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Abstract

The radio frequency (RF) spectrum is a scarce natural resource, currently regulated by gov-
ernment agencies. With the explosive emergence of wirelessapplications, the demands for the
RF spectrum are constantly increasing. On the other hand, ithas been reported that localised
temporal and geographic spectrum utilisation efficiency isextremely low. Cognitive radio is an
innovative technology designed to improve spectrum utilisation by exploiting those spectrum
opportunities. This ability is dependent upon spectrum sensing, which is one of most criti-
cal components in a cognitive radio system. A significant challenge is to sense the whole RF
spectrum at a particular physical location in a short observation time. Otherwise, performance
degrades with longer observation times since the lagging response to spectrum holes implies
low spectrum utilisation efficiency. Hence, developing an efficient wideband spectrum sensing
technique is prime important.

In this thesis, a multirate asynchronous sub-Nyquist sampling (MASS) system that employs
multiple low-rate analog-to-digital converters (ADCs) isdeveloped that implements wideband
spectrum sensing. The key features of the MASS system are, 1)low implementation complex-
ity, 2) energy-efficiency for sharing spectrum sensing data, and 3) robustness against the lack
of time synchronisation. The conditions under which recovery of the full spectrum is unique
are presented using compressive sensing (CS) analysis. TheMASS system is applied to both
centralised and distributed cognitive radio networks. When the spectra of the cognitive radio
nodes have a common spectral support, using one low-rate ADCin each cognitive radio node
can successfully recover the full spectrum. This is obtained by applying a hybrid matching
pursuit (HMP) algorithm - a synthesis of distributed compressive sensing simultaneous orthog-
onal matching pursuit (DCS-SOMP) and compressive samplingmatching pursuit (CoSaMP).
Moreover, a multirate spectrum detection (MSD) system is introduced to detect the primary
users from a small number of measurements without ever reconstructing the full spectrum.
To achieve a better detection performance, a data fusion strategy is developed for combin-
ing sensing data from all cognitive radio nodes. Theoretical bounds on detection performance
are derived for distributed cognitive radio nodes suffering from additive white Gaussian noise
(AWGN), Rayleigh fading, and log-normal fading channels.

In conclusion, MASS and MSD both have a low implementation complexity, high energy ef-
ficiency, good data compression capability, and are applicable to distributed cognitive radio
networks.
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Chapter 1
Introduction

This thesis addresses the issues of spectrum sensing in cognitive radio networks. Due to cur-

rent spectral underutilisation, an innovative technology, cognitive radio, has been designed to

exploit spectrum holes. Spectrum sensing is the critical component upon which the full oper-

ation of cognitive radio relies. Wideband spectrum sensingis the key technology that enables

the efficient operation of both the primary user and the cognitive radio networks. However,

wideband spectrum sensing systems are difficult to design, due to either high implementation

complexity or high energy consumption from high-rate analog-to-digital converter (ADC). This

thesis will present two sub-Nyquist sampling systems that implement wideband spectrum sens-

ing by multiple low-rate ADCs. Both systems have low implementation complexity, low energy

consumption, and are suitable for distributed cognitive radio networks.

1.1 Motivation

The radio frequency (RF) spectrum is a limited natural resource managed by government reg-

ulators, such as the office of communications (Ofcom [1]) in the United Kingdom, and the

federal communications commission (FCC [2]) in the United States. Under current policy, all

frequency bands are exclusively assigned to wireless networks on a long term basis for large

geographical regions, and each system has to operate withina particular band. With the in-

creasing emergence of new wireless products and the explosive development of mobile internet

applications, the demands on RF spectrum have been constantly increasing. In recent years, it

has become evident that there will not be enough spectrum exclusively available for all wire-

less systems currently under development. Interestingly,the spectrum policy task force (SPTF)

within the FCC has reported that localised temporal and geographic spectrum utilisation effi-

ciency ranges from 15% to 85% [3]. In another experiment as shown in Figure 1.1, the maximal

occupancy of the spectrum from 30 MHz to 3 GHz (in New York city) has been reported to be

only 13.1%, with average occupancy (over six locations) of5.2% [4]. Spectral underutilisation

can be solved by allowing a secondary user to access a licensed band when the primary user
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Figure 1.1: Spectrum occupancy measurement results averaged over six locations [4].

(PU) is absent [3]. Cognitive radio [5] has emerged as one of the most promising candidates

for realising this [3,6–11].

As an innovative technology, cognitive radio is designed toexploit spectrum opportunities by

means of sensing and adapting to the environment. A crucial requirement of cognitive radios

is that they must rapidly fill in spectrum holes without posing harmful interference on the PUs.

This task is dependent upon the function of spectrum sensing, which is one of the critical com-

ponents in a cognitive radio system. Due to effects of multipath and shadowing, a cognitive

radio user cannot distinguish between a deeply faded band and an idle one. In order to mitigate

these effects, cognitive radio users often collaborate forspectrum sensing [12–17]. Different

collaborative strategies will result in distinct performance. On the other hand, there is a signifi-

cant challenge in sensing the whole of the spectrum at a particular physical location in a short

observation time. Otherwise, the performance of the cognitive radio system degrades due to a

lagging response to spectrum holes. Hence, wideband spectrum sensing is of prime importance

to ensure efficient operation of both the primary and the secondary (cognitive radio) networks.

Many extensive studies have been carried out to develop efficient and reliable spectrum sensing

methods. Despite numerous spectrum sensing algorithms being reported in the literature [7,

12–29], few of them are effective for wideband spectrum sensing due to energy and hardware
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constraints. To the best of the author’s knowledge, only fiveapproaches have appeared in the

literature which offer the possibility of implementing wideband spectrum sensing. In the first

model, a wavelet transform approach [24] is used to detect the PUs by searching discontinuities

and irregularities in the power spectrum density (PSD) of the received signal. However, a

high sampling rate ADC is required and the energy cost of thatADC will be prohibitive. The

second model is known as filter bank detection [25, 26]. This model was developed based

on the assumption that multicarrier communications are used in cognitive radio networks. A

pair of matched root-Nyquist filters are employed in the primary transmitter and the cognitive

radio receiver, requiring a large number of RF components [27, 28]. Moreover, in practice,

the filter information at the PUs are usually unknown in the cognitive radio networks. Either

multicoset sampling [30–32] or multirate sampling [33, 34]techniques can be used to reduce

the high sampling rate, then the signal is recovered from measurements. However, to design a

specific sampling pattern, requirements on both time synchronisation and devices are stringent.

Finally, compressive sensing (CS) based methods were suggested in [22, 27–29, 35] to use

under-sampled measurements for reconstructing the full spectrum. Then spectrum sensing is

performed on the reconstructed spectrum. Despite their lowsampling rate, the performance of

CS based methods are dependent upon storage and transmission of measurement matrix.

1.2 Objectives and Contributions

1.2.1 Objectives

The aim of this thesis is to study the performance of collaborative spectrum sensing algorithms,

and develop efficient wideband spectrum sensing techniquesthat can be used in distributed

cognitive radio networks over fading channels. More specifically, the study has the following

objectives:

• To analyse the detection performance of different collaborative spectrum sensing algo-

rithms over fading channels.

• To develop wideband spectrum sensing techniques that are applicable to distributed cog-

nitive radio networks with low implementation complexity,high energy efficiency, and

good data compression capability.
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1.2.2 Key Contributions

The main contributions of this thesis are summarised as follows:

• Easily computed expressions for the average probability ofdetection are derived for a

cognitive radio using energy detection but suffering from Nakagami-m, and Rician fad-

ing channels. For a slow log-normal fading channel, an approximation of the average

probability of detection is given, by using the Wald distribution to replace the log-normal

distribution.

• The detection performance of energy detection using different collaborative strategies

is derived. Specifically, maximum ratio combining (MRC), selective combining (SC),

square-law combining (SLC), and square-law selection (SLS) approaches are analysed

and compared under different constraints.

• A multirate asynchronous sub-Nyquist sampling (MASS) system that employs multiple

low-rate ADCs is developed that implements wideband spectrum sensing using a few

measurements. The MASS system not only has a low implementation complexity, but

also is energy-efficient for sharing spectrum sensing data.The conditions under which

recovery of the full spectrum is unique are presented using CS techniques. A trade-

off is made between the number of sampling channels and the probability of successful

spectrum recovery. The MASS system is applied to distributed cognitive radio networks.

When the spectra of the cognitive radio nodes have a common spectral support, using one

low-rate ADC in each cognitive radio node can successfully recover the full spectrum.

• A multirate spectrum detection (MSD) system is developed todetect the PUs from a

small number of measurements without reconstructing the full spectrum. In order to

achieve a better detection performance, a data fusion strategy is obtained for combining

spectrum sensing data. The theoretical bounds on detectionperformance of MSD are de-

rived for distributed cognitive radio nodes when they are suffering from independent and

identically distributed (i.i.d.) additive white Gaussiannoise (AWGN), Rayleigh fading,

and log-normal fading channels.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:
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Chapter 2

This chapter first presents the structure, functionalities, and potential applications of cognitive

radios. Some traditional spectrum sensing algorithms in the literature are then introduced,

and their advantages and disadvantages are summarised. Finally, some related approaches for

collaborative spectrum sensing and wideband spectrum sensing are discussed.

Chapter 3

This chapter derives some easily computed expressions for the average probabilities of false

alarm and detection when the cognitive radio is using energydetection method but suffering

from a fading channel. For cognitive radios designed to collaborate using MRC, SC, SLC,

or SLS over i.i.d. Nakagami-m fading channels, the average probabilities of false alarm and

detection are given.

Chapter 4

This chapter introduces a MASS system used to implement wideband spectrum sensing. Us-

ing CS theory, the sufficient conditions of full spectrum recovery are derived. The practical

implementation issues, for example, the effect of noise andmodel mismatch, and the tradeoff

between the number of sampling channels and the probabilityof successful spectrum recovery,

are discussed. When the MASS system is applied to distributed cognitive radio networks, a hy-

brid matching pursuit (HMP) algorithm is proposed for reconstructing the full spectrum using

fewer measurements.

Chapter 5

This chapter proposes a MSD system for implementing wideband spectrum detection without

reconstructing the full spectrum. The effect of sub-Nyquist sampling in a single cognitive

radio node is considered, followed by designing the data fusion rule for multiple cognitive

radio nodes. The detection performance of MSD over fading channels is analysed, and some

theoretical bounds on the detection performance of the proposed system are derived.
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Chapter 2
Background

As an intelligent radio, cognitive radio is the key technology that provides the capability to

use the RF spectrum in a dynamic manner [3,5–11]. A crucial requirement of cognitive radios

is that they must rapidly fill in spectrum holes without causing harmful interference to the

PUs [7]. This task is fulfilled by the function of spectrum sensing. However, there are two

challenges in spectrum sensing. One of them is that due to effect of multipath and shadowing,

the sensing result of a single cognitive radio user is not reliable. Thus, collaborative spectrum

sensing techniques are often used to combat the effect of fading. Another significant challenge

is sensing the whole of the spectrum at a particular physicallocation in a short observation time.

Hence, wideband spectrum sensing is of prime importance to ensure efficient operation of both

the primary and the secondary (cognitive radio) networks.

In this chapter, Section 2.1 presents the structure and the functionalities of cognitive radios, and

some potential applications of cognitive radio technologyare introduced. A literature review

of spectrum sensing algorithms is presented in Section 2.2.This section first discusses tradi-

tional spectrum sensing techniques, i.e. matched filter, energy detection, and cyclostationary

detection, in Section 2.2.1. Cooperative spectrum sensingstrategies, i.e. data fusion or deci-

sion fusion, are then analysed in Section 2.2.2. The more challenging techniques for wideband

spectrum sensing, e.g. wavelet detection, filter bank detection, and compressive sensing based

detection, are presented in Section 2.2.3.

2.1 Cognitive Radio

“Cognitive radio is viewed as a novel approach for improvingthe utilisation of a precious

natural resource: the radio electromagnetic spectrum.”-S. Haykin [6]

For the purpose of improving the spectrum utilisation efficiency and providing high bandwidth

to mobile users, the next generation communication networks (xG) [3] program was developed

to implement spectrum policy intelligent radios, also known as cognitive radios [5], by dynamic
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Dynamic
spectrum access
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Figure 2.1: Illustration of spectrum holes and the concept of dynamic spectrum access [38].

spectrum access techniques as shown in Figure 2.1. Furthermore, the IEEE has organised a new

working group, known as the wireless regional area network (WRAN, IEEE 802.22 [36]), for

using cognitive radio techniques to allow sharing of geographically unused television (TV)

spectrum on a non-interfering basis [9,20,37].

2.1.1 Cognitive Radio Functionalities

The termcognitive radiowas first coined by Mitola in [5] and has the following formal defini-

tion as [6]:

“Cognitive radio is an intelligent wireless communicationsystem that is aware of its surround-

ing environment (i.e. outside world), and uses the methodology of understanding-by-building to

learn from the environment and adapt its internal states to statistical variations in the incoming

RF stimuli by making corresponding changes in certain operating parameters (e.g., transmit-

power, carrier-frequency, and modulation strategy) in real-time, with two primary objectives in

mind:

• highly reliable communications whenever and wherever needed;

• efficient utilisation of the radio spectrum. ”-S. Haykin

From the definition, the two main characteristics of cognitive radio can be summarised as cogni-
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Figure 2.2: The cognitive capability of cognitive radio enabled by a basic cognitive cycle [3].

tive capability, and reconfigurability [3]. The former one enables the cognitive radio to interact

with its environment in a real-time manner, and intelligently determine appropriate communi-

cation parameters based on quality of service (QoS) requirements. These tasks can be imple-

mented by a basic cognitive cycle: spectrum sensing, spectrum analysis, and spectrum decision

as shown in Figure 2.2 [3].

• Spectrum sensing: Either by cooperating or not, the cognitive radio nodes regularly mon-

itor the RF environment. To improve the spectral usage efficiency, cognitive radio nodes

should not only find spectrum holes by sensing some particular spectrum, but also moni-

tor the whole spectral band.

• Spectrum analysis: The characteristics of the spectral bands that are sensed through spec-

trum sensing are estimated. The estimation results, e.g., capacity, and reliability, will be

delivered to the spectrum decision step.

• Spectrum decision: According to the spectrum characteristics analysed above, an ap-

propriate spectral band will be chosen for a particular cognitive radio node. Then the

cognitive radio determines new configuration parameters, e.g., data rate, transmission

mode, and bandwidth of the transmission.
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Figure 2.3: Protocol stack in the cognitive radio networks [3,38].

Another key feature of cognitive radio is reconfigurability. In order to adapt to RF environment,

cognitive radio should change its operational parameters [3]:

• Operating frequency: cognitive radio is capable of changing its operating frequency in

order to avoid the PU or to share spectrum with other users.

• Modulation scheme: cognitive radio should adaptively reconfigure the modulation scheme,

according to the user requirements and the channel conditions.

• Transmission power: Within the power constraints, transmission power can be reconfig-

ured in order to mitigate interference or improve spectral efficiency.

• Communication technology: cognitive radio can also be used to provide interoperability

among different communication systems by changing modulation scheme etc.

Figure 2.3 shows the protocol stack in a cognitive radio network [3]. Spectrum sensing is the

foundation of all other cognitive radio functions. Based onthe results of spectrum sensing, the
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function of spectrum sharing allocates spectrum holes considering both fairness and QoS re-

quirements. Thus it requires coordination and reconfiguration among cognitive radio terminals.

On the other hand, the functions of spectrum mobility and spectrum management require inter-

actions with all other layers for exchanging information about QoS requirements, application

control, routing, reconfiguration, and scheduling. The functionalities of the cognitive radio can

be summarised as [3,38]:

• Spectrum sensing: The aim of the spectrum sensing is to detect spectrum holes,and

monitor the activity of the PUs. When the PUs reappear, the cognitive radio should

release the spectrum without posing harmful interference on the PUs.

• Spectrum sharing: While there are several coexisting cognitive radio users,sharing the

spectrum while considering both fairness and spectral efficiency is very important. These

sharing strategies should depend not only on the spectrum availability, but also on the

users’ QoS requirements.

• Spectrum management: The goal of spectrum management is to provide flexible, fair,

and efficient usage of the radio resource. According to the result of the spectrum anal-

ysis, spectrum management can improve the spectral utilisation efficiency by providing

appropriate spectrum holes to the cognitive radio users, aswell as considering their QoS

requirements.

• Spectrum mobility: When the current operating frequency becomes unavailableduring

communication due to either changes over time, or movementsof the cognitive radio

users, the system needs to switch to other bands in a seamlessmanner.

2.1.2 Potential Applications

Because cognitive radio is aware of the RF environment and iscapable of adapting its transmis-

sion parameters to the RF spectrum environment, cognitive radios and the concepts of cognitive

radio can be applied to a variety of wireless communication environments, especially in com-

mercial and military applications. A few of applications are listed below:

• Coexistence of wireless technologies [8]: Cognitive radio techniques were primarily con-

sidered for reusing the spectrum that is currently allocated to the TV service. WRAN

users can take advantage of broadband data delivery by the opportunistic usage of the
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underutilised spectrum. Additionally, the dynamic spectrum access techniques will play

an important role in full interoperability and coexistenceamong diverse technologies for

wireless networks. For example, cognitive radio concepts can be used to optimise and

manage the spectrum when the wireless local area network (WLAN) and the Bluetooth

devices coexist.

• Military networks [8,39]: In military communications, bandwidth is often at a premium.

By using cognitive radio concepts, military radios can not only achieve substantial spec-

tral efficiency on a noninterfering basis, but also reduce implementation complexity for

defining the spectrum allocation for each user. Furthermore, military radios can obtain

benefits from the opportunistic spectrum access function supported by the cognitive ra-

dio [8]. For example, the military radios can adapt their transmission parameters to use

Global System for Mobile (GSM) bands, or other commercial bands when their original

frequencies are jammed. The mechanism of spectrum management can help the military

radios achieve information superiority on the battlefield.Furthermore, from the soldiers’

perspective, cognitive radio can help the soldiers to reachan objective through its situa-

tional awareness.

• Heterogeneous wireless networks [8, 40]: From a user’s point of view, a cognitive radio

device can dynamically discover information about access networks, e.g. WiFi and GSM,

and makes decisions on which access network is most suitablefor its requirements and

preferences. Then the cognitive radio device will reconfigure itself to connect to the best

access network. When the environmental conditions change,the cognitive radio device

can adapt to these changes. The information as seen by the cognitive radio user is as

transparent as possible to changes in the communication environment.

2.2 Spectrum Sensing Techniques

As PU systems have higher priority than secondary users for using the allocated frequencies,

cognitive radios should either avoid interference to PUs, or keep the interference level lower

than a threshold. To exploit spectrum opportunities, cognitive radio must detect spectrum

holes. Most of the functions in the cognitive radio rely on spectrum sensing for implement-

ing its environmental awareness. Narrowband spectrum sensing algorithms can be classified

as shown in Figure 2.4. The most efficient way to sense spectrum holes is to detect active
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Figure 2.4: Narrowband spectrum sensing algorithms [3,7].

primary transceivers in the vicinity of the cognitive radios [6]. However, as some primary re-

ceivers are passive, such as TVs, some are difficult to detectin practice. Three commonly

used techniques for detecting the primary transmitters arematched filtering [23, 41], energy

detection [10,42–44], and cyclostationary detection [17,21,37,45–49].

As a primary receiver may be passive, the cognitive radio maynot be able to avoid generating

interference to the primary users when the primary transmitter is out of the cognitive radio’s

detectable range. This problem is referred to as the hidden terminal problem as shown in

Figure 2.5(a). Additionally, because of shadowing as illustrated in Figure 2.5(b), a cognitive

radio user cannot distinguish between a deeply faded band and an idle one. To address these

issues, cooperative spectrum sensing can be used to mitigate the effect of shadowing and the

primary receiver location uncertainty [7,8].

2.2.1 Traditional Spectrum Sensing

In this section, three typical spectrum sensing algorithmswill be discussed. The implemen-

tation of these algorithms requires different conditions,and their detection performance are

correspondingly distinguished. The advantages and disadvantages of these algorithms are sum-

marised in Table 2.1.
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Figure 2.5: Transmitter detection problems: (a) hidden terminal problem, (b) shadowing un-
certainty [6].

2.2.1.1 Matched filter

A block diagram of a matched filter is shown in Figure 2.6(a). The matched filter method is

an optimal approach for spectrum sensing in the sense that itmaximises the signal-to-noise

ratio (SNR) in the presence of additive noise [23, 41]. Another advantage of the matched filter

method is that it requires less observation time since the high processing gain can be achieved

by coherent detection. For example, to meet a given probability of detection, onlyO(1/SNR)

samples are required [10]. This advantage is achieved by correlating the received signal with

a template to detect the presence of a known signal in the received signal. However, it relies

on prior knowledge of the PU, such as modulation type, and packet format, and requires the

cognitive radio to be equipped with carrier synchronisation and timing devices. With more

types of PUs, the implementation complexity grows making the matched filter impractical.
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Figure 2.6: Block diagrams for traditional spectrum sensing algorithms: (a) matched filter,
(b) time domain energy detection, (c) frequency domain energy detection, and (d)
cyclostationary detection [8].

2.2.1.2 Energy detection

If the information about the PU is unknown in the cognitive radio, a commonly used method

for detecting the PUs is energy detection (also known as radiometry) [50]. Energy detection

is a non-coherent detection method that avoids the need for complicated receivers required by

a matched filter. An energy detector can be implemented in both the time and the frequency

domain. For time domain energy detection as shown in Figure 2.6(b), a bandpass filter (BPF) is

applied to select a centre frequency and bandwidth of interest [7,20,21]. Then the energy of the

received signal is measured by a magnitude squaring device,with an integrator to control the

observation time. Finally, the energy of the received signal will be compared with a predeter-

mined threshold to decide whether the PU is present or not. However, to sense a wide spectrum

span, sweeping the BPF will result in a long measurement time. As shown in Figure 2.6(c), in

the frequency domain, the energy detector can be implemented similarly to a spectrum analyser

with a fast Fourier transform (FFT) [7,10,21]. Specifically, the received signal is sampled at or
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Sensing algorithm Advantages Disadvantages
Matched filter Optimal performance Require prior information

Low computational cost of the primary user

Energy detection Do not require prior information Poor performance for low SNR
Low computational cost Cannot differentiate users

Cyclostationary Valid in slow SNR region Require partial prior information
Robust against interference High computational cost

Table 2.1: Summary of advantages and disadvantages of narrowband spectrum sensing algo-
rithms [8,9].

above the Nyquist rate over a time window. Then the PSD is computed using an FFT. The FFT

is employed to analyze a wide frequency span in a short observation time, rather than sweeping

the BPF in Figure 2.6(b). Finally, the PSD will be compared with a threshold,λ, to decide

whether the corresponding frequency is occupied or not.

The advantages of energy detection are that prior knowledgeof the PUs is not required, and both

the implementation and the computational complexity are generally low. In addition, a short

observation time is required, for example,O(1/SNR2) samples are required to satisfy a given

probability of detection [10]. Although energy detection has a low implementation complexity,

it has some drawbacks. A major drawback is that it has poor detection performance under low

SNR scenarios as it is a non-coherent detection scheme. Another drawback is that it cannot

differentiate between the signal from a PU and the interference from other cognitive radios,

thus, it cannot take advantage of adaptive signal processing, such as interference cancellation.

Furthermore, noise level uncertainty can lead to further performance loss. These disadvantages

can be overcome by using two-stage spectrum sensing technique, i.e. coarse spectrum sens-

ing and fine spectrum sensing [21]. Coarse spectrum sensing can be implemented by energy

detection or wideband spectrum analysing techniques. The aim of coarse spectrum sensing is

to quickly scan the wideband spectrum and identify some possible spectrum holes in a short

observation time. By contrast, fine spectrum sensing further investigates and analyses these

suspected frequencies. More sophisticated detection techniques can be used at this stage, such

as cyclostationary detection described below.
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2.2.1.3 Cyclostationary detection

A block diagram of cyclostationary detection is shown in Figure 2.6(d). Cyclostationary detec-

tion is a method for detecting the PUs by exploiting the cyclostationary features in the mod-

ulated signals [23, 37]. In most cases, the received signalsin cognitive radios are modulated

signals, which in general exhibit built-in-periodicity within the training sequence or cyclic pre-

fixes. This periodicity is generated by the primary transmitter so that the primary receiver can

use it for parameter estimation, such as channel estimation, and pulse timing [21,23]. The cyclic

correlation function, also called cyclic spectrum function (CSF), is used for detecting signals

with a particular modulation type in the presence of noise. This is because noise is usually wide-

sense stationary (WSS) without correlation, by contrast, modulated signals are cyclostationary

with spectral correlation. Furthermore, since different modulated signals will exhibit different

characteristics, cyclostationary detection can be used for distinguishing between different types

of transmitted signals, noise, and interference in low SNR environments. One of the drawbacks

of cyclostationary detection is that it still requires partial information of the PU. Another draw-

back is that the computational cost is high as the CSF is a two-dimensional function dependent

on frequency and cyclic frequency [8,9].

2.2.2 Cooperative Spectrum Sensing

Cooperative spectrum sensing can not only decrease the probabilities of false alarm and missed

detection, but can also mitigate the hidden terminal problem. Thus, multiple cognitive radios

are often required to collaborate for spectrum sensing. In acentralized sensing setup as shown

in Figure 2.7, each cognitive radio observes the RF spectrumindividually, and forwards its

measured/processed data, or decisions to a fusion center (FC) via a common control channel.

The common control channel is responsible for transferringsensing and control information be-

tween all cognitive radios and the FC. The FC then fuses all sensing data or decisions, identifies

the available spectrum, and broadcasts the spectrum information to all nearby cognitive radios

via a control channel. Generally, cooperative spectrum sensing algorithms can be categorised

into data fusion and decision fusion, depending upon which type of sensing data is transmitted

to the FC [7,8,37].
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Figure 2.7: Schematic illustration of cooperative spectrum sensing scheme that each cognitive
radio transmits its individual observation or decision viacontrol channels to a
fusion center, which makes final decision on the spectral occupancy status.

2.2.2.1 Data Fusion

If raw data from all cognitive radios are collected at the FC,some advanced signal process-

ing techniques can be applied. This scheme is thus similar toa multi-antenna sensing case.

Furthermore, if the channel state information (CSI) between the PUs and the cognitive radios

are perfectly known, the optimal combining strategy, MRC [51], can be used for achieving the

highest output SNR. In the case where partial CSI is available, other combining techniques can

be employed, such as SC [51]. However, the communication burden of transmitting raw data is

significant. Thus, it is preferred to send processed or compressed data to the FC for the purpose

of saving transmission resources.

When an energy detector is deployed in each cognitive radio,energy vectors from all cognitive

radios can be sent to the FC. In such a scenario, the FC can employ SLC, or SLS [52,53]. The

transmission bandwidth for sharing the data is half of the raw data case as the energy vectors are

real, instead of complex. In addition, CSI is not required when using SLC or SLS. Alternatively,

the measurements can be further compressed via source coding techniques, and then sent to the
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FC. It is evident that sending compressed data will save transmission bandwidth and energy,

but, it requires more computational resources in both the cognitive radios and the FC.

2.2.2.2 Decision Fusion

In a decision fusion scheme, every cognitive radio performslocal spectrum measurements in-

dependently, and makes a binary decision on whether a PU is present or not. All decisions from

the cognitive radios are then forwarded to the FC, where the decisions are fused and a final

decision is made on the spectrum occupancy status. In general, three decision fusion rules can

be adopted as below [37]:

• Logical OR rule: In this rule, the FC gives decision “1” (PU present) if any one of de-

cisions from the cognitive radios is “1”. Thus, using this rule, the probability of false

alarm (when PU is absent, cognitive radios think that PU is using that band) will increase

as shown in (2.1). Meanwhile, the probability of missed detection (when PU is present,

cognitive radios sense that PU is not using this band) is reduced. Since cognitive radio

occupying a frequency band used by the PU may interfere with the PU, the risk of cog-

nitive radios causing interference to the PU is minimised using the logical OR rule. If

these decisions from thev(v ≥ 1) cognitive radios are independent, the probabilities of

false alarm and detection can be given by:

Pf = 1 −
v∏

i=1

(1 − P if ), (2.1)

Pd = 1 −
v∏

i=1

(1 − P id), (2.2)

whereP if andP id denote the probabilities of false alarm and detection in thecognitive

radio nodei, respectively.

• Logical AND rule: In this rule, the FC decides “1” if and only if all decisions from

the cognitive radios are “1”. Hence, using this rule, the probability of false alarm is

minimised, but the risk of causing interference will increase. Similarly, if these decisions

from thev cognitive radios are independent, the probabilities of false alarm and detection

can be given by:

Pf =

v∏

i=1

P if , (2.3)

18



Background

Pd =

v∏

i=1

P id. (2.4)

• c out ofv voting: The FC decides “1” if and only ifc or more thanc cognitive radios de-

cide “1”, wherec ∈ [1, v]. If these decisions from thev cognitive radios are independent,

the probabilities of false alarm and detection can be given as:

Pf =

v−c∑

i=0

(
v

c+ i

)
(1 − P if )

v−c−i(P if )
c+i, (2.5)

Pd =

v−c∑

i=0

(
v

c+ i

)
(1 − P id)

v−c−i(P id)
c+i. (2.6)

Obviously, this fusion rule includes the logical OR rule (c = 1), and the logical AND

rule (c = v) as special cases.

2.2.2.3 Data Fusion Versus Decision Fusion

For both fusion schemes, the measured data or decisions needto be transmitted through a

control channel. In practice, the bandwidth of the control channel alters in cognitive radio

networks, and the information exchanges may be unreliable.If the control channel is rented, the

data transmission could be expensive. In comparison to datafusion, the one-bit decision fusion

scheme needs a very low bandwidth for sharing the spectrum sensing data, as well as saving

transmission energy. However, most decision fusion rules assume that the decisions from all

cognitive radios are independent, which in practice may notoccur. Any decision fusion scheme

is open to similar abuse unless proper security is incorporated.

2.2.3 Wideband Spectrum Sensing

From the discussion in Section 2.1, the average spectrum occupancy is around5%. Under

such a circumstance, the cognitive radio can easily find spectrum holes by using a tunable nar-

rowband bandpass filter (TNBF) [54] to search one narrowbandportion of the spectrum at a

given time. Traditional spectrum sensing algorithms can then be used for searching spectrum

holes. Due to the explosive development of wireless products, the average spectrum occupancy

will increase. A wideband spectrum sensing structure should be adopted to search multiple

bands at a time [24]. In practice, wideband spectrum sensingsystems are difficult to design,
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Sensing algorithm Advantages Disadvantages
Wavelet detection Flexibility in adapting to Requires highsampling rate ADC

dynamic spectrum High energy consumption

Filter bank detection Low sampling rate Large implementation complexity
High spectral dynamic range Not flexible as filters are preset

Multicoset sampling Low sampling rate Requires accurate time offsets
Less measurements Requires too many sampling channels

CS based detection Low sampling rate High implementation complexity
Less processed data Matrix storage & transmission

Multirate sampling Low sampling rate Stringent requirements on devices
Less sampling channels Non-aliased in at least one channel

Table 2.2: Summary of advantages and disadvantages of wideband spectrum sensing algo-
rithms [7,27–29,33–35].

due to either high implementation complexity or high financial/energy costs [8]. The literature

of wideband spectrum sensing is still in its early stages; five types of models are commonly

discussed. They are: 1) wavelet detection [24], 2) filter bank detection [25, 26], 3) multicoset

sampling based detection [30–32], 4) CS based methods [27, 28], and 5) multirate sampling

based detection [33, 34, 55]. The advantages and disadvantages of these algorithms are sum-

marised in Table 2.2.

2.2.3.1 Wavelet Detection

In [24], Tian and Giannakis proposed a wavelet-based wideband sensing approach. It provides

an advantage of flexibility in adapting to a dynamic widebandspectrum. In their approach,

the PSD of the wideband spectrum is modelled as a train of consecutive frequency subbands,

where the PSD is smooth within each subband but exhibits discontinuities and irregularities on

the border of two neighboring subbands as shown in Figure 2.8. The architecture of the wavelet

transform based wideband spectrum sensing is illustrated in Figure 2.9. The wavelet transform

of the wideband PSD is used to locate the singularities of thePSD.

Letϕ(f) be a wavelet smoothing function, the dilation ofϕ(f) is given by,

ϕd(f) =
1

d
ϕ

(
f

d

)
, (2.7)
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Figure 2.8: Demonstration of the wideband spectrum of interest. The PSDis smooth within
each subband, and exhibits discontinuities and irregularities with the adjacent sub-
bands [24,27].
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Figure 2.9: Block diagram of the wavelet transform based wideband spectrum sensing tech-
nique [8].

whered is a dyadic scale that can take values that are powers of2, i.e. d = 2j . The continuous

wavelet transform (CWT) of the PSD is given by [24],

CWT{S(f)} = S(f) ∗ ϕd(f), (2.8)

where “∗” denotes the convolution andS(f) is the PSD of the received signal.

Then the first and second derivative of the CWT{S(f)} are used to locate the irregularities and

discontinuities in the wideband PSD. Specifically, the boundaries of each subbands are located

by using the local maxima of the first derivative of CWT{S(f)}, and locations of the subbands

are finally tracked by finding zero crossings in the second derivative of CWT{S(f)}.

By controlling the wavelet smoothing function, the wavelettransform based wideband spectrum

sensing approach has flexibility in adapting to the dynamic spectrum. However, characterising

the wideband spectrum will require a high sampling rate ADC (a signal with a bandwidth of
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W must be sampled at or above2W rate), due to the Nyquist sampling theorem [56], and the

energy cost of that ADC will be prohibitive.

2.2.3.2 Filter Bank Detection

In [25], Farhang-Boroujeny presented a filter bank method for wideband spectrum sensing

in cognitive radio systems. In his approach, multicarrier communications are assumed to be

used in cognitive radio networks. It is assumed that a pair ofmatched root-Nyquist filters

are employed in the primary transmitter and the cognitive radio receiver, respectively. The

wideband spectrum is considered as the output of a bank of prototype filters (with different

shifted central frequencies). As shown in Figure 2.10, the baseband spectrum can be directly

estimated by using a prototype filter, and other bands can be obtained through modulating the

prototype filter. In each subcarrier, the corresponding portion of the spectrum for the wideband

signal is downconverted to baseband, then lowpass filtered as depicted in Figure 2.11. The PSD

of the output signal,Syiyi(f), can be written as [25],

Syiyi(f) = Sxx(f + fi)|H(e2πjf )|2 ≈ Sxx(fi)|H(e2πjf )|2, (2.9)

whereSxx(fi) denotes the PSD of the received signalx(t) in the subbandi, andH(z) is

assumed to be narrowband and is designed as a root Nyquist (N ) filter.

The approximate result in (2.9) can be rewritten in terms of thez-transform variablez as [25],

Ψyiyi(z) = Sxx(fi)H(z)H(z−1) = Sxx(fi)GN (z), (2.10)

whereGN (z) = H(z)H(z−1) is called the Nyquist (N ) filter. In the time domain, after nor-

malising,GN (z) satisfies [25],

gN (n) =





1, n = 0

0, n = mN,m 6= 0,
(2.11)

whereN is the maximum number of subcarriers in the filter bank.

Let ψyiyi(k) represent the correlation coefficients ofyi(n) when performing an inversez-

transform onΨyiyi(z), the correlation matrix of the measured vectors,Ryiyi , can be given
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Figure 2.10: The graphic illustration of using filter bank on the widebandspectrum [25].

by [25],

Ryiyi = Sxx(fi)A, (2.12)

where the matrixA is a Toeplitz matrix, and each element ofA is from the Nyquist (N )

sequence, i.e.gN (n).

It can be shown thatSxx(fi) follows central or non-central chi-square distribution. Then the

degree of freedom estimation is critical for the hypothesistest onSxx(fi). The eigenvalue

decomposition is performed on matrixA, and the resultant eigenvalues,λ0, λ1, · · · , are used to

measure the degree of freedom inSxx(fi). Then the estimatedSxx(fi) can be obtained by using

observation vectors, eigenvalues, and degree of freedom asshown in equation (34) in [25].

As a result, compared with multitaper method [18], the filterbank method can obtain a lower

variance when the PSD is low, because of its better response of the prototype filter. Regardless

of the high spectral dynamic range of the filter bank approach, its computational speed is slower

than that of the multitaper method [45]. Besides, the implementation of the filter bank approach

requires a large number of RF components for sensing a wideband spectrum [27, 28]. For

example, in order to sense wideband spectrum with a bandwidth of 10 GHz in a time, it needs

at least 200 RF front-end components when the lowpass filter has the bandwidth of100 MHz

(100 ADCs and 100 filters as10 GHz/0.1 GHz = 100). The range of filters, and the number

of the narrow bands are always preset, thus, the filter bank model is not flexible. Furthermore,

the filters at the primary transmitter and the cognitive radio are assumed to be a pair of matched
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Figure 2.11: The demodulation of received wideband signal in thei-th subcarrier [25].

root-Nyquist filters [25], however, it is not practical to obtain the filter information of the PUs

in the cognitive radio networks.

2.2.3.3 Multicoset Sampling based Detection

A potential method for implementing wideband spectrum sensing using a sub-Nyquist sampling

rate is multicoset sampling [30–32]. Multicoset sampling is a selection of some samples from

a uniform grid, which can be obtained when uniformly sampling signal,x(t), at a rate offs

(greater than the Nyquist rate). The uniform grid is then divided into blocks ofL consecutive

samples, and in each blockv(v < L) samples are retained while the rest of samples, i.e.L− v

samples, are skipped. A constant setC that describes the indexes of thesev samples in each

block is called a sampling pattern as [32],

C = {ti}vi=1, 0 ≤ t1 < t2 < · · · < tv ≤ L− 1. (2.13)

The multicoset sampling can be implemented by usingv sampling channels with sampling rate

of fsL , where thei-th sampling channel is offset byt
i

fs
from the origin as below [32],

xi[n] =





x( nfs ), n = mL+ ti, m ∈ Z

0, otherwise.
(2.14)

The discrete-time Fourier transform (DTFT) of the samples can be linked to the unknown

Fourier transform of signalx(t) by,

−→
Y (f) = Φ

−→
X (f), (2.15)

where
−→
Y (f) denotes a vector of DTFT of these measurements fromv channels,

−→
X (f) is a

vector of the Fourier transform ofx(t), andΦ is the measurement matrix whose elements are
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determined by the sampling patternC. The problem of wideband spectrum sensing is thus

equivalent to recovering
−→
X (f) from

−→
Y (f). In order to get a unique solution from (2.15), every

set ofv columns ofΦ should be linearly independent. However, searching for this sampling

pattern is a combinatorial problem. In [57,58], some sampling patterns are proved to be valid for

reconstruction. The advantage of multicoset sampling is that the sampling rate in each channel

is L times lower than the Nyquist rate. Moreover, the number of measurements isvL lower

than the Nyquist sampling case. One drawback of the multicoset sampling is that accurate time

offsets between sampling channels are required to satisfy aspecific sampling pattern. Another

one is that the number of sampling channels should be sufficiently high [32].

2.2.3.4 Compressive Sensing based Detection

Tian and Giannakis were the first to exploit the sparsity of radio signals by introducing CS

theory [59] to realise wideband spectrum sensing [27, 60, 61]. The technique takes advan-

tage of using fewer samples closer to the information rate, rather than the inverse of the band-

width, to perform wideband spectrum sensing [27]. After reconstruction of the wideband spec-

trum, wavelet-based edge detection was used to detect the wideband spectrum as shown in

Figure 2.12.

Let x(t) represent a wideband signal received at the cognitive radio. If x(t) is sampled at the

Nyquist sampling rate, the sequence vector, i.e.~x (~x ∈ CN ), will be obtained. The Fourier

transform of the sequence,
−→
X = F~x, will therefore be alias-free, whereF denotes the Fourier

matrix. When the spectrum,
−→
X , is k-sparse (k ≪ N ), which meansk out of N values in

−→
X are not neglectable,x(t) can be sampled at a sub-Nyquist rate while its spectrum can be

reconstructed with a high probability. The sub-sampled/compressed signal,~y ∈ CM (k <

M ≪ N ), is linked to the Nyquist sequence~x by [27],

~y = Φ~x, (2.16)

whereΦ ∈ CM×N is the measurement matrix, which is a selection matrix that randomly

choosesM columns of the size-N identity matrix. Namely,N −M samples out ofN samples

are skipped. The relationship between the spectrum
−→
X and the compressed sequence~y is given

by [27],

~y = ΦF
−1

−→
X, (2.17)
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Figure 2.12: Block diagram of the compressive sensing based detection.
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Figure 2.13: Block diagram for the analog-to-information converter [69]. The received signal,
x(t), is randomly demodulated by a pseudorandom chipping sequence, integrated
by an accumulator, and sampled at a sub-Nyquist rate.

whereF−1 denotes the inverse Fourier matrix.

Approximating
−→
X from ~y in (2.17) is a linear inverse problem and is NP-hard. The basis pursuit

(BP) [62] algorithm can be used to solve
−→
X by linear programming [27]:

X̃ = arg min ‖−→X‖1, s. t. ~y = ΦF
−1

−→
X. (2.18)

After reconstructing the full spectrum
−→
X , the PSD is calculated using̃X . Then the wavelet

detection approach in Section 2.2.3.1 can be used to analysethe edges in the PSD. Although

less measurements are used for characterising the widebandspectrum, the requirement of high

sampling rate on ADC is not relaxed. By contrast, in [28, 29, 63], Poloet al. suggested using

an analog-to-information converter (AIC) [64–68] model (also known as random demodulator,

[69]) for compressing the wideband signal in the analog domain. The block diagram of AIC is

given in Figure 2.13.

A pseudorandom number generator is used to produce a discrete-time sequenceε0, ε1, · · · ,

26



Background

called a chipping sequence, the number of which takes valuesof ±1 with equal probability.

The waveform should randomly alternate at or above the Nyquist rate, i.e.̟ ≥ 2W , where

W is the bandwidth of signal. The output of the pseudorandom number generator, i.e.pc(t), is

employed to demodulate a continuous-time inputx(t) by a mixer. Then an accumulator sums

the demodulated signal for1/w seconds, and the filtered signal is sampled at a sub-Nyquist rate

of w. This sampling approach is called integrate-and-dump sampling since the accumulator is

reset after each sample is taken. The samples acquired by theAIC, ~y ∈ Cw, can be related to

the received signal,~x ∈ C̟, by,

~y = Φ~x, (2.19)

whereΦ ∈ Cw×̟ is the measurement matrix describing the overall action of the AIC system on

the input signal~x. The signal~x can be identified by solving the convex optimization problem,

x̃ = arg min ‖~x‖1, s. t. ~y = Φ~x, (2.20)

by BP or other greedy pursuit algorithms. The PSD of the wideband spectrum can be estimated

using the recovered signalx̃, followed by a hypothesis test on the PSD. Alternatively, the PSD

can be directly recovered from the measurements using CS algorithms [28]. Although the AIC

bypasses the requirement for a high sampling rate ADC, it leads to a high computational com-

plexity as the huge-scale of the measurement matrix [35]. Furthermore, it has been identified

that the AIC model can easily be influenced by design imperfections or model mismatches [35].

In [22, 35], Mishali and Eldar proposed a parallel implementation of the AIC model, called

modulated wideband converter (MWC), as shown in Figure 2.14. The key difference is that in

each channel the accumulator for integrate-and-dump sampling is replaced by a general low-

pass filter. One of the benefits of introducing parallel structure is that the dimension of the

measurement matrix is reduced making the reconstruction easier. Another benefit is that it

provides robustness to noise and model mismatch. On the other hand, the implementation com-

plexity increases as multiple sampling channels are involved. An implementation issue of using

MWC is that the storage and transmission of the measurement matrix must be considered when

it is used in a distributed cognitive radio network under a data fusion collaborative scheme.
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Figure 2.14: Block diagram for the modulated wideband converter [35]. Ineach channel, the
received signal is demodulated by a pseudorandom sequence,filtered by a low-
pass filter, and sampled at a sub-Nyquist rate1
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2.2.3.5 Multirate Sampling

An alternative model for compressing the wideband spectrumin the analog domain is a multi-

rate sampling system as shown in Figure 2.15. Asynchronous multirate sampling (MRS) and

synchronous multirate sampling (SMRS) were used for reconstructing sparse multiband sig-

nals in [33] and [34], respectively. In addition, MRS has been successfully implemented in

experiments using an electro-optical system with three sampling channels as described in [55].

Both systems employ three optical pulsed sources that operate at different rates and at different

wavelengths. The received signal is modulated with opticalpulses, which provided by an opti-

cal pulse generator (OPG), in each channel. In order to reconstruct a wideband signal with an

18 GHz bandwidth, the modulated pulses are amplified, and sampled by an ADC at a rate of

4 GHz in each channel.

In [33], the sampling channels of the MRS can be implemented separately without synchro-

nisation. However, reconstruction of the spectrum requires that each frequency of the signal

must be non-aliased in at least one of the sampling channels.In [34] SMRS reconstructs the

spectrum from linear equations, which relate the Fourier transform of the signal to the Fourier
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Figure 2.15: Multirate sampling system implemented by electro-opticaldevices [55]. In each
channel, the received signal is modulated by a train of shortoptical pulses. The
modulated signal is then detected by an optical detector, amplified, and sampled
by a low-rate ADC.

transform of its samples. Using CS theory, sufficient conditions for perfectly reconstructing

the spectrum are obtained;v ≥ 2k (the Fourier transform of the signal isk-sparse) sampling

channels are required. In order to reconstruct the spectrumusing MRS with fewer sampling

channels, the spectrum to be recovered should possess certain properties, e.g., minimal bands,

and uniqueness. Nonetheless, the spectral components fromPUs may not possess these prop-

erties. Obviously, even though the multirate sampling system has broad application, there is a

long way to go to implement it in a cognitive radio network because of its stringent require-

ments on both optical devices and the number of sampling channels.
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Chapter 3
Narrowband Collaborative Spectrum

Sensing

Energy detection is commonly used for spectrum sensing in a cognitive radio network, because

it has a low implementation complexity and does not require CSI. In practical applications,

fading occurs because of multipath propagation and shadowing. Thus it is important for cog-

nitive radios to dynamically balance the probability of missed detection against the probability

of false alarm. A computationally inexpensive means of calculating these is advantageous due

to restricted computational resources of cognitive radios. On the other hand, to combat the

effect of fading, multiple cognitive radios are often designed to collaborate in spectrum sens-

ing. Considering the amount of CSI available at the cognitive radios, there are several different

collaborative strategies, for example, MRC, SC, SLC, and SLS. It is noteworthy that different

diversity reception schemes will result in distinct performance. Hence, a comparison of these

diversity reception schemes is of great significance.

This chapter analyses the detection performance of energy detection over fading channels, and

the contributions of this chapter are summarised as follow:

• For the Nakagami-m fading channel, a rapidly converging representation for the average

probability of detection is obtained for any value ofm ∈ [1/2,∞). This saves computa-

tional resources in cognitive radios.

• For the Rician fading channel, an easily computed expression for the average probability

of detection is derived, which is applicable for any time bandwidth product of the test

statistic.

• For a slow log-normal fading channel, an approximation of the average probability of

detection is given, by using the Wald distribution to replace the log-normal distribution.

• The detection performance of energy detection using different collaborative strategies,

i.e. MRC, SC, SLC, and SLS, are analysed.
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The remainder of this chapter is organized as follows. Section 3.1 describes the energy detec-

tion method. When the signals from PUs experience fading, Section 3.2 derives some easily

computed expressions for the average probabilities of false alarm and detection. For cognitive

radios that are designed to collaborate using MRC, SC, SLC, or SLS over i.i.d. Nakagami-m

fading channels, the average probabilities of false alarm and detection are derived in Section

3.3. Then simulation results are given in Section 3.4, followed by conclusions in Section 3.5.

3.1 System Description

Bandpass 

Filter

Squaring

Device 
Integrator

Threshold 

Device 

x(t)  Y H0 or H1

Figure 3.1: Block diagram of the energy detector.

A block diagram of an energy detector is shown in Figure 3.1. The received signal,x(t), is

filtered by a BPF, followed by a magnitude squaring device formeasuring received energy, and

an integrator that controls the observation interval,T . In order to decide whether the signal is

present or not, the output of the integrator,Y , will act as a test statistic, and will be compared

with a predetermined threshold,λ. The binary signal detection problem can be formulated as

hypothesis test withH0 (signal not present) orH1 (signal present),

H0 : x(t) = z(t),

H1 : x(t) = h(t) s(t) + z(t), (3.1)

whereh(t) denotes the complex channel gain between the PU and the cognitive radio, s(t)

denotes the bandlimited signal coming from the PUs of unknown modulation format, andz(t)

is AWGN.

Following [43], the test statistic,Y , can be described as,

Y ∼





χ2
2u, H0

χ2
2u(2γ), H1

(3.2)

whereY ∼χ meansY follows the distribution ofχ, γ denotes the signal-to-noise ratio (SNR)
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at the cognitive radio, andχ2
2u andχ2

2u(2γ) denote the central and non-central chi-square dis-

tributions, respectively. Both distributions have the same degree of freedom (DoF),2u (u is the

time bandwidth product), and the latter one has a non-central parameter2γ. The time band-

width product, i.e.u = TW , denotes that signals of durationT have most of their energy

within the frequency band[−W/2,W/2]. The value ofu can be either integer or non-integer.

The probability density function (PDF) ofY is given as [52],

fY (y) =

{
1

2u·Γ(u) · yu−1 · e− y
2 , H0

1
2 · ( y2γ )

u−1
2 · e− 2γ+y

2 · Iu−1(
√

2γy), H1

(3.3)

whereΓ(a) is the gamma function andIv(a) is thev-th order modified Bessel function of the

first kind.

For a non-fading AWGN channel, the probabilities of false alarm and detection are given in [52]

as below,

Pf = Pr(Y > λ|H0) =
Γ(u, λ/2)

Γ(u)
, (3.4)

Pd = Pr (Y > λ|H1) = Qu(
√

2γ,
√
λ), (3.5)

whereΓ(a, x) denotes the upper incomplete gamma function given byΓ(a, x) =
∫∞
x ta−1e−tdt,

andQu(a, x) denotes the generalised Marum Q-function given by,

Qu(a, x) =
1

au−1

∫ ∞

x
tue−

a2+t2

2 Iu−1(at)dt. (3.6)

The computation of the integral representation ofPd in (3.5) has a high complexity. Thus, in

the first half of the chapter, a series form representation for the generalised Marcum Q-function

in (27) of [70] is used, andPd can be represented as,

Pd(γ, λ) = e−
λ
2

u−1∑

i=0

(
λ
2

)i

i!
+ e−

λ
2

∞∑

n=u

(
λ
2

)n

n!

(
1 − e−γ

n−u∑

k=0

γk

k!

)
. (3.7)

3.2 Spectrum Sensing over A Single Fading Channel

In a fading channel, the average probability of false alarm,Pf , will not change [52]. In contrast,

when the channel gain,h(t), varies, the average probability of detection,Pd, can be calculated
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by averagingPd in (3.5) over all SNR values as,

Pd=

∫ ∞

0
Pd(γ, λ)f(γ)dγ=

∫ ∞

0
Qu(

√
2γ,

√
λ)f(γ)dγ, (3.8)

wheref(γ) denotes the PDF of the SNR in a fading channel.

3.2.1 Nakagami-m Fading Channel

In a Nakagami-m fading channel, the SNR of the signal is distributed according to a Gamma

distribution as [51],

f(γ) =
mm(γ)m−1

(γ)mΓ(m)
e−

mγ
γ , γ > 0, (3.9)

whereγ denote the local-mean SNR (SNR averaged over a few tens of wavelengths), andm is

the Nakagami-m fading factor (m ∈ [1/2, ∞)).

The average probability of detection can be obtained by the following process: substituting

(3.7) and (3.9) into (3.8), the average probability of detection, Pd,Na, can be calculated as,

Pd,Na = e−
λ
2

u−1∑

i=0

(
λ
2

)i

i!
+ e−

λ
2

∞∑

n=u

(
λ
2

)n

n!


1 − mm

Γ(m)(γ)m

n−u∑

k=0

∫∞
0 (γ)k+m−1e−

m+γ
γ

γdγ

k!


 .

(3.10)

Using (3.351-3) in [71] for calculating the integral in (3.10), the result is obtained as,

Pd,Na =e−
λ
2

u−1∑

i=0

(
λ
2

)i

i!
+ e−

λ
2

∞∑

n=u

(
λ
2

)n

n!

(
1−
(

m

m+γ

)m n−u∑

k=0

(m+k−1)!

Γ(m)k!

(
γ

m+γ

)k)
. (3.11)

It can be shown that the above representation converges to 1 when the parameterγ goes to

infinity for a constantm and any positiveλ. As the detection thresholdλ approaches to infinity,

the average probability of detection converges to zero whenγ is a constant. If the fading factor

m goes to infinity (non-fading case), (3.11) converges to (3.7).

Since the above form contains infinite sums, the truncation error, TNak(N), by truncating (3.11)

afterN iterations on indexn, must be considered. As the number of computed terms, i.e.N ,
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varies, the truncation error is bounded by,

TNak(N) = e−
λ
2

∞∑

n=u+N+1

(
λ
2

)n

n!

(
1−
(

m

m+γ

)m n−u∑

k=0

(m+k−1)!

Γ(m)k!

(
γ

m+γ

)k)
, (3.12)

≤ e−
λ
2

∞∑

n=u+N+1

(
λ
2

)n

n!

(
1−
(

m

m+γ

)m N+1∑

k=0

(m+k−1)!

Γ(m)k!

(
γ

m+γ

)k)
, (3.13)

=

(
1 − e−

λ
2

u+N∑

n=0

(
λ
2

)n

n!

)(
1−
(

m

m+γ

)m N+1∑

k=0

(m+k−1)!

Γ(m)k!

(
γ

m+γ

)k)
, (3.14)

where (3.13) holds because the term1−am∑n−u
k=0 g(k) in (3.12) is monotonically decreasing

with respect ton, and replacingn on indexk by the smallest valueu+N+1 will lead to an

upper bound.

In order to obtain a specific accuracy when calculatingPd,Na, the problem of “how many cal-

culated terms are required in (3.11)?” is often of concern. Equation (3.14) can be used to

determine the requiredN given the calculation accuracy.

Since the expression for the average probability of detection of (6) in [72] also contains infi-

nite summations, to compare which converges faster, the result of (6) in [72] is rewritten by

exchangingn andk as below,

P̃d,Na=e−
λ
2

(
m

m+γ

)m ∞∑

k=0

(
γ

m+γ

)k (m+k−1)!

Γ(m)k!

k+u−1∑

n=0

(
λ
2

)n

n!
. (3.15)

If (3.15) were to be truncated afterN iterations onk, then the truncation error of (3.15) is given

by (7) in [72] as,

ENak(N) =

(
m

m+γ

)m(

1F0

(
m; ;

γ

m+γ

)
−

N∑

k=0

(
γ

m+γ

)k (m+k−1)!

Γ(m)k!

)
, (3.16)

=

(
m

m+γ

)m ∞∑

k=N+1

(
γ

m+γ

)k (m+k−1)!

Γ(m)k!
, (3.17)

where1F0(α; ;β) denotes a generalized hypergeometric series defined by,

pFq(a1, a2, · · · , ap; b1, b2, · · · , bq; z) =

∞∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
, (3.18)

where(a)n = Γ(a+n)
Γ(a) denotes the Pochhammer Symbol.
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For comparison, (3.14) is rewritten as,

TNak(N) ≤
(

1 − e−
λ
2

u+N∑

n=0

(
λ
2

)n

n!

)(
m

m+γ

)m ∞∑

k=N+2

(
γ

m+γ

)k (m+k−1)!

Γ(m)k!
. (3.19)

Using (3.17) and (3.19), the relation ofTNak andENak is obtained as,

ENak−TNak(
m

m+γ

)m ≥e−λ
2

∞∑

k=N+2

(
γ

m+γ

)k (m+k−1)!

Γ(m)k!

u+N∑

n=0

(
λ
2

)n

n!
+

(
γ

m+γ

)N+1 (m+N)!

Γ(m)(N + 1)!
.

(3.20)

Comparison ofENak(N) andTNak(N) shows that the proposed expression in (3.11) converges

to the exact value more quickly than the existing expressionin (3.15), sinceENak(N)−TNak(N) >

0 holds true for any value ofN when the local-mean SNR,γ, is positive. The comparison of

these expressions are shown in Figure 3.4.

3.2.2 Rician Fading Channel

The Rician model is often used to describe propagation pathswhich contain a strong dominant

line of sight (LOS) component and several weaker scattered components. It includes both the

nonfading AWGN channel and the Rayleigh fading channel as two special cases. The PDF of

the SNR in a Rician fading channel is given by [51],

f(γ)=
(K+1)e−K

γ
e−

(K+1)γ
γ I0

(
2

√
K(K+1)γ

γ

)
, γ > 0, (3.21)

whereK is the shape parameter.

The average probability of detection over Rician fading channel can be obtained by the follow-

ing process: substituting (3.7) and (3.21) into (3.8), the average probability of detection can be

given by,

Pd,Ri = e−
λ
2

u−1∑

i=0

(
λ
2

)i

i!
+ e−

λ
2

∞∑

n=u

(
λ
2

)n

n!

(
1− (K+1)e−K

γ

×
n−u∑

k=0

∫∞
0 (γ)ke−

K+γ+1
γ

γI0

(
2
√

K(K+1)γ
γ

)
dγ

k!

)
. (3.22)
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Using (6.643-2) in [71] for calculating the integral, with the aid of the identity for the Whittaker

function in (9.220-2) of [71], the result ofPd,Ri is obtained as,

Pd,Ri = e−
λ
2

u−1∑

i=0

(
λ
2

)i

i!
+e−

λ
2

∞∑

n=u

(
λ
2

)n

n!

(
1− (K+1)e−K

K+γ+1

×
n−u∑

k=0

(
γ

K+γ+1

)k
Φ

(
k+1, 1;

K(K+1)

K+γ+1

))
. (3.23)

whereΦ(α, γ; z) denotes the Confluent Hypergeometric function, given by,

Φ(α, γ; z) = 1 +
α

γ

z

1!
+
α(α + 1)

γ(γ + 1)

z2

2!
+ · · · . (3.24)

In contrast to the result in [52], (3.23) is applicable for any value of the time bandwidth product.

Since the time bandwidth product,u, describes the number of independent samples of the signal

in the observation timeT , the result in (3.23) is more flexible, and can be used to analyse

the performance of energy detection, when the data is sampled at any sampling rate over any

observation time ofT .

The infinite sums are also involved in (3.23), thus it is necessary to analyse the truncation error

when truncating the infinite sum to a finite one for calculation. As the number of computed

terms,N , varies, the truncation error,TRic(N), is bounded by,

TRic(N) = e−
λ
2

∞∑

n=u+N+1

(
λ
2

)n

n!

(
1− (K+1)e−K

K+γ+1

×
n−u∑

k=0

(
γ

K+γ+1

)k
Φ

(
k+1, 1;

K(K+1)

K+γ+1

))
, (3.25)

≤
(

1 − e−
λ
2

u+N∑

n=0

(
λ
2

)n

n!

)(
1− (K+1)e−K

K+γ+1

×
N+1∑

k=0

(
γ

K+γ+1

)k
Φ

(
k+1, 1;

K(K+1)

K+γ+1

))
. (3.26)

Equation (3.26) can be used to determine how many calculatedterms,N , is required to obtain

a specific accuracy when calculatingPd,Ri using (3.23).
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3.2.3 Slow Fading Channel

The strength of the received signals in cognitive radios is also affected by shadowing from

buildings, hills, and other objects. In such a scenario, empirical measurements showed that the

received power fluctuates with a log-normal distribution about the area-mean power for various

outdoor and indoor environments [20]. In a slow fading channel, the PDF of the SNR is given

by [51],

f(γ) =
ξ√

2πσγ
exp

(
−(10 log10 γ − ...

γ )2

2σ2

)
, γ > 0, (3.27)

whereξ = 10/ ln(10),
...
γ (dB) denotes the area-mean SNR (SNR averaged over an area with a

radius of tens or hundreds of metres), andσ (dB) denotes the standard deviation of10 log10 γ.

There exists no closed-form expression for the average probability of detection on substituting

(3.7) and (3.27) into (3.8). However, a tractable expression can be found if the log-normal

distribution is approximated by the Wald distribution (also known as the inverse Gaussian dis-

tribution) [73,74], whose PDF is given by,

f(γ) =

√
η

2π
γ−3/2 exp

(
−η(γ − θ)2

2θ2γ

)
, γ > 0, (3.28)

whereθ = E(γ) denotes the expectation ofγ, andη is the shape parameter. The variance of

γ is θ3

η , i.e. Var(γ) = θ3

η . In order to approximate the log-normal distribution, the method of

moments is used to obtain the parametersη, θ with
...
γ , σ as below,

θ = exp

( ...
γ

ξ
+
σ2

2ξ2

)
,

η =
θ

exp(σ
2

ξ2 ) − 1
. (3.29)

The average probability of detection over slow fading channel can be obtained by the following

process: substituting (3.7) and (3.28) into (3.8), the average probability of detection is given by,

Pd,Sha= e−
λ
2

u−1∑

i=0

(
λ
2

)i

i!
+ e−

λ
2

∞∑

n=u

(
λ
2

)n

n!


1−

√
η

2π
e
η
θ

n−u∑

k=0

∫∞
0 (γ)k−

3
2 e

(− η/2
γ

− 2θ2+η

2θ2
γ)
dγ

k!


 .

(3.30)
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Using (3.471-9) in [71] for calculating the integral, the result ofPd,Sha is obtained as,

Pd,Sha=
u−1∑

i=0

(
λ
2

)i
e−

λ
2

i!
+

∞∑

n=u

(
λ
2

)n
e−

λ
2

n!


1−

√
η

2π
e
η
θ

n−u∑

k=0

(√
ηθ2

2θ2+η

)k−1
2
Kk−1

2

(√
η(2θ2+η)

θ

)

k!


 .

(3.31)

where Kk− 1
2
(a) denotes the modified Bessel function of the second kind with orderk − 1

2 .

Likewise, the truncation error,TSha(N), can be bounded by,

TSha(N)=

∞∑

n=u+N+1

e−
λ
2

(
λ
2

)n

n!


1−

√
η

2π
e
η
θ

n−u∑

k=0

(√
ηθ2

2θ2+η

)k−1
2
Kk−1

2

(√
η(2θ2+η)

θ

)

k!


 (3.32)

≤
∞∑

n=u+N+1

e−
λ
2

(
λ
2

)n

n!


1−

√
η

2π
e
η
θ

N+1∑

k=0

(√
ηθ2

2θ2+η

)k−1
2
Kk−1

2

(√
η(2θ2+η)

θ

)

k!


 (3.33)

=

(
1−

u+N∑

n=0

e−
λ
2

(
λ
2

)n

n!

)

1−

√
η

2π
e
η
θ

N+1∑

k=0

(√
ηθ2

2θ2+η

)k−1
2
Kk−1

2

(√
η(2θ2+η)

θ

)

k!


 .(3.34)

3.3 Data Fusion Based Collaborative Spectrum Sensing

This section analyses the spectrum sensing performance using different data fusion approaches

over multiple i.i.d. Nakagami-m fading channels, or slow fading channels. For convenience of

derivation, the representation of the generalised Marcum Q-function in (3) of [75] is used in

this section, andPd is represented as,

Pd(γ, λ)=1−
∞∑

n=0

Γ′(n+u, λ2 )

Γ(n+u)n!
(γ)ne−γ , (3.35)

whereΓ′(a, x) denotes the lower incomplete gamma function, i.e.Γ′(a, x) =
∫ x
0 t

a−1e−tdt.
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3.3.1 Square-Law Combining

Using the SLC scheme, the squared and integrated energy vectors, Y 1, Y 2, · · · , Y v, from v

distributed cognitive radios are gathered at a FC, where thetest statistic,Yslc =
∑v

i=1 Y
i is

formed [53]. Thus, under theH0 hypothesis in (3.36), if thesev fading channels are i.i.d.,

and all branches have the same noise variance, the test statistic, Yslc, follows a central chi-

square distribution with a2vu DoF. On the other hand, under theH1 hypothesis, it follows a

non-central chi-square distribution with a2vu DoF and non-central parameter ofγslc as,

Yslc ∼





χ2
2vu, H0,

χ2
2vu(2γslc), H1,

(3.36)

whereγslc =
∑v

i=1 γ
i, andγi is the SNR in cognitive radio nodei.

In the case of non-fading AWGN channels, the probabilities of false alarm and detection under

the SLC diversity reception scheme can be obtained by substituting the DoF to (3.4) and (3.5)

as,

P slc
f =

Γ(vu, λ/2)

Γ(vu)
, (3.37)

P slc
d = Qvu(

√
2γslc,

√
λ),

= 1−
∞∑

n=0

Γ′(n+vu, λ2 )

Γ(n+vu)n!
(γslc)

ne−γslc. (3.38)

When the signal experiences fading overv channels, the average probability of false alarm

will not change, and the average probability of detection can be evaluated by averagingP slc
d in

(3.38) over the combined SNR distribution as,

P slc
d =

∫ ∞

0
P slc
d (γslc, λ)f(γslc)dγslc. (3.39)

Whenv Nakagami-m fading channels are i.i.d., the PDF of the SLC output SNR, i.e. f(γslc),

is given by [51],

f(γslc) =
mvm(γslc)

vm−1

(γ)vmΓ(vm)
e
−m
γ
γslc, γslc > 0. (3.40)

The average probability of detection using SLC can be obtained by the following process:
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substituting (3.38) and (3.40) into (3.39), the average probability of detection is given by,

P slc
d =1− mvm

Γ(vm)(γ)vm

∞∑

n=0

Γ′(n+vu, λ2 )

Γ(n+vu)n!

∫ ∞

0
(γ)n+vm−1e−

m+γ
γ

γdγ. (3.41)

Using (3.351-3) in [71] for calculating the integral in (3.41), the result ofP slc
d can be obtained

as,

P slc
d = 1 −

(
m

m+ γ

)vm ∞∑

n=0

Γ′(n+ vu, λ2 )(vm)n

Γ(n+ vu)n!

(
γ

m+ γ

)n
. (3.42)

Since the above form contains infinite sums, the truncation error is considered. The truncation

error,Tslc(N), is introduced by truncating (3.42) afterN iterations on indexn. AsN varies,

the truncation error is bounded by,

Tslc(N)=

(
m

m+γ

)vm ∞∑

n=N+1

Γ′(n+vu, λ2 )(vm)n

Γ(n+vu)n!

(
γ

m+γ

)n
, (3.43)

≤
(

m

m+γ

)vm ∞∑

n=N+1

(vm)n
n!

(
γ

m+γ

)n Γ′(vu+N+1, λ2 )

Γ(vu+N+1)
, (3.44)

= (1−ǫ(vγ, vm,N))
Γ′(vu+N+1, λ2 )

Γ(vu+N+1)
, (3.45)

where the inequality holds true due to that the functionΓ′(a,x)
Γ(a) is monotonically decreasing with

respect toa, andǫ(x, ν, z) is defined by,

ǫ(x, ν, z)
∆
=

(
ν

ν+x

)ν z∑

n=0

(ν)n
n!

(
x

ν+ x

)n
. (3.46)

In slow fading channels, the PDF of the SNR in the nodei, i.e. f(γi), can be approximated by

a Wald distribution. When all fading channels are stationary and i.i.d., the condition ηi

(θi)2
=

E(γi)
Var(γi) = b (constant) can be satisfied. Thus, the combined SNR under theSLC scheme,γslc,

will also follow the Wald distribution [76]. The PDF ofγslc can be easily obtained by replacing

eachη with vη, eachθ with vθ, and eachγ with γslc in (3.28). Using a similar method to that of
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the single slow fading channel, the average probability of detection can be calculated as below,

P slc
d,slow = e−

λ
2

vu−1∑

i=0

(
λ
2

)i

i!
+ e−

λ
2

∞∑

n=vu

(
λ
2

)n

n!

×


1−

√
vη

2π
e
η
θ

n−vu∑

k=0

(√
ηθ2v2

2vθ2+η

)k− 1
2
Kk− 1

2

(√
η(2vθ2+η)

θ

)

k!


 . (3.47)

The above result can also be obtained by replacing eachη with vη, eachθ with vθ, and eachu

with vu in (3.31).

3.3.2 Square-Law Selection

Using the SLS scheme, the FC only selects the branch with the largest energy, i.e.Ysls =

max(Y 1, Y 2, · · · , Y v). In the case of non-fading AWGN channels, the probabilitiesof false

alarm and detection under the SLS diversity reception scheme is given by [53],

P sls
f = 1 −

(
1 − Γ(u, λ/2)

Γ(u)

)v
, (3.48)

P sls
d = 1 −

v∏

i=1

(
1 −Qu(

√
2γi,

√
λ)
)
, (3.49)

where the noise variance is assumed to be1. When thosev fading channels are i.i.d., the average

probability of detection can be evaluated by averagingP sls
d in (3.49) over all possible SNRs as,

P sls
d =

∫ ∞

0
P sls
d (γi, λ)f(γi)dγi, (3.50)

wheref(γi) is given by,

f(γi) =
mm(γi)m−1

(γi)mΓ(m)
e
−m

γi
γi

, γi > 0, (3.51)

whereγi denotes the local-mean SNR in thei-th node.

By substituting (3.49) and (3.51) into (3.50), the expression for the average probability of de-
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tection can be evaluated. Since the channels are i.i.d., theresult is obtained as,

P sls
d = 1 −

v∏

i=1

(
m

m+ γi

)m ∞∑

n=0

Γ′(n+ u, λ2 )(m)n

Γ(n+ u)n!

(
γi

m+ γi

)n
. (3.52)

In comparison with the results in [77], the results in (3.42)and (3.52) have lower computa-

tional complexity whenu andm are integer multiples of124 . This is because gamma function

can be evaluated quickly using arithmetic-geometric mean iterations with computational com-

plexity of O(log bM(b)) [78], whereb denotes the number of digits of precision at which the

function is to be evaluated, andM(b) stands for the complexity of the chosen multiplication

algorithm. By contrast, the computational complexity of confluent Hypergeometric function

in [77] isO((log b)2M(b)) [79]. On the other hand, even though the proposed expressions con-

tain infinite sums as well, it can be shown that they converge to the exact value very quickly.

In order to derive the truncation error, assume,

ζ =

(
m

m+γ

)m N∑

n=0

Γ′(n+u, λ2 )(m)n

Γ(n+u)n!

(
γ

m+γ

)n
, (3.53)

and

ϑ =

(
m

m+γ

)m ∞∑

n=N+1

Γ′(n+u, λ2 )(m)n

Γ(n+u)n!

(
γ

m+γ

)n
. (3.54)

Thus, the truncation error,Tsls(N), in (3.52) can be represented by,

Tsls(N) = (ζ + ϑ)v − ζv =

v∑

l=1

(
v

l

)
ζv−lϑl. (3.55)

Regarding (3.53) and (3.54), the following inequalities hold true,

ζ ≤ ǫ(γ,m,N)
Γ′(u, λ2 )

Γ(u)
, (3.56)

and

ϑ ≤ (1−ǫ(γ,m,N))
Γ′(u+N+1, λ2 )

Γ(u+N+1)
. (3.57)

The upper bound ofTsls(N) can be determined by substituting (3.56) and (3.57) into (3.55).
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3.3.3 Maximum Ratio Combining

Under the MRC scheme, multiple cognitive radios directly amplify and forward the received

signals, rather than the energy, to the FC, where the data from multiple cognitive radios are

combined by an MRC combiner. Then an energy detector measures the output of the MRC

combiner. Therefore, the test statistic,Ymrc, can be modeled by central and non-central chi-

square distributed random variables as,

Ymrc ∼





χ2
2u, H0

χ2
2u(2γmrc), H1

(3.58)

whereγmrc =
∑v

i=1 γ
i denotes the instantaneous SNR at the output of the MRC combiner [51].

Over AWGN channels, the probabilities of false alarm and detection under an MRC diversity

scheme can be given by,

Pmrc
f =

Γ(u, λ/2)

Γ(u)
, (3.59)

Pmrc
d = Qu(

√
2γmrc,

√
λ),

= 1−
∞∑

n=0

Γ′(n+u, λ2 )

Γ(n+u)n!
(γmrc)

ne−γmrc. (3.60)

The PDF of the SNR,f(γmrc), at the output of the MRC combiner is given by,

f(γmrc) =
mvm(γmrc)

vm−1

(γ)vmΓ(vm)
e−

m
γ
γmrc, γmrc > 0. (3.61)

Averaging (3.60) over (3.61), the average probability of detection is given by,

Pmrc
d =1− mvm

Γ(vm)(γ)vm

∞∑

n=0

Γ′(n+u, λ2 )

Γ(n+u)n!

∫ ∞

0
(γ)n+vm−1e−

m+γ
γ

γdγ. (3.62)

Using (3.351-3) in [71] for calculating the integral in (3.62), the result ofPmrc
d is obtained as,

Pmrc
d = 1 −

(
m

m+ γ

)vm ∞∑

n=0

Γ′(n+ u, λ2 )(vm)n

Γ(n+ u)n!

(
γ

m+ γ

)n
. (3.63)
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The corresponding truncation error is bounded by,

Tmrc(N)=

(
m

m+γ

)vm ∞∑

n=N+1

Γ′(n+u, λ2 )(vm)n

Γ(n+u)n!

(
γ

m+γ

)n
, (3.64)

≤
(

m

m+γ

)vm ∞∑

n=N+1

(vm)n
n!

(
γ

m+γ

)n Γ′(u+N+1, λ2 )

Γ(u+N+1)
, (3.65)

= (1−ǫ(vγ, vm,N))
Γ′(u+N+1, λ2 )

Γ(u+N+1)
. (3.66)

3.3.4 Selection Combining

Under SC, the energy detector measures the output of the SC combiner. The test statistic,Ysc,

can be modeled by central and non-central chi-square distributed random variables as,

Ysc ∼





χ2
2u, H0

χ2
2u(2γsc), H1

(3.67)

whereγsc = max(γ1, γ2, · · · , γv) denotes the instantaneous SNR at the output of the SC

combiner [51]. In other words, rather than processing all fading branches, SC processes only

one of the diversity branches with the highest SNR. Over AWGNchannels, the probabilities of

false alarm and detection under the SC diversity scheme can be given by,

P sc
f =

Γ(u, λ/2)

Γ(u)
, (3.68)

P sc
d = Qu(

√
2γsc,

√
λ),

= 1−
∞∑

n=0

Γ′(n+u, λ2 )

Γ(n+u)n!
(γsc)

ne−γsc. (3.69)

Over multiple i.i.d. Nakagami-m fading channels, if the fading factorm is restricted to integer

values, the PDF ofγsc can be obtained from the Appendix of [80] as,

f(γsc) =
v

Γ(m)

v−1∑

l=0

(−1)l
(
v − 1

l

)l(m−1)∑

k=0

blk

(
m

γ

)m+k

(γsc)
m+k−1e−

m(l+1)
γ

γsc, (3.70)
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whereblk can be recursively computed as,

bl0 = 1, bl1 = l, bl(m−1)l =
1

Γ(m)l
,

blk =
1

k

J∑

j=1

blk−j
j(l + 1) − k

j!
, (3.71)

with J = min(k,m− 1), andk ∈ [2, (m − 1)l − 1].

The average probability of detection can be evaluated by averagingP sc
d in (3.69) over the SNR

distribution in (3.70) as,

P sc
d =

∫ ∞

0
P sc
d (γsc, λ)f(γsc)dγsc. (3.72)

Substituting (3.69) and (3.70) into (3.72), with manipulation, the average probability of detec-

tion is given by,

P sc
d = 1− v

Γ(m)

v−1∑

l=0

(−1)l
(
v − 1

l

)l(m−1)∑

k=0

blk

(
m

γ

)m+k ∞∑

n=0

Γ′(n+u, λ2 )

Γ(n+u)n!

×
∫ ∞

0
(γ)n+m+k−1e

−m(l+1)+γ
γ

γ
dγ. (3.73)

Using (3.351-3) in [71] for calculating the integral in (3.73), the result can be obtained as,

P sc
d = 1 − v

v−1∑

l=0

(−1)l
(
v − 1

l

)l(m−1)∑

k=0

blk

(
m

γ

)m+k

×
∞∑

n=0

Γ′(n+u, λ2 )(m)n+k

Γ(n+u)n!

(
γ

m(l+1)+γ

)n+m+k

. (3.74)

3.4 Simulation Results

Receiver operating characteristic (ROC) analysis has beenwidely used in the signal detection

theory. It is an ideal technique to quantify the tradeoff between the probability of detection

and the probability of false alarm. In cognitive radio networks, the probabilities of false alarm

and detection have different implications on the performance of spectrum sensing. Specifically,

the probability of false alarm,Pf , is related with the spectral utilisation efficiency, wherea

largerPf will trigger a lower spectral utilisation efficiency. On theother hand, the probability

of missed detection,1 − Pd, measures the risk of the cognitive radios causing interference to
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the PUs when the cognitive radios are filling in the spectrum holes. Thus, the ROC analysis is

selected as the metric for evaluating the performance of spectrum sensing over fading channels.

In this section, the complementary ROC curves (Pf vs 1 − Pd) are used to show the detection

performance of energy detection over various fading channels. The following parameters are

considered,

• The local-mean SNRγ or the area-mean SNR
...
γ .

• The time bandwidth product in the test statistic,u.

• The shape parameters, e.g.,m if Nakagami-m fading,K if Rician fading.

• The number of collaborative cognitive radio nodes,v.

Spectrum sensing over a single fading channel

Figure 3.2 presents the detection performance of energy detection over a Nakagami-m fading

channel withm = 1 andm = 2. The Nakagami-m fading factor,m (also called shape pa-

rameter), indicates the severity of fading and the quality of the channel. The severity of fading

reduces when the fading factor,m, increases. The Nakagami-m fading model includes the

Rayleigh fading (m = 1) and the one-sided Gaussian fading (m = 1
2 ) as special cases. In the

limit asm → ∞, it converges to a non-fading channel. In both figures, it is shown that, the

higher the SNR is, the better a detection performance one canachieve. In addition, a smaller

u will result in a smaller probability of missed detection fora fixed probability of false alarm.

This is because that the parameteru is directly related to the DoF of the chi-square in (3.2), and

the DoF implies how many independent standard normal randomvariables in the chi-square dis-

tribution. It is also evident that there exists performanceimprovement fromm = 1 tom = 2,

as in the latter case, the quality of the channel is better than that of the former case.

Figure 3.3 depicts the complementary ROC curves of the energy detector over a Rician fading

channel withK = 1 in (a), andK = 3 in (b). The shape parameter,K, is defined as the ratio

of signal power in dominant component over the (local-mean)scattered power. When the LOS

component disappears, i.e.K = 0, Rician fading reduces to Rayleigh fading. In Figure 3.3, a

similar phenomenon can be found that the energy detection has a better detection performance

when the SNR increases, or the DoF,2u, decreases. For example, in the left hand figure, when

Pf = 1%, u = 1, and the SNR increases from10 dB to 15 dB, the probability of missed

detection declines from30% to 10%. Comparing the left hand figure with the right hand one,
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Figure 3.2: Complementary ROC curves of energy detection over a Nakagami-m fading chan-
nel, with (a)m = 1, and (b)m = 2. This figure is produced by changing the
detection thresholdλ from0.1 to 1000.

it shows that when the shape parameterK reduces from3 to 1, the performance of energy

detection degrades due to the power of the dominant component decreasing.

Figure 3.4(a) compares the truncation error, (3.14), of theproposed expression in (3.11) with the

truncation error, (3.16), of the existing expression in (3.15) for a Nakagami-m fading channel.

The truncation error (3.26) for a Rician fading channel is depicted in Figure 3.4(b). Both

figures reveal that usingN = 30 computed terms, the expressions in (3.11) and (3.23) converge

rapidly to their final values, with the corresponding truncation error achieving double-precision

accuracy. By contrast, the truncation errorENak(N) in (3.16) decreases more slowly, compared

with the truncation errorTNak(N) in (3.14). For example, as shown in Figure 3.4(a), when

N = 10, the truncation errorTNak(10) in (3.14) is approximately10−2. In contrast, to obtain

ENak = 10−2, more than50 computed terms are required in (3.15). In other words, the proposed

expression in (3.11) converges more quickly to its final value than the expression in (3.15).
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Figure 3.3: Complementary ROC curves of energy detection over a Rician fading channel,
with (a)K = 1, and (b)K = 3. This figure is produced by changing the detection
thresholdλ from0.1 to 1000.

Figure 3.4 shows that a larger shape parameter, e.g.,m in (a), orK in (b), will lead to a slightly

faster convergence.

Figure 3.5 demonstrates the performance of energy detection over a slow fading channel with

a shadow standard deviation,σ = 4 dB in (a), and an area-mean SNR,
...
γ = 10 dB, in (b).

Since the Wald distribution is used to approximate the log-normal distribution for deriving the

average probability of detection, the accuracy of the proposed expression should be verified.

Figure 3.5 compares the theoretical result in (3.31) with simulated results. It demonstrates that

the theoretical results closely fit the experimental results, and the accuracy of the proposed ex-

pression varies under different conditions. As shown in theleft hand figure, when the area-mean

SNR,
...
γ , increases from5 dB to 10 dB, the approximation error grows slightly. In addition, it

is found that when the average probability of false alarm decreases, the approximation error

gradually increases. This phenomenon stems from the long right tail of the long-normal dis-
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Figure 3.4: The truncation error afterN iterations on indexn, when the time bandwidth prod-
uct u = 1, the local-mean SNRγ = 10 dB, and the average probability of false
alarmPf = 0.01, with (a) Nakagami-m fading, and (b) Rician fading.

tribution, which is difficult to match. In the right hand figure, the influence of the right tail of

the long-normal distribution is further investigated. It illustrates that a larger shadow standard

deviation (equivalent to a longer right tail in the log-normal distribution),σ, will cause a worse

detection performance, and a larger mismatch. For example,the case ofσ = 5 dB has a larger

probability of missed detection, and a larger approximation error than that ofσ = 3 dB.

Collaborative spectrum sensing over fading channels

In the following simulations, the detection performance ofenergy detection using collaborative

approaches, i.e. MRC, SC, SLC, and SLS, will be compared. In Figure 3.6, it is manifest that

both MRC and SLC have diversity gains for spectrum sensing, compared with the no-diversity

case. In the case ofv = 3 and SNR= 20 dB, the gain is several orders of magnitude on index

1 − Pd. It is found that the diversity gain decreases when either the number of cognitive radio
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Figure 3.5: Complementary ROC curves of energy detection over a slow fading channel with
(a) the shadow standard deviationσ = 4 dB, and (b) the area-mean SNR

...
γ = 10

dB, compared with theoretical result in (3.31).

nodes,v, or the SNR reduces. Comparing the detection performance ofenergy detection using

MRC with that using SLC, it reveals that, with the aid of full CSI, MRC outperforms SLC.

When SNR= 20 dB andv = 3, the gain of using MRC over SLC is approximately one order

of magnitude on index1 − Pd. But, the gain becomes less when the SNR or the number of

cognitive radio nodes go down.

In Figure 3.7, a similar phenomenon can be found that either ahigher SNR or a largerv will

result in a better detection performance, and both SC and SLShave gains compared with the no-

diversity case. However, the gain becomes less when the probability of false alarm decreases.

For example, considering the SLS withv = 3 and SNR= 20 dB, the gain is approximately

seven orders of magnitude on index1 − Pd whenPf = 10%, and then becomes five orders of

magnitude on index1 − Pd whenPf = 0.01%. It is more obvious for the case of SNR= 10

dB since the diversity gain is very small whenPf = 0.01 ∼ 0.1%. Figure 3.7 also shows
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Figure 3.6: Complementary ROC curves of energy detection under MRC and SLC scheme,
when the Nakagami fading factorm = 3, and the time bandwidth productu = 1.

that the SLS scheme is superior to the SC scheme. The reason behind this phenomenon is

that, in comparison with choosing the branch with the highest SNR, selecting the branch with

the largest energy to do the hypothesis test is more straightforward for improving detection

performance.

Figure 3.8 describes the influence of the quality of channel on the performance of energy detec-

tion when using different collaborative strategies. It shows that using MRC one can obtain the

best detection performance when the severity of fading changes. Whenm = 3, MRC outper-

forms SLC, SLS, and SC by roughly one, two, and three orders ofmagnitude on index1 − Pd,

respectively. On the other hand, for Rayleigh fading channels (m = 1), the gain of MRC is less.

The SLC is found to be the second best out of those four strategies. Comparing the scheme of

MRC and SLC, it can be seen that MRC not only requires full CSI,but also needs double the

transmission bandwidth of SLC. This is because when using SLC, the data to be transmitted is

real, rather than complex data when using MRC. Since the fullCSI is difficult to obtain, and
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Figure 3.7: Complementary ROC curves of energy detection under SC and SLS scheme, when
the Nakagami fading factorm = 3, and the time bandwidth productu = 1.

data transmission is expensive in cognitive radio networks, SLC is more attractive than MRC.

Figure 3.8 also illustrates that whenm = 3 the detection performance is much better than that

over Rayleigh fading channels (m = 1). This is because the severity of fading for the former

case is less than that of the latter case.

Figure 3.9 compares the performance of different collaborative strategies when the time band-

width product,u, alters. It shows that MRC outperforms the other collaborative approaches for

bothu = 1 andu = 2. In comparison to SLC, the gain of using MRC is approximatelyone

order of magnitude in1 − Pd, similar to the gain of SLC over SLS, and the gain of SLS over

SC. Additionally, Figure 3.9 depicts that for a fixed probability of false alarm, the probability

of missed detection decreases whenu reduces. This is because the time bandwidth product,u,

gives the number of independent standard normal random variables in the chi-square distribu-

tion, and more independent variables will lead to a poorer detection performance.
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Figure 3.8: Comparison of MRC, SLC, SC, and SLS, when the local-mean SNRγ = 15 dB, the
number of collaborative cognitive radiosv = 3, and the time bandwidth product
u = 1.

Figure 3.10 presents the comparison of the performance of energy detection using different

collaborative strategies when the local-mean SNR,γ, changes. It is evident that SLC, SLS and

SC are always inferior to MRC. The benefit of using MRC diminishes when the local-mean

SNR goes down. It is also noticeable that SLS has a better detection performance than SC,

however, the gain decreases when the probability of false alarm decreases. For example, when

the local-mean SNR,γ = 5 dB, andPf = 0.1%, the gain of SLS over SC is zero.

3.5 Conclusions

This chapter has derived rapidly converging expressions for the average probability of detec-

tion when using energy detection over a single Nakagami-m, or Rician fading channel. Even

though infinite sums are involved, simulation results have shown that the proposed expressions
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Figure 3.9: Comparison of MRC, SLC, SC, and SLS, when the local-mean SNRγ = 15 dB, the
number of collaborative cognitive radiosv = 3, and the Nakagami fading factor
m = 3.

converge rapidly. Additionally, a computationally tractable expression for the average proba-

bility of detection over a slow fading channel has been obtained, by replacing the log-normal

distribution with the Wald distribution. It has been verified that the proposed expression closely

fits the simulation results. Due to the effect of the long right tail in the log-normal distribution,

the mismatch becomes larger when the shadow standard deviation increases.

Moreover, since collaborative spectrum sensing is a crucial means for combating fading, this

chapter has studied the performance of spectrum sensing using different collaborative strategies,

i.e. MRC, SC, SLC, and SLS. With perfect CSI, MRC gives an upper bound of the detection

performance. In the case where CSI is not available, SLC is a good choice as it has a better

detection performance than SLS. Furthermore, it is found that MRC and SC require double the

transmission bandwidth compared with SLC and SLS, because they must forward complex data

to the FC while the latter two only transmit real data (energyvectors). Hence, where there is a
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Figure 3.10: Comparison of MRC, SLC, SC, and SLS, when the time bandwidth productu = 1,
the number of collaborative cognitive radiosv = 3, and the Nakagami fading
factorm = 3.

restriction on the bandwidth of the control channel, SLC is more attractive.
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Chapter 4
Distributed Wideband Spectrum

Sensing

Wideband spectrum sensing is becoming increasingly important to cognitive radio systems as

a means of identifying spectrum holes or characterising interference. Meanwhile, due to the

effects of multipath fading and shadowing, a single cognitive radio cannot distinguish between

a deep fade and an idle band. In such a scenario, distributed spectrum sensing has been widely

considered for combating fading or shadowing [21, 81]. A data fusion based approach is pre-

ferred for distributed spectrum sensing as it offers much better detection performance than

decision fusion approaches [82]. Nonetheless, to jointly perform distributed and wideband

spectrum sensing using conventional distributed spectrumsensing techniques, the transmission

of raw data through a control channel is very expensive. Moreover, the high sampling rates are

problematic when the distributed cognitive radios are battery powered.

This chapter proposes a novel wideband spectrum sensing model for distributed cognitive radio

networks, with the following contributions:

• A multirate asynchronous sub-Nyquist sampling (MASS) system that employs multiple

low-rate ADCs is developed to implement wideband spectrum sensing. The key fea-

tures of the MASS system are, 1) low implementation complexity, 2) applicability to

distributed cognitive radio networks, 3) energy-efficiency for sharing spectrum sensing

data, and 4) robustness against the lack of time synchronisation.

• The conditions under which the recovery of the full spectrumis unique are presented by

using CS analysis. A trade-off is made between the number of sampling channels and

the probability of successful spectrum recovery. In addition, the effects of noise and the

model mismatching are considered.

• The proposed MASS system is applied to distributed cognitive radio networks. When

the spectra of the cognitive radio nodes have a common spectral support, using one low-

rate ADC in each cognitive radio node can also successfully recover the full spectrum.
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This is obtained by applying a hybrid matching pursuit (HMP)algorithm, a synthesis

of the distributed compressive sensing simultaneous orthogonal matching pursuit (DCS-

SOMP) and compressive sampling matching pursuit (CoSaMP).

This chapter is organized as follows. Section 4.1 briefly introduces techniques in CS theory.

Section 4.2 proposes a MASS system. Using CS theory, the sufficient conditions for full spec-

trum recovery are derived. The practical implementation issues, for example, the effects of

noise and model mismatch, are discussed in Section 4.2.5. Simulation results are presented in

Section 4.4, followed by discussions and conclusions in Section 4.5 and Section 4.6, respec-

tively.

4.1 Preliminaries of Compressive Sensing

CS theory [59] indicates that a signal,~x ∈ CN , which isk-sparse, can be exactly recovered

from M (M ≪ N) linear projections/measurements~y ∈ CM(~y = Φ~x), whereΦ ∈ CM×N

is the measurement matrix. Note thatk-sparse means that thek largest values of~x are not

negligible. Indeed, CS theory states that if the geometry ofthe sparse signals is preserved

during measurements/sampling, the sparse signals can be recovered by some algorithm from

only a few measurements. The performance of recovery is determined by three factors, namely,

the sparsity,k, of the signal~x, the properties of the measurement matrixΦ, and the recovery

algorithm.

One important property of the measurement matrix is the restricted isometry property (RIP)

[83]. A measurement matrixΦ has the RIP with parameter (k, ̺k ∈ (0, 1),N ) if,

(1 − ̺k)‖~x‖2
2 ≤ ‖Φ~x‖2

2 ≤ (1 + ̺k)‖~x‖2
2, ∀~x ∈ Ω. (4.1)

where̺k denotes the restricted isometry constant and the indices ofk-nonzero components in

~x are assumed to be included by a support, i.e.Ω.

Calculating the RIP of a particular measurement matrix is practically impossible as it is NP-

hard, but a lower bound can be obtained by calculating its mutual coherence. The mutual

coherence is a computationally tractable metric for evaluating the suitability of the chosen mea-

surement matrix.

57



Distributed Wideband Spectrum Sensing

Definition 4.1 [84]: LetΦ be expressed asΦ = [~φ1
~φ2 ... ~φN ], where~φj denotes thejth column

of the matrixΦ. Then the mutual coherence,µ, of the matrixΦ is given by,

µ = max
j 6=h∈[1,N ]

| < φ̂j , φ̂h > |, (4.2)

whereφ̂j =
~φj

‖ ~φj‖2
denotes theℓ2 normalised column.

The aim is to keepµ, or ̺k to a minimum to allow linear projections to be inverted in a stable

manner. Donoho and Elad [85,86] have proved that a small mutual coherenceµ can guarantee

the performance of the recovery as below.

Theorem 4.1 [85,86]:Assume that a signal~x is k-sparse. When the mutual coherenceµ of the

measurement matrixΦ satisfies,

µ <
1

2k − 1
, (4.3)

BP [62] or orthogonal matching pursuit (OMP) [87] can be usedto find the sparsest solution of

thek-sparse signal~x ∈ CN from measurements~y ∈ CM .

In practice, the measurements will be contaminated with noise. The observation is~y = Φ~x+~z,

where~z denotes noise vector. Linear programming BP (LPBP) [88] wasproposed to solve~x

by,

min ‖~x‖1, subject to: ‖~y − Φ~x‖2 ≤ ρ (4.4)

whereρ is greater than or equal to the noise level, i.e.ρ ≥ ‖~z‖2.

The reconstruction can achieve good performance whenΦ has the RIP with small̺2k as shown

in Theorem 4.2 below.

Theorem 4.2 [88]:When the noise level‖~z‖2 ≤ ρ, and measurement matrixΦ has the RIP

with ̺2k <
√

2 − 1, using (4.4) the recovered resultx̃ will satisfy,

‖x̃− ~x‖2 ≤ A√
k
‖~x− ~xopt‖1 +Bρ (4.5)

where constantsA andB are acceptably small, and~xopt denotes the optimalk-sparse approxi-

mation of~x.

In a distributed network, the received signals in differentsensors are not only individually

sparse, but also jointly sparse (have nonzero entries at thesame locations). A separate recovery
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Figure 4.1: The schematic illustration of the multirate asynchronous sub-Nyquist sampling sys-
tem in one cognitive radio node. The wideband filters are altered to have the same
bandwidth ofW .

strategy (each sensor recovers the signal individually) will require more measurements. One of

the most important reasons is that it neglects the correlations of signals between sensors. The

DCS-SOMP algorithm was presented in [89] for reconstructing the joint sparse signals with

fewest measurements by a boost-and-recover approach.

4.2 Multirate Asynchronous Sub-Nyquist Sampling

This section will now present a MASS system to sense the wideband spectrum using multiple

low-rate ADCs in Section 4.2.1. For simplicity, this section firstly consider the case that one

cognitive radio node is equipped with parallel ADCs, which uniformly sample the wideband

signal at different sub-Nyquist rates in the noiseless case. Section 4.2.2 will concentrate on

exploring linear projection when performing sub-Nyquist sampling. After that the effect of

sub-Nyquist sampling will be considered in Section 4.2.3. Using CS theory, the sufficient

conditions for reconstructing the sparsest representation of the wideband spectrum are derived

in Section 4.2.4. Some practical implementation issues arediscussed in Section 4.2.5.

4.2.1 System Design

Partially motivated by MRS in [33], the system will use a multirate sampling scheme as shown

in Figure 4.1. Instead of electro-optical devices, low-rate ADCs are employed in MASS. Since

the average spectral occupancy is very low, it is assumed that the non-aliased discrete Fourier

transform (DFT) spectrum (full spectrum, when the samplingrate is not less than the Nyquist
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rate) isk-sparse, and consists of several subband signals with different unknown bandwidths.

Thek-sparse means that onlyk components in the full spectrum are non-negligible. In a carrier

sense, it means that there are only a few active carriers eventhough most of them are allocated

to different wireless systems. The sparsity level,k, of the non-aliased DFT spectrum can be

obtained from initialisation, for example, coarse spectrum scanning [23, 90, 91], and will not

be addressed here. The wideband filter prior to the ADCs removes only frequencies outside

the spectrum of interest, and is altered to have the largest spectral estimation bandwidth,W .

It is assumed that there arev ADCs that sample the wideband signalx(t) at different rates,
M1

T , M
2

T , ..., M
v

T , over the same observation time ofT . In addition, during the observation time

T , the observed spectra are assumed to be wide-sense stationary (WSS). Note that no anti-

aliasing filter is used prior to the ADCs, thus aliasing occurs. The length of samples in their

corresponding channels will beM1,M2, ...,Mv (M i∈[1,v] ∼ O(
√
N). A tapered window,

such as the Hamming window, is used to combat the effect of leakage, and keep the sparsity

level, k, of the non-aliased DFT spectrum as small as possible. The spectral observations are

obtained by applying an FFT to the windowed samples in each channel. The magnitude vectors

of the sub-Nyquist rate spectra,|−→Y 1|, |−→Y 2|, ..., |−→Y v| (|−→Y i| ∈ RM i
, i ∈ [1, v]), are used to form

a concatenated equation. After that, the measurement matrix Φ is constructed by only using

M i (∀ i ∈ [1, v]) andN . Then the non-aliased spectrum is recovered using a CS algorithm,

e.g., BP, OMP, followed by spectrum detection on the reconstructed spectrum̃X .

MASS has several advantages for application in cognitive radio networks, including,

1. Wideband spectrum sensing is implemented with sub-Nyquist sampling, which relaxes

the stringent requirements on ADCs. Each ADC samples the wideband signal at rate of
M i∈[1,v]

T ∼ O(
√

2W
T ), rather than the Nyquist sampling rate of2W .

2. The low-rate ADCs behave as acquisition devices as well asspectrum compression de-

vices.

3. The compression/measurement matrix used in MASS is deterministic, and can be easily

constructed onceM i∈[1,v] andN are known. Thus, the transmission and storage of a

measurement matrix is unnecessary.
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Figure 4.2: Interpretation of the relationship between the non-aliased spectrum,~X , and the
sub-Nyquist rate spectrum,~Y , when the Fourier spectrum ofx(t) is denoted by
X(f).

4.2.2 Relate Sub-Nyquist DFT Spectrum to Nyquist DFT Spectrum

A sub-Nyquist rate spectrum (aliased spectrum) can be viewed as a linear projection from the

non-aliased spectrum as shown in Figure 4.2.

x(t) represents the output signal of the wideband filter in Figure4.1, with a bandwidth ofW . In

the short observation time ofT , the continuous signalx(t) is sampled at a sub-Nyquist rate of

f i = 1
∆ti

= M i

T < 2W in thei-th channel (different channels sample at different rates). After

a tapered window, the sampled signal in thei-th channel,yi(t), can be represented by [92],

yi(t) =
∞∑

l=−∞
x(t)δ(t − l∆ti)wT (t), (4.6)

wherewT (t) is a tapered window,∆ti is the sampling interval in the sampling channeli, and

δ(t) is a Dirac delta function.

The Fourier transform of the sampled signal in thei-th sampling channel is given by [92],

Y i(f) = f i
∞∑

l=−∞

∫ ∞

−∞
X(ω + lf i)WT (f − ω)dω. (4.7)

whereWT (f) denotes the Fourier transform of the tapered window, andX(f) denotes the

Fourier transform ofx(t).
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If x(t) is sampled at or above the Nyquist rate, i.e.fs = N
T ≥ 2W , over an observation time of

T , the Fourier transform of the sampled signal can be represented by,

Xi(f) = fs

∫ ∞

−∞
X(ω)WT (f − ω)dω, ∀|f | < fs/2, (4.8)

whereXi(f) is a non-aliased full spectrum in the sampling channeli. Replacingf by f + lf i,

andω by ω + lf i in (4.8), and then substituting it into (4.7), the relationship betweenY i(f)

andXi(f) can be obtained as,

Y i(f) =
f i

fs

∞∑

l=−∞
Xi(f + lf i), ∀|f + lf i| < fs/2. (4.9)

Since the observation timeT in both cases are the same, the same frequency resolution applies

to these two cases, i.e.∆f = fs
N = f i

M i , whereN , andM i are integers and denote the number of

samples at sampling ratesfs, andf i, respectively. By defining an integerm ∈ [−⌊M i

2 ⌋, ⌊M i

2 ⌋],
and a scalarς ∈ [0,∆f), such thatf = m∆f + ς, (4.9) can be rewritten as,

Y i(m∆f+ς) =
M i

N

∞∑

l=−∞
Xi
(
(m+lM i)∆f+ς

)
(4.10)

=
M i

N

⌊N/2⌋∑

n=−⌊N/2⌋
Xi (n∆f+ς)

∞∑

l=−∞
δ[n−(m+lM i)], (4.11)

where⌊a⌋ denotes the floor function, and gives the largest integer notgreater thana.

Sampling the Fourier transform spectrum in (4.11) at rate of1
∆f , the DFT spectrum is obtained

as,

Y i[m] =
M i

N

∞∑

l=−∞
Xi[m+ lM i] =

M i

N

⌊N/2⌋∑

n=−⌊N/2⌋
Xi[n]

∞∑

l=−∞
δ[n − (m+ lM i)], (4.12)

whereY i[m] denotes the sub-Nyquist rate DFT spectrum in thei-th channel, andXi[n] denotes

the non-aliased DFT spectrum. In matrix form this becomes,

−→
Y i = Φ

i
−→
X i, (4.13)

where
−→
Y i denotes the sub-Nyquist rate DFT spectrum vector in thei-th channel,

−→
X i is the non-
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aliased DFT spectrum vector, and the element of the linear projection operatorΦi ∈ RM i×N

(M i < N ) can be represented as,

φm+⌊M i/2⌋+1,n+⌊N/2⌋+1 =
M i

N

∞∑

l=−∞
δ
[
n− (m+ lM i)

]
, (4.14)

wherem ∈ Z ∩ [−M i/2,M i/2), andn ∈ Z ∩ [−N/2,N/2).

It is easy to see that in each column ofΦ
i, there is only one non-zero element with value of

M i

N . In each row ofΦi, there exists at most⌈ N
M i ⌉ (ceil function gives the smallest integer not

less thanN
M i ) non-zero elements, which is also called the undersamplingfactor.

4.2.3 Effect of Sub-Nyquist Sampling

Sampling a signal at a sub-Nyquist sampling rate generates two issues. First, the exact location

of the signals for those who have frequencies larger than thesub-Nyquist sampling rate is

lost. Second, there is a risk of overlap, i.e. different frequencies are down-converted to the

same frequency in the baseband. This is crucial, because it could lead to signal cancellation,

and hence missed signal detection in the cognitive radio application. However, under certain

assumptions, signal overlap has a very small probability ofoccurring. They are 1) the non-

aliased DFT spectrum isk-sparse, 2) the number of subsamples in thei-th channel,M i ∼
O(

√
N), for simplicity, letM i =

√
N , and 3)k ≪ N .

Assuming thosek spectral components are i.i.d. over the frequency bins of0, 1, · · · ,N−1, the

probability of one element in the non-aliased DFT spectrum being non-zero isP = Pr(X[n] 6=
0) = k/N . Let q[m] denote the number of signals overlapped atY i[m], using (4.12) the

probability of no signal overlap is given by,

Pr(q[m] < 2) = Pr(q[m] = 0)+Pr(q[m] = 1)=(1−P )⌈
N
Mi ⌉+

(⌈ N
M i ⌉
1

)
P (1−P )⌈

N
Mi ⌉−1

≈ (
N−k
N

)
N
Mi +

k

M i
(
N−k
N

)
N−Mi

Mi =
(N−kN )

√
N (N−k+k

√
N)

N−k . (4.15)

As shown in Figure 4.3, whenN = 9 × 106, andM i =
√
N , the probability of no signal

overlap atY i[m] will be Pr(q[m] < 2) = 95 ∼ 100% for any k ≤ 1000 = M i/3, and

Pr(q[m] < 2) ≥ 99% for anyk ≤ 400.
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Figure 4.3: Simulated probability of no signal overlap at a frequencyf = m∆f + ς in the
sub-Nyquist rate spectrum~Y , compared to the theoretical result in (4.15). The
number of samples at the sub-Nyquist sampling rate isM i =

√
N = 3000, where

N = 9 × 106 denotes the number of samples at the Nyquist sampling rate.

Thus, under assumptions mentioned above, with the aid of (4.13), the following equation holds,

|−→Y i| = |Φi
−→
X i| ≃ Φ

i|−→X i|. (4.16)

Equation (4.16) holds true because whenY i[m] is the projection of a single signal, the follow-

ing equation holds,

|Y i[m]| =

∣∣∣∣∣
M i

N

∑

l

Xi[m+ lM i]

∣∣∣∣∣ =
M i

N

∣∣Xi[m+ lM i]
∣∣ = Φ

i
∣∣Xi[m+ lM i]

∣∣ . (4.17)

In the rare case where signal overlap occurs, i.e.0 ≤ |−→Y i| ≤ Φ
i|−→X i|, the spectral content of the

full spectrum can still be tracked with the aid of other sampling channels [33]. This is because

the blind spot of one ADC can be illuminated by other ADCs working at different sampling

rates.
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4.2.4 Recovery of the Full Spectrum via Multirate Sampling

This section will now introduce a method for reconstructingthe full spectrum through multirate

sampling. Since all ADCs are observing the same magnitude ofthe spectrum, i.e.
−→
X

△
= |−→X 1| =

|−→X 2| = · · · = |−→X v|, a concatenated equation relating
−→
X ∈ RN to

−→
Y ∈ RM can be formed as

below,

−→
Y

△
=




|−→Y 1|
|−→Y 2|

...

|−→Y v|




≃ Φ
−→
X =




Φ
1

Φ
2

...

Φ
v




−→
X (4.18)

whereΦ
1,Φ2, ...,Φv are disjoint submatrices ofΦ, Φi ∈ RM i×N is the measurement matrix

of ADC i, andM
△
=
∑v

i=1M
i. The time offset between ADCs is required to be sufficiently

small in the sense that the observed spectra are quasi-stationary. Thus, it will not influence the

magnitude of the non-aliased spectrum, i.e. (4.18) holds true for asynchronous ADCs.

When certain conditions are satisfied as Proposition 4.1 below, the mutual coherence of the

concatenated measurement matrixΦ will be determined by the number of samples in each

channel, and the number of channelsv.

Proposition 4.1:Whenv ADCs observe the spectral magnitude, i.e.
−→
X , in the same observation

time ofT , generatingv measurement vectors,|−→Y 1|, |−→Y 2|, · · · , |−→Y v|, whose length are different

primes,M1,M2, · · · ,Mv, which satisfy,

M lMz > N, ∀l, z ∈ [1, v], l 6= z, (4.19)

then the mutual coherenceµ of the measurement matrixΦ is determined by,

µ = max
j 6=h

| < φ̂j, φ̂h > | =
maxi∈[1,v](M

i)2∑v
l=1(M

l)2
. (4.20)

The proof of Proposition 4.1 is given in Appendix A.

From the discussion in Section 4.1, the full spectrum magnitude vector, i.e.
−→
X , can be recon-

structed when the mutual coherence of the measurement matrix is less than 1
2k−1 . Using (4.20),
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with manipulation, this condition can be written as,

v∑

l=1

(
M l

maxi∈[1,v]M i

)2

> 2k − 1. (4.21)

Equation (4.19) illustrates that the number of samples in each ADC is of the order of
√
N .

WhenM i ∼ O(
√
N), it shows in (4.21) that at least2k channels are required to recover

the non-aliased spectrum
−→
X . This is becausev ≥ ∑v

l=1

(
M l

maxi∈[1,v]M i

)2
holds true for all

v ∈ Z+. Considering both (4.19) and (4.21), it is found that MASS needs the total number of

observations to beM =
∑v

i=1M
i ∼ O(k

√
N).

4.2.5 Practical Implementation Issues

This section will analyse influence from several factors when using MASS in cognitive radio

networks, i.e. average sampling rate, number of sampling channels, noise level, and model

mismatching. As discussed in Section 4.2.4, in order to recover the full spectrum with high

probability, 2k sampling channels are required. For any number of sampling channels, the

probability of successful spectrum recovery is determinedby the average sampling rate.

Proposition 4.2:If a wideband signalx(t), whose full spectrum isk-sparse, is sampled at differ-

ent sampling rates, and the length of observations are different prime numbers,M1,M2, ...,Mv

which satisfy,

M lMz > N, ∀l, z ∈ [1, v], l 6= z, (4.22)
∑v

l=1 (M l)2∑v
l=1M

l
>

2k − 1

ǫ
, ∀v ∈ [2,∞), (4.23)

recovery algorithms such as BP, and OMP, have a probability of at least (1 − ǫ) of successfully

reconstructing the full spectrum magnitude vector
−→
X .

The proof of Proposition 4.2 is given in Appendix B.

In Proposition 4.2, it is found that the probability of successful spectrum recovery, i.e.1 − ǫ,

increases when the average sampling rate grows. Adding moresampling channels with a higher

sampling rate will lead to a larger probability of successful spectrum recovery as the term
Pv
l=1 (M l)2

Pv
l=1M

l increases. This is becausea
2

a ≤ a2+b2

a+b when0 < a ≤ b.
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When noise is present, similarly to (4.18), a concatenated equation can be formed as,

−→
Y =




|−→Y 1|
|−→Y 2|

...

|−→Y v|




≃ Φ
−→
X + ~z =




Φ
1

Φ
2

...

Φ
v




−→
X + ~z. (4.24)

The performance of spectrum recovery is related to the noiselevel and the model mismatching

as follows:

Proposition 4.3: In the case of‖~z‖2 ≤ ρ, using LPBP for recovering
−→
X from (4.24), the

recovered spectrum̃X satisfies,

‖X̃ −−→
X‖2 ≤ A√

k
‖−→X −−→

X opt‖1 +Bρ (4.25)

if the number of samples (M1,M2, ...Mv) in v channels satisfy:

1. M1,M2, ...Mv are different prime numbers,

2. M lMz > N, ∀l, z ∈ [1, v], l 6= z,

3.
∑v

l=1(
M l

maxi∈[1,v]M i )
2 > 2k−1√

2−1
,

where
−→
Xopt denotes the optimalk-sparse approximation of

−→
X .

The proof of Proposition 4.3 is given in Appendix C.

It should be emphasised that Proposition 4.3 not only considers the effect of noise, but also

shows the influence of model mismatching in the first expression. It illustrates that the perfor-

mance of MCSS is stable when model mismatching occurs. This is because the model mismatch

has a very small influence to the recovery error, i.e.‖X̃ − −→
X‖2, due to the small coefficient

A√
k
.

4.3 Extension to Distributed Wideband Spectrum Sensing

In wireless communication scenarios, some cognitive radiousers may suffer from fading either

due to multipath propagation, or due to shadowing. In that case, the result of spectrum sensing
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Figure 4.4: The schematic illustration of the distributed MASS system in cognitive radio net-
works. Each cognitive radio is only required to be equipped with one wideband
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be altered to have the same bandwidth ofW .

from a single cognitive radio node is not reliable. A cooperative detection strategy offers a

good solution as it minimises the effect of severe fading andachieves diversity gain [21]. If

every cognitive radio forwards its measured or processed data to the FC, which makes a final

decision based on the collected data, the cooperative scheme is often called data fusion based

distributed spectrum sensing. If each cognitive radio usesmultiple ADCs to perform sub-

Nyquist sampling, the transmission of the measurements maybe very expensive in distributed

cognitive radio networks.

To minimise the required transmission bandwidth, this section proposes to extend the appli-

cation of the MASS system from the case of parallel ADCs in onecognitive radio node to

single ADCs in multiple cognitive radio nodes as shown in Figure 4.4. It is assumed that cogni-

tive radios are situated in different locations. Each cognitive radio performs spectrum sensing

(without decision) independently. The radios are sufficiently far apart that the spectrum sensing

data can be assumed to be i.i.d. The FC then gathers these spectrum sensing data for making

decision. The implementation of the distributed MASS system in cognitive radio networks is

illustrated in Figure 4.5. Note that, as in the analysis of Section 4.4, the time offset between

ADCs will not change the magnitude of the full spectrum, thusasynchronous ADCs have the

same performance as synchronous ADCs. The wideband filters prior to the ADCs are assumed

to have the same bandwidth ofW . After measurements in each cognitive radios, the mag-

nitude of the sub-Nyquist rate spectra are transmitted to the FC, where the full spectrum is
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Figure 4.5: Implementation of the distributed MASS system in cognitiveradio networks. Each
ADC senses the wideband spectrum at different sub-Nyquist sampling rate, and
then sends the spectrum sensing data through a control channel to a fusion centre,
where the full spectrum is reconstructed.

reconstructed.

The advantage of the distributed MASS system is that only onelow-rate ADC is required in

each cognitive radio node, which not only simplifies the system structure at each cognitive radio

node, but also decreases the bandwidth required for sharingspectrum sensing data. Section

4.2.4 shows that the total number of observations to be transmitted is of the order ofk
√
N . Even

though this is more than conventional CS, i.e.M ∼ O(klog(N)), MASS is more amenable

to implementation in a distributed cognitive radio networkas neither a compression device

nor a measurement matrix generator are required. Moreover,as the measurement matrix used

in MASS is deterministic, then the transmission and storageof the measurement matrix is

unnecessary. Another important advantage of the distributed system is the diversity gain. As

cognitive radios are assumed to be in different locations, some cognitive radios may identify

bands which are deeply faded (due to the shadowing effect) ata particular cognitive radio.

Nevertheless, the disadvantage is that (4.18) no longer holds because of the influence of fading.

Thus, conventional CS algorithms, such as BP and OMP, cannotbe applied. In fading channels,

the power of the signals coming from PUs are attenuated. Namely, the received signals at
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distributed cognitive radio nodes, i.e.r1(t), r2(t), · · · rv(t), may be different, and the spectra

viewed by distributed cognitive radios therefore are oftendistinct. As illustrated in Figure 4.6,

the spectra over the distributed cognitive radio nodes can be modelled by the second joint

sparsity model (JSM-2) in [89]. Specifically, the spectra over cognitive radios have a common

spectral support,Ω (the set of frequencies occupied), but with different amplitudes.

In order to exploit the joint sparse property over sensor nodes, DCS-SOMP was proposed

in [89]. It has been observed that this algorithm requires fewer measurements when compared

with a separate recovery approach. However, the drawback ofDCS-SOMP is its calculation

time as it only selects the maximum support in each iteration. Unlike the conventional greedy

algorithms, CoSaMP [93] accelerates the calculation by identifying many possible solutions in

each iteration. Hence, a hybrid matching pursuit algorithmis applied to the MASS system as

shown in Table 4.1, by synthesizing DCS-SOMP and CoSaMP. In each iteration, the common

support is boosted by summing up the correlation vectors from multiple channels, which will

make the features easy to identify even if fading exists in some channels. Then multiple indices

are selected in each iteration by choosing the top-2k indices of the2k-largest values in the

combined correlation vector, and merged with the previously computed support. After that, the

full spectrum is recovered by least squares, whereΦ
†
Ω

denotes the pseudoinverse ofΦΩ. Since

the matrixΦΩ is always well conditioned, the calculation of the pseudoinverseΦ†
Ω

can be im-
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Input: measurement matrixΦ, spectral observation vector
−→
Y ,

sparsity levelk, and noise tolerance levelρ.
1. Initialise:

Residual~r0 =
−→
Y , approximation

−→
X 0 = 0, supportΩ0 = [ ], j = 0,

2. Whilehalting criterion is falsedo
1). Form residual correlation vector by,−→

R i = (Φi)T~r ij for i ∈ [1, v],
b). Find spectral supportΞj by boosting

Ξj = Supp2k(
v∑
i=1

−→
R i),

c). Merge support with previously computed support by
Ωj = Ωj−1

⋃
Ξj,

d). Approximate the non-aliased spectrum by least squares−→
X j = ΦΩ

†−→Y for column index belong toΩj, other columns set to0,
e). Prune locations of support by

Θ = Suppk(
−→
X j),

f). Update individual residual using a part of
−→
Xj with supportΘ as

~r ij = |−→Y i| − Φ
i
−→
XjΘ for i ∈ [1, v],

g). j = j + 1.
3. Halting criterion: ‖~r i‖2 ≤ ρ

Output: A k-sparse approximation of the non-aliased spectrum,X̃ =
−→
XjΘ.

Table 4.1: Hybrid matching pursuit algorithm for distributed MASS system

plemented quickly using an iterative method, such as the conjugate gradient method [94]. The

support is pruned to havek-largest values, followed by updating the residuals. The algorithm

will be halted when theℓ2 norm of the residual is not larger than the noise tolerance level ρ.

4.4 Simulation Results

In the experiments, it is assumed that each cognitive radio is equipped with a single low-rate

ADC, and there arev cognitive radio nodes allocated in the same cluster. In thei-th cognitive

radio node, the wideband signalxi(t), which is defined below, is sampled by a low-rate ADC

over an observation time,T .

xi(t) =

Nb∑

l=1

√
EilBl · sinc(Bl(t− ∆l)) · cos(2πfl(t− ∆l)), (4.26)

where∆l denotes the time offset of the signal, set to beT/2, andEil denotes the energy of the

l-th subband viewed by thei-th cognitive radio. Since the effect of fading,Eil varies subject to
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the property of the fading channel. The wideband signalxi(t) consists ofNb subbands, whose

bandwidth isBl, and carrier frequency isfl. The values of simulation parameters are specified

in Table 4.2. As described in Fig. 4.4, after FFT analysis in each node, the sub-Nyquist rate

spectral observations|−→Y 1|, |−→Y 2|, ..., |−→Y v|, are gathered at the FC. In the FC, the full spectrum

is reconstructed using HMP. The spectral occupancy status is decided based on a hypothesis

test on the reconstructed spectrum. The compression ratio is defined as
Pv
i=1M

i

N .

Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10

Observation 0.4µs 2 µs 2 µs 2 µs
timeT

Wideband 5 GHz 20 GHz 20 GHz 20 GHz
bandwidthW

Length of Nyquist 4,000 80,000 80,000 80,000
samplesN

No. of 5 10, 30, 50 30, 50 30
subbandsNb

Bandwidth 0.3 ∼ 30 0.1 ∼ 5 0.1 ∼ 5 0.1 ∼ 5
of subband (MHz)

No. of 10 1∼150 1∼150 1∼150
ADCsv

Sampling rates 182.5∼ 282.5 189.5∼711.5 189.5∼711.5 189.5∼590.5
of ADCs (MHz)

Compression 23.85% 0.47∼163.45% 0.47∼163.45% 0.47∼163.45%
ratio

Table 4.2: List of simulation parameters setup for Figure 4.7, Figure 4.8, Figure 4.9, and Fig-
ure 4.10.

Figure 4.7 demonstrates the performance of spectrum recovery in the MASS system using

HMP. It shows that by usingv = 10 ADCs, the full spectrum, which consists of5 subbands

with bandwidth0.3 ∼ 30 MHz, can be successfully reconstructed. It should be emphasised that,

instead of working at or above10 GHz, these ADCs are working at sampling rate of182.5 ∼
282.5 MHz (ADCs with different sampling rates), and the total number of measurements is

23.85%N (N is the number of samples ifxi(t) is sampled at Nyquist rate in one cognitive radio

node). Obiviously, the sampling rate for characterising the wideband spectrum in the MASS

system is much lower than the case of single node Nyquist sampling. Besides, in comparison to

the filter bank method, which requires at leastN measurements for wideband spectrum sensing,
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Figure 4.7: Comparison of the non-aliased DFT spectrum with the recovered spectrum, when
the wideband signal has5 subbands with bandwidth0.3 ∼ 30 MHz, and SNR= 15
dB. There arev = 10 ADCs, which experience non-fading AWGN channels. The
total number of measurements is23.85%N , rather thanN when sampled at the
Nyquist rate.

the proposed MASS system needs fewer measurements. Thus, ifthe spectrum sensing data is

shared in distributed cognitive radio networks, MASS consumes less transmission power.

Figure 4.8 depicts the influence of the number of subbands andthe compression ratio on the

detection performance of MASS. It illustrates that the fewer subbands there are, the better

the detection performance one can achieve. If a cognitive radio system has constraint on the

probability of false alarm, e.g.,Pf ≤ 10%, the minimum number of measurements are0.1N ,

0.3N , and0.55N for Nb = 10, Nb = 30, andNb = 50, respectively. On the other hand, the

probability of detection is more important, it is found thatto obtainPd ≥ 90%, at least0.2N

measurements are required to sense the wideband spectrum with up to50 subbands. In addition,

one can notice that a higher compression ratio, propotionalto the number of measurements, will

result in a smaller probability of false alarm and a larger probability of detection.

Figure 4.9 shows the effect of imperfect synchronisation between ADCs. Compared with a

reference clock, the asynchronous ADCs have time offsets inrange of0 ∼ 0.8 µs, while the

total observation time is2 µs. It is evident that the detection performance of the asynchronous

ADCs is roughly the same as that of the synchronous ADCs. Fig.4.9 also illustrates that with
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more ADCs in collaboration, a better spectrum sensing performance can be achieved. This is

because with more sampling channels, a higher probability of successful spectrum recovery can

be obtained as discussed in Section 4.2.5.

In order to quantify the detection performance of the proposed system over fast/slow fading

channels, Figure 4.10 compares their detection performance with that over AWGN channels.

It shows that, compared with AWGN case, more cognitive radios need to collaborate in order

to combat the effect of fading. Specifically, to obtainPf = 10%, 40 cognitive radios are

required to collaborate over AWGN channels,50 cognitive radios are required for Rayleigh

fading channels, and60 cognitive radios are necessary for slow fading channels. Note that60

ADCs in MASS can be translated to a compression ratio of42.32%, which means that only

0.4232N measurements are needed to transmit to the FC through the control channel, rather

than at least2N (two users in collaboration) for a conventional collaborative spectrum sensing

cognitive radio network.
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4.5 Discussion

This section describes the connections between MASS and other undersampling approaches,

which could be used for wideband spectrum sensing in distributed cognitive radio networks.

4.5.1 Relationship with Multirate Sampling

The sampling pattern of MASS can be implemented by both SMRS and MRS, by controlling

the number of samples being different primes in each channelover an observation timeT .

However, it is difficult to meet the sufficient conditions forthe MRS either in a single cognitive

radio node or distributed cognitive radio nodes, because ofits stringent requirements on electro-

optical hardware and synchronisation.
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Figure 4.10: Performance of MASS over AWGN, Rayleigh, and slow fading channels, with the
number of sub-bandsNb = 30. In this experiment, the average SNR is15 dB,
and the standard deviation of log-normal fading is5 dB.

4.5.2 Connection with Multicoset Sampling

Some of the undersampling techniques are related to multicoset sampling [31]. In a multicoset

scheme,v out of L (v ≤ L) cosets of samples are chosen to reconstruct the signal. It can

be implemented by using multiple sampling channels, which are offset by an integral multiple

of a constant time. In order to reconstruct the signal with a high success rate, the number of

sampling channels must be sufficiently high [32]. Note that even though the sampling pattern

of MASS can also be implemented using a multicoset scheme, itis impractical to implement

it this way in a distributed cognitive radio network as the synchronisation requirements will be

extremely high.

4.5.3 Comparison with CS-based Models

Most CS based approaches, for example, [29, 35, 69], requirePseudo-random sequence gener-

ator as the measurement matrix generator. In order to use CS based approaches for wideband
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spectrum sensing in a distributed cognitive radio network,the storage and transmission of the

measurement matrix must be addressed. To exploit space diversity, each cognitive radio node

should have a separate compression device, transmit both compressed data and their measure-

ment matrix to the FC. This not only increases the implementation complexity of cognitive

radio nodes, but also burdens the control channel. In contrast, when using MASS for wideband

spectrum sensing, the measurement matrix is deterministic, thus the problem of storage and

transmission of the measurement matrix is solved. Moreover, no separate device is required to

generate the measurement matrix.

4.6 Conclusions

This chapter has presented a distributed wideband spectrumsensing model, MASS, which em-

ploys several low-rate ADCs to sample the wideband signal atdifferent sub-Nyquist rates. The

MASS system could be applied either in the scenario of multiple ADCs in one sensor or in

the case of single ADCs in multiple sensors. The sufficient conditions have been derived to

uniquely recover the full spectrum by the multirate asynchronous sub-Nyquist sampling. When

the spectra of the cognitive radio nodes are jointly sparse in the distributed cognitive radio net-

work, the HMP algorithm has been applied to recover the common Nyquist spectrum by the

boost-and-recover strategy. If MASS is used in a distributed manner, it has very low imple-

mentation complexity in each cognitive radio node. Moreover, MASS is energy-efficient as it

requires less transmission bandwidth than conventional collaborative spectrum sensing.

Simulation results have shown that MASS can recover the wideband Nyquist spectrum suc-

cessfully. Besides, MASS has been shown to have a very robustproperty against the lack

of synchronisation between ADCs or cognitive radios. When using the HMP algorithm, the

MASS system is applicable to the distributed cognitive radio network. It has been shown that

only a few more cognitive radios are needed to collaborate tocombat the effect of fading.
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Chapter 5
Distributed Wideband Spectrum

Detection

In previous chapter, the spectral occupancy status can be obtained by a binary hypothesis test

on the reconstructed full spectrum. However, the purpose ofwideband spectrum sensing is to

detect the presence or absence of the PUs, therefore, the task of wideband spectrum sensing

does not necessarily require a full reconstruction of the spectrum, but only requires the estima-

tion of relevant test statistics. It is possible to directlyextract these test statistics from a small

number of projections without ever reconstructing the fullspectrum. This chapter proposes a

novel model for directly detecting the PUs from a small number of measurements without re-

constructing the wideband spectrum, called wideband spectrum detection, with the following

contributions:

• A multirate spectrum detection (MSD) system is introduced to detect the PUs from a

small number of measurements without reconstructing the full spectrum. This system

has a low implementation complexity, and a low transmissioncost for sharing spectrum

sensing data.

• A data fusion strategy is developed to achieve a better detection performance. Com-

pared with MASS, MSD has a low computational complexity at the FC because the full

spectrum is not reconstructed.

• The detection performance of the proposed MSD system is analysed in the presence of

AWGN, Rayleigh, and slow fading channels.

This chapter is organized as follows. A standard spectrum estimation method for wideband

spectrum sensing is introduced in Section 5.1. In Section 5.2, MSD is proposed for wideband

spectrum detection. The effect of sub-Nyquist sampling in asingle cognitive radio node is

considered, followed by the data fusion rule for multiple cognitive radio nodes. In Section

5.3, the detection performance of the MSD system over fadingchannels is analysed, and some
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Figure 5.1: Schematic illustration of wideband spectrum estimation and detection. The Welch’s
method is employed for calculating the PSD.

theoretical bounds on the detection performance of the proposed system are derived. Simulation

results are presented in Section 5.4, with conclusions given in Section 5.5.

5.1 Preliminary

Spectrum sensing refers to performing measurements on the RF spectrum and forming deci-

sions related to spectrum usage based upon the measured data. Three steps are involved in

forming a standard wideband spectrum estimation and detection as shown in Figure 5.1. They

are 1) sample the received signal at or above the Nyquist rateover a time window ofTall with

NT samples, 2) compute PSD, and 3) compare it with a predetermined threshold,λ, to decide

whether the corresponding frequency is occupied or not. After sampling, the received sequence

at cognitive radio nodei, xi[n] (n = 0, 1, · · · ,NT − 1), can be modelled by a hypothesis test

with H0 (signal not present) orH1 (signal present),

xi[n] =





z[n], H0

hi s[n] + z[n], H1

(5.1)

wherehi stands for the complex channel gain between the PU and the cognitive radio nodei,

s[n] denotes transmit signal from the PU, andz[n] is AWGN. For simplicity, the noise variance

in each cognitive radio node is assumed to be the same, i.e.z[n] ∼ N (0, δ2), whereN (0, δ2)

denotes a normal distribution with zero mean and variance ofδ2.

Using Welch’s method [95], the received sequence is dividedinto J overlapping segments. The
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j-th data segment,xij [n], can be represented as,

xij[n] = wT [n]xi[n+ jR], n ∈ [0,N), j ∈ [0, J), (5.2)

wherewT [n] denotes the window,J is the number of segments,N is the number of samples

when sampled at the Nyquist rate, andR ≤ N is the window hop size. Without loss of gen-

erality, letR = N , thusNT = JN . According to (5.1), the non-aliased DFT spectrum (full

spectrum) in thej-th window,Xi
j [n], follows a complex normal distribution given by,

Xi
j [n] ∼





CN (0, δ2n), H0

CN (si, δ2n), H1,
(5.3)

wheresi denotes the received spectral component from the PU at the cognitive radio nodei,

δ2n is the noise variance in the non-aliased DFT spectrum, andCN (si, δ2n) denotes a complex

normal distribution with mean ofsi and variance ofδ2n. WhenwT [n] is a rectangular window,

the noise variance in the full spectrum can be linked to the noise varianceδ2 in (5.1) byδ2n =

N
2 δ

2, because the DFT operation is a linear operation. On the other hand, when different

window function is used, the noise variance,δ2n, will be different. The output noise variance

can be determined by both input noise variance and equivalent noise bandwidth of the window

function [96,97].

The scaled PSD observed by the cognitive radioi, i.e.Si[n], is calculated by,

Si[n] =

J∑

j=1

|Xi
j [n]|2, n ∈ [0,N). (5.4)

By (5.3) and (5.4), the distribution of the PSD can be modelled by central and non-central

chi-square distributed random variables as,

Si[n] ∼





χ2
2J , H0

χ2
2J(2Jγ

i), H1.
(5.5)

whereγi denotes the SNR at thei-th cognitive radio node.

If the PSD,Si[n], is compared with a predetermined threshold,λ, to decide whether the PU

is present or not, the probabilities of false alarm and detection can be obtained by using (5.5)
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Figure 5.2: Schematic illustration of the multirate spectrum detection system in a distributed
cognitive radio network. Wideband filters prior to ADCs are altered to have the
same bandwidth ofW , and the wideband signal is sampled at different sub-Nyquist
rates in different cognitive radio nodes.

as [52],

Pf = Pr(Si > λ|H0) =
Γ(J, λ

2δ2n
)

Γ(J)
, (5.6)

Pd = Pr(Si > λ|H1) = QJ

(
√

2Jγi,

√
λ

δ2n

)
. (5.7)

where Γ(a) is the gamma function,Γ(a, x) is the upper incomplete gamma function, and

QJ(a, x) denotes the generalised Marum Q-function.

5.2 Multirate Spectrum Detection

In practice, it is difficult to realize the standard spectrumestimation for wideband spectrum

detection, because it requires a high speed ADC for acquiring the sequencexi[n]. In order to

implement distributed wideband spectrum sensing efficiently, a MSD system will be presented.

The system is described in Section 5.2.1, and the effect of sub-Nyquist sampling is considered

in Section 5.2.2, followed by the study of the data fusion rule in Section 5.2.3.

5.2.1 System Model

The MSD has a similar structure to the standard wideband spectrum estimation, however,

Nyquist sampling is replaced by multirate sub-Nyquist sampling in parallel channels. Be-

fore the system description, there are several assumptionsas follows. Since wideband sig-
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nals are often sparse in the frequency domain [27], it is assumed that the full spectrum vector,
−→
X i
j ∈ CN , is k-sparse (k ≪ N ). Namely, only the largestk out ofN components in

−→
X i
j are

non-neglectable. In addition, as the spectra viewed by distributed cognitive radios are often

correlated when they are allocated in the same cluster, it isassumed that the spectra at dis-

tributed cognitive radios have a common spectral support (aset of active carrier locations in

the frequency domain that is occupied by PUs) as illustratedin Figure. 4.6. Without loss of

generality, letΩ represent the spectral support given by,

Ω = {n1, n2, · · · , nk} ⊂ {0, 1, · · · ,N − 1}. (5.8)

In the MSD system, as shown in Figure 5.2, each cognitive radio is equipped with one wideband

filter, one low-rate ADC, and an FFT for estimating the PSD. There arev distributed cognitive

radio nodes that collaborate for wideband spectrum sensing. The wideband filters prior to the

ADCs remove frequencies outside the spectrum of interest, and are altered to have the same

bandwidth,W . Then the wideband signal viewed by thei-th cognitive radio, i.e.xi(t), is

sampled by a single ADC with a different sub-Nyquist rate ofM i/T (M i < N ). Over an

observation time ofTall = JT , the cognitive radio nodei will obtainNi-point samples, where

Ni = JM i. The aliased PSD in thei-th cognitive radio, i.e.Sia[m], is calculated by,

Sia[m] =

J∑

j=1

∣∣Y i
j [m]

∣∣2 , m ∈ [0,M i), (5.9)

whereY i
j [m] denotes the sub-Nyquist DFT spectrum of thej-th segment in the cognitive radio

nodei.

After that, the aliased PSD in each cognitive radio is transmitted to the FC, which forms the

MSD PSD, i.e.̃S[n], by,

S̃[n] =

v∑

i=1

N

M i
Sia[m+lM i], n ∈ [0,N),m ∈ [0,M i), (5.10)

wherel is an integer andl ∈ [0,N/M i − 1]. The MSD PSD,̃S[n], will serve as a final test

statistic, and will then be compared with a predetermined threshold,λ, to decide whether the

PU is present or not.
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5.2.2 Effect of Sub-Nyquist Sampling in A Single Cognitive Radio

Sub-Nyquist sampling will cause different spectral components to become indistinguishable,

and change the distribution of the PSD. In the following, thechange of spectral support will

be considered, and the distribution of the MSD PSD will be modelled. From the discussion in

Section 4.2, the relationship between the sub-Nyquist rateDFT spectrum and the full spectrum

can be represented by,

Y i
j [m] =

M i

N

∞∑

l=−∞
Xi
j [m+ lM i], (5.11)

whereY i
j [m] andXi

j [n] denote the sub-Nyquist rate DFT spectrum and the full spectrum of the

j-th segment in the cognitive radio nodei, respectively. In matrix form this becomes,

−→
Y i
j = Φ

i
−→
X i
j , (5.12)

where
−→
Y i
j and

−→
X i
j denote the sub-Nyquist DFT spectrum vector and the full spectrum vector

for thej-th segment in the cognitive radio nodei, respectively, andΦi is determined by (4.14).

Let Ω′
i represent the set of frequency bins in

−→
Y i
j that corresponds to PUs,

Ω′
i = {m1,m2, · · · ,mk} ⊂ {0, 1, · · · ,M i − 1}. (5.13)

According to (5.11),Ω′
i andΩ can be related by,

mj = |nj| mod (M i) , nj ∈ Ω,mj ∈ Ω′
i, j ∈ [1, k], (5.14)

where the subscript ofm is named following the subscript ofn. Evidently, whennj > M i, the

exact location ofnj is lost in
−→
Y i
j.

Another risk caused by sub-Nyquist sampling is the signal overlap inY i
j [m]. It has been shown

in Section 4.2.5 that whenM i∼O(
√
N) andk ≪ N , the probability of signal overlap is very

small. When only a single signal appears in the frequency binm, the following equation holds

from (5.11),

Y i
j [m] =

M i

N
Xi
j [m+ lM i], (5.15)

wherel is a particular integer that belongs to[0,N/M i − 1] but is unknown.

In such a scenario, with the aid of (5.3) and (5.15), the scaled sub-Nyquist rate DFT spectrum
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can be approximately modelled by,

√
N

M i
Y i
j [m] ∼





CN (0, δ2s ), m /∈ Ω′
i

CN (
√

M i

N si, δ2s ), m ∈ Ω′
i

(5.16)

whereδ2s denotes the noise variance in the scaled sub-Nyquist rate DFT spectrum, andδ2s can

be approximately determined by using (5.3) and (5.11) as,

δ2s =

⌈
N

M i

⌉(√
M i

N

)2

δ2n ≈ δ2n, (5.17)

where⌈ N
M i ⌉ is the number of summations in (5.11).

Finally, according to (5.9) and (5.16), the scaled PSD in thecognitive radio nodei can be

modelled by,

N

M i
Sia[m]∼





χ2
2J , m /∈ Ω′

i,

χ2
2J

(
2JM

i

N γi[m]
)
, m ∈ Ω′

i.
(5.18)

5.2.3 Data Fusion Strategy among Multiple Cognitive Radios

The aliased PSD in distributed cognitive radio nodes will then be transmitted to and gathered at

the FC, where the MSD PSD,S̃[n], is calculated by using (5.10). Due to the periodic extension

of
−→
S i
a (

−→
S i
a ∈ RM

i
) in (5.10), there will be more spectral components in the extended PSD than

that in the original PSD,
−→
S i (

−→
S i ∈ RN ). For analysis convenience, letΩi

M represent the set of

mirrored frequencies inΩi
M , andΩi

U represent the set of unaffected and unoccupied frequencies

as,

Ωi
M

△

= {n|n=m+lM i, m∈ Ω′
i, n /∈ Ω}, (5.19)

Ωi
U

△

= {n|n=m+lM i, m /∈ Ω′
i, n /∈ Ω}. (5.20)

Using (5.10) and (5.18), the MSD PSD,S̃[n], can be described by,

S̃[n] ∼





χ2
2Jv, n ∈ ΩU

χ2
2Jv


2J

N

j=p∑
j=1
ij∈[1,v]

M ijγij [n]


 , n ∈ ΩM

χ2
2Jv

(
2J
N

i=v∑
i=1

M iγi[n]

)
, n ∈ Ω,

(5.21)
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whereΩU = Ω1
U∩Ω2

U · · ·∩Ωv
U, ΩM = Ω1

M∪Ω2
M · · ·∪Ωv

M , andp denotes the number of cognitive

radios, which have mirrored frequencies in the location ofn ∈ ΩM . Note thatp could approach

v, in which case, it is difficult to distinguish betweeñS[n](n ∈ ΩM) andS̃[n](n ∈ Ω). The

aim of designing a data fusion strategy is to keepp to a minimum to achieve a best detection

performance. First consider the case ofk = 1, namely, only one locationn1 ∈ Ω in the full

spectrum is occupied by PUs, then Proposition 5.1 will hold.

Proposition 5.1: If the length of segments in multiple cognitive radios,M1,M2, ...,Mv , are

different prime numbers, and satisfy,

M iM j > N, ∀ i 6= j ∈ [1, v], (5.22)

then two or more cognitive radios cannot have mirrored frequencies in the same location of

g ∈ ΩM .

Proof: Without loss of generality, the length of segment at the cognitive radio nodei andj are

assumed to beM i andM j, respectively. According to (5.14) and (5.19), the mirrored locations

from then1 ∈ Ω are given by,

gi=|n1|mod (M i)+lM
i = n1−hM i+lM i, h 6= l,

gj=|n1|mod (Mj)+ ľM
j=n1−ȟM j+ ľM j , ȟ 6= ľ, (5.23)

where integersh andȟ are from the operation of modulo, andl− h ∈ [−⌈ N
M i ⌉+ 1, ⌈ N

M i ⌉− 1],

ľ − ȟ ∈ [−⌈ N
Mj ⌉ + 1, ⌈ N

Mj ⌉ − 1].

To avoidgi = gj , which is equivalent to avoiding(l− h)M i = (ľ− ȟ)M j , simply assume that

M i andM j are different primes, andmax(|l−h|) < M j, i.e. ⌈ N
M i ⌉− 1 < M j . The condition

M iM j > N will satisfy this. Furthermore, if this holds for two cognitive radios, the case for

more than two cognitive radios also holds.�

Whenk = 1 and the conditions in Proposition 5.1 are satisfied, based onthe result of Propo-

sition 5.1, the parameterp in (5.21) is found to be bounded by1. On the other hand, when

k ≥ 2, the parameterp in (5.21) will be bounded byk. This is because only one cognitive radio

node can map the frequencynj ∈ Ω to the mirrored frequencyg ∈ ΩM , and the number of

components inΩ is k.

GivenM iM j = b > N (b is constant),M i + M j can be minimised when they are neigh-
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bouring primes. Hence, to use the fewest measurements in MSD, the length of segments in

multiple cognitive radios,M1,M2, ...,Mv , should bev neighbouring prime numbers. In such

a scenario, the following approximations can be made,

2J
∑v

i=1M
iγi

N
≃ 2JM

N

v∑

i=1

γi = ψγv, (5.24)

2J
∑j=k

j=1
ij∈[1,v]

M ijγij

N
≃ 2JM

N

j=k∑

j=1
ij∈[1,v]

γij = ψγk, (5.25)

whereM denotes the average number of measurements over multiple cognitive radio nodes,

γv
△
=
∑v

i=1 γ
i, γk

△
=
∑j=k

j=1
ij∈[1,v]

γij , andψ = 2JM
N .

5.3 Performance Analysis

The MSD PSD,̃S[n], will be compared with a predetermined threshold to determine whether

the PU is absent or not. As described in (5.21), the noncentral parameters in the noncentral chi-

square distributions contain the SNRs, thus both the probability of detection and the probability

of false alarm in MSD will be influenced by the quality of the channels from PUs to cognitive

radios.

5.3.1 Nonfading AWGN Channels

When the channels between PUs and cognitive radios can be modelled by nonfading AWGN

models, the detection performance of MSD is given as follow.

Theorem 5.1:When all conditions in Proposition 5.1 are satisfied, the probabilities of false

alarm and detection have bounds given by,

Γ(Jv, λ
2δ2s

)

Γ(Jv)
≤ Pf ≤ QJv

(
√
ψγk,

√
λ

δ2s

)
, (5.26)

Pd ≥ QJv

(
√
ψγv,

√
λ

δ2s

)
. (5.27)
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Proof: Due to the mirrored spectral components, the following inequality can be obtained,

Pr(S̃[n] > λ|n ∈ ΩU) ≤ Pr(S̃[n] > λ|n ∈ ΩM). (5.28)

If let U
△

= {0, 1, · · · , N − 1} denote universal set for all frequency bins,Ω
△

= U−Ω represent

relative complement ofΩ in U , thenΩU
⋃

ΩM = Ω. Thus, by (5.28), the following inequality

holds,

Pr(S̃[n] > λ|n ∈ ΩU) ≤ Pr(S̃[n] > λ|n ∈ Ω) ≤ Pr(S̃[n] > λ|n ∈ ΩM). (5.29)

When conditions in Proposition 5.1 are satisfied,p will be bounded byk. With the aid of (5.21)

and (5.29), (5.26) can be obtained. In the cases where one spectral component maps to another

spectral component, the probability of detection will increase, and becomes larger than that

predicted in (5.21). Thus, (5.27) holds.�

Theorem 5.1 shows that the number of distributed cognitive radios,v, should be larger thank.

Additionally, more cognitive radios in collaboration willlead to a better detection performance,

because with more cognitive radios, it is easier to distinguish betweeñS[n](n ∈ ΩM) and

S̃[n](n ∈ Ω).

5.3.2 Rayleigh Fading Channels

When the signals from PUs experience i.i.d. Rayleigh fading, the PDF of the SNR at cognitive

radio nodei follows an exponential distribution,

f(γi) =
1

γ
e−

γi

γ , γi > 0, (5.30)

whereγ denotes the local-mean SNR andγi is the SNR at cognitive radio nodei.

Since cognitive radio nodes are distributed, the fading channels are assumed to be i.i.d.. The

PDFs ofγk =
∑j=k

j=1
ij∈[1,v]

γij in (5.25) andγv =
∑v

i=1 γ
i in (5.24) will therefore follow Gamma

distributions given by,

f(γk) =
(γk)

k−1

(γ)kΓ(k)
e−

γk
γ , γk ≥ 0, (5.31)

f(γv) =
(γv)

v−1

(γ)vΓ(v)
e−

γv
γ , γv ≥ 0. (5.32)
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In the MSD system, the average probabilities of false alarm and detection can be calculated by

averagingPf in (5.26) andPd in (5.27) over all possible SNRs.

Theorem 5.2:For the proposed MSD system over i.i.d. Rayleigh fading channels, the average

probabilities of false alarm (Pf,R) and detection (Pd,R) will be bounded by,

Γ(Jv, λ
2δ2s

)

Γ(Jv)
≤ Pf,R ≤ Θ(k, Jv, ψ, γ, λ, δ2s ), (5.33)

Pd,R ≥ Θ(v, Jv, ψ, γ, λ, δ2s ), (5.34)

whereΘ(x, Jv, ψ, γ, λ, δ2s ) is defined by,

Θ =

(
1 +

ψγ

2

)−x ∞∑

n=0

Cnn+x−1

(
ψγ

ψγ + 2

)n Γ
(
n+ Jv, λ

2δ2s

)

Γ (n+ Jv)
,

where Cba denotes binomial coefficient given by Cba = b!
a!(b−a)! .

Proof: In Rayleigh fading channels, the lower bound of the average probability of false alarm

will remain the same as that in (5.26) as it is independent of the SNR, and the upper bound of

the average probability of false alarm,Pf,R
up

, can be evaluated by,

Pf,R
up

=

∫ ∞

0
QJv

(
√
ψγk,

√
λ

δ2s

)
(γk)

k−1

(γ)kΓ(k)
e
− γk
γ dγk. (5.35)

Using (4.74) in [51] and (8.352-2) in [71], the upper bound ofPf in (5.26) can be rewritten as,

P up
f = QJv

(
√
ψγk,

√
λ

δ2s

)
=

∞∑

n=0

(
ψγk
2

)n
e−

ψγk
2

n!

Γ(n+Jv, λ
2δ2s

)

Γ(n+Jv)
. (5.36)

Substituting (5.36) into (5.35),Pf,R
up

can be written as,

Pf,R
up

=
1

(γ)k

∞∑

n=0

(
ψ
2

)n
Γ(n+Jv, λ

2δ2s
)

n!(k − 1)!Γ(n + Jv)

∫ ∞

0
(γk)

n+k−1e−
ψγk
2

− γk
γ dγk. (5.37)

Using (3.351-3) in [71] for calculating the integral, with manipulation,Pf,R
up

is obtained as,

Pf,R
up

=

(
1+

ψγ

2

)−k ∞∑

n=0

Cnn+k−1

(
ψγ

ψγ + 2

)n Γ
(
n+Jv, λ

2δ2s

)

Γ (n+Jv)
. (5.38)
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The lower bound of the average probability of detection can be approximated similarly.�

5.3.3 Slow Fading Channels

Over slow fading channels, the PDF of the SNR at thei-th cognitive radio node,f(γi), is given

by,

f(γi) =
ξ√

2πσiγi
exp


−

(
10 log10(γ

i) − ...
γ i
)2

2(σi)2


 , γi > 0, (5.39)

whereξ = 10/ ln(10),
...
γ i (dB) denotes the area-mean SNR, andσi (dB) denotes the shadowing

standard deviation of10 log10 γ
i at the cognitive radio nodei. Note that the PDF in (5.39) can

be closely approximated by a Wald distribution as [73],

f(γi) =

√
ηi

2π
(γi)−3/2 exp

(
−η

i(γi − θi)2

2(θi)2γi

)
, γi > 0, (5.40)

whereθi = E(γi) denotes the expectation ofγi, andηi is the shape parameter for the cognitive

radio nodei. By the method of moments, the parametersηi, θi and
...
γ i, σi are related as below,

θi = exp

( ...
γ i

ξ
+

(σi)2

2ξ2

)
,

ηi =
θi

exp( (σi)2

ξ2
) − 1

. (5.41)

Since the cognitive radio nodes are distributed and the observation time is small, all slow fading

channels are assumed to be quasi stationary and i.i.d.. The condition ηi

(θi)2
= E(γi)

Var(γi) = b

(constant) can be satisfied. Thus,γk andγv will also follow the Wald distribution [76]. The

PDFs ofγk andγv are given by,

f(γk) =

√
kη

2π
(γk)

−3/2 exp

(
−η(γk − kθ)2

2kθ2γk

)
, γk > 0, (5.42)

f(γv) =

√
vη

2π
(γv)

−3/2 exp

(
−η(γv − vθ)2

2vθ2γv

)
, γv > 0, (5.43)

whereη andθ denote the average ofηi andθi, respectively.

The average probabilities of false alarm and detection can be calculated by averagingPf in
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(5.26) andPd in (5.27) over the PDFs of the SNRs.

Theorem 5.3:For the MSD system over i.i.d. shadowing fading channels, the average proba-

bilities of false alarm (Pf,S) and detection (Pd,S) will be bounded by,

Γ(Jv, λ
2δ2s

)

Γ(Jv)
≤ Pf,S ≤ Λ(k, Jv, ψ, λ, θ, η, δ2s ), (5.44)

Pd,S ≥ Λ(v, Jv, ψ, λ, θ, η, δ2s ), (5.45)

whereΛ(x, Jv, ψ, λ, θ, η, δ2s ) is defined by,

Λ=

√
2xη

π
e
η
θ

∞∑

n=0

(
ψ
2

)n
Γ
(
n+Jv, λ

2δ2s

)

n!Γ (n+Jv)

(√
x2ηθ2

xψθ2 + η

)n− 1
2

Kn− 1
2

(√
η(xψθ2+η)

θ2

)
,

(5.46)

where Kn− 1
2
(a) denotes the modified Bessel function of the second kind with ordern− 1

2 .

Proof: In shadowing fading channels, the lower bound ofPf,S in (5.44) will not change. By

(5.42), the upper bound of the average probability of false alarm, i.e.Pf,S
up

, can be evaluated

by,

Pf,S
up

=

∫ ∞

0
QJv

(
√
ψγk,

√
λ

δ2s

)√
kη

2π
(γk)

−3/2 exp

(
−η(γk − kθ)2

2kθ2γk

)
dγk. (5.47)

Substituting (5.36) into (5.47),Pf,S
up

is calculated by,

Pf,S
up

=

√
kη

2π

∞∑

n=0

(
ψ
2

)n
Γ
(
n+Jv, λ

2δ2s

)

n!Γ (n+Jv)

∫ ∞

0
(γk)

n− 3
2 exp

(
−kψθ

2+η

2kθ2
γk−

kη

2γk
+
η

θ

)
dγk.

(5.48)

Using (3.471-9) in [71] for calculating the integral in (5.48), with manipulation,Pf,S
up

can be

obtained as,

Pf,S
up

=

√
2kη

π
e
η
θ

∞∑

n=0

(
ψ
2

)n
Γ
(
n+Jv, λ

2δ2s

)

n!Γ(n+Jv)

(√
k2ηθ2

kψθ2+η

)n− 1
2

Kn− 1
2

(√
η(kψθ2+η)

θ2

)
. (5.49)

Likewise, the lower bound of the average probability of detection can be approximated. Hence,

Theorem 5.3 follows.�
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5.4 Simulations

In the simulations, distributed cognitive radio nodes are assumed to have the setup as illustrated

in Figure 5.2. The wideband signalxi(t) viewed by thei-th cognitive radio is assumed to be,

xi(t)=
Nb∑
l=1

√
EilBl · sinc(Bl(t−∆)) · cos (2πfl(t−∆)) + z(t), (5.50)

where sinc(x) is defined by sinc(x) = sin(πx)
πx , ∆ denotes the time offset, set to beT/2, andEil

is the received power at cognitive radio nodei and varies subject to the fading channel. Without

any loss of generality, the average received power of all occupied subbands is normalized to be

1, and the noise is assumed to be AWGN, i.e.z(t) ∼ N (0, δ2 = 1). The wideband signalxi(t)

(10 GHz bandwidth) consists ofNb = 6 non-overlapping subbands, whose bandwidth varies

in the range ofBl = 1 ∼ 10 MHz, with the carrier frequency offl = Bl ∼ (W −Bl). The

wideband signal is observed in a total time of4 µs at different sub-Nyquist rates, and then the

measurement sequence is divided intoJ = 20 or J = 50 segments. As the sidelobe of Hanning

window decays rapidly, it is used for each data segments. Since the signal has the bandwidth

of W = 10 GHz, if it were sampled at the Nyquist rate, i.e.fs = 20 GHz, the length of each

segment would beN = 80, 000.

The aliased PSD,Sia[m], is individually estimated at a different sub-Nyquist ratein each cog-

nitive radio. The aliased PSD from all distributed cognitive radios is gathered at the FC, with

total number of measurements0.4967N (N denotes the number of samples when sampled at

the Nyquist rate). The MSD PSD is finally calculated by using (5.10), and is compared with

a predetermined threshold. The MSD PSD over i.i.d. Rayleighand slow fading channels are

illustrated in Figure 5.3 and Figure 5.4, respectively. It can be seen that the proposed system

cannot achieve the benchmark system performance (obtainedif Nyquist sampled). The ob-

served SNR in the MSD PSD is lower than that in the Nyquist case. However, it is worthwhile

to emphasize that these active frequencies can still be identified over various fading channels,

when the compression ratio is approximately50%. Furthermore, the average sampling rate

in MSD is only132.46 MHz, rather than 20 GHz in the Nyquist sampling case. Becausethe

spectrum sensing data transmitted from cognitive radios tothe FC is the PSD, MSD does not

require perfect time synchronisation between distributedcognitive radios. In comparison to CS

based detection methods, the transmission and storage of measurement matrix is unnecessary

in the MSD system.
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Figure 5.3: Comparison of the original PSD in (a) with the MSD PSD in (b) over i.i.d. Rayleigh
fading channels. In the experiment, the compression ratio isM/N = 49.67%, with
75 ADCs at the average sampling rate of132.46 MHz, and the SNR averaged over
fading channels is10 dB.

Figure 5.5 compares the simulation results with the theoretical results predicted in (5.26)-(5.27),

(5.33)-(5.34), and (5.44)-(5.45). These curves are obtained by using Monte Carlo method with

100,000 trials. It is evident that the empirical probabilities of false alarm in all figures are

close to the lower bounds, but far away from the upper bounds.This is due to the fact that

the assumption (allk components in the full spectrum have been mirrored to the same location

when the wideband signal is sub-Nyquist sampled) for deriving the upper bound has a very low

probability of occurring. Figure 5.5 also illustrates thatthe lower bound of the probability of

detection can successfully predict the trend of empirical results. Comparing the fading cases

with the non-fading case, it is found that in fading channelsthe probability of detection declines

more slowly than that in AWGN channels. This is more obvious for the case of cognitive radios

over slow fading channels as shown in Figure 5.5-(c). In contrast, the effect of fading has little

or no influence on the probability of false alarm. This is because the mirrored frequencies will

seldom apprear in the same location, and therefore validates the assumption in Section 5.2.2
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Figure 5.4: Comparison of the original PSD in (a) with the MSD PSD in (b) over i.i.d. slow
fading channels with the standard deviationσ = 5 dB. In the experiment, the
compression ratio isM/N = 49.67%, with 75 ADCs at the average sampling rate
of 132.46 MHz, and the SNR averaged over fading channels is10 dB.

that the probability of signal overlap is very small.

In Figure 5.6, the ROC curves, i.e.Pf vsPd, are used to to quantify the detection performance.

Figure 5.6 demonstrates the detection performance of the proposed MSD system when cogni-

tive radios are subject to non-fading AWGN, Rayleigh, and slow fading channels under low

SNR scenarios. When SNR= 0 dB, the performance of MSD over fading channels perform

roughly the same as that over non-fading AWGN channels. Thisis because the strength of

signal is mostly annihilated by the noise. By contrast, the detection performance of MSD over

AWGN channels outperform that over fading channels when SNR= 5 dB. In addition, it is

found that the performance of MSD over slow fading channels is the poorest, in comparison

to the case of MSD over AWGN, or Rayleigh fading channels. Nonetheless, even over slow

fading channels, MSD has a probability of nearly90% of detecting the presence of PUs when

the probability of false alarm is10%, by just using0.492N measurements. On the contrary,

wavelet detection and filter bank detection methods must useat leastN measurements. Another
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Figure 5.5: Comparisons of empirical results and theoretical results for the probabilities of de-
tection and false alarm over (a) AWGN, (b) Rayleigh, and (c) slow fading channels.
The theoretical bounds are predicted in equations (5.26)-(5.27), (5.33)-(5.34), and
(5.44)-(5.45).

advantage of MSD is that the average sampling rate in MSD is only 448.68 MHz, instead of20

GHz in wavelet detection method.

Figure 5.7 depicts the influence of the depth of shadowing when the MSD system is working

over i.i.d. slow fading channels. It can be found that the larger shadowing standard deviation

will lead to a worse detection performance for the MSD system. For example, when the average

probability of false alarm is10% and SNR= 5 dB, the average probability of detection drops

from 90% to 80% whenσ rises from5 dB to7 dB. This is because a largerσ is equivalent to a

longer tail in the log-normal distribution, thus making thedetection difficult. The performance

difference betweenσ = 5 dB andσ = 7 dB is small when the SNR decreases to0 dB, because

in that case the power level of the signals is similar to that of the noise.
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Figure 5.6: ROC curves of MSD over different kinds of fading channels when the compression
ratio M/N = 49.2% and the averaging timesJ = 50. The wideband signal is
observed by22 cognitive radios at different sampling rates (the average sampling
rate is448.68 MHz). The shadowing standard deviation is5 dB.

Figure 5.8 shows the influence of the compression ratio (proportional to the number of dis-

tributed cognitive radios in collaboration) on the detection performance of MSD over slow

fading channels, by using Complementary ROC curves, i.e.Pf vs 1 − Pd. It is obvious that

with increasing compression ratio, a better detection performance can be achieved. Considering

the probability of false alarmPf = 10%, the average probability of missed detection reduces

from 7% to 2% when the compression ratio increases from49.2% to 150%. The reason is that

adding more sampling channels (equivalent to more cognitive radios) makes it easier to distin-

guish the occupied frequencies from the mirrored frequencies as shown in (5.21). Thus, with

increasing spatial diversity, the effect of fading can be mitigated in the MSD system.

The assumption validating the MSD system is that the spectrum isk-sparse. To investigate the

influence ofk, the ROC curves of MSD over slow fading channels are shown in Figure 5.9

with different values ofk (proportional to the number of subbands). It shows that withthe

same SNR the detection performance degrades when the numberof subbands increases. For
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Figure 5.7: ROC curves of MSD over slow fading channels with the compression ratioM/N =
49.2% andJ = 50, when the shadowing standard deviation,σ, and the average
SNR alter. The wideband signal is sampled at different sampling rates by22 ADCs
with the average sampling rate of448.68 MHz.

example, for a fixed probability of false alarm, i.e.Pf = 10%, the probability of detection

drops from73% to 70% for SNR= 0 dB, and declines from95% to 91% for SNR= 5 dB when

the number of subbands increases from 6 to 12. The performance degradation of the MSD

system stems from two reasons. One of them is that whenk increases, the probability of signal

overlap becomes larger when the wideband signal is sub-Nyquist sampled. The signal overlap

may then lead to the missed detection of the PUs. The another reason is that, for a fixed number

of sampling channels (or a fixed number of cognitive radio nodes in collaboration), increasing

k makes it more difficult to distinguish the occupied frequencies from the mirrored frequencies

as described in Section 5.3.1.

Figure 5.10 reveals the influence of sampling duration (number of segments),J , on the MSD

system performance over slow fading channels. The ROC curves show that the performance of

MSD becomes better whenJ increases or the number of subbands decreases. This is because

averaging will reduce the noise variance in the PSD, thus makes the detection of the PUs easier.
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Figure 5.8: Complementary ROC curves of the proposed MSD system over slow fading chan-
nels with SNR= 5 dB, σ = 5 dB andJ = 50, when the compression ratio (M/N )
varies.

In practical environments, distributed spectrum sensing may face the problem of insufficient

collaborative nodes. On the other hand, distributed cognitive radio nodes may be limited by

the maximum sampling speed due to ADC technology or energy consumption considerations.

In such scenarios, the tradeoff between the number of cognitive radio nodes and the average

sampling rate across cognitive radio networks is critical.Figure 5.11 investigates the perfor-

mance tradeoff with the fixed compression ratio when the MSD system is working over slow

fading channels. It shows that the case of using less cognitive radios but with higher sampling

rate outperforms that of using more cognitive radios with lower sampling rate. For example,

when the probability of false alarm is10%, the probability of detection is92% for the case of

22 ADCs (with the average sampling rate448.68 MHz), rather than70% when using75 cogni-

tive radio nodes (with the average sampling rate132.46 MHz). This seems in contradictory to

(5.21) as the compression ratio doesn’t change, thus the noncentral parameter will not change.

However, it should be emphasized that a low sampling rate will lead to a larger probability of

signal overlap, in which case the average probability of detection will decrease.
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Figure 5.9: ROC curves of the proposed MSD system over slow fading channels with σ = 5
dB, M/N = 68.2%, andJ = 50, when the SNR and the number of subbands
change.

5.5 Conclusions

In this chapter, a multirate spectrum detection system, called MSD, has been presented for

implementing wideband spectrum detection in a distributedcognitive radio network. The de-

tection performance of MSD over AWGN, Rayleigh, or slow fading channels has been derived.

The MSD system has several attractive features of being usedfor wideband spectrum sensing

in distributed cognitive radio networks. Firstly, the implementation complexity of the MSD

system is low, thus each distributed cognitive radio only requires one low-rate ADC. To sense

a wideband spectrum with 10 GHz bandwidth, the average sampling rate of ADCs is 448.68

MHz, opposed to the Nyquist rate of 20 GHz. Secondly, the MSD system is energy-efficient

because only the sub-Nyquist PSD are processed and transmitted to the FC, which not only

saves processing energy, but also saves transmission energy. Moreover, compared with MASS,

or other CS based approaches, MSD can detect the full spectrum without reconstructing it.

Therefore, the proposed MSD system can reduce the network overhead as it has a lower com-
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Figure 5.10: ROC curves of the MSD system over slow fading channels with SNR= 5 dB,
σ = 5 dB, and the compression ratioM/N = 68.2%, when the averaging times,
J , and the number of subbands alter.

putational complexity in the FC.

Simulation results have shown that when the compression ratio is approximately50%, MSD can

achieve a good detection performance over slow fading channels. The detection performance

of MSD becomes better when the number of distributed cognitive radio nodes increases or the

number of PUs decreases. When there are limitations on the number of distributed cognitive

radio nodes, or the maximum sampling rate in each cognitive radio, a tradeoff can be made to

adapt the practical environment by changing the sampling rates.
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Figure 5.11: For fixed parameters: compression ratioM/N = 49.67%, SNR= 5 dB, and
J = 50, the tradeoff between the number of ADCs and the average sampling
rate, i.e. 75 ADCs with the average sampling rate132.46 MHz, 40 ADCs with
the average sampling rate247.45 MHz, and22 ADCs with the average sampling
rate448.68 MHz.
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Chapter 6
Conclusions and Future Work

This thesis has contributed to the performance evaluation of collaborative spectrum sensing

algorithms as well as the development of wideband spectrum sensing techniques in centralised

cognitive radio networks. In this concluding chapter, a summary of the key contributions from

different chapters will be given in Section 6.1. Some limitations of work are discussed in

Section 6.2. Several suggestions for future research areasare presented in Section 6.3.

6.1 Conclusions

Due to the low implementation complexity, energy detectionis commonly used for spectrum

sensing in a cognitive radio network. In fading environments, it is crucial for cognitive radios to

dynamically balance the probability of missed detection against the probability of false alarm.

As cognitive radios are always restricted by limited computational resources, fast converging

expressions for these probabilities are of advantage. In Chapter 3, easily computed expressions

for the average probabilities of detection and false alarm over a single Nakagami-m, or Rician

fading channel have been derived. Despite infinite sums being involved, simulation results have

shown that the proposed expressions converge more quickly than the methods in the literature.

In the case of log-normal fading, a computationally tractable expression for the average proba-

bility of detection has been given, by approximating the log-normal distribution with the Wald

distribution. It has been testified that the proposed expression closely fits the simulation results.

On the other hand, as collaborative spectrum sensing approaches are commonly used for com-

bating fading and improving detection performance, the performance of collaborative spectrum

sensing algorithms, i.e. MRC, SC, SLC, and SLS, has been analysed. Among these algorithms,

the MRC based collaborative spectrum sensing approach offers an upper bound of the detec-

tion performance, but at the expense of highest transmission bandwidth. When the bandwidth

of the control channel is limited, the SLC based collaborative spectrum sensing scheme is more

attractive as it not only saves50% transmission bandwidth, but also does not require CSI.
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In Chapter 4, a distributed wideband spectrum sensing system, called MASS, has been pre-

sented for implementing wideband spectrum sensing. It employs several low-rate ADCs to

sample the wideband signal at different sub-Nyquist rates,instead of a single high speed ADC.

One of the key advantages of the MASS is that the full widebandspectrum can be reconstructed

from a few measurements. Sufficient conditions have been derived to uniquely recover the full

spectrum by a multirate asynchronous sub-Nyquist sampling. Another advantage of MASS

is that it can be applied either in the scenario of multiple ADCs in one sensor or in the case

of single ADCs in multiple sensors. In the latter case, the implementation complexity of the

MASS is extremely low as only one low-rate ADC is required in each cognitive radio node.

The HMP algorithm has been applied to recover the common Nyquist spectrum by a boost-

and-recover strategy. Compared with other wideband spectrum sensing techniques, MASS

is energy-efficient as it requires less transmission bandwidth and fewer compression devices.

MASS has been proved to be very robust against model mismatches and time synchronisation

failures. The performance of MASS has been investigated andverified by simulation results.

It has been demonstrated that MASS can recover the wideband Nyquist spectrum successfully

when the compression ratio is approximately50%. For the purpose of combating the effect of

fading, only a few more cognitive radios are needed to collaborate in the MASS system.

In order to reduce the computational complexity in the FC, a multirate spectrum detection

model has been proposed that implements wideband spectrum detection in distributed cogni-

tive radio networks in Chapter 5. When the distributed cognitive radios suffer from AWGN,

Rayleigh fading, or log-normal fading channels, the detection performance of MSD has been

derived. The implementation complexity of the MSD system isas low as that of the MASS

system in the sense that each distributed cognitive radio still requires one low-rate ADC and

the sampling rate of that ADC is similar. The MSD system is also energy-efficient because

only the sub-Nyquist power spectra are processed and transmitted to the FC, which not only

saves processing energy, but also saves transmission energy. Compared with MASS, or other

CS based approaches, the main advantage of MSD is that it can detect the PUs without ever

reconstructing the full spectrum. Empirical results have shown that when the compression ratio

is approximately50%, MSD can achieve a good detection performance over i.i.d. Rayleigh

or log-normal fading channels. The detection performance of MSD becomes better when the

number of distributed cognitive radio nodes increases or the number of PUs decreases. More

importantly, MSD has been shown to be very flexible that the number of sampling channels and

the sampling rate can be balanced to adapt the practical environment.
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6.2 Limitation of Work

In Chapter 3, the assumption of using energy detection is that the noise variance can be ac-

curately estimated. However, in practice, this is difficult. The noise uncertainty will degrade

the system performance even if collaborative spectrum sensing strategies are adopted. Besides,

using energy detection, the signals from the PUs and interferences from other cognitive radios

cannot be clearly differentiated. To further exploit the spectral scarcity, feature-based spec-

trum sensing techniques can be employed for fine spectrum sensing, such as cyclostationary

detection. In both Chapter 4 and Chapter 5, the imperfect design of the wideband filters will

influence the probability of successful full spectrum reconstruction. For example, a narrower

bandwidth than the required one can make the frequencies in the sub-Nyquist spectrum con-

gested, therefore more risk of being overlapped. In such a scenario, the performance degrades

due to the missed detection of PUs.

6.3 Future Work

There are a number of research areas which have not been addressed in this thesis. Some of

them merit much more work at a future stage as listed below:

• In Chapter 3, comparisons have been made between MRC, SC, SLC, and SLS strategies

when the infrastructure of the cognitive radio network is centralised. For a comprehen-

sive study of the collaborative spectrum sensing algorithms, more collaborative protocols

should be involved for comparisons, e.g., decision fusion strategies, and equal gain com-

bining (EGC) [98,99] based collaborative spectrum sensingscheme.

• The performance of collaborative spectrum sensing algorithms over a composite fading

channel deserves investigations, e.g., composite multipath/shadowed fading. There are

various combinations suggested in the literature for obtaining the composite distribution,

e.g., Suzuki distribution [100,101], andK distribution [102,103].

• In Chapter 4, to further reduce the transmission and the infrastructure costs, a multi-

hop [60,61,104] implementation of MASS is attractive. In such a scenario, the spectrum

sensing data will be transmitted via different spectrum holes, instead of common control

channels. Thus, the spectra viewed by distributed cognitive radios are different at some
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frequencies. This spectral difference will make the spectrum reconstruction become dif-

ficult. New spectrum reconstruction algorithms can be developed to address these issues.

• In Chapter 5, MSD can be implemented in a decision fusion manner that each cognitive

radio decides the spectral occupancy status based on individual observations, and then

transmits their decisions to the FC. This strategy will not only reduce sampling rate,

but also significantly save transmission bandwidth. Furthermore, a sequential detection

[105,106] approach can be used to give a quickest detection result.

• In both Chapter 4 and Chapter 5, in order to let ADCs observe the signals of the same

bandwidth, the wideband filters prior to ADCs are assumed to have the same bandwidth.

In these cases, the spectra between ADCs are similar, and thesampling rates are different.

It has been found that the observed SNR decreases when the bandwidth of the wideband

filter increases. To improve the observed SNR in each cognitive radio, it is interesting to

develop a system with different medium-band filters and different sub-Nyquist sampling

rates under the condition that the full spectrum is still recoverable.
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Appendix A
Proof of Proposition 4.1

An example,M1 = 3, M2 = 5, andN = 9, is used to demonstrate the structure of the

measurement matrix. The measurement matrixΦ can be constructed using (4.14) and (4.18),

then theℓ2 column-wise normalised matrix̂Φ is,

Φ̂ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0.5145 0 0 0.5145 0 0 0.5145 0 0

0 0.5145 0 0 0.5145 0 0 0.5145 0

0 0 0.5145 0 0 0.5145 0 0 0.5145

0 0 0.8575 0 0 0 0 0.8575 0

0 0 0 0.8575 0 0 0 0 0.8575

0 0 0 0 0.8575 0 0 0 0

0.8575 0 0 0 0 0.8575 0 0 0

0 0.8575 0 0 0 0 0.8575 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Using (4.14), thej-th normalised column̂φj[m] can be expressed as,

φ̂j[m] =
M l

√∑v
k=1(M

k)2
δ
[
m−

∣∣∣j −
⌊
N

2

⌋
+

⌊
M l

2

⌋ ∣∣∣
mod⋆(M l)

]
,

∀j ∈ [1,N ], l =

{
l|m ∈

[
l−1∑

k=0

Mk+1,
l∑

k=0

Mk

]}
(A.1)

whereM0 = 0 and|•|mod⋆(⊕) is a modified modulo operation in the sense of using⊕ to replace

all zeros in the results of the standard modulo operation.

Let us define the eventml as there exists a value ofm ∈ [

l−1∑

k=0

Mk + 1,

l∑

k=0

Mk] such that

φ̂j[m] = φ̂h[m] > 0, wherej 6= h ∈ [1,N ]. Then the average probability of the eventml

occurring isPr(ml) =
C1
MlC

2
Dl

C2
N

= Dl−1
N−1 = N/M l−1

N−1 , whereDl = N/M l is the undersampling

factor in thel-th sampling channel. Obviously, any single eventml (l ∈ [1, v]) could occur

whenM l < N becausePr(ml) > 0. In the case of only one eventmi occurring, the mutual
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coherence of the matrixΦ can be calculated by using (4.2) and (A.1) as,

µ = max
j 6=h

| < φ̂j , φ̂h > | = max
i∈[1,v]

∣∣∣∣∣
M i

√∑v
l=1(M

l)2
· M i

√∑v
l=1(M

l)2

∣∣∣∣∣ =
maxi∈[1,v](M

i)2∑v
l=1(M

l)2
.

(A.2)

Then next target is to make the probability of two events occurring to be zero. By the definition

of the eventml, it satisfies|j − ⌊N2 ⌋ + ⌊M l

2 ⌋|mod⋆(M l) = |h − ⌊N2 ⌋ + ⌊M l

2 ⌋|mod⋆(M l), where

j 6= h ∈ [1, N ]. It is equivalent to|h − j| = wlM
l for wl ∈ Z ∩ [1, ⌈ N

M l ⌉ − 1]. Similarly, the

eventmz happens when|h − j| = wzM
z for wz ∈ Z ∩ [1, ⌈ N

Mz ⌉ − 1]. Both of them happen

when

wzM
z = wlM

l, wl ∈ Z ∩
[
1,

⌈
N

M l

⌉
− 1

]
, wz ∈ Z ∩

[
1,

⌈
N

Mz

⌉
− 1

]
. (A.3)

The probabilityPr(mzml) is the probability of both the eventmz and the eventml satisfying

equation (A.3). This is equivalent to being givenM l andMz, and then finding how many pairs

of numberswl andwz out of the available number of(⌈ N
M l ⌉ − 1) or (⌈ N

Mz ⌉ − 1) are required

for equation (A.3) to hold. Without loss of generality, considering the possibility forwl, the

probabilityPr(mzml) is given by,

Pr(mzml) =

⌊
l

N

Ml

m

−1

ẅl

⌋

⌈
N
M l

⌉
− 1

, (A.4)

because ofwl should be integer multiples of̈wl aswl = wz
Mz

M l
= ẅl

wz
w′
z

, whereẅl andẅz are

from simplest fraction form of,

wl
wz

=
Mz

M l
=
aẅl
aẅz

=
ẅl
ẅz
, (A.5)

wherea denotes an integer.

If assume thatM l andMz are different prime numbers, then̈wl = Mz. In order to let

Pr(mzml) = 0, which is equivalent toM z = ẅl > ⌈ N
M l ⌉ − 1,M l andMz should satisfy,

M lMz > N, ∀l, z ∈ [1, v], l 6= z (A.6)

becauseMz > N
M l ≥ ⌈ N

M l ⌉ − 1.

106



Proof of Proposition 4.1

In summary, in order to prevent any two events (ml andmz, l 6= z ) from happening together,

M l andMz should at least satisfy equation (A.6). Furthermore, if theprobability thatml and

mz occur together is zero, then the probability that more than two events (ml, mz...) occur

together is zero too. It is equivalent to the condition that the maximum correlation of different

columns inΦ exists when only one event happens as,

µ = max
j 6=h

| < φ̂j, φ̂h > | =
maxi∈[1,v](M

i)2∑v
l=1(M

l)2
. (A.7)

Hence, Proposition 4.1 is proved.�
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Appendix B
Proof of Proposition 4.2

Based on Doob’s maximal inequality [107], the following inequality holds,

Pr(µ > x) = Pr

(
max
j 6=h

| < φ̂j, φ̂h > | > x

)
≤ E(< φ̂j , φ̂h >)

x
, (B.1)

where E(a) denotes the expectation ofa.

Given the proof for Proposition 4.1 in Appendix A, when the conditions in (4.22) are satisfied,

there exists at most one value ofm ∈ [1,M ] such that̂φj[m] = φ̂h[m] > 0. Then the expected

value of< φ̂j , φ̂h > becomes,

E(< φ̂j, φ̂h >) =
(M1)2∑v
l=1(M

l)2
Pr(m1) +

(M2)2∑v
l=1(M

l)2
Pr(m2) + · · · + (Mv)2∑v

l=1(M
l)2
Pr(mv),

(B.2)

wherePr(ml) denotes the average probability of the eventml occuring as defined in Ap-

pendix A.

SubstitutingPr(ml) = N/M l−1
N−1 < 1/M l into (B.2), the following inequality holds,

E(< φ̂j, φ̂h >) <

∑v
l=1M

l

∑v
l=1(M

l)2
. (B.3)

Replacingx in (B.1) byx = 1
2k−1 , and substituting (B.3) into (B.1), the following inequalities

can be obtained,

Pr

(
µ >

1

2k − 1

)
≤ (2k − 1)E(< φ̂j , φ̂h >) <

∑v
l=1M

l

∑v
l=1(M

l)2
(2k − 1). (B.4)

If the final term is less thanǫ, that is,

∑v
l=1 (M l)2∑v
l=1M

l
>

2k − 1

ǫ
, (B.5)
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the following equation holds true,

Pr

(
µ <

1

2k − 1

)
> 1 − ǫ. (B.6)

On applying Theorem 4.1, the proof of Proposition 4.2 is completed.�
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Appendix C
Proof of Proposition 4.3

Inspired by [108], the Gram matrix of the measurement matrixwill be used for the proof. Let

Ω be the set of indices of2k-nonzero components in spectrum
−→
X . The sub-matrixΦΩ can be

obtained by selecting the columns, whose indices are inΩ, in the matrixΦ̂ (theℓ2 normalised

Φ). The Gram matrix ofΦΩ is expressed as,

GΩ = Φ
H

ΩΦΩ, (C.1)

whereΦ
H denotes Hermitian transpose ofΦ. ThenGΩ is a symmetric and nonnegative defi-

nite matrix and can be written as,

GΩ = I2k×2k + B2k×2k. (C.2)

whereI2k×2k is an identity matrix, andB2k×2k has values only in the off-diagonal entries.

The maximal entriesB⋆ in B2k×2k will be,

B⋆ = max
j 6=h

| < φ̂j , φ̂h > | =
maxi∈[1,v](M

i)2∑v
l=1(M

l)2
, ∀j, h ∈ [1, 2k], (C.3)

The Gersgorin discs theorem [109] states that all the eigenvaluesλi of GΩ are located in the

union of2k discs, then,

|λi − Iii| ≤ Ri(GΩ) ≤ B⋆(2k − 1), ∀i ∈ [1, 2k]. (C.4)

whereRi(GΩ) denotes Deleted absolute row sums ofGΩ.

Thus, using the Triangle inequality, the eigenvalue ofGΩ, i.e.λi, has the bounds,

|Iii| − |λi − Iii| ≤ |λi| ≤ |Iii| + |λi − Iii|, ∀i ∈ [1, 2k]. (C.5)
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Proof of Proposition 4.3

Substituting (C.4) into above equation, we end up with,

1 −B⋆(2k − 1) ≤ |λi| ≤ 1 +B⋆(2k − 1), ∀i ∈ [1, 2k]. (C.6)

Simply assume that̺2k = B⋆(2k − 1), all the eigenvalues ofGΩ are in [1 − ̺2k, 1 + ̺2k].

Hence, apply Theorem 4.2, the Proposition 4.3 follows.�
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Computationally Tractable Model of Energy Detection Performance over

Slow Fading Channels
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and Cheng-Xiang Wang, Senior Member, IEEE
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Index Terms— E n e r g y d e t e c t i o n , s l o w f a d i n g , c o g n i t i v e r a d i o ,U W B , W a l d d i s t r i b u t i o n .

I. INTRODUCTION

INCE Urkowitz’s seminal paper [1], energy detection (ED,

also known as radiometry) has been widely used for

detecting unknown deterministic signals in many applications.

For example, [2] employed ED for detecting the presence

of ultra-wideband (UWB) signals, and [3] used ED to study

the effect of the collaboration among cognitive radios. ED is

commonly used not only due to its low computational and

implementation complexity, but also because it does not need

any prior knowledge of signals.
A non-fading additive white Gaussian noise (AWGN) chan-

nel is usually assumed when studying the performance of

ED. However, in wireless communication applications, fading

occurs because of multipath propagation and shadowing. The

detection performance of ED over a variety of fading channels

has gained interest recently in [4]–[6]. In [4], Digham et al.

evaluated the performance of ED over Nakagami-� fading

channels and Rician fading channels. The in
fl
uence of the

slow fading on ED was numerically studied in [7], but without

a closed-form expression. The challenge of deriving closed-

form expressions for the average probability of detection stems

from the fact that it involves both the generalised Marcum Q-

function and the log-normal distribution.
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Fig. 1. Block diagram of the energy detector.

The contribution in this study is twofold. First, we give an

approximation of the average probability of detection for the

slow fading channel, by using the Wald distribution to replace

the log-normal distribution. Second, we analyze the detection

performance of the ED using a square-law combining (SLC)

scheme over multiple independent and identically distributed

(i.i.d.) slow fading channels, and derive a computationally

tractable expression.

This paper is organized as follows. We brie
fl
y introduce

the system model in Section II. In Section III, we derive

an expression for the average probability of detection over a

single slow fading channel. The detection performance of the

ED using SLC over multiple slow fading channels is given

in Section IV. Simulation results are presented in Section V,

with conclusions given in Section VI.

II. SYSTEM MODEL

A block diagram of an energy detector is shown in Fig. 1.

The received signal, �(�), is
fi
ltered by a bandpass

fi
lter (BPF),

followed by a squaring device for measuring received energy,

and an integrator that controls the observation interval, � . In

order to decide whether the signal is present or not, the output

of the integrator, � , will act as a test statistic, and will be

compared with a predetermined threshold, �. The binary signal

detection problem can be formulated as hypothesis test with

�0 (signal not present) or �1 (signal present),

�0 : �(�) = 	(�),

�1 : �(�) = ℎ(�) �(�) + 	(�), (1)

where ℎ(�) denotes the complex channel gain between the

transmitter and the receiver, �(�) denotes the bandlimited

signal coming from the transmitter of unknown modulation

format, and 	(�) is AWGN.

Following [1], the test statistic, � , has the following distri-

bution,

� ∼

{

2

2�
, �0

2

2�
(2�), �1

(2)

where “∼” means “distributed as”, � is the signal-to-noise

ratio (SNR) at the receiver, and 2

2�
and 2

2�
(2�) denote the

central and non-central chi-square distributions, respectively.

Both distributions have the same degree of freedom (DoF),
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2� (� is the time bandwidth product), and the latter one has

a non-central parameter 2�.

The probability density function (PDF) of � is given as [4]

�� (�) =

{

1
2�⋅Γ(�) ⋅ ��−1 ⋅ �− �

2 , �0

1
2 ⋅ ( �

2� )
�−1

2 ⋅ �− 2�+�
2 ⋅ ��−1(

√
2��), �1

(3)

where Γ(�) is the gamma function and ��(�) is the ��ℎ order

modi
fi
ed Bessel function of the

fi
rst kind.

For a non-fading AWGN channel, the probabilities of false

alarm and detection are given in [4] as below

�	
 = ��(� >�∣�0) =
Γ(�, �/2)

Γ(�)
, (4)

�� = �� (� >�∣�1) = ��(
√

2�,
√
�), (5)

where Γ(�, �) denotes the incomplete gamma function given

by Γ(�, �) =
∫

∞

 �
−1�−���, and ��(�, �) denotes the gener-

alised Marum Q-function given by

��(�, �) =
1

��−1

∫

∞



���−
�2+�2

2 ��−1(��)��. (6)

Another form of the generalised Marcum Q-function is

given in (4.74) of [8] as

��(
√

2�,
√
�) =

∞
∑

�=0

�−� �
�

	!

�+�−1
∑

�=0

�−
�
2

(

�
2

)�

�!
. (7)

With the aid of (8.352-2) in [9], we can rewrite above equation

as

��(
√

2�,
√
�) =

∞
∑

�=0

��

	!

Γ(	+ �, �2 )

Γ(	+ �)
�−� . (8)

III. LOCAL ENERGY DETECTION IN A SLOW FADING

CHANNEL

When experiencing a fading channel, �	
 in (4) will re-

main the same, since it is independent of the SNR. On the

other hand, when the channel gain, ℎ(�), varies, the average

probability of detection can be calculated by averaging �� in

(5) over the SNR distribution as

��=

∫

∞

0

��(�, �)�(�)��=

∫

∞

0

��(
√

2�,
√
�)�(�)��, (9)

where �(�) denotes the PDF of the SNR in a fading channel.

In terrestrial land-mobile wireless communication systems,

the received SNR may be affected by the effect of shadowing

due to objects obstructing the propagation path [8]. Empirical

measurements showed that the received power fl uctuates with

a log-normal distribution about the area-mean power for

various outdoor and indoor environments [7], [10]. The PDF

of the SNR is given by [8]

�(�) =
�√
2� �

exp

(

− (10 log10 � − !)2

2 2

)

, � > 0, (10)

where � = 10/ ln(10), ! (dB) denotes the area-mean SNR,

and  (dB) denotes the standard deviation of 10 log10 �. To the

best of our knowledge, there exists no closed-form expression

for the average probability of detection when we substitute (8)

and (10) into (9). The log-normal distribution can be closely

approximated by the Wald distribution (also known as the

inverse Gaussian distribution) [11], [12], whose PDF is given

by

�(�) =

√

"

2�
�−3/2 exp

(

−"(� − #)2

2#2�

)

, � > 0, (11)

where # = E(�) denotes the expectation of �, and " is the

shape parameter. The variance of � is �3

� , i.e., Var(�) = �3

� .

We propose to use the Wald distribution to approximate the

log-normal distribution. In order to do so, by the method of

moments we relate parameters ", # with !,  as below

# = exp

(

!

�
+

 2

2�2

)

,

" =
#

exp(�
2

�2 )− 1
. (12)

Substituting (8) and (11) into (9), with manipulation we

obtain

��,�ℎ
 =

√

"

2�
�

�
	

∞
∑

�=0

Γ(	+�, �2 )

Γ(	+�)	!

×
∫

∞

0

��−
3
2 �(−

�/2
� −

2	2+�

2	2
�)��. (13)

Using (3.471-9) in [9] for calculating the integral, we obtain

��,�ℎ
 =

√

2"

�
�

�
	

∞
∑

�=0

Γ(	+ �, �2 )

Γ(	+ �)	!

×
(

√

"#2

2#2+"

)�−1
2

K�−1
2

(

√

"(2#2 + ")

#

)

, (14)

where K�− 1
2
(�) denotes the modi

fi
ed Bessel function of the

second kind with order 	− 1
2 .

The truncation error, ��, will be involved when usingfi
nite summations, $ , to replace in

fi
nite summations in (14).

Because
Γ(�,�)
Γ(�) = �−�

∑�−1
�=0

��

�! can be viewed as the cumu-

lative distribution function for a Poisson random variable of

% ∼ Poi(&), which results in
Γ(�,�)
Γ(�) ≤ 1, the truncation error

is bounded by

��≤
√

2"

�
�

�
	

∞
∑

�=�+1

(√

��2

2�2+�

)�−1
2

	!
K�−1

2

(

√

"(2#2+")

#

)

,

=1−
√

2"

�
�

�
	

�
∑

�=0

(√

��2

2�2+�

)�−1
2

	!
K�−1

2

(

√

"(2#2+")

#

)

. (15)

IV. ENERGY DETECTION OVER SLOW FADING CHANNELS

The detection result of a single receiver may not be suf-fi
ciently reliable, which might be due to either the effect of

fading or a low SNR. In such a scenario, diversity schemes

are often employed because they can combat the severe fading

[8]. Using SLC, the energy vectors, �1, �2, ⋅ ⋅ ⋅ , ��, from '
distributed receivers are gathered at a fusion centre (FC),

where the test statistic, ���� =
∑�

�=1 �� is formed [13]. When

these ' fading channels are i.i.d., and all branches have the

same noise variance, the fused energy, ����, has the following

distribution,

���� ∼
{

2
2��(2����), �1

2
2��, �0,

(16)
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where ���� =
∑�

�=1 �� is given by [13].

In the case of non-fading AWGN channels, the probabilities

of false alarm and detection under a SLC scheme can be given

as below

� ′

	
 =
Γ('�, �/2)

Γ('�)
, (17)

� ′

� = ���(
√

2����,
√
�),

=
∞
∑

�=0

�����
	!

Γ(	+ '�, �2 )

Γ(	+ '�)
�−��� . (18)

When the signal experiences fading over ' channels, the

average probability of false alarm will remain the same as

(17), and the average probability of detection can be evaluated

by averaging � ′

� over the SNR distribution as

� ′

� =

∫

∞

0

� ′

�(����, �)�(����)�����,

=

∫

∞

0

���(
√

2����,
√
�)�(����)�����. (19)

In slow fading channels, the PDF of the SNR in the

node (, ��, can be approximated by a Wald distribution. When

all fading channels are stationary and i.i.d., the condition
��

�2

�

= E(��)
Var(��)

=& (constant) can be satis
fi
ed. Thus, the combined

SNR under the SLC scheme, ����, will also follow the Wald

distribution [14]. The PDF of ���� can be easily obtained by

replacing each " with '", each # with '#, and each � with

���� in (11). Using a similar method to that of the single

slow fading channel, we can obtain the average probability

of detection as below

� ′

�,�ℎ
 =

√

2'"

�
�

�
	

∞
∑

�=0

Γ(	+ '�, �2 )

Γ(	+ '�)	!

×

(

√

"#2'2

2'#2+"

)�−1

2

K�−1

2

(

√

"(2'#2+")

#

)

. (20)

The above result can also be obtained by replacing each "
with '", each # with '#, and each � with '� in (14).

V. SIMULATION RESULTS

Receiver operating characteristic (ROC) analysis has been

widely used in the signal detection theory. It is an ideal

technique to quantify the tradeoff between the probability of

detection and the probability of false alarm. In the simulation,

we use complementary ROC curves (�	
 vs 1−��) to show

the detection performance of ED over slow fading channels.

As we used the Wald distribution to approximate the log-

normal distribution for deriving the average probability of

detection, we compare the theoretical result in (14) with

simulated result in Fig. 2. From both
fi
gures, we can

fi
nd that

the theoretical results closely
fi
t the experimental results. In

addition, we can see that, when the average probability of false

alarm decreases, the approximation error slightly increases.

This phenomenon may stem from the long right tail of the

long-normal distribution, which is dif
fi
cult to match. As shown

in the right-hand
fi
gure, the mismatch becomes larger when

the shadow standard deviation,  , becomes larger (equivalent

to a longer right tail in the log-normal distribution).
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Simulated: σ=3 dB,

Theoretical: σ=3 dB
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Simulated: σ=5 dB

Theoretical: σ=5 dB
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Fig. 2. Complementary ROC curves of energy detection over a slow fading
channel with (a) the shadow standard deviation � = 4 dB, and (b) the area-
mean SNR � = 10 dB, compared with theoretical result in (14).

VI. CONCLUSIONS

In this study, we have obtained a computationally tractable

expression for the average probability of detection over a

slow fading channel, by using the Wald distribution to replace

the log-normal distribution. Using SLC, we have studied the

detection performance of ED over i.i.d. slow fading channels.

It has been shown that the theoretical expression closely match

the experimental results. Since the effect of the long right tail

in the log-normal distribution, the mismatch becomes larger

when the shadow standard deviation increases.
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Abstract

Wideband spectrum sensing is becoming increasingly important to modern electronic systems, e.g.,

cognitive radio (CR), for rapidly identifying spectrum holes or characterizing interference. On the other

hand, distributed spectrum sensing has been widely suggested for combating the detrimental effects of

fading. However, there is a significant challenge in sensingthe wideband spectrum in a distributed CR

network. Because both the high sampling rates and data transmission are problematic for battery powered

CRs. In order to implement wideband spectrum sensing efficiently, we present a multirate asynchronous

sub-Nyquist sampling (MASS) model. When the MASS is appliedto a single CR node, sufficient

conditions for uniquely reconstructing the full spectrum using basis pursuit, or orthogonal matching

pursuit algorithms are derived. We also apply the proposed system to distributed CR networks. When

the spectra observed by CR nodes have a common spectral support, using one lowrate ADC in each

CR node can also successfully recover the full spectrum, by applying a matching pursuit algorithm.
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Cognitive radio, Spectrum sensing, Compressed sensing, Multirate sampling.

H. Sun, D. I. Laurenson, J. S. Thompson, M. E. Davies and M. Yaghoobi are with the Institute for Digital Communication and
with the Joint Research Institute for Signal and Image Processing, University of Edinburgh, Kings Buildings, Mayfield Road,
Edinburgh, EH9 3JL, UK (Email:{H.Sun, Dave.Laurenson, John.Thompson, Mike.Davies}@ed.ac.uk, Yaghoobi@ieee.org).

C.-X. Wang is with the Joint Research Institute for Signal and Image Processing, School of Engineering and Physical Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, UK (Email: cheng-xiang.wang@hw.ac.uk)

August 14, 2010 DRAFT

117



Original publications

2

I. INTRODUCTION

A. Cognitive radio networks

The existing fixed frequency allocation of radio spectrum typically results in significant

underutilisation of the available frequencies [1]. For example, the maximal occupancy of the

spectrum from 30 MHz to 3 GHz (in New York city) has been reported to be only13.1%, with

average occupancy (over six locations) of5.2% [2]. The spectral underutilisation can be solved

by allowing a secondary user to access a licensed band when the primary user (PU) is absent.

Cognitive radio (CR) [3] is widely agreed to be the most promising method for exploiting RF

spectral scarcity [4]. A crucial requirement of CRs is that they must rapidly fill in spectrum

holes without posing harmful interference to the PUs. This task is done by the function of

spectrum sensing, which is one of the critical techniques ina CR system. However, there is a

significant challenge in sensing the whole of the spectrum ata particular physical location in a

short observation time. (Performance degrades with longerobservation times since the lagging

response implies low spectrum utilisation efficiency). Thus, wideband spectrum sensing is of

prime importance to ensure efficient operation of both the primary and the secondary (CR)

networks.

B. Wideband spectrum sensing

In order to exploit wideband spectrum, a bank of narrowband filters is often utilised to reduce

the wideband spectrum sensing problem to a multiple narrowband one [5]–[7]. Nevertheless, the

implementation of a bank of narrowband filters requires a large number of RF components for

sensing a wideband spectrum [8]. Besides, it is not flexible to use a bank of narrowband filters

because the range of filters, and the number of the narrow bands are always preset. A wavelet-

based sensing approach [9] provides advantages of both low implementation cost and flexibility

in adapting to a dynamic wideband spectrum. However, characterising the wide bandwidth will

require a high sampling rate analog-to-digital converter (ADC), due to the Nyquist sampling

theorem, and the financial cost of that ADC will be prohibitive. Hence, it motivates the research

of using undersampling techniques for the wideband spectrum sensing.
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Some of the undersampling techniques are related to multicoset sampling [10]. In a multicoset

scheme,M out of L (M ≤ L) cosets of samples are chosen to reconstruct the signal. It can be

implemented by using multiple sampling channels, which areoffset by an integral multiple of a

constant time. In order to reconstruct the signal with a highsuccess rate, the number of sampling

channels must be sufficiently high [11]. Compressed sensing(CS) is an emerging sampling theory

that allows undersampling the signal. Tian and Giannakis [8] were the first to introduce CS to

CR using an edge detection based approach. It has been observed that this is very sensitive to

low SNRs, which commonly exist in the wireless environment.An analog information converter

(AIC) structure was proposed in [12] for compressing signals in the analog domain, and the AIC

based compressed wideband spectrum sensing approach was studied in [13]. However, it has

been identified that the AIC model will be easily influenced bydesign imperfections or model

mismatches [14].

C. Distributed wideband spectrum sensing

On the other hand, due to the effect of multipath fading or shadowing, a single CR cannot

distinguish between a deep fade and an idle band. In such scenarios, distributed spectrum

sensing has been widely considered for combating fading or shadowing [15], [16]. A data

fusion based approach is preferred for distributed spectrum sensing as it offers much better

detection performance than the decision fusion approaches[17]. Nonetheless, using conventional

distributed spectrum techniques, the transmission of raw data through a control channel is very

expensive for the wideband spectrum sensing. Moreover, both the high sampling rates and the

raw data transmission are problematic when the distributedCRs are battery powered.

A candidate model for distributed wideband spectrum sensing is a multirate sampling sys-

tem. Asynchronous multirate sampling (MRS) and synchronous multirate sampling (SMRS)

schemes were studied for reconstructing sparse multiband signals in [18] and [19], respectively.

In addition, MRS has been successfully implemented in experiments using a novel electro-

optical system with three sampling channels as described in[20]. Both systems employ three

optical pulsed sources that operate at different rates and at different wavelengths. In order to
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reconstruct a wideband signal with an18 GHz bandwidth, the modulated pulses are amplified,

and sampled by an ADC at a rate of4 GHz in each channel. In [18], the sampling channels

of the MRS can be implemented separately without synchronisation. However, reconstruction

of the spectrum requires that each frequency of the signal must be non-aliased in at least one

of the sampling channels. In [19] the SMRS reconstructs the spectrum from linear equations,

which relate the Fourier transform of the signal to the Fourier transform of its samples. Using

CS theory, sufficient conditions for perfectly reconstructing the spectrum are obtained;v ≥ 2k

(the Fourier transform of the signal isk-sparse) sampling channels are required. It is difficult to

implement such sufficient conditions either in a single CR node or distributed CR nodes, because

of its stringent requirements on electro-optical hardwareand synchronisation. For reconstructing

the spectrum using fewer sampling channels, the spectrum tobe recovered should possess certain

properties, e.g., minimal bands, and uniqueness. However,the spectral components from PUs

may not possess those properties.

D. Contributions

The contribution in this paper is threefold. First, we propose a multirate asynchronous sub-

Nyquist sampling (MASS) system that employs multiple lowrate ADCs to implement wideband

spectrum sensing. The key features of the MASS system are, 1)low implementation complexity,

2) applicability to distributed CR networks, 3) energy-efficiency for sharing spectrum sensing

data, and 4) robustness against the lack of time synchronisation. Note that even though the

sampling pattern of MASS can also be implemented using a multicoset scheme, it is not practical

to use this technique because of its stringent synchronisation requirement. In order to guarantee

a perfect spectrum recovery, the total number of observations from all ADCs is of the order of

2k
√

N , instead ofN (the number of samples required when sampling at the Nyquistrate). We

should emphasise that even though we use more samples than the ideal CS-based method, which

only requires O(klog(N)) samples, our system is more readily implemented in a distributed CR

network than the CS-based model. We then present the conditions under which the recovery of

the full spectrum is unique by using CS techniques. A trade-off is made between the number
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of sampling channels and the probability of successful spectrum recovery. Finally we apply our

model to distributed CR networks. When the spectra of the CR nodes have a common spectral

support, using one lowrate ADC in each CR node can also successfully recover the full spectrum.

This is obtained by applying a hybrid matching pursuit (HMP)algorithm by synthesizing the

distributed compressed sensing simultaneous orthogonal matching pursuit (DCS-SOMP) and

compressive sampling matching pursuit (CoSaMP).

E. Outline and Notations

In the following, we briefly introduce CS theory in Section II. In Section III we propose a

MASS model. Using CS theory, the sufficient conditions of full spectrum recovery are derived.

Simulation results are presented in Section IV, followed byconclusions in Section V. We note

that, throughout this paper, we adopt the following notations. Scalars are denoted by italic font

lowercase letters and constants by uppercase italic letters. Vectors and matrices are denoted by

lowercase boldface and uppercase boldface letters, respectively.

II. RELATED BACKGROUND ONCOMPRESSEDSENSING

CS theory [21] indicates that a signal,x ∈ CN , which is k-sparse, can be exactly recovered

from M (M ≪ N) linear projectionsy ∈ CM(y = Φx), whereΦ ∈ CM×N is the measurement

matrix. By k-sparse, we mean that thek largest values ofx are not negligible. The perfor-

mance of recovery is determined by three factors, namely, the sparsity,k, of the signalx, the

properties of the measurement matrixΦ, and the recovery algorithm. The mutual coherence is a

computationally tractable metric for evaluating the suitability of the chosen measurement matrix.

Definition 1 [22]: Let Φ be expressed asΦ = [φ1 φ2 ... φN], whereφj denotes thej-th column

of the matrixΦ. Then the mutual coherence,µ, of the matrixΦ is given by,

µ = max
j 6=h∈[1,N ]

| < φ̂j, φ̂h > |, (1)

where φ̂j =
φj

‖φj‖2

denotes theℓ2 normalised column.

The aim is to keepµ to a minimum to allow linear projections to be inverted in a stable manner.

Donoho and Elad have proved that a small mutual coherenceµ can guarantee the performance
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of the recovery as below.

Theorem 1 [23], [24]:Assume that a signalx is k-sparse, when the mutual coherenceµ of

the measurement matrixΦ satisfies,

µ <
1

2k − 1
, (2)

we can use techniques such as basis pursuit (BP) [25] or orthogonal matching pursuit (OMP) [26]

to find the sparsest solution of thek-sparse signalx ∈ CN from measurementsy ∈ CM .

In a distributed network, the received signals in differentsensors are not only individually

sparse, but also jointly sparse (have nonzero entries at thesame locations). A separate recovery

strategy (each sensor recovers the signal individually) will require more measurements as it

neglects the correlations of signal among sensors. The DCS-SOMP algorithm was presented

in [27] for reconstructing the joint sparse signals with fewest measurements by a boost-and-

recover approach.

III. M ULTIRATE ASYNCHRONOUSSUB-NYQUIST SAMPLING

We will now present a MASS system to sense the wideband spectrum using multiple lowrate

ADCs in subsection III-A. For simplicity, we firstly consider the case that one CR node is

equipped with parallel ADCs, which uniformly sample the wideband signal at different sub-

Nyquist rates in the noiseless case. In subsection III-B, wewill concentrate on exploring what

kind of linear projection exists when performing sub-Nyquist sampling. The effect of sub-Nyquist

sampling will then be considered in subsection III-C. UsingCS theory, we will give sufficient

conditions for reconstructing the full spectrum in subsection III-D. Finally the trade-off between

the number of ADCs and the probability of successful spectrum recovery will be discussed in

subsection III-E. In subsection III-F, this will be extended to apply in a distributed CR network.

A. System design

Partially motivated by MRS in [18], our system will use a multirate sampling scheme as shown

in Fig. 1. Instead of electro-optical devices, lowrate ADCsare employed in MASS. Since the

average spectral occupancy is very low, we assume that the non-aliased discrete Fourier transform
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(DFT) spectrum (full spectrum, when the sampling rate is notless than the Nyquist sampling

rate) isk-sparse, and consists of several subband signals with different unknown bandwidths. By

k-sparse, we mean that onlyk components in the full spectrum are non-negligible. The sparsity

level,k, of the non-aliased DFT spectrum can be obtained from initialisation, for example, coarse

spectrum scanning, and will not be addressed here. The wideband filter prior to the ADCs

removes only frequencies outside the spectrum of interest,and is altered to have the largest

spectral estimation bandwidth,W . We assume that there arev ADCs that sample the wideband

signalx(t) at different rates,M1

T
, M2

T
, ..., Mv

T
, over the same observation time ofT . We note that no

anti-aliasing filter is used prior to the ADCs, thus aliasingoccurs. The length of samples in their

corresponding channels will beM1, M2, ..., Mv (Mi∈[1,v] ∼ O(
√

N) in (17)). A tapered window,

such as the Hamming window, is used to combat the effect of leakage, and keep the sparsity

level, k, of the non-aliased DFT spectrum as small as possible. The spectral observations are

obtained by performing a windowed fast Fourier transform (FFT) of the samples in each channel.

The magnitude vectors of the sub-Nyquist rate spectra,y1,y2, ...,yv (yi ∈ R
Mi , i ∈ [1, v]), are

used to form a concatenated equation as shown in (14). After that, the measurement matrixΦ

is constructed by only usingMi (∀ i ∈ [1, v]) and N in (10) and (14). Then we recover the

non-aliased spectrum|x
n
| using a CS algorithm, e.g., BP, OMP, followed by spectrum detection

on the reconstructed spectrum|x
n
|.

MASS has several advantages for application in CR networks,including,

1) Wideband spectrum sensing is implemented with sub-Nyquist sampling, which relaxes the

stringent requirements on ADCs.

2) The lowrate ADCs behave as acquisition devices as well as spectrum compression devices.

3) The compression/measurement matrix we used is deterministic, and can be easily con-

structed once we knowMi∈[1,v] andN .

B. Relating the sub-Nyquist rate DFT spectrum to the non-aliased DFT spectrum

We can view the sub-Nyquist rate spectrum (aliased spectrum) as a linear projection from the

non-aliased spectrum as shown in Fig. 2.
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Let x(t) represent the output signal of the wideband filter in Fig. 1, with a bandwidth ofW .

In the short observation time ofT , we sample the continuous signalx(t) at a sampling rate

of fs′ = Mi

T
< 2W in the i-th channel (different sampling rates at different channels). After a

tapered window, the sampled signal in thei-th channel,xsi(t), can be represented by,

xsi(t) =
∞∑

l=−∞

x(t)δ(t − l∆ti)wT (t), (3)

wherewT (t) is a tapered window,∆ti is the sampling interval in the sampling channeli, and

δ(t) is a Dirac delta function.

The Fourier transform of the sampled signal is given by,

Xsi(f) = fs′

∞∑
l=−∞

∫ ∞

−∞
X(τ + lfs′)WT (f − τ)dτ. (4)

where WT (f) denotes the Fourier transform of the tapered window,fs′ = 1/∆t, and X(f)

denotes the Fourier transform ofx(t).

If x(t) is sampled at a rate offs = N
T

> 2W over an observation time ofT , the Fourier

transform of the sampled signal can be represented by,

Xn(f) = fs

∫ ∞

−∞
X(τ)WT (f − τ)dτ, ∀|f | < fs/2, (5)

whereXn(f) is a non-aliased full spectrum. Replacingf by f + lfs′, andτ by τ + lfs′ in (5),

and then substituting it into (4), we obtain the relation betweenXsi(f) andXn(f) as,

Xsi(f) =
fs′

fs

∞∑
l=−∞

Xn(f + lfs′), ∀|f + lfs′| < fs/2, (6)

whereXsi(f) denotes the sub-Nyquist rate spectrum in thei-th sampling channel.

Since the observation timeT in both cases are the same, the same frequency resolution applies

to these two cases, i.e.,∆f = fs

N
= f

s′

Mi

, whereN , andMi are integers and denote the number

of samples at sampling ratesfs, and fs′, respectively. By defining an integerm, and a scalar

ξ ∈ [0, ∆f), such thatf = m∆f + ξ, we can rewrite (6) as,

Xsi(m∆f+ξ)=
Mi

N

∞∑
l=−∞

Xn((m+lMi)∆f+ξ) =
Mi

N

⌊N/2⌋∑
n=−⌊N/2⌋

Xn (n∆f+ξ)
∞∑

l=−∞

δ[n−(m+lMi)],

(7)

where⌊a⌋ denotes the floor function, and gives the largest integer notgreater thana.
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Sampling the Fourier transform spectrum in (7) at rate of1

∆f
, we obtain the DFT spectrum,

Xsi[m] =
Mi

N

∞
∑

l=−∞

Xn[m + lMi] =
Mi

N

⌊N/2⌋
∑

n=−⌊N/2⌋

Xn[n]
∞
∑

l=−∞

δ[n − (m + lMi)], (8)

whereXsi[m] denotes the sub-Nyquist rate DFT spectrum in thei-th channel, andXn[n] denotes

the non-aliased DFT spectrum. In matrix form this becomes,

xsi = Φixn, (9)

wherexsi denotes the sub-Nyquist rate DFT spectrum vector in thei-th channel,xn is the non-

aliased DFT spectrum vector, and the element of the linear projection operatorΦi ∈ R
Mi×N

(Mi < N) can be represented as,

φm+⌊Mi/2⌋+1,n+⌊N/2⌋+1 =
Mi

N

∞
∑

l=−∞

δ
[

n − (m + lMi)
]

, (10)

wherem ∈ Z ∩ [−Mi/2, Mi/2), andn ∈ Z ∩ [−N/2, N/2).

It is easy to see that in each column ofΦi, there is only one non-zero element with value of

Mi

N
. And in each row ofΦi, there exists at most⌈ N

Mi

⌉ (ceil function gives the smallest integer

not less thanN
Mi

) non-zero elements, which is also called the undersamplingfactor.

C. Effect of sub-Nyquist sampling

Sampling a signal at a sub-Nyquist sampling rate generates two issues. First, the exact location

of the signals for those who have frequencies larger than thesub-Nyquist sampling rate is lost.

Second, there is a risk of overlap, i.e., different frequencies are down-converted to the same

frequency in the baseband. This is crucial, because it couldlead to signal cancellation, and

hence missed signal detection in the CR application. However, under certain assumptions, signal

overlap has a very small probability of occurring. They are 1) the non-aliased DFT spectrum is

k-sparse, 2) the number of subsamples in thei-th channel,Mi ∼ O(
√

N) (in (17), for simplicity,

we useMi =
√

N ), and 3)k ≪ N .

Assuming thosek spectral components are independent and identically distributed (i.i.d.) over

the frequency bins of0, 1, · · · , N − 1, the probability of one element in the non-aliased DFT

spectrum being non-zero isP = Pr(Xn[n] 6= 0) = k/N . If let q[m] denote the number of
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signals overlapped atXsi[m], using (8) the probability of no signal overlap is given by,

Pr(q[m] < 2) = Pr(q[m] = 0)+Pr(q[m] = 1)=(1−P )
⌈ N

Mi
⌉
+

(

⌈ N
Mi

⌉
1

)

P (1−P )
⌈ N

Mi
⌉−1

≈ (
N−k

N
)

N

Mi +
k

Mi

(
N−k

N
)

N−Mi

Mi =
(N−k

N
)
√

N(N−k+k
√

N)

N−k
. (11)

It is not difficult to test that, for any fixedk, (11) will converge to one whenN increases

to infinity. As shown in Fig. 3, whenN = 9 × 106, and Mi =
√

N , the probability of no

signal overlap atXsi[m] will be Pr(q[m] < 2) = 95 ∼ 100% for any k ≤ 1000 = Mi/3, and

Pr(q[m] < 2) ≥ 99% for any k ≤ 400. Thus, under assumptions mentioned above, using (9)

we can write,

yi = |xsi| = |Φixn| ≃ Φi|xn|. (12)

Equation (12) holds true because whenXsi[m] is the projection of a single signal, we have,

|Xsi[m]| =

∣

∣

∣

∣

∣

Mi

N

∑

l

Xn[m + lMi]

∣

∣

∣

∣

∣

=
Mi

N
|Xn[m + lMi]| = Φi |Xn[m + lMi]| . (13)

In the rare case where signal overlap occurs, i.e.0 ≤ |xsi| ≤ Φi|xn|, we could still track the

spectral content of|xn| with the aid of other sampling channels [18]. This is becausethe blind

spot of one ADC can be illuminated by other ADCs working at different sampling rates.

D. Recovery of the full spectrum via multirate sampling

We will now introduce a method for reconstructing the full spectrum through multirate sam-

pling. Since we are observing the same magnitude of the spectrum, |xn|, in all channels, we can

form a concatenated equation relatingx = |xn| ∈ R
N to y = |xs| ∈ R

M as below,

y =























y1

y2

...

yv























=























|xs1|

|xs2|
...

|xsv|























≃ Φx =























Φ1

Φ2

...

Φv























|xn| (14)

whereΦ1,Φ2, ...,Φv are disjoint submatrices ofΦ, Φi ∈ R
Mi×N is the measurement matrix of

ADC i, andM =
∑v

i=1
Mi. Since the time offset between ADCs will not influence the magnitude

of the non-aliased spectrum,|xn|, (14) holds true for asynchronous ADCs.
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When certain conditions are satisfied as Lemma 1 below, the mutual coherence of the con-

catenated measurement matrixΦ will be determined by the number of samples in each channel,

and the number of channelsv.

Lemma 1 [28]:Whenv ADCs observe the spectrum,|xn|, in the same observation time, gener-

atingv measurement vectors,y1,y2, · · · ,yv, whose length are different primes,M1, M2, · · · , Mv,

which satisfy,

MlMz > N, ∀l, z ∈ [1, v], l 6= z, (15)

then the mutual coherenceµ of the measurement matrixΦ is determined by,

µ = max
j 6=h

| < φ̂j, φ̂h > | =
maxi∈[1,v] M

2
i

∑v
l=1 M2

l

. (16)

The proof of Lemma 1 is given in Appendix A.

Theorem 2 (Sufficient conditions): For the above system, if,

MlMz > N, ∀l, z ∈ [1, v], l 6= z, (17)
v
∑

l=1

(

Ml

maxi∈[1,v] Mi

)2

> 2k − 1, (18)

we can reconstruct the full magnitude spectrum|xn| without any aliasing.

Proof: Theorem 2 follows from the results of the Lemma 1 and Theorem 1.

From (17), we can find that the number of samples in each ADC is of the order of
√

N .

WhenMi ∼ O(
√

N), from (18), we can see that at least2k channels are required to guarantee

the recovery of the non-aliased spectrum|xn|. This is becausev ≥ ∑v
l=1

(

Ml

maxi∈[1,v] Mi

)2

holds

true for all v ∈ Z
+. Considering both (17) and (18), we note that MASS needs the total number

of observations to be
∑v

i=1 Mi ∼ O(2k
√

N). If we define the compression ratio as
∑v

i=1
Mi

N
, we

can see from Table I that the compression ratio decreases when the length of Nyquist samples

N increases, but it increases if the sparsity degreek increases. For example, forv = 4, the

compression ratio descends from16.4% to 1.33% whenN increases from1024 to 102400.

E. Trade-off number of sampling channels with recovery probability

In order to reduce the requirement for a large number of ADCs,the strict recovery criteria

can be relaxed.
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Theorem 3:If we sample a wideband signalx(t), whose full spectrum isk-sparse, and obtain

multirate spectral observations,y1,y2, ...,yv, whose length are prime numbers ofM1, M2, ..., Mv

which satisfy,

MlMz > N, ∀l, z ∈ [1, v], l 6= z, (19)
∑v

l=1 M2
l

∑v
l=1 Ml

>
2k − 1

ǫ
, ∀v ∈ [2,∞), (20)

recovery algorithms such as BP, and OMP, have a probability of at least (1 − ǫ) to reconstruct

the non-aliased magnitude spectrum|x
n
|.

The proof of Theorem 3 is presented in Appendix B.

Compared with Theorem 2, we can see that when the conditionmax
l∈[1,v]

M2
l >

∑v
l=1 Ml

ǫ
is

satisfied, the recovery conditions can be relaxed. It is quite useful when we want to use fewer

sampling channels to approximate the full spectrum with a probability of at least (1 − ǫ).

F. Extension to distributed wideband spectrum sensing

In wireless communication scenarios, some CR users may suffer the effect of fading either

due to multipath propagation, or due to shadowing. In that case, the result of spectrum sensing

from a single CR node is not reliable. A cooperative detection strategy offers a good solution as

it minimises the effect of severe fading and achieves diversity gain [16]. If every CR forwards

its measured or processed data to a fusion center (FC), whichmakes a final decision based on

collected data, the cooperative scheme is often called datafusion based distributed spectrum

sensing. If each CR uses multiple ADCs to do sub-Nyquist sampling, the transmission of the

measurements may be very expensive in distributed CR networks.

To minimise the required transmission bandwidth, we propose to extend the application of

the MASS model from the case of parallel ADCs in one CR node to serial ADCs in multiple

CR nodes as shown in Fig. 4. Note that, as in the analysis of subsection III-D, the time offset

between ADCs will not change the magnitude of the non-aliased spectrum, thus asynchronous

CRs have the same performance as synchronous CRs. The wideband filters prior to the ADCs are

altered to have the same bandwidth ofW . After measurements in each CRs, the magnitudes of

the sub-Nyquist rate spectra are transmitted to the FC, where the full spectrum is reconstructed.
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The advantage of the distributed MASS model is that only one lowrate ADC is required in each

CR node, which not only simplifies the system structure at each CR node, but also decreases the

bandwidth required for sharing spectrum sensing data. As the analysis in the subsection III-D, the

total number of observations to be transmitted is of the order of 2k
√

N . Even though this is more

than conventional CS, i.e.,M ∼ O(klog(N)), MASS is more amenable to implementation in a

distributed CR network as neither a compression device nor ameasurement matrix generator are

required. Moreover, the measurement matrix we used is deterministic, then the transmission and

storage of the measurement matrix is unnecessary. Nevertheless, the disadvantage is that (14) no

longer holds because of the influence of fading. Thus, conventional CS algorithms, such as BP

and OMP, cannot be applied. In fading channels, the power of the signals coming from PUs are

attenuated. Namely, the received signals at distributed CRnodes, i.e.,u(1)(t), u(2)(t), · · ·u(v)(t),

may be different, and the spectra viewed by distributed CRs therefore are often distinct. As

illustrated in Fig. 5, the spectra over the distributed CR nodes can be modelled by the second

joint sparsity model (JSM-2) in [27]. Specifically, the spectra over CRs have a common spectral

support,Ω (the set of frequencies occupied), but with different amplitudes.

In order to exploit the joint sparse property over sensor nodes, DCS-SOMP was proposed

in [27]. It has been observed that this algorithm requires fewer measurements when compared

with a separate recovery approach. However, the drawback ofDCS-SOMP is its calculation

time as it only selects the maximum support in each iteration. Unlike the conventional greedy

algorithms, CoSaMP [29] accelerates the calculation by identifying many possible solutions in

each iteration. Hence, we propose to apply a hybrid matchingpursuit algorithm to the MASS

model as shown in Table II, by synthesizing DCS-SOMP and CoSaMP. In each iteration, we

boost the common support by summing up the correlation vectors from multiple channels, which

will make the features easy to identify even if fading existsin some channels. We select multiple

indices in each iteration by choosing the top-2k indices of the2k-largest values in the combined

correlation vector, and merge with the previously computedsupport. After that, the non-aliased

full spectrum is recovered by least squares, whereΦ
†
Ω

denotes the pseudoinverse ofΦΩ, andΦΩ

is the sub-matrix obtained by only selecting the columns, whose indices are inΩ, in the matrix
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Φ. Since the matrixΦΩ is always well conditioned, the calculation of the pseudoinverseΦ
†
Ω

can be implemented quickly using an iterative method, such as the conjugate gradient method

in [30]. We then prune the support to havek-largest values, followed by updating the residuals.

The algorithm will be halted when theℓ2 norm of the residual is not larger than the noise

tolerance level̺ .

IV. SIMULATION RESULTS

In the experiments, we consider that each CR is equipped witha single lowrate ADC, and

there arev CR nodes allocated in the same cluster. In thei-th CR node, the wideband signal

x(i)(t), which is defined below, is sampled by a lowrate ADC over an observation time,T .

x(i)(t) =
Nb
∑

l=1

√

Ei
lBl · sinc(Bl(t − ∆l)) · cos(2πfl(t − ∆l)), (21)

where∆l denotes the time offset of the signal, set to beT/2, andEi
l denotes the energy of the

l-th subband viewed by thei-th CR. Since the effect of fading,Ei
l varies subject to the property

of the fading channel. The wideband signalx(i)(t) consists ofNb subbands, whose bandwidth is

Bl, and carrier frequency isfl. The values of simulation parameters are specified in Table III. As

described in Fig. 4, after FFT analysis in each node, the sub-Nyquist rate spectral observations

y1,y2, ...,yv, are gathered at the FC. In the FC, the full spectrum is reconstructed using HMP. The

spectral occupancy status is decided based on a hypothesis test on the reconstructed spectrum.

In Fig. 6, we demonstrate the performance of spectrum recovery in MASS using HMP. We

can see that by usingv = 10 ADCs, the non-aliased spectrum, which consists of5 subbands with

bandwidth0.3 ∼ 30 MHz, can be successfully reconstructed. We should emphasize that instead

of working at or above10 GHz, these ADCs are working at sampling rate of182.5 ∼ 282.5 MHz,

and the total number of measurements is23.85%N (N is the number of samples ifx(i)(t) is

Nyquist sampled in a CR). In Fig. 7, we find that the fewer subbands there are, the better the

detection performance we can achieve. If a CR system has constraint on the probability of false

alarm, e.g.,Pfa ≤ 10%, the minimum number of measurements are0.1N , 0.3N , and 0.55N

for Nb = 10, Nb = 30, and Nb = 50, respectively. On the other hand, if one lays emphasis
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on the probability of detection, we can find that to obtainPd ≥ 90%, we need at least0.2N

measurements to sense the wideband spectrum with up to50 subbands. In addition, one can

notice that the higher compression ratio will result in a smaller probability of false alarm and a

larger probability of detection.

In Fig. 8, we consider the effect of imperfect synchronisation among ADCs. Compared with

a reference clock, the asynchronous ADCs have time offset inrange of0 ∼ 0.8 µs, while the

total observation time is2 µs. We can see that the detection performance of the asynchronous

ADCs is roughly the same as that of the synchronous ADCs. Fig.8 also illustrates that with

more ADCs in collaboration, we can achieve a better spectrumsensing performance. This is

because with more sampling channels, we can obtain higher probability of successful spectrum

recovery as the discussion in the subsection III-E.

In order to quantify the detection performance of the distributed MASS system over fast/slow

fading channels, we compare their detection performance with that over AWGN channels in

Fig. 9. It shows that, compared with AWGN case, more CRs need to collaborate in order

to combat the effect of fading. Specifically, to obtainPfa = 10%, 40 CRs are required to

collaborate over AWGN channels,50 CRs are required for Rayleigh fading channels, and60

CRs are necessary for slow fading channels. Note that60 ADCs in MASS can be converted to the

compression ratio of42.32%, which means that we only need to transmit0.4232N measurements

to the FC through the control channel, rather than60N for a conventional distributed spectrum

sensing approach.

V. CONCLUSIONS

In this paper, we have presented a distributed wideband spectrum sensing model, MASS,

which employs several lowrate ADCs to sample the wideband signal at sub-Nyquist rates. The

MASS system could be applied either in the scenario of multiple ADCs in one sensor or in the

case of serial ADCs in multiple sensors. We have presented the sufficient conditions to uniquely

recover the full spectrum by using CS theory. When the spectra of the CR nodes are jointly

sparse, we have applied the MASS to the distributed CR network. Using one lowrate ADC in
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each CR node, we can still recover the full spectrum by using the HMP algorithm.

Simulation results have shown that our approach can recoverthe wideband non-aliased spec-

trum successfully. Besides, MASS has been shown to be very robust against the lack of time

synchronisation between ADCs. Moreover, when the MASS model is applied to the distributed

CR network, we only need a few more CRs to collaborate for combating the effect of fading.

To further save the transmission costs in transmitting local information to the FC, a multi-hop

implementation of the MASS is attractive. We will investigate the performance of the MASS

using multi-hop scheme in the near future.

APPENDIX A

PROOF OFLEMMA 1

We use an example,M1 = 3, M2 = 5, and N = 9. The measurement matrixΦ can be

constructed using (10) and (14), then theℓ2 column-wise normalised matrix̂Φ is

Φ̂ =







































0.5145 0 0 0.5145 0 0 0.5145 0 0

0 0.5145 0 0 0.5145 0 0 0.5145 0

0 0 0.5145 0 0 0.5145 0 0 0.5145

0 0 0.8575 0 0 0 0 0.8575 0

0 0 0 0.8575 0 0 0 0 0.8575

0 0 0 0 0.8575 0 0 0 0

0.8575 0 0 0 0 0.8575 0 0 0

0 0.8575 0 0 0 0 0.8575 0 0







































.

Using (10), thej-th normalised column̂φj[m] can be expressed as

φ̂j[m] =
Ml

√

∑v
k=1 M2

k

δ

[

m −

∣

∣

∣

∣

j −
⌊

N

2

⌋

+
⌊

Ml

2

⌋ ∣

∣

∣

∣

mod⋆(Ml)

]

,

∀j ∈ [1, N ], l =

{

l|m ∈

[

l−1
∑

k=0

Mk +1,
l

∑

k=0

Mk

]}

(22)

whereM0 = 0 and | • |mod⋆(⊕) is a modified modulo operation in the sense of using⊕ to replace

all zeros in the results of the standard modulo operation.

Let us define the eventml as there exists a value ofm ∈ [
l−1
∑

k=0

Mk + 1,
l

∑

k=0

Mk] such that

φ̂j[m] = φ̂h[m] > 0, where j 6= h ∈ [1, N ]. Then the average probability of the eventml
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occurring isPr(ml) =
C1

M
l
C2

D
l

C2

N

= Dl−1
N−1

= N/Ml−1
N−1

, where Dl = N/Ml is the undersampling

factor in thel-th sampling channel. Obviously, any single eventml (l ∈ [1, v]) could occur when

Ml < N becausePr(ml) > 0. In case of only one eventmi occurring, the mutual coherence of

the matrixΦ can be calculated by using (1) and (22) as

µ = max
j 6=h

| < φ̂j, φ̂h > | = max
i∈[1,v]

∣

∣

∣

∣

∣

∣

Mi
√

∑v
l=1 M2

l

·
Mi

√

∑v
l=1 M2

l

∣

∣

∣

∣

∣

∣

=
maxi∈[1,v] M

2
i

∑v
l=1 M2

l

. (23)

Then next target is to make the probability of two events occurring to be zero. By the definition

of the eventml, it satisfies|j − ⌊N
2
⌋ + ⌊Ml

2
⌋|mod⋆(Ml) = |h − ⌊N

2
⌋ + ⌊Ml

2
⌋|mod⋆(Ml), wherej 6=

h ∈ [1, N ]. It is equivalent to|h− j| = wlMl for wl ∈ Z∩ [1, ⌈ N
Ml

⌉− 1]. Similarly, the eventmz

happens when|h − j| = wzMz for wz ∈ Z ∩ [1, ⌈ N
Mz

⌉ − 1]. Both of them happen when

wzMz = wlMl, wl ∈ Z ∩
[

1,
⌈

N

Ml

⌉

− 1
]

, wz ∈ Z ∩
[

1,
⌈

N

Mz

⌉

− 1
]

. (24)

The probabilityPr(mzml) is the probability of both the eventmz and the eventml satisfying

equation (24). This is equivalent to being givenMl andMz, and then finding how many pairs

of numberswl andwz out of the available number of(⌈ N
Ml

⌉− 1) or (⌈ N
Mz

⌉− 1) are required for

equation (24) to hold. Without lost of generality, we consider the possibility forwl and get

Pr(mzml) =









⌈

N

Ml

⌉

−1

w
′

l









⌈

N
Ml

⌉

− 1
, (25)

because ofwl should be integer multiples ofw′
l aswl = wz

Mz

Ml

= w′
l

wz

w′
z

, wherew
′

l andw
′

z are

from simplest fraction form of

wl

wz
=

Mz

Ml
=

aw
′

l

aw′

z

=
w

′

l

w′

z

, (26)

wherea denotes an integer.

If we assume thatMl and Mz are different prime numbers, thenw
′

l = Mz. In order to let

Pr(mzml) = 0, which is equivalent toMz = w
′

l > ⌈ N
Ml

⌉ − 1, Ml andMz should satisfy

MlMz > N, ∀l, z ∈ [1, v], l 6= z (27)

becauseMz > N
Ml

≥ ⌈ N
Ml

⌉ − 1.
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In summary, in order to prevent any two events (ml andmz, l 6= z ) from happening together,

Ml andMz should at least satisfy equation (27). Furthermore, if the probability thatml andmz

occur together is zero, then the probability that more than two events (ml, mz...) occur together

is zero too. It is equivalent to the condition that the maximum correlation of different columns

in Φ exists when only one event happens as

µ = max
j 6=h

| < φ̂j, φ̂h > | =
maxi∈[1,v] M

2
i

∑v
l=1 M2

l

. (28)

Hence, Lemma 1 is proved.

APPENDIX B

PROOF OFTHEOREM 3

From Doob’s maximal inequality [31], we obtain

Pr(µ > x) = Pr
(

max
j 6=h

| < φ̂j, φ̂h > | > x
)

≤
E(< φ̂j, φ̂h >)

x
, (29)

where E(a) denotes the expectation ofa.

Assume that we obtain the prime number of samples and the condition of equation (19) is

satisfied, there exists at most one value ofm ∈ [1, M ] that makeŝφj[m] = φ̂h[m] > 0. Then the

expected value of< φ̂j, φ̂h > becomes

E(< φ̂j, φ̂h >) =
M2

1
∑v

l=1 M2
l

Pr(m1) +
M2

2
∑v

l=1 M2
l

Pr(m2) + · · ·+
M2

v
∑v

l=1 M2
l

Pr(mv). (30)

BecausePr(ml) = N/Ml−1
N−1

< 1/Ml, substituting it into (30) we obtain

E(< φ̂j, φ̂h >) <

∑v
l=1 Ml

∑v
l=1 M2

l

. (31)

Replacingx in (29) by x = 1
2k−1

, and substituting (31) into (29) we obtain

Pr
(

µ >
1

2k − 1

)

≤ (2k − 1)E(< φ̂j, φ̂h >) <

∑v
l=1 Ml

∑v
l=1 M2

l

(2k − 1). (32)

If we define the final term to be less thanǫ, that is
∑v

l=1 M2
l

∑v
l=1 Ml

>
2k − 1

ǫ
, (33)
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the following equation holds true

Pr

(

µ <
1

2k − 1

)

> 1 − ǫ. (34)

On applying Theorem 1, we finish the proof of Theorem 3.
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Fig. 1. The schematic illustration of the multirate asynchronous sub-Nyquist sampling system in one CR node. The wideband
filter is altered to have a bandwidth ofW .
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Fig. 2. Interpretation of the relationship between the non-aliased spectrum,xn, and the sub-Nyquist rate spectrum,xs, when
the Fourier spectrum ofx(t) is denoted byx.

TABLE I
SETS OF PRIMES SATISFYING CONDITIONS INTHEOREM2

Sparsity Samples Set of primes Channels Compression ratio

(k) (N) (Ml) (v) (
∑

v

l=1
Ml

N
× 100%)

1 9 3,5 2 88.9%
1 64 11,13 2 37.5%
1 1024 37,41 2 7.62%
2 1024 37,41,43,47 4 16.4%
1 10240 101,103 2 1.99%
2 10240 101,103,107,109 4 4.1%
3 10240 101, 103, 107, 109, 113, 127, 131 7 7.72%
1 102400 331,337 2 0.65%
2 102400 331,337,347,349 4 1.33%
3 102400 331,337, 347, 349, 353,359 6 2.02%
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Fig. 3. Simulated probability of no signal overlap at a frequency f = m∆f + ξ in the sub-Nyquist rate spectrumxs,
compared to the theoretical result in (11). The number of samples at the sub-Nyquist sampling rate isMi =

√
N = 3000,

whereN = 9 × 10
6 denotes the number of samples at the Nyquist sampling rate.
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TABLE II
HYBRID MATCHING PURSUIT ALGORITHM FOR DISTRIBUTEDMASS MODEL

Input: measurement matrixΦ, observation vectory,
sparsity levelk, and noise tolerance level̺.

1. Initialise:
Residualr0 = y, approximationx0 = 0, supportΩ0 = [], i= 0,

2. While halting criterion is falsedo
1). Form residual correlation vectors individually,

cj = Φj
T ri

j for j ∈ [1, v],
b). Find spectral supportsi by boosting

si = Supp
2k(

v∑

j=1

cj),

c). Merge support with previously computed support by
Ωi = Ωi−1

⋃
si,

d). Approximate the non-aliased spectrum by least squares
xi

Ω = ΦΩ
†y, xi

ΩC = 0,
e). Prune locations of support by

p = Suppk(x
i),

f). Update individual residual by
ri
j = yj − Φjx

i
p for j ∈ [1, v],

g). i=i+1.
3. Halting criterion: ‖ri‖2 ≤ ̺

Output: A k-sparse approximation of the non-aliased spectrum,|xn| = xi
p.
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TABLE III
L IST OF SIMULATION PARAMETERS SETUP FORFIG. 6, FIG. 7, FIG. 8, AND FIG. 9.

Figure 6 Figure 7 Figure 8 Figure 9

Observation 0.4 µs 2 µs 2 µs 2 µs
time T

Wideband 5 GHz 20 GHz 20 GHz 20 GHz
bandwidthW

Length of Nyquist 4,000 80,000 80,000 80,000
samplesN

No. of 5 10, 30, 50 30, 50 30
subbandsNb

Bandwidth
0.3 ∼ 30 0.1 ∼ 5 0.1 ∼ 5 0.1 ∼ 5

of subbands (MHz)

No. of 10 1∼150 1∼150 1∼150
ADCs v

Sampling rates 182.5∼ 282.5 189.5∼711.5 189.5∼711.5 189.5∼590.5
of ADCs (MHz)

Compression
23.85% 0.47∼163.45% 0.47∼163.45% 0.47∼163.45%

ratio
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Fig. 6. Comparison of the non-aliased DFT spectrum with the recovered spectrum, when the wideband signal has5 sub-bands
with bandwidth0.3 ∼ 30 MHz, and SNR= 15dB. There arev = 10 ADCs, which experience non-fading AWGN channels.
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