
Notions of Computation Determine Monads

Gordon Plotkin and John Power ?

Division of Informatics, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3JZ, Scotland

Abstract. We model notions of computation using algebraic operations
and equations. We show that these generate several of the monads of pri-
mary interest that have been used to model computational effects, with
the striking omission of the continuations monad. We focus on semantics
for global and local state, showing that taking operations and equations
as primitive yields a mathematical relationship that reflects their com-
putational relationship.

1 Introduction

Eugenio Moggi, in [14, 16], introduced the idea of giving a unified category theo-
retic semantics for what he called notions of computation, but which we call com-
putational effects. He modelled each computational effect in the Kleisli category
for an appropriate strong monad T on a base category C with finite products.
The perspective of this paper is that computational effects determine monads
but are not identified with monads. We regard a computational effect as be-
ing realised by families of operations, with a monad being generated by their
equational theory.

Examples of computational effects are: exceptions, interactive input/output,
nondeterminism, probabilistic nondeterminism, side-effects and continuations.
Moggi’s unified approach to modelling them has proved useful, for example in
functional programming [2], but there has not been a precise mathematical basis
on which to compare and contrast the various effects.

For instance, continuations are computationally of a different character to
other computational effects, being an inherently non-local phenomenon. Again,
computationally, the introduction of global state is a first step towards the in-
troduction of local state. So we seek a mathematical description of features of
the various monads that reflects the comparisons between the corresponding
computational phenomena.

An immediate observation is that the monad for continuations R(R−) does
not have a rank (see [9] for a definition), while the monads for all the other
above-mentioned computational effects do. There is a theorem to the effect that
monads are derivable from algebraic operations and equations if and only if they
have bounded rank [10]. So consideration of operations and equations might
provide a way to describe features of the computational effects. The equations
? This work is supported by EPSRC grant GR/M56333 and a British Council grant.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429711971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


may also prove useful when manipulating programs, e.g., for optimisation. We
regard it as positive that there are no algebraic operations and equations in the
sense of the theorem yielding the continuations monad, taking that as reflecting
its differing computational nature.

There are computationally natural families of operations associated with sev-
eral of the above monads: one has ‘raise’ operations for exceptions; one has ‘read’
and ‘write’ operations associated with interactive input/output; one has a nonde-
terministic binary ‘choice’ operation when modelling nondeterminism; one has a
‘random choice’ operation for probabilistic nondeterminism; and one has ‘lookup’
and ‘update’ operations when modelling global state. An analysis of several of
these families of operations appears in [20]: they are regarded as algebraic fami-
lies of operations associated with an already given monad, and are characterised
in terms of generic effects: e.g., to give a generic effect e : n −→ Tm is equivalent
to giving m n-ary algebraic families of operations, where m and n need not be
finite (m is the m-fold coproduct of 1 in C). Crucially when a monad is given
by algebraic operations and equations in the sense of [10], the algebraic families
of operations associated with it are given by the derived operations.

In programming languages, effects are obtained using syntactic constructs
corresponding to the operations or the generic effects. Some examples with fini-
tary operations were considered in [19], which considered suitable extensions
of call-by-value PCF, itself an extension of Moggi’s computational λ-calculus,
and gave a unified treatment of operational semantics. Although infinitary op-
erations, as we study here, do not appear directly in programming languages,
the corresponding generic effects do, and we sketch appropriate extensions of
call-by-value PCF incorporating them.

The present paper investigates whether the monads are given by computa-
tionally natural equations for the above naturally occurring families of oper-
ations. This is already well known to be so in the case of some of the above
examples, notably those associated with nondeterminism; other cases, such as
those of exceptions and interactive input/output, are easy; but global and local
state required considerable thought. So most of the technical detail is devoted
to the situation for state. At this point, we should like to thank Eugenio Moggi
for suggesting to us that the monad for global state may be derived from (possi-
bly infinitary) computationally natural operations and equations, and we should
like to thank Peter O’Hearn for showing us a monad for local state suited to
call-by-value. Two new features emerge in characterising local state. First, the
arities must be allowed to be not just sets but presheafs; and second, the block
operation, in contrast to lookup and update, is linear, using symmetric monoidal
closed structure rather than cartesian closed structure.

The paper is organised as follows. In Section 2, we give a general explana-
tion of the notions of signature, operations, and equations, and we present the
straightforward examples discussed above. In Section 3, we give a careful expla-
nation of how the monad (S ⊗ −)S for global state is generated by operations
for lookup and update subject to computationally natural equations. And in
Section 4, we extend the definitions of Section 3 to see how the addition of block



subject to natural additional equations generates the monad for local state. The
central point here is that this gives precise mathematics that reflects the com-
putational relationship between global and local state. For future work, having
made some progress in understanding individual computational effects, one can
consider their combinations; we address that issue in [6].

2 Operations and Equations

Given a finitary signature Σ in the usual universal algebraic sense, one can speak
of a Σ-algebra in any category C with finite products: it consists of an object A
of C together with, for each σ in Σ, a map

aσ : Aar(σ) −→ A

in C, where ar(σ) is the arity of σ. One can speak of Σ-equations and their
satisfaction in a Σ-algebra, obtaining the notion of a (Σ, E)-algebra in C. This,
with the evident definition of homomorphism of algebras, generates a category
(Σ, E)-Alg with a forgetful functor

U : (Σ, E)−Alg −→ C

which, if C is locally presentable, has a left adjoint F , inducing a monad T = UF
on C. The category (Σ,E)-Alg is isomorphic to the category T -Alg of algebras
for the monad T .

This is a considerably simplified version of the work in [10], but the above
version is sufficient here. One illuminating view is in terms of models for a Law-
vere theory in a category other than Set, cf [20, 21]. There is nothing special
about the finitariness of Σ: everything holds equally for infinitary operations,
providing C has correspondingly infinitary products, as all our examples do. It
is, moreover, routine to verify that the induced monad T always has a natu-
ral associated strength, induced by the universal property of products. Leading
examples of interesting categories C are Set, Poset, ω-Cpo, presheaf categories
[W,Set], and functor categories of the form [W,ω-Cpo] for a small category of
worlds W , cf [17].

Example 1. Exceptions The monad − + E for exceptions on Set is induced by
E nullary operations, with no equations. These operations model the raising of
exceptions, but do not model a ‘handle’ operation. This distinction is consis-
tent with the fact that raising exceptions is algebraic [20], while (significantly!)
handling exceptions is not. In this paper, we only consider algebraic operations;
non-algebraic operations such as handle are of a different character, which re-
mains to be understood.

Example 2. Interactive Input/Output The monad TX = µY.(O × Y + Y I + X)
for interactive I/O on Set is induced by operations read : XI −→ X (which is
infinitary) and write : X −→ XO, with no equations [15]. The corresponding
generic effects are er : 1 −→ TI and ew : O −→ T1; the corresponding extension
of call-by-value PCF would have datatypes In and Out (they could both be
Char, a character type) and programs read : In and write M : 1 for M : Out.



Example 3. Nondeterminism Let C be the category of ω-cpo’s. Then the cate-
gory of algebras for the convex power-domain [5, 18, 1] is the category of semi-
lattices in C (i.e., structures with an associative, commutative, idempotent bi-
nary operation), equipped with a least element ⊥. Similar facts are true of the
upper and lower power-domains, except that each requires an additional equa-
tional axiom in the setting of [10].

Example 4. Probabilistic Nondeterminism The probabilistic power-domain [7,
8, 4] can be treated algebraically in several equivalent ways. One is via a random
choice operator x +r y meaning “do x with probability r, or y with probability
1−r.” Taken together with a bottom element this has an axiomatisation over the
category of ω-cpo’s that fits within the framework of [10]. The equivalent generic
effect is (ep)r : 1 → T (2). In programming languages considered in the literature
one sees both explicit choice operators and a random ‘die’ randr : Bool.

3 Global State

In this section, we show how the side-effects monad, which is used to model
global state, is generated by operations for lookup and update subject to com-
putationally natural equations.

Let L be a finite set, to be regarded as a set of locations, and let V be a
countable set, to be regarded as the set of values. For instance, V may be taken
to be the set of natural numbers. One defines the set S of states of a language
to be the set V L of functions from locations to values. So S is a countable
set. The restriction to finite L is deliberate and is needed for the proofs of
our results; rather than use an infinite set to deal with the availability of an
unbounded number of locations, we prefer to use a presheaf semantics as in
Section 4. Observe that one includes the case of any countable set S by putting
L = 1 and V = S; we shall need L explicit in order to analyse local state.

Now assume we have a category C with countable products and coproducts.
Consider the monad T on C given by (S ⊗ −)S , where AX means the product
of X copies of the object A of C, and X ⊗ A means the coproduct of X copies
of A. A map in the Kleisli category from A to B is equivalent to giving a map
in C from S ⊗A to S ⊗B, thus allowing a change of state.

We seek to express the category (S ⊗ −)S-Alg as the category of (Σ,E)-
algebras, for computationally natural Σ and E, in the category C. In order to
give this result, we define a category GS(C), which, by its description, is the
category of (Σ, E)-algebras in C for evident (Σ, E), so that the evident forgetful
functor U : GS(C) −→ C has a left adjoint given by (S ⊗ −)S . It follows that
(Σ, E)-Alg is isomorphic to (S ⊗−)S-Alg.

Our operations will consist of a lookup operation l : AV −→ AL and an
update operation u : A −→ AL×V ; these are equivalent to families of opera-
tions as previously considered. Given a V -indexed family of elements of A, the
infinitary lookup operation takes a location loc, finds out what its value is in the
current state of the computation, and computes the element of A determined



by that value. Given an element of A together with a location loc and a value
v, the update operation updates the state by insisting that loc take value v,
and then allowing the computation to run. The corresponding generic effects
are el : L −→ TV and eu : L × V −→ T1, where L = L ⊗ 1 and V = V ⊗ 1.
In a corresponding extension of call-by-value PCF, one would have datatypes
Loc and V al (the latter might be Nat) and program constructions !M : V al for
M : Loc and (M := N) : 1 for M : Loc and N : V al.

We take care here to give the result for a category C with axiomatic structure
rather than just for Set, as we expect the more general result to be required for
modelling the combination of side effects with other computational effects. Our
results also extend routinely to the situation where C is a V -category (see [9])
and the set of values is replaced by an object of V . It remains to be seen how
best to handle complex situations such as storable procedures [11] or linked lists.

Definition 1. Given a category C with countable products, a finite set L, and
a countable set V , we define the category GS(C) as follows: an object consists
of

– an object A of C
– a lookup map l : AV −→ AL, and
– an update map u : A −→ AL×V

subject to commutativity of two classes of diagrams. First, we have four inter-
action diagrams as follows:

A
u- AL×V

∼=- (AV )L

AL

At

?
�

Aδ
AL×L �

∼=
(AL)L

lL

?

where δ : L −→ L× L and t : L −→ 1 are the diagonal and terminal maps, and
the lower unlabelled isomorphism matches the outer L of (AL)L with the first L
of AL×L,

(AV )V lV- (AL)V
∼=- (AV )L

AV×V

∼=

?
(AL)L

lL

?

AV

Aδ

?

l
- AL �

Aδ
AL×L

∼=

?



where the unlabelled isomorphisms match the outer V of (AV )V with the first V
of AV×V and similarly for L, cf [9],

A
u - AL×V uL×V

- (AL×V )L×V

AL×V

u

?

AL×π1

- AL×V×V �
Aδ×V×V

AL×L×V×V

∼=

?

where the unlabelled isomorphism matches the outside L with the first L and
similarly for V , and

AV l - AL uL
- (AL×V )L

(AL×V )V

uV

?

AL×δ
- AL×V

Aδ×V

?

suppressing two isomorphisms. We also have three commutation diagrams as
follows:

(AV )V lV- (AL)V
∼=- (AV )L lL- (AL)L

(AV )V

s

?
(AL)L

s

?

(AL)V

lV

?

∼=
- (AV )L

lL
- (AL)L - AL2

?

where s signifies ‘swap’ maps and L2 denotes the set of ordered pairs of distinct
elements of L, with the unlabelled maps both given by the same canonical map,

A
u- AL×V uL×V

- (AL×V )L×V s- (AL×V )L×V

AL×V

u

? uL×V
- (AL×V )L×V - AL2×V×V

?



where s again signifies a swap map and with the unlabelled maps again given by
the same canonical map, and

AV l - AL uL
- (AL×V )L

∼=- (AL)L×V

(AL×V )V

uV

?

∼=
- (AV )L×V

lL×V
- (AL)L×V - AL2×V

?

where, again, the unlabelled maps are given by the same canonical map. The rest
of the structure of GS(C) as a category is evident: for instance, a map from
(A, u, l) to (A′, u′, l′) is a map f : A −→ A′ in C subject to commutativity of f
with l and l′ and commutativity of f with u and u′.

The above constitutes our formal definition of the category of algebras. For any
category C with countable products, one can routinely give an equational lan-
guage for which equations between infinitary terms of the language correspond
to commutative diagrams in the category. One has a V -ary function symbol lloc

for each loc in L and a unary function symbol uloc,v for each loc in L and v in V .
The seven commutative diagrams in the definition of GS(C) can be expressed
equationally as the following seven axiom schema involving infinitary expressions
respectively:

1. lloc(uloc,v(x))v = x
2. lloc(lloc(tvv′)v)v′ = lloc(tvv)v
3. uloc,v(uloc,v′(x)) = uloc,v′(x)
4. uloc,v(lloc(tv′)v′) = uloc,v(tv)
5. lloc(lloc′(tvv′)v′)v = lloc′(lloc(tvv′)v)v′ where loc 6= loc′
6. uloc,v(uloc′,v′(x)) = uloc′,v′(uloc,v(x)) where loc 6= loc′
7. uloc,v(lloc′(tv′)v′) = lloc′(uloc,v(tv′))v′ where loc 6= loc′.

It can be shown that this axiom system is Hilbert-Post complete, meaning that
it has no equationally consistent extensions; thus we have all the equations for
global state. The schema induce program assertions. Here are those correspond-
ing to the third and sixth:

3*. (l := x; let y be !l in M) = (l := x; M [x/y])
6*. (l 6= m) ⊃ (l := x; m := y) = (m := y; l := x)

where x, y : V al, l, m : Loc and M ; N abbreviates (λx : 1.N)(M) with x fresh.

Proposition 1. For any object (A, l, u) of GS(C), the diagram

A
At

- AV

@
@

@
@

@
At

R
AL

l

?



commutes.

Proof. Use two applications of the first axiom and one application of the second
axiom.

In the equational logic, this proposition is: lloc(x)v = x.
We henceforth assume that C has both countable products and countable

coproducts.

Proposition 2. For any object X of C, the object (S ⊗X)S together with the
maps

u : (S ⊗X)S −→ ((S ⊗X)S)L×V

determined by composition with the function from L×V ×V L to V L that, given
(loc, v, σ), “updates” σ : L −→ V by replacing its value at loc by v and

l : ((S ⊗X)S)V −→ ((S ⊗X)S)L

determined by composition with the function from L×V L to V ×V L that, given
(loc, σ), “looks up” loc in σ : L −→ V to determine its value, and is given by the
projection to V L, satisfy the commutative diagrams required to give an object of
GS(C).

The definitions of u and l in the proposition correspond to the equations

u(loc, v, x)(σ) = x(σ[v/loc])

and
l(loc, (xv)v)(σ) = xσ(loc)(σ).

Theorem 1. The forgetful functor U : GS(C) −→ C exhibits the category
GS(C) as monadic over C, with monad (S ⊗−)S.

Proof. We first show that the left adjoint to U is the functor (S ⊗ −)S , with
algebra structure on (S⊗X)S given by the proposition, and with the unit of the
adjunction given by the canonical map ηX : X −→ (S ⊗X)S . Given an algebra
(A, l, u) and a natural number n, let

un : (L× V )n ⊗A −→ A

denote the canonical map induced by n applications of u, and let

ln : AV n
−→ ALn

denote the canonical map induced by n applications of l.
Given an arbitrary map f : X −→ A, and recalling that S = V L, define

f : (S ⊗X)S −→ A to be the composite of (S ⊗ f)S : (S ⊗X)S −→ (S ⊗ A)S

with

(V L ⊗A)V L - ((L× V )L ⊗A)V L uV L

L - AV L lL - ALL - A



where the unlabelled maps are the evident structural maps. We need to prove
four commutativities: one showing that f composed with ηX is f , two to show
that f is an algebra map, and a final one to show that, given any algebra map
g : (S ⊗X)S −→ A, the map gη equals g.

For the unit axiom, first observe that the commutation axioms generalise to
allow l and u to be replaced by ln and um for arbitrary natural numbers n and
m. The unit axiom follows by induction on the size of L using these generalised
versions of the first two commutation axioms and the first interaction axiom.

One can see the proof of commutativity of f with u by first considering the
case where L has precisely one element, when the proof is easy using the third
and fourth interaction axioms, and Proposition 1. The proof for arbitrary L is
essentially the same, but also requires the generalised commutation axioms.

Commutativity of f with l is straightforward: it requires the second inter-
action diagram together with generalised versions of the first commutation dia-
gram. And the final commutativity follows from routine calculation, just using
naturality. So (S ⊗−)S is indeed left adjoint to U .

Finally, it follows routinely from Beck’s monadicity theorem that U is monadic.

4 Local State

We now consider local state in terms of operations and equations, extending
those for global state in a principled fashion. In order to do that, we first discuss
how to model local state. Following [17], as further studied in [12], we do not
model local state in terms of a category with axiomatically given structure as we
have done for global state, but rather restrict attention to a particular presheaf
category [I, Set] where I is the category of finite sets and injections. We hope that
our results will generalise to functor categories [I, C] where C has axiomatically
given structure.

Note that I is equivalent to the category of natural numbers and monomor-
phisms; I does not have finite coproducts, and in particular, the sum of two
natural numbers does not act as their binary coproduct. However, I does have
an initial object, so by duality, Iop has a terminal object. The Yoneda embed-
ding embeds Iop into the presheaf category [I, Set], which is cartesian closed as a
locally presentable category, allowing us to use the general theory of operations
and equations of [10].

Finite products in [I, Set] are given pointwise, and the closed structure, given
functors X,Y : I −→ Set, is given by

(Y X)n = [I, Set](X −×I(n,−), Y−)

i.e., the set of natural transformations from X − ×I(n,−) to Y . The termi-
nal object of [I, Set] is I(0,−). There is a convenient additional ‘convolution’
symmetric monoidal closed structure on [I, Set]. The closed structure [X, Y ]
corresponding to the convolution monoidal product is

[X,Y ]n = [I, Set](X−, Y (n +−))



In particular, by the Yoneda lemma, [I(m,−), Y ]n = Y (n + m). Moreover, the
functor [X,−] has a canonical strength with respect to the cartesian closed
structure of [I, Set]. We shall use a combination of both symmetric monoidal
closed structures here.

We no longer model state by a set; instead, we index it according to the
world in which it is defined. So, given a set of values V , state is modelled by the
functor S : Iop −→ Set given by Sn = V n. Note that S is not an object of [I, Set].
Observe that the functor S is the composite of the inclusion Iop −→ Setop with
V (−) : Setop −→ Set.

The monad for local state is

(TX)n = (
∫ mε(n/I)

(Sm×Xm))Sn

where
∫

denotes a coend, which is a complicated form of colimit involving a
universal dinatural map [9, 13]. This construction is a simplified version of one
in Levy’s thesis [12]; the idea is that in a state with n locations, a computation
can create m−n new locations and return a value (e.g., a function) that depends
on them (and so one also needs to know S at all of m). In the case V = 1 it
reduces to the monad for local names in [23]; it would be interesting to know
the relationship with the monads for local state in [22]. The behaviour of T on
injective maps f : n −→ n′ is as follows: decompose n′ as the sum n + n′′, note
that S(p + n′′) = Sp× Sn′′, and use covariance of X. So the map

(
∫ mε(n/I)

(Sm×Xm))Sn × Sn× Sn′′ −→
∫ m′′ε((n+n′′)/I)

(Sm′′ ×Xm′′)

evaluates at Sn, then maps the m-th component of the first coend into the
(m + n′′)-th component of the second, using the above isomorphism for S and
functoriality of X. The monad T routinely has strengths with respect to both
symmetric monoidal closed structures.

We denote the inclusion of I into Set, which is I(1,−), by the notation L, as
it represents locations, and we overload notation by letting V : I −→ Set denote
the constant functor at V , representing values. As L is not a mere set but rather
a set indexed by a world, we need more refined notions of signature, operations,
and equations in order to allow L and V to be arities as we had for global state.
Note that our definition of L2 as in the previous section extends here, where L2

may be seen as the functor from I to Set that sends a finite set to the set of
ordered pairs of distinct elements.

Ideally, we should like to use either the cartesian closed structure or the
convolution monoidal closed structure of [I, Set] in order to present the monad
T as generated by algebraic structure as in [10]. But the equations we need for l
and u are those for global state, and they are inherently cartesian, using diagonals
and projections. So, if we were to use only one of the structures, it would need
to be the cartesian closed one. But our construction of a lifting, as is essential to
our proof of the main theorem, requires the block map b to have domain [L,A]
given by the linear convolution closed structure (and this is computationally



natural as [L,A](n) ∼= A(n + 1)). So, we use a combination of the two kinds
of structure here. Such a combination is not considered in [10], but that theory
does apply in that, from our description, one can routinely induce unenriched
algebraic structure, albeit complicated. However, it may ultimately be better to
develop the theory of [10] to allow for a pair of enrichments interacting with each
other, as here, then use that generalised theory in describing such phenomena
as local state or as arise in modelling the π-calculus [3].

For this paper, we proceed by analogy with global state, by defining a cate-
gory LS([I, Set]) which should be of the form (Σ, E)-Alg in a sense to be made
precise in one of the ways outlined above. The relationship between our mod-
elling of global and local state will be clear. Observe that, as V : I −→ Set is a
constant functor, we have

(AV )− = [V, A]− = (A−)V

We shall only use the notation AV .

Definition 2. We define the category LS([I, Set]) as follows: an object consists
of

– an object A of [I, Set]

– a lookup map l : AV −→ AL

– an update map u : A −→ AL×V

– a block map b : [L,A] −→ AV

subject to commutativity of six interaction diagrams and six commutativity di-
agrams. The interaction diagrams consist of the four interaction diagrams for
global state, together with

[L,A]
[L, u]- [L, AL×V ]

∼=- [L, AL]V - [L× L,A]V

AV

b

?

(At)V
- (AV )V �

bV
[L, A]V

[δ,A]V

?

where the horizontal unlabelled map is given by a canonical distributivity law of
X ⊗− over product together with the fact that the unit for the tensor product is



the terminal object, and

[L, AV ]
[L, l]- [L,AL] - [L× L,A]

[L,A]V

∼=

?
[L,A]

[δ,A]

?

(AV )V

bV

?

∼=
- AV×V

Aδ
- AV

b

?

where the horizontal unlabelled map is determined as in the first diagram.

The commutation diagrams are those for global state together with

[L, [L,A]]
[L, b]- [L,AV ]

∼=- [L,A]V

[L, [L,A]]

s

?
(AV )V

bV

?

[L,AV ]

[L, b]

?

∼=
- [L,A]V

bV
- (AV )V

s

?

[L, A]
[L, u]- [L,AL×V ] - [L,A]L×V

AV

b

?

uV
- (AL×V )V

∼=
- (AV )L×V

bL×V

?



and

[L,A]V
bV

- (AV )V s- (AV )V

[L,AV ]

∼=

?
(AL)V

lV

?

[L,AL]

[L, l]

?
- [L,A]L

bL
- (AV )L

∼=

?

We do not have a formal syntactic analogue of these diagrams as equations, but
we intend to produce one in further work. In outline, for the diagrams inherited
from global state, we imagine interpreting the previous equations internally, as
regards the loc indices. And for the new diagrams, we could imagine something
along the lines of introducing operations bv and expressing the above equations
syntactically as

1. bv〈uloc,v′(t)〉loc = bv′〈t〉loc
2. bv〈lloc(tv′)v′〉loc = bv〈tv〉loc
3. bv〈bv′〈t〉loc′〉loc = bv′〈bv〈t〉loc〉loc′

4. bv〈uloc′,v′(t)〉loc = uloc′,v′(bv〈t〉loc)
5. bv〈lloc′(tv′)v′〉loc = lloc′(bv〈tv′)loc〉v′

notationally differentiating linear abstraction and cartesian indexing (note that
the terms t may contain occurrences of variables such as loc).

For an extension of call-by-value PCF we can add a block construct

block new l := x; M end : σ

for M : σ. A construct corresponding to the generic effect eb : V → TL (see be-
low) appears in [22], viz ref M : Loc for M : V al, creating a new reference. One
can also add an equality test on locations. Here is a sample program assertion,
corresponding to the fourth equation:

(block new l := x;m := y; M end) = (m := y;block new l := x;M end)

In order to prove that the free algebra is given by the monad for local state,
we need to put an algebra structure on TX for arbitrary X in [I, Set]. It is
simplest to express this, using the theory of [20], in terms of generic effects. So
we give maps el : L −→ TV , eu : L × V −→ T1 and eb : V −→ TL with the
understanding that l : (TX)V −→ (TX)L is defined using composition with el

in the Kleisli category Kl(T ), and similarly for eu and eb. They are defined as
follows:

(el)n : n −→ [Sn, Sn× V ]



is defined by (el)n(p, σ) = (σ, σ(p))

(eu)n : n× V −→ [Sn, Sn]

is defined by (eu)n(p, v, σ) = σ[v/p], and

(eb)n : V −→ (
∫ mε(n/I)

(Sm×m))Sn

is defined by (eb)n(v, σ) = ((σ, v), 1)εS(n + 1)× (n + 1).

Proposition 3. For any object X of [I, Set], the object TX together with the
maps l, u and b as defined above, satisfy the commutative diagrams required to
give an object of LS([I, Set]).

Theorem 2. The forgetful functor U : LS([I, Set]) −→ [I, Set] exhibits the
category LS([I, Set]) as monadic over [I, Set] with monad T as above.

Proof. The proof is essentially the same as that for Theorem 1. The key con-
struction is that given a mapf : X −→ A where A is an algebra, f extends to
an algebra map f given by the composite of Tf : TX −→ TA with, on the n-th
component,

– a structural map

(
∫ mε(n/I)

(V m ×Am))V n
−→ (

∫ mε(n/I)

(V m−n × (m× V )n ×Am))V n

– a map (
∫ mε(n/I)(V m−n×(m×V )n×Am))V n −→ (

∫ mε(n/I)(V m−n×Am))V n

given by n applications of um

– a map (
∫ mε(n/I)(V m−n × Am))V n −→ (An)V n

given on the (i : n → m)-th
component by a composite of applications of bp as p varies from n to m− 1

– a map (An)V n −→ (An)nn
given by n applications of ln, and

– a structural map (An)nn −→ An.

The two new interaction axioms are used to prove that f respects b.

Unlike the case of global state there is a further natural sixth axiom for
block, viz: bv〈x〉l = x. This is false in our model, although the corresponding
program assertion (block new l := x; M end) = M (l not free in M) does
hold operationally. Relevant logical relation techniques for finding a monadic
semantics are given in [22, 23]; we conjecture that, with the additional axiom,
the axioms for local state will prove Hilbert-Post complete.



References

1. S. O. Anderson and A. J. Power, A Representable Approach to Finite Nondeter-
minism, in Theoret. Comput. Sci., Vol. 177, No. 1, pp. 3–25, 1997.

2. N. Benton, J. Hughes, and E. Moggi, Monads and Effects, APPSEM ’00 Summer
School, 2000.

3. M. P. Fiore, E. Moggi, and D. Sangiorgi, A Fully-Abstract Model for the pi-
Calculus, in Proc. LICS ’96, pp. 43–54, Washington: IEEE Press, 1996.

4. R. Heckmann, Probabilistic Domains, in Proc. CAAP ’94, LNCS, Vol. 136, pp.
21-56, Berlin: Springer-Verlag, 1994.

5. M. C. B. Hennessy and G. D. Plotkin, Full Abstraction for a Simple Parallel
Programming Language, in Proc. MFCS ’79 (ed. J. Beĉvár̂), LNCS, Vol. 74, pp.
108-120, Berlin: Springer-Verlag, 1979.

6. J. M. E. Hyland, G. D. Plotkin, and A. J. Power, Combining Computataional
Effects: Commutativity and Sum, submitted, 2002.

7. C. Jones, Probabilistic Non-Determinism, Ph.D. Thesis, University of Edinburgh,
Report ECS-LFCS-90-105, 1990.

8. C. Jones and G. D. Plotkin, A Probabilistic Powerdomain of Evaluations, in Proc.
LICS ’89, pp. 186–195, Washington: IEEE Press, 1989.

9. G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge: Cambridge
University Press, 1982.

10. G. M. Kelly and A. J. Power, Adjunctions whose Counits are Coequalizers, and
Presentations of Finitary Enriched Monads, in J. Pure Appl. Algebra, Vol. 89, pp.
163–179, 1993.

11. P. B. Levy, Call-by-Push-Value: A Subsuming Paradigm, Ph.D. thesis, Queen
Mary College, 2001.

12. P. B. Levy, Call-by-Push-Value, in Proc. TLCA ’99 (ed. J.-Y. Girard), LNCS, Vol.
1581, pp. 228-242, Berlin: Springer-Verlag, 1999.

13. S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.
14. E. Moggi, Computational Lambda-Calculus and Monads, in Proc. LICS ’89, pp.

14–23, Washington: IEEE Press, 1989.
15. E. Moggi, An Abstract View of Programming Languages, University of Edinburgh,

Report ECS-LFCS-90-113, 1989.
16. E. Moggi, Notions of computation and monads, Inf. and Comp., Vol. 93, No. 1,

pp. 55–92, 1991.
17. P. W. O’Hearn and R. D. Tennent, Algol-like Languages, Progress in Theoretical

Computer Science, Boston: Birkhauser, 1997.
18. G. D. Plotkin, Domains, URL: http://www.dcs.ed.ac.uk/home/gdp, 1983.
19. G. D. Plotkin and A. J. Power, Adequacy for Algebraic Effects, in Proc. FOSSACS

2001 (eds. F. Honsell and M. Miculan), LNCS, Vol. 2030, pp. 1–24, Berlin: Springer-
Verlag, 2001.

20. G. D. Plotkin and A. J. Power, Semantics for Algebraic Operations (extended
abstract), in Proc. MFPS XVII (eds. S. Brookes and M. Mislove), ENTCS, Vol.
45, Amsterdam: Elsevier, 2001.

21. A. J. Power, Enriched Lawvere Theories, in Theory and Applications of Categories,
pp. 83–93, 2000.

22. I. Stark, Names and Higher-Order Functions, Ph.D. thesis, University of Cam-
bridge, 1994.

23. I. Stark, Categorical Models for Local Names, in Lisp and Symbolic Computation,
Vol. 9, No. 1, pp. 77–107, 1996.
and


