in Case 1, the complete set of initial values is derived from

the initial distribution. However, as stated, in Case 2 these initial values are only

partially constructed. This issue is circumvented by a standard technique where for

γγγ ∈Dagg
z instead of the extracting the values Et0

[
ξξξ

l |γγγ
]

and
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t=t0

from the ini-

tial distribution, we specify initial values in such a way that they are consistent with

the system of equations and the determined conditional expectations, and lie within the

DAEs solution space (a manifold in Rd where d is the dimension of the state vector).

The derivation of these additional values is not trivial and depends on the structure of
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the equations. Here we propose a schema suitable for DAEs constructed when MCM

is applied to LSRB models.

6.4.3 Deriving Consistent Initial Values

In order to calculate the consistent initial values we need the following definition and

proposition.

Definition 30. (Initial distance of a state in Dagg from Dagg
nz states) For any aggregated

state γγγ ∈ Dagg, we define ∇γγγ as the minimum number of transitions required to reach

γγγ from any one of the states in Dagg
nz . For γγγ ∈ Dagg

nz : ∇γγγ = 0.

Using Def. 30, a distance measure is assigned to each state γγγ ∈Dagg. This captures

the distance of γγγ from the probability sources within Dagg. This notion has two impor-

tant properties. First, a state γγγ ∈ Dagg
z has distance ∇γγγ if and only if, for all transitions

γγγ
′ → γγγ , γγγ

′ ∈ Dagg, the state γγγ
′

has the distance ∇
γγγ
′ ≥ ∇γγγ− 1. Moreover, for γγγ to

have the distance ∇γγγ, it is necessary that there exists at least one state γγγ
′
with distance

∇
γγγ
′ = ∇γγγ−1 enabling a transition into γγγ. An example will be presented shortly.

The distance measure ∇γγγ , γγγ ∈ Dagg
z allows us to express the following important

property about the probability of being in Dagg
z states at t = t0.

Proposition 6.4.1. For any aggregated state γγγ ∈ Dagg
z with initial distance ∇γγγ , the

first (∇γγγ−1)-th derivatives of Pt(γγγ), evaluated at t0, are equal to zero, and the (∇γγγ) -

th derivative is non-zero. More formally, for k = 0,1, · · · ,(∇γγγ−1) : dk (Pt(γγγ))
d tk

∣∣∣
t0
= 0 ,

and when k = ∇γγγ , dk (Pt(γγγ))
d tk

∣∣∣
t0
6= 0.

Proof. The proof is straightforward and is done by an induction on ∇γγγ and considering

the Chapman-Kolmogorov equation that captures the evolution of Pt(γγγ).

Prop. 6.4.1 enables us to develop a technique for finding initial values for Dagg
z

states. Due to its complexity, first we will illustrate the technique using a simple ex-

ample and then present it formally.
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Initial state

s1 s2

s3

s4

(a,ra)

(b,rb)
(c,rc)

(d,rd)

(e,re)
( f ,r f )

(g,rg)

(h,rh)

Figure 6.4: The aggregated state space of the system we consider in the example. For

the action types
→
A∗s (M) = {b,c,d,e, f ,g,h},

→
A∗sl (M) = {a} and

→
A∗l (M) = {q} (note

that action q is not visible in Dagg).

6.4.3.1 Derivation of Initial Conditional Expectations - Example

Consider a model with the complete state space D, the underlying state vector ξξξ =

〈ξξξs
, ξξξ

l〉 and the aggregated state space Dagg as shown in Fig. 6.4. The model’s ac-

tion types are
→
A∗ (M) = {a,b,c,d,e, f ,g,h,q} where

→
A∗s (M) = {b,c,d,e, f ,g,h},

→
A∗sl

(M) = {a} and
→
A∗l (M) = {q}.

With respect to the model’s initial configuration, we assume that at t = t0 the model

starts from one singly specified initial state Sinit = 〈ξξξs
init , ξξξ

l
init〉 where ξξξ

s
init = S1 is the

initial configuration of the small groups and ξξξ
l
init is the initial configuration of the large

ones. Since at t0, all probability mass is allocated at Sinit = 〈S1 , ξξξ
l
init〉, essentially, the

initial distribution Pt0(S), S ∈ D has been specified as:

∀ 〈ξξξs
, ξξξ

l〉 ∈ D : Pt0(〈ξξξ
s
, ξξξ

l〉) =
{

1 ξξξ
s
= S1 ∧ ξξξ

l
= ξξξ

l
init

0 otherwise
(6.42)

This initial distribution is used to construct the corresponding initial marginal distribu-

tion over Dagg:

Pt0(S1) = 1 , Pt0(S2) = Pt0(S3) = Pt0(S4) = 0 (6.43)

With respect to the calculation of the initial values, the partition ∆Z = {Dagg
z ,Dagg

nz } is

constructed where Dagg
nz = {S1} and Dagg

z = {S2,S3,S4}. For S1, the procedure SIVE is

followed and Et0

[
ξξξ

l |S1

]
and

d Et

[
ξξξ

l |S1

]
d t

∣∣∣
t0

are obtained. However, when applying the
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Distance Initial probability First derivative Second derivative

S1 ∇S1 = 0 Pt0(S1) 6= 0 - -

S2 ∇S2 = 1 Pt0(S2) = 0 d Pt(S2)
d t

∣∣∣
t0
6= 0 -

S3 ∇S3 = 1 Pt0(S3) = 0 d Pt(S3)
d t

∣∣∣
t0
6= 0 -

S4 ∇S4 = 2 Pt0(S4) = 0 d Pt(S4)
d t

∣∣∣
t0
= 0 d2 (Pt(S4))

d t2

∣∣∣
t0
6= 0

Table 6.3: The derivatives of Pt(γγγ),γγγ ∈ Dagg at t = t0.

procedure, for γγγ ∈ {S2,S3,S4}, the initial values Et0

[
ξξξ

l |γγγ
]

and
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

become

undetermined.

Using Def. 30, a distance measure is assigned to each aggregated state. Here,

∇S1=0, ∇S2 = ∇S3 = 1 and ∇S4 = 2. Focusing, for instance, on S2, for its inward

transitions S1→ S2, S3→ S2 and S4→ S2, we have: ∇S1 < ∇S2 , ∇S3 = ∇S2 and ∇S4 >

∇S2 . Using these distances, we can check the validity of Prop. 6.4.1 (checking which

initial probabilities Pt0(γγγ) and the associated derivatives are zero). The result is shown

in Table C.1.

Let us illustrate how Prop.6.4.1 is applied to derive the initial values Et0

[
ξξξ

l |S2

]
,

Et0

[
ξξξ

l |S3

]
and Et0

[
ξξξ

l |S4

]
. First, we consider state S2 ∈Dagg

z , and present the deriva-

tion of Et0

[
ξξξ

l |S2

]
. Assuming that

→
A∗s (M) = {b,c,d,e, f ,g,h},

→
A∗sl (M) = {a} and

→
A∗l (M) = {q}, using Eq.(6.36) the conditional expectation equation constructed for S2

is:

Pt(S2) ·
d
(
Et

[
ξξξ

l | S2

])
d t︸ ︷︷ ︸

I

+
d
(
Pt(S2)

)
d t

· Et

[
ξξξ

l | S2

]
≈

− Pt(S2) ·Et

[
ξξξ

l | S2

](
rc + rd

)
︸ ︷︷ ︸

II

+ Pt(S1) · ra ·Et

[
ξξξ

l | S1

]
+Pt(S3) · re ·Et

[
ξξξ

l | S3

]
︸ ︷︷ ︸

III

+Pt(S4) · rh ·Et

[
ξξξ

l | S4

]
︸ ︷︷ ︸

IV

+ Pt(S1) · ra ·V l
a + Pt(S2) ·V l

q · rq ·Et

[
ξξξ

l | S2

]
︸ ︷︷ ︸

V

(6.44)

Let us evaluate Eq.(6.44) at t = t0 and simplify it using the information in Table C.1.
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Here, Pt0(S2) = 0. Therefore, in the left hand side, the term marked by (I) is zero. On

the right hand side, the terms marked by (II) and (V) are zero. Moreover, we have:

Pt0(S3) = 0 and Pt0(S4) = 0. Therefore, the terms marked by (III) and (IV) are zero.

Removing these zero terms from the equation, we have:

d
(
Pt(S2)

)
d t

∣∣∣
t0
·Et0

[
ξξξ

l |S2

]
≈ Pt0(S1) · ra ·Et0

[
ξξξ

l |S1

]
+Pt0(S1) · ra ·V l

a (6.45)

Assuming that for S1 ∈ Dagg
nz , the initial conditional expectation Et0

[
ξξξ

l |S1

]
is already

known, in this equation, the only variable that is unknown is Et0

[
ξξξ

l |S2

]
, which can

be obtained by the reordering of the terms:

Et0

[
ξξξ

l |S2

]
≈
Pt0(S1) · ra ·

(
Et0

[
ξξξ

l |S1

]
+V l

a

)
d
(
Pt(S2)

)
d t

∣∣∣
t0

(6.46)

As illustrated by Eq.(6.46), Et0

[
ξξξ

l |S2

]
with ∇S2 = 1 only depends on the conditional

expectation of the states with distance (∇S2−1), that is S1.

Now we focus on state S3 which has the same distance ∇S3 = 1 = ∇S2 . We can

follow a similar process for deriving Et0

[
ξξξ

l |S3

]
. By setting up the equation capturing

Et

[
ξξξ

l | S3

]
, evaluating it at t = t0 and removing the zero terms we derive:

Et0

[
ξξξ

l |S3

]
≈

Pt0(S1) · rb ·Et0

[
ξξξ

l |S1

]
d
(
Pt(S3)

)
d t

∣∣∣
t0

(6.47)

Again, Et0

[
ξξξ

l |S3

]
with ∇S3 = 1 only depends on the initial conditional expectations

of the states within Dagg
nz .

Finally, we consider S4 with distance ∇S4 = 2. For this state, the inward transitions

are from states S2 and S3 with distances ∇S2 = ∇S3 = 1 and there is no such transition

from Dagg
nz states. The equation capturing Et

[
ξξξ

l | S4

]
is:

Pt(S4) ·
d
(
Et

[
ξξξ

l | S4

])
d t

+
d
(
Pt(S4)

)
d t

· Et

[
ξξξ

l | S4

]
≈

− Pt(S4) ·
(

rh + rg

)
·Et

[
ξξξ

l | S4

]
+Pt(S2) · rd ·Et

[
ξξξ

l | S2

]
+Pt(S3) · r f ·Et

[
ξξξ

l | S3

]
+ Pt(S4) ·V l

q · rq ·Et

[
ξξξ

l | S4

]
(6.48)
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For state S4, due to Prop. 6.4.1, both Pt0(S4) = 0 and d Pt(S4)
d t

∣∣∣
t0
= 0 (See Table C.1). By

evaluating Eq.(6.48) at t = t0, we derive: 0 = 0, indicating that this equation is not suf-

ficient for deriving Et0

[
ξξξ

l |S4

]
. To resolve this issue, first, we differentiate Eq.(6.48)

with respect to time once, and then evaluate it again at t0. Taking the derivative of this

equation we have:

Pt(S4) ·
d2
(
Et

[
ξξξ

l | S4

])
d t2︸ ︷︷ ︸

I

+

2 ·
d
(
Pt(S4)

)
d t

·
d
(
Et

[
ξξξ

l | S4

])
d t︸ ︷︷ ︸

II

+

d2 (Pt(S4))

d t2 ·Et

[
ξξξ

l | S4

]
≈

−
(

rh + rg

)
·

d Pt(S4)

d t
·Et

[
ξξξ

l | S4

]
︸ ︷︷ ︸

III

+ Pt(S4) ·
d Et

[
ξξξ

l | S4

]
d t︸ ︷︷ ︸

IV



+ rd ·

d Pt(S2)

d t
·Et

[
ξξξ

l | S2

]
+ Pt(S2) ·

d Et

[
ξξξ

l | S2

]
d t︸ ︷︷ ︸

V



+ r f ·

d Pt(S3)

d t
·Et

[
ξξξ

l | S3

]
+ Pt(S3) ·

d Et

[
ξξξ

l | S3

]
d t︸ ︷︷ ︸

VI



+ V l
q · rq ·

d Pt(S4)

d t
·Et

[
ξξξ

l | S4

]
︸ ︷︷ ︸

VII

+ Pt(S4) ·
d Et

[
ξξξ

l | S4

]
d t︸ ︷︷ ︸

VIII

 (6.49)

Next, by evaluating Eq.(6.49) at t0 and removing the terms that are zero (terms marked

by (I−VIII)), we derive:

d2 (Pt(S4))

d t2

∣∣∣
t0
·Et0

[
ξξξ

l |S4

]
≈ rd ·

d Pt0(S2)

d t

∣∣∣
t0
·Et0

[
ξξξ

l |S2

]
+

r f ·
d Pt(S3)

d t

∣∣∣
t0
·Et0

[
ξξξ

l |S3

]
(6.50)
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In Eq.(6.50) and on the left hand side the initial value Et0

[
ξξξ

l |S4

]
is preserved. As-

suming that Et0

[
ξξξ

l |S2

]
and Et0

[
ξξξ

l |S3

]
have been derived in the previous steps, the

only unknown variable is Et0

[
ξξξ

l |S4

]
. Thus:

Et0

[
ξξξ

l |S4

]
≈

rd ·
d Pt0(S2)

d t

∣∣∣
t0
·Et0

[
ξξξ

l |S2

]
+ r f · d Pt(S3)

d t

∣∣∣
t0
·Et0

[
ξξξ

l |S3

]
d2 (Pt(S4))

d t2

∣∣∣
t0

(6.51)

Note that in Eq(6.51), the initial conditional expectation Et0

[
ξξξ

l |S4

]
depends on the

conditional expectations of only the states γγγ with ∇γγγ = (∇S4 − 1), that is {S2,S3}.
This was the last step in the derivation of the initial conditional expectations for our

example.

6.4.3.2 Initial Conditional Expectations

Our observations in the context of the above example are generalised in the following

proposition.

Proposition 6.4.2. For any aggregated state γγγ ∈ Dagg
z , with ∇γγγ as its initial distance,

the (∇γγγ− 1)-th derivative of its associated conditional expectation equation is suffi-

cient for calculating Et0

[
ξξξ

l |γγγ
]
. Moreover, by removing the terms that are zero in the

differentiated equation, we derive:

Et

[
ξξξ

l | γγγ
]
=

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α ,∇(γγγ−V s

α)=∇γγγ−1

rα(γγγ−V s
α)·

d(∇γγγ−1) (Pt(γγγ−V s
α))

d t(∇γγγ−1)

∣∣∣
t0

(
Et0

[
ξξξ

l |γγγ−V s
α

]
+V l

α

)

d(∇γγγ) (Pt(γγγ))

d t(∇γγγ)

∣∣∣
t0

(6.52)

Proof. The proof is presented in Appendix B.2.

Eq.(6.52) shows that one factor which Et0

[
ξξξ

l |γγγ
]

depends on is d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣
t0

. This

measure is obtained by differentiating the equation capturing the evolution of Pt(γγγ) up

to the order (∇γγγ) and then evaluating at t = 0. Focusing on the aggregated states in

consequence, we define the set Solagg
∇

, which for each γγγ ∈ Dagg consists of the deriva-

tives of Pt0(γγγ) up to the order ∇γγγ. Forming the set is a necessary step in finding the

initial conditional expectations.
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Prop. 6.4.2 also shows another important property regarding Et0

[
ξξξ

l |γγγ
]
; the ini-

tial value Et0

[
ξξξ

l |γγγ
]

depends on the initial conditional expectations of only the states

γγγ
′ ∈ Dagg which have initial distances ∇

γγγ
′ = (∇γγγ− 1). The dependence on the states

with strictly less distance means that the sequence in which the initial conditional ex-

pectations of Dagg
z states are derived depends on the structure of the aggregated state

space and is specific to each problem. By taking into account this feature, we are able

to propose a recursive algorithm that finds the initial values. The pseudo-code of this

algorithm is presented in Alg.2. Assuming that an initial distribution is specified over

the complete state space D and the solution Solagg
∇

is obtained, this algorithm traverses

through the states in Dagg and by taking into account their dependency, the associated

initial conditional expectations are derived.

Algorithm 2 Given an aggregated state γγγ ∈ Dagg, return Et0

[
ξξξ

l |γγγ
]

1: function INIT COND EXP( aggregated state γγγ)

2: Pt0(D) // initial distribution over D ;

3: Solagg
∇

// solution of the analysis of Dagg ;

4: if (γγγ ∈ Dagg
nz ) then // Base case

5: Et0

[
ξξξ

l |γγγ
]
← derive Et0

[
ξξξ

l |γγγ
]

using Pt0(D) ; // Case 1

6: return Et0

[
ξξξ

l |γγγ
]

;

7: end if

8: if (γγγ ∈ Dagg
z ) then // Case2

9: origin states← set of γγγ
′ ∈ Dagg that enable transition γγγ

′ → γγγ, ∇
γγγ
′ = ∇γγγ−1;

10: origin cond expecs←{};
11: for (γγγ

′ ∈ origin states) do

12: Et0

[
ξξξ

l |γγγ ′
]
← INIT COND EXP(γγγ

′
) ; // Recursive step

13: append Et0

[
ξξξ

l |γγγ ′
]

to origin cond expecs ;

14: end for

15: Et0

[
ξξξ

l |γγγ
]
← apply Eq.(6.52) using origin cond expecs and Solagg ;

16: return Et0

[
ξξξ

l |γγγ
]

;

17: end if

18: end function

The presentation of this algorithm concludes the description of our technique for

the derivation of the required initial conditional expectations. In the next section, we

will illustrate how we derive the initial values related to the derivatives of these condi-
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tional expectation.

6.4.3.3 The Derivatives of the Initial Conditional Expectations

The calculations in this section are similar to those in the previous one and therefore,

here we provide less detail. First, we illustrate the technique in the context of our

example and then a general proposition is proposed. In our example, consider state S2

with distance ∇S2 = 1. Evaluating Eq.(6.44) at t0 was sufficient to find Et0

[
ξξξ

l |S2

]
, and

no differentiation was needed. However, the evaluation of Eq.(6.44) does not allow us

to obtain
d Et

[
ξξξ

l |S2

]
d t

∣∣∣
t0

, since in the left hand side our initial derivative of interest has

the coefficient zero. This is the result of the S2 having a non-zero distance from Dagg
nz

states. In order to resolve this issue, we differentiate Eq.(6.44) once with respect to

time and then evaluate again. By the differentiation step, we get:

d2 (Pt(S2))

d t2 ·Et

[
ξξξ

l | S2

]
+2 · d Pt(S2)

d t
·

d Et

[
ξξξ

l | S2

]
d t

+Pt(S2) ·
d2
(
Et

[
ξξξ

l | S2

])
d t2︸ ︷︷ ︸

I

≈

(
rd + rc

)
·

d Pt(S2)

d t
·Et [γγγ | S2 ] + Pt(S2) ·

d Et

[
ξξξ

l | S2

]
d t︸ ︷︷ ︸

II


+ ra ·

d Pt(S1)

d t
·Et

[
ξξξ

l | S1

]
+ Pt(S1) ·

d Et

[
ξξξ

l | S1

]
d t



+ re ·

d Pt(S3)

d t
·Et

[
ξξξ

l | S3

]
+ Pt(S3) ·

d Et

[
ξξξ

l | S3

]
d t︸ ︷︷ ︸

III



+ rh ·

d Pt(S4)

d t
·Et

[
ξξξ

l | S4

]
︸ ︷︷ ︸

IV

+ Pt(S4) ·
d Et

[
ξξξ

l | S4

]
d t︸ ︷︷ ︸

V



+ ra ·V l
a ·

d Pt(S1)

d t
+V l

q · rq ·

d Pt(S2)

d t
·Et

[
ξξξ

l | S2

]
+ Pt(S2) ·

d Et

[
ξξξ

l | S2

]
d t︸ ︷︷ ︸

V I


(6.53)
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By evaluating Eq.(6.53) at t = t0 and using Table C.1, the terms marked by (I−VI)

reduce to zero. Therefore, the equation is simplified to:

d2 (Pt(S2))

d t2

∣∣∣
t0
·Et0

[
ξξξ

l |S2

]
+2 · d Pt(S2)

d t

∣∣∣
t0
·

d Et

[
ξξξ

l | S2

]
d t

∣∣∣
t0
≈

+
(

rd + rc

)
· d Pt(S2)

d t

∣∣∣
t0
·Et0 [γγγ |S2 ]

+ ra ·

d Pt(S1)

d t

∣∣∣
t0
·Et0

[
ξξξ

l |S1

]
+ Pt0(S1) ·

d Et

[
ξξξ

l | S1

]
d t

∣∣∣
t0



+ re ·
d Pt(S3)

d t

∣∣∣
t0
·Et0

[
ξξξ

l |S3

]
+ ra ·V l

a ·
d Pt(S1)

d t

∣∣∣
t0
+V l

q · rq ·
d Pt(S2)

d t

∣∣∣
t0
·Et0

[
ξξξ

l |S2

]
(6.54)

In Eq.(6.54),
d Et

[
ξξξ

l |S2

]
d t

∣∣∣
t0

has a non-zero coefficient (see Table C.1). Moreover,

Et0

[
ξξξ

l |S2

]
was derived in the previous section, and for state S1 the initial values

Et0

[
ξξξ

l |S1

]
and

d Et

[
ξξξ

l |S1

]
d t

∣∣∣
t0

are calculated directly from the initial distribution. There-

fore, in the equation above the only unknown variable is
d Et

[
ξξξ

l |S2

]
d t

∣∣∣
t0

(underlined),

which can be obtained by a simple reordering of the terms. Note here an important

property about the structure of Eq.(6.54); for S2 with ∇S2 = 1, the initial derivative
d Et

[
ξξξ

l |S2

]
d t

∣∣∣
t0

depends on the initial derivative related to only the state S1 ∈ Dagg
nz , with

distance ∇S1 = 0.

A similar process is applied for state S3 with ∇S3 = ∇S2 = 1. By differentiat-

ing the equation that captures Et

[
ξξξ

l | S3

]
once and evaluating at t0, the initial value

d Et

[
ξξξ

l |S3

]
d t

∣∣∣
t0

is obtained. Due to its similarity, we skip the details of this calculation.

Finally, we consider S4. Here, the calculations are more complicated. The equa-

tion used for calculating Et0

[
ξξξ

l |S4

]
is Eq.(6.50), which itself is the result of differ-

entiating the equation capturing Et

[
ξξξ

l | S4

]
, i.e. Eq.(6.49), once with respect to time.

Using Eq.(6.50), the initial value
d Et

[
ξξξ

l |S4

]
d t

∣∣∣
t0

cannot be obtained, since in the left

hand side the corresponding coefficients are zero. This is the result of ∇S4 = 2; for

k = 0,1 : dk (Pt(S4))
d tk

∣∣∣
t0
= 0. Here, unlike the states S2 and S3, a single differentiation of
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the conditional expectation equation is not sufficient. To resolve the issue, the second

derivative of Eq.(6.49) is constructed and evaluated at t0. By differentiating Eq.(6.49)

twice, we get:

Pt(S4)
d3
(
Et

[
ξξξ

l | S4

])
d t3︸ ︷︷ ︸

I

+3
d Pt(S4)

d t

d2
(
Et

[
ξξξ

l | S4

])
d t2︸ ︷︷ ︸

II

+

3
d2 (Pt(S4))

d t2

d Et

[
ξξξ

l | S4

]
d t

+
d3 (Pt(S4))

d t3 ·Et

[
ξξξ

l | S4

]
≈

−
(

rh + rg

)d2 (Pt(S4))

d t2 Et

[
ξξξ

l | S4

]
+2

d Pt(S4)

d t

d Et

[
ξξξ

l | S4

]
d t︸ ︷︷ ︸

III

+Pt(S4)
d Et

[
ξξξ

l | S4

]
d t︸ ︷︷ ︸

IV



+rd ·

d2 (Pt(S2))

d t2 Et

[
ξξξ

l | S2

]
+2

d Pt(S2)

d t

d Et

[
ξξξ

l | S2

]
d t

+Pt(S2)
d Et

[
ξξξ

l | S2

]
d t︸ ︷︷ ︸

V



+r f ·

d2 (Pt(S3))

d t2 Et

[
ξξξ

l | S3

]
+2

d Pt(S3)

d t

d Et

[
ξξξ

l | S3

]
d t

+Pt(S3)
d Et

[
ξξξ

l | S3

]
d t︸ ︷︷ ︸

VI



+V l
q · rq ·

d2 (Pt(S4))

d t2 Et

[
ξξξ

l | S4

]
+2

d Pt(S4)

d t

d Et

[
ξξξ

l | S4

]
d t︸ ︷︷ ︸

VII

+Pt(S4)
d Et

[
ξξξ

l | S4

]
d t︸ ︷︷ ︸

VIII


(6.55)

Next, by evaluating the above equation at t0 and using Prop. 6.4.1 to remove the terms

that reduce to zero, we get:

3 · d
2 (Pt(S4))

d t2

∣∣∣
t0
·

d Et

[
ξξξ

l | S4

]
d t

∣∣∣
t0

+
d3 (Pt(S4))

d t3

∣∣∣
t0
·Et0

[
ξξξ

l |S4

]
≈

−
(

rh + rg

)(d2 (Pt(S4))

d t2

∣∣∣
t0
Et0

[
ξξξ

l |S4

])
+V l

q · rq ·
(

d2 (Pt(S4))

d t2

∣∣∣
t0
Et0

[
ξξξ

l |S4

])

+rd ·

d2 (Pt(S2))

d t2

∣∣∣
t0
Et0

[
ξξξ

l |S2

]
+2

d Pt(S2)

d t

∣∣∣
t0

d Et

[
ξξξ

l | S2

]
d t

∣∣∣
t0



+r f ·

d2 (Pt(S3))

d t2

∣∣∣
t0
Et0

[
ξξξ

l |S3

]
+2

d Pt(S3)

d t

∣∣∣
t0

d Et

[
ξξξ

l | S3

]
d t

∣∣∣
t0

 (6.56)
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In the previous steps, for the states S2 and S3 the initial conditional expectations

Et0

[
ξξξ

l |γγγ
]
, γγγ ∈ {S2,S3} and their initial derivatives

d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

have been derived.

In Eq.(6.56) the only unknown variable is
d Et

[
ξξξ

l |S4

]
d t

∣∣∣
t0

, which can be obtained by re-

ordering of the terms. Again, note the important structural property that the equation

above exhibits. Given that ∇S4 = 2, the related initial value
d Et

[
ξξξ

l |S4

]
d t

∣∣∣
t0

depends on

the initial derivative of only the states with (∇S4−1) distance, which are S2 and S3.

Having described our technique in the context of the example, now we present

the following proposition which enables us to calculate the initial derivatives of the

conditional expectations for states γγγ ∈ Dagg
z .

Proposition 6.4.3. For any aggregated state γγγ ∈ Dagg
z with initial distance ∇γγγ , the

∇γγγ -th derivative of the equation that captures the evolution of Et

[
ξξξ

l | γγγ
]

is sufficient

to calculate
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

. Moreover, by removing the terms that reduce to zero in the

differentiated equation, we obtain Eq.(6.57) where
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

can be obtained by re-

ordering of the terms.

(∇γγγ +1) · d
∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
·

d Et

[
ξξξ

l | γγγ
]

d t

∣∣∣
t0
+

d(∇γγγ+1) (Pt(γγγ))

d t(∇γγγ+1)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ
]

=

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·
d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ
]

I

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)<∇γγγ

rα(γγγ−V s
α) ·
(

d(∇γγγ) (Pt(γγγ−V s
α))

d t(∇γγγ)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ−V s
α

]
+ II

∇γγγ ·
d(∇γγγ−1) (P(γγγ−V s

α ))

d t(∇γγγ−1)

∣∣∣
t0
·

d Et

[
ξξξ

l | γγγ−V s
α

]
d t

∣∣∣
t0

)
III

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)=∇γγγ

rα(γγγ−V s
α) ·
(

d(∇γγγ) (Pt(γγγ−V s
α))

d t(∇γγγ)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ−V s
α

]
IV



138 Chapter 6. Analysis of LSRB Models Using Conditional Expectations

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)≤∇γγγ−1

rα(γγγ−V s
α) ·V l

α ·
d(∇γγγ) (Pt(γγγ−V s

α))

d t(∇γγγ)

∣∣∣
t0

+ ∑
α∈
→
A∗l(M)

V l
α ·

d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
· rα

(
Et0

[
ξξξ

l |γγγ
])

V (6.57)

Proof. The proof is presented in Appendix B.3.

Let us briefly focus on the terms in Eq.(6.57).

By focusing on the left hand side, we observe that one factor which
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

depends on is d(∇γγγ+1) (Pt(γγγ))

d t(∇γγγ+1)

∣∣
t0

. Similarly to the case for Et0

[
ξξξ

l |γγγ
]
, this measure is

obtained by differentiating the equation capturing the evolution of Pt(γγγ) and then eval-

uating at t = 0. By performing the derivation for the aggregated states in sequence, we

obtain the set Solagg
(∇+1), which for each γγγ ∈ Dagg consists of the derivatives of Pt0(γγγ)

up to the order (∇γγγ +1). This set is then used for finding the derivatives of the initial

conditional expectations.

In Eq.(6.57), the expressions marked by (I), (II), (IV) and (V) consist of ini-

tial conditional expectations, which are already known using Prop. 6.4.2. Moreover,

the term (III) consists of the derivative of initial conditional expectations for states

γγγ
′ ∈ Dagg which enable transitions into γγγ and have initial distances strictly less than γγγ.

We can assume that these initial derivatives have already been obtained using a similar

version of Eq.(6.57). By these considerations, we conclude that in Eq.(6.57) the only

unknown variable is
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

and the equation is sufficient for calculating this initial

value.

Similarly to the previous section, the important structural property that Eq.(6.57)

exhibits allows us to propose an iterative algorithm, similar to Alg. 2, which progres-

sively finds the initial derivatives
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

, for all γγγ ∈ Dagg. The pseudo code for

this algorithm is shown in Alg. 3.
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Algorithm 3 Given γγγ ∈ Dagg, return
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

.

1: function INIT COND EXP DER( aggregated state γγγ )

2: Pt0(D) // initial distribution over D ;

3: Solagg
∇+1;

4: if (γγγ ∈ Dagg
nz ) then // Base case

5:
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0
← derive

d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

using Pt0(D) ; // Case 1

6: return
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

;

7: end if

8: if (γγγ ∈ Dagg
z ) then // Case2

9: origin states← states γγγ
′∈Dagg that enable transition γγγ

′→ γγγ, ∇
γγγ
′ =∇γγγ−1;

10: origin cond expecs←{}; // required init. cond. expectations

11: origin cond expecs der←{}; // required cond. expec. derivatives

12: Et0

[
ξξξ

l |γγγ
]
← INIT COND EXP(γγγ) ;

13: append Et0

[
ξξξ

l |γγγ
]

to origin cond expecs ;

14: for (γγγ
′ ∈ origin states) do

15: Et0

[
ξξξ

l |γγγ ′
]
← INIT COND EXP(γγγ

′
) ; // Recursive step

16: append Et0

[
ξξξ

l |γγγ ′
]

to origin con expecs ;

17: if ∇
γγγ
′ < ∇γγγ then

18:
d Et

[
ξξξ

l |γγγ ′
]

d t

∣∣∣
t0
← INIT COND EXP DER(γγγ

′
) ;

19: append
d Et

[
ξξξ

l |γγγ ′
]

d t

∣∣∣
t0

to origin cond expecs der ;

20: end if

21: end for

22:
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0
← apply Eq.(B.23) using Solagg, origin cond expecs and

23: origin cond expecs der ;

24: return
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

;

25: end if

26: end function





Chapter 7

Analysis of Client-Server Model Using

Conditional Expectations

7.1 Introduction

In this chapter, we apply the analysis by conditional expectations to a version of the

client-server system. For convenience, the model and some of its description is re-

peated here. Table 7.1 shows the parameters used. Here, the two servers are serving

150 clients and given the parameters, the servers are continually performing under

heavy contention.

Cthink
def
= (think,rt).Creq

Creq
def
= (req,>).Cthink

Sidle
def
= (req,rs).Slog +(brk,rb).Sbroken

Slog
def
= (log,rl).Sidle

Sbroken
def
= (fix,r f ).Sidle

CS def
= Servers { Sidle[ns] } BC

{req}
Clients {Cthink[nc] }

parameter rs rl r f rb rt ns nc

values 120 240 0.001 0.0001 1.7 2 150

Table 7.1: The parameters of the client-server system.

141
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We use the state vector ξξξ = 〈Si,Sl,Sb,Ct ,Cr〉 to capture the state of the model

and DCS to represent the model’s state space. The model has two groups; G(CS) =

{Servers,Clients}. Given the total number of servers and clients, the group Servers

is regarded to be small and the group Clients as large. Therefore, the partition ∆G =

{{Servers},{Clients}} is defined over the set of the groups of the model G(CS) =

{Servers,Clients}. Accordingly, the state vector is partitioned: ξξξ = 〈ξξξs
,ξξξ

l〉 where

ξξξ
s
= 〈Si,Sl,Sb〉 and ξξξ

l
= 〈Ct ,Cr〉.

As the initial state of the system, we assume that at t0 = 0, the system starts at the

state 〈Si,Sl,Sb,Ct ,Cr〉 = 〈2,0,0,150,0〉 where both servers are idle and all the clients

are in state Cthink. This means that at t0, a probability distribution is defined over the

system’s complete state space as:

Pt0(si,sl,sb,ct ,cr) =

{
1 if 〈si,sl,sb,ct ,cr〉= 〈2,0,0,150,0〉
0 otherwise

(7.1)

In this client-server system the stochastic behaviour of the servers has significant

impact on the behaviour of the clients. This is illustrated in Fig. 7.1, which shows two

trajectories of the system with respect to state variables Sb and Cr. The dependence

of Cr on Sb is also illustrated in Fig. 7.2, which shows the steady state distributions

associated with these state variables. The system has three distinct modes of behaviour

associated with Sb = 0, Sb = 1 and Sb = 2, and depending on the number of servers

currently broken, the variable Cr clusters around distinct values.

7.2 Aggregation Method

The model satisfies the conditions required for the aggregation method we presented

in Chap. 4. First, there is a heavy load on the servers and the probability of being

in states where no client requires service (boundary states) is close to zero. Second,

the model respects the syntactic aggregation condition; the clients undertake activity

req passively. The aggregated model captures the evolution of the servers only and its

state space is illustrated in Fig. 7.3. This aggregation relies on the partition ∆A = {
→
A∗s

(CS),
→

A∗sl (CS),
→
A∗l (CS)} defined over the set of actions of the model

→
A∗ (CS), where

→
A∗s (CS) = {log,brk, f ix},

→
A∗sl (CS) = {req} and

→
A∗l (CS) = {think}.

Let Dagg
CS denote the aggregated state space of Fig. 7.3. By the analysis of Dagg

we derive a probability distribution over the states of the servers. Let Pt(βββ), βββ ∈ Dagg
CS



7.2. Aggregation Method 143

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000

P
o
p
u
la
ti
o
n

Time

Sb

1

(A) Evolution of Sb in first trajectory.

0

50

100

150

200

0 2000 4000 6000 8000 10000
P
op

u
la
ti
on

Time

Cr

2

(B) Evolution of Cr in first trajectory.
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(D) Evolution of Cr in second trajectory.

Figure 7.1: Two individual trajectories of the system with respect to Sb and Cr derived

using stochastic simulation. The result of the event that a server breaks down is the

lower service rate experienced by the clients and the increase in the variable Cr.
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(A) Probability distribution of Sb at

equilibrium.
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(B) Probability distribution of Cr at

equilibrium.

Figure 7.2: The probability distribution for two state variables Cr, Sb derived using the

analysis of complete state space. Depending on the available number of servers, Cr

clusters around different values.

denote this distribution; at any given time t, Pt(βββ),βββ = 〈x1,x2,x3〉 ∈ Dagg, denotes the

probability that at t, Si = x1, Sl = x2 and Sb = x3. This distribution is the solution of

the Chapman-Kolmogorov equations underlying Dagg
CS .

Let us focus on two representative states 〈1,1,0〉 and 〈1,0,1〉. The ODEs associ-

ated with these two states are presented in Eq.(7.2) and Eq.(7.3).

d Pt(〈1,1,0〉)
d t

= − Pt(〈1,1,0〉) ·
(

rreq(〈1,1,0〉) + rbrk(〈1,1,0〉) + rlog(〈1,1,0〉)
)

+ rreq(〈2,0,0〉) ·Pt(〈2,0,0〉)+ rlog(〈0,2,0〉) ·Pt(〈0,2,0〉)

+ r f ix(〈0,1,1〉) ·Pt(〈0,1,1〉) (7.2)

d Pt(〈1,0,1〉)
d t

=− Pt(〈1,0,1〉) ·
(

rreq(〈1,0,1〉) + rbrk(〈1,0,1〉) + r f ix(〈1,0,1〉)
)

+ rbrk(〈2,0,0〉) ·Pt(〈2,0,0〉) + rlog(〈0,1,1〉) ·Pt(〈0,1,1〉)

+ r f ix(〈0,0,2〉) ·Pt(〈0,0,2〉) (7.3)

To solve the complete set of equations, an initial distribution over Dagg
CS is needed.
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Figure 7.3: The aggregated state space of the client-server system with two servers.

Abstracting away from the clients, this captures the configurations that the servers ex-

perience. Note that the representative states are highlighted.

This can be extracted from Eq.(7.1):

∀ βββ ∈ Dagg
CS , Pt0(βββ) =

{
1 if βββ = 〈2,0,0〉
0 otherwise

(7.4)

Using the underlying C-K equations of Dagg
CS and the initial distribution above, the

solution is obtained. The projection of this solution with respect to the representative

states, i.e. the time evolution of Pt(〈1,1,0〉) and Pt(〈1,0,1〉) is shown in Fig. 7.4.

Using the aggregation, all configurations that the servers experience are captured.

A probability distribution is obtained over such configurations, which can be used to

understand the randomness caused by the servers and any aberrations from their mean

evolution. For example, we can derive the distribution of Sb, shown in Fig. 7.2A, to

measure the probability of the servers being in different modes of operation includ-

ing the configuration where both servers are broken, or the impact of changing their

parameters on their throughput.

7.3 Conditional Expectations

Now, we now focus on capturing the impact of the servers’ randomness on the clients.

Using the MCM, the conditional expectation of 〈Ct ,Cr〉 is derived across the states

βββ ∈ Dagg
CS . Since Dagg

CS contains six states and ξξξ
l
= 〈Ct ,Cr〉 has two state variables,
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Figure 7.4: The evolution of Pt(〈1,1,0〉) and Pt(〈1,0,1〉), derived by analysing Dagg
CS .

βββ ∈ Dagg
CS Ct Cr

〈2,0,0〉 E [Ct | 〈2,0,0〉 ] E [Cr | 〈2,0,0〉 ]
〈1,1,0〉 E [Ct | 〈1,1,0〉 ] E [Cr | 〈1,1,0〉 ]
〈0,2,0〉 E [Ct | 〈0,2,0〉 ] E [Cr | 〈0,2,0〉 ]
〈1,0,1〉 E [Ct | 〈1,0,1〉 ] E [Cr | 〈1,0,1〉 ]
〈0,1,1〉 E [Ct | 〈0,1,1〉 ] E [Cr | 〈0,1,1〉 ]
〈0,0,2〉 E [Ct | 〈0,0,2〉 ] E [Cr | 〈0,0,2〉 ]

Table 7.2: The conditional expectation variables related to the large group Clients in

the client-server model.

there are 12 conditional expectations Et [ξ | βββ ], βββ ∈ Dagg, ξ ∈ 〈Ct ,Cr〉, to be calcu-

lated. These expectations are presented in Table. 7.2. To find their evolution, a system

of DAEs is constructed where for each Et [ξ | βββ ], one equation is formed with the

structure shown in Eq.(6.39). The equations in this system rely on the probability dis-

tribution Pt(βββ) derived over Dagg
CS . Therefore, the modeller must have obtained Pt(βββ)

before solving the MCM equations.

Before presenting the DAEs, two pieces of notation are reviewed. First, we present

the impact vectors associated with the actions defined in the model. These vectors

are shown in Table 7.3. Second, we review the apparent rate functions of these ac-

tions. These are presented in Table 7.4, the second column. Note that, as illustrated in

Eq.(6.39), one factor which the evolution of conditional expectations depends on is the

conditional expectation of these rate functions, which can be obtained using Lemma

6.3.2. The result of applying this Lemma to the rate functions is shown in Table 7.4,
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Impact vector : Vα

V s
α V l

α

Action α Si Sl Sb Ct Cr

req −1 +1 0 +1 −1

log +1 −1 0 0 0

brk −1 0 +1 0 0

f ix +1 0 −1 0 0

think 0 0 0 −1 +1

Table 7.3: Impact vectors of the actions defined in the client-server model.

Action Rate function Conditional expectation of rate function

α rα(S),S = 〈Si,Sl,Sb,Ct ,Cr〉 E [rα(Si) |βββ ] , βββ = 〈Si,Sl,Sb〉
req rs×Si E [ (rs×Si) |βββ ] = rs×E [Si |βββ ]
log rl×Sl E [ (rl×Sl) |βββ ] = rl×E [Sl |βββ ]
brk rb×Si E [ (rb×Si) |βββ ] = rb×E [Si |βββ ]
f ix r f ×Si E

[
(r f ×Sb) |βββ

]
= r f ×E [Sb |βββ ]

think rt×Ct E [ (rt×Ct) |βββ ] = rt×E [Ct |βββ ]

Table 7.4: The apparent rate functions and their conditional expectations.

the third column.

As stated, for our client-server model, the system of DAEs consists of 12 equa-

tions. The complete list of equations is presented in Appendix C.1. Here, again we

focus only on the representative states βββ = 〈1,1,0〉 and βββ = 〈1,0,1〉 and show their

equations related to Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] and Et [〈Ct ,Cr〉 | 〈1,0,1〉 ] in the vector form.

The equations for other βββ ∈Dagg
CS are similarly constructed. For βββ = 〈1,1,0〉, the equa-
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tion capturing the evolution of Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] is:

Pt(〈1,1,0〉) ·
d
(
Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

)
d t

+
d Pt(〈1,1,0〉)

d t
·Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] ≈

− Pt(〈1,1,0〉) ·Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] ·
[
rlog(〈1,1,0〉)+ rbrk(〈1,1,0〉)+ rreq(〈1,1,0〉)

]
+ Pt(〈2,0,0〉) · rreq(〈2,0,0〉) ·Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]

+ Pt(〈0,1,1〉) · r f ix(〈0,1,1〉) ·Et [〈Ct ,Cr〉 | 〈0,1,1〉 ]

+ Pt(〈0,2,0〉) · rlog(〈0,2,0〉) ·Et [〈Ct ,Cr〉 | 〈0,2,0〉 ]

+ Pt(〈2,0,0〉) · rreq(〈2,0,0〉) ·V l
req

+ Pt(〈1,1,0〉) ·V l
think · rreq

(
Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

)
(7.5)

For βββ = 〈1,0,1〉, the evolution of Et [〈Ct ,Cr〉 | 〈1,0,1〉 ], is captured by:

Pt(〈1,0,1〉) ·
d
(
Et [〈Ct ,Cr〉 | 〈1,0,1〉 ]

)
d t

+
d Pt(〈1,0,1〉)

d t
·Et [〈Ct ,Cr〉 | 〈1,0,1〉 ] ≈

− Pt(〈1,0,1〉) ·Et [〈Ct ,Cr〉 | 〈1,0,1〉 ] ·
[
rbrk(〈1,0,1〉)+ r f ix(〈1,0,1〉)+ rreq(〈1,0,1〉)

]
+ Pt(〈2,0,0〉) · rbrk(〈2,0,0〉) ·Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]

+ Pt(〈0,0,2〉) · r f ix(〈0,0,2〉) ·Et [〈Ct ,Cr〉 | 〈0,0,2〉 ]

+ Pt(〈0,1,1〉) · rlog(〈0,1,1〉) ·Et [〈Ct ,Cr〉 | 〈0,1,1〉 ]

+ Pt(〈1,0,1〉) ·V l
think · rthink(Et [〈Ct ,Cr〉 | 〈1,0,1〉 ]) (7.6)

7.4 Construction of Initial Values

The model’s underlying DAEs are treated as an initial value problem and solving the

equations requires a set of initial values. These consists of the initial conditional ex-

pectations Et0[〈Ct ,Cr〉 |βββ ], βββ ∈ Dagg
CS and the derivatives d Et [〈Ct ,Cr〉|βββ ]

d t

∣∣∣
t0

.

As illustrated in Sec. 6.4, the derivation of the initial values depends on the ini-

tial distribution defined over the aggregated state space. Using the initial distribution

of Eq.(7.4), the set of aggregated states with non-zero initial probability consists of
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only one state Dagg
nz = {〈2,0,0〉}. For this state, the initial conditional expectation and

its derivative are calculated directly from the initial distribution. Conversely, the set of

states with zero initial probability is Dagg
z = {〈1,1,0〉,〈0,2,0〉,〈1,0,1〉,〈0,1,1〉,〈0,0,2〉}.

For these states, their initial conditions are derived using Def. 30, Prop. 6.4.1, Prop. 6.4.2

and Prop. 6.4.3. The description for these calculations follows.

Initial distance from probability sources. Using the initial distribution presented in

Eq.(7.4), Def. 30 is used to assign an initial distance from Dagg
nz states to each aggre-

gated state present in Dagg
CS . Such distances are shown in Table 7.5, the second column.

We can see that the state 〈2,0,0〉 has distance zero, the states 〈1,1,0〉 and 〈1,0,1〉 have

distance one and 〈0,2,0〉, 〈0,1,1〉 and 〈0,0,2〉 have distance two.

In Sec. 6.4.3.3, we observed that when calculating the initial values, for each aggre-

gated state βββ∈Dagg
CS with initial distance ∇βββ the first (∇βββ+1)-th derivatives of its prob-

ability function, i.e. dk (Pt(βββ))
d tk

∣∣∣
t0

, k = 0,1, ·,(∇βββ+1), are required. Such derivatives can

be obtained by repeated differentiation of the C-K equations underlying Dagg
CS . A series

of equations that were constructed for this purpose are presented in Appendix C.2 and

the result is shown in Table 7.5, in the second to the fourth column.

States in Dagg
nz . For the only state 〈2,0,0〉 ∈ Dagg

z , we find Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] di-

rectly from the initial distribution using Bayes’ Law:

Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] = ∑〈Ct ,Cr〉 ·Pt0(〈Ct ,Cr〉 | 〈2,0,0〉)

= ∑〈Ct ,Cr〉 ·
Pt0(〈2,0,0,Ct ,Cr〉)

Pt0(〈2,0,0〉)
= [150,0] (7.7)

Furthermore, d Et [〈Ct ,Cr〉|〈2,0,0〉 ]
d t

∣∣∣
t0

is derived by substituting Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] as

above into the equation that captures the evolution of Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]) and eval-

uating at t0. By this substitution, we have: d Et [〈Ct ,Cr〉|〈2,0,0〉 ]
d t

∣∣∣
t0
= 150rt ·V l

think.

States in Dagg
z - initial conditional expectations Prop. 6.4.2 shows that for each aggre-

gated state βββ ∈ Dagg
z with the initial distance ∇βββ, the initial condition Et0[〈Ct ,Cr〉 |βββ ]

can be obtained by differentiating the equation that captures Et [〈Ct ,Cr〉 | βββ ] up to the

order (∇βββ− 1) and evaluating the result at t0. Using the proposition, for the states

〈1,1,0〉 and 〈1,0,1〉 with distance one, no differentiation is needed and the initial val-

ues Et0[〈Ct ,Cr〉 | 〈1,1,0〉 ] and Et0[〈Ct ,Cr〉 | 〈1,0,1〉 ] are obtained by evaluating their re-

spective conditional expectation equations at t0. The result is Et0[〈Ct ,Cr〉 | 〈1,1,0〉 ] =
〈151,−1〉 and Et0[〈Ct ,Cr〉 | 〈1,0,1〉 ] = 〈150,0〉. For the states 〈0,2,0〉, 〈0,1,1〉 and

〈0,0,2〉, their equations, i.e. Eq.(C.3), Eq(C.4) and Eq.(C.5) – (in Appendix C.2) –
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β ββ∈
D

agg
C

S
∇

β ββ
P

t0 (
β ββ
)

d
P

t (
β ββ
)

d
t ∣∣∣t0

d
2
(P

t (
β ββ
))

d
t 2 ∣∣∣t0

d
3
(P

t (
β ββ
))

d
t 3 ∣∣∣t0
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1
0

2rs
−
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〈0
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,0〉

2
0

0
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,1〉

1
0

2rb
−
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-

〈0
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,1〉

2
0

0
4rs rb

−
6rs rb (2rs +

2rb
+
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f )

〈0
,0
,2〉

2
0

0
2r 2b

−
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+
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βββ ∈ Dagg
CS Et0[〈Ct ,Cr〉 |βββ ] d Et [〈Ct ,Cr〉|βββ ]

d t

∣∣∣
t0

〈2,0,0〉 〈150,0〉 150rt ·V l
think

〈1,1,0〉 〈151,−1〉 (rs + rb) ·V l
req +(150.5rt) ·V l

think

〈0,2,0〉 〈152,−2〉 (8rs+8rb+2rl)
3 ·V l

req +151rt ·V l
think

〈1,0,1〉 〈150,0〉 150rt ·V l
think

〈0,1,1〉 〈151,−1〉 (rs+rb)
3 ·V l

req +
301rt

3 ·V l
think

〈0,0,2〉 〈150,0〉 150rt ·V l
think

Table 7.6: Initial values for conditional expectations and their derivatives.

are differentiated once ((∇〈0,2,0〉− 1) = (∇〈0,1,1〉− 1) = (∇〈0,0,2〉− 1 = 1)) and the re-

sulting equations are evaluated at t0. For these states we get: Et0[〈Ct ,Cr〉 | 〈0,2,0〉 ] =
〈152,−2〉, Et0 [〈Ct ,Cr〉 | 〈0,1,1〉 ] = 〈151,−1〉 and Et0[〈Ct ,Cr〉 | 〈0,0,2〉 ] = 〈150,0〉. The

initial conditional expectations calculated for this model are summarised in Table 7.6,

the second column.

States in Dagg
z , the derivative of the initial conditional expectations. For the states

in Dagg
z , we use Prop. 6.4.3 to find the derivative of their initial conditions. Ac-

cording to this proposition, for any state βββ ∈ Dagg
z with distance ∇βββ, in order to de-

rive d Et [〈Ct ,Cr〉|βββ ]
d t we differentiate the equation capturing Et [〈Ct ,Cr〉 | βββ ] up to the

order ∇βββ and evaluate the resulting equation at t0. The states 〈1,1,0〉 and 〈1,0,1〉
have distance one. Therefore, by differentiating Eq.(C.2) and Eq.(C.3) once and eval-

uating at t0, we have: d Et [〈Ct ,Cr〉|〈1,1,0〉 ]
d t

∣∣∣
t0
= (rs + rb) ·V l

req + (150.5rt) ·V l
think and

d Et [〈Ct ,Cr〉|〈1,0,1〉 ]
d t

∣∣∣
t0
= 150rt ·V l

think. Note that these initial derivatives depend on the

initial values Et0[〈Ct ,Cr〉 |βββ ] ,βββ ∈ {〈2,0,0〉,〈1,1,0〉,〈1,0,1〉} and d Et [〈Ct ,Cr〉|〈2,0,0〉 ]
d t

∣∣∣
t0

,

which have previously been calculated. For the states 〈0,2,0〉, 〈0,1,1〉 and 〈0,0,2〉
with distances∇〈0,2,0〉 =∇〈0,1,1〉 =∇〈0,0,2〉 = 2, their conditional expectation equations

Eq.(C.3), Eq.(C.4) and Eq.(C.5) are differentiated to the second order and evaluated at

t0 to yield: d Et [〈Ct ,Cr〉|〈0,2,0〉 ]
d t

∣∣∣
t0

, d Et [〈Ct ,Cr〉|〈0,1,1〉 ]
d t

∣∣∣
t0

and d Et [〈Ct ,Cr〉|〈0,0,2〉 ]
d t

∣∣∣
t0

. We sum-

marise these initial values in Table 7.6, the third column.

Solution. To solve the set of DAEs, we used the Matlab Suite’s ode solver. This

solver is sufficiently powerful to deal with a large number of equations and provides

parameters to adjust the accuracy to the accepted level. The solution, with respect to

the representative states 〈1,1,0〉 and 〈1,0,1〉 is shown in Fig.7.5.
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Conditional expectation MCM PRISM Error (%)

〈Si,Sl,Sb〉= 〈1,1,0〉
E [Ct | 〈1,1,0〉 ] 94.336 94.867 0.55

E [Cr | 〈1,1,0〉 ] 55.664 55.979 0.56

〈Si,Sl,Sb〉= 〈1,0,1〉
E [Ct | 〈1,0,1〉 ] 46.863 46.576 0.61

E [Cr | 〈1,0,1〉 ] 103.14 102.51 0.61

Table 7.7: Comparison between the steady state values of Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] and

Et [〈Ct ,Cr〉 | 〈1,0,1〉 ] derived from the MCM and PRISM. The error is acceptably low.

In order to check the accuracy of our MCM approximation, we compared the MCM

solution against that obtained from the exact analysis of the model using PRISM. The

comparison shows the MCM approximation is highly accurate. We also compared

the approximate steady state conditional expectations obtained from MCM and those

derived from PRISM. The result of this comparison and the relative error for the rep-

resentative states is reported in Table. 7.7. The comparison showed that across all

βββ ∈ Dagg
CS the error is less than 1 percent.

7.5 Capturing the Effect of Server Breakdown

The distribution Pt(βββ), βββ ∈ Dagg
CS , and the conditional expectations E [〈Ct ,Cr〉 |βββ ] across

these βββ enable us to capture the impact of the fluctuations of the servers on the clients.

Here we aim to obtain the conditional expectation of 〈Ct ,Cr〉 given the servers’ differ-

ent modes of operation. These different modes are shown in Fig. 7.6. Essentially, using

Pt(βββ) and E [〈Ct ,Cr〉 |βββ ] we derive the conditional expectations Et [〈Ct ,Cr〉 | Sb = 0 ],

Et [〈Ct ,Cr〉 | Sb = 1 ] and Et [〈Ct ,Cr〉 | Sb = 2 ] and the MCM conditional expectations

are sufficient for this purpose.

The client-server system of this example satisfies the time-scale near-complete de-

composability (TSND) condition. The transitions of type req, log and think occur on

the fast time scale and those of types brk and f ix happen over the slow time scale. The

modes are related to the subsets of servers’ configurations that are separated by slow

transitions. Although here the modes were detected by eye, they could also be auto-

matically detected using the enhanced TSND detection algorithm that we presented in

Chapter 5.

Indeed, the TSND detection algorithm can be fruitfully combined with the MCM
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(A) Conditional expectation of Ct in

aggregated state 〈1,1,0〉.
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(B) Conditional expectation of Cr in

aggregated state 〈1,1,0〉.
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(C) Conditional expectation of Cr in

aggregated state 〈1,0,1〉.
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(D) Conditional expectation of Cr in

aggregated state 〈1,0,1〉.

Figure 7.5: Time evolution of the conditional expectation of 〈Ct ,Cr〉 across two rep-

resentative aggregated states 〈1,1,0〉 and 〈1,0,1〉, as derived by PRISM and MCM.
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〈2,0,0〉 〈1,1,0〉 〈0,2,0〉

〈1,0,1〉 〈0,1,1〉

〈0,0,2〉

Sb = 0

Sb = 1

Sb = 2

(req,2rs)

(brk,2rb)

(log,rl)

(req,rs)

(brk,rb)

(log,2rl)

( f ix,r f )

(req,rs)

(brk,rb)

(log,rl)

( f ix,r f )

( f ix,r f )

Figure 7.6: The aggregated state space of the client-server system with two servers.

The different modes of operation associated with the different number of active servers

are highlighted.

for the derivation of the modes for which the conditional moments are calculated.

The TSND algorithm outputs the slow / fast partition over the model’s actions, which

induces disjoint sub-sets of aggregated states (i.e. modes) that are separated by the slow

(and potentially significant) transitions of the model’s resources. The set of modes are

fed into the MCM, which then calculates the expectation (and higher-order moments)

of the quasi-steady-state behaviour of the resource users for each mode. This way, the

model is comprehensively analysed for both short and long term phenomena; on the

one hand, the possibility of having mode switches is accounted for by incorporating the

resources’ state space (aggregated state space), and on the other, we are able to capture

the behaviour of resource users for any mode of resources that if visited, the system

stays there for a relatively long time. The TSND detection algorithm is capable of

dealing with any large and complex model, and can provide the significant operational

modes automatically.

We now return to the client-server system. The mode of operation where Sb = 0

corresponds to the states 〈2,0,0〉, 〈1,1,0〉 and 〈0,2,0〉. The measures, Pt(〈2,0,0〉),
Pt(〈1,1,0〉), Pt(〈0,2,0〉) (derived by the analysis of Dagg

CS ) and Et [〈Ct ,Cr〉 | 〈2,0,0〉 ],
Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] and Et [〈Ct ,Cr〉 | 〈0,2,0〉 ], (derived by the MCM equations) are
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sufficient for derivation of the conditional expectation Et [〈Ct ,Cr〉 | Sb = 0 ].

By Def.28 and using Bayes’ Law, Et [〈Ct ,Cr〉 | Sb = 0 ] is expanded as:

Et [〈Ct ,Cr〉 | Sb = 0 ] = ∑
〈Si,Sl ,Sb,Ct ,Cr〉∈D

〈Ct ,Cr〉 ·Pt(〈Si,Sl,Sb,Ct ,Cr〉 | Sb = 0)

= ∑
〈Si,Sl ,0,Ct ,Cr〉∈D

〈Ct ,Cr〉 ·
Pt(〈Si,Sl,0,Ct ,Cr〉)

Pt(Sb = 0)

=

∑
〈Si,Sl ,0,Ct ,Cr〉∈D

〈Ct ,Cr〉 ·Pt(〈Si,Sl,0,Ct ,Cr〉)

Pt(Sb = 0)

In the summation of the last line, we sum over the states in the original state space

where Sb = 0. Since the model satisfies the aggregation condition, its state space can

be divided into a number of sub-chains each of which is represented as a single state

in the aggregation state space. Here, the sub-chains where Sb = 0 are Y〈2,0,0〉, Y〈1,1,0〉
and Y〈0,2,0〉, which are represented by aggregated states 〈2,0,0〉,〈1,1,0〉,〈0,2,0〉 ∈
Dagg

CS . We will expand the summation above so that the states within each sub-chain

are summed separately:

Et [〈Ct ,Cr〉 | Sb = 0 ] =

∑
〈2,0,0,Ct ,Cr〉∈Y〈2,0,0〉

〈Ct ,Cr〉 ·Pt(〈2,0,0,Ct ,Cr〉)

Pt(Sb = 0)

+

∑
〈1,1,0,Ct ,Cr〉∈Y〈1,1,0〉

〈Ct ,Cr〉 ·Pt(〈1,1,0,Ct ,Cr〉)

Pt(Sb = 0)

+

∑
〈0,2,0,Ct ,Cr〉∈Y〈0,2,0〉

〈Ct ,Cr〉 ·Pt(〈0,2,0,Ct ,Cr〉)

Pt(Sb = 0)
(7.8)

Using Bayes’s Law, for each state 〈Si,Sl,Sb,Ct ,Cr〉 ∈ Y〈Si,Sl ,Sb〉 we can transform its

probability term P(Si,Sl,Sb,Ct ,Cr ) to a conditional form as:

P(〈Si,Sl,Sb,Ct ,Cr〉) = P(〈Ct ,Cr〉 | 〈Si,Sl,Sb〉) ·P(〈Si,Sl,Sb〉)
(7.9)

We apply this transformation to Eq.(7.8) to derive:



156 Chapter 7. Analysis of Client-Server Model Using Conditional Expectations

Et [〈Ct ,Cr〉 | Sb = 0 ] =

∑
〈2,0,0,Ct ,Cr〉∈Y〈2,0,0〉

〈Ct ,Cr〉 ·Pt(〈Ct ,Cr〉 | 〈2,0,0〉) ·Pt(〈2,0,0〉)

Pt(Sb = 0)

+

∑
〈1,1,0,Ct ,Cr〉∈Y〈1,1,0〉

〈Ct ,Cr〉 ·Pt(〈Ct ,Cr〉 | 〈1,1,0〉) ·Pt(〈1,1,0〉)

Pt(Sb = 0)

+

∑
〈0,2,0,Ct ,Cr〉∈Y〈0,2,0〉

〈Ct ,Cr〉 ·Pt(〈Ct ,Cr〉 | 〈0,2,0〉) ·Pt(〈0,2,0〉)

Pt(Sb = 0)

By factoring out the probability terms related to the aggregated states we have:

Et [〈Ct ,Cr〉 | Sb = 0 ] =

Pt(〈2,0,0〉) · ∑
〈2,0,0,Ct ,Cr〉∈Y〈2,0,0〉

〈Ct ,Cr〉 ·Pt(〈Ct ,Cr〉 | 〈2,0,0〉)

Pt(Sb = 0)

+

Pt(〈1,1,0〉) · ∑
〈1,1,0,Ct ,Cr〉∈Y〈1,1,0〉

〈Ct ,Cr〉 ·Pt(〈Ct ,Cr〉 | 〈1,1,0〉)

Pt(Sb = 0)

+

Pt(〈0,2,0〉) · ∑
〈0,2,0,Ct ,Cr〉∈Y〈0,2,0〉

〈Ct ,Cr〉 ·Pt(〈Ct ,Cr〉 | 〈0,2,0〉)

Pt(Sb = 0)
(7.10)

In our final transformation, we use Def 28 to form the conditional expectation terms.

According to this definition, for any βββ ∈ Dagg
CS :

∑
〈Si,Sl ,Sb,Ct ,Cr〉∈Yβββ

〈Si,Sl ,Sb〉=βββ

〈Ct ,Cr〉 ·Pt(〈Ct ,Cr〉 | βββ) = Et [〈Ct ,Cr〉 | βββ ] (7.11)

Therefore, Eq.(7.10) is transformed into:

Et [〈Ct ,Cr〉 | Sb = 0 ] =
Pt(〈2,0,0〉) ·Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]

Pt(Sb = 0)

+
Pt(〈1,1,0〉) ·Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

Pt(Sb = 0)
+

Pt(〈0,2,0〉) ·Et [〈Ct ,Cr〉 | 〈0,2,0〉 ]
Pt(Sb = 0)

(7.12)

This equation is closed in terms of the probability distribution over Dagg
CS and the MCM

conditional expectations. By following a similar process for other operational modes
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Figure 7.7: Conditional expectations of Cr across different values of Sb, as derived from

PRISM and MCM.

(Sb = 1 and Sb = 2), equations for E [〈Ct ,Cr〉 |Sb = 1 ], E [〈Ct ,Cr〉 |Sb = 2 ] are derived:

Et [〈Ct ,Cr〉 | Sb = 1 ] =
Pt(〈1,0,1〉) ·Et [〈Ct ,Cr〉 | 〈1,0,1〉 ]

Pt(Sb = 1)

+
Pt(〈0,1,1〉) ·Et [〈Ct ,Cr〉 | 〈0,1,1〉 ]

Pt(Sb = 1)
(7.13)

Et [〈Ct ,Cr〉 | Sb = 2 ] =
Pt(〈0,0,2〉) ·Et [〈Ct ,Cr〉 | 〈0,0,2〉 ]

Pt(Sb = 2)

=
Pt(〈0,0,2〉) ·Et [〈Ct ,Cr〉 | 〈0,0,2〉 ]

Pt(〈0,0,2〉)
(7.14)

The solution of the equations (7.12), (7.13) and (7.14), projected on the state

variable Cr is shown in Fig.7.7. Similarly to the previous case, to check the solu-

tion’s accuracy a comparison was made against the same result obtained from PRISM.

The measurements of the error are shown in Table 7.8. This comparison shows that

E [Cr |Sb = n ] ,n = 0,1,2 derived from the MCM solution is highly accurate.

The conditional expectations E [Cr |Sb = · ] shed light on important qualitative and

quantitative aspects of the client-server system’s behaviour. Since the client’s be-

haviour across the servers’ different modes of operation is obtained, we can quali-

tatively verify the sensitivity of the client’s behaviour to the servers’ breakdown and

recovery. Note that, such a sensitivity cannot be detected by methods such as fluid flow
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Conditional expectation MCM PRISM Error (%)

Sb = 0
E [Ct | 〈1,1,0〉 ] 94.114 94.35 0.25

E [Cr | 〈1,1,0〉 ] 55.886 56.026 0.24

Sb = 1
E [Ct | 〈1,0,1〉 ] 47.084 46.892 0.40

E [Cr | 〈1,0,1〉 ] 102.92 102.5 0.40

Sb = 2
E [Ct | 〈0,0,2〉 ] 0.055088 0.055045 0.07

E [Cr | 〈0,0,2〉 ] 149.92 149.94 0.01

Table 7.8: The error associated with MCM Et [Cr | Sb = n ], n=0,1,2 obtained by com-

paring the result with PRISM. The model has two servers and 150 clients.

analysis, which find the expectation of the system’s behaviour whilst abstracting away

the internal stochastic dynamics of the servers.

Moreover, the conditional expectations can quantitatively state how exactly the

behaviour of the clients changes as a result of the servers’ noisy behaviour. In Fig.7.8

we compare the MCM steady state conditional expectations Et [Cr | Sb = · ] with the

steady state distribution of Cr obtained through the analysis of the model’s complete

and large state space. The comparison shows that the conditional expectations are

capable of specifying all the locations in the domain of Cr where significant probability

masses are located and capture Cr’s multi-modality. In the next sections, we show that

the inclusion of higher-order conditional moments (such as conditional variance) in the

analysis allows us to also capture the variability around the conditional expectations

and therefore, gain a richer representation of this multi-modaility.

7.6 Efficiency Gain

The analyses through both the MCM and PRISM allowed us to study the client’s be-

haviour across the different modes of operation exhibited by the servers. The MCM

relies on deriving the numerical solution of a system of DAEs. The size of this sys-

tem depends on the number of states in the aggregated state space and the number of

state variables related to the large groups. This size matters, as it determines the time

complexity of running the MCM. On the other hand, in PRISM, a transient analysis is

performed over the model’s complete state space. In this approach, the key factor in

determining the computational cost is the size of this state space. As a final step in our
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Population of clients

150 200 300 400

State space size 906 1206 1806 2406

Runtime-PRISM 8.9 1447 1936 2653

Runtime-MCM 9.0 9.1 9.4 9.15

Table 7.9: Comparison between the MCM and PRISM when the model is initialised with

increasing values for nc. Here, the number of equations in the models’ underlying DAEs

is constant. The times are expressed in seconds.

example, we compare the MCM and PRISM in terms of their runtime when used for

the analysis of our client-server model.

In our first comparison, we constructed four versions of the client-server model

with increasing values for the parameter nc (the total number of clients in the model),

namely nc = 150, 200, 300, 400. This results in increasing sizes for the complete state

space, whilst the size of the aggregated state space remains constant. The performance

measures of interest were the conditional expectations related to the clients with re-

spect to the time interval 0 ≤ t ≤ 500. The run times of using the MCM and PRISM

were collected and are presented in Table 7.9. Our comparison shows that the MCM

is significantly more efficient than PRISM, and as nc increases its relative efficiency is

more pronounced. We also observe that although increasing nc causes higher computa-

tional costs for PRISM, the run time of the MCM is not worsened (the small variations

related to the MCM runtime are due to the internal decisions made by the DAE solver).

Since ns does not change, the aggregated state space remains the same and the MCM

solves the same equations but with different parameters. This observation underlines

an important advantage of the MCM; the method is particularly useful when one in-

tends to investigate the model’s behaviour under scenarios with different populations

assigned to the large groups.

In another experiment, we checked the impact of changing the number of servers on

the time required to capture the model’s multi-modality through the MCM and PRISM.

Here, we kept nc = 500 as a constant and constructed two versions of the model with

varying number of servers, namely ns = 2 and ns = 3. The result is shown in Table

7.10. We observe that increasing ns enlarges the model’s aggregated state space and

therefore, when ns = 3, the model’s system of DAEs contains more equations. This

causes the MCM to have a worse run time than when nc = 2. Nevertheless, we also
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No. of equations Runtime-MCM Size of state space Runtime-PRISM

ns = 2 12 9 3006 3531

ns = 3 20 15 5010 4881

Table 7.10: Comparison between the run times of the MCM and PRISM when the model

is initialised with different numbers of servers. The MCM’s performance degrades when

ns increases. Yet, an even more severe degradation occurs with respect to PRISM.

Times are expressed in seconds.

observe that the degradation observed for the MCM is significantly lower than PRISM.

The increase in the population of the small groups increases the size of the aggregated

state space, but still, given its inherent size, the impact is limited. On the other hand,

such an increase causes a growth of a large magnitude with respect to the model’s

complete state space. Therefore, whilst the increase in ns slightly degrades the run

time of the MCM, the degradation is more severe with respect to PRISM. This shows

that, using the MCM is still favoured in the experiments where the populations of the

small groups are scaled up.





Chapter 8

Analysis of LSRB Models Using

Higher-Order Conditional Moments

8.1 Introduction

In Chapter 6, we presented the method of conditional expectations as an efficient tech-

nique that is suitable for the analysis of LSRB models. These models allow us to

capture the dynamics of resource-bound systems. In the analysis based on the condi-

tional expectations we distinguish between the different configurations that resources

exhibit and study the behaviour of resource users across those different configurations

in terms of conditional expectations. We showed that this method is particularly use-

ful for analysing the impact of the random behaviour of resources on the dynamics of

resource users.

The expectations we obtain can be regarded as first moment approximations to

the stochastic behaviour of the users. In this chapter, we enrich the analysis of the

conditional expectations to include higher-order conditional moments.

Whilst it is important to measure the conditional expectations related to the dif-

ferent configurations of the resources, such expectations are not sufficient to capture

further important measures, such as, how the actual stochastic evolution of the users

deviates from their mean behaviour. The knowledge of the potential distance from

the conditional expectations is critical, for instance in tasks such as capacity planning,

when in addition to the usual and optimal modes of operation, the system’s behaviour

is investigated under sub-optimal case scenarios. The higher-order conditional mo-

163
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ments provide us with a richer representation of the system’s stochastic behaviour and

enable us to form more informed judgements about the performance of the system.

Similarly to the previous chapter, the analysis based on higher-order conditional

moments constructs a system of DAEs from the model. In Section 8.2, we provide

some definitions. In Section 8.3, we describe the derivation of DAEs for higher-order

conditional moments. In Section 8.4, we describe an approach for deriving the initial

values required to solve the DAEs.

In Chapter 9, the analysis of higher-order conditional moments is applied to our

simple model of the client-server system.

8.2 Definitions

In our derivations, we use vectors extensively. First, we describe some notation and a

number of operations related to the vectors [53].

8.2.1 Vector Arithmetic

Definition 31. (Unit vector) A unit vector e = 〈ei〉 , i ∈ N, is a vector of non-negative

integers where all elements are zero, except the element indexed by i which is one. We

assume that when analysing a LSRB model M, the vector ei has the size n(M, l), where

n(M, l) denotes the number of state variables in vector ξξξ
l .

Consider two vectors A = 〈ai〉i=1···n and B = 〈b j〉 j=1···n of size n. The following

binary operators are defined for vectors such as A and B which have the same size.

Definition 32. (Vectorial exponentiation) A vector A to the power of a vector B is

represented by AB and is defined as:

AB =
n

∏
i=1

(ai)
bi (8.1)

Definition 33. (Vectorial combination) For vectors A and B, the vectorial combination(A
B
)

is defined as: (
A
B

)
=

n

∏
i=1

(
ai

bi

)
(8.2)

where
(ai

bi

)
is the combinatorial operator defined on integers as

(a
b

)
= a !

b ! (a−b) !
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Definition 34. (Vectorial inequality) For two vectors A and B, we have A ≤ B when

∀ i = 1, · · · ,n : ai ≤ bi. Similarly, we have A < B when ∀ i = 1, · · · ,n : ai < bi.

The binomial expansion theorem is originally defined for natural numbers. In the

following lemma, the theorem is extended to account for vectors.

Lemma 8.2.1. (Binomial expansion for vectors) For three vectors A, B and X, the

exponentiation (A+B)X is expanded as:

(A+B)X = ∑
〈0〉≤W≤X

(
X
W

)
(A)W · (B)X−W (8.3)

where the vectorial combination
(X

W
)

is derived using Eq.(8.2) and 〈0〉 is the vector of

size n(M, l) with all elements as zero.

Proof.

(A+B)X =
n

∏
i=1

(ai +bi)
xi =

n

∏
i=1

xi

∑
ki=0

(
xi

ki

)
(ai)

ki · (bi)
xi−ki

=

(
x1

∑
k1=0

(
x1

k1

)
(a1)

k1(b1)
x1−k1

)(
x2

∑
k2=0

(
x2

k2

)
(a2)

k2(b2)
x2−k2

)
· · ·
(

xn

∑
kn=0

(
xn

kn

)
(an)

kn(bn)
xn−kn

)

=
x1

∑
k1=0

x2

∑
k2=0
· · ·

xn

∑
kn=0

(
x1

k1

)(
x2

k2

)
· · ·
(

xn

kn

)
(a1)

k1(a2)
k2· · ·(an)

kn(b1)
x1−k1(b2)

x2−k2· · ·(bn)
xn−kn

=
X=〈x1,··· ,xn〉

∑
K=〈k1,··· ,kn〉=〈0〉

(〈x1, · · · ,xn〉
〈k1, · · · ,kn〉

)
〈a1, · · · ,an〉〈k1,··· ,kn〉〈b1, · · · ,bn〉〈x1−k1,··· ,xn−kn〉

=
X=〈x1,··· ,xn〉

∑
K=〈k1,··· ,kn〉=〈0〉

(
X
K

)
(A)K · (B)X−K

8.2.2 Higher-Order Conditional Moments

First, we briefly review a number of definitions related to LSRB models.

In a LSRB model, the groups are categorised based on their size. The partition

∆G = {Gs(M),Gl(M)} is defined over the set of the groups G(M) in the model where
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Gs(M) is the set of small groups and Gl(M) is the set of large ones. The state vector

defined for capturing the state of the system is 〈ξξξs
, ξξξ

l〉 where ξξξ
s captures the state of

the small groups and ξξξ
l captures the state of the large ones. The complete state space of

the model is denoted by D. When the model satisfies the conditions of the aggregated

method that we presented in Chapter 4, its state space can be divided into a number of

sub-chains and an aggregation model with the state space Dagg is constructed. In the

aggregated state space each sub-chain Yγγγ in D is represented by a single state γγγ. The

aggregated state space captures the configurations that the small groups exhibit, whilst

abstracting from the dynamics of the large ones.

The behaviour of the large groups is studied in terms of the moments of the con-

ditional distributions Pt(ξξξ
l | γγγ), ∀ γγγ ∈ Dagg. In Chapter 6 we derived a system of

DAEs which captures the evolution of the conditional means: Et

[
ξξξ

l | γγγ
]
, ∀ : γγγ ∈Dagg.

These moments are regarded as the first-order conditional moments of the conditional

distributions Pt(ξξξ
l| γγγ). The other important measures related to these conditional dis-

tributions are the higher-order conditional moments, which describe distances (of dif-

ferent order) between the stochastic behaviour of ξξξ
l and the calculated expectations.

As an example, the conditional moments of the second order, including the conditional

variances, are useful for capturing the width of the conditional distributions Pt(ξξξ
l| γγγ).

Each higher-order conditional moment is expressed using a moment vector III = 〈Ii〉,
i = 1 · · ·n(M, l) , Ii ∈ Z≥0. The III-th conditional moment of ξξξ

l is defined as follows.

Definition 35. (The I-th conditional moment of ξξξ
l in a sub-chain Yγγγ). Consider a sub-

chain Yγγγ ∈ D represented by the state γγγ ∈ Dagg. At any point of time t, the conditional

expectation of ξξξ
l given that at t, ξξξ

s
i = γγγ , is denoted by µ(γγγ, t). For a moment vector

III = 〈Ii〉, at any time t the III-th conditional moment of ξξξ
l given that at t the small groups

are in the configuration γγγ , is denoted by MMMI(γγγ, t) and is defined as:

MMMI(γγγ, t) = Et

[(
ξξξ

l−µ(γγγ, t)
)I
| γγγ
]
= ∑

Si=〈γγγ ,ξξξl
i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
·Pt(ξξξ

l
i | γγγ) (8.4)

where
(

ξξξ
l
i−µ(γγγ, t)

)I
is calculated using the vector exponentiation shown in Def. 32.

One important property of a moment vector is its order:

Definition 36. (Order of a moment vector) For a moment vector III, its order is defined

to be the sum of its elements:

Ord(III) = ∑
Ii∈III

(Ii) (8.5)
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By Def. 36, it is trivial that for any moment vector III with order Ord(III) = 1, we

have one entry of 1 and all other entries zero, and that MMMI(·, t) = 0. To avoid dealing

with such trivial cases, in this thesis we restrict our moment vectors of order two and

above.

8.3 Higher-Order Conditional Moments - Derivation of

Equations

Here, we derive a system of equations which, for a given model, captures the evolution

of its underlying higher-order conditional moments. Our derivations will be based

on the following key lemma. The lemma is originally presented in [38] and [53] for

modelling biological systems and here we adapt it to be used for LSRB models.

Proposition 8.3.1. (Higher-order conditional moments of a reward function) Let us

assume that T (ξξξl
, t) : Nn(M,l)×R≥0→ R≥0 is a polynomial function defined over the

Markov Chain of model M. This function represents a time dependent instantaneous

reward; at any point of time t, the reward T (ξξξl
i, t) is assigned to any state 〈ξξξs

i , ξξξ
l
i〉 ∈D.

Assuming that T is differentiable across its domain, we have:

∀ Yγγγ ∈ D :
d
d t

(
Et

[
T (ξξξl

, t) | γγγ
]
·P(γγγ)

)
=

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

T (ξξξl
i, t) ·

d P(Si )

d t︸ ︷︷ ︸
first term

+ Et

[
d T (ξξξl

, t)
d t

| γγγ
]
·P(γγγ)︸ ︷︷ ︸

second term

(8.6)

where the conditional expectations Et

[
T (ξξξl

,t) | γγγ
]

and Et

[
d T (ξξξl ,t)

d t | γγγ
]

are derived

using Def. 29 (recall that this definition applies the notion of conditional expectations

to the reward functions such as T ).

Proof. The proof, adjusted to our notation, is illustrated in Appendix D.1.

Using Prop. 8.3.1, the following is the outline of our derivations. Given a moment

vector III, for each sub-chain Yγγγ we construct an instance of Eq.(8.6), with the substitu-

tion T (ξξξl
i, t) =

(
ξξξ

l
i−µ(γγγ, t)

)I
. This means that the reward

(
ξξξ

l
i−µ(γγγ, t)

)I
is assigned

to each state 〈γγγ , ξξξ
l
i〉 ∈ Yγγγ. Then, in the equation of each sub-chain the left hand side
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and the first and second terms on the right hand side (as shown in Eq.(8.6)) are ex-

panded using the symbolic representation of the model’s underlying C-K equations.

As a result, we obtain an equation closed in terms of the higher conditional moments

I′ of order Ord(I′) ≤ Ord(I). By recursively applying the proposition with respect to

such III′, a closed system of DAEs is ultimately obtained. In the rest of this section, the

details of this process will be presented.

Let us consider a sub-chain Yγγγ and the states 〈γγγ , ξξξ
l
i〉 within it. For this sub-chain

µ(γγγ, t) denotes the conditional expectation of ξξξ
l at t, given the configuration γγγ for ξξξ

s.

We focus on this sub-chain and for the moment vector III of interest, construct an in-

stance of Eq.(8.6) with the substitution T (ξξξl
i, t) =

(
ξξξ

l
i−µ(γγγ, t)

)I
:

d
d t

(
Et

[(
ξξξ

l−µ(γγγ, t)
)I
| γγγ
]
·P(γγγ)

)
=

∑
Si=〈γγγ ,ξξξl

i〉

(
ξξξ

l
i−µ(γγγ, t)

)I
· d P(Si )

d t︸ ︷︷ ︸
first term

+ Et

 d
(

ξξξ
l−µ(γγγ, t)

)I

dt
| γγγ

 ·P(γγγ)

︸ ︷︷ ︸
second term

(8.7)

In the above equation, we apply the product rule for differentiation to the left hand side

to derive:

MMMI(γγγ,t)︷ ︸︸ ︷
Et

[(
ξξξ

l−µ(γγγ, t)
)I
| γγγ
]
· d Pt(γγγ)

d t
+

d MMMI(γγγ,t)
d t︷ ︸︸ ︷(

d
d t

Et

[(
ξξξ

l−µ(γγγ, t)
)I
| γγγ
])
· Pt(γγγ) =

∑
Si=〈γγγ ,ξξξl

i〉

(
ξξξ

l
i−µ(γγγ, t)

)I
· d P(Si )

d t︸ ︷︷ ︸
first term

+ Et

 d
(

ξξξ
l−µ(γγγ, t)

)I

d t
| γγγ

 ·P(γγγ)

︸ ︷︷ ︸
second term

(8.8)

In the left hand side of Eq.(8.8) and as indicated above, using Def. 35 we derive:

E
[(

ξξξ
l−µ(γγγ, t)

)I
|γγγ
]
= MMMI(γγγ, t) and d

d tE
[(

ξξξ
l−µ(γγγ, t)

)I
|γγγ
]
= d MMMI(γγγ,t)

d t . The refor-

mulation means that the equation can capture the evolution of our conditional mo-

ments. Next, we focus on the first and second terms on the right hand side and by

utilising the model’s C-K equations, we transform them so that we derive an equation

closed in terms of the conditional moments. Our derivations are lengthy, and in order

to guide the reader a map of them is presented in Fig. 8.1.
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Figure 8.1: Map of the transformations that we apply to the first and second terms on

the right hand side of Eq.(8.8) in order to reformulate them in terms of the conditional

moments. Recall that the boundary state approximation was introduced on Page 113

in Eq.(6.14).
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8.3.1 Closing the Equations - First Term

We use the model’s C-K equations and construct an approximation for the first term in

Eq.(8.8). Consider Eq.(8.9), the symbolic representation of a C-K equation for a state

Si ∈ D:

∀ Si ∈ D :
d Pt(Si)

d t
= − ∑

Si
(α,rα(Si))−−−−−→S j

rα(Si) ·Pt(Si)

︸ ︷︷ ︸
outward transitions from Si

+ ∑

Sk
(α,rα(Sk))−−−−−−→Si

rα(Sk) ·Pt(Sk)

︸ ︷︷ ︸
inward transitions into Si

(8.9)

Focusing on sub-chain Yγγγ and given the moment vector III, for each state 〈γγγ , ξξξ
l
i〉 ∈ Yγγγ,

we multiply both the left and right hand side by
(

ξξξ
l
i−µ(γγγ, t)

)I
, and then sum over the

states in the sub-chain to derive:

∀ γγγ ∈ Dagg : ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· d Pt(Si)

d t
=

− ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· ∑

Si
(α,rα(Si))−−−−−→S j

rα(Si) ·Pt(Si)

︸ ︷︷ ︸
outward transitions from Si

+ ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· ∑

Sk
(α,rα(Sk))−−−−−−→Si

rα(Sk) ·Pt(Sk)

︸ ︷︷ ︸
inward transitions into Si

(8.10)

In Eq.(8.10), consider the term related to the outward transitions. This term consists of

two summations, the outer over the states Si ∈Yγγγ and the inner over the transitions out

of Si. We can swap the ordering of these summations (similarly to the transformation

applied to Eq.(6.11)). When swapping, for each state we sum over only the action

types that the state enables1. Furthermore, a similar transformation is applied to the

term related to the inward transitions. Here, for each action type α, we are restricted to

sum only over the states Sk which enable a transition of type α leaving Sk and entering

1 A state Si enables an α if Si ≥ V −α .
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Si. Eq. (8.10) is turned into:

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· d

dt
Pt(Si) =

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,Si≥V −α

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(Si) ·Pt(Si)

︸ ︷︷ ︸
outward transitions

+ ∑
α∈
→
A∗(M)

∑
Sk≥V −α ,Si=〈γγγ ,ξξξl

i〉=Sk+Vα

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(Sk) ·Pt(Sk)

︸ ︷︷ ︸
inward transitions

(8.11)

Note that the first term on the right hand side of Eq.(8.8) is now formed in Eq.(8.11).

However, the right hand side of Eq.(8.11) is not yet closed in terms of the conditional

moments, and further transformations are required. Some of these transformations are

similar to those applied in Section 6.2 which were related to the conditional expecta-

tions. Due to the similarity, when possible, we combine a series of them in a single

step without presenting full detail and assume it suffices to only give references to

explanations in Section 6.2.

The transformations on Eq.(8.11) are applied in three consecutive stages. First,

we separately focus on the terms related to the inward and outward transitions and

expand them using the partition ∆A . The resulting equations are then transformed

using vectorial binomial expansion as shown in Prop. 8.2.1. In the final stage, we

apply a transformation based on Taylor expansion of the apparent rate functions. The

descriptions of these stages follow.

8.3.1.1 First Term - Outward Transitions

Recall that the set of action types defined in the model is denoted by
→
A∗ (M) and

the partition ∆A = {
→
A∗s (M),

→
A∗sl (M),

→
A∗l (M)} is defined over

→
A∗ (M). In the term

related to the outward transitions, the outer summation sums over the action types.

We expand this so that the action types in each category are summed over separately.

We also use Bayes’ Law to transform the probability terms into the conditional form

as: Pt(〈γγγ , ξξξ
l
i〉) = Pt(ξξξ

l
i | γγγ) · Pt(γγγ). The term related to the outward transitions is
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transformed into:

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)III
· rα(Si) ·Pt(Si) =

− ∑
α∈
→
A∗s (M)

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,γγγ≥V s,−
α

(
ξξξ

l
i−µ(γγγ, t)

)III
· rα(γγγ) ·Pt(γγγ) ·Pt(ξξξ

l
i | γγγ)

− ∑
α∈

→
A∗sl(M)

∑
Si=〈γγγ ,ξξξl

i〉 ,γγγ≥V s,−
α

ξξξ
l
i≥V l,−

α

(
ξξξ

l
i−µ(γγγ, t)

)III
· rα(γγγ) ·Pt(γγγ) ·Pt(ξξξ

l
i | γγγ) ?

− ∑
α∈
→
A∗l(M)

∑
Si=〈γγγ ,ξξξl

i〉 ,ξξξl
i≥V l,−

α

(
ξξξ

l
i−µ(γγγ, t)

)III
· rα(ξξξ

l
i) ·Pt(γγγ) ·Pt(ξξξ

l
i | γγγ) (8.12)

In our next transformation, we exploit the fact that the probability of being in boundary

states is close to zero. The condition is formally expressed in Eq.(6.14). By following

the same logic as presented for Eq.(6.15), we conclude that in the term related to
→

A∗sl (M) actions (marked by a star above), the condition ξξξ
l
i ≥ V l,−

α imposed on the

inner summation can be relaxed. This helps us to transform Eq.(8.12) into:

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i〉

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(Si) ·Pt(Si) ≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·Pt(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,γγγ≥V s,−
α

(
ξξξ

l
i−µ(γγγ, t)

)I
·Pt(ξξξ

l
i | γγγ)

− ∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ ,ξξξ
l
i≥V l,−

α

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(ξξξ

l
i) ·Pt(ξξξ

l
i | γγγ) (8.13)

Note that in any state Si = 〈γγγ , ξξξ
l
i〉 and for any action α∈

→
A∗s (M) ∪

→
A∗sl (M), if γγγ 6≥V s,−

α ,

then the action is not enabled in Si and rα(γγγ) = 0. On the other hand, if α ∈
→
A∗l (M) and

ξξξ
l
i 6≥ V l,−

α , again the action is not enabled and rα(ξξξ
l
i) = 0. In each line of Eq.(8.13),

we have a summation over only the states that enable the action types. Since the states

that do not enable the actions can only contribute zero to the expression, we can relax

the conditions γγγ ≥ V s,−
α and ξξξ

l
i ≥ V l,−

α and thus, allow the summations to include all
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states in the sub-chain Yγγγ :

− ∑
α∈
→
A∗(M)

∑
Si=〈γγγ ,ξξξl

i〉

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(Si) ·Pt(Si) ≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·Pt(γγγ) ·

MMMI(γγγ,t)︷ ︸︸ ︷
∑

Si=〈γγγ ,ξξξl
i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
·Pt(ξξξ

l
i | γγγ)

− ∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(ξξξ

l
i) ·Pt(ξξξ

l
i | γγγ) (8.14)

By using Def. 35, the first term on the right hand side of Eq.(8.14) can be expressed by

a higher-order conditional moment. This is highlighted in the equation. However, for

the second term, further transformations are required, which will be presented later in

the second stage. We substitute Eq.(8.14) back into Eq.(8.10) as its term related to the

outward transitions.

8.3.1.2 First Term - Inward Transitions

Now we focus on the term in Eq.(8.10) related to the inward transitions. Similarly to

the previous case, the first step in the transformation is to use the partition ∆A to expand

the summation over the action types. Then, for each incoming transition Sk
(α,·)−→ Si with

Sk = 〈ξξξs
k , ξξξ

l
k〉 ∈Yγγγ−V s

α
into each state Si = 〈γγγ , ξξξ

l
i〉 ∈Yγγγ we apply the substitution ξξξ

l
k =

ξξξ
l
i−V l

α. Finally, the approximation with respect to the boundary states (introduced in

Eq.(6.15)) is applied to the term related to
→

A∗sl (M) action types. Then, we derive:

∑
α∈
→
A∗(M)

∑
Sk≥V −α ,Si=〈γγγ ,ξξξl

i〉=Sk+Vα

(
ξξξ

l
i−µ(γγγ, t)

)III
· rα(Sk) ·Pt(Sk) ≈

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)III
·Pt(ξξξ

l
k | γγγ−V s

α )

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)III
· rα(ξξξ

l
k) ·Pt(ξξξ

l
k | γγγ) (8.15)

In Eq.(8.15) and the right hand side, no term can be directly formulated as a higher-

order conditional moment. This will be resolved by the transformations that follow.

By substituting the results of our transformation thus far in Eq.(8.11), we have:
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∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· d

dt
Pt(Si) ≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·Pt(γγγ) ·MMMI(γγγ, t)

− ∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(ξξξ

l
i) ·Pt(ξξξ

l
i | γγγ)

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)I
·Pt(ξξξ

l
k | γγγ−V s

α ) (I)

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)I
· rα(ξξξ

l
k) ·Pt(ξξξ

l
k | γγγ) (II) (8.16)

8.3.1.3 First Term - Expanding by Vectorial Binomial

In the second stage of our transformations, we expand the terms marked as (I), (II) in

Eq.(8.16) using the vectorial binomial expansion presented in Lemma 8.2.1.

First, we consider (I). In the inner summation of this term, we sum over the states

Sk = 〈γγγ−V s
α , ξξξ

l
k〉 ∈Yγγγ−V s

α
and calculate the distances (ξξξl

k+V l
α−µ(γγγ, t))III with respect

the conditional expectation of the sub-chain Yγγγ. In order to form expressions closed in

terms of the conditional moments, we add and subtract µ(γγγ−V s
α, t) to have:

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)III

=

ξξξ
l
k−µ(γγγ−V s

γγγ , t)︸ ︷︷ ︸+µ(γγγ−V s
γγγ , t)+V l

α−µ(γγγ, t)︸ ︷︷ ︸
I

(8.17)

In Eq. 8.17, we regroup the terms as indicated and apply the binomial expansion to

obtain:

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)III

=
I

∑
X=〈0〉

(
I
X

)(
ξξξ

l
k−µ(γγγ−V s

α, t)
)X(

µ(γγγ−V s
α, t)+V l

α−µ(γγγ, t)
)I−X

(8.18)
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Then, we substitute Eq.(8.18) in (I) to transform the term into:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)I
·Pt(ξξξ

l
k | γγγ−V s

α ) =

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(
Pt(ξξξ

l
k | γγγ−V s

α ) ·

I

∑
X=〈0〉

(
I
X

)(
ξξξ

l
k−µ(γγγ−V s

α, t)
)X(

µ(γγγ−V s
α, t)+V l

α−µ(γγγ, t)
)I−X

)

The ordering of the second and the third summations above can be swapped. By doing

so, we derive:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ∑
Sk=〈γγγ−V s

α ,ξξξ
l
k〉∈Yγγγ−V s

α

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)I
·Pt(ξξξ

l
k | γγγ−V s

α ) =

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α)
I

∑
X=〈0〉

(
I
X

)(
µ(γγγ−V s

α, t)+V l
α−µ(γγγ, t)

)I−X

(
∑

Sk=〈γγγ−V s
α ,ξξξ

l
k〉∈Yγγγ−V s

α

(
ξξξ

l
k−µ(γγγ−V s

α, t)
)X

Pt(ξξξ
l
k | γγγ−V s

α )

)
︸ ︷︷ ︸

MMMX(γγγ−V s
α,t)

(8.19)

As highlighted above, the right hand side of Eq.(8.19) is now expressed in terms of the

conditional moments MMMX(γγγ, t), X≤ I. We substitute Eq.(8.19) into Eq.(8.16).

Now we focus on the term in Eq.(8.16) marked by (II). Unlike the previous case,

no addition and subtraction is required and by applying the binomial expansion directly
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and swapping the ordering of the summations we derive:

∑
α∈
→
A∗l(M)

Pt(γγγ) ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
ξξξ

l
k +V l

α−µ(γγγ, t)
)III
· rα(ξξξ

l
k) ·Pt(ξξξ

l
k | γγγ)

= ∑
α∈
→
A∗l(M)

Pt(γγγ) ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
I

∑
X=〈0〉

(
I
X

)(
ξξξ

l
k−µ(γγγ, t)

)X
·
(

V l
α

)I−X
)
· rα(ξξξ

l
k) ·Pt(ξξξ

l
k | γγγ)

= ∑
α∈
→
A∗l(M)

Pt(γγγ)
I

∑
X=〈0〉

(
I
X

)(
V l

α

)I−X
∑

Sk=〈γγγ ,ξξξl
k〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)X
· rα(ξξξ

l
k) ·Pt(ξξξ

l
k | γγγ)

(8.20)

By substituting Eq.(8.20) in place of (II), Eq.(8.16) is transformed into:

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· d

dt
Pt(Si) ≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·Pt(γγγ) ·MMMI(γγγ, t)

− ∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(ξξξ

l
i) ·Pt(ξξξ

l
i | γγγ) (I)

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ·

(
I

∑
X=〈0〉

(
I
X

)(
µ(γγγ−V s

α, t)+V l
α−µ(γγγ, t)

)I−X
· MMMX(γγγ−V s

α, t)

)

+ ∑
α∈
→
A∗l(M)

Pt(γγγ)
I

∑
X=〈0〉

(
I
X

)(
V l

α

)I−X
∑

Sk=〈γγγ ,ξξξl
k〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)X
·rα(ξξξ

l
k) ·Pt(ξξξ

l
k | γγγ) (II)

(8.21)

In the right hand side of this equation, the terms which are not formulated in terms

of the conditional moments are marked by (I) and (II). In the next stage, we use

an approximation based on Taylor expansion [99] to find closed form expressions for

these terms.
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8.3.1.4 First Term - Transformation by Taylor Expansion

The transformations in this stage rely on the following two lemmas.

Lemma 8.3.1. (Taylor expansion of apparent rate function) Consider a sub-chain Yγγγ

and its corresponding conditional expectation µ(γγγ, t). Let α be an action type in
→
A∗l

(M) with the apparent rate function rα(ξξξ
l
). The rate function rα(ξξξ

l
) evaluated at any

state Si = 〈γγγ , ξξξ
l
i〉∈Yγγγ can be approximated by taking the first two terms of the Taylor

expansion around µ(γγγ, t) as:

rα(ξξξ
l
i) = rα( µ(γγγ, t) ) + ∑

ξ(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

(
ξi(H,C)−µ(H,C)(γγγ, t)

)
(8.22)

where ξ(H,C) is the element (state variable) in vector ξξξ
l that captures the number of

instances in group H ∈ Gl(M) who are in state C ∈ ds∗(H), ξi(H,C) is the number of

such instances in the state Si and µ(H,C)(γγγ, t) is the element in vector µ(γγγ, t) related to

the state variable ξ(H,C).

Proof. A brief description of the proof follows. The LSRB models we consider satisfy

the split-free condition. This means that the apparent rate functions are piece-wise

linear and for any µ(γγγ, t) one of the elements (pieces) is the outputs. Given µ(γγγ, t) from

the solution of conditional expectations, we evaluate the function and then apply the

Taylor expansion using the form appropriate for multivariate functions. This results in

Eq.(8.22).

Lemma 8.3.2. Consider a sub-chain Yγγγ with the associated conditional expectation

µ(γγγ, t). Let α ∈
→
A∗l (M) be an action type with the apparent rate function rα(ξξξ

l
). For a

state Sk = 〈γγγ , ξξξ
l
k〉 ∈Yγγγ and a moment vector III, the product

(
ξξξ

l
k−µ(γγγ, t)

)I
· rα(ξξξ

l
) can

be expressed by the Taylor expansion as:(
ξξξ

l
k−µ(γγγ, t)

)I
· rα(ξξξ

l
k) ≈

(
ξξξ

l
k−µ(γγγ, t)

)I
rα( µ(γγγ, t) ) +

∑
ξ(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

(
ξξξ

l
k−µ(γγγ, t)

)I+e(H,C)
(8.23)

where e(H,C) is a unit vector with the element related to the state variable ξ(H,C) as

one, and zero elsewhere.

Proof. We start by considering the left hand side of Eq.(8.23) and substitute
(

ξξξ
l
k−µ(γγγ, t)

)I
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with its Taylor expansion derived using Lemma 8.3.1. The right hand side follows im-

mediately.

Lemma 8.3.2 enables us to reformulate the terms marked by (I) and (II) in Eq.(8.21)

in terms of the conditional moments. Focusing on (I), we have:

∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(ξξξ

l
i) ·Pt(ξξξ

l
i | γγγ)

≈ ∑
α∈
→
A∗l(M)

Pt(γγγ) · rα( µ(γγγ, t) ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)I
·Pt(ξξξ

l
i | γγγ)

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉
Si∈Yγγγ

∑
ξ(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

(
ξξξ

l
k−µ(γγγ, t)

)I+e(H,C) ·Pt(ξξξ
l
i | γγγ)

(8.24)

Next, we change the ordering of the second and third summations in the last line above,

to get:

∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· rα(ξξξ

l
i) ·Pt(ξξξ

l
i | γγγ)

≈ ∑
α∈
→
A∗l(M)

Pt(γγγ) · rα( µ(γγγ, t) ) · ∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)I
·Pt(ξξξ

l
i | γγγ)

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · ∑
ξ(H,C)∈ξξξ

l

∂ rα( µ(γγγ, t) )
∂ ξ(H,C) ∑

Si=〈γγγ ,ξξξl
i〉

Si∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)I+e(H,C) ·Pt(ξξξ
l
i | γγγ)

= ∑
α∈
→
A∗l(M)

Pt(γγγ) ·

rα( µ(γγγ, t) ) · MMMI(γγγ, t) + ∑
ξ(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

· MMMIII+e(H,C)
(γγγ, t)


(8.25)

In Eq.(8.25), the right hand side is now closed in terms of the conditional moments.

This is substituted as the term marked by (I) in Eq.(8.21).

For the term marked by (II) in Eq.(8.21) a similar transformation is applied (Ap-
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pendix D.3). We omit the details and show the final result in the following equation.

∑
α∈
→
A∗l(M)

Pt(γγγ) ∑
〈0〉≤X<I

(
I
X

)(
V l

α

)I−X
∑

Sk=〈γγγ ,ξξξl
k〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)X
rα(ξξξ

l
k) ·Pt(ξξξ

l
k | γγγ) ≈

∑
α∈
→
A∗l(M)

Pt(γγγ)
I

∑
X=〈0〉

(
I
X

)(
V l

α

)I−X

rα( µ(γγγ, t) ) ·MMMX(γγγ, t)+ ∑
ξ(H,C)∈ξξξ

l

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

·MMMX+e(H,C)
(γγγ, t)

(8.26)

This is also substituted into Eq.(8.21) in place of the term marked by (II). Conse-

quently, Eq. (8.21) is transformed into:

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· d

dt
Pt(Si) ≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·Pt(γγγ) ·MMMI(γγγ, t)

− ∑
α∈
→
A∗l(M)

Pt(γγγ) ·

rα( µ(γγγ, t) ) · MMMI(γγγ, t)+ ∑
ξ(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

· MMMI+e(H,C)
(γγγ, t)

 ?

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ·

(
I

∑
X=〈0〉

(
I
X

)(
µ(γγγ−V s

α, t)+V l
α−µ(γγγ, t)

)I−X
· MMMX(γγγ−V s

α, t)

)

+ ∑
α∈
→
A∗l(M)

Pt(γγγ)
I

∑
X=〈0〉

(
I
X

)(
V l

α

)I−X

rα( µ(γγγ, t) ) ·MMMX(γγγ, t)+ ∑
(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

·MMMX+e(H,C)
(γγγ, t)

 (8.27)

As a final transformation, we apply the following important simplification. The under-

lined term in Eq.(8.27) includes a summation over the moment vectors 〈0〉 ≤ X ≤ I.

We expand this summation by separating the term associated with the largest value

X = I from the rest 〈0〉 ≤ X < I. As a result, the terms associated with X = I get
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cancelled by the term marked by a star above. This simplification turns Eq.(8.27) into

the following:

∑
Si=〈γγγ ,ξξξl

i〉∈Yγγγ

(
ξξξ

l
i−µ(γγγ, t)

)I
· d

dt
Pt(Si) ≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·Pt(γγγ) ·MMMI(γγγ, t)

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ·

(
I

∑
X=〈0〉

(
I
X

)(
µ(γγγ−V s

α, t)+V l
α−µ(γγγ, t)

)I−X
· MMMX(γγγ−V s

α, t)

)

+ ∑
α∈
→
A∗l(M)

Pt(γγγ)
X<I

∑
X=〈0〉

(
I
X

)(
V l

α

)I−X

rα( µ(γγγ, t) ) ·MMMX(γγγ, t)+ ∑
ξ(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

·MMMX+e(H,C)
(γγγ, t)

(8.28)

For a moment vector III with the order Ord(III) the simplification enables us to prove an

important property about the evolution of the conditional moments MMMI(γγγ, t), γγγ ∈ Dagg.

Consider Eq.(8.27) again and in particular the last term. Here, when X = I, the con-

ditional moment MMMI+e(H,C)
(γγγ, t) with order Ord(I)+ 1 is added to the equation. This

might appear to suggest that the evolution of MMMI(γγγ, t) depends on some conditional mo-

ments which have orders greater than Ord(III). Nevertheless, our simplification proves

that this is not the case. Since the term related to X = I is cancelled, the summation

eventually sums over the moment vectors X that are strictly less than I: 〈0〉≤X< I and

therefore, it will only add moments MMMI′(γγγ, t) with Ord(III′′′)≤Ord(III). As no other term

in the equation introduces moments of higher order, this shows that when analysing

LSRB models for a conditional moment associated with a moment vector I, we do not

need moments with orders higher than Ord(I).

The simplification step above concludes our transformations related to the first term

in the right hand side of Eq.(8.8). In the next section, we focus on the second term in

this equation.
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8.3.2 Closing the Equations - Second Term

The transformations related to this term rely on the following lemma.

Lemma 8.3.3. Consider a sub-chain Yγγγ and the associated time-dependent condi-

tional expectation µ(γγγ, t). For any moment vector III and any state Sk = 〈γγγ , ξξξ
l
k〉 ∈ Yγγγ ,

we have:

d
(

ξξξ
l
k−µ(γγγ, t)

)I

d t
=− ∑

ξ(H,C)

I(H,C)

d µ(H,C)(γγγ, t)
d t

(
ξξξ

l
k−µ(γγγ, t)

)I−e(H,C)
(8.29)

Proof. We start from the left hand side and first expand it using Def. 32. Then, the

product rule for differentiation is applied. The right hand side is derived by another

application of Def. 32. These steps are shown in detail in Appendix D.2.

In the first step of our transformations, the second term on the right hand side of

Eq.(8.8) is expanded using Lemma 8.3.3. We obtain:

P(γγγ) ·Et

 d
(

ξξξ
l−µ(γγγ, t)

)I

d t
| γγγ

 =

− Pt(γγγ) · ∑
Sk=〈γγγ ,ξξξl

k〉

(
∑

ξ(H,C)∈ξξξ
l

I(H,C) ·
d µ(H,C)(γγγ, t)

d t
·
(

ξξξ
l
k−µ(γγγ, t)

)I−e(H,C)

)
·Pt(ξξξ

l
k | γγγ)

(8.30)

In Eq.(8.30), the ordering of the summations on the right hand side can be swapped.

By doing so, we derive:

P(γγγ) ·Et

 d
(

ξξξ
l−µ(γγγ, t)

)I

d t
| γγγ

 =

− Pt(γγγ) · ∑
ξ(H,C)∈ξξξ

l

I(H,C) ·
d µ(H,C)(γγγ, t)

d t
·
(

∑
Sk=〈γγγ ,ξξξl

k〉

(
ξξξ

l
k−µ(γγγ, t)

)I−e(H,C) ·Pt(ξξξ
l
k | γγγ)

)

(8.31)

Using Def. 8.4, for the part underlined above we have:(
∑

Sk=〈γγγ ,ξξξl
k〉

(
ξξξ

l
k−µ(γγγ, t)

)I−e(H,C) ·Pt(ξξξ
l
k | γγγ)

)
= MMMI−e(H,C)

(γγγ, t) (8.32)
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By substituting Eq.(8.32) in Eq.(8.31), we obtain:

P(γγγ) ·Et

 d
(

ξξξ
l−µ(γγγ, t)

)I

d t
| γγγ

 =

−Pt(γγγ) · ∑
ξ(H,C)∈ξξξ

l

I(H,C) ·
∂ µ(H,C)(γγγ, t)

∂ t
·MMMI−e(H,C)

(γγγ, t) (8.33)

In Eq.(8.33), the right hand side is now closed in terms of the conditional moments.

This is substituted on the right hand side of Eq.(8.8) in place of (II).

8.3.3 Transformation’s Result

The transformations presented allow us to reformulate Eq.(8.8) as:

∀ γγγ ∈ Dagg : MMMI(γγγ, t) ·
d Pt(γγγ)

d t
+

(
d MMMI(γγγ, t)

d t

)
· Pt(γγγ) ≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·Pt(γγγ) ·MMMIII(γγγ, t)

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·Pt(γγγ−V s

α) ·

(
I

∑
X=〈0〉

(
I
X

)(
µ(γγγ−V s

α, t)+V l
α−µ(γγγ, t)

)I−X
· MMMX(γγγ−V s

α, t)

)
I

+ ∑
α∈
→
A∗l(M)

Pt(γγγ)
X<I

∑
X=〈0〉

(
I
X

)(
V l

α

)I−X

rα( µ(γγγ, t) ) ·MMMX(γγγ, t) + ∑
ξξξ(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

·MMMX+e(H,C)
(γγγ, t)

 II

− Pt(γγγ) · ∑
ξ(H,C)∈ξξξ

l

I(H,C) ·
d µ(H,C)(γγγ, t)

d t
·MMMI−e(H,C)

(γγγ, t) (8.34)

In Eq.(8.34) both the left and right hand sides are written in terms of the conditional

expectations and the conditional higher-order moments. This equation possesses the

desirable form and is used for studying the conditional moments MMMI(γγγ, t), γγγ ∈ Dagg.
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Each instance of this equation can be systematically constructed by considering the

transitions of type
→
A∗s (M)∪

→
A∗sl (M) and the ones with type

→
A∗l (M). The pseudo code

for this construction is shown in Alg. 4, which is the basis for deriving the equations

by a software tool.

8.3.4 Size of the System of DAEs

One important aspect of applying the MCM is its scalability with respect to the number

of equations it constructs in the model’s underlying system of DAEs. For a moment

vector III, in order to obtain a higher-order moment MMMI(γγγ, t), γγγ ∈ Dagg we are required

to construct one instance of Eq.(8.34). However, the structure of the equation shows

that the evolution of MMMIII(γγγ, t) depends on other conditional moments MMMIII′′′(γγγ
′, t) with

orders Ord(III′′′)≤ Ord(III) and γγγ ′ ∈ Dagg. To account for this dependency and construct

a closed system of equations, the system needs to be augmented with new instances

of Eq.(8.34) which capture the evolution of the additional moments. This enlarges the

model’s underlying system of DAEs and increases the computational cost of finding

the numerical solution. Therefore, in practice, when analysing for a moment vector III,

attention must be especially paid to the number of equations that will be constructed

and the capabilities of the existing solvers.

For a model M and a moment vector I, the size of the underlying system of DAEs

can be obtained by exploiting the structure of Eq.(8.34). In the following, we explain

the derivation of this size. First, let us introduce two lemmas which will be used in our

derivation.

Lemma 8.3.4. [40, Chap. 3] Consider the equation a1 + a2 + · · ·+ ak = B where B

is a non-negative integer constant and variables ak, i ∈ {1,2, · · · ,k} are bound to be

non-negative integers. The number of solutions that the equation admits is
( B+(k−1)

(k−1)

)
.

Lemma 8.3.5. The number of moment vectors with a given order B is
( B+(n(M,l)−1)

n(M,l)−1

)
.

Proof. By Def. 36, a moment vector I has order Ord(I) = B when its elements Ii

(which are assumed to be non-negative integers) sum up to B. Thus, every solution to

the equation I1+ I2+ · · ·+ In(M,l) = B denotes one moment vector with order Ord(I) =
B. Using Lemma 8.3.4, we have that the number of the solutions and consequently, the

number of the possible moment vectors is
( B+(n(M,l)−1)

n(M,l)−1

)
.
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Algorithm 4 Given an aggregated state γγγ ∈ Dagg and a moment vector I > 〈0〉, return

the equation capturing MMMI(γγγ, t)

1: function HIGHER ORDER MOMENT EQ( aggregated state γγγ , moment vector I )

2: initialise an equation as eq;

3: put
[
MMMI(γγγ, t) · d Pt(γγγ)

d t +
(

d MMMI(γγγ,t)
d t

)
Pt(γγγ)

]
as the left hand side in eq;

4: out trans←{α | α ∈
→
A∗s (M) ∪

→
A∗sl (M)∧ γγγ enables a transition of type α}

5: for (action type: α ∈ out trans) do // outward transitions

6: add ( − rα ·Pt(γγγ) ·MMMIII(γγγ, t) ) to eq ;

7: end for

8: lower equal order moments←{X | 〈0〉 ≤ X≤ I} ;

9: in trans←{(γγγ ′,α) | γγγ ′enables a transition of type α∈
→
A∗s (M)∪

→
A∗sl (M) into γγγ};

10: for (the pair: (γγγ ′,α) ∈ in trans) do // inward transitions

11: for (moment vector: XXX ∈ lower equal order moments) do

12: add rα(γγγ
′) ·Pt(γγγ

′) ·
( I

X
)(

µ(γγγ ′, t)+V l
α−µ(γγγ, t)

)I−X ·MMMX(γγγ
′, t) to eq ;

13: end for

14: end for

15: lower order moments←{X | 〈0〉< X≤ I} ;

16: for (action type: α ∈
→
A∗l (M)) do // actions related to large groups only

17: for (moment vector: XXX ∈ lower order moments) do

18: expr =“”;

19: for (state variable: ξ(H,C) ∈ ξξξ
l) do

20: local rate = rα(H,C) ;

21: expr = expr+(local rate) ·MMMX+e(H,C)
(γγγ, t)

22: end for

23: expr = expr+ rα(µ(γγγ, t)) ·MMMXXX(γγγ, t) ;

24: expr = expr ·
( I

X
)
·V l

α ·Pt(γγγ) ;

25: add expr to eq ;

26: end for

27: end for
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28: for (state variable: ξ(H,C) ∈ ξξξ
l) do

29: add
[
−Pt(γγγ) · I(H,C) · (

d µ(H,C)(γγγ,t)
d t ) ·MMMI−e(H,C)

(γγγ, t)
]

to eq ;

30: end for
31: end function

The following observations regarding Eq.(8.34) are key in our counting of the num-

ber of equations constructed when analysing MMMI(γγγ, t).

First, in Eq.(8.34) let us consider the term marked by (II). In this term, we have

a summation over the moment vectors X : 〈0〉 ≤ X < I. For any aggregated state

γγγ , this shows that MMMI(γγγ, t) depends both on moments MMMX(γγγ, t) (which have orders

strictly less than Ord(I)) and one-step-different conditional moments MMMX+e(H,C)
(γγγ, t)

(which, for maximum values of X have the exact order Ord(I)). By taking into ac-

count the equations of those moments recursively, we conclude that in order to obtain

MMMI(γγγ, t) the equations for all moment vectors I′ with orders Ord(I′) ≤ Ord(I) need

to be added to the system of DAEs. Using Lemma 8.3.5, the number of moment

vectors with any order k is
( k+(n(M,l)−1)

n(M,l)−1

)
. Therefore, the number of equations con-

structed for the moment vectors related to the state γγγ and with orders k = 0, · · · ,Ord(I)
is ∑

Ord(I)
k=0

( k+(n(M,l)−1)
n(M,l)−1

)
.

In our second observation we focus on the term marked by (I), which captures the

dependency between the conditional moments but with respect to different aggregated

states. This term consists of a summation over the moment vectors X: 〈0〉 ≤ X ≤ I
and the associated moments MMMX(γγγ−V s

α, t). These moments are related to the states

(γγγ−V s
α) ∈ Dagg that enable inward transitions into γγγ. The summation shows that

in order to obtain MMMI(γγγ, t), the equations related to the moments vectors X (〈0〉 ≤
X ≤ I) and of the neighbouring states (γγγ−V s

α) need to be added to the system of

DAEs. By considering the equations associated with such X and the states (γγγ−V s
α) ∈

Dagg recursively, it follows that obtaining MMMI(γγγ, t) requires the equations, related to all

moments X: 〈0〉 ≤X≤ I and to all other states in the aggregated state space, to be also

added to the DAEs.

The combination of the observations above show that when analysing for MMMI(γγγ, t),

we need the equations related to all moment vectors 〈0〉≤X≤ I with Ord(X)≤Ord(I)
and for all states in Dagg to be present in the system of DAEs. Assuming that the

aggregated state space Dagg has Nagg states and given that for each γγγ ∈ Dagg , there

exists ∑
Ord(I)
k=0

( k+(n(M,l)−1)
n(M,l)−1

)
equations, the total number of equations in the system
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is2:

∑
γγγ∈Dagg

Ord(I)

∑
k=0

(
k+(n(M, l)−1)

n(M, l)−1

)
= Nagg×

Ord(I)

∑
k=0

(
k+(n(M, l)−1)

n(M, l)−1

)

= Nagg×
Ord(I)

∑
k=0

(
k+(n(M, l)−1)

k

)
(8.35)

As indicated by Eq.(8.35), when analysing a model for MMMI(γγγ, t), the three fac-

tors which determine the number of system of DAEs are the size of Dagg, the order

of I and the number of state variables in ξξξ
l: n(M, l). The equation shows that for

a constant n(M, l) (i.e. a given size for the vector ξξξ
l) the number of equations con-

structed has the complexity O(Ord(I)n(M,l)); for a constant order I, the complexity is

O((n(M, l))Ord(I)); and for varying I and n(M, l) the number of equations is bounded

by x! , x = ((n(M, l)−1)+Ord(I)) , which by the Stirling approximation3 [82], lies

within the complexity class of O(xx). Consequently, the size of the DAEs quickly

grows as we analyse for higher-order moments or larger models; for a given model

with the state vector ξξξ = 〈ξξξs
, ξξξ

l〉, depending on the moment vector I, the size can

be so large that finding the numerical solution exceeds the capabilities of the existing

solvers. In this case, applying the MCM, like the analysis by construction of the com-

plete state space, becomes computationally infeasible. In theory, this underlines an

important limitation with respect to the analysis of the higher-order conditional mo-

ments.

Nevertheless, the inherent limitation stated has little impact when the method is

used in practice. Since the aggregated state space abstracts from the dynamics of the

model’s large groups, it is relatively small (orders of magnitude smaller than the com-

plete state space). With respect to the moments, usually, the analysis is bounded to

finding the conditional moments up to only the third order; since for the conditional

distributions Pt(ξξξ
l | γγγ), the first three conditional moments, i.e. conditional expecta-

tions, conditional variance and conditional skewness capture the majority of informa-

tion about the shape of the distributions and the moments of higher orders practically

add little meaningful information whilst coming at a high cost. Thus, usually the equa-

tions up to the second or the third order are needed (an example of this will be given
2Note that

(a
b

)
=
( a

a−b

)
.

3According to Stirling approximation for any n≥ 1 we have:
√

2πn
n+1

2 e−n ≤ n!≤ e ·n n+1
2 e−n. Con-

sequently, an algorithm with complexity O(n!) lies within the complexity class O(nn).
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in Chap. 10). Finally, the capacity of the existing solvers is also important. Having

been improved over the last decade, modern DAE numerical solvers such as the one

in Matlab’s Suite or the SUNDIALS package are capable of handling a system with

as many as ten thousand equations relatively efficiently. Considering the bound on the

order of the moments, this limit is not exceeded. Consequently, in spite of the theoret-

ical limitation, in practice the MCM is considered as an efficient analysis method for

LSRB models.

8.4 Construction of the Initial Values

The system of equations that the analysis of higher-order moments constructs can be

regarded as an initial value problem. For the analysis with respect to a moment vector

I, the set of initial values which need to be specified are the initial conditional moments

MMMI(γγγ, t0) and their derivatives d MMMI(γγγ,t)
d t

∣∣
t0

, for all γγγ ∈ Dagg. In this section, we describe

a method for the derivation of these initial values.

In Section 6.4, we considered the derivation of the initial values µ(γγγ, t0) and d µ(γγγ,t)
d t

∣∣∣
t0

for the system of DAEs constructed when the analysis of the conditional expectations

is applied. The main input into that derivation is the initial probability distribution that

the modeller specifies over the complete state space. From this distribution, first one

derives an initial marginal probability distribution Pt0(γγγ) over the states in Dagg. This

distribution is then used to build the partition ∆Z = {Dagg
z ,Dagg

nz } over Dagg, where

Dagg
z consists of the states γγγ with Pt0(γγγ) = 0 and Dagg

nz is the set of states γγγ for which

Pt0(γγγ) 6= 0. For each aggregated state γγγ, if γγγ ∈ Dagg
nz , then its initial values µ(γγγ, t0) and

d µ(γγγ,t)
d t

∣∣∣
t0

are straightforwardly derived using the procedure referred to as SIVE (which

relies on deriving the initial conditional distribution Pt0(ξξξ
l | γγγ) and using Bayes’ Law)

from the initial distribution. However, if γγγ ∈ Dagg
z , the SIVE is not applicable. For a

state γγγ of this case, first one calculates its initial distance ∇γγγ from the Dagg
nz states (see

Def. 30). Then, as shown in Prop. 6.4.2, the initial value µ(γγγ, t0) is derived by differ-

entiating the equation capturing the evolution of µ(γγγ, t) up to the order (∇γγγ− 1) and

evaluating the result at t0. Furthermore, as illustrated in Prop. 8.4.2, the initial value
d µ(γγγ,t)

d t

∣∣∣
t0

is obtained by finding the ∇γγγ-th derivative of the same equation and again

evaluating the result at t0.

The initial values related to the higher-order conditional moments can be obtained
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by following an analogous approach. Assuming that the partition ∆Z is constructed,

for each γγγ ∈ Dagg, depending on whether γγγ ∈ Dagg
z or γγγ ∈ Dagg

nz , different paths are

taken. The derivations associated with each of the two cases are explained in the

following. Note that due to the similarity of these derivations to those related to the

initial conditional expectations, we skip the details and only provide the final results.

8.4.1 Initial Moments - States with Non-zero Initial Probability

For any moment vector I and aggregated state γγγ ∈Dagg
z , the initial values MMMI(γγγ, t0) and

d MMMI(γγγ,t)
d t

∣∣
t0

are derived using the following procedure, which we refer to as the simple

extraction of higher-order initial values (SEHV).

1. Using the initial distribution, the initial marginal distribution Pt0(γγγ) is derived

over the aggregated state space.

2. Assuming that the initial conditional expectations µ(γγγ, t0) are known using the

SIVE, we apply Def. 8.4 to obtain the initial value MMMI(γγγ, t0).

3. We substitute MMMI(γγγ, t0) in the instance of Eq.(8.34) which captures the evolution

of MMMI(γγγ, t) and evaluate at t0. Thus, d MMMI(γγγ,t)
d t

∣∣
t0

is obtained.

The structure of Eq.(8.4) shows that for any aggregated state γγγ, the initial derivative
d MMMI(γγγ,t)

d t

∣∣
t0

depends on the initial conditional moments MMMI′(γγγ
′, t0) related to other ag-

gregated states and with orders Ord(I′)≤ Ord(I). Therefore, for all aggregated states

and when constructing the initial values, we have to start from the lower-order mo-

ments and progressively move toward the higher-order ones.

8.4.2 Initial Moments - States with Zero Initial Probability

For the states in Dagg
z the following propositions enable us to derive their initial condi-

tional moments and the associated derivatives.

Proposition 8.4.1. For any aggregated state γγγ ∈ Dagg
z with ∇γγγ as its initial distance,

and any moment vector I, the (∇γγγ−1)-th derivative of its associated conditional mo-

ment equation is sufficient for calculating MMMI(γγγ, t0). Moreover, by removing the terms
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that are zero in the differentiated equation, we derive:

MMMI(γγγ, t0) ·
d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
≈

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α ,∇γγγ−V s

α
=∇γγγ−1

rα(γγγ−V s
α) ·

d(∇γγγ−1) (Pt(γγγ−V s
α))

d t(∇γγγ−1)

∣∣∣
t0
·

(
I

∑
X=〈0〉

(
I
X

)(
µ(γγγ−V s

α, t0)+V l
α−µ(γγγ, t0)

)I−X
· MMMX(γγγ−V s

α, t0)

)

(8.36)

where MMMI(γγγ, t0) can be obtained by reordering of the terms.

The structure of Eq.(8.36) is important. It shows that for any γγγ ∈Dagg
z and moment

vector I, the initial value MMMI(γγγ, t0) depends on the higher-order initial conditional mo-

ments MMMI′(γγγ
′, t0) which are related to the states γγγ ′ with initial distances ∇γγγ ′ strictly less

than ∇γγγ and have orders Ord(I′) ≤ Ord(I). The observation enables us to propose a

recursive algorithm which iterates over all states in the aggregated states and all mo-

ments less than or equal to I, and outputs the related initial values. The pseudo code of

this algorithm is shown in Alg. 5.

As part of the set of initial values and in addition to the conditional moments

MMMI(γγγ, t0), the derivatives of these initial moments with respect to time, i.e. d MMMI(γγγ,t)
d t

∣∣
t0

,

need also to be specified. These are derived using the following proposition.

Proposition 8.4.2. For any aggregated state γγγ ∈ Dagg
z with initial distance ∇γγγ , the

∇γγγ - th derivative of the equation that captures the evolution of MMMI(γγγ, t) is sufficient

to calculate d MMMI(γγγ,t)
d t

∣∣
t0

. Moreover, by removing the terms that reduce to zero in the

differentiated equation, we obtain Eq.(8.37) where
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

can be obtained by re-

ordering of the terms.
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(∇γγγ +1) · d
∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
· d MMMI(γγγ, t)

d t

∣∣∣
t0
+

d(∇γγγ+1) (Pt(γγγ))

d t(∇γγγ+1)

∣∣∣
t0
·MMMI(γγγ, t0) =

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·
d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
·MMMIII(γγγ, t0) (I)

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α ,∇(γγγ−V s

α)≤∇γγγ

rα(γγγ−V s
α) ·

d∇γγγ (Pt(γγγ−V s
α))

d t∇γγγ

∣∣∣
t0
·

(
I

∑
X=〈0〉

(
I
X

)(
µ(γγγ−V s

α, t0)+V l
α−µ(γγγ, t0)

)I−X
·MMMX(γγγ−V s

α, t0)

)
(II)

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α ,∇(γγγ−V s

α)<∇γγγ

rα(γγγ−V s
α) ·∇γγγ ·

d(∇γγγ−1) (Pt(γγγ−V s
α))

d t(∇γγγ−1)

∣∣∣
t0
·

(
I

∑
X=〈0〉

(
I
X

)(
µ(γγγ−V s

α, t0)+V l
α−µ(γγγ, t0)

)I−X
· d MMMX(γγγ−V s

α, t)
d t

∣∣∣
t0

)
(III)

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α ,∇(γγγ−V s

α)<∇γγγ

rα(γγγ−V s
α) ·∇γγγ ·

d(∇γγγ−1) (Pt(γγγ−V s
α))

d t(∇γγγ−1)

∣∣∣
t0
·

I

∑
X=〈0〉

(
I
X

)
·MMMX(γγγ−V s

α, t0)

 ∑
ξ(H,C)∈ξξξ

l

( I(H,C)−X(H,C) ) ·
(

d µ(H,C)(γγγ−V s
α, t)

d t

∣∣∣
t0
−

d µ(H,C)(γγγ, t)
d t

∣∣∣
t0

)
·

(
µ(γγγ−V s

α, t0)+V l
α−µ(γγγ, t0)

)III−XXX−eee(H,C)

 (IV)

+ ∑
α∈
→
A∗l(M)

(
d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0

)
·

X<I

∑
X=〈0〉

(
I
X

)(
V l

α

)I−X

rα( µ(γγγ, t0) ) ·MMMX(γγγ, t0)+ ∑
ξξξ(H,C)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,C)

∣∣∣
t0
·MMMX+e(H,C)

(γγγ, t0)

 (V)

−
(d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0

)
· ∑

ξ(H,C)∈ξξξ
l

I(H,C) ·
d µ(H,C)(γγγ, t)

d t

∣∣∣
t0
·MMMI−e(H,C)

(γγγ, t0) (VI) (8.37)
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The structure of the Eq.8.37 shows that in order to obtain d MMMI(γγγ,t)
d t

∣∣
t0

that is related

to the aggregated state γγγ and moment vector I, the following sets of initial values need

to have been calculated. The first, which corresponds to the same aggregated states

consists of the initial moment MMMI(γγγ, t0) (see the line marked by (I)); the initial moments

MMMI′(γγγ, t0) for moment vectors I′ with Ord(I′) < Ord(I) (the lines marked by (V) and

(VI)); and the initial conditional expectation µ(γγγ, t0)) (the line marked by (V)). The

second set corresponds to the initial values related to the aggregated states (γγγ−V s
α)

which enable transitions into γγγ. This consists of the initial moments MMMI′′(γγγ−V s
α, t0):

Ord(I′′)≤Ord(I) (line marked by (II)); the initial derivatives d MMMX(γγγ−V s
α,t)

d t

∣∣
t0

such that

X ≤ I and ∇γγγ−V s
α
< ∇γγγ (states with strictly less distance) (lines marked by (III) and

(IV)); and finally, the initial conditional expectations µ(γγγ−V s
α, t0) (the same lines).

Following this structure, we can propose a recursive algorithm for finding MMMI(γγγ, t0).

The pseudo code of this algorithm is shown in Alg. 6.

8.4.3 Approximating the Initial Values

In Sections 6.4 and 8.4, we considered the problem of finding the initial values µ(γγγ, t0)

and d µ(γγγ,t)
d t

∣∣∣
t0

, and MMMI(γγγ, t0) and d MMMI(γγγ,t)
d t

∣∣
t0

, for the aggregated states γγγ ∈ Dagg
z . As

described, the rigorous derivation of these initial values requires the construction of a

system of equations consisting of the instances of Eq.(6.52) and (6.57) for conditional

expectations, and Eq.(8.36) and (8.37) for higher-order moments.

The equations in this system capture the complex dependencies between the initial

values. To deal with the inherent complexity and in order to reduce the human error,

the correct construction of the equations can only be done with a robust software tool.

For this thesis, some exploratory implementation was done but time constraints did not

allow this to be developed into a fully-fledged tool. Therefore, we propose and utilize

an alternative approach based on stochastic simulation which has a reduced complexity

and can still approximate the required initial values with high accuracy.

The complex calculation of the initial values for Dagg
z states can be circumvented by

exploiting one important feature of the evolution of the model’s complete probability

distribution. Recall that given an initial complete distribution Pt0(ξξξ), the conditional

distributions Pt0(ξξξ
l | γγγ) are undefined for the sub-chains Yγγγ,γγγ ∈ Dagg

z . Consequently,

at t = t0 their associated initial values cannot be computed through the initial distri-

bution. Nevertheless, one observes that as time elapses, the initial probability masses
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associated with Yγγγ ′,γγγ
′ ∈Dagg

nz start to diffuse across the state space and the model grad-

ually experiences evolving probability distributions where all sub-chains have non-zero

probability masses. This is also observed with respect to the aggregated state space;

at time t = t0, for γγγ ∈ Dagg
z we have: Pt0(γγγ) = 0. However, as time elapses, due to the

probability fluxes out of Dagg
nz states, it will gradually emerge that ∀ γγγ∈Dagg, Pt(γγγ) 6= 0.

In the emerging distributions, the conditional probability distributions Pt(ξξξ
l | γγγ) are

definable and the initial values above can be calculated by applying Bayes’ Law.

The spread of the probability within the state space forms the basis of our approx-

imate method. The main idea is that instead of finding the initial values at exactly t0
and having to deal with Dagg

z states, we obtain the values at a point of time tinit shortly

after t0 using the distribution Ptinit (S), in which no aggregated state (sub-chain) has zero

probability mass. Assuming that t0 and tinit are close, we essentially replace the analy-

sis that starts from t0 with one that focuses on time tinit onwards. Given this intuition,

the steps of this approach are the following:

1. The modeller specifies a point of time tinit close to t0 such that ∀Yγγγ : Ptinit (γγγ) 6= 0.

The derivation of tinit is discussed below.

2. Using the method of stochastic simulation, an approximate Papx
tinit (S) to the prob-

ability distribution Ptinit (S),S ∈D is derived. This requires running a sufficiently

large number of stochastic simulations from t0 until tinit in such a way that the

requirements on the defined confidence intervals are met.

3. Using Papx
tinit (S), the marginal distribution Papx

tinit (γγγ) and the conditional probability

distributions Papx
tinit (ξξξ

l | γγγ) are derived.

4. For each γγγ ∈ Dagg, we substitute Papx
tinit (γγγ), P

apx
tinit (ξξξ

l | γγγ) in Def. 28 (definition

of conditional expectations) and the approximate initial conditional expectation

µapx(tinit ,γγγ) is derived. Furthermore, the initial higher-order moments MMMX(γγγ, tinit)

for the moment vectors X: Ord(X) ≤ Ord(I) are derived by Def. 35 and using

Papx
tinit (γγγ), P

apx
tinit (ξξξ

l | γγγ), and µapx(tinit ,γγγ).

5. The initial value µapx(tinit ,γγγ) is substituted in the instance of Eq.(6.36) which

captures the evolution of µ(γγγ, t) and by simplification, d µ(γγγ,t)
d t

∣∣∣
tinit

is derived (this

step need not be manually done by the modeller as the existing solvers can au-

tomatically find the derivatives by taking into account the algebraic constraints

present in the DAEs.)
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6. For the moment vectors X, the initial approximate moments MMMX(γγγ, tinit) are sub-

stituted in the instances of Eq.(8.34) which capture the evolutions of MMMX(γγγ, t)

and the initial derivatives d MMMX(γγγ,t)
d t

∣∣∣
tinit

are derived (similar to the previous step,

this step is also automated by the solvers). This is done by starting from lower-

order vectors X and then gradually increasing the order.

Using the above method, the values µapx(tinit ,γγγ),
d µ(γγγ,t)

d t

∣∣∣
tinit

, MMMX(γγγ, tinit) and d MMMX(γγγ,t)
d t

∣∣∣
tinit

are derived and specified as the initial values for DAEs. The solution shows the evo-

lution of the conditional moments from t = tinit onwards until the time of interest.

Hereafter, the method is referred to as extraction of approximate initial values (AIV).

A key input to running AIV is the parameter tinit . The appropriate value of this

can be approximated by transient analysis of the aggregated state space. The steps for

finding tinit are the following.

1. Given the distribution Pt0(S), S ∈ D, the initial marginal distribution Pt0(γγγ), γγγ ∈
Dagg is derived.

2. The modeller specifies a parameter δt which represents a small time step close

to zero. Using δt , the time points t0 + δt , t0 +2δt , · · · , t0 + iδt , · · · are generated.

These mark the candidate values for tinit .

3. The modeller progressively considers ti = t0+ i ·δt for increasing values of i. For

each ti, the distribution Pti(γγγ) is found by a transient analysis of the aggregated

state space. The solution shows the probability of being in each of the aggregated

states (the probability of being in each sub-chain) at ti. A time point ti is chosen

as tinit for AIV if the condition ∀ γγγ ∈ Dagg : Pti(γγγ) 6= 0 is satisfied. The search

terminates when the the first suitable ti is found.

Having described the steps of the AVI, let us focus on its efficiency. In the first

phase, the appropriate tinit is found. As the size of the aggregated state is relatively

small and the time points of interest are usually close to zero, the transient analyses

performed are done efficiently with negligible computational cost. Furthermore, in the

second phase and when the simulations are executed to find Papx
tinit (S), the simulations’

end time is again close to t0. Here, although a large number of trajectories are pro-

duced, each one covers a short time span (the first steps of the model’s evolution) and

they collectively introduce very little computational cost. Furthermore, the simulation
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runs are independent and can be executed in parallel. From this analysis, we conclude

that the AIV offers a high degree of efficiency and is useful in practice. An example of

this method is presented in the Chapter 10.
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Algorithm 5 Given an aggregated state γγγ ∈ Dagg and a moment vector I > 〈0〉, return

MMMI(γγγ, t0)
1: function INIT COND MOMENT( aggregated state γγγ , moment vector I )

2: Pt0(D) // initial distribution over the complete state space ;

3: Solagg // solution of the analysis of Dagg by the ∇max-th order;

4: if (Ord(I) = 1) then // Base case

5: return 0;

6: end if

7: if (γγγ ∈ Dagg
nz ) then // Base case

8: MMMI(γγγ, t0)← derive MMMI(γγγ, t0) using Pt0(D) ;

9: return MMMI(γγγ, t0) ;

10: end if

11: if (γγγ ∈ Dagg
z ) then

12: origin states← set of γγγ ′ ∈Dagg that enable transition γγγ ′→ γγγ, ∇γγγ ′ =∇γγγ−1;

13: moment vectors←{ I′ | 〈0〉 ≤ I′ ≤ I } ;

14: origin cond moments←{}; // all moments required for MMMI(γγγ, t0)

15: for (aggregated state γγγ ′ ∈ origin states) do

16: relevant moments tmp←{}; // moments related to γγγ ′

17: for (moment vector III′′′ ∈ moment vectors ) do

18: momenttmp← INIT COND MOMENT(γγγ ′, III′′′);

19: append momenttmp to the list relevant momentstmp;

20: end for

21: append relevant moments tmp to origin cond moments;

22: end for

23: // by this point, the moments MMMI(γγγ, t0) depends on are ready

24: MMMI(γγγ, t0)← apply Eq.(8.36) using origin cond moments and Solagg ;

25: return MMMIII(γγγ, t0) ;

26: end if

27: end function
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Algorithm 6 Given an aggregated state γγγ ∈ Dagg and a moment vector I > 〈0〉, return
d MMMI(γγγ,t)

d t

∣∣
t0

1: function INIT COND MOMENT DER( aggregated state γγγ , moment vector I )

2: Pt0(D) // initial distribution over the complete state space ;

3: Solagg // solution of the analysis of Dagg by the (∇max+1)-th order;

4: if (Ord(I) = 1) then // Base case

5: return 0;

6: end if

7: if (γγγ ∈ Dagg
nz ) then // Base case

8: d MMMI(γγγ,t)
d t

∣∣
t0
← derive d MMMI(γγγ,t)

d t

∣∣
t0

using Pt0(D) ;

9: return d MMMI(γγγ,t)
d t

∣∣
t0

;

10: end if

11: if (γγγ ∈ Dagg
z ) then

12: moment vectors←{ X | 〈0〉 ≤ X≤ I } ;

13: all moment vectors←{ X | 1≤ Ord(X)≤ (Ord(I)) } ;

14: cond expecs←{} ; // required initial conditional expectations

15: cond moments←{} ; // required initial higher-order conditional moments

16: init derivatives←{} ; // required initial derivatives

17: // calculating initial values related to γγγ

18: µ(γγγ, t0)← INIT COND EXP(γγγ);

19: append µ(γγγ, t0) to cond expecs;

20: for (moment vector X ∈ all moment vectors) do

21: MMMX(γγγ, t0)← INIT COND MOMENT(γγγ,X);

22: append MMMX(γγγ, t0) to cond moments;

23: end for

24: // calculating initial values related to states which enable transitions into γγγ

25: origin states← set of γγγ ′ ∈ Dagg that enable transition γγγ ′→ γγγ
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26: for (aggregated state γγγ ′ ∈ origin states) do

27: µ(γγγ ′, t0)← INIT COND EXP(γγγ ′);

28: append µ(γγγ ′, t0) to cond expecs;

29: for (moment vector X ∈ moment vectors) do

30: MMMX(γγγ
′, t0)← INIT COND MOMENT(γγγ ′,X);

31: append MMMX(γγγ
′, t0) to cond moments;

32: end for

33: if (∇γγγ ′ < ∇γγγ) then // if γγγ ′ has strictly less distance

34: for (moment vector X ∈ moment vectors) do

35: d MMMX(γγγ
′,t)

d t

∣∣
t0
← INIT COND MOMENT DER(γγγ ′,X);

36: append d MMMX(γγγ
′,t)

d t

∣∣
t0

to init derivatives;

37: end for

38: end if

39: end for

// all required initial values are stored in the variables cond expecs,
// cond moments and init derivatives

40: d MMMI(γγγ,t)
d t

∣∣
t0
← apply Eq.(8.37) using variables Solagg, cond expecs,

41: cond moments and init derivatives

42: return d MMMIII(γγγ,t)
d t

∣∣
t0

;

43: end if

44: end function





Chapter 9

Analysis of Client-Server Model Using

Higher-Order Conditional Moments

9.1 Introduction

In this chapter, we show an example of the method of higher-order conditional mo-

ments where it is applied to a version of our client-server model.

Our model was described in Sec. 7.1. It is initialised with the parameters shown

in Table 7.1. The numerical vector used for the construction of the state space is

ξξξ = 〈ξξξs
, ξξξ

l〉 = 〈Si,Sl,Sb,Ct ,Cr〉 where ξξξ
s
= 〈Si,Sl,Sb〉 and ξξξ

l
= 〈Ct ,Cr〉. We assume

that the model starts its evolution from the initial state shown in Eq.7.1.

In Chapter 7, the following analyses were applied to this model. First, we applied

our aggregation method. The result is the aggregated state space Dagg
CS which captures

the evolution of the servers only. By analysing Dagg
CS , we get the transient evolution

of the marginal probability distribution Pt(βββ), βββ ∈ Dagg
CS where βββ represents any of the

configurations that the servers experience.

Second, we applied the analysis of the conditional expectations. The group Clients

is regarded as a large group and the evolution of the associated state vector 〈Ct ,Cr〉
is studied via the conditional distributions Pt(〈Ct ,Cr〉 | βββ), βββ ∈ Dagg. In particular,

given the importance of the behaviour of Cr we are interested in projections of these

distributions on this variable, i.e. Pt(Cr | βββ), βββ ∈ Dagg. The analysis of conditional

expectations gives us the conditional expectations µ(βββ, t) and µ(Cr)(βββ, t).

199



200Chapter 9. Analysis of Client-Server Model Using Higher-Order Conditional Moments

Moreover, we observed that the servers’ breakdowns and fixes have significant im-

pact on the evolution of the clients. The servers exhibit three modes of operation,

corresponding to Sb = 0, Sb = 1 and Sb = 2. Using the method of conditional ex-

pectation, we could obtain µ(Sb = 0, t), µ(Sb = 1, t) and µ(Sb = 2, t), which capture

the mean behaviour of the clients in each of these operational modes and allow us to

quantitatively measure the impact of the dynamics of the servers on the clients.

9.2 Description of Moments

We extend our analysis by including conditional moments of the second order, that

is, MMMI2(βββ), βββ ∈ Dagg. The vector ξξξ
l
= 〈Ct ,Cr〉 has two state variables. Thus, the

moment vectors of an order K are obtained by solving the equation I1 + I2 = K with

the restriction that I1, I2 are positive integers. The solutions for varying orders of K

are shown in Fig. 9.1. Focusing on the order two, we see that there are three moment

vectors that need to be considered: III = 〈2,0〉, III = 〈1,1〉 and III = 〈0,2〉.

Using Def. 35, for any aggregated state βββ the conditional moments MMM〈2,0〉(βββ, t) and

MMM〈0,2〉(βββ, t) are defined as:

MMM〈2,0〉(βββ) = Et

[(
〈Ct ,Cr〉−µ(βββ, t)

)〈2,0〉
| βββ
]
= Et

[(
Ct−µ(Ct)(βββ, t)

)2
| βββ
]

MMM〈0,2〉(βββ) = Et

[(
〈Ct ,Cr〉−µ(βββ, t)

)〈0,2〉
| βββ
]
= Et

[(
Cr−µ(Cr)(βββ, t)

)2
| βββ
]
(9.1)

Respectively, these correspond to the conditional variances1 of the variables Ct and Cr.

For convenience, they will be denoted by VARt [Ct |βββ ] and VARt [Cr |βββ ]. In addition,

the conditional moment associated with the moment vector 〈1,1〉 is defined as:

MMM〈1,1〉(βββ) = Et

[(
〈Ct ,Cr〉−µ(βββ, t)

)〈1,1〉
| βββ
]
=

Et

[(
Ct−µ(Ct)(βββ, t)

)(
Cr−µ(Cr)(βββ, t)

)
| βββ
]

(9.2)

which captures the conditional covariance of the variables Ct and Cr.

Since there are six aggregated states in Dagg
CS and three vectors of the second order

for each aggregated state, in total we have 18 second-order moments to study. These

1In general, for any random variable X : VARt [X |βββ ] = Et

[(
X−Et [X | βββ ]

)2 | βββ
]
.
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moments of the

second order

Figure 9.1: The moments related to the client-servers system where ξξξ
l
= 〈Ct ,Cr〉. In

this example, we focus on the second-order moments which capture the variances and

covariance of the state variables Ct and Cr.

MMM〈2,0〉(βββ, t) MMM〈1,1〉(βββ, t) MMM〈0,2〉(βββ, t)

〈2,0,0〉 MMM〈2,0〉(〈2,0,0〉, t) MMM〈1,1〉(〈2,0,0〉, t) MMM〈0,2〉(〈2,0,0〉, t)
〈1,1,0〉 MMM〈2,0〉(〈1,1,0〉, t) MMM〈1,1〉(〈1,1,0〉, t) MMM〈0,2〉(〈1,1,0〉, t)
〈0,2,0〉 MMM〈2,0〉(〈0,2,0〉, t) MMM〈1,1〉(〈0,2,0〉, t) MMM〈0,2〉(〈0,2,0〉, t)
〈1,0,1〉 MMM〈2,0〉(〈1,0,1〉, t) MMM〈1,1〉(〈1,0,1〉, t) MMM〈0,2〉(〈1,0,1〉, t)
〈0,1,1〉 MMM〈2,0〉(〈0,1,1〉, t) MMM〈1,1〉(〈0,1,1〉, t) MMM〈0,2〉(〈0,1,1〉, t)
〈0,0,2〉 MMM〈2,0〉(〈0,0,2〉, t) MMM〈1,1〉(〈0,0,2〉, t) MMM〈0,2〉(〈0,0,2〉, t)

Table 9.1: The second-order moments related to the state vector 〈Ct ,Cr〉 and aggre-

gated states βββ ∈ Dagg
CS .

are shown in Table. 9.1. Having defined the moments, we now describe how their

evolution is derived by the method of higher-order moments.

9.3 Second-Order Moment Equations

The evolution of the second-order moments is studied by setting up a system of DAEs,

where for each moment one instance of Eq.(8.34) is constructed. This gives rise to 18

equations. In order to build a closed system of equations, we need to add the equations

related to the conditional expectations µ(βββ, t) and the marginal probability distributions

Pt(βββ) to the system of DAEs. This will add a further 18 equations. Therefore, the
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Figure 9.2: The aggregated state space of the client-server system with two servers.

analysis of the second-order moments gives rise to 36 equations.

We provide two examples from the equations related to the second-order moments.

The first is related to state 〈1,1,0〉 and moment VARt [Cr | 〈1,1,0〉 ], and the second

corresponds to state 〈1,0,1〉 and moment MMM〈1,1〉(〈1,0,1〉, t). To better understand the

structure of these equations, we recommend considering the structure of Eq.(8.34)

and the model’s aggregated state space (shown in Fig.9.2). In particular focus on the

transitions in and out of states 〈1,1,0〉 and 〈1,0,1〉. The equation that captures the

evolution of VARt [Cr | 〈1,1,0〉 ] is:

MMM〈0,2〉(〈1,1,0〉, t) ·
d Pt(〈1,1,0〉)

d t
+

d MMM〈0,2〉(〈1,1,0〉, t)
d t

·Pt(〈1,1,0〉) ≈

−Pt(〈1,1,0〉) ·MMM〈0,2〉(〈1,1,0〉, t) ·
[
rlog(〈1,1,0〉)+ rreq(〈1,1,0〉)+ rbrk(〈1,1,0〉)

]
+ rreq(〈2,0,0〉) ·Pt(〈2,0,0〉) ·

[
(〈0,2〉
〈0,2〉

)(
µ(〈2,0,0〉, t)+V l

req−µ(〈1,1,0〉, t)
)〈0,0〉

·MMM〈0,2〉(〈2,0,0〉, t)

+

(〈0,2〉
〈0,1〉

)(
µ(〈2,0,0〉, t)+V l

req−µ(〈1,1,0〉, t)
)〈0,1〉

·MMM〈0,1〉(〈2,0,0〉, t)

+

(〈0,2〉
〈0,0〉

)(
µ(〈2,0,0〉, t)+V l

req−µ(〈1,1,0〉, t)
)〈0,2〉

·MMM〈0,0〉(〈2,0,0〉, t)
]
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+ rlog(〈0,2,0〉) ·Pt(〈0,2,0〉) ·
[

(〈0,2〉
〈0,2〉

)(
µ(〈0,2,0〉, t)−µ(〈1,1,0〉, t)

)〈0,0〉
·MMM〈0,2〉(〈0,2,0〉, t)

+

(〈0,2〉
〈0,1〉

)
·
(

µ(〈0,2,0〉, t)−µ(〈1,1,0〉, t)
)〈0,1〉

·MMM〈0,1〉(〈0,2,0〉, t)

+

(〈0,2〉
〈0,0〉

)(
µ(〈0,2,0〉, t)−µ(〈1,1,0〉, t)

)〈0,2〉
·MMM〈0,0〉(〈0,2,0〉, t)

]

+ r f ix(〈0,1,1〉) ·Pt(〈0,1,1〉) ·
[

(〈0,2〉
〈0,2〉

)
·
(

µ(〈0,1,1〉, t)−µ(〈1,1,0〉, t)
)〈0,0〉

·MMM〈0,2〉(〈0,1,1〉, t)

+

(〈0,2〉
〈0,1〉

)(
µ(〈0,1,1〉, t)−µ(〈1,1,0〉, t)

)〈0,1〉
·MMM〈0,1〉(〈0,1,1〉, t)

+

(〈0,2〉
〈0,0〉

)(
µ(〈0,1,1〉, t)−µ(〈1,1,0〉, t)

)〈0,2〉
·MMM〈0,0〉(〈0,1,1〉, t)

]

+Pt(〈1,1,0〉) ·
[

(〈0,2〉
〈0,1〉

)
·
(

V l
think

)〈0,1〉
·(

rt ·µ(Ct)(〈1,1,0〉, t) ·MMM〈0,1〉(〈1,1,0〉, t)+ rt ·MMM〈〈1,1〉〉(〈1,1,0〉, t)
)

+

(〈0,2〉
〈0,0〉

)
·
(

V l
think

)〈0,2〉
·

(
rt ·µ(Ct)(〈1,1,0〉, t) ·MMM〈0,0〉(〈1,1,0〉, t)+ rt ·MMM〈〈1,0〉〉(〈1,1,0〉, t)

) ]

−Pt(〈1,1,0〉) ·
(

2 ·
d µ(Cr)(〈1,1,0〉, t)

d t
·MMM〈0,1〉(〈1,1,0〉, t)

)
(9.3)

The solution enables us to measure the deviation of Cr around the conditional expec-

tation Et [Cr | 〈1,1,0〉 ], an important measure related to the conditional distribution

Pt(〈Ct ,Cr〉 | 〈1,1,0〉) when projected on Cr.

As the second example, we present the equation constructed for MMM〈1,1〉(〈1,0,1〉, t):

MMM〈1,1〉(〈1,0,1〉, t) ·
d Pt(〈1,0,1〉)

d t
+

d MMM〈1,1〉(〈1,0,1〉, t)
d t

·Pt(〈1,0,1〉) ≈
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− Pt(〈1,0,1〉) ·MMM〈1,1〉(〈1,0,1〉, t) ·
[
r f ix(〈1,0,1〉)+ rreq(〈1,0,1〉)+ rbrk(〈1,0,1〉)

]

+ rbrk(〈2,0,0〉) ·Pt(〈2,0,0〉) ·
[

(〈1,1〉
〈1,1〉

)(
µ(〈2,0,0〉, t)−µ(〈1,0,1〉, t)

)〈0,0〉
·MMM〈1,1〉(〈2,0,0〉, t)

+

(〈1,1〉
〈1,0〉

)
·
(

µ(〈2,0,0〉, t)−µ(〈1,0,1〉, t)
)〈0,1〉

·MMM〈1,0〉(〈2,0,0〉, t)

+

(〈1,1〉
〈0,1〉

)
·
(

µ(〈2,0,0〉, t)−µ(〈1,0,1〉, t)
)〈1,0〉

·MMM〈0,1〉(〈2,0,0〉, t)
)

+

(〈1,1〉
〈0,0〉

)(
µ(〈2,0,0〉, t)−µ(〈1,0,1〉, t)

)〈1,1〉
·MMM〈0,0〉(〈2,0,0〉, t)

]

+ rlog(〈0,1,1〉) ·Pt(〈0,1,1〉) ·
[

(〈1,1〉
〈1,1〉

)
·
(

µ(〈0,1,1〉, t)−µ(〈1,0,1〉, t)
)〈0,0〉

·MMM〈1,1〉(〈0,1,1〉, t)

+

(〈1,1〉
〈1,0〉

)
·
(

µ(〈0,1,1〉, t)−µ(〈1,0,1〉, t)
)〈0,1〉

·MMM〈1,0〉(〈0,1,1〉, t)

+

(〈1,1〉
〈0,1〉

)
·
(

µ(〈0,1,1〉, t)−µ(〈1,0,1〉, t)
)〈1,0〉

·MMM〈0,1〉(〈0,1,1〉, t)

+

(〈1.1〉
〈0,0〉

)
·
(

µ(〈0,1,1〉, t)−µ(〈1,0,1〉, t)
)〈1,1〉

·MMM〈0,0〉(〈0,1,1〉, t)
]

+ r f ix(〈0,0,2〉) ·Pt(〈0,0,2〉) ·
[

(〈1,1〉
〈1,1〉

)
·
(

µ(〈0,0,2〉, t)−µ(〈1,0,1〉, t)
)〈0,0〉

·MMM〈〈1,1〉〉(〈0,0,2〉, t)

+

(〈1,1〉
〈0,1〉

)
·
(

µ(〈0,0,2〉, t)−µ(〈1,0,1〉, t)
)〈1,0〉

·MMM〈〈1,0〉〉(〈0,0,2〉, t)

+

(〈1,1〉
〈1,0〉

)
·
(

µ(〈0,0,2〉, t)−µ(〈1,0,1〉, t)
)〈0,1〉

·MMM〈〈1,0〉〉(〈0,0,2〉, t)

+

(〈1,1〉
〈0,0〉

)
·
(

µ(〈0,0,2〉, t)−µ(〈1,0,1〉, t)
)〈1,1〉

·MMM〈0,0〉(〈0,0,2〉, t)
]

+Pt(〈1,0,1〉) ·
[
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(〈1,1〉
〈0,0〉

)
·
(

V l
think

)〈1,1〉
·(

rt ·µ(Ct)(〈1,0,1〉, t) ·MMM〈0,0〉(〈1,0,1〉, t)+ rt ·MMM〈〈1,0〉〉(〈1,0,1〉, t)
)

+

(〈1,1〉
〈0,1〉

)
·
(

V l
think

)〈1,0〉
·(

rt ·µ(Ct)(〈1,0,1〉, t) ·MMM〈0,1〉(〈1,0,1〉, t)+ rt ·MMM〈〈1,1〉〉(〈1,0,1〉, t)
)

+

(〈1,1〉
〈1,0〉

)(
V l

think

)〈0,1〉
(

rt ·µ(Ct)(〈1,0,1〉, t) ·MMM〈1,0〉(〈1,0,1〉, t)+ rt ·MMM〈〈2,0〉〉(〈1,0,1〉, t)
) ]

−Pt(〈1,0,1〉) ·
[

1 ·
d µ(Ct)(〈1,0,1〉, t)

d t
·MMM〈〈0,1〉〉(〈1,0,1〉, t)

+1 ·
d µ(Cr)(〈1,0,1〉, t)

d t
·MMM〈〈1,0〉〉(〈1,0,1〉, t)

]
(9.4)

The solution of this equation shows the transient evolution of the covariance of Ct and

Cr. We expect these variables to be always negatively correlated, as the increase in one

implies a decrease in the other and vice versa (this is shown in Appendix E.1).

9.4 Initial Values

In order to solve the system of DAEs, a set of initial values needs to be specified by the

modeller. This set consists of an initial probability distribution Pt0(βββ) over Dagg
CS , the

initial conditional expectations µ(Ct)(βββ, t0) and µ(Cr)(βββ, t0) for βββ ∈ Dagg
CS and the initial

second-order moments MMMIII(βββ, t0), for βββ ∈Dagg
CS and III ∈ {〈2,0〉,〈1,1〉,〈0,2〉}. One way

to find these values is the rigorous method presented in Sec. 8.4. However, due to its

complexity, we do not use this approach and instead, apply the alternative method of

Sec. 8.4.3, which uses stochastic simulations to derive the initial values approximately.

The steps performed are the following:

1. We choose tinit = 0.1 as a point of time which is close to t = 0 and satisfies the

condition ∀ βββ∈Dagg
CS : Ptinit (βββ) 6= 0. By the analysis of the aggregated state space

for t = 0.1, we derive the probability distribution P0.1(βββ), which is shown in

Fig. 9.3.
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Figure 9.3: The approximate initial distribution over Dagg
CS , P0.1(βββ), derived by the anal-

ysis of the C-K equations underlying the aggregated state space. The model starts its

evolution from the state 〈2,0,0〉.

2. Using stochastic simulation, we obtain the approximate conditional distribution

P0.1(〈Ct ,Cr〉 | βββ) for each of the aggregated states in Dagg
CS . Here, we ran 10000

simulation runs, which, based on prior knowledge about the model, is sufficient

to achieve the marginal error of less than 1 percent with respect to the exact

distribution.

3. By applying Def. 28 and using the conditional distributions above, the initial

values µ(Cr)(βββ,0.1), βββ ∈ Dagg
CS are derived. These are shown in Table 9.2, the

second and third columns.

4. Finally, the initial conditional expectations and the probability distribution over

the aggregated states is substituted into instances of Eq.(34) to derive MMMIII(βββ,0.1)

for III ∈ {〈2,0〉,〈1,1〉,〈0,2〉} and βββ∈Dagg
CS . The result of this calculation is shown

in Table 9.2, the fourth to the last columns.

By calculating the initial values as above, we are essentially replacing the analysis

which starts from t = 0 by one starting from tinit = 0.1.

9.5 Solution

As stated, the complete system of DAEs constructed for the second-order moments

consists of 36 equations. The structure of these equations is complex, as illustrated
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state βββ µCt (βββ,0.1) µCr(βββ,0.1) MMM〈2,0〉(βββ,0.1) MMM〈1,1〉(βββ,0.1) MMM〈0,2〉(βββ,0.1)

〈2,0,0〉 39.89 10.1 23.41 -23.41 23.41

〈1,1,0〉 140.43 9.56 22.43 -22.43 22.43

〈0,2,0〉 140.98 9.01 21.57 -21.57 21.57

〈1,0,1〉 136.20 13.79 26.51 -26.51 26.51

〈0,1,1〉 136.84 13.15 26.18 -26.18 26.18

〈0,0,2〉 132.47 17.52 29.31 -29.31 29.31

Table 9.2: The conditional expectations and second-order moments calculated approx-

imately using the stochastic simulations. These are used as the initial values for the

DAEs that we construct when analysing the second-order moments.

by the representative equations shown in Eq.(9.3) and Eq.(9.4). For almost all models

these equations are too complex to be built by hand; this suggests that it is imperative

to have software support for the derivation of these equations. The presented algorithm

(Alg.4 on Page 184) shows that the derivations are amenable to development in soft-

ware, but time constraints within our project precluded the tool’s development and the

construction and solution of the MCM equations remains a task for future work.

Nevertheless, in spite of not having the MCM software tool, we are still able to

study the evolution of our second-order moments. Here, instead of using the MCM

equations, we obtain these moments via the the computationally expensive analysis of

the complete state space performed using PRISM. We chose to study the transient evo-

lution of the moments MMMIII(βββ, t) shown in Table 9.1 for the time period of t = [tinit ,20].

For this purpose, first the model’s complete state space is constructed. Then, the evolu-

tion of the associated complete probability distribution is derived using uniformisation.

Finally, Eq.(9.1), Eq.(9.2) are used to derive the transient evolution of our second-order

moments. In spite of being expensive, this experiment allows us to observe the impor-

tance of the derivation of the MCM equations, especially in terms of the very useful

information they capture.

Among the states βββ∈Dagg
CS and moment vectors III ∈ {〈2,0〉,〈1,1〉,〈0,2〉}, we focus

on the states 〈1,1,0〉 and 〈1,0,1〉 and moment vectors 〈1,1〉 and 〈0,2〉. In Fig 9.4,

the transient evolution of the associated representative moments MMM〈1,1〉(〈1,1,0〉, t),
MMM〈1,1〉(〈1,0,1〉, t), VARt [Cr | 〈1,1,0〉 ] =MMM〈0,2〉(〈1,1,0〉, t) and VARt [Cr | 〈1,0,1〉 ] =
MMM〈0,2〉(〈1,0,1〉, t) is reported. When combined with the conditional expectations, the

second-order moments enable us to gain a richer representation of the conditional dis-
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(A) Evolution of the second-order

moments VARt [Cr | 〈1,1,0〉 ] and

VARt [Cr | 〈1,0,1〉 ] derived using

PRISM.
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(B) Evolution of the second or-

der moments MMM〈1,1〉(〈1,1,0〉, t),
MMM〈1,1〉(〈1,0,1〉, t) derived using PRISM.

As expected, the correlation is always

negative.

Figure 9.4: Transient evolution of the second-order moments VARt [Cr | 〈1,1,0〉 ],
VARt [Cr | 〈1,0,1〉 ], MMM〈1,1〉(〈1,1,0〉, t) and MMM〈1,1〉(〈1,0,1〉, t) derived by the computa-

tionally expensive analysis of the complete state space. We propose a conjecture that

the MCM equations should enable us to obtain the same solution significantly quicker.

tributions Pt(〈Ct ,Cr〉 | βββ). For instance, the conditional variances VARt [Cr | 〈1,1,0〉 ]
and VARt [Cr | 〈1,0,1〉 ] capture the widths of the distributions Pt(Cr | 〈1,1,0〉) and

Pt(Cr | 〈1,0,1〉) around µ(Cr)(〈1,1,0〉, t) and µ(Cr)(〈1,0,1〉, t), a measure showing how

dispersed the variable Cr is when the servers are in states 〈1,1,0〉 and 〈1,0,1〉.

9.6 Capturing the Impact of Server Breakdowns

The servers exhibit three modes of operation which are shown in Fig. 7.6. In studying

the behaviour of the clients, we have already shown how the conditional moments

µ(Cr)(Sb = 0, t), µ(Cr)(Sb = 1, t) and µ(Cr)(Sb = 2, t) were calculated by the method of

conditional expectations. These show the mean behaviour of the clients in each of the

distinct operational modes.

The conditional second-order moments calculated over the aggregated states are

the basis for deriving the conditional moments VAR [Cr |Sb = 0 ], VAR [Cr |Sb = 1 ]

and VAR [Cr |Sb = 2 ] defined over the three modes of operation. These moments
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capture the widths of the conditional distributions Pt(Cr | Sb = 0), Pt(Cr | Sb = 1)

and Pt(Cr | Sb = 2). Obtaining them is important, since it is likely that the clients do

not behave exactly as expected and their stochastic behaviour may potentially exhibit

deviations from the conditionally averaged evolutions.

First, we focus on the derivation of VAR [Cr |Sb = 0 ]. Using Def. (9.1), we have:

VAR [Cr |Sb = 0 ] = ∑
〈Si,Sl ,Sb,Ct ,Cr〉∈D

(
Cr−µ(Cr)(Sb = 0, t)

)2
·

Pt(〈Si,Sl,Sb,Ct ,Cr〉 | Sb = 0)

= ∑
〈Si,Sl ,Sb,Ct ,Cr〉∈D

(
Cr−µ(Cr)(Sb = 0, t)

)2
·Pt(〈Si,Sl,0,Ct ,Cr〉)

Pt(Sb = 0)

Here, the summation on the right hand side sums over all states in the state space.

We can expand this so that the summations happen with respect to each sub-chain

separately:

VAR [Cr |Sb = 0 ] = ∑
〈2,0,0,Ct ,Cr〉∈D

(
Cr−µ(Cr)(Sb = 0, t)

)2
·Pt(〈2,0,0,Ct ,Cr〉)

Pt(Sb = 0)

+ ∑
〈1,1,0,Ct ,Cr〉∈D

(
Cr−µ(Cr)(Sb = 0, t)

)2
·Pt(〈1,1,0,Ct ,Cr〉)

Pt(Sb = 0)

+ ∑
〈0,2,0,Ct ,Cr〉∈D

(
Cr−µ(Cr)(Sb = 0, t)

)2
·Pt(〈0,2,0,Ct ,Cr〉)

Pt(Sb = 0)

By reformulating the probability terms in the conditional form, adding and subtracting

µ(Cr)(〈2,0,0〉, t), µ(Cr)(〈1,1,0〉, t), µ(Cr)(〈0,2,0〉, t) in the first, second and third terms

on the right hand side and using the vectorial binomial expansion we get:

VAR [Cr |Sb = 0 ] =

+
Pt(〈2,0,0〉)
Pt(Sb = 0)

[
VAR [Cr | 〈2,0,0〉 ]+

(
µ(Cr)(〈2,0,0〉, t)−µ(Cr)(Sb = 0, t)

)2

]

+
Pt(〈1,1,0〉)
Pt(Sb = 0)

[
VAR [Cr | 〈1,1,0〉 ]+

(
µ(Cr)(〈1,1,0〉, t)−µ(Cr)(Sb = 0, t)

)2

]

+
Pt(〈0,2,0〉)
Pt(Sb = 0)

[
VAR [Cr | 〈0,2,0〉 ]+

(
µ(Cr)(〈0,2,0〉, t)−µ(Cr)(Sb = 0, t)

)2

]
(9.5)
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Eq.(9.5) is now closed in terms of the conditional expectations and second-order mo-

ments calculated for the aggregated states 〈2,0,0〉, 〈1,1,0〉 and 〈2,0,0〉. By following

a similar process for the operational mode associated with Sb = 1, we have:

VAR [Cr |Sb = 1 ] =

+
Pt(〈1,0,1〉)
Pt(Sb = 1)

[
VAR [Cr | 〈1,0,1〉 ]+

(
µ(Cr)(〈1,0,1〉, t)−µ(Cr)(Sb = 1, t)

)2

]

+
Pt(〈0,1,1〉)
Pt(Sb = 1)

[
VAR [Cr | 〈0,1,1〉 ]+

(
µ(Cr)(〈0,1,1〉, t)−µ(Cr)(Sb = 1, t)

)2

]
(9.6)

Finally, the mode of operation related to Sb = 2 is associated with a single state 〈0,0,2〉.
Therefore, for this mode of operation we have: VAR [Cr |Sb = 2 ] =VAR [Cr | 〈0,0,2〉 ].

Using the solution over the aggregated state space and the above equations, the

evolution of VARt [Cr |Sb = 0 ], VARt [Cr |Sb = 1 ] and VARt [Cr |Sb = 2 ] is derived.

This is reported in Fig. 9.5A. Furthermore, we also derive the standard deviations of Cr

for each mode of operation. Recall that for a random variable X , its standard deviation

σ(X) is equal to the square root of Var[X ]. Our standard deviations are denoted by

σt(Cr |Sb = 0), σt(Cr |Sb = 1) and σt(Cr |Sb = 2), and their evolution is shown in

Fig. 9.5B.

For this model, we have the knowledge that for Sb = i, i ∈ {0,1,2} the conditional

distributions Pt(Cr | Sb = i) are uni-modal and close to being normally distributed. By

exploiting this knowledge and using the calculated conditional moments, we are able

to build 95% confidence bounds of the conditional distributions.

For any normally distributed random variable X with the mean µ(X) and the stan-

dard deviation σ(X), we have:

P( µ(X)−2σ(X)≤ X ≤ µ(X)+2σ(X) )≈ 95% (9.7)

Applying this rule, we combine µ(Cr)(Sb = i, t) and σt(Cr |Sb = i) to build confidence

bounds for the distributions Pt(Cr | Sb = i), since:

∀ i ∈ {0,1,2} : Pt(
[
µ(Cr)(Sb = i, t)+2σt(Cr |Sb = i)

]
≤ Cr ∧

Cr ≤
[
µ(Cr)(Sb = i, t)+2σt(Cr |Sb = 0)

]
| Sb = 0 )≈ 95%

The confidence bounds related to the mode of operation Sb = 0 are shown in

Fig. 9.6. The transient tube around µ(Cr)(Sb = 0, t) shows the values in the domain
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Figure 9.5: The transient evolution of the conditional variance of Cr and the standard

deviations calculated using the second-order moments related to the aggregated states.

These moments are derived by the analysis of the complete state space using PRISM.

of Cr that bear 95% of the probability mass when both servers are working (Sb = 0).

In this figure, we are also comparing the confidence bound at t = 20 (when the dis-

tribution stabilises into equilibrium) with the distribution of Cr for the same t. As

illustrated, the 95% bounds are particularly useful for studying the variability of Cr in

this mode of operation.

The same analysis was done for the operational mode Sb = 1 and Sb = 2. The

results are respectively shown in Fig. 9.7 and Fig. 9.8. The tubes here show the most

likely observations when the system is working under less optimal (and somewhat

rare) modes of having server failure. These are particularly useful for tasks such as

capacity planning, where we provision the system for optimal, sub-optimal and critical

operational modes.

Having illustrated the usefulness of the second-order moments, in the next section

we briefly comment on the importance of the derivation of the MCM equation which

allows us to efficiently derive those moments.
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9.7 Accuracy and Efficiency of the MCM approximation

The main contribution of the higher-order moments is that they extend the analysis of

conditional expectations and provide the means to build a richer representation of the

stochastic behaviour of the large groups. However, achieving the advantages through

the analysis of complete state space (as done in the example) has a major drawback.

In spite of producing accurate solutions, this type of analysis is not scalable with re-

spect to the model’s populations and for any large-scale model, the analysis becomes

either computationally expensive or even infeasible. The analysis of the higher-order

moments done via this path is simply not scalable.

By observing the complexity of dealing with the complete state space, we can de-

duce the significance of the MCM approach and in particular the importance of the

derivation of Eq.(8.34). Using the MCM path, the higher-order moments are derived

by solving a system of DAEs. Whilst still sensitive to the populations, the cost of

solving a large-scale model’s underlying system of DAEs is orders of magnitude lower

compared to the analysis of its complete state space. Moreover, we expect our approxi-

mate solution to exhibit a high degree of accuracy. The accuracy of our approximations

was explicitly shown for the case of the conditional expectations and we anticipate that

this feature can be extended to the higher-order moments, as in the latter we are apply-

ing the same approximation steps (boundary state approximation, Taylor expansion,

swapping the position of the min and expectation operators). Due to these features,

i.e. higher efficiency and acceptable accuracy, we conclude that the MCM approach is

the scalable path for the derivation of highly useful higher-order conditional moments.

We acknowledge that the rigorous validation of the MCM approach requires de-

riving the MCM solution and comparing against the exact solution coming from the

analysis of the complete state space. However, such an experimentation cannot be

readily done since the software tool for the MCM approach is still under development.

Nevertheless, given our past experience with respect to validity of the conditional ex-

pectation equation (Eq.(6.36)) we can propose the following conjecture, concerning

the validity of Eq.(8.34), which forms the core of the MCM approach.

Conjecture 9.7.1. The system of DAEs constructed based on Eq.(8.34) for the anal-

ysis of higher-order moments can approximately calculate such moments with a high

degree of accuracy. Moreover, using the MCM approach these moments are derived

significantly more efficiently than through the analysis of the complete state space.
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Checking the validity of this conjecture will be done as a future task.



Chapter 10

Application of the Method of

Conditional Moments to a Two-Tier

Wireless Network

10.1 Introduction

In this chapter, we consider a case study where the method of conditional moments is

applied to the performance evaluation of a complex model. The system we consider is

a wireless network based on the two-tier architecture. The case study chapter has two

goals. First, we describe some of the important aspects of the dynamics of networks

based on this type of architecture and illustrate how they are captured in PEPA mod-

els. Second, we exhibit the usefulness of our methods when such models need to be

efficiently and faithfully analysed.

In Sec 10.2, we present an overview of the two-tier architecture and the main ben-

efits of adopting the architecture. In Sec. 10.3 we show our PEPA model and describe

the performance questions that our analysis is focusing on. In Sec. 10.4, we describe

how the model is analysed using our analysis techniques. Sec. 10.5 summarises the

chapter.

We are planning to publish the content of this chapter as a case study; a conference

paper is in preparation.

217
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10.2 An Overview of Two-Tier Wireless Networks

First, we review the concept of two-tier network architecture and briefly discuss some

of the important characteristics of wireless networks based on this architecture. We

discuss the benefits of applying the architecture and explain the performance evaluation

requirements that we deal with when analysing such networks.

10.2.1 Two-Tier Architecture For Wireless Networks

A single-tier wireless network is regarded as a network which consists of one base

station and a population of wireless users. The base station is usually deployed at the

centre and is responsible for serving all users located within its coverage. Compared

to the single-tier architecture, in the two-tier architecture two layers of base stations

are deployed [6]. A simple schematic of this type of network is shown in Fig. 10.1. As

before, there is a main station usually placed at the centre. Here, this is referred to as

the macro-cell. In addition, a number of less powerful base stations are also deployed,

which are referred to as femto-cells. The femto-cells are light-weight in their capacity,

and provide a strengthened signal locally and only within short radio ranges. The

base station that serves a user depends on the user’s location. If she is in the vicinity

of a local femto-cell, then preferably she is served by this local station, enjoying the

strengthened signal it provides. On the other hand, when no femto-cell can be reached,

the user is served by the central macro-cell. The connectivity is brought to the femto-

cells by their high speed wired links to the macro-cell.

There has been growing interest in using the two-tier architecture for wireless wide

area networks (WWAN). Some examples include adopting the architecture for indoor

areas or large urban sites [14, 30]. The macro-cell is usually assigned the task of cover-

ing locations towards the centre and the femto-cells are positioned at indoor locations

or the edges of the network, where the wireless signals are more faded. Accordingly,

users are categorised based on their locations, those within a defined central perimeter

are referred to as near users whilst those located at the edge are referred to as far users.

Note here that in our presentation, the notion of a user is different from the one

known in common parlance. Depending on our level of abstraction, a user refers to any

entity that exploits the capacities of the network (for instance, for data transmission) as

part of its evolution. In this sense, the data packets waiting for transmission on a data
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link and within a femto-cell can be regarded as network users. We will elaborate more

on this when describing our model.

10.2.2 Benefits and Advantages

Compared to the single-tier approach, the two-tier architecture potentially achieves sig-

nificant improvements in terms of reduced wireless interference and improved energy

efficiency [30]. Let us briefly elaborate on these improvements.

10.2.2.1 Reduced Interference

In wireless networking, the interference of connections refers to situations where the

transmission from one node on a certain frequency coincides with one or more other

nodes transmitting on the same frequency. When two signals interfere, they get con-

voluted and this results in the recipient not being able to distinguish between them.

Therefore, the packets that the signals convey are lost. From this perspective, the

single-tier architecture is not suitable for WWANs [6]. Here, the central base sta-

tion needs to be panoptic, and all connections need to be established within a very

wide single cell. When the demand grows (for instance, through a large population

of users) the rate of coincidence increases and the network’s performance degrades as

the high interference leads to excessive data loss and consequently, frequent message

re-transmission.

The two-tier architecture is one effective solution in reducing the interference lev-

els. Using this architecture, each femto-cell covers a small area in its close vicinity and

the active channels within one femto-cell have limited impact on connections that are

active in other femto-cells. This lowers the probability of co-tier interference, i.e. con-

nections present in different femto-cells affecting each other. Moreover, the macro-cell

covers a reduced central area too. Therefore, the connections between the macro-cell

and near users become somewhat isolated from the connections within the femto-cells.

As a result, the cross-tier interference is decreased. The reduced levels of the two types

of interference lowers the odds of signals being convoluted (packets getting lost) and

consequently both near and far users experience better transmission rates.
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10.2.2.2 Energy Efficiency

In wireless networking, the distances between entities play a key role in the amount of

energy spent for maintaining their connections. The wireless signals tend to fade, that

is, the power of the signals decreases as the distance increases. To cope with this dis-

tance, when two entities communicate the signals they exchange must be adequately

strengthened, such that the concomitant fading is overcome. Although it is not an issue

for connections between entities that are close, the fading has important implications

for long distance connections (LDC). For LDCs, the signals need extra strength. To

achieve this, the entities need to enter their high power mode, which makes them con-

sume more energy. Therefore, the network with frequent LDCs will have worse energy

efficiency than the one where such connections occur less often.

In a single-tier network, the LDCs are frequently established between the central

station and far users, and the macro-cell frequently enters its high power mode. This

degrades the efficiency of the network infrastructure. Far users are also severely af-

fected, as they are usually equipped with limited energy sources (batteries) which are

quickly depleted by the energy demanding LDCs to the macro-cell.

Using the two-tier architecture, the likelihood of having LDCs is reduced. The

users are divided into separate regions and the network’s load is divided between the

macro-cells and femto-cells. Although the macro-cell can potentially serve far users,

they are primarily served by their local femto-cells using local connections. Here, the

inevitable LDCs of the single-tier architecture are to a high degree avoided. Conse-

quently, the network offers a better energy footprint, both for the infrastructure and the

far users.

10.2.3 Modes of Operation

In an ideal two-tier network the load is perfectly divided between the two layers; each

far user is served by its local femto-cell and each near user is served by the central

macro-cell. However, such a division is not fully adhered to in practice. In realistic

implementations, it is possible to observe a state where a far user is being served by

the macro-cell by a LDC. This happens when the far user is rejected by its local femto-

cell or is simply not covered by any. The rejection may happen due to a number of

reasons, some of which are now described. The user might be located at the edge of
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the femto-cell’s coverage and might receive better service by the macro-cell. Or the

femto-cell might be already fully loaded and not able to accept new requests. Also,

the load balancing protocol (cell association protocol) of the femto-cell might transfer

the service to the macro-cell, because of the decisions it makes based on the history of,

and the current load conditions in, the network.

When a far user is not served by its femto-cell, she attempts to initiate a LDC to the

macro-cell. The macro-cell has a number of channels dedicated to serving far users. If

such a channel is available and free, the far user is admitted. If all channels are taken,

then the far user is rejected. When admitted, a LDC is established and the macro-cell

enters the power boost mode. When serving the far user is completed, the channel

which was allocated is released. When the macro-cell has no active LDC, it returns to

the normal power mode.

The network exhibits some important characteristics during the time that the macro-

cell is serving at least one far user. First, the macro-cell enters the high power mode

and consumes more energy. Second, since the macro-cell’s signals are strengthened the

data loss rate decreases for the near users and they enjoy better communication with

the macro-cell. Third, the highly powered signals exchanged with the macro-cell in-

crease the cross-tier interference experienced within the femto-cells and as a result, the

femto-cell local users (far users) suffer from lowered transmission rates. These impor-

tant characteristics suggest that the network has two distinct modes of operation [43].

The first is the normal mode (corresponding to the normal power consumption), which

refers to the periods of time when all far users are served by their local femto-cells and

no LDC exists. The second is the power boost mode, which refers to the periods of

time when there is at least one active LDC within the macro-cell.

10.2.4 Requirements of the Performance Evaluation and the Model

The benefits of the two-tier architecture are achieved if the network is well config-

ured. When designing the network, particular attention is paid to the possibility of the

network experiencing the aforementioned modes of operation. Since the power boost

mode has less desirable performance, the network is designed in such a way that the

network is less often in this mode than the normal mode.

The possibility of having two modes of operation defines important requirements

for the performance evaluation of two-tier networks. The model, being an abstract
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reflection of the reality, needs to be capable of capturing the distinct operational modes.

On the other hand, when analysing the model it is imperative to study the effect of

mode alternations, and analyse the dynamics of the network in both modes. The normal

mode represents the usual and mostly observed mode of operation and the analysis

shows the behaviour when the system is working under the desired circumstances.

By analysing the power boost mode, we aim to study the system’s behaviour when

performing in the sub-optimal and less likely states. Faithful and robust performance

analysis requires the analysis of both modes.

Given a two-tier network, two key fundamental performance questions are: a) what

is the probability of being in each of the different modes of operation and b) what

are the consequences of mode alternations, particularly on users? In this chapter, we

propose a model which allows us to answer these questions. In the next section, we

introduce the model and explain the key performance questions in more detail.

10.3 Modelling

In this section, we describe a concrete scenario for a two-tier wireless network. First,

we review the network’s spatial properties. Second, we describe its key entities and

how they are modelled in PEPA. Finally, we describe the performance questions that

we focus on when analysing the model.

10.3.1 Spatial Distribution

Fig. 10.1 is the sketch of a two-tier wireless network [43]. We assume that the macro-

cell is located at the center and it covers the area within the radius Rm. There are N f

femto-cells, indexed by i : 1 ≤ i ≤ N f which are located at the edges of the network.

Each femto-cell covers a radius R f << Rm. We assume that these cells are within an

annulus at the interior of the area marked by Rm.

The macro-cell’s main area of concern is the reduced area with radius Rm′ < Rm,

Rm′ = Rm− 2R f . The users within this area are called the near users. On the other

hand, those with distances r : Rm′ < r < Rm are regarded as far users. These are

preferably served by their femto-cell. In our modelling we have the simplifying as-

sumption that the femto-cells are homogeneously distributed and their coverages are
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Figure 10.1: Structure of a two-tier wireless network.

non-overlapping. This means that we can abstract from the co-tier interference. Nev-

ertheless, we allow the macro-cell’s coverage to be overlaid by the femto-cells’ and

thereby, the impact of the cross-tier interference is still captured.

10.3.1.1 Patterns of User Arrival

The arrival of a user to a cell (base station) is categorised based on the location of the

user. The categories are:

1. Arrival of a user in the vicinity of the macro-cell. The user is within the radius

Rm′ (marked by A in Fig 10.1) and is served by the macro-cell.

2. Arrival of a user in close vicinity of a femto-cell. Such a user (marked by B in

Fig 10.1) is referred to as a strongly coupled user (SCU). Due to the possibility

of enjoying the femto-cell’s strengthened signals, the user receives service from

its local femto-cell.

3. Arrival of a user located within common areas. The user is logically neither close

to a macro-cell nor to a particular femto-cell (marked by C in Fig 10.1). It can be

in locations where the coverages of the macro and femto cells overlap (edges of

the radius RM) or at far distances not strongly covered by any femto-cell. Since

no particular base station has the dominance, the user can potentially be served
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by a base station of either type. We assume that each femto-cell has a number of

users weakly connected to it (weakly connected users (WCU)).

The main reason for introducing the third class of users (in addition to those being

close to either the macro-cell or a femto-cell) is the fact that in wireless networking

there is no way to specify a clear-cut border for the coverage of the base stations. In

contrast to wired networking where the link that a user communicates over is topo-

logically deterministic, the wireless user is usually under the coverage of potentially

many base stations and the choice of which link to use is more dynamic. Normally,

the user chooses the station which offers the best transmission rate. In our two-tier

wireless network, the users for whom neither the macro-cell nor a femto-cell provide

the dominant means of communication are considered to be in this class. These users

are the main factor giving rise to LDC and therefore, it is important to include them as

a separate component in the model.

Having stated the categories of the users, now we explain how the interaction be-

tween the users and base stations can be captured in our PEPA model.

Before presenting our model, it is worth mentioning the work in [41] that uses

PEPA to evaluate a two-tier cellular network. In that work, the main feature under

consideration is user mobility, and how the network’s so-called handover protocol

maintains quality of service to a mobile user that switches its current location. An-

other important feature is that the focus is on the behaviour of individual users and the

authors do not consider state space reduction techniques based on counting abstrac-

tion; to avoid state space explosion, notions of process equivalence developed in [61]

are heavily used. Our modelling has a different direction. We assume that users are

fixed in their location and some of them have the possibility of being served by either

a macro-cell or femto-cell. Furthermore, we use counting abstraction as the primary

means of compact state space construction and investigate how the methods based on

differential equations can tackle our model’s large state space.

10.3.2 PEPA Model of the Two-Tier Wireless Network

In this section, we present the different entities that our two-tier wireless network con-

sists of and the way PEPA is used to model them. In our modelling, we extensively

use compositionally and the cooperation operator. This helps us to build our complex

model from the bottom up; first we focus on the behaviour of the entities in isolation
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Figure 10.2: The behaviour of a user close to the macro-cell.

and then combine them to build the model of the whole. With our presentation, we

show that building the model of a system as complex as a two-tier network, which

inherently features a multitude of interacting components, is indeed a hard task, and

one which is helped considerably by using a compositional language such as PEPA.

We start by describing the behaviour of the users.

10.3.2.1 Near Users Close to the Macro-cell

The first category of users consists of near users. The behaviour of a user of this kind

is:

Un proc
def
= (proc,rp).Un exch

Un exch
def
= (ex nr,>).Un proc +(ex po,>).Un proc (10.1)

as illustrated in Fig. 10.2. The user starts in the state Un proc, where it performs some

independent and internal processing. The state represents the behavioural phase when

the user does not require any communication with the network. When the internal

processing finishes, the user enters the state Un exch where it exchanges some data with

the macro-cell. This scenario, for instance, captures the behaviour of a node in a two-

tier wireless sensor network, where the nodes first gather some data independently and

then upload it to a central sink. It can also represent a two-tier file storage service

where the users issue a periodic fetch-me-a-file command while mostly working on

their offline jobs.

The macro-cell is equipped with a number of channels to serve near users. When

a user is ready for the data exchange and there exists a free channel, the user can im-

mediately start the communication. When there is no free channel, the user waits for

the next available one. The rate offered for the data exchange depends on the net-
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Us i proc Us i exch

(proc,rs p)

(ex sc f i nr,>)

(ex sc f i po,>)

Figure 10.3: The behaviour of a user close to a femto-cell indexed by i: 1≤ i≤ N f .

work’s mode of operation (see Sec. 10.2.3); the rate is higher in the power boost mode

compared to the normal mode. Given the distinct rates, we model the data exchange

with two different action type; ex nr and ex po. The first is enabled when the sys-

tem is in the normal mode and the second when operating in the power boost mode.

At any given time, only one of these actions is enabled, on which the user passively

synchronises. The nature of this synchronisation will be described later.

Given the wide area that the macro-cell covers, we assume that the near users form

a large population. This assumption is in line with our performance evaluation goals,

particularly that we aim to study the system’s behaviour when performing under heavy

load. The behaviour of the macro-cell channels is described when presenting the PEPA

model of the macro-cell.

10.3.2.2 Far Users Strongly Coupled to Femto-cells

The second user category consists of SCUs (strongly coupled users with respect to

femto-cells). The behaviour associated with this type of user is:

Us i proc
def
= (proc,rs p).Us i exch

Us i exch
def
= (ex sc f i nr,>).Us i proc +(ex sc f i po,>).Us i proc (10.2)

and is shown in Fig. 10.3. The only difference is that instead of being served by the

macro-cell, these users are served by their local femto-cells.

Each femto-cell is equipped with a number of channels for serving its local SCUs.

If a user arrives and there is no free channel, then the user waits, with the anticipation

that a channel will be available soon, and there would then be no need to establish a

LDC to the macro-cell. The user communicates with the femto-cell by undertaking ei-

ther ex sc f i nr or ex sc f i po, which respectively correspond to the data exchanges
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at normal and power boost modes. The femto-cells are usually placed at locations

where there is a dense cluster of user demand. Therefore, we assume that SCUs form

relatively large populations. However, note that due to the femto-cell’s limited capacity

(R f << Rm) SCU populations are still smaller than the near users around the macro-

cell. This allows us to study the dynamics of a femto-cell (from the perspective of both

the femto-cell and its SCUs) when there is heavy load on the femto-cell.

10.3.2.3 Far Users Weakly Coupled to Femto-cells

The third user category consists of WCUs (weakly connected users). Focusing on the

femto-cell indexed as i, the behaviour of any WCU around i is shown in Fig. 10.4. The

PEPA process capturing this behaviour is:

Uw i proc
def
= (proc,rw−p).Uw req f i

Uw req f i
def
= (req f i,rctrl).Uw wait f i

Uw wait f i
def
= ( f i acc,rctrl).Uw exch f i +( f i re j,rctrl).Uw i req mcr

Uw exch f i
def
= (ex wc f i po,>).Uw proc +(ex wc f i nr,>).Uw i proc

Uw i req mcr
def
= (req mcr,rctrl).Uw i wait mcr

Uw i wait mcr
def
= (mcr acc,rctrl).Uw i exch mcr +(mcr re j,rctrl).Uw i proc

Uw i exch mcr
def
= (ex wc mcr,>).Uw proc (10.3)

The user starts from the state Uw i proc where it is undertaking an independent pro-

cessing step. Having done that, it moves to state Uw req f i where it sends a request for

a femto-cell WCU channel, and then enters the state Uw wait f i where it waits for the

response. For a femto-cell, the service to WCUs has lower transmission rate (longer

transmission time) and is more energy demanding than the SCUs. Therefore, it is

equipped with only a limited number of WCU channels. When a WCU requests and

there is free WCU channel, the femto-cell accepts the user and sends the f i acc mes-

sage. This makes the user move to the state Uw exch f i where it starts its data exchange.

Conversely, if all channels are busy then the user is rejected (by receiving the f i re j

message) and enters the state Uw i req mcr.

Having been rejected from the femto-cell, the user now sends a request to the

macro-cell for a LDC and enters the state Uw i wait mcr where it waits for the response.

Given the detrimental effects of LDCs, the macro-cell offers only a limited number

of channels for such connections. If such a channel is free, the far user is admitted
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Figure 10.4: The behaviour of a user weakly coupled to a femto-cell i: 1≤ i≤ N f .
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Figure 10.5: A femto-cell and the internal components defined for capturing its behviour.
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and sent the mcr acc message. This enables the user to move to the state Uw i exch mcr

where it starts the data exchange with the macro-cell. The transmission rate for this

type of connection is significantly lower compared to the short distance connections

and it takes a relatively long time for the user to be served. If the macro-cell has no

free LDC channel, then the user is rejected again (this time it receives the mcr re j

message). We assume that a WCU who is rejected again returns to its initial state.

10.3.2.4 Femto-cells

Now we focus on a femto-cell and how it is modelled. In order to faithfully capture

the interactions with SCUs and WCUs, we define three components which collectively

exhibit the behaviour expected from a femto-cell. These components are:

1. Femto-cell gateway, referred to as FG.

2. A queue for managing the WCUs, referred to as WCUQ.

3. Femto-cell communication channels dedicated to SCUs, referred to as FSCCH.

These components are shown in Fig. 10.5, which shows a very simplified structure for

a femto-cell. For simplicity, we assume that in our network all femto-cells have the

same specification.

In the following, we describe the behaviour of each of these components separately

using a PEPA process, and then combine these to construct the model of a femto-cell.

In our presentation, we describe the behaviour of a femto-cell indexed by i.

Femto-cell Gateway

As stated, each femto-cell can serve a few WCUs at any given time. The gateway

manages the requests for WCU connections. The SCU connections are happening at a

fast rate and are directly handled by the SCU channels. The behaviour of the gateway

is:

FGi idle
def
= (req f i,rctrl).FGi check

FGi check
def
= (wcuqi ne,rctrl).FGi acc +(wcuqi e,rctrl).FGi acc +

(wcuqi f ull,rctrl).FGi re j

FGi acc
def
= ( f i acc,rctrl).FGi idle
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FGi idle FGi acc
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Figure 10.6: The behaviour of the gateway of the femto-cell indexed by i. The rates of

all actions are rctrl .

FGi re j
def
= ( f i re j,rctrl).FGi idle

which is illustrated in Fig. 10.6. The initial state is FGi idle where the gateway is ready

to receive requests from any WCU. When a request arrives, the gateway enters the

state FGi check where it consults with the WCUQi to decide whether the new request

can be accepted. If WCUQi sends the control signal wcuqi e or wcuqi ne, meaning there

are still some free WCU channels in the femto-cell, then the gateway enters the state

FGi acc where it informs the user that its request is accepted. However, if the signal

wcuqi f ull is received, then the femto-cell has reached its maximum capacity and the

gateway enters the state FGi re j where it informs the user that its request is rejected.

When the response is sent, the gateway returns to its initial state.

Weakly Coupled Users Queue

Let N f w denote the upper bound for the number of WCU connections that may si-

multaneously be active within a femto-cell. The component WCUQi acts as a counter

and enforces the bound N f w. Since it holds the state of active WCU connections, this

component is also responsible for sending control signals to FG.

The behaviour of WCUQi is:

WCUQi 0
def
= ( f i acc,rctrl).WCUQi 1 +(wcuqi e,rctrl).WCUQi 0;
...

WCUQi j
def
= ( f i acc,rctrl).WCUQi j+1 +(wcuqi ne,rctrl).WCUQi j +

(ex wc f i nr, j× rex wc f i nr).WCUQi j−1 +

(ex wc f i po, j× rex wc f i po).WCUQi j−1;
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... (10.4)

WCUQi N f w
def
= (ex wc f i nr,N f w× rex wc f i nr).WCUQ(i N f w−1)+

(ex wc f i po,N f w× rex wc f i po).WCUQ(i N f w−1)+

(wcuqi f ull,rctrl).WCUQi N f w;

shown in Fig. 10.7. It starts in state WCUQi 0, denoting that there are currently no

active WCU connections. Here, the action wcuqi e is enabled, conveying the control

signal that WCUQi is empty, which then helps the gateway determine that a new re-

quest for a WCU connection can be accepted. If this happens, the state changes from

WCUQi j to WCUQi j+1. Similarly, wcuqi ne (non-empty) is enabled for all 0 ≤ j ≤
(N f w− 1) which denotes that there is at least one active WCU within the femto-cell

and there is still some capacity left. When the component is in state WCUQi N f w , then

the control signal wcuqi f ull is sent, expressing that no more WCU connections can

be accepted. This signal helps the gateway to reject the WCU requests when the full

capacity of the femto-cell is utilised.

Depending on the network’s mode of operation, the WCUQi enables two different

actions for serving WCUs. These are ex wc f i nr and ex wc f i po respectively re-

lated to the normal mode and power boost mode. The component which is aware of the

mode (the existence of LDC connections) is not the femto-cell, but rather the macro-

cell. Therefore, when modelling a WCU data exchange, although the rate is decided

by WCUQi the action type that is actually enabled is determined by a synchronisation

with the macro-cell. The influence of the macro-cell will be explained when describ-

ing its PEPA component. When a WCU connection is finished, the WCUQi is updated

again; it moves from a current state WCUQi j to WCUQi j−1.

Actions wcuqi e, wcuqi ne, wcuqi f ull , f i acc take place with rate rctrl . In each state

WCUQi j, the action ex wc f i nr takes place at rate j× rex wc f i nr. Moreover, the

action ex wc f i po takes place at rate j× rex wc f i po. Due to the higher interference

levels in power boost mode, we have: rex wc f i po < rex wc f i nr.

Femto-cell Channel for Strongly Connected Users

The SCU channels are responsible for serving SCUs. The behaviour of this component

is:

FSCCHi
def
= (ex sc f i nr,rex sc f i nr).FSCCHi +(ex sc f i po,rex sc f i po).FSCCHi
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Figure 10.7: The behaviour of WCUQi in femto-cell i.

FSCCHiex sc f i nr ex sc f i po

Figure 10.8: The behaviour of a SCU channel in femto-cell i. We assume that the

channel stays in a constant state and enables the action types for serving SCUs.

which is also shown in Fig. 10.8. Here, the important behavioural aspect is not the set

of states a channel experiences, but rather the actions exch sc f i nr and exch sc f i po

that it repeatedly undertakes. These actions capture the frequent data exchanges that

the channels perform in dealing with the flow of SCUs into the femto-cell. We as-

sume that when a SCU attempts to communicate, it acquires the first free channel

available without negotiating with the femto-cell’s gateway. In the process above:

rex sc f i po < rex sc f i nr.

Femto-cell Composition

Using PEPA’s cooperation operator, the described components are combined to specify

the behaviour of a femto-cell as a whole:

FC i def
=
[

F i Gateway { FGi idle[1] } BC
L

WQ i {WCUQi 0[1] }
]
||

FCH i { FSCCHi[ns ch] } (10.5)

where F i Gateway, WQ i and FCH i are respectively labels of the groups FGi idle[1],

WCUQi 0[1] and FSCCHi[ns ch]; L = {wcuqi e,wcuqi ne,wcuqi f ull;and f i acc}, ns ch

is the number of SCU channels.
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Macro − cell Gateway
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Figure 10.9: The components used for modelling a macro-cell.

10.3.2.5 Macro-cell

The macro-cell serves near users and far WCUs who have been rejected by their local

femto-cells. The components that form a macro-cell are shown in Fig. 10.9 and are:

1. Macro-cell gateway, referred to as MG.

2. A queue for managing LDCs made to far WCUs. This is referred to as LDCQ.

3. Wireless channels for serving near users, referred to as NUCH.

First, we describe the PEPA process constructed for each component. Then, these are

composed to express the behaviour of the macro-cell as a whole.

Macro-cell Gateway

The macro-cell distinguishes between the connections made to near users and the

LDCs made to far WCUs. The gateway manages the requests for LDCs. The be-

haviour of this component is:

MGidle
def
= (req mcr,rctrl).MGcheck

MGcheck
def
= (ldcqne,rctrl).MGacc +(ldcqe,rctrl).MGacc +

(ldcq f ull,rctrl).MGre j

MGacc
def
= (mcr acc,rctrl).MGidle

MGre j
def
= (mcr re j,rctrl).MGidle

which is also illustrated in Fig. 10.10. In the idle state MGidle, the gateway is ready to

receive LDC requests. When one arrives, the gateway enters the state MGcheck where it
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Figure 10.10: The behaviour of the macro-cell gateway. This component checks the

LDCQ’s control signals to see if a far WCU user asking for a LDC connection can be

admitted. The rates of all actions are rctrl .

consults with LDCQ to check if the new request can be accepted. There exists a bound

on the number of LDCs that the macro-cell can simultaneously hold. If the control

messages ldcqe or ldcqne arrive, then the user is admitted and a LDC is established. As

a result, the macro-cell enters the high power mode. Conversely, if the signal ldcq f ull

arrives, then the pending WCU is rejected. When the response is sent, the gateway

returns to the idle state.

Long Distance Connection Queue

Let NLDC denote the upper bound on the number of LDCs that a macro-cell can simul-

taneously maintain. The component LDCQ holds the state of active LDCs and enforces

this upper bound. The behaviour of this component is:

LDCQ0
def
= (ldcqe,rctrl).LDCQ0 +(ex nr,>).LDCQ0 +

(ex sc f i nr,>).LDCQ0 +(ex wc f i nr,>).LDCQ0 +

(acc mcr,rctrl).LDCQ1;
...

LDCQ j
def
= (ldcqne,rctrl).LDCQ j +(ex po,>).LDCQ j +

(ex sc f i po,>).LDCQ j +(ex wc f i po,>).LDCQ j +

(ex wc mcr, j× rex wc mcr).LDCQ( j−1)+(acc mcr,rctrl).LDCQ j+1;

LDCQNLDC
def
= (ldcq f ull,rctrl).LDCQNLDC +(ex po,>).LDCQNLDC +

(ex sc f i po,>).LDCQNLDC +(ex wc f i po,>).LDCQNLDC +

(ex wc mcr,NLDC× rex wc mcr).LDCQ(NLDC−1) ;
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which is also shown in Fig. 10.11. It starts from the state LDCQ0, where there is

no active LDC within the macro-cell. Here, the control message ldcqe is sent to the

gateway, denoting that the macro-cell can admit new LDC requests. Since there is no

active LDC, this control message also means that the network is performing in normal

mode. For all LDCQ j, 1≤ j≤ (NLDC−1) the control signals ldcqne is sent, indicating

that further LDCs can be accepted and also, that the system is performing in power

boost mode. When a LDC is admitted, the state changes from LDCQ j to LDCQ j+1.

In state LDCQNLDC , the component sends the signal ldcq f ull which expresses that no

further LDC can be accepted and again that the system is in the power boost mode.

The control signals are used by MG when deciding whether a pending request for a

LDC should be accepted.

A LDC is served when LDCQ performs the shared action ex wc mcr with a far

WCU. In any state LDCQ j, the rate of this action is j× rex wc mcr where rex wc mcr is

the rate of serving an individual LDC. When a LDC is finished (action ex wc mcr),

LDCQ is updated again; it moves from state LDCQ j to LDCQ j−1.

The component LDCQ knows the network’s mode of operation and this com-

ponent is responsible for setting the transmission rates for connections within the

femto-cells. Such connections are related to either SCUs or WCUs. When in state

LDCQ0, the actions ex wc f i nr and ex sc f i nr, 1 ≤ i ≤ N f are enabled, which

makes WCUQi and femto-cell channels respectively enable the actions ex wc f i nr

and ex sc f i nr. On the other hand, when there is at least one LDC connection active

(states LDCQ1 · · ·LDCQNLDC), the actions ex wc f i po and ex sc f i po are enabled,

which makes WCUQi and femto-cell channels enable ex wc f i po and ex sc f i po.

By the synchronisation between the femto-cell and macro-cell we capture the impact

of the alterations in the interference levels on the experience of far users.

The mode alterations also affect the transmission rates offered to near users. For

these users, the transmission rate is higher in the power boost mode than the normal

mode (Sec. 10.2.3). The component LDCQ sends control signals to the channels serv-

ing the near users to adjust their transmission rates. When it is in state LDCQ0, the

control signal ex nr is sent, which indicates that the channels must perform the data

exchange according at the rate rex nr related to the normal mode. On the other hand, in

states LDCQ1 · · ·LDCQNLDC , the signal ex po is sent, which enforces the channels to

exchange data at the higher rate rex po.
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Figure 10.11: The symbolic behaviour of LDCQ. The control signals ex sc f i nr,

ex wc f i nr, ex sc f i po and ex wc f i po are instantiated for all i : 1≤ i≤ N f .

Macro-cell Channels for Near Users

The behaviour of a macro-cell channel is:

NUCH def
= (ex nr,rex nr).NUCH +(ex po,rex po).NUCH

which is also shown in Fig. 10.12. Depending on the current mode of operation,

the component repeatedly undertakes either the action ex nr or ex po. The group of

NUCHs collectively deal with the data exchanges requested by near users. We assume

that when a near user needs the service, it acquires the first available channel without

consulting with the gateway.

Macro-cell Composition

Using the behaviours stated for MG, LDCQ and NUCH, the behaviour of the macro-

cell is expressed as:

MC def
= ( G Gateway{ MG[1] } BC

L1
LQ{ LDCQ0[1] } ) BC

L2
NCH{ NUCH[Nn ch] }

(10.6)

NUCHex nr ex po

Figure 10.12: The behaviour of a macro-cell channel used for serving near users. The

rate of the action ex nr is rex nr and the rate of ex po is rex po where rex po > rex nr.
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where G Gateway, LQ and NCH are respectively the labels of the groups MG[1],

LDCQ[1] and NUCH[Nn ch], and L1 = {ldcqe, ldcqne, ldcq f ull,mcr acc} and L2 = {ex po,ex nr}.

10.3.2.6 Capturing the Behaviour of the Network

Using the processes defined for a near user, a far user, a femto-cell and the macro-cell,

the process that captures the dynamics of the whole network is defined as:

Network def
=
(

Near users{Un proc[Nnu] } BC
A

MC
)
BC
B[ (

FC 1 BC
L1

(
U s 1{Us proc[ns 1] } || U w 1{Uw proc[nw 1] }

) )
||

...(
FC i BC

Li

(
U s i{Us proc[ns i] } || U w i{Uw proc[nw i] }

) )
||

...(
FC N f BC

LNf

(
U s N f {Us proc[ns N f ] } || U w N f {Uw proc[nw N f ] }

) ) ]
(10.7)

where the cooperation sets are:

A = {ex nr,ex po}
B = {req mcr,mcr acc,mcr re j︸ ︷︷ ︸

control signals to WCU

,ex wc mcr︸ ︷︷ ︸
serving LDC

}

Li = {req f i, f i acc, f i re j︸ ︷︷ ︸
femto-cell dealing with a WCU

,ex sc f i nr,ex sc f i po,ex wc f i nr,ex wc f i po︸ ︷︷ ︸
control signals informing the current mode of operation

}

and Nnu denotes the number of near users, for i: 1≤ i≤ N f ; and ns i and nw i represent

respectively the number of SCUs and WCUs around femto-cell i.

10.3.2.7 Model Parameters

We consider a network with one macro-cell and two femto-cells (N f = 2). Thus the

PEPA process of the network is:

Network def
=
(

Near users{Un proc[Nnu] } BC
A

MC
)
BC
B
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parameter description value

Nnu number of users near to the macro-cell 150

Ns i number of SCUs around femto-cell i : 1≤ i≤ N f 30

Nw i number of WCUs around femto-cell i : 1≤ i≤ N f 2

Nn ch number of channels available to the macro-cell for serving near

users

20

Ns ch number of channels available to a femto-cell i : 1≤ i≤ N f for

serving local SCUs

4

N f w capacity of femto-cells with respect to connections to WCUs 1

NLDC capacity of macro-cell with respect to LDCs 1

Table 10.1: Parameters related to the number of instances within the Near users, U s i,

U w i, NCH and FCH i groups (for 1≤ i≤ N f ); the capacity of femto-cells’ WCUQs;

and the capacity of the macro-cell’s LDCQ.

[ (
FC 1 BC

L1

(
U s 1{Us proc[ns 1] } || U w 1{Uw proc[nw 1] }

) )
||

(
FC 2 BC

L2

(
U s N f {Us proc[ns 2] } || U w N f {Uw proc[nw 2] }

) ) ]
(10.8)

The parameters related to the populations of different types of users are shown in Ta-

ble 10.1. In this table, we also show the capacities N f w and NLDC defined respectively

for the femto-cells and macro-cell. The parameters related to the rates of the activities

are shown in Table 10.2. We are comparing our model to the one presented in [43],

In that work, the network parameters are specified using notions such as wireless link

power, signal to interference and noise ratio, etc. which are usually used in the field

of system engineering. It was a hard task to translate these parameters into the notion

of action rates accepted in PEPA language. One approach was to use the linear rate-

SINR transformation, which is also proposed by the same authors. This transformation

maps measures related to signal strength to those related to the transmission and ser-

vice rates. Providing the details of our transformation and its rigorous validation is

out of the scope of this thesis. Nevertheless, using our parameters, we can still show

the usefulness of our analysis methods and how they are used in dealing with complex

models.

In Table 10.2 it is important to observe the following points:
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parameter description value

rctrl the transmission rate for exchanging control messages 1e10

rp the rate of undertaking the action proc by a near user 5

rs p the rate of undertaking the action proc by a SCU 5

rw p the rate of undertaking the action proc by a WCU 0.1

rex wc f i nr the rate at which a WCU is served in the normal mode 2.5

rex wc f i po the rate at which a WCU is served in the power boost mode 1.5

rex sc f i nr the rate at which a SCU is served in the normal mode 20

rex sc f i po the rate at which a SCU is served in the power boost mode 10

rex wc mcr the rate at which a WCU is served by the macro-cell 0.2

rex nr the rate at which a near user is served in the normal mode 15

rex po the rate at which a near user is served in the power boost mode 22

Table 10.2: Parameters related to the rates of the activities. The unit of time is a second.

1. rex wc f i nr < rex wc f i po and rex sc f i nr < rex sc f i po: the femto-cell serves its

users at a lower rate in the power boost mode compared to the normal mode.

2. rex wc f i nr < rex sc f i nr and rex wc f i po < rex sc f i po: a femto-cell serves WCUs

at a lower rate than SCUs.

3. rex nr < rex po: near users are served at a higher rate in the power boost mode

compared to the normal mode.

4. rex wc mcr is significantly smaller than other types of communication. This means

that LDCs take longer to terminate.

The above observations are in compliance with the model in [43].

10.3.2.8 State Vector

We define the state vector ξξξnet = 〈 ξξξn u , ξξξs 1 , ξξξw 1 , ξξξs 2 , ξξξw 2 , ξξξ f 1 , ξξξ f 2 , ξξξmcr 〉 for

capturing the state of the model. The sub-vectors which compose ξξξnet are:

1. ξξξn u = 〈ξn proc , ξn exch〉: captures the state of the near users.
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2. For i ∈ {1,2}, ξξξs i = 〈ξs i proc , ξs i exch〉: captures the state of SCUs close to

femto-cell i.

3. For i ∈ {1,2}, ξξξw i = 〈 ξw i proc , ξw req f i , ξw wait f i , ξw exch f i , ξw i req mcr ,

ξw i wait mcr , ξw i exch mcr 〉 : captures the states of the WCUs around femto-cell i.

4. For i ∈ {1,2}, ξξξ f i = 〈 ξFG i idle , ξFG i check , ξFG i acc , ξFG i re j , ξWCUQ i 0 ,

ξWCUQ i 1 , ξFSCCH i 〉 : captures the states of the components within femto-cell i.

Note that each femto-cell can only serve at most one WCU. Thus, WCUQ has

only two states WCUQ0 and WCUQ1.

5. ξξξmcr = 〈 ξMG idle , ξMG check , ξMG acc , ξMG re j , ξLDCQ 0 , ξLDCQ 1 , ξNUCH 〉 : cap-

tures the states of the components within the macro-cell.

The state vector ξξξnet has 27 state variables in total.

10.3.2.9 Categorising Groups into being Small and Large

The set of groups in the model is G(net):

G(net) = { Near users ,
users at femto-cell 1︷ ︸︸ ︷
U s 1 ,U w 1 ,

users at femto-cell 2︷ ︸︸ ︷
U s 1 ,U w 1 ,

macro−cell︷ ︸︸ ︷
M Gateway , LQ , NCH ,

F 1 Gateway ,WQ 1 , FCH 1︸ ︷︷ ︸
femto-cell 1

, F 2 Gateway ,WQ 2 , FCH 2︸ ︷︷ ︸
femto-cell 2

} (10.9)

We define the partition ∆G = {Gs(net) , Gl(net)} where Gs(net) is:

Gs(net) = {U w 1 ,U w 1 , M Gateway , LQ , F 1 Gateway ,

WQ 1 , F 2 Gateway ,WQ 2 , NCH , FCH 1 , FCH 2 } (10.10)

and Gl(net) is:

Gl(net) = {Near users ,U s 1 ,U s 2} (10.11)

Our large groups correspond to users near to the macro-cell and SCUs close to the

femto-cells. Using ∆G , the state vector is divided as ξξξ = 〈ξξξs
, ξξξ

l〉 where ξξξ
s:

i∈{1,2} : ξξξ
s
= 〈 ξw i proc , ξw req f i , ξw wait f i , ξw exch f i , ξw i req mcr ,ξw i wait mcr ,

ξWCUQ i 1 , ξWCUQ i 0 , ξw exch mcr , ξFG i idle , ξFG i check , ξFG i acc , ξFG i re j ,

ξMG idle , ξMG check , ξMG acc , ξMG re j , ξLDCQ 0 , ξLDCQ 1 , ξFSCCH i , ξNUCH 〉 (10.12)



10.4. Model Analysis 241

captures the state of the small groups in Gs(net), and

i ∈ {1,2} ξξξ
l
= 〈 ξn proc , ξn exch , ξs i proc , ξs i exch 〉 (10.13)

captures the state of the large groups in Gl(M).

10.3.2.10 Initial state

We assume that the system starts from the initial state where no user is being served

in the system; SCUs are in state Us i proc; WCUs are in state Uw i proc; near users are

in state Un proc; the femto-cells’ gateways are in state FGidle; WCUQs are in state

WCUQi 0; the macro-cell’s gateway is in state MGidle; and finally, the LDCQ is in

state LDCQ0.

10.4 Model Analysis

In our model, there are two WCUs around each femto-cell whilst each femto-cell has

the capacity of serving at most one WCU at any given time. A LDC is activated

when one WCU is already being served by a femto-cell, the second WCU arrives, gets

rejected by the femto-cell and is accepted by the macro-cell. The associated change

of mode (from normal to power boost) causes a deterioration of the femto-cell’s local

connections and a sharp increase in ξs 1 exch and ξs 2 exch (the number of SCU waiting to

exchange data with their femto-cell). This also causes a decrease in ξn exch (the number

of near users exchanging data with the macro-cell). These fluctuations are shown in

Fig. 10.13 and 10.14, which show two sample trajectories of the system. In these

figures, particularly note the changes in LDCQ (top left figure) and the corresponding

alterations in ξs 1 exch, ξs 2 exch and ξn exch. The sharp drops in ξn exch are correlated to

the activation of LDCs, which simultaneously, causes ξs 1 exch, ξs 2 exch to experience

higher values. The termination of the LDCs has the reverse effect.

We performed a exploratory analysis using the method of stochastic simulation

and obtained the results shown in Fig. 10.15 and 10.16, related to variables ξs 1 exch

and ξn exch. Fig 10.15A shows the probability distribution Pt(ξs 1 exch) for t = 20.

Here, note the heavy tail towards the right, which corresponds to values that ξs 1 exch

takes in the occasional power boost mode. In Fig. 10.15B, we present the proba-

bility masses that each of the operational modes separately contribute to the distri-
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bution Pt(ξs 1 exch). Transforming this distribution to the conditional form, we ob-

tain Pt(ξs 1 exch | LDCQ0 ) and Pt(ξs 1 exch | LDCQ1 ), the conditional probability of

ξs 1 exch given each of the operational modes. These are shown in Fig. 10.15C and

10.15D. We derived similar measures for the state variable ξn exch also at t = 20, which

are shown in Fig 10.16A, 10.16B, 10.16C and 10.16D. Our exploratory evaluation

shows that the analysis method used for this model is required to capture the random

activation and termination of LDCs and also, the distinct features of the distributions

Pt(ξs 1 exch), Pt(ξs 2 exch) and Pt(ξn exch).

Performance Evaluation Questions

Given the behaviour observed in Fig. 10.13 and 10.14, we aim to investigate the fol-

lowing questions in our performance evaluation:

1. The probability of having active WCU connection within a femto-cell.

2. The transient probability of having active LDCs within the network.

3. The transient probability of a WCU being rejected by its local femto-cell.

4. The transient probability of a WCU being rejected by both its local femto-cell

and the macro-cell.

5. The impact of the activation and termination of LDCs on near users (the state

variable ξn exch).

6. The impact of the activation and termination of LDCs on SCUs (the state variable

ξs 1 exch and ξs 2 exch).

Due to the symmetry of the femto-cells in our model, the corresponding state vari-

ables related to two different femto-cells have the same behaviours. For instance, the

state variable ξWCUQ 1 0 related to the first femto-cell has the same probability distri-

bution as ξWCUQ 2 0, related to the second femto-cell. Furthermore, the users of these

femto-cells also have identical evolutions. For instance, the state variable ξs 1 exch re-

lated to the SCUs around the first femto-cell has the same evolution as ξs 2 exch, which

is related to SCUs near the second femto-cell. To save some space, we present the

state variables and their analysis results with an index i ∈ {1,2}, which refers to the

femto-cell they belong to.
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We apply our analysis of conditional moments of up to the second order to this

model. The results will be illustrated in the next sections.

10.4.1 Aggregation

Our model satisfies the two conditions that are required by our aggregation method.

First, the probability of the femto-cell and macro-cell channels being idle is close to

zero as SCUs and near users introduce continuous demand. Second, the users under-

take the data exchanges passively and the rate is decided by the channel components

which are within small groups.

Our aggregation process has the following steps. Using the partition ∆G on the

group label, we form the partition ∆A = {
→
A∗s (Net),

→
A∗sl (Net),

→
A∗l (Net)} over the model’s

set of action types
→
A∗ (Net) where we have:

→
A∗s (Net) = { proc , req f i , f i acc , f i re j , ex wc f i po , ex wc f i nr ,

req mcr , mcr acc , mcr re j , ex wc mcr , wcuqi ne , wcuqi e ,

wcuqi f ull , ldcqe , ldcqne , ldcq f ull }
→

A∗sl (Net) = { ex nr , ex po , ex sc f i nr , ex sc f i po }
→
A∗l (Net) = { proc }

Then, we apply the aggregation reduction rules (shown in Eq. 4.3) to derive the reduced

system equation of the aggregated model:

Net def
= MC BC

B

[ (
FC 1 BC

L1

(
U w 1{Uw proc[nw 1] }

) )
||

(
FC 2 BC

L2

(
U w N f {Uw proc[nw 2] }

) ) ]
(10.14)

Next, we generate the aggregated state space Dagg
Net by applying the count-oriented

semantics (Sec. 4.3.2) to the reduced system equation. Finally, the underlying C-K

equations of Dagg
Net are constructed and solved to find the transient evolution of Pt(βββ),

βββ ∈ Dagg
Net , which denotes the model’s marginal probability distribution over ξξξ

s.

The distribution Pt(βββ) is sufficient for answering the first four performance ques-

tions presented on Page 242. The probability of having at least one WCU being served

by femto-cell i ∈ {1,2} is calculated by summing over the states where WCUQi =

WCUQi 1. In Fig 10.17A, the evolution of Pt(WCUQ i =WCUQi 1) is illustrated. In
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(D) The conditional distribution of ξs 1 exch

given that there is at least one active LDC.

Figure 10.15: The behaviour of ξs 1 exch (or ξs 2 exch), i.e. SCUs exchanging with their

femto-cell, at t = 20 derived using 300,000 runs of stochastic simulation.
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(D) The conditional distribution of ξn exch

given that there is at least one active LDC.

Figure 10.16: The behaviour of ξn exch, i.e. near users exchanging with the macro-cell,

at t = 20 derived using 300,000 runs of stochastic simulation.
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Fig 10.17B, we consider the second question; what is the probability of having active

LDCs within the network? Similarly, this can be answered by summing the probabili-

ties of states where LDCQ = LDCQ1. The figure also shows the probability of being in

each of the normal and power boost operational modes1. The third question essentially

concerns the calculation of the loss ratio with respect to WCUs. Let E f denote the

probabilistic event of the rejection of a WCU from its femto-cell. The probability of

E f can be calculated by the ratio of the throughput observed for action f i acc to that

of the action f i re j. Moreover, let Em denote the probabilistic event of the rejection of

a WCU from the macro-cell. Similarly, the probability of E f can be calculated by the

ratio of the throughput observed for action mcr acc to that of the action mcr re j. The

probability distribution Pt(βββ) was sufficient to calculate the required throughputs and

the evolution of Pt(E f ) and Pt(Em) are respectively shown in Fig 10.17C and 10.17D.

The model’s complete state space has 226 states. This precluded the derivation of

the above probability measures by the analysis of this state space. By comparison, the

aggregated state space has only 112 states. This highlights the advantage of using the

aggregation for the analysis of the model’s small groups.

Now we proceed to consider the fourth and fifth performance questions on Page 242.

In order to answer them, we apply the analysis of conditional expectation and second-

order conditional moments. These will be presented in the next two sections.

10.4.2 Analysis of the Conditional Expectations

By the analysis of conditional expectations, we find the expectations of the conditional

distributions Pt(ξ | βββ), ξ∈ ξξξ
l
= 〈ξn proc , ξn exch , ξs 1 proc , ξs 1 exch , ξs 2 proc , ξs 2 exch〉,

βββ ∈ Dagg
Net . The state vector ξξξ

l has six state variables. The aggregated state space

Dagg
Net has 112 states. Therefore, the analysis of conditional expectation gives rise to

6× 112 = 672 conditional expectation variables of the form Et [ξ | βββ ]. To find their

evolution, a system of DAEs is constructed where, for each conditional variable, one

equation is formed of the format of Eq.(6.39). The Matlab code which captures this

system of equations was generated from the model and can be found in the online

supplements at [77]. Due to the length of these equations, we do not present them

here. Using the model’s initial state described on Page 241, the initial conditional

1Hereafter, the event that LDCQ = LDCQ0 is shortly written as LDCQ0. We use similar shorthand
for other components.
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Figure 10.17: The results of the analysis of the aggregated model.
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expectations (initial values of the DAEs) were obtained approximately at tinit = 0.1,

using the approximate initial value extraction method (Sec. 8.4.3). This point of time

is sufficiently long so that ∀ βββ ∈ Dagg
Net : Ptinit (βββ) 6= 0. The transient solution was then

obtained by using the Matlab DAE solver for our time period of interest tinit ≤ t ≤ 20.

The solution related to all 672 states is available at [77].

In Fig. 10.15 and 10.16, we showed that one key cause of ξξξ
l exhibiting a highly

stochastic behaviour is the switching between the normal and power boost operational

modes. The conditional distributions concerning these modes, Pt(ξn exch | LDCQ0 ),

Pt(ξn exch | LDCQ1 ), Pt(ξs i exch | LDCQ0 ), Pt(ξs i exch | LDCQ1 ) were shown in

Fig. 10.15C, 10.15D, 10.16C and 10.16D. The conditional expectations Et

[
ξξξ

l | βββ
]
:

βββ ∈ Dagg
Net related to the aggregated states, and the probability distribution over the ag-

gregated states are sufficient information to calculate the conditional expectations of

these distributions related to the modes. Let the normal operational mode be denoted

by Mnr and formally defined as a sub-set of states in Dagg where LDCQ = LDCQ0:

Mnr = { βββi ∈ Dagg
Net | LDCQ = LDCQ0 in βββi }. Recall that LDCQ is within the small

groups and therefore, Mnr can be efficiently found by a reachability analysis of the

aggregated state space. Similarly, the power boost mode is denoted by Mpo = { βββi ∈
Dagg

Net | LDCQ = LDCQ1 in βββi }. The conditional expectation Et [ξ | LDCQ0 ], ξ ∈ ξξξ
l

is found by:

Et [ξ | LDCQ0 ] = ∑
〈ξξξs

i ,ξξξ
l
i〉∈D , ξ∈ξξξ

l
i

ξ ·Pt(〈ξξξs
i , ξξξ

l
i〉 | LDCQ0 ) =

∑
〈ξξξs

i ,ξξξ
l
i〉∈D , ξ∈ξξξ

l
i

ξ ·Pt(〈ξξξs
i , ξξξ

l
i〉,LDCQ0)

Pt(LDCQ0)

=

∑
〈βββ ,ξξξl

i〉∈Yβββi
, ξ∈ξξξ

l
i ,βββ∈Dagg

Net

ξ ·Pt(〈βββ , ξξξ
l
i〉,LDCQ0)

Pt(LDCQ0)
=

∑
〈βββi ,ξξξ

l
i〉∈Yβββi

ξ∈ξξξ
l
i ,βββ∈Dagg

Net ,LDCQ=LDCQ0 in βββ

ξ ·Pt(ξξξ
l
i | βββ) ·Pt(βββ)

Pt(LDCQ0)

=

∑
βββ∈Mnr

conditional expectation︷ ︸︸ ︷
Et [ξ | βββ ] ×

Pt(βββ) , βββ∈Dagg
Net , derived by analysis of Dagg

Net︷ ︸︸ ︷
Pt(βββ)

Pt(LDCQ0)︸ ︷︷ ︸
derived by analysis of Dagg

Net

(10.15)

Similarly, the conditional expectation Et [ξ | LDCQ1 ], ξ ∈ ξξξ
l is found by:

Et [ξ | LDCQ1 ] =

∑
βββ∈Mnr

Et [ξ | βββ ] × Pt(βββ)

Pt(LDCQ1)
(10.16)
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Conditional expectation MCM Simulation Error (%)

LDCQ = LDCQ0
E [ξn exch |LDCQ0 ] 97.83 95.111 1

E [ξn exch |LDCQ1 ] 51.06 45.769 10

LDCQ = LDCQ1
E [ξs i exch |LDCQ0 ] 10.65 10.204 4

E [ξs i exch |LDCQ1 ] 19.618 18.734 4

Table 10.3: Comparison between Et [ξ | LDCQk ], ξ ∈ ξξξ
l , k ∈ {0,1} obtained by the

method of conditional expectation and the same measures derived using 300000 runs

of stochastic simulation. The simulations were done using PEPA Eclipse plug-in [93].

Using Eq.(10.15) and (10.16) we derived the evolution of the conditional expec-

tations Et [ξξξ | LDCQk ], ξ ∈ ξξξ
l , k ∈ {1,2}. The results are shown in Fig 10.18A and

10.19A. To check the accuracy of our result, we measured the same expectations using

stochastic simulation. This involved running 300,000 simulation which took nearly 3

days on a 2.8 GHz machine. The result of this comparison is shown in Table 10.3.

The comparison shows that the MCM solution has acceptable accuracy; the maximum

error was 10% for Et [ξn exch | LDCQ1 ] for t = 1.5. As stated, the tool we have for the

derivation of MCM equations is in its early stages of development and we conjecture

that the discrepancies seen in solution will be resolved in the near future. The condi-

tional expectations were calculated significantly faster in approximately 20 minutes.

10.4.3 Analysis of Second-Order Conditional Moments

10.4.3.1 Moments

In this analysis, we derive the variances and covariances of the conditional distribu-

tions Pt(ξξξ
l | βββ) for ξξξ

l
= 〈ξn proc , ξn exch , ξs 1 proc , ξs 1 exch , ξs 2 proc , ξs 2 exch〉 and βββ∈

Dagg
Net . Each second-order conditional moment MI(βββ) is identified by a moment vector

I= 〈I1, I2, I3, I4, I5, I6〉, where Ii : 0≤ i≤ 6 are positive integers and I1+I2+ · · ·+I6 = 2.

According to Lemma 8.3.4, the equation I1 + I2 + · · ·+ I6 = 2 has
(2+6−1

6−1

)
= 42 solu-

tions. The aggregated state space has 112 states. Therefore, the model gives rise to

42×112 = 4704 second-order conditional moments. The evolution of these moments

is captured by a system of DAE where for each MI one equation of the format of

Eq.(8.34) is constructed.

Due to the time constraints of this project, our tool which automatically gener-



252Chapter 10. Application of the Method of Conditional Moments to a Two-Tier Wireless Network

0 5 10 15 20 25 30

0
5

10
15

20

Conditional expectation

T
im

e

E
t [ξ

s
i
ex

ch |L
D
C
Q

0
]-Sim

ulation
E
t [ξ

s
i
ex

ch |L
D
C
Q

0
]-M

C
M

E
t [ξ

s
i
ex

ch |L
D
C
Q

1
]-Sim

ulation
E
t [ξ

s
i
ex

ch |L
D
C
Q

1
]-M

C
M

20

(A
)

C
onditional

expectations
of

ξ
s

i
exch ,

i∈
{1

,2}
given

thatLD
C

Q
=

LD
C

Q
0

orLD
C

Q
=

LD
C

Q
1

.

0 5 10 15 20 25 30

0
0.02

0.04
0.06

0.08
0.1

0.12
0.14

Population

Probability

P
t=

20 (ξs
iexch =

K|LD
CQ

1 ),0≤
K≤

30
P
t=

20 (ξs
iexch =

K|LD
CQ

0 ),0≤
K≤

30

27

(B
)

T
he

distribution
of

ξ
s

i
exch

in
the

conditional
form

at

tim
e

20.

Figure
10.18:

The
evolution

ofE
t [

ξ
s

i
exch |LD

C
Q

k ],
k
=

1,2,and
com

parison
betw

een
E

t=
20 [

ξ
s

i
exch |LD

C
Q

k ]derived
by

M
C

M
and

proba-

bility
distribution

P
t=

20 (
ξ

s
i

exch |LD
C

Q
k )

w
hich

is
obtained

by
com

putationally
expensive

stochastic
sim

ulation.



10.4. Model Analysis 253

05010
0

15
0

20
0

0
5

10
15

20

Conditionalexpectation

T
im

e

E t
[ξ

n
ex

ch
|L
D
C
Q

0
]-
Si
m
ul
at
io
n

E t
[ξ

n
ex

ch
|L
D
C
Q

0
]-
M
C
M

E t
[ξ

n
ex

ch
|L
D
C
Q

1
]-
Si
m
ul
at
io
n

E t
[ξ

n
ex

ch
|L
D
C
Q

1
]-
M
C
M

34

(A
)

C
on

di
tio

na
l

ex
pe

ct
at

io
ns

of
ξ

n
ex

ch
gi

ve
n

LD
C

Q
0

or

LD
C

Q
1

.

05010
0

15
0

20
0

0
0.0

05
0.0

1
0.0

15
0.0

2
0.0

25
0.0

3
0.0

35
0.0

4Population

Pr
ob

ab
ili
ty

P t=
20
(ξ

n
ex

ch
=
K
|L
D
CQ

1
),

0≤
K
≤2

00
P t=

20
(ξ

n
ex

ch
=
K
|L
D
CQ

0
),

0≤
K
≤2

00

32

(B
)

T
he

di
st

ri
bu

tio
n

of
ξ

n
ex

ch
in

th
e

co
nd

iti
on

al
fo

rm
at

tim
e

20
.

Fi
gu

re
10

.1
9:

Th
e

ev
ol

ut
io

n
of

E t
[ξ

n
ex

ch
|L

D
C

Q
k
],

k
=

1,
2,

an
d

co
m

pa
ris

on
be

tw
ee

n
E t

=
20
[ξ

n
ex

ch
|L

D
C

Q
k
]

de
riv

ed
by

M
C

M
an

d
th

e

di
st

rib
ut

io
n
P t

=
20
(ξ

n
ex

ch
|L

D
C

Q
k
)

ob
ta

in
ed

by
co

m
pu

ta
tio

na
lly

ex
pe

ns
iv

e
st

oc
ha

st
ic

si
m

ul
at

io
n.



254Chapter 10. Application of the Method of Conditional Moments to a Two-Tier Wireless Network

ates the DAE system from the model could not be fully developed. Nevertheless,

to show the importance of Eq.(8.34) and in particular the usefulness of second-order

conditional moments, we still derive and present them using the method of stochas-

tic simulation. We are interested in conditional variances VARt [ξn exch |LDCQ0 ],

VARt [ξn exch |LDCQ1 ], VARt [ξscu i exch |LDCQ0 ] and VARt [ξscu i exch |LDCQ1 ] for

tinit ≤ t ≤ 20.

For this analysis, we executed 300,000 simulations runs. Generating this num-

ber of trajectories is necessary as we then obtain conditional expectations and con-

ditional variances that are stable and accurate2. Using the trajectories, the approxi-

mate conditional distributions Pt(ξ | LDCQ0 ) and Pt(ξ | LDCQ1 ) were constructed.

From this distribution, we derived the conditional expectations Et
[

ξ2 | LDCQ0
]

and

Et
[

ξ2 | LDCQ1
]
, and the conditional expectations Et [ξ | LDCQ0 ] and Et [ξ | LDCQ1 ].

These are substituted in:

∀ ξ ∈ ξξξ
l
, k ∈ {1,2} : VAR [ξ |LDCQk ] = Et

[
ξ

2 | LDCQk
]
−
(
Et [ξ | LDCQk ]

)2

to find the conditional variances VARt [ξ |LDCQk ]. As a final step, we also derived

the conditional standard deviations σt [ξ |LDCQ0 ] and σt [ξ |LDCQ1 ], which are the

square root of the conditional variances. The results of this analysis are shown in

Fig. 10.20.

10.4.3.2 Confidence Bounds

Assuming that the distributions Pt(ξ | LDCQ0 ) and Pt(ξ | LDCQ1 ) are uni-modal and

close to being normally distributed, we are able to use the above conditional expecta-

tions and standard deviations to calculate the distributions’ 95% confidence bounds:

P

(
Et [ξ | LDCQ0 ]−2σt [ξ |LDCQ0 ]≤

(
ξ | LDCQ0

)
≤

Et [ξ | LDCQ0 ]+2σt [ξ |LDCQ0 ]

)
≈ 95%

P

(
Et [ξ | LDCQ1 ]−2σt [ξ |LDCQ1 ]≤

(
ξ | LDCQ1

)
≤

Et [ξ | LDCQ1 ]+2σt [ξ |LDCQ1 ]

)
≈ 95%

2Recall that the calculation of a variance depends on the expectation: VAR(X) = E(X2)− (E(X))2.
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Figure 10.20: The result of the analysis of second-order moment performed using the

method of stochastic simulation.
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The confidence bounds related to the dynamics of near users are shown in Fig. 10.21

and 10.22. In these figures, we are also comparing the confidence bounds at t = 20

with the distributions Pt=20(ξn exch | LDCQk ). Similarly, in Fig 10.23 and 10.24 we

present the evolution of the bounds calculated for far SCU users and compare them

with the distribution Pt=20(ξs i exch | LDCQk ). In these graphs, all values shown are

derived using stochastic simulation.

10.4.4 Concluding Remarks

The conditional moments derived in the last two sections capture key aspects of the

network’s behaviour. The expectations Et [ξ | LDCQ0 ] and Et [ξ | LDCQ1 ] are consid-

erably different, which implies that the system’s performance is sensitive to the acti-

vation of LDCs. It is possible to make this judgment because in our analysis we have

distinguished between the different configurations that the small groups may take and

have calculated one expected behaviour for each configuration. Moreover, the combi-

nation of the conditional expectations and confidence bounds enable us to obtain a rich

representation of the distributions Pt(ξ), ξ ∈ {ξn exch,ξs i exch}. For any ξ, we are now

capturing the values within its domain where the probability mass is clustered given

that the system may perform in any mode M ∈ {Mnr,Mpo}. This highlights the fact

that the MCM analysis offers a higher degree of faithfulness compared to the fluid flow

approximation, where for all state variables one set of moments is derived regardless

of the system’s distinct operational modes.

10.5 Summary

In this chapter, we presented a case study where we applied the analysis of conditional

moments to the model of a wireless network built based on the two-tier architecture.

We briefly reviewed the main features of the architecture and its benefits in terms

of interference reduction and energy efficiency. We showed that the system exhibits

two modes of operation with distinct performance characteristics. This gave rise to the

evaluation requirement that the system’s behaviour must be studied in both modes, and

also that the impact of mode alternations on users should be captured.

Then we presented our PEPA model. The compositionality of PEPA aided the con-
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struction of the model from the bottom up and helped us to cope with the complexity

of the components’ interactions. We categorised the model’s groups as being either

small or large. The small groups were related to the components within the network

infrastructure and users that appeared in small populations. The large groups were re-

lated to near users and those strongly coupled to the femto-cells who appeared in large

populations.

Next, we analysed the model. First, we applied our aggregation method. We could

answer key performance questions regarding the operation of the network (eg. the

probability of having active LDCs within the network) by analysing the aggregated

state space. Second, we applied the method of conditional expectations. This enabled

us to study the expected behaviour of users in large groups in each of the system’s op-

erational modes. Third, we applied the method of higher-order conditional moments to

obtain the conditional variances. This means that for each operational mode, in addi-

tion to the users’ expected evolution, we also have a measure of the variability of their

stochastic behaviour around the expectation. We showed that the conditional expecta-

tions and variances can be combined to provide conditional confidence bounds. These

are particularly useful for capturing the shape of the marginal probability distribution

related to the large groups.





Chapter 11

Conclusions

11.1 Thesis Summary

This thesis has explored the performance evaluation of the class of large-scale resource-

bound computer and communication systems. Conceptually, LSRB systems are those

in which components are categorised into resources and resource users, with dynamics

where large populations of resource users are handled by a significantly smaller pop-

ulation of resources. Due to the conceptual generality, many realistic systems can be

considered to fit in this class.

The performance evaluation methodology of interest is quantitative modelling. We

argued that PEPA is an appealing option for model construction. In particular, the

compositionality feature enables us to deal with systems that have many different types

of components with complex interactions. LSRB systems are mapped to LSRB PEPA

models.

We showed that the method used for the analysis of LSRB models must respect two

requirements: efficiency and faithfulness. Efficiency means that the problem of state

space explosion is avoided and the solution is obtained in a timely manner. Faithful-

ness means that the method’s output should reveal key aspects of a system’s stochastic

behaviour, covering its performance within both optimal and sub-optimal situations.

Although the PEPA framework is a powerful tool for the construction of LSRB mod-

els, we showed that none of the existing analysis methods, i.e. exact Markovian anal-

ysis, stochastic simulation and fluid flow analysis, simultaneously support the above

requirements. Thus, we developed four new analysis techniques that provide a more
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robust treatment for LSRB PEPA models.

In Chapter 4 we presented an aggregation method. The method allows us to ex-

tract the behaviour of a system’s resources from the complete model and understand

how those components behave, whilst abstracting away from their interactions with

resource users. The aggregation is directly applied to the model and gives us the ag-

gregated state space, which can be efficiently analysed to obtain a probability distri-

bution over the configurations that the system’s resources experience. The behaviour

of resources is obtained in full detail, enabling further investigations such as detecting

the resources’ optimal and sub-otimal modes of operations.

In Chapter 5 we presented an algorithm useful for LSRB models that have dynam-

ics happening on distinct slow / fast time scales. For a given model, our algorithm

efficiently detects which actions belong to the slow time scale and which ones occur

on the fast time scale. Our algorithm is embedded within a well-known time-scale

decomposition solution method which analyses the models by taking as input the slow

/ fast categorisation that our algorithm provides.

In Chapter 6 we presented the method of conditional expectations. Assuming that

the configurations of the resources are captured by the aggregated state space, here we

derive the expected behaviour of resource users for each of the system’s significant

modes of operation. The motivation is to avoid a naive and fallible performance eval-

uation where a LSRB system’s performance is only evaluated in terms of its average

behaviour whilst abstracting from intrinsic noise. The conditional expectations enable

us to take into account that resources usually have different operational modes and the

system’s behaviour needs to be studied for each of those separately. The method de-

rives the conditional expectations by solving a system of differential equations directly

derived from the model. The number of equations is independent of the population pa-

rameters of resource users. This enables the method to handle models with massively

large user populations.

In Chapter 7 we applied the method of conditional expectations to a simple client-

server model. The system we considered had a multi-modal behaviour and depending

on the number of servers currently broken, the clients experienced different service

throughputs from the servers. Using the conditional expectation, we derived the ex-

pected behaviour of the users for each of the operational modes. The impact of the

server break-downs could be quantitatively captured.
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In Chapter 8 we presented the method of higher-order conditional moments. The

method enables us to build a richer representation of the behaviour of resource users; in

addition to the conditional expectation, for each configuration of the resources we also

derive measures such as conditional variance and conditional skewness. We showed

that by combining the aggregation, conditional expectations and higher-order condi-

tional moments, we can obtain faithful representations of the model’s underlying prob-

ability distributions and capture important phenomena such as multi-modality, which

could not be captured by the methods previously available in the PEPA framework. In

Chapter 9, we showed the usefulness of higher-order moments in the case of our client-

server example. Here, the moments showed us the variability of the users’ behaviour

in each of the servers’ operational modes.

We think it is worth noting that our analysis methods support transparency. This

means that they are integrated into the PEPA language, and their application requires

no specific insight into the tedious underlying algebra. Thus, domain experts of various

fields can readily take advantage of the analysis methods once they create their models

in PEPA. This was particularly shown in the case study of Chapter 10, where we con-

sidered the evaluation of a two-tier wireless network. Once the model was ready, the

aggregation and the method of conditional expectation, could be easily applied. In our

future work, we need to develop a more robust version of our software so that other

types of analyses are also included.

11.2 Future Work

Our future work is divided into two areas. The first is related to the theoretical work

that can improve our newly devised methods. The second is related to introducing our

methods to practical applications which can greatly benefit from using them.

11.2.1 Theoretical Improvements

Accuracy of the Conditional Moments. Our derivation of the conditional moments

relied upon a number of approximation steps. One important one was that the expec-

tation of the minimum of two random variables is replaced by the minimum of their

expectations (Page 120). The approximation is a classic step in moment closure tech-

niques. However, depending on the context it may actually have poor quality. In [51],
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Guenther et al. proposed a heuristic that checks the quality of this approximation for

fluid flow analysis by considering the evolution of state variables. When the quality is

poor, corrections are introduced using higher-order moments. We partly verified their

heuristic in [79]. We think that a similar accuracy detection and correction algorithm

can be developed for the method of conditional moments. Developing the algorithm

requires applying the MCM within some more experiments and carefully examining

the factors that give rise to potential errors.

Relaxing the Restrictions of Aggregation. The analysis methods we devised rely

heavily on lumpability of an input model’s state space with respect to its sub-chains.

In turn, the lumpability depends on a restriction imposed on the actions shared be-

tween the model’s small and large groups; for such actions, the instances within large

groups (resource users) must be passive and the cooperation rate must be determined

by instances within small groups (resources). This way, state variables related to small

groups form the model’s independent variables; those related to large groups are com-

pletely dependent; and consequently, the large groups cannot affect the small ones.

This restriction limits the scope of models that are amenable to our analysis meth-

ods. Nevertheless, we believe that it can be relaxed easily. Our preliminary work on

Chapman-Kolmogorov equations suggests that when the restriction is relaxed, we can

still derive a closed set of equations in which the impact of large groups on small ones

is captured. In such cases, the rate of a shared action will be a function of the state

of resources and the conditional expectations of the large groups. By introducing this

extension, there would be an impact from large groups to small ones and we would be

able to accommodate a wider range of LSRB models.

Reducing the Number of DAEs. When applying the MCM, for each single state

of the aggregated state space we derive one set of equations concerning the conditional

expectation and higher-order moments of large groups given that state. This derivation

is usually too detailed, especially when the number of aggregated states is large. We

are usually interested in the conditional expectations, not related to single aggregated

states, but to the system’s significant modes of operation, which are often defined as

isolated collections of the aggregated states. To derive the conditional moments of a

mode of operation, we form a weighted sum of the conditional moments associated

with the states within. Work needs to be done to investigate if the equations related

to the operational modes could be directly derived without moving to the lower level

of the aggregated states. Intuitively, we might be able to achieve this by considering
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the probability fluxes between the modes. In this way the application of MCM would

generate fewer equations and become more scalable. This line of work originates

from [95] where Tschaikowski and Tribastone proposed a method for aggregating dif-

ferential equations generated by fluid flow analysis.

11.2.2 Practical Directions

Software Tool. We developed some exploratory code for checking the validity of our

analysis methods and in particular, the equations related to the conditional expecta-

tions. The MCM equations have complex structures and the value of the method is

achieved by a fully-fledged tool supporting all aspects of running the method (deriving

the equations and their initial values). One of our topmost priorities for future work is

therefore to enhance our tool and possibly integrate it with PEPA Eclipse plug-in [93].

Our tool should be interactive and provide an easy way for specifying the categorisa-

tion of groups into small and large, and the system’s operational modes of interest.

Risk-Aware Capacity Planning. One interesting venue where we can explore the use

of the MCM is capacity planning (CP). In a CP scenario, we aim to solve an optimisa-

tion problem: given the load from the users, specification of resources and a number

of cost functions, what populations of resources are needed to meet the demand of

the users? In [101] an automated CP method was proposed where the input is a PEPA

model. The analysis method embedded in the tool is fluid flow analysis; for each candi-

date answer its suitability is verified by checking if the expected behaviour of the users

is satisfactory, where the expected behaviour is derived using fluid flow equations. We

think that this tool can be fruitfully extended by incorporating the conditional expec-

tations and higher-order moments. These methods show the users’ behaviour across

all operational modes, including the risky or critical ones. Thus, embedding the MCM

within CP would allow us to check each answer with respect to the behaviour that it

creates across all operational modes. The result is a more conservative CP but one that

may also run faster (as the state space search will be more restricted) and guarantee

system robustness under optimal and sub-optimal situations. The validation of these

advantages is the subject of our future work.

Improved Inference. The models we build in practice contain rate parameters that

are supplied by the modeller. It is often the case that the knowledge about the rates

is incomplete, and they are estimated using the observations made on the real sys-
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tem. One of the methods useful for parameter estimation of stochastic processes is

the moment closure technique [74]. Given a set of observations and a prior distri-

bution over the parameters (our initial / prior belief about the probability of different

parameter values before we see any actual data / observations), the estimation outputs

a posterior distribution that captures how well different parameter values can replicate

the observations. Since the MCM equations can provide a richer representation of the

model’s underlying dynamics, it is interesting to check if using this method will result

in more accurate and realistic parameter estimation. Perhaps the posterior distribution

will become more precise, as the impact of the randomness within small populations is

explicitly preserved. One piece of related work in this direction is [65]. We will leave

the validation of this idea as a future work.
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Appendix A

Chapter 5

A.1 The proof for Construction of the NCD Solution

We show that using Eq. 5.11, the solution leads to a block diagonal RD∗ in which each

R∗I is stochastic.

N

∑
J=1

ord(J)

∑
j=1

r∗iI jJ

=
ord(I)

∑
j=1

r∗iI jI +
N

∑
J=1,J 6=I

ord(J)

∑
j=1

r∗iI jJ

=
ord(I)

∑
j=1

r∗iI jI

=
ord(I)

∑
j=1

riI jJ +
riI jJ

ord(I)

∑
j=1

riI jJ

N

∑
J=1,J 6=I

ord(J)

∑
j=1

riI jJ

=

=
ord(I)

∑
j=1

riI jJ +

ord(I)

∑
j=1

riI jJ

ord(I)

∑
j=1

riI jJ

N

∑
J=1,J 6=I

ord(J)

∑
j=1

riI jJ =

=
ord(I)

∑
j=1

riI jJ +
N

∑
J=1,J 6=I

ord(J)

∑
j=1

riI jJ =
N

∑
J=1

ord(J)

∑
j=1

riI jJ = 1
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A.2 Calculating the Probabilities of Cross-block Transi-

tions

Let i be a state in BI and j a state in BJ . Assuming that XD is currently in i, then, after

the next jump it will be in j with probability pi j. Therefore, the likelihood of XD ⊂ J

after the next jump from state i is:

P
(
XD ⊂ J

)
=

ord(J)

∑
j=1

pi j.

The joint probability of XD ⊂ I and after one step, XD ⊂ J is:

P
(

XD(t +1)⊂ J ∧ XD(t)⊂ I
)
=

ord(I)

∑
i=1

πiI

(
ord(J)

∑
j=1

piI jJ

)
(A.1)

The conditional probability of XD(t +1)⊂ J given that XD(t)⊂ I can be obtained by:

p′IJ = P
(
XD(t +1)⊂ J | XD(t)⊂ I

)
=

P
(
XD(t +1)⊂ J∧XD(t)⊂ I

)
P(XD(t)⊂ I)

=
∑

ord(I)
i=1 πiI

(
∑

ord(J)
j=1 piI jJ

)
θI

=
ord(I)

∑
i=1

piI ×
ord(J)

∑
j=1

piI jJ

Obtaining p′IJ , I,J = 1 · · ·N allows us to construct the macro DTMC which captures

the evolution of XD with respect to [BI]
N
I=1.



Appendix B

Conditional Expectations

B.1 Expectation of a Linear Function of a Random Vari-

able

Let X represent a random variable and F : X → R be a linear function over X . We

show:

E[F(X)] = F(E[X ]) (B.1)

Proof. We start by expanding F(X) around E[X ] using the Taylor expansion.

F(X) = F(E[X ])+
∂ F(E[X ])

∂ X
(X−E[X ]) (B.2)

Since F is a linear function, the terms above the first-order derivatives are zero. We

now present the calculation for E[F(X)]:

E[F(X)] = ∑
X

F(X) ·P(X) (B.3)

We substitute Eq.(B.3) in Eq.(B.2) to derive:
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E[F(X)]

= ∑
X

(
F(E[X ])+

∂ F(E[X ])

∂ X
(X−E[X ])

)
·P(X)

= ∑
X

(
F(E[X ]) ·P(X)

)
+ ∑

X

(
∂ F(E[X ])

∂ X
(X−E[X ]) ·P(X)

)

= F(E[X ]) +
∂ F(E[X ])

∂ X
·
(
∑
X
(X−E[X ]) ·P(X)

)

= F(E[X ]) +
∂ F(E[X ])

∂ X


(
∑
X

X ·P(X)︸ ︷︷ ︸
E[X ]

)
−E[X ] ·

(
∑
X
P(X)︸ ︷︷ ︸
1

)


= F(E[X ]) (B.4)
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B.2 Proof of Proposition 6.4.2 - Initial Conditional Ex-

pectations

Consider an aggregated state γγγ ∈ Dagg
z . We start by considering Eq.(B.5), the equation

that captures the evolution of Et

[
ξξξ

l | γγγ
]
.

Pt(γγγ) ·
d
(
Et

[
ξξξ

l | γγγ
])

d t
+

d
(
Pt(γγγ)

)
d t

· Et

[
ξξξ

l | γγγ
]
≈

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

Pt(γγγ) · rα(γγγ) ·Et

[
ξξξ

l | γγγ
]

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·Et

[
ξξξ

l | γγγ−V s
α

]

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

Pt(γγγ−V s
α) · rα(γγγ−V s

α) ·V l
α

+ ∑
α∈
→
A∗l(M)

Pt(γγγ) · V l
α · rα

(
Et

[
ξξξ

l | γγγ
])

(B.5)

First, using the reverse version of the product rule for differentiation, we transform the

left hand side to obtain:

Pt(γγγ) ·
d
(
Et

[
ξξξ

l | γγγ
])

d t
+

d
(
Pt(γγγ)

)
d t

· Et

[
ξξξ

l | γγγ
]
=

d
d t

(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
] )

(B.6)
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We substitute Eq.(B.6) as the left hand side in Eq.(B.5). Now, we differentiate Eq.(B.5)

to the (∇γγγ−1)-th order:

d∇γγγ

(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
])

d t∇γγγ

=

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·
d(∇γγγ−1)

(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
])

d t(∇γγγ−1)
I

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·

d(∇γγγ−1)
(
Pt(γγγ−V s

α) ·Et

[
ξξξ

l | γγγ−V s
α

])
d t(∇γγγ−1)

II

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·V l

α ·
d(∇γγγ−1) (Pt(γγγ−V s

α))

d t(∇γγγ−1)
III

+ ∑
α∈
→
A∗l(M)

V l
α ·

d(∇γγγ−1)
(
Pt(γγγ) · rα

(
Et

[
ξξξ

l | γγγ
]))

d t(∇γγγ−1)
IV (B.7)

In Eq.(B.7), we have expressions that consist of differentiations over products. The

Leibniz rule [31] is used to expand these terms. According to this rule, for any two

functions f and g, both with at least m derivatives:

dm ( f ×g)
d tm =

m

∑
k=0

(
m
k

)
dk ( f )

d tk ×
d(m−k) (g)

d t(m−k)
(B.8)

First, we apply the rule on the left hand side to have:

d∇γγγ

(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
])

d t∇γγγ

=
∇γγγ

∑
k=0

(
∇γγγ

k

)
· d

k (Pt(γγγ))

d tk ·
dk
(
Et

[
ξξξ

l | γγγ
])

d tk (B.9)

Evaluating at t = t0, given that γγγ has distance ∇γγγ, for k= 0,1, · · ·(∇γγγ−1): dk (Pt(γγγ))
d tk

∣∣∣
t0
= 0

and when k = ∇γγγ:
dk (Pt(γγγ))

d tk

∣∣∣
t0
6= 0. Therefore, the left hand side is reduced to:

d∇γγγ

(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
])

d t∇γγγ

∣∣∣
t0
=

d(∇γγγ) (Pt(γγγ))

d t(∇γγγ)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ
]

(B.10)

Note here that on the left hand side, the term containing the conditional expectation

Et0

[
ξξξ

l |γγγ
]

is preserved. Now, let us consider the right hand side and apply the rule

again.
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By applying the rule on the expression marked by (I) (related to the outward tran-

sitions enabled by γγγ), we have:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·
d(∇γγγ−1)

(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
])

d t(∇γγγ−1)
=

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ)
(∇γγγ−1)

∑
k=0

(
(∇γγγ−1)

k

)
· d

k (Pt(γγγ))

d tk ·
d(∇γγγ−1−k)

(
Et

[
ξξξ

l | γγγ
])

d t(∇γγγ−1−k)
(B.11)

When evaluated at t = t0, for k = 0,1, · · · ,(∇γγγ− 1) : dk (Pt(γγγ))
d tk

∣∣∣
t0
= 0. Therefore, in

Eq.(B.11) and the second summation, all terms reduce to zero:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·
d(∇γγγ−1)

(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
])

d t(∇γγγ−1)

∣∣∣
t0
= 0 (B.12)

Next, we consider the term marked by (II) (related to the inward transitions into γγγ).

Applying the Leibniz rule, we get:

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·

d(∇γγγ−1)
(
Pt(γγγ−V s

α) ·Et

[
ξξξ

l | γγγ−V s
α

])
d t(∇γγγ−1)

=

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·

(∇γγγ−1)

∑
k=0

(
∇γγγ−1

k

)
dk (Pt(γγγ−V s

α))

d tk ·
d(∇γγγ−1−k)

(
Et

[
ξξξ

l | γγγ−V s
α

])
d t(∇γγγ−1−k)

(B.13)

In this equation, the first summation is over the action types α which enable the transi-

tions γγγ
′ → γγγ , γγγ

′
= γγγ−V s

α, and the second summation is over the expressions in terms

of the first (∇γγγ− 1) derivatives of Pt(γγγ
′
). There is a one-to-one relation between the

action types and the enabling states. This equation can be simplified by categorising

the enabling states with respect to their distances.

If ∇γγγ ≤ ∇
γγγ
′ , then: (∇γγγ− 1) ≤ (∇

γγγ
′ − 1). Consequently, for k = 0, · · · ,(∇γγγ− 1):

dk
(
Pt(γγγ

′
)
)

d tk |t0 = 0. This means that all action types which enable inward transitions

into γγγ from γγγ
′

with ∇
γγγ
′ ≥ ∇γγγ, contribute zero to the equation. On the other hand,

when ∇
γγγ
′ = (∇γγγ−1), then for all k = 0,1, · · ·(∇γγγ−1−1):

dk
(
Pt(γγγ

′
)
)

d tk |t0 = 0. The only
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non-zero terms are related to k = ∇
γγγ
′ = (∇γγγ−1), since in this case:

d
∇

γγγ
′
(
Pt(γγγ

′
)
)

d t
∇

γγγ
′

∣∣∣
t0
=

d(∇γγγ−1) (Pt(γγγ)−V s
α)

d t(∇γγγ−1)

∣∣∣
t0
6= 0 (B.14)

By removing the zero terms from Eq.(B.13), we obtain Eq.(B.15).

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·

d(∇γγγ−1)
(
Pt(γγγ−V s

α) ·Et

[
ξξξ

l | γγγ−V s
α

])
d t(∇γγγ−1)

∣∣∣
t0

=

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)=∇γγγ−1

rα(γγγ−V s
α) ·

d(∇γγγ−1) (Pt(γγγ−V s
α))

d t(∇γγγ−1)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ−V s
α

]
(B.15)

where the underlined term indicates that only the terms associated with states (γγγ−
V s

α) ∈ Dagg with initial distances ∇(γγγ−V s
α)
= ∇γγγ−1 are non-zero.

Now we focus on the term marked by (III). Following a similar approach as above,

the only non-zero contributions are related to inward transitions from states γγγ
′

where

∇
γγγ
′ = ∇γγγ−1:

∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

rα(γγγ−V s
α) ·V l

α ·
d(∇γγγ−1) (Pt(γγγ−V s

α))

d t(∇γγγ−1)

∣∣∣
t0
=

∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)=∇γγγ−1

rα(γγγ−V s
α) ·V l

α ·
d(∇γγγ−1) (Pt(γγγ−V s

α))

d t(∇γγγ−1)

∣∣∣
t0

(B.16)

Finally, we consider the term marked by (IV), which is related to the
→
A∗l (M). By

applying the Leibniz rule, we have:

∑
α∈
→
A∗l(M)

V l
α ·

d(∇γγγ−1)
(
Pt(γγγ) · rα

(
Et

[
ξξξ

l | γγγ
]))

d t(∇γγγ−1)

= ∑
α∈
→
A∗l(M)

V l
α ·

(∇γγγ−1)

∑
k=0

(
(∇γγγ−1)

k

)
· d

k (Pt(γγγ))

d tk ·
d(∇γγγ−1−k)

(
rα

(
Et

[
ξξξ

l | γγγ
]))

d t(∇γγγ−1−k)

(B.17)
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At t = t0, since for k = 0,1, · · · ,(∇γγγ−1) : dk (Pt(γγγ))
d tk

∣∣∣
t0
= 0, all the terms in the equation

reduce to zero. Therefore:

∑
α∈
→
A∗l(M)

V l
α ·

d(∇γγγ−1)
(
Pt(γγγ) · rα

(
Et

[
ξξξ

l | γγγ
]))

d t(∇γγγ−1)

∣∣∣
t0

= 0 (B.18)

We simplified terms marked by (I-IV) in Equations (B.12),(B.15), (B.16) and (B.18).

By substituting the results back into Eq.(B.7), we derive:

d(∇γγγ) (Pt(γγγ))

d t(∇γγγ)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ
]

=

∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)=∇γγγ−1

rα(γγγ−V s
α) ·

d(∇γγγ−1) (Pt(γγγ−V s
α))

d t(∇γγγ−1)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ−V s
α

]

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)=∇γγγ−1

rα(γγγ−V s
α) ·V l

α ·
d(∇γγγ−1) (Pt(γγγ−V s

α))

d t(∇γγγ−1)

∣∣∣
t0

= ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)=∇γγγ−1

rα(γγγ−V s
α) ·

d(∇γγγ−1) (Pt(γγγ−V s
α))

d t(∇γγγ−1)

∣∣∣
t0

(
Et0

[
ξξξ

l |γγγ−V s
α

]
+V l

α

)

(B.19)

As Eq.(B.19) shows, for γγγ with distance (∇γγγ), the differentiation of its conditional ex-

pectation equation at order (∇γγγ−1) preserves Et0

[
ξξξ

l |γγγ
]

on the left hand side. There-

fore, by the reordering of the terms we have:

Et

[
ξξξ

l | γγγ
]
=

∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α ,∇(γγγ−V s

α)=∇γγγ−1

rα(γγγ−V s
α)·

d(∇γγγ−1) (Pt(γγγ−V s
α))

d t(∇γγγ−1)

∣∣∣
t0

(
Et0

[
ξξξ

l |γγγ−V s
α

]
+V l

α

)

d(∇γγγ) (Pt(γγγ))

d t(∇γγγ)

∣∣∣
t0

(B.20)

Eq.(B.20) shows that for any γγγ ∈ Dagg with distance ∇γγγ, the initial value Et0

[
ξξξ

l |γγγ
]
,

depends on the (∇γγγ)-th derivative of Pt(γγγ)
∣∣
t0

and the initial conditional expectations

of the states γγγ′ with distance ∇γγγ− 1 that enable the incoming transitions into γγγ. This

concludes the proof of Prop. 6.4.2.
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B.3 Proof of Proposition 6.4.3 - Initial Derivatives of Con-

ditional Expectations

The outline of this proof is the following. For an aggregated state γγγ, we consider the

equation that captures Et

[
ξξξ

l | γγγ
]

and differentiate it to the ∇γγγ-th order. The resulting

equation is evaluated at t0 and simplified to remove the terms that are equal to zero.

In our simplifications, we make extensive use of Prop. 6.4.1, using the same logic that

was presented in the proof of Prop. 6.4.2. Due to this similarity, a number of steps are

omitted.

Consider an aggregated state γγγ ∈ Dagg
z with distance ∇γγγ. The equation capturing

Et

[
ξξξ

l | γγγ
]

is Eq.(B.5). Let us focus on the left hand side. By forming the ∇γγγ-th

derivative of the equation and using the Liebniz rule, we have:

d(∇γγγ+1)
(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
])

d t(∇γγγ+1)
=
(∇γγγ+1)

∑
k=0

(
(∇γγγ +1)

k

)
·d

k (Pt(γγγ))

d tk ·
dk
(
Et

[
ξξξ

l | γγγ
])

d tk (B.21)

By evaluating the left hand side at t0 and using Prop.6.4.1, we derive:

d(∇γγγ+1)
(
Pt(γγγ) ·Et

[
ξξξ

l | γγγ
])

d t(∇γγγ+1)

∣∣∣
t0
= (∇γγγ +1) · d

∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
·

d Et

[
ξξξ

l | γγγ
]

d t

∣∣∣
t0
+

d(∇γγγ+1) (Pt(γγγ))

d t(∇γγγ+1)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ
]

(B.22)

In Eq.(B.22), given that γγγ has the distance ∇γγγ, we have d(∇γγγ) (Pt(γγγ))

d t(∇γγγ)

∣∣∣
t0
6= 0 and therefore,

the initial derivative
d Et

[
ξξξ

l |γγγ
]

d t

∣∣∣
t0

is preserved.

We substitute Eq.(B.22) in Eq.(B.5). By performing the same steps on the right
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hand side, Eq.(B.5) is transformed into:

(∇γγγ +1) · d
∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
·

d Et

[
ξξξ

l | γγγ
]

d t

∣∣∣
t0
+

d(∇γγγ+1) (Pt(γγγ))

d t(∇γγγ+1)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ
]

=

− ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

rα(γγγ) ·
d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ
]

I

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)<∇γγγ

rα(γγγ−V s
α) ·
(

d(∇γγγ) (Pt(γγγ−V s
α))

d t(∇γγγ)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ−V s
α

]
+ II

∇γγγ ·
d(∇γγγ−1) (P(γγγ−V s

α ))

d t(∇γγγ−1)

∣∣∣
t0
·

d Et

[
ξξξ

l | γγγ−V s
α

]
d t

∣∣∣
t0

)
III

+ ∑
α∈
→
A∗s (M)∪

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)=∇γγγ

rα(γγγ−V s
α) ·
(

d(∇γγγ) (Pt(γγγ−V s
α))

d t(∇γγγ)

∣∣∣
t0
·Et0

[
ξξξ

l |γγγ−V s
α

]
IV

+ ∑
α∈

→
A∗sl(M)

γγγ≥V s,+
α

∇(γγγ−V s
α)≤∇γγγ−1

rα(γγγ−V s
α) ·V l

α ·
d(∇γγγ) (Pt(γγγ−V s

α))

d t(∇γγγ)

∣∣∣
t0

+ ∑
α∈
→
A∗l(M)

V l
α ·

d∇γγγ (Pt(γγγ))

d t∇γγγ

∣∣∣
t0
· rα

(
Et0

[
ξξξ

l |γγγ
])

V (B.23)

Let us consider the terms in this equation. Here, the expressions marked by (I), (II),

(IV) and (V) depend on the initial conditional expectations, which are obtained using

Prop. 6.4.2. Moreover, the expression (III) consists of the derivative of initial condi-

tional expectations for the states γγγ
′
which enable transitions into γγγ and have strictly less

distance than γγγ. We can assume that these initial derivatives have been obtained using

a similar version of Eq.(B.23), constructed at a reduced scale. Having considered the

expressions, we conclude that in Eq.(B.23) the only variable unknown is
d Et

[
ξξξ

l |
]

d t

∣∣∣
t0

,

which can be derived by reordering of the terms. This ends the proof of Prop. 6.4.3.





Appendix C

Application of Conditional Expectation

to Client-Server System

C.1 Equations for the Conditional Expectations of the

Client-Server System

The aggregated state space has 6 states. First, let us consider the state 〈2,0,0〉:

Pt(〈2,0,0〉) ·
∂
(
Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]

)
∂ t

+
∂ Pt(〈2,0,0〉)

∂ t
·Et [〈Ct ,Cr〉 | 〈2,0,0〉 ] ≈

− Pt(〈2,0,0〉) ·Et [〈Ct ,Cr〉 | 〈2,0,0〉 ] ·
[
rbrk(〈2,0,0〉)+ rreq(〈2,0,0〉)

]
+ Pt(〈1,0,1〉) · r f ix(〈1,0,1〉) ·Et [〈Ct ,Cr〉 | 〈1,0,1〉 ]

+ Pt(〈1,1,0〉) · rlog(〈1,1,0〉) ·Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

+ Pt(〈2,0,0〉) · 〈−1,+1〉 · rthink

(
Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]

)
(C.1)

For the aggregated state 〈1,1,0〉:
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Pt(〈1,1,0〉) ·
∂
(
Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

)
∂ t

+
∂ Pt(〈1,1,0〉)

∂ t
·Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] ≈

− Pt(〈1,1,0〉) ·Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] ·
[
rlog(〈1,1,0〉)+ rbrk(〈1,1,0〉)+ rreq(〈1,1,0〉)

]
+ Pt(〈2,0,0〉) · rreq(〈2,0,0〉) ·Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]

+ Pt(〈0,1,1〉) · r f ix(〈0,1,1〉) ·Et [〈Ct ,Cr〉 | 〈0,1,1〉 ]

+ Pt(〈0,2,0〉) · rlog(〈0,2,0〉) ·Et [〈Ct ,Cr〉 | 〈0,2,0〉 ]

+ Pt(〈2,0,0〉) · rreq(〈2,0,0〉) · 〈+1,−1〉

+ Pt(〈1,1,0〉) ·V l
think · rthink

(
Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

)
(C.2)

For the aggregated states 〈0,2,0〉:

Pt(〈0,2,0〉) ·
∂
(
Et [〈Ct ,Cr〉 | 〈0,2,0〉 ]

)
∂ t

+
∂ Pt(〈0,2,0〉)

∂ t
·Et [〈Ct ,Cr〉 | 〈0,2,0〉 ] ≈

− Pt(〈0,2,0〉) ·Et [〈Ct ,Cr〉 | 〈0,2,0〉 ] · rlog(〈0,2,0〉)

+ Pt(〈1,1,0〉) · rreq(〈1,1,0〉) ·Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

+ Pt(〈1,1,0〉) · rreq(〈1,1,0〉) · 〈+1,−1〉

+ Pt(〈0,2,0〉) · 〈−1,+1〉 · rthink

(
Et [〈Ct ,Cr〉 | 〈0,2,0〉 ]

)
For βββ = 〈1,0,1〉, the evolution of Et [〈Ct ,Cr〉 | 〈0,1,1〉 ], is captured by:

Pt(〈1,0,1〉) ·
∂
(
Et [〈Ct ,Cr〉 | 〈1,0,1〉 ]

)
∂ t

+
∂ Pt(〈1,0,1〉)

∂ t
·Et [〈Ct ,Cr〉 | 〈1,0,1〉 ] ≈

− Pt(〈1,0,1〉) ·Et [〈Ct ,Cr〉 | 〈1,0,1〉 ] ·
[
rbrk(〈1,0,1〉)+ r f ix(〈1,0,1〉)+ rreq(〈1,0,1〉)

]
+ Pt(〈2,0,0〉) · rbrk(〈2,0,0〉) ·Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]

+ Pt(〈0,0,2〉) · r f ix(〈0,0,2〉) ·Et [〈Ct ,Cr〉 | 〈0,0,2〉 ]

+ Pt(〈0,1,1〉) · rlog(〈0,1,1〉) ·Et [〈Ct ,Cr〉 | 〈0,1,1〉 ]

+ Pt(〈1,0,1〉) · 〈−1,+1〉 · rthink(Et [〈Ct ,Cr〉 | 〈1,0,1〉 ]) (C.3)
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For state 〈0,1,1〉, we have:

Pt(〈0,1,1〉) ·
∂
(
Et [〈Ct ,Cr〉 | 〈0,1,1〉 ]

)
∂ t

+
∂ Pt(〈0,1,1〉)

∂ t
·Et [〈Ct ,Cr〉 | 〈0,1,1〉 ] ≈

− Pt(〈0,1,1〉) ·Et [〈Ct ,Cr〉 | 〈0,1,1〉 ] ·
[
rlog(〈0,1,1〉)+ r f ix(〈0,1,1〉)

]
+ Pt(〈1,0,1〉) · rreq(〈1,0,1〉) ·Et [〈Ct ,Cr〉 | 〈1,0,1〉 ]

+ Pt(〈1,1,0〉) · rbrk(〈1,1,0〉) ·Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

+ Pt(〈1,0,1〉) · rreq(〈1,1,0〉) · 〈+1,−1〉

+ Pt(〈0,1,1〉) · 〈−1,+1〉 · rthink

(
Et [〈Ct ,Cr〉 | 〈0,1,1〉 ]

)
(C.4)

For the state 〈0,0,2〉 we have:

Pt(〈0,0,2〉) ·
∂
(
Et [〈Ct ,Cr〉 | 〈0,0,2〉 ]

)
∂ t

+
∂ Pt(〈0,0,2〉)

∂ t
·Et [〈Ct ,Cr〉 | 〈0,0,2〉 ] ≈

− Pt(〈0,0,2〉) ·Et [〈Ct ,Cr〉 | 〈0,0,2〉 ] ·
[
r f ix(〈0,0,2〉)

]
+ Pt(〈1,0,1〉) · rbrk(〈1,0,1〉) ·Et [〈Ct ,Cr〉 | 〈1,0,1〉 ]

+ Pt(〈0,0,2〉) · 〈−1,+1〉 · rthink

(
Et [〈Ct ,Cr〉 | 〈0,0,2〉 ]

)
(C.5)

C.2 Derivations of the Initial Values

From the states in Dagg
z , we choose the states 〈1,1,0〉, 〈1,0,1〉 and 〈0,1,1〉 and illustrate

how their initial values are obtained. The derivations for the rest of the states is similar.

The state 〈1,1,0〉 has the distance∇〈1,1,0〉 = 1. According to Prop. 6.4.2, we can

evaluate the equation capturing Et [〈Ct ,Cr〉 | 〈1,1,0〉 ] at t0 and derive Et0[〈Ct ,Cr〉 | 〈1,1,0〉 ].
By evaluating Eq.(C.2) at t0, we get:

2rs ·Et0[〈Ct ,Cr〉 | 〈1,1,0〉 ] ≈ 2rs ·Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ]+2rs · 〈+1,−1〉

By reordering of the terms we have:

Et0[〈Ct ,Cr〉 | 〈1,1,0〉 ] = Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ]+ 〈+1,−1〉= 〈151,−1〉 (C.6)
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Distance Probability First derivative Second derivative

〈2,0,0〉 ∇〈2,0,0〉=0 Pt0(〈2,0,0〉) 6=0 - -

〈1,1,0〉 ∇〈1,1,0〉=1 Pt0(〈1,1,0〉)=0 d Pt(〈1,1,0〉)
d t

∣∣∣
t0
=2rs -

〈0,2,0〉 ∇〈0,2,0〉=2 Pt0(〈0,2,0〉)=0 d Pt(〈0,2,0〉)
d t

∣∣∣
t0
=0 d2 (Pt(〈0,2,0〉))

d t2

∣∣∣
t0
=2r2

s

〈1,0,1〉 ∇〈1,0,1〉= 1 Pt0(〈1,0,1〉)=0 d Pt(〈1,0,1〉)
d t

∣∣∣
t0
=2rb -

〈0,1,1〉 ∇〈0,1,1〉=2 Pt0(〈0,1,1〉)=0 d Pt(〈0,1,1〉)
d t

∣∣∣
t0
=0 d2 (Pt(〈0,1,1〉))

d t2

∣∣∣
t0
=4rrrb

〈0,0,2〉 ∇〈0,0,2〉=2 Pt0(〈0,0,2〉)=0 d Pt(〈0,0,2〉)
d t

∣∣∣
t0
=0 d2 (Pt(〈0,0,2〉))

d t2

∣∣∣
t0
=2r2

b

Table C.1: The derivatives of Pt(γγγ),γγγ ∈ Dagg at t = t0

The state 〈1,0,1〉 has the same distance as 〈1,1,0〉. By evaluating the equation

which captures the evolution of Et [〈Ct ,Cr〉 | 〈1,0,1〉 ] at t0 and simplifying the terms,

we derive:

2rb ·Et0[〈Ct ,Cr〉 | 〈1,0,1〉 ] ≈ 2rb ·Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] =⇒
Et0[〈Ct ,Cr〉 | 〈1,0,1〉 ] ≈ Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] (C.7)

For the state 〈0,1,1〉, we have the distance∇〈0,1,1〉= 2. Using Prop. 6.4.2, in order to

find Et0[〈Ct ,Cr〉 | 〈0,1,1〉 ] we need to differentiate the equation capturing the evolution

of Et [〈Ct ,Cr〉 | 〈0,1,1〉 ] once and then evaluate it at t0. By following these steps, we

derive:

(4rsrb) ·Et0[〈Ct ,Cr〉 | 〈0,1,1〉 ] = 2rsrb ·Et0[〈Ct ,Cr〉 | 〈1,1,0〉 ] +

2rsrb ·Et0[〈Ct ,Cr〉 | 〈1,0,1〉 ]+2rsrb · 〈+1,−1〉

=⇒ Et0[〈Ct ,Cr〉 | 〈0,1,1〉 ] =
〈151,−1〉+ 〈150,0〉+ 〈+1,−1〉

2
= 〈151,−1〉 (C.8)

Initial Derivatives

For the state 〈2,0,0〉, we calculated Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] in the previous section. The

initial value d Et [〈Ct ,Cr〉|〈2,0,0〉 ]
d t

∣∣∣
t0

is derived by substituting Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] in its
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conditional expectation equation and evaluating the equation at t0:

d Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]
d t

∣∣∣
t0
+(−2rs−2rb) ·Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] =

(−2rs−2rb) ·Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ] + 〈−1,+1〉 · rt ·Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ]

=⇒ d Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]
d t

∣∣∣
t0
= 〈−1,+1〉 · rthink · 〈150,0〉= 〈−rthink ·150,0〉

(C.9)

For the states βββ∈Dagg
z , we cannot use the above approach. Here, we use Prop. 6.4.3.

According to this, for any state βββ with distance ∇βββ, we need to differentiate the equa-

tion capturing Et [〈Ct ,Cr〉 | βββ ] up to order ∇βββ and then evaluate at t0. We illustrate the

evaluations for the states 〈1,1,0〉. The calculations for other states are similar.

Given that the state 〈1,1,0〉 has distance∇〈1,1,0〉= 1, the initial value d Et [〈Ct ,Cr〉|〈1,1,0〉 ]
d t

∣∣∣
t0

is derived by differentiating Eq.(C.2) once with respect to time and then evaluating it

at t0. By performing these steps, we get:

(−2rs) · (3rs + rb + rl) ·Et0[〈Ct ,Cr〉 | 〈1,1,0〉 ]+ (2rs) ·
d Et [〈Ct ,Cr〉 | 〈1,1,0〉 ]

d t

∣∣∣
t0
=

+(−2rs) · (rl + rb + rs) ·Et0[〈Ct ,Cr〉 | 〈1,1,0〉 ]
+(2rs) · (−2rs) ·Et0[〈Ct ,Cr〉 | 〈2,0,0〉 ]

+(2rs) ·
d Et [〈Ct ,Cr〉 | 〈2,0,0〉 ]

d t

∣∣∣
t0

+(−2rs) · (2rs) · 〈+1,−1〉
+(2rs) · rt · 〈−1,+1〉 ·Et0[Ct | 〈1,1,0〉 ]

By simplifying this equation, we derive the values shown in Table 7.6.





Appendix D

Higher-Order Conditional Moments

D.1 Proof of Proposition 8.3.1

The following transformation is used within the derivation of the conditional expecta-

tions and higher-order moments:

d
d t

(
Et

[
T (ξξξl

, t) | γγγ
]
·P(γγγ)

)

=
d

dl t

(
∑

〈γγγ ,ξξξl
i〉∈Yγγγ

T (ξξξl
i, t) ·Pt(ξξξ

l
i | γγγ) ·Pt(γγγ)︸ ︷︷ ︸
Pt(〈γγγ ,ξξξl

i〉)

)

=
d

∂ t

(
∑

〈γγγ ,ξξξl
i〉∈Yγγγ

T (ξξξl
i, t) ·Pt(〈γγγ , ξξξ

l
i〉)
)

= ∑
〈γγγ ,ξξξl

i〉∈Yγγγ

d
∂ t

(
T (ξξξl

i, t) ·Pt(〈ξξξs
i , ξξξ

l
i〉)
)
=

= ∑
〈γγγ ,ξξξl

i〉∈Yγγγ

(
d

∂ t

(
T (ξξξl

i, t)
)
·Pt(〈γγγ , ξξξ

l
i〉)+T (ξξξl

i, t) ·
d

∂ t

(
Pt(〈γγγ , ξξξ

l
i〉)
) )

= Et

[
d T (ξξξl

, t)
dt

| γγγ
]
·P(γγγ) + ∑

Si=〈γγγ ,ξξξl
i〉

T (ξξξl
i, t) ·

d P(Si )

d t
(D.1)
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D.2 Proof of Lemma 8.3.3

d
(

ξξξ
l
k−µ(γγγ, t)

)I

d t
= ∏

(H,C) ,H∈Gl(M) ,C∈ds∗(H)

(
ξ(H,C)−µ(H,C)(γγγ, t)

)I(H,C)

Using the rule for the differentiation over products, we derive:

d
(

ξξξ
l
k−µ(γγγ, t)

)I

d t
=

[ (
−I1 ·

(
d µ(H1,C1)(γγγ, t)

d t

)
·
(

ξ(H1,C1)−µ(H1,C1)(γγγ, t)
)I1−1

)
(

ξ(H2,C2)−µ(H2,C2)(γγγ, t)
)I2

...(
ξ(Hn,Cn)−µ(Hn,Cn)(γγγ, t)

)In

]
+ [ (

ξ(H1,C1)−µ(H1,C1)(γγγ, t)
)I1

(
−I2 ·

(
d µ(H2,C2)(γγγ, t)

d t

)
·
(

ξ(H2,C2)−µ(H2,C2)(γγγ, t)
)I2−1

)
...(

ξ(Hn,Cn)−µ(Hn,Cn)(γγγ, t)
)In

]
+
...

+ [ (
ξ(H‘1,C‘1)−µ(H‘1,C‘1)(γγγ, t)

)
(

ξ(H2,C2)−µ(H2,C2)(γγγ, t)
)

...(
−In ·

(
d µ(Hn,Cn)(γγγ, t)

d t

)
·
(

ξ(Hn,Cn)−µ(Hn,Cn)(γγγ, t)
)In−1

) ]

= − ∑
ξ(H,C)∈ξξξ

l

H∈Gl(M)
C∈ds∗(H)

I(H,C) ·
d µ(H,C)(γγγ, t)

d t

(
ξξξ

l−µ(γγγ, t)
)I−eH,C
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D.3 Proof of Lemma 8.3.2

In this proof, we express the multiplication of distance functions and apparent rate

functions in terms of the former and the conditional expectations using Taylor expan-

sion:

∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)I
· rα(ξξξ

l
k) ·Pt(ξξξ

l
k | γγγ) =

∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)I
(

rα( µ(γγγ, t) )

+ ∑
(H,Cx)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,Cx)

( ξ(H,Cx)−µ(H,Cx)(γγγ, t) )

 ·Pt(ξξξ
l
k | γγγ)Pt(ξξξ

l
k | γγγ)

= ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)I
rα( µ(γγγ, t) ) ·Pt(ξξξ

l
k | γγγ)

+ ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)I
∑

(H,Cx)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,Cx)

( ξξξ
l
k−µ(γγγ, t) )e(H,Cx) ·Pt(ξξξ

l
k | γγγ)

= ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

(
ξξξ

l
k−µ(γγγ, t)

)I
rα( µ(γγγ, t) ) ·Pt(ξξξ

l
k | γγγ)

+ ∑
Sk=〈γγγ ,ξξξl

k〉∈Yγγγ

∑
(H,Cx)∈ξl

∂ rα( µ(γγγ, t) )
∂ ξ(H,Cx)

(
ξξξ

l
k−µ(γγγ, t)

)I+e(H,Cx) ·Pt(ξξξ
l
k | γγγ)

(D.3)





Appendix E

Analysis of Client-Server System

Using Higher-Order Moments

E.1 Covariance of the State Variables Related to Clients

In this model, the variables Ct and Cr are strongly correlated. At any given time t:

Ct +Cr = 150. Therefore, when calculating the conditional expectations, we have:

∀ βββ ∈ Dagg
CS : Et [Cr | βββ ] = Et [150−Ct | βββ ] = 150−Et [Ct | βββ ] (E.1)

This is used to identify the relationship between variances related to the variables Cr

and Ct :

VARt [Cr |βββ ] = Et

[(
Cr−µ(Cr)(βββ, t)

)2
| βββ
]

= Et

[(
(150−Ct)− (150−µ(Ct)(βββ, t))

)2
| βββ
]

= Et

[(
Ct−µ(Ct)(βββ, t)

)2
| βββ
]
= VARt [Ct |βββ ]

Furthermore, the relationship between the variances of Ct and Cr and their covariance

is identified as:

MMM〈1,1〉(βββ, t) = Et
[
(Ct−µ(Ct)(βββ, t))(Cr−µ(Cr)(βββ, t)) | βββ

]
= Et

[
((150−Cr)− (150−µ(Cr)(βββ, t)))(Cr−µ(Cr)(βββ, t)) | βββ

]
= − Et

[
(Cr−µ(Cr)(βββ, t))

2 | βββ
]

= − VARt [Cr |βββ ] =−VAR [Ct |βββ ]
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