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Abstract

The radio frequency (RF) spectrum is a scarce natural respaurrently regulated by gov-
ernment agencies. With the explosive emergence of wirglpghications, the demands for the
RF spectrum are constantly increasing. On the other hamdsitboeen reported that localised
temporal and geographic spectrum utilisation efficienagxisemely low. Cognitive radio is an
innovative technology designed to improve spectrum atii by exploiting those spectrum
opportunities. This ability is dependent upon spectrunsisgn which is one of most criti-
cal components in a cognitive radio system. A significantlehge is to sense the whole RF
spectrum at a particular physical location in a short okatgra time. Otherwise, performance
degrades with longer observation times since the laggisgamse to spectrum holes implies
low spectrum utilisation efficiency. Hence, developing #itient wideband spectrum sensing
technique is prime important.

In this thesis, a multirate asynchronous sub-Nyquist sel@@MASS) system that employs
multiple low-rate analog-to-digital converters (ADCs)eveloped that implements wideband
spectrum sensing. The key features of the MASS system aleywiinplementation complex-
ity, 2) energy-efficiency for sharing spectrum sensing datal 3) robustness against the lack
of time synchronisation. The conditions under which recows the full spectrum is unique
are presented using compressive sensing (CS) analysisMASS system is applied to both
centralised and distributed cognitive radio networks. Wihee spectra of the cognitive radio
nodes have a common spectral support, using one low-rate iA[@@ch cognitive radio node
can successfully recover the full spectrum. This is obthibhg applying a hybrid matching
pursuit (HMP) algorithm - a synthesis of distributed congsiee sensing simultaneous orthog-
onal matching pursuit (DCS-SOMP) and compressive samptiagching pursuit (CoSaMP).
Moreover, a multirate spectrum detection (MSD) system igduced to detect the primary
users from a small number of measurements without ever steating the full spectrum.
To achieve a better detection performance, a data fusietegy is developed for combin-
ing sensing data from all cognitive radio nodes. Theoreboands on detection performance
are derived for distributed cognitive radio nodes suffgrirom additive white Gaussian noise
(AWGN), Rayleigh fading, and log-normal fading channels.

In conclusion, MASS and MSD both have a low implementatiomglexity, high energy ef-
ficiency, good data compression capability, and are agpbcto distributed cognitive radio
networks.
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Chapter 1
Introduction

This thesis addresses the issues of spectrum sensing irtieegadio networks. Due to cur-
rent spectral underutilisation, an innovative technojagpgnitive radio, has been designed to
exploit spectrum holes. Spectrum sensing is the criticatmanent upon which the full oper-
ation of cognitive radio relies. Wideband spectrum sensirtye key technology that enables
the efficient operation of both the primary user and the dbgnradio networks. However,
wideband spectrum sensing systems are difficult to desiga ta either high implementation
complexity or high energy consumption from high-rate aget@-digital converter (ADC). This
thesis will present two sub-Nyquist sampling systems tiigieément wideband spectrum sens-
ing by multiple low-rate ADCs. Both systems have low impletadion complexity, low energy

consumption, and are suitable for distributed cognitidiaaetworks.

1.1 Motivation

The radio frequency (RF) spectrum is a limited natural resemnanaged by government reg-
ulators, such as the office of communications (Ofcom [1])hie United Kingdom, and the
federal communications commission (FCC [2]) in the Unité¢at&s. Under current palicy, all
frequency bands are exclusively assigned to wireless mkesaan a long term basis for large
geographical regions, and each system has to operate waitparticular band. With the in-
creasing emergence of new wireless products and the expldsvelopment of mobile internet
applications, the demands on RF spectrum have been cdypstameasing. In recent years, it
has become evident that there will not be enough spectrutnsxely available for all wire-
less systems currently under development. Interestitiglyspectrum policy task force (SPTF)
within the FCC has reported that localised temporal and iggatic spectrum utilisation effi-
ciency ranges from 15% to 85% [3]. In another experiment as/ghn Figure 1.1, the maximal
occupancy of the spectrum from 30 MHz to 3 GHz (in New York chgs been reported to be
only 13.1%, with average occupancy (over six locationspaf% [4]. Spectral underutilisation

can be solved by allowing a secondary user to access a litdr@sal when the primary user
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Figure 1.1: Spectrum occupancy measurement results averaged ovecations [4].

(PU) is absent [3]. Cognitive radio [5] has emerged as onéi@fbost promising candidates

for realising this [3, 6—11].

As an innovative technology, cognitive radio is designeexploit spectrum opportunities by
means of sensing and adapting to the environment. A cruetplirement of cognitive radios
is that they must rapidly fill in spectrum holes without pasmarmful interference on the PUs.
This task is dependent upon the function of spectrum senginigh is one of the critical com-
ponents in a cognitive radio system. Due to effects of maitipand shadowing, a cognitive
radio user cannot distinguish between a deeply faded bashdraitle one. In order to mitigate
these effects, cognitive radio users often collaboratesfactrum sensing [12—-17]. Different
collaborative strategies will result in distinct perfomta. On the other hand, there is a signifi-
cant challenge in sensing the whole of the spectrum at acplatiphysical location in a short
observation time. Otherwise, the performance of the cagniadio system degrades due to a
lagging response to spectrum holes. Hence, wideband spestensing is of prime importance

to ensure efficient operation of both the primary and the séary (cognitive radio) networks.

Many extensive studies have been carried out to developesifiand reliable spectrum sensing
methods. Despite numerous spectrum sensing algorithnmg lbeported in the literature [7,

12-29], few of them are effective for wideband spectrum sgndue to energy and hardware



Introduction

constraints. To the best of the author's knowledge, only dpproaches have appeared in the
literature which offer the possibility of implementing veidand spectrum sensing. In the first
model, a wavelet transform approach [24] is used to detedPtlis by searching discontinuities
and irregularities in the power spectrum density (PSD) ef thceived signal. However, a
high sampling rate ADC is required and the energy cost of Mia€ will be prohibitive. The
second model is known as filter bank detection [25, 26]. Thixleh was developed based
on the assumption that multicarrier communications arel iseognitive radio networks. A
pair of matched root-Nyquist filters are employed in the piyntransmitter and the cognitive
radio receiver, requiring a large number of RF components 28]. Moreover, in practice,
the filter information at the PUs are usually unknown in thgritive radio networks. Either
multicoset sampling [30—32] or multirate sampling [33, 8d¢hniques can be used to reduce
the high sampling rate, then the signal is recovered fromsoreanents. However, to design a
specific sampling pattern, requirements on both time syorgkation and devices are stringent.
Finally, compressive sensing (CS) based methods were staghe [22, 27-29, 35] to use
under-sampled measurements for reconstructing the fatitspm. Then spectrum sensing is
performed on the reconstructed spectrum. Despite theiskmwpling rate, the performance of

CS based methods are dependent upon storage and transnoisgieasurement matrix.

1.2 Obijectives and Contributions

1.2.1 Objectives

The aim of this thesis is to study the performance of collatree spectrum sensing algorithms,
and develop efficient wideband spectrum sensing technithagscan be used in distributed
cognitive radio networks over fading channels. More spedlify, the study has the following

objectives:

e To analyse the detection performance of different collabiee spectrum sensing algo-

rithms over fading channels.

e To develop wideband spectrum sensing techniques that plieage to distributed cog-
nitive radio networks with low implementation complexityigh energy efficiency, and

good data compression capability.
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1.2.2 Key Contributions

The main contributions of this thesis are summarised asvisli

e Easily computed expressions for the average probabilitgedéction are derived for a
cognitive radio using energy detection but suffering fromkbigamim, and Rician fad-
ing channels. For a slow log-normal fading channel, an appration of the average
probability of detection is given, by using the Wald distiilon to replace the log-normal

distribution.

e The detection performance of energy detection using diffecollaborative strategies
is derived. Specifically, maximum ratio combining (MRC)|estive combining (SC),
square-law combining (SLC), and square-law selection [fproaches are analysed

and compared under different constraints.

e A multirate asynchronous sub-Nyquist sampling (MASS) aysthat employs multiple
low-rate ADCs is developed that implements wideband spatensing using a few
measurements. The MASS system not only has a low implenemtedbmplexity, but
also is energy-efficient for sharing spectrum sensing déke conditions under which
recovery of the full spectrum is unique are presented usiSgt€thniques. A trade-
off is made between the number of sampling channels and timbility of successful
spectrum recovery. The MASS system is applied to distribategnitive radio networks.
When the spectra of the cognitive radio nodes have a comnemtrapsupport, using one

low-rate ADC in each cognitive radio node can successfabover the full spectrum.

e A multirate spectrum detection (MSD) system is developedédtect the PUs from a
small number of measurements without reconstructing tHespectrum. In order to
achieve a better detection performance, a data fusioregiras obtained for combining
spectrum sensing data. The theoretical bounds on detguidormance of MSD are de-
rived for distributed cognitive radio nodes when they aréesing from independent and
identically distributed (i.i.d.) additive white Gaussianise (AWGN), Rayleigh fading,

and log-normal fading channels.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

4
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Chapter 2

This chapter first presents the structure, functionalitse®l potential applications of cognitive
radios. Some traditional spectrum sensing algorithms @litierature are then introduced,
and their advantages and disadvantages are summarisedly,Some related approaches for

collaborative spectrum sensing and wideband spectrumngease discussed.

Chapter 3

This chapter derives some easily computed expressionhéoaterage probabilities of false
alarm and detection when the cognitive radio is using endeggction method but suffering
from a fading channel. For cognitive radios designed toatmltate using MRC, SC, SLC,
or SLS over i.i.d. Nakagamia fading channels, the average probabilities of false alamoh a

detection are given.

Chapter 4

This chapter introduces a MASS system used to implementhaiut spectrum sensing. Us-
ing CS theory, the sufficient conditions of full spectrumaeery are derived. The practical
implementation issues, for example, the effect of noiserandel mismatch, and the tradeoff
between the number of sampling channels and the probabflgyccessful spectrum recovery,
are discussed. When the MASS system is applied to distdbeagnitive radio networks, a hy-
brid matching pursuit (HMP) algorithm is proposed for reswuacting the full spectrum using

fewer measurements.

Chapter 5

This chapter proposes a MSD system for implementing widelsaectrum detection without
reconstructing the full spectrum. The effect of sub-Nygu@ampling in a single cognitive
radio node is considered, followed by designing the dat@ifusule for multiple cognitive
radio nodes. The detection performance of MSD over fadiranobls is analysed, and some

theoretical bounds on the detection performance of theqa®g system are derived.



Chapter 2
Background

As an intelligent radio, cognitive radio is the key techrypidhat provides the capability to
use the RF spectrum in a dynamic manner [3,5-11]. A crucgalirement of cognitive radios
is that they must rapidly fill in spectrum holes without cagsiharmful interference to the
PUs [7]. This task is fulfilled by the function of spectrum siny. However, there are two
challenges in spectrum sensing. One of them is that dueeotedf multipath and shadowing,
the sensing result of a single cognitive radio user is néaléd. Thus, collaborative spectrum
sensing techniques are often used to combat the effect iofgfadnother significant challenge
is sensing the whole of the spectrum at a particular phykcation in a short observation time.
Hence, wideband spectrum sensing is of prime importancedore efficient operation of both

the primary and the secondary (cognitive radio) networks.

In this chapter, Section 2.1 presents the structure andutigtibnalities of cognitive radios, and
some potential applications of cognitive radio technolagy introduced. A literature review
of spectrum sensing algorithms is presented in Section Phis section first discusses tradi-
tional spectrum sensing techniques, i.e. matched filtarggndetection, and cyclostationary
detection, in Section 2.2.1. Cooperative spectrum sersiagegies, i.e. data fusion or deci-
sion fusion, are then analysed in Section 2.2.2. The morediging techniques for wideband
spectrum sensing, e.g. wavelet detection, filter bank tetecand compressive sensing based

detection, are presented in Section 2.2.3.

2.1 Cognitive Radio

“Cognitive radio is viewed as a novel approach for improvitige utilisation of a precious
natural resource: the radio electromagnetic spectrun®’ Haykin [6]

For the purpose of improving the spectrum utilisation edingy and providing high bandwidth
to mobile users, the next generation communication netsvps) [3] program was developed

to implement spectrum policy intelligent radios, also kimaag cognitive radios [5], by dynamic
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Figure 2.1: lllustration of spectrum holes and the concept of dynamecspm access [38].

spectrum access techniques as shown in Figure 2.1. Fudherthe IEEE has organised a new
working group, known as the wireless regional area netwd/RAN, IEEE 802.22 [36]), for
using cognitive radio techniques to allow sharing of geppreally unused television (TV)

spectrum on a non-interfering basis [9, 20, 37].

2.1.1 Cognitive Radio Functionalities

The termcognitive radiowas first coined by Mitola in [5] and has the following formadfahi-
tion as [6]:

“Cognitive radio is an intelligent wireless communicatiepstem that is aware of its surround-
ing environment (i.e. outside world), and uses the metlogyobf understanding-by-building to
learn from the environment and adapt its internal statedatistical variations in the incoming
RF stimuli by making corresponding changes in certain opegaparameters (e.g., transmit-
power, carrier-frequency, and modulation strategy) inlfgiae, with two primary objectives in
mind:

e highly reliable communications whenever and wherever eged

o efficient utilisation of the radio spectrum:-S. Haykin

From the definition, the two main characteristics of cogritiadio can be summarised as cogni-
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Figure 2.2: The cognitive capability of cognitive radio enabled by aiba®gnitive cycle [3].

tive capability, and reconfigurability [3]. The former oneables the cognitive radio to interact
with its environment in a real-time manner, and intellidgmtetermine appropriate communi-

cation parameters based on quality of service (QoS) remeaints. These tasks can be imple-
mented by a basic cognitive cycle: spectrum sensing, spaanalysis, and spectrum decision
as shown in Figure 2.2 [3].

e Spectrum sensingeither by cooperating or not, the cognitive radio nodesitady mon-
itor the RF environment. To improve the spectral usage efiy, cognitive radio nodes
should not only find spectrum holes by sensing some partispkectrum, but also moni-
tor the whole spectral band.

e Spectrum analysisThe characteristics of the spectral bands that are sehsmatjh spec-
trum sensing are estimated. The estimation results, egaaity, and reliability, will be

delivered to the spectrum decision step.

e Spectrum decisionAccording to the spectrum characteristics analysed gbarneap-
propriate spectral band will be chosen for a particular dbgnradio node. Then the
cognitive radio determines new configuration parameters, €ata rate, transmission
mode, and bandwidth of the transmission.



Background

Application .+ Application i QoS >
Control ! Layer ! Requirement
Data Encryption J * Presentation L Data Encryption g
g Layer v " 5
i L a
Q fmmm s . =
g Connection . i Reconfiguration |
[ Replacement | Session Layer v - E
_____________________ =
2z R . £
™= | Reconfiguration . T L i Reconfiguration Q
= Reliability 7§ o1 SPOTt LAYCT '™ g cTiability g
_____________________ g
2 Routing ____________________ , Routing o]
S Information R Net KL i Information | 2
B g Ciwor, ayer 7 . i
E Handoff delay ! Y +  Reconfiguration E
s | T
é S : Scheduling %
_Link layer delay_|: Link Laver 0 Information o
2 Handoff delay | E ¥ i < > o
""""""""""""" Spectrum N
e e | Sharing
Sensin ! Physical Layer | Sensing
Information ~ | v ___________________i Information
Spectrum Sensing

Handoff Decision, Current and Candidate Spectrum Information

Figure 2.3: Protocol stack in the cognitive radio networks [3, 38].

Another key feature of cognitive radio is reconfigurability order to adapt to RF environment,

cognitive radio should change its operational paramegjrs [
e Operating frequencycognitive radio is capable of changing its operating fesy in
order to avoid the PU or to share spectrum with other users.

e Modulation schemecognitive radio should adaptively reconfigure the modatascheme,

according to the user requirements and the channel conslitio

e Transmission poweWithin the power constraints, transmission power can bemngg-

ured in order to mitigate interference or improve spectfatiency.
e Communication technologyognitive radio can also be used to provide interoperabili

among different communication systems by changing moumatcheme etc.

Figure 2.3 shows the protocol stack in a cognitive radio oetw}3]. Spectrum sensing is the

foundation of all other cognitive radio functions. Basedtloa results of spectrum sensing, the
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function of spectrum sharing allocates spectrum holesideriag both fairness and QoS re-
quirements. Thus it requires coordination and reconfigomamong cognitive radio terminals.
On the other hand, the functions of spectrum mobility anatspen management require inter-
actions with all other layers for exchanging informatioroabQoS requirements, application
control, routing, reconfiguration, and scheduling. Thecfionalities of the cognitive radio can

be summarised as [3, 38]:

e Spectrum sensingThe aim of the spectrum sensing is to detect spectrum halas,
monitor the activity of the PUs. When the PUs reappear, thgnitive radio should

release the spectrum without posing harmful interferencéhe PUs.

e Spectrum sharingWhile there are several coexisting cognitive radio ussigring the
spectrum while considering both fairness and spectralieffoy is very important. These
sharing strategies should depend not only on the spectramahiity, but also on the

users’ QoS requirements.

e Spectrum managementhe goal of spectrum management is to provide flexible, fair
and efficient usage of the radio resource. According to tealtef the spectrum anal-
ysis, spectrum management can improve the spectral tibisafficiency by providing
appropriate spectrum holes to the cognitive radio users/gdisas considering their QoS

requirements.

e Spectrum mobility When the current operating frequency becomes unavailiniag
communication due to either changes over time, or movemahtise cognitive radio

users, the system needs to switch to other bands in a seaméeser.

2.1.2 Potential Applications

Because cognitive radio is aware of the RF environment acggable of adapting its transmis-
sion parameters to the RF spectrum environment, cogniigios and the concepts of cognitive
radio can be applied to a variety of wireless communicatiorirenments, especially in com-

mercial and military applications. A few of applicationsdisted below:

e Coexistence of wireless technologies: [8Jognitive radio techniques were primarily con-
sidered for reusing the spectrum that is currently allogatethe TV service. WRAN

users can take advantage of broadband data delivery by tt@tapistic usage of the

10
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underutilised spectrum. Additionally, the dynamic spaictraccess techniques will play
an important role in full interoperability and coexisteram@ong diverse technologies for
wireless networks. For example, cognitive radio concepts lwe used to optimise and
manage the spectrum when the wireless local area networkA(lYland the Bluetooth

devices coexist.

o Military networks [8,39] In military communications, bandwidth is often at a premiu
By using cognitive radio concepts, military radios can nuoliyachieve substantial spec-
tral efficiency on a noninterfering basis, but also reducplé&mentation complexity for
defining the spectrum allocation for each user. Furthermmititary radios can obtain
benefits from the opportunistic spectrum access functigpaed by the cognitive ra-
dio [8]. For example, the military radios can adapt theingmission parameters to use
Global System for Mobile (GSM) bands, or other commerciaddsawhen their original
frequencies are jammed. The mechanism of spectrum managearehelp the military
radios achieve information superiority on the battlefi¢gtdrthermore, from the soldiers’
perspective, cognitive radio can help the soldiers to reachbjective through its situa-

tional awareness.

e Heterogeneous wireless networks [8,48fom a user’s point of view, a cognitive radio
device can dynamically discover information about accessorks, e.g. WiFi and GSM,
and makes decisions on which access network is most suftahbiis requirements and
preferences. Then the cognitive radio device will reconfigtself to connect to the best
access network. When the environmental conditions chahge;ognitive radio device
can adapt to these changes. The information as seen by théiwegadio user is as

transparent as possible to changes in the communicatiaroement.

2.2 Spectrum Sensing Techniques

As PU systems have higher priority than secondary usersdioguhe allocated frequencies,
cognitive radios should either avoid interference to PUkea®p the interference level lower
than a threshold. To exploit spectrum opportunities, cigniradio must detect spectrum
holes. Most of the functions in the cognitive radio rely or&pum sensing for implement-
ing its environmental awareness. Narrowband spectrumirggmdgorithms can be classified

as shown in Figure 2.4. The most efficient way to sense spadiules is to detect active

11
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Figure 2.4: Narrowband spectrum sensing algorithms [3, 7].

primary transceivers in the vicinity of the cognitive rasliff]. However, as some primary re-
ceivers are passive, such as TVs, some are difficult to detgotactice. Three commonly
used techniques for detecting the primary transmittersnzaieched filtering [23, 41], energy
detection [10, 42—44], and cyclostationary detection 21737, 45-49].

As a primary receiver may be passive, the cognitive radio n@ybe able to avoid generating
interference to the primary users when the primary trartemis out of the cognitive radio’s
detectable range. This problem is referred to as the hiddeminal problem as shown in
Figure 2.5(a). Additionally, because of shadowing asftithted in Figure 2.5(b), a cognitive
radio user cannot distinguish between a deeply faded bamh@midle one. To address these
issues, cooperative spectrum sensing can be used to mitlgaeffect of shadowing and the

primary receiver location uncertainty [7, 8].

2.2.1 Traditional Spectrum Sensing

In this section, three typical spectrum sensing algorithwvilsbe discussed. The implemen-
tation of these algorithms requires different conditioasd their detection performance are
correspondingly distinguished. The advantages and disadges of these algorithms are sum-

marised in Table 2.1.
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2.2.1.1 Matched filter

A block diagram of a matched filter is shown in Figure 2.6(ahe atched filter method is
an optimal approach for spectrum sensing in the sense thaditmises the signal-to-noise
ratio (SNR) in the presence of additive noise [23,41]. Aeotiadvantage of the matched filter
method is that it requires less observation time since thk processing gain can be achieved
by coherent detection. For example, to meet a given prababil detection, onlyO(1/SNR)
samples are required [10]. This advantage is achieved bglating the received signal with
a template to detect the presence of a known signal in théveetsignal. However, it relies
on prior knowledge of the PU, such as modulation type, andégidormat, and requires the
cognitive radio to be equipped with carrier synchronigatand timing devices. With more

types of PUs, the implementation complexity grows makirgrttatched filter impractical.
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Figure 2.6: Block diagrams for traditional spectrum sensing algorigin{a) matched filter,
(b) time domain energy detection, (c) frequency domainggneetection, and (d)
cyclostationary detection [8].

2.2.1.2 Energy detection

If the information about the PU is unknown in the cognitivelica a commonly used method
for detecting the PUs is energy detection (also known a®naeliry) [50]. Energy detection
is a non-coherent detection method that avoids the needfoplicated receivers required by
a matched filter. An energy detector can be implemented ih that time and the frequency
domain. For time domain energy detection as shown in Figiigh®, a bandpass filter (BPF) is
applied to select a centre frequency and bandwidth of ist¢7e20,21]. Then the energy of the
received signal is measured by a magnitude squaring dewitle an integrator to control the
observation time. Finally, the energy of the received digvih be compared with a predeter-
mined threshold to decide whether the PU is present or noieder, to sense a wide spectrum
span, sweeping the BPF will result in a long measurement thseshown in Figure 2.6(c), in
the frequency domain, the energy detector can be implemeaimalarly to a spectrum analyser

with a fast Fourier transform (FFT) [7, 10, 21]. Specificatlye received signal is sampled at or
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Sensing algorithm  Advantages Disadvantages
Matched filter Optimal performance Require prior infornoati
Low computational cost of the primary user

Energy detection Do not require prior information  Poor pariance for low SNR

Low computational cost Cannot differentiate users
Cyclostationary Valid in slow SNR region Require partiabpinformation
Robust against interference High computational cost

Table 2.1: Summary of advantages and disadvantages of narrowbandrspesensing algo-
rithms [8, 9].

above the Nyquist rate over a time window. Then the PSD is cteapusing an FFT. The FFT
is employed to analyze a wide frequency span in a short oatemtime, rather than sweeping
the BPF in Figure 2.6(b). Finally, the PSD will be comparedhva threshold )\, to decide

whether the corresponding frequency is occupied or not.

The advantages of energy detection are that prior knowletitie PUs is not required, and both
the implementation and the computational complexity amegaly low. In addition, a short
observation time is required, for exampi@(1/SNR?) samples are required to satisfy a given
probability of detection [10]. Although energy detectioasta low implementation complexity,

it has some drawbacks. A major drawback is that it has poa@rctieh performance under low
SNR scenarios as it is a non-coherent detection scheme.hé&ndtawback is that it cannot
differentiate between the signal from a PU and the intenfegefrom other cognitive radios,
thus, it cannot take advantage of adaptive signal proogssucth as interference cancellation.
Furthermore, noise level uncertainty can lead to furthefgpmance loss. These disadvantages
can be overcome by using two-stage spectrum sensing teshnig. coarse spectrum sens-
ing and fine spectrum sensing [21]. Coarse spectrum senam@e& implemented by energy
detection or wideband spectrum analysing techniques. th@fcoarse spectrum sensing is
to quickly scan the wideband spectrum and identify someiplesspectrum holes in a short
observation time. By contrast, fine spectrum sensing furthastigates and analyses these
suspected frequencies. More sophisticated detectiomitpeds can be used at this stage, such

as cyclostationary detection described below.
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2.2.1.3 Cyclostationary detection

A block diagram of cyclostationary detection is shown ind&2.6(d). Cyclostationary detec-
tion is a method for detecting the PUs by exploiting the cgtdtonary features in the mod-
ulated signals [23, 37]. In most cases, the received signatsgnitive radios are modulated
signals, which in general exhibit built-in-periodicity tlvin the training sequence or cyclic pre-
fixes. This periodicity is generated by the primary tranganiso that the primary receiver can
use it for parameter estimation, such as channel estimati@hpulse timing [21,23]. The cyclic

correlation function, also called cyclic spectrum funot@CSF), is used for detecting signals
with a particular modulation type in the presence of noid@s s because noise is usually wide-
sense stationary (WSS) without correlation, by contrastiutated signals are cyclostationary
with spectral correlation. Furthermore, since differerddulated signals will exhibit different

characteristics, cyclostationary detection can be usedi$tinguishing between different types
of transmitted signals, noise, and interference in low SRRrenments. One of the drawbacks
of cyclostationary detection is that it still requires partnformation of the PU. Another draw-

back is that the computational cost is high as the CSF is adim@nsional function dependent

on frequency and cyclic frequency [8, 9].

2.2.2 Cooperative Spectrum Sensing

Cooperative spectrum sensing can not only decrease thalplidies of false alarm and missed
detection, but can also mitigate the hidden terminal probl@hus, multiple cognitive radios
are often required to collaborate for spectrum sensing. derdralized sensing setup as shown
in Figure 2.7, each cognitive radio observes the RF spectngliwidually, and forwards its
measured/processed data, or decisions to a fusion cer@¢v{& a common control channel.
The common control channel is responsible for transfersgsing and control information be-
tween all cognitive radios and the FC. The FC then fuses iaflisg data or decisions, identifies
the available spectrum, and broadcasts the spectrum iaf@mto all nearby cognitive radios
via a control channel. Generally, cooperative spectrunsiagralgorithms can be categorised
into data fusion and decision fusion, depending upon whipk bf sensing data is transmitted
to the FC [7, 8, 37].
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Figure 2.7: Schematic illustration of cooperative spectrum sensimgse that each cognitive
radio transmits its individual observation or decision \d@antrol channels to a
fusion center, which makes final decision on the spectralpaccy status.

2.2.2.1 Data Fusion

If raw data from all cognitive radios are collected at the EGme advanced signal process-
ing technigues can be applied. This scheme is thus similarrtalti-antenna sensing case.
Furthermore, if the channel state information (CSI) betwtee PUs and the cognitive radios
are perfectly known, the optimal combining strategy, MRC][®an be used for achieving the

highest output SNR. In the case where partial CSl is avaiaither combining techniques can
be employed, such as SC [51]. However, the communicatiotiedouof transmitting raw data is

significant. Thus, itis preferred to send processed or cesgad data to the FC for the purpose

of saving transmission resources.

When an energy detector is deployed in each cognitive ratiergy vectors from all cognitive
radios can be sent to the FC. In such a scenario, the FC camg®pC, or SLS [52,53]. The
transmission bandwidth for sharing the data is half of thedata case as the energy vectors are
real, instead of complex. In addition, CSlis not requirecewhsing SLC or SLS. Alternatively,

the measurements can be further compressed via sourceydedimiques, and then sent to the
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FC. It is evident that sending compressed data will savestngsion bandwidth and energy,

but, it requires more computational resources in both tlgmitive radios and the FC.

2.2.2.2 Decision Fusion

In a decision fusion scheme, every cognitive radio perfalmaoal spectrum measurements in-
dependently, and makes a binary decision on whether a P@sspror not. All decisions from
the cognitive radios are then forwarded to the FC, where #wstns are fused and a final
decision is made on the spectrum occupancy status. In detieege decision fusion rules can
be adopted as below [37]:

e Logical OR rule In this rule, the FC gives decision “1” (PU present) if anyeasf de-
cisions from the cognitive radios is “1”. Thus, using thiseruthe probability of false
alarm (when PU is absent, cognitive radios think that PUiisguthat band) will increase
as shown in (2.1). Meanwhile, the probability of missed déda (when PU is present,
cognitive radios sense that PU is not using this band) isaedluSince cognitive radio
occupying a frequency band used by the PU may interfere WwéhPtJ, the risk of cog-
nitive radios causing interference to the PU is minimiseidgishe logical OR rule. If
these decisions from thgv > 1) cognitive radios are independent, the probabilities of

false alarm and detection can be given by:

(2

Pr=1-]Ja-Pp, (2.1)
=1

(2

Py=1-]J- P (2.2)
=1

whereP} and P; denote the probabilities of false alarm and detection incihgnitive

radio nodei, respectively.

e Logical AND rule In this rule, the FC decides “1" if and only if all decisionsoin
the cognitive radios are “1”. Hence, using this rule, thebatality of false alarm is
minimised, but the risk of causing interference will incseaSimilarly, if these decisions
from thewv cognitive radios are independent, the probabilities adallarm and detection

can be given by:

P =17 (2.3)
i=1
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Py =[Pk (2.4)
=1

e cout ofv voting The FC decides “1” if and only i or more tharc cognitive radios de-
cide “1”, wherec € [1,v]. If these decisions from thecognitive radios are independent,

the probabilities of false alarm and detection can be giwen a

=3 (o50)a-reimpe (25)
Py= 2_% (C i Z) (1= Py = (Pt (2.6)

Obviously, this fusion rule includes the logical OR rute=¢ 1), and the logical AND

rule (c = v) as special cases.

2.2.2.3 Data Fusion Versus Decision Fusion

For both fusion schemes, the measured data or decisionstodszl transmitted through a
control channel. In practice, the bandwidth of the contiohrinel alters in cognitive radio
networks, and the information exchanges may be unrelidttiee control channel is rented, the
data transmission could be expensive. In comparison tofdsitan, the one-bit decision fusion
scheme needs a very low bandwidth for sharing the spectrmsirggdata, as well as saving
transmission energy. However, most decision fusion rugssime that the decisions from all
cognitive radios are independent, which in practice mayocotur. Any decision fusion scheme

is open to similar abuse unless proper security is incotpdra

2.2.3 Wideband Spectrum Sensing

From the discussion in Section 2.1, the average spectrumpaocy is around%. Under
such a circumstance, the cognitive radio can easily findtgpadoles by using a tunable nar-
rowband bandpass filter (TNBF) [54] to search one narrowhaortion of the spectrum at a
given time. Traditional spectrum sensing algorithms camthe used for searching spectrum
holes. Due to the explosive development of wireless pradtice average spectrum occupancy
will increase. A wideband spectrum sensing structure shbel adopted to search multiple

bands at a time [24]. In practice, wideband spectrum sersistems are difficult to design,
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Sensing algorithm Advantages Disadvantages

Wavelet detection Flexibility in adapting to Requires hggmpling rate ADC
dynamic spectrum High energy consumption

Filter bank detection Low sampling rate Large implementatomplexity

High spectral dynamic range Not flexible as filters are preset

Multicoset sampling Low sampling rate Requires accurae tbffsets

Less measurements Requires too many sampling channels
CS based detection Low sampling rate High implementationpdexity

Less processed data Matrix storage & transmission
Multirate sampling Low sampling rate Stringent requiretseon devices

Less sampling channels Non-aliased in at least one channel

Table 2.2: Summary of advantages and disadvantages of wideband spesgnsing algo-
rithms [7,27-29, 33-35].

due to either high implementation complexity or high finahenergy costs [8]. The literature
of wideband spectrum sensing is still in its early stage® tjgpes of models are commonly
discussed. They are: 1) wavelet detection [24], 2) filterkod@tection [25, 26], 3) multicoset
sampling based detection [30-32], 4) CS based methods §R7ad 5) multirate sampling
based detection [33, 34, 55]. The advantages and disadesntd these algorithms are sum-

marised in Table 2.2.

2.2.3.1 Wavelet Detection

In [24], Tian and Giannakis proposed a wavelet-based witkdlsansing approach. It provides
an advantage of flexibility in adapting to a dynamic widebapdctrum. In their approach,
the PSD of the wideband spectrum is modelled as a train ofecotise frequency subbands,
where the PSD is smooth within each subband but exhibitediswities and irregularities on
the border of two neighboring subbands as shown in FigureTh8 architecture of the wavelet
transform based wideband spectrum sensing is illustrat&igure 2.9. The wavelet transform

of the wideband PSD is used to locate the singularities oPtBBb.

Let o(f) be a wavelet smoothing function, the dilationg(ff) is given by,

eath =30 (3) @)
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Ak fefu f fy o f
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Wide band of interest

Figure 2.8: Demonstration of the wideband spectrum of interest. The BSinooth within
each subband, and exhibits discontinuities and irregtilsiwith the adjacent sub-
bands [24, 27].

X S(f) Local Decide
X(1) ") Wavelet ocal " 'H, or H,
—» FFT —» PSD —» —» maximum
transform )
detection

Figure 2.9: Block diagram of the wavelet transform based wideband sp@csensing tech-
nique [8].

whered is a dyadic scale that can take values that are powesia. d = 2/. The continuous
wavelet transform (CWT) of the PSD is given by [24],

CWT{S(f)} = S(f) * palf), (2.8)

where *%” denotes the convolution angi( f) is the PSD of the received signal.

Then the first and second derivative of the CY$Tf)} are used to locate the irregularities and
discontinuities in the wideband PSD. Specifically, the wauies of each subbands are located
by using the local maxima of the first derivative of CWS{ f)}, and locations of the subbands

are finally tracked by finding zero crossings in the secondvative of CWT{S(f)}.

By controlling the wavelet smoothing function, the wavétahsform based wideband spectrum
sensing approach has flexibility in adapting to the dynampecsum. However, characterising

the wideband spectrum will require a high sampling rate ARGignal with a bandwidth of
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W must be sampled at or abo2&l” rate), due to the Nyquist sampling theorem [56], and the
energy cost of that ADC will be prohibitive.

2.2.3.2 Filter Bank Detection

In [25], Farhang-Boroujeny presented a filter bank methadwfimeband spectrum sensing
in cognitive radio systems. In his approach, multicarriemmunications are assumed to be
used in cognitive radio networks. It is assumed that a paimafched root-Nyquist filters
are employed in the primary transmitter and the cognitivdiaraeceiver, respectively. The
wideband spectrum is considered as the output of a bank tbtgpe filters (with different
shifted central frequencies). As shown in Figure 2.10, theeband spectrum can be directly
estimated by using a prototype filter, and other bands carbtaned through modulating the
prototype filter. In each subcarrier, the correspondingiporof the spectrum for the wideband
signal is downconverted to baseband, then lowpass filteré@picted in Figure 2.11. The PSD
of the output signaly,,,, (f), can be written as [25],

Syis (F) = Sza(f + [ H (™) 2 S (fi)[H (¥, (2.9)

where S, (f;) denotes the PSD of the received signét) in the subband, and H(z) is

assumed to be narrowband and is designed as a root Nyadisilter.

The approximate result in (2.9) can be rewritten in termdef:ttransform variable: as [25],
Wy (2) = Sualfi) H(2)H(271) = Sea(fi) G (2), (2.10)

whereGy (z) = H(z)H(z~!) is called the Nyquist ) filter. In the time domain, after nor-

malising,G y (z) satisfies [25],

1, n=0
gn(n) = (2.11)
0, n=mN,m #0,

whereN is the maximum number of subcarriers in the filter bank.

Let ¢,,,, (k) represent the correlation coefficients @fn) when performing an inverse-

transform on¥,,,.(z), the correlation matrix of the measured vectdRs,,,,, can be given
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Figure 2.10: The graphic illustration of using filter bank on the widebaspkctrum [25].

by [25],
Ry,y. = Saa(fi)A, (2.12)

where the matrixA is a Toeplitz matrix, and each element Af is from the Nyquist (V)

sequence, i.egy(n).

It can be shown tha$,.(f;) follows central or non-central chi-square distributionheh the

degree of freedom estimation is critical for the hypothdeit onS,.(f;). The eigenvalue
decomposition is performed on mati, and the resultant eigenvalueg, A, - - -, are used to
measure the degree of freedonmtip, (f;). Then the estimatefl,,.( f;) can be obtained by using

observation vectors, eigenvalues, and degree of freed@haaen in equation (34) in [25].

As a result, compared with multitaper method [18], the fitank method can obtain a lower
variance when the PSD is low, because of its better respdribe prototype filter. Regardless
of the high spectral dynamic range of the filter bank appro#sltomputational speed is slower
than that of the multitaper method [45]. Besides, the imgetation of the filter bank approach
requires a large number of RF components for sensing a widebpectrum [27, 28]. For
example, in order to sense wideband spectrum with a bankwidt0 GHz in a time, it needs
at least 200 RF front-end components when the lowpass fétgthe bandwidth of00 MHz
(100 ADCs and 100 filters a®) GHz/0.1 GHz = 100). The range of filters, and the number
of the narrow bands are always preset, thus, the filter bardeiris not flexible. Furthermore,

the filters at the primary transmitter and the cognitive oaattie assumed to be a pair of matched
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filter o >
H(z)

Figure 2.11: The demodulation of received wideband signal insttie subcarrier [25].

root-Nyquist filters [25], however, it is not practical totain the filter information of the PUs

in the cognitive radio networks.

2.2.3.3 Multicoset Sampling based Detection

A potential method for implementing wideband spectrum ggngsing a sub-Nyquist sampling
rate is multicoset sampling [30—32]. Multicoset samplia@iselection of some samples from
a uniform grid, which can be obtained when uniformly samgplgignal,z(¢), at a rate off;
(greater than the Nyquist rate). The uniform grid is theridéid into blocks of. consecutive
samples, and in each blockv < L) samples are retained while the rest of samples/i.e.v
samples, are skipped. A constant &ethat describes the indexes of thassamples in each

block is called a sampling pattern as [32],
C={th,, 0<t'<t’<.-..<t®"<L-1 (2.13)

The multicoset sampling can be implemented by usisgmpling channels with sampling rate

of ff where the-th sampling channel is offset b}f from the origin as below [32],

(2.14)

: z(3), n=mL+t, meZ
'[n] = ;
0, otherwise

The discrete-time Fourier transform (DTFT) of the samplas be linked to the unknown
Fourier transform of signat(t) by,

— —

Y (f)=2X(f) (2.15)

Where7(f) denotes a vector of DTFT of these measurements fvochannels,)_f(f) is a

vector of the Fourier transform af(¢), and® is the measurement matrix whose elements are
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determined by the sampling patte¢ih The problem of wideband spectrum sensing is thus
equivalent to recovering_f(f) from }7(f). In order to get a unique solution from (2.15), every
set ofv columns of® should be linearly independent. However, searching far sampling
pattern is a combinatorial problem. In [57,58], some sangptiatterns are proved to be valid for
reconstruction. The advantage of multicoset samplingasttie sampling rate in each channel
is L times lower than the Nyquist rate. Moreover, the number o&sneements ig lower
than the Nyquist sampling case. One drawback of the muéitcemmpling is that accurate time
offsets between sampling channels are required to satisfeeific sampling pattern. Another

one is that the number of sampling channels should be suffigikigh [32].

2.2.3.4 Compressive Sensing based Detection

Tian and Giannakis were the first to exploit the sparsity diigasignals by introducing CS
theory [59] to realise wideband spectrum sensing [27, 6], @he technique takes advan-
tage of using fewer samples closer to the information ratier than the inverse of the band-
width, to perform wideband spectrum sensing [27]. Aftelomstruction of the wideband spec-
trum, wavelet-based edge detection was used to detect theband spectrum as shown in
Figure 2.12.

Let z(t) represent a wideband signal received at the cognitive rdtlie(¢) is sampled at the
Nyquist sampling rate, the sequence vector, gz € C"), will be obtained. The Fourier
transform of the sequencé_f = F'Z, will therefore be alias-free, wheilé denotes the Fourier
matrix. When the spectrum?(> , is k-sparse £ < N), which means: out of NV values in

X are not neglectable;(¢) can be sampled at a sub-Nyquist rate while its spectrum can be
reconstructed with a high probability. The sub-samplemio@ssed signaly € CM (k <

M < N), is linked to the Nyquist sequenagby [27],

7= ®7, (2.16)

where® ¢ CM*N js the measurement matrix, which is a selection matrix thatdomly
choosedV/ columns of the sizeéV identity matrix. NamelyN — M samples out ofV samples
are skipped. The relationship between the spect?ﬂm]d the compressed sequelyds given
by [27],
—_—
7=®F1X, (2.17)
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x(t) ) v H, or H,
Compregswe y Spectrurr} X > Wave.let
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Figure 2.12: Block diagram of the compressive sensing based detection.
Samplin
xX(1)pe(1) PHne B
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Figure 2.13: Block diagram for the analog-to-information converter [6%he received signal,
x(t), is randomly demodulated by a pseudorandom chipping segyeriegrated
by an accumulator, and sampled at a sub-Nyquist rate.

whereF 1 denotes the inverse Fourier matrix.

Approximating)—(> from¢in (2.17) is a linear inverse problem and is NP-hard. Thedyasisuit
(BP) [62] algorithm can be used to solvé by linear programming [27]:

~ = . =
X =arg min || X||;, s.t. ¥=®F " X. (2.18)

After reconstructing the full spectruﬁ, the PSD is calculated usinﬁ. Then the wavelet
detection approach in Section 2.2.3.1 can be used to andlgsedges in the PSD. Although
less measurements are used for characterising the widalpaattum, the requirement of high
sampling rate on ADC is not relaxed. By contrast, in [28, &), ®oloet al. suggested using
an analog-to-information converter (AIC) [64—68] moddsaknown as random demodulator,
[69]) for compressing the wideband signal in the analog domEhe block diagram of AIC is

given in Figure 2.13.

A pseudorandom number generator is used to produce a @idaret sequenceg,eq, - - -,
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called a chipping sequence, the number of which takes valtigsl with equal probability.
The waveform should randomly alternate at or above the Nsgqaie, i.e.w > 2W, where
W is the bandwidth of signal. The output of the pseudorandombrar generator, i.en (), is
employed to demodulate a continuous-time inp(t) by a mixer. Then an accumulator sums
the demodulated signal fayw seconds, and the filtered signal is sampled at a sub-Nyaguest r
of w. This sampling approach is called integrate-and-dump 8agpince the accumulator is
reset after each sample is taken. The samples acquired ®iGhe; € C¥, can be related to
the received signaly € C=, by,

iy =PI, (2.19)

where® € C**% is the measurement matrix describing the overall actioh@®IC system on

the input signalf. The signald can be identified by solving the convex optimization problem

Z =arg min ||Z||;, s.t. §= DI, (2.20)

by BP or other greedy pursuit algorithms. The PSD of the waakelspectrum can be estimated
using the recovered signa| followed by a hypothesis test on the PSD. Alternativelg BSD
can be directly recovered from the measurements using Gfithlgns [28]. Although the AIC
bypasses the requirement for a high sampling rate ADC, dd¢a a high computational com-
plexity as the huge-scale of the measurement matrix [35fthEtmore, it has been identified

that the AIC model can easily be influenced by design impé&dies or model mismatches [35].

In [22, 35], Mishali and Eldar proposed a parallel implenagioh of the AIC model, called
modulated wideband converter (MWC), as shown in Figure .ZTh& key difference is that in
each channel the accumulator for integrate-and-dump $agnisl replaced by a general low-
pass filter. One of the benefits of introducing parallel dtrieee is that the dimension of the
measurement matrix is reduced making the reconstructigielreaAnother benefit is that it
provides robustness to noise and model mismatch. On thelwhe, the implementation com-
plexity increases as multiple sampling channels are imehn implementation issue of using
MWC is that the storage and transmission of the measurematnixrmust be considered when

itis used in a distributed cognitive radio network under tadasion collaborative scheme.
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Figure 2.14: Block diagram for the modulated wideband converter [35]elch channel, the
received signal is demodulated by a pseudorandom sequiitexed by a low-
pass filter, and sampled at a sub-Nyquist r%ge

2.2.3.5 Multirate Sampling

An alternative model for compressing the wideband speciruthe analog domain is a multi-
rate sampling system as shown in Figure 2.15. Asynchronausrate sampling (MRS) and

synchronous multirate sampling (SMRS) were used for recocting sparse multiband sig-
nals in [33] and [34], respectively. In addition, MRS has beeccessfully implemented in
experiments using an electro-optical system with threepiagnchannels as described in [55].
Both systems employ three optical pulsed sources that wperdlifferent rates and at different
wavelengths. The received signal is modulated with oppicddes, which provided by an opti-
cal pulse generator (OPG), in each channel. In order to strart a wideband signal with an
18 GHz bandwidth, the modulated pulses are amplified, and sairipl an ADC at a rate of

4 GHz in each channel.

In [33], the sampling channels of the MRS can be implemengpdrmtely without synchro-
nisation. However, reconstruction of the spectrum reguitet each frequency of the signal
must be non-aliased in at least one of the sampling chanhel84] SMRS reconstructs the

spectrum from linear equations, which relate the Fourindform of the signal to the Fourier

28



Background

1
Optical — u
detector » Amplifier ——»
t=mT;
OPGI
Sampling
- ' N
dO P » Amplifier —»
etector i
OPG?2
Sampling
3
! y
Optical -
detector » Amplifier ———»
1=mT;
OPG3
Optical pulse
generator (OPG)
e 1
: Continuous- Electro- :
l » absorption [—»
[ wave laser :
| modulator |
|
| T i
| |
| |
| RF comb |
l generator :
[

Figure 2.15: Multirate sampling system implemented by electro-optitalices [55]. In each
channel, the received signal is modulated by a train of shptical pulses. The
modulated signal is then detected by an optical detectoplified, and sampled
by a low-rate ADC.

transform of its samples. Using CS theory, sufficient coadg for perfectly reconstructing
the spectrum are obtained;> 2k (the Fourier transform of the signal kssparse) sampling
channels are required. In order to reconstruct the spectising MRS with fewer sampling
channels, the spectrum to be recovered should possesm gerperties, e.g., minimal bands,
and uniqueness. Nonetheless, the spectral componentitamay not possess these prop-
erties. Obviously, even though the multirate samplingesyshas broad application, there is a
long way to go to implement it in a cognitive radio network aese of its stringent require-

ments on both optical devices and the number of samplingneian
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Chapter 3

Narrowband Collaborative Spectrum
Sensing

Energy detection is commonly used for spectrum sensing ogaitive radio network, because
it has a low implementation complexity and does not requid. @ practical applications,
fading occurs because of multipath propagation and shamdpwihus it is important for cog-
nitive radios to dynamically balance the probability of s@d detection against the probability
of false alarm. A computationally inexpensive means ofuaking these is advantageous due
to restricted computational resources of cognitive radi@ the other hand, to combat the
effect of fading, multiple cognitive radios are often dewd to collaborate in spectrum sens-
ing. Considering the amount of CSl available at the cogmitadios, there are several different
collaborative strategies, for example, MRC, SC, SLC, an8.St.is noteworthy that different
diversity reception schemes will result in distinct penfamce. Hence, a comparison of these

diversity reception schemes is of great significance.

This chapter analyses the detection performance of enatggeiion over fading channels, and

the contributions of this chapter are summarised as follow:

e For the Nakagamin fading channel, a rapidly converging representation feraterage
probability of detection is obtained for any valuerafe [1/2, ). This saves computa-

tional resources in cognitive radios.

e For the Rician fading channel, an easily computed expregsiathe average probability
of detection is derived, which is applicable for any time daidth product of the test

statistic.

e For a slow log-normal fading channel, an approximation & #verage probability of

detection is given, by using the Wald distribution to repldéite log-normal distribution.

e The detection performance of energy detection using diffecollaborative strategies,

i.e. MRC, SC, SLC, and SLS, are analysed.
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The remainder of this chapter is organized as follows. $a@il describes the energy detec-
tion method. When the signals from PUs experience fadingti®@e3.2 derives some easily
computed expressions for the average probabilities o falarm and detection. For cognitive
radios that are designed to collaborate using MRC, SC, SLSLE& over i.i.d. Nakagamin
fading channels, the average probabilities of false alamchdetection are derived in Section

3.3. Then simulation results are given in Section 3.4, Wdd by conclusions in Section 3.5.

3.1 System Description

: H o Or H 1
x(t) Bandpass > Squaring Tntegrator Y | Threshold |

Filter Device Device

T/I

Figure 3.1: Block diagram of the energy detector.

\ 4

l

A block diagram of an energy detector is shown in Figure 3.he Teceived signaly(t), is
filtered by a BPF, followed by a magnitude squaring devicenfeasuring received energy, and
an integrator that controls the observation interial,In order to decide whether the signal is
present or not, the output of the integratbr, will act as a test statistic, and will be compared
with a predetermined threshold, The binary signal detection problem can be formulated as

hypothesis test witlil, (signal not present) ak; (signal present),

HO: m(t) = Z(t),

Hy: z(t) = h(t) s(t) + 2(t), (3.1)

whereh(t) denotes the complex channel gain between the PU and thetigegrdio, s(t)
denotes the bandlimited signal coming from the PUs of unknowdulation format, and(t)
is AWGN.

Following [43], the test statistid/, can be described as,

2
, H
y ~ X 0 (3.2)

X%u(z'}/)a Hl
whereY ~ y meansY follows the distribution ofy, v denotes the signal-to-noise ratio (SNR)
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at the cognitive radio, ang3, andx3,(2v) denote the central and non-central chi-square dis-
tributions, respectively. Both distributions have the sadegree of freedom (DoPu (u is the
time bandwidth product), and the latter one has a non-dep@nr@ameter2y. The time band-
width product, i.e.u = TW, denotes that signals of duratidn have most of their energy
within the frequency ban@-1V/2, W /2]. The value ofu can be either integer or non-integer.

The probability density function (PDF) af is given as [52],

1 u—1 -4
u—uy e 2, HO
) :{ : r(y) g (3.3)
3 (E)T e Loa(V2Zw), H

wherel'(a) is the gamma function anf,(a) is thewv-th order modified Bessel function of the
first kind.

For a non-fading AWGN channel, the probabilities of falsaral and detection are given in [52]

as below,
Pf = PT(Y > )\|H0) = F(’l;,(ij\b)/Q)’ (34)
Py =P (Y > AHi) = Qu(v/27, V), (3.5)

wherel'(a, z) denotes the upper incomplete gamma function giveRifay z) = [°t* te~dt,

and@,(a, ) denotes the generalised Marum Q-function given by,

1 o0 a2+t2
Qu(a,az):au_l/ tYe” 2 I,_1(at)dt. (3.6)

The computation of the integral representation/fin (3.5) has a high complexity. Thus, in
the first half of the chapter, a series form representatiothi® generalised Marcum Q-function

in (27) of [70] is used, and; can be represented as,

u—1 i 0o n n—u
Py )\):e_ézﬂ—ke_éz(%) 1—e—vz’y—k (3.7)
a7 £l Ll 2 ) '

3.2 Spectrum Sensing over A Single Fading Channel

In a fading channel, the average probability of false alaPm will not change [52]. In contrast,

when the channel gain(t), varies, the average probability of detectidty, can be calculated

32



Narrowband Collaborative Spectrum Sensing

by averagingP; in (3.5) over all SNR values as,

ﬁ#éé&m»ﬂwmzﬁﬂ%wﬁhﬁﬁwwn (3.8)

where f () denotes the PDF of the SNR in a fading channel.

3.2.1 Nakagamim Fading Channel

In a Nakagamis: fading channel, the SNR of the signal is distributed acecmydo a Gamma
distribution as [51],

m—1 _my
5

f) = T, (3.9)

()T (m)
where7 denote the local-mean SNR (SNR averaged over a few tens @levayths), and is

the Nakagamin fading factor ¢n € [1/2, ~0)).

The average probability of detection can be obtained by dtleviing process: substituting
(3.7) and (3.9) into (3.8), the average probability of datext F; na, Can be calculated as,

u—1 7 \\¢ 00 A\ m n—u oo ktm—1, —2dTy
5—_ av() , 2 (3) m Jo" () e 7 Vdy
j2) — 2 2 1— 0 .
dNa = € 2; il +e 2 nzz:u ol ( L(m)(F7)™ kzzo k!
(3.10)
Using (3.351-3) in [71] for calculating the integral in (8)1 the result is obtained as,

L3 & @) m \"s= (m4+k—1)!/ 7 \'
Pina=¢ 22(2'1) te Ty (2)' (1_<m+7> Z(”;(m)k!) <m17>> (3.11)

i=0 n=u k=0

~

It can be shown that the above representation converges toeh the parametey goes to
infinity for a constantn and any positive\. As the detection thresholdapproaches to infinity,
the average probability of detection converges to zero vghisra constant. If the fading factor

m goes to infinity (non-fading case), (3.11) converges to)(3.7

Since the above form contains infinite sums, the truncatioor,& nak(V ), by truncating (3.11)

after N iterations on index:, must be considered. As the number of computed termsN,e.
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varies, the truncation error is bounded by,

hui =t 3 <§3( ( S

o[>~

3
+
.Y

n=u+N+1 k=0
() A\ m N+1 — k
<er Y (2) Z m+k 1' v (3.13)
- n! m—|—7 m+75) |’
n=u+N-+1 k=0
_ 1—e—%i(%) L s VYR (3.14)
— nl m+%y) = rm)k! \m+7v) )"

where (3.13) holds because the tetma™ ", — g(k) in (3.12) is monotonically decreasing
with respect tan, and replacing: on indexk by the smallest valua+ N +1 will lead to an

upper bound.

In order to obtain a specific accuracy when calculatifg,, the problem of “how many cal-
culated terms are required in (3.11)?” is often of concermudfion (3.14) can be used to

determine the required given the calculation accuracy.

Since the expression for the average probability of dedaodf (6) in [72] also contains infi-
nite summations, to compare which converges faster, thdtres(6) in [72] is rewritten by

exchanging: andk as below,

m 00 — k k4+u—1 / \\7
o s m 7\ (k-1 (5)
Pina— E E . 3.15
dNa=€ * <m+7> — <m+7> L(m)k! = nl (3.15)

If (3.15) were to be truncated aftéf iterations onk, then the truncation error of (3.15) is given
by (7) in [72] as,

st = (2] (o (m55) - 35 (55) )+ 039

G 5

k=N+1

where; Fy(«; ; 3) denotes a generalized hypergeometric series defined by,

[e.9]

a1 )n\a2)n - @ nzn
qu(al, a27 e 7ap§ b17 b27 e 7bq§ Z) = Z ((b )nib2;n . Eb:)))n m7 (318)
where(a),, F(F“(Jr;””) denotes the Pochhammer Symbol.
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For comparison, (3.14) is rewritten as,

T m \" — 7\ (m+k—1)!
nan < (1S ) £ () e

n=0 k=N+2

Using (3.17) and (3.19), the relation @k and Enak is Obtained as,

ENak_TNak>e_% i < Y )k (m"‘k_l)!uiz:v(%)n 4 < Y >N+1 (m+N)!
A TN = ST A DI e

(3.20)

Comparison offnak(IN) andTnak(NV) shows that the proposed expression in (3.11) converges

to the exact value more quickly than the existing expressi¢®.15), since&FEnak(N ) —Tnak(N) >
0 holds true for any value oV when the local-mean SNR, is positive. The comparison of

these expressions are shown in Figure 3.4.

3.2.2 Rician Fading Channel

The Rician model is often used to describe propagation peltlich contain a strong dominant
line of sight (LOS) component and several weaker scattepagponents. It includes both the
nonfading AWGN channel and the Rayleigh fading channel asspecial cases. The PDF of
the SNR in a Rician fading channel is given by [51],

K+1)e 8 _oiy K(K+1

fly)= B D™ e (2 K(K+1)y ”), v >0, (3.21)
Y Y

whereK is the shape parameter.

The average probability of detection over Rician fadingroied can be obtained by the follow-

ing process: substituting (3.7) and (3.21) into (3.8), therage probability of detection can be
given by,

u=1 (A\? 0 A\ _K
P = 3y 2Ly G (1_”"*;)6

(3.22)

00 _ K45+l
n—u J (’Y)kﬁ ¥ 7[0 <2 71{(]?_1”) d"}/
k!
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Using (6.643-2) in [71] for calculating the integral, withetaid of the identity for the Whittaker
function in (9.220-2) of [71], the result a?; r; is obtained as,

u—1 A 7 0o A\ B
Pim = oty By O <I_<K+1>e K

K+7+1

n—u _ k
gl CK(K+1)

k=0

where®(«, v; z) denotes the Confluent Hypergeometric function, given by,

az  ala+1)2?
Blaz) =14 22 LY 3.24
(a,7;2) +’Yl!+’Y(’Y+1) o1 (3.24)

In contrast to the resultin [52], (3.23) is applicable foyaalue of the time bandwidth product.
Since the time bandwidth produet, describes the number of independent samples of the signal
in the observation timd’, the result in (3.23) is more flexible, and can be used to aealy
the performance of energy detection, when the data is sahgblany sampling rate over any

observation time of .

The infinite sums are also involved in (3.23), thus it is neaesto analyse the truncation error
when truncating the infinite sum to a finite one for calculaticAs the number of computed

terms,N, varies, the truncation errdfic(V), is bounded by,

Trie(N) = e™2 i (%)n<1_(K+1)€_K

, —
n=u+N+1 e K4+7+1
n—u — k
« (L_) ¢<k+1,1;m> , (3.25)
— K+4+75+1 K+4+75+1
u+N A\ K
< 1_6—32@ 1_%
= n! K+75+1
N+ _ k
« %) <I><k+1,1;w> . (3.26)
o \K+7+1 K+7+1

Equation (3.26) can be used to determine how many calcutatets, V, is required to obtain

a specific accuracy when calculatifigy g; using (3.23).
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3.2.3 Slow Fading Channel

The strength of the received signals in cognitive radioslss affected by shadowing from
buildings, hills, and other objects. In such a scenario,igogb measurements showed that the
received power fluctuates with a log-normal distributioo@ttthe area-mean power for various
outdoor and indoor environments [20]. In a slow fading cl@nthe PDF of the SNR is given
by [51],

. Y
fv) = \/%07 exp (—(10 og;(z; 7) > , >0, (3.27)

where¢ = 10/ In(10), 7 (dB) denotes the area-mean SNR (SNR averaged over an atea wit
radius of tens or hundreds of metres), an(tiB) denotes the standard deviationl0flog, 7.
There exists no closed-form expression for the averageahitity of detection on substituting
(3.7) and (3.27) into (3.8). However, a tractable expressian be found if the log-normal
distribution is approximated by the Wald distribution @lenown as the inverse Gaussian dis-
tribution) [73, 74], whose PDF is given by,

— 0)2
f(v) = \/g’y_?’/z exp (—%) ;7 >0, (3.28)

wheref = E() denotes the expectation 9f andn is the shape parameter. The variance of
v is % i.e. Vary) = % In order to approximate the log-normal distribution, thethod of

moments is used to obtain the parametgiéwith 7, o as below,

¥ o
0 = exp(——i-@),

o

exp() —1

D

(3.29)

3
Il
Iy
[\V)

The average probability of detection over slow fading cleisan be obtained by the following

process: substituting (3.7) and (3.28) into (3.8), the ayeprobability of detection is given by,

u=1 (X\\? 00 (A\M MU rog k_%e(_%_%;g;rm’)d
S e R
! P !

=0 n=u =0
(3.30)

~
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Using (3.471-9) in [71] for calculating the integral, thesudt of P; shais obtained as,

T2 \/n(202
u—1 A)Z 6_% 00 (A)ne_% 7 ]n_u ( 26§;> 2Kk’—% <M>
2 2 2
Pisha=) il +> oy 1=y/5-€° > k!
=0 n=u =

where K. 1 (a) denotes the modified Bessel function of the second kind willerd: — 1.
5 2

Likewise, the truncation erroffsn{ V), can be bounded by,

A\ _no-_ VRS T
— €2\ 2
TondN)= > S 1= [2Leb S - (3.32)
n=u+N+1 k=0
no2 k_% 7(2024n)
= e ()" = (Vo) Ky (P
< > i [y - (3.33)
n=u+N+1 k=0

92
u+N _2A \\n N+1 -
2:6 2 (3) /N ﬂz 20 0

3.3 Data Fusion Based Collaborative Spectrum Sensing

This section analyses the spectrum sensing performancg diierent data fusion approaches
over multiple i.i.d. Nakagamir fading channels, or slow fading channels. For convenielfice o
derivation, the representation of the generalised Marcufar@tion in (3) of [75] is used in

this section, and’; is represented as,

o0

I (n+u, 2
Pi 1oy )

Tl (y)"e™7, (3.35)

wherel”(a, z) denotes the lower incomplete gamma function,i¢a, z) = [ t*~ ‘e 'dt.
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3.3.1 Square-Law Combining

Using the SLC scheme, the squared and integrated energgregkt, Y2, ... Y, from v
distributed cognitive radios are gathered at a FC, wheradbestatisticYsc = > o, Y is
formed [53]. Thus, under thél, hypothesis in (3.36), if these fading channels are i.i.d.,
and all branches have the same noise variance, the testistdtl, follows a central chi-
square distribution with &vu DoF. On the other hand, under ti& hypothesis, it follows a

non-central chi-square distribution witiRau DoF and non-central parameter 6fc as,

2 H,
Yaio ~ X;”“’ o (3.36)
X2vu(2’7$|0)7 H1>

whereysic = >_r_; 7, andy’ is the SNR in cognitive radio node

In the case of non-fading AWGN channels, the probabilitiefalse alarm and detection under
the SLC diversity reception scheme can be obtained by sutistj the DoF to (3.4) and (3.5)

as,
VU, A2
P = % (3.37)
lec = Qvu \/ 275|C7 \/7
=T n—l—vu _
=1- Z o) n, (7sic) e 5. (3.38)

When the signal experiences fading owechannels, the average probability of false alarm
will not change, and the average probability of detectiom loa evaluated by averagir}@'C in
(3.38) over the combined SNR distribution as,

ﬁ: = /0 PSIC(%IQ A) f (7sic)dsic (3.39)

Whenwv Nakagamim fading channels are i.i.d., the PDF of the SLC output SNR,fi(esic),
is given by [51],

mym vm—1 m
f(sic) = (7)”(;:5%6 7 yge > 0. (3.40)

The average probability of detection using SLC can be obthiby the following process:
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substituting (3.38) and (3.40) into (3.39), the averagdabdity of detection is given by,

— Sy n—H)u 00 m+5
P oI Z / () le™ " S dy. (3.41)
0

I'(n+vu) n'

Using (3.351-3) in [71] for calculating the integral in (3)4 the result o@ can be obtained

— vm 20 T (n 4 vu, 3) (vm), ¥ \"
PSlC: 1— m 0 2 . 3.42
a (mw) nz:% L(n + vu)n! <m+7> (3:42)

as,

Since the above form contains infinite sums, the truncatioor & considered. The truncation
error, Tsic(N), is introduced by truncating (3.42) aftéf iterations on index:. As N varies,

the truncation error is bounded by,

m vm oo F/(n+vu7 A)(vm)n 7 "

- _ 2 3.43
sicV) <m+7> ng\;ﬂ I'(n+vu)n! <m+7> 7 343
vm 00 ~ & F, N—+1 2

m—+7y N n! m—+7y I(vu+N+1)

I'(vu+N+1,3)

:(1—6(2}771}777,,]\7)) F(’UU—I—N—I—l) )

(3.45)

where the inequality holds true due to that the funcﬁé@)ﬁ is monotonically decreasing with

respect ta:, ande(zx, v, z) is defined by,

e(x,v,2) 2 (Vix>ug(2)'n<yi x>n (3.46)

In slow fading channels, the PDF of the SNR in the nadee. f(+¢), can be approximated by
a Wald distribution. When all fading channels are statigreard i.i.d., the conditioqi =

Vi(r( )y, (constant) can be satisfied. Thus, the combined SNR und@&LiGeschemeyygc,
will also follow the Wald distribution [76]. The PDF ofc can be easily obtained by replacing

eachn with vn, eachd with v, and eachy with ~gcin (3.28). Using a similar method to that of
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the single slow fading channel, the average probabilityetédtion can be calculated as below,

SRR s )
c _ -2 2 -2 2
B siow = € 22 g e QZ ol
i=0 : n=vu ’
< 770%2)]“_%'( < n(2v92+n)>
n—ou 2002y -1 0
un 1 2
x 1=,/ ed . 3.47
271'6 kz—o k! ( )

The above result can also be obtained by replacing gagith v, eachd with v6, and eachy
with vu in (3.31).

3.3.2 Square-Law Selection

Using the SLS scheme, the FC only selects the branch withatigedt energy, i.eYss =
max(Y!, Y2, ... YY), In the case of non-fading AWGN channels, the probabiliGéfalse

alarm and detection under the SLS diversity reception sehisrgiven by [53],

pels—1_ <1 - %) (3.48)
P =1 =TT (1 - Qu(v27', Vi) . (3.49)

i=1
where the noise variance is assumed td.b&/hen those fading channels are i.i.d., the average

probability of detection can be evaluated by averag‘@tj in (3.49) over all possible SNRs as,

ggs:/o Py, N f () d, (3.50)
wheref(v*) is given by,
) mm(,yz')m—l _n:f,\/i .
f&)y=—=———~—¢ ", 4">0, (3.51)
(y*)mI(m)

wherey? denotes the local-mean SNR in théh node.

By substituting (3.49) and (3.51) into (3.50), the exprasdor the average probability of de-

41



Narrowband Collaborative Spectrum Sensing

tection can be evaluated. Since the channels are i.i.drethdt is obtained as,

_ v m m X T (n 4 u, 2)(m), ¢ "
() S (2) e

\m+t) o m+

In comparison with the results in [77], the results in (3.42d (3.52) have lower computa-
tional complexity when, andm are integer multiples ofz. This is because gamma function
can be evaluated quickly using arithmetic-geometric méznations with computational com-
plexity of O(log bM (b)) [78], whereb denotes the number of digits of precision at which the
function is to be evaluated, and (b) stands for the complexity of the chosen multiplication
algorithm. By contrast, the computational complexity ohffoent Hypergeometric function
in [77]is O((log b)2M (b)) [79]. On the other hand, even though the proposed expressmm

tain infinite sums as well, it can be shown that they convergbe exact value very quickly.

In order to derive the truncation error, assume,

o m ATt () 7Y
(= <m+7> n;) I'(n+u)n! <m+7> ’ (3:33)
e M tu, 3)(m)
m ' e= (nt+u,3)(m)n/ 7 Y
Y =— 2 . 3.54
= 2 Tt (i) (559

Thus, the truncation errofgs(V), in (3.52) can be represented by,

Tl = (0" = ¢ = 3 (7)ot (3.55)

=1

Regarding (3.53) and (3.54), the following inequalitie$dhioue,

I'(u, 3
¢ < e(3,m, N) I(’?u;) (3.56)
and / \
9 < (1—e(7,m, N)) WtV +1 ) (3.57)

I'(u+N+1)
The upper bound df (V) can be determined by substituting (3.56) and (3.57) inte5(3.
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3.3.3 Maximum Ratio Combining

Under the MRC scheme, multiple cognitive radios directlypéiim and forward the received
signals, rather than the energy, to the FC, where the data fnalltiple cognitive radios are
combined by an MRC combiner. Then an energy detector measioeeoutput of the MRC
combiner. Therefore, the test statistlg,,., can be modeled by central and non-central chi-

square distributed random variables as,

2 H,
Yimre ~ X;u’ ‘ (3.58)
Xou(27mre),  Hi

whereyme = Y7, 7' denotes the instantaneous SNR at the output of the MRC cem{5it.

Over AWGN channels, the probabilities of false alarm aneédi#n under an MRC diversity

scheme can be given by,

mrc __ ['(u,\/2)
Pf = W, (3.59)

ZFPE ’ymrc) e mre, (3.60)

The PDF of the SNRf (ymrc), at the output of the MRC combiner is given by,

m"" (fymrc) vm—1 —ZYmre

T (om)

f(’}/mrc) = Ymrc > 0. (361)

Averaging (3.60) over (3.61), the average probability dedéon is given by,

- P/ n+u o0 m+’y
pmre—1_ ntvm=1o= 757 gy 3.62

Using (3.351-3) in [71] for calculating the integral in (2)6the result ofP"" is obtained as,

vm 00 1/ A — n
n=0

m+75 I'(n+ u)n! m+75
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The corresponding truncation error is bounded by,

o m \T” 2 T (ndu, ) (om), (7 \"
Tmrc(N)= <m—+7> n:ZN:—H F(n+2u)n! <m—|—7> ) (3.64)
m \"" (vm)n (7 Y V(u+N+1, %)
= <m+7> ng\;ﬂ n! <m+7> Fu+N+1) ’ (3.65)

I'(u+N+1,3)

= (1—¢(vy,vm, N)) TiN11)

(3.66)

3.3.4 Selection Combining

Under SC, the energy detector measures the output of the ®Gier. The test statistid/s,

can be modeled by central and non-central chi-square llisdd random variables as,

2 H,
Yoo § 2 0 (3.67)
X2u(2750)a H,y

whereysc = max(y!,72,--- ,7") denotes the instantaneous SNR at the output of the SC
combiner [51]. In other words, rather than processing allrfg branches, SC processes only
one of the diversity branches with the highest SNR. Over AWsBBInnels, the probabilities of

false alarm and detection under the SC diversity schemeegivbn by,

I(u,\/2)

PSC - Qu \/ 27507 \/_
—1- Z (ntu g )" e, (3.69)

I'(n+4u) n'

Over multiple i.i.d. Nakagamir fading channels, if the fading factaet is restricted to integer

values, the PDF ofsc can be obtained from the Appendix of [80] as,

v—1

v v—1 m-tk _, _mU+D
75(: = Z < > Z bl( > (’YSc)m+k le v %07 (3.70)

l
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Wherebﬁf can be recursively computed as,

I _ _
bh=1, bi=1, b, = = T

b, =

x| =

J .

[4+1)—k
Zbg_j%, (3.71)
- .

with J = min(k,m — 1), andk € [2, (m — 1)l — 1].

The average probability of detection can be evaluated bsagireg P3¢ in (3.69) over the SNR
distribution in (3.70) as,

ESC = /0 Pdsc(’Ys& A) f (vsc)dyse: (3.72)

Substituting (3.69) and (3.70) into (3.72), with manipidat the average probability of detec-
tion is given by,
l(m—1)

‘r&z)g(‘” (") Zbl( )mki%

n=0

m(l+1)+5

X/ (y)V TRl Yy, (3.73)
0

Using (3.351-3) in [71] for calculating the integral in (3)7 the result can be obtained as,

() ()

P/(n+uv _)(m)n—i-k 7 ek
. 7;) F(nﬁu)n! <m(l+1)—|—7> - B

3.4 Simulation Results

Receiver operating characteristic (ROC) analysis has hégely used in the signal detection
theory. It is an ideal technique to quantify the tradeoffWmn the probability of detection
and the probability of false alarm. In cognitive radio netksy the probabilities of false alarm
and detection have different implications on the perforoeanf spectrum sensing. Specifically,
the probability of false alarmp;, is related with the spectral utilisation efficiency, where
larger P, will trigger a lower spectral utilisation efficiency. On tia¢her hand, the probability

of missed detectionl — P;, measures the risk of the cognitive radios causing intenes to
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the PUs when the cognitive radios are filling in the spectruted1 Thus, the ROC analysis is
selected as the metric for evaluating the performance aftgpa sensing over fading channels.
In this section, the complementary ROC curve$ ¢s 1 — P;) are used to show the detection
performance of energy detection over various fading chianriehe following parameters are

considered,

e The local-mean SNR or the area-mean SNR.
e The time bandwidth product in the test statistic,
e The shape parameters, es. if Nakagamism fading, K if Rician fading.

e The number of collaborative cognitive radio nodes,

Spectrum sensing over a single fading channel

Figure 3.2 presents the detection performance of energactieh over a Nakagami: fading
channel withm = 1 andm = 2. The Nakagamin fading factor,m (also called shape pa-
rameter), indicates the severity of fading and the qualitthe channel. The severity of fading
reduces when the fading factor, increases. The Nakagami-fading model includes the
Rayleigh fading » = 1) and the one-sided Gaussian fading € %) as special cases. In the
limit as m — oo, it converges to a non-fading channel. In both figures, ihewan that, the
higher the SNR is, the better a detection performance onachieve. In addition, a smaller
u will result in a smaller probability of missed detection ffixed probability of false alarm.
This is because that the paramaies directly related to the DoF of the chi-square in (3.2), and
the DoF implies how many independent standard normal ran@doiables in the chi-square dis-
tribution. It is also evident that there exists performamprovement fromm = 1 tom = 2,

as in the latter case, the quality of the channel is better that of the former case.

Figure 3.3 depicts the complementary ROC curves of the gratector over a Rician fading
channel withK = 1 in (a), andK = 3 in (b). The shape parametét,, is defined as the ratio

of signal power in dominant component over the (local-meaa}tered power. When the LOS
component disappears, i.& = 0, Rician fading reduces to Rayleigh fading. In Figure 3.3, a
similar phenomenon can be found that the energy detectisma b&@tter detection performance
when the SNR increases, or the D@k, decreases. For example, in the left hand figure, when
P; = 1%, v = 1, and the SNR increases froi dB to 15 dB, the probability of missed
detection declines fro80% to 10%. Comparing the left hand figure with the right hand one,
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Figure 3.2: Complementary ROC curves of energy detection over a Nakagaiading chan-
nel, with (a)m = 1, and (b)m = 2. This figure is produced by changing the
detection threshold from 0.1 to 1000.

it shows that when the shape parametéreduces from3 to 1, the performance of energy

detection degrades due to the power of the dominant compadieereasing.

Figure 3.4(a) compares the truncation error, (3.14), optleposed expression in (3.11) with the
truncation error, (3.16), of the existing expression ilLB83.for a Nakagamin fading channel.
The truncation error (3.26) for a Rician fading channel ipideed in Figure 3.4(b). Both
figures reveal that usiny = 30 computed terms, the expressions in (3.11) and (3.23) cgaver
rapidly to their final values, with the corresponding truth@a error achieving double-precision
accuracy. By contrast, the truncation erfta( V) in (3.16) decreases more slowly, compared
with the truncation erroff\ak(NV) in (3.14). For example, as shown in Figure 3.4(a), when
N = 10, the truncation erroff\ak(10) in (3.14) is approximately0~2. In contrast, to obtain
Enak = 1072, more tharb0 computed terms are required in (3.15). In other words, tbpgsed

expression in (3.11) converges more quickly to its final gallnan the expression in (3.15).
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Figure 3.3: Complementary ROC curves of energy detection over a Ricidingachannel,
with (a) K = 1, and (b) K = 3. This figure is produced by changing the detection
threshold) from 0.1 to 1000.

Figure 3.4 shows that a larger shape parameter,a.m,(a), or K in (b), will lead to a slightly

faster convergence.

Figure 3.5 demonstrates the performance of energy deteatier a slow fading channel with
a shadow standard deviatiom,= 4 dB in (a), and an area-mean SN&®,= 10 dB, in (b).
Since the Wald distribution is used to approximate the logwal distribution for deriving the
average probability of detection, the accuracy of the psepoexpression should be verified.
Figure 3.5 compares the theoretical result in (3.31) withudated results. It demonstrates that
the theoretical results closely fit the experimental resualhd the accuracy of the proposed ex-
pression varies under different conditions. As shown indftdhand figure, when the area-mean
SNR, 7, increases frons dB to 10 dB, the approximation error grows slightly. In addition, it
is found that when the average probability of false alarnrekeses, the approximation error

gradually increases. This phenomenon stems from the lgig @il of the long-normal dis-
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Figure 3.4: The truncation error aftetV iterations on index:, when the time bandwidth prod-
uctu = 1, the local-mean SNR = 10 dB, and the average probability of false
alarm Py = 0.01, with (a) Nakagamin fading, and (b) Rician fading.

tribution, which is difficult to match. In the right hand figurthe influence of the right tail of
the long-normal distribution is further investigated. llustrates that a larger shadow standard
deviation (equivalent to a longer right tail in the log-naindistribution),o, will cause a worse
detection performance, and a larger mismatch. For exartiezase ot = 5 dB has a larger

probability of missed detection, and a larger approxinmagaor than that o = 3 dB.
Collaborative spectrum sensing over fading channels

In the following simulations, the detection performanceérgy detection using collaborative
approaches, i.e. MRC, SC, SLC, and SLS, will be comparediduar€ 3.6, it is manifest that
both MRC and SLC have diversity gains for spectrum sensiogypared with the no-diversity
case. In the case of = 3 and SNR= 20 dB, the gain is several orders of magnitude on index

1 — P,. Itis found that the diversity gain decreases when eithemntimber of cognitive radio
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Figure 3.5: Complementary ROC curves of energy detection over a slowdgathannel with
(a) the shadow standard deviatien= 4 dB, and (b) the area-mean SNR= 10
dB, compared with theoretical result in (3.31).

nodesy, or the SNR reduces. Comparing the detection performaneearfyy detection using
MRC with that using SLC, it reveals that, with the aid of fulsGC MRC outperforms SLC.
When SNR= 20 dB andv = 3, the gain of using MRC over SLC is approximately one order
of magnitude on index — P,;. But, the gain becomes less when the SNR or the number of

cognitive radio nodes go down.

In Figure 3.7, a similar phenomenon can be found that eitheglaer SNR or a largev will
result in a better detection performance, and both SC anch&i:&gains compared with the no-
diversity case. However, the gain becomes less when thebpildp of false alarm decreases.
For example, considering the SLS with= 3 and SNR= 20 dB, the gain is approximately
seven orders of magnitude on index- P; whenP; = 10%, and then becomes five orders of
magnitude on index — P; when P; = 0.01%. It is more obvious for the case of SNR10

dB since the diversity gain is very small whéty = 0.01 ~ 0.1%. Figure 3.7 also shows
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Figure 3.6: Complementary ROC curves of energy detection under MRC afidsSheme,
when the Nakagami fading factet = 3, and the time bandwidth produet= 1.

that the SLS scheme is superior to the SC scheme. The reakordlibis phenomenon is
that, in comparison with choosing the branch with the higls#¢R, selecting the branch with
the largest energy to do the hypothesis test is more stfaigdrd for improving detection

performance.

Figure 3.8 describes the influence of the quality of channehe performance of energy detec-
tion when using different collaborative strategies. Itwhdhat using MRC one can obtain the
best detection performance when the severity of fading ggsinWhenn = 3, MRC outper-
forms SLC, SLS, and SC by roughly one, two, and three ordemnsagfnitude on index — P,
respectively. On the other hand, for Rayleigh fading chnfie = 1), the gain of MRC is less.
The SLC is found to be the second best out of those four stesteGomparing the scheme of
MRC and SLC, it can be seen that MRC not only requires full ®8t,also needs double the
transmission bandwidth of SLC. This is because when using, $ie data to be transmitted is

real, rather than complex data when using MRC. Since the8ll is difficult to obtain, and
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Figure 3.7: Complementary ROC curves of energy detection under SC éad¢&ieme, when
the Nakagami fading factof, = 3, and the time bandwidth produat= 1.

data transmission is expensive in cognitive radio netwdBk<C is more attractive than MRC.
Figure 3.8 also illustrates that whem = 3 the detection performance is much better than that
over Rayleigh fading channelsy= 1). This is because the severity of fading for the former

case is less than that of the latter case.

Figure 3.9 compares the performance of different collathgastrategies when the time band-
width product,u, alters. It shows that MRC outperforms the other collabegadpproaches for
bothu = 1 andu = 2. In comparison to SLC, the gain of using MRC is approximatahg
order of magnitude il — P, similar to the gain of SLC over SLS, and the gain of SLS over
SC. Additionally, Figure 3.9 depicts that for a fixed probiypiof false alarm, the probability
of missed detection decreases whemeduces. This is because the time bandwidth prodyct,
gives the number of independent standard normal randorablas in the chi-square distribu-

tion, and more independent variables will lead to a poorgeat®mn performance.
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Figure 3.8: Comparison of MRC, SLC, SC, and SLS, when the local-mearySNR dB, the
number of collaborative cognitive radias= 3, and the time bandwidth product
u=1.

Figure 3.10 presents the comparison of the performance exfggrdetection using different
collaborative strategies when the local-mean S§Rhanges. It is evident that SLC, SLS and
SC are always inferior to MRC. The benefit of using MRC dintieis when the local-mean
SNR goes down. It is also noticeable that SLS has a bettectd@igperformance than SC,
however, the gain decreases when the probability of faleratlecreases. For example, when
the local-mean SNRy = 5 dB, andP; = 0.1%, the gain of SLS over SC is zero.

3.5 Conclusions

This chapter has derived rapidly converging expressionshi® average probability of detec-
tion when using energy detection over a single Nakagamer Rician fading channel. Even

though infinite sums are involved, simulation results hawens that the proposed expressions
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Figure 3.9: Comparison of MRC, SLC, SC, and SLS, when the local-meaySNR dB, the
number of collaborative cognitive radias= 3, and the Nakagami fading factor

m = 3.

converge rapidly. Additionally, a computationally tragl&a expression for the average proba-

bility of detection over a slow fading channel has been olgi@j by replacing the log-normal

distribution with the Wald distribution. It has been venfithat the proposed expression closely

fits the simulation results. Due to the effect of the long rigil in the log-normal distribution,

the mismatch becomes larger when the shadow standardidaviiatreases.

Moreover, since collaborative spectrum sensing is a ckmeans for combating fading, this

chapter has studied the performance of spectrum sensing difierent collaborative strategies,
i.e. MRC, SC, SLC, and SLS. With perfect CSI, MRC gives an ujmeind of the detection

performance. In the case where CSI is not available, SLC isaal ghoice as it has a better

detection performance than SLS. Furthermore, it is fouratl MRC and SC require double the

transmission bandwidth compared with SLC and SLS, becdasenust forward complex data

to the FC while the latter two only transmit real data (energgtors). Hence, where there is a
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Figure 3.10: Comparison of MRC, SLC, SC, and SLS, when the time bandwtilugin = 1,
the number of collaborative cognitive radies= 3, and the Nakagami fading
factorm = 3.

restriction on the bandwidth of the control channel, SLC @emttractive.

55



Chapter 4
Distributed Wideband Spectrum

Sensing

Wideband spectrum sensing is becoming increasingly irapbtb cognitive radio systems as
a means of identifying spectrum holes or characterisingriatence. Meanwhile, due to the
effects of multipath fading and shadowing, a single cogaitadio cannot distinguish between
a deep fade and an idle band. In such a scenario, distribptedram sensing has been widely
considered for combating fading or shadowing [21, 81]. Aadasion based approach is pre-
ferred for distributed spectrum sensing as it offers muctiebaletection performance than
decision fusion approaches [82]. Nonetheless, to joindyfggm distributed and wideband
spectrum sensing using conventional distributed specsemsing techniques, the transmission
of raw data through a control channel is very expensive. lagg the high sampling rates are
problematic when the distributed cognitive radios aredrgtpowered.

This chapter proposes a novel wideband spectrum sensinglioodlistributed cognitive radio

networks, with the following contributions:

e A multirate asynchronous sub-Nyquist sampling (MASS) aysthat employs multiple
low-rate ADCs is developed to implement wideband spectremsisg. The key fea-
tures of the MASS system are, 1) low implementation compfex) applicability to
distributed cognitive radio networks, 3) energy-efficigrior sharing spectrum sensing

data, and 4) robustness against the lack of time synchtamsa

e The conditions under which the recovery of the full spectigmnique are presented by
using CS analysis. A trade-off is made between the numbearoping channels and
the probability of successful spectrum recovery. In additithe effects of noise and the

model mismatching are considered.

e The proposed MASS system is applied to distributed cognitadio networks. When
the spectra of the cognitive radio nodes have a common speaipport, using one low-

rate ADC in each cognitive radio node can also successfalipver the full spectrum.
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This is obtained by applying a hybrid matching pursuit (HM#Rjorithm, a synthesis
of the distributed compressive sensing simultaneous gahal matching pursuit (DCS-

SOMP) and compressive sampling matching pursuit (CoSaMP).

This chapter is organized as follows. Section 4.1 brieflyoiditices techniques in CS theory.
Section 4.2 proposes a MASS system. Using CS theory, theisuafficonditions for full spec-

trum recovery are derived. The practical implementatiGués, for example, the effects of
noise and model mismatch, are discussed in Section 4. 21fl&ion results are presented in
Section 4.4, followed by discussions and conclusions ini@eé.5 and Section 4.6, respec-

tively.

4.1 Preliminaries of Compressive Sensing

CS theory [59] indicates that a signal,c C, which is k-sparse, can be exactly recovered
from M (M < N) linear projections/measuremenjsc CM (j = ®x), where® ¢ CM*N

is the measurement matrix. Note thasparse means that tlielargest values of are not
negligible. Indeed, CS theory states that if the geometrthefsparse signals is preserved
during measurements/sampling, the sparse signals carcteeered by some algorithm from
only a few measurements. The performance of recovery isrdeted by three factors, namely,
the sparsityk, of the signalr, the properties of the measurement matbixand the recovery

algorithm.

One important property of the measurement matrix is theiotstl isometry property (RIP)
[83]. A measurement matri$ has the RIP with parametek,(o;, € (0,1), N) if,

(1= on)lIZlI3 < 273 < 1+ e)lIZII3, V7 € Q. (4.1)

whereg, denotes the restricted isometry constant and the indicésnohzero components in

Z are assumed to be included by a support,2e.

Calculating the RIP of a particular measurement matrix &cfically impossible as it is NP-
hard, but a lower bound can be obtained by calculating itsuaiutoherence. The mutual
coherence is a computationally tractable metric for evrigathe suitability of the chosen mea-

surement matrix.
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Definition 4.1 [84]: Let & be expressed aB = [¢; ¢ ... 4], whereg; denotes thg" column

of the matrix®. Then the mutual coherence, of the matrix® is given by,

= max |< A-, by, > , 4.2
M j;éhe[l,N]’ (b] (bh ’ ( )
whereg; = ”(g’ﬁ” denotes thé, normalised column.
7112

The aim is to keep, or g to a minimum to allow linear projections to be inverted in aldé
manner. Donoho and Elad [85, 86] have proved that a smallahatherence: can guarantee

the performance of the recovery as below.

Theorem 4.1 [85, 86]Assume that a signal is k-sparse. When the mutual coherencef the
measurement matri® satisfies,

1
STt “9

BP [62] or orthogonal matching pursuit (OMP) [87] can be utefind the sparsest solution of

the k-sparse signaf’ € C" from measurementg ¢ CM.

In practice, the measurements will be contaminated withandl he observation ig= @I+ 2,

wherez denotes noise vector. Linear programming BP (LPBP) [88] pragposed to solve’

by,
min ||Z||;, subjectto: ||y — ®Z|2 <p (4.4)

wherep is greater than or equal to the noise level, pex ||Z]|2.

The reconstruction can achieve good performance vihbas the RIP with small,;, as shown

in Theorem 4.2 below.

Theorem 4.2 [88]:When the noise leve|Z]ls < p, and measurement matri& has the RIP

with g9, < v/2 — 1, using (4.4) the recovered resalwill satisfy,
1 — 7l < |7 — 7, + Bp (4.5)
~VE

where constantsl and B are acceptably small, an¢?* denotes the optimal-sparse approxi-

mation ofZ.

In a distributed network, the received signals in differeehsors are not only individually

sparse, but also jointly sparse (have nonzero entries gtiime locations). A separate recovery
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Figure 4.1: The schematic illustration of the multirate asynchronauis-blyquist sampling sys-
tem in one cognitive radio node. The wideband filters ara@dtéo have the same
bandwidth ofiV.

strategy (each sensor recovers the signal individually)reguire more measurements. One of
the most important reasons is that it neglects the coreglatof signals between sensors. The
DCS-SOMP algorithm was presented in [89] for reconstrgctime joint sparse signals with

fewest measurements by a boost-and-recover approach.

4.2 Multirate Asynchronous Sub-Nyquist Sampling

This section will now present a MASS system to sense the \aiglglspectrum using multiple
low-rate ADCs in Section 4.2.1. For simplicity, this sedtifirstly consider the case that one
cognitive radio node is equipped with parallel ADCs, whigtifarmly sample the wideband
signal at different sub-Nyquist rates in the noiseless .c&extion 4.2.2 will concentrate on
exploring linear projection when performing sub-Nyquisimpling. After that the effect of
sub-Nyquist sampling will be considered in Section 4.2.3sind CS theory, the sufficient
conditions for reconstructing the sparsest represematiache wideband spectrum are derived

in Section 4.2.4. Some practical implementation issueslismissed in Section 4.2.5.

4.2.1 System Design

Partially motivated by MRS in [33], the system will use a nrale sampling scheme as shown
in Figure 4.1. Instead of electro-optical devices, loner&DCs are employed in MASS. Since
the average spectral occupancy is very low, it is assumddftibanon-aliased discrete Fourier

transform (DFT) spectrum (full spectrum, when the samptaig is not less than the Nyquist
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rate) isk-sparse, and consists of several subband signals withrehitfeinknown bandwidths.
Thek-sparse means that ontycomponents in the full spectrum are non-negligible. In asiear
sense, it means that there are only a few active carriersteeeigh most of them are allocated
to different wireless systems. The sparsity levelof the non-aliased DFT spectrum can be
obtained from initialisation, for example, coarse spautrscanning [23, 90, 91], and will not
be addressed here. The wideband filter prior to the ADCs resiovly frequencies outside
the spectrum of interest, and is altered to have the largesitial estimation bandwidth} .

It is assumed that there areADCs that sample the wideband signak) at different rates,
%1, MT2, oo # over the same observation timeBf In addition, during the observation time
T, the observed spectra are assumed to be wide-sense gtat{aS). Note that no anti-
aliasing filter is used prior to the ADCs, thus aliasing oscufhe length of samples in their
corresponding channels will ber!, M2, ..., MY (M*€0Y ~ O(V/N). A tapered window,
such as the Hamming window, is used to combat the effect &htpsn and keep the sparsity
level, k, of the non-aliased DFT spectrum as small as possible. Téetrgp observations are
obtained by applying an FFT to the windowed samples in eaghradl. The magnitude vectors
of the sub-Nyquist rate spectrd’ !|, |Y'2|, ..., |Y ?| (Y| € RM', i € [1,]), are used to form
a concatenated equation. After that, the measurementxmtis constructed by only using
M? (Vi € [1,0]) and N. Then the non-aliased spectrum is recovered using a CSitaigor
e.g., BP, OMP, followed by spectrum detection on the recootd spectrunﬁ .

MASS has several advantages for application in cognitideoraetworks, including,
1. Wideband spectrum sensing is implemented with sub-Ny@ampling, which relaxes

the stringent requirements on ADCs. Each ADC samples theleidd signal at rate of
Mi;“’”] ~ O(y/ #¥), rather than the Nyquist sampling rate2dt/.

2. The low-rate ADCs behave as acquisition devices as wedpastrum compression de-

vices.

3. The compression/measurement matrix used in MASS isrdetistic, and can be easily
constructed oncé/*€[*l and N are known. Thus, the transmission and storage of a

measurement matrix is unnecessatry.
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Figure 4.2: Interpretation of the relationship between the non-aldawectrum,)?, and the
sub-Nyquist rate spectruny;, when the Fourier spectrum of(¢) is denoted by

X(f)-

4.2.2 Relate Sub-Nyquist DFT Spectrum to Nyquist DFT Spectmm

A sub-Nyquist rate spectrum (aliased spectrum) can be deagea linear projection from the

non-aliased spectrum as shown in Figure 4.2.

x(t) represents the output signal of the wideband filter in Figute with a bandwidth of?’. In
the short observation time @f, the continuous signal(t¢) is sampled at a sub-Nyquist rate of
fi= Alti = % < 2W in thei-th channel (different channels sample at different ratafier
a tapered window, the sampled signal in tita channely®(t), can be represented by [92],

[e.9]

yi(t) = D a(t)s(t — 1A wr(t), (4.6)

l=—00

wherewr(t) is a tapered windowAt is the sampling interval in the sampling chanieind

4(t) is a Dirac delta function.

The Fourier transform of the sampled signal in titd sampling channel is given by [92],

Yif) = /OO X (w4 1fYWr(f — w)dw. (4.7)

l=—0c0 "

where Wr(f) denotes the Fourier transform of the tapered window, Argf) denotes the

Fourier transform ofc(¢).
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If z(t) is sampled at or above the Nyquist rate, jfge~ % > 2W, over an observation time of

T, the Fourier transform of the sampled signal can be repteddyy,
Xf) = b [ X@Wr(f — oo, VIf < fuf2, (4.9)

whereX(f) is a non-aliased full spectrum in the sampling charnin&®eplacingf by f + 1 f?,
andw by w + If? in (4.8), and then substituting it into (4.7), the relatibipsbetweeny™( f)

and X*(f) can be obtained as,

Yi( Z XU+, I+ < fs/2: (4.9)

S S

Since the observation timE in both cases are the same, the same frequency resolutibasapp

to these two cases, i.A f = f = whereN, and)M* are integers and denote the number of

[z1
samples at sampling ratgs, and f?, respectively. By defining an integer € [— L%j, L%j],

and a scalas € [0, Af), such thatf = mAf + ¢, (4.9) can be rewritten as,

Yi(mAf+s) = W Z X ((m+IM")Af+c) (4.10)
l=—c0
i 2
== Y X'(nAf+q) Z Sln—(m—+1M")], (4.11)
=—|Ny/2] l=—00

where|a| denotes the floor function, and gives the largest integegrester tham.

Sampling the Fourier transform spectrum in (4.11) at ratgje,fthe DFT spectrum is obtained

as,
Yi[m] = [m + IM?] = Z X'n Z 8[n — (m +IMY)], (4.12)
l=—00 —|N/2| l=—0

whereY *[m] denotes the sub-Nyquist rate DFT spectrum inittiechannel, and(?[n] denotes

the non-aliased DFT spectrum. In matrix form this becomes,
Yi=aiXt (4.13)

whereY ’ denotes the sub-Nyquist rate DFT spectrum vector in‘mechannelfi is the non-
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aliased DFT spectrum vector, and the element of the linegiegtion operatod! ¢ RM"xN
(M? < N) can be represented as,
M & ;
o | M /2] 41,04 | N/2)+1 = Y Z §[n— (m+1M")], (4.14)

l=—00
wherem € Z N [-M?/2, M?/2), andn € Z N [-N/2, N/2).

It is easy to see that in each column®f, there is only one non-zero element with value of

% In each row of®!, there exists at moitfvm (ceil function gives the smallest integer not

less thanj%) non-zero elements, which is also called the undersam édicigr.

4.2.3 Effect of Sub-Nyquist Sampling

Sampling a signal at a sub-Nyquist sampling rate generategssues. First, the exact location
of the signals for those who have frequencies larger tharstieNyquist sampling rate is
lost. Second, there is a risk of overlap, i.e. different frecies are down-converted to the
same frequency in the baseband. This is crucial, becauseld ¢ead to signal cancellation,
and hence missed signal detection in the cognitive radidicgbiopn. However, under certain
assumptions, signal overlap has a very small probabilitpanfurring. They are 1) the non-
aliased DFT spectrum is-sparse, 2) the number of subsamples in itle channel, M* ~
O(V/'N), for simplicity, letM? = v/N, and 3)k < N.

Assuming thosé spectral components are i.i.d. over the frequency biris bf- -- | N —1, the
probability of one element in the non-aliased DFT spectr@mdpnon-zero i = Pr(X[n] #
0) = k/N. Letg[m] denote the number of signals overlappedyaim], using (4.12) the

probability of no signal overlap is given by,

_ _ 1 p & (T3 py_ py [
Pr(g[m] < 2) = Pr(¢[m] = 0)+Pr(¢gm] =1)=(1-P)' M7 '+ ] P(1-P)'m

_ N—k ~x k N—Fk xa (MEVWVN(N —k+kvV/N)

S o R v Ay o - (@19

As shown in Figure 4.3, wheiV = 9 x 10%, and M* = /N, the probability of no signal
overlap atY‘[m] will be Pr(g[m] < 2) = 95 ~ 100% for any k& < 1000 = M?*/3, and
Pr(g[m] < 2) > 99% for any k& < 400.
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Figure 4.3: Simulated probability of no signal overlap at a frequenty= mAf + < in the
sub-Nyquist rate spectrurﬁ , compared to the theoretical result in (4.15). The
number of samples at the sub-Nyquist sampling rafeis= v/ N = 3000, where
N =9 x 10° denotes the number of samples at the Nyquist sampling rate.

Thus, under assumptions mentioned above, with the aid B8)4the following equation holds,
V' =|®2' X" ~ ®' X" (4.16)

Equation (4.16) holds true because whéiim] is the projection of a single signal, the follow-

ing equation holds,

Yim]| = '%ZX"[T:H—ZM"] = % | X m + M| = @ | X m + IM]|. (4.17)
l

In the rare case where signal overlap occursi.€. |7i| < ¢I’i|)—(>"|, the spectral content of the
full spectrum can still be tracked with the aid of other sangpchannels [33]. This is because
the blind spot of one ADC can be illuminated by other ADCs viagkat different sampling

rates.
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4.2.4 Recovery of the Full Spectrum via Multirate Sampling

This section will now introduce a method for reconstructihg full spectrum through multirate

sampling. Since all ADCs are observing the same magnitutteeafpectrum, iex 2 |Y1| =

— — . — —
| X2 =... =|X"|, aconcatenated equation relatifgc R" to Y € R™ can be formed as
below,
Y'Y o!
—
—al 1Y? - Ll
Y| |~eX=|  |X (4.18)
—
Y7 v

where®!, ®2, ..., &V are disjoint submatrices @, & € RM"' >V is the measurement matrix
of ADC i, and M 2 >?_, M. The time offset between ADCs is required to be sufficiently
small in the sense that the observed spectra are quasirstati Thus, it will not influence the

magnitude of the non-aliased spectrum, i.e. (4.18) holgsfor asynchronous ADCs.

When certain conditions are satisfied as Proposition 4.@wehe mutual coherence of the
concatenated measurement mat@xwill be determined by the number of samples in each

channel, and the number of channels

Proposition 4.1:Whenv ADCs observe the spectral magnitude, % in the same observation
time of T', generating: measurement vectorpsl71|, |72|, s |7“|, whose length are different
primes, MY, M2, ... MV, which satisfy,

M'M? > N, Vi,ze[1,0],l# 2, (4.19)

then the mutual coherengeof the measurement matri is determined by,

p = max | < QAﬁj,(Zgh > | = maxif[l’v](]lw;)é (4.20)
J#h > =1 (M)

The proof of Proposition 4.1 is given in Appendix A.

From the discussion in Section 4.1, the full spectrum magleitvector, i.ej_(), can be recon-

structed when the mutual coherence of the measuremenirisgss thanyj—_l. Using (4.20),
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with manipulation, this condition can be written as,

v l 2

S (M) e a2

= \maXc[1,] M

Equation (4.19) illustrates that the number of samples othesDC is of the order ofy/ N.

When M? ~ O(v/N), it shows in (4.21) that at leagk channels are required to recover
2

the non-aliased spectru@?. This is because > >, (ﬁ) holds true for all

v € Z*. Considering both (4.19) and (4.21), it is found that MAS &dwthe total number of
observations to b&/ = >>7_, M ~ O(kv/N).

4.2.5 Practical Implementation Issues

This section will analyse influence from several factors whsing MASS in cognitive radio
networks, i.e. average sampling rate, number of samplirmméls, noise level, and model
mismatching. As discussed in Section 4.2.4, in order towecthe full spectrum with high
probability, 2k sampling channels are required. For any number of sampliagrels, the

probability of successful spectrum recovery is determibgthe average sampling rate.

Proposition 4.2:1f a wideband signat(¢), whose full spectrum is-sparse, is sampled at differ-

ent sampling rates, and the length of observations areeiftgrime numbersy/t, M2, ..., M?

which satisfy,
M'M? > N, Vi,ze[1,0],1# 2, (4.22)
S (MY 2k —1
= Yo e [2 4.23
Z;}Zl Ml > € ) % 6 [ 700)7 ( )

recovery algorithms such as BP, and OMP, have a probabfligy least { — €) of successfully

reconstructing the full spectrum magnitude vector
The proof of Proposition 4.2 is given in Appendix B.

In Proposition 4.2, it is found that the probability of susskil spectrum recovery, i.d. — e,
increases when the average sampling rate grows. Adding saanpling channels with a higher
sampling rate will lead to a larger probability of successpectrum recovery as the term

v ]\/[l 2, .. 2 2 2
M increases. This is becauge < £ when( < a < b.
M % atb

=1
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When noise is present, similarly to (4.18), a concatenade@ton can be formed as,

s !

— ‘?2’ — N o2 — N

Y = . ~PX 4 7= _ X +7Z (4.24)
Y] oY

The performance of spectrum recovery is related to the rieisg and the model mismatching
as follows:

Proposition 4.3: In the case of|Z]|s < p, using LPBP for recovering? from (4.24), the

recovered spectrunX satisfies,

A
NG

if the number of samples\{!, M2, ...M") in v channels satisfy:

~ =
[X — X2

IA

IX — X, + Bp (4.25)

1. M, M2, ...M? are different prime numbers,

2. M'M* > N, Vi,ze[1,0],l# 2

v M! 2 o 2k—1
3' Zl:l(maxie[l,v] M’L) s \/5—1'
where X °Pt denotes the optimal-sparse approximation of .

The proof of Proposition 4.3 is given in Appendix C.

It should be emphasised that Proposition 4.3 not only censithe effect of noise, but also
shows the influence of model mismatching in the first expossdit illustrates that the perfor-
mance of MCSS is stable when model mismatching occurs. $bisdause the model mismatch

has a very small influence to the recovery error, j|& — )—(>||2, due to the small coefficient
A

N

4.3 Extension to Distributed Wideband Spectrum Sensing

In wireless communication scenarios, some cognitive rad@rs may suffer from fading either

due to multipath propagation, or due to shadowing. In thaggcthe result of spectrum sensing
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Figure 4.4: The schematic illustration of the distributed MASS systeigognitive radio net-
works. Each cognitive radio is only required to be equippéth wne wideband
filter, one low-rate ADC, and an FFT. The bandwidth of the Watted filters should
be altered to have the same bandwidtH1of

from a single cognitive radio node is not reliable. A coopigeadetection strategy offers a
good solution as it minimises the effect of severe fading actieves diversity gain [21]. If
every cognitive radio forwards its measured or processéd tethe FC, which makes a final
decision based on the collected data, the cooperative schgeaften called data fusion based
distributed spectrum sensing. If each cognitive radio useffiple ADCs to perform sub-
Nyquist sampling, the transmission of the measurementshmasery expensive in distributed

cognitive radio networks.

To minimise the required transmission bandwidth, thisieacproposes to extend the appli-
cation of the MASS system from the case of parallel ADCs in cognitive radio node to

single ADCs in multiple cognitive radio nodes as shown inurégd.4. It is assumed that cogni-
tive radios are situated in different locations. Each ctigmiradio performs spectrum sensing
(without decision) independently. The radios are suffittjefiar apart that the spectrum sensing
data can be assumed to be i.i.d. The FC then gathers thedeuspasensing data for making
decision. The implementation of the distributed MASS syste cognitive radio networks is

illustrated in Figure 4.5. Note that, as in the analysis dftiea 4.4, the time offset between
ADCs will not change the magnitude of the full spectrum, taegnchronous ADCs have the
same performance as synchronous ADCs. The wideband filierstgp the ADCs are assumed
to have the same bandwidth Bf. After measurements in each cognitive radios, the mag-

nitude of the sub-Nyquist rate spectra are transmitted @oRG, where the full spectrum is
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Figure 4.5: Implementation of the distributed MASS system in cognitide networks. Each
ADC senses the wideband spectrum at different sub-Nycansplsg rate, and
then sends the spectrum sensing data through a control ehéma fusion centre,
where the full spectrum is reconstructed.

reconstructed.

The advantage of the distributed MASS system is that onlylowerate ADC is required in
each cognitive radio node, which not only simplifies theaysstructure at each cognitive radio
node, but also decreases the bandwidth required for shapagtrum sensing data. Section
4.2.4 shows that the total number of observations to berrites is of the order okv/N. Even
though this is more than conventional CS, i®. ~ O(klog(N)), MASS is more amenable
to implementation in a distributed cognitive radio netwak neither a compression device
nor a measurement matrix generator are required. Moreagdhe measurement matrix used
in MASS is deterministic, then the transmission and storafjthe measurement matrix is
unnecessary. Another important advantage of the diseibaystem is the diversity gain. As
cognitive radios are assumed to be in different locationmes cognitive radios may identify
bands which are deeply faded (due to the shadowing effed)rticular cognitive radio.
Nevertheless, the disadvantage is that (4.18) no longdshmcause of the influence of fading.
Thus, conventional CS algorithms, such as BP and OMP, céreraypplied. In fading channels,

the power of the signals coming from PUs are attenuated. Narhe received signals at
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Figure 4.6: lllustration of the spectral correlation in distributed goitive radio nodes.

distributed cognitive radio nodes, i.e!(t),7%(t),---r*(t), may be different, and the spectra
viewed by distributed cognitive radios therefore are offestinct. As illustrated in Figure 4.6,

the spectra over the distributed cognitive radio nodes @ambdelled by the second joint
sparsity model (JSM-2) in [89]. Specifically, the spectramsognitive radios have a common

spectral support) (the set of frequencies occupied), but with different atoplkes.

In order to exploit the joint sparse property over sensorespddCS-SOMP was proposed
in [89]. It has been observed that this algorithm requiregefemeasurements when compared
with a separate recovery approach. However, the drawba&kG8-SOMP is its calculation
time as it only selects the maximum support in each iteratidmliike the conventional greedy
algorithms, CoSaMP [93] accelerates the calculation bgtifléng many possible solutions in
each iteration. Hence, a hybrid matching pursuit algorithrapplied to the MASS system as
shown in Table 4.1, by synthesizing DCS-SOMP and CoSaMRagdh #eration, the common
support is boosted by summing up the correlation vectomn fnaultiple channels, which will
make the features easy to identify even if fading exists meschannels. Then multiple indices
are selected in each iteration by choosing the Zbgndices of the2k-largest values in the
combined correlation vector, and merged with the previpasimputed support. After that, the
full spectrum is recovered by least squares, whb}?denotes the pseudoinverse®§,. Since

the matrix®g, is always well conditioned, the calculation of the pseudeiise@;') can be im-
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Input measurement matrige, spectral observation vectaf,
sparsity levek, and noise tolerance levgl
1. Initialise:
Residual’y = Y, approximationX ( = 0, supporty =[],j =0,
2. While halting criterion is falsalo
1). Form residual correlation vector by,

Ri= (@Y7 fori e [1,v],
b). Find spectral suppoE; by boosting
v.—.
gj = Supm(; R,
c). Merge support with previously computed support by
;= Q1 UZ),
d). Approximate the non-aliased spectrum by least squares

fj = @QT? for column index belong té);,  other columns set 10,
e). Prune locations of support by

© = supp,(X), .
f). Update individual residual using a part &f; with support© as
7 =Y - ®X;e fori € [1,v],
9).j=j+1 4
3. Halting criterion: ||7*||2 < p
Output: A k-sparse approximation of the non-aliased spectrﬁ'm; fj@.

Table 4.1: Hybrid matching pursuit algorithm for distributed MASSteys

plemented quickly using an iterative method, such as th@gugate gradient method [94]. The
support is pruned to have-largest values, followed by updating the residuals. Tiger@thm

will be halted when thé; norm of the residual is not larger than the noise tolerance! |@

4.4 Simulation Results

In the experiments, it is assumed that each cognitive radeguipped with a single low-rate
ADC, and there are cognitive radio nodes allocated in the same cluster. Inecognitive
radio node, the wideband signel(t), which is defined below, is sampled by a low-rate ADC
over an observation timé€,.

Ny

2'(t) =Y \/EiB; - sindBy(t — A))) - cos(2m fi(t — Ay)), (4.26)

1=1

whereA,; denotes the time offset of the signal, set tdIh&, andE} denotes the energy of the

I-th subband viewed by thieth cognitive radio. Since the effect of fading; varies subject to
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the property of the fading channel. The wideband sigriéd) consists ofV;, subbands, whose
bandwidth isB;, and carrier frequency i§. The values of simulation parameters are specified
in Table 4.2. As described in Fig. 4.4, after FFT analysisanhenode, the sub-Nyquist rate
spectral observatiod§7>1\, ]72], oy ]7“\, are gathered at the FC. In the FC, the full spectrum
is reconstructed using HMP. The spectral occupancy statdsdided based on a hypothesis

test on the reconstructed spectrum. The compression sadiefined aw.

Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10
Observation 0.4 s 2 us 2 us 2 us
timeT
Wideband 5 GHz 20 GHz 20 GHz 20 GHz
bandwidthiV/
Length of Nyquist 4,000 80,000 80,000 80,000
samplesV
No. of 5 10, 30, 50 30, 50 30
subbandsVv,
of subband (MHz)
No. of 10 1~150 1~150 1~150
ADCsv
Samplingrates | 1555282 5| 189.5.711.5 | 189.5711.5 | 189.5.590.5
of ADCs (MH2z)
Compr_eSSiO” 23.85% 0.47~163.45% | 0.47~163.45% | 0.47~163.45%
ratio

Table 4.2: List of simulation parameters setup for Figure 4.7, Figur8,4-igure 4.9, and Fig-
ure 4.10.

Figure 4.7 demonstrates the performance of spectrum recinehe MASS system using
HMP. It shows that by using = 10 ADCs, the full spectrum, which consists &fsubbands
with bandwidth0.3 ~ 30 MHz, can be successfully reconstructed. It should be eniggrhthat,
instead of working at or abovi) GHz, these ADCs are working at sampling ratel82.5 ~
282.5 MHz (ADCs with different sampling rates), and the total nenlbf measurements is
23.85%N (N is the number of samplesif (¢) is sampled at Nyquist rate in one cognitive radio
node). Obiviously, the sampling rate for characterising wideband spectrum in the MASS
system is much lower than the case of single node Nyquist ligmBesides, in comparison to

the filter bank method, which requires at leAsmeasurements for wideband spectrum sensing,
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Figure 4.7: Comparison of the non-aliased DFT spectrum with the re@¥espectrum, when
the wideband signal hassubbands with bandwidth3 ~ 30 MHz, and SNR- 15
dB. There arev = 10 ADCs, which experience non-fading AWGN channels. The
total number of measurements28.85% N, rather than N when sampled at the
Nyquist rate.

the proposed MASS system needs fewer measurements. Thius,spectrum sensing data is

shared in distributed cognitive radio networks, MASS coness less transmission power.

Figure 4.8 depicts the influence of the number of subbandgtedompression ratio on the
detection performance of MASS. It illustrates that the fewebbands there are, the better
the detection performance one can achieve. If a cognitigl reystem has constraint on the
probability of false alarm, e.gP; < 10%, the minimum number of measurements &gV,
0.3N, and0.55N for N, = 10, N, = 30, and N, = 50, respectively. On the other hand, the
probability of detection is more important, it is found thatobtainP; > 90%, at least).2/N
measurements are required to sense the wideband specttimpao50 subbands. In addition,
one can notice that a higher compression ratio, propotimrtale number of measurements, will

result in a smaller probability of false alarm and a largextyability of detection.

Figure 4.9 shows the effect of imperfect synchronisatiotwben ADCs. Compared with a
reference clock, the asynchronous ADCs have time offsetarige of0 ~ 0.8 us, while the
total observation time i8 us. It is evident that the detection performance of the asymgus

ADCs is roughly the same as that of the synchronous ADCs.4&8galso illustrates that with
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Figure 4.8: Influence of the number of sub-bands, and the compressianaatthe detection
performance of the MASS system, when the signals from PUs16as0, and
50 sub-bands with bandwidth.1 ~ 5 MHz, and experience non-fading AWGN
channels with SNR 15 dB.

more ADCs in collaboration, a better spectrum sensing padnce can be achieved. This is
because with more sampling channels, a higher probabfigyuacessful spectrum recovery can

be obtained as discussed in Section 4.2.5.

In order to quantify the detection performance of the pregosystem over fast/slow fading
channels, Figure 4.10 compares their detection performarith that over AWGN channels.
It shows that, compared with AWGN case, more cognitive radieed to collaborate in order
to combat the effect of fading. Specifically, to obtaia = 10%, 40 cognitive radios are
required to collaborate over AWGN channel#) cognitive radios are required for Rayleigh
fading channels, an60 cognitive radios are necessary for slow fading channelgde N@t60
ADCs in MASS can be translated to a compression ratid20$2%, which means that only
0.4232N measurements are needed to transmit to the FC through thelconannel, rather
than at leas2 N (two users in collaboration) for a conventional collabiv&spectrum sensing

cognitive radio network.
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Figure 4.9: Comparison of spectrum recovery performance for synchusr®DCs and asyn-
chronous ADCs, withV, = 30 and NV, = 50. The asynchronous ADCs have time
offsets in range db ~ 0.8 us, with a total observation time @fus.

4.5 Discussion

This section describes the connections between MASS arml otidersampling approaches,

which could be used for wideband spectrum sensing in diggicognitive radio networks.

4.5.1 Relationship with Multirate Sampling

The sampling pattern of MASS can be implemented by both SMRISMRS, by controlling
the number of samples being different primes in each chaovel an observation timé.
However, it is difficult to meet the sufficient conditions the MRS either in a single cognitive
radio node or distributed cognitive radio nodes, becauds sfringent requirements on electro-
optical hardware and synchronisation.
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Figure 4.10: Performance of MASS over AWGN, Rayleigh, and slow fadingnehsynwith the
number of sub-banda/, = 30. In this experiment, the average SNRlisdB,
and the standard deviation of log-normal fadingbislB.

4.5.2 Connection with Multicoset Sampling

Some of the undersampling techniques are related to msé#iicgcampling [31]. In a multicoset
schemep out of L (v < L) cosets of samples are chosen to reconstruct the signahnlt ¢
be implemented by using multiple sampling channels, whiehoffset by an integral multiple
of a constant time. In order to reconstruct the signal withigh lsuccess rate, the number of
sampling channels must be sufficiently high [32]. Note thatnethough the sampling pattern
of MASS can also be implemented using a multicoset schenmejntpractical to implement

it this way in a distributed cognitive radio network as th@dyronisation requirements will be
extremely high.

4.5.3 Comparison with CS-based Models

Most CS based approaches, for example, [29, 35, 69], reGseedo-random sequence gener-

ator as the measurement matrix generator. In order to usea€&lkapproaches for wideband
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spectrum sensing in a distributed cognitive radio netwtrk, storage and transmission of the
measurement matrix must be addressed. To exploit spacesitiy@ach cognitive radio node
should have a separate compression device, transmit bothressed data and their measure-
ment matrix to the FC. This not only increases the implent@mtacomplexity of cognitive
radio nodes, but also burdens the control channel. In cemindoen using MASS for wideband
spectrum sensing, the measurement matrix is deterministiss the problem of storage and
transmission of the measurement matrix is solved. Moreaweseparate device is required to

generate the measurement matrix.

4.6 Conclusions

This chapter has presented a distributed wideband speseasing model, MASS, which em-
ploys several low-rate ADCs to sample the wideband signdiff@rent sub-Nyquist rates. The
MASS system could be applied either in the scenario of meltgDCs in one sensor or in
the case of single ADCs in multiple sensors. The sufficiemddemns have been derived to
uniquely recover the full spectrum by the multirate asypndaus sub-Nyquist sampling. When
the spectra of the cognitive radio nodes are jointly spardhe distributed cognitive radio net-
work, the HMP algorithm has been applied to recover the comigquist spectrum by the
boost-and-recover strategy. If MASS is used in a distributeanner, it has very low imple-
mentation complexity in each cognitive radio node. MorepMASS is energy-efficient as it

requires less transmission bandwidth than conventionkdhmmrative spectrum sensing.

Simulation results have shown that MASS can recover the veidé Nyquist spectrum suc-
cessfully. Besides, MASS has been shown to have a very rgaperty against the lack
of synchronisation between ADCs or cognitive radios. Wheimgi the HMP algorithm, the
MASS system is applicable to the distributed cognitive oauetwork. It has been shown that

only a few more cognitive radios are needed to collaboratmtobat the effect of fading.

77



Chapter 5

Distributed Wideband Spectrum
Detection

In previous chapter, the spectral occupancy status canta@get by a binary hypothesis test
on the reconstructed full spectrum. However, the purposeidéband spectrum sensing is to
detect the presence or absence of the PUs, therefore, theftasdeband spectrum sensing

does not necessarily require a full reconstruction of treespm, but only requires the estima-

tion of relevant test statistics. It is possible to direaktract these test statistics from a small
number of projections without ever reconstructing the gectrum. This chapter proposes a
novel model for directly detecting the PUs from a small nuntdifemeasurements without re-

constructing the wideband spectrum, called wideband gpectletection, with the following

contributions:

e A multirate spectrum detection (MSD) system is introducedi¢tect the PUs from a
small number of measurements without reconstructing thesfiectrum. This system
has a low implementation complexity, and a low transmissiost for sharing spectrum

sensing data.

e A data fusion strategy is developed to achieve a better tieteperformance. Com-
pared with MASS, MSD has a low computational complexity & BC because the full

spectrum is not reconstructed.

e The detection performance of the proposed MSD system iysedlin the presence of

AWGN, Rayleigh, and slow fading channels.

This chapter is organized as follows. A standard spectruiimason method for wideband
spectrum sensing is introduced in Section 5.1. In SectidnMSD is proposed for wideband
spectrum detection. The effect of sub-Nyquist sampling gingle cognitive radio node is
considered, followed by the data fusion rule for multiplegeitive radio nodes. In Section

5.3, the detection performance of the MSD system over fadiragnels is analysed, and some
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Figure 5.1: Schematic illustration of wideband spectrum estimatioth @etection. The Welch’'s
method is employed for calculating the PSD.

theoretical bounds on the detection performance of theqaeg system are derived. Simulation

results are presented in Section 5.4, with conclusionsgiv&ection 5.5.

5.1 Preliminary

Spectrum sensing refers to performing measurements on fEhgpBctrum and forming deci-
sions related to spectrum usage based upon the measuredTdae steps are involved in
forming a standard wideband spectrum estimation and deteas shown in Figure 5.1. They
are 1) sample the received signal at or above the Nyquisoregtea time window ofly; with
N7 samples, 2) compute PSD, and 3) compare it with a predetechthreshold), to decide
whether the corresponding frequency is occupied or noerAfampling, the received sequence
at cognitive radio node, z‘[n] (n = 0,1,--- , Nt — 1), can be modelled by a hypothesis test
with Hy (signal not present) aoff; (signal present),

v = { o (5.1)

h* s[n] + z[n], H;

whereh! stands for the complex channel gain between the PU and thétivegradio node;,
s[n] denotes transmit signal from the PU, arjd] is AWGN. For simplicity, the noise variance
in each cognitive radio node is assumed to be the same;[he~ N(0, 62), whereN (0, 62)

denotes a normal distribution with zero mean and variane@ .of

Using Welch’s method [95], the received sequence is dividxJ overlapping segments. The
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j-th data segmenmzﬂ [n], can be represented as,
zjln] = wrnla'[n + jR], ne[0,N), je[0,J), (52)

wherewr[n] denotes the window/ is the number of segmentd] is the number of samples
when sampled at the Nyquist rate, aRd< N is the window hop size. Without loss of gen-
erality, let R = N, thus Nt = JN. According to (5.1), the non-aliased DFT spectrum (full

spectrum) in theg-th window, Xj- [n], follows a complex normal distribution given by,

. CN(0,02), H,
[n]~{ (®:én) Ho (5.3)

CN(Siv 672L)7 Hla

wheres’ denotes the received spectral component from the PU at tpeita@ radio node,
52 is the noise variance in the non-aliased DFT spectrum,Caxids’, §2) denotes a complex
normal distribution with mean of’ and variance 02. Whenwr[n] is a rectangular window,
the noise variance in the full spectrum can be linked to thisengariances? in (5.1) by 62 =
%52, because the DFT operation is a linear operation. On ther dtived, when different
window function is used, the noise variané%, will be different. The output noise variance
can be determined by both input noise variance and equivatése bandwidth of the window
function [96, 97].

The scaled PSD observed by the cognitive ragie. S¢[n], is calculated by,
S'n] =Y |Xi[n]*, nelo,N). (5.4)
j=1

By (5.3) and (5.4), the distribution of the PSD can be modebg central and non-central

chi-square distributed random variables as,

2
i X275 HO
X3;(2J7%), Hi.

where~’ denotes the SNR at thieth cognitive radio node.

If the PSD,S%[n], is compared with a predetermined thresholdto decide whether the PU

is present or not, the probabilities of false alarm and ditecan be obtained by using (5.5)
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Figure 5.2: Schematic illustration of the multirate spectrum detattsystem in a distributed
cognitive radio network. Wideband filters prior to ADCs afieesed to have the
same bandwidth di/, and the wideband signal is sampled at different sub-Nyquis
rates in different cognitive radio nodes.

as
[52], R

W7 (5.6)

Py =Pr(S" > \Hp) =

Py =Pr(S" > \H) =Qy <\/2nyi, \/522> : (5.7)

whereT'(a) is the gamma functionl'(a, z) is the upper incomplete gamma function, and

@ j(a,x) denotes the generalised Marum Q-function.

5.2 Multirate Spectrum Detection

In practice, it is difficult to realize the standard spectrestimation for wideband spectrum
detection, because it requires a high speed ADC for acquittie sequence’[n]. In order to

implement distributed wideband spectrum sensing effitieatMSD system will be presented.
The system is described in Section 5.2.1, and the effectlf\suguist sampling is considered

in Section 5.2.2, followed by the study of the data fusior finl Section 5.2.3.

5.2.1 System Model

The MSD has a similar structure to the standard widebandtspecestimation, however,
Nyquist sampling is replaced by multirate sub-Nyquist stmgpin parallel channels. Be-
fore the system description, there are several assumpéisrisllows. Since wideband sig-
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nals are often sparse in the frequency domain [27], it israssluthat the full spectrum vector,
)_53 € CV, is k-sparse k < N). Namely, only the largest out of N components |n7(>3 are
non-neglectable. In addition, as the spectra viewed byillised cognitive radios are often
correlated when they are allocated in the same cluster,ds$simed that the spectra at dis-
tributed cognitive radios have a common spectral supposefaf active carrier locations in
the frequency domain that is occupied by PUs) as illustraiefigure. 4.6. Without loss of

generality, lef) represent the spectral support given by,
Q:{n17n27”'7nk}c{0a17”'7N_1}' (58)

Inthe MSD system, as shown in Figure 5.2, each cognitiveradiquipped with one wideband
filter, one low-rate ADC, and an FFT for estimating the PSDerEharev distributed cognitive
radio nodes that collaborate for wideband spectrum sendihg wideband filters prior to the
ADCs remove frequencies outside the spectrum of interest,ase altered to have the same
bandwidth,W. Then the wideband signal viewed by th¢h cognitive radio, i.e.z'(t), is
sampled by a single ADC with a different sub-Nyquist rateléf/T (M* < N). Over an
observation time of 5 = JT, the cognitive radio nodéwill obtain V;-point samples, where
N; = JM". The aliased PSD in theth cognitive radio, i.eS’[m], is calculated by,

2 me |0, M), (5.9)

J
Shlm] = > [}

WhereYj" [m] denotes the sub-Nyquist DFT spectrum of jhi segment in the cognitive radio

nodes.

After that, the aliased PSD in each cognitive radio is trattechto the FC, which forms the

MSD PSD, i.eS[n], by,

Sin] = Z ﬂ.si [m+IMY), ne[0,N),m e [0, M) (5.10)
Z:1 MZ a Y ) ) ) )

wherel is an integer and € [0, N/M‘ — 1]. The MSD PSDSn], will serve as a final test

statistic, and will then be compared with a predeterminedstmold, A, to decide whether the

PU is present or not.
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5.2.2 Effect of Sub-Nyquist Sampling in A Single Cognitive Rdio

Sub-Nyquist sampling will cause different spectral congmis to become indistinguishable,
and change the distribution of the PSD. In the following, thange of spectral support will
be considered, and the distribution of the MSD PSD will be afled. From the discussion in
Section 4.2, the relationship between the sub-NyquistD&e€ spectrum and the full spectrum

can be represented by,

Yi[m] = % > Xifm+ 1M, (5.11)

l=—00
WhereYj" [m] ande. [n] denote the sub-Nyquist rate DFT spectrum and the full specof the

j-th segment in the cognitive radio noélegespectively. In matrix form this becomes,

>

Vi i
Yi=®'X’, (5.12)
Where}_f>§. and ?3 denote the sub-Nyquist DFT spectrum vector and the full tspecvector

for the j-th segment in the cognitive radio nogleespectively, ané! is determined by (4.14).

Let €2/ represent the set of frequency bins}_iﬁ. that corresponds to PUs,
Q= {m1,ma, -+ ,mg} C {0,1,--+ ,M" —1}. (5.13)
According to (5.11)2; and{2 can be related by,
mj = ]nj]mod(Mi), nj € Q,m; € Q5 € [1,k], (5.14)

where the subscript of: is named following the subscript of Evidently, when:; > M, the

exact location ofz; is lostin Y"%.

Another risk caused by sub-Nyquist sampling is the signatlap iani [m]. It has been shown
in Section 4.2.5 that whei’ ~ O(v/N) andk < N, the probability of signal overlap is very
small. When only a single signal appears in the frequencyrhithe following equation holds
from (5.11), Z_

Yi[m] = N

; X + 1M, (5.15)

wherel is a particular integer that belongs[th N/M*® — 1] but is unknown.

In such a scenario, with the aid of (5.3) and (5.15), the scsaild-Nyquist rate DFT spectrum
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can be approximately modelled by,

N N(0,63), m ¢
FYjlm] ~ T
M CN(\J Msi,62), me

(5.16)

whered? denotes the noise variance in the scaled sub-Nyquist ralesp&ctrum, and? can

be approximately determined by using (5.3) and (5.11) as,

— 2
52 = UH ( %) 52 ~ 62, (5.17)

Where(%l is the number of summations in (5.11).

Finally, according to (5.9) and (5.16), the scaled PSD indbgnitive radio node can be
modelled by,

2 m /
N [ ]N{ X2J7 géQz? (518)

M X%J <2J%7’[m]), m € .

5.2.3 Data Fusion Strategy among Multiple Cognitive Radios

The aliased PSD in distributed cognitive radio nodes wéhtlve transmitted to and gathered at
the FC, where the MSD PS[§[n], is calculated by using (5.10). Due to the periodic extamsio
of §; (33 € RM")in (5.10), there will be more spectral components in theested PSD than
that in the original PSDS’ (gi € RY). For analysis convenience, 8f, represent the set of
mirrored frequencies iR}, , andQ{, represent the set of unaffected and unoccupied frequencies
as,

L2 (nln=m~+IM', me O ne Q}, (5.19)

L2 (nln=m+IM', mé Qi n¢ Q). (5.20)

Using (5.10) and (5.18), the MSD Psﬁn], can be described by,

X%JU? n € Qu
_ 2 07 'L i
)~ { Xow | W22 MUAUInL |, n € Qu (5.21)
§j€[1,v]
X%JU <% ;MZ'VZ[TLO ) n €,
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whereQy = QLN - -NQY, Qv = QUQE, - - -UQE,, andp denotes the number of cognitive
radios, which have mirrored frequencies in the location af (2yy. Note thatp could approach
v, in which case, it is difficult to distinguish betwe&w](n € Q) andS[n](n € Q). The
aim of designing a data fusion strategy is to kegjp a minimum to achieve a best detection
performance. First consider the casekof 1, namely, only one location; € €2 in the full

spectrum is occupied by PUs, then Proposition 5.1 will hold.

Proposition 5.1 If the length of segments in multiple cognitive radidd,', M2, ..., M?, are

different prime numbers, and satisfy,

M'MJ > N, Yi#je][l], (5.22)
then two or more cognitive radios cannot have mirrored fegmies in the same location of
g € Qm.

Proof: Without loss of generality, the length of segment at thenitdge radio node and;j are
assumed to b&/? and M7, respectively. According to (5.14) and (5.19), the miroblecations

from then, € () are given by,

gi:|n1|mod(Mi)+lMi:nl_hMi+lMi, h;él,
95=11] moa @y HIM? =ny —hMI+IMI, b #1, (5.23)

where integer& andh are from the operation of modulo, ahe- i € [—[25]+ 1, [ ] — 1],

M?
[—he[-[i51+1, 1451 1]

To avoidg; = g;, which is equivalent to avoiding — k)M = (I — h)M?, simply assume that
M and M/ are different primes, anshax(|l — h|) < M7, i.e.[£:]—1 < MJ. The condition
M'M7 > N will satisfy this. Furthermore, if this holds for two cogini radios, the case for

more than two cognitive radios also holds.

Whenk = 1 and the conditions in Proposition 5.1 are satisfied, baseti@nesult of Propo-
sition 5.1, the parameterin (5.21) is found to be bounded ky On the other hand, when
k > 2, the parametep in (5.21) will be bounded b¥. This is because only one cognitive radio
node can map the frequeney € Q to the mirrored frequency < (v, and the number of

components if2 is k.

Given M*M7 = b > N (b is constant),M’ 4 M7 can be minimised when they are neigh-
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bouring primes. Hence, to use the fewest measurements in, Mfeldength of segments in
multiple cognitive radios)M ', M2, ..., M?, should bev neighbouring prime numbers. In such

a scenario, the following approximations can be made,

2y My 2JM
~ ~ Zv = ¥, (5.24)
27 390% Mw -
i;€[1,0] M .
J ¥ Z i — VYK, (5.25)

:1
€[1,0]

where M denotes the average number of measurements over multighétive radio nodes,

A ) i A =k 2JM
/VV — Z’L:l ’721 ’7k - ;:1 ZJ andﬂ)
ij€[l, v]

5.3 Performance Analysis

The MSD PSDE[n], will be compared with a predetermined threshold to deteemwhether
the PU is absent or not. As described in (5.21), the nondgrdrameters in the noncentral chi-
square distributions contain the SNRs, thus both the piitityatif detection and the probability
of false alarm in MSD will be influenced by the quality of theadmels from PUs to cognitive

radios.

5.3.1 Nonfading AWGN Channels

When the channels between PUs and cognitive radios can bellewdy nonfading AWGN

models, the detection performance of MSD is given as follow.

Theorem 5.1:When all conditions in Proposition 5.1 are satisfied, thebphilities of false

alarm and detection have bounds given by,
T(Jv, 537) A
— 5L <P < Qyup = |, 5.26
T =S Qrv| VYu 52 (5.26)

Py > Qo (\/ Yy, \/%) . (5.27)
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Proof: Due to the mirrored spectral components, the following usidy can be obtained,

Pr(S[n] > Aln € Qu) < Pr(S[n] > An € Qu). (5.28)

If let U £ {0,1,--- , N — 1} denote universal set for all frequency bifs = U — represent
relative complement o2 in U, thenQy | Qm = Q. Thus, by (5.28), the following inequality
holds,

Pr(S[n] > An € Qu) < Pr(S[n] > Aln € Q) < Pr(S[n] > Aln € Qu). (5.29)

When conditions in Proposition 5.1 are satisfigayill be bounded by:. With the aid of (5.21)
and (5.29), (5.26) can be obtained. In the cases where ongapsmponent maps to another
spectral component, the probability of detection will mase, and becomes larger than that
predicted in (5.21). Thus, (5.27) holds.

Theorem 5.1 shows that the number of distributed cognitheos,v, should be larger thah.
Additionally, more cognitive radios in collaboration wilad to a better detection performance,
because with more cognitive radios, it is easier to dististyietweerS[n](n € Q) and
Sin)(n € Q).

5.3.2 Rayleigh Fading Channels

When the signals from PUs experience i.i.d. Rayleigh fading PDF of the SNR at cognitive

radio nodei follows an exponential distribution,
2 ,
e 7, 4'>0, (5.30)

where7 denotes the local-mean SNR arids the SNR at cognitive radio node

Since cognitive radio nodes are distributed, the fadingiobés are assumed to be i.i.d.. The

PDFs ofy = E;j’f 7% in (5.25) andy, = >_1_; 7 in (5.24) will therefore follow Gamma
i;€[1,0]
distributions giveJn by,

k=1
flw) = (%l(k)ﬂe_?a Y > 0, (5.31)
()t
flw) = We 7, w=0. (5.32)
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In the MSD system, the average probabilities of false alamthdetection can be calculated by
averagingPs in (5.26) andF; in (5.27) over all possible SNRs.

Theorem 5.2For the proposed MSD system over i.i.d. Rayleigh fading oleés) the average
probabilities of false alarmZ; r) and detection®, r) will be bounded by,

)
= < Prr < O(k, Ju,9,7,),63), (5.33)

Pir > O(v, Ju,9,7, A, 62), (5.34)

where®(z, Jv, ¥, 7, A, §2) is defined by,

—x 0 - n+ Ju, 555
o~ (1+%) S (25) Tl

vy +2 I'(n+ Jv)

where ¢ denotes binomial coefficient given by, G ,(b -

Proof: In Rayleigh fading channels, the lower bound of the averagbability of false alarm
will remain the same as that in (5.26) as it is independent®f3SNR, and the upper bound of

the average probability of false alard%”p, can be evaluated by,

0o k—1 ﬂ/k
Pir’ = /0 Qv (\/ (Gl? \/52\3> ((%IZ)F( 7 dyk. (5.35)

Using (4.74) in [51] and (8.352-2) in [71], the upper bound®fin (5.26) can be rewritten as,

Pk

w — YK A
OO T e 2 F(n+JU,W)
= Qv (x/mk,,/(p) 2 - CES O (5.36)

Substituting (5.36) into (5.35)P;r " can be written as,

<_> n—i—Jv, 252) o0 Ilwk K
nthleT 2 Ty g 5.37
kzn' k—1)IT n—l—Jv)/O () T % (5:37)

Using (3.351-3) in [71] for calculating the integral, Withamlipulation,PfRup is obtained as,

— n+Jv, 555
Prr’= < ) Zcm 1< al ) o 25>. (5.38)

Y+ 2 T (n+Jv)
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The lower bound of the average probability of detection camjpproximated similarly.]

5.3.3 Slow Fading Channels

Over slow fading channels, the PDF of the SNR atittiecognitive radio nodef (+*), is given

by,
2

g (1010g10(+) = 7) Z.
) = Voo e e , >0, (5.39)

where¢ = 10/1n(10), 5* (dB) denotes the area-mean SNR, ah¢dB) denotes the shadowing
standard deviation af0 log,,~ at the cognitive radio node Note that the PDF in (5.39) can
be closely approximated by a Wald distribution as [73],

i 77_’ i\—3/2 _ni(’yi —0')? i
wheref)’ = E(v) denotes the expectation ¢f, andr’ is the shape parameter for the cognitive

radio nodei. By the method of moments, the parametgt®)’ and7*, o’ are related as below,

n = —(ﬁ)2 : (5.41)
eXp(g—Q) -1

Since the cognitive radio nodes are distributed and thereaisen time is small, all slow fading
channels are assumed to be quasi stationary and i.i.d.. dindition (977? = % =b
(constant) can be satisfied. Thug,and~, will also follow the Wald distribution [76]. The
PDFs ofyx and-~, are given by,

_Jkn, 3 k= k9)?

Fow) =y 5 (w) P exp | = ) > 0, (5.42)
_ |/ —3/2 _77(% — v0)?

Flow) =4/ 5 (W)™ exp ( o, ) M 0, (5.43)

wheren andé denote the average gf andé?, respectively.

The average probabilities of false alarm and detection @ndiculated by averaging; in
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(5.26) andP; in (5.27) over the PDFs of the SNRs.

Theorem 5.3:For the MSD system over i.i.d. shadowing fading channeks,atferage proba-

bilities of false alarm P s) and detection®, s) will be bounded by,

F(Jv 557) )
W < Prs < Ak, Ju, b, \,0,1,62), (5.44)

Pas > Alv, Jv,,A,0,1,62), (5.45)
whereA(z, Jv, ¥, A, 0,7, 62) is defined by,
n—3
| 2an o2 Z 3 n—l—Jv, 262) x2nb? K n(z62+n)
n'F (n+Jv) 202 + 1 n—3 62 ’
(5.46)

where Igl_%(a) denotes the modified Bessel function of the second kind widbro: — %

Proof: In shadowing fading channels, the lower bound@ in (5.44) will not change. By

(5.42), the upper bound of the average probability of falaena i.e.m“p, can be evaluated
by,

— o0 A k — k6)?
Prs ' = /0 Qn(x/ Yk, \/%) \/ %(VK)_3/2 exp (—%) dw.  (5.47)

Substituting (5.36) into (5.47);s  is calculated by,

n+Jv 0o ) 2
P 7252> 3 kY0i+n  kn
e Z n'F (n+Jv) /O(Vk) 26Xp< kg2 g Tp )

(5.48)

Using (3.471-9) in [71] for calculating the integral in (B} with manipulationmLlp can be

obtained as,
f n—l—JU "2
/2k nz 2 ’ 252 k2n0? K n(kp02+n) (5.49)
n'F (n+Jv) k02 +n n—y 62 S

Likewise, the lower bound of the average probability of déten can be approximated. Hence,

Jun

Theorem 5.3 follows[
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5.4 Simulations

In the simulations, distributed cognitive radio nodes a®ianed to have the setup as illustrated

in Figure 5.2. The wideband signal(t) viewed by thei-th cognitive radio is assumed to be,
4 Ny ;
z*(t)=3_\/E/B;-sinc(B(t—A)) - cos (2m fi(t—A)) + z(t), (5.50)
=1

where sinc) is defined by singr) = S22 A denotes the time offset, set to Bg2, andE;

™

is the received power at cognitive radio nadend varies subject to the fading channel. Without
any loss of generality, the average received power of allpied] subbands is normalized to be
1, and the noise is assumed to be AWGN, @) ~ N (0,2 = 1). The wideband signat’(t)

(10 GHz bandwidth) consists a¥, = 6 non-overlapping subbands, whose bandwidth varies
in the range ofB; = 1 ~ 10 MHz, with the carrier frequency of; = B; ~ (W — B;). The
wideband signal is observed in a total timedofis at different sub-Nyquist rates, and then the
measurement sequence is divided isite- 20 or J = 50 segments. As the sidelobe of Hanning
window decays rapidly, it is used for each data segmentseSime signal has the bandwidth
of W = 10 GHz, if it were sampled at the Nyquist rate, i.£. = 20 GHz, the length of each
segment would bé&vV = 80, 000.

The aliased PSD5:[m], is individually estimated at a different sub-Nyquist rateeach cog-
nitive radio. The aliased PSD from all distributed cogmitiadios is gathered at the FC, with
total number of measuremerist967N (NN denotes the number of samples when sampled at
the Nyquist rate). The MSD PSD is finally calculated by usitd.Q), and is compared with
a predetermined threshold. The MSD PSD over i.i.d. Rayleigth slow fading channels are
illustrated in Figure 5.3 and Figure 5.4, respectively. dh ®e seen that the proposed system
cannot achieve the benchmark system performance (obt#iméghuist sampled). The ob-
served SNR in the MSD PSD is lower than that in the Nyquist.cegsvever, it is worthwhile

to emphasize that these active frequencies can still baifigehover various fading channels,
when the compression ratio is approximatélys. Furthermore, the average sampling rate
in MSD is only 132.46 MHz, rather than 20 GHz in the Nyquist sampling case. Bec#use
spectrum sensing data transmitted from cognitive radidked=C is the PSD, MSD does not
require perfect time synchronisation between distribuigghitive radios. In comparison to CS
based detection methods, the transmission and storageasunggnent matrix is unnecessary

in the MSD system.
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Figure 5.3: Comparison of the original PSD in (a) with the MSD PSD in (bgrav.d. Rayleigh
fading channels. In the experiment, the compression ratld N = 49.67%, with
75 ADCs at the average sampling rateld2.46 MHz, and the SNR averaged over
fading channels i40 dB.

Figure 5.5 compares the simulation results with the theaiatesults predicted in (5.26)-(5.27),
(5.33)-(5.34), and (5.44)-(5.45). These curves are obthby using Monte Carlo method with
100,000 trials. It is evident that the empirical probalkt of false alarm in all figures are
close to the lower bounds, but far away from the upper bouridss is due to the fact that
the assumption (alt components in the full spectrum have been mirrored to theedanation
when the wideband signal is sub-Nyquist sampled) for degithe upper bound has a very low
probability of occurring. Figure 5.5 also illustrates thia¢ lower bound of the probability of
detection can successfully predict the trend of empiriealiits. Comparing the fading cases
with the non-fading case, it is found that in fading chantieésprobability of detection declines
more slowly than that in AWGN channels. This is more obviaudlie case of cognitive radios
over slow fading channels as shown in Figure 5.5-(c). Inremttthe effect of fading has little
or no influence on the probability of false alarm. This is hessathe mirrored frequencies will

seldom apprear in the same location, and therefore vatidht assumption in Section 5.2.2
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Figure 5.4: Comparison of the original PSD in (a) with the MSD PSD in (bgrowi.d. slow
fading channels with the standard deviation= 5 dB. In the experiment, the
compression ratio i9//N = 49.67%, with 75 ADCs at the average sampling rate
of 132.46 MHz, and the SNR averaged over fading channel®idB.

that the probability of signal overlap is very small.

In Figure 5.6, the ROC curves, i.€; vs P, are used to to quantify the detection performance.
Figure 5.6 demonstrates the detection performance of thgoged MSD system when cogni-
tive radios are subject to non-fading AWGN, Rayleigh, armsfading channels under low
SNR scenarios. When SNRO dB, the performance of MSD over fading channels perform
roughly the same as that over non-fading AWGN channels. iBhizecause the strength of
signal is mostly annihilated by the noise. By contrast, tbection performance of MSD over
AWGN channels outperform that over fading channels when SNRdB. In addition, it is
found that the performance of MSD over slow fading channglthé poorest, in comparison
to the case of MSD over AWGN, or Rayleigh fading channels. @fbeless, even over slow
fading channels, MSD has a probability of neadly% of detecting the presence of PUs when
the probability of false alarm i$0%, by just using0.492N measurements. On the contrary,

wavelet detection and filter bank detection methods musausastN measurements. Another

93



Distributed Wideband Spectrum Detection

T T -
18R I o Simulated Py H
N 0.8 g Simulated P H
% 0.6 Lower bound of P, H
@ 0.4 Upper bound of Pf H
a
0.2 — Lower bound of P
0r ;
1.2 1.4 1.6 1.8 2 2.2 2.4
Thres(g)old () x 10
T T .
1483 ; o Simulated Pf —
N 0.8~ o Simulated P |
:% 0.6 Lower bound of P, |-
?_ 0.4 Upper bound of P, ||
0.2 Lower bound of P
or D
Il
1.2 14 16 18 2 2.4
Threshold (A) X 10

(b)

T
o Simulated Pf

0.8 o Simulated P,
> &
= 06 £ Lower bound of P,
]
S 04 Upper bound of P
a

_ _ Lower bound of F'd

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
Threshold (A) X 10
©

Figure 5.5: Comparisons of empirical results and theoretical resutslie probabilities of de-
tection and false alarm over (a) AWGN, (b) Rayleigh, and @ydhding channels.
The theoretical bounds are predicted in equations (5.3&+), (5.33)-(5.34), and
(5.44)-(5.45).

advantage of MSD is that the average sampling rate in MSDIys448.68 MHz, instead oR0

GHz in wavelet detection method.

Figure 5.7 depicts the influence of the depth of shadowingmthe MSD system is working
over i.i.d. slow fading channels. It can be found that thgdaishadowing standard deviation
will lead to a worse detection performance for the MSD systEor example, when the average
probability of false alarm i40% and SNR= 5 dB, the average probability of detection drops
from 90% to 80% wheno rises from5 dB to 7 dB. This is because a largeris equivalent to a
longer tail in the log-normal distribution, thus making tthetection difficult. The performance
difference between = 5 dB ando = 7 dB is small when the SNR decrease$) B, because

in that case the power level of the signals is similar to ttighe noise.
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Figure 5.6: ROC curves of MSD over different kinds of fading channelswite compression
ratio M/N = 49.2% and the averaging timeg = 50. The wideband signal is
observed by2 cognitive radios at different sampling rates (the averagmpling
rate is448.68 MHz). The shadowing standard deviation5isiB.

Figure 5.8 shows the influence of the compression ratio @ptogmal to the number of dis-
tributed cognitive radios in collaboration) on the detestperformance of MSD over slow
fading channels, by using Complementary ROC curves,Rgvs 1 — P;. Itis obvious that
with increasing compression ratio, a better detectionguardnce can be achieved. Considering
the probability of false alarnP; = 10%, the average probability of missed detection reduces
from 7% to 2% when the compression ratio increases fréfr2% to 150%. The reason is that
adding more sampling channels (equivalent to more cogniadios) makes it easier to distin-
guish the occupied frequencies from the mirrored frequesiais shown in (5.21). Thus, with

increasing spatial diversity, the effect of fading can bégated in the MSD system.

The assumption validating the MSD system is that the spacisk-sparse. To investigate the
influence ofk, the ROC curves of MSD over slow fading channels are showrnigarg 5.9
with different values ofk (proportional to the number of subbands). It shows that with

same SNR the detection performance degrades when the naihbgbbands increases. For
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Figure 5.7: ROC curves of MSD over slow fading channels with the comipresatio M/ /N =
49.2% and J = 50, when the shadowing standard deviatien,and the average
SNR alter. The wideband signal is sampled at different sagpates by22 ADCs
with the average sampling rate &48.68 MHz.

example, for a fixed probability of false alarm, i.€%; = 10%, the probability of detection
drops from73% to 70% for SNR= 0 dB, and declines frori5% to 91% for SNR= 5 dB when
the number of subbands increases from 6 to 12. The perfoendegradation of the MSD
system stems from two reasons. One of them is that vichiaoreases, the probability of signal
overlap becomes larger when the wideband signal is sub-isygampled. The signal overlap
may then lead to the missed detection of the PUs. The anason is that, for a fixed number
of sampling channels (or a fixed number of cognitive radioasoith collaboration), increasing
k makes it more difficult to distinguish the occupied frequeadrom the mirrored frequencies

as described in Section 5.3.1.

Figure 5.10 reveals the influence of sampling duration (remab segments),J, on the MSD
system performance over slow fading channels. The ROC sustvew that the performance of
MSD becomes better whehincreases or the number of subbands decreases. This isskecau

averaging will reduce the noise variance in the PSD, thusasifiie detection of the PUs easier.
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Figure 5.8: Complementary ROC curves of the proposed MSD system ovefadong chan-
nels with SNR 5 dB, 0 = 5 dB andJ = 50, when the compression ratid{/N)
varies.

In practical environments, distributed spectrum sensimy face the problem of insufficient
collaborative nodes. On the other hand, distributed cognitadio nodes may be limited by
the maximum sampling speed due to ADC technology or energguwaption considerations.
In such scenarios, the tradeoff between the number of degniidio nodes and the average
sampling rate across cognitive radio networks is critideigure 5.11 investigates the perfor-
mance tradeoff with the fixed compression ratio when the Mg&esn is working over slow
fading channels. It shows that the case of using less cegmiidios but with higher sampling
rate outperforms that of using more cognitive radios witlvdo sampling rate. For example,
when the probability of false alarm €%, the probability of detection i82% for the case of
22 ADCs (with the average sampling rat8.68 MHz), rather tharv0% when usingr5 cogni-
tive radio nodes (with the average sampling re82.46 MHz). This seems in contradictory to
(5.21) as the compression ratio doesn’t change, thus theentnal parameter will not change.
However, it should be emphasized that a low sampling ratele@t to a larger probability of

signal overlap, in which case the average probability oécksdn will decrease.
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Figure 5.9: ROC curves of the proposed MSD system over slow fading clsawit o = 5
dB, M/N = 68.2%, andJ = 50, when the SNR and the number of subbands
change.

5.5 Conclusions

In this chapter, a multirate spectrum detection systemedd1SD, has been presented for
implementing wideband spectrum detection in a distributegnitive radio network. The de-
tection performance of MSD over AWGN, Rayleigh, or slow fagichannels has been derived.
The MSD system has several attractive features of being faseddeband spectrum sensing
in distributed cognitive radio networks. Firstly, the ireptentation complexity of the MSD
system is low, thus each distributed cognitive radio ontyurees one low-rate ADC. To sense
a wideband spectrum with 10 GHz bandwidth, the average sagnmte of ADCs is 448.68
MHz, opposed to the Nyquist rate of 20 GHz. Secondly, the M$fesn is energy-efficient
because only the sub-Nyquist PSD are processed and tréegrutthe FC, which not only
saves processing energy, but also saves transmissioryeNMoeover, compared with MASS,
or other CS based approaches, MSD can detect the full speetithout reconstructing it.

Therefore, the proposed MSD system can reduce the netwerkead as it has a lower com-
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Figure 5.10: ROC curves of the MSD system over slow fading channels wiB=SBbl dB,
o = 5 dB, and the compression ratid/ /N = 68.2%, when the averaging times,
J, and the number of subbands alter.

putational complexity in the FC.

Simulation results have shown that when the compressianisapproximatelys0%, MSD can
achieve a good detection performance over slow fading @ianihe detection performance
of MSD becomes better when the number of distributed cognitadio nodes increases or the
number of PUs decreases. When there are limitations on thdbewuof distributed cognitive
radio nodes, or the maximum sampling rate in each cognitidéor a tradeoff can be made to

adapt the practical environment by changing the samplitegra
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Figure 5.11: For fixed parameters: compression ratid /N = 49.67%, SNR= 5 dB, and
J = 50, the tradeoff between the number of ADCs and the averagelisgmp
rate, i.e. 75 ADCs with the average sampling rai82.46 MHz, 40 ADCs with
the average sampling ratet7.45 MHz, and22 ADCs with the average sampling
rate 448.68 MHz.
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Chapter 6
Conclusions and Future Work

This thesis has contributed to the performance evaluatfarodaborative spectrum sensing
algorithms as well as the development of wideband spectemsisg techniques in centralised
cognitive radio networks. In this concluding chapter, a swary of the key contributions from

different chapters will be given in Section 6.1. Some liniitas of work are discussed in

Section 6.2. Several suggestions for future research aregzesented in Section 6.3.

6.1 Conclusions

Due to the low implementation complexity, energy detecimaommonly used for spectrum
sensing in a cognitive radio network. In fading environnseittis crucial for cognitive radios to
dynamically balance the probability of missed detectioaiagf the probability of false alarm.
As cognitive radios are always restricted by limited conagiohal resources, fast converging
expressions for these probabilities are of advantage. Apth 3, easily computed expressions
for the average probabilities of detection and false alaver a single Nakagami, or Rician
fading channel have been derived. Despite infinite sumghbeiuolved, simulation results have
shown that the proposed expressions converge more qultidythe methods in the literature.
In the case of log-normal fading, a computationally tralgtaxpression for the average proba-
bility of detection has been given, by approximating thethagmal distribution with the Wald
distribution. It has been testified that the proposed espaslosely fits the simulation results.
On the other hand, as collaborative spectrum sensing agipgeaare commonly used for com-
bating fading and improving detection performance, thégoarance of collaborative spectrum
sensing algorithms, i.e. MRC, SC, SLC, and SLS, has beegsathl Among these algorithms,
the MRC based collaborative spectrum sensing approachsdafe upper bound of the detec-
tion performance, but at the expense of highest transmmssaodwidth. When the bandwidth
of the control channel is limited, the SLC based collabgeasipectrum sensing scheme is more

attractive as it not only savé®% transmission bandwidth, but also does not require CSI.
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In Chapter 4, a distributed wideband spectrum sensing rsystalled MASS, has been pre-
sented for implementing wideband spectrum sensing. It eyspseveral low-rate ADCs to
sample the wideband signal at different sub-Nyquist ratessead of a single high speed ADC.
One of the key advantages of the MASS is that the full widelsgreattrum can be reconstructed
from a few measurements. Sufficient conditions have beawatkto uniquely recover the full
spectrum by a multirate asynchronous sub-Nyquist sampliégother advantage of MASS
is that it can be applied either in the scenario of multiple@din one sensor or in the case
of single ADCs in multiple sensors. In the latter case, thplémentation complexity of the
MASS is extremely low as only one low-rate ADC is required actle cognitive radio node.
The HMP algorithm has been applied to recover the common Niygpectrum by a boost-
and-recover strategy. Compared with other wideband sp@cBensing techniques, MASS
is energy-efficient as it requires less transmission badtthwand fewer compression devices.
MASS has been proved to be very robust against model misestnid time synchronisation
failures. The performance of MASS has been investigatedvarified by simulation results.
It has been demonstrated that MASS can recover the widebgqdi$ spectrum successfully
when the compression ratio is approximaté&ys. For the purpose of combating the effect of

fading, only a few more cognitive radios are needed to coliate in the MASS system.

In order to reduce the computational complexity in the FC, @tinate spectrum detection
model has been proposed that implements wideband specgteutidon in distributed cogni-
tive radio networks in Chapter 5. When the distributed ctgmiradios suffer from AWGN,
Rayleigh fading, or log-normal fading channels, the dédecperformance of MSD has been
derived. The implementation complexity of the MSD systenasdow as that of the MASS
system in the sense that each distributed cognitive radioesjuires one low-rate ADC and
the sampling rate of that ADC is similar. The MSD system i® agergy-efficient because
only the sub-Nyquist power spectra are processed and tiiadno the FC, which not only
saves processing energy, but also saves transmissionyet@gpared with MASS, or other
CS based approaches, the main advantage of MSD is that itetaotdhe PUs without ever
reconstructing the full spectrum. Empirical results hawveven that when the compression ratio
is approximately50%, MSD can achieve a good detection performance over i.i.dyleRgh

or log-normal fading channels. The detection performarfdelD becomes better when the
number of distributed cognitive radio nodes increases emtimber of PUs decreases. More
importantly, MSD has been shown to be very flexible that thalmer of sampling channels and

the sampling rate can be balanced to adapt the practicabanvent.
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6.2 Limitation of Work

In Chapter 3, the assumption of using energy detection isthi®anoise variance can be ac-
curately estimated. However, in practice, this is difficalhe noise uncertainty will degrade
the system performance even if collaborative spectrumisgsérategies are adopted. Besides,
using energy detection, the signals from the PUs and im@arées from other cognitive radios
cannot be clearly differentiated. To further exploit theesipal scarcity, feature-based spec-
trum sensing techniques can be employed for fine spectrusirggrsuch as cyclostationary
detection. In both Chapter 4 and Chapter 5, the imperfedgdesf the wideband filters will
influence the probability of successful full spectrum restamction. For example, a narrower
bandwidth than the required one can make the frequencidgisub-Nyquist spectrum con-
gested, therefore more risk of being overlapped. In sucleass, the performance degrades

due to the missed detection of PUs.

6.3 Future Work

There are a number of research areas which have not beerssedmm this thesis. Some of

them merit much more work at a future stage as listed below:

¢ In Chapter 3, comparisons have been made between MRC, SCaB8UGLS strategies
when the infrastructure of the cognitive radio network istcalised. For a comprehen-
sive study of the collaborative spectrum sensing algosthmore collaborative protocols
should be involved for comparisons, e.g., decision fustomtegies, and equal gain com-

bining (EGC) [98, 99] based collaborative spectrum sensaigme.

e The performance of collaborative spectrum sensing alymst over a composite fading
channel deserves investigations, e.g., composite mthtglaadowed fading. There are
various combinations suggested in the literature for oltgi the composite distribution,
e.gd., Suzuki distribution [100, 101], ard distribution [102, 103].

e In Chapter 4, to further reduce the transmission and thestfucture costs, a multi-
hop [60, 61, 104] implementation of MASS is attractive. Itls@a scenario, the spectrum
sensing data will be transmitted via different spectrumebpinstead of common control

channels. Thus, the spectra viewed by distributed cognitidios are different at some
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frequencies. This spectral difference will make the speotreconstruction become dif-

ficult. New spectrum reconstruction algorithms can be dged to address these issues.

e In Chapter 5, MSD can be implemented in a decision fusion miativat each cognitive
radio decides the spectral occupancy status based ondodivdbservations, and then
transmits their decisions to the FC. This strategy will notyoreduce sampling rate,
but also significantly save transmission bandwidth. Funtoee, a sequential detection

[105, 106] approach can be used to give a quickest deteatmuitr

¢ In both Chapter 4 and Chapter 5, in order to let ADCs obsereesignals of the same
bandwidth, the wideband filters prior to ADCs are assumeditetthe same bandwidth.
In these cases, the spectra between ADCs are similar, asditi@ing rates are different.
It has been found that the observed SNR decreases when ttiwidé#mof the wideband
filter increases. To improve the observed SNR in each cagnitidio, it is interesting to
develop a system with different medium-band filters andedgfit sub-Nyquist sampling

rates under the condition that the full spectrum is stilbrerable.
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Appendix A
Proof of Proposition 4.1

An example,M! = 3, M? = 5, and N = 9, is used to demonstrate the structure of the
measurement matrix. The measurement mabrigan be constructed using (4.14) and (4.18),

then the/, column-wise normalised matrid is,

[ 0.5145 0 0 0.5145 0 0 0.5145 0 0
0 0.5145 0 0 0.5145 0 0 0.5145 0
0 0 0.5145 0 0 0.5145 0 0 0.5145
P 0 0 0.8575 0 0 0 0 0.8575 0
0 0 0 0.8575 0 0 0 0 0.8575
0 0 0 0 0.8575 0 0 0 0
0.8575 0 0 0 0 0.8575 0 0 0
0 0.8575 0 0 0 0 0.8575 0 (U

Using (4.14), theg-th normalised columdj [m] can be expressed as,

btm) =i~ |i - | 3] + | 5

V2t (MF)? 2 2
-1 l
Vjie[l,N], | = {zym € [ZM’“JA,ZM’“]} (A.1)
k=0 k=0

mod*(Ml)]’

whereM® = 0 and|e |mod (@) IS @ modified modulo operation in the sense of using replace

all zeros in the results of the standard modulo operation.

-1 !
Let us define the eventy, as there exists a value of € [Y _ M*+ 1, M*] such that
k=0 k=0

¢jlm] = ¢nlm] > 0, wherej # h € [1, N]. Then the average probability of the event
1

_ ct ,C3 _ 1 . .
oceurring isPr(m;) = 2421 = Bl = vaM_l L, whereD; = N/M! is the undersampling
N

factor in thel-th sampling channel. Obviously, any single event(l € [1,v]) could occur

whenM! < N becausePr(m;) > 0. In the case of only one event; occurring, the mutual
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Proof of Proposition 4.1

coherence of the matrige can be calculated by using (4.2) and (A.1) as,

= maX| < ¢j, dp > | = max M M _ maxi)e[lw](MZF
# el | /S (M2 /Sy (MY)2 Doy (M1)?
(A.2)
Then next target is to make the probability of two events atieg to be zero. By the definition
of the eventmy, it satisfies|j — |5 | + LMTIJImod*(Mz) =|h— 5]+ LMTleod*(Ml), where
j # h € [1,N]. Itis equivalent tdh — j| = wM" for w; € ZN [1, [} ] — 1]. Similarly, the
eventm, happens wheth — j| = w,M? for w, € Z N [1,[Z5] — 1]. Both of them happen

when

N N
w,M? =w,M', w, €Zn [1, [WW — 1} ,w, € ZN [1, [MW - 1} . (A.3)

The probability Pr(m.m;) is the probability of both the event. and the eventn; satisfying
equation (A.3). This is equivalent to being givéff andM#, and then finding how many pairs
of numbersw; andw, out of the available number c@f%} — 1) or ([£=] — 1) are required
for equation (A.3) to hold. Without loss of generality, catesing the possibility forw;, the
probability Pr(m,m;) is given by,

(A.4)

z

because ofy; should be integer multiples af; asw; = wzm = wl—f, wherew; andwi, are
w

z

from simplest fraction form of,

w_ ME_ e W (A.5)
w, M au, i’ '

wherea denotes an integer.

If assume thatV/! and M~ are different prime numbers, theiy = M?#*. In order to let
Pr(m.my) = 0, which is equivalent td/* = «j; > [2;] — 1, M' and M~ should satisfy,

M'M? >N, Vi,ze[l,v],l#z (A.6)
because\/* > Lo >[I — 1.
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Proof of Proposition 4.1

In summary, in order to prevent any two events @ndm, [ # z ) from happening together,
M! and M? should at least satisfy equation (A.6). Furthermore, ifghebability thatm; and
m, occur together is zero, then the probability that more thvem évents 4;, m....) occur
together is zero too. It is equivalent to the condition that mmaximum correlation of different

columns in® exists when only one event happens as,

maxie(1,0)(M')*

p=max| < g;, ¢ > | = ——=p : (A7)
J#h ’ >y (M1)?

Hence, Proposition 4.1 is proveld.
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Appendix B
Proof of Proposition 4.2

Based on Doob’s maximal inequality [107], the following gumlity holds,

Pr(u > z) = Pr <max\ < i n > | > ac) < w, (B.1)
Jj#h z

where Ea) denotes the expectation @f

Given the proof for Proposition 4.1 in Appendix A, when thendiions in (4.22) are satisfied,

there exists at most one valuerefe [1, M] such thaip;[m] = ¢;,[m] > 0. Then the expected

value of< ¢;, ¢, > becomes,
(M')?

E(< <23j,<23h >) = 72]37“(7711) +

(ry
X (M) 7 Prim).

> (M)
(B.2)

where Pr(m;) denotes the average probability of the eventoccuring as defined in Ap-

M?)2
%Pr(mz)+.”+

pendix A.

SubstitutingPr (m;) = Y=L < 1 /MU into (B.2), the following inequality holds,

> M

E(< ng&;h >) < m

(B.3)

Replacingz in (B.1) byx = T1_1 and substituting (B.3) into (B.1), the following inequis
can be obtained,

) < (2k — DE(< ¢j, 5 >) < M(% —1). (B.4)

o <“ 7 S (M

2k -1

If the final term is less thag, that is,

Si, (MY 2k -1

v 9 (BS)
D=1 M! €
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the following equation holds true,

) >1—e (B.6)

On applying Theorem 4.1, the proof of Proposition 4.2 is clatgul. [
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Appendix C
Proof of Proposition 4.3

Inspired by [108], the Gram matrix of the measurement matilkbe used for the proof. Let
Q2 be the set of indices dfk-nonzero components in spectruff)l. The sub-matrixp can be
obtained by selecting the columns, whose indices afe, iim the matrix® (the 5 normalised

®). The Gram matrix ofb, is expressed as,
Gq = 2(®q, (C.1)

where®H denotes Hermitian transpose ®f ThenGg, is a symmetric and nonnegative defi-

nite matrix and can be written as,

Ga = Ipkok + Bakxok. (C.2)

wherelsy 21 IS an identity matrix, an@sy 2 has values only in the off-diagonal entries.
The maximal entrie$3* in By 2 Will be,

max;e(1,o] (MZ)2

S Vi, h € [1,2k)], (C.3)

B* =max| < ¢j,¢n > | =
j;éh| ¢]¢h |

The Gersgorin discs theorem [109] states that all the e@aasg); of G are located in the

union of 2% discs, then,
|>\z — Iii| < RZ(GQ) < B*(2]€ — 1), Vi € [1,2]{7]. (C4)

whereR;(Ggq) denotes Deleted absolute row sum$.

Thus, using the Triangle inequality, the eigenvaludsgi, i.e. \;, has the bounds,

|Iz'i| — |/\2 — Iz'i| < |/\z| < |I“| + |>\z — Iii|a Vi € [1,2](3]. (CS)
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Proof of Proposition 4.3

Substituting (C.4) into above equation, we end up with,
1-B*(2k—1) < |N| <1+ B*(2k—1), Viell,2k]. (C.6)

Simply assume thaty, = B*(2k — 1), all the eigenvalues dfxq are in[1 — oo, 1 + 09k
Hence, apply Theorem 4.2, the Proposition 4.3 follolis.
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Computationally Tractable Model of Energy Detection Performance over
Slow Fading Channels

Hongjian Sun, Student Member, IEEE, David 1. Laurenson, Member, IEEE,
and Cheng-Xiang Wang, Senior Member, IEEE

Abstract—Energy detection (ED) has been widely used for
detecting unknown deterministic signals in many wireless com-
munication applications, e.g., cognitive radio, and ultra-wideband
(UWB). However, the performance analysis of ED over slow
fading channels is cumbersome, because it is difficult to derive
closed-form expressions for the average probability of detection
involving the generalised Marcum Q-function and the log-normal
distribution. In this letter, we derive an approximation of the
average probability of detection over a slow fading channel by
replacing the log-normal distribution with a Wald distribution.
In addition, we analyze the detection performance of the ED
using a square-law combining scheme over multiple independent
and identically distributed slow fading channels.

Index Terms—Energy detection, slow fading, cognitive radio,
UWB, Wald distribution.

I. INTRODUCTION

INCE Urkowitz’s seminal paper [1], energy detection (ED,

also known as radiometry) has been widely used for
detecting unknown deterministic signals in many applications.
For example, [2] employed ED for detecting the presence
of ultra-wideband (UWB) signals, and [3] used ED to study
the effect of the collaboration among cognitive radios. ED is
commonly used not only due to its low computational and
implementation complexity, but also because it does not need
any prior knowledge of signals.

A non-fading additive white Gaussian noise (AWGN) chan-
nel is usually assumed when studying the performance of
ED. However, in wireless communication applications, fading
occurs because of multipath propagation and shadowing. The
detection performance of ED over a variety of fading channels
has gained interest recently in [4]-[6]. In [4], Digham ef al.
evaluated the performance of ED over Nakagami-m fading
channels and Rician fading channels. The influence of the
slow fading on ED was numerically studied in [7], but without
a closed-form expression. The challenge of deriving closed-
form expressions for the average probability of detection stems
from the fact that it involves both the generalised Marcum Q-
function and the log-normal distribution.
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Fig. 1. Block diagram of the energy detector.

The contribution in this study is twofold. First, we give an
approximation of the average probability of detection for the
slow fading channel, by using the Wald distribution to replace
the log-normal distribution. Second, we analyze the detection
performance of the ED using a square-law combining (SLC)
scheme over multiple independent and identically distributed
(i.i.d.) slow fading channels, and derive a computationally
tractable expression.

This paper is organized as follows. We briefly introduce
the system model in Section II. In Section III, we derive
an expression for the average probability of detection over a
single slow fading channel. The detection performance of the
ED using SLC over multiple slow fading channels is given
in Section IV. Simulation results are presented in Section V,
with conclusions given in Section VI.

II. SYSTEM MODEL

A block diagram of an energy detector is shown in Fig. 1.
The received signal, 7(t), is filtered by a bandpass filter (BPF),
followed by a squaring device for measuring received energy,
and an integrator that controls the observation interval, 7T". In
order to decide whether the signal is present or not, the output
of the integrator, Y, will act as a test statistic, and will be
compared with a predetermined threshold, A. The binary signal
detection problem can be formulated as hypothesis test with
Hy (signal not present) or H; (signal present),

Hy: r(t) = n(t),

H;: h(t) s(t) + n(t), (1)
where h(t) denotes the complex channel gain between the
transmitter and the receiver, s(t) denotes the bandlimited
signal coming from the transmitter of unknown modulation

format, and n(t) is AWGN.
Following [1], the test statistic, Y, has the following distri-

=

=S
=

G
Il

bution, )
X2u» HO
Y ~ 2)
{ X%u(Q’Y)a Hl
where “~” means “distributed as”, 7 is the signal-to-noise

ratio (SNR) at the receiver, and x3, and x3,(27) denote the
central and non-central chi-square distributions, respectively.
Both distributions have the same degree of freedom (DoF),
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2u (u is the time bandwidth product), and the latter one has
a non-central parameter 2+.
The probability density function (PDF) of Y is given as [4]

fr(y) = { Z?

(3

order

B T

BER qul(\/m)a

where T'(a) is the gamma function and I, (a) is the v'"
modified Bessel function of the first kind.

For a non-fading AWGN channel, the probabilities of false
alarm and detection are given in [4] as below

RN=EMY>MEO=£%£$Q, @
Pd:PT (Y>A|H1):Q’IA(\/2_’Y7\/X)7 (5)

where I'(a, ) denotes the incomplete gamma function given
by I'(a,z) = [ t*"le~'dt, and Q.(a,z) denotes the gener-
alised Marum Q-function given by

1 oo
) = U=
Qula,z) = s /1 t'e

Another form of the generalised Marcum Q-function is
given in (4.74) of [8] as

a?+4?
2

I,—1(at)dt. 6)

n ntu—1

QB =3 DS
n=0 ! =0

With the aid of (8.352-2) in [9], we can rewrite above equation

Q=31 2) -,

n=0

1
5 3)
n

)

vy I'(n +wu,

‘T(n+u) u) ®

n!

III. LoCAL ENERGY DETECTION IN A SLOW FADING
CHANNEL

When experiencing a fading channel, Ps, in (4) will re-
main the same, since it is independent of the SNR. On the
other hand, when the channel gain, h(t), varies, the average
probability of detection can be calculated by averaging P, in
(5) over the SNR distribution as

Fd:/o' Palra ) F )y = /Qu\Ff)f )y, ©)

where f(7) denotes the PDF of the SNR in a fading channel.

In terrestrial land-mobile wireless communication systems,
the received SNR may be affected by the effect of shadowing
due to objects obstructing the propagation path [8]. Empirical
measurements showed that the received power fluctuates with
a log-normal distribution about the area-mean power for
various outdoor and indoor environments [7], [10]. The PDF
of the SNR is given by [8]

. 3 (101ogyoy — M)2
fhdgfV@}gvexp<74444§;54447

where £ = 10/1In(10), p (dB) denotes the area-mean SNR,
and o (dB) denotes the standard deviation of 101log; 7. To the
best of our knowledge, there exists no closed-form expression
for the average probability of detection when we substitute (8)
and (10) into (9). The log-normal distribution can be closely
approximated by the Wald distribution (also known as the

>7 7 >0, (10)
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inverse Gaussian distribution) [11], [12], whose PDF is given
=0
N n(y—9)

by
o= e (20

where 0 = E(y) denotes the expectation of ~, and 7 is the
shape parameter. The variance of ~ is %, ie., Var(y) = &
We propose to use the Wald distribution to approximate the
log-normal distribution. In order to do so, by the method of
moments we relate parameters 7, 6 with p, o as below

>, v>0, A

2
n oo
o= ow (4 7).
0
No= ——— (12)
exP(g—z) -1
Substituting (8) and (11) into (9), with manipulation we
obtain
[n D(n+tu,d)
P na - 2
s 27r Z I'(n+u)n!
x/yW%“W B4y, (13)
Jo

Using (3.471-9) in [9] for calculating the integral, we obtain

B [2n o3 2 T(n+u, 2)
d,Sha = F n ¥ u)n'
n—3
" WP
K 14
><< 292+77> n,;( 7] , (14)
where K,,_1(a) denotes the modified Bessel function of the

second kind with order n — %

The truncation error, 7., will be involved when using
finite summations, NV, to replace infinite summations in (14).
Because Flﬁn 5 — ’bzw ! % can be viewed as the cumu-
lative dlstrlbutlon function for a Poisson random variable of
X ~ Poi(b), which results in T(n.b) < 1, the truncation error

: T(n)
is bounded by

T, <\/>es Z 291M> n,,

n=N+1

/\/Tm )
N \

r92
ﬁ/20+n>.0$

=1- \/27] 7 Z 2924"’7 n—— \

IV. ENERGY DETECTION OVER SLOW FADING CHANNELS

The detection result of a single receiver may not be suf-
ficiently reliable, which might be due to either the effect of
fading or a low SNR. In such a scenario, diversity schemes
are often employed because they can combat the severe fading
[8]. Using SLC, the energy vectors, Yi,Ya, -, Y, from L
distributed receivers are gathered at a fusion centre (FC),
where the test statistic, Yy, = Zle Y; is formed [13]. When
these L fading channels are i.i.d., and all branches have the
same noise variance, the fused energy, Y5, has the following
distribution,

H,y
Ysie ~ { }—{07

XZLu (29s1¢)s

16)
XZLu7
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where 4. = ZiLzl ~; is given by [13].
In the case of non-fading AWGN channels, the probabilities
of false alarm and detection under a SLC scheme can be given

bel
a5 below . T(Lu,)2)

=—— 77 17

fa I'(Lu) an
P(Q = QLU V 2791(, \/7)7

v, T(n+ Lu, 2) — as)

n! T'(n+ Lu)

n=0

When the signal experiences fading over L channels, the

average probability of false alarm will remain the same as

(17), and the average probability of detection can be evaluated
by averaging P over the SNR distribution as

Fé / Pall('}/slm /\)f('Yslc)d'Yslca
J0

= /0 QLu( \Y% 2’YSZC7 \/X)f(Vslc)d’Yslo

In slow fading channels, the PDF of the SNR in the
node i, y;, can be approximated by a Wald distribution. When
all fading channels are stationary and i.i.d., the condition
"’ = \2 i;: ) =b (constant) can be satisfied. Thus, the combined
SNR under the SLC scheme, 7., will also follow the Wald
distribution [14]. The PDF of ~4;. can be easily obtained by
replacing each n with Ln, each 6 with L, and each v with
Ysie in (11). Using a similar method to that of the single
slow fading channel, we can obtain the average probability
of detection as below

19)

/

d,Sha — T ~ I‘(n + Lu)nl
0212 2L6?
7 - n( +n) L 0)
2L6%+n 2 0

The above result can also be obtained by replacing each 7
with Ln, each 6 with L, and each u with Lu in (14).

V. SIMULATION RESULTS

Receiver operating characteristic (ROC) analysis has been
widely used in the signal detection theory. It is an ideal
technique to quantify the tradeoff between the probability of
detection and the probability of false alarm. In the simulation,
we use complementary ROC curves (P, vs 1 — Py) to show
the detection performance of ED over slow fading channels.
As we used the Wald distribution to approximate the log-
normal distribution for deriving the average probability of
detection, we compare the theoretical result in (14) with
simulated result in Fig. 2. From both figures, we can find that
the theoretical results closely fit the experimental results. In
addition, we can see that, when the average probability of false
alarm decreases, the approximation error slightly increases.
This phenomenon may stem from the long right tail of the
long-normal distribution, which is difficult to match. As shown
in the right-hand figure, the mismatch becomes larger when
the shadow standard deviation, o, becomes larger (equivalent
to a longer right tail in the log-normal distribution).
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§ §
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H 3 ¥

2 £ s
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a * a — — — Theoretical: =3 df 3
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Fig. 2. Complementary ROC curves of energy detection over a slow fading
channel with (a) the shadow standard deviation o = 4 dB, and (b) the area-
mean SNR p = 10 dB, compared with theoretical result in (14).

VI. CONCLUSIONS

In this study, we have obtained a computationally tractable
expression for the average probability of detection over a
slow fading channel, by using the Wald distribution to replace
the log-normal distribution. Using SLC, we have studied the
detection performance of ED over i.i.d. slow fading channels.
It has been shown that the theoretical expression closely match
the experimental results. Since the effect of the long right tail
in the log-normal distribution, the mismatch becomes larger
when the shadow standard deviation increases.
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Abstract

Wideband spectrum sensing is becoming increasingly inapoitb modern electronic systems, e.g.,
cognitive radio (CR), for rapidly identifying spectrum lesl or characterizing interference. On the other
hand, distributed spectrum sensing has been widely sugyést combating the detrimental effects of
fading. However, there is a significant challenge in sensiirgwideband spectrum in a distributed CR
network. Because both the high sampling rates and datantiasi®n are problematic for battery powered
CRs. In order to implement wideband spectrum sensing dftigieve present a multirate asynchronous
sub-Nyquist sampling (MASS) model. When the MASS is applieda single CR node, sufficient
conditions for unigquely reconstructing the full spectrursing basis pursuit, or orthogonal matching
pursuit algorithms are derived. We also apply the propogestesn to distributed CR networks. When
the spectra observed by CR nodes have a common spectralrsupginog one lowrate ADC in each

CR node can also successfully recover the full spectrum,gpjying a matching pursuit algorithm.
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I. INTRODUCTION
A. Cognitive radio networks

The existing fixed frequency allocation of radio spectrunpit¢glly results in significant
underutilisation of the available frequencies [1]. For exde, the maximal occupancy of the
spectrum from 30 MHz to 3 GHz (in New York city) has been repdrto be only13.1%, with
average occupancy (over six locations)502% [2]. The spectral underutilisation can be solve
by allowing a secondary user to access a licensed band wleeprithhary user (PU) is absent.
Cognitive radio (CR) [3] is widely agreed to be the most preimj method for exploiting RF
spectral scarcity [4]. A crucial requirement of CRs is thaey must rapidly fill in spectrum
holes without posing harmful interference to the PUs. Tlasktis done by the function of
spectrum sensing, which is one of the critical techniquea @R system. However, there is ¢
significant challenge in sensing the whole of the spectrum @articular physical location in a
short observation time. (Performance degrades with lomdpservation times since the laggin¢
response implies low spectrum utilisation efficiency). $hwideband spectrum sensing is @
prime importance to ensure efficient operation of both thienpry and the secondary (CR)

networks.

B. Wideband spectrum sensing

In order to exploit wideband spectrum, a bank of narrowbalter§ is often utilised to reduce
the wideband spectrum sensing problem to a multiple naramdtone [5]-[7]. Nevertheless, the
implementation of a bank of narrowband filters requires gdanumber of RF components foi
sensing a wideband spectrum [8]. Besides, it is not flexiblase a bank of narrowband filters
because the range of filters, and the number of the narrowsharelalways preset. A wavelet-
based sensing approach [9] provides advantages of bothnhplementation cost and flexibility
in adapting to a dynamic wideband spectrum. However, cleriaing the wide bandwidth will
require a high sampling rate analog-to-digital conver#&DC), due to the Nyquist sampling
theorem, and the financial cost of that ADC will be prohitBtiHence, it motivates the researcl

of using undersampling techniques for the wideband specsensing.
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Some of the undersampling techniques are related to maétcgampling [10]. In a multicoset
scheme M out of L (M < L) cosets of samples are chosen to reconstruct the signanibe
implemented by using multiple sampling channels, whichadfget by an integral multiple of a
constant time. In order to reconstruct the signal with a tégbcess rate, the number of samplin
channels must be sufficiently high [11]. Compressed ser(§&8) is an emerging sampling theory
that allows undersampling the signal. Tian and GiannakjsM@&e the first to introduce CS to
CR using an edge detection based approach. It has been etbgbat this is very sensitive to
low SNRs, which commonly exist in the wireless environméut.analog information converter
(AIC) structure was proposed in [12] for compressing sigrialthe analog domain, and the AIC
based compressed wideband spectrum sensing approach wdiedsin [13]. However, it has
been identified that the AIC model will be easily influenceddssign imperfections or model

mismatches [14].

C. Distributed wideband spectrum sensing

On the other hand, due to the effect of multipath fading ordskang, a single CR cannot
distinguish between a deep fade and an idle band. In suchasogndistributed spectrum
sensing has been widely considered for combating fadinghadewing [15], [16]. A data
fusion based approach is preferred for distributed spettaensing as it offers much bettel
detection performance than the decision fusion approadi¥dsNonetheless, using conventiona
distributed spectrum techniques, the transmission of rata through a control channel is very
expensive for the wideband spectrum sensing. Moreoveh thw high sampling rates and the
raw data transmission are problematic when the distrib@Bd are battery powered.

A candidate model for distributed wideband spectrum sensna multirate sampling sys-
tem. Asynchronous multirate sampling (MRS) and synchrenowltirate sampling (SMRS)
schemes were studied for reconstructing sparse multibeyméls in [18] and [19], respectively.
In addition, MRS has been successfully implemented in éxygars using a novel electro-
optical system with three sampling channels as describg@0h Both systems employ three

optical pulsed sources that operate at different rates andifferent wavelengths. In order to
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reconstruct a wideband signal with 48 GHz bandwidth, the modulated pulses are amplifie
and sampled by an ADC at a rate $fGHz in each channel. In [18], the sampling channe
of the MRS can be implemented separately without synchatiois. However, reconstruction
of the spectrum requires that each frequency of the signaitrbe non-aliased in at least one
of the sampling channels. In [19] the SMRS reconstructs geetsum from linear equations,
which relate the Fourier transform of the signal to the Feutransform of its samples. Using
CS theory, sufficient conditions for perfectly reconstingtthe spectrum are obtained;> 2k

(the Fourier transform of the signal issparse) sampling channels are required. It is difficult -
implement such sufficient conditions either in a single CRaor distributed CR nodes, becaus
of its stringent requirements on electro-optical hardwamel synchronisation. For reconstructing
the spectrum using fewer sampling channels, the spectriba tecovered should possess certa
properties, e.g., minimal bands, and uniqueness. How#verspectral components from PU:

may not possess those properties.

D. Contributions

The contribution in this paper is threefold. First, we prepca multirate asynchronous sub
Nyquist sampling (MASS) system that employs multiple lawrADCs to implement wideband
spectrum sensing. The key features of the MASS system atewlimplementation complexity,
2) applicability to distributed CR networks, 3) energy-gffncy for sharing spectrum sensing
data, and 4) robustness against the lack of time synchitioisaNote that even though the
sampling pattern of MASS can also be implemented using aicoskt scheme, it is not practical
to use this technique because of its stringent synchrooisatquirement. In order to guarantee
a perfect spectrum recovery, the total number of obsematfoom all ADCs is of the order of
2kv/N, instead ofN (the number of samples required when sampling at the Nyaais). We
should emphasise that even though we use more samples thatetth CS-based method, whict
only requires Qklog(/N)) samples, our system is more readily implemented in a digibh CR
network than the CS-based model. We then present the conslitinder which the recovery of

the full spectrum is unique by using CS techniques. A traffiésomade between the numbel
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of sampling channels and the probability of successful specrecovery. Finally we apply our
model to distributed CR networks. When the spectra of the G&es have a common spectra
support, using one lowrate ADC in each CR node can also ssittlysrecover the full spectrum.
This is obtained by applying a hybrid matching pursuit (HMV#orithm by synthesizing the
distributed compressed sensing simultaneous orthogomathimg pursuit (DCS-SOMP) and

compressive sampling matching pursuit (CoSaMP).

E. Outline and Notations

In the following, we briefly introduce CS theory in Section Ih Section Il we propose a
MASS model. Using CS theory, the sufficient conditions of &gectrum recovery are derived.
Simulation results are presented in Section IV, followedcoyclusions in Section V. We note
that, throughout this paper, we adopt the following notadioScalars are denoted by italic fon
lowercase letters and constants by uppercase italic $ettéactors and matrices are denoted b

lowercase boldface and uppercase boldface letters, ribggplgc

Il. RELATED BACKGROUND ONCOMPRESSEDSENSING

CS theory [21] indicates that a signal,c CV, which is k-sparse, can be exactly recovere
from M (M < N) linear projectionsy € CM(y = ®x), where® € C**V is the measurement
matrix. By k-sparse, we mean that thelargest values ok are not negligible. The perfor-
mance of recovery is determined by three factors, nameby,stharsity,k, of the signalx, the
properties of the measurement matfix and the recovery algorithm. The mutual coherence is
computationally tractable metric for evaluating the shitity of the chosen measurement matrix

Definition 1 [22]: Let @ be expressed a& = [¢1 ¢2 ... ¢n], Wheregp; denotes thg-th column

of the matrix®. Then the mutual coherencg, of the matrix® is given by,

= b 1
J #Iglea[tffml < ¢, On > |, (1)

b5
(#3112

The aim is to keep to a minimum to allow linear projections to be inverted in aldé manner.

whereéj = denotes the, normalised column.

Donoho and Elad have proved that a small mutual cohergncan guarantee the performanci
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of the recovery as below.
Theorem 1 [23], [24]: Assume that a signat is k-sparse, when the mutual coherencef

the measurement matri® satisfies,

@)

<

2k —1°
we can use techniques such as basis pursuit (BP) [25] orgwtied matching pursuit (OMP) [26]
to find the sparsest solution of thiesparse signak € CV from measurementg € C.

In a distributed network, the received signals in differeenhsors are not only individually
sparse, but also jointly sparse (have nonzero entries asahee locations). A separate recover
strategy (each sensor recovers the signal individuallyl) kgquire more measurements as i
neglects the correlations of signal among sensors. The BOBHP algorithm was presentec
in [27] for reconstructing the joint sparse signals with & measurements by a boost-anc

recover approach.

1. M ULTIRATE ASYNCHRONOUSSUB-NYQUIST SAMPLING

We will now present a MASS system to sense the wideband gpeaising multiple lowrate
ADCs in subsection IlI-A. For simplicity, we firstly consid¢he case that one CR node it
equipped with parallel ADCs, which uniformly sample the elicind signal at different sub-
Nyquist rates in the noiseless case. In subsection IlI-Bwilleconcentrate on exploring what
kind of linear projection exists when performing sub-Nysfitsampling. The effect of sub-Nyquist
sampling will then be considered in subsection IlI-C. Us®g theory, we will give sufficient
conditions for reconstructing the full spectrum in subsatill-D. Finally the trade-off between
the number of ADCs and the probability of successful spectracovery will be discussed in

subsection llI-E. In subsection IlI-F, this will be extedd® apply in a distributed CR network.

A. System design

Partially motivated by MRS in [18], our system will use a nimalte sampling scheme as showi
in Fig. 1. Instead of electro-optical devices, lowrate AD&e employed in MASS. Since the

average spectral occupancy is very low, we assume that thalmsed discrete Fourier transforn
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(DFT) spectrum (full spectrum, when the sampling rate is less than the Nyquist sampling
rate) isk-sparse, and consists of several subband signals withreiffeinknown bandwidths. By
k-sparse, we mean that onkycomponents in the full spectrum are non-negligible. Thespa
level, k, of the non-aliased DFT spectrum can be obtained from lisi&ision, for example, coarse
spectrum scanning, and will not be addressed here. The waittkfilter prior to the ADCs
removes only frequencies outside the spectrum of intesedd, is altered to have the larges
spectral estimation bandwidthl. We assume that there aveADCs that sample the widebanc
signalz(t) at different rates{”Tl, % % over the same observation timeBf We note that no
anti-aliasing filter is used prior to the ADCs, thus aliasouagurs. The length of samples in thei
corresponding channels will b&fy, Ms, ..., M, (M;epr,q ~ O(VN) in (17)). A tapered window,
such as the Hamming window, is used to combat the effect dalps and keep the sparsity
level, k, of the non-aliased DFT spectrum as small as possible. Thetrsh observations are
obtained by performing a windowed fast Fourier transforr@ Tl of the samples in each channel
The magnitude vectors of the sub-Nyquist rate spegtrays, ...,y, (y; € R, i € [1,0]), are
used to form a concatenated equation as shown in (14). Aitdr the measurement matnii
is constructed by only using/; (v ¢ € [1,v]) and N in (10) and (14). Then we recover the
non-aliased spectrumx,,| using a CS algorithm, e.g., BP, OMP, followed by spectrunectéin
on the reconstructed spectruix,|.

MASS has several advantages for application in CR netwanks,ding,

1) Wideband spectrum sensing is implemented with sub-Nsgggampling, which relaxes the

stringent requirements on ADCs.
2) The lowrate ADCs behave as acquisition devices as welpastsim compression devices
3) The compression/measurement matrix we used is detesticinend can be easily con-

structed once we know/;c[; ,; and V.

B. Relating the sub-Nyquist rate DFT spectrum to the noaselil DFT spectrum

We can view the sub-Nyquist rate spectrum (aliased spegtasna linear projection from the

non-aliased spectrum as shown in Fig. 2.
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Let z(t) represent the output signal of the wideband filter in Fig. ithva bandwidth ofi?.
In the short observation time df, we sample the continuous signa(t) at a sampling rate
of fy = % < 2W in thei-th channel (different sampling rates at different chagpeifter a

tapered window, the sampled signal in thth channelz;(t), can be represented by,

oo

wai(t) = D w(t)d(t — 1AL )wr(t), 3)

l=—00

wherewr(t) is a tapered windowA¢; is the sampling interval in the sampling chaninelnd
4(t) is a Dirac delta function.
The Fourier transform of the sampled signal is given by,

Z/ X(r + Lf)Welf — 7)dr. (4)

l=—00
where Wr(f) denotes the Fourier transform of the tapered windgw,= 1/At, and X(f)
denotes the Fourier transform oft).
If () is sampled at a rate of, = & > 2/ over an observation time df, the Fourier

transform of the sampled signal can be represented by,
X = £ [ X@OWr(f =7)dr, VIf| < £./2 )

where X,,(f) is a non-aliased full spectrum. Replacifigby f + I fy, and7 by 7 + I fs in (5),
and then substituting it into (4), we obtain the relationwesn X (f) and X,,(f) as,

SIS X, viF i< e ©)
S l=—0

where X;(f) denotes the sub-Nyquist rate spectrum in thh sampling channel.

Since the observation tiE in both cases are the same, the same frequency resolutitinsap
to these two cases, i.eAf = L& = M , Where N, and M, are integers and denote the numbe
of samples at sampling ratqg, and f,, respectively. By defining an integeti, and a scalar

& €[0,Af), such thatf = mAf + ¢, we can rewrite (6) as,

JYARRLE]
Xoi(mAf+E) = DAf+) =— > X, (nAf+) Z S[n—(m~+IM;)],
lffoo N n=—|N/2| l=—00
(1)
where || denotes the floor function, and gives the largest integemgnedter than.
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Sampling the Fourier transform spectrum in (7) at ratez]t?f we obtain the DFT spectrum,

M 0 M; X2 i
Xsilm] = i == Z Xa[n] Y 0ln— (m+ 1)), (8)
l=—00 N —|N/2] l=—00

where X;[m] denotes the sub-Nyquist rate DFT spectrum inititte channel, and\,,[n] denotes

the non-aliased DFT spectrum. In matrix form this becomes,
Xsi = @ixna (9)

wherexg; denotes the sub-Nyquist rate DFT spectrum vector inittiechannel x,, is the non-
aliased DFT spectrum vector, and the element of the lineajeption operator®; ¢ RMixN
(M; < N) can be represented as,
M >
Ot | Mi/2)+Ln+ [ N/2)+1 = Z 5[“ — (m + 1M, )] (10)

l=—00

wherem € Z N [—M;/2,M;/2), andn € ZN[-N/2,N/2).
It is easy to see that in each column®f, there is only one non-zero element with value ¢
. And in each row of®;, there exists at mos[t 1 (ceil function gives the smallest intege!

not less thani-) non-zero elements, which is also called the undersamftiotpr.

C. Effect of sub-Nyquist sampling

Sampling a signal at a sub-Nyquist sampling rate generatesssues. First, the exact locatior
of the signals for those who have frequencies larger tharstieNyquist sampling rate is lost.
Second, there is a risk of overlap, i.e., different frequesacre down-converted to the sam
frequency in the baseband. This is crucial, because it ctadd to signal cancellation, and
hence missed signal detection in the CR application. Howveweler certain assumptions, signa
overlap has a very small probability of occurring. They ajeHe non-aliased DFT spectrum is
k-sparse, 2) the number of subsamples inzthie channel MZ; ~ O(v/N) (in (17), for simplicity,
we useM; = v/N), and 3)k < N.

Assuming thosé: spectral components are independent and identicallyiloliséd (i.i.d.) over

the frequency bins 06,1, --- , N — 1, the probability of one element in the non-aliased DF
spectrum being non-zero i® = Pr(X,[n] # 0) = k/N. If let ¢[m] denote the number of
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signals overlapped aX;[m], using (8) the probability of no signal overlap is given by,
21, (3] Eak
Pr(glm] < 2) = Pr(glm] = 0)+Pr(qlm] = 1)=(1=P) ™+ 2 P(1=P)™

N—k kaw_(N—) N(N— k+k\/_)
~(N)+M(N) > (11)

It is not difficult to test that, for any fixed:, (11) will converge to one whemV increases
to infinity. As shown in Fig. 3, whenV = 9 x 10%, and M; = /N, the probability of no
signal overlap atX;[m] will be Pr(g[m] < 2) = 95 ~ 100% for any k£ < 1000 = M;/3, and
Pr(gm] < 2) > 99% for any k£ < 400. Thus, under assumptions mentioned above, using
we can write,

Vi = |Xsi| = |PiXn| = Pi|Xnl. 12)
Equation (12) holds true because wh&g[m] is the projection of a single signal, we have,

M
| X i[m ZX + M| = 1 Xlm - IV = @3 Xm0 (13)

In the rare case where signal overlap occurs,(.& |xs| < ®;|xy|, we could still track the
spectral content ofx,,| with the aid of other sampling channels [18]. This is becathseblind

spot of one ADC can be illuminated by other ADCs working afefiént sampling rates.

D. Recovery of the full spectrum via multirate sampling

We will now introduce a method for reconstructing the fullesfrum through multirate sam-
pling. Since we are observing the same magnitude of the specix,|, in all channels, we can

form a concatenated equation relatirg= |x,| € RN toy = |xs| € RM as below,

Y1 |Xs1| d,
Xg )]

y=| "= | .2| ~ox=| ||l (14)
Vv [Xsv]| ®,

where®,, ®,, ..., ®, are disjoint submatrices ab, ®; ¢ R™*V is the measurement matrix of
ADC i, andM = >_!_, M;. Since the time offset between ADCs will not influence the niagle

of the non-aliased spectrurtx,,|, (14) holds true for asynchronous ADCs.
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When certain conditions are satisfied as Lemma 1 below, thimahgeoherence of the con-
catenated measurement matéxwill be determined by the number of samples in each chann
and the number of channeis

Lemma 1 [28]:Whenv ADCs observe the spectrunx,,|, in the same observation time, genel
atingv measurement vectorg;, yo, - - - , ¥, Whose length are different primes{;, My, - - - , M,,,
which satisfy,

MM, >N, Vi, ze[l,v],l+#z (15)
then the mutual coherengeof the measurement matri® is determined by,

maX;e [1,9] ]\/112

= b, on > | = 16
po=max| < 5, én > | ST (16)
The proof of Lemma 1 is given in Appendix A.
Theorem 2 (Sufficient conditiongjor the above system, if,
MM, > N, Vi, zell,v],l#z, @a7)
Z <L>2 > 2k —1 (18)
=1 \MaXie[1,9] M; ’

we can reconstruct the full magnitude spectrixy| without any aliasing.

Proof: Theorem 2 follows from the results of the Lemma 1 and Theorem 1

From (17), we can find that the number of samples in each ADCS ih® order of v/N.
When M; ~ O(+/N), from (18), we can see that at least channels are required to guarante
the recovery of the non-aliased spectryxy|. This is because > >}, (—M‘—>2 holds

max;c1,0) M

true for allv € Z*. Considering both (17) and (18), we note that MASS needsdta number
of observations to b&?_, M; ~ O(2kv/N). If we define the compression ratio %Vl M we
can see from Table | that the compression ratio decreasean tigelength of Nyquist samples
N increases, but it increases if the sparsity degremcreases. For example, for = 4, the

compression ratio descends frarfi.4% to 1.33% when N increases from 024 to 102400.

E. Trade-off number of sampling channels with recovery ability

In order to reduce the requirement for a large number of AD@s, strict recovery criteria

can be relaxed.
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Theorem 3if we sample a wideband signal¢), whose full spectrum ig-sparse, and obtain

multirate spectral observationg,, y,, ..., y.,, whose length are prime numbers iy, M, ..., M,

which satisfy,
MM, > N, Vi, zell,v],l#z, (19)
v oM?E 2k —1
=1 l
> , Vv € [2,00), 20

recovery algorithms such as BP, and OMP, have a probabifiggt deast { — ¢) to reconstruct
the non-aliased magnitude spectrixs |.
The proof of Theorem 3 is presented in Appendix B.

S M.

Compared with Theorem 2, we can see that when the conditier M7 > is

le[1,0] €
satisfied, the recovery conditions can be relaxed. It isequeful when we want to use fewe

sampling channels to approximate the full spectrum with @bgbility of at least { — ¢).

F. Extension to distributed wideband spectrum sensing

In wireless communication scenarios, some CR users magrsifé effect of fading either
due to multipath propagation, or due to shadowing. In thaec¢he result of spectrum sensin
from a single CR node is not reliable. A cooperative detecitrategy offers a good solution as
it minimises the effect of severe fading and achieves ditegain [16]. If every CR forwards
its measured or processed data to a fusion center (FC), whaltes a final decision based o1
collected data, the cooperative scheme is often called fusian based distributed spectrurn
sensing. If each CR uses multiple ADCs to do sub-Nyquist sampthe transmission of the
measurements may be very expensive in distributed CR nkswor

To minimise the required transmission bandwidth, we preptms extend the application of
the MASS model from the case of parallel ADCs in one CR nodeetiasADCs in multiple
CR nodes as shown in Fig. 4. Note that, as in the analysis afestibn I1I-D, the time offset
between ADCs will not change the magnitude of the non-aliageectrum, thus asynchronou:
CRs have the same performance as synchronous CRs. The wibfilbers prior to the ADCs are
altered to have the same bandwidthidf. After measurements in each CRs, the magnitudes

the sub-Nyquist rate spectra are transmitted to the FC, evtiex full spectrum is reconstructed
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The advantage of the distributed MASS model is that only amadte ADC is required in each
CR node, which not only simplifies the system structure ah&ziR node, but also decreases th
bandwidth required for sharing spectrum sensing data. Asttalysis in the subsection I11-D, the
total number of observations to be transmitted is of the ood@k+/N. Even though this is more
than conventional CS, i.elM ~ O(klog(N)), MASS is more amenable to implementation in
distributed CR network as neither a compression device moeasurement matrix generator ari
required. Moreover, the measurement matrix we used is ohéstic, then the transmission anc
storage of the measurement matrix is unnecessary. Nelesthehe disadvantage is that (14) n
longer holds because of the influence of fading. Thus, cdimeal CS algorithms, such as BF
and OMP, cannot be applied. In fading channels, the powedresignals coming from PUs are
attenuated. Namely, the received signals at distributechGfes, i.e.u™ (¢), u®(t),---u(t),
may be different, and the spectra viewed by distributed Ofsefore are often distinct. As
illustrated in Fig. 5, the spectra over the distributed CRie® can be modelled by the secon
joint sparsity model (JSM-2) in [27]. Specifically, the spamver CRs have a common spectre
support,() (the set of frequencies occupied), but with different atoplés.

In order to exploit the joint sparse property over sensora®dCS-SOMP was proposec
in [27]. It has been observed that this algorithm requirageiemeasurements when compare
with a separate recovery approach. However, the drawbacR@8-SOMP is its calculation
time as it only selects the maximum support in each iteratidmike the conventional greedy
algorithms, CoSaMP [29] accelerates the calculation bytifleng many possible solutions in
each iteration. Hence, we propose to apply a hybrid matcpunguit algorithm to the MASS
model as shown in Table Il, by synthesizing DCS-SOMP and @#Sdn each iteration, we
boost the common support by summing up the correlation vedtom multiple channels, which
will make the features easy to identify even if fading existsome channels. We select multiple
indices in each iteration by choosing the tpindices of the2k-largest values in the combined
correlation vector, and merge with the previously computadport. After that, the non-aliasec
full spectrum is recovered by least squares, w@}gdenotes the pseudoinverse®§,, and®g

is the sub-matrix obtained by only selecting the columnspsehindices are ifi, in the matrix
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®. Since the matrix®q, is always well conditioned, the calculation of the pseuvleme<1>I1

can be implemented quickly using an iterative method, suctha conjugate gradient methoc
in [30]. We then prune the support to hakdargest values, followed by updating the residual
The algorithm will be halted when thé norm of the residual is not larger than the nois

tolerance levep.

IV. SIMULATION RESULTS

In the experiments, we consider that each CR is equipped avisingle lowrate ADC, and
there arev CR nodes allocated in the same cluster. In #tb CR node, the wideband signa

@ (t), which is defined below, is sampled by a lowrate ADC over areolaion time,T".

2 (t) = Xb: VEIB-sindBy(t — A)) - cos(2m fi(t — A))), (21)
=1

where A; denotes the time offset of the signal, set to/h&, and E; denotes the energy of the
I-th subband viewed by theth CR. Since the effect of fadindy; varies subject to the property
of the fading channel. The wideband signél (¢) consists ofN, subbands, whose bandwidth i
By, and carrier frequency ig,. The values of simulation parameters are specified in Tdbl&$
described in Fig. 4, after FFT analysis in each node, theNyduiist rate spectral observations
y1,¥2, ..., Vo, are gathered at the FC. In the FC, the full spectrum is re¢ocacted using HMP. The
spectral occupancy status is decided based on a hypotkesisr the reconstructed spectrum
In Fig. 6, we demonstrate the performance of spectrum regaveMASS using HMP. We
can see that by using= 10 ADCs, the non-aliased spectrum, which consists sfibbands with
bandwidth0.3 ~ 30 MHz, can be successfully reconstructed. We should emphais& instead
of working at or above 0 GHz, these ADCs are working at sampling ratel82.5 ~ 282.5 MHz,
and the total number of measurement23s85%N (N is the number of samples i (¢) is
Nyquist sampled in a CR). In Fig. 7, we find that the fewer suolsathere are, the better the
detection performance we can achieve. If a CR system hagraornion the probability of false
alarm, e.g.,P, < 10%, the minimum number of measurements aréN, 0.3N, and 0.55N

for N, = 10, N, = 30, and N, = 50, respectively. On the other hand, if one lays emphas
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on the probability of detection, we can find that to obt&in > 90%, we need at leasi.2N
measurements to sense the wideband spectrum with |0 subbands. In addition, one car
notice that the higher compression ratio will result in a Bargprobability of false alarm and a
larger probability of detection.

In Fig. 8, we consider the effect of imperfect synchron@atamong ADCs. Compared with
a reference clock, the asynchronous ADCs have time offsearnige of0 ~ 0.8 us, while the
total observation time i€ us. We can see that the detection performance of the asyrmisor
ADCs is roughly the same as that of the synchronous ADCs. &iglso illustrates that with
more ADCs in collaboration, we can achieve a better spectsemsing performance. This is
because with more sampling channels, we can obtain higldapility of successful spectrum
recovery as the discussion in the subsection IlI-E.

In order to quantify the detection performance of the distted MASS system over fast/slon
fading channels, we compare their detection performandé that over AWGN channels in
Fig. 9. It shows that, compared with AWGN case, more CRs needotlaborate in order
to combat the effect of fading. Specifically, to obtaif}, = 10%, 40 CRs are required to
collaborate over AWGN channel§)) CRs are required for Rayleigh fading channels, &0d
CRs are necessary for slow fading channels. Note@h&DCs in MASS can be converted to the
compression ratio 0f2.32%, which means that we only need to transfif232 N measurements
to the FC through the control channel, rather tlt@V for a conventional distributed spectrun

sensing approach.

V. CONCLUSIONS

In this paper, we have presented a distributed widebandtrspecsensing model, MASS,
which employs several lowrate ADCs to sample the widebagdadiat sub-Nyquist rates. The
MASS system could be applied either in the scenario of melthiDCs in one sensor or in the
case of serial ADCs in multiple sensors. We have presengdgfficient conditions to uniquely
recover the full spectrum by using CS theory. When the specfrthe CR nodes are jointly

sparse, we have applied the MASS to the distributed CR né&twdsing one lowrate ADC in
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each CR node, we can still recover the full spectrum by usigHMP algorithm.

Simulation results have shown that our approach can redtwewideband non-aliased spec
trum successfully. Besides, MASS has been shown to be véystaagainst the lack of time
synchronisation between ADCs. Moreover, when the MASS rhizsdapplied to the distributed
CR network, we only need a few more CRs to collaborate for cating the effect of fading.
To further save the transmission costs in transmitting llacfwrmation to the FC, a multi-hop
implementation of the MASS is attractive. We will investigahe performance of the MASS

using multi-hop scheme in the near future.

APPENDIX A

PROOF OFLEMMA 1

We use an example); = 3, My, = 5, and N = 9. The measurement matri$¢ can be

constructed using (10) and (14), then thecolumn-wise normalised matrisb is

[ 0.5145 0 0 0.5145 0 0 0.5145 0 0 |
0 0.5145 0 0 0.5145 0 0 0.5145 0
0 0 0.5145 0 0 0.5145 0 0 0.5145
P 0 0 0.8575 0 0 0 0 0.8575 0
0 0 0 0.8575 0 0 0 0 0.8575
0 0 0 0 0.8575 0 0 0 0
0.8575 0 0 0 0 0.8575 0 0 0
L 0 0.8575 0 0 0 0 0.8575 0 0 |

Using (10), thej-th normalised columm@j [m] can be expressed as

. M, , N M
¢J[m] - /Zzzll Mlg(s{m a ‘j B {EJ * {%J mod*(M,J’
Vi e[, N], = {l|m € ri Mk+1,2l: Mk” (22)
k=0 k=0

where M, = 0 and| e |moa(q) is @ modified modulo operation in the sense of usintp replace

all zeros in the results of the standard modulo operation.
-1 l
Let us define the eventy as there exists a value of € [> M, + 1, M,] such that
~ ~ k=0 k=0
¢jlm| = ¢p[m| > 0, wherej # h € [1,N]. Then the average probability of the eveni
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ClSh

oceurring is Pr(my) = —a2 = D=l — NQIol \where D; = N/M; is the undersampling
N

factor in thel-th sampling channel. Obviously, any single event(l € [1, v]) could occur when
M, < N becausePr(m;) > 0. In case of only one event; occurring, the mutual coherence o
the matrix® can be calculated by using (1) and (22) as
SN M; M, il M?
p=max | < ¢j, ¢ > | = max . = maxve[l, ] . (23)
e et \/Z;;l M} \/Zf=1 M 2i=1 M

Then next target is to make the probability of two events a@ieg to be zero. By the definition

of the eventmy, it satisfies|j — [ 5] + [ %] |mota) = |h — [ 5] + [ %] |moct (a1,), Where j #
h € [1, N]. It is equivalent toh — j| = w,M; for w, € ZN L, [%1 — 1]. Similarly, the eventn,
happens whet, — j| = w, M, for w, € ZN|1, (Miz] — 1]. Both of them happen when

N N
w,M, = wM;, w, €ZN {1, [A_fz—‘ — 1} ,w, €ZN {1, LV_[Z—‘ — 1} . (24)

The probabilityPr(m_m,) is the probability of both the event, and the eventn, satisfying
equation (24). This is equivalent to being givéf and M., and then finding how many pairs
of numbersw, andw, out of the available number QLTNII] —1)or ([Mlj —1) are required for

equation (24) to hold. Without lost of generality, we comsithe possibility forw; and get

Pr(m,my;) = [ﬁw N (25)
M;
. . , MZ /wz ’ ’
because ofy; should be integer multiples af; asw, = Wamr = Wit wherew, andw, are
! wy

from simplest fraction form of

w, M, aw, w,

— = = = 26

w, M, —aw, w’ (26)

wherea denotes an integer.
If we assume thail/; and M. are different prime numbers, then} = M.,. In order to let
Pr(m,m;) = 0, which is equivalent ta\/, = w; > [A%l — 1, M; and M, should satisfy
MM, >N, Vize[l,v],l#z (27)
becauseVt, > & > []TN[J —1.

M,
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In summary, in order to prevent any two events, @ndm., [ # z ) from happening together,
M, and M, should at least satisfy equation (27). Furthermore, if trabpbility thatm, andm,
occur together is zero, then the probability that more thvam évents #z;, m....) occur together
is zero too. It is equivalent to the condition that the maximcorrelation of different columns

in ® exists when only one event happens as

max;e o] M}

= bi, & = 28
p=max| < g, on > | ST (28)
Hence, Lemma 1 is proved.
APPENDIX B
PROOF OFTHEOREM 3
From Doob’s maximal inequality [31], we obtain
E(< &5, ¢
Pr(pu>zx)=Pr (maux| < &5, > | > x> < m, (29)
X

where Ea) denotes the expectation of

Assume that we obtain the prime number of samples and theitaumaf equation (19) is
satisfied, there exists at most one valuerok [1, M/] that makesﬁj[m] — ¢u[m] > 0. Then the
expected value ok ¢;, o, > becomes

M? M2 M?
——Pr(m —=—Pr(mey) + -
N 1M2 (ma) + S M2 (m2) zl S M2

BecausePr(m;) = Y041 < 1/M;, substituting it into (30) we obtain

E(< (;SJ, b >) = —2—Pr(m,). (30)

IO M
E . 11711_ 31
(< ¢J7 ¢h >) < Z;}:l Afg ( )
Replacingz in (29) by x = % 7, and substituting (31) into (29) we obtain
1 PN S M
P < (2k—-1)E ; == __(2k-1). 32
(0> gpo) < k= DB 66w >) < SRR (32)
If we define the final term to be less thanthat is
S ME 2k —1
> , 33
Z,ZU=1 ]\/jl € ( )
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the following equation holds true

)>1—€. (34)

1
P
r(“<2k—1

On applying Theorem 1, we finish the proof of Theorem 3.
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Fig. 1. The schematic illustration of the multirate asymetous sub-Nyquist sampling system in one CR node. The widkb

filter is altered to have a bandwidth &F.
f, f, f
Sub-Nyquist sampling
FFT

Fig. 2. Interpretation of the relationship between the atiased spectrumx,, and the sub-Nyquist rate spectrumsy, when
the Fourier spectrum of(¢) is denoted byx.

X

|

- -y
Nyquist sampling

TABLE |
SETS OF PRIMES SATISFYING CONDITIONS INHEOREM2

Sparsity| Samples Set of primes Channels Compression ratio
® | W ) () | =3 % 100%)
1 9 3,5 2 88.9%
1 64 11,13 2 37.5%
1 1024 37,41 2 7.62%
2 1024 37,41,43,47 4 16.4%
1 10240 101,103 2 1.99%
2 10240 101,103,107,109 4 4.1%
3 10240 | 101, 103, 107, 109, 113, 127,131 7 7.72%
1 102400 331,337 2 0.65%
2 102400 331,337,347,349 4 1.33%
3 102400 331,337, 347, 349, 353,359 6 2.02%
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Fig. 3. Simulated probability of no signal overlap at a freqoy f = mAf + £ in the sub-Nyquist rate spectrums,
compared to the theoretical result in (11). The number ofasat the sub-Nyquist sampling rate i¢; = VN = 3000,
where N = 9 x 10° denotes the number of samples at the Nyquist sampling rate.
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Fig. 4. The schematic illustration of the distributed MASBtem.
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Support: Q={3.8,12} Unoccupied ‘ 1*PU ‘ M py D 34 py
Fig. 5. lllustration of the spectral correlation in disuiied CR nodes.
TABLE I
HYBRID MATCHING PURSUITALGORITHM FORDISTRIBUTEDMASS MODEL
Input measurement matri®, observation vectoy,
sparsity levelk, and noise tolerance level
1. Initialise:
Residualr® = y, approximationx® = 0, supportQ® = [, i= 0,
2. While halting criterion is falsedo
1). Form residual correlation vectors individually,
cj = ®;"rl for j € [1,0],
b). Find spectral suppos' by boosting
. v
s' = Supp( X <),
=
c). Merge support with previously computed support by
Q= Qs
d). Approximate the non-aliased spectrum by least squares
xp =o'y, Xpe =0,
e). Prune locations of support by
p = Supp,(x'), ,
f). Update individual residual by
5 =y; — ®ix;, for j € [1, 0],
g). i=i+1.
3. Halting criterion: ||r'|]> < o
- e . —
Output: A k-sparse approximation of the non-aliased spectriuq), = x;,.
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TABLE Il
LIST OF SIMULATION PARAMETERS SETUP FOFIG. 6, FHG. 7, HG. 8, AND FIG. 9.

Figure 6 Figure 7 Figure 8 Figure 9
Observation 0.4 s 2 us 2 us 2 us
time T
Wide_band 5 GHz 20 GHz 20 GHz 20 GHz
bandwidthiV/
Length of Nyquist 4,000 80,000 80,000 80,000
samplesN
No. of 5 10, 30, 50 30, 50 30
subbandsV,
Bandwidth 0.3 ~ 30 0.1~5 0.1~5 0.1~5
of subbands (MHz
No. of 10 1~150 1~150 1~150
ADCs v
Sampling rates | 1955, 280 5| 189.5.711.5 | 189.5.711.5 | 189.5.590.5
of ADCs (MHz)
Comptf_eSSiO” 23.85% | 0.47~163.45% | 0.47~163.45% | 0.47~163.45%
ratio

.
©

=
o
T
L

—&— Nyquist Spectrum —
— = — Recovered Spectrum

[
I

T
—%

= =
o N
T T
Bk

Magnitude of Spectrum
=

0 0.5 1 15 2 25 3 35 4 45 5
Frequency (Hz) 9

Fig. 6. Comparison of the non-aliased DFT spectrum with #wovered spectrum, when the wideband signalthasb-bands
with bandwidth0.3 ~ 30 MHz, and SNR= 15dB. There arev = 10 ADCs, which experience non-fading AWGN channels.

August 14, 2010 DRAFT

140



Original publications

25

0.9 ______ Probability of detection ND:10

_ _ Probability of false alarm N,=10

o
©

» Probability of detection Nb=30

_ o _ Probability of false alarm N,=30

o
3

= Probability of detection Nb=50

o
o

— g — Probability of false alarm N, =50 B

Percetage (*100%)
o
(%)

0.4 \ 4
LA \ 4
0.3 | oR
. AW N
0.2 X b
\ N h=N
\ A = =}
A S|
0.1 \ W By -
. A
\ A Brog Rl
0 S~ I A A Al el I i I P
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Compression ratio

Fig. 7. Influence of the number of sub-bands, and the comipresatio on the detection performance, when the wideba
signal hasl0, 30, and50 sub-bands with bandwidtb.1 ~ 5 MHz, and the ADCs experience non-fading AWGN channels.

P
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Fig. 8. Comparison of spectrum recovery performance forchypnous ADCs and asynchronous ADCs, with = 30 and
N, = 50. The asynchronous ADCs have time offsets in rangé ef 0.8 us, with a total observation time dfus.
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—B— - Slow fading
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Fig. 9. Performance of MASS over AWGN, Rayleigh, and slowirfgdchannels, with the number of sub-bandis = 30. In
this experiment, the local-mean SNR1§ dB, and the standard deviation of lognormal fading idB.
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