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2.0 ABSTRACT 

The first Part of the thesis explains from first principles the 

concept of "logic programming" and its practical application in the 

programming language Prolog. Prolog is a simple but powerful language 

which encourages rapid, error-free programming and clear, readable, 

concise programs. The basic computational mechanism is a pattern 

matching process ("unification") operating on general record 

structures ("terms" of logic). 

IThe ideas are illustrated by describing in detail one sizable 

Prolog program which implements a simple compiler. The advantages and 

practicability of using Prolog for "real" compiler implementation are 

discussed. 

The second Part of the thesis describes techniques for 

implementing Prolog efficiently. In particular it is shown how to 

compile the patterns involved in the matching process into 

instructions of a low-level language. This idea has actually been 

implemented in a compiler (written in Prolog) from Prolog to 

DECsystem-10 assembly language. However the principles involved are 

explained more abstractly in terms of a "Prolog Machine". The code 

generated is comparable in speed with that produced by existing DEC10 

Lisp compilers. Comparison is possible since pure Lisp can be viewed 

as a (rather restricted) subset of Prolog. 

It is argued that structured data objects, such as lists and 

trees, can be manipulated by pattern matching using a "structure 

'sharing" representation as efficiently as by conventional selector and 
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constructor functions operating on linked records in "heap" storage. 

Moreover the pattern matching formulation actually helps the 

implementor to produce a better implementation. 

Keywords 

Logic, programming, Prolog, implementation, compiler, data structures, 

matching, unification, compiler specification, compiler 

implementation. 
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3.0 PREFACE 

Historically, the idea of a computer preceded the idea of a 

programming language. In the early days, a program was seen as a 

means of instructing a particular machine to carry out some task. 

Programming languages then evolved in response to the need to make 

instruction of the machine easier for human programmers. With 

hindsight, it seems clear that this approach is back-to-front. Really 

we should first decide what is needed in a programming language and 

then tailor the machine to fit the language, not vice versa. As 

Dijkstra puts it (1976, p.201], instead of "the program's purpose 

being to instruct our computers", it should be "the computer's purpose 

to execute our programs". 

Nevertheless, at present it still remains the case that the 

nature of the conventional programming language owes much to 

characteristics of early computers characteristics which are 

arguably an historical accident and are not essential to the notion of 

a program. For example, would the assignment operation be so 

predominant in our programming languages if the first programs had 

been intended for execution by clerks with pen and paper? - for 

assignment presupposes very particular properties of the medium used 

for storing information. 

Freeing the design of a programming language from a priori 

machine constraints, what are the qualities needed? In other words, 

what is the best way for the human programmer to express the 

information processing task he wishes to be carried out? 
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One obvious snap answer is to observe that all humans start out 

knowing at least one "programming language" - their mother tongues. 

How about natural language as a basis for writing programs? (This 

idea should not be confused with what Hobbs (1977]'describes as 

"spreading a thin veneer of English vocabulary and perhaps some 

English syntax over a very ordinary programming language", as for 

example in the design of Cobol.) 

It should be clear that the way information is expressed in 

natural language is very different from that of the average 

programming language. (For concreteness, the reader may like to 

compare a description in everyday English of the rules establishing a 

person's tax liability with, say, a PL/1 program to calculate the 

liability.) 

Firstly, note that in natural language information can be 

supplied in a fairly piecemeal fashion, and generally each sentence 

makes sense in isolation, without a great deal of contextual 

knowledge. By contrast, conventional program "statements" need to be 

rigidly sequenced, and the meaning of each "statement" can only really 

be appreciated in the context of the program as a whole, or at least 

some sizable portion of it. 

Secondly, conventional program "statements" are imperative, 

whereas in natural language the usual mode of expression is 

declarative - even when the communication is essentially an 

instruction, it is normal to give a declarative description of what is 

required, with just one imperative (often implicit) "Do it!". 
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Finally, it is normal for the objects referred to in a 

conventional program to be items associated with the machine or 

environment in which the program is to be executed - items such as 

memory locations ("variables") and files. In natural.language, of 

course, there is no need to refer to anything other than the objects 

or entities directly involved in the subject at hand (such as, in our 

example, "salaries", "dependents", "investments", etc.). 

These differences we have listed seem to be quite fundamental, 

and it is reasonable to argue that the conventional programming 

language is unsuited to the human user, precisely because the way 

information has to be expressed is so different from the natural one. 

Of course, natural language itself has obvious disadvantages 

which make it impractical as a programming language (for the time 

being at least) - it is too vague, too prone to ambiguity and too 

long-winded (and parsing the language is far from trivial). 

Is it possible to find a language which has the precision and 

conciseness needed of a programming language, but which is closer to 

the way we naturally communicate information? One approach meeting 

these criteria is the subject of this thesis. The main idea goes 

under the name "logic programming", and has an interesting history. 

Over 2300 years ago, Aristotle and his followers initiated the 

study of reasoning expressed in natural language. They categorised 

various forms of argument which constitute valid reasoning. This 

science became known as logic. In the last 100 years, the more 

comprehensive analysis needed especially for mathematical reasoning 
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has led to the development of symbolic logic. Instead of working with 

the natural language form of the argument, logicians now use an 

artificial language which amounts to a convenient shorthand for 

natural language. (This symbolic language, like the original 

discipline, is referred to as "logic".) One can mechanically translate 

logic statements into (somewhat stilted) natural language statements. 

All that is needed is a suitable "interpretation" (ie. natural 

language phrase) for each different symbol used. Some of the symbols 

must have a fixed translation - these are the "logical" symbols, 

translated as "if", "and", "all", etc. Then any reasoning which is 

valid in the formal language makes correct sense when translated into 

natural language. 

{There is (as yet) no mechanical way of doing the reverse 

translation - that is, from natural language into logic. However, it 
is not implausible that every natural language statement is equivalent 

in meaning to some alternative (more stilted) form, where that form 

results from translating a logic statement under some fixed 

"interpretation". If this conjecture is correct, logic does indeed 

constitute a comprehensive shorthand for natural language.) 

In this decade, it was realised (by Kowalski and Colmerauer) that 

symbolic logic provides the basis for a practicable programming 

language. Logic statements - traditionally given solely a declarative 

interpretation - can also be understood imperatively (or 

-"procedurally"). This is analogous to the way in natural language we 

give instructions merely by describing what we want. To turn logic 

into a workable programming language, it is necessary to supply 
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additional control information, in order to direct how the logic 

"program" is to be used to derive the results required. For many 

practical purposes, an extremely simple form of control information is 

sufficient. A certain subset of logic, augmented with this 

particularly simple form of control information, constitutes a 

programming language known as Prolog. 

As a programming language, Prolog has all the nice properties of 

natural language we listed earlier - the statements are independently 

meaningful and can be supplied piecemeal; the language can be 

interpreted both declaratively and imperatively; the objects a 

program is "about" are independent of any execution environment. 

Moreover, the "symbolic" character of symbolic logic gives Prolog the 

essential properties which natural language lacks - conciseness, 

precision and a simple syntax. 

However all this might only be of academic interest. What is 

significant and truly amazing about Prolog is that it can really be 

used to write useful programs, and that the efficiency of the 

implementation can compare quite favourably with that of conventional 

languages. 

It is important to understand that, amongst all the possible 

meaningful groupings of logic statements, only a very small proportion 

can be considered reasonable programs, even with the most 

sophisticated control imaginable, still less with the simple control 

used in Prolog. Logic statements which form a perfectly good 

specification of a problem do not necessarily amount to an acceptable 

implementation. Logic programming is programming. The logic 
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programmer still has to formulate his task with an eye for what is 

practicable and reasonably efficient. However, compared with 

conventional languages, program and specification are much closer in 

nature, and may even, in favourable cases, be virtually the same. 

This thesis is entitled "Applied Logic" to draw attention to the 

fact that the approach to logic required in logic programming is 

rather different from the traditional one. This difference can be 

likened to the distinction between pure and applied mathematics. 

Traditionally, logic has been studied almost exclusively for its own 

sake, as a subject of intrinsic intellectual interest. Here, however, 

we are interested in logic primarily in so far as it can be useful. 

We look on logic as a tool to be used in tackling information 

processing problems from a variety of different fields. Whereas there 

is a vast literature on "pure" logic, only a very simple and 

non-technical understanding of logic is necessary for our purposes. 

In a similar way, one doesn't need an awareness of erudite theorems of 

number theory to make simple use of arithmetic in everyday life. 

The thesis consists of two separate and self-contained parts 

which can read independently in either order. (To achieve this 

independence, there is some duplication of material.) 

Part I of the thesis gives a user's eye view of logic as a 

programming language, concentrating in particular on Prolog. We aim 

to show how Prolog can be used as a beautiful and practical tool for 

writing useful programs. Now other authors have described the 

advantages of Prolog in a wide variety of different applications, 

including large-scale programs in the fields of:- 



Page 12 

* natural language understanding systems [Colmerauer 1975] 

* algebraic symbol manipulation [Bergman & Kanoui 1975] [Bundy et al. 

1976] 

* computer-aided architectural design [14arkusz 1977] 

* drug design applications [Darvas et al. 1976,1977] 

* database interrogation [Dahl & Sambuc 1976] 

* plan/program synthesis [Warren 1974,1976] 

So we concentrate on one particular application - compiler writing - 

and explain, in some detail, a sizable Prolog program. We hope this 

example will give the reader a better perspective of the language than 

can be gleaned from selected "tit-bits". Also, it happens that Prolog 

is remarkably well adapted to the role of "compiler-compiler" - this 

is remarkable in that Prolog was not developed specifically for this 

purpose. In our view, the compiler writing application alone is of 

sufficient interest to make Prolog worthy of study. 

Part II of this thesis turns to the implementor's view of Prolog. 

We show how the logic statements of Prolog can be viewed as sequences 

of instructions for quite a low-level machine and, using this insight, 

we indicate how Prolog can be compiled into efficient code for a 

conventional computer. 

Although Parts I and II of the thesis are written to be 

self-contained, each has bearing on the other:- 

(1) Logic would be of little interest as a programming language were 

it not for the possibility of efficient implementation. 

(2) The application of Prolog to compiler writing (and more generally 

as a systems programming language) motivates the development of more 
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efficient implementations, such as we describe in Part II. 

(3) The method of compiling Prolog described in Part II is implemented 

by a compiler written in Prolog, using the techniques exemplified in 

Part I. 

Part I of the thesis was previously published under the title 
"Logic Programming and Compiler Writing" as Edinburgh DAI Research 
Report No. xx. Part II of the thesis was previously published under 
the title "Implementing Prolog" in two volumes as Edinburgh DAI 
Research Reports Nos. 39 & 40. Some of the results were reported in a 
paper with Luis Pereira and Fernando Pereira entitled "Prolog - the 
language and its implementation compared with Lisp", given at the ACM 

SIGART-SIGPLAN symposium on "AI and Programming Languages", Rochester 
NY, August 1977. 



Page 14 

4.0 ORIGINALITY AND ORIGIN OF THE WORK 

As is noted in the text, this thesis describes work building on 

much previous research by other people. The main original 

contributions are the following:- 

(1) (a) The thesis introduces the novel concept of compiling logic 

programs into efficient machine-oriented instructions. 

(b) This idea has been developed into a detailed method for 

compiling Prolog programs (the "Prolog Machine"). 

(c) The method has been implemented in a practical and useful 

Prolog compiler for the DECsystem-10 computer. 

(2) The compiler was implemented in Prolog - providing for the first 
time a demonstration of the practicability of Prolog as a language for 

compiler writing. 

As is acknowledged elsewhere, the Prolog system described herein 

was implemented in collaboration with two colleagues, Fernando Pereira 

and Luis Pereira. However, the material covered specifically in this 

thesis was my work alone, apart from one exception noted below. In 

particular, I was responsible for designing the basic "Prolog 

Machine", and also did the implementation of both the compiler itself 

and the fundamental run-time routines supporting the "Prolog Machine 

Instructions". The thesis does not attempt to cover many aspects of 

the implementation which were essential for a practical, usable system 

and which in fact constituted a major part of the total man hours 

spent. These aspects are not covered, since no principles peculiar to 

Prolog are involved. Mainly this work amounted to "human 

engineering", provided typically in the form of "evaluable 
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predicates". A large portion of this work was undertaken by my 

colleagues, particularly the parts involving interface to the host 

machine's operating system (Monitor). Of the material covered in the 

thesis, the only part which was substantially collaborative was the 

garbage collector - a basic design of this component by me was 

"debugged" and implemented by FP. 
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PART I - LOGIC PROGRAPQIING AND COMPILER WRITING 

1.0 INTRODUCTION 

This Part of the thesis aims to provide an introduction to the 

concept of "logic programming" (Kowalski 1974] [Colmerauer 1975] [van 

Emden 1975] for people with experience in other programming languages. 

The emphasis is on those aspects which have been put to practical use 

in the programming language Prolog (Roussel 1975] [Pereira 1977], 

developed at the University of Marseille. The ideas are illustrated 

by discussing at length one main example, consisting of a very simple 

compiler written in Prolog. Although this "toy" compiler has been 

made as simple as possible for didactic purposes, the techniques 

employed are taken from a "real" implementation in Prolog of a 

compiler, in practical use. This example has been chosen with the 

additional purpose of demonstrating the particular advantages of 

Prolog for compiler writing. The reader is expected to be broadly 

familiar with various conventional programming languages, but no 

knowledge of symbolic logic is assumed. Some acquaintance with the 

issues involved in writing a compiler would be an advantage. 
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2.0 LOGIC PROGRAMMING 

The principal idea (Kowalski 1977] behind logic programming is 

that an algorithm can be usefully analysed into a logical component 

and a control component:- 

"algorithm = logic + control". 

Roughly speaking, the logical component defines what the algorithm 

does, and the control component prescribes how it is done efficiently. 

The logical component can be expressed as statements of symbolic 

logic. For this purpose, one normally only needs to consider a 

restricted part of logic reduced to a standard form known as "Horn 

clauses". The language of this subset will now be described from a 

conventional programming standpoint. The notation and terminology 

will be that used in Prolog. 

2.1 Syntax 

The data objects of the language are called terms. A term is 

either a constant, a variable or a compound term. 

The constants include integers such as:- 

0 1 999 

and atoms such as:- 

a nil 'Algol-68' 

The symbol for an atom can be any sequence of characters, which in 

general must be written in quotes unless there is no possibility of 

confusion with other symbols (such as variables, integers). As in 

conventional programming languages, constants are definite elementary 
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objects, and correspond to proper nouns in natural language. 

Variables will be distinguished by an initial capital letter eg. 

X Value A Al 

If a variable is only referred to once, it does not need to be named 

and may be written as an "anonymous" variable indicated by a single 

underline character:- 

A variable should be thought of as standing for some definite but 

unspecified object. This is analogous to the use of a pronoun in 

natural language. Note that a variable is not simply a writeable 

storage location as .m:os.t-_p-r.ugxaumming languages. Compare instead 

the variable of pure Lisp, which is likewise a "stand-in" for a data 

object rather than a location to be assigned to. 

The structured data objects of the language are the compound 

terms. A compound term comprises a functor (called the principal 

functor of the term) and a sequence of one or more terms called 

arguments. A functor is characterised by its name, which is an atom, 

and its arity or number of arguments. For example the compound term 

whose functor is named 'point' of arity 3, with arguments X, Y and Z, 

is written:- 

point(X, Y, Z) 

Functors are generally analogous to common nouns in natural language. 

One may think of a functor as a record type and the arguments of a 

term as fields of a record. Compound terms are usefully pictured as 

trees. For example, the term:- 

line(point(X1,Y1,Z),point(X2,Y2,Z)) 
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would be pictured as the structure:- 

Sometimes it is convenient to write a compound term using an optional 

infix notation, eg. 

X+Y (P;Q) 

instead of:- 

+(X,Y) ;(P,Q) 

Finally note that an atom is treated as a functor of arity 0. 

Suppose we wish to give a formal definition of a data type called 

a "dictionary". A dictionary will be either the atom 'void', or a 

compound term of the formn:- 

dic(<term 1>,<term 2>,<term 3>,<term 4>) 

where the arguments <term3> and <term4> are also dictionaries whilst 

<terml> and <term2> are of unrestricted type. (Here, and throughout 

this Part of the thesis, names in angular brackets are used as 

"meta-variables" to symbolise constructs of the "object language" 

being discussed, cf. the non-terminal symbols of a Backus-Naur form 

(BNF) grammar.) The required definition of the data type "dictionary" 

is expressed in logic by the following two statements:- 

dictionary(void) 

dictionary(dic(X,Y,D1,D2)) :- dictionary(D1),dictionary(D2). 

Here 'dictionary(_)' is a special kind of functor called a predicate, 

analogous to a verb in natural language. (Predicates are 

distinguished from other functors only by the contexts in which they 

occur.) A term with a predicate as principal functor is called a 



Page 21 

boolean term, and is analogous to a simple statement in natural 

language. 

In general, statements of logic can be considered to be a 

shorthand for descriptive statements of natural language. A statement 

of the form:- 

<P> :- <Q>, <R>, <...> 

should be read as:- 

<P> if <Q> and <R> and <...> 

Thus the two statements above might be read as:- 

"void" is a dictionary. 
"di.c(X,Y,D1,D2)" is a dictionary if D1 is a dictionary and 
D2 is a dictionary. 

Any variables in a statement are interpreted as standing for arbitrary 

objects, so a more precise reading of the second statement would be:- 

For any X, Y, D1 and D2, "dic(X,Y,D1,D2)" is a dictionary 
if D1 is a dictionary and D2 is a dictionary. 

Note that the variables in different statements are completely 

independent even if they have the same name - ie. the "lexical scope" 

of a variable is restricted to a single statement. 

The kind of logic statements we are considering are called 

2. The clauses. For our purposes, a clause comprises a head and a 12d 

head is a boolean term and the body is a sequence of zero or more 

boolean terms called goals. In general a clause is written:- 

<head> :- <goal 1>, <goal 2>, <...>. 

If the number of goals is zero, we speak of a unit clause, and this is 

written:- 

<head>. 
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2.2 Semantics 

The semantics of the language we have described should be clear 

from its informal interpretation. However it is useful to have a 

precise definition. The semantics will tell us which boolean terms 

can be considered true according to some given clauses. Thus in the 

case of our clauses for 'dictionary(!)', we shall know that a term 

<term> is a dictionary if the boolean term:- 

dictionary(<term>) 

is true. 

Here then is a recursive definition of what will be called the 

declarative semantics of clauses. 

A term is true if it is the head of some clause instance and 
each of the goals (if any) of that clause instance is true, 
where an instance of a clause (or term) is obtained by 
substituting, for each of zero or more of its variables, a 
new term for all occurrences of the variable. 

The unary predicate 'dictionary(_)' specified a data type. More 

generally, predicates are used to express relationships between 

objects. For example, we might use 'concatenated(<1>,<2>,<3>)' to 

mean that list <3> consists of the elements of list <1> followed by 

the elements of list <2>. Thus 

concatenated( (a.b .c .d .nil) , 
(1.2.3.nil), 
(a.b.c.d.1.2.3.nil) ) 

is true, where a list is either the atom 'nil' or a term formed from 

the binary functor '.' whose second argument is a list, ie. 

list(nil). 
list(.(X,L)) :- list(L). 

In general, as above, we write the functor as a 
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right-associative infix operator so that, for example, the first list 

mentioned is equivalent to the standard form '.(a,.(b,.(c,.(d,nil))))' 

and should be pictured as:- 

nil 

The following clauses define the predicate'concatenated(_,',_)':- 

concatenated(nil,L,L). 
concatenated((X.L1),L2,(X.L3)) :- concatenated(L1,L2,L3). 

The clauses may be read as:- 

The empty list concatenated with any list L is simply L. 
A non-empty list consisting of X followed by remaining 
elements L1 concatenated with list L2 is the list 

consisting of X followed by remaining elements L3 
where L1 concatenated with L2 is L3. 

So far we have looked on clauses as a means of specifying 

relationships between objects. This is the traditional view of the 

purpose of logic. 

Now consider what has to be done for relationships expressed in 

logic to be computed efficiently. For example, given terms <terml> 

and <term2>, how can one find a term <term3> such that:- 

concatenated(<terml>,<term2>,<term3>) 

is true? The major discovery of "logic programming" is that the 

clauses themselves can often provide the basis of the procedures 

required. In such cases, it is only necessary to supply suitable 

control information to specify how the clauses are to be used 

effectively. In brief, logic has a "procedural interpretation". 



Page 24 

The procedural interpretation treats a predicate as a procedure 

name, the head of a clause as a procedure entry point and a goal as a 

procedure call. A procedure is a set of clauses with the same head 

predicate. For example, the clauses for 'concatenated(_,_,_)' can be 

considered to be a procedure for concatenating the elements of two 

given lists (amongst other uses). The procedure has two entry points 

corresponding to whether or not the first of the two input lists is 

empty. One of the clauses makes a recursive call to the same 

procedure. 

Before we go on to consider the kind of control provided in 

Prolog, we should observe that not all sets of clauses make equally 

effective procedures. Some clauses would require unrealistically 

sophisticated control information to be of practical use. Much of the 

art of logic programming is to cormulate the problem in such a way 

that it can be solved efficiently using the control mechanisms 

available. This soon comes quite naturally to someone with 

programming experience, as really it is just what one does in any 

other programming language; the ingenuity required is no greater, and 

usually less. Indeed, as we shall see, one of the main attractions of 

logic programming is that often a natural specification of an 

algorithm and a good implementation are one and the same. 
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3.0 THE PROGRAMMING LANGUAGE PROLOG 

3.1 Introduction 

A remarkably simple form of control suffices for many practical 

applications of logic programming. This point was first realised at 

Marseille and is the basis of the programming language Prolog 

developed there. From now on we shall restrict our attention to 

Prolog. 

If we think back to the declarative semantics of clauses, it is 

clear that the order of the goals in a clause and the order of the 

clauses themselves, are both irrelevant to the declarative 

interpretation. However these orderings are generally significant in 

Prolog as they constitute the main control information. In other 

respects a Prolog program is just a set of clauses. 

When the Prolog system is executing a procedure call, the clause 

ordering determines the order in which the different entry points of 

the procedure are tried. The goal ordering fixes the order in which 

the procedure calls in a clause are executed. The "productive" effect 

of a Prolog computation arises from the process of "matching" a 

procedure call against a procedure entry point. 

Really there are two different ways of looking at the meaning of 

a Prolog program. We have already discussed the declarative 

interpretation which Prolog inherits from logic. The alternative way 

is to consider, as for a conventional programming language, the 

sequence of steps which take place when the program is executed. This 

is defined by the procedural semantics of Prolog. This semantics will 
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tell us what happens when a goal (procedure call) is executed. The 

result of the execution will be to produce true instances of the goal 

(if there are any). Thus the procedural semantics is governed by the 

declarative. Here then is an exact description of the procedural 

semantics. 

To execute a goal, the system searches for the first clause 
whose head matches or unifies with the goal. The 
unification process [Robinson 1965] finds the most general 
common instance of the two terms, which is unique if it 
exists. If a match is found, the matching clause instance 
is then activated by executing in turn, from left to right, 
each of the goals of its body (if any). If at any time the 
system fails to find a match for a goal, it backtracks, ie. it rejects the most recently activated clause, undoing any 
substitutions made by the match with the head of the clause. 
Next it reconsiders the original goal which activated the 
rejected clause, and tries to find a subsequent clause which 
also matches the goal. 

Let us now return to the clauses for concatenated(_,_,!)':- 

concatenated(nil,L,L). 
concatenated((X.L1),L2,(X.L3)) :- concatenated(L1,L2,L3). 

and see how they can be used to concatenate two lists. Suppose we 

wish to concatenate the lists (a.b.nil) and (1.2.nil). This will be 

achieved by executing the goal:- 

concatenated((a.b.nil) , (1.2.ni.1) ,Z) 

The result of the execution will be to substitute the required value 

for the variable Z. The goal matches only the second clause, and 

becomes instantiated to:- 

concatenated((a.b.nil),(1.2.nil),(a.Z1)) 

since this is the most general common instance of the original goal 

and the head of the matching clause. The name given to the new 

variable Z1 is arbitrary. The body of the matching clause instance 

gives us a new goal (or recursive procedure call):- 
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concatenated((b.nil),(1.2.nil),Z1) 

The process is repeated a second time giving rise to a further goal:- 

concatenated(nil,(1.2.nil),Z2) 

which this time matches only the first clause. Execution is now 

complete as there are no outstanding goals to be executed. The 

original goal has been instantiated to:- 

concatenated((a.b.nil),(1.2.nil),(a.b.1.2.nil)) 

a true boolean term. Thus the effect of the execution is to 

instantiate Z to:- 

(a.b.1.2.nil) 

the term originally sought. 

Here we have used 'concatenated(<1>,<2>,<3>)' as a procedure 

which takes two "inputs" <1> and <2> and returns one "output" <3>. 

However the procedure is much more flexible than this. For example, 

if <3> is also provided as input, 'concatenated(-,_,_)' acts as a 

procedure which checks whether <3> is the concatenation of <1> and 

<2>. Thus execution of the goal:- 

concatenated((a.nil),(b.nil),(a.nil)) 

will fail whereas:- 

concatenated((a.nil),(b.nil),(a.b.nil)) 

will succeed. 

More striking is the behaviour when only <3> is provided 

input. For example, consider what happens when the goal 

concatenated(L,R,(a.b.nil)) 

as 

is executed. This goal will match both clauses for 

concatenated(-,_,_)'. The first match returns an immediate result:- 
ti- 
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L = nil 
R = (a.b.nil) 

Notice how the result returned consists of two "output" values. If 
this result is subsequently rejected, backtracking will cause the 

second possible match for the original goal to be considered. The 

match instantiates the top goal to:- 

concatenated((a.Ll),R,(a.b.nil)) 

and a new goal is produced:- 

concatenated(L1,R, (b.nil) ) 

This goal again matches both clauses. The first match produces 

another solution to the original goal:- 

L = (a.nil) 
R = (b.nil) 

In this way backtracking causes the procedure to generate all possible 

pairs of lists L and R which, when concatenated, yield (a.b.nil). 

These examples have illustrated a number of characteristic 

features of Prolog procedures. Firstly, when a procedure returns, the 

result sent back may consist of more than one value, just as, in the 

conventional way, more than one value may be provided as input. 

Furthermore, the input and output positions do not have to be fixed in 

advance and may vary from one call of the procedure to another. In 

effect, Prolog procedures can be "multi-purpose". These features will 

play an important part in the compiler which is the main example of 

Prolog to be discussed later. 
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3.2 The Logical Variable 

The flexibility of Prolog procedures can be seen as a special 

case of a more general phenomenon. The variable in Prolog behaves in 

a particularly pleasing way, which is governed by the high-level 

pattern matching process of unification. Let us consider a simple but 

somewhat artificial example using the 'concatenated(_,_,_)' procedure. 

The task is to "treble" a given list to produce a list consisting of 

three consecutive copies of the original, eg. 

(a.b.c.nil) --> (a.b.c.a.b.c.a.b.c.nil) 

One way to define this is to say that the list LLL is the treble of 

the list L if LLL consists of L concatenated with a list LL which is 

the result of concatenating L with itself. ie. 

treble(L,LLL) :- 

concatenated(L,LL,LLL), 
concatenated(L,L,LL). 

In most list processing languages one would have to perform the second 

step first. That is, the doubled list LL would first be constructed 

and then another copy of L would be concatenated on the front. The 

same effect would be achieved in Prolog by expressing the two goals in 

the opposite order. However the Prolog clause also functions 

perfectly well as it stands. Let us see how this is, by executing the 

goal:- 

treble((a.b.nil),X) 

Immediately we get the pair of goals:- 

concatenated((a.b.nil),LL,X), 
concatenated ((a.b .nil) , (a.b .nil) ,LL) 

The first of these goals has an uninstantiated variable as its second 

argument, but nevertheless the execution proceeds in the familiar way, 
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recursing twice to hit the bottom of the recursion with the subgoal:- 

concatenated(nil,LL,X2) 

The net result of executing this final subgoal is that LL is left 

uninstantiated and the original X is instantiated to:- 

X = (a.b.LL) 

Thus the result of the original 'treble' goal has been partially 

constructed, but the value to be returned contains the uninstantiated 

variable LL. Execution of the goal:- 

concatenated((a.b.nil) , (a.b .nil) ,LL) 

completes the picture by "filling in" the correct value of LL:- 

LL = (a.b a.b.nil) 

Thus we get finally the correct result:- 

X = (a.b.a.b .a.b .nil) 

We refer to the variable in Prolog as the "logical" variable to 

draw attention to Its special behaviour exemplified above. Basically 

there is no assignment as such in Prolog, and a variable's value, once 

specified, cannot be changed (except through backtracking). However 

the variable's value need not be fixed immediately, and may remain 

unspecified for as long as is required. In particular, if a variable 

corresponds to a component of a data structure to be output by a 

procedure, the value of the variable can be left unspecified when the 

procedure "returns". The value may then later be filled in by another 

procedure in the course of the normal matching process. 

The logical variable has the further necessary feature that when 

two uninstantiated variables are matched together, they become linked 

as one; any value subsequently given to one variable simultaneously 
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instantiates the other. From a conventional programming standpoint, 

one can imagine a "pointer" or "reference" to one variable being 

assigned to the other, with subsequent "dereferencing" being carried 

out automatically where required. 

Consider how the processing of the 'treble' example might be 

simulated in a conventional language (eg. Algol-68, Pop-2, Lisp); ie. 

what steps would correspond to execution of the goals:- 

concatenated((a.b.nil),LL,X), 
concatenated((a.b.nil),(a.b.nil),LL) 

in that order? The effect of the first goal would have to be 

simulated by creating a new list (a.b.dummy) with an arbitrary value 

'dummy' as the remainder of the list. This list would be assigned to 

the variable X and a pointer to the location containing the arbitrary 

value would be assigned to LL. For the second goal, one would create 

the list (a.b.a.b.nil) and assign it to the location indicated by the 

pointer previously assigned to LL. In this way the arbitrary value 

'dummy' would be overwritten to complete (a.b.a.b.a.b.nil) as the 

value of X. In the style of Algol-68, these steps might be written 

as:- 

list dummy; 
ref list LL := dummy; 
ref list X concatenate([a,b],LL); 
value of LL concatenate([a,b],[a,b]); 

where the arguments and result of procedure 'concatenate' are of mode 

"ref list". 

The original Prolog version achieves the same effect, but without 

the programmer having to bother about assignments and references. In 

fact it is the Prolog system which takes care of these 
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machine-oriented details. The Prolog programmer understands the 

'treble' procedure primarily from its declarative reading; from the 

declarative point of view, even the order of the two goals is 

irrelevant, let alone the procedural details involved in execution. 

Prolog programming requires a certain change of outlook on the 

part of the programmer, but this is soon acquired with a little 
practice. The programmer comes to appreciate that Prolog's logical 

variable provides much of the power of assignment and references, but 

in a higher-level, easier-to-use form. In a similar way, the disciple 

of "structured programming", working with a conventional language, 

finds that "well-structured" control primitives leave little need for 

goto and that the program is generally easier to understand if gotos 

are avoided. 

3.3 An Example - Looking Up Entries In A Dictionary 

To complete this introduction to Prolog, we will now consider an 

example which will have application in compiler writing. The example 

involves the data type "dictionary" introduced earlier. A dictionary 

will provide an efficient representation of a set of pairs of names 

with values. Thus the dictionary:- 

dic(<name>,<value>,<dic-1>,<dic-2>) 

pairs <name> with <value>, together with all the pairings provided by 

sub-dictionaries <die-1> and <dic-2>. We assume that the dictionary is 

ordered, so that all names in <dic-1> are before <name>, and all in 

<dic-2> are after, and both <dic-1> and <dic-2> are themselves 

ordered. (Thus no names can be repeated in an ordered dictionary.) 
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The actual ordering relation is arbitrary, but may be thought of as 

alphabetical order. Ordering relationships will be expressed using 

the familiar symbol '<' for the 2-place predicate "is before" and '>' 

for "is after". 

As an example, the following is an (alphabetically-) ordered 

dictionary pairing English words with their French equivalents:- 

dic(salt,sel, 
dic(mustard,moutarde, 

void, 
dic(pepper,poivre,void,void)), 

dic(vinegar,vinaigre,void,void) ) 

This term is more easily visualised as the tree structure:- 

salt:sel 

mustard:moutarde vinegar:vinai.gre 

pepper:poivrepoivre 
n 

A 

Because our dictionaries are ordered, it is possible to find 

quickly the value (if any) associated with a given name, without 

searching through the entire dictionary. So let us now write a Prolog 

procedure to "look-up" a name in a dictionary and find its paired 

value. The predicate defined will be 

lookup(<1>,<2>,<3>) 

meaning "name <1> is paired with value <3> in dictionary <2>". Given a 

dictionary:- 

dic(<name>,<value>,<dic-1>,<di.c-2>) 

we clearly have to distinguish three cases . If the name sought is 

<name> itself, then the required value is simply <value>, ie. 

lookup(Name,dic(Name,Value,_,_),Value). 

Note the use of two "anonymous" variables for the components of the 
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dictionary which are not relevant to this case. In the other two 

cases, we have to look for the required name in one of the two 

sub-dictionaries of the initial dictionary. If the name sought is 

before <name>, then we must look in the first sub-dictionary,,ie. 

lookup(Name,dic(Namel,Before,_),Value) :- 
Name < Namel, lookup(Name,Before,Value). 

A similar clause deals with the case where the name sought is after 

<name>, ie. 

lookup(Name,dic(Namel,_,_,After),Value) :- 
Name > Namel, lookup(Name,After,Value). 

We have explained these clauses in a procedural way, having in 

mind the particular goal of looking up a given name in a given 

dictionary to find an unknown value. The control information built 

into the Prolog clauses reflects this aim. ie. The order of the 

clauses, and the order of the goals in the body of each clause, is 

chosen to be appropriate for the type of goal in mind. Thus, of the 

three clauses, it is natural to consider the first clause first, since 

it may give an immediate result without further recursive procedure 

calls. Again, in the last two clauses, it is sensible to make the 

test comparing the order of names as the first goal in each clause, 

since then the recursive call of 'lookup' will only be made on the 

appropriate sub-dictionary. 

Note that the control information is not strictly essential; if 
a different clause and goal ordering were used, valid results would 

still eventually be obtained, but the 'lookup' procedure would not go 

"straight" to the required result - without the right control, the 

procedure would perform an extremely wasteful exploration of 
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irrelevant parts of the dictionary. 

How can one be so sure that valid results will be obtained 

whatever the control information? The reason is that the clauses for 

'lookup' have a proper declarative interpretation, and the Prolog 

execution mechanism is guaranteed only to produce answers which accord 

with the declarative interpretation. Although we explained the 

clauses "procedurally", they can be understood entirely declaratively 

as simple statements about dictionaries. For example, the third 

clause might be read as.:- 

"If a name Name has a value Value in a dictionary called After, and 

Namel is a name which is ordered earlier than Name, then Name has 

value Value in any dictionary of the form 'dic(Namel,_,_,After)' ". 

Of course, the statement would still be true if the condition on 

the order of Name and Namel were omitted. As it stands, the statement 

is true, but less general than it might be. However if attention is 

restricted to ordered dictionaries, the three clauses for 'lookup' are 

sufficiently general to cover all possible instances of the 'lookup' 

relationship. It is generally desirable in Prolog programming to make 

the logical statements comprising the program no more general than is 

necessary to give just the truths required. In this way, the Prolog 

system is prevented from considering irrelevant alternatives. This 

principle could be thought of as a further form of control information 

- the system's attention is directed (in fact, restricted) to a small 

but adequate subset of all the correct statements which could be made. 
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4.0 A SIMPLE COMPILER WRITTEN IN PROLOG 

4.1 Overview 

Let us now look at how Prolog can be applied to the task of 

writing a compiler. We shall only consider a simplified example. 

Imagine we require a compiler to translate from a small Algol-like 

language to the machine language of a typical one-accumulator 

computer. The source language has assignment, IF, WHILE, READ and 

WRITE statements plus a selection of arithmetic and comparison 

operators restricted to integers. (A BNF grammar of the language 

appears later in sub-section /.7/.) The target language instructions:- 

(1) (2) (3) (4) 
arithmetic &c. arithmetic &c. control input- 
literal op. memory op. transfer output &c. 

ADDC ADD JUMPEQ READ 

SUBC SUB JUMPNE WRITE 
MULC MUL JUMPLT HALT 
DIVC DIV JUMPGT 

LOADC LOAD JUMPLE 
STORE JUMPGE 

JUMP 

each have one (explicit) operand which either (1) is an Integer 

constant, or (2) is the address of a storage location, or (3) is the 

address of a point in the program, or (4) is to be ignored. Most of 

the instructions also have a second implicit operand which is either 

the accumulator or its contents. In addition, there is a 

pseudo-instruction BLOCK which reserves a number of storage locations 

as specified by its integer operand. 
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As an illustration of the compiler's function, here is a simple 

source program (to compute factorials):- 

READ VALUE; 
COUNT := 1; 
RESULT 1; 
WHILE COUNT < VALUE DO 

(COUNT := COUNT+1; 
RESULT RESULT*COUNT); 

WRITE RESULT 

and the following is the straightforward translation into machine 

language which the compiler will produce. (The columns headed symbol 

are not part of the compiler's output and are merely comments for the 

reader ) . 

.symbol: address instruction operand :symbol 

0 READ 0 
1 STORE 21 VALUE 
2 LOADC 1 

3 STORE 19 COUNT 

4 LOADC 1 

5 STORE 20 RESULT 
LABELI 6 LOAD 19 COUNT 

7 SUB 21 VALUE 
8 JUMPGE 16 LABEL2 
9 LOAD 19 COUNT 

10 ADDC 1 

11 STORE 19 COUNT 

12 LOAD 20 RESULT 
13 MUL 19 COUNT. 

14 STORE 20 RESULT 
15 JUMP 6 LABELI 

LABEL2 16 LOAD 20 RESULT 
17 WRITE 0 
18 HALT 0 

COUNT 19 BLOCK 3 

RESULT 20 
VALUE 21 

Compilation will be performed in five stages of which we shall 

only look at the middle three. 
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source 
text 

(1) Lexical 
Analysis 

token 
list 

(2) Syntax 
Analysis- 

I 
source 
structure 

(3) Code 
Generation 

I 
object 
structure 
(relocatable) 

j 
program 

ect ob (5) Output object 
structure 
(absolute) 

The first stage, Lexical Analysis, involves grouping the characters of 

the source text into a list of basic symbols called "tokens" 

(represented by Prolog atoms and integers). This stage is relatively 

uninteresting and will not be discussed further. The second stage, 

Syntax Analysis, is responsible for parsing the token list. 

Essentially, the effect of the analysis is to recognise the abstract 

program structure encoded in the characters of the source text and 

give this structure a name. The name will be a Prolog term. For 

example, the name of the statement:- 

COUNT := COUNT+1 

will be:- 

assign(name( count) ,expr(+, name(count) coast (1)) ) 
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which can also be pictured as the tree:- 

assign 

name expr 

count + name -0 const 

count 

Since the Syntax Analysis stage is not our main topic, the discussion 

of it will be postponed to a later section. 

The third stage, Code Generation, produces the basic structure of 

the object program, but machine addresses are left in a "symbolic" 

form. These addresses are computed and filled in by the fourth stage, 

Assembly. 

We shall not go into the less interesting final stage of 

outputting an actual object program (as a bit string say). The result 

of the Assembly stage will be a Prolog term which names the object 

program structure. For example, the name for:- 

LOAD 19 
ADDC 1 

STORE 19 

will be:- 

(instr(load,19); instr(addc,l); instr(store,19)) 

where the binary functor ';' has been written as a right-associating 

infix operator, ie. the term can be pictured as:- 

load 19 /i_ n s t r "nstr 

addc 1 store 19 

Note that the ';' functor is only used to indicate sequencing, and 
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that the same sequence can be expressed by different terms, eg. 

(a; (b; c)) and ((a; b) ; c) 

4.2 Compiling The Assignment Statement 

Consider first the problem of compiling the assignment 

statement:- 

<name> := <expression> 

The code for this will have the form:- 

<expression code> 
STORE <address> 

where <expression code> is the code to evaluate the arithmetic 

expression <expression> yielding a result in the accumulator. The 

STORE instruction stores this result at <address>, the address of the 

location named <name>. 

We want to make this semi-formal specification precise by 

translating it into a Prolog clause. Now the Prolog term which names 

the source form is:- 
assign(name(X),Expr) 

where X and Expr are Prolog variables which correspond to the BNF 

non-terminals <name> and <expression> in the semi-formal 

specification. Similarly, a Prolog term naming the target form is:- 

(Exprcode; instr(store,Addr)) 

where Exprcode and Addr are Prolog variables corresponding to 

<expression code> and <address>. We have to define the relationship 

between X,Expr,Exprcode and Addr. Suppose the source language names 

are to be mapped into machine addresses in accordance with a 
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dictionary D. Then one necessary condition is expressed by the Prolog 

goal:- 

lookup(X,D,Addr) 

The condition relating Expr and Exprcode may be expressed by the 

goal:- 

encodeexpr(Expr,D,Exprcode) 

where the meaning of the predicate 'encodeexpr(<1>,<2>,<3>)' is "<3> 

is the code for the expression <1> conforming to dictionary <2>". If 
'encodestatement(<1>,<2>,<3>)' is a similar predicate meaning "<3> is 

the code for the statement <1> conforming to dictionary <2>", then the 

complete Prolog clause we require is:- 

encodestatement(assign(name(X),Expr),D, 
(Exprcode; 
instr(store,Addr)) 

):- 
lookup (X,D,Addr), 
encodeexpr(Expr,D,Exprcode). 

All we have done so far is to make precise the informal rule for 

compiling an assignment statement. Now the resulting clause is not 

only an exact statement of the rule, but will also actually be the 

part of the compiler responsible for implementing the rule. The 

clause represents one case of the procedure 

'encodestatement(<1>,<2>,<3>)' which takes as input a statement <1> 

and a dictionary <2> and produces as output object code <3>. 

If we regard the clause as just a statement of a rule, the 

ordering of the two goals in the body of the clause is irrelevant. 

Now usually the order is very important when we want also to use the 

clause as part of a practical procedure. However in this case, as for 

many of the other clauses which make up the compiler, it will become 
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clear that the clause will function perfectly well whichever order is 

chosen. 

4.3 Compiling Arithmetic Expressions 

We already know the clauses for 'lookup', so let us move on to 

the clauses for 'encodeexpr'. For reasons which will become clearer 

later, 'encodeexpr' is defined in terms of another predicate:- 

encodeexpr(Expr,D,Code) :- 
encodesubexpr(Expr,O,D, Code). 

The extra (integer) argument of 'encodesubexpr' provides information 

about the context in which the expression occurs, and is zero unless 

the expression is a sub-expression of another expression. Let us now 

look at the clauses for 'encodesubexpr' and see how they embody rules 

for translating the different types of arithmetic expression. 

If the expression is just a constant <const> then the 

instruction:- 

LOADC <const> 

has the desired effect of loading the constant into the accumulator. 

Similarly, if the expression is a location named <name> then the 

instruction:- 

LOAD <addr> 

loads the current value of the location, where <addr>, is the 

location's address. These two rules are expressed in Prolog by the 

clauses:- 

encodesubexpr(const(C),_,_, instr(loadc,C) ). 

encodesubexpr(name(X),_,D, instr(load,Addr) ):- 

lookup(X,D,Addr). 
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The final possibility is a composite expression of the form:- 

<expression 1><operator><expression 2> 

If <expression 2> is simply a constant or location name, the code 

generated for the composite expression takes the form:- 

<expression 1 code> 
<instruc tion> 

where <expression 1 code> is the translation of <expression 1> and 

<instruction> is the appropriate machine instruction which applies 

<operator> to the value in the accumulator and operand <expression 2>. 

For example:- 

<expression>+7 

translates to:- 

<expression code> 
ADDC 7 

The clauses which express this more generally are:- 

encodesubexpr(expr(Op,Exprl,Expr2),N,D, 
(Exprlcode; 
Instruction) 

): 

apply(Op,Expr2,D,Instruction), 
encodesubexpr(Exprl,N,D,Exprlcode). 

apply(Op,const(C),, instr(Opcode,C) ):- 

apply(Op,name(X),D, instr(Opcode,Addr) ):- 

niemoryop(Op,Opcode) , 
lookup(X,D,Addr). 

literalop(+,addc). memoryop(+,add). 
literalop(-,subc). memoryop(-,sub). 
literalop(*,mulc). memoryop(*,mul). 
literalop(/,divc). memoryop(/,div). 

Notice how the information residing in the clauses for 'literalop' and 

niemoryo p would conventionally be treated as tables of data rather 

than procedures. 
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{The following covers the more general case where <expression 2> 

is composite, and may be skipped on first reading. 

In this more general case, the code will have to be of the 

form:- 

<expression 2 code> 
STORE <temporary> 
<expression 1 code> 
<op-code><temporary> 

where <expression 2 code> evaluates <expression 2> and the 

result is stored temporarily at address <temporary>. 

<expression 1> is then evaluated and the instruction of type 

<op-code> applies <operator> to the pair of values 

respectively contained in the accumulator and previously 

stored at location <temporary>. Note that if <expression 1 

code> itself requires temporary storage locations, these 

must all be different from <temporary>. These requirements 

are met by the clause:- 

encodesubexpr(expr(Op,Exprl,Expr2),N,D, 
(Expr2code; 
instr(store,Addr); 
Exprlcode; 
instr(Opcode,Addr)) 

):- 
complex(Expr2), 
lookup(N,D,Addr), 
encodesubexpr(Expr2,N,D,Expr2code), 
N1 is N+1, 
encodesubexpr(Exprl,N1,D,Exprlcode), 
memoryop(Op,Opcode). 

complex(expr(_,_,__)). 

(Here the goal 'N1 is N+1' means "N1 is the value of the 

arithmetic expression N+1".) The procedure's extra argument 

N is an integer which is used as a name to be looked up in 

the dictionary D. In this way the compiler uses integers as 
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"private" names for the temporary storage locations it 
requires. In other respects, temporaries are treated just 

like any other locations defined in the actual source 

program, and are recorded in the same dictionary. Notice 

how any temporaries required for the evaluation of 

<expression 1> are named by the integers N+1, N+2, etc., and 

thus are distinct from the temporary named by the integer N 

which is used to preserve the previously calculated value of 

<expression 2> while <expression 1> is being evaluated.) 

4.4 Compiling The Other Statement Types 

Now let us consider a statement type which is, in itself, 
slightly more complex to compile - the IF statement:- 

IF <test> THEN <then> ELSE <else> 

The code for this will take the form:- 

<test code> 
<then code> 
JUMP <label 2> 

<label 1>: 

<else code> 
<label 2>: 

where <test code> causes a jump to <label 1> if the test proves false. 

As in an assembly language program, we have used labels to indicate 

the instructions whose addresses are <label 1> and <label 2>. 

The Prolog formulation of this is:- 
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encodestatement(if(Test,Then,Else),D, 
(Testcode; 
Thencode; 
instr(jump,L2); 

label(L1); 
Elsecode; 

label(L2)) 

encodetest(Test,D,L1,Testcode), 
encodestatement(Then,D,Thencode), 
encodestatement(Else,D,Elsecode). 

Notice that the clause does not fix the addresses L1 and L2, but 

merely indicates constraints on their values through labelling the 

object code. One can think of the output from the procedure 

encodestatement' as being relocatable code. The output term will 

contain free variables L1 and L2 whose values will not be fixed until 

stage 4 of compilation - the Assembly stage. This is an example of 

the use of the logical variable to delay specifying certain parts of a 

data structure. 

The clauses for 'encodetest' are as follows:- 

encodetest(test(Op,Argl,Arg2),D,Label, 
(Exprcode; 
instr(Jumpif,Label)) 

encodeexpr(expr(-,Argl,Arg2),D,Exprcode),, 
unlessop(Op,Jumpif). 

unlessop(=,jumpne). 
unlessop(<,jumpge). 
unlessop(>, j umple) . 
unlessop (\=, j umpeq) . 
unlessop(=<,jumpgt). 
unlessop(>=,jumplt). 

The test is effected by computing the difference of the two operands 

to be compared, and then applying a conditional jump instruction. 

'Label' is the address to jump to if the test fails. The meaning of 

the clauses should be clear by analogy with cases previously 

discussed. 
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The clauses for translating the remaining statement types are 

follows:- 

encodestatement(while(Test,Do),D, 
(label(L1); 

Test code; 
Docode; 
instr(jump,L1); 

label(L2)) 
):- 

encodetest(Test,D,L2,Testcode), 
encodestatement(Do,D,Docode). 

encodestatement(read(name(X)),D, instr(read,Addr) ):- 

lookup(X,D,Addr). 

encodestatement(write(Expr),D, 
(Exprcode; 
instr(write,0)) 

encodeexpr(Expr,D,Exprcode). 

encodestatement((S1;S2),D, (Codel;Code2) ):- 

encodestatement(S1,D,Codel), 
encodestatement(S2,D,Code2). 

Notice how the "serial" statement:- 

<statement 1>;<statement 2> 

is treated as just another statement type. 

4.5 Constructing The Dictionary 

as 

Now that we have considered all the elements of the source 

language, it remains to describe how a program as a whole is compiled. 

Many of the clauses already stated have referred to a common 

dictionary D. So far we have tacitly assumed that this dictionary (or 

symbol table) has been constructed in advance and supplied as "input" 

to each procedure which translates source language constructs. Now it 

happens that, with a little care, we can arrange for the dictionary to 

be built up in the course of the main translation process (stage 3). 



Page 48 

The clauses for 'lookup' not only do the job of consulting existing 

dictionary entries, but will also serve to insert new entries as 

required. In fact 'lookup' is a good example of a "multi-purpose" 

procedure. Its very useful and rather remarkable behaviour depends on 

the full flexibility of the logical variable. 

Let us first restate the 'lookup' clauses (with a slight change 

in the first clause, to be discussed shortly):- 

lookup(Name,dic(Name,Value,_,_),Value):-!. 
lookup(Name,dic(Namel,_,Before,_),Value):- 

Name < Namel, lookup(Name,Before,Value). 
lookup(Name,dic(Namel,_,_,After),Value):- 

Name > Namel, lookup(Name,After,Value). 

To see how the '.lookup' procedure can be used to create a dictionary, 

consider the effect of executing the goals:- 

lookup(salt,D,X1), 
lookup(mustard,D,X2), 
lookup(vinegar,D,X3), 
lookup(pepper,D,X4), 
lookup(salt,D,X5) 

in that order, assuming all the variables are initially 
uninstantiated, even the dictionary argument D. One can interpret 

these goals as saying : "construct a dictionary D such that 'salt' is 

paired with X1 and 'mustard' is paired with X2 and ...". The first 
goal is immediately solved by the first clause for 'lookup' giving:- 

D = dic(salt,X1,D1,D2) 

and leaving X1 uninstantiated. Thus variable D is now instantiated to 

a partially specified dictionary. The second of the original goals is 

executed next. Execution proceeds initially as for a normal call of 

'lookup' and produces the recursive call:- 
lookup(mustard,D1,X2) 

Now, since D1 is uninstantiated, this goal is solved immediately, 
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giving:- 

D = dic(salt,Xl,dic(mustard,X2,D3,D4),D2) 

In this way 'lookup' is inserting new entries in a partially specified 

dictionary. By the time of executing the fifth of the original goals, 

D is instantiated to a dictionary which may be pictured as:- 

salt:X1 

mustard:X2 vinegar:X3 

D3 pepper 4 D5 D6 

D7 D8 

The effect of the fifth goal is to leave the dictionary unaltered; 

the only result is the instantiation:- 

X5 = Xl 

Thus both values paired with "salt" are guaranteed to be the same. 

We have seen that:- 

(a) the dictionary can be built up as we go along, starting from a 

free variable, and with free variables as the terminal nodes of the 

dictionary at every stage; 

(b) the values which are paired with the names in the dictionary can 

be left unspecified til later - their places are taken by variables, 

and different variables representing the same value will be identified 

where necessary. 

As used in the compiler, the 'lookup' procedure builds up a 

dictionary associating storage location names with free variables 

representing their addresses. These addresses are only filled in 

during the Assembly stage of compilation. 
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We shall now consider the meaning of, and reason for, the extra 

in the first clause of 'lookup'. A fundamental reason for the 

change is that an ordered dictionary for a given set of pairings is 

not unique. For example, the two ordered dictionaries diagrammed 

below embody the same set of associations:- 

salt:sel pepperr* oivre 

mustard:moutarde vinegar:vinaigre mustard:moutarde vi'n`egar:vinaigre 

peppef:poivre salt:sel 

In theory, the 'lookup' procedure could choose to build either of 

these, or any other equivalent dictionary. This is reflected in the 

fact that a 'lookup' goal such as:- 

lookup(salt,D,X1) 

with an uni.nstantiated variable as second argument will match not only 

the first clause for 'lookup' but also either of the other two. These 

alternative matches in principle allow different but equivalent forms 

of dictionary to be constructed. 

Obviously we wish to limit the choice to just one of these 

equivalent forms. Moreover, the generation of alternative forms may 

be highly inefficient, if not impossible. This is because a match of, 

say, 

lookup(salt,D,X1) 

against the second clause gives rise to the goal:- 

salt < Namel 

with Namel uni.nstantiated. Now in theory this goal should generate 

any name which is ordered later than 'salt'. In practice, it is highly 

undesirable to execute a goal with such a large set of alternative 

solutions, and the actual implementation of '<' may well be such as to 
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make the goal impossible to execute. 

The alert reader will also have noticed that the declarative 

meaning of the clauses for 'lookup' does not guarantee a dictionary of 

the type we require - that is, an ordered dictionary (with no name 

repeated). For example, if <dic> is the dictionary pictured as:- 

b:2 c` :4 

a:l 

then 'lookup(a,<dic>,1)' is true, but <dic> is not ordered. Strictly 

speaking, a check should be made somewhere in the compiler that the 

dictionary created and used during compilation is indeed ordered. 

This check is tiresome and in practice unnecessary. 

All of these various potential drawbacks to the "creative" use of 

'lookup' are circumvented by inserting the cut operator '!' as a 

pseudo-"goal" in the first clause. The cut operator is an additional 

control device provided by Prolog, which should be ignored when 

reading a clause declaratively*. {* With certain usages of cut, there 

is no meaningful declarative reading for the "clause"; however this 

does not apply to any of the clauses in this Part of the thesis.} When 

a "cut" pseudo-goal has been executed, if backtracking should later 

return to that point, the effect is to immediately fail the "parent" 

goal, i.e. the goal which activated the clause containing the cut. In 

other words, the cut operation commits the Prolog system to all 

choices made since the parent goal was invoked. For our 'lookup' 

procedure, the cut means "if a match is obtained against the first 

clause, don't ever try any of the subsequent clauses". 
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Given Prolog's procedural semantics, it is not difficult to see 

how the qualification expressed by the cut symbol ensures that 

'lookup' constructs a unique ordered dictionary starting from an 

initially uninstantiated variable. The dictionary is "unique" except 

that the terminal nodes are free variables which really represent 

unspecified sub-dictionaries. All of these variables must finally be 

instantiated to 'void' in order to obtain the smallest possible 

dictionary meeting the required conditions. 

4.6 Compiling The Whole Program, And The Assembly Stage 

The translation of a complete source program (or rather, its 

abstract structure) into an object program (structure) with absolute 

addresses is expressed by the following clause:- 

compile(Source, 
(Code; 
instr(halt,O); 
block(L)) 

):- 
encodestatement(Source,13, Code) , 
assemble( Code, 0,NO), 
Ni is NO+1, 
allocate(D,N1,N), 
L is N-N1. 

(A goal, such as 'L is N-N1' above, of the form '<var> is <expr>' 

means that <var> is the value of the arithmetic expression <expr>.) 

The result of compiling the program Source is a sequence of 

instructions Code 'followed by a HALT instruction and then a block of 

storage for the variables used in Source. Unlike most of the compiler 

clauses described so far, the particular order of the goals in this 

clause is essential control information. 
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Stage 3 of compilation (Relocatable Code Generation) is 

represented by the goal:- 

encodestatement(Source,D, Code) 

Observe that when this goal is invoked, dictionary D i's completely 

unspecified, ie. D is still a free variable. So stage 3 really 

returns two outputs - the code and the dictionary. 

Strictly speaking, for logical soundness, the clause for 

'compile' should contain an extra goal, say:- 

ordereddictionary(D) 

to check that D is indeed an ordered dictionary. We may imagine this 

goal being inserted after the 'encodestatement' goal. However, as 

noted previously, this check can be dispensed with in practice. 

At the end of stage 3, Code still contains many free variables - 

representing the yet to be specified addresses of writeable locations 

and labelled instructions. Thus stage 3 makes extensive use of the 

full power of the logical variable to delay fixing of addresses until 

stage 4. The goal:- 

assemble(Code,0,NO) 

computes the addresses of labelled instructions and returns NO, the 

address of the end of Code. Ni is therefore the address of the start 

of the block of storage locations. The goal:- 

allocate(D,N1,N) 

is responsible for laying out the storage required for the source 

language symbols contained in dictionary D. It fills in the 

corresponding addresses and returns N, the address of the end of the 

storage block. Finally the length L of the storage block is 
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calculated from N and N1. 

The procedure for 'assemble' is neat and simple:- 

assemble((Codel;Code2),NO,N):- 
assemble(Codel,NO,N1), 
assemble(Code2,N1,N). 

assemble(instr(_,_),NO,N):- N is N0+1. 
assemble(label(N),N,N). 

Note that 'assemble(<1>,<2>,<3>)' means that <2> is the start address 

and <3> the end address of the sequence of instructions <1>. 

The procedure for 'allocate' has a similar character:- 

allocate(void,N,N):-!. 
allocate(dic(Name,N1,Before, Af ter) ,NO, N) :- 

allocate(Before,N0,N1), 
N2 is N1+1, 
allocate(After,N2,N). 

Observe that the layout of the source symbols will be in dictionary 

order. 

Note that the dictionary input to 'allocate' from 

'encodestatement' is incomplete in the sense that the terminal nodes 

are still variables. The 'allocate' procedure in fact chooses the 

smallest possible dictionary, ie. the one which contains only symbols 

actually occurring in the source program. If it chose otherwise, the 

object program would still be correct but would contain extra unused 

storage locations. The proper choice is achieved by placing the 

clause for the 'void' case first, with a cut '!' to prevent any 

possibility of backtracking considering other alternatives, cf. the 

use of cut in 'lookup'. 
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We have now looked at all the clauses needed to perform the Code 

Generation and Assembly stages of the compiler. Except where 

otherwise noted, the particular order in which these clauses are 

stated is unimportant, ie. the performance will be virtually the same 

whichever order is chosen. 

4.7 Syntax Analysis 

We shall now show very briefly how the parser, or Syntax Analysis 

stage of compilation, is programmed in Prolog. Van Emden [1975, 

Section 6] gives a much fuller introduction to the basic method we use 

for writing parsers in logic. The theory of this method is described 

by Colmerauer [1975], from whom the technique originated. The clauses 

we require are closely related to the following BNF grammar of the 

source language:- 

<program> <statements> 
<statements> <statement>I 

<statement>;<statements> 
<statement> <name>:=<expr>1 

IF <test> THEN <statement> ELSE <statement>I 
WHILE <test> DO <statement>I 
READ <name> l 

WRITE <expr>l 
(<statements>) 

<test> <expr><comparison op><expr> 
<expr> <expr><op 2><expr 1>1 

<expr 1> 
<expr 1> <expr 1><op 1><expr 0>1 

<expr 0> 
<expr 0> <name> 

<integer>I 
(<expr>) 

<comparison op> < > =< I >= 
<op 2> 
<op 1> + 
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The essential idea behind the translation into Prolog is that a 

BNF non-terminal becomes a predicate of three arguments:- 

<non-terminal>(<start>,<end>,<name>) 

meaning "the token list <start> commences with a phrase of type 

<non-terminal> ending at a point where the list of remaining tokens is 

<end>; the structure of the phrase is identified by <name>". Now 

because the grammar contains some left recursive rules, and for other 

efficiency reasons, parts of the grammar are rewritten to facilitate 

left-to-right top-down parsing. Some of the resulting predicates have 

to be given an additional argument which is the name of the preceding 

phrase. For example:- 

restexpr(<n>,<start>,<end>,<nameO>,<name>) 

means that the token list <start> commences with the remainder of an 

arithmetic expression of precedence <n> ending at <end> and the whole 

expression is named <name> if the preceding subexpression is named 

<nameO>. Here then is the Prolog translation of the BNF grammar:- 
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program(ZO,Z,X) :- statements(ZO,Z,X). 

statements(ZO,Z,X) :- statement(ZO,Z1,XO), reststatements(Z1,Z,XO,X). 

reststatements((';'.ZO),Z,XO,(XO;X)) :- statements(ZO,Z,X). 
reststatements(Z,Z,X,X). 

statement((V.':='.ZO),Z,assign(name(V),Expr)) :- 

atom(V), expr(ZO,Z,Expr). 
statement((if.ZO),Z,if(Test,Then,Else)) 

test(ZO,(then.Zi),Test), 
statement(Z1,(else.Z2),Then), 
statement(Z2,Z,Else). 

statement((while.ZO),Z,while(Test,Do)) : 

test(ZO,(do.Zl),Test), 
statement(Z1,Z,Do). 

statement((read.V.Z),Z,read(name(V))) :- atom(V). 
statement((write.ZO),Z,write(Expr)) :- expr(ZO,Z,Expr). 
statement(('('.ZO),Z,S) :- statements(ZO,(')'.Z),S). 

test(ZO,Z,test(Op,X1,X2)) 
expr(ZO,(Op.Zl),X1), comparisonop(Op), 
expr(Z1,Z,X2). 

expr(ZO,Z,X) :- subexpr(N,ZO,Z,X). 

subexpr(N,ZO,Z,X) :- N>O, Ni is N-1, 
subexpr(N 1, ZO, Z 1, XO) , 
restexpr(N,Z1,Z,XO,X). 

subexpr(O, (X.Z) ,Z,name(X)) :- atom(X). 
subexpr(O,(X.Z),Z,const(X)) :- integer(X). 
subexpr(O,('('.ZO),Z,X) :- subexpr(2,ZO,(')'.Z),X). 

restexpr(N,(Op.ZO),Z,X1,X) :- op(N,Op), Ni is N-1, 
subexpr(N 1, ZO, Z 1,X2) , 
restexpr(N,Z1,Z,expr(Op,X1,X2),X). 

restexpr(N,Z,Z,X,X). 

comparisonop(=). 
comparisonop(<). 
comparisonop(>). 
comparisonop(=<). 
comparisonop(>=). 
comparisonop(\=). 

op(2,*). op(1,+). 

op(2,/). op(l,-). 
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5.0 THE ADVANTAGES OF PROLOG FOR COMPILER WRITING 

This section summarises the particular advantages of Prolog as a 

language for writing compilers. Many of the advantages should be 

clear from the main example discussed above. It is important to take 

into account, not just the compiler which is the end product, but also 

the work which must go into initially designing and building it and 

into subsequently "maintaining" it. 

So let us review how one might set about constructing a compiler. 

Initially, the picture is just of a black box with source programs as 

input and correctly translated object programs as output. The first 

consideration is to decide how the output is related to the input. It 

is natural to examine the structure of the source language and to 

devise for each element of the language a rule for translating it into 

target language code. These rules form a specification of the 

compiler's function. The final and generally more laborious stage of 

compiler construction involves implementing procedures which 

efficiently carry out the translation process in accordance with the 

specification. 

The major advantage of implementation in Prolog is that it is 

possible for the final stage to be almost trivial. For a compiler 

such as the sample one discussed, it is not a great exaggeration to 

say that 

"the specification is the implementation". 

Thus the procedures which make up the compiler consist of clauses, 

each of which can generally be interpreted as a rule describing a 

possible translation of some particular construct of the source 
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language into the target language. The burden of the implementation 

stage reduces to ensuring that the specification can be used as an 

efficient implementation. This requires the addition of suitable 

control information (ie. choosing the ordering of clauses and goals) 

and may involve some rewriting of parts of the specification to allow 

an efficient procedural interpretation. 

The closeness of implementation and specification brings many 

benefits:- 

* The implementation is more readable and may be virtually 

self-documenting. 

* The correctness (or otherwise) of the implementation is more easily 

apparent and the scope for error is greatly reduced. As long as each 

clause is a valid rule for translating the source language, one can be 

confident that the compiler will not generate erroneous code. 

* Compiler modifications and source language extensions are more 

readily incorporated, since the compiler consists of small 

independently-meaningful units (clauses) which are directly related to 

the structure of the source language. 

There are a number of conventional programming language features 

which would normally have to be used in a compiler implementation, but 

which do not appear explicitly in a Prolog implementation. These 

include assignment, references (pointers), operations for creating 

data structures, operations for selecting from data structures, 

conditional or test instructions, and the goto instruction. Of 

course, all these features are being used implicitly, behind the 

scenes, by the Prolog system. In effect, the Prolog system assumes 
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much of the responsibility for "coding up" the implementation. This 

relieves the programmer of tedious details and protects him against 

errors commonly associated with the low-level features mentioned, eg. 

* referring to a non-existent component of a data structure; 

* attempting to use the value of a variable before it has been 

assigned; 

* attempting to use a value which is obsolete, such as a "dangling 

reference" to storage which has been de-allocated; 

* overwriting a value or part of a data structure which is still 
needed elsewhere in the program; 

* omitting to test for a special case before dropping through to the 

else clause of a conditional. 

In a conventional language, errors such as these typically 

produce bugs which are difficult to trace and eradicate. At best the 

program will halt immediately with some error message, which may or 

may not help the programmer to pinpoint the bug. More usually, the 

bug will only manifest itself later in the processing, by which time 

the root cause will be difficult to determine. 

Such situations cannot arise with the basic Prolog language 

covered here, since none of the low-level features mentioned is 

present in the language. Moreover, the (procedural) semantics of 

Prolog is totally defined; a syntactically correct program is 

guaranteed to be legal, and is incapable of performing, or even 

attempting to perform, any invalid or undefined operation. If there 

is a "bug" in a Prolog program, it. merely means that the program, 

while being perfectly legal, doesn't do exactly what the programmer 
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intended. The actual behaviour is entirely predictable and therefore 

the "bug" is normally found relatively easily. A totally defined 

semantics is of great practical significance and is almost unique 

among programming languages. 

To summarise, Prolog has the following advantages as a 

compiler-writing tool:- 

less time and effort is required; 

* there is less likelihood of error; 

* the resulting implementation is easier to "maintain" and modify. 
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6.0 THE PRACTICABILITY OF PROLOG FOR COMPILER WRITING 

Granted that Prolog is a very congenial language for compiler 

writing, the question naturally arises whether an implementation in 

Prolog can perform well enough to be practically useful. The answer 

obviously depends on how efficiently Prolog itself is implemented. 

The'first Prolog system was an interpreter written in Fortran at 

the University of Marseille [Battani & Meloni 1973]. This proved to be 

surprisingly fast. More recently, building on the techniques 

developed at Marseille, two colleagues and I have implemented a Prolog 

compiler [Warren et al. 1977] [Warren 1977] for the DECsystem-10 

machine. 

The machine code generated by this compiler is reasonably 

efficient and is not so very different from that which might be 

produced by a compiler for a conventional list- or record-processing 

language. The principal effect of the compilation is to translate the 

head of each clause into instructions which will do the work of 

matching against any goal. Of the two terms involved in the matching, 

it is the clause head which is compiled, since this is uninstantiated 

prior to the matching, unlike the goal. Because the variables in the 

head are uninstantiated prior to the matching, their first occurrences 

can be compiled into simple assignment operations. 

The code generated for a compound term has to distinguish between 

two cases. If the subterm matches against a variable, a new data 

structure must be constructed and assigned to the variable. This case 

is handled by an out-of-line subroutine. The other case concerns 
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matching against a non-variable. This is performed essentially by 

in-line code. It comprises a test for matching functors (record 

types), followed by the compiled form of each of the sub terms of the 

compound term. This code will be responsible for accessing 

subcomponents of the matching data structure. 

Many Prolog procedures consist of a number of clauses giving a 

definition by cases - each clause accounts for a different possible 

form of the input. This characteristic is particularly evident in 

compiler writing as illustrated above. For example the clauses for 

'encodestatement' each match a different statement type. Here, and 

more generally, it is natural to place the principal input as first 
argument of the predicate. Our Prolog compiler capitalises on this 

fact by compiling in a.fast "switch" or "computed goto", branching on 

the form (principal functor) of the first argument. Thus instead of 

trying each clause in turn, the code automatically selects only 

appropriate clauses (often just one). 

As far as the general efficiency of Prolog is concerned, space 

economy is more likely to be a limitation than speed. From our 

discussion of the (basic) language it is clear that the responsibility 

for storage management falls entirely on the system and not on the 

programmer. In meeting this responsibility, the Prolog compiler 

employs a certain degree of sophistication. 

In particular, it automatically classifies variables into two 

types ("local" and "global") with storage allocated from different 

areas analogous to the "stack" and "heap" of Algol-68. Local storage 

is recovered automatically by a conventional stack mechanism when a 
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procedure returns, provided the procedure has no more alternative 

multiple results to generate through backtracking. In addition, a 

second stack mechanism associated with backtracking ultimately 

recovers all storage, both local and global. Thus a garbage collector 

is not an essential part of the system, although one is provided. 

This is in contrast to the situation for the "heap" of Algol-68 and 

similar languages, where storage can only be recovered by the 

potentially very expensive process of garbage collection. 

Although the automatic storage management of basic Prolog is 

quite effective, it is not adequate on its own for really large tasks. 

For example, it is currently unrealistic to expect a compiler written 

in basic Prolog to compile a sizable program in one step, as, unaided 

by the user, the storage requirements would exhaust main memory. A 

technique which can be adopted at present is to compile small units of 

the program, eg. "lines", "blocks" (or in the case of Prolog itself 

"clauses"), using the "pure" methods we have described; the compiler 

as a whole consists of a number of "pure" procedures linked together 

using more ad hoc (and conventional) methods. The ad hoc parts are 

written using extensions beyond the basic Prolog language, which are 

outside the scope of this Part of the thesis. The essential feature 

of the "impure" code is that use is made of further storage areas and 

external files, all of which have to be managed directly by the 

programmer. This approach to compiler writing in Prolog enables one 

to produce a practical implementation, large parts of which are 

written in the basic Prolog language, with all the advantages 

discussed above. 
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Given the theme of this Part of the thesis, it should come as no 

surprise that the Prolog compiler is itself written in Prolog, using 

the very principles which are the subject of this Part of the thesis. 

Data on this "bootstrapped" compiler may therefore give-some idea of 

the kind of performance attainable with Prolog as the implementation 

language. Note that the compiler does not attempt any sophisticated 

optimisation. 

The compiler generates about 2 machine instructions (= 2 machine 

words, of 36 bits each) per source symbol (ie. constant, functor or 

variable). It takes typically around 10.6 seconds to generate 1000 

words of code. The amount of "short-term" (Prolog-controlled) working 

storage required during compilation is rarely more than 5K words, ie. 

this is a normal bound on the amount of storage required to compile 

any one clause. {The remaining "long-term" (programmer-controlled) 

working storage is needed primarily for a global symbol table, the 

size of which depends on the number of different functors in the 

program being compiled.) The total code of the compiler itself (which 

is not overlayed) is about 25K words. 

Briefly, the performance indicated by these figures is reasonably 

acceptable, although naturally it falls short of what can be attained 

in a low-level language with efficiency as the only objective. 

Nevertheless, the performance is not out of line with that of certain 

other items of software on the DECsystem-10 (eg. the manufacturer's 

assembler, "MACRO"). 
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Prolog is a promising language for software implementation where 

the' main priority is to have a correctly working system available 

quickly, or where the system specification is liable to change. 

Better performance can certainly be obtained from an implementation in 

a lower-level language; for this, a preliminary Prolog formulation 

can serve as a very useful prototype. It is likely that most of the 

improvement will be attributable to a few relatively simple but 

heavily used procedures (eg. lexical analysis, dictionary lookup), 

and so a mixed language approach may be an attractive possibility. An 

alternative view (which I favour) is to look for more sophisticated 

ways of compiling special types of Prolog procedure, guided probably 

by extra pragmatic information provided by the Prolog programmer. 
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PART II - IMPLEMENTING PROLOG 

1.0 INTRODUCTION 

This Part of the thesis describes techniques for efficiently 

implementing the programming language Prolog. It is written mainly 

for those having some familiarity with Prolog. For the benefit of a 

wider readership, we begin by attempting to answer briefly the 

questions "Why implement yet another programming language?", "What is 

so different about Prolog?". A precise definition of the basic Prolog 

language is given in Section /2./. The sample programs listed in 

Appendix /5./ and referred to in Section /8.1/ may be useful. 

The second part of this introduction summarises the history and 

nature of Prolog implementation. 

1.1 

Prolog is a simple but powerful programming language developed at 

the University of Marseille [Roussel 1975] as a practical tool for 

"logic programming" [Kowalski 1974] [Colmerauer 1975] [van Emden 

1975]. From a user's point-of-view one of Prolog's main attractions is 

ease of programming. Clear, readable, concise programs can be written 

quickly with few errors. Prolog is especially suited to "symbol 

processing" applications such as natural language systems [Colmerauer 

1975] [Dahl & Sambuc 1976], compiler writing [Colmerauer 1975] [Warren 
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1977], algebraic manipulation [Bergman & Kanoui 1975] [Bundy et al. 

1976], and the automatic generation of plans and programs [Warren 

1974] [Warren 1976]. 

Data structures in Prolog are general trees, constructed from 

records of various types. An unlimited number of different types may 

be used and they do not have to be separately declared. Records with 

any number of fields are possible, giving the equivalent of fixed 

bound arrays. There are no type restrictions on the fields of a 

record. 

The conventional way of manipulating structured data is to apply 

previously defined constructor and selector functions (cf. Algol-68, 

Lisp, Pop-2). These operations are expressed more graphically in 

Prolog by a form of "pattern matching", provided through a process 

called "unification". There is a similarity to the treatment of 

"recursive data structures" advocated by Hoare [1973]. Unification can 

also be seen as a generalisation of the pattern matching provided in 

languages such as Microplanner [Sussman & Winograd 1970] and its 

successors. 

For the user, Prolog is an exceptionally simple language. Almost 

all the essential machinery he needs is inherent in the unification 

process. So, in fact, a Prolog computation consists of little more 

than a sequence of pattern-directed procedure invocations. Since the 

procedure call plays such a vital part, it is necessarily a more 

flexible mechanism than in other languages. Firstly, when a procedure 

"returns" it can send back more than one output, just as (in the 

conventional way) it may have received more than one input. Moreover, 
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which arguments of a procedure are inputs and which will be output 

slots doesn't have to be determined in advance. It may vary from one 

call to another. This property allows procedures to be 

"multi-purpose". An additional feature is that a procedure may 

"return" several times sending back alternative results. Such 

procedures are called "non-determinate" or "multiple-result". The 

process of reactivating a procedure which has already returned one 

result is known as "backtracking". Backtracking provides a high-level 

equivalent of iterative loops in a conventional language. 

There is no distinction in Prolog between procedures and what 

would conventionally be regarded as tables or files of data. Program 

and data are accessed in the same way and may be mixed together. Thus 

in general a Prolog procedure comprises a mixture of explicit facts 

and rules for computing further "virtual" data. This and other 

characteristics suggest Prolog as a promising query language for a 

relational database (cf. [van Emden 1976] and Zloof's "Query by 

Example" [1974]). These characteristics have already been exploited in 

interesting applications of Prolog in the practical areas of 

computer-aided architectural design [Markusz 1977] and drug design 

[Darvas et al. 1976,1977]. 

Earlier we ompared`unification with Microplanner-style pattern 

matching. There is an important difference which we summarise in the 

"equation":- 

unification = pattern matching + the logical variable 

The distinction lies in the special nature and more flexible behaviour 

of the variable in Prolog, referred to as the "logical" variable. 
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Briefly, each use of a Prolog variable stands for a particular, 

unchangeable data item. However the actual value need not be 

specified immediately, and may remain unspecified for as long as is 

required. The computational behaviour is such that the programmer 

need not be concerned whether or not the variable has been given a 

value at a particular point in the computation. This behaviour is 

entirely a consequence of constraints arising from logic, the language 

on which Prolog is founded. 

By contrast, the variable in most other programming languages is 

a name for a machine storage location, and the way it functions can 

only be understood in this light. The "assigning" of values to 

variables is the programmer's responsibility and in many situations he 

must guarantee that the variable is not left unassigned. This applies 

equally to the variables used in the Planner family of pattern 

matching languages. There, each occurrence of a variable in a pattern 

has to be given a prefix to indicate the status (assigned or 

unassigned) of the variable at that point. The programmer must 

understand details of the implementation and sequencing of the pattern 

matching process, whereas Prolog's unification is a "black box" as far 

as the user is concerned. 

There are some other programming languages where the variable 

does not have to be thought of as a machine location, most notably 

pure Lisp. In pure Lisp as in Prolog, the behaviour of the variable 

is governed by an underlying formal mathematical system, in this case 

Church's lambda calculus. As a consequence, the machine-oriented 

concepts of assignment and references (pointers) are not an (explicit) 
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part of either language. These are just some of a number of 

parallels between Prolog and pure Lisp. 

close 

Now it is well known that pure Lisp is too weak for many 

purposes. Various extensions to the language are a practical 

necessity. In particular the operations rplaca and rplacd are 

provided to allow components of a data structure to be overwritten. 

This immediately introduces into the language the concepts of 

assignment and reference which were previously avoided. 

No similar extension is provided in Prolog, nor is it needed 

owing to the special properties of the logical variable. The main 

point is that a Prolog procedure may return as output an "incomplete" 

data structure containing variables whose values have not yet been 

specified. These "free" variables can subsequently be "filled in" by 

other procedures. This is achieved in the course of the normal 

matching process, but has much the same effect as explicit assignments 

to the fields of a data structure. A necessary corollary is that when 

two variables are matched together, they become linked as one. In 

implementation terms, a reference to one variable is assigned to the 

cell of the other. These references are completely invisible to the 

user; all necessary dereferencing is handled automatically behind the 

scenes. 

In general, the logical variable provides much of the power of 

assignment and references, but in a higher-level, easier-to-understand 

framework. This is reminiscent of the way most uses of goto can be 

avoided in a language with "well-structured" control primitives. 
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There is an important relationship between co-routining and the 

logical variable. Co-routining is the ability to suspend the 

execution of one procedure and communicate a partial result to 

another. Although not provided as such in Prolog,, it is easily 

programmed without resort to low-level concepts, because the logical 

variable provides the means for partial, results and suspended 

processes to be treated as regular data structures. The main 

difficulty is to determine when to co-routine, but this problem is 

common to languages with explicit co-routining primitives. 

So far we have previewed Prolog as a "set of features". The 

features are significant primarily because they mesh together well to 

make the task of programming less laborious. They can be looked on as 

a useful selection and generalisation of elements from other 

programming languages. However Prolog actually arose by a different 

route. It has a unique and more fundamental property which largely 

determines the nature of the other features. This property, that a 

Prolog program can be interpreted declaratively as well as 

procedurally, is the real reason why Prolog is an easier language to 

use. 

For most programming languages, a program is simply a description 

of a process. The only way to understand the program and see whether 

it is correct is to run it - either on a machine with real data, or 

symbolically in the mind's eye. Prolog programs can also be 

understood this way, and indeed this view is vital when considering 

efficiency. We say that Prolog, like other languages, has a 

procedural semantics, one which determines the sequence of states 
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passed through when executing a program. 

However, there is another way of looking at a Prolog program 

which does not involve any notion of time. Here the program is 

interpreted declaratively, as a set of descriptive statements about a 

problem domain. From this standpoint, the "lines" of the program are 

nothing more than a convenient shorthand for ordinary natural language 

sentences. Each line is a statement which makes sense in isolation, 

and which is about objects (concrete or abstract) that are separate 

from the program or machine itself. The program is correct if each 

statement is true. 

The natural declarative reading is possible, basically because 

the procedural semantics of Prolog is governed by an additional 

declarative semantics, inherited straight from logic. The statements 

which make up a Prolog program are in fact actually statements of 

logic. The declarative semantics defines what facts can be inferred 

from these statements. It lays down the law as to what is a correct 

result of executing a Prolog program. How the program is executed is 

the province of the procedural semantics. 

The declarative semantics helps one to understand a program in 

the same kind of way as the law of conservation of energy helps one to 

understand a mechanical system without looking in detail at the forces 

involved. Analogously, the Prolog programmer can initially ignore 

procedural details and concentrate on the (declarative) essentials of 

the algorithm. Having the program broken down into small 

independently meaningful units makes it much easier to understand. 

This inherent modularity also reduces the interfacing problems when 
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several programmers are working on a project. Bugs are less likely, 

perhaps because it is difficult to make a "logical error" in a program 

when its logic is actually expressed in logic! 

Of course there will always be errors due to typing mistakes, 

oversights or plain muddled thinking. Such errors are, however, 

relatively harmless because of one other very important property of 

(basic) Prolog - that it has a totally defined (procedural) semantics. 

This means that it is impossible for a syntactically correct program 

to perform (or even attempt to perform) an illegal or undefined 

operation. This is in contrast to most other programming languages 

(cf. array indices out of bounds in Fortran, or car of an atom in 

Lisp). An error in a Prolog program will never cause bizarre 

behaviour. Nor will the program be halted prematurely with an error 

message indicating that an illegal condition has arisen. 

1.2 What 

The first implementation of Prolog was an interpreter written in 

Algol-W by Philippe Roussel [1972]. This work led to better techniques 

for implementing the language, which were realised in a second 

interpreter, written in Fortran by Battani and Meloni [1973]. A useful 

account in English of this implementation is given by Lichtman [1975]. 

A notable feature of the design is the novel and elegant 

"structure-sharing" technique [Boyer, Moore 1972] for representing 

structured data inside the machine. The basis of the technique is to 

represent a compound data object by a pair of pointers. One pointer 

indicates a "skeleton" structure occurring in the source program, the 
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other points to a vector of value cells for variables occurring in the 

skeleton. The representation enables structured data to be created 

and discarded very rapidly, in comparison with the conventional 

"literal" representation based on linked records in "heap" storage. A 

further advantage is greater compactness in most cases. 

Since the Marseille Fortran implementation, other authors have 

implemented Prolog interpreters of essentially similar designs. Peter 

Szeredi [1977] has a very practical CDL implementation, with nice 

debugging aids, running on various machines including ICL 1900 and 

S/4. Maurice Bruynooghe [1976] has written an interpreter in Pascal. 

He gives a good introduction to the fundamentals of Prolog 

implementation and describes a space saving technique using a "heap". 

Grant Roberts [1977] has a very efficient interpreter written in IBM 

370 assembler, which also has good "human engineering". 

The main subject of this Part of the thesis is a Prolog system 

written specifically for the DECsystem-10 [DEC 1974] by the author, in 

collaboration with Luis Pereira and Fernando Pereira of the National 

Civil Engineering Laboratory, Lisbon. The system includes a compiler 

from Prolog Into DEC10 assembly language and a conversational Prolog 

interpreter. It uses the same fundamental design, including the 

"structure-sharing" technique, as was developed for the second 

Marseille interpreter. However the implementation is considerably 

faster, owing to compilation, and also because it was possible to 

capitalise on the elegant DEC10 architecture which is particularly 

favourable to the structure-sharing technique. 
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A variable in a "skeleton" structure can be nicely represented by 

a DEC10 "address word". This specifies the address of the variable's 

cell as an offset relative to the contents of an index register. Any 

DEC10 instruction can obtain its operand indirectly by referring to an 

address word. This means that, once the appropriate index register 

has been loaded, each of the fields of a structure-shared record can 

be accessed in just one instruction. 

It was in fact the possibilities of compilation and the DEC10 

which originally inspired the writing of a new system. (A preliminary 

version which compiled into BCPL was abandoned at an early stage since 

it was found impossible to fully exploit the potential of the DEC10.) 

The compiled code shows a 15 to 20-fold speed improvement over the 

Marseille interpreter. It is quite compact at about 2 words per 

source symbol. The compiler itself is written in Prolog and was 

"bootstrapped" using the Marseille interpreter. The new interpreter 

is also largely implemented in Prolog. 

Much of the material in this Part of the thesis will be a 

description of techniques developed by others (although nowhere fully 

documented). The main innovations are:- 

(1) the concept of compiling Prolog, 

(2) certain measures to economise on space required during execution, 

(3) improved indexing of clauses. 

The most important innovation is compilation. Now recall that a 

Prolog computation is essentially just a sequence of unifications or 

pattern matching operations. Each unification involves matching two 

terms or "patterns". One term is a "goal" (or "procedure call") and is 
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instantiated. The other is the uninstantiated "head" of a clause (or 

'procedure entry point"). The principal effect of compilation is to 

translate the head of each clause into low-level instructions which 

will do the work of matching against any goal pattern. Thus there 

remains little need for a general matching procedure. Specialised 

code has been generated to replace most uses of it. 

Much of the code just amounts to simple tests and assignments. 

In particular, all that has to be done for the first occurrence of a 

variable is to assign the matching term to the variable's cell. Thus 

this very common case is also very fast. 

The code generated for a compound subterm (or sub-pattern) splits 

into two cases. If the matching term is a variable, a new data 

structure is constructed (using structure-sharing) and assigned to the 

variable. The code for the other case is responsible for accessing 

subcomponents of the matching term, ie. it does the work of selectors 

in a conventional language. 

The main drawback of the Marseille interpreter is its 

unacceptable appetite for working storage. Like Bruynooghe, we have 

devoted considerable attention to this problem. Our solution is to 

classify Prolog variables into "locals" and "globals". This is 

performed by the compiler and need be of no concern to user. Storage 

for the two types is allocated from different areas, the local and 

global stacks, analagous to the "stack" and "heap" of Algol 68. When 

execution of a procedure has been completed "determinately" (ie. 

there are no further multiple results to be produced), local storage 

is recovered automatically by a stack mechanism, as for a conventional 
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language. No garbage collector is needed for this process. 

The space saving achieved through this process can be improved if 
the user supplies optional pragmatic information via an innovation 

known as "mode decalarations". A mode declaration declares a 

restriction on the use of a procedure, ie. one or more arguments are 

declared to be always "input" (a non-variable) or always "output" (a 

variable). Thus the user is forgoing some of the flexibility of 

Prolog's "multi-purpose" procedures. This enables the system to place 

a higher proportion of variables in the more desirable "local" 

category and also helps to improve the compactness of the compiled 

code. 

In addition to these measures, our system can also recover 

storage from the global stack by garbage collection, cf. Algol 68's 

heap. The garbage collector used has to be quite intrincate even by 

normal standards. After what is in principle a conventional "trace 

and mark", space is recovered by compacting global storage still in 

use to the bottom of the stack. This involves "remapping" all 

addresses pointing to the global stack. 

It is important to notice that a garbage collector is not 

essential for our system. If the user restricts himself to small 

tasks the garbage collector need never be used. This is because a 

stack mechanism recovers all storage automatically on backtracking, or 

when-the overall task is complete, as for the Marseille interpreter. 

An additional point of practical importance is that our implementation 

automatically adjusts the sizes of the different storage areas during 

execution (remapping addresses as necessary). 
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The combined effect of these space saving measures is a 

substantial reduction in run-time storage needed for programs which 

are totally determinate (eg. the compiler itself) or partly 

determinate (most Prolog programs in practice). A 10-fold improvement 

over the Marseille interpreter would seem to be not unusual, although 

this depends very much on the actual program. (Even in the worst case 

of a totally non-determinate program, there is still a 2-fold 

improvement due simply to a better packing of information into the 

DEC10 word.) 

In the Marseille interpreter, the clauses which make up both 

program and data are only indexed by the predicate (ie. procedure or 

relation name) to which they relate. Our compiler indexes clauses 

both by predicate and by the form of the first argument to this 

predicate. This is tantamount, for a procedure, to case selection by 

a fast "switch" (or computed oto). For data, it amounts to storing 

information about a relation in an array (or hash table). 

Our description of Prolog implementation will take the form of a 

definition of a "Prolog machine" (PLM). The aim is to present, in as 

general a way as possible, the essential features of our DEC10 

implementation, especially compilation. Although the structure of the 

PLM is directed specifically to the needs of Prolog, the result is a 

comparatively low-level machine with an architecture of a quite 

conventional form. It operates on data items of fixed sizes, which 

may be stored in special registers, areas of consecutively addressed 

locations, and "push-down" lists. The machine has a repertoire of 

instructions, each taking a small fixed number of arguments of 
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definite size. In most cases, the processing of one instruction 

involves only a small and bounded amount of computation. 

The Prolog machine has of course been designed primarily with the 

DEC10 in mind. As we have previously mentioned, DEC1O's "effective 

address" mechanism greatly promotes the structure-sharing technique. 

However it should not, be difficult to implement the design on any 

conventional computer, although the result might not be quite so 

efficient. More exciting perhaps would be the possibility of 

realising the machine in microprogram or even hardware. 

In our DEC10 implementation, the effect of each Prolog machine 

instruction is achieved partly by in-line code and partly by calls to 

out-of-line subroutines. The optimal mixture is a tactical decision 

which has varied considerably during the course of implementation. 

The efficient "indirect addressing" and subroutine call of the DEC10 

mean that operations can be performed out-of-line with very little 

overhead. 

At present the Prolog compiler compiles directly into DEC10 

assembler. Since the compiler is itself written in Prolog, it could 

easily be adapted to generate "Prolog machine code" as such. This 

code could be interpreted by an autonomous program written in almost 

any programming language. Alternatively it should not be difficult to 

produce a version of the compiler which translates into the assembly 

language of some other machine. The compiler itself is not described 

here (see [Warren 1977] for a general discussion of compiler writing 

in Prolog). However the function it performs should be clear from the 

relationship between Prolog machine instructions and Prolog source 
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programs documented in Section /4.9/ and Appendix /2./. 

Note: This Part of the thesis does not attempt to describe the 

implementation of the "evaluable predicates" etc. which are essential 

to a usable interactive system. These provide, among other things, 

built-in arithmetic, input-output, file handling, state saving, 

internal "database", and meta-logical facilities. It is an 

unfortunate fact that the major labour involved in implementing a 

Prolog system is providing such "trimmings". 
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2.0 THE PROLOG LANGUAGE 

The basic Prolog language is best considered as being made up of 

two parts. On the one hand, a Prolog program consists of a set of 

logical statements, of the form known as Horn clauses. Clauses are 

just a simple normal form, (classically) equivalent to general logical 

statements. Horn clauses are an important sub-class, which amounts 

essentially to dropping disjunction ("or") from the logic*. {* This 

subclass appears to be common ground between classical and 

intuitionist logic.) 

The second part of Prolog consists of a very elementary control 

language, although "language" is really too strong a word. Through 

this control information, the programmer determines how the Prolog 

system is to set about constructing a proof. ie. The programmer is 

specifying exactly how he wants his computation done. The control 

language consists merely of simple sequencing information, plus a 

primitive which restricts the system from considering unwanted 

alternatives in constructing a proof. 

There are two distinct ways of understanding the meaning of a 

Prolog program, one declarative and one imperative or procedural. As 

far as the declarative reading is concerned, one can ignore the 

control component of the program. The declarative reading is used to 

see that the program is correct. The procedural reading is necessary 

to see whether the program is efficient or indeed practical. 

Generally speaking, a Prolog program is first conceived declaratively, 

and then control information is added to obtain a satisfactory 

procedural aspect. 
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In the rest of this section we shall merely summarise the syntax 

we use, and briefly describe the semantics (both declarative and 

procedural) of the language. For a fuller discussion, see the 

references on Prolog and logic programming quoted earlier. The reader 

unfamiliar with Prolog may also find it useful to look at the 

comparative examples of Prolog, Lisp and Pop-2 listed in Appendix /5./ 

and discussed in Section /8.1/. 

2.1 Syntax And Terminology 

A Prolog program is a sequence of clauses. Each clause comprises 

a head and a body. The body consists of a sequence of zero or more 

(or procedure calls). For example the clause written:- 

P :- Q, R, S. 

has P as its head and Q, R and S as the goals making up its body. A 

unit clause is a clause with an empty body and is written simply as:- 

P. 

The head and goals of a clause are all examples of terms and are 

referred to as boolean terms. 

In general, a term is either an elementary term or a compound 

term. An elementary term is either a variable or a constant. 

A variable is an identifier beginning with a capital letter or 

with the character `_' (underline). For example:- 

X, Tree, LIMIT 

are all variables. If a variable has just a single occurrence in the 

clause this may be written simply as (underline):- 
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(Note that a variable is limited in scope to a single clause, so that 

variables with the same name in different clauses are regarded as 

distinct). 

A constant is either an atom* or an integer. (* Not to be 

confused with the use of "atom" in resolution theory, cf. instead 

Lisp.) An atom is any sequence of characters, which must be written in 

single quotes unless it is an identifier not confusable with a 

variable or an integer. For example:- 

a, null, =, >_, 'DEC system 10' 

are all atoms. Integers are constants distinct from atoms. An 

identifier consisting of only decimal digits will always represent an 

integer. For example:- 

999, 0, 727 

A compound term comprises a functor (called the principal functor 

of the term) and a list of one or more terms called arguments. Each 

argument in the list has a position, numbered from 0 upwards. A 

functor is characterised by its name, which is an atom, and its arity 

or number of arguments. For example the compound term, whose functor 

is named "point" of arity 3, with arguments X,Y and Z is written:- 

point(X,Y,Z) 

In addition to this standard notation for compound terms certain 

functors may be declared as prefix, infix or postfix operators 

enabling alternative notation such as 

X+Y, (P;Q), 3<4, not P, N factorial 

instead of 
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+(X,Y), ;(P,Q), <(3,4), not(P), factorial(N) 

A constant is considered to be a functor of arity 0. Thus the 

principal functor of a constant is the constant itself. 

The principal functor of a boolean term is called a predicate. 

The sequence of clauses whose heads all have the same predicate is 

called the procedure for that predicate. The depth of nesting of a 

term in a clause is specified by a level number. The head and goals 

of a clause are at level 0, their immediate arguments at level 1, and 

so on for levels 2, 3, etc. In general we do not allow a level 0 term 

to be a variable or integer. A compound term not at level 0 is called 

a skeleton term. 

Some sample clauses (for list concatenation and a rather 

inefficient list reversal) are:- 

concatenate(cons(X,L1),L2,cons(X,L3)) :- 

concatenate(L1,L2,L3). 

concatenate(nil,L,L). 

reverse(cons(X,LO),L) :- 

reverse(L0,L1), concatenate(L1,cons(X,nil),L). 

reverse(nil,nil). 

2.2 Declarative And Procedural Semantics 

The key to understanding a Prolog program is to interpret each 

clause informally as a shorthand for a statement of natural language. 

A non-unit clause:- 

P :- Q, R, S. 

is interpreted as:- 
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P if Q and R and S. 

We now have to interpret each boolean term in the program as a simple 

statement. To do this, one should apply a uniform interpretation of 

each functor used in the program. eg. for the sample clauses above:- 

nil = "the empty list" 
cons(X,L) _ "the list whose first element is X 

and remaining elements are L" 

concatenate(L1,L2,L3) = "L1 concatenated with L2 is L3" 

reverse(L1,L2) = "the reverse of L1 is L2" 

Each variable in a clause is to be interpreted as some arbitrary 

object. Now our four clauses are seen to be shorthand for the 

following stilted but otherwise intelligible English sentences:- 

"The list, whose first element is X and remaining elements are L1, 
concatenated with L2 is the list, whose first element is X and 
remaining elements are L3, if L1 concatenated with L2 is L3." 

"The empty list concatenated with L is L." 

"The reverse of the list, whose first element is X and remaining 
elements are L0, is L if the reverse of LO is L1 and L1 concatenated 
with the list, whose first element is X and remaining elements are the 
empty list, is L." 

"The reverse of the empty list is the empty list." 
The declarative semantics of Prolog defines the set of boolean 

terms which may be deduced to be true according to the program. We 

say that a boolean term is true if it is the head of some clause 

instance and each of the goals (if any) of that clause instance is 

true, where an instance of a term (or clause) is obtained by 

substituting, for each of zero or more of its variables, a new term 

for all occurrences of the variable. That completes the declarative 

semantics of Prolog. 
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Note that this recursive definition of truth makes no reference 

to the sequencing of clauses or the sequencing of goals within a 

clause. Such sequencing constitutes control information. It plays a 

role in the procedural semantics, which describes the way the Prolog 

system executes a program. Here, the head of a clause is interpreted 

as a procedure. entry point and a goal is interpreted as a procedure 

call. The procedural semantics defines the way a given goal is 

executed. The aim is to demonstrate that some instance of the given 

goal is true. 

To execute (or solve) goal P, the system searches for the first 
clause whose head matches or unifies with P. The unification process 

(Robinson 1965] finds the most general common instance of the two 

terms (which is unique if it exists). If a match is found, the 

matching clause instance is then activated by executing in turn, from 

left to right, each of the goals of its body (if any). If at any time 

the system fails to find a match for a goal, it backtracks. ie. It 
rejects the most recently activated clause, undoing any substitutions 

made by the match with the head of the clause. Next it reconsiders 

the original goal which activated the rejected clause, and tries to 

find a subsequent clause which also matches the goal. Execution 

terminates successfully when there are no more goals waiting to be 

executed. (The system has found an instance of the original goal P 

which must be true.) Execution terminates unsuccessfully when all 

choices for matching the original goal P have, been rejected. 

Execution is, of course, not guaranteed to terminate. 
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In general, backtracking can cause execution of a goal P to 

terminate successfully several times. The different instances of P 

obtained represent different solutions (usually). In this way the 

procedure corresponding to P is enumerating a set of solutions by 

iteration. 

We say that a goal (or the corresponding procedure) has been 

executed determinately if execution is complete and no alternative 

clauses exist for any of the goals invoked during the execution 

(including the original goal). 

2.3 The Cut Operation 

Besides the sequencing of goals and clauses, Prolog provides one 

other very important facility for specifying control information. 

This is the "cut" operator, written '!'. (Originally written '/' and 

dubbed "slash".) It is inserted in the program exactly like a goal, 

but is not to be regarded as part of the logic of the program and 

should be ignored as far as the declarative semantics is concerned. 

Examples of its use are:- 

member(X,cons(X,_)):-!. 
member(X,cons( ,L)) :- member(X,L). 

compile(S,C) :- translate(S,C),!,assemble(C). 

The effect of the cut operator is as follows. When first 
encountered as a "goal", cut succeeds immediately. If backtracking 

should later return to the cut, the effect is to fail the goal which 

caused the clause containing the cut to be activated. In other words, 

the cut operation commits the system to all choices made since the 



Page 89 

parent goal was invoked. It renders determinate all computation 

performed since and including invocation of the parent goal, up until 

the cut. 

Thus the second example above may be read declaratively as "C is 

a compilation of S if C is a translation of S and C is assembled" and 

procedurally as "In order to compile C, take the first translation of 

C you can find and assemble it". If the cut were not used here, the 

system might go on to consider other ways of 'translating C which, 

although correct, are unnecessary or are unwanted. 

Such uses of cut do no violence to the declarative reading of the 

program. The only effect is to cause the system to ignore superfluous 

solutions to a goal. This is the commonest use of cut. However, it 
is sometimes used in such a way that part of the program can only be 

interpreted procedurally. Often these cases suggest higher level 

extensions that might ideally be provided. For example:- 

property(X) :- exceptional(X),!,fail. 

property(X). 

might perhaps be better expressed as:- 

property(X) :- unless exceptional(X). 

Clearly it is not intended that 'property(X)' should be a bona fide 

solution for any X, as a declarative reading of the second clause 

would indicate. 

Even if better alternatives could be found for the controversial 

uses of cut, there seems no reason to object to its legitimate use as 

a purely control device. Consequently we shall treat cut as a basic 

part of the Prolog language. 
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3.0 OVERVIEW OF PROLOG IMPLEMENTATION 

Prolog implementation rests on the design of processes for:- 

(1) (recursive) procedure call, 

(2) unification, 

(3) backtracking, 

(4) the cut operation. 

The first is a familiar problem in the implementation of 

high-level languages and is solved in the usual way through the use of 

one or more stacks. However because of the nondeterminate nature of 

Prolog, one cannot automatically contract the stack(s) on procedure 

exit as is usual. In general this process has to wait until 

backtracking has caused the procedure to iterate through to its last 

result. 

Unification takes the place of tests and assignment in 

conventional languages. The major problem is how to represent the new 

terms (data structures) which are created. The solution devised at 

Marseille is a novel and elegant approach to the problem of 

representing structured data. It is essentially the same as 

Boyer-Moore's "structure sharing with a value array", developed at 

Edinburgh. 

Backtracking requires the ability to remember and rapidly restore 

an earlier state of computation. Solutions have been devised for a 

number of experimental languages. Usually the implementation reflects 

the fact that facilities for nondeterminate computation have been 

built on top of an existing language. Backtracking is an integral 
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part of Prolog, and consequently is less easily separated from the 

overall design of an implementation. Indeed it strongly influences 

the choice of structure sharing, because of the speed with which new 

data structure can be discarded as well as created through this 

technique. 

The cut operation restores conventional determinacy to a 

procedure and allows the system to discard "red-tape" information 

required for backtracking. The internal state becomes closer to that 

of a conventional high-level language implementation. It will be seen 

that the implementation of cut is closely bound up with that of 

backtracking. 

3.1 Structure Sharing 

The key problem solved by structure sharing is how to represent 

an instance of a term occurring in the original source program. We 

shall call the original term a source term* and the new instance a 

constructed term. (*Also called input terms in the literature on 

resolution.) The solution is to represent the constructed term by a 

pair:- 

< source term, frame > 

where the frame is a vector of constructed terms representing the 

values of the variables in the source term. Each variable is given a 

number which indicates the position in the frame of its value. (We 

shall also say the variable is bound to that value.) If the variable 

is unbound, its value is a special-construct called 'undef'. 
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Thus if we are given source terms:- 

thetal = tree(X1,a,X2) 

theta2 = tree(Y1,Y2,Y3) 

then the constructed term pictured as:- 

represents the term:- 

tree(Xl,a,tree(Y1,Y2,Y3)) 

If the source term is a constant then there is no need to provide a 

frame, so we shall treat constants as being both source terms and 

constructed terms. Thus the constructed term pictured as:- 

represents the term:- 

tree(null,a,tree(Y1,b,Y3)) 

Notice also that the source part of a constructed term may be a 

variable so that if, for example, X2 in thetal is bound to X1 and X1 

is in turn bound to 'null', then:- 
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X1 

repr'esents:- 

tree(null,a,null) 

In an actual Implementation, a constructed term would generally 

correspond to a pair of addresses, where one address would point to a 

literal representation of the source term and the other to a vector of 

storage cells. In practice we only use this form where the source 

term is a skeleton, the resulting object being called a molecule. If 
the source term is a variable, the constructed term corresponds simply 

to the address of the variable's cell and is called a reference. Thus 

the constructed term:- 

represents:- 

tree(Xl,a,tree(Xl,b,Xl)) 

The advantage of the structure sharing representation is that the 

cost (in terms of both time and storage) of constructing new terms 

from skeletons occurring in a clause is, at worst, proportional to the 

number of distinct variables in those skeletons. If the same data 

representation were used for constructed terms and source terms (as in 

Lisp say), then the cost would be at least proportional to the total 
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number of subterms (or, equivalently, of symbols) in the skeletons. 

Of course the "direct" representation makes subsequent reference to 

the components of the data structure somewhat easier. However for 

most machines (particularly those like the DEC10 with good indirect 

addressing facilities) this loss of speed is quite small and amply 

repaid by the savings of space and the speed of creating and 

discarding new data structure. 

When complex terms are built up by unification one cannot in 

general prevent chains of references being created. When unifying two 

terms it is important to dereference both values by tracing down any 

reference chains. 

A final point concerns what is known as the "occur check". 

Strictly a unification should not be allowed which binds a variable to 

a term containing that variable. This would result in "infinite 

terms", for example consider:- 

infinitelist(X,L) :- L = cons(X,L). 

X = X. 

In practice this condition never arises in most normal Prolog 

programs. Where it does, the programmer may well be wanting to 

consider the infinite term as a legitimate data object (although this 

is dangerous fo several reasons). Accordingly, Prolog implementations 

do not bother to make the occur check, as it seems to require an 

inordinate amount of computation for little practical benefit. 
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3.2 Procedure Invocation And Backtracking 

Just as structure sharing represents an instance of a source term 

by a pair < source term, frame >, so we may notionally represent a 

clause instance by a pair:- 

< clause, environment > 

The environment consists of one or more frames containing the value 

cells for each variable occurring in the clause, plus all other 

information associated with this clause instance ie. management 

information. The environment is created in the course of unifying the 

head of the clause with the activating goal. The information it 
comprises may conveniently be stored on one or more stacks, as it is 

created (by clause activation) and destroyed (by backtracking) on a 

"last in first out" basis. We may summarise the management 

information as follows:- 

* A record of the parent (activating) goal and its continuation, ie. 

the goals to be executed when the parent goal is solved. This item 

can be thought of as a molecule-like pair:- 

< parent goal + continuation (both in source program form), 
parent environment > 

* A list of the remaining source clauses which are alternative 

candidates for matching the parent goal. 

* The environment to backtrack to if the parent goal fails. ie. The 

most recent environment preceding the current one for which the clause 

activated is not the only remaining alternative for the activating 

goal. 
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* A list of variables bound in the course of unifying the parent goal 

with the head of this clause. The list need not include variables 

whose cells would be discarded anyway on backtracking eg. those in 

the present environment. 

The last three items are needed for backtracking. Effectively, 

unification is allowed to side-effect existing variable cells (thereby 

modifying the parent goal and its continuation) but has to leave a 

record of the variables affected. Backtracking uses this list to 

reset such variables to 'undef'. Unification is also responsible for 

setting every variable cell in the new environment to 'undef' if it is 

not otherwise initialised. 

In our implementation, the environment is split into two frames, 

local and global, allocated from, respectively, local and global 

stacks, plus some locations for the "reset list" on a pushdown list 
called the "trail". The global frame contains the cells for variables 

occurring in skeletons. The local frame contains the cells for other 

variables, plus all the management information (apart from the reset 

list). When a procedure has been executed determinately, the local 

frame is discarded automatically by a stack mechanism. 

3.3 Implementing The Cut Operation 

To implement the cut operation it suffices to take the parent's 

backtrack environment as the current backtrack environment. 

Optionally one may "tidy up" reset lists for the parent environment 

onwards, by removing entries for variables which would now be 
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discarded anyway on backtracking. 

In our implementation, the "tidying up" is mandatory, since 

otherwise a "dangling reference" to a discarded local frame may be 

left in the list of reset variables. A similar argument, applies to 

the global frame if a garbage collector is used. All local frames 

used in the execution of any goals preceding the cut symbol in the 

clause concerned are discarded when the cut is effected. 

3.4 Compilation 

One of the chief innovations of our Prolog implementation is that 

the clauses are compiled into sequences of simple instructions to be 

executed directly. This is in contrast to execution by a separate 

interpreter, where clauses are stored in a more or less literal form. 

The main effect of the compilation is to translate the head of each 

clause into a sequence of instructions specialising the unification 

algorithm to the case where one of the terms to be unified is the head 

of the clause concerned. 

Before describing compilation in detail (see Section /4.9/), it 
may be helpful to give the flavour of the process through an example. 

We shall translate Prolog clauses for list concatenation into an 

informal Algol-style procedure. The clauses are:- 

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3). 
concatenate(nil,L,L). 

The translation follows. The most important point to notice is that 

much of the unification process is-translated into simple assignments. 
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procedure concatenate is 
try clausel; 
try clause2; 
fail; 

clausel: ( 

local variable L2; 
global variable X,L1,L3; 
prematch skeleton cons(X,L1) against term[1]; 

* X,L1 := undef; 
* if need to match subterms then 

X subterm[l]; 
L1 := subterm[2] ); 

L2 := term[2]; 
prematch skeleton cons(X,L3) against term[3]; 
L3 := undef; 

* if need to match subterms then 
* match value of X against subterm[1]; 
* L3 := subterm[2] ); 

claim space for [X,L1,L2,L3]; 
call concatenate(L1,L2,L3); 
succeed ); 

clause2: ( 
temporary variable L; 
match atom nil against term[l]; 
L := term[2]; 
match value of L against term[3]; 
succeed ) ) 

The arguments of the matching goal (= a call to procedure 

'concatenate') are referred to as 'ternm[1]', 'term[2]', ...etc. The 

arguments of each of these terms are referred to as 'subterm[1J', 

'subterm[2J', ...etc. The context for the latter is given by the 

preceding 'prematch skeleton ...' instruction. 'prematch' is only 

responsible for matching at the "outermost level". If the 

corresponding goal argument is a variable, 'prematch' creates a new 

molecular term and assigns it to this variable. Otherwise 'prematch' 

merely checks for matching functors; matching of subterms is handled 

by the instructions which follow the 'prematch'. 
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If the programmer can guarantee that the 'concatenate' procedure 

will only be called with first argument as "input" (ie. a 

non-variable) and third argument as "output" (ie. a variable), then 

the procedure can be somewhat simplified. Essentially, the lines 

marked "*" can be omitted and variable L1 becomes a local instead of a 

global. 
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4.0 THE PROLOG MACHINE 

In the previous sections, we have taken a general look at the 

processes involved in executing a Prolog program, and have seen how 

complex terms are built up using the structure-sharing technique. We 

can now examine in more detail how all this realised in the Prolog 

machine. Full reference details of the machine are given in 

Appendices /1./ and /2./. 

4.1 The Main Data Areas 

Each clause of a Prolog source pro,Kgram is represented by a 

sequence of PLM instructions and literals.* {* Not to be confused with 

the use of "literal" in resolution theory.} Roughly speaking, there is 

one instruction or literal for each Prolog symbol (ie. variable, atom 

or functor). Instructions are executable whereas literals represent 

fixed data. Both are stored in an area of the machine called the code 

area. Unlike the other areas of the machine, information in the code 

area is generally accessed in a "read--only" manner. 

The two major writeable areas of the machine are the local stack 

and the l obal stack. As their names imply, these areas are used as 

stacks, that is all storage before a certain point (the "top" of the 

stack) is in use and all storage after that point is not in use. 

Furthermore the storage that is in use is referred to in a random 

access manner. The top of each stack varies continually during the 

course of a computation. Thus a stack amounts to a variable length 

vector of storage. 
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The global stack contains the value cells for l obal variables, 

that is variables that occur in at least one skeleton, and which 

therefore may play a role in constructing new molecules. Other 

variables are called local variables and their value cells are placed 

in the local stack. These variables serve merely to transmit 

information from one goal to another. In addition, the local stack 

contains management information which determines what happens next in 

the event of a goal succeeding or failing, and is also used to effect 

a cut. 

Both stacks increase in size when a new goal is tackled, and 

contract on backtracking. Space can also be recovered from the top of 

the local stack when a goal is successfully completed and no 

alternative choices remain in the solution of that goal. It is for 

just this reason that two stacks are used rather than one. The 

resulting saving of space can be very substantial for programs which 

are determinate or partially determinate, as most in fact are. The 

recovery of space occurs (a) when the end of a clause is reached and 

the machine can detect that no other choices are open, (b) when a cut 

is effected and at least one goal precedes the cut in the clause in 

question. In the latter case all the local stack consumed during the 

execution of the preceding goals is recovered. 

The other main writeable area of the PLM is called the trail. 
This area is used as a push-down list, ie. it is like a stack, with 

the difference that items are "pushed" on or "popped" off one at a 

time on a last-in first-out basis, and are not accessed in any other 

way. The trail is used to store the addresses of variable cells which 
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need to be reset to 'undef' on backtracking. As with the local and 

.global stacks, it generally increases in size with each new goal and 

is reduced by backtracking. The cut operation may also have the 

effect of removing items from the trail. 

PLM data items and storage locations come in two sizes, namely 

short and long. Each area of the PLM comprises a sequence of 

locations of the same size identified by consecutive addresses.* {* As 

the trail area is used as a push down list, its locations do not 

strictly need to be addressable.} A short location is big enough to 

hold at least one machine address. A long location has room for two 

addresses. (NB. Short and long locations need not in practice be 

different in size. In our DEC10 implementation they both correspond 

to 36-bit locations.) Each variable cell is a long location, so the 

two stacks comprise long locations, while the trail is made up of 

short locations. The locations in the code area are short; 

instructions and literals should be thought of as short items, or 

multiples thereof. 

4.2 Special Registers Etc 

Besides the main areas, the PLM has a number of special locations 

called registers. In general these need only be short locations. 

Registers V and V1 hold the addresses of the top of the local and 

global stack respectively. Register TR holds a "push-down list 
pointer" to the top of the trail. 
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The environment for each clause instance is represented by a 

local frame and a global frame, plus some trail entries. The layout 

is shown in Appendix 1. The global frame is simply a vector of cells 

for the global variables of the clause. The local frame comprises a 

vector of local variable cells, preceded by 3 long locations 

containing management information. 

For most of the time, the PLM is in the process of trying to 

unify the head of some clause against an existing goal. Register A 

contains the address of a vector of literals representing the 

arguments of the goal followed by its continuation. The continuation 

is the instruction at which to continue execution when the goal is 

solved. The environment of the current goal is indicated by registers 

X and X1 which hold the addresses of, respectively, the local and 

global frames for the clause instance in which the goal occurs. 

Registers V and V1 therefore contain the corresponding information for 

the environment that unification is endeavouring to construct. The 

machine insures there is always a sufficient margin of space on each, 

stack above' V and V1 for the environment of any clause. It is only 

when a unification is successfully completed that the V and V1 

pointers are advanced. 

Registers VV and VV1 indicate, in a similar way, the most recent 

environment for which the parent goal could possibly be matched by 

alternative clause(s). Usually we shall have VV=V and VV1=V1, as there 

will be other clauses in the current procedure which could potentially 

match the current goal. In this case, register FL contains the 

address of the instructtion at which to continue if unification should 
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fail. 

There are two other important registers which may be set during a 

unification : register B is set to the address of a vector of literals 

representing a skeleton, and register Y to the address of the 

corresponding global frame. 

Note: It may be helpful to think of <A,X> as being a molecule 

representing the current goal and <B,Y> as a molecule representing a 

level 1 subterm of that goal. 

The 3 long locations of management information in each local 

frame comprise 6 short item fields as illustrated below (the precise 

arrangement is not really significant):- 

VV i FL 
X I A 

V1 
I 

TR 

The parent goal is indicated by the X and A fields, mirroring the 

appropriate values for the X and A registers. 

The V1 field contains the address of the corresponding global 

frame mirroring the V1 register. 

The VV field contains the value of the VV register prior to the 

invocation of the parent goal for this environment. It therefore 

indicates the most recent choice point prior to this environment. 

The FL field contains the failure label for this environment, if 
any, and is undefined otherwise. The failure label is the address of 

an instruction at which to continue for an alternative match to the 
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parent goal. 

The TR field contains a value corresponding to the state of the 

TR register at the point the parent goal was invoked. 

The VV, FL and TR fields are needed primarily for backtracking 

purposes. 

4.3 Literals 

Literals are PLM data items that serve as building blocks to 

provide a direct representation for certain subterms of the original 

Prolog source program. In particular they are needed to give skeleton 

terms a concrete form so that structure sharing can be applied. We 

shall not attempt to give more details of their internal structure 

than is necessary. The different types of literal mentioned are 

assumed to be readily distinguishable. 

A skeleton literal represents a skeleton term and is a structure 

comprising a functor literal followed by a vector of inner literals. 

Each inner literal is a short item, typically an address which serves 

as a pointer to the value of the subterm. The size of a functor 

literal is left undefined, but it contains sufficient information for 

it to be identified as the functor literal for a particular functor of 

non-zero arity. It will be written as 'fn(I)' where 'I' uniquely 

identifies the functor in question. (In our DEC10 implementation, 

functors and atoms are numbered from 0 upwards and 'I' refers to this 

number.) 
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An inner literal is either an inner variable literal or the 

address of a skeleton literal, atom literal or integer literal. Atom 

and integer literals are long items written as 'atom(I)' or 'int(N)' 

where 'I' uniquely identifies the atom in question and 'N' is the 

value of the integer in question. An inner variable literal will be 

written 'var(I)' where I is a number identifying the corresponding 

global variable in the clause concerned. For structure sharing 

purposes this number is used as an index to select the appropriate 

cell from an associated frame of (global) variable cells. 

We shall write '[S]' for the address of a structure S. Thus the 

address of the literal corresponding to the skeleton:- 

tree(null,X,tree(Y,X,Z)) 

might be written:- 

[fn(tree) , 

[atom(null)], 
var(1), 
[ fn(t ree) , 
var(2), 
var(1), 
var(3)]] 

and pictured as:- 

fn( tree) 

Iatom(null) 

Besides inner literals, 

fn(tree) J var(2) var(1) I var(3 ) 

which represent the arguments of a 

skeleton term, the PLM needs outer literals to represent the arguments 

of a goal. An outer literal is either the address of an atom integer 
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or skeleton literal, or is a local literal, a global literal or a void 

literal. Like inner literals, outer literals are short items, which 

serve as pointers to the values of the subterms they represent. 

If a goal argument is a variable, and the variable occurs 

somewhere else in the clause within a skeleton term, then the argument 

is represented by a global literal, written "global(I)' where 'I' is 

the number of that global variable., If a goal argument is a variable, 

and that variable occurs nowhere else in the clause then the variable 

is represented by a void literal, written 'void'. Otherwise a variable 

appearing as an argument of a goal is represented by a local literal, 
written 'local(I)' where 'I' is a number identifying the local 

variable. 

Thus the arguments of the second goal in the clause:- 

compile(S,C) :- translate(S,D,E), assemble((E;D),O,N,C). 

might be represented by:- 

[ [fn(.L),var(1),var(2)] ,[int(o)] ,void,local(2)] 

or pictured as:- 

void local(2) 

Jint(o) 

fn() var(1) Far(2) 

...continuation 

remembering that the continuation always follows immediately after the 

last argument literal of the goal. 
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4.4 Constructs 

The set of PLM data items which can appear as the values of 

variable cells are called constructs. They serve to represent 

constructed terms in a structure-sharing manner. Once again we shall 

not attempt to give unnecessary details of their internal structure, 

but will assume that they are long items and that the different types 

are readily distinguishable. 

The cell for an unbound variable contains the empty construct, 

written 'undef'. The cell for a variable which has been bound to 

another variable contains a reference, written 'ref(R)' where R is the 

address of the other variable's cell. If a variable is bound to an 

atom or an integer, its value cell will contain the corresponding atom 

or integer literal. Finally if a variable is bound to an instance of 

some skeleton, the corresponding construct is called a molecule and 

written 'mol(S,X)' where S is the address of the corresponding 

skeleton and X is the address of the corresponding frame. 

4.5 Dereferencing 

In the following, the process of dereferencing a variable will 

often be referred to. At any point in a Prolog computation, this 

process associates a certain non-empty construct with each variable. 

This construct is said to be the (dereferenced) value of the variable 

at that point. It is obtained by examining the contents of the 

variable's cell and repeatedly following any references until a cell 

is reached which contains a non-reference construct. If this 
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construct is 'undef' the result of the dereferencing is a reference to 

the cell which contains 'undef'. Otherwise the result is the final 

construct examined. 

4.6 Unification Of Constructs 

We are now in a position to see how unification works out in 

practice. Unifying two terms reduces to the task of unifying two 

constructs which represent them. The first essential is to ensure 

that the two constructs are fully dereferenced. 

If neither construct is a reference, then unification will fail 

unless we have two equal atoms or two equal integers or two molecules 

with the same principal functor. In the last case the unification 

process has to recurse and unify each of the arguments. (The action 

to be taken on failure is described later.) 

If just one of the constructs is a reference, then the other 

construct has to be assigned to the cell indicated by the reference. 

If both constructs are references, then clearly one reference 

must be assigned to the cell of the other. It happens to be very 

important that the more senior reference is assigned to the cell of 

the more junior reference. A cell in the global stack is always more 

senior than any cell in the local stack. Otherwise seniority is 

determined by the cells' addresses - the one earlier in the stack is 

considered more senior. These precautions are essential to prevent 

"dangling references" when space is recovered from the local stack 

following the determinate solution of a goal. (The "dangling 
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reference" is a well known nightmare where a location is left 
containing the address of a part of storage which has been 

de-allocated from its original use.) The rules also play an important 

role for efficiency in tending to prevent long chains of references 

being built up. In typical Prolog programs it is quite rare for 

dereferencing beyond the first step to be necessary, if the above 

scheme is applied. 

{The reader may find it interesting to compare our treatment of 

variable-variable unification with Rem's algorithm described by 

Dijkstra [1976,pp.161-167]. In fact, our treatment was devised before 

reading Dijkstra's account. It is interesting that the same 

"seniority" concept is used for (primarily) quite different reasons.) 

Whenever a cell is assigned a (non-empty) value, it is usually 

necessary to "remember" the assignment so that it can be "undone" on 

subsequent backtracking. The exception is where the cell will in any 

case be discarded on backtracking. This condition can easily be 

detected in the PLM by the fact that the cell's address will be 

greater than the contents of register VV for a local cell or register 

VV1 for a globalcell. When the assignment has to be remembered the 

address of the cell concerned is trailed, ie. pushed on to the trail 
push-down list pointed to by register TR. 
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4.7 Backtracking 

When unification fails, the PLM has to backtrack to the most 

recent goal for which there are other alternatives still to be tried. 

Any environments created since the backtrack point are to be erased 

and the space occupied on the local stack, global stack and trail is 

to be recovered. Before attempting another unification, all 

assignments made since the backtrack point to cells which existed 

before the backtrack point must be undone by setting the values of 

such cells to ' undef' . 

local stack global stack trail 

VV 

V1 

A 
TR 

space 

to be 
recovered 

V 
t 
1 1 

1 1 

X1, c4 

V1', 
VV1 

V1 

TR'-O 

1 
reset 

addresses 

J 
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The PLM keeps an up-to-date record of the environment to 

backtrack to in registers VV and M. VV contains the address of the 

local frame, VV1 the address of the global frame. Note that VV1 is 

strictly superfluous since it merely shadows the contents of the V1 

field in the local frame indicated by VV. The state of the trail 
corresponding- to the backtrack point is ink icated by the TR field. 

The necessary undoing of assignments is achieved by popping addresses 

of the trail until the original trail state is reached; each cell so 

addressed is reset to 'undef'. (Some of these cells are probably about 

to be discarded anyway, but it is harmless to reset them regardless, 

and this is likely to be simpler.) 

For the remainder of the backtracking process, it is convenient 

to consider two cases. The first is shallow backtracking, where there 

are other alternatives for the current goal. This is of course easily 

detected by the fact that VV=V. All that has to be done in this case 

is to resume execution at the instruction indicated by FL. 

In the case of deep backtracking, V and V1 have to reset from VV 

and VV1 respectively. Registers X, A and FL are reset according to 

the corresponding fields in the local frame indicated by VV. Register 

X1 is reset from the V1 field in the local frame corresponding to X. 

Finally, execution is resumed at the instruction indicated by FL. 
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4.8 Successful Exit From A Procedure 

Backtracking generally corresponds to a failure exit from a 

procedure. A success exit occurs when the end of a clause is reached 

If thq procedure exit is determinate, indicated by VV<X and showing 

that no choices were made (or remain) in the execution of the 

procedure, then local storage can be recovered by resetting V from X. 

Registers X and A are reset from the corresponding fields in the local 

frame indicated by the present value of X. Register X1 is then reset 

from the V1 field of the local frame now indicated by X. Finally 

execution is resumed at the continuation instruction which follows the 

n short items addressed by A, where n is the arity of the predicate 

for the procedure concerned. 

local stack global stack 

V1pl 
i 1 
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4.9 Instructions 

Having covered the basic structure and function of the PLM, it 
remains to describe how the clauses which drive it are actually 

represented. It should be clear that a clause could be stored in a 

very literal form (cf. a skeleton term) and interpreted directly. 

This is precisely the way the Marseille interpreter operates. However 

much of the work that such an interpreter would have to perform can be 

eliminated by using extra information which is easily computed at the 

time clauses are first introduced ("compile-time"). This i.ncludes:- 

(1) Recognising that matching against the first occurrence of a 

variable in the head of a clause is a special case. The variable must 

obviously be as yet unbound and one simply has to bind the matching 

term to it. There is no need to have previously initialised the 

variable's cell to 'undef'. The whole operation is far simpler than in 

the general case of a subsequent occurrence of the variable. 

(2) If one is matching a variable in the head of a clause, and 

that variable has no other occurrence in the clause, no action at all 
need be taken. Furthermore if the occurrence is at level 1, no cell 

need be created for that variable. Similarly, no cell is needed for a 

single-occurrence variable at level 1 in a goal. Variables with a 

single occurrence, which is at level 1, are called void variables. 

(3) The interpreter generally has to make a recursive call when 

matching the arguments of a skeleton against a non-variable term. 

This overhead can be avoided if the skeleton occurs in the current 

clause head, by associating information about depth of nesting (level 
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number) with each symbol in the head of a clause. (The details will 
be explained later.) Similarly, the need to keep a count of arguments 

(of a skeleton or clause head) already matched can be avoided by 

associating an argument number with each symbol in the head of a 

clause. (The arguments of a functor are numbered from 0 upwards.) 

(4) Normally an interpreter would allocate, and initialise to 

'undef', all cells for a clause before commencing unification. We 

have seen that much of this initialisation can be avoided. Also one 

can postpone the remaining initialisation, and the "red-tape" of 

storage allocation, as late as possible in the hope that a failure 

will render them unnecessary. 

(5) Variables can be categorised into different types (global, 

local and temporary), depending on the way they occur in the clause, 

so that the space occupied by certain variable cells can be recovered 

earlier than is possible in general. 

(6) By bringing together information from the different clauses 

in a procedure one can optimise the selection of potentially matching 

clauses and/or share part of the work involved in unifying with each 

clause head, and in addition provide a means of detecting the 

important case where the selection of a particular clause is 

determinate. (See the later section on "Optional Extras"). 

In general, one Prolog source symbol plus the relevant extra 

information corresponds to a specific simple operation on the Prolog 

Machine. If one discounts dereferencing and cases resulting in a 

failure of unification, the operation usually involves a strictly 
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bounded amount of processing. It is therefore natural to think of the 

augmented symbols as primitive machine instructions of the PLM.* {* In 

fact the analogy with a convential machine like the DEC10 is quite 

close if one compares dereferencing with the DEC1O's effective address 

calculation and unbounded operations with DEC1O's block transfer (BLT) 

and execute (XCT) instructions.) 

No executable instructions are generated for the arguments and 

subterms of a goal. These are represented purely by literal data as 

indicated earlier. Also, no executable instructions are generated for 

symbols deeper than the levels 1 and 2 in the head of a clause. This 

is a purely arbitrary limit based on considerations of 

cost-effectiveness in practical examples of Prolog programs. 

In general, the code for a clause has the form:- 

instructions 
for 
unification 

'neck' instruction 

'call' instructions 

each followed by 
outer literals 

'foot' instruction 

skeleton literals 
(if any) 

head of the clause 

completes the new environment 

body of the clause 

transfers control to parent 
goal's continuation 

data (which could 
be placed elsewhere) 

Each goal is represented by an instruction 'call(P)' followed by a 
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list of outer literals for its arguments. 'P' is the address of the 

Procedure code for that predicate. This takes the form:- 

enter 
try(C1) 
try(C2) 

trylast(Cn) 

'enter' is an instruction for initialising part of the management 

information in a new environment. This function could perhaps better 

be included in the operation 'call' so that 'enter' would be an 

ignorable no-operation. (It is included as a separate instruction 

because of the way it is handled in the DEC10'implementation.) Cl to 

Cn are the addresses of the code for each of the clauses in the 

procedure (in order). The last executable instruction in a clause is 

generally 'foot(N)' where 'N' is the arity of the head predicate. 

Before proceeding with a description of the instructions for the 

head of a clause, we must first complete discussion of the different 

categories of variable and the exact layout of an environment. The 

variables of a clause are categorised according to expected 

"lifetimes" which end when there is no longer any need to remember the 

variable's value. The categories are as follows:- 
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Name Lifetime ends 

Global Backtracking. 

Local Procedure completed 
successfully and 
determinately, ie. no 
choices remain within 
the procedure. 

Temporary Completion of 
unification with the 
head of the clause. 

Void None. 

Criterion 

Occurs in a skeleton. 

Multiple occurrences, 
with at least one in the 
body and none in a 
skeleton. - 

Multiple occurrences, 
all in the head of the 
clause and none in a 
skeleton. 

A single occurrence, not 
in a skeleton. 

The global variables of a clause are numbered in some arbitrary 

order which determines their positions in the global frame. Similarly 

local and temporary variables are 

positions in the local frame. 

numbered to determine their 

The only constraint is that locals 

precede temporaries. This is so that the temporary part of the local 

frame can be discarded at the end of unification (see the diagram in 

Appendix 1). Variables in either frame are numbered from 0 (zero) 

upwards. No cell is allocated for a void variable. In showing 

examples of Prolog machine code, we shall assume that the variables of 

each type are numbered according to their order of appearance in the 

source clause. 

We can now return to the discussion of instructions for the head 

of a clause. The head is terminated by an instruction 'neck(I,J)' 

where 'I' is the number of local variables (= the number of the first 
temporary if any) and 'J' is the number of global variables. 
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The instructions for an occurrence of a variable in the head 

are:- 

uvar(N,E,I) uvarl(N,E,I) 
uref(N,E,I) urefl(N,E,I) 

'uvar' or 'uvarl' is used if it is the first occurrence, 'uref' or 

'urefl' otherwise. 'uvar' corresponds to level 1 and 'uvarl' to level 

2, and similarly for all other pairs of instructions named 'name' and 

'namel'. 'N' is the argument number of the occurrence, 'E' is the 

frame ('local' or 'global') containing the variable's cell, and 'I' is 

the number of the variable. No instruction is needed for a variable 

with a single occurrence. 

Similarly there are instructions for an occurrence of an atom or 

integer in the head:- 

uatom(N,I) uatoml(N,I) 
uint(N,I) uintl(N,I) 

Once again, 'N' is the argument number of the occurrence. For an 

integer, 'I' is the actual value of the integer. For an atom, 'I' 
uniquely identifies that atom. 

For a skeleton at levels1, the instructions are:- 

uskel(N,S) 
init(I,J) 
ifdone(L) 

argument 
instructions 

L: 

'N' is the argument number of the skeleton within the head. 'S' is 

the address of a corresponding skeleton literal (which may be assumed 

to be placed after the 'foot' instruction). The global variables which 

have their first occurrences within the skeleton are numbered from 'I' 
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through 'J'-1. The effect of the 'ini.t' instruction is to initialise 

these variables to 'undef'. If 'I'='J', the instruction is a 

no-operation and may be omitted. The instruction 'ifdone' causes the 

instructions for the arguments of the skeleton to be skipped if the 

matching construct is a reference. 'L' is the address of the 

instruction following the last argument instruction. 

Note that the arguments of the skeleton could be coded in any 

order since each instruction contains the argument number explicitly. 

(A "first occurrence" of a variable would then mean the first 
occurrence in the code.) Similarly for the arguments of the head 

boolean term itself. 

A skeleton at level 2 is coded simply as:- 

uskell (N, S) 

where 'N' and 'S' are analogous to the use in 'uskel'. 

Immediately before a 'neck' instruction there are two 

instructions:- 

init(I1,J1) 
localinit(12,J2) 

The global and local variables which have their first occurrences in 

the body of the clause are numbered respectively from 'I1' through 

'Jl'-l and from '12' through 'J2'-1. Once again, either instruction is 

an omissable no-operation if the two numbers are equal. 

The instruction corresponding to the cut symbol is 'cut(I)' where 

'I' is the number of local variabes in the clause. There are a number 

of instructions which simply replace some common combinations of 

instructions:- 
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neckfoot(J,N) neck(O,J); foot(N) 
neckcut(I,J) neck(I,J); cut(I) 
neckcutfoot(J,N) neck(0,J); cut(0); foot(N) 

That completes the basic instruction set of the PLM. We have not 

described in detail the effect of each instruction,although this 

should be clear from earlier discussion of how the PLM operates. Full 

details are given in Appendix 2. 

4.10 Examples Of Prolog Machine Code 

Let us now illustrate the way Prolog source clauses are 

translated into Prolog Machine Code by considering some examples. 

4.10.1 

List membership is defined by the following straight-forward 

clauses:- 

member(X,cons(X,L)). 
member(X,cons(Y,L)) :- member(X,L). 

The first clause has two global variables X and L. The second has one 

local X and two globals Y and L. The code for the clauses is as 

follows. Addresses etc. are represented by underlined identifiers 

and where appropriate the corresponding instruction is indicated by a 

label as in conventional assembly languages. 

Code Source 

clausel: uvar(0,global,0) member(X, 
uskel(l,label2) cons( 
init(1,2) 
ifdone(labell) 
urefl(O,global,0) X,L) 

labell: neckfoot(2,2) 
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label2: f n(cons) 
var(0) 
var(1) 

clause2: uvar(0,local,0) member(X, 
uskel(1,label4) cons(Y, 
init(0,2) 
ifdone(label3) 
uvarl(1,global,l) L) 

label3: neck(1,2) ):- 
call(member) member( 
local(0) X, 
global(1) L) 
foot(2) 
fn(cons) 
var=0 
var(1) 

member: enter 
try(clausel) 
trylast(clause2) 

4.10.2 

An example of a use of 'cut' is the following definition of the 

maximum of two quantities:- 

maximum(X,Y,Y) :- X<Y, 1. 
maximum(X,Y,X). 

(Here cut is not purely a control device; the second clause can be 

interpreted as "the maximum of X and Y is X by default if it is not 

the case that X is less than Y".) The first clause has two local 

variables while the second has one temporary X and one void Y. The 

corresponding code is:- 

Code Source 

clausel: uvar(0,local,0) maximum(X, 
uvar(1,local,l) Y, 
uref(2,local,l) Y 

neck(2,0) ):- 
call(<) <( 
local(0) X, 
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local(l) Y) 
cut(2) 
foot(3) 

clause2: uvar(0,local,0) maximum(X,Y, 
uref(2,local,0) X 
neckfoot(0,3) ) . 

maximum: enter 
try(clausel) 
trylast(clause2) 

4.11 Mode Declarations 

In the previous section we saw that the code for list membership 

included skeleton literals. Now these skeleton literals are only 

really used if the membership procedure needs to construct new lists, 

ie. when the second argument in the call is (dereferences to) a 

reference construct. This is unlikely to be the case. Usually the 

programmer will call 'member' simply to check whether something is a 

member of an existing list. In this case the 'cons' subterms of the 

'member' procedure will serve only to decompose an existing data 

structure, not to construct a new one. 

If the programmer can guarantee to restrict the use of a 

predicate in this kind of way, then the system can optimise the code 

generated. The main potential improvements are:- 

* Unnecessary code can be dispensed with. If a skeleton term always 

serves as a "destructor" then a skeleton literal is not needed. If it 
always serves as a "constructor" then no executable instructions are 

needed for the arguments. 
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* If these changes result in a variable no longer appearing in a 

skeleton literal, then that variable no longer needs to be global. 

Its cell can therefore be allocated on the local stack and space 

recovered on determinate procedure exit. 

Accordingly, the PLM allows the programmer to specify an optional 

mode declaration for each predicate. Some examples of the syntax used 

are:- 

:-mode member(?,+). 

:-mode concatenate(+,+,-). 

The first declaration states that, in any call of 'member', the second 

argument will be a non-reference construct and the first argument is 

unrestricted. The declaration for 'concatenate' indicates that the 

first two arguments are always non-reference constructs and the third 

is always a reference. ie. 'concatenate' is applied to two given 

lists to create a new third list. 

These examples illustrate all the cases of mode information 

currently accepted by, and useful to, the PLM. The idea could 

obviously be extended. We should emphasise that the declarations are 

optional and do not affect the visible behaviour of the program except 

in regard to efficiency (provided the restrictions imposed are valid). 

If no mode declaration is given for a predicate, it is equivalent to a 

declaration with all arguments '?'. 

The effect on the PLM of a mode declaration is limited to changes 

to the code generated for skeletons at level 1 and consequent 

re-categorisation of variables. If a skeleton is in a '-' position, 

it is playing a purely "constructive" role and the code is:- 
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uskelc(N,S) 
init(I,J) 

ie. A 'uskelc' instruction replaces the 'uskel' instruction and the 

'ifdone' and argument instructions are dropped. 

If the skeleton is in a '+' position, it is playing a purely 

"destructive" role and the code is:- 
uskeld(N,I) 

argument 
instructions 

Here 'I' uniquely identifies the functor of the skeleton. The 'init' 
and 'ifdone' instructions are dropped and no skeleton literal is 

necessary. However if any argument of the -skeleton is itself a 

skeleton, the code for that argument becomes:- 

init(I,J) 
uskell(N,S) 

'N' and 'S' are the argument number and address of a skeleton literal 
for the subterm. 'I' through 'J'-l are the numbers of the global 

variables having their first occurrences in 'S'. As usual, the 'i.nit' 

instruction can be omitted if 'I'='J'. 

Note that if 'uskelc' encounters a non-reference, or 'uskeld' a 

reference, an error message is given and a failure occurs. 

Finally we should observe that in the previously stated criteria 

for categorising variables, "occurrence in a skeleton" should be 

construed as "occurrence in a skeleton literal". From a practical 

point of view it is the re-classification of variables into more 

desirable categories which is of major importance. The full benefit 

of using two stacks rather than one for variable cells can only be 
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obtained if mode declarations are used. For this reason we have not 

treated mode declarations as one of the "optional extras" considered 

later. 

4.12 More Examples Of Prolog Machine Code 

4.12.1 

Let us now see how the mode declaration given for 'member' 

affects the code. There are no longer any global variables. Two of 

them become voids, one temporary and one local:- 

Code Source 

clausel: uvar(O,local,O) member(X, 
uskeld(l,cons) cons( 
urefl(O,local,O) X,L) 
neckfoot(0,2) ). 

clause2: uvar(O,local,0) member(X, 
uskeld(l,cons) cons(Y, 
uvarl(l,local,l) L) 
neck(2,O) ):- 
call(member) member( 
local(O) X, 
local(1) L) 
foot(2) 

member: enter 
try(clausel) 
trylast(clause2) 

4.12.2 
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A good example for illustrating many different features of code 

generation is the following "quick-sort" procedure:- 

:-mode sort(+,-). 

:-mode qsort(+,-,+). 
:-mode partition(+,+,-,-). 

sort(L;O,L) :- qsort(LO,L,nil). 

qsort(cons(X,L),R,RO) :- 

partition(L,X,L1,L2), 
qsort(L2,R1,RO), 
qsort(L1,R,cons(X,R1)). 

qsort(nil,R,R). 

partition(cons(X,L),Y,cons(X,L1),L2) :- 

X =< Y, !, partition(L,Y,L1,L2). 
partiti.on(cons(X,L),Y,L1,cons(X,L2)) 

partition(L,Y,L1,L2). 
parti_tion(nil,_,nil,nil). 

The code generated is as follows:- 

Code 

clausel: uvar(O,local,0) 
uvar(1,local,1) 

neck(2,O) 
local(O) 
local(1) 
[atom(nil)] 
foot(2) 

Source 

clause2: uskeld(O,cons) 
uvarl(O,global,0) 
uvarl(1,local,0) 
uvar(l,local,1) 
uvar(2,local,2) 
init(1,2) 
localinit(3,5) 
neck(5,2) 
call( partition) 
local(O) 
global(O) 
local(3) 

local(4) 
call(9sort) 
local(4) 
global(1) 
local(2) 
call(gsort) 
local(3) 
local(2) 

qsort(cons( 
X, 
L), 

R, 

RO 

partition( 
L, 

X, 

L1, 
L2), 

qsort( 
L2, 

R1, 
RO), 
qsort( 
L1, 
R, 
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labell 
foot(3) 

labell: fn(cons) 
var(O) 
var(1) 

clause3: uatom(O,nil) 
uvar(1,local,0) 
uref(2,local,0) 

neckfoot(0,3) 

clause4: uskeld(0,cons) 
uvarl(0,global,0) 
uvarl(1,local,0) 
uvar(1,local, 1) 
uskelc(2,label2) 

init(1,2) 
uvar(3,local,2) 
neck(3,2) 
call(=<) 
global(0) 
local(1) 
cut(3) 
call( partition) 

local(0) 

local(1) 
global(1) 
local(2) 
foot(4) 

label2: fn(cons) 
var(0) 

var(1) 

clause5: uskeld(0,cons) 
uvarl(0,global,0) 
uvarl(1,local,0) 
uvar(1,local,1) 
uvar(2,local,2) 
uskelc(3,label3) 
init(1,2) 
neck(3,2) 
call(partition) 

local(0) 
local(1) 
local(2) 
global(1) 

foot(4) 
label3: fn(cons) 

var(0) 
var(1) 

clause6: uatom(O,nil) 
uatom(2,nil) 
uatom(O,nil) 

cons(X,R1)) 

qsort(nil, 
R, 

R, 

partition(cons( 
X, 

L), 
Y, 

cons(X,L1), 

L2 
):- 

_<( 
X, 

Y), 
t f 
partition( 
L, 

Y, 

L1, 
L2) 

partition(cons( 
X, 
L), 

Y, 
L1, 
cons(X,L2) 

partition(nil,_, 
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neckfoot(0,0) 

4.12.3 

The following example illustrates the coding of nested 

skeletons:- 

:-mode rewrite(+,?). 

rewrite(X or (Y and Z), (X or Y) and (X or Z)):-!. 

Code 

clausel: uskeld(O,or) 
uvarl(O,global,O) 
init(1,3) 
uskell(l,label2) 
uskel(l,label3) 
i.fdone(labell ) 
uskell(0,label4) 
uskell(l,label5) 

labell: neckcutfoot(3,2) 
label2: fn(and) 

var(1) 
var(2) 

label3: fn(and) 
label4 
label5 

label4: fn(or) 
var(0) 
var(1) 

label5: fn(or) 
var(0) 
var(2) 

Source 

tewrite(or( 
X, 

and(Y,Z)), 
and ( 

or(X,Y), 
or(X, Z) ) 

:-!. 
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5.0 DEC10 IMPLEMENTATION DETAILS 

In this section we shall indicate how the PLM can be efficiently 

realised on a DEC10. A summary of the essential characteristics of 

this machine is given in Appendix /3./. Fuller details of the 

implementation of PLM instructions and literals are given in Appendix 

/2J. 

Short and long items both correspond to 36-bit words. A special 

register corresponds to one of the sixteen fast accumulators. For 

each writeable area there is set aside a (quasi-) fixed block of 

storage in the low segment. The trail is accessed via a push-down 

list pointer held in TR. 

The DEC10 effective address mechanism contributes crucially to 

the overall speed of the implementation. Each inner and outer literal 
is represented by an address word which is generally accessed 

indirectly. ie. The indirection bit is usually set in any DEC10 

instruction which refers to the address word. In particular, the 

address word for a variable specifies the address of its cell as an 

offset relative to an index register. The index register will be 

loaded with the address of the appropriate frame. In other cases 

(constant or skeleton), the address word will contain a simple 

address. The net result is that, despite structure-sharing, it only 

takes one instruction to access a unification argument. Moreover, in 

the majority of cases no further dereferencing of the argument will be 

necessary. This can best be illustrated by looking at the code for an 

example such as 'uvar(3,global,5)' :- 
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MOVE T,@3(A) ;indirect load of argument into T 

TLNN T,MSKMA ;check construct is a molecule or constant 
JSP C,$UVAR Of not, call out-of-line subroutine 
MOVEM T,5(V1) ;store argument in appropriate cell 

Thus in the majority of cases only 3 instructions are executed to 

complete this unification step. The matching term might be 

'global(4)' represented by:- 

WD 4(X1) 

where 'WD' indicates an address word with zero instruction field. If 
the cell corresponding to this variable contains a molecule say, the 

effect of the 'MOVE' instruction will be to load the molecule into 

register T. Note: If the cell contained 'undef', subroutine '$UVAR' 

would be responsible for recovering the address of the cell. This is 

easily achieved by the instruction:- 

MOVEI T,@-3(C) 

which simply loads the result of the effective address calculation 

into T. '-3(C)' refers back to the original 'MOVE' instruction. A 

similar operation is needed if the matching term is a skeleton. More 

generally, this illustrates how part (or all) of a PLM instruction can 

be performed out-of-line on the DEC10 with very little overhead, as 

the subroutine can easily refer back to the in-line code. 

A molecule 'mol(Skeleton,Frame)' is represented by a word:- 

XWD frame,skeleton 

The pair is inverted to facilitate accessing the arguments by 

indexing. A reference construct corresponds to a simple address word 

with left half zero. In passing, note that although all dereferencing 

could be accomplished by a single instruction (with a different 

representation of constructs and the indirection bit set in a 
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reference), this would not be cost-effective (multi-step dereferencing 

is too rare to justify the extra overheads). 'undef' is represented by 

a zero word, as this value is easily initialised and recognised. 

Both the 'call' and 'try' instructions are represented simply by 

'JSP's :- 

JSP A,predicate ;call predicate 

JSP FL,clause ;try clause 

other instructions are implemented as a mixture of in-line code and 

call to out-of-line subroutines via:- 

JSP C,routine 

The 'uskel' instruction, if it matches a non-reference has the effect 

of loading B with the address of the corresponding frame. If it 
matches a reference, Y is set to zero and 'ifdone' is achieved by:- 

JUMPE B,label 

The TR field in a local frame holds the left-half of the 

corresponding value for the TR register. This enables the trail to be 

easily relocated since the TR fields will effectively contain trail 
offsets rather than trail addresses. 

Atom, integer and functor literals are represented by words:- 

XWD $ATOM,i 
XWD $INT,i 
XWD $SKEL,i 

The left halves $ATOM, $INT, $SKEL serve to label the different types 

of literal. The right half 'i' is either the value of the integer, or 

a functor table offset. The functor table contains information, such 

as names and arities, associated with atoms and functors. 
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6.0 OPTIONAL EXTRAS 

In this section we discuss some "optional extras" which can 

substantially improve the efficiency of the PLM. Because they are not 

strictly essential, we treat them separately in order -to keep the 

basic description of the PLM as simple as possible. However since 

both "extras" provide substantial benefits at comparatively little 
cost, they should be regarded as standard. 

6.1 Indexing Of Clauses 

The basic PLM eventually tries every clause in a procedure when 

seeking to match a goal (unless "cut" is used explicitly, or implcitly 

when a proof has been found). The code for each clause is actually 

entered, although an early failure in unification may quickly re-route 

control to the next clause. This is fine so long as there are only a 

few clauses in a procedure or when a high proportion of the clauses 

are going to match. However there are often cases where the clauses 

for a predicate would conventionally correspond to an array or table 

of information rather than a single procedure. Typically there are 

many clauses with a variety of different non-variable terms in one or 

more argument positions of the head predicate. An example might be 

the clauses for a predicate 'phonenumber(X,N)' where 'N' is the phone 

number of person 'X'. 

Ideally one would like the system to access clauses 

"associatively", to achieve a higher "hit" ratio of clauses matched to 

clauses entered. In other words clauses should be indexed on a more 
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detailed basis than head predicate alone. However there is a danger 

of generating much extra indexing information which is not needed in 

practice. For example a standard telephone directory is indexed so as 

to facilitate answering questions of the form 

phonenumber(aperson,X)'. To cater for questions of the form 

phonenumber(X,anumber)' would require another weighty volume which 

would be useless to the average customer. So in designing an indexing 

scheme one has to balance generality against the benefit realised in 

practice from the extra information stored. Also the whole object of 

the scheme will be nullified if the indexing process is not fast. In 

Prolog, there is an additional constraint that the clauses must be 

selected in the order they appear in the program, as this order 

frequently constitutes vital control information. 

Besides the main objective, of speeding up the selection of 

clauses to match a goal, indexing also helps the machine to detect 

that a choice is determinate because no further clauses in the 

procedure will match. This is important for determining when space 

can be reclaimed from the local stack. 

The indexing scheme we shall describe is relatively 

straightforward, and results in clauses being indexed by predicate and 

principal functor of the first argument in the head (if this term is 

non-variable). This is achieved by replacing the first PLM instruction 

in each clause by extra indexing instructions in the procedure code. 

Much work is thereby telescoped, and clauses can often be selected by 

a fast "table lookup". It is a simple compromise solution which is 

perfectly adequate for many cases of practical interest, in particular 
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for compiler writing in Prolog. Moreover in many other cases it is 

not difficult to rewrite the program to take advantage of the indexing 

provided, cf. the way two dimensional arrays are conventionally 

mapped onto one dimensional storage, in Fortran implementations say. 

For example one might replace a set of unit clauses for 'matrix' by 

unit clauses for 'vector' plus the clause:- 

matrix(I,J,X) :- K is I*20+J, vector(K,X). 

provided we have:- 

:-mode matrix(+,+,?). 

The indexing then gives rapid access to the X such that 

'matrix(I,J,X)' for given 'I' and 'J'. It also enables the machine to 

take advantage of 'matrix' being a single valued function from 'I' and 

'J' to 'X' and avoid retaining any local storage used in a call to 

'matrix'. Such rewriting can usually be done without greatly impairing 

the "naturalness" and readability of the program. 

We shall now describe how the improved indexing 'scheme affects 

the PLM instructions generated. Basically the first instruction in 

each clause is to be omitted and the procedure code becomes more 

complex. The clause sequence of a procedure is divided into sections 

of consecutive clauses with the same type of argument at position 0 in 

the head. The two types are "variable" and "non-variable". The former 

corresponds to a general section and the latter to a special section. 

The procedure code now takes the form of an 'enter' instruction 

followed by alternating special and general sections:- 
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enter 

;sect 

general 
section 
code 

ssect(L,C) 

special 
section 
code 

Each general section commences with an instruction 'gsect'. This 

instruction is equivalent to 'uvar(O,local,O)'. The clauses for a 

general section have at least this one mandatory local variable which 

is bound to the term passed as first argument in the call. If the 

variable at position 0 in the head is global, an extra instruction:- 

ugvar(I) 

is placed at the beginning of the clause code. This instruction has 

the same effect as 'uvar(O,global,I)'. The code for the general 

section is simply:- 

gsect 
try(C1) 

try(C2) 

try(Cn) 

where Cl through Cn are the addresses of the clauses in the section. 

If it is the final section of the procedure, the last instruction is:- 
trylast(Cn) 
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The code for a special section takes the form:- 

ssect(Label,Next) 

non-reference 
code 

Label: 
reference 
code 

Next: 
endssect 

'ssect' is responsible for dereferencing the term passed as first 
argument and if the result is a reference, control is transferred to 

the reference code commencing at 'Label'. The reference code is a 

sequence of instructions, each of which is one of:- 

tryatom(I,C) 
tryint(I,C) 
tryskel(S,C) 

according to the form of the first argument in the head of the clause. 

These instructions are respectively equivalent to:- 

uatom(O,I); try(C) 

uint(O,I); try(C) 
uskel(O,S); try(C) 

for the special case of matching against a reference. If it is the 

final section of the procedure, the instruction 'endssect' is omitted 

and one of:- 

trylastatom(I,C) 
trylastint(I,C) 
trylastskel(S,C) 

takes the place of the last instruction in the section. These 

instructions are equivalent to:- 

uatom(O,I); trylast(C) 

etc. The instruction 'endssect' causes the following 'gsect' 

instruction to be skipped and takes over its role for the special case 
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concerned. The 'endssect' instruction is not strictly essential and 

could be treated as an ignorable no-operation instead. 

The "meat" of the improved indexing scheme lies in the 

non-reference code which immediately follows an 'ssect' instruction. 

In general this code has the form:- 

switch(N) 
case (L 1) 
case(L2) 

Basically, the code switches on a "hash code" determined by the 

first argument in the call to some test code which finds (by a 

sequence of tests against functors having the same "hash code") the 

appropriate clause(s) (if any) for this functor. Each of these 

clauses is then 'try'ed in turn. Usually there will be no more than 

one clause per "hash code" value and so the cost of finding this 

clause is independent of the number of clauses in the section. 

In more detail, instruction 'switch' computes a key determined by 

the principal functor of the first argument in the call (which has 

been dereferenced by 'ssect'). 'N' is a certain power of 2 which is 

the number of 'case' instructions following. The value of N is 

arbitrary and is currently chosen to be the smallest power of 2 which 

is not less than the number of clauses in the section. A number M in 

the range 0 to N-1 is derived from the key by extracting the least 

significant I bits where N is 2 to the power I. ie. M is the key 



Page 139 

modulo N. Control is then transferred to the address 'L' where the 

(M+1)th. 'case' instruction is 'case(L)'. If there are only a few 

clauses in the section (currently <5) then the 'switch' and 'case' 

instructions are omitted and testcode as if for a single-case follows. 

In general the testcode indicated by the address 'L:. in 

instruction is of the form:- 

'if' instructions 

a case . 

goto(Next) 

where 'Next' is the address of the next general section. An 

instruction 'goto(L)' merely transfers control to address 'L'. If the 

list of 'if' instructions would otherwise be empty (see below), all 
the testcode is omitted and the corresponding case instruction is 

'case(Next)'. An 'if' instruction is one of:- 

ifatom(I,Label) 
ifint(I,Label) 
ifskel(I,Label) 

There is one 'if' instruction for each different atom, integer or 

functor which occurs as a principal functor of the first argument of 

the head of a clause in this section, and whose key corresponds to the 

case concerned. The 'if' instructions can be ordered arbitrarily. 

'I' uniquely identifies the atom, integer or functor concerned. Often 

there will only be one clause for this constant or functor, in which 

case 'Label' is the address of the clause's code. The effect of the 

'if' instruction is to transfer control to 'Label' if the first 
argument of the goal matches the constant or functor indicated by 'I'. 
Since 'ssect(_,Next)' will have set the FL field of the current 
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environment to 'Next', the net effect of the 'if' instruction is as if 

(for example):- 

uatom(0,I); try(Label) 

occurred immediately before the next general section. If there is 

more than one clause for a particular constant or functor, 'Label' is 

the address of code of the following form:- 

try(C1) 

try(C2) 

Qoto(Next) 

[? Need 'reload' instructions if argument 0 is a skeleton. ?) Here 

'Next' is once again the address of the following general section and 

the Ci are the addresses of the code for the different clauses, in 

order of the source program. 

If a special section is the final section in a procedure, the 

opening instruction is:- 

ssectlast(Label) 

This instruction is like 'ssect' but if the first argument of the call 

is a non-reference the machine is prepared for deep backtracking on 

failure. (cf. the relationship between 'try' and 'trylast'). The 

remaining code is similar to that for 'ssect', with an address 'fail' 

replacing all occurrences of the 'Next' address. If control is 

transferred to 'fall', the effect is to instigate deep backtracking. 

If there is more than one clause for a constant or functor, the code 

is:- 
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notlast 
try(C1) 
try(C2) 

trylast(Cn) 

Instruction 'notlast' prepares the machine for shallow instead of deep 

backtracking. 

Finally if the type of the first argument is restricted by a mode 

declaration, part of the special section code can be omitted. If the 

restriction is '+', the reference code is omitted and the label in the 

'ssect' instruction becomes 'error'. If control is transferred to 

'error' a diagnostic message is given followed by deep backtracking. 

If the restriction is '-', the non-reference code is replaced by the 

instruction 'goto(error)'. Thus the procedure code checks that the 

type of the first argument is consistent with any mode declaration. 

6.1.1 Example - 

We shall now illustrate the clause indexing by showing the 

indexed procedure code for the following clauses:- 

call(X or Y) :- call(X). 
call(X or Y) :- call(Y). 

call(trace) : - trace. 
call(notrace) notrace. 
call(read(X)) :- read(X). 

call(write(X)) :- write(X). 
call(nl) :- nl. 

call(X) :- ext(X). 

call(call(X)) :- call(X). 

call(true). 
call(repeat). 
call(repeat) call(repeat). 

The procedure code is as follows:- 
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call: enter 
ssect(refl,next) 
switch (8) 
case(labell) 

case(label2) 
case(next) 
case(label3) 
case(label4) 
case(label5) 
case(next) 

case(next) 
labell: ifskel(or,listl) 

goto(next) 
label2: ifatom(trace,clause3) 

goto(next) 
label3: ifskel(read,clause5) 

goto(next) 
label4: ifatom(notrace,clause4) 

ifskel(write,clause6) 
goto(next) 

label5: ifatom(nl,clause7) 
goto(next) 

listl: try(clausel) 
try(clause2) 
goto(next) 

refl: tryskel(or,clausel) 
tryskel(or,clause2) 

tryatom(trace,clause3) 
tryatom(notrace,clause4) 
tryskel(read,clause5) 
tryskel(write,clause6) 
tryatom(nl,clause7) 
endssect 

next: gsect 
try(clause8) 
ssectlast(ref2) 
ifskel(call,clause9) 
i.fatom(true,clauselO) 
i.fatom(repeat,list2) 

goto(fail) 
list2: notlast 

try(clausell) 
trylast(clausel2) 

ref2: tryskel(call,clause9) 
tryatom(true,clauselO) 
tryatom(repeat,clausel1) 
trylastatom(repeat,clausel2) 
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6.2 Garba a Collection 

We have already seen how local storage used during the 

determinate execution of a procedure can be recovered at virtually no 

cost. It is also possible to recover part of the global storage used, 

though the garbage collection (GC) process needed is rather expensive, 

hence the importance of classifying variables into locals and globals. 

Neither of these techniques can reclaim storage from a procedure until 

it has been completed determinately. While a procedure is still 

active, there is little potential for recovering any of its storage. 

Because of the cost, garbage collection should only be instigated 

when there is no longer enough free space on the global stack. It 

involves tracing and marking all the global cells which are still 

accessible to the program, and then compacting the global stack by 

discarding inaccessible cells with remapping of any addresses which 

refer to the global stack. A drawback, attributable to the structure 

sharing representation, is that not all the inaccessible cells can be 

discarded. They may be surrounded in the frame by other accessible 

cells, and the relative positions in the frame of all accessible cells 

must be preserved. This disadvantage relative to a "direct" 

representation using "heap" storage is nevertheless probably 

outweighed in most cases by the general compactness of 

structure-sharing. 

We say that a global frame is active if the corresponding local 

frame still exists. Otherwise the frame is said to be passive. 

Passive global frames correspond to procedures which have been 

completed determinately. The aim of GC is to reduce the sizes of 
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passive global frames by discarding inaccessible cells from either end 

of the frame. If possible the frame is dispensed with altogether. 

In order to perform the GC process, it is necessary to make some 

slight changes to the format of the data on the two stacks:- 

(1) An extra GC bit must be made available in (or associated with) 

each global cell. This bit will be set during the trace and mark 

phase if the cell is to be retained. 

(2) An extra (long) location is needed at the beginning of each global 

frame. This contains a special value of type 'mark(N)' 

distinguishable from other constructs. During GC, this location marks 

the start of another global frame and the value of N indicates the 

amount the frame is to be displaced when compaction takes place. If 

the frame is to be discarded altogether, the value in the location is 

set to 'discard(N)', where N is the relocation factor which would 

apply if the frame were not to be discarded. 

(3) An extra 1-bit of management information is needed in the local 

frame. This indicates whether or not there is a corresponding global 

frame. 

The GC process needs to be able to trace all existing local 

frames (and the corresponding active global frames). The information 

needed resides in the X and VV fields of the local frames, with the V1 

fields indicating the paired active global frames. The following 

algorithm performs the enumeration:- 
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local frame pointer Parent := register X; 
local frame pointer Alternative register VV; 
while Alternative >= root environment, do 

(while Parent > Alternative, do 
(select(Parent); 
Parent := field X of Parent); 

select(Alternative); 
Parent := field X of Alternative; 
Alternative := field VV of Alternative) 

root environment *0 

T *1 

0 

VV 

X field 

VV field 

We can now outline the entire GC process:- 

preliminaries: 
/* this step reduces recursion during trace+marking 
for each active global frame, 

mark the GC bit in each cell; 
trace+marking: 

for each local frame 
and corresponding active global frame if any, 

(trace+mark each local cell; 
trace+mark each global cell); 

computing displacements: 
for each global frame in ascending order, 

compute its displacement and set mark(N) where 
N := displacement of previous frame 

+number of cells dropped from end of previous frame 
+sizes of any-intervening frames discarded 
+number of cells dropped at start of this frame; 

remapping of global addresses: 
for each local frame, 

(remap global-pointer for the V1 field; 
remap each local cell); 
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for each global frame, 
remap each global cell; 

for each trail item, 
remap the trailed reference; 

also remap-global_poi.nters X1,V1,VV1; 
compacting the global stack: 

physically move the remaining global frames to their new 
positions, unmarking the GC bit in each cell. 

procedure trace+mark(Cell): 

uses a pushdown-list set up in free space at the top of the 
local stack; 

mark the GC bit in Cell; 
if Cell contains a reference to a global cell, Gcell, 
and Gcell is not already marked, 

then trace+mark(Gcell) 
else if Cell contains a molecule 

then trace+mark each unmarked global cell 
for the variables in its skeleton 

else return. 

procedure remap(Construct): 
if Construct is a global reference, 

then scan back through the frame to the preceding mark(N) 
and subtract N from the reference 

else if Construct is a molecule 
and there is a variable in its skeleton, 

then find the mark(N) preceding the variable's cell 
and subtract N from the frame field of the molecule 

else return. 

procedure remap-global-pointer(Address): 
if the location before Address contains 'discard(N)' 

then subtract N from Address 
else the location contains 'mark(N)' in which case subtract N-M 

from Address where M is the number of unmarked cells 
starting at Address. 
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7.0 DESIGN PHILOSOPHY 

Having described the main features of our Prolog implementation, 

it is perhaps worthwhile to comment on the criteria which influenced 

design decisions. It is hoped this will provide some answer to 

inevitable questions of the form "Wouldn't it be better if......?" or 

"Was it really necessary to......?". 

Firstly, software implementation has to be judged by the 

standards of an engineering discipline rather than as an art or 

science. One cannot hope to achieve an ideal solution to every 

problem, but it is essential to find adequate solutions to all the 

major ones. Generally speaking simplest is best. 

A good example is the contrast between earlier attempts to use 

"theorem provers" as "problem solvers" and Prolog itself. The earlier 

attempts failed because no adequate solution had been found to the 

problem of controlling the system in a reasonable way. Although the 

simple solution adopted by the originators of Prolog does not satisfy 

all the aspirations of "logic programming", and so is perhaps not 

"ideal", it does transform logic into an adequate, indeed powerful, 

programming tool. 

In our experience of using Prolog we have not found any example 

which demands more sophisticated control facilities. Nor have we felt 

any overwhelming need for extensions to the language. By far the 

worst practical drawback has been the large amounts of working storage 

required to run the Marseille interpreter. Also, although interpreted 

Prolog is fast enough for most purposes, it is too slow for running 
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systems programs such as the Prolog "supervisers". This is a pity 

since Prolog is otherwise an excellent language for software 

implementation. Therefore improved efficiency, both of space and 

time, has been the major aim. 

In implementing any language,, it is important to have in mind 

some representative programs against which to check the relevance of 

design issues and on which to base decisions. For this purpose, we 

have taken the existing Prolog supervisers and the new Prolog compiler 

itself, as their efficiency is what matters most to the average Prolog 

user. Looking at typical Prolog programs such as these, one finds 

that the full generality of Prolog is brought into play only rarely. 

At almost every step one is dealing with a special case that can be 

handled more efficiently. Examples are the following:- 

* Many, procedures are determinate. We can capitalise on this to 

recover much of the working storage used. 

* Of the symbols which make up the head of a clause (functors, 

constants and variables), the majority are typically variables, and 

moreover are typically first occurrences of the variable. We have 

seen that the code for this important case of the first occurrence of 

a variable performs a relatively very trivial operation. 

* In the source program, the arguments of a goal are almost 

always variables. Hence the decision to generate executable 

instructions for terms in the head of a clause rather than those in 

the body. 
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* Predicates are usually used in a restricted mode with certain 

arguments providing procedure input and others receiving procedure 

output. Optional mode declarations enable the system to avoid 

generating unnecessary code and also to increase the amount of storage 

recovered automatically when a procedure exit is determinate. 

* The first argument of a predicate is analogous to the subject 

of a natural language sentence, and it is natural for this argument to 

be an "input" of the procedure. Often the clauses of the procedure 

concerned represent different cases according to the principal functor 

of the -term supplied. An efficient treatment of such "definition by 

cases" is implemented which selects the correct case(s) by table 

lookup. This feature is invaluable for writing compilers in a natural 

and efficient way. 

* Terms are rarely nested to any degree in clauses responsible 

for major computation. Hence the decision not to bother to generate 

executable code for terms nested below level 2. 

In short, it is the treatment of such special cases which is the 

decisive factor in determining efficiency. 

The design objectives may be summarised as being aimed towards 

making Prolog a practicable systems programming language. It was 

considered reasonable for the systems programmer to have to understand 

some general facts about how the language has been implemented in 

order to use it with maximum efficiency. eg. The systems programmer 

is expected to be aware of when his clauses can be compiled into a 

table lookup and to appreciate the need for mode declarations. 
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However, as far as the naive programmer is concerned, none of this 

knowledge is necessary to write correct programs. 

In most conventional programming languages, it is difficult to 

separate the essentials of program design from the details of 

efficient implementation. One cannot state one without the other. 

For example, PL/1 faces the programmer with choosing, at the outset, 

the storage class of his data. The choice strongly affects the form 

of the program. Similarly most languages have mandatory types for all 

data items and the programmer cannot easily change a data type once 

"coding" has commenced. This even applies to more high-level 

languages such as Lisp, where all "abstract" data structures have to 

be mapped into concrete list structures. It is difficult to avoid 

becoming committed to referring to some abstract component as CDDAR 

say. 

The approach we favour is to specify an algorithm as an essential 

core, to which extra agmas (pragmatic information) are added. The 

pragmas need not be supplied until a later stage and give guidance on 

how the core is to be implemented efficiently. They do not affect the 

correctness of the program. An example of a pragma is the predicate 

mode declaration supported by this implementation. There are numerous 

other possibilities in the same vein which could make logic based 

programs more efficient, while preserving the simplicity and ease of 

use of the core language. 



Page 151 

For example, more sophisticated clause indexing is clearly needed 

in some cases, yet it is unrealistic to expect the system to arrive at 

the optimal choice since, among other things, it depends on how the 

clauses are going to be used. Plainly there is scope for the 

programmer to give guidance through some new form of pragma. 
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8.0 PERFORMANCE 

8.1 Results 

Some simple benchmark tests to assess Prolog performance are 

presented in Appendix 5. The other languages chosen for comparison are 

Lisp and Pop-2. The three languages have similar design aims and can 

usefully be compared. All are intended for interactive use, and are 

paricularly oriented towards non-numerical applications, with the 

emphasis on generality, simplicity and ease of programming rather than 

absolute efficiency. (Also, all are in active use on the Edinburgh 

DEC10.) 

Each benchmark is intended to test a different aspect of Prolog. 

No fixed criteria were used for selecting the "equivalents" in the 

other languages, and so each example should be judged on its own 

merits. One should observe that there is no absolute sense in which 

the performance of different language implementations can be compared, 

except where there is a clearly defined correspondence between the 

programs of the two languages. 

In the case of Prolog, Lisp and Pop-2, there is a subset of each 

for which there is a fairly obvious, objectively defined 

correspondence, namely the class of procedures which compute simple 

functions over lists. This correspondence is illustrated by the first 

benchmark, a "naive" procedure for reversing a list. This procedure 

useful as a benchmark simply because it leads to heavy "list 

crunching". The time ratios quoted are typical of the class. Thus it 

is usual for compiled Prolog procedures which compute simple list 
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functions to run at 50-70% of the speed of the Lisp equivalents, for 

example. 

The second benchmark is a "quick-sort" algorithm for sorting 

lists. The auxiliary procedure 'partition' shows the worth of 

multiple output procedures. For comparison, we have selected a Lisp 

version which packages the two outputs into a list cell. Nested 

lambda expressions are required for the unpacking. The Pop-2 version 

is taken from p.235 of the Pop-2 handbook [Burstall et al. 1971], 

omitting the refinement which caters for non-random input lists. Thus 

we have essentially the same algorithm as the Prolog and Lisp 

versions, but with gotos and explicit stack manipulation replacing 

normal function calls. This transformation makes the function rather 

difficult to understand, although evidently it improves the speed. It 

is interesting to note that the more transparent Prolog formulation is 

also appreciably faster. 

The third benchmark is a much favoured example of non-numerical 

programming - the differentiation of an algebraic expression. The 

Lisp version is a slight extension of Weissman's [1967, p.167] DERIV 

function and the Pop-2 form is likewise extended from an example on 

p.26 of the Pop-2 handbook. The Prolog formulation is concise and 

echoes the textbook equations in a way which is immediately apparent. 

It demonstrates the advantages of general record structures 

manipulated by pattern matching where the record types do not have to 

be explicitly declared. Moreover the timing data shows that the 

Prolog version is fastest. Notice how the Prolog speed is most marked 

in cases where a lot of data structure is created, eg. when a 
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quotient is differentiated. This characteristic is a result of 

structure-sharing and will be discussed later. 

The fourth benchmark was chosen to test the implementation of the 

logical variable, and was suggested by the kind of processing which is 

typical of a compiler. The task is to translate a list of symbols 

(here actually numbers) into a corresponding list of serial numbers, 

where the items are to be numbered in "alphabetical" order (here 

actually numerical order). The 'serialise' procedure pairs up the 

items of the input list with free variables to produce both the output 

list and an "association list". The elements of the association list 

are then sorted and their serial numbers computed to complete the 

output list. For comparison we show a Lisp implementation which 

attempts as far as possible to satisfy the conflicting aims of 

paralleling the Prolog version and remaining close to pure Lisp. The 

main trick is to operate on the cells of a duplicate list, eventually 

overwriting the copied elements with their serial numbers. The choice 

of a Pop-2 version seems even more arbitrary and we have not attempted 

to provide one. 

The final benchmark is designed to test the improvement gained by 

indexing the clauses of a procedure. The task is to interrogate a 

"database" to find countries of similar population density (differing 

by less than 5%). The database contains explicit data on the areas and 

populations of 25 countries. A procedure 'density' fills in "virtual 

data" on population densities. As is to be expected, the speed 

advantage of compiled code is considerably enhanced relative to either 

Prolog interpreter, neither of which indexes clauses within a 
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procedure. Thus the benefit of compilation is a factor of around 50 

instead of the normal 15 to 20. The figures for the 'deriv' example 

show a similar but less pronounced effect. To illustrate the 

correspondence between backtracking in Prolog and iterative loops in a 

conventional language, we show a Pop-2 version of the database 

example. The demographic data is stored in Pop-2 "strips" (primitive 

one-dimensional fixed-bound arrays), and the 'query' clause translates 

into two nested forall loops. As the timing data shows, the speed of 

Prolog backtracking can better that of a conventional iterative 

formulation. 

We shall now summarise the results of these benchmark tests and 

other less direct performance data. Firstly, comparing Prolog 

implementations, one can say that compilation has improved running 

speed by a factor of (typically) 15 to 20 relative to the Marseille 

interpreter. The improvement is greater where clause indexing pays 

off, and somewhat less in certain cases where terms are nested deeper 

than level 2 in the head of a clause. The speed of our Prolog 

interpreter implemented in Prolog is very similar to that of the 

Marseille interpreter, and their times are remarkably consistent. (In 

fact, our interpreter could be much faster if the present clumsy 

method for interpreting the "cut" operator were avoided, eg. through 

provision in the compiler of "ancestral cut", ie. a "cut" back to an 

ancestor goal instead of the immediate parent.) 

The results of comparing Prolog with a widely used Lisp 

implementation may be summarised as follows. For computing simple 

functions over lists, compiled Prolog typically runs no more than 
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30-50% slower than pure Lisp. Of course such a comparison only 

evaluates a limited part of Prolog and can't be entirely fair since 

Lisp is specialised to just this area. In cases where a wider range 

of data types than simple lists is really called for (or where 

"conses" outnumber ordinary function calls), Prolog can be 

significantly faster. For what it is worth, the mean of the 4 common 

benchmarks (taking only the 'ops8' figures for 'deriv') puts Prolog 

speed at 0.75 times that of Lisp. 

As regards Pop-2, in all the benchmark tests compiled Prolog ran 

at least 60% faster, even where the Pop-2 version was formulated using 

more primitive language constructs such as gotos and "strips". The 

mean for the 4 common benchmarks (again taking the 'ops8' data) puts 

Prolog 2.4 times faster than Pop-2. 

Small benchmark tests can only give a partial and possibly 

biassed indication of efficiency; an implementation is better 

evaluated from the performance of large-scale programs. On these 

grounds it is perhaps useful to look into the performance of the 

Prolog compiler. Recall that the compiler is itself implemented in 

Prolog (and furthermore is largely "pure" Prolog, ie. clauses having 

a declarative semantics). In practice compilation proceeds in two 

phases, with DEC's MACRO assembler being used for the second phase:- 

Prolog Prolog Assembly Relocatable 

source compiler language MACRO code 

file --------------> file -------------> file 
(Phase 1) (Phase 2) 

The ratio of the times for Phase 1 : Phase 2 is usually of the order 

of 3 to 2. It is surprising the times are not more different, since 
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Phase 2 is a relatively simple process, and the MACRO assembler is 

commercial software implemented in a low-level language. The compiler 

is only generating about 2 instructions for each Prolog source symbol, 

so it is not simply a case of Phase 1 creating voluminous input to 

Phase 2. An average figure for the compilation speed of the Prolog 

compiler (Phase 1 only) is 10.6 seconds per 1000 words of code 

generated. This includes input of the source file and output of the 

assembly language file. 

So far we have only discussed performance in terms of speed. 

From an historical point-of-view, space economy has been of far more 

concern to the Prolog user, and accordingly was a major objective of 

this implementation. It is therefore important to assess how 

effective the new space-saving techniques have been. From the nature 

of the techniques, an improvement will only obtain for determinate 

procedures (apart from an overall 2-fold improvement due simply to 

tighter packing of information into the machine word), so much depends 

on how determinate programs are in practice. The compiler itself, a 

highly determinate Prolog program, now rarely requires more than 5K 

words total for the trail and two stacks. When the compiler was 

interpreted by the Marseille interpreter (before it would 

"bootstrap"), 75K words was not really adequate for the whole system, 

of which roughly 50K would be available as working storage. This 

suggests approximately a 10-fold space improvement for determinate 

programs. 
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It is difficult to make more direct comparisons with either the 

Marseille interpreter or the Lisp and Pop-2 systems, and we have not 

attempted to do so. Firstly none of these systems provides an easy 

means of determining how much working storage is actually in use (as 

opposed to available for use). Secondly it is debatable what 

measurements should be used to compare systems having different 

storage allocation regimes, especially where memory is paged. For 

example, how much free storage is "necessary" in a system relying on 

garbage'collection? {The fairest proposal might be to ascertain and 

compare, for each benchmark, the smallest amount of non-sharable 

physical memory in which the test will run without degrading 

performance by more than a certain percentage. This would be a 

tedious task.) 

It is probably fair to say that the "average" compiled Prolog 

program requires considerably more working storage than Lisp or Pop-2 

equivalents, but that with careful and knowledgeable programming 

(using mode declarations and ensuring determinacy) the Prolog 

requirement need not be much different from the other two. (For 

example, it is doubtful whether a Lisp or Pop-2 implementation of the 

Prolog compiler would use less storage.) The difference between Prolog 

and the other two is likely to be of less practical significance on a 

virtual memory machine. The extra storage required by Prolog 

typically represents groups of "dead" environments which are not in 

active use, and which are also adjacent in memory by virtue of the 

stack regime. Therefore they can generally be paged out. 
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From the coding of PLM instructions detailed in Appendix 2, we 

see that the compiled code is relatively compact at about two words 

per source symbol For the record, the "high-segment" sizes of our 

compiler and interpreter are respectively 25K words and 14K words. 

These sizes represent the total sharable code including essential 

run-time system. 

8.2 Discussion 

The above results show that Prolog speed compares quite well with 

other languages such as Lisp and Pop-2. Also the performance of the 

compiler suggests that software implemented in Prolog can reach an 

acceptable standard of efficiency. 

Now on the face of it, a language such as pure Lisp offers 

simpler and more obviously machine-oriented facilities. How is it 

that Prolog is not considerably slower? 

The first point to notice is that Prolog extras - the full 

flexibility of unification with the logical variable and backtracking 

- lead to very little overhead when not used, provided the program is 

compiled For example, consider the code generated for the 

concatenate procedure (cf Appendix 5.1) and assume it is called, 

as for the corresponding Lisp function, with two arguments ground (ie. 

terms containing no variables) and a variable as third argument All 

unification on the first two arguments of 'concatenate' reduces to 

simple type checks and direct assignments. Unification on the third 

argument is somewhat more costly, as it is creating the new output 
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list (cf. the "conses" performed by the Lisp procedure). If indexed 

procedure code is generated, the Prolog machine readily detects that 

it is executing a determinate procedure and there are no significant 

overheads attributable to "backtracking" - the trail is never accessed 

and all local storage is automatically recovered on procedure exit. 

In short, the procedure is executed in much the same manner as one 

would expect for a conventional language. 

Despite this, it is still surprising that Lisp is not several 

times faster than Prolog Lisp has only the one record type and, more 

importantly, it does not provide complete security against program 

error - car and cdr are allowed to apply indiscriminately to any 

object. As a result no run-time checks are needed and the fundamental 

selectors are effectively hardware instructions on the DEC10. 

In analysing the reasons for Prolog's relative speed, we are led 

to the following, perhaps unexpected, conclusions - 

(1) Specifying operations on structured data by "pattern matching" is 

likely to lead to a better implementation than use of conventional 

selector and constructor functions. 

(2) On a suitable machine, the "structure-sharing" representation for 

structured data can result in faster execution than the standard 

"literal" representation. To be more specific, it allows a "cons" to 

be effected faster than in Lisp. 

To illustrate the reasons for these conclusions, let us compare 

(a) an extract from the definition of evalquote given in the Lisp 1 5 

Manual [McCarthy et al. 1962] with (b) the clause which is its Prolog 

counterpart. We shall write the Prolog functor corresponding to cons 



Page 161 

as an infix operator '.' 
(a) apply[fn,x,a] _ 

eq[car[fn],LABEL] -> apply[caddr[fn],x, 
cons[cons[cadr[fn],caddr[fn]],a]] 

(b) apply(label Name.Form._,X, A, Result) - 
apply(Form,X, (Name.Form) .A,Result) . 

As an aside to our main argument, we may first of all observe 

that "pattern matching" makes it much easier to visualise what is 

happening. The pattern matching version also invites a better 

implementation. No location corresponding to the variable 'fn' needs 

to be set aside and initialised. It is only the form and 

subcomponents of this argument which are of interest. The 

decomposition is performed initially once and for all by pattern 

matching. In contrast, a straightforward implementation of the Lisp 

version will duplicate much of the work of decomposition. The double 

occurrence of caddr is the most noticeable cause, but we should also 

remember that caddr and cadr share a common step. 

A more technical consideration is that pattern matching 

encourages better use of index registers A pointer to the structured 

object is loaded just once into an index register and held there while 

all the required subcomponents are extracted Unless the Lisp 

implementation is quite sophisticated it will be repeatedly reloading 

the value of 'fn', and subcomponents thereof. A related issue 

concerns run-time type checks needed in languages like Pop-2. (Lisp 

manages to avoid such checks for the reasons noted above ) An 

unsophisticated implementation of selector functions will have to 
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perform a type check before each application of a selector. With 

pattern matching, one type check suffices for all the components 

extracted from an object 

Finally, for procedures such as 'apply' above, pattern matching 

also encourages the implementation to integrate type checking with 

case selection, building in computed gotos where appropriate. 

To summarise, not only is pattern matching more convenient for 

the user, it also leads the implementor directly to an efficient 

implementation - 

(1) Procedure call and argument passing are no longer just "red tape" 

- they provide the context in which virtually all the "productive" 

computation is performed 

(2) No location needs to be set up for an argument unless it is 

explicitly referred to by name. 

(3) One can select all the required components of a compound object in 

one efficient process using a common index register. 

(4) Type checking is performed once and for all at the earliest 

opportunity. 

(5) It is easier for the implementation to replace a sequence of tests 

with a computed goto 

Hoare [1973] has proposed a more limited form of "pattern matching" 

for an Algol-like language and has advanced similar arguments for its 

clarity and efficiency. 
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Let us now consider the impact of structure-sharing on 

efficiency. Ironically, this technique was first devised by Boyer and 

Moore as a means of saving space. However we shall argue that it is 

even more important for its contribution to Prolog's speed. 

Clearly the direct representation of a compound data object, as 

used in Lisp implementations and for source terms in Prolog, would 

enable somewhat faster access to components. However, the 

representation in our DEC10 implementation of a source term variable 

by an indexed address word means that each argument of a constructed 

term can likewise be accessed in just one machine instruction. 

(Further dereferencing is sometimes needed, but this is comparatively 

rare in practice.) Thus the only significant accessing overhead for 

structure-shared objects is the necessity for preliminary loading of 

the frame component of a molecule into an index register. The great 

advantage of structure-sharing lies in the supreme speed with which 

complex new objects are created, and also the ease with which they can 

be discarded when no longer needed. 

To see this, let us return to our evalguote example. The Lisp 

version has to perform two "conses" to construct the third argument of 

the call to apply. Each "cons" involves:- 

(1) grabbing a new free cell, after checking that the free list is not 

exhausted; 

(2) copying each component into the list cell obtained; 

(3) saving the address of the new cell. 

If, as Prolog, Lisp allowed more than one record size, step (1) would 

have to be a lot more complex. 
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In contrast, Prolog has to perform absolutely no work to 

construct the third argument of the call to 'apply'! ie. No 

executable code is generated for the term '(Name.Form).A'. Well, this 

is slightly misleading since the analogous computation' will in fact 

occur during the next invocation of 'apply', when unification creates 

a new molecule to bind to the next generation of 'A'. However, 

creating this molecule merely involves bringing together two existing 

pointers as the halves of the word to be stored in 'A's cell. 

The difference between the two methods can be summarised as 

follows. Languages like Lisp assemble the information to construct a 

new object on a stack (local storage), and then copy the information 

into special records individually obtained from heap storage. Prolog 

leaves the information in situ on the stack(s) and relies on 

structure-sharing for later procedures to locate the information as 

needed. Prolog is substituting extra indirection, which is very fast, 

for the relatively slow operations of copying and heap management. 

The Prolog cost of constructing new objects from a set of skeletons in 

a clause is, at worst, proportional to V, the number of distinct 

variables in the skeletons. The cost for conventional methods is at 

least proportional to S, the total number of symbols in those 

skeletons. V can't be any greater than S, and is often much smaller. 

The smaller V is, the more advantageous the Prolog method. 

Another point to notice is that each Lisp cell "consed" up must 

ultimately be reclaimed by the expensive process of garbage 

collection. In tight situations, a garbage collecting system can 

"thrash", spending nearly all its time on garbage collection and 
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little on useful work. It is for this reason that systems programmers 

prefer not to rely on garbage collectors. With Prolog, the user can 

usually rely on the stack mechanism associated with backtracking to 

recover all storage at negligible cost. This advantage is, again, 

even greater if one considers the complexities of garbage collection 

in other languages admitting more than one size of record. 

A final point is that the stack regime leads to better 

exploitation of virtual memory, since, as noted above, it avoids the 

random memory accesses inevitably associated with "heap" management. 



Page 166 

9.0 CONCLUSION 

Pattern matching should not be considered an "exotic extra" when 

designing a programming language. It is the preferable method for 

specifying operations on structured data, from both the user's and the 

implementor's point of view. This is especially so where many 

user-defined record types are allowed. 

For "symbol processing" applications where a transparent and 

easy-to-use language is required, Prolog has significant advantages 

over languages such as Lisp and Pop-2. Firstly the Prolog program is 

generally easier to understand, mainly because it is formulated in 

smaller units which have a natural declarative reading. Secondly 

Prolog allows a wider range of problems to be solved without resort to 

machine- or implementation-oriented concepts. The logical variable 

and "iteration through backtracking" go a long way towards removing 

any need for assignment in a program. Finally our implementation 

shows that these advantages can be obtained with little or no loss of 

efficiency. In fact in many cases the distinctive features of Prolog 

actually promote better implementation. 



Page 167 

APPENDICES 
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1.0 PLM REGISTERS) DATA AREAS AND DATA STRUCTURES 

Here we summarise the state of the PLM during unification. 

Recall that the machine is attempting to match the head of the current 

clause against the current goal. A failure to unify will cause 

backtracking to the latest choice point where the parent goal will be 

reconsidered. 

Registers 

V top of local stack = local frame for current clause 

V1 top of global stack = global frame for current clause 

X local frame for current goal 

X1 global frame for current goal 

VV local frame for latest choice point 

VV1 global frame for latest choice point 

TR pushdown list pointer for the trail 

PC current instruction 

A arguments and continuation of current goal 

B a skeleton involved in unification 

Y the global frame corresponding to B 

Other registers used in the DEC10 implementation 

FL failure label, but only when VV=V 

T construct passed as argument to a unification routine 

B1 construct passed as argument to a unification routine 

C return address for a runtime routine 

R1 temporary results 

R2 temporary results 
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Data areas and environment lout 

local stack global stack trail 

environment x 
of current 
goal 

environment VV 

of latest 
choice point 

environment 
of current 

clause 

VVVF L 

local 
cells 

reset 
cell 
addresses 

TR-.O. . 

'temporary, 
icells 

Fields of an environment 

A parent goal's arguments and continuation 

X parent goal's local frame 

V1 global frame corresponding to this local frame 

TR state of TR when parent goal was invoked 

FL failure label, if any, for parent goal; ie. an alternative clause 

VV local frame for the choice point prior to the parent goal 
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Representations for source and constructed terms 

Source term (literal) 

var(I) 

local(I) 

global(I) 

void 

[atom(I)] 

[int(I)] 

[fn(I),...] 

DEC10 form 

Y i I 
I 

0 i $VOID ' 0 

- ; 4 If 

0 :r - $ $INT + I 

0 , $SKEL ! 

Constructed term (cell value) DEC10 form 

undef 

ref (L) 

atom(I) 

int(I) 

mol(S,F) 

0 , L 

$ATOM' I 

$INT L I 
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2.0 PLM INSTRUCTIONS AND LITERALS 

2.1 Summary 

literals 

var(I) 
atom(I) 
int(I) 

fn(I) 

local(I) 
global(I) 
void 

unification 
uvar(N, F, I) 
uref(N,F,I) 
uatom(N, I) 

ui.nt(N, I) 
uskel(N,S) 
uskeld(N,I) 
uskelc(N,S) 

control transfer 
ifdone(L) 
call(L) 

try(L) 

trylast(L) 

uvarl(N,F,I) 
urefl(N,F,I) 
uatoml(N,I) 

uintl(N,I) 
uskell(N,S) 

init(I,J) 

localinit(I,J) 

"red tape" 

enter cut(I) 
neck(I,J) neckcut(I,J) 
foot(N) neckcutfoot(J,N) 
neckfoot(J,N) fail 

extra instructions for clause indexing 
gsect switch(N) 
ssect(L,C) case(L) 

ssectlast(L) 
endssect ifatom(I,L) 

ugvar(I) 

ifint(I,L) 
iffn(I,L) 

tryatom(I,C) goto(L) 
tryint(I,C) notlast 
tryskel(S,C) 
trylastatom(I,C) 
trylastint(I,C) 
trylastskel(S,C) 
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2.2 var(I) 

Use: An occurrence of a variable in a skeleton. I is the number of 
the global variable. 

Example: 'var(2)' for:- 

reverse(cons(X,L1),L2,L3) :- reverse(Ll,cons(X,L2),L3). 

Effect: Serves as a pointer to a construct which is the value of the 
gl obal variable. 

DEC10 form: 

WD i(Y) ;where i=l. 

2.3 atom(I) 

Use: An occurrence of an atom in a skeleton or goal is represented by 
the address of a literal 'atom(I)' where I identifies the atom. 

Example: '[atom(nil)]' for:- 

sort(LO,L) :- gsort(LO,L,nil). 

Effect: The address of the atom literal serves as a pointer to a 

construct representing the atom. 

DEC10 form: 

WD label 

label: XWD $ATOM,i ;where i = functor number of atom. 
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2.4 int(I) 

Use: An occurrence of an integer in a skeleton or goal is represented 
by the address of a literal 'int(I)' where I is the value of the 
integer. 

Example: '[int(29)]' for:- 

leapyear(X) :- duration(february,X,29). 

Effect: The address of the integer literal serves as a pointer to a 
construct representing the integer. 

DEC10 form: 

WD label 

label: XWD $INT,i. ;where i=l. 

2.5 fn(I) 

Use: An occurrence of a skeleton term in a goal or in a non-mode '+' 
position in the head of a clause is represented by the address of a 
skeleton literal, which commences with a functor literal 'fn(I)' where 
I identifies the functor of the skeleton. 

Example: ' [fn(cons),var(0),var(2)]' for:- 

reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3). 

Effect: The address of the skeleton literal serves as the skeleton 
component of the molecule which represents the subterm. 

DEC10 form: 

WD label 

label: XWD $SKEL,i ;where i = skeleton's functor number. 
... ;inner literals 
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2.6 local(I) 

Use: An occurrence of a local variable as an argument of a goal. I 
is the number of the local variable. 

Example: 'local(O)' for:- 

reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3). 
** 

Effect: Serves as a pointer to a construct which is the value of the 

local variable. 

DEC10 form: 

WD i(X) ;where i=I+3. 

2.7 global(I) 

Use: An occurrence of a global variable as an argument of a goal. I 
is the number of the global variable. 

Example: 'global(l)' for:- 

reverse(cons(X,L1),L2,L3) :- reverse(Ll,cons(X,L2),L3). 
** 

Effect: Serves as a pointer to a construct which is the value of the 
global variable. 

DEC10 form: 

WD i(X1) ;where 1=l. 
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2.8 void 

Use: An occurrence of a void variable (ie. the variable occurs 
nowhere else) as an argument of a goal. 

Example: 'void' for:- 

employed(X) :- employs(Y,X). 

Effect: Any instruction which attempts to unify against this outer 
literal behaves as a (successful) no-operation. 

DEC10 form: 

WD label 

label: XWD $VOID,O 
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2.9 uvar(N,FI) 

Use: Argument N in the head of a clause is the first occurrence of a 
variable of type F (local or global), number I. (A temporary variable 
will have F=local.) 

Example: 'uvar(1,global,2)' for:- 

reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3). 

Effect: The outer literal representing argument N of the current goal 
is accessed via register A and the dereferenced result is assigned to 
cell I in frame F of the current environment, unless the result is a 

local reference and F is global. In the latter case, a reference to 
cell I in frame E is assigned to the incoming reference, and the 
assignment is trailed if necessary. 

DEC10 form: 

MOVE T,@n(A) ;where n=N. 
TLNN T,$1MA 
JSP C,$UVAR 
MOVEM T,i(reg) ;where i=I+3 and reg=V if F=local 

;or i=I and reg=V1 if F=global. 

If N<9 and fastcode is not required, this is condensed to:- 

JSP C,routine 
MOVEM T,i(reg) 

routine: MOVE T,@n(A) 
TLNN T,$1MA 
JSP C1, ... 
JRST 0(C) 
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2.10 uvarl(N,F,I) 

Use: Argument N of a skeleton at level 1 in the head of a clause is 
the first occurrence of a variable of type F (local or global),' number 
I. The instruction is not needed if the skeleton is in a mode '-' 
position. 

Example: 'uvarl(1,local,0)' for:- 

:-mode reverse(+,+,?). 
reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3). 

** 

Effect: The inner literal representing argument N of the matching 
skeleton is accessed via register B and the dereferenced result is 
assigned to cell I in frame F of the current environment. Note: if 
the result is a reference, it must refer to a global cell, which will 
therefore be at least as senior as the cell assigned. 

DEC10 form: 

MOVE T,@n(B) ;where n=N+1. 
TLNN T,$1MA 
JSP C,$UVAR1 
MOVEM T,i(reg) ;where i=I+3 and reg=V if F=local 

;or i=I and reg=V1 if F=global. 

If N<5 and fastcode is not required, this is condensed to:- 

JSP C,routine 
MOVEM T,i(reg) 

routine: MOVE T,@n(B) 
TLNN T,$1MA 
JSP Cl'... 
JRST 0(C) 
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2.11 uref(N,F,I) 

Use: Argument N in the head of a clause is a subsequent occurrence of 
a variable of type F (local or global), number I. (A temporary 
variable will have F=local.) 

Example: 'uref(2,local,0)' for:- 

reverse(nil,L,L). 

Effect: The outer literal representing argument N of the current goal 
is accessed via register A and the dereferenced result is unified with 
the dereferenced value of cell I in frame F of the current 
environment. 

DEC10 form: 

MOVE B,@n(A) ;where n=N. 
MOVE B1,i(reg) ;where i,reg are as for 'uvar'. 
JSP C,$UREF 

If N<5 this is condensed to:- 

MOVE B1,i(reg) 
JSP C,routi.ne 

routine: MOVE B,@n(A) 
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2.12 urefl(N,F,I) 

Use: Argument N of a skeleton at level 1 in the head of a clause is a 
subsequent occurrence of a variable of type F (local or global), 
number I. The instruction is not needed if the skeleton is in a mode 
'-' position. 

Example: 'urefl(O,global,0)' for:- 

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3). 

Effect: The inner literal representing argument N of the matching 
skeleton is accessed via register B and the dereferenced result is 
unified with the dereferenced value of cell I in frame F of the 
current environment. 

DEC10 form: 

MOVE T,@n(B) ;where n=N+1. 

MOVE B1,i(reg) ;where i,reg are as for 'uvar'. 
JSP C,$UREFI 

If N<3 this is condensed to:- 

MOVE Bl,i(reg) 
JSP C,routine 

routine: MOVE T,@n(B) 
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2.13 uatom(N,I) 

Use: Argument N in the head of a clause is an atom, identified by I. 

Example: 'uatom(l,september)' for:- 

month(9,september). 
********* 

Effect: The outer literal representing argument N of the current goal 
is accessed via register A and the dereferenced result is unified with 
atom I. 

DEC10 form: 

MOVE T,@n(A) 
JSP C , $UATOM 

XWD $ATOM,i 

;where n=N. 

;where 1 = functor number of atom. 

$UATOM: TLNN T,$1MAS 
JRST . 

CAME T,O(C) 
JRST $FAIL 
JRST 1(C) 

If N<8 this is condensed to:- 

JSP C,routine 
XWD $ATOM,i 

routine: MOVE T,@n(A) 

TLNN T,$1MAS 

JSP Cl,... 
CAME T,0(C) 
JRST $FAIL 
JRST 1(C) 
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2.14 uatoml(N,I) 

Use: Argument N of a skeleton at level 1 in the head of a clause is 
an atom, identified by I. 

Example: 'uatoml(l,nil)' for:- 

singleton(cons(X,nil)). 

Effect: The inner literal representing argument N of the matching' 
skeleton is accessed via register B and the dereferenced result is 
unified with atom I. 

DEC10 form: 

MOVE T,@n(B) ;where n=N+l. 
JSP C,$UATOM 
XWD $ATOM,i ;where i = functor number of atom. 

If N<5 this is condensed to:- 

JSP C,routine 
XWD $ATOM,i 

routine: MOVE T,@n(B) 
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2.15 uint(N,I) 

Use: Argument N in the head of a clause is an integer, value I. 

Example: 'uint(0,9)' for:- 

month(9,september). 

Effect: The outer literal representing argument N of the current goal 
is accessed via register A and the dereferenced result is unified with 
integer I. 

DEC10 form: 

MOVE T,@n(A) ;where n=N. 

JSP C,$UATOM 
XWD $INT,i ;where i = value of the integer. 

If N<8 this is condensed to:- 

JSP C,routine 
XWD $INT,i 

routine: MOVE T,@n(A) 
TLNN T,$1MAS 

JSP Cl'... 
CAME T,0(C) 

JRST $FAIL 
JRST 1(C) 
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2.16 uintl(N,I) 

Use: Argument N of a skeleton at level 1 in the head of a clause is 
an integer, value I. 

Exa mple: 'uintl(1,2)' for:- 

differentiate(square(X),X,*(X,2)). 
* 

Effect: The inner literal representing argument N of the matching 
skeleton is accessed via register B and the dereferenced result is 
unified with nteger I. 
DEC10 form: 

MOVE T,@n(B) ;wher,,t n=N+1. 
JSP C,$UATOM 
XWD $INT,i ;where i = value of the integer. 

If N<5 this is condensed to:- 

JSP C,routine 
XWD $INT,i. 

routine: MOVE T,@n(B) 
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2.17 uskel(N,S) 

Use: Argument N in the head of a clause is a skeleton term for which 
S is the address of a corresponding skeleton literal. (Not used for a 
mode '+' or mode '-' position.) 

Example: 'uskel(2,[fn(cons),var(0),var(2)])' for:- 

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3). 

Effect: The outer-literal representing argument N of the current goal 
is accessed via register A and dereferenced. If the result is a 
reference, a molecule is assigned to the cell referenced, the 
assignment is trailed if necessary and register Y is set to 'undef'. 
The molecule is constructed from S and the address of the current 
global frame given by register Vl. If the result of the dereferencing 
is not a reference, a failure occurs unless the result is a molecule 
with the same functor as S. In the latter case register B is set to 
the address of the skeleton part of the matching molecule and register 
Y to the address of its (global) frame. 

DEC10 form: 

MOVE B,@n(A) ;where n=N. 
JSP C,$USK 
WD address ;of literal S. 

$USK: HLRZ Y,B ;load type of B into Y. 
CAIGE Y,$MOLS ;if B isn't a molecule 
JRST @table(Y) ; switch on Y. 
MOVE R1,0(B) ;load functor of B. 
CAME R1,@O(C) ;if different from functor of S 

JRST $FAIL ; then fail. 
JRST 1(C) ;return to in-line code. 

If N<5 this is condensed to:- 

JSP C,routine 
WD address 

routine: MOVE B,@n(A) 
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2.18 uskell(N,S) 

Use: Argument N of a skeleton at level 1 in the head of a clause is 
another skeleton term for which S is the address of a corresponding 
skeleton literal. 

Example: 'uskell(O,[fn(int),var(O)])' for:- 

expr(cons(int(N),S),S,N). 

Effect: The inner literal representing argument N of the matching 
skeleton is accessed via register B and the dereferenced result is 
unified with the molecule formed from S and the global frame address 
in register Y. 

DEC10 form: 

MOVE T,@n(B) ;where n=N+1. 
JSP C, $USK1 
WD address ;of literal S. 

$USK1: HLRZ R1,T 

CAIGE R1,$MOLS 
JRST @table(R1) 
MOVE R2,@0(C) 

CAME R2,0(T) 
JRST $FAIL 

If N<3 this is condensed to:- 

JSP C,routine 
WD address 

routine: MOVE T,@n(B) 
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2.19 uskeld(N,I) 

Use: Argument N in the head of a clause is a skeleton term, and this 
position has mode '+'. I identifies the functor of the skeleton term. 

Example: 'uskeld(O,cons)' for:- 

:-mode concatenate(+,+,-). 
concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3). 

**** 

Effect: cf. 'uskel'. The result of dereferencing the matching outer 
literal is guaranteed to be a non-reference. A failure occurs unless 
it is a molecule with functor as indicated by I. Register B is set to 
the address of the skeleton part of the molecule and register Y to the 
address of the (global) frame. 

DEC10 form: 

MOVE B,@n(A) ;where n=N. 

JSP C,$USKD 
XWD $SKEL,i ;cf. fn(I). 

$USKD: HLRZ Y,B 
CAIGE Y,$MOLS 

JRST @table(Y) 
MOVE R1, 0(B) 
CAME R1,0(C) 
JRST $FAIL 
JRST 1(C) 

;load type of B into Y. 
;if B isn't a molecule 
; switch on Y. 
;load functor of B. 
;if different from fn(I) 
; then fail. 
;return to in-line code. 

If N<5 this is condensed to:- 

JSP C,routine 
XWD $SKEL,i 

routine: MOVE B,@n(A) 



Page 187 

2.20 uskelc(N,S) 

Use: Argument N in the head of a clause is a skeleton term, and this 
position has mode '-'. S is the address of a corresponding skeleton 
literal. 

Example: 'uskelc(2,[fn(cons),var(0),var(1)))' for:- 

:-mode concatenate(+,+,-). 
concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3). 

Effect: cf. 'uskel'. The result of dereferencing the matching outer 

literal is guaranteed to be a reference. A molecule formed from S 

with global frame address from V1 is assigned to the cell referenced 
and the assignment is trailed if necessary. 

DEC10 form: 

MOVE B,@n(A) ;where n=N. 

JSP C,$USKC 
WD address ;of literal S. 

$USKC: JUMPE B,UNDO ;if B=undef goto UNDO. 
CONTINUE: CAILE B,$MAXREF ;if B is not a 

reference 
JRST 1(C) ; then it's a void so return. 
SKIPN R1,0(B) ;if B is fully dereferenced 
JRST ASSIGN ; then goto ASSIGN. 
... ;else continue dereferencing. 

UNDO: MOVEI B,@-2(C) ;undo initial dereference step. 
ASSIGN: ... ;proceed with assignment. 

If N<8 this is condensed to:- 

JSP C,routine ;call special subroutine. 
WD address ;address of skeleton literal S. 

routine: SKIPE B,@n(A) ;deref.arg.N into B unless undef 
JRST CONTINUE ; goto CONTINUE. 
MOVEI B,@n(A) ;load addr.of undef cell into B. 
JRST ASSIGN ;goto ASSIGN 
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2.21 init(I_,J) 

Use: The instuction is used (a) following a 'uskel' or 'uskelc', or 
(b) preceding a 'uskell' which is an argument of a 'uskeld' 
instruction, or (c) preceding a 'neck'. I to J-1 inclusive are the 

numbers of global variables having their first occurrences in, 
respectively, (a) the level 1 skeleton or (b) the level 2 skeleton or 

(c) the body of the clause concerned. The instuction is omitted if 
there are no such variables (ie. I=J). 

Example: The three different cases are illustrated by the use of 

'i.nit(1,2)' for each of:- 

(a) concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3). 

(b) :-mode lookup(?,+,?). 
lookup(X,tree(',pair(X,Y),_),Y). 

* 

(c) member(X,L) :- concatenate(Ll,cons(X,L2),L). 

Effect: The cells for the global variables I through J-1 are 
initialised to 'undef'. 

DEC10 form: 

SETZM n(V1) ;for each n from I 
... to J-1 

If J-I > 2 this is condensed to:- 

MOVEI Rl,j (V1) ;where j=J. 
JSP C,routine 

routine: SETZM -i(R1) ;where i=l. 
SETZM 1-i(R1) 

SETZM -1 (R1) 
JRST 0(C) 
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2.22 localinit(I,J) 

Use: Precedes a 'neck' instruction. The local variables which have 
their first occurrences within the body of the clause are numbered 
from I to J-1 inclusive. The instruction is omitted if there are no 
such variables (ie. I=J). Note if both an 'snit' and a 'localinit' 
precede a 'neck' instruction, the order of the two is not. important. 

Example: 'localinit(1,2)' for:- 

member(X,L) :- concatenate(L1,cons(X,L2),L). 

Effect: The cells for the local variables I through J-1 are 
initialised to ' undef' . 

DEC10 form: 

SETZM n(V) ;for each n from 1+3 
... ; to J+2 

If J-I > 2 this is condensed to:- 

MOVEI R1,j(V) ;where j=J+3. 
JSP C,routine 

routine: SETZM -i(R1) ;where i=I+3. 
SETZM 1-i(R1) 

SETZM -1(R1) 
JRST 0(C) 
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2.23 lfdone(L) 

Use: Precedes the instructions for the arguments of a level 1 

skeleton (not occurring in a mode '+' or mode '-' position). L is the 
address following the last argument instruction. 

Example: 'i.fdone(labell)' for (cf. Section $$):- 

member(X,cons(X,L)). 

Effect: If register Y contains 'undef', indicating that the skeleton 
has matched against a reference, control is transferred to label L, 
thereby skipping the argument instructions. 

DEC10 form: 

JUMPE Y,label ;where label=L. 

2.24 call(L) 

Use: Corresponds to the predicate of a goal in the body of a clause. 
L is the address of the procedure code for the predicate. 

Example: 'call(reverse)' for:- 

reverse(cons(X,L1),L2,L3) :- reverse(L1,cons(X,L2),L3). 

Effect: The address of the outer literals and continuation which 
follows the 'call' instruction is assigned to register A and control 
is transferred to L. 

DEC10 form: 

JSP A,label ;where label=L. 
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2.25 try(L) 

Use: (a) In unindexed procedure code, each clause in the procedure is 
represented by an instruction 'try(L)' where 'L' is the address of the 

clause's code. These instructions are ordered as the corresponding 
clauses in the source program. 
(b) The 'try' instruction is also used in indexed procedure code. 

Effect: The address of the following instruction is stored in the FL 

field of the current environment and control is transferred to 'L'. 

(In our DEC10 implementation, the address is saved in register FL and 
is only stored in the FL field if and when the 'neck' instruction is 
reached.) 

DEC10 form: 

JSP FL,label ;where label=L. 

2.26 trylast(L) 

Use: (a) In unindexed procedure code, it replaces the 'try(L)' 
instruction for the last clause in the procedure. 
(b) The instruction is also used in indexed procedure code. 

Effect: Registers VV and VV1 are reset to the values they held at the 
time the current goal was invoked. Control is transferred to 'L'. 

DEC10 form: 

HLRZ VV,O(V) ;VV:=VV field of current env. 
HLRZ VV1,2(VV) ;VV1:=V1 field of the VV env. 
JRST label ;where label=L. 
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2.27 enter 

Use: The first instruction in the procedure code for a predicate. It 
is executed immediately after a 'call' instruction. 

Effect: The instruction is responsible for initialising the control 
information in a new environment. The VV,X,A,V1,TR fields in the 
local frame are set from the VV,X,A,V1,TR registers. Registers VV and 
VV1 are then set to the values of registers V and V1 respectively. 

DEC10 form: 

JSP C,$ENTER 

$ENTER: HRLZM VV,O(V) ;VV field set. 
HRLI A,(X) 
MOVEM A,1(V) ;X,A fields set. 
HLRZM TR,R1 
HRLI R1,(V1) 
MOVEM R1,2(V) ;V1,TR fields set. 
MOVEI VV,(V) ;VV:=V. 
MOVEI VV 1, (V1) ;VV1:=V1. 
MOVEM TR,$TRO ;save TR in location $TRO. 
JRST 0(C) ;return. 
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2.28 neck(I,J) 

Use: Precedes the body of a non-unit clause having I local variables 
(excluding temporaries) and J global variables. 

Example: 'neck(l,1)' for:- 

rterm(T,N,N,wd(Atom)) :- flagatom(T,Atom). 
** 

Effect: Registers X and X1 are set from registers V and V1 
respectively. The contents of registers V and V1 are then incremented 
by the sizes of (the non-temporary part of) the local frame and of the 
global frame respectively. Both stacks are checked to ensure a 
sufficient margin of free space. 

DEC10 form: 
JSP C,$NECK 
WD i(V) ;where i=I+3. 
WD j(V1) ;where j=J. 

$NECK: HRRM FL,O(V) ;set FL field in local frame. 
MOVEI X,(V) ;X:=V. 
MOVEI X1,(V1) ;X1:=V1. 
MOVEI V,@0(C) ;V:=V+i. 
MOVEI V1,@1(C) ;V1:=Vl+j. 
CAMLE V,$VMAX ;if insufficient local freespace 
JSP R1,.. ; call subroutine. 
CAME V1,$V1MAX ;i.f insufficient global freespace 
JSP R1,... ; call subroutine. 
JRST 2(C) ;return to in-line code. 

If J=O this is condensed to:- 

JSP C,$NECK1 
WD i(V) 

$NECK1: HRRM FL,O(V) 
MOVEI X,(V) 
MOVEI V,@0(C) 
CAMLE V,$VMAX 
JSP R1,... 
JRST 1(C) 

If J=0 and I<5 this is further condensed to:- 

JSP C,routine 

routine: HRRM FL,O(V) 
MOVEI X,(V) 
MOVEI V,i(V) ;where i=1+3. 
CAMLE V,$VMAX 
JSP R1,... 
JRST 0(C) 
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2.29 foot(N) 

Use: At the end of a non-unit clause for a predicate of arity N. 

Example: 'foot(3)' for:- 

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3). 

Effect: If the register VV indicates a point on the local stack 
earlier than register X, V is assigned the contents of X. Thus a 
determinate exit from the current procedure results in all the local 
storage used during the process being recovered. A, X and X1 are 
reset from the corresponding field in the parent local frame pointed 
to by X, and control is transferred to the parent's continuation. 

DEC10 form: 

JSP C,$FOOT 
WD n(A) ;where n=N. 

$FOOT: CAILE X,(VV) 
MOVEI V,(X) 

;if X>VV 

; then V:=X. 
MOVE A,1(V) ;reset A from parent. 
HLRZM A, X ;reset X from parent. 
HLRZ X1,2(X) ;reset X1 from parent. 
JRST @0(C) ;goto parent's continuation. 

If N<9 this is condensed to:- 

JRST routine 

routine: CAILE X,(VV) 
MOVEI V,(X) 
MOVE A,1(X) 
HLRZM A,X 
HLRZ X1,2(X) 

JRST n(A) ;where n=N. 
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2.30 neckfoot(J,N) 

Use: The last instruction for a unit clause. It replaces a 

'neck(O,J)' followed by a 'foot(N)' where 'J' is the number of global 
variables and N is the arity of the predicate of the clause. (Note 
that a unit clause has no non-temporary local variables.) 

Example: 'neckfoot(0,3)' for:- 

concatenate(nll,L,L). 

Effect: The instruction combines the effect of the 'neck' and 'foot' 

instructions it replaces. However considerable computation is saved; 
registers A, X and Xl do not have to be modified. Registers V1 and 
(if a non-determinate exit) V are incremented to take account of the 
new global and local frames, and control is transferred to the 

parent's continuation. 

DEC10 form: 

MOVEI Vl,j(V1) ;where j=J. 
JSP C,$NKFT 
WD n(A) ;where n=N. 

$NKFT: CAILE V,(VV) ;if V>VV (ie. determinate exit) 
JRST BELOW ; then skip to BELOW. 
HRRM FL,O(V) ;set FL field in local frame. 
MOVEI V,3(V) ;V:=V+3. 

CAME V,$VMAX ;if insufficient local freespace 
JSP R1,... ; call subroutine. 

BELOW: CAMLE V1,$V1MAX ;if insufficient global freespace 
JSP R1,... ; call subroutine. 
JRST @0(C) ;goto parent's continuation. 

If J=0 this is condensed to:- 

CAIG V,(VV) ;if V =< VV (ie. non-determinate) 
JSP C,$NKFTO ; then call subroutine $NKFTO 
JRST n(A) ; else goto parent's continuation. 

$NKFTO: HRRM FL,O(V) 
MOVEI V,3(V) 
CAME V,$VMAX 
JSP R1,... 
JRST @0(C) 

If J=O and N<9 this is further condensed to:- 

JRST routine 

routine: CAIG V,(VV) 
JSP C, $NKFTO 

JRST n(A) 



Page 196 

2.31 cut(I) 

Use: Corresponds to an occurrence of the cut symbol. I is the number of local variables (excluding temporaries) in the clause, as for the 
instruction 'neck(I,J)'. 

Example: 'cut(2)' for:- 

compile(S,C) :- translate(S,C),!,assemble(C). 

Effect: Any remaining local frames created since the environment of 

the current clause are discarded by resetting register V to point at 
the end of the current local frame. Registers VV and VV1 are reset to 

the backtrack environment of the parent. The portion of the trail 
created since the parent goal is "tidied up" by discarding references 
to variables if they don't belong to environments before the backtrack 
environment. 

DEC10 form: 

MOVEI V,i(V) 
JSP C,$CUT 

;V:=V+i where i=I+3. 

$CUT: CAILE X,(VV) 
JRST 0(C) 
HLRZ VV,O(X) 
HLRZ VV1,2(VV) 

HRRE P,2(X) 

ADD P,$TRTOP 
CAIN P,(TR) 
JRST 0(C) 
MOVEI P1, (TR) 
MOVEI R1, (TR) 
SUBI R1,(P) 
HRLI R1,(R1) 
SUB TR, R1 

CYCLE: MOVE R1,1(P) 

CALL R1,(VV) 
JRST CONTINUE 
CAIGE R1,(V1) 
CAIGE R1,(VV1) 
PUSH TR,(R1) 

CONTINUE: CAIE P1,1(P) 
AOJA P,CYCLE 
JRST 0(C) 

If I<10 this is condensed to:- 

JSP C,routine 

routine: MOVEI V,i(V) 
JRST $CUT 

;if no alternatives to cut 

then return. 
;reset VV from parent. 
;reset VV1 from parent. 
;P:= lh of TR for parent. 
;P:= rh of TR for parent. 
;if no change to TR 

then return. 
;P1:=rh of TR for parent. 

;R1:=delta=increase in trail size. 

;reset TR to its original value:- 
; TR:=TR-(delta,delta). 
;load one of the new trail entries. 
;if refers after VV 

then continue with next entry. 

;if refers after V1 (ie. is local) 

;or before VV1 
then restore it to trail. 

;if more trail entries to consider 
then P:=P+1, goto CYCLE. 

;return. 
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2.32 neckcut(I,J) 

Use: Corresponds to a cut symbol which is the first "goal" in the 
body of a non-unit clause. It replaces a 'neck(I,J)' followed by a 
'cut(I)' where 'I' and 'J' are the numbers of local and global 
variables respectively. 

Example: 'neckcut(0,0)' for:- 

di.vide(X,O,Y) :-!, error('division by 0'). 
*** 

Effect: The instruction combines the effects of the corresponding 
'neck' and 'cut' instructions in a straightforward way. 

DEC10 form: 

JSP C,$NCUT 
WD i(V) ;where i=I+3. 
WD j(V1) ;where j=J. 

If J=0 this is condensed to:- 

JSP C,$NCUT1 
WD i(V) 

If J=0 and I<5 this is further condensed to 

JSP C,routine 

routine: MOVEI X,(V) 
MOVEI V,i(V) ;where i=I+3. 

JRST ... 
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2.33 neckcutfoot(J,N) 

Use: Corresponds to a cut symbol which is the only "goal" in the body 
of a clause. It replaces instructions 'neck(O,J)' followed by 
'cut(O)' followed by 'foot(N)' where 'J' is the number of global 
variables and N is the arity of the predicate of the clause. 

Example: 'neckcutfoot(0,2)' for:- 

factorial(0, 1):-! . 

Effect: Combines the effect of the three instructions it replaces. 
As with 'neckfoot', considerable computation is saved since registers 
A, X and X1 do not have to be modified. Register V1 is incremented to 

take account of the new global frame, registers VV and VV1 are reset 
to their states prior to invoking the parent goal and trail entries 
are discarded where possible. Finally control is transferred to the 

parent's continuation. 

DEC10 form: 

MOVEI V1,j(V1) ;where j=J. 

JSP C,$NCTF 
WD n(A) ;where n=N. 

$NCTF: CAMLE V1,$V1MAX ;if insufficient local freespace 
JSP R1,... ; call subroutine. 
CAILE V,(VV) ;if V>VV (already determinate) 

JRST @0(C) ; then goto parent's continuation. 
$NCTFO: HLRZ VV,O(V) ;reset VV. 

HLRZ VV1,2(VV) ;reset VV1. 

;perform rest of cut. 

JRST @0(C) ;goto parent's continuation. 

If J=0 this is condensed to:- 

CAIG V,(VV) ;if V =< VV (not already determinate) 
JSP C,$NCTFO ; then call subroutine $NCTFO. 
JRST n(A) ;goto parent's continuation. 
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2.34 fail 

Use: Corresponds to a goal 'fail' in the body of a clause. This goal 
is defined to be unsolvable and instigates (deep) backtracking. 

Example: 'fail' for:- 

unknown(X) :- known(X),!,fail. 

Effect: Registers V, V1, A, X and X1 are reset to the values they had 

prior to the most recent goal which is non-determinate (ie. one for 
which there are still further choices available). Register TR is also 

restored to its earlier value by popping entries off the trail and 
resetting the cells referenced to 'undef'. Finally control is 

transferred to the clause which is the next choice for the earlier 
goal. 

DEC10 form: 

JRST $EFAIL 

$EFAIL: MOVEI V,(VV) 

MOVEI V1, (VV1) 
HRRZ FL,O(V) 
MOVE A,1(V) 

HLRZM A,X 
HLRZ X1,2(X) 
HRRE R 1, 2 (V ) 

ADD R1,$TRTOP 
CAIN R1,(TR) 

JRST EXIT 
CYCLE: POP TR,R2 

SETZM (R2) 
CAIE R1, (TR) 
JRST CYCLE 

EXIT: MOVEM TR,$TRO 
JRST @FL 

;V:=VV 

;V1:=VV1 
;FL:=next clause for earlier goal. 
;reset A 
;reset X 
;reset X1 
;R1:=lh of earlier TR. 
;R1:=rh of earlier TR. 
;if no change to TR 

then goto EXIT. 
;pop an entry off the trail. 
;set cell refd. to 'undef'. 
;if more trail entries to consider 

then goto CYCLE. 
;save TR in location $TRO 
;goto next clause. 

Note in passing that a failure in a unification instruction causes 
control to be transferred to a routine $FAIL which instigates shallow 
backtracking:- 

$FAIL: CAIE V,(VV) 
JRST $EFAIL 
CAMN TR,$TRO 
JRST @FL 

CYCLEI: POP TR,R2 
SETZM (R2) 
CAME TR,$TRO 
JRST CYCLEI 
JRST @FL 

;if V = VV (no other choices) 
then deep backtracking. 

;if no trail entries from this unifn., 
then goto next clause. 

;pop an entry off the trail. 
;set the cell refd. to 'undef'. 
;if more trail entries to consider 

then goto CYCLE1. 
;goto next clause. 
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2.35 sect 

Use: Precedes a general section of clauses having a variable 
position 0 in the head. 

at 

Effect: The outer literal representing argument 0 of the current goal 
is accessed via register A and the dereferenced result is assigned to 
cell 0 in the current local frame. 

DEC10 form: 

JSP C,$GS 

$GS: MOVE B,@0(A) 

HLRZM B,Y 
CAIG Y,$SKEL 
JRST @table(Y) 
MOVEM B,3(V) 
JRST 0(C) 

;B := arg. 0 

;Y := type of arg. 0 

;if arg. 0 is not a molecule 
then switch on type. 

;local cell 0 := arg. 0 
;return. 

In practice the code is optimised by 
(1) coalescing the code for 'enter' immediately followed by 'gsect', 
(2) 'ssect' initialises local cell 0 as a side effect so that 'gsect' 

doesn't have to be called if no clauses in the special section are 
entered, 
(3) 'endssect' performs the work of 'gsect' if the matching term is a 

reference so 'gsect' only needs to handle the non-reference case. 



Page 201 

2.36 ssect(L,C) 

Use: Precedes a special section of clauses having a non-variable at 

position 0 in the head. L is the address of the reference code for 
the section and C is the address of the section which follows. 

Effect: If the dereferenced value of argument 0 in the current goal 

is a reference, control is transferred to L. Otherwise register FL is 

set to C and control passes to the non-reference code which follows 
the 'ssect' instruction. 

DEC10 form: 

JSP C,$SS 

WD refcode 
WD nextsection 

;where refcode=L 
;where nextsection=C 

$SS: MOVE B,3(V) 
HLRZM B,Y 
JUMPE Y,@0(C) 

MOVE FL,1(C) 
MOVEM B,R2 
CAIL Y,$MOLS 

MOVE R2,0(B) 
JRST 2(C) 

;B := arg.0 from local cell 0 
;Y type of arg. 0 
;if arg.0 is a ref goto refcode. 

;FL nextsection 
;R2 arg. 0 

;if arg.0 is a molecule 

; then R2 := functor of arg.0 
;return to non-reference code. 

The above is an optimisation, used only if it is not the first section 
in the procedure. 'enter' immediately followed by 'ssect' is treated 

as a special case. Register R2 is set to the address of the atom, 

integer or functor literal for argument 0. If argument 0 is a 

reference, this is trailed once and for all to avoid repeated 

"trailing" for each of the clauses in the section. 
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2.37 ssectlast(L) 

Use: Precedes a special section which is the last section of a 
procedure. L is the address of the reference code for the section. 

Effect: If the dereferenced value of argument 0 in the current goal 
is a reference, control is transferred to L. Otherwise'registers VV 

and VV1 are reset to the values they held at the time the current goal 

was invoked and control passes to the reference code which follows the 
'ssectlast' 

DEC10 form: 

instruction. 

JSP C,$SS1 
WD refcode ;where refcode=L 

$SS1: MOVE B,3(V) ;B arg.0 from local cell 0. 
HLRZM B,Y 
JUMPE Y,@O(C) 
HLRZ VV,O(V) 
HLRZ VV1,2(VV) 
MOVEM B,R2 
CAIL Y,$MOLS 

;Y type of arg.0 ;if arg.0 is a ref. goto refcode. 
;VV VV field of current env. 
;VV1 := V1 field of the VV env. 
;R2 arg.0 
;if arg.0 is a molecule 

MOVE R2,0(B) ; then R2 := functor of arg.0. 
JRST 1(C) ;return to non-reference code. 

2.38 endssect 

Use: Terminates the reference code at the end of a special section. 

Effect: The reference passed as argument -O is recovered from the 
trail and stored in local cell 0. The following 'gsect' instruction is 
skipped. 

DEC10 form: 

JSP C,$ENDRC 

$ENDRC: POP TR,R1 
MOVEM TR,$TRO 
SOS 2(V) 

SETZM (R1) 
MOVEM R1,3(V) 
JRST 1(C) 

;pop last trail entry into R1. 

;TRO := TR. 

;correct TR field of current env. 
;set cell referenced to undef. 
;local cell 0 := the reference. 
;return, skipping one instruction. 
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2.39 switch(N) 

Use: Precedes the non-reference code in a special section if there is 
a sufficient number of clauses in the section (currently 5 or more).. N 

is the number of 'case' instructions which follow and is a power of 2 

chosen depending on the number of clauses in the section. 

Effect: A key, determined by the principal functor of argument 0 of 
the current goal, is "anded" with N-1 to give a value M. Control is 
then transferred to the (M+1)th. 'case' instruction. 

DEC10 form: 

MOVEI R1,(R2) ;R1 := key 
ANDI R1,n-1 ;R1 := key/(N-1) 
JRST @NEXT(R1) ;goto case (R1) 

NEXT: 

2.40 case(L) 

Use: A 'switch(N)' instruction is followed by N 'case' instructions. 
The parameter L is the address of the code for the subset of the 
section's clauses corresponding to that case. 

Effect: Control is transferred to address L by the preceding 'switch' 
instruction. 

DEC10 form: 

WD label ;where label=L. 
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2.41 if atom 

Use: In the non-reference code of a special section, the clause(s) 
for the atom identified by I is indicated by address L. 

Effect: If argument 0 of the current goal is atom I, control is 
transferred to address L. 

DEC10 form: 

CAMN R2,atom ;where atom = addr. of atom I literal. 
JRST label ;where label=L. 

2.42 i.fint(I,L) 

Use: In the non-reference code of a special section, the clause(s) 
for integer I is indicated by address L. 

Effect: If argument 0 of the current goal is integer I, control is 
transferred to address L. 

DEC10 form: 

CAMN R2,int ;where int = integer I literal 
JRST label ;where label=L. 
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2.43 iffn(I,L) 

Use: In the non-reference code of a special section, the clause(s) 
for the functor identified by I is indicated by address L. 

Effect: If the principal functor of argument 0 of the current goal is 
functor I, registers B and Y are set according to this'molecule and 
control is transferred to address L. 

DEC10 form: 

CAMN R2,functor 
JRST label 

;where functor = addr of fn I literal. 
;where label=L. 

Note that in the actual implementation, registers B and Y are set by 
'ssect' or else by the following preceding the CAMN:- 

JSP C,$RLDSK 

$RLDSK: MOVE B,@0(A) ;B := arg.0 
HLRZ Y,B ;Y := type of arg.0 
CALL Y,MOLS ;if arg.0 is a molecule 
JRST 0(C) ; then return. 
JUMPE Y,DEREF ;if arg.0 is a ref. goto DEREF. 
MOVEI B,@0(A) ;B := skel. literal in the goal. 
HRLI B,(X1) ;lh. of B := X1. 
MOVEI Y,(X1) ;Y := X1. 
JRST 0(C) ;return. 

DEREF: MOVE B,O(B) ;B deref B. 
HLRZ Y, B ;Y := type of B. 
JUMPE Y,DEREF ;if B is a ref. goto DEREF. 
JRST 0(C) ;return 
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2.44 goto(L) 

Use: (1) Following a sequence of 'if' instructions or a sequence of 
'try' instructions in a special section, L is the address of the 
following section. 

Effect: Control is transferred to address L. 

DEC10 form: 

JRST label ;where label=L. 

2.45 notlast 

Use: If there is more than one clause for a particular functor in a 
special section, the 'try' instructions are preceded by a 'notlast' 
instruction. 

Effect: Registers VV and VV1 are reset from V and V1 respectively to 
indicate the current environment. 

DEC10 form: 

JSP C,$NLAST 

$NLAST: MOVEI VV,(V) ;VV:=V 
MOVEI VV1,(V1) ;VV1:=V1 
MOVEM TR,$TRO ;TRO:=TR 
JRST 0(C) ;return 
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2.46 ugvar(I) 

Use: If argument 0 of the head of a clause is a global variable (and 
the procedure code is to be indexed), this term is represented by 
'ugvar(I)' where I is the number of the global variable. 

Effect: The construct which has been assigned to local cell 0 (by the 
corresponding 'gsect' instruction) is also assigned to global cell I 

unless the construct is a local reference. In the latter case global 
cell I is initialised to undef and a reference to global cell I is 

assigned to the local reference. This assignment is trailed if 

necessary. 

DEC10 form: 

JSP C,$GTER1 
MOVEM T,i(V1) ;global cell I := T 

$GTER1: MOVE T,3(V) 

CAIG T,MAXREF 
CAIGE T,@0(C) 
JRST 0(C) 
MOVEI R1,@0 (C) 
SETZM (R1) 
MOVEM R1,(T) 
CAIGE T,(VV) 

PUSH TR,T 
JRST 1(C) 

;T := local cell 0 

;if T not a reference 
;or T < global cell I 

; then return. 
;R1 := addr. of global cell I 

;global cell I := undef 
;cell T := R1 

;if T < VV 

; then push T onto the trail 
;return, skipping 1 instr. 
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2.47 tryatom(I,C) 

Use: In the reference code of a special section, a clause with atom I 
as argument 0 of the head is represented by the instruction 
'tryatom(I,C)'. C is the address of the clause's code. 

Effect: The atom is assigned to the matching reference and the 
assignment is trailed. Register FL is set to the address of the 
following instruction and control is transferred to C. 

DEC10 form: 

JSP C,$RVAT 
XWD clause,atom ;clause=C,atom= atom I. 

$RVAT: MOVEI FL,1(C) ;FL := next PLM instr. 
MOVE R1,0(C) ;R1 (clause,atom) 
HLRZM R1,C ;C := clause. 
MOVE R1,0(R1) ;R1 := atom. 
MOVEM R1,@0(TR) ;trailed ref. := atom. 
JRST 0(C) ;goto clause. 

Note that the matching reference has already been trailed by 'ssect'. 

2.48 tryint(I,C) 

Exactly analagous to 'tryatom'. The DEC10 form uses routine $RVAT 
also. 
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2.49 tryskel(S,C) 

Use: In the reference code of a special section, a clause with a 
skeleton as argument 0 in the head is represented by 'tryskel(S,C)'. S 

is the address of the skeleton literal and C of the clause's code. 

Effect: A molecule is formed from S with current global frame address 
from register V1 and assigned to the matching reference. The 
assignment is trailed. Register Y is set to 'undef' and register FL 
to the address of the following instruction. Control is transferred 
to C. 

DEC10 form: 

JSP C,$RVSK 
XWD clause,skeleton ;clause=C,skeleton=S. 

$RVSK: MOVEI Y,0 ;Y undef. 

MOVEI FL,1(C) ;FL next PLM instr. 

MOVE R1,0(C) 

HLRZM R1,C 
;R1 

;C 

(clause,skeleton). 
clause. 

HRLI R1,(V1) ;R1 (Vl,skeleton). 

MOVEM R1,@0(TR) ;trailed ref. :_ (V1,skel.). 

JRST 0(C) ;goto clause. 

Note that the matching reference has already been trailed by 'ssect'. 
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2.50 trylastatom(I,C) 

Use: If the final clause in a procedure has atom I as argument 0 of 
its head, the clause is represented in the reference code by the 
instruction 'trylastatom(I,C)', where C is the address of the clause's 
code. No 'endssect' is needed at the end of the section. 

Effect: The atom is assigned to the matching reference but the 
assignment need not be trailed. Registers VV and VV1 are reset to 
indicate the previous backtrack point. Control is transferred to C. 

DEC10 form: 

JSP C,$RVAT1 
XWD clause,atom ;clause=C, atom = atom I. 

$RVAT1: HLRZ VV,O(V) ;VV := VV field of current env. 
HLRZ VV1,2(VV) ;VV1 V1 field of the VV env. 
MOVE R1,0(C) ;R1 (clause,atom). 
HLRZM R1,C ;C clause. 
MOVE R1,0(R1) ;R1 atom. 
MOVEM R1,@0(TR) ;trailed ref. := atom. 
JRST 0(C) ;goto clause. 

Note that the matching reference has already been trailed by 'ssect'. 

2.51 trylastint(I,C) 

Exactly analogous to 'trylastatom'. The DEC10 form uses routine $RVAT1 
also. 
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2.52 trylastskel(S,C) 

Use: If the final clause in a procedure has a skeleton as argument 0 
of its head, the clause is represented in the reference code by an 
instruction 'trylastskel(S,C)', where S is the address of the skeleton 
literal and C is the address of the clause's code. No 'endssect' is 
needed at the end of the section. 

Effect: A molecule is formed from S with the current global frame 
address from register V1 and assigned to the matching reference. The 
assignment need not be trailed. Register Y is set to 'undef'. 
Registers VV and VV1 are reset to indicate the previous backtrack 
point. Control is then transferred to C. 

DEC10 form: 

JSP C,$RVSK1 
XWD clause,skeleton ;clause=C,skeleton=S. 

$RVSK1: MOVEI Y,0 ;Y := undef. 
HLRZ VV,O(V) ;VV VV field of current env. 
HLRZ VV1,2(VV) ;VV1 := V1 field of the VV env. 

MOVE R1,0(C) ;R1 (clause,skeleton). 
HLRZM R1,C ;C clause. 
HRLI R1, (V1) ;R1 (V1,skeleton). 
MOVEM R1,@0(TR) ;trailed ref. := (V1,skeleton). 
JRST Q(C) ;goto clause. 

Note that the matching reference has already been trailed by 'ssect'. 
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3.0 SYNOPSIS OF THE DEC SYSTEM 10 

The machine has 36 bit words which can accommodate two 18 bit 

addresses. Addresses 0 to 15 refer to fast registers which are used 

as accumulators and (for 1 to 15 only) as index registers. Signed 

integers are represented as "2s complement" bit patterns. 

instruction format is:- 

0 9 13 14 18 

CODE A I X Y 

where CODE = instruction code, 
A = accumulator address, 
I = indirection bit, 
X = index register address, 
Y = main address. 

36 

I 

The 

An instruction with I=1 is written symbolically in the form:- 

CODE A,@Y(X) 

If I=0 the '@' is omitted. If A=0 it can be omitted along with the 

comma. If X=0 it can be omitted along with the brackets. If Y=0 it 

can be omitted. 

A fundamental mechanism is the "effective address calculation" 

which is the first step in the execution of each and every 

instruction. It computes an effective address E depending on I, X and 

Y. If X is nonzero, the contents of index register X is added to Y to 

produce a modified address M (modulo 2 to the power 18). If I=0 then 

simply E=M. If I=1, the addressing is indirect and E is derived by 

treating the I, X and Y fields of the word stored at M in exactly the 

same way. The process continues until a referenced location has I=0 

and then E is calculated according to the X and Y fields of this 

location. 
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Two Instructions, PUSH and POP, access pushdown lists which are 

stored in main memory. A pushdown list is referenced via a pushdown 

list pointer held in an accumulator. The right half of this word is 

the address of the current last item in the list. The left half 

(normally) contains the negative quantity M-L where M is the maximum 

size of the list and L is the current size. 

The instructions referred to in this paper are summarised below. 

In all cases A is the accumulator address and E is the effective 

address computed as above. We write:- 

(X) for 
X.L for 
X.R for 
(X,Y) for 
sign X for 
Y:=X for 
skip for 

"the contents of location X", 
"the left half of location X" 
"the right half of location X", 
"the word with left half X and right half Y", 
"-1 if the top bit of X is 1 or 0 otherwise", 
"location Y is assigned the value V. 
"skip the next instruction" 

Instruction Effect 

MOVE A, E A:=(E) 
MOVEI A,E A: =E 

MOVEM A,E E:=(A) 
SETZM E E:=0 
ADD A,E A:=(A)+(E) 
SUB A, E A:(A)-(E) 
SUBI A,E A:(A)-E 
AOS E E: (E)+1 
SOS E E:(E)-1 

HLRZ A,E A:=(0,(E.L)) 
HRRZ A,E A:-(0,(E.R)) 
HLRZM A,E E:=(0,(A.L)) 
HRLZM A,E E:=((A.R),0) 
HRLI A,E A.L:=E 
HRRM A,E E.R:=(A.R) 
HRRE A,E A:=(sign (E.R), E.R) 

CAIE A,E if (A) _ (0,E) then skip 
CAIN A, E if (A) (0,E) then skip 
CAME A,E if (A) (E) then skip 
CANN A,E if (A) (E) then ski 
CAIG A,E if (A) > (0,E) then skip 
CAILE A,E if (A) =< (0,E) then skip 
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CAIGE A,E if (A) >= (0,E) then skip 
CAMLE A,E if (A) =< (E) then skip 

SKIPE A,E if A 0 then A:=(E), if (E)=O then skip 
SKIPN A,E if A # 0 then A:=(E), if (E)#O then $skip 
TLNN A,E if (A.L)4e # 0 then skip 

JRST E goto E 

JSP A,E A:=(flags,address of next instruction), goto E 
JUMPE A,E if (A)=O then goto E 

AOJA A,E A:=(A)+1, goto E 

PUSH A,E A:=(A)+(1,1); (A.R):=(E); 
if (A.L)=O then interrupt 

POP A,E E:=((A.R)); A:=(A)-(1,1); 
if (A.L)=O then interrupt 

WD E a non-executable address word with CODE=O 
XWD X,Y a non-executable data word containing (X,Y) 

Constant Symbols 

$VOID=1 
$SKEL=2 
$ATOM=4 
$INT=5 
$MOLS=16 
$MAXREF=777777base8 
$1MA=777764base8 
$1MAS=777766base8 
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4.0 TIMING DATA FOR PLM INSTRUCTIONS ON DEC10 

The times given below are the minimum times to complete the PLM 

instruction successfully. Cases where a failure to match occurs are 

not counted. Certain infrequent but faster special cases are also 

discounted (for example matching against a void). 

The times relate to a KI10 processor and have been calculated 

from the data given on pages D-4 and D-5 of [DEC 1974]. An extra 1.02 

microseconds has been allowed for each indirection and 0.89 

microseconds for a control transfer or test instruction. All other 

factors (such as indexing) have been ignored. 

Instruction microsecs. Remarks 

uvar,uvarl 4.85 v. atom, integer or molecule 
uref,urefl 15.88 undef v. molecule 
uatom,uatoml, 

uint,uintl 8.68 v. atom or integer 
uskel 12.22 v. molecule 
uskell 26.49 + 28.26 per argument 

v. molecule, with mol. v. ref. for each arg. 
uskeld 11.20 v.molecule 
uskelc 15.60 v. reference 
init,localinit .95 per cell initialised 
ifdone 1.45 

call 1.34 

try 1.34 
trylast 3.75 

enter 9.67 

neck 12.77 general case 
foot 7.55 
neckfoot 2.74 no globals, determinate exit 
cut 14.32 + 9.24 per trail entry examined 

general case, assumes each trail entry retained 
neckcut 15.53 + 9.24 per trail entry examined 

no globals 
neckcutfoot 12.10 + 9.24 per trail entry examined 

no globals 
fail 13.14 + 5.85 per trail entry examined 
"shallow" fail 6.08 + 6.66 per trail entry examined 
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5.0 BENCHMARK TESTS 

Times in milliseconds 

Procedure Data Prolog-10 Lisp Pop-2 Prolog M Prolog-10I 

nreverse 

qsort 

deriv 

list3O 53.7 34.6 

list5O 75.0 43.8 

timeslO 3.00 5.21 

dividel0 2.94 7.71 

loglO 1.92 2.19 

ops8 2.24 2.94 

203 

134 

11.2 

15.9 

8.56 

5.25 

1156 

1272 

86.4 

90.6 

61.6 

61.2 

1160 

1344 

76.2 

84.4 

49.2 

63.7 

serialise palin25 40.2 19.76 

dbquery - 185 - 

Time ratios 

- 

300 

711 

9970 

602 

8888 

Procedure Data Prolog-10 Lisp Pop-2 Prolog-M Prolog-10I 

nreverse list30 1 .64 3.8 22 22 

qsort list50 1 .58 1.8 17 18 

deriv timeslO 1 1.7 3.7 29 25 

divi.delO 1 2.6 5.4 31 29 

1og10 1 1.1 4.5 32 26 

ops8 1 1.3 2.3 27 28 

serialise palin25 1 .49 - 18 15 

dbquery - 1 - 1.6 54 48 

Notes 

The above table, giving average figures 

DECsystem--10 (KI 

for actual CPU time on a 

processor), compares compiled Prolog (our 

implementation, "Prolog-10"), compiled Lisp (Stanford with the NOUUO 
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option), compiled Pop-2 and interpreted Prolog (both the Marseille 

Fortran implementation, "Prolog-M", and our implementation in Prolog, 

"Prolog-10I"). The data was obtained by timing (via "control-T") a 

large number of iterations of each test. The figures include garbage 

collection times for Lisp and Pop-2. No garbage collection was needed 

for Prolog since the stack mechanism recovers storage after each 

iteration. Test iterations were achieved in the following ways:- 

Prolog 

tests(N) :- read(_),from(1,N,I),test,fail. 
tests(N) :- read( ),test. 

from(I,I,I):-!. 
from(L,N,I) :- Ni is (L+N)/2, from(L,N1,I). 
from(L,N,I) :- L1 is (L+N)/2+1, from(L1,N,I). 

Lisp 

(DEFPROP TESTS (LAMBDA (N) 

(PROG (I RESULT) 
(READ) 

(SETQ 10) 
LAB (SETQ RESULT TEST) 

(COND (LESSP I N) (GO LAB)) 

(READ) 

(RETURN RESULT))) 

EXPR) 

Pop-2 

FUNCTION TESTS N; 
VARS I RESULT; 
ERASE(ITEMREAD()); 
FORALL I 1 1 N; 

TEST -> RESULT 
CLOSE; 
ERASE(ITEMREAD()); 
RESULT 

END 

The dummy "reads" serve to interrupt the execution of each test so 

that "control-T" timings can be taken. The Prolog form of each 

benchmark test is listed below, together with the Lisp and Pop-2 

versions selected for comparison. Note that in the Prolog examples a 
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more convenient syntactic form is used for lists. Thus '[]' stands 

for the empty list and '[X,..L]' denotes a list whose head is X and 

tail is L. A list of two elements 'a' followed by 'b' is written 

'[a,b]'. Apart from the syntax, such lists are treated no differently 

from other terms. The timing data would be exactly the same if, say, 

'nil' and 'cons(X,L)' were used. 
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5.1 reverse 

llst30 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 
21,22,23,24,25,26,27,28,29,301 

Prolog : nreverse(list3O,X) 

:-mode nreverse(+,-). 
:-mode concatenate(+,+,-). 

nreverse([X,..LO],L) :- nreverse(LO,L1), concatenate(L1,[X],L). 

nreverse( [] , [] ) . 

concatenate([X,..L1],L2,[X,..L3]) :- concatenate(L1,L2,L3). 
concatenate([],L,L). 

Lisp : (NREVERSE list30) 

(DEFPROP NREVERSE (LAMBDA (L) 

(COND ((NULL L) NIL) 

(T (CONCATENATE (NREVERSE (CDR L)) (CONS (CAR L) NIL))))) 
EXPR) 

(DEFPROP CONCATENATE (LAMBDA (L1 L2) 
(COND ((NULL L1) L2) 

(T (CONS (CAR L1) (CONCATENATE (CDR L1 L2))))) 
EXPR) 

Pop-2 : NREVERSE(list30) 

FUNCTION NREVERSE LIST; 
IF NULL(LIST) THEN NIL 
ELSE CONCATENATE(NREVERSE(TL(LIST)),HD(LIST)::NIL) 
CLOSE 

END; 

FUNCTION CONCATENATE LIST1 LIST2; 
IF NULL(LIST1) THEN LIST2 
ELSE HD(LIST1)::CONCATENATE(TL(LIST1),LIST2) 
CLOSE 

END; 
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5.2 ysort 

llst50 = [27,74,17,33,94,18,46,83,65, 2, 
32,53,28,85,99,47,28,82, 6,11, 
55,29,39,81,90,37,10, 0,66,51, 
7,21,85,27,31,63,75, 4,95,99, 

11,28,61,74,18,92,40,53,59, 81 

Prolog : gsort(list50,X,[]) 

:-mode qsort(+,-,+). 
:-mode partition(+,+,-,-). 

gsort([X, ..L] ,R,RO) :- 
partition(L,X,L1,L2), 
gsort(L2,R1,RO), 
gsort(L 1, R, [X, ..R1]) . 

qsort( [] ,R,R) . 

partition([X,..L],Y,[X,..L1],L2) :- X =< Y, 
partition(L,Y,L1,L2). 

partition([X,..L] ,Y, L1, [X, ..L2]) :- 
partition(L,Y,L1,L2). 

partition([],_, [] , []) . 

Lisp : (QSORT list50 NIL) 

(DEFPROP QSORT (LAMBDA (L R) 

(COND ((NULL L) R) 

(T ((LAMBDA (P) 

(QSORT (CAR P) (CONS (CAR L) (QSORT (CDR P) R)))) 
(PARTITION (CDR L) (CAR L)))))) 

EXPR) 

(DEFPROP PARTITION (LAMBDA (L X) 

(COND ((NULL L) (CONS NIL NIL)) 
(T ((LAMBDA (P) 

(COND ((LESSP (CAR L) X) 
(CONS (CONS (CAR L) (CAR P)) (CDR P))) 

(T (CONS (CAR P) (CONS (CAR L) (CDR P)))))) 

(PARTITION (CDR L) X))))) 
EXPR) 



! aN 3 
II'Id S 0109 

`1SI'I<-ISI'I<>x 
`3S0'I9 Z I 0109 `1SI'I<-Z ` Z ` x<>ISI'I !Z<- NHHI T=b 3I 

`x<- 
1IX3 1SI'I NHHI 0=b 3I !b<- :ZI'Ids 

`3S0'I9 n 0109 3S'I3 Z'I 0109 `ZSI'I<-Sbb ! i ! x! Z NHHI (ISI'I)'I'InN 3I 
aso'I9 

x<-x::nbb 3S'I3 
z<-Z::Abb NHHI Abb>Mbb 3I3S'I3 

sbb<-Sbb::Abb NHHI Abb<Mbb 3I 
`ZSI'I<-(ZSI'I)'IZ `Abb<-(ZSI'I)QH:1'I 

Mbb<-(1SI'I)QH 
Z<-'IIN ! x<-'IIN ! Sbb<-'IIN 

!3SO'I3 II'IdS 0109 NHHI ((ISI'I)'IZ)'I'InN 210 (ISI'I)'I'InN 3I:Z'I 
!o 

`saa Mbb Abb b Z A SdVA 
!1SI'I Ixosb NOIIONnd 

(091SF1)lxosb : Z Od 

TZZ aSed 
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5.3 deriv 

timeslO = ((((((((x*x)*x)*x)*x)*x)*x)*x)*x)*x 
dividelO = ((((((((x/x)/x)/x)/x)/x)/x)/x)/x)/x 
loglO = log(log(log(log(log(log(log(log(log(log(x)))))))))) 
ops8 = (x+l)*(x-2+2)*(x-3+3) 

Prolog : d(expr,x,Y) 

:-mode d(+,+,-). 
:-op(300,xfy,-). 

d(U+V,X,DU+DV) :-!, d(U,X,DU),d(V,X,DV). 
d(U-V,X,DU-DV) :-!, d(U,X,DU),d(V,X,DV). 
d(U*V,X,DU*V+U*DV) :-!, d(U,X,DU),d(V,X,DV). 
d(U/V,X,(DU*V-U*DV)/V"2) :-!, d(U,X,DU),d(V,X,DV). 
d(U"N,X,DU*N*U`N1) :-!, integer(N), Ni is N-1, d(U,X,DU). 

d(-U,X,-DU) :-!, d(U,X,DU). 
d(exp(U),X,exp(U)*DU) :-!, d(U,X,DU). 

d(log(U),X,DU/U) :-!, d(U,X,DU). 
d(X,X,1):-!. 
d(C,X,O). 

Lisp : (DERIV expr (QUOTE X)) 

(DEFPROP DERIV (LAMBDA (E X) 

(COND ((ATOM E) (COND ((EQ E X) 1) (T 0))) 

((OR (EQ (CAR E) (QUOTE PLUS)) (EQ (CAR E) (QUOTE DIFFERENCE))) 

(LIST (CAR E) (DERIV (CADR E) X) (DERIV (CADDR E) X))) 

((EQ (CAR E) (QUOTE TIMES)) 
(LIST (QUOTE PLUS) 

(LIST (CAR E) (CADDR E) (DERIV (CADR E) X)) 

(LIST (CAR E) (CADR E) (DERIV (CADDR E) X)))) 
((EQ (CAR E) (QUOTE QUOTIENT)) 

(LIST (CAR E) 

(LIST (QUOTE DIFFERENCE) 
(LIST (QUOTE TIMES) (CADDR E) (DERIV (CADR E) X)) 

(LIST (QUOTE TIMES) (CADR E) (DERIV (CADDR E) X))) 

(LIST (QUOTE TIMES) (CADDR E) (CADDR E)))) 

((AND (EQ (CAR E) (QUOTE EXPT)) (NUMBERP (CADDR E))) 

(LIST (QUOTE TIMES) 

(LIST (QUOTE TIMES) (CADDR E) 

(LIST (CAR E) (CADR E) (SUB1 (CADDR E)))) 

(DERIV (CADR E) X))) 

((EQ (CAR E) (QUOTE MINUS)) 
(LIST (CAR E) (DERIV (CADR E) X))) 

((EQ (CAR E) (QUOTE EXP)) 

(LIST (QUOTE TIMES) E (DERIV (CADR E) X))) 
((EQ (CAR E) (QUOTE LOG)) 

(LIST (QUOTE QUOTIENT) (DERIV (CADR E) X) (CADR E))) 

(T NIL))) 
EXPR) 
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Pop-2 : DERIV(expr,X) 

VARS SUM1 SUM2 DESTSUM OPERATION 4 ++; 
RECORDFNS("SUM",[0 0])->SUM1->SUM2->DESTSUM->NONOP ++; 
VARS DIFC1 DIFC2 DESTDIFC OPERATION 4 --; 
RECORDFNS("DIFC",[O 0])->DIFC1->DIFC2->DESTDIFC->NONOP --; 
VARS PROD1 PROD2 DESTPROD OPERATION 3 **; 
RECORDFNS("PROD",[0 0])->PROD1->PROD2->DESTPROD-->NONOP **; 
VARS QUOT1 QUOT2 DESTQUOT OPERATION 3 ///; 
RECORDFNS("QUOT",[O 0])->QUOT1->QUOT2->DESTQUOT->NONOP 
VARS POWR1 POWR2 DESTPOWR OPERATION 2 °"'; 
RECORDFNS("POWR",[0 0])->POWR1->POWR2->DESTPOWR->NONOP ; 
VARS MINUS1 DESTMINUS MINUS; 
RECORDFNS("MINUS",[0])->MINUSI->DESTMINUS->MINUS; 
VARS EXPF1 DESTEXPF EXPF; 
RECORDFNS("EXPF",[0])->EXPF1->DESTEXPF ->EXPF; 
VARS LOGF1 DESTLOGF LOGF; 
RECORDFNS("LOGF",[0])->LOGF1->DESTLOGF->LOGF; 

FUNCTION DERIV E X; 
IF E.ISNUMBER THEN 0 
ELSEIF E.ISWORD THEN IF E=X THEN 1 ELSE 0 CLOSE 
ELSEIF E.DATAWORD="SUM" THEN DERIV(SUM1(E),X)++DERIV(SUM2(E),X) 
ELSEIF E.DATAWORD="DIFC" THEN DERIV(DIFC1(E),X)--DERIV(DIFC2(E),X) 
ELSEIF E.DATAWORD="PROD" THEN 

DERIV(PROD1(E),X)**PROD2(E)++PROD1(E)**DERIV(PROD2(E),X) 
ELSEIF E.DATAWORD="QUOT" THEN 

(DERIV(QUOT1(E),X)**QUOT2(E)--QUOT1(E)**DERIV(QUOT2(E),X)) 
///QUOT2(E)'"'2 

ELSEIF E.DATAWORD="POWR" AND POWR2(E).ISNUMBER THEN 

DERIV(POWR1(E),X)**POWR2(E)**POWR1(E)°'(POWR2(E)-1) 
ELSEIF E.DATAWORD="MINUS" THEN MINUS(DERIV(MINUSI(E),X)) 
ELSEIF E.DATAWORD="EXPF" THEN E**DERIV(EXPF1(E),X) 
ELSEIF E.DATAWORD="LOGF" THEN DERIV(LOGF1(E),X)///LOGF1(E) 
ELSE "ERROR" 
CLOSE 

END; 
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5.4 serialise 

palin25 = "ABLE WAS I ERE I SAW ELBA" 

Je. a list of 25 numbers representing the character codes. 

Result = [2,3,6,4, 1, 9, 2, 8, 1, 5, 1, 4, 7, 4, 1, 5, 1, 8, 2, 9, 1, 4, 6, 3, 2] 

Prolog : serialise(palin25,X) 

:-mode serialise(+,-). 
:-mode pairlists(+,-,-). 
:-mode arrange(+,-). 
:-mode split(+,+,-,-). 

:-mode before(+,+). 
:-mode numbered(+,+,-). 

serialise(L,R) :- 
pairlists(L,R,A), 

arrange(A,T), 
numbered(T,1,N). 

pairlists([X,..L] , [Y, ..R] , [pair(X,Y), ..A]) :- pairli.sts(L, R,A) . 
pai_rlists( [] , [] , [] ) . 

arrange([X,..L],tree(T1,X,T2)) 
split(L,X,L1,L2), 
arrange (L 1, Ti) , 
arrange(L2,T2). 

arrange( [] void) . 

split([X,..L],X,L1,L2) :-!, split(L,X,L1,L2). 
split([X,..L],Y,[X,..L1],L2) :- before(X,Y),!, split(L,Y,L1,L2). 

split([X,..L],Y,L1,[X,..L2]) before(Y,X),!, split(L,Y,L1,L2). 

split( [],_,[],[]). 
before(pair(X1,Y1),pair(X2,Y2)) :- X1<X2. 

numbered(tree(Tl,pair(X,N1),T2),NO,N) :- 

numbered(T1,NO,N1), 
N2 is N1+1, 

numbered(T2,N2,N). 
numbered (void, N, N) . 

Lisp : (SERIALISE lin25) 

(DEFPROP SERIALISE (LAMBDA (L) 

(PROG (R) 

(SETQ R (DUPLICATE L)) 
(NUMBERTREE 1 (ARRANGE (CELLS R))) 

(RETURN R))) 
EXPR) 
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(DEFPROP DUPLICATE (LAMBDA (L) 
(COND ((NULL L) NIL) 

(T (CONS (CAR L) (DUPLICATE (CDR L)))))) 
EXPR) 

(DEFPROP CELLS (LAMBDA (L) 
(COND ((NULL L) NIL) 

(T (CONS L (CELLS (CDR L)))))) 
EXPR) 

(DEFPROP ARRANGE (LAMBDA (L) 
(COND ((NULL L) NIL) 

(T (CONS (CONS (CAR L) (MIDDLEPART (CAAR L) (CDR L))) 
(CONS (ARRANGE (LOWERPART (CAAR L) (CDR L))) 

(ARRANGE (UPPERPART (CAAR L) (CDR L)))))))) 
EXPR) 

(DEFPROP MIDDLEPART (LAMBDA (X L) 
(COND ((NULL L) NIL) 

((EQ (CAAR L) X) (CONS (CAR L) (MIDDLEPART X (CDR L)))) 
(T (MIDDLEPART X (CDR L))))) 

EXPR) 

(DEFPROP LOWERPART (LAMBDA (X L) 
(COND ((NULL L) NIL) 

((LESSP (CAAR L) X) (CONS (CAR L) (LOWERPART X (CDR L)))) 
(T (LOWERPART X (CDR L))))) 

EXPR) 

(DEFPROP UPPERPART (LAMBDA (X L) 
(COND ((NULL L) NIL) 

((GREATERP (CAAR L) X) (CONS (CAR L) (UPPERPART X (CDR L)))) 
(T (UPPERPART X (CDR L))))) 

EXPR) 

(DEFPROP NUMBERTREE (LAMBDA (N TREE) 
(COND ((NULL TREE) N) 

(T (NUMBERTREE 

(NUMBERLIST 
(NUMBERTREE N 

(CADR TREE)) 
(CAR TREE)) 

(CDDR TREE))))) 
EXPR) 

(DEFPROP NUMBERLIST (LAMBDA (N LO) 
(PROG (L) 

(SETQ L LO) 
LOOP (RPLACA (CAR L) N) 

(SETQ L (CDR L)) 
(COND ((NOT (NULL L)) (GO LOOP))) 
(RETURN (ADD1 N)))) 

EXPR) 
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5.5 query 

The solutions to a database query to find countries of similar 
population density are 

[indonesia, 223, pakistan, 219] 
[uk, 650, w germany, 645] 

[italy, 477, phi_lippi.nes,461] 
[france, 246, china, 244] 
[ethiopia, 77, mexico, 76] 

Prolog : query([C1,D1,C2,D2]) 

query([C1,D1,C2,D2]):- 
density(C1,D1), 
density(C2,D2), 
D1>D2, 
20*D 1<21*D2. 

density(C,D) :- pop(C,P), area(C,A), D is (P*100)/A. 

/* populations in 100000s, areas in 1000s of sq. miles. */ 

pop(china, 8250). area(china, 3380). 
pop(india, 5863). area(india, 1139). 
pop(ussr, 2521). area(ussr, 8708). 
pop(usa, 2119). area(usa, 3609). 
pop(indonesia, 1276). area(indonesia, 570). 
pop(japan, 1097). area(japan, 148). 
pop(brazil, 1042). area(brazil, 3288). 
pop(bangladesh, 750). area(bangladesh, 55). 
pop(pakistan, 682). area(pakistan, 311). 
pop(w_germany, 620). area(w_germany, 96). 
pop(nigeria, 613). area(nigeria, 373). 
pop(mexico, 581). area(mexico, 764). 
pop(uk, 559). area(uk, 86). 
pop(italy, 554). area(italy, 116). 
pop(france, 525). area(france, 213). 
pop(philippines, 415). area(philippines, 90). 
pop(thailand, 410). area(thailand, 200). 
pop(turkey, 383). area(turkey, 296). 
pop(egypt, 364). area(egypt, 386). 
pop(spain, 352). area(spain, 190). 
pop(poland, 337). area(poland, 121). 
pop(s korea, 335). area(s korea, 37). 
pop(iran, 320). area(iran, 628). 
pop(ethiopia, 272). area(ethiopia, 350). 
pop(argentina, 251). area(argentina, 1080). 
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Pop-2 : QUERY(N) 

[N is the number of times the test is to be iterated. The strips 

COUNTRY, POPULATION, AREA are initialised with the appropriate data.] 

VARS COUNTRY POPULATION AREA; 
INIT(25)->COUNTRY; 
INIT (2 5 )->POPULATION; 
INIT(25)->AREA; 

FUNCTION DENSITY I; SUBSCR(I,POPULATION)*100/SUBSCR(I,AREA) END; 

FUNCTION QUERY N; 
VARS I Cl C2 Dl D2; 

ERASE(ITEMREADO); 
N+1->N; 
FORALL I 1 1 N; 

IF I=N THEN ERASE(ITEMREADO) CLOSE; 
FORALL Cl 1 1 25; 

DENSITY(C1)->D1; 
FORALL C2 1 1 25; 

DENSITY(C2)->D2; 
IF D1>D2 AND 20*D1<21*D2 AND I=N 

THEN PR([% SUBSCR(C1,COUNTRY),D1, 

SUBSCR(C2,COUNTRY),D2 %]);NL(1) 
CLOSE 

CLOSE 

CLOSE 
CLOSE 

END; 
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