
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Policy Space Abstraction

for a Lifelong Learning Agent

Majd Hawasly

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2014





Abstract

This thesis is concerned with policy space abstractions that concisely encode alternative

ways of making decisions; dealing with discovery, learning, adaptation and use of these

abstractions. This work is motivated by the problem faced by autonomous agents that

operate within a domain for long periods of time, hence having to learn to solve many

different task instances that share some structural attributes. An example of such a

domain is an autonomous robot in a dynamic domestic environment. Such environments

raise the need for transfer of knowledge, so as to eliminate the need for long learning

trials after deployment.

Typically, these tasks would be modelled as sequential decision making problems,

including path optimisation for navigation tasks, or Markov Decision Process models for

more general tasks. Learning within such models often takes the form of online learning

or reinforcement learning. However, handling issues such as knowledge transfer and

multiple task instances requires notions of structure and hierarchy, and that raises several

questions that form the topic of this thesis – (a) can an agent acquire such hierarchies in

policies in an online, incremental manner, (b) can we devise mathematically rigorous

ways to abstract policies based on qualitative attributes, (c) when it is inconvenient to

employ prolonged trial and error learning, can we devise alternate algorithmic methods

for decision making in a lifelong setting?

The first contribution of this thesis is an algorithmic method for incrementally

acquiring hierarchical policies. Working with the framework of options - temporally

extended actions - in reinforcement learning, we present a method for discovering

persistent subtasks that define useful options for a particular domain. Our algorithm

builds on a probabilistic mixture model in state space to define a generalised and

persistent form of ‘bottlenecks’, and suggests suitable policy fragments to make options.

In order to continuously update this hierarchy, we devise an incremental process which

runs in the background and takes care of proposing and forgetting options. We evaluate

this framework in simulated worlds, including the RoboCup 2D simulation league

domain.

The second contribution of this thesis is in defining abstractions in terms of equiva-

lence classes of trajectories. Utilising recently developed techniques from computational

topology, in particular the concept of persistent homology, we show that a library of

feasible trajectories could be retracted to representative paths that may be sufficient for

reasoning about plans at the abstract level. We present a complete framework, starting

iii



from a novel construction of a simplicial complex that describes higher-order connec-

tivity properties of a spatial domain, to methods for computing the homology of this

complex at varying resolutions. The resulting abstractions are motion primitives that

may be used as topological options, contributing a novel criterion for option discovery.

This is validated by experiments in simulated 2D robot navigation, and in manipulation

using a physical robot platform.

Finally, we develop techniques for solving a family of related, but different, problem

instances through policy reuse of a finite policy library acquired over the agent’s lifetime.

This represents an alternative approach when traditional methods such as hierarchical

reinforcement learning are not computationally feasible. We abstract the policy space

using a non-parametric model of performance of policies in multiple task instances, so

that decision making is posed as a Bayesian choice regarding what to reuse. This is

one approach to transfer learning that is motivated by the needs of practical long-lived

systems. We show the merits of such Bayesian policy reuse in simulated real-time

interactive systems, including online personalisation and surveillance.

iv



Acknowledgements

None can deny that which You bestow,
and none can bestow that which You hold back;
Of no avail is greatness or luck without You.

First of all, I would like to express my sincere thanks to my PhD supervisor,

Dr. Subramanian Ramamoorthy, for all his help and support throughout my years in

Edinburgh. The countless hours we spent in discussion and dialogue have shaped my

understanding and my research mind.

I also thank my second supervisor Dr. Michael Rovatsos and Prof. Sethu Vijayaku-

mar for their roles in my PhD panel, and Dr. Michail G. Lagoudakis and Dr. Michael

Herrmann for their roles in the examination committee.

I would like to thank all my colleagues, collaborators and officemates. Special

mention to Benji Rosman for long hours of coding, scribbling on (green) blackboards,

and head scratching. Many thanks to my collaborator Dr. Florian T. Pokorny from KTH

for his contribution in reorienting my scientific appetite, and to Dr. Hassan Mahmud for

his input and help.

I thank my sponsors, Damascus University for giving me the chance to pursue my

academic aspiration in the UK, and Edinburgh University for letting me experience the

truly wonderful and buzzing research world of Informatics.

I cannot express enough gratefulness to my loving family back home, one by one,

for their support, care, and devotion. My mother, without you, I would never have been

what I am.

I really thank numerous dear friends who kept trying to keep in touch even when I

could not do the same, and I thank my flatmate, Ziad, for helping me balance my busy

life in recent months.

Finally, a big ‘Thank You!’ to everyone who somehow helped in making this happen,

who motivated and inspired me to reach here.

v



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Majd Hawasly)

vi



To Shaam.

vii





Table of Contents

1 Introduction 1

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Layout of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries and Related Work 11

2.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . . 16

2.5 Survey of Option Discovery Methods . . . . . . . . . . . . . . . . . 19

2.6 Related Work: Learning Skills . . . . . . . . . . . . . . . . . . . . . 25

2.7 Related Work: Learning to Generalise . . . . . . . . . . . . . . . . . 27

2.8 Related work: Topology-based Approaches . . . . . . . . . . . . . . 30

2.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Policy Space Abstraction by Option Discovery 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Abstraction using Option Hierarchies . . . . . . . . . . . . . . . . . 37

3.3 Offline Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 ILPSS: Incremental Learning of Policy Space Structure . . . . . . . 43

3.5 Scaling ILPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



4 Policy Space Abstraction using Computational Topology 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Multiscale Topological Trajectory Classification . . . . . . . . . . . . 58

4.3 Topological Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Policy Space Abstraction for Policy Reuse 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Bayesian Policy Reuse (BPR) . . . . . . . . . . . . . . . . . . . . . 83

5.3 Problem Space, Observation Signals and Beliefs . . . . . . . . . . . . 88

5.4 Policy Selection for BPR . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusions 115
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Short Tutorial in Computational Topology 121
A.1 Topological Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.3 Simplicial Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.4 Simplicial Homology with Z2 Coefficients . . . . . . . . . . . . . . . 126

A.5 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B RoboCup 2D Simulation League 133
B.1 RoboCup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.2 RoboCup 2D Simulation League . . . . . . . . . . . . . . . . . . . . 134

Bibliography 137

x



List of Figures

1.1 Robots in human environments. . . . . . . . . . . . . . . . . . . . . 4

1.2 RoboCup 2D Simulation League . . . . . . . . . . . . . . . . . . . . 5

1.3 A depiction of the policy space abstraction approach. . . . . . . . . . 8

2.1 Planning with homotopy-equivalence classes for a shared autonomy

wheelchair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Homotopy classes in a 3-dimensional space with obstacles. . . . . . . 32

3.1 Overview of the approach in Chapter 3. . . . . . . . . . . . . . . . . 37

3.2 The Windy gridworld . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Performance difference between the offline-interrupted option policy

and the averaging policy . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 A high level overview of ILPSS . . . . . . . . . . . . . . . . . . . . 44

3.5 ILPSS in the rooms environment . . . . . . . . . . . . . . . . . . . . 50

3.6 Visitation frequency of the rooms environment after 30 random instances 51

3.7 RoboCup experiment setup . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Results in the RoboCup experiment . . . . . . . . . . . . . . . . . . 52

3.9 Traces from discovered options in the simulated soccer domain . . . . 53

4.1 Overview of the approach in Chapter 4. . . . . . . . . . . . . . . . . 59

4.2 A depiction of a simple domain with a ‘hole’, and a collection of

trajectories of a reaching task. . . . . . . . . . . . . . . . . . . . . . 60

4.3 Birth and death of a cycle. . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Path costs, and classes of paths depending on the cost threshold . . . . 65

4.5 Example worlds and path classes from a reconstructed complex . . . . 68

4.6 Example world for 103, 104 and 105 sample points. . . . . . . . . . . 69

4.7 The robot arm experiment . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Persistence diagram for robot arm reconstruction. . . . . . . . . . . . 71

xi



4.9 Projection of collision free samples onto the first and second joints in

the robot arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 The topological classes for the robot arm. . . . . . . . . . . . . . . . 72

4.11 Setup for the Baxter experiment 1. . . . . . . . . . . . . . . . . . . . 73

4.12 Classification of trajectories under different filtration values for the

Baxter experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.13 Classification of trajectories using k-means algorithm. . . . . . . . . 75

4.14 Setup for the Baxter experiment 2. . . . . . . . . . . . . . . . . . . . 76

4.15 Results of Baxter experiment 2. . . . . . . . . . . . . . . . . . . . . . 76

4.16 Setup for the Baxter experiment 3. . . . . . . . . . . . . . . . . . . . 77

4.17 Results of Baxter experiment 3. . . . . . . . . . . . . . . . . . . . . . 78

4.18 Options derived using ILPSS with Topological Options . . . . . . . . 79

5.1 Overview of the approach in Chapter 4. . . . . . . . . . . . . . . . . 83

5.2 The Bayesian Policy Reuse problem. . . . . . . . . . . . . . . . . . . 87

5.3 Problem space model with disjoint types . . . . . . . . . . . . . . . . 90

5.4 Performance models for the four clubs in the Golf club experiment . . 100

5.5 Performance of BPR on the golf club example . . . . . . . . . . . . . 102

5.6 Transition system describing the online telephonic personalisation ex-

ample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 Regret, showing comparative performance of BPR on the telephone

banking domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Example of the surveillance domain . . . . . . . . . . . . . . . . . . 105

5.9 Comparison of six policy selection methods on the 68-task surveillance

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.10 Comparison of the episodic regret of BPR-EI, UCB1 and GP-UCB . . 107

5.11 Average episodic regret for BPR-EI with different library sizes in the

surveillance domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.12 A 2D response surface . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1 Homotopy equivalence between a doughnut and a coffee mug. . . . . 123

A.2 Example homotopy equivalence classes of paths . . . . . . . . . . . . 123

A.3 Examples of a vertex, an edge and a triangle; and an example of a

simplicial complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.4 An example of a Cech complex . . . . . . . . . . . . . . . . . . . . . 125

A.5 An example of a Delaunay triangulation and a Voronoi diagram . . . . 126

xii



A.6 An example of a 1-boundary; and a 1-cycle which is not a 1-boundary 127

A.7 A Delaunay-Čech filtration from sampled points. . . . . . . . . . . . 129

A.8 Reconstructions of a configuration space from 1000 samples . . . . . 131

A.9 The persistence diagram of the first Homology group. . . . . . . . . . 132

B.1 RoboCup 2D Simulation League . . . . . . . . . . . . . . . . . . . . 134

B.2 Keepaway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xiii





List of Notations

β Option’s termination condition

K Simplicial complex

O Set of Options

∆ Probability distribution

γ Discounting factor

F Observation model

M Family of MDPs

N Normal distribution

R Regret

T Space of types

E Expectation

H Entropy

P Probability

Π Policy library

π Policy

Σ Observation signal space

A Action space

m MDP, Markov Decision Process

xv



Q Q-function, state-action value

R Reward function

S State space

T Transition function

xvi



Chapter 1

Introduction

1



2 Chapter 1. Introduction

1.1 Preface

This thesis is about learning policy space abstractions for a sequential decision making

agent. An agent is a decision making entity that interacts with an environment to solve

a problem, and a policy is one way of making decisions, or taking actions, towards

the agent’s goal in response to the environment. The policy space is the collection

of different ways available to the agent to make decisions. A policy abstraction is a

re-description of the policy space in a way that is easier to manage and store, or more

efficient – from a sample-complexity point of view – to reason with and use. One

example of a policy abstraction is a hierarchy of sub-policies. We aim in this thesis to

automatically learn policy space abstractions for an agent from a bank of experience of

previous, possibly different, tasks acquired by the same agent.

In general, abstractions are useful because they ‘tame’ some aspect of complexity in

the agent’s original problem, be it a time-, sample-, storage-, memory-complexity, etc.

For this work, the grand motivation is the autonomous robots that live and work along

with humans in their contexts. These include, for example, domestic service robots

at home, and manufacturing robots in human-friendly industrial environments. These

robots need to adapt continually to the possible spectrum of tasks in such uncontrolled

settings, where pre-deployment learning might be insufficient when compared to the

richness in the real world. Moreover, there exist situations where the robot does not

have the privilege of extended deliberation as per task specification. Abstractions can

help the robot have the edge to handle sample-complexity in this case, like many other

realistic planning and learning scenarios.

The benefits of having policy hierarchies to combat complexity have been realised

and exploited in works in different fields (e.g. from behavioural robotics (Brooks,

1991) and reinforcement learning (Mahadevan and Connell, 1992; Digney, 1998),

to autonomous cars (Urmson et al., 2007) and distributed power generation (Dörfler

et al., 2014)). Hierarchical policies are like distributed controllers, and thus more

resilient to change and perturbation. Moreover, decomposing the policy space into

components facilitate reuse and knowledge transfer between similar tasks, allowing

better performance, faster.

Nonetheless, no consensus exists on the best way to autonomously learn policy

hierarchies. In many works, the hierarchy components are learnt, but the hierarchy

itself is designed. For example, in Hierarchical Reinforcement Learning (Barto and

Mahadevan, 2003), the agent is provided with a collection of objectives for the subtasks



1.2. Setting 3

that make the hierarchy, and the agent’s role is to learn policies to achieve these subtasks.

By specifying the hierarchy, the designer injects domain knowledge into the agent, and

constrains the degrees of freedom in the search space in order to make the learning

process tractable. However, the flexibility that our motivation requires, in adapting to a

growing spectrum of tasks, suggests that the agent should both learn the hierarchy and

its components.

In this thesis, we discuss methods for learning policy hierarchies from experience

in related tasks by a learning agent. This is related to concepts like learning from

demonstration and transfer learning, but it departs from them in subtle aspects. For

example, we learn from demonstrated solutions to previous tasks solved in the domain,

but the demonstrations may involve multiple interacting skills rather than a unique skill.

Then, the gained experience can only be transferred to a new task once the unknown

distribution that generated it is approximated from the previous interactions.

1.2 Setting

We consider agents in a lifelong, real-time learning setting in a dynamic domain. The

agent is presented with a sequence of different, but related, tasks in the domain.

• A lifelong agent differs from a conventional (single-task) agent in that it needs

to build on experience acquired in previous tasks to handle future tasks. Expe-

rience could refer to the behaviours that the agent learnt previously, or to the

understanding it gained about the domain and its dynamics or the tasks and their

variability.

• Real-time learning refers to the requirement to produce decisions and behaviours

in relatively short time. This requirement calls for learning approaches that paral-

lelise learning and acting, and which operate in batch mode or in the background,

and rules out the ones that require a prolonged learning phase for individual tasks.

• Dynamic domains are ones that imply variability featured in tasks. The scale

of this variability, however, does not deny the domain some inherent properties

(or structure) that define it. Dynamic domains are manifested by families of

qualitatively-related tasks, rather than single tasks.

• A sequence of tasks in such a dynamic domain is a collection of samples from

the task family, presented to the agent one by one in sequence, each for a limited



4 Chapter 1. Introduction

(a) Domestic robot in a home

environment. (Photo from (Chen et al.,

2013).)

(b) Industrial robot in a human-friendly work

environment. (Photo courtesy of Steve Jurvetson, used

under a Creative Commons license.)

Figure 1.1: Robots in human environments.

time.

Example domains and tasks One grand challenge that has the aforementioned prop-

erties is the case of domestic and industrial robots that share the human environment in

order to perform certain services or tasks or to offer help (Fig. 1.1). The robot needs

to build on acquired experience in the environment to tackle new tasks more quickly,

and needs to interact and respond promptly to the human needs and requests. The

environment, on the other hand, can change in subtle ways which affect the behaviour of

the robot, but do not change the nature of the domain. As it goes, the robot is continually

presented with new tasks from an unknown family of possible chores.

An example that we will be considering later in this thesis is robotic soccer (Fig. 1.2

and Appendix B). This is a multi-robot strategic task that has the elements of many

interesting real-world problems. In robotic soccer, a team of robots needs to score in

the opponent’s goal, while protecting its own. This task requires real-time response and

does not allow lengthy deliberation, making previous experience a valuable resource to

exploit. Each match is a member of a family of instances in the soccer domain, with

each opponent team exhibiting a different style of play that affects the game dynamics.



1.3. Problem Statement 5

However, the structure in the domain is maintained by the rules of the game.

Figure 1.2: RoboCup 2D Simulation League.

We argue that many real-world problems share some or all of their features and that

many state-of-the-art learning techniques are not designed to handle such requirements.

1.3 Problem Statement

We consider an agent that has experienced and solved a collection of tasks in some

dynamic domain. The input for our work is a library of experiences that has been

accumulated in these tasks. This can be the collection of policies learnt in the previous

tasks, a collection of trajectories that the robot used, or a description of the task instances

that the robot experienced.

The thesis tackles the following questions:

• how can the agent acquire hierarchical abstractions of the domain in an online

and incremental manner starting from a library of learnt policies,

• how to devise mathematically rigorous ways to abstract a library of trajectories,

produced for some task, based on their qualitative similarity, and

• what alternate algorithmic methods for decision making can be taken when it is

inconvenient to employ prolonged trial and error learning, in a lifelong setting.



6 Chapter 1. Introduction

1.3.1 Rationale

Typically, sequential decision making problems are attacked using forms of reinforce-

ment (Sutton and Barto, 1998) and online learning (Auer et al., 2002). However, these

methods either do not scale to the complexity of the considered domains (as, for exam-

ple, with bandit algorithms) or tend to require prolonged periods of interaction to solve

a particular instance (as, for instance, with plain Q-learning).

An alternative to using plain learning is the use of transfer learning (Taylor and

Stone, 2009). In reinforcement learning transfer, some of the knowledge gained in

learning one task can bootstrap the learning of another task that shares some element

of similarity. Transfer most often happens between two tasks, one called the source,

and the other called the target. Nonetheless, transfer does not come without caveats.

Negative transfer is the problem that arises from using an unsuitable source for some

target, and which most often leads to delayed convergence rather than improvement in

the learning performance. Hence, choosing what to transfer is essential for the success

of the process and that requires knowledge about both tasks.

For transfer to work in our situation, the qualities of the target, being the new

unknown task, should be first modelled, then a suitable source, or sources, should be

identified.

One approach to model target tasks is through the hierarchical structure that is shared

between their policies. This structure can be captured using one of the techniques of

Hierarchical Reinforcement Learning (HRL) (Barto and Mahadevan, 2003), such as

options (Sutton et al., 1999). Previously-seen tasks can help in defining the structure as

well as populate the hierarchy components with policies. Then, transfer to a target task

becomes a process of learning of a hierarchical policy.

However, using hierarchy in a lifelong learning setting should accommodate the

gradually-experienced variability in the domain, and thus requires that the hierarchical

structure is flexible and adaptive. This is in contrast to the case typically considered

in HRL where the structure is a priori fixed. Thus, the difference between this setting

and typical approaches of hierarchy learning and option discovery is that it should not

only consider a single task, but a family of tasks. This requires a process of discovery

and learning to be employed to create, update and repair the hierarchical structure as

the interaction evolves, as well as learn its individual components. Furthermore, novel

notions of persistent subtasks that are useful across the task family or which capture

qualitative importance in the domain should be used.



1.4. Contributions 7

A more direct way to model target tasks and facilitate transfer is by using manifold

learning. This process is straightforward if the tasks are parametrisable (e.g. (Silva et al.,

2012)), but that limits its applicability to only simple tasks. Indirect ways of mapping

between abstractions of tasks and policies are needed in many scenarios and domains

that do not have this property (e.g. when task parameters are not observable, such as in

adversarial interaction). With this, transfer becomes an issue of ‘looking up’ a policy

from a ‘dictionary’ of policies, using the abstracted description of the task, with no need

for further learning online.

1.3.2 Properties of the solution

Our approach is to autonomously develop, and incrementally maintain, abstractions

of the policy space, using suitable representations of the accumulated experience in

previous tasks, as an operational model for the domain that is suitable for transfer. This

model generates low sample-complexity responses to new instances.

Then, the requirements for a solution is that it provides

1. a rich description of the policy space of the tasks of the domain. The description

is built unsupervised from proper representations of previous experience,

2. it should be adaptable when new experience is acquired, and

3. a procedure to generate a solution for a new task using a small amount of samples

and the policy space model.

Our approach is summarised in Fig. 1.3.

1.4 Contributions

We propose three approaches to define policy space abstractions:

• We build on the hierarchical reinforcement learning concept of options and we

extract skills from a bank of experience. The resulting hierarchical model is

transferable to new tasks, and learning with options is employed for planning.

We extract options from the transitions of all previous tasks using batch rein-

forcement learning to get Offline Options (Hawasly and Ramamoorthy, 2012).

To discover persistent options, we fit a mixture of Gaussians to a collection of



8 Chapter 1. Introduction

Unsupervised 
Learning

Experienced 
instances

Transferable
abstract model

Online instance

Transfer 
Learning

Representation 
change

Experience 
bookkeeping

Figure 1.3: A depiction of the approach. A transferable model is learnt using unsuper-

vised learning from a collection of previous experiences, after a suitable representation

change. Then, a technique of transfer uses the model to generate a solution for a new

instance. The resulting policy is integrated into the experience and the model.

trajectories extracted form previous tasks. The components in the mixture iden-

tify important regions in the state space (dubbed generalised bottlenecks). We

acquire options constrained to these regions using a process of policy reuse. We

employ a continual process that proposes and removes options as the interaction

evolves, giving the framework of ILPSS (Incremental Learning of Policy Space

Structure) (Hawasly and Ramamoorthy, 2013a,b).

• We employ tools from computational topology to a collection of trajectories

of some task to identify the different ways to achieve the task under different

conditions of the dynamics/costs in the domain. This uses a special simplicial

complex construction that captures higher-order information of connectivity on

different levels of persistence. The construction maps each trajectory to a cycle

in the complex and identifies the classes of the cycles using persistent homology

theory (Pokorny et al., 2014).

We tie this approach back to the option discovery framework and define a novel



1.4. Contributions 9

criterion for option discovery based on qualitative uniqueness. Then, we use the

classes of trajectories extracted from a collection of tasks to define the smallest

set of Topological Options.

• For tasks with unobservable parametrisation, we build a non-parametric model of

policies using observables that are correlated with policy performance in the set

of experienced tasks. We propose Bayesian Policy Reuse to choose a response

to a new task from the set of input policies. This is achieved through contrasting

the values of these observables to the values of the experienced tasks. This is

especially important when learning in the new task is infeasible.

1.4.1 List of publications

• M. Hawasly and S. Ramamoorthy; ‘Task Variability in Autonomous Robots: Of-

fline Learning for Online Performance,’ International Workshop on Evolutionary

and Reinforcement Learning for Autonomous Robot Systems (ERLARS), 2012.

• M. Hawasly and S. Ramamoorthy; ‘Lifelong learning of structure in the space of

policies,’ AAAI Spring Symposium Series on Lifelong Machine Learning, 2013.

• M. Hawasly and S. Ramamoorthy; ‘Lifelong transfer learning with an option

hierarchy,’ IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2013.

• F.T. Pokorny and M. Hawasly and S. Ramamoorthy; ‘Multiscale topological

trajectory classification with persistent homology,’ Robotics: Science and Systems

(RSS), 2014.

1.4.2 Under review

• B. Rosman, and M. Hawasly and S. Ramamoorthy; ‘Bayesian Policy Reuse,’

Machine Learning Journal (MLJ), 2014.1

1.4.3 In preparation

• F.T. Pokorny and M. Hawasly and S. Ramamoorthy; ‘Multiscale topological tra-

jectory classification with persistent homology,’ International Journal of Robotics

Research (IJRR), 2015.
1The first two are jointly first authors of this paper.



10 Chapter 1. Introduction

1.5 Layout of the Thesis

The rest of the thesis is organised as follows. Chapter 2 summarises the related work

and lays out the assumptions and foundations of the work in the thesis. Then, Chapter 3

discusses the use of hierarchy and option discovery for policy abstraction, presenting

the framework of ILPSS. After that, the use of computational topology in building

abstractions from experienced trajectories and topological options are described in

Chapter 4. Next, the scheme of Bayesian policy reuse is detailed in Chapter 5. Finally,

we end with discussing future work and concluding remarks in Chapter 6.



Chapter 2

Preliminaries and Related Work

11



12 Chapter 2. Preliminaries and Related Work

2.1 Tasks

The tasks we are interested in for the setting of this thesis have the following attributes:

1. Single-agent. That does not prevent the environment from having other agents,

but the tasks of these agents would not be tightly-coupled, as for example is the

case in strategic interactions (games). We consider the domain of RoboCup, due

to factors of task complexity and limited perception and communication, in this

realm.

2. Sequential. A task requires the agent to make a series of decisions.

3. Goal-oriented. The agent has to achieve some goal to finish the task successfully.

4. Bounded experience. A task offers only limited experience, afterwards a new task

starts. The agent thus is encouraged to respond quickly to solve a task.

5. Inherent variability. There is uncertainty regarding attributes of the task specifica-

tion that needs to be accommodated in decision making. This variability does not

change the objective of the task, but nonetheless changes how the agent should

tackle it. An example of this is when the environment contains other agents with

‘loosely-coupled’ objectives. The behaviour of these agents may entail a change

in the dynamics or the cost in the domain. This is in contrast to ‘tightly-coupled’

interactions (games) where the behaviour of other agents (players) redefines the

task objective for the agent.

6. Continual. The agent, possibly after an initial training phase, is continually

experiencing an infinite sequence of episodic task instances in the domain.

2.1.1 Example tasks

We describe here the tasks for the two motivational examples mentioned previously in

light of these attributes.

Human-Robot Interaction (HRI) Consider a robot within a human environment per-

forming a specific kind of short tasks (e.g. domestic chores in a residential place)

(attribute 2). The task of the robot transpires in time and it aims to achieve some target

(e.g. setting the dinner table) in some bounded time (attributes 3, 4). There might be

active elements in the environment which would affect the task of the robot, though



2.2. Markov Decision Processes 13

not in an adversarial way (e.g. a pet) (attribute 1, 5). A new task may be different, as a

feature of the richness of the domain, or it may be very similar to a previous task, so

that building on what is learnt at one time is beneficial for future (attribute 6).

RoboCup Consider a soccer-playing robot in a match. At the highest strategic level,

this task is best described as an adversarial interaction between two opponent teams

and a cooperative interaction between many team mates. However, many researches

(e.g., (Stone, 2000)) find that, as the size and the time scale of the full multi-agent

interaction does not immediately reflect on the short-term task of a single autonomous

agent, it is more fruitful to treat this as a single-agent task for a specific assigned role in

a changing environment, rather than the game-theoretic representation (attribute 1, 2, 3).

The variability in this domain is represented by the opponent team (attribute 5) which is

only faced for the length of the match (attribute 4). The experience gained with some

opponents should then be exploited in future encounters (attribute 6).

2.1.2 Non-examples

On the other hand, the following important example tasks violate some of the required

attributes, and thus they are not explicit targets of this work:

• Solving a tightly-coupled multiagent interaction (e.g., security games (Tambe

et al., 2013)).

• Solving a one-shot online prediction problem (e.g., a multi-armed bandit (Auer

et al., 2002)).

• Learning in a non-episodic, infinite-horizon task.

• Learning an optimal policy of a single Markov Decision Process task.

2.2 Markov Decision Processes

We model the individual task instances in the environment as discrete-time Markov

Decision Processes (MDPs) (Bellman, 1957; Sutton and Barto, 1998), over discrete or

continuous state spaces.



14 Chapter 2. Preliminaries and Related Work

2.2.1 Discrete-state MDPs

A discrete-time, episodic, discrete state, Markov Decision Process (MDP) is a tuple

(S,A,T ,R,γ):

• S is a finite state space.

• A is a finite action space.

• T : S×A×S→ [0,1] is the (stationary) dynamics of the world, where T(s,a,s ′)

is the probability P(s ′|s,a) of reaching state s ′ from state s by taking action a,

with ∑
s ′∈S

T(s,a,s ′) = 1, ∀a ∈A,∀s ∈ S.

• R : S×A× S→ R is the (stationary) reward process, where R(s,a,s ′) is the

immediate reward achieved by taking action a at state s and upon reaching s ′. R

encodes the goal of the task.

• γ ∈ [0,1] is the discounting factor.

The process evolves in discrete time steps t= 0,1,2, . . . ,N−1 whereN is the length

of one episode. The agent is expected to make a decision on which action to apply every

time step.

The aim of an agent acting in an MDP is to select actions to maximise the expected

total discounted reward in the future, E{rt+γrt+1 +γ
2rt+2 + . . .+γN−1rt+N−1|s,a}

for the future rewards rt = R(st,at,st+1). γ defines how much the agent values the

future gains compared to the immediate gains. Setting γ to 1 maximises the total

undiscounted reward, which is only relevant to episodic tasks. Thus, the agent searches

for a policy. A Markov policy for an MDP is a (stochastic) mapping from states to

actions, π : S×A→ [0,1]. That is, π(s,a) = P(a|s,π) is the probability of taking action

a at state s under the policy π.

The expected cumulative reward of state s and action a under a policy π is stored in

the state-action value function (or the Q-function),

Qπ(s,a) = Eπ{rt+γrt+1 +γ
2rt+2 + . . . |s,a},

assuming that π is followed in all the time steps after a.

The optimal policy π∗ is a policy that maximises the expected cumulative reward,

and the optimal state-action value function is the value function of π∗, Q∗(s,a) =

maxπQπ(s,a) for all pairs (s,a).



2.3. Reinforcement Learning 15

2.2.2 Continuous-state MDPs

A discrete-time, episodic, continuous-state MDPm is similar to its discrete counterpart

with the exception that S ⊂ Rk is a bounded, infinite state space with k dimensions.

Consequently, T and R become functions of infinite domains.

In this case, the Q-function is a continuous function over S×A, and hence cannot

be represented using a simple tabular representation as in the discrete case. One way to

learn these functions is through incremental function approximation which attempts to

find the appropriate parameters of a function class in order to fit the observed Q values.

2.2.3 Family of MDPs

To model the variability in the agent’s environment, we represent each possible task with

an MDP and we assume that the complete set of all the possible realisations of the tasks

can be represented by a familyM of qualitatively-related MDPs. This family comprises

MDPs that share the state-action space S×A, but the dynamics Ti : S×A×S→ [0,1]

and the rewards Ri : S×A×S→ R may be different for each member of the family

mi ∈M.

For the dynamics, one way to think of the different transition functions in an

environment is to consider them coming from some uncertainty set (e.g., (Nilim and

Ghaoui, 2005)) or from a generative process over that set, Ti ∼ ∆[T ], ∀i, (e.g., (Strens,

2000)). If ∆[T ] is known, the familyM can be replaced with one Partially-observable

Markov Decision Process (POMDP) with a state space that is a cross-product of S and

the support of ∆[T ].1

Similarly, the variability in the reward can be modelled using a set of feasible reward

function in order to find robust solutions (e.g., (Regan and Boutilier, 2010)).

In this thesis we will always assume that the variability model is fixed, but unknown

to the agent.

2.3 Reinforcement Learning

Reinforcement Learning (RL) (Kaelbling et al., 1996; Sutton and Barto, 1998) is the

branch of machine learning concerned with learning policies from trial and error. This

could be approached in an incremental fashion: by estimating the goodness of some

1More accurately, if ∆[T ] is known, the familyM can be represented with a MOMDP – a Mixed
Observability Markov Decision Process (Ong et al., 2010), as S is assumed observable.



16 Chapter 2. Preliminaries and Related Work

proposed policy (prediction), then extracting a better policy from that estimate to act

(control), and so on.

Seen as an optimisation problem, RL is different from other forms of machine

learning in that the target function it is trying to learn (e.g., the value of states or state-

action pairs under the optimal policy, or the goodness of policies) is always latent and

unobservable, but a signal (reward/ punishment) correlated to that function is available.

The task of the agent is to autonomously decode that correlation to learn a behavioural

policy. RL techniques can be used to solve MDP processes when the dynamics and the

reward processes are not known.

Model-based reinforcement learning methods create an estimated model of the

environment (the dynamics and rewards), then apply some ‘planning’ procedure on

the estimated model to give a policy. A well-known model-based RL method is R-

MAX (Brafman and Tennenholtz, 2003). Model-free methods, on the other hand,

work directly on estimating the goodness of policies without first having to estimate

any model of the environment. One of the most used method in this latter setting is

Q-learning (Watkins and Dayan, 1992).

2.3.1 Batch Reinforcement Learning

Usually, sampling in reinforcement learning is sequential, and in many cases, expensive.

One approach that mitigates this is batch reinforcement learning, where a large collection

of offline experiences is used at once to learn behavioural policies (Boyan, 1999; Lange

et al., 2012), avoiding the cost of the interactive sampling from the online process.

This allows exploitation of historical data and domain knowledge that was collected

previously, on the cost of heavier computation and memory requirements.

A simple extension of interactive Q-Learning to batch mode is Fitted Q-Iteration

method (Ernst et al., 2005).

2.4 Hierarchical Reinforcement Learning

Reinforcement learning suffers from the curse of dimensionality, which refers to the

exponential increase in the size of the learning problem with the increase of the size

of the description of the domain. To fight that, approaches of temporal abstraction

are proposed. Rather than learning policies at the granularity of the action space,

hierarchical policies, which take temporally-extended actions that achieve some kind of



2.4. Hierarchical Reinforcement Learning 17

useful behaviour in the task, can reduce the severity of the curse of dimensionality in

structured tasks. Hierarchical Reinforcement Learning (HRL) (Barto and Mahadevan,

2003) creates coarse abstractions in the action space, either by employing temporally-

abstracted actions that achieve subgoals, or by reorganising the policy space into

configurations of behaviours that make learning in new tasks more tractable.

2.4.1 Semi-Markov Decision Process

A semi-Markov decision process (SMDP) emerges when dealing with temporally

extended actions in MDPs in hierarchical reinforcement learning. In a discrete-time

SMDP, action execution is allowed to extend over multiple time steps (Howard, 1971).

This makes reasoning about execution durations explicit in learning and planning:

Qπ(s,o) = Eπ{rt̃+γ
τ1rt̃+1 +γ

τ1+τ2rt̃+2 + . . . |s,o},

where o is a temporally extended action, t̃, t̃+1, . . . are the times when decisions are

taken rather than the normal time steps t, and τ1,τ2, . . . are the execution durations for

the corresponding temporally-extended actions under π. Many of the planning and

learning algorithms of MDPs work naturally in such SMDPs (e.g., (Parr, 1998)).

2.4.2 Options

The framework of options (Sutton et al., 1999) is one approach of HRL that extend the

action repertoire with generic temporally-extended actions.

An option o is the three-tuple 〈I,π,β〉. I ⊆ S is a subset of the state space called

the initiation set in which the option can be invoked. π : S×O→ [0,1] is a (Markov or

semi-Markov) policy over the augmented set of actions (containing the actions A and

any other temporally-extended options that do not invoke o). This policy is followed

when the option is invoked. Finally, β : S→ [0,1] is a probability distribution over the

state space that defines the termination condition of the option.

The option framework’s strength is that it allows primitive actions to be considered

as (trivial) 1-step options for planning purposes. For a set of options O, an option

switching policy πO : S×O→ [0,1] is a stochastic map from states to options/ primitive

actions. It is known that sequencing a set of (Markov or semi-Markov) options from O
defined over an MDP gives a well-defined SMDP, and allows planning and learning of

πO via similar approaches to planning and learning in MDPs (Sutton et al., 1999).



18 Chapter 2. Preliminaries and Related Work

Option Interruption

Normally, an option selected by a switching policy πO at some state continues to run

until its termination condition β is satisfied. The interruption of an option o at some

state st refers to the process of switching control from o to a new option before its

natural termination (as defined by βo(st)) if the value of the option o at the interruption

state st is inferior to the expected value of the policy πO at st:

Qπ
O
(st,o)<

∑
q∈O

πO(st,q)Qπ
O
(st,q).

Option interruption is a kind of non-hierarchical execution of hierarchical reinforce-

ment learning policies and it allows for performance improvement over the SMDP

policy.2

2.4.3 Other HRL approaches

Hierarchies of Abstract Machines

Parr introduced the Hierarchies of Abstract Machines (HAMs) framework (Parr, 1998;

Parr and Russell, 1998) as a way to structure the policy space for an MDP by constrain-

ing it to what can be realised through a collection of ‘programs’ or finite-state machines

(FSMs). These machines are capable of producing actions for the task MDP when

called by the hierarchy controller, they can realise non-deterministic behaviour, they

can call other machines, and they have their termination conditions that return control

to the calling entity in the end.

HAMs when combined with an MDP results in an SMDP whose decision points

occur when the member machines take decisions, and whose realisable policies are

constrained to hierarchical executions of the programs of the machines.

MAXQ

Dietterich proposed MAXQ value function decomposition as another method to con-

strain the realisable policies of an MDP through a hierarchy of controllers, each designed

for a specific subgoal (Dietterich, 1999). Organised in a graph, the controllers are con-

strained in terms of which of the other controllers they can invoke. Each controller has

2From here on, we will be using π to refer both to primitive action policies and option switching
policies.



2.5. Survey of Option Discovery Methods 19

its own policy and pseudo-reward function, and it takes into account the execution stack

of the calling controllers when making decisions.

In MAXQ, each controller defines an SMDP over its children controllers. The

hierarchy of SMDPs decompose the value function of the task MDP into a sum of

continuation functions of the various controllers, each corresponding to the expected

value after a specific decision is executed.

2.5 Survey of Option Discovery Methods

Options are classically designed for a specific task in order to reduce learning and

planning complexity. However, many approaches have been proposed to automatically

discover a set of options for a task. Next, we give a brief overview over the different

option discovery methodologies.

2.5.1 Trajectory-based methods

These methods rely on trajectories generated from optimal policies as input to the

hierarchy discovery process. Options can be generated through trajectory matching to

find common behaviour or by employing supervised learning techniques on trajectory

sets.

PolicyBlocks

(Pickett and Barto, 2002) For a set of tasks that differ only in the reward process,

the agent is given a set of optimal policies. The set of options is produced through a

matching between the optimal policies and the metric used is the compactness of the

description. Note that this process assumes no learning. Some operators are proposed

to merge options, extracting shared structure, and to subtract one from another. The

shared option is added to the set, and the original options are replaced with smaller

policies resulting from subtracting the new option from the original options.

Motifs

(Zang et al., 2009) search for options using trajectories generated from the optimal

policy. The trajectory is treated as a sequence of actions and common motifs are

identified as candidate options. The goal of an option is defined to be the state that

precedes a change in a state abstraction sufficient to describe the motif, and the initiation



20 Chapter 2. Preliminaries and Related Work

set comprises all the states that can reach that goal. A policy is then learnt to achieve

the option’s goal from the initiation set using value iteration.

2.5.2 Frequency-based methods

In these methods, the subgoals are discovered through statistics maintained for individ-

ual states. (Digney, 1998) introduces two features to identify a useful macro-action.

The first is the square of the gradient of the reinforcement signal at a state, which is an

inter-task feature. Changes in this metric denote the importance of state. The second is

the frequency of visiting a state, which requires many tasks and hence, is an intra-task

feature.

Visitation frequency is the most used state statistic in frequency-based methods for

option discovery. A simple frequency-based method is proposed in (Stolle and Precup,

2002) where optimal trajectories for a set of optimal policies of random tasks in a fixed

environment are used to calculate the frequency of visiting each state. The state that

has the highest frequency is chosen to be a goal of a new option, whose domain is

chosen by interpolation between the states that have higher-than-average occurrence

in the optimal trajectories which reach the subgoal state. A slightly different approach

in (Chen et al., 2007) optimises locally-computed derivative of the visitation frequency

to select subgoals.

Diverse Density

In (McGovern and Barto, 2001), the question of discovering subgoals in MDPs is posed

as a multiple-instance supervised learning problem. Instead of relying on similarity

between policies, this method searches the observation space of the agent to discover

useful subgoals, utilising the intuition that bottleneck regions occur more frequently

in the observations of the agent in successful trajectories, but not in failed ones. For

that, a methodology similar to Diverse Density (Maron and Lozano-Pérez, 1998) of

multiple-instance supervised learning can be applied using the trajectories as bags of

instances and the bottlenecks as concepts. The states that have the highest value of

diverse density are elected as candidate subgoals and later options. The domain of an

option is then defined to be the union of a subset of the states that the agent visited

before reaching the new subgoal in successful trajectories. A drawback is that the

candidate subgoal should not have appeared in a negative trajectory. Another issue is

that filtering states near the start state and the goal state is needed to discover meaningful



2.5. Survey of Option Discovery Methods 21

subgoals.

(Kretchmar et al., 2003) build on the previous method’s intuitions while mitigating

its shortcomings. Their method, called FD, uses only successful, acyclic trajectories,

and computes for each state the product of its appearing frequency and a temporal

distance to undesirable subgoal states, such as the task goal or the initial states. The

states with the highest value is selected as a subgoal, and a policy is learnt using policy

replay.

Relative Novelty

Relative novelty (Şimşek and Barto, 2004) is one metric for bottleneck states, here

called access states for that they link different regions in the state space. In a given

trajectory, the ratio of the average visitation frequency of a certain state and what follows

it in the trajectory to the average of states that came before it, up to a horizon which

is a parameter of the method, relates to the relative novelty of that state. Any state

will see different values of relative novelty each time it is visited, but the distribution

of these values in states that are ‘interesting’ would be different to the distribution in

other, ‘normal’ states, in that it would have heavier tails indicating a higher tendency

of larger values. Then, these distributions can be used as an input to a classifier that

outputs candidate subgoals. Finally, options are constructed for these subgoals.

A similar intuition appeared earlier in (Goel and Huber, 2003) using the count

metric which is the probability to reach a specific state in an arbitrarily-starting acyclic

trajectory generated by the optimal policy. The choice of subgoals depends on the ratio

of the gradients of that metric before and after a candidate state in a trajectory being

greater than a specific threshold. An extension to this work appears in (Asadi and Huber,

2005) where the gradient ratio is computed using Monte Carlo sampling rather than

exhaustively.

2.5.3 Graph-based methods

In these methods, the model of the environment which the tasks share is constructed

from experience, usually in the form of a transition graph. This graph has the states

as nodes, and transitions between them as edges. The edges are usually weighted

with estimates of the transition probability. Once the graph is built, graph-theoretical

attributes are used to define subgoals.



22 Chapter 2. Preliminaries and Related Work

Graph partitioning

Q-Cut (Menache et al., 2002) Bottleneck states happen at the borders of strongly

connected areas of the state transition graph. Considering the process as a graph, with

relative visitation frequency as capacities, bottlenecks can then be found using Max-

flow/Min-cut methods of graph theory. This assumes a global perspective on the full

process, as compared to the local, frequency-based methods discussed above. This is

also a reward-free method.

Clustering Rather than relying on individual state subgoals, collections of states that

are important in various stages in the achievement of the task are considered in (Mannor

et al., 2004). To this end, the nodes of the transition graph are clustered in a way that

maximises separation and options are learnt to navigate between these state clusters.

Clustering can be performed on the topology of the graph alone or with the aid of state

value information. This is useful to guide the clustering algorithm into finding clusters

with homogeneous values.

Local graph partitioning Here, subgoals are the states that connect two regions in

state space via one-step transitions that have low, positive probability. Rather than

finding these through a global perspective of the transition graph, L-Cut (Şimşek et al.,

2005) uses a local transition graph constructed only with the recent experience of the

agent, represented by partial trajectories not necessarily from optimal policies. The

algorithm searches for graph cuts that yield high transition probability within partitions,

and small probability between partitions, and tries to locate subgoals from the states

that have partition-crossing edges.

Linear time complexity While graph partitioning is considered an NP-hard prob-

lem, (Kazemitabar and Beigy, 2009) propose a linear time algorithm to extract subgoals

from transition graphs. To find the states that connect, with low probability, dense

regions in the space, a locally-estimated graph like in (Şimşek et al., 2005) is used to

discover strongly connected components, which are state clusters in which every two

states are reachable from each other. This is achieved through a depth-first search that

gauges the distance from a specific state in the original graph and in its transpose (the

directed graph with the original transitions reversed). The computational trick is to use

the adjacency list rather than the adjacency matrix to cater for the sparseness of the

transition graph. Subgoals are defined to be the borders of these components. Also, the



2.5. Survey of Option Discovery Methods 23

authors propose to find the single parameter of the method (threshold of the transition

frequency for it to be considered an edge) automatically by examining the histogram of

edge frequencies for local minima.

Centrality

Betweenness is a graph-theoretic centrality measure that estimates how important a node

is by examining the number of shortest paths traversing it. In (Simşek and Barto, 2009),

subgoals are the states that locally maximise betweenness on the state transition graph.

The full knowledge of the graph is not necessarily needed, as incremental discovery

is also possible through the utilisation of decision rules on statistics extracted from

experienced subgraphs.

In (Rad et al., 2010) a different centrality measure, a variation of connection graph

stability which puts more emphasis on local maxima, is used for the same purpose.

2.5.4 State factorisation methods

These methods differ from all the previous methods in that they aim to build hierarchies

by exploiting the independent axes in the state space, rather than finding interesting

individual, or collections of, states. Using this independence, the state space can be

projected down into smaller subspaces which can be individually optimised.

HEXQ

Using the rate of change for different state features, the assumption of HEXQ algo-

rithm (Hengst, 2002) is that it is possible to build an abstraction whose levels are

described independently by distinct state features. The lowest level is described by the

most-frequently changing state feature. The task of the learner is to explain the state

transition using only that feature. Any states that do not comply with that description are

considered exit states, ready to be exploited by higher layers. The discovered regions of

state space along with their possible exits are considered smaller MDPs, and learning is

employed to reach all the exit states from anywhere inside. Other layers in the hierarchy

use these regions as abstract states and their learnt action policies as abstract actions to

transition between them, forming a hierarchy of SMDPs. The resulting hierarchy has a

similar structure and semantics to MAXQ3.

3MAXQ hierarchies can be regarded as a special constrained case of an option hierarchy.



24 Chapter 2. Preliminaries and Related Work

In (Kozlova et al., 2009), exits are also automatically discovered. But unlike HEXQ,

exits here do not correspond to simple state-action pairs, but to a variable whose value

changes at the exit and a collection of constraints on state features that describe the

context.

2.5.5 Continuous domains

Skill Chaining

In (Konidaris and Barto, 2009), the goals of options in continuous domains are defined

using goal trigger functions that flag the realisation of an event of interest. The initiation

set can be defined via clustering of state space, using the states on the successful

trajectories as input instance. After that, an indicator function of the previous option’s

initiation set can serve as a new target function of a new option. This process continues

to create a chain, or tree, of skills.

2.5.6 Other methods

These are methods that do not fall under any of the previous categories, or have features

from multiple of them.

SKILLS

The method in (Thrun and Schwartz, 1995) considers a set of tasks, in the same S×A
space, that differ only in the reward process or dynamics. A skill is a partial policy,

defined for a subdomain of S×A which helps the agent to define compact policies for

a set of related tasks.

The learning algorithm ascends a measure of compactness and optimality by modify-

ing the skill policy, domain, and usage rates. The skill policy is learnt using Q-Learning,

while the domain is evolved from a single state by adding more relevant states when

possible. A state is added to a skill domain if adding it will make the compactness-

optimality measure at that state higher than not adding it. Usage is optimised similarly

using a stochastic gradient descent process.

Macro-actions

In (McGovern, 1998), subgoals are elected for showing an increase in reward compared

to previous states in reward histories for a robotic application. Because the domain is



2.6. Related Work: Learning Skills 25

continuous, the target of the ‘macro-action’ is defined as a region in the sensory space

of the robot defined through clustering and chosen using statistical summaries of the

clusters that reflect their visitation frequency compared to individual states. The policy

to reach that region is learnt using Q-Learning.

In (Girgin et al., 2010), a conditionally terminating sequence (CTS) is a sequence of

actions with their corresponding state regions, called continuation sets, that describe a

behaviour. A sequence tree is a collection of CTS’s with decision points. The nodes

in the tree are action sequences with their continuation sets and the edges represent

action choices. The idea is to build and keep adapting a sequence tree on the fly while

interacting with the environment. This tree represents one big meta-option, due to

the continuous evolution of the tree, with the decisions made using SMDP values and

frequency statistics.

In (Drummond, 2002), the structure of a learnt task is extracted in the form of a

graph that describes important features in the optimal value function. These features

are discovered using a vision technique called the ‘snake’ to find smooth regions in the

state space delimited by a high value gradient boundary. A policy for a new task can

then be produced by composition of transformed subgraphs with their corresponding

solutions.

Bisimulation metrics

(Castro and Precup, 2012) propose a method to use an optimal policy for a smaller

MDP in solving a larger MDP by extracting reusable options defined over patches of

‘bisimilar’ states (similarity established using bisimulation – the quality of not being able

to distinguish two systems by observing their moves, or evolution). An option is built

for every source state in the source MDP, with the policy proposed by its bisimulation

to the target states. The termination condition is defined to capture the boundaries

of similarity to the source state, while the initiation set is defined so that the option

terminates in a useful way in a limited number of steps.

2.6 Related Work: Learning Skills

In this section, we discuss some proposals from the literature that touch upon the

problem of abstraction learning for a lifelong learning agent by developing subpolicies

and skills.



26 Chapter 2. Preliminaries and Related Work

2.6.1 Control theory approaches

In hybrid control, when no single control law can regularise a complex system, there

might exist a set of local control laws that can collectively achieve the desired effect.

In (Burridge et al., 1999), the policy space of a robot is decomposed into a collection

of state-stabilisation feedback controllers, each with a domain of attraction that is

a member of some ‘lower’ controller. The policies of these dynamical systems are

befittingly called funnels. This essentially creates a graph hierarchy in the policy space

and decomposes the state space into overlapping cells.

Achieving a specific goal is possible through sequential composition of funnels,

back-chaining from the goal state back to the initial system state to activate the appropri-

ate controllers. More recently, (Tedrake, 2009) propose a randomised motion planning

algorithm that builds a tree of Linear Quadratic Regulator (LQR) stabilised trajectories,

connecting the states of the system to a goal state, and prove that it is probabilistically

complete in covering the input states.

2.6.2 Hierarchical reinforcement learning approaches

Portable options (Konidaris and Barto, 2007) define a joint abstraction for multiple

qualitatively-similar tasks that differ in their state description. This abstraction, called

the agent space, encodes only the qualities that are shared in the family, such that the

related tasks look the same when projected to that abstraction. Thus, options defined

in the agent space can be easily transferred to any other task that shares the same

abstraction.

In (Konidaris et al., 2012a), goal-oriented ‘skills’ are extracted from expert demon-

strations in continuous domains, then organised in skill trees. The demonstrations are

segmented into chains of sub-trajectories, each generated by a different skill that has its

own goal.

Each skill could have a different state-action abstraction and value function model,

and the proposed algorithm automatically selects the suitable abstraction for the skill

from an abstraction library. The boundaries of a skill are determined using backchain-

ing (Konidaris and Barto, 2009), by trial-and-error learning of the states from which the

goal can be reached, or using an approach of change-point detection based on a Hidden

Markov Model (HMM) of possible tasks implemented using a particle filter (Konidaris

et al., 2012a).

In (Mehta et al., 2008b), a dynamic Bayesian network is used to extract the causal



2.7. Related Work: Learning to Generalise 27

and temporal relationships between the actions in a single successful trajectory of the

task. This results in a partitioning of that trajectory, then used to construct a MAXQ

hierarchy.

2.6.3 Dynamical Motion Primitives

A motor (or movement, motion) primitive is a parametrised template of a complete

motion. A Dynamical Motion Primitive (DMP) is a motor primitive that is based on a

dynamical system to provide the encoding of the behaviour, usually a point attractor

or a limit cycle. The parameters of the encoding can then be adapted using statistical

learning to represent a larger spectrum of movements (Schaal et al., 2005, 2007).

Designing DMPs requires first identifying the equations that describe the dynamical

system in order to guarantee the desired properties, e.g. stability. Then, the parameters

can be acquired using imitation learning or reinforcement learning. The former allows

finding a quick assignment of values to generate a good solution, while the latter can do

the fine tuning to optimise a suitable performance criterion (Peters et al., 2003, 2005).

2.6.4 Machine learning approaches

In (Mahmud et al., 2013), a clustering technique is used to segment a set of MDPs into

clusters so that a policy exhibits similar performance when applied to MDPs within the

same cluster, and a landmark MDP is chosen to represent each cluster. Then, the set of

optimal policies for these landmark MDPs represent an abstraction of the policy space

that is used to drive a policy reuse algorithm.

2.7 Related Work: Learning to Generalise

In this section, we discuss some proposals from the literature that touch upon the prob-

lem of abstraction learning for a lifelong learning agent by developing generalisation

for new tasks from example task instances and demonstrations.

2.7.1 Transfer Learning for RL

Transfer Learning in the context of reinforcement learning is concerned with learning

to act in a set of related tasks by leveraging the experience gained in some of them

(for a review, see (Taylor and Stone, 2009)). The idea is to use a set of source tasks



28 Chapter 2. Preliminaries and Related Work

to accelerate learning in a novel target task different in rewards, dynamics, or even

state-action space.

Some successful transfer methods rely on an explicit and observable parametrisation

of the task space (e.g. (Mehta et al., 2008a; Silva et al., 2012)), while others assume

a known distribution of variability in the tasks (e.g. (Perkins and Precup, 1999)), or a

distribution that can be approximated from previously-seen source tasks (e.g. (Tanaka

and Yamamura, 2003; Snel and Whiteson, 2012)). Bayesian methods can use these

distributions as priors to estimate, then solve, the novel target task (e.g. (Sunmola and

Wyatt, 2006; Wilson et al., 2007, 2012)).

A different approach is to find a reduced, ego-centric representation that has the

same semantic in all tasks, in which the source and target tasks look effectively the

same (Konidaris et al., 2012b), then to transfer policies on that level of description.

Similarly, but under relational reinforcement learning, (Croonenborghs et al., 2008)

uses a relational description of the task to transfer skills, or relational options, to other

tasks that share the same symbols.

Policy reuse

Policy reuse is another Transfer Learning approach that deals with task families. Using

a mechanism to select the most similar previously-seen task to the novel one, a policy

can be used as is on the target task (Mahmud et al., 2013), in a model selection style.

For a learning approach, the reused policies can be used to accelerate learning in the

new target task, e.g. by biasing the exploration scheme in the new instance (Fernández

and Veloso, 2006).

2.7.2 Lifelong learning

Intrinsically motivated reinforcement learning (Singh et al., 2005; Soni and Singh, 2006)

defines skills that achieve unpredicted salient events in the domain of the agent. That is,

no external objective is needed to define the skills, but they are learnt for any discovered

state that seems interesting according to this internal function, usually in the form of

options.

2.7.3 Learning from demonstration

Learning from demonstration (or programming by demonstration, imitation learning)

is a supervised learning process that evolves policies for a robot by using positive (or



2.7. Related Work: Learning to Generalise 29

negative) examples of task achievement (Billard et al., 2008; Argall et al., 2009). The

positive examples are handled as local maxima points in the policy search space, while

the negative examples represent constraints on the search space. This allows faster and

more direct approach for robot skill acquiring.

The two general classes of learning from demonstration methods are trajectory

encoding where low-level mapping between perceptions and actions in simple tasks is

learnt, allowing generalisation to similar tasks, and symbolic encoding where sequencing

of primitives is rather acquired, allowing capturing higher-level knowledge of the task.

Mapping functions

A function that maps states to abstract actions can be learnt by considering the demon-

strations as an input for a classification technique. Also, a function that maps states to

primitive continuous actions can be learnt by regression. Afterwards, the learnt policy

can be improved by experience (Bentivegna, 2004).

In the case of structured task space with known parametrisation, it is likely that the

policies of the tasks live in a smooth lower-dimensional manifold (or in several charts

of a piece-wise smooth manifold) in the policy space. Exploiting this, (Silva et al.,

2012) propose ‘parametrised skills’ as a method to learn the mapping between the task

parameter space and the policy parameter space in such scenarios, starting from a set of

solved instances. The mapping, defined through a set of non-linear regression functions,

is then used to generalise and propose solutions to new, unseen task instances.

For dynamical motion primitives, attempts have been made to map task parameters

to meta-parameters of a DMP, like, e.g., the end position of the motion or its duration.

These meta-parameters not only fine tune the behaviour, but also define its shape.

Reinforcement learning can be employed to learn the relation between task parameters

and meta-parameters from a set of demonstrations and trials to generate more generic

DMPs (Kober et al., 2012). Alternatively, in (Bitzer et al., 2008), a dimensionality

reduction technique is first applied on the demonstrated trajectories to extract a smaller

latent representation which is invariant to the redundancy in the demonstrations and

which captures the essence of the task.

Model-learning approaches

Using demonstrations, the agent can learn a model of the domain dynamics using

reinforcement learning techniques. To allow generalisation to unseen state-actions,



30 Chapter 2. Preliminaries and Related Work

function approximation can be employed.

On the other hand, the agent has to learn the reward function for the desired task.

One approach is to use the techniques of Inverse Reinforcement Learning (Abbeel and

Ng, 2004) which try to estimate the parameters that define the cost function of the

demonstrator, or in other terms, the weights of the different features that specify the

skill reward. Then, this metric can be optimised to imitate the skill.

Symbolic plans

Demonstrations can be understood as sequences of symbols, and a symbolic representa-

tion of the task can be extracted then used in a symbolic planning framework.

2.8 Related work: Topology-based Approaches

In this section, we discuss some proposals from the literature that touch upon the

problem of abstraction learning by methods that utilise or reason about the topological

structure in the policy space.

Sampling-based motion planning algorithms that utilise a set of samples from the

free configuration space of a robot have been quite successful in answering questions

about path-connectivity in motion planning tasks. In particular, approaches based on

RRTs and PRMs (LaValle and Kuffner, 2001; LaValle, 2006; Kavraki et al., 1996)

have attracted unabated interest since their discovery (Lindemann and LaValle, 2005;

Masehian and Sedighizadeh, 2007; Karaman and Frazzoli, 2011). These approaches

typically represent the planning domain by a graph whose vertices are the sampled

points and where an edge is inserted between two vertices if they are within some

distance threshold. These graphs act as abstract representations of the space of paths.

Approaches which attempt to reduce the space into equivalence classes of paths

include the work on (Jaillet and Simon, 2008) on path deformation roadmaps. The

authors there propose a graph-based representation of the space of paths up to a class of

continuous deformations.

On the other hand, homotopy of paths can also be used in identifying the path

classes (see Appendix. A). One advantage of knowing the homotopy classes of paths in a

domain, with respect to the obstacles in the configuration space, is that a motion planning

algorithm can utilise efficient replanning algorithms within each such class (Brock and

Khatib, 2000), deforming and optimising a given input path continuously. It is hence



2.8. Related work: Topology-based Approaches 31

advantageous to maintain a set of homotopy inequivalent classes, each of which can be

optimised using gradient or variational methods.

Also, homotopy-equivalence allows reasoning about the equivalence classes directly

rather than about all the realisable trajectories in the domain. In (Kuderer et al., 2014),

a collection of homotopy-distinct paths between two points are maintained by a mobile

robot to allow negotiating dynamic obstacles on the go. Another application of the same

idea is to enable shared-autonomy, as in the case of a robotic wheelchair that takes

into account the sparse user control input (Fig. 2.1 shows a number of different motion

classes in red, and the one chosen by the user in green). Using a similar technique,

a hierarchical probability distribution is learnt in (Kretzschmar et al., 2014) in a plan

recognition task for a set navigating agents.

Figure 2.1: Planning with homotopy-equivalence classes for a shared autonomy

wheelchair (Image from (Kuderer et al., 2014)).

On the other hand, different methods have been developed to identify equivalence

classes, or to generate trajectories that fall in some specific class, using homology,

which is a weaker version of homotopy (see Appendix. A). It’s argued that in problems

of robot path planning, there is almost no difference between the two concepts.

For example, in (Kim et al., 2012), path generation in 2D with homology constraints

is formulated as a Mixed-Integer Quadratic program by endowing path segments with

binary labels that identify their relation to the domain obstacles, then solved by an

anytime planner. Using the classical residue theorem of complex analysis (Bhattacharya

et al., 2010) studied an application of homology classes to 2D motion planning, in the

case where the obstacles in the configuration space can be contracted into representative

points. In (Bhattacharya et al., 2011), this was extended to 3D via the electromagnetism

theory and Ampere’s law where obstacles can be contracted into skeletons and modelled

as current-carrying wires. A further generalisation in (Bhattacharya et al., 2013) to



32 Chapter 2. Preliminaries and Related Work

arbitrary dimension Euclidean spaces is proposed, where the integration of differential

1-forms over cycles is shown to be sufficient to find the invariants of homology classes

using de Rham cohomology theory (Fig. 2.2 shows a number of different classes of

movements between two fixed points with respect to which obstacles the go through or

avoid).

Figure 2.2: Homotopy classes in a 3-dimensional space with obstacles (Image from (Bhat-

tacharya et al., 2013)).

2.9 Concluding Remarks

In this chapter, a quick review of the required concepts in this thesis are presented, as

well as a sample from the literature that touches upon the topic of learning abstractions

in policy space.

Our concept of lifelong learning meets learning from demonstration in its need to

generalise from a set of examples, where the examples are the solutions for previous

tasks solved in the domain. Our task can be considered as learning from demonstration

by assuming the robot to be the teacher, that the demonstrations are executed by the body

of the learner, and that the learning progresses interactively while new demonstrations

are being produced. One difference to learning from demonstration though is that a

demonstration may involve multiple interacting skills that the agent has to acquire and

comprehend, rather than a single unique skill.

Intrinsically motivated reinforcement learning as a kind of developmental learning

is related to our concept of lifelong learning in its autonomous search for hierarchies of

generalised skills that can be applied to a wide range of problems in the agent’s domain.

However, it differs in that its target is only the intrinsic motivation, while a lifelong



2.9. Concluding Remarks 33

learning agent responds to that extrinsic motivation of solving particular problems in

the domain. However, these two approaches are not orthogonal and nothing prevents a

lifelong learning agent form extending its knowledge of the domain by exploration and

intrinsic curiosity.

Transfer learning is related to our learning framework, but it usually assumes

that the target task is fully known so that a proper source task can be chosen, or a

suitable mapping can be developed. In our case, the new task comes from an unknown

distribution, which the agent can only approximate from previous interactions.

For mapping functions in the general case, the task space parametrisation is either

too complicated to be captured, latent (or partially observable) in general or in the run

time. Examples of such tasks include walking on rough terrains, adhoc interaction with

human users, and real time surveillance and monitoring, respectively. On the other

hand, policies might be too complicated to be parametrised or the discontinuities in the

space might prevent fitting smooth manifolds. Examples of that include soccer playing

strategies. Finally, the mapping between the two spaces might be intractable to compute,

especially when the task and policy spaces are vast and the seen examples comprise

only a small subset.

Dynamical motion primitives are based on parametrising fixed dynamical systems,

assuming specific formalisations of skills and constraining the shape of their trajectories,

as encoded by the dynamical system equations. Also, DMPs that have meta-parameters

assume that meta-parameters are known and specified beforehand, and that tasks can be

parametrised.

Using topology to abstract policy space is promising. One problem that the above

mentioned approaches suffer from is the fact that they require an explicit description

of the obstacles in the configuration space, e.g. as unions shapes, each of which is

contractible to a geometrically specified point or skeleton. Typically, such information

is not easily available for real robotic systems, because an explicit description of the

free configuration space is either impossible or too expensive to compute.





Chapter 3

Policy Space Abstraction by Option

Discovery

35



36 Chapter 3. Policy Space Abstraction by Option Discovery

3.1 Introduction

We argue in this chapter that many interesting domains have key components, or

subtasks, that are shared between the task instances, and which are neutral to the

variability in the instances. We argue that capturing these would improve the agent’s

performance in a novel task instance in the domain. We seek to automatically extract a

set of such subtasks from the agent’s experience, then refine the discovered hierarchy

with new gained knowledge.

Thus, we address in this chapter the problem of learning policy space abstraction

through the options framework of Hierarchical Reinforcement Learning (HRL). We

introduce our notion of generalised bottlenecks in Sec. 3.4.1 as a metric to define

persistent options for a domain. To do this, we employ a probabilistic unsupervised

learning method that automatically identifies these state bottlenecks, capturing interest-

ing contiguous regions in state space that occur in various previously-seen instances of

the task. We propose a method to extract the options by using a process of policy reuse

that populates these regions with the exact same behaviours learnt in previous instances,

creating pieces of skill. We integrate these concepts with a continual update procedure

that keeps the abstraction refined and up-to-date as more tasks are solved in the ILPSS

framework in 3.4.

Fig. 3.1 gives an overview of the approach in this chapter.

3.1.1 Contributions

The main contributions of this chapter are1:

• Extracting options for transfer for a collection of tasks using Batch Reinforcement

Learning.

• A concept for persistent bottlenecks in a family of tasks called the generalised

bottleneck.
1The work in this chapter has been published in:

• Hawasly, M.; Ramamoorthy, S., ‘Task Variability in Autonomous Robots: Offline Learning for
Online Performance,’ International Workshop on Evolutionary and Reinforcement Learning for
Autonomous Robot Systems (ERLARS), 2012.

• Hawasly, M.; Ramamoorthy, S. ‘Lifelong learning of structure in the space of policies. In Lifelong
Machine Learning,’ AAAI Spring Symposium Series, Machine Lifelong Learning, 2013.

• Hawasly, M.; Ramamoorthy, S., ‘Lifelong transfer learning with an option hierarchy,’ IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2013, pp.1341,1346, 2013.



3.2. Abstraction using Option Hierarchies 37

Unsupervised 
Learning

Learnt policies

Online instance

Transfer 
Learning

Representation 
change

Experience 
bookkeeping

Bag of states

Across-task 
option hierarchy

+ Policy reuse

SMDP

GMM

Figure 3.1: Overview of the approach in this chapter. The experience, a set of learnt

policies, generates a ‘bag of states’ encoding. The unsupervised learning step is

implemented via a mixture model learning, which structures the state space. A process

of policy reuse transforms the state space model into a policy space model, creating

options. Then, learning a new instance becomes an instance of SMDP learning. The

learnt policy is then added to the policy collection and the process repeats.

• Extracting persistent options from a family of tasks by employing unsupervised

learning technique to trajectories of successful trials, and a process of policy

reuse.

• A process that manages the collection of options in a lifelong process by proposing

new options and decaying old ones.

3.2 Abstraction using Option Hierarchies

3.2.1 Related work

Exploiting hierarchical policy structure for transfer purposes has seen some success.

Originally, exposing hierarchical structure in policies is considered a way to counter



38 Chapter 3. Policy Space Abstraction by Option Discovery

complexity in reinforcement learning, and a number of methodologies to organise and

learn a hierarchical policy for a specific task were proposed (see (Barto and Mahadevan,

2003) for an overview of HRL methods).

One of the most flexible methodologies is the framework of options (Sutton et al.,

1999), and its potential in transfer was also examined. For example, (Konidaris and

Barto, 2007) introduces portable options which are abstract actions defined in a reduced

state space, called the agent-space, instead of the full problem-space. The motive for

that is that they can be transferred to any problem that shares that reduced representation.

In (Konidaris et al., 2010), ‘skills’ are extracted and chained to construct skill trees from

expert demonstrations. Finally, generalisation for parametrisable tasks can be achieved

through the discovery of smooth low-dimensional spaces where the policies of these

tasks lie (Silva et al., 2012).

To employ hierarchy into lifelong learning, the abstraction should be learnt rather

than designed. One way to uncover the policy hierarchy in a task is to discover subgoals

that are essential to the achievement of the task objective (see Sec. 2.5 for an overview).

An important notion of this is a bottleneck, which is a landmark state through which

successful trajectories tend to pass, while unsuccessful ones do not. Finding bottlenecks

has been approached using many metrics, including state visitation frequencies (Stolle

and Precup, 2002; Şimşek and Barto, 2004), and graph-theoretic measures of transition

graphs, like Max-flow/Min-cut (Menache et al., 2002) and betweenness (Simşek and

Barto, 2009). However, many of these methods work in discrete settings or require an

upfront complete knowledge of the task. One exception is (Konidaris et al., 2010) where

options are discovered automatically in a continuous space, but to solve particular tasks

rather than families of them.

3.3 Offline Options

First, we introduce a simple concept of option learning that is viable when learning is

not feasible at all in the online case.

3.3.1 Averaging policy

For a set of sampled MDPsM ′ ⊆M, the mean MDP m̄ is the process that has the

same state-action space S×A as the members ofM, but has the dynamics and reward

processes T̄ = EM ′[T ], and R̄= EM ′[R].



3.3. Offline Options 39

Define the averaging policy π̄ as the optimal policy for the mean MDP m̄. Note that

the value function of this policy averages sample returns generated from the models of

M ′. Depending on the variability inM andM ′, the performance of π̄ might be quite

poor, and, in general case, conservative, as it tries to choose actions that suit the full

spectrum of dynamics and rewards inM ′.

3.3.2 Offline options

An offline option is a skill that targets a specific, frequently-occurring subtask in the

tasks that an agent has experienced.

Definition 1 (Offline Option). An offline option for a subtask is the tuple 〈I,π,β〉, with

I and β specifying where the subtask is viable and where it ends, respectively, as in

standard options. The policy of the option π, on the other hand, is learnt in batch

mode across a set of previously-experienced instances in the domain for a specific

pseudo-reward function that defines the goal of the subtask.

This is in contrast to the standard option learning, where options are learnt specifi-

cally for the task at hand. This is where offline options get their name from.

Because the subtask it represents is a smaller problem, we argue, the policy of an

offline option will be less affected by variability compared to the averaging policy π̄ of

the full task.

Then, the option switching policy µ for a new task can be learnt over the SMDP

induced from the set of offline options. Due to the real-time requirement, the agent

might be unable to learn µ online for a new task. Instead, we would learn an aver-

aging switching policy µ̄ using batch reinforcement learning from offline experience.

To improve on this hierarchically-optimal policy for the mean MDP, we propose to

incorporate a notion of option interruption into the process.

3.3.3 Offline interruption

The use of interruption in the options framework not only improves performance via

non-hierarchical execution of hierarchical policies (Sutton et al., 1999) but also adds an

element of ‘reactivity’ to the state of interaction. This appears to be useful for handling

unknown situations. However, the interruption condition in (Sutton et al., 1999) requires

knowledge of option values in the desired instance, which we do not have. We propose



40 Chapter 3. Policy Space Abstraction by Option Discovery

a modified notion of interruption that depends only on values extracted form the offline

experience.

Given µ̄, the offline-learnt switching policy, and its offline value function Qµ̄, we

define offline interruption.

Definition 2 (Offline interruption). A running option o in the unknown MDPm may

be offline-interrupted at state st, if the maximum value of o at that state in all instances

under the averaging option policy, Q̂µ̄(st,o) = maxm∈MQm,µ̄(st,o), is strictly less

than the averaging value of selecting a new option at st according to the policy µ̄:

V µ̄(st) =
∑
q µ̄(st,q)Q

µ̄(st,q).

The choices of µ̄ would be conservative and ‘safe’, and following µ̄ would be

suboptimal in general. The intuition behind the definition is that when the best seen

value of the currently-running option goes below that stable safety threshold upon

reaching some state, it is reasonable to follow the safe choice instead.

Algorithm 1 gives a simple procedure for decision making with offline options and

offline interruption.

Algorithm 1 Decision making with Offline Interruption
Require: O: option set; µ̄: averaging option policy; Qµ̄: value function of µ̄ over

O; Q̂µ̄: maximum values of the option set O under µ̄; st: current state.

1: orun←∅.

2: for every time step t do
3: if orun is not set then
4: orun← argmaxo∈OQµ̄(st,o).

5: else
6: if Q̂µ̄(st,orun)<

∑
q µ̄(st,q)Q

µ̄(st,q) then
7: o ∼ µ̄(st, .)

8: orun← o.

9: end if
10: end if
11: st← execute(πorun(st, .)).

12: if orun is finished then
13: orun←∅.

14: end if
15: end for



3.3. Offline Options 41

In the algorithm, µ̄(s, .) is a probability distribution over options, corresponding

to the option switching averaging policy, and πo(s, .) is a probability distribution over

other options or primitive actions, corresponding to option o’s policy.

3.3.4 Experiment: windy grid world

The aim of this experiment is to test offline options and offline interruption. A gridworld

of 5×5 cells has an obstacle with two exits (Fig. 3.2). Wind blows immediately before

the exits. It has an unknown, but fixed, direction in any instance, and there is a fixed

probability throughout the episode of the wind to blow at any specific time step. If the

agent was on the windy column when that happens, the wind pushes the agent one cell

at a time in the direction of the wind. The goal of the agent, starting from a random cell

in the leftmost column (marked with ‘S’), is to pass one of the exits to the right side

(marked with ‘G’), moving one cell at a time with the 4 canonical actions (up, right,

down, left). The agent gets -1 penalty for every action taken until the goal is reached

or the episode elapsed (100 time steps). That is, the agent has an incentive to finish

the task as fast as possible. Moving towards a wall does not change the location of the

agent, but it will cost it the −1 penalty.

Figure 3.2: The Windy gridworld. The agent starts randomly in one of the cells marked

with ‘S’ and is tasked with reaching any of the cells marked with ‘G’. The arrow indicates

the locations and possible directions of wind.

Each task instance of this MDP family is characterised with the two parameters

tuple (p,dir). p ∈ [0,1] is the probability with which the wind will succeed in changing

the position of the agent, while dir ∈ {North,South} is the wind direction. The agent

might be pushed one cell in the direction dir with the probability p while in the windy

cells.

The agent experiences many instances of this family, and learns in batch mode an

averaging policy across all these instances. This is a policy over the primitive actions.



42 Chapter 3. Policy Space Abstraction by Option Discovery

At the same time, we make the agent learn two options with hand-picked goals (the

two ‘G’ states), one for reaching the goal through each of the exits. The agent learns

an averaging option switching policy as well, using the offline experience and the two

options in batch mode, and estimates the option values from these training instances

using a Monte-Carlo procedure.

Fig. 3.3 shows 5 curves resulting from 5, 10000 uniformly-sampled task, runs. The

agent is given 100 time steps in each instance, where both the flat averaging policy and

the offline-interrupted option policy are evaluated. The performance criterion is the

accumulated reward in the task (ranging from -100 to -5), and we report in the figure a

histogram of performance difference between the two methods.

Figure 3.3: A histogram of the difference in performance between the offline-interrupted

option policy and the averaging policy in 5 runs. Values above zero are tasks where the

offline interruption outperforms the averaging policy.

The offline-interrupted option policy is equal or better than the flat averaging policy

in almost 80% of all tasks. Also, the interruption mechanism allowed for active

intervention in the control process (sensed through the change in state) in contrast to

the fixed averaging policy.



3.4. ILPSS: Incremental Learning of Policy Space Structure 43

3.4 ILPSS: Incremental Learning of Policy Space Struc-

ture

3.4.1 Generalised Bottlenecks

A bottleneck is a state which only successful trajectories in a task go through, so

that it deserves to be treated as a subgoal. Bottlenecks classically are discrete states

identified by metrics like state visitation frequencies or require complete knowledge

of the domain to compute measures like centrality or betweenness, which both are

unsuitable for continuous or complex domains. For example, in the soccer domain, we

would anticipate that ‘concepts’ of game play are more useful to achieve tasks, e.g.,

score goals, than single states.

In (Konidaris et al., 2010), continuous ‘target functions’ in a task are identified

and posed as goals, then options are learnt to achieve them. Alternatively, we start

by discovering the domains of potential skills from trajectories of previous successful

trials in many tasks. Using an Expectation-Maximisation (EM) procedure, we search

for a generative model for the states of the good trajectories and use the support of the

components in that model in state space to define the boundaries of our options. In

the soccer domain, this may mean identifying contiguous situations of play that are

common in successful trials and creating skills that cover them.

The typical next stage in HRL is to learn policies to achieve the discovered subgoals.

We, on the other hand, employ a process of policy reuse to populate the option domains

with action policies. That is, we ‘borrow’ from a solved previous instance a part of its

policy and use it as is for the new option. This makes that agent do exactly what it did

in a previous instance, when facing a qualitatively similar situation.

3.4.2 Algorithm

We consider episodic, goal-oriented tasks, in which termination occurs either when the

agent reaches specific goal states defined by g : S→ {0,1}, or when the episode elapses.

Fig. 3.4 gives a snapshot of the components and operation of ILPSS (Incremental

Learning of Policy Space Structure). It comprises the following key steps:

1. Starting from a collection of n+1 good policies π0,π1, . . . ,πn of task instances

m0,m1, . . . ,mn ∈M, we sample a number of complete episode-long state traces

τ= {s0, . . . ,s|τ|−1} from each policy, where si ∈ S are states.



44 Chapter 3. Policy Space Abstraction by Option Discovery

Figure 3.4: A high level overview of ILPSS. Starting from a set of policies that operate in

the domain, a set of successful traces are extracted. These encode paths in the domain

that have been used before and found useful. The states in the successful traces from

all previous tasks are then collated into a ‘bag of states’. The bag obviously excludes

states that cannot be reached (e.g., obstacles) or states that did not feature in solutions

of any previous tasks (e.g., unuseful states). Then, a probabilistic mixture model is fit

to the bag of states. The purpose of this is to identify regions in the state space that

are more important than others. These regions are called the generalised bottlenecks.

The goal of the agent is to acquire policies for acting inside these regions. The options

are acquired through policy reuse, where parts of the original policies are applied as

is, creating multiple options at once. After identifying the options, they are added to

the action set of the agent and new tasks are learnt using them. The resultant policy is

added to the collection of policies and the process repeats for the next task.

2. We label the trajectories with respect to their success (+) or failure (−) in reaching

the goal. A trajectory is successful if it terminates at the goal, while trajectories

that elapses before reaching the goal are considered failures. Only the states in

successful traces in the instance i, τττ+i =
⊎
{τi |g(s|τi|−1) = 1}, are used to make

the input state dataset, D =
⊎n
i=0τττ

+
i . Note that many copies of the same state



3.4. ILPSS: Incremental Learning of Policy Space Structure 45

could exist in D, which would be an indication of the importance of that state.

3. To identify our concept of bottlenecks, being contiguous regions in state space that

show up frequently in successful trials, we search for a generative probabilistic

mixture model of the state dataset D. The combination of such a model with

policy reuse is what defines ILPSS. In more concrete terms, we want to find a

model that maximises the term

logP[D;θ] =
∑
i

logP[τττ+i |θ] (3.4.1)

=
∑
i

∑
τ

logP[τ+i ;θ], (3.4.2)

assuming independence of traces for a specific task instance given the model, as

well as independence of different instances’ traces, being drawn from the same

model which summarises all the correlations. Here, we are ignoring time and

using the traces as bags of states,

logP[τ;θ] =
∑
s∈τ

logP[s|θ] (3.4.3)

The model we use here for P[s|θ] is a Gaussian mixture model (GMM) with a

parameter C, representing the number of the multivariate Gaussian kernels. Each

kernel is described by its mean µk and covariance matrix Σk in S,

logP[s|θ] = log
∑
k

pkN (s;µk,Σk), (3.4.4)

but any suitable alternate model can also be used. The choice of the model is

task-specific and does not affect the operation of ILPSS.

For our choice of model, the parameters are the weights pk, means µk and covari-

ancesΣk for k= 1 . . .C for theC components. We allow pk to be instance-specific,

i.e. each task instance i has it own weighting/importance of the components,

pk = (pk
i)ni=1. On the other hand, we force µk and Σk to be instance-independent,

i.e. all the task instances share the exact same components. That is, we push

toward finding a common set of mixture components across the different instance

policies, regardless of their relative significance in the various instances. This

shared structure is what we are after for lifelong transfer.

The mixture components define kernels in the state space, Kk(.) =N (.;µk,Σk).

These are an important component of our representation of the policy space in



46 Chapter 3. Policy Space Abstraction by Option Discovery

that we assign policy fragments to the state regions defined by them, Sk = {s ∈
S :Kk(s)> Ψ} for some cutoff probability Ψ.

For a specific kernel and for some policy πi, we borrow a policy fragment from πi
by restricting it to the kernel’s state space region: πki : S

k×A→ [0,1]. The scale

(or weight) of a component k in a task instance i (captured by pki) is ignored as

it is irrelevant from a structure-learning point of view. We do this for all i.

To fit the model for some desired number of kernels C, we use an adapted

Expectation-Maximisation (EM) algorithm (Dempster et al., 1977) that takes

our structural constraint into account. For the Expectation phase, the kernels are

initialised randomly and the model responsibilities are computed accordingly,

while in the Maximisation phase the parameters of the model are recomputed

using the responsibilities.

4. Every kernel can spawn a set of policy fragments {πk0 ,πk1 , . . . ,πkn}, each borrowed

from a different policy. We package every policy fragment in an option, giving the

option collection Ok. The domain and the termination condition of Ok options

are both the PDF defined by the kernel. That is, an option from Ok is allowed

to start at a particular state s with a probability equal to the normalised kernel

function K̄k(s) = Kk(s)/maxKk(.), and will continue stochastically with the

same probability, and will terminate with probability 1− K̄k(s). The option

policies are the kernel-restricted policies πk0 ,πk1 , . . . ,πkn. In other words, we are

reusing policies of previous tasks in controlled regions of state space where they

fared well in experience. We discuss scalability issues in the next section.

5. Next, the agent is presented with another task instance,mn+1. In a similar fashion,

the agent learns a new policy πn+1 using SMDP learning, with the new options

added to the action repertoire. The resultant policy will contain, in addition to

normal actions, pointers to π0, . . . ,πn. 2

6. πn+1 is added to the set of input policies, and the exact same procedure is

adopted (extracting traces, bag of states, probabilistic model, then options) and

this continues in what can be described as a lifelong learning process.

The full procedure is summarised in Algorithm 2.

2Note that the use of SMDP learning allows the agent to start with no input policies, and thus learning
the task at hand from scratch, then initiating the process.



3.5. Scaling ILPSS 47

Algorithm 2 ILPSS: Incremental Learning of Policy Space Structure
Require: number of components C, input policies π0, . . . ,πn, cut-off probability Ψ.

1: Initialise the repertoire O←∅.

2: for every new instance do
3: Generate state traces {τ} from input policies through simulation or runtime

recording.

4: Label and extract successful traces {τ+}.

5: Create a ‘bag of states’ dataset D =
⊎n
i=1{τ

+
i }.

6: Fit a probabilistic mixture model to D using EM algorithm, generating a set of

kernels K= {Kk(.)}C1 in state space.

7: Extract state regions from the kernels, Sk = {s ∈ S :Kk(s)>Ψ}, for k= 1, . . . ,C.

8: Restrict input policies to kernel state regions, πki : S
k×A→ [0,1], for all k and

i.

9: Create a set of optionsO=
⋃C
k=1Ok with oki = 〈K̄k, 1−K̄k,πki 〉 ∈Ok, i= 1 . . .n.

10: O←O∪O.

11: Learn a policy πn+1 for the new instance using O via SMDP learning.

12: Add πn+1 to the input policies.

13: n← n+1.

14: end for
15: return Option set O.

3.5 Scaling ILPSS

3.5.1 Managing experience

To control the number of options that are maintained and used online by the agent, a

process of temporal discounting, or forgetting, is employed. That is, the behaviours that

do not get used often will become less likely to be used afterwards and more likely to be

forgotten. On the other hand, options that are used often will persist and may develop

and generalise through reuse inside future options.

Discounting an option makes it less likely to survive in O. One way to do this is

by shrinking the support of the option in state space, making it less likely to be chosen

later and concentrating it to less states. After crossing a threshold on effective option

size Υ, the options can be pruned out of O.

In our implementation, the initiation set of an option is defined using a Gaussian



48 Chapter 3. Policy Space Abstraction by Option Discovery

distribution, thus we implement forgetting by multiplying the covariance of the distribu-

tion Σo with a scalar ξ < 1 in every new instance in which the option is not used. The

procedure Option Discounting, that can be invoked after every ILPSS learning trial, is

detailed in Algorithm 3.

Algorithm 3 Option Discounting
Require: options O, newly-learnt policy π, forgetting parameter ξ, effective kernel

size Υ.

1: for every option o in O do
2: if o is not used in π then
3: Σo← ξΣo.

4: Update the option domain So.

5: if
∫
1So(s)ds < Υ, with 1So(.) being an indicator function, then

6: O←O− {o}.

7: end if
8: end if
9: end for

10: return Option set O.

3.5.2 Trace sampling

Density estimation methods in general, including EM, tend to require heavy computation.

This is only made worse by the incremental increase in the size of the input dataset. In

ILPSS, the dataset should represent the states that are used in successful trials more

often as the agent is experiencing more instances. The complexity of the computation

depends on the number of involved states nN+L, where n is the number of the included

instances, N+ is an upper bound on the number of successful traces per instance, and L

is an upper bound on the length of the trajectories.

To control the size of the state dataset we employ three ‘down-sampling’ measures.

First, we choose a subset of previous instances and their policies to be considered for

making the dataset rather than using all of them, based on their similarity to the newly

learnt instance. This will still uncover commonalities between the included instances

and encourage generalisation and reuse. If similarity cannot be estimated, instances

can be selected randomly, but metrics are then needed to ensure the usefulness of the

options, e.g. by measuring their coverage of the input traces.



3.6. Experiments 49

The second measure is to sample traces from the successful traces of the chosen

instances. This can be a random selection, but if a cost function is defined over the

traces, the more successful traces can be favoured over the less optimal ones.

The third measure is to sample states from the traces of the selected instances, up to

the desired dataset size. One intuitive procedure would be to sample using the relative

frequency of the state occurrence in the dataset. This way, only the states that are not

very important will be removed, while the dense areas, which we are interested in, will

be well-represented. Then, the continuity of the state space and the statistical-model

fitting would rectify for the gaps in the input set.

Using these measures would reduce the complexity to n̂N̂+L̂, where n̂ < n is the

number of sampled instances, N̂+ <N+ is the number of sampled trances, and L̂ < L

is the number of sampled states per trace.

3.6 Experiments

3.6.1 Rooms environment

To test the lifelong learning aspect of the proposed framework, we use the static and

low-dimensional domain of rooms environment in order to visualise the set of skills that

can be produced and maintained after experiencing many instances of the domain. Here,

the task of the agent is to navigate in a rooms environment from some initial position to

some goal position, both chosen randomly in every trial. The domain is a 2D grid world

of size 25×25 with walls and exits. The agent moves in the 4 canonical directions (up,

right, down, left). After completing each trial, the agent uses ILPSS to generate a set of

options that are used in the next trials.

In the experiment, the number of ILPSS components is set to C = 4, and the

forgetting rate is set to ξ = 0.8. The agent receives −1 for each time step, and +10

for reaching the goal. We show the skills acquired by the agent after experiencing 25

instances of the task in Fig. 3.5. Applying option discounting allows unused options to

shrink in coverage and then disappear once below a specific threshold.

In Fig. 3.6 we show a heat map of the visitation frequency of the states of the

domain, where each state is coloured according to its relative visitation frequency in a

set of 30 experienced instances. This is one of the metrics used to identify bottlenecks

in discrete worlds in option discovery literature. The white dots on the figure are the

means of ILPSS kernels extracted using the same traces. What this shows is that the



50 Chapter 3. Policy Space Abstraction by Option Discovery

Figure 3.5: ILPSS in the rooms environment. LEFT: The acquired kernels after solving

25 instances of the task. The black lines are walls, and each ellipse shows 70% support

of one of the discovered options. The arrows inside the ellipses show the option policies,

which move the agent through different rooms and exits. RIGHT: The two options which

appear in the highlighted bottom-right corner in the state space, zoomed-in. They allow

passing in and out of the room through the exit.

framework is capable of approximating the discrete bottlenecks of visitation frequency

methods.

For higher-dimensionality dynamical domains, the exposed structure will not be

easily interrupted or visualised, but ILPSS will maintain the semantics of the skills in

the structure as shown in this simple demonstration.

3.6.2 RoboCup simulated robotic soccer

The aim of this experiment is to test the transfer capability of the proposed framework in

a continuous domain. We use the domain of simulated robotic soccer to demonstrate the

improved performance of using the abstraction proposed by ILPSS. The task models a

training drill for 2 vs. 2, in which the team with ball possession tries to cross the bottom

line in the field with the ball.

The task is episodic, starting with the agents in set positions, and terminates success-

fully when the goal is achieved. On the other hand, the task fails when the adversaries

intercept the ball, kick it out of the training region (35m×35m), or when the episode

elapses (100 time steps). The experiment is conducted using RoboCup 2D Simulation

League Soccer Server (Noda and Matsubara, 1996) and the Keepaway extension (Stone



3.6. Experiments 51

Figure 3.6: The visitation frequency of the rooms environment after 30 random instances.

The darker colours are for less-visited states. The white dots superimposed on the heat

map show the means of ILPSS kernels learnt using the same instances.

et al., 2005). The setup is shown in Fig. 3.7.

Figure 3.7: The experiment setup. LEFT: the attacking team starts from the top corners,

while the defending team starts from the bottom. RIGHT: the task of the attackers is to

reach the bottom line with the ball, with the middle point having the highest reward. The

task of the defenders is to prevent that.

The state space is defined using 9 continuous state features describing the position

and orientation of the learning agent with respect to other agents and the goal line. The

features are: the distance between all the players and the goal centre point (4 features),

the distance to the team mate and to the two opponents (3 features), and the distance

and the angle of the team mate to its nearest opponent (2 features). The action space

comprises 3 basic options: holding the ball, passing to the team mate and dribbling

towards the goal line. The action set is enriched later with the discovered options. The



52 Chapter 3. Policy Space Abstraction by Option Discovery

striker that has the ball is the only learning agent, while others use hand-tuned stochastic

behaviours. When the ball is passed, the receiving player becomes the learning agent,

while the other switches to the hand-tuned behaviour.

The variability in the domain comes from the different tendencies toward the ball

and the goal line different opponents have. In the experiment, four opponent teams are

used. The first two are only concerned about intercepting the ball, and they differ from

each other by the coordination protocols between the two players. In the third type,

one opponent intercepts the ball while the other protects the goal line. In the fourth

type, both opponents protect the goal and only go for the ball with a small probability,

making it different from the first three and harder to beat.

The opponents are presented to the learning agents sequentially, with ILPSS running

after each to generate 5 options (that is, C= 5). After experiencing the first three oppo-

nents and learning a repertoire of 15 options, the performance against the last opponent

is compared to learning the same task from scratch. The aim of this comparison is to

check the usefulness of the discovered abstraction. The results are shown in Fig. 3.8

where the experiment is repeated 5 times.

Figure 3.8: (BLUE) Average reward achieved against the fourth opponent team using

options acquired by ILPSS in three other task instances, compared to learning anew

(RED). The experiment is repeated 5 times.

As the results show, using the set of options discovered by ILPSS gives a head

start in performance. This comes from the fact that the four tasks share significant

components (e.g., all the tasks require the agent to proceed toward the goal line. The



3.7. Concluding Remarks 53

Q-Learning agent does not have this domain knowledge). This shows that ILPSS is able

to produce useful abstractions in the policy space that allows faster convergence in a

novel instance.

We show in Fig. 3.9 example traces generated by the most used options against the

fourth opponent team. It appears that the agent developed a behaviour to approach the

adversaries closer to the middle before beating them to the goal line at a short range,

which is a sensible approach considering the opponent’s conservative behaviour.

Figure 3.9: Traces from discovered options in the simulated soccer domain. The blue

circles represent the location of the learning agent in the field as it moves toward the

goal line. The red crosses represent the two adversaries. The figures shows traces

through time of sample runs. The gaps can be justified by passing actions which change

the identity of the learning agent.

3.7 Concluding Remarks

ILPSS is built around fitting a probabilistic mixture model to a set of successful trajec-

tories of a family of tasks to uncover useful commonalities. This assumes that the task

instances do indeed share common structure, that it is possible to solve some instances

and generate complete traces, and that it is possible to fit a probabilistic model to the

resulting state dataset. In a very high-dimensionality, complex domain, some of these

assumptions may not be readily met, and thus the method would not be suitable.

On the other hand, the specific techniques and models used in this chapter (like EM

and GMMs) are not essential to the operation of ILPSS, and they can be replaced with

any more suitable, state-of-the art tools to tackle high dimensionality.



54 Chapter 3. Policy Space Abstraction by Option Discovery

The intuition behind the incremental nature of the framework is in ‘biasing’ the

evolved hierarchy to find common components that would be useful for lifelong learn-

ing. Reusing the previously-learnt policies in options while learning a new instance

encourages the agent to search for a useful policy subspace (spanned by the options),

before extending the search to the full policy space. If a satisfactory solution can be

found early, these behavioural commonalities would be developed and maintained. We

argue that this kind of structure is what is needed when facing a novel instance of a task.

On the other hand, a biased set of instances presented early on to the agent may

cause a bias in the abstraction, especially when combined with random trace sampling.

This could delay the convergence into a meaningful skill set sufficient for the domain.

This is analogous to negative transfer in transfer learning.

Bottleneck methods work usually for single tasks, and they work best for small,

discrete state spaces for which complete interaction graphs can be built, or sufficient

visitation information can be collected. Also, the aim of these methods is to locate

potential subgoals for a single task, leaving the policies to achieve them to be sub-

sequently learnt. On the other hand, ILPSS generalises that concept of a bottleneck

state into a continuous, probabilistic ‘concept’ in state space that appears often in many

instances. This might make ILPSS more appropriate in large and continuous domains.

Also, it immediately discovers where the existing policies might be useful, avoiding the

two-step process of explicit discovery of subgoals followed by policy learning.

ILPSS may appear close in spirit to skill trees of (Konidaris et al., 2010). However,

the assumptions about the two methods are different. ILPSS is devised to extract

common structure in many task instances in a domain, rather than backchaining to solve

a specific task as in skill trees.

An earlier method that defines skills with probabilistic domains is the SKILLS

algorithm (Thrun and Schwartz, 1995) where the aim is to find a compact set of macro-

actions that minimises the description length (DL) of the actions for a task. There, the

policy of a skill is learnt in a way that balances performance loss with compactness

gains. For ILPSS, policies are chosen to support an extensive family of tasks, while

compactness is observed through the option discounting process.

The work in (Foster and Dayan, 2002) investigates the structure in the space of

value functions of optimal policies for a family of related tasks. For that, they employ a

mixture model as the generative process of value functions. The components of that

model encode the discontinuity in the value function caused by inherent properties

of the domain (e.g., location of walls and barriers in a room environment). Then, the



3.7. Concluding Remarks 55

model is used to accelerate learning in new instances by augmenting the state space

with the discovered features.

ILPSS defines structure implicitly in policy space, through a probabilistic model in

state space combined with reusable policy fragments. Our components in state space do

not necessarily feature smooth value functions, but rather regions of stability and good

performance. Also, our framework only requires sample traces from good policies,

while other methods require complete explicit representations, like value functions or

transition graphs, which may allow ILPSS to be used even before learning converges,

especially in big worlds.

Some prior work has looked into the use of probabilistic models in hierarchical

reinforcement learning. For example, (Manfredi and Mahadevan, 2005) defines a more

complicated graphical model for both state and policy abstraction that is trained from

sample trajectories using Expectation-Maximisation (EM) algorithm, but constrained to

a single task.

Our use of Gaussian kernels to describe option domains may not be the optimal

choice, as they suggest a kind of symmetry over various dimensions which may not be

true. However, they are an intuitive choice from a computational point of view.

We introduce a framework for learning and refining a structural description of the

space of policies for a set of qualitatively-related task instances. We employ a principled

probabilistic method to decompose the state space and relate the learnt model with

policy fragments through policy reuse. The resulting abstraction is maintained using a

set of temporally-extended options. We note that learning continually is essential for

extracting useful decompositions in policy space.

This method does not require explicit representation of the space of policies, and

it does not rely on the optimality of the input policies, which allows it to scale well.

Rather, only a set of trajectories of successful trials and the policies that generated them

are needed to enable the agent to produce a rough solution to a novel instance, which

can then be refined by learning. Surely, better policies would allow discovering better

options, faster.

Testing this framework on large problems to understand its scalability is a topic of

future work, as well as understanding the effects of state abstraction and dimensionality

reduction on the produced action abstraction. Also, further investigation is needed on

defining the boundary of a skill in state space, e.g., using a mixture model to represent

each option.





Chapter 4

Policy Space Abstraction using

Computational Topology

57



58 Chapter 4. Policy Space Abstraction using Computational Topology

4.1 Introduction

In this chapter, we develop a method of abstracting policies via the qualitative similari-

ties of their induced behaviours. We use tools from computational topology to identify

distinct classes of trajectories in a configuration space. These classes are different

with respect to the constraints that the domain has, e.g., the obstacles in the case of

navigation.

We start with a novel construction of a simplicial complex to represent the free

configuration space of a robot, then we map sample trajectories to paths on the complex

and classify them using homology theory. We show how the resultant classes change

when finer or coarser representation of the complex is used, and we show how all the

representations can be used simultaneously using the machinery of persistent homology.

Finally, we use the trajectory classes to define a small set of representative options for a

domain.

Fig. 4.1 gives an overview of the approach of this chapter.

4.1.1 Contributions

The main contributions of this chapter are:

• The introduction of filtrations of simplicial complexes and persistent homology

for multiscale topological robot motion classification.

• A sample-based algorithm to classify homotopy classes of paths in Xε ' Cf at all

scales, and a sample-based algorithm to classify homotopy classes of paths when

cost is defined.

• A topological metric for option discovery from demonstrations.

• An experimental evaluation of the approach in simulation in 2 and 4 dimensions,

and an evaluation with a physical robot system.

4.2 Multiscale Topological Trajectory Classification

Robot Motion Planning refers to the problem of finding continuous paths in the free

subset of the robot’s configuration space that lead from a start point to an end point. The

robot’s configuration space is the space of all configurations, i.e. possible assignments

to all degrees of freedom of the robot. The free configuration space is the subset of



4.2. Multiscale Topological Trajectory Classification 59

Unsupervised 
Learning

Demonstrated 
trajectories

Options of motion 
equivalence  classes

Online instance

Transfer 
Learning

Representation 
change

Experience 
bookkeeping

Cycles in a simplicial complex

Homology 
projection

Figure 4.1: Overview of the approach in this chapter. From a set of experienced

trajectories, a simplicial complex is built and each trajectory is mapped into a cycle on

the complex. The structure learning happens using persistent homology which can

classify cycles in a simplicial complex into equivalence classes, where equivalence of

two trajectories is defined as the possibility of continuous morphing of one to the other

without crossing any obstacle in the domain. These classes can then serve to make a

set options that are qualitatively-different.

assignments that avoid obstacles in the robot’s environment . For a holonomic mobile

robot in a 2D world this could be the possible free positions in the plane that do not

involve walls, while for a multi-joint robotic arm, it is the space of joint angles that are

realisable and that do not collide with obstacles.

Popular motion planning algorithms, such as Rapidly Exploring Random Trees

(RRT) and Probabilistic Roadmaps (PRM), start by estimating the free configuration

space by a graph constructed using random samples with a collision detection mecha-

nism (LaValle and Kuffner, 2001; LaValle, 2006; Kavraki et al., 1996). Path planning

can then be performed efficiently on that graph. However, even though this repre-

sentation captures path-connectedness in the domain, it fails to capture higher-order

homological and homotopical information of the domain, such as, e.g., contractability

and equivalence of paths with respect to the domain constraints.



60 Chapter 4. Policy Space Abstraction using Computational Topology

We aim to develop a representation for motion planning that captures this kind of

information to be used for trajectory summarisation and abstraction extraction.

4.2.1 Approach

Consider a simple navigation task with a start state s and a goal state t as shown in

Fig. 4.2.

Figure 4.2: A depiction of a simple domain and a collection of trajectories.

The task is to reach from s to t. The ‘hole’ in the middle represents a constraint in the

configuration space, e.g. an obstacle in a navigation domain. α0 is the augmented edge

that represents the task.

From a set of trajectories of that task (sequences of combined agent positions and

actions) we build a topological construct (a simplicial complex) which is a discretisation

of the agent’s knowledge of the task, and in general a generalisation of a graph. This

construct is useful because it enables us identifying all the different ways to achieve

the task in a set of input trajectories using homology theory (for example, in Fig. 4.2

there are two different ways to achieve the task: east of the obstacle, or west of it).

These define equivalence classes of trajectories with the property that no path belonging

to one equivalence class can be continuously deformed to any path in any of the

other equivalence classes. Moreover, we can classify any discretised trajectory on the

complex to the class it comes from.

Additionally, the construction permits the utilisation of persistent homology. Using

filtrations of simplicial complexes, we do not have to commit to any specific discretisa-

tion of the domain, but rather we can work on different ‘resolutions’ of representation

at the same time, ‘zooming out’ and ‘in’ the data. Furthermore, it is possible to include

a state-based cost function into the representation to study the space of paths that are

capped by some state-wise cost threshold.



4.2. Multiscale Topological Trajectory Classification 61

This construction subsumes previous methods that rely only on graphs, and allows

for new perspective into qualitative and multiscale robot motion planning, taking global

perspective into account when planning locally.

We now describe the algorithm for identifying and classifying trajectories into

homology equivalence classes as in (Pokorny et al., 2014).

4.2.2 A simplicial complex of a configuration space

Starting from a set of samples V = {v1, . . . ,vn} from the collision-free configuration

space of some robot Cf ⊆ C ⊂ Rd, we want to build an abstract representation of Cf
using V that maintains the homotopy equivalence relation.

We use the union of ε-balls space, Xε =
⋃
v∈V Bε(v) for some ε > 0, as a candidate.

If V is sampled uniformly and Cf is a smooth compact submanifold of Rd, then accord-

ing to the reconstruction theorem of (Niyogi et al., 2008), a sufficiently dense sampling

deformation-retracts to the actual manifold for appropriately chosen ε. Furthermore, it

is known that the Alpha complex (Edelsbrunner, 1995) of the point set V as a simplicial

complex is homotopy-equivalent to Xε.

Finally, (Bauer and Edelsbrunner, 2014) have recently proven that the Delaunay-

Čech complex DCε is homotopy-equivalent to the Alpha complex in arbitrary dimen-

sion. Then, DCε is homotopy-equivalent to the original configuration space under the

previous sampling conditions, and thus it is possible to compute the homology groups

of DCε at all scales simultaneously by means of the persistent homology algorithm as

an alternative to computing the homology groups in the original space.

Since we are interested in classifying trajectories, which map to edge paths on the

complex, we will focus particularly on the first homology group, H1(DCε) which only

depends on the simplices of dimension 2 or less. Hence, we will build the complex

DC2
ε that only has these simplices.

For some ε, we extract the 0-,1- and 2-simplices (vertices, edges and triangles,

respectively) from the ε-filtered Delaunay triangulation of V . That is, the triangulation

with only the edges that are shorter or equal to ε.

• A 0-simplex (vertex) is added for each point in V .

• A 1-simplex (edge) is added for any distinct pair of two points in the ε-filtered De-

launay triangulation of V . Edges reflect one-step reachability in the configuration

space.



62 Chapter 4. Policy Space Abstraction using Computational Topology

• A 2-simplex (triangle) is added for every triangle in the ε-filtered Delaunay

triangulation of V . Triangles represent covered surfaces in the configuration

space that the agent knows how to span, and hence can be collapsed when

considering the topological features of the configuration space.

The results of (Edelsbrunner, 1995; Bauer and Edelsbrunner, 2014) show that there

exists a deformation retraction from Xε to DCε, so that any continuous path in Xε can

be continuously deformed to an edge path in DCε. Moreover, this retraction induces

an isomorphism of homotopy groups such that the resulting edge path maintains the

homotopy class of the continuous path.

We will treat edge paths as undirected chains of edges. Hence, we define the group

of chains to be over Z2 = Z/2Z= {0,1}. That is, the coefficient of an edge in a chain

can only be 0 or 1 so that it can either appear once in a chain, or not appear at all.

Moreover, adding two edge chains will remove all the shared edges between them,

making addition and subtraction the same operation.

4.2.3 Homotopy classification of paths

Assuming a set of trajectories between two fixed points s,t ∈ V , we would like to

determine the homotopy classes of these trajectories. Consider again the situation in

Fig. 4.2, and consider an arbitrary trajectory α0 that connects the start point s and the

end point t (i.e. representing the agent’s task). Any original trajectory between s and

t when augmented with α0 now represents a closed loop. Mapping the trajectories to

path edges on DCε for some ε > 0, these closed loops are now 1-cycles.

This construction is particularly interesting because the space of 1-cycles, with

respect to discontinuities in the complex, can be analysed using simplicial homology.

That is, we can understand the space of all the ways to reach between two points

(the equivalence classes) only by augmenting the input trajectories with one arbitrary

trajectory between the same two points, mapping that to a simplicial complex, and

applying standard tools from homology theory. The one remaining piece needed is

the ability to classify any input trajectory to its equivalence class from the resulting

alternatives.

Following (Pokorny et al., 2014), consider two 1-cycles from Z1(DCε) correspond-

ing to the edge paths αu,αw, both from s to t, when augmented with α0. If the two

cycles have the same equivalence class in H1(DCε), adding them together over Z2 will

be 0, so that [αu+αw] = 0 as well. That is, the equivalence class of the sum of the two



4.2. Multiscale Topological Trajectory Classification 63

paths is 0, i.e. the edge paths are homotopy equivalent. On the other hand, if the cycles

happen to be from different equivalence classes, adding them up will be non-zero, and

hence [αu+αw] 6= 0. Hence, we can use the coefficients of the cycles when expressed

in some basis of the homology group to define path equivalence classes. The same

argument is valid when we consider the persistent homology between filtration indices

i and j, Hi,j1 (DC).

To get a basis for the homology group Hi,j1 (DC), we use a result from the reduction

algorithm for persistence in (Carlsson, 2009; Edelsbrunner and Harer, 2010). The basis

for the first homology group between filtration indices i and j is:

T i,j = {Rt : (s,t) ∈ PR,s6 i,t > j}∪ {Vs : s ∈ ER,s6 i},

where R is the reduced boundary matrix using left-to-right column operations on the

boundary matrix M, Rt is the tth column of R, PR is the set of persistent pairs, ER is

the set of essential cycles, V is the matrix that keeps track of the column operations,

and Vs is the sth column of V (see Appendix. A).

Then, by expressing any cycle (made by concatenating an edge path α, correspond-

ing to an input trajectory, with the fixed trajectory α0) in that basis we get a vector of

coefficients that encodes the class of the trajectory. Paths homotopic to α0 will get the

0 vector class. Two paths αu,αw are not homotopy-equivalent if their coefficients are

different, and that test can be performed for a specific scale ε by setting i = j = ε, or

simultaneously for a range of scales when i < j. Then, the paths will have the same

class only if they are equivalent under all the scales in consideration.

An illustration of this is in Fig. 4.3. The displayed simplicial complex has two holes

(white) at some filtration value i (top row). The red path corresponds to α0 and we

display three edge paths α1,α2,α3 in blue which have mutually different coordinates

in Hi,i. In the bottom row, we display the complex at a filtration index j > i at which

the smaller hole becomes filled, and hence the class of the third edge path becomes the

same as the second. The other two classes do not change at this scale, or in other words,

they persist from i to j.

4.2.4 Filtrations with cost landscapes

Assume that a cost-function c : Cf→R is prescribed for the domain, giving each possible

configuration a specific cost. Our aim now is to not only classify paths in the space Cf,
but to take into account constraints defined by a maximal threshold for the cost function.

That is, we also want to discern how paths negotiate the cost landscape.



64 Chapter 4. Policy Space Abstraction using Computational Topology

Figure 4.3: Illustration of three paths α1,α2,α3 between fixed points (in blue) from

different homology equivalence classes at some scale. The red path is α0. The figure

in the bottom row shows the death of a topological feature (the smaller hole) when the

scale is increased, and thus, the loss of an equivalence class and the change of the

classification of α3.

To map the cost function to the complex construction, we assume that the cost

of a simplex σ = {v0, . . . ,vk} ∈ DCε is simply the maximum cost among its faces,

c(σ) = max(c(v0), . . . ,c(vk)). This creates a different filtration of simplicial complexes

Lε,λ= c
−1((−∞,λ]) with the cost threshold λ. Nonetheless, the classification algorithm

works precisely in the same way, regardless of the semantics of the filtration and the

resolution variable.

One example is in Fig. 4.4, where cost is depicted as height in a 2D configuration

space of size 250 by 500. For some ε = 10, the space has two holes (white regions).

Moreover, we set a threshold λ for the permissible cost values. The blue regions in the

figure are configurations with above-the-threshold costs, so that they are removed from

the configuration space creating additional holes.

The top row of Fig. 4.4 depicts different equivalence classes for a cost threshold

λ = 70, showing 100 paths of each using a fixed reference path (red). Note that both

peaks in the cost landscape are truncated at this threshold. In the bottom row, throttling

the threshold up to λ = 90 causes one of the cost holes to disappear, and thus makes

the first two equivalence classes merge together into one, while the third class does not

change.



4.3. Topological Options 65

Figure 4.4: Path costs, and classes of paths depending on the cost threshold. The white

areas are holes, and the blue areas have costs above the allowed threshold (i.e., holes of

a different kind). Each of the plots in the upper row shows a collection of paths from one

equivalence class for a set cost (λ= 70) and resolution (ε= 10). For the more forgiving

threshold in the bottom row plot (λ= 90), the first two classes, which were distinct in the

top row under a stricter cost budget, merge (Image from (Pokorny et al., 2014).)

4.3 Topological Options

From an option discovery point of view, classifying input trajectories into equivalence

classes allow creating abstractions of the policy space that build on the redundancy

of equivalent trajectories. Such abstractions have two characteristics: they encode

behaviour similarity with respect to the domain, and their support lies in active regions

that have been visited by many demonstrations. These two global features are quite

unique and different to the typical metrics used in option discovery, which usually

corresponds to local features like visiting a certain bottleneck state.

4.3.1 Options from single trajectories

After we classify the input set of trajectories into a discrete set of distinct path classes

under some filtration index, we can create an abstraction of the policy space by choosing

one ‘landmark’ path from each homology class. For example, given a cost function that



66 Chapter 4. Policy Space Abstraction using Computational Topology

is defined over the complete trajectories, we can select the trajectory from the class with

the lowest cost to be the landmark for class.

By changing the filtration index, we get different equivalence classes, and hence

different option sets. Then, we can ask about options which are persistent with the

change of the persistence index, e.g. when the filtration is controlled by an adversarial

or noise process and the persistent options are needed to achieve their task regardless of

the realisable filtration.

4.3.2 Options from all trajectories

We can use all the trajectories in a class to create an option that represents the trajectory

variability. We use the technique of GMM-GMR (Calinon et al., 2007) to construct

a probabilistic model of the points in the support of the trajectories. For instance, a

mixture of Gaussians can be used for the joint probability density function over pairs of

points, predicting the next point given the current.

Using Gaussian Mixture Regression we can sample the expected behaviour for

unseen points in the support of the class. This gives a probabilistic policy that imitates

the class demonstrations which will be used as the class’s option policy. The initiation

set of the option is defined by the support of the trajectories, and the termination happens

with respect to leaving that support.

4.3.3 ILPSS with Topological Options

To facilitate reuse, we integrate the topological options with the ILPSS framework

(see Sec. 3.4). After we identify the topological options, We follow the procedure

in (Hawasly and Ramamoorthy, 2013a,b) to identify important regions in the state space

(the generalised bottlenecks), which probabilistically captures highly visited regions

in the state space under different demonstrations. This step is needed to segment the

trajectories and elicit their common factors. We restrict the option policies to these

regions, and create an option for every class of behaviour that can be followed region-

wise. Doing that for all identified regions, we create an option hierarchy for navigating

the free configuration space under the current knowledge of the agent. The complete

procedure is presented in Algorithm 4 for a fixed filtration value ε.

As discussed before, an alternative is to keep persistent options for a range of

filtrations. Also, we can keep options at different filtration levels simultaneously. This

can provide the basis for an anytime multiscale planning framework that, depending



4.3. Topological Options 67

Algorithm 4 ILPSS with ε-Topological Options
Require: number of components C, input trajectories γ0, . . . ,γn, cut-off probability Ψ,

filtration value ε, number of trajectories per instancem.

1: Initialise the repertoire O←∅.

2: for every new instance do
3: Classify the input trajectories with the filtration index ε.

4: for every equivalence class [γ] do
5: Create a dataset of point-pair sequences from the trajectories of [γ].

6: Fit a probabilistic model T[γ] to the dataset using GMM-GMR.

7: Generate a policy π[γ] that implements T[γ].

8: end for
9: Create a ‘bag of states’ dataset D =

⊎n
i=1{γi}.

10: Fit a probabilistic mixture model to D using EM algorithm, generating a set of

kernels K= {Kk(.)}C1 in state space.

11: Extract state regions from the kernels, Sk = {s ∈ S :Kk(s)>Ψ}, for k= 1, . . . ,C.

12: Restrict policies π[γ] to kernel state regions, πk[γ] : S
k×A→ [0,1], for all k and i.

13: Create a set of options O =
⋃C
k=1Ok with ok[γ] = 〈K̄k,1− K̄k,π

k
[γ]〉 ∈ Ok, for

all equivalence classes [γ], k= 1, . . . ,C.

14: O←O∪O.

15: Learn a new instance using O via SMDP learning.

16: Acquirem trajectories from the newly-learnt policy and add them to the input

set.

17: n← n+m.

18: end for
19: return Option set O.

on available resources, can automatically choose a level of granularity for the desired

behaviour in a new instance.



68 Chapter 4. Policy Space Abstraction using Computational Topology

Figure 4.5: Example worlds with a single path class from DCε2 reconstructed from

105 samples. The red trajectory is α0, and the blue trajectories are samples from an

equivalence class (Image from (Pokorny et al., 2014).)

4.4 Experiments

4.4.1 Multiscale path classification in 2D

We generate a set of random 2D worldsW1, . . . ,W10 of size 512×512 by sampling Gaus-

sian Random Fields and defining those regions above a threshold to be obstacles, as dis-

played in Fig 4.5. From the resulting free space Cf, we sampledN ∈ {103, 104, 105, 106}

uniform samples. We compute the Delaunay-Čech filtration for all examples and

record the time required for the computation of the Delaunay triangulation (utilising

CGAL (CGAL, 2014)), the time for the construction of the filtration, as well as the

time required to reduce the resulting boundary matrix to its reduced form R. In all

these examples, we work with the boundary sub-matrix that sends 2-chains (triangles)

to 1-chains (edges) during the reduction, since the remaining columns correspond to

homology in dimensions d 6= 2.

The Delaunay triangulation took on average 1ms, 2ms, 76ms, 810ms, as the sample

size increased. The remaining construction of the filtration took 11ms, 31ms, 278ms and

3270ms respectively. Finally, the boundary matrix reduction took 14ms, 13ms, 76ms,

981ms on average as the sample size increased. All the computations were performed

on an Intel i7 laptop with 8GB of RAM, and we only measured the computation time of

the core algorithms, ignoring time required to load data into memory.

We investigated the filtration DCε at various thresholds and at a filtration value

of ε1 = 25
√

1000/N we found that Cf was conservatively covered, while at ε2 =



4.4. Experiments 69

35
√

1000/N, the space was well covered with a minimum number of holes in collision

free areas. The factor of
√
N is chosen in order to ensure that asymptotically the same

number of samples fall in a square of side-length εi as the sample size increases. See

Fig. 4.6.

Figure 4.6: Example worldW1, withDCε for 103, 104 and 105 sample points per row. In

each column, we plot paths α1, . . . ,αs (in blue) which belong to some fixed homology

class for the given sample size Hi,i(DC(i)). The fixed reference path α0 is plotted in

red. Two paths in different classes have a different homotopy class, while paths within

a class are homotopy-equivalent, but the quality of the approximation DC(i) ∼ Cf is

only sufficient for 104 or more sample points as can be seen on the right in the first row.

There, some 2-simplices (triangles) cover thin obstacle region in the centre-right (Image

from (Pokorny et al., 2014).)

Determining an appropriate filtration value could be aided if additional information

about Cf is available. For example, the persistence diagram in dimension 0 allows us to

infer filtration settings at whichDCε has a prescribed number of connected components.



70 Chapter 4. Policy Space Abstraction using Computational Topology

In order to investigate interesting path classes, we generated a set of 1000 paths per

world and sample setting as follows: In 10 trials, we selected two sample points v1,v2 at

random and for each such setting selected another 100 random waypoints w1, . . . ,w100

from the sampled point-cloud. We determined shortest path from v1 to wi and then to

v2 utilising Dijkstra’s algorithm on the 1-skeleton graph of DCε1 .

We recorded the time required to calculate the persistent cycle coordinates for these

paths and found that it took 1.8ms, 10ms, 115ms and 1750ms to calculate the feature

for 100 query paths and for the respective sample sizes on average. These numbers

encourage the use of the framework in realistic applications and in conjunction with

continuous path optimisation engines.

4.4.2 Multiscale path classification in 4D

We now consider a planar robot arm fixed from the bottom and with 4 joints θ1, . . . ,θ4

displayed in Fig. 4.7. We constrain θ2,θ3,θ4 ∈ [−0.9π,0.9π] , θ1 ∈ [−π
2 , π2 ] and fur-

thermore disallow self-collisions of the arm and collisions with the environment. This

yields a free configuration space Cf ⊂ R4 which is difficult to describe explicitly. The

robot has the task of moving from the start configuration displayed in blue to the goal

joint configuration displayed in faint red in Fig. 4.7, e.g. in order to transport an object

from left to right.

θ4

θ3

θ2

θ1

Figure 4.7: The robot arm in start configuration in blue on the left, and in goal configura-

tion in red on the right.

We sample 105 poses uniformly in Cf using OpenRave (Diankov and Kuffner,

2008) and apply our framework, reconstructing a Delaunay-Čech simplicial complex

2-skeleton filtration which has more than 6.2 million triangles and 1.8 million edges.

Fig. 4.8 displays the resultingH1 persistence diagram which shows a single homological

feature with large H1-persistence in Cf, i.e., a single hole.

If we project the samples onto the first two angles, we obtain a 2-dimensional

projection of the configuration space shown in Fig. 4.9 which empirically confirms this



4.4. Experiments 71

0 0.5
0

0.5

Figure 4.8: The persistence diagram for the robot arm configuration space reconstruction,

with one persistent pair (red point) far above the diagonal. The horizontal axis is the birth

time, and the vertical axis is the death time of homology features (Image from (Pokorny

et al., 2014).)

observation since the it has a single hole.

−π
2

π
2

−π
2

π
2

θ1

θ
2

Figure 4.9: Projection of collision free samples onto θ1,θ2 (Image from (Pokorny et al.,

2014).)

We computed 1000 edge-paths in DC0.25 between the start and end-configuration

using random waypoints. For filtrations 0.301 6 ε6 0.382 only two path classes existed

among the paths. The reduction of the boundary matrix took 0.46s, while the persistent



72 Chapter 4. Policy Space Abstraction using Computational Topology

cycle features for all 1000 paths were calculated in 0.55s. The Delaunay triangulation

in R4 took 251s, partially due to the increased dimension1.

We inspected the trajectory in each of the two homology classes and found that the

paths were classified according to whether the second link was positioned to the right

(like the letter ‘Z’) or to the left (like the letter ’S’) of the base link of the arm as the arm

passes the narrow passage (see Fig. 4.10). Our framework hence allows the robot to

discover the fact that two fundamentally different trajectory classes exist which cannot

be deformed into each other.

Figure 4.10: An illustration of the difference between the found topological classes. Top,

the task is to move from the configuration on the left to the configuration on the right.

Below, the two discovered classes of motions, class ‘Z’ and class ‘S’.

4.4.3 Multiscale path classification for a physical robot system

We evaluate the framework on a set of trajectories generated by the end-effector of a

Baxter robot (Rethink Robotics, 2012). The robot executes a specific reaching task

between two points using one or both arms, e.g. by kinesthetic demonstration. Thus,

each point in a trajectory is a 3-dimensional point (x,y,z) of the end effector coordinates

for one arm, or a 6-dimensional point (xr,yr,zr,xl,yl,zl) for the right and the left end

effector position, respectively, if both are used.

1Not directly comparable to the 2D case, since we did not employ spatial sorting here.



4.4. Experiments 73

(a) The skill using the right arm. (b) The skill using the left arm.

Figure 4.11: Setup of the Baxter experiment 1. The robot demonstrates the reaching

skill using both arms. The movement starts above the head and ends in the bottom.

Experiment 1

In this experiment, each of the two arms is used to reach from a point above the head of

the robot to a point below its torso as in Fig. 4.11. The complete set of 96 demonstrated

trajectories of the two motions are fed into the homology classification algorithm, with

the results of classification shown in Fig. 4.12. The filtration values 0.5m, 0.15m,

0.075m, 0.060m resulted in a number of 1,2,4 and 8 classes, respectively.

The power of handling the filtration parameter inside the framework is that we do not

have to select a setting for it beforehand, but can investigate the change in classification

as its value changes. For example, the separation of the left arm trajectories from the

rest is evident as it persists across a wide range of filtrations, while the emergence of

the green class in Fig. 4.12c is of limited importance as it disappears quickly, making it

most probably an outcome of noise in the demonstrated data. In general, the choice of

classes can happen after examining the persistence of the features in the demonstrated

data.

Comparison with k-means For the sake of contrast, we show the results of clustering

using a k-means implementation using the same input trajectories. The domain of

clustering is a g-dimensional space, where g is a positive integer, made by reading-off

g equally-distant points from time-normalised trajectories. To tune the parameters g



74 Chapter 4. Policy Space Abstraction using Computational Topology

(a) filtration value ε= 0.5m, 1 class (b) filtration ε= 0.15m, 2 classes

(c) filtration ε= 0.075m, 4 classes (d) filtration ε= 0.06m, 8 classes

Figure 4.12: Classification of trajectories under different filtration values in the Baxter

experiment 1. Each colour represents a different equivalence class. The trajectories

show end-effector position for the Baxter arm performing a reaching skill. The filtration

values are 0.5m (a), 0.15m (b), 0.075m (c) and 0.06m (d), and the number of discovered

classes are 1,2,4 and 8, respectively.



4.4. Experiments 75

(a) hand-picked parameter setting,

g=9, k=4.

(b) Automatic parameter setting.

Figure 4.13: Classification of trajectories using k-means algorithm. Each colour rep-

resents a different cluster. The parameters of the plots are manually-set (left); and

automatically chosen to minimise the number of label switches in an ordered input set

(right).

and k, we search for the setting that minimises the number of switches of cluster labels

in an ordered trajectory set, ordered by class. The results in Fig. 4.13 shows, in addition

to that automatically-chosen setting, a hand-picked setting also. These parameters were

chosen knowing the complexity of the trajectories and the expected number of classes.

As it is clear from the figure, both settings do not manage to distinguish the classes

cleanly. That is, setting the parameters even for such a simplified experiment is not

straightforward task.

Experiment 2

In the second experiment (Fig. 4.14), we demonstrate a two-arm periodic skill in which

the robot picks a cylindrical object on a nearby table and places it either above its head

on a hypothetical shelf, or onto the ground next to the robot base, before returning to

the starting pose. Also, different trajectories have different distances between the end

effectors when grasping the object.

The result of classification is shown in Fig. 4.15 for a fixed filtration value ε= 0.19m.

Each 6D point is depicted as two 3D points, one per arm. The two colours represent

two different equivalence classes, which correspond to the two different input motions.



76 Chapter 4. Policy Space Abstraction using Computational Topology

(a) Placing the object up on a hypothetical

shelf.

(b) Placing the object on the ground.

Figure 4.14: Setup of the Baxter experiment 2. The robot uses both arms to place an

object in two different destinations before returning to the starting pose.

Figure 4.15: Classification results in the Baxter experiment 2 for both arms. Each 6D

points is depicted as two 3D points, one per arm. Each colour represents a different

equivalence class.

Experiment 3

In this experiment (Fig. 4.16), an obstacle (a metal bar) is placed in front of the robot to

create extra structure in the free configuration space. The task of the robot is to pick a



4.4. Experiments 77

cylindrical object lying horizontally in front of the obstacle and move it to a vertical

configuration. The robot does that either by manoeuvrings of the left arm in front of, or

behind, the obstacle.

The collection of configurations that collide with the obstacle are removed from

the configuration space, creating a hole in its topological description, see Fig. 4.17

where only the trajectories of the left arm are shown, as the right arm performs the

same behaviour in the input demonstrations.. The classification is performed for a fixed

filtration value ε = 0.19m. The two colours represent the two different equivalence

classes, which correspond to the two different manoeuvres.

(a) Moving in front of the obstacle. (b) Moving behind the obstacle.

Figure 4.16: Setup of the Baxter experiment 3. The robot negotiates an obstacle in its

environment (the metallic post) in two different ways in order to reorient a cylindrical

object from horizontal to vertical position.

4.4.4 Option extraction for a physical robot system

Starting from a set of demonstrations, we would like to generate a set of options (motion

primitives) that summarises the variability in the ways the task can be solved in. We

fix the filtration value to ε= 0.075m in the first experiment (Fig. 4.11), and we use the

same set of demonstrations to generate options that solve that task.

We run ILPSS with Topological Options on the resulting dataset, and we show the

outcome in Fig. 4.18. In the figure, each colour represents the support of an option,

while the option policy can be constructed to follow the flow of the trajectories until

the support is left. Note that an option is segmented out for both being a member of a



78 Chapter 4. Policy Space Abstraction using Computational Topology

Figure 4.17: Classification results in the Baxter experiment 3 for the left arm only. Each

colour is a different equivalence class. The trajectories for the right arm are very similar

in the two skills, and hence they are not shown.

specific topological equivalence class, and for the importance of its support, quantified

by the visit frequency of different demonstrations.

Thus, what is captured is a set of valid options/ motion primitives that were useful

in the current task. Note that these options were defined in a ‘snapshot’ of the task and

the environment. For a lifelong learning agent, the options can be refined and made

more specific with more experience in the same, or new, learning tasks.

4.5 Concluding Remarks

In this chapter, we have proposed a novel sampling-based approach to studying homol-

ogy classes of paths in robot configuration spaces of arbitrary dimension, with the aim

of defining topologically-distinct motion primitives as a kind of policy abstraction. We

used a novel construction of a filtration of simplicial complexes and the tools of persis-

tent homology to achieve a classification of a set of input trajectories into equivalence

classes to select suitable representative behaviours.

This opens new possibilities for integrating local optimisation based planning

algorithms with the proposed method which extracts global information from the

configuration space. The integrating of cost landscapes into the framework allows

applications of our method in optimal class-dependent generation of dynamic motion

primitives. Furthermore, we have shown how the proposed method can be used to define



4.5. Concluding Remarks 79

Figure 4.18: Options derived using ILPSS with Topological Options. The 3D data points

represent sampled poses for the end effector of a Baxter robot performing a reaching

skill. The trajectories are classified with a filtration value of ε= 0.075m, giving the four

classes shown in colour in the four panels. After that, options are acquired using ILPSS.

The different colours in each panel represent different options.

a small set of options which topologically summarises the variability of the behaviours

in the domain. We believe that using topology as a metric to gauge the usefulness of

an abstraction is a promising approach to autonomous learning for a lifelong learning

agent particularly, and to abstraction in general.





Chapter 5

Policy Space Abstraction for Policy

Reuse

81



82 Chapter 5. Policy Space Abstraction for Policy Reuse

5.1 Introduction

In this chapter, we explore policy space abstraction using models of task space and its

relation to policy space. A direct mapping between the two spaces would be useful for

transfer, as solutions for new tasks could be promptly computed through that mapping,

without the need to learn.

In general, modelling the task/policy space requires a measure of similarity between

tasks/policies. One example of that would be the metric in the space of parameters for

some parametrisable task/policy. In that case, two tasks/policies with similar parameters

are similar. The direct mapping for this scenario can be a function that relates the

parameters of the task to those of the policy (e.g., (Silva et al., 2012)). This approach,

in many interesting practical situations, is not relevant either because the policies are

not parametrisable in the first place, or because the parameters of the task are not

(immediately) observable, which require a more careful treatment.

A more general approach uses the return of some behavioural policies on a set of

tasks to define a similarity measure, where similar tasks exhibit similar performance

under the set of policies (e.g. (Mahmud et al., 2013)).

In this chapter we propose a model that selects a policy from a general library of

policies in response to a new task (Sec. 5.2). This problem is called Policy Reuse. The

selection is achieved through a Bayesian framework that elicits information about the

task in an optimal exploration process (Sec. 5.4), using signals that are generated by the

task and are correlated to its type (Sec. 5.3.4). Not knowing the policy space parameters

is handled through building a non-parametric model of the tasks in an offline phase

(Sec. 5.3).

Fig. 5.1 gives an overview of the approach in this chapter.

5.1.1 Contributions

The main contributions of this chapter are:

• We introduce Bayesian Policy Reuse (BPR) as a general Bayesian framework for

solving the policy reuse problem.

• We present several specific instantiations of BPR using different policy selection

mechanisms and compare them on a domain modelling a surveillance problem.

• We provide an empirical analysis of the components of our model, considering



5.2. Bayesian Policy Reuse (BPR) 83

Unsupervised 
Learning

Experienced 
tasks

Performance & 
signal models

Online instance

Transfer 
Learning

Representation 
change

Experience 
bookkeeping

Performance & signals

Bayesian 
updates

MDP clustering

Probabilistic 
modelling

Figure 5.1: Overview of the approach in this chapter. The set of experienced tasks are

abstracted using probabilistic models of performance and signals that can be observed

online and which are correlated to the type of the task. Using a Bayesian update, the

type of a new task can be identified from the observation signals, and a proper policy can

be chosen from the previously-learnt policies to maximise performance. The tasks can

be automatically clustered into representative types to reduce the storage and runtime

complexities.

different classes of observation signal and the trade-off between library size and

sample complexity.

5.2 Bayesian Policy Reuse (BPR)

5.2.1 Policy Reuse

The problem space considered here is characterised as a short-term, interactive adapta-

tion to a new situation.

Consider online personalisation, which is becoming a core concept in human-

computer interaction, driven largely by a proliferation of new sensors and input devices

which allow for a more natural means of communicating with hardware. Consider, for



84 Chapter 5. Policy Space Abstraction for Policy Reuse

example an interactive interface which interprets the gestures of a human user, set up

in a public space, such as a museum or a store. The device is required to map human

movement to interpretable instructions, e.g., to provide the user with information. The

difficulty is that the device may be expected to interact with a wide and diverse pool of

users, who differ both at the low level of interaction speeds and body sizes, and at the

higher level of which gestures seem appropriate for particular commands. The device

should autonomously, and quickly, calibrate to the user, where a mismatch could result

in a failed interaction and lengthy calibration is likely to frustrate the user and make

him/her abandon the interaction.

Similar problems appear in other circumstances, as, for example, in the case of

an intelligent base station for monitoring poachers in a large wildlife reserve, using

light-weight drones that can scan particular locations in the park for unusual activity.

The number of drone deployments in any problem instance would be limited, as the

poachers can be expected to spend a limited time stalking their target before leaving.

5.2.2 Problem statement

The key component is the need for sample-efficient decision making, as the agent is

required to respond to scenarios before they have elapsed. On the other hand, the

interaction is inherently short, so the agent needs to perform well in the limited time

available. Then, we need solution methods that have both low sample complexity and

low regret in a large space of possible tasks.

It is unreasonable to assume that any new task instance could be learnt from scratch

in the constrained interaction time. More plausibly, seeding the process with a set of

policies of solved instances, as a strategy for transfer learning, may be beneficial. For

example, the interactive interface may ship with a set of different classes of user profiles

which have been acquired offline, while the monitoring system may have a collection of

pre-learnt behaviours to navigate the park when a warning is issued.

One way to build the required library of policies is described in (Mahmud et al.,

2013). There, a set of experienced MDPs are clustered with respect to a distance

function that is related to how the optimal policy of one MDP fares when applied to

another MDP, and vice versa. Each cluster of MDPs represents a neighbourhood in

performance space, so that one does not lose more than a specific amount of performance

by applying the policy of a cluster’s landmark MDP in place of the optimal policy of

one of its members. The set of landmark policies of clustering experienced tasks is a



5.2. Bayesian Policy Reuse (BPR) 85

good choice for a policy library.

We term this problem of short-lived sequential policy selection for a new instance

the policy reuse problem and we define it formally as follows. Let an agent be a decision

making entity in a specific domain and let it be equipped with a policy library Π for

tasks in that domain. The agent is presented with an unknown task which must be

solved within a limited, and small, number of trials. At the beginning of each trial

episode, the agent can select one policy from Π to execute for the full episode. The goal

of the agent is thus to select from existing policies to minimise the total regret incurred

in the limited task duration with respect to the performance of the best alternative in Π

in hindsight.

5.2.3 Related work

Online choice from a set of alternatives for a minimal regret could be posed as a multi-

armed bandit. In this framework, each arm would correspond to a pre-learnt policy,

and our problem becomes a sequential optimal selection of fixed policies. In general,

finite-horizon online bandit problems are intractable (Niño-Mora, 2011). Furthermore,

traditional bandit approaches have to try each available arm on the new task in order to

gauge its performance, which may be a very costly procedure from a sample complexity

point of view, assuming a large number of policies.

Instead, one can exploit knowledge which has been acquired offline to accelerate

online response times, as in transfer learning (Taylor and Stone, 2009). We propose a

solution for policy reuse that exploits the natural correlation between policies, captured

by testing them under canonical situations.

A version of the policy reuse problem appears in (Mahmud et al., 2013), where it

is used to test a set of landmark policies retrieved through clustering of tasks in the

space of MDPs. In another thread, the term ‘policy reuse’ was used by (Fernández and

Veloso, 2006) in a different context. There, a learning agent is equipped with a library

of previous policies to aid in exploration, as they enable the agent to collect relevant

information quickly to accelerate learning. In our case, learning is infeasible, and policy

reuse is the only way to achieve the objective of the agent.

We now pose the policy reuse transfer problem in a Bayesian framework.



86 Chapter 5. Policy Space Abstraction for Policy Reuse

5.2.4 Setting

For a set of tasks X and a set of policies Π, Bayesian policy reuse involves two key

components.

• The performance model, P(u|x,π), where u ∈ R is utility, x ∈ X is a task, and

π ∈ Π is a policy: a probability model over performance of the set of policies Π

on the set of seen tasks X . This information is acquired in an offline phase.

• The observation model, defined as a probability distribution P(σ|x,π), where

σ ∈ Σ a signal from the space of possible observation signals which can be

provided by the environment, x ∈ X is a task, and π ∈ Π is a policy. A signal is

some kind of information that is correlated to the performance and which can

be observed online. If the performance information is directly observable, the

observation and the performance models may be essentially the same.

Given a new task x∗ ∈ X , the agent is required to select the best policy π∗ ∈ Π in as

few trials as possible, whilst accumulating as little regret as possible in the interim. The

agent has prior knowledge only in the form of performance models for each policy in Π

on a set of tasks from X , as well as observation models.

Having an observation model is useful in that using a known policy on a new task

would provide a sample observational signal. This can be used to update a ‘similarity’

measure over the seen tasks. This similarity allows for selection of a policy at the next

time step to optimise expected performance. This is the core idea behind Bayesian

policy reuse.

A caricature of the Bayesian policy reuse problem is in Fig. 5.2.

5.2.5 Algorithm

We present the general form of Bayesian Policy Reuse (BPR) in Algorithm 5. The

algorithm maintains a probabilistic distribution, called the belief β, over the set of seen

tasks as a representation of the similarity measure of the tasks to the new task instance.

The procedure is a sequential Bayesian update of the similarity belief using the signals

of interaction.

Possible implementations of step 3 are to be discussed in Sec. 5.4.



5.2. Bayesian Policy Reuse (BPR) 87

Figure 5.2: A simplified depiction of the Bayesian Policy Reuse problem. The agent

has access to a library of policies (π1, π2 and π3 in the figure), and has previously

experienced a set of task instances (τ1 . . .τ4) from a continuum of tasks, and has

sampled the utilities of the library policies on these instances (the dots on the curves are

the means of these estimates, while the agent maintains distributions of the utility as

illustrated by P(u|τ1,π3)). The agent is presented with a new unknown task instance

(x∗), and it is asked to select the best policy from the library (optimising between the

red points). Note that it is infeasible to try every individual option (in less than 3 trials in

this example), the agent has no knowledge about the complete curves, neither where

the task instances occur in the problem space. The agent needs to infer this from utility

similarity. The observation models are not depicted.

5.2.6 Regret

In order to evaluate the performance of our approach, we define regret as the policy

selection metric to be optimised by Bayesian Policy Reuse.

Definition 3 (Library Regret). For a library of policies Π and for a policy selection

algorithm ξ :X →Π that selects the policy ξ(x∗) ∈Π for the new task instance x∗ ∈ X ,

the library regret of ξ is defined as

R(ξ) = uπ
∗
x∗ −u

ξ(x∗)
x∗ ,



88 Chapter 5. Policy Space Abstraction for Policy Reuse

Algorithm 5 Bayesian Policy Reuse (BPR)
Require: Problem space X , Policy library Π, observation space Σ, prior over the

problem space P(X ), observation model P(σ|x,π), performance model P(u|x,π),

number of episodes K.

1: Initialise beliefs: β0(x)←− P(x) for all x ∈ X
2: for episodes t= 1. . .K do
3: Select a policy πt ∈ Π, using the current belief of the task βt−1.

4: Apply πt on the task instance.

5: Obtain an observation signal σt from the environment.

6: Update the belief βt(x)∝ P(σt|x,πt)βt−1(x), for all x ∈ X .

7: end for

where uπx is the performance of using policy π on the task x; π∗ = argmaxπ∈Πuπx∗ , the

best policy in hindsight in the library for the task instance x∗.

Definition 4 (Average Library Regret). For a library of policies Π and for a policy

selection algorithm ξ : X → Π, the average library regret of ξ over K trials is defined

as the average of the library regrets for the individual trials,

RK(ξ) =
1
K

K∑
t=1

R(ξt),

whereR(ξt) is the regret for the policy selection at trial t.

The metric we choose to minimise in BPR is the average library regretRK(ξ) for

K trials. Thus, the goal of BPR is to not only find the right solution at the end of

the K trials, possibly through expensive exploration endeavours, but also to optimise

performance even when exploring in the short duration of the task.

We will refer to this metric simply as ‘regret’ throughout the rest of the chapter.

5.3 Problem Space, Observation Signals and Beliefs

5.3.1 Tasks

Let a task be specified by a Markov Decision Process (MDP). Denote the space of

all MDPsM. We will consider episodic tasks, i.e. tasks that have a bounded time



5.3. Problem Space, Observation Signals and Beliefs 89

horizon. The return, or utility, generated from running the policy π on an episodic task,

uπ = E[
∑k
i=0 ri |π], with k being the length of the episode, and ri being the reward

realised at time t. We denote a collection of policies that the agent has by Π, and refer

to it as the policy library.

5.3.2 Types

When working directly in the task space M, it is very likely that maintaining and

updating the belief of BPR would require a large number of samples. In many scenarios,

we may find that there is a natural notion of clustering inM, where many tasks are

similar with minor variations. Previous work has looked into finding the clustering in

a space of tasks; see (Mahmud et al., 2013) for a detailed account. We do not try to

discover the clustering in this work, but we assume it exists.

To this end, we propose a simple notion of task types as clusters of tasks that form

ε-balls in performance space, for some ε ∈ R, where performance is with respect to

a collection of designated policies. Other ways to define types exist, as the concept

in (Mahmud et al., 2013) or the notion of task classes as probability distributions over

task parameters in (Wilson et al., 2007).

Definition 5 (Type). A type τ is a subset of tasks such that for any two MDPsmi,mj

from a type τ and for all policies π in a set of designated policies Π, the difference in

utility is upper-bounded by some ε ∈ R:

mi,mj ∈ τ ⇔ |uπi −u
π
j |6 ε, ∀π ∈ Π,

where uπi ∈ R is the utility from executing policy π on taskmi. Then,mi andmj are

ε-equivalent under the policies Π.

In Fig. 5.2, the ε-region in performance space for τ1 is explicitly depicted with the

corresponding region in the task space. We assume the existence of a finite number

of task types in a domain, and we denote the space of types with T . Assuming these

types are disjoint in the domain1, we can work with T as the problem space of BPR.

This induces a hierarchical structure in the space M. A type τ is drawn from a

hyperprior τ ∼G0, and then a task is drawn from that typem ∼ ∆τ(m), where ∆τ(m)

is a probability distribution over tasks.

1Types do not have to be disjoint in general for our framework to work, i.e. there may exist tasks
that belong to multiple types at once. However, this requires that the correlation between the types be
explicitly captured.



90 Chapter 5. Policy Space Abstraction for Policy Reuse

By definition, the set of MDPs generated by a single type are ε-equivalent under Π.

Hence, regret of replacing all the MDPs in τ with any one of them cannot exceed ε. Let

us choose a single MDP per type and call it a landmark MDP of τ, and denote it mτ.

This would simplify the hierarchical structure, where the prior G0 acts immediately on

the set of landmark MDPsmτ,∀τ ∈ T . See Fig. 5.3.

Figure 5.3: Problem space model with disjoint types. Left, tasks m are related by types

τ, with a generating distribution G0 over them. Right, a simplification of the hierarchical

structure under ε-equivalence. The tasks of each type are represented by a single

landmark taskmτ.

The benefit of this for Bayesian Policy Reuse is that each alternative now in the task

space abstraction is a representative for a region in the original task space, defined by ε.

We will use the type space T as the problem space from here on, although we note

that the methods we propose do not change if the full task spaceM was used as the

problem space.

5.3.3 Performance model

One of the key components of BPR is the performance model of policies for seen task

instances, which holds a distribution of returns. Using types, a performance model

represents the variability in return for the various tasks in a type.

Definition 6 (Performance Model). For a policy π and a type τ, the performance model

P(u|τ,π) is a probability distribution over the utility of π when applied to all tasks

m ∈ τ.



5.3. Problem Space, Observation Signals and Beliefs 91

5.3.4 Signals

Definition 7 (Signal). A signal σ is any information that is correlated to the performance

of a policy and which is available to the agent in an online execution of the policy. We

call the space of observations Σ.

The goal of the signal is to allow the agent to identify the type of the task instance

so that a proper response is chosen and reused. The most straightforward signal is

the performance itself, but in some situations this is not always available (e.g. in

cases where the payoff is delayed). The information content and richness of a signal

determines how easily an agent can identify the type of the new task with respect to

the seen types. The agent learns a model of how types, policies and signals relate and

interact offline to be used in type identification online.

5.3.5 Observation model

For some choice of signal space Σ, the agent learns canonical models of the signal

values expected from every type-policy pair.

Definition 8 (Observation Model). For a policy π and type τ and a observation space Σ,

the observation model, Fτπ(σ) = P(σ|τ,π), is a probability distribution over the signals

σ ∈ Σ that may result by applying π to τ.

We assume that the agent acquires observation models offline. Consider the follow-

ing procedure to learn the signal models for the policy library Π:

1. The type label τ is announced.

2. A set of tasks are generated from the type τ.

3. The agent runs all the policies from the library Π on all the instances of τ, and

observes the resultant signals στ,π.

4. Distributions Fτπ = ∆(στ,π) are fitted to the data.

These models relate observable signals to the latent type label of seen types. For a

new instance, identifying the true type (or the most similar seen one) is sufficient to play

a good policy from the policy library, which is the goal of the policy reuse problem.

5.3.6 Example signals

Here are some candidate signals that may be used in a BPR implementation.



92 Chapter 5. Policy Space Abstraction for Policy Reuse

State-Action-State tuples

The richest information signal which could be accrued by the agent is the history of

all (s,a,s ′) tuples encountered during the execution of a policy. Thus, the observation

model in this case is exactly the expected transition function of the MDPs of the type τ,

or the part of that model that has been experienced.

The expressiveness of this signal comes with a drawback, that it might be expensive

to learn and maintain such models for every possible type.

Instantaneous rewards

A similar form of information is the instantaneous reward r ∈ R received during the

execution of a policy for some state-action pair s,a. Then, the observation model is

the expected reward function for the MDPs in the type. This may provide a relatively

fine-grained knowledge on the behaviour of the task in cases where intermediate rewards

are informative.

Episodic returns

An example of a sparser signal is the total utility uπτ ∈ R accrued over the full episode

of using a policy in a task. This signal is useful for problems of delayed reward,

where intermediate states cannot be valued easily, but the extent to which the task was

successfully completed defines the return. The observation model of such a scalar signal

is much more compact, and thereby easier to learn and maintain, than the previous two

proposals.

In our framework, using episodic returns as signals has the additional advantage

that this information is already captured in the performance model. This relieves the

agent from maintaining two separate models, as in this case P(u|τ,π) = Fτπ(u), for all

π and τ.

5.3.7 Bayesian belief over types

Definition 9 (Type Belief). For a set of seen types T and a new task x∗, the type belief

β(·) is a probability distribution over the types of T that measures to what extent x∗

matches the types of T in their observation signals.

The type belief, or belief for short, is a surrogate measure of similarity in type space.

It approximates where a new instance may be located in relation to the known types,



5.4. Policy Selection for BPR 93

which act as bases of the unknown type space.

The belief is initialised with the prior probability over the type space (called G0

in Fig. 5.3). Then, after each execution of a policy, the environment provides an

observation signal to the agent. This is used to update beliefs (line 6 in Algorithm 5),

computing the posterior probability over the task space βt(·) using Bayes’ rule:

βt(τ) =
P(σt|τ,πt)βt−1(τ)∑

τ ′∈T P(σt|τ ′,πt)βt−1(τ ′)
(5.3.1)

=
Fτ
πt
(σt)βt−1(τ)∑

τ ′∈T Fτ
′
πt
(σt)βt−1(τ ′)

, ∀τ ∈ T , (5.3.2)

where βt−1 is the belief at episode t−1, βt is the belief at episode t, πt is the policy

played in episode t, and σt is the signal received thereafter. We will use β to refer to βt

where this is not ambiguous.

5.4 Policy Selection for BPR

Given the current type belief, the agent is required to choose a policy for the next

episode for two concurrent purposes: to acquire useful information about the type of the

task in hand, while avoiding additional regret. Thus, the trade-off between exploration

and exploitation is at the core of policy selection. We wish to gain as much information

about the task as possible, so as to choose policies optimally2 in the near future, but at

the same time minimise performance losses due to sub-optimal choices.

We can define the following MDP to describe the optimal policy selection process

for a type τ∗:

• The states are the continuous belief states over type, β ∈ [0,1]|T |−1.

• The actions are the available policies π ∈ Π.

• The reward process is defined by the utility, u ∼ P(u|τ∗,π).

Under this formulation, the value of a policy choice π is given by

Q(βt,π,K− t) =
∫
u∈R

P(u|τ∗,π)
(
u+max

π ′∈Π
Q(βu,π ′,K− t−1)

)
du, (5.4.1)

2Note that we call the best policy in the library for a specific task the ‘optimal policy’, as we are not
considering problems where learning is feasible.



94 Chapter 5. Policy Space Abstraction for Policy Reuse

where βu is the new belief at t+1 after incorporating the observation u, K− t is the

number of trials still to go, and Q(βt,π,1) =
∫
u∈RP(u|τ∗,π)udu. Using this formu-

lation, the optimal policy selection at some belief β becomes the greedy optimisation,

π∗ = argmaxπ∈ΠQ(β,π).

Computing the Q-function in Equation (5.4.1) is not feasible for two reasons.

Firstly, P(u|τ∗,π) is not known for the unknown type τ∗. One possible work-around

is to approximate it with the expected performance under the belief β, P̂(u|τ∗,π) =∑
τ∈T β(τ)P(u|τ,π), but this averaging would be destructive to the details in the

performance models. Secondly, even if we approximate the performance model, the state

in Equation (5.4.1) is continuous and hence discretisation or function approximation is

needed, which does not generalise easily to different problem settings.

5.4.1 Approximate methods for policy selection

The goal of the agent is to maximise utility over the full K episodes of the task. This

corresponds to minimising the cumulative, rather than instantaneous, regret. A purely

greedy policy selection mechanism would fail to take exploratory actions needed for

the belief to converge to the closest type, and may result in the agent becoming trapped

in a local maximum of the utility function. On the other hand, a purely exploratory

policy selection mechanism could be designed to elicit the most possible information in

expectation, but this would not make an effort to improve performance. We thus require

a mechanism to explore as well as exploit; find a better policy to maximise asymptotic

utility, and exploit the current estimates of which are good policies to maximise myopic

utility.

We now propose several policy selection mechanisms for dealing with this problem

approximately:

• A simple ε-greedy exploration, where with probability 1−ε we choose the policy

which maximises the expected utility under the belief β,

π̂ = argmax
π∈Π

∑
τ∈T

β(τ)

∫
u∈R

u P(u|τ,π)du

= argmax
π∈Π

∑
τ∈T

β(τ) E[u|τ,π]

and with probability ε we choose a policy from the policy library uniformly

at random, with ε becoming smaller every trial, until it becomes 0 at K. This

additional random exploration component perturbs the belief from local minima.



5.4. Policy Selection for BPR 95

• Sampling the belief β, which involves sampling a type from the belief τ̂ ∼ β, and

selecting the best policy for that type,

π̂= argmax
π∈Π

E[u|τ̂,π].

In this case, exploration is achieved through the sampling process.

• Using exploration heuristics that estimate a value for each policy, so as to achieve

a balance between exploitation and a limited degree of look-ahead, to approximate

optimal exploration.

This is the prevalent approach in Bayesian optimisation, where, instead of directly

maximising utility, a surrogate function that takes into account both the expected

utility and a notion of the utility variance is maximised (see, e.g. (Brochu et al.,

2010)). Multiple proposals have been widely considered in the multi-armed bandit

(MAB) literature, ranging from early examples like the Gittins index (Gittins

and Jones, 1974) for infinite horizon problems, to more recent methods such

as the knowledge gradient (Powell, 2010). For the finite-horizon total-reward

MAB, (Lai and Robbins, 1978) show that index-based methods achieve optimal

performance asymptotically.

5.4.2 Bayesian Policy Reuse with Exploration Heuristics

By incorporating the notion of an exploration heuristic that computes an index νπ for a

policy π into Algorithm 5, we obtain the proto-algorithm Bayesian Policy Reuse with

Exploration Heuristics described in Algorithm 6.

Note that we are now using G0, the hyper-prior, as the prior in step 1 because we

are using T as the problem space.

Next, we discuss some candidate heuristics V that can be used in line 3 in the

algorithm, and we define four variants of the BPR-EH algorithm, as

• BPR-PI using probability of improvement,

• BPR-EI using expected improvement,

• BPR-BE using belief entropy,

• BPR-KG using knowledge gradient.



96 Chapter 5. Policy Space Abstraction for Policy Reuse

Algorithm 6 Bayesian Policy Reuse with Exploration Heuristics (BPR-EH)
Require: Type space T , Policy library Π, observation space Σ, prior over the type

space G0, observation model P(σ|τ,π), performance model P(u|τ,π), number of

episodes K, an exploration heuristic V .

1: Initialise beliefs: β0←−G0.

2: for episodes t= 1. . .K do
3: Compute νπ = V(π,βt−1) for all π ∈ Π.

4: πt←− argmaxπ∈Πνπ.

5: Apply πt to the task instance.

6: Obtain the observation signal σt from the environment.

7: Update the belief βt using σt by Equation (5.3.1).

8: end for

Probability of Improvement and Expected Improvement

One heuristic for policy selection can be the probability with which a specific policy can

achieve a hypothesised increase in performance. Assume that u+ ∈ R is some utility

which is larger than the current best estimate under the current knowledge,

u+ > ut = max
π∈Π

∑
τ∈T

β(τ)E[u|τ,π].

The probability of improvement (PI) principle chooses the policy that maximises

the term

π̂= argmax
π∈Π

∑
τ∈T

β(τ)P(u+|τ,π).

The choice of u+ is not straightforward, and this choice is the primary factor

affecting the performance of this exploration principle. One approach to addressing

this choice, is through the related idea of expected improvement (EI). This requires

integration over all the possible values of improvement ut < u+ < umax ∈ R, then the

policy with the best potential is chosen. That is,

π̂ = argmax
π∈Π

∫umax
ut

∑
τ∈T

β(τ)P(u+|τ,π)du+

= argmax
π∈Π

∑
τ∈T

β(τ)

∫umax
ut

P(u+|τ,π)du+

= argmax
π∈Π

∑
τ∈T

β(τ)(1−F(ut|τ,π))

= argmin
π∈Π

∑
τ∈T

β(τ)F(ut|τ,π),



5.4. Policy Selection for BPR 97

where F(u|τ,π) =
∫u
−∞P(u|τ,π)du is the cumulative distribution function of utility for

π and τ.

Belief Entropy

Both PI and EI principles select a policy which has the potential to achieve higher utility.

An alternative is to select the policy which will have the greatest effect in reducing the

uncertainty over the type space.

The belief entropy (BE) approach seeks to estimate the effect of each policy in

reducing uncertainty over type space, represented by the entropy of the belief. For each

policy π ∈ Π, estimate the expected entropy of the belief after executing π as

H(β|π) = −βπ logβπ,

where βπ is the updated belief after incorporating the observation expected from running

the policy π:

βπ(τ) = EΣ

[
Fτπ(σ)β(τ)∑

τ ′∈T Fτ
′
π (σ)β(τ ′)

]
=

∫
σ∈Σ
Fτπ(σ)

(
Fτπ(σ)β(τ)∑

τ ′∈T Fτ
′
π (σ)β(τ ′)

)
dσ. (5.4.2)

Then, selecting the policy

π̂= argmin
π∈Π

H(β|π)

which would reduce the most uncertainty in the belief in expectation.

This is in essence a purely exploratory policy, so to incorporate exploitation of the

current state of knowledge, we rather select

π̂= argmax
π∈Π

(∑
τ∈T

β(τ) E[u|τ,π]−κH(β|π)

)
,

where κ ∈ R is a positive constant controlling the exploration-exploitation trade-off.

Knowledge Gradient

Another approach is to use the knowledge gradient (KG), which aims to balance explo-

ration and exploitation through the optimisation of myopic return, whilst maintaining

asymptotic optimality (Powell, 2010). The principle behind this approach is to estimate

a one step look-ahead and select the policy which maximises utility over both the current

time step, and the next in terms of the information gained.



98 Chapter 5. Policy Space Abstraction for Policy Reuse

To select a policy using the knowledge gradient, we choose the policy π̂ which

maximises the online knowledge gradient at time t

π̂ = argmax
π∈Π

(∑
τ∈T

β(τ) E[u|τ,π]+ (K− t)νtπ

)
,

trading-off between the expected utility and νtπ, the offline knowledge gradient of π

for a horizon of K trials, which essentially measures the performance of a one-step

look-ahead in the process, given as

νtπ = Eβ

[
max
π ′

∑
τ∈T

βπ(τ) E[u|τ,π ′]−max
π ′′

∑
τ∈T

β(τ) E[u|τ,π ′′]

]
, (5.4.3)

which is the difference in the expectation, with respect to β, of the best performance

of any policy at t+1 if π was played at t, with that of the best policy at t, which may

be different from π. βπ in the first term is the belief after incorporating the signal

generated by π, as in Equation 5.4.2.

5.5 Experiments

While the first experiment shows a simplified scenario to demonstrate the approach, the

second experiment highlights the different observation signals, and the third compares

BPR to other methods in the literature.

5.5.1 Golf club selection

Consider the problem of a simulated robot golfer taking a shot on an unknown golf

course, where it cannot reliably estimate the distance to the hole. The task is evaluated

by how close to the hole the ball ends, and the robot is only allowed to take K= 3 shots

from a fixed position from the hole, but it can choose any club from a set of 4 clubs

(number of clubs > K) with the properties in Table 5.1 for some canonical stroke.

In fact, this simplified scenario is a single-shot, bandit-style, decision problem.

Nonetheless, it fulfils the requirements of BPR, as a policy needs to be selected from

the beginning and an evaluation signal is received in the end. BPR treats any sequential

decision process as a one-shot decision process by abstracting acting away with policy

selection from a fixed library.

• Types: the type space T is made of a set of previous shots, each defined by how

far the target was (the agent could be told how far the hole was after the shot is



5.5. Experiments 99

Club Average Yardage Standard Deviation of Yardage

π1 = 3-wood 215 8.0

π2 = 3-iron 180 7.2

π3 = 6-iron 150 6.0

π4 = 9-iron 115 4.4

Table 5.1: Statistics of the ranges (yardage) of the four clubs used in the golf club

selection experiment. We choose to model the performance of each club by a Gaussian

distribution with the shown parameters. We assume the robot is competent with each

club, and so the standard deviation is small, but related to the distance.

performed). We assume the robot has experience with four previous holes, with

distances τ110 = 110 yds, τ150 = 150 yds, τ170 = 170 yds and τ220 = 220 yds.

The performance models are shown in Fig. 5.4.

• Performance: the metric to optimise is defined as the negative of the absolute

distance from the final position of the ball to the hole, such that this quantity must

be maximised.

• Policies: given the robot’s canonical stroke, the policy is the choice of the club.

For each club, the robot has a performance model of the final distances for all the

previous instances.

• Signals: The robot cannot measure distances in the field, but for a feedback

signal, it can crudely estimate a qualitative description of the result of a shot as

falling into one of several categories (e.g., near or very far) which is weaker than

performance. The distributions over these qualitative categories (the observation

models) are known to the agent for each club on each of the training types it has

encountered.

When the robot faces a new hole, it overcomes its inability to judge the distance to

the hole (unobservable task parameter) by using the qualitative feedback from a shot to

identify the most similar previous task. This enables the robot to choose the club/clubs

which would have been the best choice for the most similar previous task/tasks.

Consider, as an example, a hole 179 yards away. A coarse estimate of the distance

can be incorporated as a prior over T , otherwise an uniformed prior is used. Assume

the robot is using greedy policy selection, and assume that it selects π1 for the first shot



100 Chapter 5. Policy Space Abstraction for Policy Reuse

Figure 5.4: Performance models for the four clubs for four training holes with distances

110 yds, 150 yds, 170 yds and 220 yds. The signals are coarse distance category. The

width of each category bin has been scaled to reflect the distance range it signifies. The

x-axis is the distance to the hole, such that negative values indicate under-shooting, and

positive distances over-shooting the hole.

due to a uniform prior and that this resulted in an over-shot by 35 yards. The robot

cannot gauge this error more accurately than that it falls into the category over-shooting

in the range of 20 to 50 yards. This signal will update the belief of the robot over the

four types, and by Fig. 5.4, the closest type to produce such a behaviour for π1 would

be τ170. The new belief and the greedy selection dictate that the best club to use for

anything like τ170 is π2. Using π2, the hole is over-shot by 13 yards, corresponding

to the category with the range 5 to 20 yards. With the same calculation, the most

similar previous type is again τ170, keeping the best club as π2, and making the belief

to converge. Indeed, given the ground truth in Table 5.1, this is the best choice for the

179 yard task. Table 5.2 describes this process over the course of 8 consecutive shots.

Fig. 5.5 shows the performance of BPR with greedy policy selection in the golf

club selection task averaged over 100 unknown golf course holes, with ranges randomly

selected between 120 and 220 yards. This shows that on average, by the second shot,

the robot will have selected a club capable of bringing the ball within 10–15 yards of the

hole. Considering that the current scenario is a multi-armed bandit decision problem,



5.5. Experiments 101

Shot 1 2 3 4 5 6 7 8

Club 1 2 2 2 2 2 2 2

Error 35.37 13.16 4.28 6.78 2.07 11.05 8.15 2.45

Category 20–50 5–20 -5–5 5–20 -5–5 5–20 5–20 -5–5

β entropy 1.39 0.22 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.2: The 179 yard example. For each of 8 consecutive shots: the choice of club,

the true error in distance to the hole, the coarse category within which this error lies (the

signal received by the agent), and the entropy of the belief. This shows convergence

after the third shot, although the correct club was used from the second shot onwards.

The oscillating error is a result of the variance in the club yardage. Although the task

length was K= 3 strokes, we show these results for longer to illustrate convergence.

BPR better exploits the correlation between the arms, as explicitly captured by the

performance and signal models, compared to standard bandit algorithms that do not.

5.5.2 Online personalisation

Consider a service offered over the phone, such as telephone banking, where the bank

tries to improve the speed of answering telephonic queries by having a personalised

model for understanding the speech of each user. In a traditional speech recognition

system, the user may have time to train the system to her own voice, but this is not

possible in this scenario. As a result, the phone service may have a number of different

pre-trained language models and responses, and over the course of many interactions

with the same user, try to estimate the best such model to use.

Let a user i be defined by a preference in language λi ∈ {1, . . . ,L}, where L is the

number of such models. The policy π executed by the telephonic agent also corresponds

to a choice of language model, i.e. π ∈ {1, . . . ,L}. The goal of the agent is to identify

the user preference λi, whilst minimising frustration to the user.

Assume that the transition system given in Fig. 5.6 describes the interaction. In

every state, there is only one action which can be taken by the system, being to use the

chosen language model. At the beginning of the call, the user is in the start state. We

assume the system can identify the user (perhaps by caller ID) and selects a language

model. If, at any point, the system can deal with the user’s request, the call ends

successfully. If not, we assume the user becomes gradually more irritated with the



102 Chapter 5. Policy Space Abstraction for Policy Reuse

Figure 5.5: Performance of BPR on the golf club example with results averaged over 100

unknown holes, showing the decrease in entropy of the belief β and average distance to

the hole (where lower scores are better). Performance of the pure four clubs, as well as

the best club for each hole in retrospect, is shown for regret comparison. Although the

task length was K= 3 strokes, we show these results for longer to illustrate convergence.

Error bars have been omitted for clarity.

system, passing through states frustrated and annoyed. If the user reaches state angry

and still has an unresolved request, she is transferred to a human. This counts as an

unsuccessful interaction. Alternatively, at any point the user may hang up the call,

which also terminates the interaction unsuccessfully.

The transition dynamics of this problem depend on a parameter ρ =
L−|(π−λi)|

L

which describes how well the selected language model π can be understood by a user

of type λi. An additional parameter η governs the trade-off between the user becoming

gradually more frustrated and simply hanging up when the system doesn’t respond as

expected. In our experiments, η= 0.3, unless π= λi, in which case η= 0.

The aim of this experiment is to demonstrate the effect of using different observation

signals to update beliefs, as described in Sec. 5.3.5. As a result, the transition dynamics

and the rewards of this domain, shown in Fig. 5.6, have been selected such that only

two utility signals are possible: u = 10 for a successful completion of the task, and

u= 3 otherwise. Similarly, any state that transitions to the unsuccessful outcome angry

state, receives the same reward for a transition to the unsuccessful outcome hang up

state. Finally, all transition probabilities between the states start, frustrated, annoyed,



5.5. Experiments 103

Figure 5.6: Transition system describing the online telephonic personalisation example.

Circles are states, thick bordered circles are terminal states, small black edge labels

in square brackets are the transition rewards, and large blue edge labels are transition

probabilities. See text for a description of the parameters ρ and η.

and angry are independent of ρ, and thus the type. This setup mirrors the fact that in

general the state sequence given by the signal (s,a,s ′) is more informative than the

reward sequence (s,a,r), which is in turn more informative than the utility signal u.

However, in many applications u may be the only of these signals available to the agent

as, for example, gauging the frustration of the caller automatically may not be possible.

Fig. 5.7 shows comparative performance of BPR with these three candidate signals.

Belief sampling is used as a policy selection mechanism. As expected, the lowest regret

(and variance in regret) is achieved using the (s,a,s ′) signal, followed by the (s,a,r),

and finally the u signal. We do note though that all three signals eventually converge to

zero regret.

5.5.3 Surveillance

Assume a base station is tasked with monitoring a wildlife reserve spread out over some

large geographical region. The reserve suffers from poaching and so the base station

is required to detect and respond to poachers on the ground. The base station has a

fixed location and so it monitors the region by deploying a low-flying, light-weight,

semi-autonomous drone to complete particular monitoring missions. The commands



104 Chapter 5. Policy Space Abstraction for Policy Reuse

Figure 5.7: Regret, showing comparative performance of BPR on the telephone banking

domain, using (s,a,s ′), (s,a,r), and u as signals. The shaded areas show one standard

deviation. All the methods converge at the end to zero-regret, but the richer the signal,

the faster the convergence at the cost of higher storage complexity.

issued by the base station may include deploying to a specific location to scan for

unusual activity, then reporting back. After each such episode the drone returns with

information, e.g., an indication of whether or not there was any suspicious activity in

the designated region. The base station is required to use that information to better

decide on the next strategy to use on the drone.

We consider a 26×26 cell grid world, which represents the wildlife reserve, and

the base station is situated at a fixed location in one corner. We assume that there are 68

target locations of interest, perhaps being areas with a particularly high concentration of

wildlife. These areas are arranged around four ‘hills’, the tops of which provide better

vantage points. Fig. 5.8 depicts this setting.

At each episode, the base station deploys the drone to one of the 68 possible locations

(68 policies for reaching and surveying). Poachers would be in one of these locations

for the full length of the process (68 possible types). The drone is able to identify

whether an intruder is at the location it visits or in an adjacent cell, providing a weak

observation signal. Furthermore, the hill centres offer high vantage points, providing



5.5. Experiments 105

Figure 5.8: Example of the surveillance domain. The red cell is the base station, green

cells correspond to surveillance locations, and blue cells are hill tops. The base station

is tasked with deploying drones to find poachers which may be at one of the surveillance

locations.

a signal that the intruder is somewhere around the hill. However, this signal is noisy.

The reward R for a Euclidean distance d between the region surveyed and the region

occupied by the poachers is

R ←−


200−30d+ψ if agent surveys a hilltop and d6 5

200−20d+ψ if agent surveys another location and d6 3

ψ otherwise,

where ψ ∼N(10,20) is Gaussian noise.

Fig. 5.9 presents a comparison between six of BPR variants: BPR-KG, BPR-BE,

BPR-PI, BPR-EI, in addition to belief sampling and ε-greedy selection with ε= 0.3,

all averaged over 10 random tasks. The standard deviations of the regret is shown in

Table 5.3.

episode ε-greedy sampling BPR-KG BPR-BE BPR-PI BPR-EI

5 72.193 103.07 76.577 96.529 15.695 27.801

10 97.999 86.469 75.268 91.288 62.4 33.112

20 83.21 18.834 7.1152 17.74 72.173 16.011

50 86.172 10.897 18.489 13.813 101.69 11.142

Table 5.3: Standard deviations of the regret for the six BPR variants, after episodes 5,

10, 20 and 50.



106 Chapter 5. Policy Space Abstraction for Policy Reuse

Figure 5.9: Comparison of six policy selection methods on the 68-task surveillance

domain, averaged over 10 random tasks. Top, the entropy of the belief H(β). Bottom,

regretR. The standard deviations of the regret are shown in Table 5.3.

Note in Fig. 5.9 that BPR-BE, BPR-KG, and BPR with sampling β all converge in

about 15 episodes, which is approximately a quarter the number that would be required

by a brute force strategy which involved testing every policy in turn. Both BPR-PI and

BPR with ε-greedy selection fail to converge within the allotted 50 episodes. BPR-EI

shows the most rapid convergence.

We now compare the performance of BPR to different approaches for solving the

same problem, namely multi-armed bandits for which we use UCB1 (Auer et al., 2002),

and Bayesian optimisation represented by GP-UCB (Srinivas et al., 2010). We note

upfront that although these are the most similar to our own in terms of the problems

they solve, the assumptions they place on the problem space are different, and thus so is

the information they use. These results are presented in Fig. 5.10, showing comparative

performance of these approaches on the surveillance domain, averaged over 50 tasks.



5.5. Experiments 107

We use BPR-EI in this experiment, as it was the best performing BPR variant previously.

Figure 5.10: Comparison of the episodic regret of BPR-EI, a multi-armed bandit approach

(UCB1), and a Bayesian optimisation approach (GP-UCB) on the 68-task surveillance

domain, averaged over 50 random tasks. Shaded regions represent one standard

deviation. Both BPR-EI and GP-UCB converge to zero-regret within the required time

limit, while UCB1 requires more trials to converge.

A bandit approach such as UCB1 does not place a prior on the task nor assumes

structure in the relationships between the arms. As a result, each arm must first be

tested on each new task, meaning that the algorithm requires 68 episodes before it can

begin the optimisation process. By this point, other approaches would have converged.

On the other hand, an optimisation approach such as GP-UCB is better suited to this

problem, as it operates with the same restriction as BPR of maintaining low sample

complexity. However, unlike BPR, Bayesian optimisation requires a metric in policy

space. This information is not available in this problem, but can be approximated

from performance offline. As a result of this approximation, sampling a single point in

GP-UCB (corresponding to executing a policy) only provides information about a local

neighbourhood in policy space, whereas the same action allows BPR to update beliefs

over the entire task space. In the end, all the methods converge to the correct solution

(zero regret in the figure), but BPR achieves that in the least number of trials.

Further discussion of the differences between BPR and both bandits and optimisation



108 Chapter 5. Policy Space Abstraction for Policy Reuse

approaches is provided in Sect. 5.6.2 and Sec. 5.6.3 respectively.

Fig. 5.11 shows the trade-off between library size and sample complexity with

respect to the regret. For each setting of library size and sample complexity pairs, we

average over 200 trials. For each trial, a random subset of the full task set is used

as the policy library, and the task is drawn from the full task set, meaning that this

includes both seen and unseen tasks in the online phase. Intuitively and as can be seen,

performance can be improved by increasing either the library size, or the time allocated

(in terms of number of episodes) to complete the new task.

Figure 5.11: Average episodic regret for running BPR-EI on the 68 task surveillance

domain, with different library sizes (as a proportion of the full task space size) and

number of episodes (sample complexity), averaged over 200 random tasks.

5.6 Concluding Remarks

5.6.1 Relation to Transfer Learning

The optimal selection from a set of provided policies for a new task is in essence a

transfer learning problem (see (Taylor and Stone, 2009) for a review.) Specifically,

Bayesian policy reuse aims to transfer to a new, initially unknown, task a policy from a

library Π which is the best for a similar seen type. One transfer approach that considers

the similarity between source and target tasks is given by (Lazaric, 2008), where

generated (s,a,r,s ′) samples from the target task are used to estimate similarity to



5.6. Concluding Remarks 109

source tasks, measured by the average probability of the transitions happening under the

task. Then, samples from the more similar source tasks are used to seed the learning of

the target task, while less similar tasks are avoided to escape negative transfer. Bayesian

policy reuse does not assume learning is feasible in the first place, so that it relies on

transferring a useful policy immediately. Also, we use a Bayesian similarity measure

which allows exploiting prior knowledge of the task space.

5.6.2 Relation to Correlated Bandits

Using a once-off signal per episode relates BPR to an instance of correlated bandits. In

this problem, the decision-making agent is required to pull an arm every decision time

slot from a fixed set of arms and observe its return, which will then be used to update

the estimates of the values of not only the arm that was pulled, but a subset of all the

arms. In the case of BPR, the arms correspond to policies and the new task instance is

the bandit ‘machine’ that generates utilities per pull (execution of a policy).

In the correlated bandits literature, the form of correlation between the arms is

known to the agent. Usually, this happens to be the functional form of the reward

curve, usually called the response surface. The agent’s task is then to identify the

parameters of that curve, so that the hypothesis of the best arm moves in the parameter

space of the reward curve. In response surface bandits (Ginebra and Clayton, 1995), the

functional form has unknown parameters, with a prior over these parameters and with a

known metric on the policy space. More recently, (Mersereau et al., 2009) present a

greedy policy which takes advantage of the correlation between the arms in their reward

functions, assuming a linear form with one parameter, with a known prior.

In our framework, we do not assume knowledge of the metric on policy space, and

we do not specify any functional form for the response surface. Rather, we only assume

continuity and smoothness of the surface. We treat the known types as a set of learnt

bandit machines that share the same arms (policies). The behaviour of these machines

defines local ‘kernels’ on the response surface, which we then approximate by a sparse

kernel machine. We then track a hypothesis of which arm is the best in that space. This

is similar to the Gaussian process framework, but in our case, the lack of a metric on

the policy space prevents the definition of the covariance functions needed there. This

point is elaborated in Sect. 5.6.3.

In another thread, dependent bandits (Pandey et al., 2007) assume that the arms in a

multi-armed bandit can be clustered into different groups, the members of which have



110 Chapter 5. Policy Space Abstraction for Policy Reuse

correlated reward distribution parameters. Then, each cluster is represented with one

representative arm and the algorithm proceeds in two steps: first, a cluster is chosen

by a variant of UCB1 (Auer et al., 2002) applied to the set of representative arms, then

the same method is used again to choose between the arms of the chosen cluster. We

assume in our work that the set of seen types span and represent the space well, but we

do not dwell on how they came about. Clustering is one good candidate for that and

one particular example of identifying the important types in a task space can be seen

in (Mahmud et al., 2013).

5.6.3 Relation to Bayesian Optimisation

If the problem of Bayesian policy reuse is treated as an instance of Bayesian optimisa-

tion, we consider the objective

π∗ = argmax
π∈Π

E[u|x∗,π],

where x∗ ∈ X is the unknown process with which the agent is interacting, and the

term E[u|x∗,π] is the unknown expected performance when playing π on x∗. This

optimisation involves a selection from a discrete set of alternative policies (π ∈ Π),

corresponding to sampling the performance only in a discrete set of locations. Sampling

this function (executing a policy for an episode) is expensive, as we have a limited

number of trials and as a result the performance function must be optimised in as few

samples as possible.

A Bayesian optimisation solution requires the optimised function to be modelled as

a Gaussian Process (GP). There are two issues here:

1. Observations in BPR need not be the performance itself (see Sec. 5.3.4), while the

GP model is appropriate only where the process that is optimised can be sampled.

2. BPR does not assume knowledge of the metric in policy space. This is however

required for Bayesian optimisation, so as to define a kernel function for the

Gaussian process. An exception to this case is when all policies belong to a

parametrised family of behaviours, placing the metric in parameter space as a

proxy for policy space.

Still, we assume smoothness and continuity of the response surface for similar tasks

and policies, which is a standard assumption in Gaussian process regression. Bayesian

policy reuse uses a belief that tracks the most similar seen type, and then reuses the best



5.6. Concluding Remarks 111

policy for that type. This belief can be understood as the mixing coefficient in a mixture

model that represents the response surface.

To see this, consider Fig. 5.12 which shows an example 2D response surface. Each

type is represented by a ‘band’ on that surface; a set of performance curves for the tasks

of the type which induced performance under any policy is contained in an ε-ball. That

is, bands can by wide in plateau performance regions. Nonetheless, the performance

curves are only precisely known for the set of known policies, in terms of means and

variances. Projecting these ‘bands’ into policy-performance space (the panels on the

left in Fig. 5.12) gives a probabilistic description of the performance of the different

policies on that type, which can be modelled as a Gaussian process. Each of these

projected GPs would be a component of a mixture model that represents the surface

and would represent the type’s contribution to the surface.

Figure 5.12: An example 2D response surface. The ‘bands’ on the curve show two

types, and the lines that run through the curve from left to right are policy performances

for all types. The agent only has access to the intersection of type bands with policy

curves (the black dots). Shown on the left are performance curves of the two types τ1

and τ2 under all policies as projections of the bands onto the Policy-Performance plane.

The projections are represented as Gaussian processes. The dots on the curves are

observed values of policy performance of tasks in the corresponding type, making the

variance shrink. The aim of BPR is to approximate the performance curve of the new,

unknown task, so that choosing the right policy becomes trivial.

Any new task instance corresponds to an unknown curve on the surface. Given that



112 Chapter 5. Policy Space Abstraction for Policy Reuse

the only knowledge possessed by the agent from the surface is these type probabilistic

models, Bayesian policy reuse implicitly assumes that they act as a basis that span

the space of possible curves, so that the performance under any new task can be

represented as a weighted average of the responses of the seen types3. To this extent,

the performance for the new task instance is approximately identified by a vector of

weights, which in our treatment of BPR we refer to as the type belief. In summary, BPR

fits a probabilistic model to the performance curve of the new task by sampling and

weight adjustment of an approximated mixture of Gaussian processes representing the

seen types.

5.6.4 Other Bayesian approaches

A Bayesian treatment to the Policy Gradient method in reinforcement learning is

introduced in (Engel and Ghavamzadeh, 2006). The gradient of some parametrised

policy space is modelled as a Gaussian process and paths sampled from the MDP

(completed episodes) are used to compute the posteriors and to optimise the policy by

moving in the direction of the performance gradient. The use of Gaussian processes

in policy space is similar to the interpretation of our approach, but it is used there to

model the gradient rather than the performance itself.

When no gradient information is available to guide the search, (Wingate et al., 2011)

propose to use MCMC to search in the space of policies which is endowed with a

prior and various kinds of hierarchical priors that can be used to bias the search are

discussed. In our work, we choose the policies using exploration heuristics based on

offline-acquired performance models rather than using kernels in policy space and

policy priors. Furthermore, we start with a small fixed set of policies, and search in it

for the optimal selection.

5.6.5 Storage complexity

As described in Sec. 5.3.4, the use of different signals entail different observation models

and hence different storage complexities. Assume that |S| is the size of the state space,

|A| is the size of the action space, |Π| is the size of the policy library,N is the number of

seen types, |R| is the size of the reward space, T is the duration of an episode, and b is

3Note that this assumption will create a bias in the agent’s estimated model of the type space toward
the types that have seen more often before. We assume that the environment is benign and that the offline
phase is long enough to experience representative types.



5.6. Concluding Remarks 113

the number of bits needed to store one probability value. For the performance signal, the

storage complexity of the observation model is upper bounded by SCperf = |Π|N |R|b

for the average reward case, and SCperf,γ = |Π|N 1−γT
1−γ |R|b for the discounted reward

case. For the state-action-state signals, the term is SCs ′ = |Π|N |R| |S| |A|b, and for

the immediate reward signal we get SCr = |Π|N |S|2 |A|b. In applications that have

|R|> |S| we get the ordering SCperf < SCr < SCs ′ .

In this chapter we discuss policy reuse as a method to policy abstraction. We address

the policy reuse problem, which involves selecting between a number of different

policies from a library so as to minimise regret within a short number of episodes.

This kind of abstraction is most valuable when learning is infeasible, and in many

application domains where tasks have short durations, such as human interaction and

personalisation, as well as monitoring tasks.

We introduce Bayesian Policy Reuse as a Bayesian framework that uses that abstrac-

tion to solve the policy reuse problem. It operates through tracking a belief defined over

the space of known tasks that represent the similarity in behaviour to the new task. The

belief gets updated using observation signals provided by the domain, and using models

of seen tasks, trained offline for each policy. Several mechanisms for selecting policies

from the belief are also described, giving rise to different variants of the core algorithm.

The approach is empirically evaluated in three domains. We show comparisons

between the different variants of BPR, as well as a bandit algorithm (UCB1) and a

Bayesian optimisation algorithm (GP-UCB). We also show the effect of using differ-

ent observation signals on the task performance, and illustrate the trade-off between

the policy library size and sample complexity required to achieve a certain level of

performance in a task.





Chapter 6

Conclusions

115



116 Chapter 6. Conclusions

6.1 Summary

The goal of this thesis is to develop methods for autonomous learning of policy space

abstractions. We present three approaches for variations of this problem: using the

technique of option discovery with a collection of MDPs, using computational topology

on a set of demonstrated trajectories, and using models of task space for policy reuse.

The outlook is to enable adaptive and seamless integration of domain understanding to

the continual process of solving new tasks.

Using the option framework, we present a method that takes in a set of policies for

previous tasks, clusters the close-by states that are most used in successful runs into

regions, and restricts the input policies to these regions to give options. The framework

of ILPSS also allows continual adding and removing of options from the hierarchy

based on the qualities of the new tasks the agent will see.

Employing computational topology, we extract from a set of demonstrated trajec-

tories homology-equivalence classes using a simplicial complex constructed from the

experienced configuration space. These classes serve as an abstraction of the full set

of trajectories. We also show the generality and usefulness of the approach when we

include a cost landscape into the complex construction and generate paths that do not

cross a specific cost threshold.

The third method summarises the policy space using a set of policies learnt for

a collection of sampled tasks in a domain. Using a non-parametric model of the

performance of the policies on different tasks, it employs a Bayesian principle of policy

reuse to select a candidate policy from the collection to be applied on a new task. This

approach exploits correlation and similarity in performance to find a quick solution

suggestion to a real-time situation.

The findings of the thesis were validated using a set of experimental domains,

simulated and real. Among others, we used the Soccer Server of RoboCup 2D Simu-

lation League to learn options in a soccer scenario for ILPSS, and we used a Baxter

robot to generate the trajectory sets that we used in the topology experiments. Also,

we have developed simulations of navigation domains, real-time personalisation and

surveillance.



6.2. Key Findings 117

6.2 Key Findings

The hypothesis of this thesis is that the ability to learn skill hierarchies is one essential

capability of a lifelong learning agent. Proper representations of the lifelong learning

problem coupled with various off-the-shelf machine learning tools can achieve better

generalisations in the learning problem.

Using hierarchical structure of policies is key to tame sample complexity, especially

when the requirements of the environment are such that the agent has to respond to

a spectrum of variability and within bounded-time frame. When the agent should

interact with a growing collection of tasks, the common approach of fixing the hierarchy

beforehand becomes quite restrictive. Learning the hierarchical structure on the go, on

the other hand, gives the desired adaptivity and sensitivity to environment changes, and

allows lifelong experience to accumulate efficiently.

6.2.1 Learning

To generalise from the specific methods described in this thesis to other contexts, we

note the following attributes that the methods have:

• They all start from some kind of ‘positive’ behavioural examples, performed

by the agent itself for sample tasks in the domain. E.g., these examples can

be policies of tasks that have been solved before (for the option discovery and

task space modelling methods), or kinesthetic demonstrations of physical robot

systems (for the computational topology approach). This is a typical requirement

of supervised learning. Here, the target function to learn from these examples is

the structure in policy space that explains and justifies the generated policies for

the sampled tasks.

• They involve a technique of clustering that reduces the input space into a more

meaningful reduced description. Candidate metrics for clustering are ones that

reward distinctiveness and abstract similarity in behaviours. Considered examples

include across-task state visitation frequency, homotopy class, and inter-task

performance. The clustering operates on states to give generalised bottlenecks

which encompass not only a single target state, but a region of importance where

useful behaviours could be extracted. We operated on trajectories to expose

homotopy-equivalent classes and we clustered MDPs to create a representative



118 Chapter 6. Conclusions

policy library. Unsupervised learning is key to self-organisation and structure

learning.

• They generate policies for the hierarchy components by shaping or reusing the

input policies in light of the clustering boundaries. That includes the immediate

population of extracted options in ILPSS with behaviours using reused policies,

as well as creating the topological options from the homology equivalence classes

of trajectories.

6.2.2 Planning

The second important component to achieve the motivation of this work after hierarchy

learning is planning/inference in new task instances. We have shown two possibilities

of methods that can be used with the policy hierarchy:

• Sequential composition: This is featured in the SMDP learning with the option

discovery method and the Topological Options. Sequencing subpolicies achieve

higher flexibility and allows for responding to a range of novel task instances.

However, this comes at the cost of increased learning time, which is still much

less than learning in the original problem without the hierarchy. We used the

framework of options as the framework of choice when we dealt with hierarchical

reinforcement learning mainly due to its flexibility and generality. However, any

suitable framework can be used instead.

• Flat reuse: This is featured in the homology-equivalence classes and in policy

reuse. Here, no deliberation is needed beyond selecting the best response, so

that a behavioural policy can be quickly initialised. This is a requirement of

transfer learning for real-time embodied agents in rich environments. On the

other hand, reuse does not allow behaviours to extrapolate and adapt to a different

new instance, bounding the realisable optimality.

The best option for a domain would be task-specific. However, it is possible to have

both reasoning types in one framework and give the agent the power to choose based on

the specific task requirements.

6.2.3 Tools

The choice of tools that we use to extract structure from the input shapes the possible

outcomes and define their limitations. We extended the typical notion of bottlenecks



6.3. Future Work 119

to accommodate more general and complex concepts of importance regions, and we

used vector field structures and persistent homology to expose useful perspectives not

possible with the typical analysis tools of trajectories, like connectivity graphs.

The usefulness of computational topology is quite pronounced in the natural example

of navigation. However, we believe that this kind of methods would be applicable to

many other settings and scenarios, where the topological features have similar high

significance to the task. We demonstrated that with few manipulation examples with a

physical robot system. We show that more knowledge about the task and the domain can

be extracted from a set of demonstrations than what a graph can extract using simplicial

complexes and the framework of persistent homology. Also, these tools helped us to

abstract parameter tuning.

6.3 Future Work

The problem of lifelong learning agents in changing environments will only become

more relevant with time. New aspects and perspectives into the problem should be

explored, as well as the need to exploit the available tools to make beneficial progress.

• This thesis assumed that the environment contains other ‘actors’ that do not ad-

versely or tightly affect the task of the agent. Incorporating concepts of opponent

modelling and plan recognition to account for other agents in the environment is

an important direction.

• We dealt mainly with tasks that can be described as episodic and goal-seeking to

build our methods. There are other kinds of tasks that deserve being studied in

the same framework, like, for example, periodic tasks or infinite-horizon tasks

with change regimes.

• The use of topological inference into configuration spaces of robots of various

kinds of tasks is an interesting next step. This includes applications like motion

planning in topological coordinates or with topological constraints, real-time

probabilistic recognition and classification of qualitatively-similar demonstrations,

and a more-forgiving topological framework for programming by demonstration.





Appendix A

Short Tutorial in Computational

Topology

121



122 Appendix A. Short Tutorial in Computational Topology

We review some of the concepts of computational topology as used in this thesis.

The references (Edelsbrunner and Harer, 2010; Hatcher, 2002) provide a good source

for more details.

A.1 Topological Space

An open set is a generalisation of the real line’s open interval to a general space. Then,

by utilising this concept, a topological space is a generalisation of a metric space by that

it does not require a metric. Rather, similarity to a point c is defined by the possibility

of inclusion in an open ball {x | |x− c| < ε} centred at the point. That is, open sets

define a notion of a continuous function without a metric.

A.2 Homotopy

Given topological spaces X,Y, a homotopy between two continuous maps between the

spaces f,g : X→ Y is a continuous map H : X× [0,1]→ Y such that H(x,0) = f(x),

H(x, 1) = g(x) for all x ∈ X, and H(x,r) for 0< r < 1 continuously ‘interpolates’ from

f(x) to g(x). Then, f,g are called homotopic, denoted by f ' g. In other terms, it is

possible to continuously morph one of the maps to the other.

A.2.1 Homotopy equivalence

Two topological spaces are called homotopy equivalent if there exists continuous maps

f : X→ Y and g : Y→ X such that g◦ f' 1X and f◦g' 1Y , where 1X,1Y denote the

identity functions on X,Y respectively. That is, following one map from X to Y then the

second from Y to X gets back to where it started, i.e., the mapping preserves the ‘shape’

information. We then call X,Y homotopy equivalent, denoted by X ' Y. Homotopy

equivalence forms an equivalence relationship among topological spaces enabling us to

classify spaces into discrete classes. The example of a homotopy equivalence between

a doughnut and a coffee mug provides a popular example (Fig. A.1).

Given a topological space X, we call two curves f,g : [0,1]→ X with the same

end-points f(0) = g(0), f(1) = g(1) homotopy equivalent if f can continuously be

deformed to g while keeping the end-points fixed (see Fig. A.2). Homotopy equivalence

classes of paths provide a classical topological approach to studying classes of paths.



A.2. Homotopy 123

Figure A.1: Homotopy equivalence between a doughnut and a coffee mug. The doughnut

can be continuously morphed into a mug.

x

y

Figure A.2: Three homotopy equivalence classes of obstacle-free paths from x to y

depicted in red, blue and green. None of the paths in any class can be continuously

deformed into any of the other classes.

A.2.2 Fundamental group

The first fundamental group π1(X,x0) for the point x0 is a group whose elements

consist of closed continuous curves that start and end in x0 and lies entirely in X,

and whose operation is concatenation of paths. Two closed paths α,β : [0,1]→ X

through x0 lie in the same equivalence class if there exists a homotopy between them

that maps the base-point x0 to itself. When X is path-connected, i.e. there is a path

that connects any two points in X, the group π1(X,x0) is independent of the chosen

base-point x0 and hence often denoted simply by π1(X). Furthermore, if the spaces

X,Y are homotopy equivalent, π1(X) and π1(Y) are isomorphic groups, admitting a

one-to-one correspondence between their elements.

Two paths γ1,γ2 in X with the same start point x and end point y can be deformed

into each other via a homotopy if the closed curve following γ1 from x to y and then

the inverse of γ2 from y to x is trivial in π1(X), i.e., equal to the group’s identity.



124 Appendix A. Short Tutorial in Computational Topology

Hence, π1(X) is a natural group to consider for the purpose of motion planning and

classification of paths.

Unfortunately, for a general topology space X, no general purpose method exists to

compute the group structure of π1(X), in addition to it being non-commutative and of

infinite cardinality. For this, we turn to the weaker concept of homology with binary

coefficients, using an approximation of X by a simplicial complex. Both concepts will

be described in the next two sections.

A.3 Simplicial Complex

One representation of a topological space that is useful to compute homological infor-

mation is a simplicial complex. Simplicial complexes are constructs that generalise

undirected graphs. Define a p-simplex σ to be the convex hull of a set of p+1 points.

We call p the dimension of the simplex. For example, a 0-simplex is a single point, or a

vertex. A 1-simplex is an edge connecting two vertices. A 2-simplex is a triangle, the

convex hull of 3 vertices.

For example, if a 0-simplex represents a point in the free configuration space of a

robot ( a pose), a 1-simplex would represent the relation between two poses, e.g. that

they are mutually accessible from each other. This is also a statement about all the

configurations that happen in between these two poses.

Figure A.3: Examples of a vertex, an edge and a triangle; and an example of a simplicial

complex, comprising five 0-simplices (vertices), six 1-simplices (edges) and a single

2-simplex (triangle).

The convex hull of any subset of the points that make a simplex σ is a face of σ. An

abstract simplicial complex K is a finite non-empty collection of simplices, such that

all their intersections are members in the collection: σ∩τ ∈ K for all σ,τ ∈ K, and all

their members are in the collection: for all σ ∈ K and ∅ 6= τ⊆ σ ∈ K, then τ ∈ K.



A.3. Simplicial Complex 125

A.3.1 Delaunay-Čech complexes

Consider a set of uniformly sampled points V = {x1, . . . ,xn} ⊂ X from a topological

space X ⊂ Rd endowed with the Euclidean metric d. It is natural to approximate X

by the space of the union of balls Xε =
⋃n
i=1Bε(xi), where Bε(xi) is a ball of size ε

centred at xi, Bε(xi) = {x ∈ X : d(x,xi)< ε}. ε > 0 depends on the sample density.

We can ask about the homology groups of X as approximated by Xε. To compute

homology, we can represent Xε by any simplicial complex Fε which is homotopy equiv-

alent to the topological space Xε and hence carries the same topological information.

The Čech-complex Cε = {σ⊆ V :∩x∈σBε(x) 6=∅} is an abstract simplicial complex

which is homotopy equivalent to Xε. A simplex is added to Cε for any subset of balls

with a non-empty intersection. However, Cε has two drawbacks:

1. as ε increases, the number of simplices increases dramatically, until eventually

every subset of V is contained in Cε, resulting in a top-dimensional simplex of

dimension |V |−1. This is undesirable when V contains millions of points.

2. Cε is abstract in that simplices do not directly correspond to geometric subsets of

X.

ε

Figure A.4: An example of a Cech complex

Given V , we instead consider the Delaunay triangulation D of V . The Delaunay

triangulation of a set of points is the dual graph of the Voronoi diagram of the points, in

which each point x of V is assigned a cell of points Vx ⊂ X closer to x than to any other

point in the set V . 1 One example is in Fig. A.5.

1D is well-defined in arbitrary dimension d if (d+1)-tuples of points in V are in general position,
which occurs with probability one for uniformly sampled points. Furthermore, any configuration not in
general position can be perturbed by a small amount to satisfy this criterion.



126 Appendix A. Short Tutorial in Computational Topology

Figure A.5: An example of a Delaunay triangulation (black, dashed) and Voronoi diagram

(grey, solid) for a set of points.

Considering the union of all convex hulls of d+ 1 points from V ⊂ Rd in the

Delaunay triangulation, along with their faces, we can consider D as a simplicial

complex.

Given V , the Delaunay complex is a geometric simplicial complex, where a p-

simplex σ = {x0, . . . ,xp} corresponds to the convex hull Conv(x0, . . . ,xp) ⊂ X, and it

can be defined by

DC= {σ⊆ V : ∩x∈σVx 6=∅},

where Vx denotes the Voronoi cell containing x (the grey cells in Fig. A.5). The union

of all simplices of DC is the convex hull Conv(V).

A.4 Simplicial Homology with Z2 Coefficients

For a simplicial complex K, a p-chain c is a formal sum of p-simplices {σi}ki=1, c =∑k
i=1λiσi with λi ∈ Z2 = {0,1}, so that chains have only binary coefficients 0 or 1.

Cp(K) is the vector space of all p-chains.

For every p-simplex σ let ∂σ be the p−1-chain formed by the formal sum of all

p−1 dimensional faces of σ. We call this operator the boundary. This operator acts

as a a linear map on Cp(K), mapping p-chains to p−1-chains. if c = ∂ω for some

ω ∈ Cp+1(K), c is intuitively called a p-boundary. If ∂c= 0, a chain whose boundary

is zero (i.e. closed), then c is called a p-cycle.

The set of p-boundaries and p-cycles are denoted by Bp(K) and Zp(K) respectively.

Because ∂∂= 0, every boundary is a cycle, and thus we have Bp(K)⊆ Zp(K).



A.4. Simplicial Homology with Z2 Coefficients 127

Figure A.6: An example of a 1-boundary; and a 1-cycle which is not a 1-boundary

A.4.1 Homology group

The quotient of some group G is another group under the operation of G, made of

partitioning G into equivalence classes. The quotient is represented by G/H, where

H is the normal subgroup of G, which the equivalence relation is defined in respect

to. Elements of G that are equivalent when operating on H are aggregated in the

equivalence classes of the quotient.

The quotient Hp(K) = Zp(K)/Bp(K) is called the pth homology group of K, and

it contains the classes of p-cycles that are equivalent on adding/removing boundaries.

The dimension of this group, bp(K) = dim(Hp(K)) is of a special interest and

is called the pth Betti-number of K. b0(K) is equal to the number of connected

components of K. b1(K) counts the number of ‘holes’, and b2(K) counts the number

of ‘voids’ in K.

We are particularly interested in H1(K). A 1-cycle is simply a set of edges forming

zero or more disjoint closed edge paths. Two 1-cycles c1,c2 are equivalent in H1(K)
if c1 −c2 = ∂ω for some 2-cycleω, i.e. they differ by the boundary of some 2-chain,

made of a union of 2-simplices.

A.4.2 Homology generators using Smith Normal Form decomposi-

tion

We want to extract a basis of H1(K) so that any 1-cycle can be described as a Z2-

weighted sum of the generators. This is possible by a Smith Normal Form decomposition

of the boundary matrices of the simplicial complex in Z2, i.e. by considering mod Z2

after every operation. The pth-boundary matrix Λ has a row for every p−1-simplex,

and a column for every p-simplex in the complex. The entry would be 1 if the p−1-

simplex is a face of the p-simplex, and 0 otherwise.

A Smith Normal Form (SNF) of a matrix is a reduced matrix of the same size

that only has non-zero entries in the first portion of the diagonal (ones in Z2), and

0 everywhere else. Denote with n the number of ones in the diagonal. An SNF



128 Appendix A. Short Tutorial in Computational Topology

decomposition of Λ uses row and column operations to give

R=Q−1ΛV , (A.4.1)

where R is the reduced form, V encodes the column operations andQ−1 encodes the row

operations. The benefit of this decomposition is that it allows reading off the generators

for Zp(K) and Bp(K) easily. The generators of Zp are the last Np−n columns in V ,

where Np is the number of p-simplices in the complex, while the generators of Bp are

the first n columns of Q.

For our case, after finding the generators of Z1(K) and B1(K), finding the generators

of H1(K) requires another decomposition. First, the basis of B1(K) is expressed in the

basis of Z1(K) by solving the linear equations B1 = Z1Y, where Y are the coefficients

of the projection. Then, a second decomposition of Y gives Y = qrv−1. By combining

the two equations we get:

B1 = Z1qrv
−1. (A.4.2)

B1v = Z1qr. (A.4.3)

The generators for H1(K) can be read from the columns of Z1q that correspond

to 0-columns in r. Z1q is a new basis of Z1 after applying the column operations

in q. Similarly, B1v is a new basis of B1. Thus, for every 1 in the diagonal of the

reduced r, the corresponding columns in Z1q will map to a boundary. On the other

hand, the 0-columns in r correspond to columns in Z1q that represent the null space of

the boundary group, and thus they represent generators of H1.

A.4.3 Defining the equivalence classes

After finding the basis of H1, it is straightforward to define the equivalence classes.

Projecting any 1-chain into the basis made of the generators of H1(K) and B1(K) will

give the homology class of the cycle as a vector of Z2 coefficients.

A.5 Persistent Homology

following (Edelsbrunner and Harer, 2008; Carlsson, 2009; Edelsbrunner and Harer,

2010; Bauer et al., 2014), we now discuss the persistent homology framework.



A.5. Persistent Homology 129

A.5.1 Filtrations

A filtration of a simplicial complex K and for some index set I⊂ R is a sequence of

simplicial complexes {Kε ⊆K : ε ∈ I} such that ε6 ε ′ implies Kε ⊆Kε ′ , ε,ε ′ ∈ I. A

simplex-wise filtration of a simplicial complex K is a sequence of simplicial complexes

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K such that Ki = Ki−1 ∪ {σi}, for a simplex σi of K.

The inclusion αji : Ki → Kj for i 6 j yields a linear map on the homology groups

h
j
i :Hp(Ki)→Hp(Kj).

Let us consider the case of the Delaunay-Čech complexDCε which yields a natural

filtration with respect to the function f(σ) =min{ε :∩x∈σBε(x) 6=∅} for σ∈DC, which

is the minimal filtration value at which σ comes into existence. We have DCε ⊆DCε ′
for all 0 6 ε 6 ε ′ and there exists a maximal εmax such that DCε>εmax =D, where

D denotes the full Delaunay triangulation of the underlying points. We can obtain

a simplex-wise filtration DC(i) = ∪j6i{σj} respecting the partial order defined by f.

Figure A.7 shows an example of a Delaunay-Čech complex filtration.

Figure A.7: A Delaunay-Čech filtration DCε for different ε values increasing towards the

bottom, constructed from sampled points indicated by the black dots.



130 Appendix A. Short Tutorial in Computational Topology

A.5.2 Persistence

We say that some homology class α ∈Hp(Ki) is born at index i if α /∈ im(hii−1); that

is, α has no precedent in Ki−1 . A class α ∈ Hp(Ki) born at index i is said to die at

index j if hj−1
i (α) /∈ im(hj−1

i−1) but hji(α) ∈ im(hji−1), so that α born at i maps to itself

(persists) until time j−1 then disappears at time j and maps to something that existed

before. The pair (i, j) is called the persistence pair of α, in that the homological feature

survives in the filtration for a duration j− i, also called the persistence. Features that are

born at i but do not die are called essential features, denoted by the infinite persistence

(i,∞).

For i6 j, the p-th persistent homology group is defined to be

Hi,jp = Zp(Ki)/(Bp(Kj)∩Zp(Ki)).

Intuitively, this captures the p-dimensional homological features that exist at filtration i

and which persist in the filtration between i and j. These features are the cycles that per-

sist with adding/removing boundaries that existed before i or are created up to j. When

i = j, the usual notion of homology is recovered: Hi,ip = Hp(Ki) = Zp(Ki)/Bp(Ki).
Fig. A.8 illustrates the birth and death of a cycle in DCε for an example point cloud.

A graphical representation of this information is obtained by the persistence diagram.

This diagram contains a point (i, j), i6 j, for each class born at index i and which dies

at index j. The distance to the diagonal indicates how long the feature persists. See

Fig. A.9 for an example persistence diagram for the previous point cloud.

A.5.3 Computation via matrix reduction

The boundary operator ∂ :
⊕
pCp(K)→

⊕
pCp(K) is a linear map in the vector space

of chains ofK. We express this map in a matrix form, using the ordered basis σ1, . . . ,σn,

yielding a n×n matrix M with Z2 entries. An entry (i, j) would be 1 if σi is a face

of σj. Note that this matrix is upper triangular. We denote by Mj the jth column,

and by mij the (i, j)-entry. We let low(Mj) = max{i :mij 6= 0}, and note that low

can be undefined for some columns Mj = 0. A column addition is called a reducing

left-to-right addition if it decreases low(Mj). Mj is called reduced if low(Mj) cannot

be decreased by applying any sequence of left-to-right additions, and the matrixM is

reduced if all columns are reduced.

The standard persistence algorithm (Edelsbrunner and Harer, 2010) applies left-

to-right column additions untilM is reduced, yielding the reduced matrix R. We can



A.5. Persistent Homology 131

Figure A.8: A reconstruction of a configuration space from 1000 samples on a square of

side-length 500. DC25 is displayed in the top which yields a good approximation to the

original space. The bottom row displays DC10.58, DC12.96, DC74.0 which corresponds,

respectively, to the birth of the smaller hole (the first time it is enclosed by edges and

triangles), the birth of the larger hole, and finally the death of the smaller hole where it

gets covered at ε= 74.0 (Image from (Pokorny et al., 2014).)

furthermore keep track of the associated change of basis by recording the column

operations, by defining V = In to be an identity matrix of size n, and initialising the

algorithm with R=MV . For each left-to right column additionMj←Mj+Mi in R

for i < j, we perform the corresponding column addition Vj← Vj+Vi. This algorithm

terminates when R =MV is reduced, and we have V as the change of basis matrix

relating R to its unreduced versionM. Using the reduced form, one then defines (Chen

and Kerber, 2011)

PR = {(i, j) : Rj 6= 0 and i= low(Rj)},

ER = {i : Ri = 0 and low(Rj) 6= i for all j ∈ {1, . . . ,n}},

where PR is the set of persistent pairs, such that each (i, j) ∈ PR corresponds to the

persistence interval (f(σi),f(σj)) which is generated by the cycle Rj and ‘killed’ with



132 Appendix A. Short Tutorial in Computational Topology

0 50 100 150 200
0

50

100

150

200

Figure A.9: The persistence diagram of H1(DCε). The two marked red points p1 =

(10.58,74.0), p2 = (12.96,90.38) with large persistence, measured by the distance

to the diagonal, correspond to the two holes in the original space in Fig. A.8 and their

lifetime as ε changes. The other blue points are less important features (noise) that are

created then killed quickly (Image from (Pokorny et al., 2014).)

the introduction of the simplex σi. On the other hand, ER is the set of essential cycles,

such that each i ∈ ER corresponds to a cycle Vi which was not killed by any simplex σj
for all j ∈ {1, . . . ,n}, and hence, is keeps non-trivial in the final filtration Kn. Proofs can

be found in (Edelsbrunner and Harer, 2010).



Appendix B

RoboCup 2D Simulation League

133



134 Appendix B. RoboCup 2D Simulation League

B.1 RoboCup

RoboCup (Kitano et al., 1997) is a standard benchmark and an international competition

for robot research and artificial intelligence. Started in 1997 with a simulated soccer

competition, it evolved through the years to comprise six different soccer leagues,

ranging from simulation to adult-size humanoids, in addition to RoboCup@Home for

service robotics and RoboCup Rescue for rescue robotics, among others (RoboCup).

Seen as the grand challenge for the field of robotics, RoboCup aims to take the

research to a stage where a robot soccer team can beat the human champions in their

game in 2050 (Asada and Kitano, 1999).

B.2 RoboCup 2D Simulation League

RoboCup 2D Simulation League was the first league devised in RoboCup, in which

two teams of 11 simulated ‘dots’ compete in a 2-dimensional football match through a

central simulator called the Soccer Server (Noda and Matsubara, 1996) over a network.

Figure B.1: RoboCup 2D Simulation League.

Each agent is an autonomous entity, connected to the server through a separate

socket. The agent receives relative sensory information from the server (visual, acoustic

and physical), all corrupted with noise. Then, the agent sends commands (like ‘dash’,

‘turn’, and ‘kick’) to the server with appropriate parameters. The server collects all

input from all agents and updates the game.



B.2. RoboCup 2D Simulation League 135

The importance of this league is its focus on decision making which packs many

interesting features that arise in many real world applications, while abstracting away

complications from issues related to physical robots, like dexterity and balance. These

features include multi-agent cooperative interaction, learning within uncertain and dy-

namic environments, and layered decision making from strategic thinking and planning

to real-time response and reactive action.1

Extensions and specialisations of the Soccer Server appeared later to research

techniques for more specific contexts than the full game (e.g. reinforcement learning in

the Keepaway framework (Stone et al., 2005)).

Figure B.2: Keepaway is built on the Soccer Server to research reinforcement learning

(Image from (Stone and Sutton, 2001))

1The author participated in the 2D Simulation League in RoboCup 2011, Istanbul, Turkey, with team
Edinferno-2D (Hawasly and Ramamoorthy, 2011).





Bibliography

P. Abbeel and A.Y. Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the 21st International Conference on Machine Learning (ICML).

ACM, 2004.

B.D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning

from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

M. Asada and H. Kitano. The RoboCup challenge. Robotics and Autonomous Systems,

29(1):3–12, 1999.

M. Asadi and M. Huber. Autonomous subgoal discovery and hierarchical abstraction for

reinforcement learning using Monte Carlo method. In Proceedings of the National

Conference on Artificial Intelligence, volume 20, page 1588, 2005.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit

problem. Machine Learning (MLJ), 47(2-3):235–256, 2002.

A.G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning.

Discrete Event Dynamic Systems, 13(4):341–379, 2003.

U. Bauer and H. Edelsbrunner. The morse theory of Čech and delaunay filtrations.

In Proceedings of the 30th Annual Symposium on Computational Geometry, pages

484:484–484:490. ACM, 2014.

U. Bauer, M. Kerber, and J. Reininghaus. Distributed computation of persistent homol-

ogy. Proceedings of the 16th Workshop on Algorithm Engineering and Experiments

(ALENEX), pages 31–38, 2014.

R. Bellman. A Markovian decision process. Indiana University Mathematics Journal,

6:679–684, 1957.

137



138 Bibliography

D.C. Bentivegna. Learning from observation using primitives. PhD thesis, Georgia

Institute of Technology, 2004.

S. Bhattacharya, V. Kumar, and M. Likhachev. Search-based path planning with

homotopy class constraints. In Proceedings of the 24th AAAI Conference on Artificial

Intelligence, Atlanta, Georgia, 2010.

S. Bhattacharya, M. Likhachev, and V. Kumar. Identification and representation of

homotopy classes of trajectories for search-based path planning in 3D. In Proceedings

of Robotics: Science and Systems (R:SS), 2011.

S. Bhattacharya, D. Lipsky, R. Ghrist, and V. Kumar. Invariants for homology classes

with application to optimal search and planning problem in robotics. Annals of

Mathematics and Artificial Intelligence, 67(3-4):251–281, 2013.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Survey: Robot programming by

demonstration. Handbook of Robotics, Chapter 59, 2008.

S. Bitzer, I. Havoutis, and S. Vijayakumar. Synthesising novel movements through

latent space modulation of scalable control policies. In From Animals to Animats 10,

Lecture Notes in Computer Science, pages 199–209. Springer, 2008.

J.A. Boyan. Least-squares temporal difference learning. In Proceedings of the 16th

International Conference on Machine Learning (ICML), pages 49–56, 1999.

R.I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for

near-optimal reinforcement learning. Journal of Machine Learning Research (JMLR),

3:213–231, 2003.

E. Brochu, V.M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of

expensive cost functions, with application to active user modeling and hierarchical

reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

O. Brock and O. Khatib. Real-time re-planning in high-dimensional configuration spaces

using sets of homotopic paths. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), volume 1, pages 550–555. IEEE, 2000.

R.A. Brooks. How to build complete creatures rather than isolated cognitive simulators.

Architectures for intelligence, pages 225–239, 1991.



Bibliography 139

R.R. Burridge, A.A. Rizzi, and D.E. Koditschek. Sequential composition of dynamically

dexterous robot behaviors. The International Journal of Robotics Research (IJRR),

18(6):534–555, 1999.

S. Calinon, F. Guenter, and A. Billard. On learning, representing and generalizing a

task in a humanoid robot. IEEE Transactions on Systems, Man and Cybernetics, Part

B. Special Issue on Robot Learning by Observation, Demonstration and Imitation,

37(2):286–298, 2007.

G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):

255–308, 2009.

P. Castro and D. Precup. Automatic construction of temporally extended actions for

MDPs using bisimulation metrics. Recent Advances in Reinforcement Learning,

Lecture Notes in Computer Science, pages 140–152, 2012.

CGAL. Computational Geometry Algorithms Library. http://www.cgal.org, 2014.

C. Chen and M. Kerber. Persistent homology computation with a twist. In Proceedings

27th European Workshop on Computational Geometry, 2011.

F. Chen, S. Chen, Y. Gao, and Z. Ma. Connect-based subgoal discovery for options

in hierarchical reinforcement learning. In Proceedings of the 3rd International

Conference on Natural Computation (ICNC), volume 4, pages 698–702. IEEE, 2007.

T. Chen, M. Ciocarlie, S. Cousins, P.M. Grice, K. Hawkins, K. Hsiao, C. Kemp, C-H.

King, D. Lazewatsky, A.E. Leeper, H. Nguyen, A. Paepcke, C. Pantofaru, W. Smart,

and L. Takayama. Robots for humanity: A case study in assistive mobile manipulation.

IEEE Robotics & Automation Magazine, Special issue on Assistive Robotics, 20,

2013.

T. Croonenborghs, K. Driessens, and M. Bruynooghe. Learning relational options for in-

ductive transfer in relational reinforcement learning. In Inductive Logic Programming,

pages 88–97. Springer, 2008.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Method-

ological), pages 1–38, 1977.

http://www.cgal.org


140 Bibliography

R. Diankov and J. Kuffner. OpenRAVE: A Planning Architecture for Autonomous

Robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute, 2008.

T.G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function

decomposition. Journal of Artificial Intelligence Research (JAIR), 13(1), 1999.

B.L. Digney. Learning hierarchical control structures for multiple tasks and changing

environments. In Proceedings of the 5th international Conference on Simulation of

Adaptive Behavior, volume 5, pages 321–330, 1998.

F. Dörfler, J.W. Simpson-Porco, and F. Bullo. Breaking the hierarchy: Distributed

control and economic optimality in microgrids. arXiv preprint arXiv:1401.1767,

2014.

C. Drummond. Accelerating reinforcement learning by composing solutions of auto-

matically identified subtasks. Journal of Artificial Intelligence Research (JAIR), 16:

59–104, 2002.

H. Edelsbrunner. The union of balls and its dual shape. Discrete and Computational

Geometry, 13(1):415–440, 1995.

H. Edelsbrunner and J. Harer. Persistent homology - a survey. Contemporary Mathe-

matics, 453:257–282, 2008.

H. Edelsbrunner and J.L. Harer. Computational topology: an introduction. AMS

Bookstore, 2010.

Y. Engel and M. Ghavamzadeh. Bayesian policy gradient algorithms. In Proceedings

of the Conference on Advances in Neural Information Processing Systems (NIPS),

volume 19, page 457. MIT Press, 2006.

D. Ernst, P. Geurts, L. Wehenkel, and M.L. Littman. Tree-based batch mode reinforce-

ment learning. Journal of Machine Learning Research (JMLR), 6(4), 2005.

F. Fernández and M. Veloso. Probabilistic policy reuse in a reinforcement learning

agent. In Proceedings of the 5th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 720–727. ACM, 2006.

D. Foster and P. Dayan. Structure in the space of value functions. Machine Learning

(MLJ), 49(2):325–346, 2002.



Bibliography 141

J. Ginebra and M.K. Clayton. Response surface bandits. Journal of the Royal Statistical

Society. Series B (Methodological), pages 771–784, 1995.

S. Girgin, F. Polat, and R. Alhajj. Improving reinforcement learning by using sequence

trees. Machine Learning (MLJ), 81(3):283–331, 2010.

J.C. Gittins and D. Jones. A dynamic allocation index for the discounted multiarmed

bandit problem. Progress in Statistics, pages 241–266, 1974.

S. Goel and M. Huber. Subgoal discovery for hierarchical reinforcement learning

using learned policies. In Proceedings of the 16th International Florida Artificial

Intelligence Research Society Conference. AAAI, 2003.

A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

M. Hawasly and S. Ramamoorthy. Edinferno. 2D team description paper for RoboCup

2011 2D soccer simulation league, 2011.

M. Hawasly and S. Ramamoorthy. Task variability in autonomous robots: Offline

learning for online performance. In 5th International Workshop on Evolutionary and

Reinforcement Learning for Autonomous Robot Systems (ERLARS), 2012.

M. Hawasly and S. Ramamoorthy. Lifelong learning of structure in the space of policies.

In AAAI Spring Symposium on Lifelong Machine Learning, 2013a.

M. Hawasly and S. Ramamoorthy. Lifelong transfer learning with an option hierarchy.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 1341–1346. IEEE, 2013b.

B. Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In Proceedings

of the 19th International Conference on Machine Learning (ICML), pages 243–250,

2002.

R.A. Howard. Dynamic Probabilistic Systems, Volume II: Semi-Markov and Decision

Processes, volume 2. Courier Dover Publications, 1971.

L. Jaillet and T. Simon. Path deformation roadmaps. In Algorithmic Foundation of

Robotics VII, volume 47, pages 19–34. Springer Berlin Heidelberg, 2008.

L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research (JAIR), 1996.



142 Bibliography

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.

The International Journal of Robotics Research (IJRR), 30(7):846–894, 2011.

L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Transactions on

Robotics and Automation, 12(4):566–580, 1996.

S. Kazemitabar and H. Beigy. Automatic discovery of subgoals in reinforcement

learning using strongly connected components. In Proceedings of the conference on

Advances in Neural Information Processing (NIPS), pages 829–834. Springer Berlin

Heidelberg, 2009.

S. Kim, K. Sreenath, S. Bhattacharya, and V. Kumar. Optimal trajectory generation

under homology class constraints. In IEEE Conference on Decision and Control,

2012.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup: The robot world

cup initiative. In Proceedings of the first International Conference on Autonomous

Agents, pages 340–347. ACM, 1997.

J. Kober, A. Wilhelm, E. Oztop, and J. Peters. Reinforcement learning to adjust

parametrized motor primitives to new situations. Autonomous Robots, 33(4):361–

379, 2012.

G. Konidaris and A.G. Barto. Building portable options: Skill transfer in reinforcement

learning. In Proceedings of the 20th International Joint Conference on Artificial

Intelligence (IJCAI), volume 2, pages 895–900, 2007.

G. Konidaris and A.G. Barto. Skill discovery in continuous reinforcement learning

domains using skill chaining. Advances in Neural Information Processing Systems

(NIPS), 22:1015–1023, 2009.

G. Konidaris, S. Kuindersma, A.G Barto, and R. Grupen. Constructing skill trees for

reinforcement learning agents from demonstration trajectories. Advances in Neural

Information Processing Systems (NIPS), 23:1162–1170, 2010.

G. Konidaris, S. Kuindersma, R. Grupen, and A.G Barto. Robot learning from demon-

stration by constructing skill trees. The International Journal of Robotics Research

(IJRR), 31(3):360–375, 2012a.



Bibliography 143

G. Konidaris, I. Scheidwasser, and A.G. Barto. Transfer in reinforcement learning via

shared features. Journal of Machine Learning Research (JMLR), 13:1333–1371,

2012b.

O. Kozlova, O. Sigaud, and C. Meyer. Automated discovery of options in factored rein-

forcement learning. In Proceedings of the ICML/UAI/COLT Workshop on Abstraction

in Reinforcement Learning, 2009.

R.M. Kretchmar, T. Feil, and R. Bansal. Improved automatic discovery of subgoals

for options in hierarchical reinforcement learning. Journal of Computer Science &

Technology, 3, 2003.

H. Kretzschmar, M. Kuderer, and W. Burgard. Learning to predict trajectories of coop-

eratively navigating agents. In Proceedings of 2014 IEEE International Conference

on Robotics and Automation (ICRA), Hong Kong, China, 2014.

M. Kuderer, C. Sprunk, H. Kretzschmar, and W. Burgard. Online generation of ho-

motopically distinct navigation paths. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014.

T.L. Lai and H. Robbins. Adaptive design in regression and control. Proceedings of the

National Academy of Sciences, 75(2):586–587, 1978.

S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement

Learning, pages 45–73. Springer, 2012.

S.M. LaValle. Planning algorithms. Cambridge University Press, 2006.

S.M. LaValle and J.J. Kuffner. Rapidly-exploring random trees: Progress and prospects.

Algorithmic and Computational Robotics: New Directions, pages 293–308, 2001.

A. Lazaric. Knowledge transfer in reinforcement learning. PhD thesis, Politecnico di

Milano, 2008.

S.R. Lindemann and S.M. LaValle. Current issues in sampling-based motion planning.

In Robotics Research, pages 36–54. Springer, 2005.

S. Mahadevan and J. Connell. Automatic programming of behavior-based robots using

reinforcement learning. Artificial Intelligence (AIJ), 55(23):311 – 365, 1992.



144 Bibliography

M.M.H. Mahmud, M. Hawasly, B. Rosman, and S. Ramamoorthy. Clustering Markov

decision processes for continual transfer. arXiv preprint arXiv:1311.3959, 2013.

V. Manfredi and S. Mahadevan. Hierarchical reinforcement learning using graphical

models. In Proceedings of the ICML’05 Workshop on Rich Representations for

Reinforcement Learning, pages 39–44, 2005.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement

learning via clustering. In Proceedings of the 21st International Conference on

Machine Learning (ICML), page 71. ACM, 2004.

O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. Advances

in Neural Information Processing Systems (NIPS), pages 570–576, 1998.

E. Masehian and D. Sedighizadeh. Classic and heuristic approaches in robot motion

planning - a chronological review. World Academy of Science, Engineering and

Technology, 23:101–106, 2007.

A. McGovern. acquire-macros: An algorithm for automatically learning macro-actions.

In NIPS98 Workshop on Abstraction and Hierarchy in Reinforcement Learning, 1998.

A. McGovern and A.G. Barto. Automatic discovery of subgoals in reinforcement

learning using diverse density. Computer Science Department Faculty Publication

Series, page 8, 2001.

N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern. Transfer in variable-reward hierarchi-

cal reinforcement learning. Machine Learning (MLJ), 73(3):289–312, 2008a.

N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Automatic discovery and transfer of

MAXQ hierarchies. In Proceedings of the 25th International Conference on Machine

Learning (ICML), pages 648–655. ACM, 2008b.

I. Menache, S. Mannor, and N. Shimkin. Q-cut: dynamic discovery of sub-goals in

reinforcement learning. European Conference on Machine Learning (ECML), pages

187–195, 2002.

A.J. Mersereau, P. Rusmevichientong, and J.N. Tsitsiklis. A structured multiarmed

bandit problem and the greedy policy. IEEE Transactions on Automatic Control, 54

(12):2787–2802, 2009.



Bibliography 145

A. Nilim and L.E. Ghaoui. Robust control of Markov decision processes with uncertain

transition matrices. Operations Research, pages 780–798, 2005.

J. Niño-Mora. Computing a classic index for finite-horizon bandits. INFORMS Journal

on Computing, 23(2):254–267, 2011.

P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with

high confidence from random samples. Discrete and Computational Geometry, 39

(1-3):419–441, 2008.

I. Noda and H. Matsubara. Soccer server and researches on multi-agent systems. In

Proceedings of the IROS-96 Workshop on RoboCup, 1996.

S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. Planning under uncertainty for robotic

tasks with mixed observability. The International Journal of Robotics Research

(IJRR), 29(8):1053–1068, 2010.

S. Pandey, D. Chakrabarti, and D. Agarwal. Multi-armed bandit problems with depen-

dent arms. In Proceedings of the 24th International Conference on Machine Learning

(ICML), pages 721–728. ACM, 2007.

R.E. Parr. Hierarchical control and learning for Markov decision processes. PhD thesis,

University of California, 1998.

R.E. Parr and S. Russell. Reinforcement learning with hierarchies of machines. Ad-

vances in Neural Information Processing Systems (NIPS), pages 1043–1049, 1998.

T.J. Perkins and D. Precup. Using options for knowledge transfer in reinforcement

learning. Technical Report, University of Massachusetts, Amherst, MA, USA, 1999.

J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid robotics.

In Proceedings of the third IEEE-RAS International Conference on Humanoid Robots,

pages 1–20, 2003.

J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-critic. In Machine Learning

(MLJ), pages 280–291. Springer, 2005.

M. Pickett and A.G. Barto. Policyblocks: An algorithm for creating useful macro-actions

in reinforcement learning. In Proceedings of the 19th International Conference on

Machine Learning (ICML), pages 506–513, 2002.



146 Bibliography

F.T. Pokorny, M. Hawasly, and S. Ramamoorthy. Multiscale topological trajectory

classification with persistent homology. In Proceedings of Robotics: Science and

Systems (R:SS), 2014.

W.B. Powell. The knowledge gradient for optimal learning. Wiley Encyclopedia of

Operations Research and Management Science, 2010.

A.A. Rad, M. Hasler, and P. Moradi. Automatic skill acquisition in reinforcement

learning using connection graph stability centrality. In Proceedings of 2010 IEEE

International Symposium on Circuits and Systems (ISCAS), pages 697–700. IEEE,

2010.

K. Regan and C. Boutilier. Robust policy computation in reward-uncertain mdps using

nondominated policies. In Proceedings of the 24th AAAI Conference on Artificial

Intelligence (AAAI-10), 2010.

Rethink Robotics. R.A. Brooks. http://www.rethinkrobotics.com/products/

baxter/, 2012.

RoboCup. The RoboCup Federation. http://www.robocup.org/.

S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement primitives. In

Robotics Research, pages 561–572. Springer, 2005.

S. Schaal, P. Mohajerian, and A. Ijspeert. Dynamics systems vs. optimal control - a

unifying view. Progress in Brain Research, 165:425–445, 2007.

B. Da Silva, G. Konidaris, and A.G. Barto. Learning parameterized skills. In Pro-

ceedings of the 29th International Conference on Machine Learning (ICML), pages

1679–1686. Omnipress, 2012.

Ö. Şimşek and A.G. Barto. Using relative novelty to identify useful temporal abstrac-

tions in reinforcement learning. In Proceedings of the 21st International Conference

on Machine Learning (ICML), page 95. ACM, 2004.

Ö. Simşek and A.G. Barto. Skill characterization based on betweenness. In Advances

in Neural Information Processing Systems (NIPS), 2009.

Ö. Şimşek, A.P. Wolfe, and A.G. Barto. Identifying useful subgoals in reinforcement

learning by local graph partitioning. In Proceedings of the 22nd International

Conference on Machine Learning (ICML), pages 816–823. ACM, 2005.

http://www.rethinkrobotics.com/products/baxter/
http://www.rethinkrobotics.com/products/baxter/
http://www.robocup.org/


Bibliography 147

S. Singh, A.G. Barto, and N. Chentanez. Intrinsically motivated reinforcement learning.

Defense Technical Information Center, 2005.

M. Snel and S. Whiteson. Multi-task reinforcement learning: shaping and feature

selection. Recent Advances in Reinforcement Learning, Lecture Notes in Computer

Science, pages 237–248, 2012.

V. Soni and S. Singh. Reinforcement learning of hierarchical skills on the Sony Aibo

robot. In Proceedings of the Fifth International Conference on Development and

Learning (ICDL), 2006.

N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger. Gaussian process optimization

in the bandit setting: No regret and experimental design. Proceedings of the 27th

International Conference on Machine Learning (ICML), 2010.

M. Stolle and D. Precup. Learning options in reinforcement learning. Abstraction,

Reformulation, and Approximation, Lecture Notes in Computer Science, 2371:212–

223, 2002.

P. Stone. Layered learning in multiagent systems: A winning approach to robotic soccer.

MIT Press, 2000.

P. Stone and R.S. Sutton. Scaling reinforcement learning toward RoboCup soccer. In

Proceedings of the 18th International Conference on Machine Learning (ICML),

pages 537–544. Morgan Kaufmann, San Francisco, CA, 2001.

P. Stone, R.S. Sutton, and G. Kuhlmann. Reinforcement learning for RoboCup soccer

keepaway. Adaptive Behavior, 13(3):165–188, 2005.

M. Strens. A Bayesian framework for reinforcement learning. In Proceedings of the

17th International Conference on Machine Learning (ICML), pages 943–950, 2000.

F.T. Sunmola and J.L. Wyatt. Model transfer for Markov decision tasks via parameter

matching. In Proceedings of the 25th Workshop of the UK Planning and Scheduling

Special Interest Group (PlanSIG 2006), 2006.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Cambridge

Univ Press, 1998.



148 Bibliography

R.S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Artificial Intelligence (AIJ), 112

(1):181–211, 1999.

M. Tambe, A.X. Jiang, B. An, and M. Jain. Computational game theory for security:

Progress and challenges. In AAAI Spring Symposium on Applied Computational

Game Theory, 2013.

F. Tanaka and M. Yamamura. Multitask reinforcement learning on the distribution

of MDPs. In Proceedings of the IEEE International Symposium on Computational

Intelligence in Robotics and Automation, volume 3, pages 1108–1113. IEEE, 2003.

M.E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A

survey. Journal of Machine Learning Research (JMLR), 10:1633–1685, 2009.

R.L. Tedrake. LQR-trees: Feedback motion planning on sparse randomized trees.

Robotics: Science and Systems (R:SS), 2009.

S. Thrun and A. Schwartz. Finding structure in reinforcement learning. Advances in

Neural Information Processing Systems (NIPS), pages 385–392, 1995.

C. Urmson, J. Anhalt, J.A. Bagnell, C.R. Baker , R.E. Bittner, J.M. Dolan, D. Dug-

gins, D. Ferguson , T. Galatali, H. Geyer, M. Gittleman, S. Harbaugh, M. Hebert,

T. Howard, A. Kelly, D. Kohanbash, M. Likhachev, N. Miller, K. Peterson, R. Rajku-

mar, P. Rybski, B. Salesky, S. Scherer, Y. Seo, R. Simmons, S. Singh, J.M. Snider,

A. Stentz, W.L. Whittaker, and J. Ziglar. Tartan racing: A multi-modal approach to

the DARPA Urban Challenge. Technical Report CMU-RI-TR-, Robotics Institute,

2007.

C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning (MLJ), 8(3-4):279–292,

1992.

A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: a

hierarchical Bayesian approach. In Proceedings of the 24th International Conference

on Machine Learning (ICML), pages 1015–1022. ACM, 2007.

A. Wilson, A. Fern, and P. Tadepalli. Transfer learning in sequential decision prob-

lems: A hierarchical Bayesian approach. In ICML 2011 Unsupervised and Transfer

Learning Workshop. JMLR: Workshop and Conference Proceedings, 2012.



Bibliography 149

D. Wingate, N.D. Goodman, D.M. Roy, L.P. Kaelbling, and J.B. Tenenbaum. Bayesian

policy search with policy priors. In Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (IJCAI), pages 1565–1570. AAAI Press, 2011.

P. Zang, P. Zhou, D. Minnen, and C. Isbell. Discovering options from example tra-

jectories. In Proceedings of the 26th Annual International Conference on Machine

Learning (ICML), pages 1217–1224. ACM, 2009.


	PhD coversheet April 2012
	Thesis_M.Hawasly_2014

