

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

APPLIED LOGIC

- its use and implementation as a programming tool

by

David H D Warren

PhD Thesis, University of Edinburgh, 1977

Page 2

1.0 CONTENTS

1.0 Contents

2.0 Abstract

3.0 Preface

4.0 Originality and Origin of the Work

5.0 Acknowledgements

PART I - LOGIC PROGRAMMING AND COMPILER WRITING

1.0 Introduction

2.0 Logic Programming

2

4

6

14

16

17

17

18

.1 Syntax 18

.2 Semantics 22

3.0 The Programming Language Prolog 25

.1 Introduction 25

.2 The Logical Variable 29

.3 An Example - Looking Up Entries in a Dictionary 32

4.0 A Simple Compiler Written in Prolog 36

.1 Overview 36

.2 Compiling the Assignment Statement 40

.3 Compiling Arithmetic Expressions 47

.4 Compiling the Other Statement Types 45

.5 Constructing the Dictionary 47

.6 Compiling the Whole Program, and the Assembly Stage 52

.7 Syntax Analysis 55

5.0 The Advantages of Prolog for Compiler Writing 58

6.0 The Practicability of Prolog for Compiler Writing 62-

PART II - IMPLEMENTING PROLOG 67

1.0 Introduction 67

.1 Why 67

.2 What 74

2.0 The Prolog language

.1 Syntax and terminology

.2 Declarative-and procedural semantics

82

83
85

Page 3

.3 The cut operation 88

3.0 Overview of Prolog implementation 90

.1 Structure sharing 91

.2 Procedure invocation and backtracking 95

.3 Implementing the cut operation 96

.4 Compilation 97

4.0 The Prolog Machine 100

.1 The main data areas 100

.2 Special registers etc. 102

.3 Literals 105

.4 Constructs 108

.5 Dereferencing 108

.6 Unification of constructs 109

.7 Backtracking 111
.8 Successful exit from a procedure 113
.9 Instructions 114
.10 Examples of Prolog Machine Code 121
.11 Mode Declarations 123
.12 More examples of Prolog Machine Code 126

5.0 DEC1O Implementation Details 130

6.0 Optional Extras 133
.1 Indexing of clauses 133
.2 Garbage collection 143

7.0 Design Philosophy 147

8.0 Performance 152

.1 Results 152

.2 Discussion 159

9.0 Conclusion 166

APPENDICES 167

1.0 PLM Registers, Data Areas and Data structures 167

2.0 PLM Instructions and Literals 168

3.0 Synopsis of the DECsystemlO 212

-4.0 Timing Data for PLM Instructions on DEC1O 215

5.0 Benchmark Tests 216

6.0 References 228

Page 4

2.0 ABSTRACT

The first Part of the thesis explains from first principles the

concept of "logic programming" and its practical application in the

programming language Prolog. Prolog is a simple but powerful language

which encourages rapid, error-free programming and clear, readable,

concise programs. The basic computational mechanism is a pattern

matching process ("unification") operating on general record

structures ("terms" of logic).

IThe ideas are illustrated by describing in detail one sizable

Prolog program which implements a simple compiler. The advantages and

practicability of using Prolog for "real" compiler implementation are

discussed.

The second Part of the thesis describes techniques for

implementing Prolog efficiently. In particular it is shown how to

compile the patterns involved in the matching process into

instructions of a low-level language. This idea has actually been

implemented in a compiler (written in Prolog) from Prolog to

DECsystem-10 assembly language. However the principles involved are

explained more abstractly in terms of a "Prolog Machine". The code

generated is comparable in speed with that produced by existing DEC10

Lisp compilers. Comparison is possible since pure Lisp can be viewed

as a (rather restricted) subset of Prolog.

It is argued that structured data objects, such as lists and

trees, can be manipulated by pattern matching using a "structure

'sharing" representation as efficiently as by conventional selector and

Page 5

constructor functions operating on linked records in "heap" storage.

Moreover the pattern matching formulation actually helps the

implementor to produce a better implementation.

Keywords

Logic, programming, Prolog, implementation, compiler, data structures,

matching, unification, compiler specification, compiler

implementation.

Page 6

3.0 PREFACE

Historically, the idea of a computer preceded the idea of a

programming language. In the early days, a program was seen as a

means of instructing a particular machine to carry out some task.

Programming languages then evolved in response to the need to make

instruction of the machine easier for human programmers. With

hindsight, it seems clear that this approach is back-to-front. Really

we should first decide what is needed in a programming language and

then tailor the machine to fit the language, not vice versa. As

Dijkstra puts it (1976, p.201], instead of "the program's purpose

being to instruct our computers", it should be "the computer's purpose

to execute our programs".

Nevertheless, at present it still remains the case that the

nature of the conventional programming language owes much to

characteristics of early computers characteristics which are

arguably an historical accident and are not essential to the notion of

a program. For example, would the assignment operation be so

predominant in our programming languages if the first programs had

been intended for execution by clerks with pen and paper? - for

assignment presupposes very particular properties of the medium used

for storing information.

Freeing the design of a programming language from a priori

machine constraints, what are the qualities needed? In other words,

what is the best way for the human programmer to express the

information processing task he wishes to be carried out?

Page 7

One obvious snap answer is to observe that all humans start out

knowing at least one "programming language" - their mother tongues.

How about natural language as a basis for writing programs? (This

idea should not be confused with what Hobbs (1977]'describes as

"spreading a thin veneer of English vocabulary and perhaps some

English syntax over a very ordinary programming language", as for

example in the design of Cobol.)

It should be clear that the way information is expressed in

natural language is very different from that of the average

programming language. (For concreteness, the reader may like to

compare a description in everyday English of the rules establishing a

person's tax liability with, say, a PL/1 program to calculate the

liability.)

Firstly, note that in natural language information can be

supplied in a fairly piecemeal fashion, and generally each sentence

makes sense in isolation, without a great deal of contextual

knowledge. By contrast, conventional program "statements" need to be

rigidly sequenced, and the meaning of each "statement" can only really

be appreciated in the context of the program as a whole, or at least

some sizable portion of it.

Secondly, conventional program "statements" are imperative,

whereas in natural language the usual mode of expression is

declarative - even when the communication is essentially an

instruction, it is normal to give a declarative description of what is

required, with just one imperative (often implicit) "Do it!".

Page 8

Finally, it is normal for the objects referred to in a

conventional program to be items associated with the machine or

environment in which the program is to be executed - items such as

memory locations ("variables") and files. In natural.language, of

course, there is no need to refer to anything other than the objects

or entities directly involved in the subject at hand (such as, in our

example, "salaries", "dependents", "investments", etc.).

These differences we have listed seem to be quite fundamental,

and it is reasonable to argue that the conventional programming

language is unsuited to the human user, precisely because the way

information has to be expressed is so different from the natural one.

Of course, natural language itself has obvious disadvantages

which make it impractical as a programming language (for the time

being at least) - it is too vague, too prone to ambiguity and too

long-winded (and parsing the language is far from trivial).

Is it possible to find a language which has the precision and

conciseness needed of a programming language, but which is closer to

the way we naturally communicate information? One approach meeting

these criteria is the subject of this thesis. The main idea goes

under the name "logic programming", and has an interesting history.

Over 2300 years ago, Aristotle and his followers initiated the

study of reasoning expressed in natural language. They categorised

various forms of argument which constitute valid reasoning. This

science became known as logic. In the last 100 years, the more

comprehensive analysis needed especially for mathematical reasoning

Page 9

has led to the development of symbolic logic. Instead of working with

the natural language form of the argument, logicians now use an

artificial language which amounts to a convenient shorthand for

natural language. (This symbolic language, like the original

discipline, is referred to as "logic".) One can mechanically translate

logic statements into (somewhat stilted) natural language statements.

All that is needed is a suitable "interpretation" (ie. natural

language phrase) for each different symbol used. Some of the symbols

must have a fixed translation - these are the "logical" symbols,

translated as "if", "and", "all", etc. Then any reasoning which is

valid in the formal language makes correct sense when translated into

natural language.

{There is (as yet) no mechanical way of doing the reverse

translation - that is, from natural language into logic. However, it
is not implausible that every natural language statement is equivalent

in meaning to some alternative (more stilted) form, where that form

results from translating a logic statement under some fixed

"interpretation". If this conjecture is correct, logic does indeed

constitute a comprehensive shorthand for natural language.)

In this decade, it was realised (by Kowalski and Colmerauer) that

symbolic logic provides the basis for a practicable programming

language. Logic statements - traditionally given solely a declarative

interpretation - can also be understood imperatively (or

-"procedurally"). This is analogous to the way in natural language we

give instructions merely by describing what we want. To turn logic

into a workable programming language, it is necessary to supply

Page 10

additional control information, in order to direct how the logic

"program" is to be used to derive the results required. For many

practical purposes, an extremely simple form of control information is

sufficient. A certain subset of logic, augmented with this

particularly simple form of control information, constitutes a

programming language known as Prolog.

As a programming language, Prolog has all the nice properties of

natural language we listed earlier - the statements are independently

meaningful and can be supplied piecemeal; the language can be

interpreted both declaratively and imperatively; the objects a

program is "about" are independent of any execution environment.

Moreover, the "symbolic" character of symbolic logic gives Prolog the

essential properties which natural language lacks - conciseness,

precision and a simple syntax.

However all this might only be of academic interest. What is

significant and truly amazing about Prolog is that it can really be

used to write useful programs, and that the efficiency of the

implementation can compare quite favourably with that of conventional

languages.

It is important to understand that, amongst all the possible

meaningful groupings of logic statements, only a very small proportion

can be considered reasonable programs, even with the most

sophisticated control imaginable, still less with the simple control

used in Prolog. Logic statements which form a perfectly good

specification of a problem do not necessarily amount to an acceptable

implementation. Logic programming is programming. The logic

Page 11

programmer still has to formulate his task with an eye for what is

practicable and reasonably efficient. However, compared with

conventional languages, program and specification are much closer in

nature, and may even, in favourable cases, be virtually the same.

This thesis is entitled "Applied Logic" to draw attention to the

fact that the approach to logic required in logic programming is

rather different from the traditional one. This difference can be

likened to the distinction between pure and applied mathematics.

Traditionally, logic has been studied almost exclusively for its own

sake, as a subject of intrinsic intellectual interest. Here, however,

we are interested in logic primarily in so far as it can be useful.

We look on logic as a tool to be used in tackling information

processing problems from a variety of different fields. Whereas there

is a vast literature on "pure" logic, only a very simple and

non-technical understanding of logic is necessary for our purposes.

In a similar way, one doesn't need an awareness of erudite theorems of

number theory to make simple use of arithmetic in everyday life.

The thesis consists of two separate and self-contained parts

which can read independently in either order. (To achieve this

independence, there is some duplication of material.)

Part I of the thesis gives a user's eye view of logic as a

programming language, concentrating in particular on Prolog. We aim

to show how Prolog can be used as a beautiful and practical tool for

writing useful programs. Now other authors have described the

advantages of Prolog in a wide variety of different applications,

including large-scale programs in the fields of:-

Page 12

* natural language understanding systems [Colmerauer 1975]

* algebraic symbol manipulation [Bergman & Kanoui 1975] [Bundy et al.

1976]

* computer-aided architectural design [14arkusz 1977]

* drug design applications [Darvas et al. 1976,1977]

* database interrogation [Dahl & Sambuc 1976]

* plan/program synthesis [Warren 1974,1976]

So we concentrate on one particular application - compiler writing -

and explain, in some detail, a sizable Prolog program. We hope this

example will give the reader a better perspective of the language than

can be gleaned from selected "tit-bits". Also, it happens that Prolog

is remarkably well adapted to the role of "compiler-compiler" - this

is remarkable in that Prolog was not developed specifically for this

purpose. In our view, the compiler writing application alone is of

sufficient interest to make Prolog worthy of study.

Part II of this thesis turns to the implementor's view of Prolog.

We show how the logic statements of Prolog can be viewed as sequences

of instructions for quite a low-level machine and, using this insight,

we indicate how Prolog can be compiled into efficient code for a

conventional computer.

Although Parts I and II of the thesis are written to be

self-contained, each has bearing on the other:-

(1) Logic would be of little interest as a programming language were

it not for the possibility of efficient implementation.

(2) The application of Prolog to compiler writing (and more generally

as a systems programming language) motivates the development of more

Page 13

efficient implementations, such as we describe in Part II.

(3) The method of compiling Prolog described in Part II is implemented

by a compiler written in Prolog, using the techniques exemplified in

Part I.

Part I of the thesis was previously published under the title
"Logic Programming and Compiler Writing" as Edinburgh DAI Research
Report No. xx. Part II of the thesis was previously published under
the title "Implementing Prolog" in two volumes as Edinburgh DAI
Research Reports Nos. 39 & 40. Some of the results were reported in a
paper with Luis Pereira and Fernando Pereira entitled "Prolog - the
language and its implementation compared with Lisp", given at the ACM

SIGART-SIGPLAN symposium on "AI and Programming Languages", Rochester
NY, August 1977.

Page 14

4.0 ORIGINALITY AND ORIGIN OF THE WORK

As is noted in the text, this thesis describes work building on

much previous research by other people. The main original

contributions are the following:-

(1) (a) The thesis introduces the novel concept of compiling logic

programs into efficient machine-oriented instructions.

(b) This idea has been developed into a detailed method for

compiling Prolog programs (the "Prolog Machine").

(c) The method has been implemented in a practical and useful

Prolog compiler for the DECsystem-10 computer.

(2) The compiler was implemented in Prolog - providing for the first
time a demonstration of the practicability of Prolog as a language for

compiler writing.

As is acknowledged elsewhere, the Prolog system described herein

was implemented in collaboration with two colleagues, Fernando Pereira

and Luis Pereira. However, the material covered specifically in this

thesis was my work alone, apart from one exception noted below. In

particular, I was responsible for designing the basic "Prolog

Machine", and also did the implementation of both the compiler itself

and the fundamental run-time routines supporting the "Prolog Machine

Instructions". The thesis does not attempt to cover many aspects of

the implementation which were essential for a practical, usable system

and which in fact constituted a major part of the total man hours

spent. These aspects are not covered, since no principles peculiar to

Prolog are involved. Mainly this work amounted to "human

engineering", provided typically in the form of "evaluable

Page 15

predicates". A large portion of this work was undertaken by my

colleagues, particularly the parts involving interface to the host

machine's operating system (Monitor). Of the material covered in the

thesis, the only part which was substantially collaborative was the

garbage collector - a basic design of this component by me was

"debugged" and implemented by FP.

Page 16

5.0 ACKNOWLEDGEMENTS

I am indebted to the originators of Prolog and logic programming
in general. The concept of the Prolog language was entirely the work
of members of the Groupe d'Intelligence Artificielle, Marseille,
(especially Alain Colmerauer and Philippe Roussel), and they also
developed the fundamental implementation techniques.

Furthermore, the possibilities of Prolog for compiler writing
were first recognised by Alain Colmerauer [1975, Chap.4], and the
compilation method I describe is (necessarily) very similar in its
essentials to the example he describes. The elegant assembly
technique is directly based on his work.

My colleagues, Luis Pereira and Fernando Pereira, gave much
encouragement and practical assistance in implementing the Prolog
system referred to in the thesis. In particular, Fernando Pereira was
responsible for implementing the garbage collector and routines to
adjust the sizes of the main areas automatically during execution.

Thanks are due to Pavel Brazdi.l, Derek Brough, Keith Clark,
Gottfried Eder, Chris Mellish, Fernando Pereira, Luis Pereira,
Sten-Ake Tarnlund and Austin Tate for useful discussions and/or
helpful comments on earlier drafts of this thesis. The original
impetus for the work came from the ideas and personal encouragement of
Robert Kowalski.

The work was supervised formerly by Prof. Donald Michie and
Robert Kowalski, and latterly by Prof. Bernard Meltzer, with support
from an SRC research studentship.

Page 17

PART I - LOGIC PROGRAPQIING AND COMPILER WRITING

1.0 INTRODUCTION

This Part of the thesis aims to provide an introduction to the

concept of "logic programming" (Kowalski 1974] [Colmerauer 1975] [van

Emden 1975] for people with experience in other programming languages.

The emphasis is on those aspects which have been put to practical use

in the programming language Prolog (Roussel 1975] [Pereira 1977],

developed at the University of Marseille. The ideas are illustrated

by discussing at length one main example, consisting of a very simple

compiler written in Prolog. Although this "toy" compiler has been

made as simple as possible for didactic purposes, the techniques

employed are taken from a "real" implementation in Prolog of a

compiler, in practical use. This example has been chosen with the

additional purpose of demonstrating the particular advantages of

Prolog for compiler writing. The reader is expected to be broadly

familiar with various conventional programming languages, but no

knowledge of symbolic logic is assumed. Some acquaintance with the

issues involved in writing a compiler would be an advantage.

Page 18

2.0 LOGIC PROGRAMMING

The principal idea (Kowalski 1977] behind logic programming is

that an algorithm can be usefully analysed into a logical component

and a control component:-

"algorithm = logic + control".

Roughly speaking, the logical component defines what the algorithm

does, and the control component prescribes how it is done efficiently.

The logical component can be expressed as statements of symbolic

logic. For this purpose, one normally only needs to consider a

restricted part of logic reduced to a standard form known as "Horn

clauses". The language of this subset will now be described from a

conventional programming standpoint. The notation and terminology

will be that used in Prolog.

2.1 Syntax

The data objects of the language are called terms. A term is

either a constant, a variable or a compound term.

The constants include integers such as:-

0 1 999

and atoms such as:-

a nil 'Algol-68'

The symbol for an atom can be any sequence of characters, which in

general must be written in quotes unless there is no possibility of

confusion with other symbols (such as variables, integers). As in

conventional programming languages, constants are definite elementary

Page 19

objects, and correspond to proper nouns in natural language.

Variables will be distinguished by an initial capital letter eg.

X Value A Al

If a variable is only referred to once, it does not need to be named

and may be written as an "anonymous" variable indicated by a single

underline character:-

A variable should be thought of as standing for some definite but

unspecified object. This is analogous to the use of a pronoun in

natural language. Note that a variable is not simply a writeable

storage location as .m:os.t-_p-r.ugxaumming languages. Compare instead

the variable of pure Lisp, which is likewise a "stand-in" for a data

object rather than a location to be assigned to.

The structured data objects of the language are the compound

terms. A compound term comprises a functor (called the principal

functor of the term) and a sequence of one or more terms called

arguments. A functor is characterised by its name, which is an atom,

and its arity or number of arguments. For example the compound term

whose functor is named 'point' of arity 3, with arguments X, Y and Z,

is written:-

point(X, Y, Z)

Functors are generally analogous to common nouns in natural language.

One may think of a functor as a record type and the arguments of a

term as fields of a record. Compound terms are usefully pictured as

trees. For example, the term:-

line(point(X1,Y1,Z),point(X2,Y2,Z))

Page 20

would be pictured as the structure:-

Sometimes it is convenient to write a compound term using an optional

infix notation, eg.

X+Y (P;Q)

instead of:-

+(X,Y) ;(P,Q)

Finally note that an atom is treated as a functor of arity 0.

Suppose we wish to give a formal definition of a data type called

a "dictionary". A dictionary will be either the atom 'void', or a

compound term of the formn:-

dic(<term 1>,<term 2>,<term 3>,<term 4>)

where the arguments <term3> and <term4> are also dictionaries whilst

<terml> and <term2> are of unrestricted type. (Here, and throughout

this Part of the thesis, names in angular brackets are used as

"meta-variables" to symbolise constructs of the "object language"

being discussed, cf. the non-terminal symbols of a Backus-Naur form

(BNF) grammar.) The required definition of the data type "dictionary"

is expressed in logic by the following two statements:-

dictionary(void)

dictionary(dic(X,Y,D1,D2)) :- dictionary(D1),dictionary(D2).

Here 'dictionary(_)' is a special kind of functor called a predicate,

analogous to a verb in natural language. (Predicates are

distinguished from other functors only by the contexts in which they

occur.) A term with a predicate as principal functor is called a

Page 21

boolean term, and is analogous to a simple statement in natural

language.

In general, statements of logic can be considered to be a

shorthand for descriptive statements of natural language. A statement

of the form:-

<P> :- <Q>, <R>, <...>

should be read as:-

<P> if <Q> and <R> and <...>

Thus the two statements above might be read as:-

"void" is a dictionary.
"di.c(X,Y,D1,D2)" is a dictionary if D1 is a dictionary and
D2 is a dictionary.

Any variables in a statement are interpreted as standing for arbitrary

objects, so a more precise reading of the second statement would be:-

For any X, Y, D1 and D2, "dic(X,Y,D1,D2)" is a dictionary
if D1 is a dictionary and D2 is a dictionary.

Note that the variables in different statements are completely

independent even if they have the same name - ie. the "lexical scope"

of a variable is restricted to a single statement.

The kind of logic statements we are considering are called

2. The clauses. For our purposes, a clause comprises a head and a 12d

head is a boolean term and the body is a sequence of zero or more

boolean terms called goals. In general a clause is written:-

<head> :- <goal 1>, <goal 2>, <...>.

If the number of goals is zero, we speak of a unit clause, and this is

written:-

<head>.

Page 22

2.2 Semantics

The semantics of the language we have described should be clear

from its informal interpretation. However it is useful to have a

precise definition. The semantics will tell us which boolean terms

can be considered true according to some given clauses. Thus in the

case of our clauses for 'dictionary(!)', we shall know that a term

<term> is a dictionary if the boolean term:-

dictionary(<term>)

is true.

Here then is a recursive definition of what will be called the

declarative semantics of clauses.

A term is true if it is the head of some clause instance and
each of the goals (if any) of that clause instance is true,
where an instance of a clause (or term) is obtained by
substituting, for each of zero or more of its variables, a
new term for all occurrences of the variable.

The unary predicate 'dictionary(_)' specified a data type. More

generally, predicates are used to express relationships between

objects. For example, we might use 'concatenated(<1>,<2>,<3>)' to

mean that list <3> consists of the elements of list <1> followed by

the elements of list <2>. Thus

concatenated((a.b .c .d .nil) ,
(1.2.3.nil),
(a.b.c.d.1.2.3.nil))

is true, where a list is either the atom 'nil' or a term formed from

the binary functor '.' whose second argument is a list, ie.

list(nil).
list(.(X,L)) :- list(L).

In general, as above, we write the functor as a

Page 23

right-associative infix operator so that, for example, the first list

mentioned is equivalent to the standard form '.(a,.(b,.(c,.(d,nil))))'

and should be pictured as:-

nil

The following clauses define the predicate'concatenated(_,',_)':-

concatenated(nil,L,L).
concatenated((X.L1),L2,(X.L3)) :- concatenated(L1,L2,L3).

The clauses may be read as:-

The empty list concatenated with any list L is simply L.
A non-empty list consisting of X followed by remaining
elements L1 concatenated with list L2 is the list

consisting of X followed by remaining elements L3
where L1 concatenated with L2 is L3.

So far we have looked on clauses as a means of specifying

relationships between objects. This is the traditional view of the

purpose of logic.

Now consider what has to be done for relationships expressed in

logic to be computed efficiently. For example, given terms <terml>

and <term2>, how can one find a term <term3> such that:-

concatenated(<terml>,<term2>,<term3>)

is true? The major discovery of "logic programming" is that the

clauses themselves can often provide the basis of the procedures

required. In such cases, it is only necessary to supply suitable

control information to specify how the clauses are to be used

effectively. In brief, logic has a "procedural interpretation".

Page 24

The procedural interpretation treats a predicate as a procedure

name, the head of a clause as a procedure entry point and a goal as a

procedure call. A procedure is a set of clauses with the same head

predicate. For example, the clauses for 'concatenated(_,_,_)' can be

considered to be a procedure for concatenating the elements of two

given lists (amongst other uses). The procedure has two entry points

corresponding to whether or not the first of the two input lists is

empty. One of the clauses makes a recursive call to the same

procedure.

Before we go on to consider the kind of control provided in

Prolog, we should observe that not all sets of clauses make equally

effective procedures. Some clauses would require unrealistically

sophisticated control information to be of practical use. Much of the

art of logic programming is to cormulate the problem in such a way

that it can be solved efficiently using the control mechanisms

available. This soon comes quite naturally to someone with

programming experience, as really it is just what one does in any

other programming language; the ingenuity required is no greater, and

usually less. Indeed, as we shall see, one of the main attractions of

logic programming is that often a natural specification of an

algorithm and a good implementation are one and the same.

Page 25

3.0 THE PROGRAMMING LANGUAGE PROLOG

3.1 Introduction

A remarkably simple form of control suffices for many practical

applications of logic programming. This point was first realised at

Marseille and is the basis of the programming language Prolog

developed there. From now on we shall restrict our attention to

Prolog.

If we think back to the declarative semantics of clauses, it is

clear that the order of the goals in a clause and the order of the

clauses themselves, are both irrelevant to the declarative

interpretation. However these orderings are generally significant in

Prolog as they constitute the main control information. In other

respects a Prolog program is just a set of clauses.

When the Prolog system is executing a procedure call, the clause

ordering determines the order in which the different entry points of

the procedure are tried. The goal ordering fixes the order in which

the procedure calls in a clause are executed. The "productive" effect

of a Prolog computation arises from the process of "matching" a

procedure call against a procedure entry point.

Really there are two different ways of looking at the meaning of

a Prolog program. We have already discussed the declarative

interpretation which Prolog inherits from logic. The alternative way

is to consider, as for a conventional programming language, the

sequence of steps which take place when the program is executed. This

is defined by the procedural semantics of Prolog. This semantics will

Page 26

tell us what happens when a goal (procedure call) is executed. The

result of the execution will be to produce true instances of the goal

(if there are any). Thus the procedural semantics is governed by the

declarative. Here then is an exact description of the procedural

semantics.

To execute a goal, the system searches for the first clause
whose head matches or unifies with the goal. The
unification process [Robinson 1965] finds the most general
common instance of the two terms, which is unique if it
exists. If a match is found, the matching clause instance
is then activated by executing in turn, from left to right,
each of the goals of its body (if any). If at any time the
system fails to find a match for a goal, it backtracks, ie. it rejects the most recently activated clause, undoing any
substitutions made by the match with the head of the clause.
Next it reconsiders the original goal which activated the
rejected clause, and tries to find a subsequent clause which
also matches the goal.

Let us now return to the clauses for concatenated(_,_,!)':-

concatenated(nil,L,L).
concatenated((X.L1),L2,(X.L3)) :- concatenated(L1,L2,L3).

and see how they can be used to concatenate two lists. Suppose we

wish to concatenate the lists (a.b.nil) and (1.2.nil). This will be

achieved by executing the goal:-

concatenated((a.b.nil) , (1.2.ni.1) ,Z)

The result of the execution will be to substitute the required value

for the variable Z. The goal matches only the second clause, and

becomes instantiated to:-

concatenated((a.b.nil),(1.2.nil),(a.Z1))

since this is the most general common instance of the original goal

and the head of the matching clause. The name given to the new

variable Z1 is arbitrary. The body of the matching clause instance

gives us a new goal (or recursive procedure call):-

Page 27

concatenated((b.nil),(1.2.nil),Z1)

The process is repeated a second time giving rise to a further goal:-

concatenated(nil,(1.2.nil),Z2)

which this time matches only the first clause. Execution is now

complete as there are no outstanding goals to be executed. The

original goal has been instantiated to:-

concatenated((a.b.nil),(1.2.nil),(a.b.1.2.nil))

a true boolean term. Thus the effect of the execution is to

instantiate Z to:-

(a.b.1.2.nil)

the term originally sought.

Here we have used 'concatenated(<1>,<2>,<3>)' as a procedure

which takes two "inputs" <1> and <2> and returns one "output" <3>.

However the procedure is much more flexible than this. For example,

if <3> is also provided as input, 'concatenated(-,_,_)' acts as a

procedure which checks whether <3> is the concatenation of <1> and

<2>. Thus execution of the goal:-

concatenated((a.nil),(b.nil),(a.nil))

will fail whereas:-

concatenated((a.nil),(b.nil),(a.b.nil))

will succeed.

More striking is the behaviour when only <3> is provided

input. For example, consider what happens when the goal

concatenated(L,R,(a.b.nil))

as

is executed. This goal will match both clauses for

concatenated(-,_,_)'. The first match returns an immediate result:-
ti-

Page 28

L = nil
R = (a.b.nil)

Notice how the result returned consists of two "output" values. If
this result is subsequently rejected, backtracking will cause the

second possible match for the original goal to be considered. The

match instantiates the top goal to:-

concatenated((a.Ll),R,(a.b.nil))

and a new goal is produced:-

concatenated(L1,R, (b.nil))

This goal again matches both clauses. The first match produces

another solution to the original goal:-

L = (a.nil)
R = (b.nil)

In this way backtracking causes the procedure to generate all possible

pairs of lists L and R which, when concatenated, yield (a.b.nil).

These examples have illustrated a number of characteristic

features of Prolog procedures. Firstly, when a procedure returns, the

result sent back may consist of more than one value, just as, in the

conventional way, more than one value may be provided as input.

Furthermore, the input and output positions do not have to be fixed in

advance and may vary from one call of the procedure to another. In

effect, Prolog procedures can be "multi-purpose". These features will

play an important part in the compiler which is the main example of

Prolog to be discussed later.

Page 29

3.2 The Logical Variable

The flexibility of Prolog procedures can be seen as a special

case of a more general phenomenon. The variable in Prolog behaves in

a particularly pleasing way, which is governed by the high-level

pattern matching process of unification. Let us consider a simple but

somewhat artificial example using the 'concatenated(_,_,_)' procedure.

The task is to "treble" a given list to produce a list consisting of

three consecutive copies of the original, eg.

(a.b.c.nil) --> (a.b.c.a.b.c.a.b.c.nil)

One way to define this is to say that the list LLL is the treble of

the list L if LLL consists of L concatenated with a list LL which is

the result of concatenating L with itself. ie.

treble(L,LLL) :-

concatenated(L,LL,LLL),
concatenated(L,L,LL).

In most list processing languages one would have to perform the second

step first. That is, the doubled list LL would first be constructed

and then another copy of L would be concatenated on the front. The

same effect would be achieved in Prolog by expressing the two goals in

the opposite order. However the Prolog clause also functions

perfectly well as it stands. Let us see how this is, by executing the

goal:-

treble((a.b.nil),X)

Immediately we get the pair of goals:-

concatenated((a.b.nil),LL,X),
concatenated ((a.b .nil) , (a.b .nil) ,LL)

The first of these goals has an uninstantiated variable as its second

argument, but nevertheless the execution proceeds in the familiar way,

Page 30

recursing twice to hit the bottom of the recursion with the subgoal:-

concatenated(nil,LL,X2)

The net result of executing this final subgoal is that LL is left

uninstantiated and the original X is instantiated to:-

X = (a.b.LL)

Thus the result of the original 'treble' goal has been partially

constructed, but the value to be returned contains the uninstantiated

variable LL. Execution of the goal:-

concatenated((a.b.nil) , (a.b .nil) ,LL)

completes the picture by "filling in" the correct value of LL:-

LL = (a.b a.b.nil)

Thus we get finally the correct result:-

X = (a.b.a.b .a.b .nil)

We refer to the variable in Prolog as the "logical" variable to

draw attention to Its special behaviour exemplified above. Basically

there is no assignment as such in Prolog, and a variable's value, once

specified, cannot be changed (except through backtracking). However

the variable's value need not be fixed immediately, and may remain

unspecified for as long as is required. In particular, if a variable

corresponds to a component of a data structure to be output by a

procedure, the value of the variable can be left unspecified when the

procedure "returns". The value may then later be filled in by another

procedure in the course of the normal matching process.

The logical variable has the further necessary feature that when

two uninstantiated variables are matched together, they become linked

as one; any value subsequently given to one variable simultaneously

Page 31

instantiates the other. From a conventional programming standpoint,

one can imagine a "pointer" or "reference" to one variable being

assigned to the other, with subsequent "dereferencing" being carried

out automatically where required.

Consider how the processing of the 'treble' example might be

simulated in a conventional language (eg. Algol-68, Pop-2, Lisp); ie.

what steps would correspond to execution of the goals:-

concatenated((a.b.nil),LL,X),
concatenated((a.b.nil),(a.b.nil),LL)

in that order? The effect of the first goal would have to be

simulated by creating a new list (a.b.dummy) with an arbitrary value

'dummy' as the remainder of the list. This list would be assigned to

the variable X and a pointer to the location containing the arbitrary

value would be assigned to LL. For the second goal, one would create

the list (a.b.a.b.nil) and assign it to the location indicated by the

pointer previously assigned to LL. In this way the arbitrary value

'dummy' would be overwritten to complete (a.b.a.b.a.b.nil) as the

value of X. In the style of Algol-68, these steps might be written

as:-

list dummy;
ref list LL := dummy;
ref list X concatenate([a,b],LL);
value of LL concatenate([a,b],[a,b]);

where the arguments and result of procedure 'concatenate' are of mode

"ref list".

The original Prolog version achieves the same effect, but without

the programmer having to bother about assignments and references. In

fact it is the Prolog system which takes care of these

Page 32

machine-oriented details. The Prolog programmer understands the

'treble' procedure primarily from its declarative reading; from the

declarative point of view, even the order of the two goals is

irrelevant, let alone the procedural details involved in execution.

Prolog programming requires a certain change of outlook on the

part of the programmer, but this is soon acquired with a little
practice. The programmer comes to appreciate that Prolog's logical

variable provides much of the power of assignment and references, but

in a higher-level, easier-to-use form. In a similar way, the disciple

of "structured programming", working with a conventional language,

finds that "well-structured" control primitives leave little need for

goto and that the program is generally easier to understand if gotos

are avoided.

3.3 An Example - Looking Up Entries In A Dictionary

To complete this introduction to Prolog, we will now consider an

example which will have application in compiler writing. The example

involves the data type "dictionary" introduced earlier. A dictionary

will provide an efficient representation of a set of pairs of names

with values. Thus the dictionary:-

dic(<name>,<value>,<dic-1>,<dic-2>)

pairs <name> with <value>, together with all the pairings provided by

sub-dictionaries <die-1> and <dic-2>. We assume that the dictionary is

ordered, so that all names in <dic-1> are before <name>, and all in

<dic-2> are after, and both <dic-1> and <dic-2> are themselves

ordered. (Thus no names can be repeated in an ordered dictionary.)

Page 33

The actual ordering relation is arbitrary, but may be thought of as

alphabetical order. Ordering relationships will be expressed using

the familiar symbol '<' for the 2-place predicate "is before" and '>'

for "is after".

As an example, the following is an (alphabetically-) ordered

dictionary pairing English words with their French equivalents:-

dic(salt,sel,
dic(mustard,moutarde,

void,
dic(pepper,poivre,void,void)),

dic(vinegar,vinaigre,void,void))

This term is more easily visualised as the tree structure:-

salt:sel

mustard:moutarde vinegar:vinai.gre

pepper:poivrepoivre
n

A

Because our dictionaries are ordered, it is possible to find

quickly the value (if any) associated with a given name, without

searching through the entire dictionary. So let us now write a Prolog

procedure to "look-up" a name in a dictionary and find its paired

value. The predicate defined will be

lookup(<1>,<2>,<3>)

meaning "name <1> is paired with value <3> in dictionary <2>". Given a

dictionary:-

dic(<name>,<value>,<dic-1>,<di.c-2>)

we clearly have to distinguish three cases . If the name sought is

<name> itself, then the required value is simply <value>, ie.

lookup(Name,dic(Name,Value,_,_),Value).

Note the use of two "anonymous" variables for the components of the

Page 34

dictionary which are not relevant to this case. In the other two

cases, we have to look for the required name in one of the two

sub-dictionaries of the initial dictionary. If the name sought is

before <name>, then we must look in the first sub-dictionary,,ie.

lookup(Name,dic(Namel,Before,_),Value) :-
Name < Namel, lookup(Name,Before,Value).

A similar clause deals with the case where the name sought is after

<name>, ie.

lookup(Name,dic(Namel,_,_,After),Value) :-
Name > Namel, lookup(Name,After,Value).

We have explained these clauses in a procedural way, having in

mind the particular goal of looking up a given name in a given

dictionary to find an unknown value. The control information built

into the Prolog clauses reflects this aim. ie. The order of the

clauses, and the order of the goals in the body of each clause, is

chosen to be appropriate for the type of goal in mind. Thus, of the

three clauses, it is natural to consider the first clause first, since

it may give an immediate result without further recursive procedure

calls. Again, in the last two clauses, it is sensible to make the

test comparing the order of names as the first goal in each clause,

since then the recursive call of 'lookup' will only be made on the

appropriate sub-dictionary.

Note that the control information is not strictly essential; if
a different clause and goal ordering were used, valid results would

still eventually be obtained, but the 'lookup' procedure would not go

"straight" to the required result - without the right control, the

procedure would perform an extremely wasteful exploration of

Page 35

irrelevant parts of the dictionary.

How can one be so sure that valid results will be obtained

whatever the control information? The reason is that the clauses for

'lookup' have a proper declarative interpretation, and the Prolog

execution mechanism is guaranteed only to produce answers which accord

with the declarative interpretation. Although we explained the

clauses "procedurally", they can be understood entirely declaratively

as simple statements about dictionaries. For example, the third

clause might be read as.:-

"If a name Name has a value Value in a dictionary called After, and

Namel is a name which is ordered earlier than Name, then Name has

value Value in any dictionary of the form 'dic(Namel,_,_,After)' ".

Of course, the statement would still be true if the condition on

the order of Name and Namel were omitted. As it stands, the statement

is true, but less general than it might be. However if attention is

restricted to ordered dictionaries, the three clauses for 'lookup' are

sufficiently general to cover all possible instances of the 'lookup'

relationship. It is generally desirable in Prolog programming to make

the logical statements comprising the program no more general than is

necessary to give just the truths required. In this way, the Prolog

system is prevented from considering irrelevant alternatives. This

principle could be thought of as a further form of control information

- the system's attention is directed (in fact, restricted) to a small

but adequate subset of all the correct statements which could be made.

Page 36

4.0 A SIMPLE COMPILER WRITTEN IN PROLOG

4.1 Overview

Let us now look at how Prolog can be applied to the task of

writing a compiler. We shall only consider a simplified example.

Imagine we require a compiler to translate from a small Algol-like

language to the machine language of a typical one-accumulator

computer. The source language has assignment, IF, WHILE, READ and

WRITE statements plus a selection of arithmetic and comparison

operators restricted to integers. (A BNF grammar of the language

appears later in sub-section /.7/.) The target language instructions:-

(1) (2) (3) (4)
arithmetic &c. arithmetic &c. control input-
literal op. memory op. transfer output &c.

ADDC ADD JUMPEQ READ

SUBC SUB JUMPNE WRITE
MULC MUL JUMPLT HALT
DIVC DIV JUMPGT

LOADC LOAD JUMPLE
STORE JUMPGE

JUMP

each have one (explicit) operand which either (1) is an Integer

constant, or (2) is the address of a storage location, or (3) is the

address of a point in the program, or (4) is to be ignored. Most of

the instructions also have a second implicit operand which is either

the accumulator or its contents. In addition, there is a

pseudo-instruction BLOCK which reserves a number of storage locations

as specified by its integer operand.

Page 37

As an illustration of the compiler's function, here is a simple

source program (to compute factorials):-

READ VALUE;
COUNT := 1;
RESULT 1;
WHILE COUNT < VALUE DO

(COUNT := COUNT+1;
RESULT RESULT*COUNT);

WRITE RESULT

and the following is the straightforward translation into machine

language which the compiler will produce. (The columns headed symbol

are not part of the compiler's output and are merely comments for the

reader) .

.symbol: address instruction operand :symbol

0 READ 0
1 STORE 21 VALUE
2 LOADC 1

3 STORE 19 COUNT

4 LOADC 1

5 STORE 20 RESULT
LABELI 6 LOAD 19 COUNT

7 SUB 21 VALUE
8 JUMPGE 16 LABEL2
9 LOAD 19 COUNT

10 ADDC 1

11 STORE 19 COUNT

12 LOAD 20 RESULT
13 MUL 19 COUNT.

14 STORE 20 RESULT
15 JUMP 6 LABELI

LABEL2 16 LOAD 20 RESULT
17 WRITE 0
18 HALT 0

COUNT 19 BLOCK 3

RESULT 20
VALUE 21

Compilation will be performed in five stages of which we shall

only look at the middle three.

Page 38

source
text

(1) Lexical
Analysis

token
list

(2) Syntax
Analysis-

I
source
structure

(3) Code
Generation

I
object
structure
(relocatable)

j
program

ect ob (5) Output object
structure
(absolute)

The first stage, Lexical Analysis, involves grouping the characters of

the source text into a list of basic symbols called "tokens"

(represented by Prolog atoms and integers). This stage is relatively

uninteresting and will not be discussed further. The second stage,

Syntax Analysis, is responsible for parsing the token list.

Essentially, the effect of the analysis is to recognise the abstract

program structure encoded in the characters of the source text and

give this structure a name. The name will be a Prolog term. For

example, the name of the statement:-

COUNT := COUNT+1

will be:-

assign(name(count) ,expr(+, name(count) coast (1)))

Page 39

which can also be pictured as the tree:-

assign

name expr

count + name -0 const

count

Since the Syntax Analysis stage is not our main topic, the discussion

of it will be postponed to a later section.

The third stage, Code Generation, produces the basic structure of

the object program, but machine addresses are left in a "symbolic"

form. These addresses are computed and filled in by the fourth stage,

Assembly.

We shall not go into the less interesting final stage of

outputting an actual object program (as a bit string say). The result

of the Assembly stage will be a Prolog term which names the object

program structure. For example, the name for:-

LOAD 19
ADDC 1

STORE 19

will be:-

(instr(load,19); instr(addc,l); instr(store,19))

where the binary functor ';' has been written as a right-associating

infix operator, ie. the term can be pictured as:-

load 19 /i_ n s t r "nstr

addc 1 store 19

Note that the ';' functor is only used to indicate sequencing, and

Page 40

that the same sequence can be expressed by different terms, eg.

(a; (b; c)) and ((a; b) ; c)

4.2 Compiling The Assignment Statement

Consider first the problem of compiling the assignment

statement:-

<name> := <expression>

The code for this will have the form:-

<expression code>
STORE <address>

where <expression code> is the code to evaluate the arithmetic

expression <expression> yielding a result in the accumulator. The

STORE instruction stores this result at <address>, the address of the

location named <name>.

We want to make this semi-formal specification precise by

translating it into a Prolog clause. Now the Prolog term which names

the source form is:-
assign(name(X),Expr)

where X and Expr are Prolog variables which correspond to the BNF

non-terminals <name> and <expression> in the semi-formal

specification. Similarly, a Prolog term naming the target form is:-

(Exprcode; instr(store,Addr))

where Exprcode and Addr are Prolog variables corresponding to

<expression code> and <address>. We have to define the relationship

between X,Expr,Exprcode and Addr. Suppose the source language names

are to be mapped into machine addresses in accordance with a

Page 41

dictionary D. Then one necessary condition is expressed by the Prolog

goal:-

lookup(X,D,Addr)

The condition relating Expr and Exprcode may be expressed by the

goal:-

encodeexpr(Expr,D,Exprcode)

where the meaning of the predicate 'encodeexpr(<1>,<2>,<3>)' is "<3>

is the code for the expression <1> conforming to dictionary <2>". If
'encodestatement(<1>,<2>,<3>)' is a similar predicate meaning "<3> is

the code for the statement <1> conforming to dictionary <2>", then the

complete Prolog clause we require is:-

encodestatement(assign(name(X),Expr),D,
(Exprcode;
instr(store,Addr))

):-
lookup (X,D,Addr),
encodeexpr(Expr,D,Exprcode).

All we have done so far is to make precise the informal rule for

compiling an assignment statement. Now the resulting clause is not

only an exact statement of the rule, but will also actually be the

part of the compiler responsible for implementing the rule. The

clause represents one case of the procedure

'encodestatement(<1>,<2>,<3>)' which takes as input a statement <1>

and a dictionary <2> and produces as output object code <3>.

If we regard the clause as just a statement of a rule, the

ordering of the two goals in the body of the clause is irrelevant.

Now usually the order is very important when we want also to use the

clause as part of a practical procedure. However in this case, as for

many of the other clauses which make up the compiler, it will become

Page 42

clear that the clause will function perfectly well whichever order is

chosen.

4.3 Compiling Arithmetic Expressions

We already know the clauses for 'lookup', so let us move on to

the clauses for 'encodeexpr'. For reasons which will become clearer

later, 'encodeexpr' is defined in terms of another predicate:-

encodeexpr(Expr,D,Code) :-
encodesubexpr(Expr,O,D, Code).

The extra (integer) argument of 'encodesubexpr' provides information

about the context in which the expression occurs, and is zero unless

the expression is a sub-expression of another expression. Let us now

look at the clauses for 'encodesubexpr' and see how they embody rules

for translating the different types of arithmetic expression.

If the expression is just a constant <const> then the

instruction:-

LOADC <const>

has the desired effect of loading the constant into the accumulator.

Similarly, if the expression is a location named <name> then the

instruction:-

LOAD <addr>

loads the current value of the location, where <addr>, is the

location's address. These two rules are expressed in Prolog by the

clauses:-

encodesubexpr(const(C),_,_, instr(loadc,C)).

encodesubexpr(name(X),_,D, instr(load,Addr)):-

lookup(X,D,Addr).

Page 43

The final possibility is a composite expression of the form:-

<expression 1><operator><expression 2>

If <expression 2> is simply a constant or location name, the code

generated for the composite expression takes the form:-

<expression 1 code>
<instruc tion>

where <expression 1 code> is the translation of <expression 1> and

<instruction> is the appropriate machine instruction which applies

<operator> to the value in the accumulator and operand <expression 2>.

For example:-

<expression>+7

translates to:-

<expression code>
ADDC 7

The clauses which express this more generally are:-

encodesubexpr(expr(Op,Exprl,Expr2),N,D,
(Exprlcode;
Instruction)

):

apply(Op,Expr2,D,Instruction),
encodesubexpr(Exprl,N,D,Exprlcode).

apply(Op,const(C),, instr(Opcode,C)):-

apply(Op,name(X),D, instr(Opcode,Addr)):-

niemoryop(Op,Opcode) ,
lookup(X,D,Addr).

literalop(+,addc). memoryop(+,add).
literalop(-,subc). memoryop(-,sub).
literalop(*,mulc). memoryop(*,mul).
literalop(/,divc). memoryop(/,div).

Notice how the information residing in the clauses for 'literalop' and

niemoryo p would conventionally be treated as tables of data rather

than procedures.

Page 44

{The following covers the more general case where <expression 2>

is composite, and may be skipped on first reading.

In this more general case, the code will have to be of the

form:-

<expression 2 code>
STORE <temporary>
<expression 1 code>
<op-code><temporary>

where <expression 2 code> evaluates <expression 2> and the

result is stored temporarily at address <temporary>.

<expression 1> is then evaluated and the instruction of type

<op-code> applies <operator> to the pair of values

respectively contained in the accumulator and previously

stored at location <temporary>. Note that if <expression 1

code> itself requires temporary storage locations, these

must all be different from <temporary>. These requirements

are met by the clause:-

encodesubexpr(expr(Op,Exprl,Expr2),N,D,
(Expr2code;
instr(store,Addr);
Exprlcode;
instr(Opcode,Addr))

):-
complex(Expr2),
lookup(N,D,Addr),
encodesubexpr(Expr2,N,D,Expr2code),
N1 is N+1,
encodesubexpr(Exprl,N1,D,Exprlcode),
memoryop(Op,Opcode).

complex(expr(_,_,__)).

(Here the goal 'N1 is N+1' means "N1 is the value of the

arithmetic expression N+1".) The procedure's extra argument

N is an integer which is used as a name to be looked up in

the dictionary D. In this way the compiler uses integers as

Page 45

"private" names for the temporary storage locations it
requires. In other respects, temporaries are treated just

like any other locations defined in the actual source

program, and are recorded in the same dictionary. Notice

how any temporaries required for the evaluation of

<expression 1> are named by the integers N+1, N+2, etc., and

thus are distinct from the temporary named by the integer N

which is used to preserve the previously calculated value of

<expression 2> while <expression 1> is being evaluated.)

4.4 Compiling The Other Statement Types

Now let us consider a statement type which is, in itself,
slightly more complex to compile - the IF statement:-

IF <test> THEN <then> ELSE <else>

The code for this will take the form:-

<test code>
<then code>
JUMP <label 2>

<label 1>:

<else code>
<label 2>:

where <test code> causes a jump to <label 1> if the test proves false.

As in an assembly language program, we have used labels to indicate

the instructions whose addresses are <label 1> and <label 2>.

The Prolog formulation of this is:-

Page 46

encodestatement(if(Test,Then,Else),D,
(Testcode;
Thencode;
instr(jump,L2);

label(L1);
Elsecode;

label(L2))

encodetest(Test,D,L1,Testcode),
encodestatement(Then,D,Thencode),
encodestatement(Else,D,Elsecode).

Notice that the clause does not fix the addresses L1 and L2, but

merely indicates constraints on their values through labelling the

object code. One can think of the output from the procedure

encodestatement' as being relocatable code. The output term will

contain free variables L1 and L2 whose values will not be fixed until

stage 4 of compilation - the Assembly stage. This is an example of

the use of the logical variable to delay specifying certain parts of a

data structure.

The clauses for 'encodetest' are as follows:-

encodetest(test(Op,Argl,Arg2),D,Label,
(Exprcode;
instr(Jumpif,Label))

encodeexpr(expr(-,Argl,Arg2),D,Exprcode),,
unlessop(Op,Jumpif).

unlessop(=,jumpne).
unlessop(<,jumpge).
unlessop(>, j umple) .
unlessop (\=, j umpeq) .
unlessop(=<,jumpgt).
unlessop(>=,jumplt).

The test is effected by computing the difference of the two operands

to be compared, and then applying a conditional jump instruction.

'Label' is the address to jump to if the test fails. The meaning of

the clauses should be clear by analogy with cases previously

discussed.

Page 47

The clauses for translating the remaining statement types are

follows:-

encodestatement(while(Test,Do),D,
(label(L1);

Test code;
Docode;
instr(jump,L1);

label(L2))
):-

encodetest(Test,D,L2,Testcode),
encodestatement(Do,D,Docode).

encodestatement(read(name(X)),D, instr(read,Addr)):-

lookup(X,D,Addr).

encodestatement(write(Expr),D,
(Exprcode;
instr(write,0))

encodeexpr(Expr,D,Exprcode).

encodestatement((S1;S2),D, (Codel;Code2)):-

encodestatement(S1,D,Codel),
encodestatement(S2,D,Code2).

Notice how the "serial" statement:-

<statement 1>;<statement 2>

is treated as just another statement type.

4.5 Constructing The Dictionary

as

Now that we have considered all the elements of the source

language, it remains to describe how a program as a whole is compiled.

Many of the clauses already stated have referred to a common

dictionary D. So far we have tacitly assumed that this dictionary (or

symbol table) has been constructed in advance and supplied as "input"

to each procedure which translates source language constructs. Now it

happens that, with a little care, we can arrange for the dictionary to

be built up in the course of the main translation process (stage 3).

Page 48

The clauses for 'lookup' not only do the job of consulting existing

dictionary entries, but will also serve to insert new entries as

required. In fact 'lookup' is a good example of a "multi-purpose"

procedure. Its very useful and rather remarkable behaviour depends on

the full flexibility of the logical variable.

Let us first restate the 'lookup' clauses (with a slight change

in the first clause, to be discussed shortly):-

lookup(Name,dic(Name,Value,_,_),Value):-!.
lookup(Name,dic(Namel,_,Before,_),Value):-

Name < Namel, lookup(Name,Before,Value).
lookup(Name,dic(Namel,_,_,After),Value):-

Name > Namel, lookup(Name,After,Value).

To see how the '.lookup' procedure can be used to create a dictionary,

consider the effect of executing the goals:-

lookup(salt,D,X1),
lookup(mustard,D,X2),
lookup(vinegar,D,X3),
lookup(pepper,D,X4),
lookup(salt,D,X5)

in that order, assuming all the variables are initially
uninstantiated, even the dictionary argument D. One can interpret

these goals as saying : "construct a dictionary D such that 'salt' is

paired with X1 and 'mustard' is paired with X2 and ...". The first
goal is immediately solved by the first clause for 'lookup' giving:-

D = dic(salt,X1,D1,D2)

and leaving X1 uninstantiated. Thus variable D is now instantiated to

a partially specified dictionary. The second of the original goals is

executed next. Execution proceeds initially as for a normal call of

'lookup' and produces the recursive call:-
lookup(mustard,D1,X2)

Now, since D1 is uninstantiated, this goal is solved immediately,

Page 49

giving:-

D = dic(salt,Xl,dic(mustard,X2,D3,D4),D2)

In this way 'lookup' is inserting new entries in a partially specified

dictionary. By the time of executing the fifth of the original goals,

D is instantiated to a dictionary which may be pictured as:-

salt:X1

mustard:X2 vinegar:X3

D3 pepper 4 D5 D6

D7 D8

The effect of the fifth goal is to leave the dictionary unaltered;

the only result is the instantiation:-

X5 = Xl

Thus both values paired with "salt" are guaranteed to be the same.

We have seen that:-

(a) the dictionary can be built up as we go along, starting from a

free variable, and with free variables as the terminal nodes of the

dictionary at every stage;

(b) the values which are paired with the names in the dictionary can

be left unspecified til later - their places are taken by variables,

and different variables representing the same value will be identified

where necessary.

As used in the compiler, the 'lookup' procedure builds up a

dictionary associating storage location names with free variables

representing their addresses. These addresses are only filled in

during the Assembly stage of compilation.

Page 50

We shall now consider the meaning of, and reason for, the extra

in the first clause of 'lookup'. A fundamental reason for the

change is that an ordered dictionary for a given set of pairings is

not unique. For example, the two ordered dictionaries diagrammed

below embody the same set of associations:-

salt:sel pepperr* oivre

mustard:moutarde vinegar:vinaigre mustard:moutarde vi'n`egar:vinaigre

peppef:poivre salt:sel

In theory, the 'lookup' procedure could choose to build either of

these, or any other equivalent dictionary. This is reflected in the

fact that a 'lookup' goal such as:-

lookup(salt,D,X1)

with an uni.nstantiated variable as second argument will match not only

the first clause for 'lookup' but also either of the other two. These

alternative matches in principle allow different but equivalent forms

of dictionary to be constructed.

Obviously we wish to limit the choice to just one of these

equivalent forms. Moreover, the generation of alternative forms may

be highly inefficient, if not impossible. This is because a match of,

say,

lookup(salt,D,X1)

against the second clause gives rise to the goal:-

salt < Namel

with Namel uni.nstantiated. Now in theory this goal should generate

any name which is ordered later than 'salt'. In practice, it is highly

undesirable to execute a goal with such a large set of alternative

solutions, and the actual implementation of '<' may well be such as to

Page 51

make the goal impossible to execute.

The alert reader will also have noticed that the declarative

meaning of the clauses for 'lookup' does not guarantee a dictionary of

the type we require - that is, an ordered dictionary (with no name

repeated). For example, if <dic> is the dictionary pictured as:-

b:2 c` :4

a:l

then 'lookup(a,<dic>,1)' is true, but <dic> is not ordered. Strictly

speaking, a check should be made somewhere in the compiler that the

dictionary created and used during compilation is indeed ordered.

This check is tiresome and in practice unnecessary.

All of these various potential drawbacks to the "creative" use of

'lookup' are circumvented by inserting the cut operator '!' as a

pseudo-"goal" in the first clause. The cut operator is an additional

control device provided by Prolog, which should be ignored when

reading a clause declaratively*. {* With certain usages of cut, there

is no meaningful declarative reading for the "clause"; however this

does not apply to any of the clauses in this Part of the thesis.} When

a "cut" pseudo-goal has been executed, if backtracking should later

return to that point, the effect is to immediately fail the "parent"

goal, i.e. the goal which activated the clause containing the cut. In

other words, the cut operation commits the Prolog system to all

choices made since the parent goal was invoked. For our 'lookup'

procedure, the cut means "if a match is obtained against the first

clause, don't ever try any of the subsequent clauses".

Page 52

Given Prolog's procedural semantics, it is not difficult to see

how the qualification expressed by the cut symbol ensures that

'lookup' constructs a unique ordered dictionary starting from an

initially uninstantiated variable. The dictionary is "unique" except

that the terminal nodes are free variables which really represent

unspecified sub-dictionaries. All of these variables must finally be

instantiated to 'void' in order to obtain the smallest possible

dictionary meeting the required conditions.

4.6 Compiling The Whole Program, And The Assembly Stage

The translation of a complete source program (or rather, its

abstract structure) into an object program (structure) with absolute

addresses is expressed by the following clause:-

compile(Source,
(Code;
instr(halt,O);
block(L))

):-
encodestatement(Source,13, Code) ,
assemble(Code, 0,NO),
Ni is NO+1,
allocate(D,N1,N),
L is N-N1.

(A goal, such as 'L is N-N1' above, of the form '<var> is <expr>'

means that <var> is the value of the arithmetic expression <expr>.)

The result of compiling the program Source is a sequence of

instructions Code 'followed by a HALT instruction and then a block of

storage for the variables used in Source. Unlike most of the compiler

clauses described so far, the particular order of the goals in this

clause is essential control information.

Page 53

Stage 3 of compilation (Relocatable Code Generation) is

represented by the goal:-

encodestatement(Source,D, Code)

Observe that when this goal is invoked, dictionary D i's completely

unspecified, ie. D is still a free variable. So stage 3 really

returns two outputs - the code and the dictionary.

Strictly speaking, for logical soundness, the clause for

'compile' should contain an extra goal, say:-

ordereddictionary(D)

to check that D is indeed an ordered dictionary. We may imagine this

goal being inserted after the 'encodestatement' goal. However, as

noted previously, this check can be dispensed with in practice.

At the end of stage 3, Code still contains many free variables -

representing the yet to be specified addresses of writeable locations

and labelled instructions. Thus stage 3 makes extensive use of the

full power of the logical variable to delay fixing of addresses until

stage 4. The goal:-

assemble(Code,0,NO)

computes the addresses of labelled instructions and returns NO, the

address of the end of Code. Ni is therefore the address of the start

of the block of storage locations. The goal:-

allocate(D,N1,N)

is responsible for laying out the storage required for the source

language symbols contained in dictionary D. It fills in the

corresponding addresses and returns N, the address of the end of the

storage block. Finally the length L of the storage block is

Page 54

calculated from N and N1.

The procedure for 'assemble' is neat and simple:-

assemble((Codel;Code2),NO,N):-
assemble(Codel,NO,N1),
assemble(Code2,N1,N).

assemble(instr(_,_),NO,N):- N is N0+1.
assemble(label(N),N,N).

Note that 'assemble(<1>,<2>,<3>)' means that <2> is the start address

and <3> the end address of the sequence of instructions <1>.

The procedure for 'allocate' has a similar character:-

allocate(void,N,N):-!.
allocate(dic(Name,N1,Before, Af ter) ,NO, N) :-

allocate(Before,N0,N1),
N2 is N1+1,
allocate(After,N2,N).

Observe that the layout of the source symbols will be in dictionary

order.

Note that the dictionary input to 'allocate' from

'encodestatement' is incomplete in the sense that the terminal nodes

are still variables. The 'allocate' procedure in fact chooses the

smallest possible dictionary, ie. the one which contains only symbols

actually occurring in the source program. If it chose otherwise, the

object program would still be correct but would contain extra unused

storage locations. The proper choice is achieved by placing the

clause for the 'void' case first, with a cut '!' to prevent any

possibility of backtracking considering other alternatives, cf. the

use of cut in 'lookup'.

Page 55

We have now looked at all the clauses needed to perform the Code

Generation and Assembly stages of the compiler. Except where

otherwise noted, the particular order in which these clauses are

stated is unimportant, ie. the performance will be virtually the same

whichever order is chosen.

4.7 Syntax Analysis

We shall now show very briefly how the parser, or Syntax Analysis

stage of compilation, is programmed in Prolog. Van Emden [1975,

Section 6] gives a much fuller introduction to the basic method we use

for writing parsers in logic. The theory of this method is described

by Colmerauer [1975], from whom the technique originated. The clauses

we require are closely related to the following BNF grammar of the

source language:-

<program> <statements>
<statements> <statement>I

<statement>;<statements>
<statement> <name>:=<expr>1

IF <test> THEN <statement> ELSE <statement>I
WHILE <test> DO <statement>I
READ <name> l

WRITE <expr>l
(<statements>)

<test> <expr><comparison op><expr>
<expr> <expr><op 2><expr 1>1

<expr 1>
<expr 1> <expr 1><op 1><expr 0>1

<expr 0>
<expr 0> <name>

<integer>I
(<expr>)

<comparison op> < > =< I >=
<op 2>
<op 1> +

Page 56

The essential idea behind the translation into Prolog is that a

BNF non-terminal becomes a predicate of three arguments:-

<non-terminal>(<start>,<end>,<name>)

meaning "the token list <start> commences with a phrase of type

<non-terminal> ending at a point where the list of remaining tokens is

<end>; the structure of the phrase is identified by <name>". Now

because the grammar contains some left recursive rules, and for other

efficiency reasons, parts of the grammar are rewritten to facilitate

left-to-right top-down parsing. Some of the resulting predicates have

to be given an additional argument which is the name of the preceding

phrase. For example:-

restexpr(<n>,<start>,<end>,<nameO>,<name>)

means that the token list <start> commences with the remainder of an

arithmetic expression of precedence <n> ending at <end> and the whole

expression is named <name> if the preceding subexpression is named

<nameO>. Here then is the Prolog translation of the BNF grammar:-

Page 57

program(ZO,Z,X) :- statements(ZO,Z,X).

statements(ZO,Z,X) :- statement(ZO,Z1,XO), reststatements(Z1,Z,XO,X).

reststatements((';'.ZO),Z,XO,(XO;X)) :- statements(ZO,Z,X).
reststatements(Z,Z,X,X).

statement((V.':='.ZO),Z,assign(name(V),Expr)) :-

atom(V), expr(ZO,Z,Expr).
statement((if.ZO),Z,if(Test,Then,Else))

test(ZO,(then.Zi),Test),
statement(Z1,(else.Z2),Then),
statement(Z2,Z,Else).

statement((while.ZO),Z,while(Test,Do)) :

test(ZO,(do.Zl),Test),
statement(Z1,Z,Do).

statement((read.V.Z),Z,read(name(V))) :- atom(V).
statement((write.ZO),Z,write(Expr)) :- expr(ZO,Z,Expr).
statement(('('.ZO),Z,S) :- statements(ZO,(')'.Z),S).

test(ZO,Z,test(Op,X1,X2))
expr(ZO,(Op.Zl),X1), comparisonop(Op),
expr(Z1,Z,X2).

expr(ZO,Z,X) :- subexpr(N,ZO,Z,X).

subexpr(N,ZO,Z,X) :- N>O, Ni is N-1,
subexpr(N 1, ZO, Z 1, XO) ,
restexpr(N,Z1,Z,XO,X).

subexpr(O, (X.Z) ,Z,name(X)) :- atom(X).
subexpr(O,(X.Z),Z,const(X)) :- integer(X).
subexpr(O,('('.ZO),Z,X) :- subexpr(2,ZO,(')'.Z),X).

restexpr(N,(Op.ZO),Z,X1,X) :- op(N,Op), Ni is N-1,
subexpr(N 1, ZO, Z 1,X2) ,
restexpr(N,Z1,Z,expr(Op,X1,X2),X).

restexpr(N,Z,Z,X,X).

comparisonop(=).
comparisonop(<).
comparisonop(>).
comparisonop(=<).
comparisonop(>=).
comparisonop(\=).

op(2,*). op(1,+).

op(2,/). op(l,-).

Page 58

5.0 THE ADVANTAGES OF PROLOG FOR COMPILER WRITING

This section summarises the particular advantages of Prolog as a

language for writing compilers. Many of the advantages should be

clear from the main example discussed above. It is important to take

into account, not just the compiler which is the end product, but also

the work which must go into initially designing and building it and

into subsequently "maintaining" it.

So let us review how one might set about constructing a compiler.

Initially, the picture is just of a black box with source programs as

input and correctly translated object programs as output. The first

consideration is to decide how the output is related to the input. It

is natural to examine the structure of the source language and to

devise for each element of the language a rule for translating it into

target language code. These rules form a specification of the

compiler's function. The final and generally more laborious stage of

compiler construction involves implementing procedures which

efficiently carry out the translation process in accordance with the

specification.

The major advantage of implementation in Prolog is that it is

possible for the final stage to be almost trivial. For a compiler

such as the sample one discussed, it is not a great exaggeration to

say that

"the specification is the implementation".

Thus the procedures which make up the compiler consist of clauses,

each of which can generally be interpreted as a rule describing a

possible translation of some particular construct of the source

Page 59

language into the target language. The burden of the implementation

stage reduces to ensuring that the specification can be used as an

efficient implementation. This requires the addition of suitable

control information (ie. choosing the ordering of clauses and goals)

and may involve some rewriting of parts of the specification to allow

an efficient procedural interpretation.

The closeness of implementation and specification brings many

benefits:-

* The implementation is more readable and may be virtually

self-documenting.

* The correctness (or otherwise) of the implementation is more easily

apparent and the scope for error is greatly reduced. As long as each

clause is a valid rule for translating the source language, one can be

confident that the compiler will not generate erroneous code.

* Compiler modifications and source language extensions are more

readily incorporated, since the compiler consists of small

independently-meaningful units (clauses) which are directly related to

the structure of the source language.

There are a number of conventional programming language features

which would normally have to be used in a compiler implementation, but

which do not appear explicitly in a Prolog implementation. These

include assignment, references (pointers), operations for creating

data structures, operations for selecting from data structures,

conditional or test instructions, and the goto instruction. Of

course, all these features are being used implicitly, behind the

scenes, by the Prolog system. In effect, the Prolog system assumes

Page 60

much of the responsibility for "coding up" the implementation. This

relieves the programmer of tedious details and protects him against

errors commonly associated with the low-level features mentioned, eg.

* referring to a non-existent component of a data structure;

* attempting to use the value of a variable before it has been

assigned;

* attempting to use a value which is obsolete, such as a "dangling

reference" to storage which has been de-allocated;

* overwriting a value or part of a data structure which is still
needed elsewhere in the program;

* omitting to test for a special case before dropping through to the

else clause of a conditional.

In a conventional language, errors such as these typically

produce bugs which are difficult to trace and eradicate. At best the

program will halt immediately with some error message, which may or

may not help the programmer to pinpoint the bug. More usually, the

bug will only manifest itself later in the processing, by which time

the root cause will be difficult to determine.

Such situations cannot arise with the basic Prolog language

covered here, since none of the low-level features mentioned is

present in the language. Moreover, the (procedural) semantics of

Prolog is totally defined; a syntactically correct program is

guaranteed to be legal, and is incapable of performing, or even

attempting to perform, any invalid or undefined operation. If there

is a "bug" in a Prolog program, it. merely means that the program,

while being perfectly legal, doesn't do exactly what the programmer

Page 61

intended. The actual behaviour is entirely predictable and therefore

the "bug" is normally found relatively easily. A totally defined

semantics is of great practical significance and is almost unique

among programming languages.

To summarise, Prolog has the following advantages as a

compiler-writing tool:-

less time and effort is required;

* there is less likelihood of error;

* the resulting implementation is easier to "maintain" and modify.

Page 62

6.0 THE PRACTICABILITY OF PROLOG FOR COMPILER WRITING

Granted that Prolog is a very congenial language for compiler

writing, the question naturally arises whether an implementation in

Prolog can perform well enough to be practically useful. The answer

obviously depends on how efficiently Prolog itself is implemented.

The'first Prolog system was an interpreter written in Fortran at

the University of Marseille [Battani & Meloni 1973]. This proved to be

surprisingly fast. More recently, building on the techniques

developed at Marseille, two colleagues and I have implemented a Prolog

compiler [Warren et al. 1977] [Warren 1977] for the DECsystem-10

machine.

The machine code generated by this compiler is reasonably

efficient and is not so very different from that which might be

produced by a compiler for a conventional list- or record-processing

language. The principal effect of the compilation is to translate the

head of each clause into instructions which will do the work of

matching against any goal. Of the two terms involved in the matching,

it is the clause head which is compiled, since this is uninstantiated

prior to the matching, unlike the goal. Because the variables in the

head are uninstantiated prior to the matching, their first occurrences

can be compiled into simple assignment operations.

The code generated for a compound term has to distinguish between

two cases. If the subterm matches against a variable, a new data

structure must be constructed and assigned to the variable. This case

is handled by an out-of-line subroutine. The other case concerns

Page 63

matching against a non-variable. This is performed essentially by

in-line code. It comprises a test for matching functors (record

types), followed by the compiled form of each of the sub terms of the

compound term. This code will be responsible for accessing

subcomponents of the matching data structure.

Many Prolog procedures consist of a number of clauses giving a

definition by cases - each clause accounts for a different possible

form of the input. This characteristic is particularly evident in

compiler writing as illustrated above. For example the clauses for

'encodestatement' each match a different statement type. Here, and

more generally, it is natural to place the principal input as first
argument of the predicate. Our Prolog compiler capitalises on this

fact by compiling in a.fast "switch" or "computed goto", branching on

the form (principal functor) of the first argument. Thus instead of

trying each clause in turn, the code automatically selects only

appropriate clauses (often just one).

As far as the general efficiency of Prolog is concerned, space

economy is more likely to be a limitation than speed. From our

discussion of the (basic) language it is clear that the responsibility

for storage management falls entirely on the system and not on the

programmer. In meeting this responsibility, the Prolog compiler

employs a certain degree of sophistication.

In particular, it automatically classifies variables into two

types ("local" and "global") with storage allocated from different

areas analogous to the "stack" and "heap" of Algol-68. Local storage

is recovered automatically by a conventional stack mechanism when a

Page 64

procedure returns, provided the procedure has no more alternative

multiple results to generate through backtracking. In addition, a

second stack mechanism associated with backtracking ultimately

recovers all storage, both local and global. Thus a garbage collector

is not an essential part of the system, although one is provided.

This is in contrast to the situation for the "heap" of Algol-68 and

similar languages, where storage can only be recovered by the

potentially very expensive process of garbage collection.

Although the automatic storage management of basic Prolog is

quite effective, it is not adequate on its own for really large tasks.

For example, it is currently unrealistic to expect a compiler written

in basic Prolog to compile a sizable program in one step, as, unaided

by the user, the storage requirements would exhaust main memory. A

technique which can be adopted at present is to compile small units of

the program, eg. "lines", "blocks" (or in the case of Prolog itself

"clauses"), using the "pure" methods we have described; the compiler

as a whole consists of a number of "pure" procedures linked together

using more ad hoc (and conventional) methods. The ad hoc parts are

written using extensions beyond the basic Prolog language, which are

outside the scope of this Part of the thesis. The essential feature

of the "impure" code is that use is made of further storage areas and

external files, all of which have to be managed directly by the

programmer. This approach to compiler writing in Prolog enables one

to produce a practical implementation, large parts of which are

written in the basic Prolog language, with all the advantages

discussed above.

Page 65

Given the theme of this Part of the thesis, it should come as no

surprise that the Prolog compiler is itself written in Prolog, using

the very principles which are the subject of this Part of the thesis.

Data on this "bootstrapped" compiler may therefore give-some idea of

the kind of performance attainable with Prolog as the implementation

language. Note that the compiler does not attempt any sophisticated

optimisation.

The compiler generates about 2 machine instructions (= 2 machine

words, of 36 bits each) per source symbol (ie. constant, functor or

variable). It takes typically around 10.6 seconds to generate 1000

words of code. The amount of "short-term" (Prolog-controlled) working

storage required during compilation is rarely more than 5K words, ie.

this is a normal bound on the amount of storage required to compile

any one clause. {The remaining "long-term" (programmer-controlled)

working storage is needed primarily for a global symbol table, the

size of which depends on the number of different functors in the

program being compiled.) The total code of the compiler itself (which

is not overlayed) is about 25K words.

Briefly, the performance indicated by these figures is reasonably

acceptable, although naturally it falls short of what can be attained

in a low-level language with efficiency as the only objective.

Nevertheless, the performance is not out of line with that of certain

other items of software on the DECsystem-10 (eg. the manufacturer's

assembler, "MACRO").

Page 66

Prolog is a promising language for software implementation where

the' main priority is to have a correctly working system available

quickly, or where the system specification is liable to change.

Better performance can certainly be obtained from an implementation in

a lower-level language; for this, a preliminary Prolog formulation

can serve as a very useful prototype. It is likely that most of the

improvement will be attributable to a few relatively simple but

heavily used procedures (eg. lexical analysis, dictionary lookup),

and so a mixed language approach may be an attractive possibility. An

alternative view (which I favour) is to look for more sophisticated

ways of compiling special types of Prolog procedure, guided probably

by extra pragmatic information provided by the Prolog programmer.

Page 67

PART II - IMPLEMENTING PROLOG

1.0 INTRODUCTION

This Part of the thesis describes techniques for efficiently

implementing the programming language Prolog. It is written mainly

for those having some familiarity with Prolog. For the benefit of a

wider readership, we begin by attempting to answer briefly the

questions "Why implement yet another programming language?", "What is

so different about Prolog?". A precise definition of the basic Prolog

language is given in Section /2./. The sample programs listed in

Appendix /5./ and referred to in Section /8.1/ may be useful.

The second part of this introduction summarises the history and

nature of Prolog implementation.

1.1

Prolog is a simple but powerful programming language developed at

the University of Marseille [Roussel 1975] as a practical tool for

"logic programming" [Kowalski 1974] [Colmerauer 1975] [van Emden

1975]. From a user's point-of-view one of Prolog's main attractions is

ease of programming. Clear, readable, concise programs can be written

quickly with few errors. Prolog is especially suited to "symbol

processing" applications such as natural language systems [Colmerauer

1975] [Dahl & Sambuc 1976], compiler writing [Colmerauer 1975] [Warren

Page 68

1977], algebraic manipulation [Bergman & Kanoui 1975] [Bundy et al.

1976], and the automatic generation of plans and programs [Warren

1974] [Warren 1976].

Data structures in Prolog are general trees, constructed from

records of various types. An unlimited number of different types may

be used and they do not have to be separately declared. Records with

any number of fields are possible, giving the equivalent of fixed

bound arrays. There are no type restrictions on the fields of a

record.

The conventional way of manipulating structured data is to apply

previously defined constructor and selector functions (cf. Algol-68,

Lisp, Pop-2). These operations are expressed more graphically in

Prolog by a form of "pattern matching", provided through a process

called "unification". There is a similarity to the treatment of

"recursive data structures" advocated by Hoare [1973]. Unification can

also be seen as a generalisation of the pattern matching provided in

languages such as Microplanner [Sussman & Winograd 1970] and its

successors.

For the user, Prolog is an exceptionally simple language. Almost

all the essential machinery he needs is inherent in the unification

process. So, in fact, a Prolog computation consists of little more

than a sequence of pattern-directed procedure invocations. Since the

procedure call plays such a vital part, it is necessarily a more

flexible mechanism than in other languages. Firstly, when a procedure

"returns" it can send back more than one output, just as (in the

conventional way) it may have received more than one input. Moreover,

Page 69

which arguments of a procedure are inputs and which will be output

slots doesn't have to be determined in advance. It may vary from one

call to another. This property allows procedures to be

"multi-purpose". An additional feature is that a procedure may

"return" several times sending back alternative results. Such

procedures are called "non-determinate" or "multiple-result". The

process of reactivating a procedure which has already returned one

result is known as "backtracking". Backtracking provides a high-level

equivalent of iterative loops in a conventional language.

There is no distinction in Prolog between procedures and what

would conventionally be regarded as tables or files of data. Program

and data are accessed in the same way and may be mixed together. Thus

in general a Prolog procedure comprises a mixture of explicit facts

and rules for computing further "virtual" data. This and other

characteristics suggest Prolog as a promising query language for a

relational database (cf. [van Emden 1976] and Zloof's "Query by

Example" [1974]). These characteristics have already been exploited in

interesting applications of Prolog in the practical areas of

computer-aided architectural design [Markusz 1977] and drug design

[Darvas et al. 1976,1977].

Earlier we ompared`unification with Microplanner-style pattern

matching. There is an important difference which we summarise in the

"equation":-

unification = pattern matching + the logical variable

The distinction lies in the special nature and more flexible behaviour

of the variable in Prolog, referred to as the "logical" variable.

Page 70

Briefly, each use of a Prolog variable stands for a particular,

unchangeable data item. However the actual value need not be

specified immediately, and may remain unspecified for as long as is

required. The computational behaviour is such that the programmer

need not be concerned whether or not the variable has been given a

value at a particular point in the computation. This behaviour is

entirely a consequence of constraints arising from logic, the language

on which Prolog is founded.

By contrast, the variable in most other programming languages is

a name for a machine storage location, and the way it functions can

only be understood in this light. The "assigning" of values to

variables is the programmer's responsibility and in many situations he

must guarantee that the variable is not left unassigned. This applies

equally to the variables used in the Planner family of pattern

matching languages. There, each occurrence of a variable in a pattern

has to be given a prefix to indicate the status (assigned or

unassigned) of the variable at that point. The programmer must

understand details of the implementation and sequencing of the pattern

matching process, whereas Prolog's unification is a "black box" as far

as the user is concerned.

There are some other programming languages where the variable

does not have to be thought of as a machine location, most notably

pure Lisp. In pure Lisp as in Prolog, the behaviour of the variable

is governed by an underlying formal mathematical system, in this case

Church's lambda calculus. As a consequence, the machine-oriented

concepts of assignment and references (pointers) are not an (explicit)

Page 71

part of either language. These are just some of a number of

parallels between Prolog and pure Lisp.

close

Now it is well known that pure Lisp is too weak for many

purposes. Various extensions to the language are a practical

necessity. In particular the operations rplaca and rplacd are

provided to allow components of a data structure to be overwritten.

This immediately introduces into the language the concepts of

assignment and reference which were previously avoided.

No similar extension is provided in Prolog, nor is it needed

owing to the special properties of the logical variable. The main

point is that a Prolog procedure may return as output an "incomplete"

data structure containing variables whose values have not yet been

specified. These "free" variables can subsequently be "filled in" by

other procedures. This is achieved in the course of the normal

matching process, but has much the same effect as explicit assignments

to the fields of a data structure. A necessary corollary is that when

two variables are matched together, they become linked as one. In

implementation terms, a reference to one variable is assigned to the

cell of the other. These references are completely invisible to the

user; all necessary dereferencing is handled automatically behind the

scenes.

In general, the logical variable provides much of the power of

assignment and references, but in a higher-level, easier-to-understand

framework. This is reminiscent of the way most uses of goto can be

avoided in a language with "well-structured" control primitives.

Page 72

There is an important relationship between co-routining and the

logical variable. Co-routining is the ability to suspend the

execution of one procedure and communicate a partial result to

another. Although not provided as such in Prolog,, it is easily

programmed without resort to low-level concepts, because the logical

variable provides the means for partial, results and suspended

processes to be treated as regular data structures. The main

difficulty is to determine when to co-routine, but this problem is

common to languages with explicit co-routining primitives.

So far we have previewed Prolog as a "set of features". The

features are significant primarily because they mesh together well to

make the task of programming less laborious. They can be looked on as

a useful selection and generalisation of elements from other

programming languages. However Prolog actually arose by a different

route. It has a unique and more fundamental property which largely

determines the nature of the other features. This property, that a

Prolog program can be interpreted declaratively as well as

procedurally, is the real reason why Prolog is an easier language to

use.

For most programming languages, a program is simply a description

of a process. The only way to understand the program and see whether

it is correct is to run it - either on a machine with real data, or

symbolically in the mind's eye. Prolog programs can also be

understood this way, and indeed this view is vital when considering

efficiency. We say that Prolog, like other languages, has a

procedural semantics, one which determines the sequence of states

Page 73

passed through when executing a program.

However, there is another way of looking at a Prolog program

which does not involve any notion of time. Here the program is

interpreted declaratively, as a set of descriptive statements about a

problem domain. From this standpoint, the "lines" of the program are

nothing more than a convenient shorthand for ordinary natural language

sentences. Each line is a statement which makes sense in isolation,

and which is about objects (concrete or abstract) that are separate

from the program or machine itself. The program is correct if each

statement is true.

The natural declarative reading is possible, basically because

the procedural semantics of Prolog is governed by an additional

declarative semantics, inherited straight from logic. The statements

which make up a Prolog program are in fact actually statements of

logic. The declarative semantics defines what facts can be inferred

from these statements. It lays down the law as to what is a correct

result of executing a Prolog program. How the program is executed is

the province of the procedural semantics.

The declarative semantics helps one to understand a program in

the same kind of way as the law of conservation of energy helps one to

understand a mechanical system without looking in detail at the forces

involved. Analogously, the Prolog programmer can initially ignore

procedural details and concentrate on the (declarative) essentials of

the algorithm. Having the program broken down into small

independently meaningful units makes it much easier to understand.

This inherent modularity also reduces the interfacing problems when

Page 74

several programmers are working on a project. Bugs are less likely,

perhaps because it is difficult to make a "logical error" in a program

when its logic is actually expressed in logic!

Of course there will always be errors due to typing mistakes,

oversights or plain muddled thinking. Such errors are, however,

relatively harmless because of one other very important property of

(basic) Prolog - that it has a totally defined (procedural) semantics.

This means that it is impossible for a syntactically correct program

to perform (or even attempt to perform) an illegal or undefined

operation. This is in contrast to most other programming languages

(cf. array indices out of bounds in Fortran, or car of an atom in

Lisp). An error in a Prolog program will never cause bizarre

behaviour. Nor will the program be halted prematurely with an error

message indicating that an illegal condition has arisen.

1.2 What

The first implementation of Prolog was an interpreter written in

Algol-W by Philippe Roussel [1972]. This work led to better techniques

for implementing the language, which were realised in a second

interpreter, written in Fortran by Battani and Meloni [1973]. A useful

account in English of this implementation is given by Lichtman [1975].

A notable feature of the design is the novel and elegant

"structure-sharing" technique [Boyer, Moore 1972] for representing

structured data inside the machine. The basis of the technique is to

represent a compound data object by a pair of pointers. One pointer

indicates a "skeleton" structure occurring in the source program, the

Page 75

other points to a vector of value cells for variables occurring in the

skeleton. The representation enables structured data to be created

and discarded very rapidly, in comparison with the conventional

"literal" representation based on linked records in "heap" storage. A

further advantage is greater compactness in most cases.

Since the Marseille Fortran implementation, other authors have

implemented Prolog interpreters of essentially similar designs. Peter

Szeredi [1977] has a very practical CDL implementation, with nice

debugging aids, running on various machines including ICL 1900 and

S/4. Maurice Bruynooghe [1976] has written an interpreter in Pascal.

He gives a good introduction to the fundamentals of Prolog

implementation and describes a space saving technique using a "heap".

Grant Roberts [1977] has a very efficient interpreter written in IBM

370 assembler, which also has good "human engineering".

The main subject of this Part of the thesis is a Prolog system

written specifically for the DECsystem-10 [DEC 1974] by the author, in

collaboration with Luis Pereira and Fernando Pereira of the National

Civil Engineering Laboratory, Lisbon. The system includes a compiler

from Prolog Into DEC10 assembly language and a conversational Prolog

interpreter. It uses the same fundamental design, including the

"structure-sharing" technique, as was developed for the second

Marseille interpreter. However the implementation is considerably

faster, owing to compilation, and also because it was possible to

capitalise on the elegant DEC10 architecture which is particularly

favourable to the structure-sharing technique.

Page 76

A variable in a "skeleton" structure can be nicely represented by

a DEC10 "address word". This specifies the address of the variable's

cell as an offset relative to the contents of an index register. Any

DEC10 instruction can obtain its operand indirectly by referring to an

address word. This means that, once the appropriate index register

has been loaded, each of the fields of a structure-shared record can

be accessed in just one instruction.

It was in fact the possibilities of compilation and the DEC10

which originally inspired the writing of a new system. (A preliminary

version which compiled into BCPL was abandoned at an early stage since

it was found impossible to fully exploit the potential of the DEC10.)

The compiled code shows a 15 to 20-fold speed improvement over the

Marseille interpreter. It is quite compact at about 2 words per

source symbol. The compiler itself is written in Prolog and was

"bootstrapped" using the Marseille interpreter. The new interpreter

is also largely implemented in Prolog.

Much of the material in this Part of the thesis will be a

description of techniques developed by others (although nowhere fully

documented). The main innovations are:-

(1) the concept of compiling Prolog,

(2) certain measures to economise on space required during execution,

(3) improved indexing of clauses.

The most important innovation is compilation. Now recall that a

Prolog computation is essentially just a sequence of unifications or

pattern matching operations. Each unification involves matching two

terms or "patterns". One term is a "goal" (or "procedure call") and is

Page 77

instantiated. The other is the uninstantiated "head" of a clause (or

'procedure entry point"). The principal effect of compilation is to

translate the head of each clause into low-level instructions which

will do the work of matching against any goal pattern. Thus there

remains little need for a general matching procedure. Specialised

code has been generated to replace most uses of it.

Much of the code just amounts to simple tests and assignments.

In particular, all that has to be done for the first occurrence of a

variable is to assign the matching term to the variable's cell. Thus

this very common case is also very fast.

The code generated for a compound subterm (or sub-pattern) splits

into two cases. If the matching term is a variable, a new data

structure is constructed (using structure-sharing) and assigned to the

variable. The code for the other case is responsible for accessing

subcomponents of the matching term, ie. it does the work of selectors

in a conventional language.

The main drawback of the Marseille interpreter is its

unacceptable appetite for working storage. Like Bruynooghe, we have

devoted considerable attention to this problem. Our solution is to

classify Prolog variables into "locals" and "globals". This is

performed by the compiler and need be of no concern to user. Storage

for the two types is allocated from different areas, the local and

global stacks, analagous to the "stack" and "heap" of Algol 68. When

execution of a procedure has been completed "determinately" (ie.

there are no further multiple results to be produced), local storage

is recovered automatically by a stack mechanism, as for a conventional

Page 78

language. No garbage collector is needed for this process.

The space saving achieved through this process can be improved if
the user supplies optional pragmatic information via an innovation

known as "mode decalarations". A mode declaration declares a

restriction on the use of a procedure, ie. one or more arguments are

declared to be always "input" (a non-variable) or always "output" (a

variable). Thus the user is forgoing some of the flexibility of

Prolog's "multi-purpose" procedures. This enables the system to place

a higher proportion of variables in the more desirable "local"

category and also helps to improve the compactness of the compiled

code.

In addition to these measures, our system can also recover

storage from the global stack by garbage collection, cf. Algol 68's

heap. The garbage collector used has to be quite intrincate even by

normal standards. After what is in principle a conventional "trace

and mark", space is recovered by compacting global storage still in

use to the bottom of the stack. This involves "remapping" all

addresses pointing to the global stack.

It is important to notice that a garbage collector is not

essential for our system. If the user restricts himself to small

tasks the garbage collector need never be used. This is because a

stack mechanism recovers all storage automatically on backtracking, or

when-the overall task is complete, as for the Marseille interpreter.

An additional point of practical importance is that our implementation

automatically adjusts the sizes of the different storage areas during

execution (remapping addresses as necessary).

Page 79

The combined effect of these space saving measures is a

substantial reduction in run-time storage needed for programs which

are totally determinate (eg. the compiler itself) or partly

determinate (most Prolog programs in practice). A 10-fold improvement

over the Marseille interpreter would seem to be not unusual, although

this depends very much on the actual program. (Even in the worst case

of a totally non-determinate program, there is still a 2-fold

improvement due simply to a better packing of information into the

DEC10 word.)

In the Marseille interpreter, the clauses which make up both

program and data are only indexed by the predicate (ie. procedure or

relation name) to which they relate. Our compiler indexes clauses

both by predicate and by the form of the first argument to this

predicate. This is tantamount, for a procedure, to case selection by

a fast "switch" (or computed oto). For data, it amounts to storing

information about a relation in an array (or hash table).

Our description of Prolog implementation will take the form of a

definition of a "Prolog machine" (PLM). The aim is to present, in as

general a way as possible, the essential features of our DEC10

implementation, especially compilation. Although the structure of the

PLM is directed specifically to the needs of Prolog, the result is a

comparatively low-level machine with an architecture of a quite

conventional form. It operates on data items of fixed sizes, which

may be stored in special registers, areas of consecutively addressed

locations, and "push-down" lists. The machine has a repertoire of

instructions, each taking a small fixed number of arguments of

Page 80

definite size. In most cases, the processing of one instruction

involves only a small and bounded amount of computation.

The Prolog machine has of course been designed primarily with the

DEC10 in mind. As we have previously mentioned, DEC1O's "effective

address" mechanism greatly promotes the structure-sharing technique.

However it should not, be difficult to implement the design on any

conventional computer, although the result might not be quite so

efficient. More exciting perhaps would be the possibility of

realising the machine in microprogram or even hardware.

In our DEC10 implementation, the effect of each Prolog machine

instruction is achieved partly by in-line code and partly by calls to

out-of-line subroutines. The optimal mixture is a tactical decision

which has varied considerably during the course of implementation.

The efficient "indirect addressing" and subroutine call of the DEC10

mean that operations can be performed out-of-line with very little

overhead.

At present the Prolog compiler compiles directly into DEC10

assembler. Since the compiler is itself written in Prolog, it could

easily be adapted to generate "Prolog machine code" as such. This

code could be interpreted by an autonomous program written in almost

any programming language. Alternatively it should not be difficult to

produce a version of the compiler which translates into the assembly

language of some other machine. The compiler itself is not described

here (see [Warren 1977] for a general discussion of compiler writing

in Prolog). However the function it performs should be clear from the

relationship between Prolog machine instructions and Prolog source

Page 81

programs documented in Section /4.9/ and Appendix /2./.

Note: This Part of the thesis does not attempt to describe the

implementation of the "evaluable predicates" etc. which are essential

to a usable interactive system. These provide, among other things,

built-in arithmetic, input-output, file handling, state saving,

internal "database", and meta-logical facilities. It is an

unfortunate fact that the major labour involved in implementing a

Prolog system is providing such "trimmings".

Page 82

2.0 THE PROLOG LANGUAGE

The basic Prolog language is best considered as being made up of

two parts. On the one hand, a Prolog program consists of a set of

logical statements, of the form known as Horn clauses. Clauses are

just a simple normal form, (classically) equivalent to general logical

statements. Horn clauses are an important sub-class, which amounts

essentially to dropping disjunction ("or") from the logic*. {* This

subclass appears to be common ground between classical and

intuitionist logic.)

The second part of Prolog consists of a very elementary control

language, although "language" is really too strong a word. Through

this control information, the programmer determines how the Prolog

system is to set about constructing a proof. ie. The programmer is

specifying exactly how he wants his computation done. The control

language consists merely of simple sequencing information, plus a

primitive which restricts the system from considering unwanted

alternatives in constructing a proof.

There are two distinct ways of understanding the meaning of a

Prolog program, one declarative and one imperative or procedural. As

far as the declarative reading is concerned, one can ignore the

control component of the program. The declarative reading is used to

see that the program is correct. The procedural reading is necessary

to see whether the program is efficient or indeed practical.

Generally speaking, a Prolog program is first conceived declaratively,

and then control information is added to obtain a satisfactory

procedural aspect.

Page 83

In the rest of this section we shall merely summarise the syntax

we use, and briefly describe the semantics (both declarative and

procedural) of the language. For a fuller discussion, see the

references on Prolog and logic programming quoted earlier. The reader

unfamiliar with Prolog may also find it useful to look at the

comparative examples of Prolog, Lisp and Pop-2 listed in Appendix /5./

and discussed in Section /8.1/.

2.1 Syntax And Terminology

A Prolog program is a sequence of clauses. Each clause comprises

a head and a body. The body consists of a sequence of zero or more

(or procedure calls). For example the clause written:-

P :- Q, R, S.

has P as its head and Q, R and S as the goals making up its body. A

unit clause is a clause with an empty body and is written simply as:-

P.

The head and goals of a clause are all examples of terms and are

referred to as boolean terms.

In general, a term is either an elementary term or a compound

term. An elementary term is either a variable or a constant.

A variable is an identifier beginning with a capital letter or

with the character `_' (underline). For example:-

X, Tree, LIMIT

are all variables. If a variable has just a single occurrence in the

clause this may be written simply as (underline):-

Page 84

(Note that a variable is limited in scope to a single clause, so that

variables with the same name in different clauses are regarded as

distinct).

A constant is either an atom* or an integer. (* Not to be

confused with the use of "atom" in resolution theory, cf. instead

Lisp.) An atom is any sequence of characters, which must be written in

single quotes unless it is an identifier not confusable with a

variable or an integer. For example:-

a, null, =, >_, 'DEC system 10'

are all atoms. Integers are constants distinct from atoms. An

identifier consisting of only decimal digits will always represent an

integer. For example:-

999, 0, 727

A compound term comprises a functor (called the principal functor

of the term) and a list of one or more terms called arguments. Each

argument in the list has a position, numbered from 0 upwards. A

functor is characterised by its name, which is an atom, and its arity

or number of arguments. For example the compound term, whose functor

is named "point" of arity 3, with arguments X,Y and Z is written:-

point(X,Y,Z)

In addition to this standard notation for compound terms certain

functors may be declared as prefix, infix or postfix operators

enabling alternative notation such as

X+Y, (P;Q), 3<4, not P, N factorial

instead of

Page 85

+(X,Y), ;(P,Q), <(3,4), not(P), factorial(N)

A constant is considered to be a functor of arity 0. Thus the

principal functor of a constant is the constant itself.

The principal functor of a boolean term is called a predicate.

The sequence of clauses whose heads all have the same predicate is

called the procedure for that predicate. The depth of nesting of a

term in a clause is specified by a level number. The head and goals

of a clause are at level 0, their immediate arguments at level 1, and

so on for levels 2, 3, etc. In general we do not allow a level 0 term

to be a variable or integer. A compound term not at level 0 is called

a skeleton term.

Some sample clauses (for list concatenation and a rather

inefficient list reversal) are:-

concatenate(cons(X,L1),L2,cons(X,L3)) :-

concatenate(L1,L2,L3).

concatenate(nil,L,L).

reverse(cons(X,LO),L) :-

reverse(L0,L1), concatenate(L1,cons(X,nil),L).

reverse(nil,nil).

2.2 Declarative And Procedural Semantics

The key to understanding a Prolog program is to interpret each

clause informally as a shorthand for a statement of natural language.

A non-unit clause:-

P :- Q, R, S.

is interpreted as:-

Page 86

P if Q and R and S.

We now have to interpret each boolean term in the program as a simple

statement. To do this, one should apply a uniform interpretation of

each functor used in the program. eg. for the sample clauses above:-

nil = "the empty list"
cons(X,L) _ "the list whose first element is X

and remaining elements are L"

concatenate(L1,L2,L3) = "L1 concatenated with L2 is L3"

reverse(L1,L2) = "the reverse of L1 is L2"

Each variable in a clause is to be interpreted as some arbitrary

object. Now our four clauses are seen to be shorthand for the

following stilted but otherwise intelligible English sentences:-

"The list, whose first element is X and remaining elements are L1,
concatenated with L2 is the list, whose first element is X and
remaining elements are L3, if L1 concatenated with L2 is L3."

"The empty list concatenated with L is L."

"The reverse of the list, whose first element is X and remaining
elements are L0, is L if the reverse of LO is L1 and L1 concatenated
with the list, whose first element is X and remaining elements are the
empty list, is L."

"The reverse of the empty list is the empty list."
The declarative semantics of Prolog defines the set of boolean

terms which may be deduced to be true according to the program. We

say that a boolean term is true if it is the head of some clause

instance and each of the goals (if any) of that clause instance is

true, where an instance of a term (or clause) is obtained by

substituting, for each of zero or more of its variables, a new term

for all occurrences of the variable. That completes the declarative

semantics of Prolog.

Page 87

Note that this recursive definition of truth makes no reference

to the sequencing of clauses or the sequencing of goals within a

clause. Such sequencing constitutes control information. It plays a

role in the procedural semantics, which describes the way the Prolog

system executes a program. Here, the head of a clause is interpreted

as a procedure. entry point and a goal is interpreted as a procedure

call. The procedural semantics defines the way a given goal is

executed. The aim is to demonstrate that some instance of the given

goal is true.

To execute (or solve) goal P, the system searches for the first
clause whose head matches or unifies with P. The unification process

(Robinson 1965] finds the most general common instance of the two

terms (which is unique if it exists). If a match is found, the

matching clause instance is then activated by executing in turn, from

left to right, each of the goals of its body (if any). If at any time

the system fails to find a match for a goal, it backtracks. ie. It
rejects the most recently activated clause, undoing any substitutions

made by the match with the head of the clause. Next it reconsiders

the original goal which activated the rejected clause, and tries to

find a subsequent clause which also matches the goal. Execution

terminates successfully when there are no more goals waiting to be

executed. (The system has found an instance of the original goal P

which must be true.) Execution terminates unsuccessfully when all

choices for matching the original goal P have, been rejected.

Execution is, of course, not guaranteed to terminate.

Page 88

In general, backtracking can cause execution of a goal P to

terminate successfully several times. The different instances of P

obtained represent different solutions (usually). In this way the

procedure corresponding to P is enumerating a set of solutions by

iteration.

We say that a goal (or the corresponding procedure) has been

executed determinately if execution is complete and no alternative

clauses exist for any of the goals invoked during the execution

(including the original goal).

2.3 The Cut Operation

Besides the sequencing of goals and clauses, Prolog provides one

other very important facility for specifying control information.

This is the "cut" operator, written '!'. (Originally written '/' and

dubbed "slash".) It is inserted in the program exactly like a goal,

but is not to be regarded as part of the logic of the program and

should be ignored as far as the declarative semantics is concerned.

Examples of its use are:-

member(X,cons(X,_)):-!.
member(X,cons(,L)) :- member(X,L).

compile(S,C) :- translate(S,C),!,assemble(C).

The effect of the cut operator is as follows. When first
encountered as a "goal", cut succeeds immediately. If backtracking

should later return to the cut, the effect is to fail the goal which

caused the clause containing the cut to be activated. In other words,

the cut operation commits the system to all choices made since the

Page 89

parent goal was invoked. It renders determinate all computation

performed since and including invocation of the parent goal, up until

the cut.

Thus the second example above may be read declaratively as "C is

a compilation of S if C is a translation of S and C is assembled" and

procedurally as "In order to compile C, take the first translation of

C you can find and assemble it". If the cut were not used here, the

system might go on to consider other ways of 'translating C which,

although correct, are unnecessary or are unwanted.

Such uses of cut do no violence to the declarative reading of the

program. The only effect is to cause the system to ignore superfluous

solutions to a goal. This is the commonest use of cut. However, it
is sometimes used in such a way that part of the program can only be

interpreted procedurally. Often these cases suggest higher level

extensions that might ideally be provided. For example:-

property(X) :- exceptional(X),!,fail.

property(X).

might perhaps be better expressed as:-

property(X) :- unless exceptional(X).

Clearly it is not intended that 'property(X)' should be a bona fide

solution for any X, as a declarative reading of the second clause

would indicate.

Even if better alternatives could be found for the controversial

uses of cut, there seems no reason to object to its legitimate use as

a purely control device. Consequently we shall treat cut as a basic

part of the Prolog language.

Page 90

3.0 OVERVIEW OF PROLOG IMPLEMENTATION

Prolog implementation rests on the design of processes for:-

(1) (recursive) procedure call,

(2) unification,

(3) backtracking,

(4) the cut operation.

The first is a familiar problem in the implementation of

high-level languages and is solved in the usual way through the use of

one or more stacks. However because of the nondeterminate nature of

Prolog, one cannot automatically contract the stack(s) on procedure

exit as is usual. In general this process has to wait until

backtracking has caused the procedure to iterate through to its last

result.

Unification takes the place of tests and assignment in

conventional languages. The major problem is how to represent the new

terms (data structures) which are created. The solution devised at

Marseille is a novel and elegant approach to the problem of

representing structured data. It is essentially the same as

Boyer-Moore's "structure sharing with a value array", developed at

Edinburgh.

Backtracking requires the ability to remember and rapidly restore

an earlier state of computation. Solutions have been devised for a

number of experimental languages. Usually the implementation reflects

the fact that facilities for nondeterminate computation have been

built on top of an existing language. Backtracking is an integral

Page 91

part of Prolog, and consequently is less easily separated from the

overall design of an implementation. Indeed it strongly influences

the choice of structure sharing, because of the speed with which new

data structure can be discarded as well as created through this

technique.

The cut operation restores conventional determinacy to a

procedure and allows the system to discard "red-tape" information

required for backtracking. The internal state becomes closer to that

of a conventional high-level language implementation. It will be seen

that the implementation of cut is closely bound up with that of

backtracking.

3.1 Structure Sharing

The key problem solved by structure sharing is how to represent

an instance of a term occurring in the original source program. We

shall call the original term a source term* and the new instance a

constructed term. (*Also called input terms in the literature on

resolution.) The solution is to represent the constructed term by a

pair:-

< source term, frame >

where the frame is a vector of constructed terms representing the

values of the variables in the source term. Each variable is given a

number which indicates the position in the frame of its value. (We

shall also say the variable is bound to that value.) If the variable

is unbound, its value is a special-construct called 'undef'.

Page 92

Thus if we are given source terms:-

thetal = tree(X1,a,X2)

theta2 = tree(Y1,Y2,Y3)

then the constructed term pictured as:-

represents the term:-

tree(Xl,a,tree(Y1,Y2,Y3))

If the source term is a constant then there is no need to provide a

frame, so we shall treat constants as being both source terms and

constructed terms. Thus the constructed term pictured as:-

represents the term:-

tree(null,a,tree(Y1,b,Y3))

Notice also that the source part of a constructed term may be a

variable so that if, for example, X2 in thetal is bound to X1 and X1

is in turn bound to 'null', then:-

Page 93

X1

repr'esents:-

tree(null,a,null)

In an actual Implementation, a constructed term would generally

correspond to a pair of addresses, where one address would point to a

literal representation of the source term and the other to a vector of

storage cells. In practice we only use this form where the source

term is a skeleton, the resulting object being called a molecule. If
the source term is a variable, the constructed term corresponds simply

to the address of the variable's cell and is called a reference. Thus

the constructed term:-

represents:-

tree(Xl,a,tree(Xl,b,Xl))

The advantage of the structure sharing representation is that the

cost (in terms of both time and storage) of constructing new terms

from skeletons occurring in a clause is, at worst, proportional to the

number of distinct variables in those skeletons. If the same data

representation were used for constructed terms and source terms (as in

Lisp say), then the cost would be at least proportional to the total

Page 94

number of subterms (or, equivalently, of symbols) in the skeletons.

Of course the "direct" representation makes subsequent reference to

the components of the data structure somewhat easier. However for

most machines (particularly those like the DEC10 with good indirect

addressing facilities) this loss of speed is quite small and amply

repaid by the savings of space and the speed of creating and

discarding new data structure.

When complex terms are built up by unification one cannot in

general prevent chains of references being created. When unifying two

terms it is important to dereference both values by tracing down any

reference chains.

A final point concerns what is known as the "occur check".

Strictly a unification should not be allowed which binds a variable to

a term containing that variable. This would result in "infinite

terms", for example consider:-

infinitelist(X,L) :- L = cons(X,L).

X = X.

In practice this condition never arises in most normal Prolog

programs. Where it does, the programmer may well be wanting to

consider the infinite term as a legitimate data object (although this

is dangerous fo several reasons). Accordingly, Prolog implementations

do not bother to make the occur check, as it seems to require an

inordinate amount of computation for little practical benefit.

Page 95

3.2 Procedure Invocation And Backtracking

Just as structure sharing represents an instance of a source term

by a pair < source term, frame >, so we may notionally represent a

clause instance by a pair:-

< clause, environment >

The environment consists of one or more frames containing the value

cells for each variable occurring in the clause, plus all other

information associated with this clause instance ie. management

information. The environment is created in the course of unifying the

head of the clause with the activating goal. The information it
comprises may conveniently be stored on one or more stacks, as it is

created (by clause activation) and destroyed (by backtracking) on a

"last in first out" basis. We may summarise the management

information as follows:-

* A record of the parent (activating) goal and its continuation, ie.

the goals to be executed when the parent goal is solved. This item

can be thought of as a molecule-like pair:-

< parent goal + continuation (both in source program form),
parent environment >

* A list of the remaining source clauses which are alternative

candidates for matching the parent goal.

* The environment to backtrack to if the parent goal fails. ie. The

most recent environment preceding the current one for which the clause

activated is not the only remaining alternative for the activating

goal.

Page 96

* A list of variables bound in the course of unifying the parent goal

with the head of this clause. The list need not include variables

whose cells would be discarded anyway on backtracking eg. those in

the present environment.

The last three items are needed for backtracking. Effectively,

unification is allowed to side-effect existing variable cells (thereby

modifying the parent goal and its continuation) but has to leave a

record of the variables affected. Backtracking uses this list to

reset such variables to 'undef'. Unification is also responsible for

setting every variable cell in the new environment to 'undef' if it is

not otherwise initialised.

In our implementation, the environment is split into two frames,

local and global, allocated from, respectively, local and global

stacks, plus some locations for the "reset list" on a pushdown list
called the "trail". The global frame contains the cells for variables

occurring in skeletons. The local frame contains the cells for other

variables, plus all the management information (apart from the reset

list). When a procedure has been executed determinately, the local

frame is discarded automatically by a stack mechanism.

3.3 Implementing The Cut Operation

To implement the cut operation it suffices to take the parent's

backtrack environment as the current backtrack environment.

Optionally one may "tidy up" reset lists for the parent environment

onwards, by removing entries for variables which would now be

Page 97

discarded anyway on backtracking.

In our implementation, the "tidying up" is mandatory, since

otherwise a "dangling reference" to a discarded local frame may be

left in the list of reset variables. A similar argument, applies to

the global frame if a garbage collector is used. All local frames

used in the execution of any goals preceding the cut symbol in the

clause concerned are discarded when the cut is effected.

3.4 Compilation

One of the chief innovations of our Prolog implementation is that

the clauses are compiled into sequences of simple instructions to be

executed directly. This is in contrast to execution by a separate

interpreter, where clauses are stored in a more or less literal form.

The main effect of the compilation is to translate the head of each

clause into a sequence of instructions specialising the unification

algorithm to the case where one of the terms to be unified is the head

of the clause concerned.

Before describing compilation in detail (see Section /4.9/), it
may be helpful to give the flavour of the process through an example.

We shall translate Prolog clauses for list concatenation into an

informal Algol-style procedure. The clauses are:-

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3).
concatenate(nil,L,L).

The translation follows. The most important point to notice is that

much of the unification process is-translated into simple assignments.

Page 98

procedure concatenate is
try clausel;
try clause2;
fail;

clausel: (

local variable L2;
global variable X,L1,L3;
prematch skeleton cons(X,L1) against term[1];

* X,L1 := undef;
* if need to match subterms then

X subterm[l];
L1 := subterm[2]);

L2 := term[2];
prematch skeleton cons(X,L3) against term[3];
L3 := undef;

* if need to match subterms then
* match value of X against subterm[1];
* L3 := subterm[2]);

claim space for [X,L1,L2,L3];
call concatenate(L1,L2,L3);
succeed);

clause2: (
temporary variable L;
match atom nil against term[l];
L := term[2];
match value of L against term[3];
succeed))

The arguments of the matching goal (= a call to procedure

'concatenate') are referred to as 'ternm[1]', 'term[2]', ...etc. The

arguments of each of these terms are referred to as 'subterm[1J',

'subterm[2J', ...etc. The context for the latter is given by the

preceding 'prematch skeleton ...' instruction. 'prematch' is only

responsible for matching at the "outermost level". If the

corresponding goal argument is a variable, 'prematch' creates a new

molecular term and assigns it to this variable. Otherwise 'prematch'

merely checks for matching functors; matching of subterms is handled

by the instructions which follow the 'prematch'.

Page 99

If the programmer can guarantee that the 'concatenate' procedure

will only be called with first argument as "input" (ie. a

non-variable) and third argument as "output" (ie. a variable), then

the procedure can be somewhat simplified. Essentially, the lines

marked "*" can be omitted and variable L1 becomes a local instead of a

global.

Page 100

4.0 THE PROLOG MACHINE

In the previous sections, we have taken a general look at the

processes involved in executing a Prolog program, and have seen how

complex terms are built up using the structure-sharing technique. We

can now examine in more detail how all this realised in the Prolog

machine. Full reference details of the machine are given in

Appendices /1./ and /2./.

4.1 The Main Data Areas

Each clause of a Prolog source pro,Kgram is represented by a

sequence of PLM instructions and literals.* {* Not to be confused with

the use of "literal" in resolution theory.} Roughly speaking, there is

one instruction or literal for each Prolog symbol (ie. variable, atom

or functor). Instructions are executable whereas literals represent

fixed data. Both are stored in an area of the machine called the code

area. Unlike the other areas of the machine, information in the code

area is generally accessed in a "read--only" manner.

The two major writeable areas of the machine are the local stack

and the l obal stack. As their names imply, these areas are used as

stacks, that is all storage before a certain point (the "top" of the

stack) is in use and all storage after that point is not in use.

Furthermore the storage that is in use is referred to in a random

access manner. The top of each stack varies continually during the

course of a computation. Thus a stack amounts to a variable length

vector of storage.

Page 101

The global stack contains the value cells for l obal variables,

that is variables that occur in at least one skeleton, and which

therefore may play a role in constructing new molecules. Other

variables are called local variables and their value cells are placed

in the local stack. These variables serve merely to transmit

information from one goal to another. In addition, the local stack

contains management information which determines what happens next in

the event of a goal succeeding or failing, and is also used to effect

a cut.

Both stacks increase in size when a new goal is tackled, and

contract on backtracking. Space can also be recovered from the top of

the local stack when a goal is successfully completed and no

alternative choices remain in the solution of that goal. It is for

just this reason that two stacks are used rather than one. The

resulting saving of space can be very substantial for programs which

are determinate or partially determinate, as most in fact are. The

recovery of space occurs (a) when the end of a clause is reached and

the machine can detect that no other choices are open, (b) when a cut

is effected and at least one goal precedes the cut in the clause in

question. In the latter case all the local stack consumed during the

execution of the preceding goals is recovered.

The other main writeable area of the PLM is called the trail.
This area is used as a push-down list, ie. it is like a stack, with

the difference that items are "pushed" on or "popped" off one at a

time on a last-in first-out basis, and are not accessed in any other

way. The trail is used to store the addresses of variable cells which

Page 102

need to be reset to 'undef' on backtracking. As with the local and

.global stacks, it generally increases in size with each new goal and

is reduced by backtracking. The cut operation may also have the

effect of removing items from the trail.

PLM data items and storage locations come in two sizes, namely

short and long. Each area of the PLM comprises a sequence of

locations of the same size identified by consecutive addresses.* {* As

the trail area is used as a push down list, its locations do not

strictly need to be addressable.} A short location is big enough to

hold at least one machine address. A long location has room for two

addresses. (NB. Short and long locations need not in practice be

different in size. In our DEC10 implementation they both correspond

to 36-bit locations.) Each variable cell is a long location, so the

two stacks comprise long locations, while the trail is made up of

short locations. The locations in the code area are short;

instructions and literals should be thought of as short items, or

multiples thereof.

4.2 Special Registers Etc

Besides the main areas, the PLM has a number of special locations

called registers. In general these need only be short locations.

Registers V and V1 hold the addresses of the top of the local and

global stack respectively. Register TR holds a "push-down list
pointer" to the top of the trail.

Page 103

The environment for each clause instance is represented by a

local frame and a global frame, plus some trail entries. The layout

is shown in Appendix 1. The global frame is simply a vector of cells

for the global variables of the clause. The local frame comprises a

vector of local variable cells, preceded by 3 long locations

containing management information.

For most of the time, the PLM is in the process of trying to

unify the head of some clause against an existing goal. Register A

contains the address of a vector of literals representing the

arguments of the goal followed by its continuation. The continuation

is the instruction at which to continue execution when the goal is

solved. The environment of the current goal is indicated by registers

X and X1 which hold the addresses of, respectively, the local and

global frames for the clause instance in which the goal occurs.

Registers V and V1 therefore contain the corresponding information for

the environment that unification is endeavouring to construct. The

machine insures there is always a sufficient margin of space on each,

stack above' V and V1 for the environment of any clause. It is only

when a unification is successfully completed that the V and V1

pointers are advanced.

Registers VV and VV1 indicate, in a similar way, the most recent

environment for which the parent goal could possibly be matched by

alternative clause(s). Usually we shall have VV=V and VV1=V1, as there

will be other clauses in the current procedure which could potentially

match the current goal. In this case, register FL contains the

address of the instructtion at which to continue if unification should

Page 104

fail.

There are two other important registers which may be set during a

unification : register B is set to the address of a vector of literals

representing a skeleton, and register Y to the address of the

corresponding global frame.

Note: It may be helpful to think of <A,X> as being a molecule

representing the current goal and <B,Y> as a molecule representing a

level 1 subterm of that goal.

The 3 long locations of management information in each local

frame comprise 6 short item fields as illustrated below (the precise

arrangement is not really significant):-

VV i FL
X I A

V1
I

TR

The parent goal is indicated by the X and A fields, mirroring the

appropriate values for the X and A registers.

The V1 field contains the address of the corresponding global

frame mirroring the V1 register.

The VV field contains the value of the VV register prior to the

invocation of the parent goal for this environment. It therefore

indicates the most recent choice point prior to this environment.

The FL field contains the failure label for this environment, if
any, and is undefined otherwise. The failure label is the address of

an instruction at which to continue for an alternative match to the

Page 105

parent goal.

The TR field contains a value corresponding to the state of the

TR register at the point the parent goal was invoked.

The VV, FL and TR fields are needed primarily for backtracking

purposes.

4.3 Literals

Literals are PLM data items that serve as building blocks to

provide a direct representation for certain subterms of the original

Prolog source program. In particular they are needed to give skeleton

terms a concrete form so that structure sharing can be applied. We

shall not attempt to give more details of their internal structure

than is necessary. The different types of literal mentioned are

assumed to be readily distinguishable.

A skeleton literal represents a skeleton term and is a structure

comprising a functor literal followed by a vector of inner literals.

Each inner literal is a short item, typically an address which serves

as a pointer to the value of the subterm. The size of a functor

literal is left undefined, but it contains sufficient information for

it to be identified as the functor literal for a particular functor of

non-zero arity. It will be written as 'fn(I)' where 'I' uniquely

identifies the functor in question. (In our DEC10 implementation,

functors and atoms are numbered from 0 upwards and 'I' refers to this

number.)

Page 106

An inner literal is either an inner variable literal or the

address of a skeleton literal, atom literal or integer literal. Atom

and integer literals are long items written as 'atom(I)' or 'int(N)'

where 'I' uniquely identifies the atom in question and 'N' is the

value of the integer in question. An inner variable literal will be

written 'var(I)' where I is a number identifying the corresponding

global variable in the clause concerned. For structure sharing

purposes this number is used as an index to select the appropriate

cell from an associated frame of (global) variable cells.

We shall write '[S]' for the address of a structure S. Thus the

address of the literal corresponding to the skeleton:-

tree(null,X,tree(Y,X,Z))

might be written:-

[fn(tree) ,

[atom(null)],
var(1),
[fn(t ree) ,
var(2),
var(1),
var(3)]]

and pictured as:-

fn(tree)

Iatom(null)

Besides inner literals,

fn(tree) J var(2) var(1) I var(3)

which represent the arguments of a

skeleton term, the PLM needs outer literals to represent the arguments

of a goal. An outer literal is either the address of an atom integer

Page 107

or skeleton literal, or is a local literal, a global literal or a void

literal. Like inner literals, outer literals are short items, which

serve as pointers to the values of the subterms they represent.

If a goal argument is a variable, and the variable occurs

somewhere else in the clause within a skeleton term, then the argument

is represented by a global literal, written "global(I)' where 'I' is

the number of that global variable., If a goal argument is a variable,

and that variable occurs nowhere else in the clause then the variable

is represented by a void literal, written 'void'. Otherwise a variable

appearing as an argument of a goal is represented by a local literal,
written 'local(I)' where 'I' is a number identifying the local

variable.

Thus the arguments of the second goal in the clause:-

compile(S,C) :- translate(S,D,E), assemble((E;D),O,N,C).

might be represented by:-

[[fn(.L),var(1),var(2)] ,[int(o)] ,void,local(2)]

or pictured as:-

void local(2)

Jint(o)

fn() var(1) Far(2)

...continuation

remembering that the continuation always follows immediately after the

last argument literal of the goal.

Page 108

4.4 Constructs

The set of PLM data items which can appear as the values of

variable cells are called constructs. They serve to represent

constructed terms in a structure-sharing manner. Once again we shall

not attempt to give unnecessary details of their internal structure,

but will assume that they are long items and that the different types

are readily distinguishable.

The cell for an unbound variable contains the empty construct,

written 'undef'. The cell for a variable which has been bound to

another variable contains a reference, written 'ref(R)' where R is the

address of the other variable's cell. If a variable is bound to an

atom or an integer, its value cell will contain the corresponding atom

or integer literal. Finally if a variable is bound to an instance of

some skeleton, the corresponding construct is called a molecule and

written 'mol(S,X)' where S is the address of the corresponding

skeleton and X is the address of the corresponding frame.

4.5 Dereferencing

In the following, the process of dereferencing a variable will

often be referred to. At any point in a Prolog computation, this

process associates a certain non-empty construct with each variable.

This construct is said to be the (dereferenced) value of the variable

at that point. It is obtained by examining the contents of the

variable's cell and repeatedly following any references until a cell

is reached which contains a non-reference construct. If this

Page 109

construct is 'undef' the result of the dereferencing is a reference to

the cell which contains 'undef'. Otherwise the result is the final

construct examined.

4.6 Unification Of Constructs

We are now in a position to see how unification works out in

practice. Unifying two terms reduces to the task of unifying two

constructs which represent them. The first essential is to ensure

that the two constructs are fully dereferenced.

If neither construct is a reference, then unification will fail

unless we have two equal atoms or two equal integers or two molecules

with the same principal functor. In the last case the unification

process has to recurse and unify each of the arguments. (The action

to be taken on failure is described later.)

If just one of the constructs is a reference, then the other

construct has to be assigned to the cell indicated by the reference.

If both constructs are references, then clearly one reference

must be assigned to the cell of the other. It happens to be very

important that the more senior reference is assigned to the cell of

the more junior reference. A cell in the global stack is always more

senior than any cell in the local stack. Otherwise seniority is

determined by the cells' addresses - the one earlier in the stack is

considered more senior. These precautions are essential to prevent

"dangling references" when space is recovered from the local stack

following the determinate solution of a goal. (The "dangling

Page 110

reference" is a well known nightmare where a location is left
containing the address of a part of storage which has been

de-allocated from its original use.) The rules also play an important

role for efficiency in tending to prevent long chains of references

being built up. In typical Prolog programs it is quite rare for

dereferencing beyond the first step to be necessary, if the above

scheme is applied.

{The reader may find it interesting to compare our treatment of

variable-variable unification with Rem's algorithm described by

Dijkstra [1976,pp.161-167]. In fact, our treatment was devised before

reading Dijkstra's account. It is interesting that the same

"seniority" concept is used for (primarily) quite different reasons.)

Whenever a cell is assigned a (non-empty) value, it is usually

necessary to "remember" the assignment so that it can be "undone" on

subsequent backtracking. The exception is where the cell will in any

case be discarded on backtracking. This condition can easily be

detected in the PLM by the fact that the cell's address will be

greater than the contents of register VV for a local cell or register

VV1 for a globalcell. When the assignment has to be remembered the

address of the cell concerned is trailed, ie. pushed on to the trail
push-down list pointed to by register TR.

Page 111

4.7 Backtracking

When unification fails, the PLM has to backtrack to the most

recent goal for which there are other alternatives still to be tried.

Any environments created since the backtrack point are to be erased

and the space occupied on the local stack, global stack and trail is

to be recovered. Before attempting another unification, all

assignments made since the backtrack point to cells which existed

before the backtrack point must be undone by setting the values of

such cells to ' undef' .

local stack global stack trail

VV

V1

A
TR

space

to be
recovered

V
t
1 1

1 1

X1, c4

V1',
VV1

V1

TR'-O

1
reset

addresses

J

Page 112

The PLM keeps an up-to-date record of the environment to

backtrack to in registers VV and M. VV contains the address of the

local frame, VV1 the address of the global frame. Note that VV1 is

strictly superfluous since it merely shadows the contents of the V1

field in the local frame indicated by VV. The state of the trail
corresponding- to the backtrack point is ink icated by the TR field.

The necessary undoing of assignments is achieved by popping addresses

of the trail until the original trail state is reached; each cell so

addressed is reset to 'undef'. (Some of these cells are probably about

to be discarded anyway, but it is harmless to reset them regardless,

and this is likely to be simpler.)

For the remainder of the backtracking process, it is convenient

to consider two cases. The first is shallow backtracking, where there

are other alternatives for the current goal. This is of course easily

detected by the fact that VV=V. All that has to be done in this case

is to resume execution at the instruction indicated by FL.

In the case of deep backtracking, V and V1 have to reset from VV

and VV1 respectively. Registers X, A and FL are reset according to

the corresponding fields in the local frame indicated by VV. Register

X1 is reset from the V1 field in the local frame corresponding to X.

Finally, execution is resumed at the instruction indicated by FL.

Page 1.13

4.8 Successful Exit From A Procedure

Backtracking generally corresponds to a failure exit from a

procedure. A success exit occurs when the end of a clause is reached

If thq procedure exit is determinate, indicated by VV<X and showing

that no choices were made (or remain) in the execution of the

procedure, then local storage can be recovered by resetting V from X.

Registers X and A are reset from the corresponding fields in the local

frame indicated by the present value of X. Register X1 is then reset

from the V1 field of the local frame now indicated by X. Finally

execution is resumed at the continuation instruction which follows the

n short items addressed by A, where n is the arity of the predicate

for the procedure concerned.

local stack global stack

V1pl
i 1

Page 114

4.9 Instructions

Having covered the basic structure and function of the PLM, it
remains to describe how the clauses which drive it are actually

represented. It should be clear that a clause could be stored in a

very literal form (cf. a skeleton term) and interpreted directly.

This is precisely the way the Marseille interpreter operates. However

much of the work that such an interpreter would have to perform can be

eliminated by using extra information which is easily computed at the

time clauses are first introduced ("compile-time"). This i.ncludes:-

(1) Recognising that matching against the first occurrence of a

variable in the head of a clause is a special case. The variable must

obviously be as yet unbound and one simply has to bind the matching

term to it. There is no need to have previously initialised the

variable's cell to 'undef'. The whole operation is far simpler than in

the general case of a subsequent occurrence of the variable.

(2) If one is matching a variable in the head of a clause, and

that variable has no other occurrence in the clause, no action at all
need be taken. Furthermore if the occurrence is at level 1, no cell

need be created for that variable. Similarly, no cell is needed for a

single-occurrence variable at level 1 in a goal. Variables with a

single occurrence, which is at level 1, are called void variables.

(3) The interpreter generally has to make a recursive call when

matching the arguments of a skeleton against a non-variable term.

This overhead can be avoided if the skeleton occurs in the current

clause head, by associating information about depth of nesting (level

Page 115

number) with each symbol in the head of a clause. (The details will
be explained later.) Similarly, the need to keep a count of arguments

(of a skeleton or clause head) already matched can be avoided by

associating an argument number with each symbol in the head of a

clause. (The arguments of a functor are numbered from 0 upwards.)

(4) Normally an interpreter would allocate, and initialise to

'undef', all cells for a clause before commencing unification. We

have seen that much of this initialisation can be avoided. Also one

can postpone the remaining initialisation, and the "red-tape" of

storage allocation, as late as possible in the hope that a failure

will render them unnecessary.

(5) Variables can be categorised into different types (global,

local and temporary), depending on the way they occur in the clause,

so that the space occupied by certain variable cells can be recovered

earlier than is possible in general.

(6) By bringing together information from the different clauses

in a procedure one can optimise the selection of potentially matching

clauses and/or share part of the work involved in unifying with each

clause head, and in addition provide a means of detecting the

important case where the selection of a particular clause is

determinate. (See the later section on "Optional Extras").

In general, one Prolog source symbol plus the relevant extra

information corresponds to a specific simple operation on the Prolog

Machine. If one discounts dereferencing and cases resulting in a

failure of unification, the operation usually involves a strictly

Page 116

bounded amount of processing. It is therefore natural to think of the

augmented symbols as primitive machine instructions of the PLM.* {* In

fact the analogy with a convential machine like the DEC10 is quite

close if one compares dereferencing with the DEC1O's effective address

calculation and unbounded operations with DEC1O's block transfer (BLT)

and execute (XCT) instructions.)

No executable instructions are generated for the arguments and

subterms of a goal. These are represented purely by literal data as

indicated earlier. Also, no executable instructions are generated for

symbols deeper than the levels 1 and 2 in the head of a clause. This

is a purely arbitrary limit based on considerations of

cost-effectiveness in practical examples of Prolog programs.

In general, the code for a clause has the form:-

instructions
for
unification

'neck' instruction

'call' instructions

each followed by
outer literals

'foot' instruction

skeleton literals
(if any)

head of the clause

completes the new environment

body of the clause

transfers control to parent
goal's continuation

data (which could
be placed elsewhere)

Each goal is represented by an instruction 'call(P)' followed by a

Page 117

list of outer literals for its arguments. 'P' is the address of the

Procedure code for that predicate. This takes the form:-

enter
try(C1)
try(C2)

trylast(Cn)

'enter' is an instruction for initialising part of the management

information in a new environment. This function could perhaps better

be included in the operation 'call' so that 'enter' would be an

ignorable no-operation. (It is included as a separate instruction

because of the way it is handled in the DEC10'implementation.) Cl to

Cn are the addresses of the code for each of the clauses in the

procedure (in order). The last executable instruction in a clause is

generally 'foot(N)' where 'N' is the arity of the head predicate.

Before proceeding with a description of the instructions for the

head of a clause, we must first complete discussion of the different

categories of variable and the exact layout of an environment. The

variables of a clause are categorised according to expected

"lifetimes" which end when there is no longer any need to remember the

variable's value. The categories are as follows:-

Page 118

Name Lifetime ends

Global Backtracking.

Local Procedure completed
successfully and
determinately, ie. no
choices remain within
the procedure.

Temporary Completion of
unification with the
head of the clause.

Void None.

Criterion

Occurs in a skeleton.

Multiple occurrences,
with at least one in the
body and none in a
skeleton. -

Multiple occurrences,
all in the head of the
clause and none in a
skeleton.

A single occurrence, not
in a skeleton.

The global variables of a clause are numbered in some arbitrary

order which determines their positions in the global frame. Similarly

local and temporary variables are

positions in the local frame.

numbered to determine their

The only constraint is that locals

precede temporaries. This is so that the temporary part of the local

frame can be discarded at the end of unification (see the diagram in

Appendix 1). Variables in either frame are numbered from 0 (zero)

upwards. No cell is allocated for a void variable. In showing

examples of Prolog machine code, we shall assume that the variables of

each type are numbered according to their order of appearance in the

source clause.

We can now return to the discussion of instructions for the head

of a clause. The head is terminated by an instruction 'neck(I,J)'

where 'I' is the number of local variables (= the number of the first
temporary if any) and 'J' is the number of global variables.

Page 119

The instructions for an occurrence of a variable in the head

are:-

uvar(N,E,I) uvarl(N,E,I)
uref(N,E,I) urefl(N,E,I)

'uvar' or 'uvarl' is used if it is the first occurrence, 'uref' or

'urefl' otherwise. 'uvar' corresponds to level 1 and 'uvarl' to level

2, and similarly for all other pairs of instructions named 'name' and

'namel'. 'N' is the argument number of the occurrence, 'E' is the

frame ('local' or 'global') containing the variable's cell, and 'I' is

the number of the variable. No instruction is needed for a variable

with a single occurrence.

Similarly there are instructions for an occurrence of an atom or

integer in the head:-

uatom(N,I) uatoml(N,I)
uint(N,I) uintl(N,I)

Once again, 'N' is the argument number of the occurrence. For an

integer, 'I' is the actual value of the integer. For an atom, 'I'
uniquely identifies that atom.

For a skeleton at levels1, the instructions are:-

uskel(N,S)
init(I,J)
ifdone(L)

argument
instructions

L:

'N' is the argument number of the skeleton within the head. 'S' is

the address of a corresponding skeleton literal (which may be assumed

to be placed after the 'foot' instruction). The global variables which

have their first occurrences within the skeleton are numbered from 'I'

Page 120

through 'J'-1. The effect of the 'ini.t' instruction is to initialise

these variables to 'undef'. If 'I'='J', the instruction is a

no-operation and may be omitted. The instruction 'ifdone' causes the

instructions for the arguments of the skeleton to be skipped if the

matching construct is a reference. 'L' is the address of the

instruction following the last argument instruction.

Note that the arguments of the skeleton could be coded in any

order since each instruction contains the argument number explicitly.

(A "first occurrence" of a variable would then mean the first
occurrence in the code.) Similarly for the arguments of the head

boolean term itself.

A skeleton at level 2 is coded simply as:-

uskell (N, S)

where 'N' and 'S' are analogous to the use in 'uskel'.

Immediately before a 'neck' instruction there are two

instructions:-

init(I1,J1)
localinit(12,J2)

The global and local variables which have their first occurrences in

the body of the clause are numbered respectively from 'I1' through

'Jl'-l and from '12' through 'J2'-1. Once again, either instruction is

an omissable no-operation if the two numbers are equal.

The instruction corresponding to the cut symbol is 'cut(I)' where

'I' is the number of local variabes in the clause. There are a number

of instructions which simply replace some common combinations of

instructions:-

Page 121

neckfoot(J,N) neck(O,J); foot(N)
neckcut(I,J) neck(I,J); cut(I)
neckcutfoot(J,N) neck(0,J); cut(0); foot(N)

That completes the basic instruction set of the PLM. We have not

described in detail the effect of each instruction,although this

should be clear from earlier discussion of how the PLM operates. Full

details are given in Appendix 2.

4.10 Examples Of Prolog Machine Code

Let us now illustrate the way Prolog source clauses are

translated into Prolog Machine Code by considering some examples.

4.10.1

List membership is defined by the following straight-forward

clauses:-

member(X,cons(X,L)).
member(X,cons(Y,L)) :- member(X,L).

The first clause has two global variables X and L. The second has one

local X and two globals Y and L. The code for the clauses is as

follows. Addresses etc. are represented by underlined identifiers

and where appropriate the corresponding instruction is indicated by a

label as in conventional assembly languages.

Code Source

clausel: uvar(0,global,0) member(X,
uskel(l,label2) cons(
init(1,2)
ifdone(labell)
urefl(O,global,0) X,L)

labell: neckfoot(2,2)

Page 122

label2: f n(cons)
var(0)
var(1)

clause2: uvar(0,local,0) member(X,
uskel(1,label4) cons(Y,
init(0,2)
ifdone(label3)
uvarl(1,global,l) L)

label3: neck(1,2)):-
call(member) member(
local(0) X,
global(1) L)
foot(2)
fn(cons)
var=0
var(1)

member: enter
try(clausel)
trylast(clause2)

4.10.2

An example of a use of 'cut' is the following definition of the

maximum of two quantities:-

maximum(X,Y,Y) :- X<Y, 1.
maximum(X,Y,X).

(Here cut is not purely a control device; the second clause can be

interpreted as "the maximum of X and Y is X by default if it is not

the case that X is less than Y".) The first clause has two local

variables while the second has one temporary X and one void Y. The

corresponding code is:-

Code Source

clausel: uvar(0,local,0) maximum(X,
uvar(1,local,l) Y,
uref(2,local,l) Y

neck(2,0)):-
call(<) <(
local(0) X,

Page 123

local(l) Y)
cut(2)
foot(3)

clause2: uvar(0,local,0) maximum(X,Y,
uref(2,local,0) X
neckfoot(0,3)) .

maximum: enter
try(clausel)
trylast(clause2)

4.11 Mode Declarations

In the previous section we saw that the code for list membership

included skeleton literals. Now these skeleton literals are only

really used if the membership procedure needs to construct new lists,

ie. when the second argument in the call is (dereferences to) a

reference construct. This is unlikely to be the case. Usually the

programmer will call 'member' simply to check whether something is a

member of an existing list. In this case the 'cons' subterms of the

'member' procedure will serve only to decompose an existing data

structure, not to construct a new one.

If the programmer can guarantee to restrict the use of a

predicate in this kind of way, then the system can optimise the code

generated. The main potential improvements are:-

* Unnecessary code can be dispensed with. If a skeleton term always

serves as a "destructor" then a skeleton literal is not needed. If it
always serves as a "constructor" then no executable instructions are

needed for the arguments.

Page 124

* If these changes result in a variable no longer appearing in a

skeleton literal, then that variable no longer needs to be global.

Its cell can therefore be allocated on the local stack and space

recovered on determinate procedure exit.

Accordingly, the PLM allows the programmer to specify an optional

mode declaration for each predicate. Some examples of the syntax used

are:-

:-mode member(?,+).

:-mode concatenate(+,+,-).

The first declaration states that, in any call of 'member', the second

argument will be a non-reference construct and the first argument is

unrestricted. The declaration for 'concatenate' indicates that the

first two arguments are always non-reference constructs and the third

is always a reference. ie. 'concatenate' is applied to two given

lists to create a new third list.

These examples illustrate all the cases of mode information

currently accepted by, and useful to, the PLM. The idea could

obviously be extended. We should emphasise that the declarations are

optional and do not affect the visible behaviour of the program except

in regard to efficiency (provided the restrictions imposed are valid).

If no mode declaration is given for a predicate, it is equivalent to a

declaration with all arguments '?'.

The effect on the PLM of a mode declaration is limited to changes

to the code generated for skeletons at level 1 and consequent

re-categorisation of variables. If a skeleton is in a '-' position,

it is playing a purely "constructive" role and the code is:-

Page 125

uskelc(N,S)
init(I,J)

ie. A 'uskelc' instruction replaces the 'uskel' instruction and the

'ifdone' and argument instructions are dropped.

If the skeleton is in a '+' position, it is playing a purely

"destructive" role and the code is:-
uskeld(N,I)

argument
instructions

Here 'I' uniquely identifies the functor of the skeleton. The 'init'
and 'ifdone' instructions are dropped and no skeleton literal is

necessary. However if any argument of the -skeleton is itself a

skeleton, the code for that argument becomes:-

init(I,J)
uskell(N,S)

'N' and 'S' are the argument number and address of a skeleton literal
for the subterm. 'I' through 'J'-l are the numbers of the global

variables having their first occurrences in 'S'. As usual, the 'i.nit'

instruction can be omitted if 'I'='J'.

Note that if 'uskelc' encounters a non-reference, or 'uskeld' a

reference, an error message is given and a failure occurs.

Finally we should observe that in the previously stated criteria

for categorising variables, "occurrence in a skeleton" should be

construed as "occurrence in a skeleton literal". From a practical

point of view it is the re-classification of variables into more

desirable categories which is of major importance. The full benefit

of using two stacks rather than one for variable cells can only be

Page 126

obtained if mode declarations are used. For this reason we have not

treated mode declarations as one of the "optional extras" considered

later.

4.12 More Examples Of Prolog Machine Code

4.12.1

Let us now see how the mode declaration given for 'member'

affects the code. There are no longer any global variables. Two of

them become voids, one temporary and one local:-

Code Source

clausel: uvar(O,local,O) member(X,
uskeld(l,cons) cons(
urefl(O,local,O) X,L)
neckfoot(0,2)).

clause2: uvar(O,local,0) member(X,
uskeld(l,cons) cons(Y,
uvarl(l,local,l) L)
neck(2,O)):-
call(member) member(
local(O) X,
local(1) L)
foot(2)

member: enter
try(clausel)
trylast(clause2)

4.12.2

Page 127

A good example for illustrating many different features of code

generation is the following "quick-sort" procedure:-

:-mode sort(+,-).

:-mode qsort(+,-,+).
:-mode partition(+,+,-,-).

sort(L;O,L) :- qsort(LO,L,nil).

qsort(cons(X,L),R,RO) :-

partition(L,X,L1,L2),
qsort(L2,R1,RO),
qsort(L1,R,cons(X,R1)).

qsort(nil,R,R).

partition(cons(X,L),Y,cons(X,L1),L2) :-

X =< Y, !, partition(L,Y,L1,L2).
partiti.on(cons(X,L),Y,L1,cons(X,L2))

partition(L,Y,L1,L2).
parti_tion(nil,_,nil,nil).

The code generated is as follows:-

Code

clausel: uvar(O,local,0)
uvar(1,local,1)

neck(2,O)
local(O)
local(1)
[atom(nil)]
foot(2)

Source

clause2: uskeld(O,cons)
uvarl(O,global,0)
uvarl(1,local,0)
uvar(l,local,1)
uvar(2,local,2)
init(1,2)
localinit(3,5)
neck(5,2)
call(partition)
local(O)
global(O)
local(3)

local(4)
call(9sort)
local(4)
global(1)
local(2)
call(gsort)
local(3)
local(2)

qsort(cons(
X,
L),

R,

RO

partition(
L,

X,

L1,
L2),

qsort(
L2,

R1,
RO),
qsort(
L1,
R,

Page 128

labell
foot(3)

labell: fn(cons)
var(O)
var(1)

clause3: uatom(O,nil)
uvar(1,local,0)
uref(2,local,0)

neckfoot(0,3)

clause4: uskeld(0,cons)
uvarl(0,global,0)
uvarl(1,local,0)
uvar(1,local, 1)
uskelc(2,label2)

init(1,2)
uvar(3,local,2)
neck(3,2)
call(=<)
global(0)
local(1)
cut(3)
call(partition)

local(0)

local(1)
global(1)
local(2)
foot(4)

label2: fn(cons)
var(0)

var(1)

clause5: uskeld(0,cons)
uvarl(0,global,0)
uvarl(1,local,0)
uvar(1,local,1)
uvar(2,local,2)
uskelc(3,label3)
init(1,2)
neck(3,2)
call(partition)

local(0)
local(1)
local(2)
global(1)

foot(4)
label3: fn(cons)

var(0)
var(1)

clause6: uatom(O,nil)
uatom(2,nil)
uatom(O,nil)

cons(X,R1))

qsort(nil,
R,

R,

partition(cons(
X,

L),
Y,

cons(X,L1),

L2
):-

_<(
X,

Y),
t f
partition(
L,

Y,

L1,
L2)

partition(cons(
X,
L),

Y,
L1,
cons(X,L2)

partition(nil,_,

Page 129

neckfoot(0,0)

4.12.3

The following example illustrates the coding of nested

skeletons:-

:-mode rewrite(+,?).

rewrite(X or (Y and Z), (X or Y) and (X or Z)):-!.

Code

clausel: uskeld(O,or)
uvarl(O,global,O)
init(1,3)
uskell(l,label2)
uskel(l,label3)
i.fdone(labell)
uskell(0,label4)
uskell(l,label5)

labell: neckcutfoot(3,2)
label2: fn(and)

var(1)
var(2)

label3: fn(and)
label4
label5

label4: fn(or)
var(0)
var(1)

label5: fn(or)
var(0)
var(2)

Source

tewrite(or(
X,

and(Y,Z)),
and (

or(X,Y),
or(X, Z))

:-!.

Page 130

5.0 DEC10 IMPLEMENTATION DETAILS

In this section we shall indicate how the PLM can be efficiently

realised on a DEC10. A summary of the essential characteristics of

this machine is given in Appendix /3./. Fuller details of the

implementation of PLM instructions and literals are given in Appendix

/2J.

Short and long items both correspond to 36-bit words. A special

register corresponds to one of the sixteen fast accumulators. For

each writeable area there is set aside a (quasi-) fixed block of

storage in the low segment. The trail is accessed via a push-down

list pointer held in TR.

The DEC10 effective address mechanism contributes crucially to

the overall speed of the implementation. Each inner and outer literal
is represented by an address word which is generally accessed

indirectly. ie. The indirection bit is usually set in any DEC10

instruction which refers to the address word. In particular, the

address word for a variable specifies the address of its cell as an

offset relative to an index register. The index register will be

loaded with the address of the appropriate frame. In other cases

(constant or skeleton), the address word will contain a simple

address. The net result is that, despite structure-sharing, it only

takes one instruction to access a unification argument. Moreover, in

the majority of cases no further dereferencing of the argument will be

necessary. This can best be illustrated by looking at the code for an

example such as 'uvar(3,global,5)' :-

Page 131

MOVE T,@3(A) ;indirect load of argument into T

TLNN T,MSKMA ;check construct is a molecule or constant
JSP C,$UVAR Of not, call out-of-line subroutine
MOVEM T,5(V1) ;store argument in appropriate cell

Thus in the majority of cases only 3 instructions are executed to

complete this unification step. The matching term might be

'global(4)' represented by:-

WD 4(X1)

where 'WD' indicates an address word with zero instruction field. If
the cell corresponding to this variable contains a molecule say, the

effect of the 'MOVE' instruction will be to load the molecule into

register T. Note: If the cell contained 'undef', subroutine '$UVAR'

would be responsible for recovering the address of the cell. This is

easily achieved by the instruction:-

MOVEI T,@-3(C)

which simply loads the result of the effective address calculation

into T. '-3(C)' refers back to the original 'MOVE' instruction. A

similar operation is needed if the matching term is a skeleton. More

generally, this illustrates how part (or all) of a PLM instruction can

be performed out-of-line on the DEC10 with very little overhead, as

the subroutine can easily refer back to the in-line code.

A molecule 'mol(Skeleton,Frame)' is represented by a word:-

XWD frame,skeleton

The pair is inverted to facilitate accessing the arguments by

indexing. A reference construct corresponds to a simple address word

with left half zero. In passing, note that although all dereferencing

could be accomplished by a single instruction (with a different

representation of constructs and the indirection bit set in a

Page 132

reference), this would not be cost-effective (multi-step dereferencing

is too rare to justify the extra overheads). 'undef' is represented by

a zero word, as this value is easily initialised and recognised.

Both the 'call' and 'try' instructions are represented simply by

'JSP's :-

JSP A,predicate ;call predicate

JSP FL,clause ;try clause

other instructions are implemented as a mixture of in-line code and

call to out-of-line subroutines via:-

JSP C,routine

The 'uskel' instruction, if it matches a non-reference has the effect

of loading B with the address of the corresponding frame. If it
matches a reference, Y is set to zero and 'ifdone' is achieved by:-

JUMPE B,label

The TR field in a local frame holds the left-half of the

corresponding value for the TR register. This enables the trail to be

easily relocated since the TR fields will effectively contain trail
offsets rather than trail addresses.

Atom, integer and functor literals are represented by words:-

XWD $ATOM,i
XWD $INT,i
XWD $SKEL,i

The left halves $ATOM, $INT, $SKEL serve to label the different types

of literal. The right half 'i' is either the value of the integer, or

a functor table offset. The functor table contains information, such

as names and arities, associated with atoms and functors.

Page 133

6.0 OPTIONAL EXTRAS

In this section we discuss some "optional extras" which can

substantially improve the efficiency of the PLM. Because they are not

strictly essential, we treat them separately in order -to keep the

basic description of the PLM as simple as possible. However since

both "extras" provide substantial benefits at comparatively little
cost, they should be regarded as standard.

6.1 Indexing Of Clauses

The basic PLM eventually tries every clause in a procedure when

seeking to match a goal (unless "cut" is used explicitly, or implcitly

when a proof has been found). The code for each clause is actually

entered, although an early failure in unification may quickly re-route

control to the next clause. This is fine so long as there are only a

few clauses in a procedure or when a high proportion of the clauses

are going to match. However there are often cases where the clauses

for a predicate would conventionally correspond to an array or table

of information rather than a single procedure. Typically there are

many clauses with a variety of different non-variable terms in one or

more argument positions of the head predicate. An example might be

the clauses for a predicate 'phonenumber(X,N)' where 'N' is the phone

number of person 'X'.

Ideally one would like the system to access clauses

"associatively", to achieve a higher "hit" ratio of clauses matched to

clauses entered. In other words clauses should be indexed on a more

Page 134

detailed basis than head predicate alone. However there is a danger

of generating much extra indexing information which is not needed in

practice. For example a standard telephone directory is indexed so as

to facilitate answering questions of the form

phonenumber(aperson,X)'. To cater for questions of the form

phonenumber(X,anumber)' would require another weighty volume which

would be useless to the average customer. So in designing an indexing

scheme one has to balance generality against the benefit realised in

practice from the extra information stored. Also the whole object of

the scheme will be nullified if the indexing process is not fast. In

Prolog, there is an additional constraint that the clauses must be

selected in the order they appear in the program, as this order

frequently constitutes vital control information.

Besides the main objective, of speeding up the selection of

clauses to match a goal, indexing also helps the machine to detect

that a choice is determinate because no further clauses in the

procedure will match. This is important for determining when space

can be reclaimed from the local stack.

The indexing scheme we shall describe is relatively

straightforward, and results in clauses being indexed by predicate and

principal functor of the first argument in the head (if this term is

non-variable). This is achieved by replacing the first PLM instruction

in each clause by extra indexing instructions in the procedure code.

Much work is thereby telescoped, and clauses can often be selected by

a fast "table lookup". It is a simple compromise solution which is

perfectly adequate for many cases of practical interest, in particular

Page 135

for compiler writing in Prolog. Moreover in many other cases it is

not difficult to rewrite the program to take advantage of the indexing

provided, cf. the way two dimensional arrays are conventionally

mapped onto one dimensional storage, in Fortran implementations say.

For example one might replace a set of unit clauses for 'matrix' by

unit clauses for 'vector' plus the clause:-

matrix(I,J,X) :- K is I*20+J, vector(K,X).

provided we have:-

:-mode matrix(+,+,?).

The indexing then gives rapid access to the X such that

'matrix(I,J,X)' for given 'I' and 'J'. It also enables the machine to

take advantage of 'matrix' being a single valued function from 'I' and

'J' to 'X' and avoid retaining any local storage used in a call to

'matrix'. Such rewriting can usually be done without greatly impairing

the "naturalness" and readability of the program.

We shall now describe how the improved indexing 'scheme affects

the PLM instructions generated. Basically the first instruction in

each clause is to be omitted and the procedure code becomes more

complex. The clause sequence of a procedure is divided into sections

of consecutive clauses with the same type of argument at position 0 in

the head. The two types are "variable" and "non-variable". The former

corresponds to a general section and the latter to a special section.

The procedure code now takes the form of an 'enter' instruction

followed by alternating special and general sections:-

Page 136

enter

;sect

general
section
code

ssect(L,C)

special
section
code

Each general section commences with an instruction 'gsect'. This

instruction is equivalent to 'uvar(O,local,O)'. The clauses for a

general section have at least this one mandatory local variable which

is bound to the term passed as first argument in the call. If the

variable at position 0 in the head is global, an extra instruction:-

ugvar(I)

is placed at the beginning of the clause code. This instruction has

the same effect as 'uvar(O,global,I)'. The code for the general

section is simply:-

gsect
try(C1)

try(C2)

try(Cn)

where Cl through Cn are the addresses of the clauses in the section.

If it is the final section of the procedure, the last instruction is:-
trylast(Cn)

Page 137

The code for a special section takes the form:-

ssect(Label,Next)

non-reference
code

Label:
reference
code

Next:
endssect

'ssect' is responsible for dereferencing the term passed as first
argument and if the result is a reference, control is transferred to

the reference code commencing at 'Label'. The reference code is a

sequence of instructions, each of which is one of:-

tryatom(I,C)
tryint(I,C)
tryskel(S,C)

according to the form of the first argument in the head of the clause.

These instructions are respectively equivalent to:-

uatom(O,I); try(C)

uint(O,I); try(C)
uskel(O,S); try(C)

for the special case of matching against a reference. If it is the

final section of the procedure, the instruction 'endssect' is omitted

and one of:-

trylastatom(I,C)
trylastint(I,C)
trylastskel(S,C)

takes the place of the last instruction in the section. These

instructions are equivalent to:-

uatom(O,I); trylast(C)

etc. The instruction 'endssect' causes the following 'gsect'

instruction to be skipped and takes over its role for the special case

Page 138

concerned. The 'endssect' instruction is not strictly essential and

could be treated as an ignorable no-operation instead.

The "meat" of the improved indexing scheme lies in the

non-reference code which immediately follows an 'ssect' instruction.

In general this code has the form:-

switch(N)
case (L 1)
case(L2)

Basically, the code switches on a "hash code" determined by the

first argument in the call to some test code which finds (by a

sequence of tests against functors having the same "hash code") the

appropriate clause(s) (if any) for this functor. Each of these

clauses is then 'try'ed in turn. Usually there will be no more than

one clause per "hash code" value and so the cost of finding this

clause is independent of the number of clauses in the section.

In more detail, instruction 'switch' computes a key determined by

the principal functor of the first argument in the call (which has

been dereferenced by 'ssect'). 'N' is a certain power of 2 which is

the number of 'case' instructions following. The value of N is

arbitrary and is currently chosen to be the smallest power of 2 which

is not less than the number of clauses in the section. A number M in

the range 0 to N-1 is derived from the key by extracting the least

significant I bits where N is 2 to the power I. ie. M is the key

Page 139

modulo N. Control is then transferred to the address 'L' where the

(M+1)th. 'case' instruction is 'case(L)'. If there are only a few

clauses in the section (currently <5) then the 'switch' and 'case'

instructions are omitted and testcode as if for a single-case follows.

In general the testcode indicated by the address 'L:. in

instruction is of the form:-

'if' instructions

a case .

goto(Next)

where 'Next' is the address of the next general section. An

instruction 'goto(L)' merely transfers control to address 'L'. If the

list of 'if' instructions would otherwise be empty (see below), all
the testcode is omitted and the corresponding case instruction is

'case(Next)'. An 'if' instruction is one of:-

ifatom(I,Label)
ifint(I,Label)
ifskel(I,Label)

There is one 'if' instruction for each different atom, integer or

functor which occurs as a principal functor of the first argument of

the head of a clause in this section, and whose key corresponds to the

case concerned. The 'if' instructions can be ordered arbitrarily.

'I' uniquely identifies the atom, integer or functor concerned. Often

there will only be one clause for this constant or functor, in which

case 'Label' is the address of the clause's code. The effect of the

'if' instruction is to transfer control to 'Label' if the first
argument of the goal matches the constant or functor indicated by 'I'.
Since 'ssect(_,Next)' will have set the FL field of the current

Page 140

environment to 'Next', the net effect of the 'if' instruction is as if

(for example):-

uatom(0,I); try(Label)

occurred immediately before the next general section. If there is

more than one clause for a particular constant or functor, 'Label' is

the address of code of the following form:-

try(C1)

try(C2)

Qoto(Next)

[? Need 'reload' instructions if argument 0 is a skeleton. ?) Here

'Next' is once again the address of the following general section and

the Ci are the addresses of the code for the different clauses, in

order of the source program.

If a special section is the final section in a procedure, the

opening instruction is:-

ssectlast(Label)

This instruction is like 'ssect' but if the first argument of the call

is a non-reference the machine is prepared for deep backtracking on

failure. (cf. the relationship between 'try' and 'trylast'). The

remaining code is similar to that for 'ssect', with an address 'fail'

replacing all occurrences of the 'Next' address. If control is

transferred to 'fall', the effect is to instigate deep backtracking.

If there is more than one clause for a constant or functor, the code

is:-

Page 141

notlast
try(C1)
try(C2)

trylast(Cn)

Instruction 'notlast' prepares the machine for shallow instead of deep

backtracking.

Finally if the type of the first argument is restricted by a mode

declaration, part of the special section code can be omitted. If the

restriction is '+', the reference code is omitted and the label in the

'ssect' instruction becomes 'error'. If control is transferred to

'error' a diagnostic message is given followed by deep backtracking.

If the restriction is '-', the non-reference code is replaced by the

instruction 'goto(error)'. Thus the procedure code checks that the

type of the first argument is consistent with any mode declaration.

6.1.1 Example -

We shall now illustrate the clause indexing by showing the

indexed procedure code for the following clauses:-

call(X or Y) :- call(X).
call(X or Y) :- call(Y).

call(trace) : - trace.
call(notrace) notrace.
call(read(X)) :- read(X).

call(write(X)) :- write(X).
call(nl) :- nl.

call(X) :- ext(X).

call(call(X)) :- call(X).

call(true).
call(repeat).
call(repeat) call(repeat).

The procedure code is as follows:-

Page 142

call: enter
ssect(refl,next)
switch (8)
case(labell)

case(label2)
case(next)
case(label3)
case(label4)
case(label5)
case(next)

case(next)
labell: ifskel(or,listl)

goto(next)
label2: ifatom(trace,clause3)

goto(next)
label3: ifskel(read,clause5)

goto(next)
label4: ifatom(notrace,clause4)

ifskel(write,clause6)
goto(next)

label5: ifatom(nl,clause7)
goto(next)

listl: try(clausel)
try(clause2)
goto(next)

refl: tryskel(or,clausel)
tryskel(or,clause2)

tryatom(trace,clause3)
tryatom(notrace,clause4)
tryskel(read,clause5)
tryskel(write,clause6)
tryatom(nl,clause7)
endssect

next: gsect
try(clause8)
ssectlast(ref2)
ifskel(call,clause9)
i.fatom(true,clauselO)
i.fatom(repeat,list2)

goto(fail)
list2: notlast

try(clausell)
trylast(clausel2)

ref2: tryskel(call,clause9)
tryatom(true,clauselO)
tryatom(repeat,clausel1)
trylastatom(repeat,clausel2)

Page 143

6.2 Garba a Collection

We have already seen how local storage used during the

determinate execution of a procedure can be recovered at virtually no

cost. It is also possible to recover part of the global storage used,

though the garbage collection (GC) process needed is rather expensive,

hence the importance of classifying variables into locals and globals.

Neither of these techniques can reclaim storage from a procedure until

it has been completed determinately. While a procedure is still

active, there is little potential for recovering any of its storage.

Because of the cost, garbage collection should only be instigated

when there is no longer enough free space on the global stack. It

involves tracing and marking all the global cells which are still

accessible to the program, and then compacting the global stack by

discarding inaccessible cells with remapping of any addresses which

refer to the global stack. A drawback, attributable to the structure

sharing representation, is that not all the inaccessible cells can be

discarded. They may be surrounded in the frame by other accessible

cells, and the relative positions in the frame of all accessible cells

must be preserved. This disadvantage relative to a "direct"

representation using "heap" storage is nevertheless probably

outweighed in most cases by the general compactness of

structure-sharing.

We say that a global frame is active if the corresponding local

frame still exists. Otherwise the frame is said to be passive.

Passive global frames correspond to procedures which have been

completed determinately. The aim of GC is to reduce the sizes of

Page 144

passive global frames by discarding inaccessible cells from either end

of the frame. If possible the frame is dispensed with altogether.

In order to perform the GC process, it is necessary to make some

slight changes to the format of the data on the two stacks:-

(1) An extra GC bit must be made available in (or associated with)

each global cell. This bit will be set during the trace and mark

phase if the cell is to be retained.

(2) An extra (long) location is needed at the beginning of each global

frame. This contains a special value of type 'mark(N)'

distinguishable from other constructs. During GC, this location marks

the start of another global frame and the value of N indicates the

amount the frame is to be displaced when compaction takes place. If

the frame is to be discarded altogether, the value in the location is

set to 'discard(N)', where N is the relocation factor which would

apply if the frame were not to be discarded.

(3) An extra 1-bit of management information is needed in the local

frame. This indicates whether or not there is a corresponding global

frame.

The GC process needs to be able to trace all existing local

frames (and the corresponding active global frames). The information

needed resides in the X and VV fields of the local frames, with the V1

fields indicating the paired active global frames. The following

algorithm performs the enumeration:-

Page 145

local frame pointer Parent := register X;
local frame pointer Alternative register VV;
while Alternative >= root environment, do

(while Parent > Alternative, do
(select(Parent);
Parent := field X of Parent);

select(Alternative);
Parent := field X of Alternative;
Alternative := field VV of Alternative)

root environment *0

T *1

0

VV

X field

VV field

We can now outline the entire GC process:-

preliminaries:
/* this step reduces recursion during trace+marking
for each active global frame,

mark the GC bit in each cell;
trace+marking:

for each local frame
and corresponding active global frame if any,

(trace+mark each local cell;
trace+mark each global cell);

computing displacements:
for each global frame in ascending order,

compute its displacement and set mark(N) where
N := displacement of previous frame

+number of cells dropped from end of previous frame
+sizes of any-intervening frames discarded
+number of cells dropped at start of this frame;

remapping of global addresses:
for each local frame,

(remap global-pointer for the V1 field;
remap each local cell);

Page 146

for each global frame,
remap each global cell;

for each trail item,
remap the trailed reference;

also remap-global_poi.nters X1,V1,VV1;
compacting the global stack:

physically move the remaining global frames to their new
positions, unmarking the GC bit in each cell.

procedure trace+mark(Cell):

uses a pushdown-list set up in free space at the top of the
local stack;

mark the GC bit in Cell;
if Cell contains a reference to a global cell, Gcell,
and Gcell is not already marked,

then trace+mark(Gcell)
else if Cell contains a molecule

then trace+mark each unmarked global cell
for the variables in its skeleton

else return.

procedure remap(Construct):
if Construct is a global reference,

then scan back through the frame to the preceding mark(N)
and subtract N from the reference

else if Construct is a molecule
and there is a variable in its skeleton,

then find the mark(N) preceding the variable's cell
and subtract N from the frame field of the molecule

else return.

procedure remap-global-pointer(Address):
if the location before Address contains 'discard(N)'

then subtract N from Address
else the location contains 'mark(N)' in which case subtract N-M

from Address where M is the number of unmarked cells
starting at Address.

Page 147

7.0 DESIGN PHILOSOPHY

Having described the main features of our Prolog implementation,

it is perhaps worthwhile to comment on the criteria which influenced

design decisions. It is hoped this will provide some answer to

inevitable questions of the form "Wouldn't it be better if......?" or

"Was it really necessary to......?".

Firstly, software implementation has to be judged by the

standards of an engineering discipline rather than as an art or

science. One cannot hope to achieve an ideal solution to every

problem, but it is essential to find adequate solutions to all the

major ones. Generally speaking simplest is best.

A good example is the contrast between earlier attempts to use

"theorem provers" as "problem solvers" and Prolog itself. The earlier

attempts failed because no adequate solution had been found to the

problem of controlling the system in a reasonable way. Although the

simple solution adopted by the originators of Prolog does not satisfy

all the aspirations of "logic programming", and so is perhaps not

"ideal", it does transform logic into an adequate, indeed powerful,

programming tool.

In our experience of using Prolog we have not found any example

which demands more sophisticated control facilities. Nor have we felt

any overwhelming need for extensions to the language. By far the

worst practical drawback has been the large amounts of working storage

required to run the Marseille interpreter. Also, although interpreted

Prolog is fast enough for most purposes, it is too slow for running

Page 148

systems programs such as the Prolog "supervisers". This is a pity

since Prolog is otherwise an excellent language for software

implementation. Therefore improved efficiency, both of space and

time, has been the major aim.

In implementing any language,, it is important to have in mind

some representative programs against which to check the relevance of

design issues and on which to base decisions. For this purpose, we

have taken the existing Prolog supervisers and the new Prolog compiler

itself, as their efficiency is what matters most to the average Prolog

user. Looking at typical Prolog programs such as these, one finds

that the full generality of Prolog is brought into play only rarely.

At almost every step one is dealing with a special case that can be

handled more efficiently. Examples are the following:-

* Many, procedures are determinate. We can capitalise on this to

recover much of the working storage used.

* Of the symbols which make up the head of a clause (functors,

constants and variables), the majority are typically variables, and

moreover are typically first occurrences of the variable. We have

seen that the code for this important case of the first occurrence of

a variable performs a relatively very trivial operation.

* In the source program, the arguments of a goal are almost

always variables. Hence the decision to generate executable

instructions for terms in the head of a clause rather than those in

the body.

Page 149

* Predicates are usually used in a restricted mode with certain

arguments providing procedure input and others receiving procedure

output. Optional mode declarations enable the system to avoid

generating unnecessary code and also to increase the amount of storage

recovered automatically when a procedure exit is determinate.

* The first argument of a predicate is analogous to the subject

of a natural language sentence, and it is natural for this argument to

be an "input" of the procedure. Often the clauses of the procedure

concerned represent different cases according to the principal functor

of the -term supplied. An efficient treatment of such "definition by

cases" is implemented which selects the correct case(s) by table

lookup. This feature is invaluable for writing compilers in a natural

and efficient way.

* Terms are rarely nested to any degree in clauses responsible

for major computation. Hence the decision not to bother to generate

executable code for terms nested below level 2.

In short, it is the treatment of such special cases which is the

decisive factor in determining efficiency.

The design objectives may be summarised as being aimed towards

making Prolog a practicable systems programming language. It was

considered reasonable for the systems programmer to have to understand

some general facts about how the language has been implemented in

order to use it with maximum efficiency. eg. The systems programmer

is expected to be aware of when his clauses can be compiled into a

table lookup and to appreciate the need for mode declarations.

Page 150

However, as far as the naive programmer is concerned, none of this

knowledge is necessary to write correct programs.

In most conventional programming languages, it is difficult to

separate the essentials of program design from the details of

efficient implementation. One cannot state one without the other.

For example, PL/1 faces the programmer with choosing, at the outset,

the storage class of his data. The choice strongly affects the form

of the program. Similarly most languages have mandatory types for all

data items and the programmer cannot easily change a data type once

"coding" has commenced. This even applies to more high-level

languages such as Lisp, where all "abstract" data structures have to

be mapped into concrete list structures. It is difficult to avoid

becoming committed to referring to some abstract component as CDDAR

say.

The approach we favour is to specify an algorithm as an essential

core, to which extra agmas (pragmatic information) are added. The

pragmas need not be supplied until a later stage and give guidance on

how the core is to be implemented efficiently. They do not affect the

correctness of the program. An example of a pragma is the predicate

mode declaration supported by this implementation. There are numerous

other possibilities in the same vein which could make logic based

programs more efficient, while preserving the simplicity and ease of

use of the core language.

Page 151

For example, more sophisticated clause indexing is clearly needed

in some cases, yet it is unrealistic to expect the system to arrive at

the optimal choice since, among other things, it depends on how the

clauses are going to be used. Plainly there is scope for the

programmer to give guidance through some new form of pragma.

Page 152

8.0 PERFORMANCE

8.1 Results

Some simple benchmark tests to assess Prolog performance are

presented in Appendix 5. The other languages chosen for comparison are

Lisp and Pop-2. The three languages have similar design aims and can

usefully be compared. All are intended for interactive use, and are

paricularly oriented towards non-numerical applications, with the

emphasis on generality, simplicity and ease of programming rather than

absolute efficiency. (Also, all are in active use on the Edinburgh

DEC10.)

Each benchmark is intended to test a different aspect of Prolog.

No fixed criteria were used for selecting the "equivalents" in the

other languages, and so each example should be judged on its own

merits. One should observe that there is no absolute sense in which

the performance of different language implementations can be compared,

except where there is a clearly defined correspondence between the

programs of the two languages.

In the case of Prolog, Lisp and Pop-2, there is a subset of each

for which there is a fairly obvious, objectively defined

correspondence, namely the class of procedures which compute simple

functions over lists. This correspondence is illustrated by the first

benchmark, a "naive" procedure for reversing a list. This procedure

useful as a benchmark simply because it leads to heavy "list

crunching". The time ratios quoted are typical of the class. Thus it

is usual for compiled Prolog procedures which compute simple list

Page 153

functions to run at 50-70% of the speed of the Lisp equivalents, for

example.

The second benchmark is a "quick-sort" algorithm for sorting

lists. The auxiliary procedure 'partition' shows the worth of

multiple output procedures. For comparison, we have selected a Lisp

version which packages the two outputs into a list cell. Nested

lambda expressions are required for the unpacking. The Pop-2 version

is taken from p.235 of the Pop-2 handbook [Burstall et al. 1971],

omitting the refinement which caters for non-random input lists. Thus

we have essentially the same algorithm as the Prolog and Lisp

versions, but with gotos and explicit stack manipulation replacing

normal function calls. This transformation makes the function rather

difficult to understand, although evidently it improves the speed. It

is interesting to note that the more transparent Prolog formulation is

also appreciably faster.

The third benchmark is a much favoured example of non-numerical

programming - the differentiation of an algebraic expression. The

Lisp version is a slight extension of Weissman's [1967, p.167] DERIV

function and the Pop-2 form is likewise extended from an example on

p.26 of the Pop-2 handbook. The Prolog formulation is concise and

echoes the textbook equations in a way which is immediately apparent.

It demonstrates the advantages of general record structures

manipulated by pattern matching where the record types do not have to

be explicitly declared. Moreover the timing data shows that the

Prolog version is fastest. Notice how the Prolog speed is most marked

in cases where a lot of data structure is created, eg. when a

Page 154

quotient is differentiated. This characteristic is a result of

structure-sharing and will be discussed later.

The fourth benchmark was chosen to test the implementation of the

logical variable, and was suggested by the kind of processing which is

typical of a compiler. The task is to translate a list of symbols

(here actually numbers) into a corresponding list of serial numbers,

where the items are to be numbered in "alphabetical" order (here

actually numerical order). The 'serialise' procedure pairs up the

items of the input list with free variables to produce both the output

list and an "association list". The elements of the association list

are then sorted and their serial numbers computed to complete the

output list. For comparison we show a Lisp implementation which

attempts as far as possible to satisfy the conflicting aims of

paralleling the Prolog version and remaining close to pure Lisp. The

main trick is to operate on the cells of a duplicate list, eventually

overwriting the copied elements with their serial numbers. The choice

of a Pop-2 version seems even more arbitrary and we have not attempted

to provide one.

The final benchmark is designed to test the improvement gained by

indexing the clauses of a procedure. The task is to interrogate a

"database" to find countries of similar population density (differing

by less than 5%). The database contains explicit data on the areas and

populations of 25 countries. A procedure 'density' fills in "virtual

data" on population densities. As is to be expected, the speed

advantage of compiled code is considerably enhanced relative to either

Prolog interpreter, neither of which indexes clauses within a

Page 155

procedure. Thus the benefit of compilation is a factor of around 50

instead of the normal 15 to 20. The figures for the 'deriv' example

show a similar but less pronounced effect. To illustrate the

correspondence between backtracking in Prolog and iterative loops in a

conventional language, we show a Pop-2 version of the database

example. The demographic data is stored in Pop-2 "strips" (primitive

one-dimensional fixed-bound arrays), and the 'query' clause translates

into two nested forall loops. As the timing data shows, the speed of

Prolog backtracking can better that of a conventional iterative

formulation.

We shall now summarise the results of these benchmark tests and

other less direct performance data. Firstly, comparing Prolog

implementations, one can say that compilation has improved running

speed by a factor of (typically) 15 to 20 relative to the Marseille

interpreter. The improvement is greater where clause indexing pays

off, and somewhat less in certain cases where terms are nested deeper

than level 2 in the head of a clause. The speed of our Prolog

interpreter implemented in Prolog is very similar to that of the

Marseille interpreter, and their times are remarkably consistent. (In

fact, our interpreter could be much faster if the present clumsy

method for interpreting the "cut" operator were avoided, eg. through

provision in the compiler of "ancestral cut", ie. a "cut" back to an

ancestor goal instead of the immediate parent.)

The results of comparing Prolog with a widely used Lisp

implementation may be summarised as follows. For computing simple

functions over lists, compiled Prolog typically runs no more than

Page 156

30-50% slower than pure Lisp. Of course such a comparison only

evaluates a limited part of Prolog and can't be entirely fair since

Lisp is specialised to just this area. In cases where a wider range

of data types than simple lists is really called for (or where

"conses" outnumber ordinary function calls), Prolog can be

significantly faster. For what it is worth, the mean of the 4 common

benchmarks (taking only the 'ops8' figures for 'deriv') puts Prolog

speed at 0.75 times that of Lisp.

As regards Pop-2, in all the benchmark tests compiled Prolog ran

at least 60% faster, even where the Pop-2 version was formulated using

more primitive language constructs such as gotos and "strips". The

mean for the 4 common benchmarks (again taking the 'ops8' data) puts

Prolog 2.4 times faster than Pop-2.

Small benchmark tests can only give a partial and possibly

biassed indication of efficiency; an implementation is better

evaluated from the performance of large-scale programs. On these

grounds it is perhaps useful to look into the performance of the

Prolog compiler. Recall that the compiler is itself implemented in

Prolog (and furthermore is largely "pure" Prolog, ie. clauses having

a declarative semantics). In practice compilation proceeds in two

phases, with DEC's MACRO assembler being used for the second phase:-

Prolog Prolog Assembly Relocatable

source compiler language MACRO code

file --------------> file -------------> file
(Phase 1) (Phase 2)

The ratio of the times for Phase 1 : Phase 2 is usually of the order

of 3 to 2. It is surprising the times are not more different, since

Page 157

Phase 2 is a relatively simple process, and the MACRO assembler is

commercial software implemented in a low-level language. The compiler

is only generating about 2 instructions for each Prolog source symbol,

so it is not simply a case of Phase 1 creating voluminous input to

Phase 2. An average figure for the compilation speed of the Prolog

compiler (Phase 1 only) is 10.6 seconds per 1000 words of code

generated. This includes input of the source file and output of the

assembly language file.

So far we have only discussed performance in terms of speed.

From an historical point-of-view, space economy has been of far more

concern to the Prolog user, and accordingly was a major objective of

this implementation. It is therefore important to assess how

effective the new space-saving techniques have been. From the nature

of the techniques, an improvement will only obtain for determinate

procedures (apart from an overall 2-fold improvement due simply to

tighter packing of information into the machine word), so much depends

on how determinate programs are in practice. The compiler itself, a

highly determinate Prolog program, now rarely requires more than 5K

words total for the trail and two stacks. When the compiler was

interpreted by the Marseille interpreter (before it would

"bootstrap"), 75K words was not really adequate for the whole system,

of which roughly 50K would be available as working storage. This

suggests approximately a 10-fold space improvement for determinate

programs.

Page 158

It is difficult to make more direct comparisons with either the

Marseille interpreter or the Lisp and Pop-2 systems, and we have not

attempted to do so. Firstly none of these systems provides an easy

means of determining how much working storage is actually in use (as

opposed to available for use). Secondly it is debatable what

measurements should be used to compare systems having different

storage allocation regimes, especially where memory is paged. For

example, how much free storage is "necessary" in a system relying on

garbage'collection? {The fairest proposal might be to ascertain and

compare, for each benchmark, the smallest amount of non-sharable

physical memory in which the test will run without degrading

performance by more than a certain percentage. This would be a

tedious task.)

It is probably fair to say that the "average" compiled Prolog

program requires considerably more working storage than Lisp or Pop-2

equivalents, but that with careful and knowledgeable programming

(using mode declarations and ensuring determinacy) the Prolog

requirement need not be much different from the other two. (For

example, it is doubtful whether a Lisp or Pop-2 implementation of the

Prolog compiler would use less storage.) The difference between Prolog

and the other two is likely to be of less practical significance on a

virtual memory machine. The extra storage required by Prolog

typically represents groups of "dead" environments which are not in

active use, and which are also adjacent in memory by virtue of the

stack regime. Therefore they can generally be paged out.

Page 159

From the coding of PLM instructions detailed in Appendix 2, we

see that the compiled code is relatively compact at about two words

per source symbol For the record, the "high-segment" sizes of our

compiler and interpreter are respectively 25K words and 14K words.

These sizes represent the total sharable code including essential

run-time system.

8.2 Discussion

The above results show that Prolog speed compares quite well with

other languages such as Lisp and Pop-2. Also the performance of the

compiler suggests that software implemented in Prolog can reach an

acceptable standard of efficiency.

Now on the face of it, a language such as pure Lisp offers

simpler and more obviously machine-oriented facilities. How is it

that Prolog is not considerably slower?

The first point to notice is that Prolog extras - the full

flexibility of unification with the logical variable and backtracking

- lead to very little overhead when not used, provided the program is

compiled For example, consider the code generated for the

concatenate procedure (cf Appendix 5.1) and assume it is called,

as for the corresponding Lisp function, with two arguments ground (ie.

terms containing no variables) and a variable as third argument All

unification on the first two arguments of 'concatenate' reduces to

simple type checks and direct assignments. Unification on the third

argument is somewhat more costly, as it is creating the new output

Page 160

list (cf. the "conses" performed by the Lisp procedure). If indexed

procedure code is generated, the Prolog machine readily detects that

it is executing a determinate procedure and there are no significant

overheads attributable to "backtracking" - the trail is never accessed

and all local storage is automatically recovered on procedure exit.

In short, the procedure is executed in much the same manner as one

would expect for a conventional language.

Despite this, it is still surprising that Lisp is not several

times faster than Prolog Lisp has only the one record type and, more

importantly, it does not provide complete security against program

error - car and cdr are allowed to apply indiscriminately to any

object. As a result no run-time checks are needed and the fundamental

selectors are effectively hardware instructions on the DEC10.

In analysing the reasons for Prolog's relative speed, we are led

to the following, perhaps unexpected, conclusions -

(1) Specifying operations on structured data by "pattern matching" is

likely to lead to a better implementation than use of conventional

selector and constructor functions.

(2) On a suitable machine, the "structure-sharing" representation for

structured data can result in faster execution than the standard

"literal" representation. To be more specific, it allows a "cons" to

be effected faster than in Lisp.

To illustrate the reasons for these conclusions, let us compare

(a) an extract from the definition of evalquote given in the Lisp 1 5

Manual [McCarthy et al. 1962] with (b) the clause which is its Prolog

counterpart. We shall write the Prolog functor corresponding to cons

Page 161

as an infix operator '.'
(a) apply[fn,x,a] _

eq[car[fn],LABEL] -> apply[caddr[fn],x,
cons[cons[cadr[fn],caddr[fn]],a]]

(b) apply(label Name.Form._,X, A, Result) -
apply(Form,X, (Name.Form) .A,Result) .

As an aside to our main argument, we may first of all observe

that "pattern matching" makes it much easier to visualise what is

happening. The pattern matching version also invites a better

implementation. No location corresponding to the variable 'fn' needs

to be set aside and initialised. It is only the form and

subcomponents of this argument which are of interest. The

decomposition is performed initially once and for all by pattern

matching. In contrast, a straightforward implementation of the Lisp

version will duplicate much of the work of decomposition. The double

occurrence of caddr is the most noticeable cause, but we should also

remember that caddr and cadr share a common step.

A more technical consideration is that pattern matching

encourages better use of index registers A pointer to the structured

object is loaded just once into an index register and held there while

all the required subcomponents are extracted Unless the Lisp

implementation is quite sophisticated it will be repeatedly reloading

the value of 'fn', and subcomponents thereof. A related issue

concerns run-time type checks needed in languages like Pop-2. (Lisp

manages to avoid such checks for the reasons noted above) An

unsophisticated implementation of selector functions will have to

Page 162

perform a type check before each application of a selector. With

pattern matching, one type check suffices for all the components

extracted from an object

Finally, for procedures such as 'apply' above, pattern matching

also encourages the implementation to integrate type checking with

case selection, building in computed gotos where appropriate.

To summarise, not only is pattern matching more convenient for

the user, it also leads the implementor directly to an efficient

implementation -

(1) Procedure call and argument passing are no longer just "red tape"

- they provide the context in which virtually all the "productive"

computation is performed

(2) No location needs to be set up for an argument unless it is

explicitly referred to by name.

(3) One can select all the required components of a compound object in

one efficient process using a common index register.

(4) Type checking is performed once and for all at the earliest

opportunity.

(5) It is easier for the implementation to replace a sequence of tests

with a computed goto

Hoare [1973] has proposed a more limited form of "pattern matching"

for an Algol-like language and has advanced similar arguments for its

clarity and efficiency.

Page 163

Let us now consider the impact of structure-sharing on

efficiency. Ironically, this technique was first devised by Boyer and

Moore as a means of saving space. However we shall argue that it is

even more important for its contribution to Prolog's speed.

Clearly the direct representation of a compound data object, as

used in Lisp implementations and for source terms in Prolog, would

enable somewhat faster access to components. However, the

representation in our DEC10 implementation of a source term variable

by an indexed address word means that each argument of a constructed

term can likewise be accessed in just one machine instruction.

(Further dereferencing is sometimes needed, but this is comparatively

rare in practice.) Thus the only significant accessing overhead for

structure-shared objects is the necessity for preliminary loading of

the frame component of a molecule into an index register. The great

advantage of structure-sharing lies in the supreme speed with which

complex new objects are created, and also the ease with which they can

be discarded when no longer needed.

To see this, let us return to our evalguote example. The Lisp

version has to perform two "conses" to construct the third argument of

the call to apply. Each "cons" involves:-

(1) grabbing a new free cell, after checking that the free list is not

exhausted;

(2) copying each component into the list cell obtained;

(3) saving the address of the new cell.

If, as Prolog, Lisp allowed more than one record size, step (1) would

have to be a lot more complex.

Page 164

In contrast, Prolog has to perform absolutely no work to

construct the third argument of the call to 'apply'! ie. No

executable code is generated for the term '(Name.Form).A'. Well, this

is slightly misleading since the analogous computation' will in fact

occur during the next invocation of 'apply', when unification creates

a new molecule to bind to the next generation of 'A'. However,

creating this molecule merely involves bringing together two existing

pointers as the halves of the word to be stored in 'A's cell.

The difference between the two methods can be summarised as

follows. Languages like Lisp assemble the information to construct a

new object on a stack (local storage), and then copy the information

into special records individually obtained from heap storage. Prolog

leaves the information in situ on the stack(s) and relies on

structure-sharing for later procedures to locate the information as

needed. Prolog is substituting extra indirection, which is very fast,

for the relatively slow operations of copying and heap management.

The Prolog cost of constructing new objects from a set of skeletons in

a clause is, at worst, proportional to V, the number of distinct

variables in the skeletons. The cost for conventional methods is at

least proportional to S, the total number of symbols in those

skeletons. V can't be any greater than S, and is often much smaller.

The smaller V is, the more advantageous the Prolog method.

Another point to notice is that each Lisp cell "consed" up must

ultimately be reclaimed by the expensive process of garbage

collection. In tight situations, a garbage collecting system can

"thrash", spending nearly all its time on garbage collection and

Page 165

little on useful work. It is for this reason that systems programmers

prefer not to rely on garbage collectors. With Prolog, the user can

usually rely on the stack mechanism associated with backtracking to

recover all storage at negligible cost. This advantage is, again,

even greater if one considers the complexities of garbage collection

in other languages admitting more than one size of record.

A final point is that the stack regime leads to better

exploitation of virtual memory, since, as noted above, it avoids the

random memory accesses inevitably associated with "heap" management.

Page 166

9.0 CONCLUSION

Pattern matching should not be considered an "exotic extra" when

designing a programming language. It is the preferable method for

specifying operations on structured data, from both the user's and the

implementor's point of view. This is especially so where many

user-defined record types are allowed.

For "symbol processing" applications where a transparent and

easy-to-use language is required, Prolog has significant advantages

over languages such as Lisp and Pop-2. Firstly the Prolog program is

generally easier to understand, mainly because it is formulated in

smaller units which have a natural declarative reading. Secondly

Prolog allows a wider range of problems to be solved without resort to

machine- or implementation-oriented concepts. The logical variable

and "iteration through backtracking" go a long way towards removing

any need for assignment in a program. Finally our implementation

shows that these advantages can be obtained with little or no loss of

efficiency. In fact in many cases the distinctive features of Prolog

actually promote better implementation.

Page 167

APPENDICES

Page 168

1.0 PLM REGISTERS) DATA AREAS AND DATA STRUCTURES

Here we summarise the state of the PLM during unification.

Recall that the machine is attempting to match the head of the current

clause against the current goal. A failure to unify will cause

backtracking to the latest choice point where the parent goal will be

reconsidered.

Registers

V top of local stack = local frame for current clause

V1 top of global stack = global frame for current clause

X local frame for current goal

X1 global frame for current goal

VV local frame for latest choice point

VV1 global frame for latest choice point

TR pushdown list pointer for the trail

PC current instruction

A arguments and continuation of current goal

B a skeleton involved in unification

Y the global frame corresponding to B

Other registers used in the DEC10 implementation

FL failure label, but only when VV=V

T construct passed as argument to a unification routine

B1 construct passed as argument to a unification routine

C return address for a runtime routine

R1 temporary results

R2 temporary results

Page 169,

Data areas and environment lout

local stack global stack trail

environment x
of current
goal

environment VV

of latest
choice point

environment
of current

clause

VVVF L

local
cells

reset
cell
addresses

TR-.O. .

'temporary,
icells

Fields of an environment

A parent goal's arguments and continuation

X parent goal's local frame

V1 global frame corresponding to this local frame

TR state of TR when parent goal was invoked

FL failure label, if any, for parent goal; ie. an alternative clause

VV local frame for the choice point prior to the parent goal

Page 170

Representations for source and constructed terms

Source term (literal)

var(I)

local(I)

global(I)

void

[atom(I)]

[int(I)]

[fn(I),...]

DEC10 form

Y i I
I

0 i $VOID ' 0

- ; 4 If

0 :r - $ $INT + I

0 , $SKEL !

Constructed term (cell value) DEC10 form

undef

ref (L)

atom(I)

int(I)

mol(S,F)

0 , L

$ATOM' I

$INT L I

Page 171

2.0 PLM INSTRUCTIONS AND LITERALS

2.1 Summary

literals

var(I)
atom(I)
int(I)

fn(I)

local(I)
global(I)
void

unification
uvar(N, F, I)
uref(N,F,I)
uatom(N, I)

ui.nt(N, I)
uskel(N,S)
uskeld(N,I)
uskelc(N,S)

control transfer
ifdone(L)
call(L)

try(L)

trylast(L)

uvarl(N,F,I)
urefl(N,F,I)
uatoml(N,I)

uintl(N,I)
uskell(N,S)

init(I,J)

localinit(I,J)

"red tape"

enter cut(I)
neck(I,J) neckcut(I,J)
foot(N) neckcutfoot(J,N)
neckfoot(J,N) fail

extra instructions for clause indexing
gsect switch(N)
ssect(L,C) case(L)

ssectlast(L)
endssect ifatom(I,L)

ugvar(I)

ifint(I,L)
iffn(I,L)

tryatom(I,C) goto(L)
tryint(I,C) notlast
tryskel(S,C)
trylastatom(I,C)
trylastint(I,C)
trylastskel(S,C)

Page 172

2.2 var(I)

Use: An occurrence of a variable in a skeleton. I is the number of
the global variable.

Example: 'var(2)' for:-

reverse(cons(X,L1),L2,L3) :- reverse(Ll,cons(X,L2),L3).

Effect: Serves as a pointer to a construct which is the value of the
gl obal variable.

DEC10 form:

WD i(Y) ;where i=l.

2.3 atom(I)

Use: An occurrence of an atom in a skeleton or goal is represented by
the address of a literal 'atom(I)' where I identifies the atom.

Example: '[atom(nil)]' for:-

sort(LO,L) :- gsort(LO,L,nil).

Effect: The address of the atom literal serves as a pointer to a

construct representing the atom.

DEC10 form:

WD label

label: XWD $ATOM,i ;where i = functor number of atom.

Page 173

2.4 int(I)

Use: An occurrence of an integer in a skeleton or goal is represented
by the address of a literal 'int(I)' where I is the value of the
integer.

Example: '[int(29)]' for:-

leapyear(X) :- duration(february,X,29).

Effect: The address of the integer literal serves as a pointer to a
construct representing the integer.

DEC10 form:

WD label

label: XWD $INT,i. ;where i=l.

2.5 fn(I)

Use: An occurrence of a skeleton term in a goal or in a non-mode '+'
position in the head of a clause is represented by the address of a
skeleton literal, which commences with a functor literal 'fn(I)' where
I identifies the functor of the skeleton.

Example: ' [fn(cons),var(0),var(2)]' for:-

reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3).

Effect: The address of the skeleton literal serves as the skeleton
component of the molecule which represents the subterm.

DEC10 form:

WD label

label: XWD $SKEL,i ;where i = skeleton's functor number.
... ;inner literals

Page 174

2.6 local(I)

Use: An occurrence of a local variable as an argument of a goal. I
is the number of the local variable.

Example: 'local(O)' for:-

reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3).
**

Effect: Serves as a pointer to a construct which is the value of the

local variable.

DEC10 form:

WD i(X) ;where i=I+3.

2.7 global(I)

Use: An occurrence of a global variable as an argument of a goal. I
is the number of the global variable.

Example: 'global(l)' for:-

reverse(cons(X,L1),L2,L3) :- reverse(Ll,cons(X,L2),L3).
**

Effect: Serves as a pointer to a construct which is the value of the
global variable.

DEC10 form:

WD i(X1) ;where 1=l.

Page 175

2.8 void

Use: An occurrence of a void variable (ie. the variable occurs
nowhere else) as an argument of a goal.

Example: 'void' for:-

employed(X) :- employs(Y,X).

Effect: Any instruction which attempts to unify against this outer
literal behaves as a (successful) no-operation.

DEC10 form:

WD label

label: XWD $VOID,O

Page 176

2.9 uvar(N,FI)

Use: Argument N in the head of a clause is the first occurrence of a
variable of type F (local or global), number I. (A temporary variable
will have F=local.)

Example: 'uvar(1,global,2)' for:-

reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3).

Effect: The outer literal representing argument N of the current goal
is accessed via register A and the dereferenced result is assigned to
cell I in frame F of the current environment, unless the result is a

local reference and F is global. In the latter case, a reference to
cell I in frame E is assigned to the incoming reference, and the
assignment is trailed if necessary.

DEC10 form:

MOVE T,@n(A) ;where n=N.
TLNN T,$1MA
JSP C,$UVAR
MOVEM T,i(reg) ;where i=I+3 and reg=V if F=local

;or i=I and reg=V1 if F=global.

If N<9 and fastcode is not required, this is condensed to:-

JSP C,routine
MOVEM T,i(reg)

routine: MOVE T,@n(A)
TLNN T,$1MA
JSP C1, ...
JRST 0(C)

Page 177

2.10 uvarl(N,F,I)

Use: Argument N of a skeleton at level 1 in the head of a clause is
the first occurrence of a variable of type F (local or global),' number
I. The instruction is not needed if the skeleton is in a mode '-'
position.

Example: 'uvarl(1,local,0)' for:-

:-mode reverse(+,+,?).
reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3).

**

Effect: The inner literal representing argument N of the matching
skeleton is accessed via register B and the dereferenced result is
assigned to cell I in frame F of the current environment. Note: if
the result is a reference, it must refer to a global cell, which will
therefore be at least as senior as the cell assigned.

DEC10 form:

MOVE T,@n(B) ;where n=N+1.
TLNN T,$1MA
JSP C,$UVAR1
MOVEM T,i(reg) ;where i=I+3 and reg=V if F=local

;or i=I and reg=V1 if F=global.

If N<5 and fastcode is not required, this is condensed to:-

JSP C,routine
MOVEM T,i(reg)

routine: MOVE T,@n(B)
TLNN T,$1MA
JSP Cl'...
JRST 0(C)

Page 178

2.11 uref(N,F,I)

Use: Argument N in the head of a clause is a subsequent occurrence of
a variable of type F (local or global), number I. (A temporary
variable will have F=local.)

Example: 'uref(2,local,0)' for:-

reverse(nil,L,L).

Effect: The outer literal representing argument N of the current goal
is accessed via register A and the dereferenced result is unified with
the dereferenced value of cell I in frame F of the current
environment.

DEC10 form:

MOVE B,@n(A) ;where n=N.
MOVE B1,i(reg) ;where i,reg are as for 'uvar'.
JSP C,$UREF

If N<5 this is condensed to:-

MOVE B1,i(reg)
JSP C,routi.ne

routine: MOVE B,@n(A)

Page 179

2.12 urefl(N,F,I)

Use: Argument N of a skeleton at level 1 in the head of a clause is a
subsequent occurrence of a variable of type F (local or global),
number I. The instruction is not needed if the skeleton is in a mode
'-' position.

Example: 'urefl(O,global,0)' for:-

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3).

Effect: The inner literal representing argument N of the matching
skeleton is accessed via register B and the dereferenced result is
unified with the dereferenced value of cell I in frame F of the
current environment.

DEC10 form:

MOVE T,@n(B) ;where n=N+1.

MOVE B1,i(reg) ;where i,reg are as for 'uvar'.
JSP C,$UREFI

If N<3 this is condensed to:-

MOVE Bl,i(reg)
JSP C,routine

routine: MOVE T,@n(B)

Page 180

2.13 uatom(N,I)

Use: Argument N in the head of a clause is an atom, identified by I.

Example: 'uatom(l,september)' for:-

month(9,september).

Effect: The outer literal representing argument N of the current goal
is accessed via register A and the dereferenced result is unified with
atom I.

DEC10 form:

MOVE T,@n(A)
JSP C , $UATOM

XWD $ATOM,i

;where n=N.

;where 1 = functor number of atom.

$UATOM: TLNN T,$1MAS
JRST .

CAME T,O(C)
JRST $FAIL
JRST 1(C)

If N<8 this is condensed to:-

JSP C,routine
XWD $ATOM,i

routine: MOVE T,@n(A)

TLNN T,$1MAS

JSP Cl,...
CAME T,0(C)
JRST $FAIL
JRST 1(C)

Page 181

2.14 uatoml(N,I)

Use: Argument N of a skeleton at level 1 in the head of a clause is
an atom, identified by I.

Example: 'uatoml(l,nil)' for:-

singleton(cons(X,nil)).

Effect: The inner literal representing argument N of the matching'
skeleton is accessed via register B and the dereferenced result is
unified with atom I.

DEC10 form:

MOVE T,@n(B) ;where n=N+l.
JSP C,$UATOM
XWD $ATOM,i ;where i = functor number of atom.

If N<5 this is condensed to:-

JSP C,routine
XWD $ATOM,i

routine: MOVE T,@n(B)

Page 182

2.15 uint(N,I)

Use: Argument N in the head of a clause is an integer, value I.

Example: 'uint(0,9)' for:-

month(9,september).

Effect: The outer literal representing argument N of the current goal
is accessed via register A and the dereferenced result is unified with
integer I.

DEC10 form:

MOVE T,@n(A) ;where n=N.

JSP C,$UATOM
XWD $INT,i ;where i = value of the integer.

If N<8 this is condensed to:-

JSP C,routine
XWD $INT,i

routine: MOVE T,@n(A)
TLNN T,$1MAS

JSP Cl'...
CAME T,0(C)

JRST $FAIL
JRST 1(C)

Page 183

2.16 uintl(N,I)

Use: Argument N of a skeleton at level 1 in the head of a clause is
an integer, value I.

Exa mple: 'uintl(1,2)' for:-

differentiate(square(X),X,*(X,2)).
*

Effect: The inner literal representing argument N of the matching
skeleton is accessed via register B and the dereferenced result is
unified with nteger I.
DEC10 form:

MOVE T,@n(B) ;wher,,t n=N+1.
JSP C,$UATOM
XWD $INT,i ;where i = value of the integer.

If N<5 this is condensed to:-

JSP C,routine
XWD $INT,i.

routine: MOVE T,@n(B)

Page 184

2.17 uskel(N,S)

Use: Argument N in the head of a clause is a skeleton term for which
S is the address of a corresponding skeleton literal. (Not used for a
mode '+' or mode '-' position.)

Example: 'uskel(2,[fn(cons),var(0),var(2)])' for:-

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3).

Effect: The outer-literal representing argument N of the current goal
is accessed via register A and dereferenced. If the result is a
reference, a molecule is assigned to the cell referenced, the
assignment is trailed if necessary and register Y is set to 'undef'.
The molecule is constructed from S and the address of the current
global frame given by register Vl. If the result of the dereferencing
is not a reference, a failure occurs unless the result is a molecule
with the same functor as S. In the latter case register B is set to
the address of the skeleton part of the matching molecule and register
Y to the address of its (global) frame.

DEC10 form:

MOVE B,@n(A) ;where n=N.
JSP C,$USK
WD address ;of literal S.

$USK: HLRZ Y,B ;load type of B into Y.
CAIGE Y,$MOLS ;if B isn't a molecule
JRST @table(Y) ; switch on Y.
MOVE R1,0(B) ;load functor of B.
CAME R1,@O(C) ;if different from functor of S

JRST $FAIL ; then fail.
JRST 1(C) ;return to in-line code.

If N<5 this is condensed to:-

JSP C,routine
WD address

routine: MOVE B,@n(A)

Page 185

2.18 uskell(N,S)

Use: Argument N of a skeleton at level 1 in the head of a clause is
another skeleton term for which S is the address of a corresponding
skeleton literal.

Example: 'uskell(O,[fn(int),var(O)])' for:-

expr(cons(int(N),S),S,N).

Effect: The inner literal representing argument N of the matching
skeleton is accessed via register B and the dereferenced result is
unified with the molecule formed from S and the global frame address
in register Y.

DEC10 form:

MOVE T,@n(B) ;where n=N+1.
JSP C, $USK1
WD address ;of literal S.

$USK1: HLRZ R1,T

CAIGE R1,$MOLS
JRST @table(R1)
MOVE R2,@0(C)

CAME R2,0(T)
JRST $FAIL

If N<3 this is condensed to:-

JSP C,routine
WD address

routine: MOVE T,@n(B)

Page 186

2.19 uskeld(N,I)

Use: Argument N in the head of a clause is a skeleton term, and this
position has mode '+'. I identifies the functor of the skeleton term.

Example: 'uskeld(O,cons)' for:-

:-mode concatenate(+,+,-).
concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3).

Effect: cf. 'uskel'. The result of dereferencing the matching outer
literal is guaranteed to be a non-reference. A failure occurs unless
it is a molecule with functor as indicated by I. Register B is set to
the address of the skeleton part of the molecule and register Y to the
address of the (global) frame.

DEC10 form:

MOVE B,@n(A) ;where n=N.

JSP C,$USKD
XWD $SKEL,i ;cf. fn(I).

$USKD: HLRZ Y,B
CAIGE Y,$MOLS

JRST @table(Y)
MOVE R1, 0(B)
CAME R1,0(C)
JRST $FAIL
JRST 1(C)

;load type of B into Y.
;if B isn't a molecule
; switch on Y.
;load functor of B.
;if different from fn(I)
; then fail.
;return to in-line code.

If N<5 this is condensed to:-

JSP C,routine
XWD $SKEL,i

routine: MOVE B,@n(A)

Page 187

2.20 uskelc(N,S)

Use: Argument N in the head of a clause is a skeleton term, and this
position has mode '-'. S is the address of a corresponding skeleton
literal.

Example: 'uskelc(2,[fn(cons),var(0),var(1)))' for:-

:-mode concatenate(+,+,-).
concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3).

Effect: cf. 'uskel'. The result of dereferencing the matching outer

literal is guaranteed to be a reference. A molecule formed from S

with global frame address from V1 is assigned to the cell referenced
and the assignment is trailed if necessary.

DEC10 form:

MOVE B,@n(A) ;where n=N.

JSP C,$USKC
WD address ;of literal S.

$USKC: JUMPE B,UNDO ;if B=undef goto UNDO.
CONTINUE: CAILE B,$MAXREF ;if B is not a

reference
JRST 1(C) ; then it's a void so return.
SKIPN R1,0(B) ;if B is fully dereferenced
JRST ASSIGN ; then goto ASSIGN.
... ;else continue dereferencing.

UNDO: MOVEI B,@-2(C) ;undo initial dereference step.
ASSIGN: ... ;proceed with assignment.

If N<8 this is condensed to:-

JSP C,routine ;call special subroutine.
WD address ;address of skeleton literal S.

routine: SKIPE B,@n(A) ;deref.arg.N into B unless undef
JRST CONTINUE ; goto CONTINUE.
MOVEI B,@n(A) ;load addr.of undef cell into B.
JRST ASSIGN ;goto ASSIGN

Page 188

2.21 init(I_,J)

Use: The instuction is used (a) following a 'uskel' or 'uskelc', or
(b) preceding a 'uskell' which is an argument of a 'uskeld'
instruction, or (c) preceding a 'neck'. I to J-1 inclusive are the

numbers of global variables having their first occurrences in,
respectively, (a) the level 1 skeleton or (b) the level 2 skeleton or

(c) the body of the clause concerned. The instuction is omitted if
there are no such variables (ie. I=J).

Example: The three different cases are illustrated by the use of

'i.nit(1,2)' for each of:-

(a) concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3).

(b) :-mode lookup(?,+,?).
lookup(X,tree(',pair(X,Y),_),Y).

*

(c) member(X,L) :- concatenate(Ll,cons(X,L2),L).

Effect: The cells for the global variables I through J-1 are
initialised to 'undef'.

DEC10 form:

SETZM n(V1) ;for each n from I
... to J-1

If J-I > 2 this is condensed to:-

MOVEI Rl,j (V1) ;where j=J.
JSP C,routine

routine: SETZM -i(R1) ;where i=l.
SETZM 1-i(R1)

SETZM -1 (R1)
JRST 0(C)

Page 189

2.22 localinit(I,J)

Use: Precedes a 'neck' instruction. The local variables which have
their first occurrences within the body of the clause are numbered
from I to J-1 inclusive. The instruction is omitted if there are no
such variables (ie. I=J). Note if both an 'snit' and a 'localinit'
precede a 'neck' instruction, the order of the two is not. important.

Example: 'localinit(1,2)' for:-

member(X,L) :- concatenate(L1,cons(X,L2),L).

Effect: The cells for the local variables I through J-1 are
initialised to ' undef' .

DEC10 form:

SETZM n(V) ;for each n from 1+3
... ; to J+2

If J-I > 2 this is condensed to:-

MOVEI R1,j(V) ;where j=J+3.
JSP C,routine

routine: SETZM -i(R1) ;where i=I+3.
SETZM 1-i(R1)

SETZM -1(R1)
JRST 0(C)

Page 190

2.23 lfdone(L)

Use: Precedes the instructions for the arguments of a level 1

skeleton (not occurring in a mode '+' or mode '-' position). L is the
address following the last argument instruction.

Example: 'i.fdone(labell)' for (cf. Section $$):-

member(X,cons(X,L)).

Effect: If register Y contains 'undef', indicating that the skeleton
has matched against a reference, control is transferred to label L,
thereby skipping the argument instructions.

DEC10 form:

JUMPE Y,label ;where label=L.

2.24 call(L)

Use: Corresponds to the predicate of a goal in the body of a clause.
L is the address of the procedure code for the predicate.

Example: 'call(reverse)' for:-

reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3).

Effect: The address of the outer literals and continuation which
follows the 'call' instruction is assigned to register A and control
is transferred to L.

DEC10 form:

JSP A,label ;where label=L.

Page 191

2.25 try(L)

Use: (a) In unindexed procedure code, each clause in the procedure is
represented by an instruction 'try(L)' where 'L' is the address of the

clause's code. These instructions are ordered as the corresponding
clauses in the source program.
(b) The 'try' instruction is also used in indexed procedure code.

Effect: The address of the following instruction is stored in the FL

field of the current environment and control is transferred to 'L'.

(In our DEC10 implementation, the address is saved in register FL and
is only stored in the FL field if and when the 'neck' instruction is
reached.)

DEC10 form:

JSP FL,label ;where label=L.

2.26 trylast(L)

Use: (a) In unindexed procedure code, it replaces the 'try(L)'
instruction for the last clause in the procedure.
(b) The instruction is also used in indexed procedure code.

Effect: Registers VV and VV1 are reset to the values they held at the
time the current goal was invoked. Control is transferred to 'L'.

DEC10 form:

HLRZ VV,O(V) ;VV:=VV field of current env.
HLRZ VV1,2(VV) ;VV1:=V1 field of the VV env.
JRST label ;where label=L.

Page 192

2.27 enter

Use: The first instruction in the procedure code for a predicate. It
is executed immediately after a 'call' instruction.

Effect: The instruction is responsible for initialising the control
information in a new environment. The VV,X,A,V1,TR fields in the
local frame are set from the VV,X,A,V1,TR registers. Registers VV and
VV1 are then set to the values of registers V and V1 respectively.

DEC10 form:

JSP C,$ENTER

$ENTER: HRLZM VV,O(V) ;VV field set.
HRLI A,(X)
MOVEM A,1(V) ;X,A fields set.
HLRZM TR,R1
HRLI R1,(V1)
MOVEM R1,2(V) ;V1,TR fields set.
MOVEI VV,(V) ;VV:=V.
MOVEI VV 1, (V1) ;VV1:=V1.
MOVEM TR,$TRO ;save TR in location $TRO.
JRST 0(C) ;return.

Page 193

2.28 neck(I,J)

Use: Precedes the body of a non-unit clause having I local variables
(excluding temporaries) and J global variables.

Example: 'neck(l,1)' for:-

rterm(T,N,N,wd(Atom)) :- flagatom(T,Atom).
**

Effect: Registers X and X1 are set from registers V and V1
respectively. The contents of registers V and V1 are then incremented
by the sizes of (the non-temporary part of) the local frame and of the
global frame respectively. Both stacks are checked to ensure a
sufficient margin of free space.

DEC10 form:
JSP C,$NECK
WD i(V) ;where i=I+3.
WD j(V1) ;where j=J.

$NECK: HRRM FL,O(V) ;set FL field in local frame.
MOVEI X,(V) ;X:=V.
MOVEI X1,(V1) ;X1:=V1.
MOVEI V,@0(C) ;V:=V+i.
MOVEI V1,@1(C) ;V1:=Vl+j.
CAMLE V,$VMAX ;if insufficient local freespace
JSP R1,.. ; call subroutine.
CAME V1,$V1MAX ;i.f insufficient global freespace
JSP R1,... ; call subroutine.
JRST 2(C) ;return to in-line code.

If J=O this is condensed to:-

JSP C,$NECK1
WD i(V)

$NECK1: HRRM FL,O(V)
MOVEI X,(V)
MOVEI V,@0(C)
CAMLE V,$VMAX
JSP R1,...
JRST 1(C)

If J=0 and I<5 this is further condensed to:-

JSP C,routine

routine: HRRM FL,O(V)
MOVEI X,(V)
MOVEI V,i(V) ;where i=1+3.
CAMLE V,$VMAX
JSP R1,...
JRST 0(C)

Page 194

2.29 foot(N)

Use: At the end of a non-unit clause for a predicate of arity N.

Example: 'foot(3)' for:-

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3).

Effect: If the register VV indicates a point on the local stack
earlier than register X, V is assigned the contents of X. Thus a
determinate exit from the current procedure results in all the local
storage used during the process being recovered. A, X and X1 are
reset from the corresponding field in the parent local frame pointed
to by X, and control is transferred to the parent's continuation.

DEC10 form:

JSP C,$FOOT
WD n(A) ;where n=N.

$FOOT: CAILE X,(VV)
MOVEI V,(X)

;if X>VV

; then V:=X.
MOVE A,1(V) ;reset A from parent.
HLRZM A, X ;reset X from parent.
HLRZ X1,2(X) ;reset X1 from parent.
JRST @0(C) ;goto parent's continuation.

If N<9 this is condensed to:-

JRST routine

routine: CAILE X,(VV)
MOVEI V,(X)
MOVE A,1(X)
HLRZM A,X
HLRZ X1,2(X)

JRST n(A) ;where n=N.

Page 195

2.30 neckfoot(J,N)

Use: The last instruction for a unit clause. It replaces a

'neck(O,J)' followed by a 'foot(N)' where 'J' is the number of global
variables and N is the arity of the predicate of the clause. (Note
that a unit clause has no non-temporary local variables.)

Example: 'neckfoot(0,3)' for:-

concatenate(nll,L,L).

Effect: The instruction combines the effect of the 'neck' and 'foot'

instructions it replaces. However considerable computation is saved;
registers A, X and Xl do not have to be modified. Registers V1 and
(if a non-determinate exit) V are incremented to take account of the
new global and local frames, and control is transferred to the

parent's continuation.

DEC10 form:

MOVEI Vl,j(V1) ;where j=J.
JSP C,$NKFT
WD n(A) ;where n=N.

$NKFT: CAILE V,(VV) ;if V>VV (ie. determinate exit)
JRST BELOW ; then skip to BELOW.
HRRM FL,O(V) ;set FL field in local frame.
MOVEI V,3(V) ;V:=V+3.

CAME V,$VMAX ;if insufficient local freespace
JSP R1,... ; call subroutine.

BELOW: CAMLE V1,$V1MAX ;if insufficient global freespace
JSP R1,... ; call subroutine.
JRST @0(C) ;goto parent's continuation.

If J=0 this is condensed to:-

CAIG V,(VV) ;if V =< VV (ie. non-determinate)
JSP C,$NKFTO ; then call subroutine $NKFTO
JRST n(A) ; else goto parent's continuation.

$NKFTO: HRRM FL,O(V)
MOVEI V,3(V)
CAME V,$VMAX
JSP R1,...
JRST @0(C)

If J=O and N<9 this is further condensed to:-

JRST routine

routine: CAIG V,(VV)
JSP C, $NKFTO

JRST n(A)

Page 196

2.31 cut(I)

Use: Corresponds to an occurrence of the cut symbol. I is the number of local variables (excluding temporaries) in the clause, as for the
instruction 'neck(I,J)'.

Example: 'cut(2)' for:-

compile(S,C) :- translate(S,C),!,assemble(C).

Effect: Any remaining local frames created since the environment of

the current clause are discarded by resetting register V to point at
the end of the current local frame. Registers VV and VV1 are reset to

the backtrack environment of the parent. The portion of the trail
created since the parent goal is "tidied up" by discarding references
to variables if they don't belong to environments before the backtrack
environment.

DEC10 form:

MOVEI V,i(V)
JSP C,$CUT

;V:=V+i where i=I+3.

$CUT: CAILE X,(VV)
JRST 0(C)
HLRZ VV,O(X)
HLRZ VV1,2(VV)

HRRE P,2(X)

ADD P,$TRTOP
CAIN P,(TR)
JRST 0(C)
MOVEI P1, (TR)
MOVEI R1, (TR)
SUBI R1,(P)
HRLI R1,(R1)
SUB TR, R1

CYCLE: MOVE R1,1(P)

CALL R1,(VV)
JRST CONTINUE
CAIGE R1,(V1)
CAIGE R1,(VV1)
PUSH TR,(R1)

CONTINUE: CAIE P1,1(P)
AOJA P,CYCLE
JRST 0(C)

If I<10 this is condensed to:-

JSP C,routine

routine: MOVEI V,i(V)
JRST $CUT

;if no alternatives to cut

then return.
;reset VV from parent.
;reset VV1 from parent.
;P:= lh of TR for parent.
;P:= rh of TR for parent.
;if no change to TR

then return.
;P1:=rh of TR for parent.

;R1:=delta=increase in trail size.

;reset TR to its original value:-
; TR:=TR-(delta,delta).
;load one of the new trail entries.
;if refers after VV

then continue with next entry.

;if refers after V1 (ie. is local)

;or before VV1
then restore it to trail.

;if more trail entries to consider
then P:=P+1, goto CYCLE.

;return.

Page 197

2.32 neckcut(I,J)

Use: Corresponds to a cut symbol which is the first "goal" in the
body of a non-unit clause. It replaces a 'neck(I,J)' followed by a
'cut(I)' where 'I' and 'J' are the numbers of local and global
variables respectively.

Example: 'neckcut(0,0)' for:-

di.vide(X,O,Y) :-!, error('division by 0').

Effect: The instruction combines the effects of the corresponding
'neck' and 'cut' instructions in a straightforward way.

DEC10 form:

JSP C,$NCUT
WD i(V) ;where i=I+3.
WD j(V1) ;where j=J.

If J=0 this is condensed to:-

JSP C,$NCUT1
WD i(V)

If J=0 and I<5 this is further condensed to

JSP C,routine

routine: MOVEI X,(V)
MOVEI V,i(V) ;where i=I+3.

JRST ...

Page 198

2.33 neckcutfoot(J,N)

Use: Corresponds to a cut symbol which is the only "goal" in the body
of a clause. It replaces instructions 'neck(O,J)' followed by
'cut(O)' followed by 'foot(N)' where 'J' is the number of global
variables and N is the arity of the predicate of the clause.

Example: 'neckcutfoot(0,2)' for:-

factorial(0, 1):-! .

Effect: Combines the effect of the three instructions it replaces.
As with 'neckfoot', considerable computation is saved since registers
A, X and X1 do not have to be modified. Register V1 is incremented to

take account of the new global frame, registers VV and VV1 are reset
to their states prior to invoking the parent goal and trail entries
are discarded where possible. Finally control is transferred to the

parent's continuation.

DEC10 form:

MOVEI V1,j(V1) ;where j=J.

JSP C,$NCTF
WD n(A) ;where n=N.

$NCTF: CAMLE V1,$V1MAX ;if insufficient local freespace
JSP R1,... ; call subroutine.
CAILE V,(VV) ;if V>VV (already determinate)

JRST @0(C) ; then goto parent's continuation.
$NCTFO: HLRZ VV,O(V) ;reset VV.

HLRZ VV1,2(VV) ;reset VV1.

;perform rest of cut.

JRST @0(C) ;goto parent's continuation.

If J=0 this is condensed to:-

CAIG V,(VV) ;if V =< VV (not already determinate)
JSP C,$NCTFO ; then call subroutine $NCTFO.
JRST n(A) ;goto parent's continuation.

Page 199

2.34 fail

Use: Corresponds to a goal 'fail' in the body of a clause. This goal
is defined to be unsolvable and instigates (deep) backtracking.

Example: 'fail' for:-

unknown(X) :- known(X),!,fail.

Effect: Registers V, V1, A, X and X1 are reset to the values they had

prior to the most recent goal which is non-determinate (ie. one for
which there are still further choices available). Register TR is also

restored to its earlier value by popping entries off the trail and
resetting the cells referenced to 'undef'. Finally control is

transferred to the clause which is the next choice for the earlier
goal.

DEC10 form:

JRST $EFAIL

$EFAIL: MOVEI V,(VV)

MOVEI V1, (VV1)
HRRZ FL,O(V)
MOVE A,1(V)

HLRZM A,X
HLRZ X1,2(X)
HRRE R 1, 2 (V)

ADD R1,$TRTOP
CAIN R1,(TR)

JRST EXIT
CYCLE: POP TR,R2

SETZM (R2)
CAIE R1, (TR)
JRST CYCLE

EXIT: MOVEM TR,$TRO
JRST @FL

;V:=VV

;V1:=VV1
;FL:=next clause for earlier goal.
;reset A
;reset X
;reset X1
;R1:=lh of earlier TR.
;R1:=rh of earlier TR.
;if no change to TR

then goto EXIT.
;pop an entry off the trail.
;set cell refd. to 'undef'.
;if more trail entries to consider

then goto CYCLE.
;save TR in location $TRO
;goto next clause.

Note in passing that a failure in a unification instruction causes
control to be transferred to a routine $FAIL which instigates shallow
backtracking:-

$FAIL: CAIE V,(VV)
JRST $EFAIL
CAMN TR,$TRO
JRST @FL

CYCLEI: POP TR,R2
SETZM (R2)
CAME TR,$TRO
JRST CYCLEI
JRST @FL

;if V = VV (no other choices)
then deep backtracking.

;if no trail entries from this unifn.,
then goto next clause.

;pop an entry off the trail.
;set the cell refd. to 'undef'.
;if more trail entries to consider

then goto CYCLE1.
;goto next clause.

Page 200

2.35 sect

Use: Precedes a general section of clauses having a variable
position 0 in the head.

at

Effect: The outer literal representing argument 0 of the current goal
is accessed via register A and the dereferenced result is assigned to
cell 0 in the current local frame.

DEC10 form:

JSP C,$GS

$GS: MOVE B,@0(A)

HLRZM B,Y
CAIG Y,$SKEL
JRST @table(Y)
MOVEM B,3(V)
JRST 0(C)

;B := arg. 0

;Y := type of arg. 0

;if arg. 0 is not a molecule
then switch on type.

;local cell 0 := arg. 0
;return.

In practice the code is optimised by
(1) coalescing the code for 'enter' immediately followed by 'gsect',
(2) 'ssect' initialises local cell 0 as a side effect so that 'gsect'

doesn't have to be called if no clauses in the special section are
entered,
(3) 'endssect' performs the work of 'gsect' if the matching term is a

reference so 'gsect' only needs to handle the non-reference case.

Page 201

2.36 ssect(L,C)

Use: Precedes a special section of clauses having a non-variable at

position 0 in the head. L is the address of the reference code for
the section and C is the address of the section which follows.

Effect: If the dereferenced value of argument 0 in the current goal

is a reference, control is transferred to L. Otherwise register FL is

set to C and control passes to the non-reference code which follows
the 'ssect' instruction.

DEC10 form:

JSP C,$SS

WD refcode
WD nextsection

;where refcode=L
;where nextsection=C

$SS: MOVE B,3(V)
HLRZM B,Y
JUMPE Y,@0(C)

MOVE FL,1(C)
MOVEM B,R2
CAIL Y,$MOLS

MOVE R2,0(B)
JRST 2(C)

;B := arg.0 from local cell 0
;Y type of arg. 0
;if arg.0 is a ref goto refcode.

;FL nextsection
;R2 arg. 0

;if arg.0 is a molecule

; then R2 := functor of arg.0
;return to non-reference code.

The above is an optimisation, used only if it is not the first section
in the procedure. 'enter' immediately followed by 'ssect' is treated

as a special case. Register R2 is set to the address of the atom,

integer or functor literal for argument 0. If argument 0 is a

reference, this is trailed once and for all to avoid repeated

"trailing" for each of the clauses in the section.

Page 202

2.37 ssectlast(L)

Use: Precedes a special section which is the last section of a
procedure. L is the address of the reference code for the section.

Effect: If the dereferenced value of argument 0 in the current goal
is a reference, control is transferred to L. Otherwise'registers VV

and VV1 are reset to the values they held at the time the current goal

was invoked and control passes to the reference code which follows the
'ssectlast'

DEC10 form:

instruction.

JSP C,$SS1
WD refcode ;where refcode=L

$SS1: MOVE B,3(V) ;B arg.0 from local cell 0.
HLRZM B,Y
JUMPE Y,@O(C)
HLRZ VV,O(V)
HLRZ VV1,2(VV)
MOVEM B,R2
CAIL Y,$MOLS

;Y type of arg.0 ;if arg.0 is a ref. goto refcode.
;VV VV field of current env.
;VV1 := V1 field of the VV env.
;R2 arg.0
;if arg.0 is a molecule

MOVE R2,0(B) ; then R2 := functor of arg.0.
JRST 1(C) ;return to non-reference code.

2.38 endssect

Use: Terminates the reference code at the end of a special section.

Effect: The reference passed as argument -O is recovered from the
trail and stored in local cell 0. The following 'gsect' instruction is
skipped.

DEC10 form:

JSP C,$ENDRC

$ENDRC: POP TR,R1
MOVEM TR,$TRO
SOS 2(V)

SETZM (R1)
MOVEM R1,3(V)
JRST 1(C)

;pop last trail entry into R1.

;TRO := TR.

;correct TR field of current env.
;set cell referenced to undef.
;local cell 0 := the reference.
;return, skipping one instruction.

Page 203

2.39 switch(N)

Use: Precedes the non-reference code in a special section if there is
a sufficient number of clauses in the section (currently 5 or more).. N

is the number of 'case' instructions which follow and is a power of 2

chosen depending on the number of clauses in the section.

Effect: A key, determined by the principal functor of argument 0 of
the current goal, is "anded" with N-1 to give a value M. Control is
then transferred to the (M+1)th. 'case' instruction.

DEC10 form:

MOVEI R1,(R2) ;R1 := key
ANDI R1,n-1 ;R1 := key/(N-1)
JRST @NEXT(R1) ;goto case (R1)

NEXT:

2.40 case(L)

Use: A 'switch(N)' instruction is followed by N 'case' instructions.
The parameter L is the address of the code for the subset of the
section's clauses corresponding to that case.

Effect: Control is transferred to address L by the preceding 'switch'
instruction.

DEC10 form:

WD label ;where label=L.

Page 204

2.41 if atom

Use: In the non-reference code of a special section, the clause(s)
for the atom identified by I is indicated by address L.

Effect: If argument 0 of the current goal is atom I, control is
transferred to address L.

DEC10 form:

CAMN R2,atom ;where atom = addr. of atom I literal.
JRST label ;where label=L.

2.42 i.fint(I,L)

Use: In the non-reference code of a special section, the clause(s)
for integer I is indicated by address L.

Effect: If argument 0 of the current goal is integer I, control is
transferred to address L.

DEC10 form:

CAMN R2,int ;where int = integer I literal
JRST label ;where label=L.

Page 205

2.43 iffn(I,L)

Use: In the non-reference code of a special section, the clause(s)
for the functor identified by I is indicated by address L.

Effect: If the principal functor of argument 0 of the current goal is
functor I, registers B and Y are set according to this'molecule and
control is transferred to address L.

DEC10 form:

CAMN R2,functor
JRST label

;where functor = addr of fn I literal.
;where label=L.

Note that in the actual implementation, registers B and Y are set by
'ssect' or else by the following preceding the CAMN:-

JSP C,$RLDSK

$RLDSK: MOVE B,@0(A) ;B := arg.0
HLRZ Y,B ;Y := type of arg.0
CALL Y,MOLS ;if arg.0 is a molecule
JRST 0(C) ; then return.
JUMPE Y,DEREF ;if arg.0 is a ref. goto DEREF.
MOVEI B,@0(A) ;B := skel. literal in the goal.
HRLI B,(X1) ;lh. of B := X1.
MOVEI Y,(X1) ;Y := X1.
JRST 0(C) ;return.

DEREF: MOVE B,O(B) ;B deref B.
HLRZ Y, B ;Y := type of B.
JUMPE Y,DEREF ;if B is a ref. goto DEREF.
JRST 0(C) ;return

Page 206

2.44 goto(L)

Use: (1) Following a sequence of 'if' instructions or a sequence of
'try' instructions in a special section, L is the address of the
following section.

Effect: Control is transferred to address L.

DEC10 form:

JRST label ;where label=L.

2.45 notlast

Use: If there is more than one clause for a particular functor in a
special section, the 'try' instructions are preceded by a 'notlast'
instruction.

Effect: Registers VV and VV1 are reset from V and V1 respectively to
indicate the current environment.

DEC10 form:

JSP C,$NLAST

$NLAST: MOVEI VV,(V) ;VV:=V
MOVEI VV1,(V1) ;VV1:=V1
MOVEM TR,$TRO ;TRO:=TR
JRST 0(C) ;return

Page 207

2.46 ugvar(I)

Use: If argument 0 of the head of a clause is a global variable (and
the procedure code is to be indexed), this term is represented by
'ugvar(I)' where I is the number of the global variable.

Effect: The construct which has been assigned to local cell 0 (by the
corresponding 'gsect' instruction) is also assigned to global cell I

unless the construct is a local reference. In the latter case global
cell I is initialised to undef and a reference to global cell I is

assigned to the local reference. This assignment is trailed if

necessary.

DEC10 form:

JSP C,$GTER1
MOVEM T,i(V1) ;global cell I := T

$GTER1: MOVE T,3(V)

CAIG T,MAXREF
CAIGE T,@0(C)
JRST 0(C)
MOVEI R1,@0 (C)
SETZM (R1)
MOVEM R1,(T)
CAIGE T,(VV)

PUSH TR,T
JRST 1(C)

;T := local cell 0

;if T not a reference
;or T < global cell I

; then return.
;R1 := addr. of global cell I

;global cell I := undef
;cell T := R1

;if T < VV

; then push T onto the trail
;return, skipping 1 instr.

Page 208

2.47 tryatom(I,C)

Use: In the reference code of a special section, a clause with atom I
as argument 0 of the head is represented by the instruction
'tryatom(I,C)'. C is the address of the clause's code.

Effect: The atom is assigned to the matching reference and the
assignment is trailed. Register FL is set to the address of the
following instruction and control is transferred to C.

DEC10 form:

JSP C,$RVAT
XWD clause,atom ;clause=C,atom= atom I.

$RVAT: MOVEI FL,1(C) ;FL := next PLM instr.
MOVE R1,0(C) ;R1 (clause,atom)
HLRZM R1,C ;C := clause.
MOVE R1,0(R1) ;R1 := atom.
MOVEM R1,@0(TR) ;trailed ref. := atom.
JRST 0(C) ;goto clause.

Note that the matching reference has already been trailed by 'ssect'.

2.48 tryint(I,C)

Exactly analagous to 'tryatom'. The DEC10 form uses routine $RVAT
also.

Page 209

2.49 tryskel(S,C)

Use: In the reference code of a special section, a clause with a
skeleton as argument 0 in the head is represented by 'tryskel(S,C)'. S

is the address of the skeleton literal and C of the clause's code.

Effect: A molecule is formed from S with current global frame address
from register V1 and assigned to the matching reference. The
assignment is trailed. Register Y is set to 'undef' and register FL
to the address of the following instruction. Control is transferred
to C.

DEC10 form:

JSP C,$RVSK
XWD clause,skeleton ;clause=C,skeleton=S.

$RVSK: MOVEI Y,0 ;Y undef.

MOVEI FL,1(C) ;FL next PLM instr.

MOVE R1,0(C)

HLRZM R1,C
;R1

;C

(clause,skeleton).
clause.

HRLI R1,(V1) ;R1 (Vl,skeleton).

MOVEM R1,@0(TR) ;trailed ref. :_ (V1,skel.).

JRST 0(C) ;goto clause.

Note that the matching reference has already been trailed by 'ssect'.

Page 210

2.50 trylastatom(I,C)

Use: If the final clause in a procedure has atom I as argument 0 of
its head, the clause is represented in the reference code by the
instruction 'trylastatom(I,C)', where C is the address of the clause's
code. No 'endssect' is needed at the end of the section.

Effect: The atom is assigned to the matching reference but the
assignment need not be trailed. Registers VV and VV1 are reset to
indicate the previous backtrack point. Control is transferred to C.

DEC10 form:

JSP C,$RVAT1
XWD clause,atom ;clause=C, atom = atom I.

$RVAT1: HLRZ VV,O(V) ;VV := VV field of current env.
HLRZ VV1,2(VV) ;VV1 V1 field of the VV env.
MOVE R1,0(C) ;R1 (clause,atom).
HLRZM R1,C ;C clause.
MOVE R1,0(R1) ;R1 atom.
MOVEM R1,@0(TR) ;trailed ref. := atom.
JRST 0(C) ;goto clause.

Note that the matching reference has already been trailed by 'ssect'.

2.51 trylastint(I,C)

Exactly analogous to 'trylastatom'. The DEC10 form uses routine $RVAT1
also.

Page 211

2.52 trylastskel(S,C)

Use: If the final clause in a procedure has a skeleton as argument 0
of its head, the clause is represented in the reference code by an
instruction 'trylastskel(S,C)', where S is the address of the skeleton
literal and C is the address of the clause's code. No 'endssect' is
needed at the end of the section.

Effect: A molecule is formed from S with the current global frame
address from register V1 and assigned to the matching reference. The
assignment need not be trailed. Register Y is set to 'undef'.
Registers VV and VV1 are reset to indicate the previous backtrack
point. Control is then transferred to C.

DEC10 form:

JSP C,$RVSK1
XWD clause,skeleton ;clause=C,skeleton=S.

$RVSK1: MOVEI Y,0 ;Y := undef.
HLRZ VV,O(V) ;VV VV field of current env.
HLRZ VV1,2(VV) ;VV1 := V1 field of the VV env.

MOVE R1,0(C) ;R1 (clause,skeleton).
HLRZM R1,C ;C clause.
HRLI R1, (V1) ;R1 (V1,skeleton).
MOVEM R1,@0(TR) ;trailed ref. := (V1,skeleton).
JRST Q(C) ;goto clause.

Note that the matching reference has already been trailed by 'ssect'.

Page 212

3.0 SYNOPSIS OF THE DEC SYSTEM 10

The machine has 36 bit words which can accommodate two 18 bit

addresses. Addresses 0 to 15 refer to fast registers which are used

as accumulators and (for 1 to 15 only) as index registers. Signed

integers are represented as "2s complement" bit patterns.

instruction format is:-

0 9 13 14 18

CODE A I X Y

where CODE = instruction code,
A = accumulator address,
I = indirection bit,
X = index register address,
Y = main address.

36

I

The

An instruction with I=1 is written symbolically in the form:-

CODE A,@Y(X)

If I=0 the '@' is omitted. If A=0 it can be omitted along with the

comma. If X=0 it can be omitted along with the brackets. If Y=0 it

can be omitted.

A fundamental mechanism is the "effective address calculation"

which is the first step in the execution of each and every

instruction. It computes an effective address E depending on I, X and

Y. If X is nonzero, the contents of index register X is added to Y to

produce a modified address M (modulo 2 to the power 18). If I=0 then

simply E=M. If I=1, the addressing is indirect and E is derived by

treating the I, X and Y fields of the word stored at M in exactly the

same way. The process continues until a referenced location has I=0

and then E is calculated according to the X and Y fields of this

location.

Page 213

Two Instructions, PUSH and POP, access pushdown lists which are

stored in main memory. A pushdown list is referenced via a pushdown

list pointer held in an accumulator. The right half of this word is

the address of the current last item in the list. The left half

(normally) contains the negative quantity M-L where M is the maximum

size of the list and L is the current size.

The instructions referred to in this paper are summarised below.

In all cases A is the accumulator address and E is the effective

address computed as above. We write:-

(X) for
X.L for
X.R for
(X,Y) for
sign X for
Y:=X for
skip for

"the contents of location X",
"the left half of location X"
"the right half of location X",
"the word with left half X and right half Y",
"-1 if the top bit of X is 1 or 0 otherwise",
"location Y is assigned the value V.
"skip the next instruction"

Instruction Effect

MOVE A, E A:=(E)
MOVEI A,E A: =E

MOVEM A,E E:=(A)
SETZM E E:=0
ADD A,E A:=(A)+(E)
SUB A, E A:(A)-(E)
SUBI A,E A:(A)-E
AOS E E: (E)+1
SOS E E:(E)-1

HLRZ A,E A:=(0,(E.L))
HRRZ A,E A:-(0,(E.R))
HLRZM A,E E:=(0,(A.L))
HRLZM A,E E:=((A.R),0)
HRLI A,E A.L:=E
HRRM A,E E.R:=(A.R)
HRRE A,E A:=(sign (E.R), E.R)

CAIE A,E if (A) _ (0,E) then skip
CAIN A, E if (A) (0,E) then skip
CAME A,E if (A) (E) then skip
CANN A,E if (A) (E) then ski
CAIG A,E if (A) > (0,E) then skip
CAILE A,E if (A) =< (0,E) then skip

Page 214

CAIGE A,E if (A) >= (0,E) then skip
CAMLE A,E if (A) =< (E) then skip

SKIPE A,E if A 0 then A:=(E), if (E)=O then skip
SKIPN A,E if A # 0 then A:=(E), if (E)#O then $skip
TLNN A,E if (A.L)4e # 0 then skip

JRST E goto E

JSP A,E A:=(flags,address of next instruction), goto E
JUMPE A,E if (A)=O then goto E

AOJA A,E A:=(A)+1, goto E

PUSH A,E A:=(A)+(1,1); (A.R):=(E);
if (A.L)=O then interrupt

POP A,E E:=((A.R)); A:=(A)-(1,1);
if (A.L)=O then interrupt

WD E a non-executable address word with CODE=O
XWD X,Y a non-executable data word containing (X,Y)

Constant Symbols

$VOID=1
$SKEL=2
$ATOM=4
$INT=5
$MOLS=16
$MAXREF=777777base8
$1MA=777764base8
$1MAS=777766base8

Page 215

4.0 TIMING DATA FOR PLM INSTRUCTIONS ON DEC10

The times given below are the minimum times to complete the PLM

instruction successfully. Cases where a failure to match occurs are

not counted. Certain infrequent but faster special cases are also

discounted (for example matching against a void).

The times relate to a KI10 processor and have been calculated

from the data given on pages D-4 and D-5 of [DEC 1974]. An extra 1.02

microseconds has been allowed for each indirection and 0.89

microseconds for a control transfer or test instruction. All other

factors (such as indexing) have been ignored.

Instruction microsecs. Remarks

uvar,uvarl 4.85 v. atom, integer or molecule
uref,urefl 15.88 undef v. molecule
uatom,uatoml,

uint,uintl 8.68 v. atom or integer
uskel 12.22 v. molecule
uskell 26.49 + 28.26 per argument

v. molecule, with mol. v. ref. for each arg.
uskeld 11.20 v.molecule
uskelc 15.60 v. reference
init,localinit .95 per cell initialised
ifdone 1.45

call 1.34

try 1.34
trylast 3.75

enter 9.67

neck 12.77 general case
foot 7.55
neckfoot 2.74 no globals, determinate exit
cut 14.32 + 9.24 per trail entry examined

general case, assumes each trail entry retained
neckcut 15.53 + 9.24 per trail entry examined

no globals
neckcutfoot 12.10 + 9.24 per trail entry examined

no globals
fail 13.14 + 5.85 per trail entry examined
"shallow" fail 6.08 + 6.66 per trail entry examined

Page 216

5.0 BENCHMARK TESTS

Times in milliseconds

Procedure Data Prolog-10 Lisp Pop-2 Prolog M Prolog-10I

nreverse

qsort

deriv

list3O 53.7 34.6

list5O 75.0 43.8

timeslO 3.00 5.21

dividel0 2.94 7.71

loglO 1.92 2.19

ops8 2.24 2.94

203

134

11.2

15.9

8.56

5.25

1156

1272

86.4

90.6

61.6

61.2

1160

1344

76.2

84.4

49.2

63.7

serialise palin25 40.2 19.76

dbquery - 185 -

Time ratios

-

300

711

9970

602

8888

Procedure Data Prolog-10 Lisp Pop-2 Prolog-M Prolog-10I

nreverse list30 1 .64 3.8 22 22

qsort list50 1 .58 1.8 17 18

deriv timeslO 1 1.7 3.7 29 25

divi.delO 1 2.6 5.4 31 29

1og10 1 1.1 4.5 32 26

ops8 1 1.3 2.3 27 28

serialise palin25 1 .49 - 18 15

dbquery - 1 - 1.6 54 48

Notes

The above table, giving average figures

DECsystem--10 (KI

for actual CPU time on a

processor), compares compiled Prolog (our

implementation, "Prolog-10"), compiled Lisp (Stanford with the NOUUO

Page 217

option), compiled Pop-2 and interpreted Prolog (both the Marseille

Fortran implementation, "Prolog-M", and our implementation in Prolog,

"Prolog-10I"). The data was obtained by timing (via "control-T") a

large number of iterations of each test. The figures include garbage

collection times for Lisp and Pop-2. No garbage collection was needed

for Prolog since the stack mechanism recovers storage after each

iteration. Test iterations were achieved in the following ways:-

Prolog

tests(N) :- read(_),from(1,N,I),test,fail.
tests(N) :- read(),test.

from(I,I,I):-!.
from(L,N,I) :- Ni is (L+N)/2, from(L,N1,I).
from(L,N,I) :- L1 is (L+N)/2+1, from(L1,N,I).

Lisp

(DEFPROP TESTS (LAMBDA (N)

(PROG (I RESULT)
(READ)

(SETQ 10)
LAB (SETQ RESULT TEST)

(COND (LESSP I N) (GO LAB))

(READ)

(RETURN RESULT)))

EXPR)

Pop-2

FUNCTION TESTS N;
VARS I RESULT;
ERASE(ITEMREAD());
FORALL I 1 1 N;

TEST -> RESULT
CLOSE;
ERASE(ITEMREAD());
RESULT

END

The dummy "reads" serve to interrupt the execution of each test so

that "control-T" timings can be taken. The Prolog form of each

benchmark test is listed below, together with the Lisp and Pop-2

versions selected for comparison. Note that in the Prolog examples a

Page 218

more convenient syntactic form is used for lists. Thus '[]' stands

for the empty list and '[X,..L]' denotes a list whose head is X and

tail is L. A list of two elements 'a' followed by 'b' is written

'[a,b]'. Apart from the syntax, such lists are treated no differently

from other terms. The timing data would be exactly the same if, say,

'nil' and 'cons(X,L)' were used.

Page 219

5.1 reverse

llst30 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,301

Prolog : nreverse(list3O,X)

:-mode nreverse(+,-).
:-mode concatenate(+,+,-).

nreverse([X,..LO],L) :- nreverse(LO,L1), concatenate(L1,[X],L).

nreverse([] , []) .

concatenate([X,..L1],L2,[X,..L3]) :- concatenate(L1,L2,L3).
concatenate([],L,L).

Lisp : (NREVERSE list30)

(DEFPROP NREVERSE (LAMBDA (L)

(COND ((NULL L) NIL)

(T (CONCATENATE (NREVERSE (CDR L)) (CONS (CAR L) NIL)))))
EXPR)

(DEFPROP CONCATENATE (LAMBDA (L1 L2)
(COND ((NULL L1) L2)

(T (CONS (CAR L1) (CONCATENATE (CDR L1 L2)))))
EXPR)

Pop-2 : NREVERSE(list30)

FUNCTION NREVERSE LIST;
IF NULL(LIST) THEN NIL
ELSE CONCATENATE(NREVERSE(TL(LIST)),HD(LIST)::NIL)
CLOSE

END;

FUNCTION CONCATENATE LIST1 LIST2;
IF NULL(LIST1) THEN LIST2
ELSE HD(LIST1)::CONCATENATE(TL(LIST1),LIST2)
CLOSE

END;

Page 220

5.2 ysort

llst50 = [27,74,17,33,94,18,46,83,65, 2,
32,53,28,85,99,47,28,82, 6,11,
55,29,39,81,90,37,10, 0,66,51,
7,21,85,27,31,63,75, 4,95,99,

11,28,61,74,18,92,40,53,59, 81

Prolog : gsort(list50,X,[])

:-mode qsort(+,-,+).
:-mode partition(+,+,-,-).

gsort([X, ..L] ,R,RO) :-
partition(L,X,L1,L2),
gsort(L2,R1,RO),
gsort(L 1, R, [X, ..R1]) .

qsort([] ,R,R) .

partition([X,..L],Y,[X,..L1],L2) :- X =< Y,
partition(L,Y,L1,L2).

partition([X,..L] ,Y, L1, [X, ..L2]) :-
partition(L,Y,L1,L2).

partition([],_, [] , []) .

Lisp : (QSORT list50 NIL)

(DEFPROP QSORT (LAMBDA (L R)

(COND ((NULL L) R)

(T ((LAMBDA (P)

(QSORT (CAR P) (CONS (CAR L) (QSORT (CDR P) R))))
(PARTITION (CDR L) (CAR L))))))

EXPR)

(DEFPROP PARTITION (LAMBDA (L X)

(COND ((NULL L) (CONS NIL NIL))
(T ((LAMBDA (P)

(COND ((LESSP (CAR L) X)
(CONS (CONS (CAR L) (CAR P)) (CDR P)))

(T (CONS (CAR P) (CONS (CAR L) (CDR P))))))

(PARTITION (CDR L) X)))))
EXPR)

! aN 3
II'Id S 0109

`1SI'I<-ISI'I<>x
`3S0'I9 Z I 0109 `1SI'I<-Z ` Z ` x<>ISI'I !Z<- NHHI T=b 3I

`x<-
1IX3 1SI'I NHHI 0=b 3I !b<- :ZI'Ids

`3S0'I9 n 0109 3S'I3 Z'I 0109 `ZSI'I<-Sbb ! i ! x! Z NHHI (ISI'I)'I'InN 3I
aso'I9

x<-x::nbb 3S'I3
z<-Z::Abb NHHI Abb>Mbb 3I3S'I3

sbb<-Sbb::Abb NHHI Abb<Mbb 3I
`ZSI'I<-(ZSI'I)'IZ `Abb<-(ZSI'I)QH:1'I

Mbb<-(1SI'I)QH
Z<-'IIN ! x<-'IIN ! Sbb<-'IIN

!3SO'I3 II'IdS 0109 NHHI ((ISI'I)'IZ)'I'InN 210 (ISI'I)'I'InN 3I:Z'I
!o

`saa Mbb Abb b Z A SdVA
!1SI'I Ixosb NOIIONnd

(091SF1)lxosb : Z Od

TZZ aSed

Page 222

5.3 deriv

timeslO = ((((((((x*x)*x)*x)*x)*x)*x)*x)*x)*x
dividelO = ((((((((x/x)/x)/x)/x)/x)/x)/x)/x)/x
loglO = log(log(log(log(log(log(log(log(log(log(x))))))))))
ops8 = (x+l)*(x-2+2)*(x-3+3)

Prolog : d(expr,x,Y)

:-mode d(+,+,-).
:-op(300,xfy,-).

d(U+V,X,DU+DV) :-!, d(U,X,DU),d(V,X,DV).
d(U-V,X,DU-DV) :-!, d(U,X,DU),d(V,X,DV).
d(U*V,X,DU*V+U*DV) :-!, d(U,X,DU),d(V,X,DV).
d(U/V,X,(DU*V-U*DV)/V"2) :-!, d(U,X,DU),d(V,X,DV).
d(U"N,X,DU*N*U`N1) :-!, integer(N), Ni is N-1, d(U,X,DU).

d(-U,X,-DU) :-!, d(U,X,DU).
d(exp(U),X,exp(U)*DU) :-!, d(U,X,DU).

d(log(U),X,DU/U) :-!, d(U,X,DU).
d(X,X,1):-!.
d(C,X,O).

Lisp : (DERIV expr (QUOTE X))

(DEFPROP DERIV (LAMBDA (E X)

(COND ((ATOM E) (COND ((EQ E X) 1) (T 0)))

((OR (EQ (CAR E) (QUOTE PLUS)) (EQ (CAR E) (QUOTE DIFFERENCE)))

(LIST (CAR E) (DERIV (CADR E) X) (DERIV (CADDR E) X)))

((EQ (CAR E) (QUOTE TIMES))
(LIST (QUOTE PLUS)

(LIST (CAR E) (CADDR E) (DERIV (CADR E) X))

(LIST (CAR E) (CADR E) (DERIV (CADDR E) X))))
((EQ (CAR E) (QUOTE QUOTIENT))

(LIST (CAR E)

(LIST (QUOTE DIFFERENCE)
(LIST (QUOTE TIMES) (CADDR E) (DERIV (CADR E) X))

(LIST (QUOTE TIMES) (CADR E) (DERIV (CADDR E) X)))

(LIST (QUOTE TIMES) (CADDR E) (CADDR E))))

((AND (EQ (CAR E) (QUOTE EXPT)) (NUMBERP (CADDR E)))

(LIST (QUOTE TIMES)

(LIST (QUOTE TIMES) (CADDR E)

(LIST (CAR E) (CADR E) (SUB1 (CADDR E))))

(DERIV (CADR E) X)))

((EQ (CAR E) (QUOTE MINUS))
(LIST (CAR E) (DERIV (CADR E) X)))

((EQ (CAR E) (QUOTE EXP))

(LIST (QUOTE TIMES) E (DERIV (CADR E) X)))
((EQ (CAR E) (QUOTE LOG))

(LIST (QUOTE QUOTIENT) (DERIV (CADR E) X) (CADR E)))

(T NIL)))
EXPR)

Page 223

Pop-2 : DERIV(expr,X)

VARS SUM1 SUM2 DESTSUM OPERATION 4 ++;
RECORDFNS("SUM",[0 0])->SUM1->SUM2->DESTSUM->NONOP ++;
VARS DIFC1 DIFC2 DESTDIFC OPERATION 4 --;
RECORDFNS("DIFC",[O 0])->DIFC1->DIFC2->DESTDIFC->NONOP --;
VARS PROD1 PROD2 DESTPROD OPERATION 3 **;
RECORDFNS("PROD",[0 0])->PROD1->PROD2->DESTPROD-->NONOP **;
VARS QUOT1 QUOT2 DESTQUOT OPERATION 3 ///;
RECORDFNS("QUOT",[O 0])->QUOT1->QUOT2->DESTQUOT->NONOP
VARS POWR1 POWR2 DESTPOWR OPERATION 2 °"';
RECORDFNS("POWR",[0 0])->POWR1->POWR2->DESTPOWR->NONOP ;
VARS MINUS1 DESTMINUS MINUS;
RECORDFNS("MINUS",[0])->MINUSI->DESTMINUS->MINUS;
VARS EXPF1 DESTEXPF EXPF;
RECORDFNS("EXPF",[0])->EXPF1->DESTEXPF ->EXPF;
VARS LOGF1 DESTLOGF LOGF;
RECORDFNS("LOGF",[0])->LOGF1->DESTLOGF->LOGF;

FUNCTION DERIV E X;
IF E.ISNUMBER THEN 0
ELSEIF E.ISWORD THEN IF E=X THEN 1 ELSE 0 CLOSE
ELSEIF E.DATAWORD="SUM" THEN DERIV(SUM1(E),X)++DERIV(SUM2(E),X)
ELSEIF E.DATAWORD="DIFC" THEN DERIV(DIFC1(E),X)--DERIV(DIFC2(E),X)
ELSEIF E.DATAWORD="PROD" THEN

DERIV(PROD1(E),X)**PROD2(E)++PROD1(E)**DERIV(PROD2(E),X)
ELSEIF E.DATAWORD="QUOT" THEN

(DERIV(QUOT1(E),X)**QUOT2(E)--QUOT1(E)**DERIV(QUOT2(E),X))
///QUOT2(E)'"'2

ELSEIF E.DATAWORD="POWR" AND POWR2(E).ISNUMBER THEN

DERIV(POWR1(E),X)**POWR2(E)**POWR1(E)°'(POWR2(E)-1)
ELSEIF E.DATAWORD="MINUS" THEN MINUS(DERIV(MINUSI(E),X))
ELSEIF E.DATAWORD="EXPF" THEN E**DERIV(EXPF1(E),X)
ELSEIF E.DATAWORD="LOGF" THEN DERIV(LOGF1(E),X)///LOGF1(E)
ELSE "ERROR"
CLOSE

END;

Page 224

5.4 serialise

palin25 = "ABLE WAS I ERE I SAW ELBA"

Je. a list of 25 numbers representing the character codes.

Result = [2,3,6,4, 1, 9, 2, 8, 1, 5, 1, 4, 7, 4, 1, 5, 1, 8, 2, 9, 1, 4, 6, 3, 2]

Prolog : serialise(palin25,X)

:-mode serialise(+,-).
:-mode pairlists(+,-,-).
:-mode arrange(+,-).
:-mode split(+,+,-,-).

:-mode before(+,+).
:-mode numbered(+,+,-).

serialise(L,R) :-
pairlists(L,R,A),

arrange(A,T),
numbered(T,1,N).

pairlists([X,..L] , [Y, ..R] , [pair(X,Y), ..A]) :- pairli.sts(L, R,A) .
pai_rlists([] , [] , []) .

arrange([X,..L],tree(T1,X,T2))
split(L,X,L1,L2),
arrange (L 1, Ti) ,
arrange(L2,T2).

arrange([] void) .

split([X,..L],X,L1,L2) :-!, split(L,X,L1,L2).
split([X,..L],Y,[X,..L1],L2) :- before(X,Y),!, split(L,Y,L1,L2).

split([X,..L],Y,L1,[X,..L2]) before(Y,X),!, split(L,Y,L1,L2).

split([],_,[],[]).
before(pair(X1,Y1),pair(X2,Y2)) :- X1<X2.

numbered(tree(Tl,pair(X,N1),T2),NO,N) :-

numbered(T1,NO,N1),
N2 is N1+1,

numbered(T2,N2,N).
numbered (void, N, N) .

Lisp : (SERIALISE lin25)

(DEFPROP SERIALISE (LAMBDA (L)

(PROG (R)

(SETQ R (DUPLICATE L))
(NUMBERTREE 1 (ARRANGE (CELLS R)))

(RETURN R)))
EXPR)

Page 225

(DEFPROP DUPLICATE (LAMBDA (L)
(COND ((NULL L) NIL)

(T (CONS (CAR L) (DUPLICATE (CDR L))))))
EXPR)

(DEFPROP CELLS (LAMBDA (L)
(COND ((NULL L) NIL)

(T (CONS L (CELLS (CDR L))))))
EXPR)

(DEFPROP ARRANGE (LAMBDA (L)
(COND ((NULL L) NIL)

(T (CONS (CONS (CAR L) (MIDDLEPART (CAAR L) (CDR L)))
(CONS (ARRANGE (LOWERPART (CAAR L) (CDR L)))

(ARRANGE (UPPERPART (CAAR L) (CDR L))))))))
EXPR)

(DEFPROP MIDDLEPART (LAMBDA (X L)
(COND ((NULL L) NIL)

((EQ (CAAR L) X) (CONS (CAR L) (MIDDLEPART X (CDR L))))
(T (MIDDLEPART X (CDR L)))))

EXPR)

(DEFPROP LOWERPART (LAMBDA (X L)
(COND ((NULL L) NIL)

((LESSP (CAAR L) X) (CONS (CAR L) (LOWERPART X (CDR L))))
(T (LOWERPART X (CDR L)))))

EXPR)

(DEFPROP UPPERPART (LAMBDA (X L)
(COND ((NULL L) NIL)

((GREATERP (CAAR L) X) (CONS (CAR L) (UPPERPART X (CDR L))))
(T (UPPERPART X (CDR L)))))

EXPR)

(DEFPROP NUMBERTREE (LAMBDA (N TREE)
(COND ((NULL TREE) N)

(T (NUMBERTREE

(NUMBERLIST
(NUMBERTREE N

(CADR TREE))
(CAR TREE))

(CDDR TREE)))))
EXPR)

(DEFPROP NUMBERLIST (LAMBDA (N LO)
(PROG (L)

(SETQ L LO)
LOOP (RPLACA (CAR L) N)

(SETQ L (CDR L))
(COND ((NOT (NULL L)) (GO LOOP)))
(RETURN (ADD1 N))))

EXPR)

Page 226

5.5 query

The solutions to a database query to find countries of similar
population density are

[indonesia, 223, pakistan, 219]
[uk, 650, w germany, 645]

[italy, 477, phi_lippi.nes,461]
[france, 246, china, 244]
[ethiopia, 77, mexico, 76]

Prolog : query([C1,D1,C2,D2])

query([C1,D1,C2,D2]):-
density(C1,D1),
density(C2,D2),
D1>D2,
20*D 1<21*D2.

density(C,D) :- pop(C,P), area(C,A), D is (P*100)/A.

/* populations in 100000s, areas in 1000s of sq. miles. */

pop(china, 8250). area(china, 3380).
pop(india, 5863). area(india, 1139).
pop(ussr, 2521). area(ussr, 8708).
pop(usa, 2119). area(usa, 3609).
pop(indonesia, 1276). area(indonesia, 570).
pop(japan, 1097). area(japan, 148).
pop(brazil, 1042). area(brazil, 3288).
pop(bangladesh, 750). area(bangladesh, 55).
pop(pakistan, 682). area(pakistan, 311).
pop(w_germany, 620). area(w_germany, 96).
pop(nigeria, 613). area(nigeria, 373).
pop(mexico, 581). area(mexico, 764).
pop(uk, 559). area(uk, 86).
pop(italy, 554). area(italy, 116).
pop(france, 525). area(france, 213).
pop(philippines, 415). area(philippines, 90).
pop(thailand, 410). area(thailand, 200).
pop(turkey, 383). area(turkey, 296).
pop(egypt, 364). area(egypt, 386).
pop(spain, 352). area(spain, 190).
pop(poland, 337). area(poland, 121).
pop(s korea, 335). area(s korea, 37).
pop(iran, 320). area(iran, 628).
pop(ethiopia, 272). area(ethiopia, 350).
pop(argentina, 251). area(argentina, 1080).

Page 227

Pop-2 : QUERY(N)

[N is the number of times the test is to be iterated. The strips

COUNTRY, POPULATION, AREA are initialised with the appropriate data.]

VARS COUNTRY POPULATION AREA;
INIT(25)->COUNTRY;
INIT (2 5)->POPULATION;
INIT(25)->AREA;

FUNCTION DENSITY I; SUBSCR(I,POPULATION)*100/SUBSCR(I,AREA) END;

FUNCTION QUERY N;
VARS I Cl C2 Dl D2;

ERASE(ITEMREADO);
N+1->N;
FORALL I 1 1 N;

IF I=N THEN ERASE(ITEMREADO) CLOSE;
FORALL Cl 1 1 25;

DENSITY(C1)->D1;
FORALL C2 1 1 25;

DENSITY(C2)->D2;
IF D1>D2 AND 20*D1<21*D2 AND I=N

THEN PR([% SUBSCR(C1,COUNTRY),D1,

SUBSCR(C2,COUNTRY),D2 %]);NL(1)
CLOSE

CLOSE

CLOSE
CLOSE

END;

Page 228

6.0 REFERENCES

Battani G and Meloni H [1973]
Interpreteur du langage de programmation Prolog.
Groupe d'Intelligence Artificielle,Marseille-Luminy. 1973.

Bergman M and Kanoui H [1975]
Sycophante: Systeme de calcul formel et d'integration symbolique
sur ordinateur.
Groupe d'Intelligence Artificielle, Marseille-Luminy. Oct 1975.

Boyer R S and Moore J S [1972]
The sharing of structure in theorem proving programs.
Machine Intelligence 7 (ed.Meltzer & Michie),Edinburgh UP. 1972.

Bruynooghe M [1976]
An interpreter for predicate logic programs : Part I.
Report CW 10, Applied Maths & Programming Division,
Katholieke Universiteit Leuven, Belgium. Oct 1976.

Bundy A, Luger G, Stone M and Welham R [1976]
MECHO: year one.
DAI Report 22, Dept. of AI, Edinburgh. Apr 1976.

Burstall R M, Collins J S, Popplestone R J [1971]
Programming in Pop-2.
Edinburgh University Press. 1971.

Colmerauer A [1975]
Les grammaires de metamorphose.
Groupe d'Intelligence Arti.ficielle,Marseille-Luminy. Nov 1975.

Dahl V and Sambuc R [1976]
Un systeme de banque de donnees en logique du premier ordre,
en vue de sa consultation en langue naturelle.
Groupe d'Intelligence Artificielle,Marseille-Luminy. Sep 1976.

Darvas F, Futo I and Szeredi P [1976]
Some applications of theorem-proving based machine intelligence
in QSAR (quantitative structure-activity research).
Procs. QSAR conf., Suhl, E Germany. 1976.

Darvas F, Futo I and Szeredi P [1977]
Logic based program system for predicting drug interactions.
Int. J. of Biomedical Computing, 1977.

DEC [1974]
DECsystem-10 System Reference Manual (3rd. edition).
Digital Equipment Corporation, Maynard, Mass. Aug 1974.

Dijkstra E W [1976]
A Discipline of Programming.
Prentice-Hall. 1976.

Page 229

van Emden M H [1975]

Programming with resolution logic.
Report CS-75-30, Dept.of Computer Science,
University of Waterloo, Canada. Nov 1975.

van Emden M H [1976]

Deductive information retrieval on virtual relational databases.
Report CS-76-42, Dept. of Computer Science,
University of Waterloo, Canada. Aug 1976.

Hoare C A R [1973]

Recursive data structures.
Stanford Al Memo 223, Calif. Nov 1975.

Hobbs J R [1977]

What the nature of natural language tells us about how to
make natural language like programming languages more natural.
Procs. ACM SIGART-SIGPLAN Symp. on
Al and Programming Langs.,pp.85-93. Aug 1977.

Kowalski R A [1974]
Logic for problem solving.
DCL Memo 75, Dept of Al, Edinburgh. Mar 74.

Kowalski R A [1977]
Algorithm = Logic + Control.
Dept. of Computing & Control,Imperial College,London. 1977.

Lichtman B M [1975]
Features of very high-level programming with Prolog.
MSc dissertation, Dept.of Computing and Control,
Imperial College, London. Sep 1975.

Markusz Z [1977]
Designing variants of flats.
Procs. IFIP conf. 1977.

McCarthy J et al. [1962]
LISP 1.5 Programmer's Manual.
MIT Press, MIT, Cambridge, Mass. Aug 1962.

Pereira L M [1977]
User's guide to DECsystem-10 Prolog.
Divisao de Informatica, Lab.Nac.de Engenharia Civil,Lisbon. 1977.

Roberts G M [1977]

An Implementation of Prolog.
Master's thesis, Dept. of C.S.,Univ. of Waterloo,Canada. 1977.

Robi.nson J A [1965]
A machine-oriented logic based on the resolution principle.
JACM vol 12, pp.23-44. 1965.

Page 230

Roussel P [1972]
Definition et traitement de 1'egalite formelle en demonstration
automati que.
These 3me. cycle, UER de Luminy, Marseille. 1972.

Roussel P [1975]
Prolog : Manuel de reference et d'utili.sation.
Groupe d'Intelligence Artificielle, Marseille-Luminy.. Sep 1975.

Sussman G J and Winograd T [1970]

MICRO-PLANNER reference manual.
AI Memo 203, MIT Project MAC. Jul 1970.

Szeredi P [1977]

Prolog - a very high level language based on predicate logic.
Procs.2nd.Hungarian Conf.on Computer Science,Budapest. Jun 1977.

Warren D H D [1974]
Warplan : a system for generating plans.
DCL Memo 76, Dept. of AI, Edinburgh. Jun 1974.

Warren D H D [1976]
Generating conditional plans and programs.
Procs. AISB Conf., pp.344-354, Edinburgh. Jul. 1976.

Warren D H D, Perei.ra L M and Pereira F [1977]

Prolog - the language and its implementation compared with Lisp.

Procs. ACM SIGART-SIGPLAN Symp. on
AI and Programming Languages. Aug 1977.

Weissman C [1967]
Lisp 1.5 Primer
Dickenson Publishing Co. 1967.

Zloof M [1974]
Query by Example.
RC 4917 (#21862), IBM Thomas J Watson Research Centre,
Yorktown Heights, New York 10598. 1974.

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-77-010

