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Abstract 

The development of a vaccine to control malaria infections in humans 

requires the identification of antigens which are targets of protective 

immune responses. One potential problem for vaccine development is 

antigenic polymorphism of malaria parasites. Allelic polymorphisms have 

been demonstrated for a number of Plasmodium falciparum antigens, 
including the merozoite surface protein MSP2. 

MSP2 has been classified into two allelic families (serogroups A and B), 

although considerable heterogeneity is known to occur within each 

serogroup. The protein has highly conserved N- and C- terminal 

sequences. There are two central regions of tandemly arranged repeats 

which are flanked by group-specific, dimorphic sequences. Although MSP2 

is considered a candidate for inclusion in a malaria vaccine, this is based 

on rather limited evidence. The aim of this thesis is to examine quantitative 

and qualitative aspects of the serological immune response to MSP2 in a 

population of malaria-exposed individuals from West Africa. 

Recombinant MSP2 antigens, produced using pGEX plasmid expression 

vectors to direct the synthesis of MSP2 in Escherichia co/i as fusions with 
glutathione S-transferase, were used to determine the presence of serum 

antibodies by enzyme-linked immunosorbent assay. These recombinant 

antigens include full length proteins of serogroup A and B, and fragments 

representing the conserved, group-specific or repeat regions of the 

molecule. The antigenic integrity of the recombinant proteins was checked 

by mouse immunisations and testing of immune mouse serum for 

recognition of native MSP2 by immunofluorescence and immunoblot. 

The questions addressed in this thesis are whether MSP2 is immunogenic 

during natural infection with P.falciparum, whether amino acid 
polymorphism of MSP2 gives rise to antigenic polymorphism, and whether 

the immune recognition of MSP2 is variant-specific. In addition, the 

dynamics of acquisition of antibody to MSP2 with age, the lgG subclass 

specificity of anti-MSP2 antibodies and the association of MSP2-specific 

antibodies with protection against malaria infection have been investigated. 

MSP2 was found to be highly immunogenic, with high titre antibody present 

even in individuals known to have experienced only one episode of 

malaria. The antibody response is directed almost exclusively towards the 

dimorphic and polymorphic regions of MSP2 and antibodies to serogroups 

A and B do not cross-react. The acquisition of immunity to MSP2 is age- 



dependent, with the prevalence of anti-MSP2 antibodies and recognition of 

MSP2 variants increasing with age. Non-responsiveness does not appear 

to be genetically determined. Prospective longitudinal studies indicate that 

antibodies to MSP2 are associated with a reduced risk of clinical malaria. 

Qualitative differences in the antibody response were observed between 

children and adults; anti-MSP2 antibodies in adults are predominantly lgG3 

whilst children also possess IgGi antibodies. The expression of the lgG3 

subclass increases with age among MSP2 seropositive individuals. 
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1. INTRODUCTION 

1.1 Malaria 
Human malaria is caused by one of four species of Plasmodium; 

P. falciparum, P. vivax, P. malariae and P. ovale. P. falciparum and P. vivax are 

the most widely distributed and both cause a vast amount of human 

suffering. P.falciparum is the most virulent and responsible for more than 

95% of malaria deaths worldwide. 

Accurate information on the global incidence of malaria is difficult to obtain. 

However it is estimated that worldwide the disease threatens 2200 million 

people, approximately 40% of the world's population [355], with 300-500 

million clinical cases each year [356]. Thus, malaria constitutes a major 

threat to health and blocks the path to economic development for 

individuals, communities and nations. Countries in tropical Africa are 

estimated to account for greater than 80% of all clinical cases and more 

than 90% of all parasite carriers [355]. In Africa south of the Sahara, it has 

been estimated that 270-480 million clinical cases may occur each year 

[356]. 

Children are particularly at risk; malaria being one of the major killers of 

children in tropical Africa, taking the life of one out of 20 children before the 

age of 5 years [355]. It afflicts the poor and underprivileged most severely, 

sapping productivity and causing chronic illhealth. 

Social, political and economic changes all contribute to the worsening 

malaria problem, particularly through population movements and 

ecological disturbances. Construction and environmental change brought 

about by 'development" often creates environments favourable for malaria 

transmission, exacerbating the existing problem and opening the way for 

devastating epidemics in areas which were previously malaria-free. 

Yet malaria should not be considered an inevitable burden. A vast amount 

of knowledge about the parasite and its control has been acquired over the 

years. In most endemic countries, the goal of malaria control is to prevent 

mortality and reduce morbidity and the socio-economic losses provoked by 

the disease. The goal in malaria-free areas is to maintain that freedom 

[355]. 

The parasite has a complex life cycle (figure 1.1), alternating between 

vertebrate and arthropod hosts. Infection in man is initiated by an infected 



Anopheles mosquito injecting sporozoites into the bloodstream whilst 

feeding. The sporozoites remain extracellular for less than 30 minutes 

during migration to the liver, where they invade hepatocytes. Inside the 

hepatocytes the parasite undergoes a phase of maturation and asexual 

reproduction (schizogony) to produce pre-erythrocytic schizonts. After a 

number of days (depending on the species), up to 30,000 merozoites are 

released into the blood. The merozoites rapidly enter erythrocytes and 

begin the erythrocytic schizogony during which the merozoite develops 

from the ring stage through the trophozoite to the mature schizont 

containing 8-24 daughter merozoites which, after the red cell ruptures will 

initiate a subsequent intraerythrocytic cycle. The erythrocytic cycle of 

schizogony is repeated, leading to a progressive parasitaemia. 

The release of merozoites into the blood stream causes many of the 

symptoms of malaria. In the early stages of infection, fevers show no 

characteristic pattern. However, as the development of the parasites in 

erythrocytes becomes synchronous, typical febrile periodicity occurs [320]. 

After several generations of merozoites have been produced, a small 

proportion give rise to sexually differentiated forms - gametocytes. These 

stages are infective for the mosquito and when ingested during feeding 

emerge from the erythrocyte to form gametes. After fertilisation, the zygote 

develops into an ookinete that invades the midgut wall, maturing into an 

oocyst. The parasite then undergoes a process known as sporogony that 

produces thousands of sporozoites which, when released into the insect's 

haemocoel, invade the salivary glands ready for inoculation into the next 
host. 



SPOROZOITES 

ookiete 

zygote 
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IN 

MEROZOITES 

GAMETOCYTES 

Figure 1.1: Life cycle of the malaria parasite in man. The parasite is haploid 

throughout the human cycle: sexual mating occurs in the mosquito. All clinical 

symptoms are associated with the erythrocytic stage, and fever occurs when 

large numbers of schizonts rupture. The duration of the erythrocytic cycle is 48 

hours for all the human malaria parasites, except for P.malariae, which has a 
72 hour cycle. 

(1) - pre-erythrocytic stages; (2) - erythrocytic stages; (3) - sexual stages. 

Reproduced, with permission, from the Annual Review of Immunology, volume 
6, c.1988, by Annual Reviews Inc. 



In non-immune individuals parasitaemia is accompanied by illness. Most 

patients exhibit some combination of fever, chills, myalgia, headache, 

nausea, vomiting and diarrhoea. The symptoms of falciparum malaria tend 

to be more severe than those caused by other Plasmodium species, and if 
left untreated, are frequently fatal. In tropical Africa, cerebral malaria and 

severe anaemia are responsible for most deaths from malaria [130]. 

Cerebral malaria may begin slowly or suddenly after the initial onset of 

symptoms. Headache and drowsiness are succeeded by a comatose state, 

due, in part, to the sequestration of parasitised erythrocytes in the 

capillaries of the brain. Long term residents of malaria endemic areas 

gradually acquire resistance to clinical symptoms, and infections in adults 

are usually asymptomatic or accompanied by mild symptoms of headache 

and malaise [268]. However, during pregnancy women become 

susceptible to malaria, with increased frequency and severity of infection 
[216]. 

The clinical-pathological picture of malaria infection is also complex. While 

the malaria parasite initiates the disease process, subsequent events 

depend, to some extent, on many internal and external factors, including 

functional cellular and humoral immune responses as well as the 
nutritional state of the host [37, 130]. 

1.2 Naturally acquired immunity to malaria 

1.2.1 Epidemiological evidence for the acquisition of immunity to malaria: 

Evidence for man's capacity to acquire immunity towards malaria comes 

from epidemiological studies which demonstrated that the clinical and 

parasitological manifestations of the disease decline as age advances in 

residents of malaria endemic areas [91, 210, 213]. 

Pen-natal malaria is a rare event. The persistence of erythrocytic foetal 

haemoglobin and deficiency of p-aminobenzoic acid as a consequence of 

breast feeding contribute, at least in part, to the resistance operating in 

neonates and infants [62, 213]. In studies in The Gambia, the clinical impact 

of malaria then increased as age progressed [128, 210]. Episodes of dense 

parasitaemia accompanied by severe clinical illness developed and the 

disease appeared to reach peak prevalence in the second year of life. 
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Children gradually show clinical improvement, despite the persistence of 

parasitaemia. Parasite density and prevalence steadily decrease with age. 

Complete sterile immunity is uncommon; adults show transient low levels of 

parasitaemia in the absence of clinical symptoms [210]. 

The precise timing of these events depends on local patterns of malaria 

transmission and endemicity [268]. Nonetheless, in highly endemic areas, it 

is the young child who is principally affected by malaria and in the older 

child an acquired immunity affords effective protection against the disease 

[210, 211]. 

During pregnancy, susceptibility to infection and the severity of the clinical 

manifestations is determined by the level of pre-pregnancy immunity and 

parity [216]. In areas of high endemicity, women acquire a significant 

protective immunity, therefore the effects of malaria on the mother and her 

foetus are, in general, less severe than in areas of low malaria 

transmission. Regardless of endemicity, maternal malaria causes severe 

anaemia, significantly contributing to maternal morbidity. 

1.2.2 Specific immune responses to malaria infection: 

Immunity to malaria operates at different levels - stage-specific antiparasite 

immunity, antitoxic immunity and transmission blocking immunity - involving 

both humoral and cellular mechanisms [268]. 

The role of antibodies in resistance to malaria is well established. The 

ability of antibodies to confer protection against P.falciparum is apparent 
from the protection afforded to neonates and infants by maternally derived 

antibodies [92]. Field studies have shown that antibodies to asexual 

erythrocytic parasites are high in the blood of infants born to immune 

mothers and that these levels fall in the weeks following birth [209, 212, 

213]. Levels remain low for some time but then gradually rise throughout 

childhood and into adolescence. This pattern parallels clinical markers 

(such as the decrease in spleen and liver size, decrease in severity and 

frequency of clinical attacks, and diminished parasite densities) of 

gradually increasing resistance [210]. Furthermore, classical passive 

transfer experiments, in which immune serum or purified Ig reduced 

parasitaemias in children with acute disease [62, 63, 92, 280], lend support 

to the role of antibodies in protection against malaria. However, the 
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correlation between total anti-malarial antibody and protective immunity is 

poor, indicating that many antibodies may have no protective effect [200, 

210, 328]. 

There are several mechanisms by which antibodies could exert a protective 

effect. The briefly extracellular forms, sporozoites, merozoites and gametes, 

each present an array of stage-specific surface antigens and 

ligands/receptors which play a crucial role in the transfer of Plasmodium 

from one intracellular environment to another. Antibody could bind to the 

surface of these extracellular stages blocking the receptors which function 

in invasion or causing the agglutination of free parasites [59-61, 223]. 

Cytophilic antibodies can opsonise parasites for phagocytosis [88, 195]. 

Antibodies against the surface of the infected cells might inhibit parasite 

development inside the cell or inhibit sequestration of the erythrocyte in the 

deep vasculature of the host, thus forcing the parasite to traverse the 

spleen, leading to the clearance of infected erythrocytes from the 

circulation. 

Antibody may mediate parasite destruction through the activation of 

complement leading to lysis of the parasite or by the activation of NK cells 

or macrophages inducing the release of superoxide radicals and nitric 

oxide which facilitate parasite destruction. Finally, antibodies specific for 

the antigens that provoke the production of IL-1 and TNF could reduce the 

toxic effects of infection [189, 317]. 

A common feature of many malaria antigens is regions of repetitive 

sequences. It has been proposed that these may stimulate T-cell-

independent immune responses through the activation of B cells by cross-

linking of surface immunoglobulin [285]. However, such T-independent 

responses are likely to be less efficient than the response induced to 

antigen presented in the context of MHC. 

Naturally acquired immunity to malaria is a complex interaction between 

the humoral and cellular arms of the immune system. Many of the antibody-

dependent mechanisms require cooperation with effector cells, therefore 

an important aspect to consider is the isotype and subclass of the 

antibodies involved [34, 131]. The regulation of which depends on T cells 

and their cytokines to trigger the appropriate Ig class switching 

mechanisms [103, 301]. 
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There is ample evidence from animal models for the role of T cells in 

immunity to malaria [186, 314, 328, 350]; although studies on experimental 

models and in vitro studies at the T cell clone level do support the 

hypothesis of a role for T cells in protection from malaria, they cannot give 

much idea of the real effector mechanisms acting in vivo during infection of 

humans. Murine studies have indicated that I cell-dependent immune 

mechanisms are crucial to the development of effective anti-malarial 

immunity [268, 320]. For example, thymectomised animals fail to clear 

parasites or become immune to reinfection whereas intact animals develop 

a solid, long lasting immunity [320]. Also, protection against malaria can be 

induced in mice following adoptive transfer of immune T cells and antigen-

reactive T cell lines or clones [186, 274, 350]. 

T cells could act through specific or non-specific mechanisms [21, 320]: as 

helper cells for the activation of B cells and secretion of antibody; as 

cytotoxic cells having a direct effect on parasitised cells; in the activation of 

non-specific effector cells and in the production of cytokines that can have a 

direct inhibitory effect on parasite growth [21, 189, 190]. The antigen-

specific effects of T lymphocytes would be predominantly directed at 

hepatic stages since this type of immune attack is dependent on the 

expression of parasite antigen on the cell surface in conjunction with class 

1 MHC proteins (which are not expressed on the surface of human 

erythrocytes) [169]. 

In addition, the spleen plays a crucial role in immunity to malaria [190]. 

Splenectomy in humans can lead to recrudescence of a previously 

subpatent parasitaemia [122]. Controlled studies have shown that splenic 

function significantly alters with malaria infection of humans, such that in a 

malaria-modified spleen the clearance of red cells is enhanced [122]. In the 

enlarged spleen the circulation of blood through the pulp cords is 

increased as is the transit time of red cells [213]. Therefore, the spleen not 

only acts as a tissue involved in the removal of rbc containing inclusions, 

but also provides an intimate environment for the interaction of local 

immune effector cells and parasitised erythrocytes [123]. 

Clinical immunity against severe malaria attacks seems to depend on a 

complex regulation of the immune response than merely on specific 

14 



effector mechanisms, since antiparasitic factors such as TNF, IL-1, IL-6 and 

nitric oxide are also involved in the pathogenesis of malaria and cerebral 

malaria [19, 126, 189, 190, 214, 243, 245]. 

In conclusion, it is true to say that each transitional stage of the parasites' 

development in the vertebrate host presents a potential target for a 

multifactorial immune response (table 1.1). 
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Pre-erythrocytic stages: 

Antibodies blocking hepatocyte invasion by sporozoites [169, 218, 320] 

Direct killing of infected hepatocytes by cytotoxic I lymphocytes (CTL) 

[169, 218, 274, 314] 

Killing via antibody-dependent cellular cytotoxicity (ADCC) [169, 218, 

320] 

Killing through the release of cytokines such as g IFN that induce the 

hepatocyte to produce nitric oxide [169, 218, 314, 320] 

Erythrocytic stages: 

Blocking of merozoite invasion by antibody [42, 60, 114, 224, 238, 320, 

344] 

Agglutination of free merozoites by antibody[59-61, 223, 224, 320] 

Recognition of infected red blood cells (irbc) by antibody, resulting in 

complement-mediated lysis, or inhibition of sequestration [218, 320] 

Opsonisation of free merozoites or irbc by cytophilic antibodies, leading 

to phagocytosis [88, 183, 195] 

ADCC [4,105] 

Cellular cytotoxicity due to the production of toxic substances such as 

cytokines and reactive oxygen and nitrogen radicals [190, 218] 

Reduction of pathology by antibodies neutralising cytokine inducers [19, 

246, 317] 

Sexual stages: 

Antibodies blocking fertilisation [133, 169, 261] 

Antibodies involved in complement-fixing reactions which destroy 

gametes by lysis [46, 47] 

Gamete-specific T cells can block the transmission to the mosquito due 

to the toxic effects of cytokines [218] 

Table 1.1: Possible immune mechanisms against different stages of the 

malaria life cycle 
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1.2.3 Immunosuppressive effects of acute malaria infection: 

Acute malaria infection is thought to reduce the effectiveness of the host's 

immune system. This phenomenon is implied by 1) the increased 

susceptibility to concurrent bacterial and viral infections and 2) infected 

individuals are less likely to respond optimally to vaccination procedures 

[349]. These findings are supported by the observations that children 

receiving malaria prophylaxis are less susceptible to other infectious 

diseases than their unprotected counterparts, and also had better cellular 

responses to malaria antigens [268]. Moreover, the reduction in the overall 

childhood mortality in children receiving the prophylaxis was greater than 

would have been expected simply from prevention of deaths due to malaria 

[268]. However, a paradox exists; from a clinical perspective malaria 

patients appear to be immunocompromised, yet in vitro immunological 
studies show that individuals have malaria-specific cellular and serological 

responses. Although, it is clear that the immune response to malaria is only 

partially effective in controlling reinfection, many of the clinical symptoms of 

malaria infection are associated with the immune response to infection. 

Immunologically, acute infection results in a transient decrease in the 

numbers of circulating I cells and decreased lymphoproliferative and 

cytokine responses of peripheral blood mononuclear cells (PBMC) to 

malaria antigens in vitro [268]. However, rather than this being a direct 

immunosuppressive effect, it has been proposed that cells recognising the 

malaria antigens are absent from the peripheral circulation having homed 

to the spleen, lymph nodes or liver [123, 125, 268]. 

Although acute malaria infection obviously has a profound effect on the 

efficiency of the immune system, the specific immunosuppressive 

mechanisms have not been fully elucidated. Possibilities include the 

suppression of I cells by activated monocytes or macrophages secreting 

prostaglandins or immune inhibiting cytokines like TGF-I3 (transforming 

growth factor), or defects in early events of 1-cell activation and inhibition of 

IL-2 function [320]. Of course, it may be necessary for the host to regulate 

the immune reactions which lead to harmful immunopathological effects. 
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1.3 Development of anti-malaria vaccines 

1.3.1 The need for vaccination: 

An effective vaccine against falciparum malaria would be an important step 

towards improved health in the tropical world, particularly in children in 

Africa [222]. There has been a recent resurgence in the disease due to 

increasing resistance to insecticides, environmental alterations that 

promote transmission (irrigation and timber clearing), movements of people 

into areas of high transmission to find work or avoid war, and the increasing 

inability of developing countries to afford the basic personnel and 

equipment required for malaria control and treatment. Drugs, for 

prophylaxis and treatment of malaria, are also becoming increasingly less 

effective [73]. Resistance to chloroquine is common in nearly all areas 
where P.falciparum is transmitted, and resistance to mefloquine, a more 
recently developed and very promising drug, has already been reported in 

many parts of the world [352, 356]. For these reasons, attention has been 

focused on additional means of control, particularly vaccines. 

There is every reason to believe that vaccination against malaria is 

biologically possible, although there is debate about whether it is always 

desirable and the long term consequences maybe difficult to predict. The 

disease is most severe in young children, pregnant women and non-

immune adults (such as immigrants from non-endemic areas), but with time 

and repeated exposure to the parasite, adults are able develop immunity to 

malaria which confers some degree of protection [210]. Immune individuals 

are generally have fewer and less dense parasitaemias and are less likely 

to suffer illness when parasitaemic and are significantly protected from 
death [210]. 

1.3.2 Strategies for identification of target antigens: 

Immunisation experiments in animals and humans with attenuated 

parasites or crude antigenic preparations have demonstrated that it is 

possible to experimentally induce protective immunity to malaria [56, 57, 

80, 133, 134, 148, 150, 151, 227, 237, 259, 260, 289-291, 351]. However 

such a vaccine strategy would be impractical due to the large amounts of 

parasite material required, the possibility of autoimmune reactions to red 

blood cell components, and the possibility that crude antigenic 

preparations may also contain immunosuppressive factors [236]. For the 
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further development of a vaccine against falciparum malaria it was 

necessary to identify those antigenic components of the parasite which 

induce protective immune responses in the host so that these components 

could be produced synthetically. The development of in vitro parasite 

culture, hybridoma technology and molecular biology has led to the 

identification and characterisation of many P.falciparum proteins. 
Furthermore, the advances made in understanding the mechanisms 

underlying naturally acquired immunity in humans and in experimental 

models have been, and still are, fundamental to malaria vaccine research. 

Potential vaccine antigens have been identified using several strategies: 

proteins which are recognised by malaria immune sera [33, 344]; 

proteins recognised by mAbs which inhibit parasite growth in vitro [102, 
114, 238]; 

surface molecules exposed to the immune system; 

proteins which are crucial for parasite function; 

screening of parasite cDNA or genomic expression libraries with immune 

sera. (Anti-sera raised by immunising mice and rabbits with cloned 

antigens were subsequently used to characterise the P.falciparum proteins 
corresponding to the antigen-positive clone [32, 178, 208]); 

systematic immunisation of monkeys with P.falciparum components 
eluted from SIDS gel and characterisation of the molecules associated with 

protection [234]. 

1.3.3. Expression of synthetic antigens: 

An important step in designing a malaria vaccine is to demonstrate that a 

synthetic form of the antigen (synthetic peptide or recombinant polypeptide) 

confers a degree of immunity similar to that obtained with native antigen. 

Thus it has become critical to identify appropriate methods to produce 

synthetic malaria antigens which are antigenically equivalent to their native 

counterparts. A number of options exist and have been explored for one or 

more malaria antigens. Synthetic oligo-peptides have been evaluated as 

conjugates with immunogenic carrier molecules, as components of novel, 

branched peptide polymers - multiple antigen peptides (MAPs) [135, 229] 

and as polymeric synthetic hybrid proteins [234]. However, synthetic 

peptides generally correspond to sequential (linear) determinants rather 

than conformational determinants which are characteristic of native 
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proteins, and a higher level of protection has been reported for native, 

conformational determinants [49]. 

A large number of malarial antigens, or antigen fragments, have been 

expressed as recombinant polypeptides in E.coli. The antigenic integrity of 

these recombinant polypeptides must be assessed before they are used as 

immunogens. The importance of conformation to protein structure is 

greatest for proteins in which secondary structure is stabilised by multiple 

intrachain disulphide bonds. Eukaryotic expression systems have 

theoretical advantages over ones using E.coli. These are the synthesis of 
recombinant polypeptide via the secretory pathway in a microenvironment 

that promotes appropriate folding and the potential for post-translational 

modifications including glycosylation and processing of foreign eukaryotic 

proteins [49]. A review of the structural features of the antigen can provide 

some insight into which expression systems should be tried first. 

1.3.4 Assessment of potential vaccine antigens: 

Having identified potential candidate antigens and expressed these as 

recombinant polypeptides or synthetic peptides, functional assays are 

required to assess the protective capacity of these molecules. Candidate 

proteins can be evaluated in vitro by the effect of antibody to these proteins 

on cell invasion and parasite growth and assays for cell stimulation by 

proliferation and cytokine production. However, it is apparent that in vitro 
results do not always correlate with in vivo protection [54, 105, 226]. 
Molecules can be assessed in vivo by direct immunisation of rodents and 

monkeys and subsequent challenge or by passive transfer of antigen-

specific antibodies. In addition the correlation of development of immune 

responses to the antigen with the clinical status of an individual after 

natural exposure to malaria should be evaluated. 

However, the correlation between protective immunity in experimental 

hosts and man has yet to be established [34]. Many of these models 

represent host-parasite relationships which could not be sustained under 

conditions of natural transmission. Furthermore, results in one host species 

cannot always be repeated in another. Conclusions drawn from 

immunological experiments with rodent malarias in rats or mice may not 

always be applicable to the human disease because of innate differences 

in host immune response. In many rodent models, unnatural host/parasite 

combinations are used, and depending on this combination infections 
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range from lethal with little or no immunity apparent, to mild, non-lethal 

infections where a solid sterilizing immunity is produced. Neither of these 

two situations is compatible with malaria under conditions of natural 

transmission. Nonetheless, the vast literature on the mouse immune system 

and the many commercially available reagents to study the cells and 

antibodies involved make it an attractive model. Evidence from experiments 

in Aotus monkeys suggests there may be substantial differences between 

Aotus and man since prior splenectomy is required for successful infection 

[34]. Furthermore, the biological properties of infection are different, for 

example drug cure can yield the monkey resistant to reinfection. 

1.3.5 Delivery systems: 

Any vaccine requires an effective delivery system to ensure optimal 

interaction among vaccine epitopes, antigen presenting cells and effector 

cells [169]. A common component of a delivery system is an adjuvant that is 

a non-specific immunopotentiator. This adjuvant must be safe for use in 

humans; at present the choices are aluminium hydroxide (alum) or 

liposomes, lipid spheres that self-assemble in aqueous solution [152, 169]. 

Another approach to the induction of immune responses is to use 

attenuated live vectors, such as Salmonella or Mycobacterium BCG, and 
these may be particularly useful for inducing CTL responses [6, 152, 169]. 

One of the most exciting new developments in vaccinology is the advent of 

nucleic acid vaccines which are attractive because of their relative 

simplicity [345, 346]. A gene encoding a protective antigen is cloned into a 

plasmid construct containing a eukaryotic promoter. This construct is 

usually delivered by injection into the muscle and the gene product 

expressed on the cell surface. The nucleic acid is taken up into the host 

cells, leading to the subsequent specific induction of both humoral and cell-

mediated arms of the immune system. A promising DNA vaccine against 

murine malaria based on the circumsporozoite (CS) protein has been 

developed. High levels of protection were obtained in challenge 

experiments in mice and the vaccine was demonstrated to generate both 

specific antibody and CTL responses [345]. 
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1.3.6 Vaccination strategies: 

There are several vaccine strategies being developed, targeting different 

stages of the life cycle with the aim of either preventing blood stage 

infections or reducing the pathological consequences of infection 

(reviewed by [22, 41, 147, 152, 169, 224, 245, 274]). 

Pre-erythrocytic stage vaccines 

The first opportunity to stop infection is during the parasite's brief migration 

through the circulation to the liver. A vaccine against sporozoites would, if 

effective, prime the human immune system to kill sporozoites injected by 

the mosquito and thus prevent the development of the subsequent stages 

responsible for the disease and transmission of the infection to others. 

Such a vaccine, if successful, would be truly prophylactic [232]. However, 

partial immunity to sporozoites would probably have little effect on the 

course of infection; any sporozoites that survive may cause a fully virulent 

infection [224]. 

Sporozoite proteins - 

The main antigens involved in protection against extracellular sporozoites 

are the CS proteins, part of a family of proteins covering the whole surface 

membrane of the parasite [77, 232], and the sporozoite surface-associated 

protein (SSP2). Passive transfer of monoclonal antibody, but not polyclonal 
antibody, specific for the P.yoelii CS protein protects mice from challenge 
[52]. The first synthetic malaria vaccine to be given to humans was derived 

from the immunodominant repeat sequence of P.falciparum CS protein 
[143], however, it was poorly immunogenic with only one out of 17 

volunteers being completely protected from sporozoite challenge [143]. A 

second CS protein vaccine, R32tet32, was also ineffective [348]; anti-

R32tet32 antibodies were not protective against naturally occurring malaria 
in Thailand [348]. 

Liver stage proteins - 

Protective immunity has been achieved in hosts ranging from birds to man 

by repeated inoculation with irradiated sporozoites [56, 57, 134, 232, 259, 

260] and this immunity probably operates mainly at the liver [314]. Induction 

of sporozoite-induced CTL responses may prove to be an effective strategy 

[274]. After immunisation with SSP2, protection from subsequent challenge 

was CD8 T-cell dependent in mice [169]. Immunisation with a synthetic 

peptide epitope containing a sequence from a P.berghei liver-stage 
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protein, LSA2, protects mice against sporozoite challenge by eliciting CTL 

capable of killing cultured exoerythrocytic stages [314]. Liver stages share 

a number of antigens with both the sporozoite and blood stages, as well as 

synthesising stage-specific antigens. Many more targets of protective 

immunity are likely to emerge and it is hoped that some of these will not 

suffer from the problems of variation and non-responsiveness associated 

with the CS protein. 

It was recently discovered that naturally exposed West Africans produced 

HLA-restricted cytotoxic T cells that recognised a nine amino acid peptide 

from the liver stage-specific antigen LSA1 [132] in association with HLA 

Bw53 [145]. Studies in The Gambia suggest a link between the MHC class 

1 molecule HLA Bw53 and protection from severe malaria [144]. 

If a vaccine is designed that copies natural immunity it may not be 

necessary to focus on lymphocyte stimulation because malaria-specific 

lymphocytes are present in non-exposed people at high frequency [121]; it 

is speculated that these may have arisen from cross-reacting microbial 

stimuli [121, 125], but that they may not be appropriate protective 

immunogens as naive people are not protected against malaria. 

Erythrocytic stage vaccines 

Proliferation of the asexual blood stages of the parasite life cycle is 

responsible for morbidity and mortality, particularly in children, and 

therefore is an obvious target for vaccine intervention. The aim would be to 

immunise the unprotected child, and, thereby reduce the pathological 

effects although not necessarily preventing infection. Hence, a vaccine 

targeting the asexual blood stages may have relatively little effect on the 

development of the sexual stages or transmission. Although, in 

evolutionary terms, there may be pressure to increase gametocyte 

production in vaccinees to ensure successful transmission to the mosquito. 

Protection from malaria can be artificially induced in animals by 

immunisation with asexual blood stage parasite preparations [80, 148, 150, 

151, 227, 237, 260, 289-291, 351]. Furthermore, mAbs, human Ig and 

monkey immune serum specific for the erythrocytic stages of the parasite 
can inhibit P.falciparum growth in vitro [33, 45, 238]. 

The blood stage malaria parasites are antigenically complex, but individual 

antigens have been identified [7-9, 141, 150, 155, 177, 179] and some 

potential vaccine candidates are described in section 1.4. 
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Another idea is to vaccinate against the disease rather than the parasite. 

Anti-disease vaccines may prevent the serious pathological complications 

of infection. It could be argued that antigenic variation represents the 

parasites adaptation to the host immune response and should therefore be 

a feature of those antigens that induce anti-parasitic immune responses. 

There may be less reason for any disease-inducing antigens to vary since 

this would increase the chance of host mortality, which would be 

counterproductive for the parasite. Disease is caused by the release into 

the blood stream of parasite products that induce responses in the host that 

cause the symptoms associated with malaria. Vaccination could induce 

neutralising antibodies to these parasite products [189]. In addition, 

vaccines directed against virulence mechanisms, in particular 

cytoadherence molecules, may be specifically effective in reducing the 

severity of disease associated with P.falciparum infection (see section 1.4) 

Sexual stage vaccine 

The aim of a transmission blocking vaccine is to arrest the sexual 

development of the parasite in the mosquito and to reduce or abolish 

malaria transmission levels. This altruistic approach would attempt to 

control the spread of disease within the community as a whole, but 

individual vaccinees would not be protected should they become infected, 

therefore this strategy would probably be used in combination with other 
types of vaccine. 

During the 24 hour period of development within the lumen of the mosquito 

midgut, the parasites are extracellular and in continuous contact with 

components of the blood meal derived from their vertebrate hosts and 

therefore accessible to antibodies and other immunological agents [47]. 

Studies in avian and primate models have demonstrated that immunisation 

with extracellular gametes totally suppresses the infectivity to the mosquito 

of the subsequent blood meal [133]. It appears that inhibitory agents, 

ingested at the same time as the bloodmeal, react with target antigens 

located on the surface of gametes, blocking fertilisation or on zygotes and 

ookinetes, and inhibiting subsequent development in the mosquito midgut. 

mAbs, with transmission blocking activity, have been used to identify the 

antigens important for this transmission blocking immunity [46, 47, 261]: 

Pfs230 and Pfs48/45 expressed on gametocytes and extracellular gametes 

[46, 47, 170, 261] and Pfs25 expressed on the surface of zygote and 
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ookinete forms [17, 46, 47, 170, 171]. These antigens have been shown to 

have limited immunogenicity in individuals naturally exposed to malaria 

[127, 170, 267]. Recombinant Pfs25 protein of P.falciparum elicits 

transmission blocking immunity in experimental animals [17], but is not 

naturally immunogenic in humans because it is not expressed until the 

parasite is inside the mosquito. 

An effective transmission blocking vaccine would be useful for dealing with 

either drug-resistant parasites or potential variants selected by partially 

effective pre-erythrocytic stage vaccines or asexual blood-stage vaccines 

[97, 222, 225]. 

1.3.7 Multicomponent vaccines (SPf66): 

In practice, the most desirable vaccine against malaria may be one that 

primes both cellular and humoral immune reponses to a variety of antigens 

from various parasite strains and life cycle stages [191]. 

In 1987, Patarroyo and colleagues in Colombia, synthesised and 

conducted successful preliminary test of a falciparum malaria vaccine 

SPf66, a synthetic hybrid polymer of peptides from asexual blood stage 

proteins linked to sequences from the CS protein of P.falciparum [234]. 
SPf66 was tested in a randomised double-blind placebo-controlled trial in 

Colombia with 39% protective efficacy [233]. Since then there have been 

independent trials in Tanzania, Thailand and The Gambia, where malaria 

transmission is more intense. Results from the trial in Tanzania have 

recently been reported in the Lancet [5]. The estimated efficacy was 31% 

(95% confidence interval: 0-52%), showing a reduction in the risk of clinical 

malaria among children exposed to intense P.falciparum transmission. 
However, for most infectious diseases, a vaccine that cuts cases by only 

one third would be deemed insufficient [36, 353]. 

In conclusion, the discovery and characterisation of the antigens, the 

development of improved delivery systems and the increasingly refined 

understanding of the immunology of malaria, all give good reason to be 

optimistic about the future of malaria vaccine development [169]. 
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1.4 Asexual blood stage antigens - vaccine candidates 

Vaccines derived from asexual blood stage antigens are of special interest 

because they mimic the development of natural immunity in children living 

in endemic areas and may induce long-term immunity due to natural 

boosting of the immune response following periodic exposure to infection 

[5]. The multiplication of the asexual blood forms of plasmodia is 

responsible for the pathological manifestations in man. During this stage of 

infection the parasite develops within the host erythrocyte into three 

successive stages - rings, trophozoites and schizonts (figure 1.2) - antigen 

expression differing during the cycle. Mature schizonts rupture the 

erythrocyte releasing merozoites which, after a short extracellular period, 

invade new erythrocytes. The wide array of structures associated with 

merozoite invasion increases the opportunity for identifying a malaria 

protein(s) that will induce protective immunity. Initially any part of the 

merozoite attaches to the erythrocyte and reorients itself so that its apical 

end toward the erythrocyte membrane. Before or during invasion, the 

contents of the apical organelles are released onto the erythrocyte 

membrane forming a vacuole. Once inside the erythrocyte, the parasite is 

still visible to the immune system due to antigenic modifications of the 

infected red blood cell membrane. Since these antigens are accessible to 

immune recognition for a prolonged period of time (compared to merozoite 

surface antigens), they are also excellent targets for immune intervention. 

The feasibility of a blood-stage based vaccine has been clearly 

demonstrated. A high degree of protection can be induced in monkeys by 
immunisation with Plasmodium schizont and merozoite preparations [227, 
237, 260, 289-291, 351]. However, this is an impractical strategy. 

A crucial step in the development of a synthetic asexual blood stage 

vaccine against malaria is to identify which of the many asexual blood 

stage proteins recognised by the host immune system are targets of 

protective immune responses (figure 1.2) [7]. The main target antigens are 

1) proteins accessible at the time of schizont rupture, merozoite release 

and erythrocyte invasion, such as proteins on the merozoite surface, in the 

secretory apical complex and the parasitophorous vacuole; 2) proteins on 

the surface of the infected erythrocyte which may be involved in 

cytoadherence, rosette formation or metabolism; 3) intracellular 

components that are released during parasite development or destruction. 
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Many of these antigens are highly polymorphic and it is uncertain to what 

extent the diversity in these antigens will frustrate attempts to use them to 

induce protective immune responses. 
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1.4.1 Antigens associated with the merozoite/schizont 

MSP1: 

The major merozoite surface protein MSP1 (MSA1, PMMSA, gplgO) is 

considered a leading candidate for inclusion in a vaccine directed against 

the asexual blood stage. 

MSP1 is synthesised during schizogony and is expressed as a major 

component of the merozoite surface in both hepatic and erythrocytic stages 

[149]. The high molecular weight molecule, which ranges from 180-25OkDa 

depending on the species and strain, has been shown in P.falciparum to be 
processed in at least two steps [28, 70, 86, 146, 149-151, 204]. First it is 

cleaved to several N-terminal fragments and a 42-kDa C-terminal fragment, 

and secondarily the 42kDa region is further cleaved into a 33-kDa and a 

membrane bound C-terminal 19-kDa fragment. The various N-terminal 

processing fragments initially remain in a complex on the cell surface and 

are eventually released into the plasma immediately before merozoite 

reinvasion [204]. The molecule is antigenically complex; the alignment of 

MSP1 sequences from many different isolates reveals 17 blocks of 

sequence that are either highly conserved, semi-conserved or variable 

[315] and there is marked inter-isolate antigenic diversity [206]. Additional 

diversity is generated by intragenic recombination [292]. The most 

conserved region is the 19-kDa fragment; it contains 12 cysteine residues 

which are completely conserved between the species with the 

characteristic spacing of EGF-like motifs [70, 193]. The 19kDa fragment is 

retained by the merozoite during erythrocyte invasion, and it is still present 

on the early ring stage of the next cycle of intraerythrocytic development 

[28]. These observation suggest that the 19kDa fragment, as well as the 

processing steps leading to it, may play an essential role in the reinvasion 

process and thus would be prime targets of vaccine induced immunity. 

Partial protection against P.falciparum challenge in monkeys has been 

achieved by immunisation with recombinant MSP1 [151] and complete 

protection with protein purified from the parasite [290]. In addition, mono-

and polyclonal antibodies to MSP1 inhibit parasite invasion in vitro [28, 50]. 
The 19kDa fragment is the target of invasion-inhibitory antibodies [28] 

[51]and the correct conformation of the disulphide bonds within the 2 EGF-

like domains is essential for recognition by mAbs and human serum [38, 

93]; this has been achieved in both eukaryotic and prokaryotic expression 
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systems [38, 51, 93]. Antibodies to MSP1 are prevalent in sera ol 

individuals exposed to recurrent infection with P.falciparum [93, 115, 228, 

266, 270, 324]. The acquisition of antibodies is age-dependent [115] and 

naturally acquired cellular and humoral responses to MSP1 are associated 

with reduced malaria morbidity [228, 266]. Taken together, these 

observations indicate that MSP1 is a target of protective immunity and that 

the conserved 19 kDa region may be particularly important. 

MSP2: 

A second merozoite surface antigen, MSP2, is considered a candidate for 

inclusion in a vaccine against falciparum malaria. It has not been studied 

as extensively as MSP1. The characteristics of MSP2 and its immune 

recognition are described in detail in section 1.5. 

The apical membrane antigen, Pf83/AMA-1, is an integral membrane 

protein that is initially associated with the apical organelles of the merozoite 

and then the merozoite surface [75, 230, 242]. Pf83/AMA-1 is post 

synthetically processed rapidly by cleavage of an N-terminal peptide to a 

66kDa molecule [230]. Although AMA-1 lacks the repetitive sequences 

associated with other merozoite antigens of P.falciparum, there is limited 
polymorphism among the sequences of different AMA-1 alleles [242, 321]. 

Some regions of the molecule are well conserved; in particular, AMA-1 

contains 16 cysteine residues which are conserved within the genus and 

the intramolecular disulphide bonds are associated with a specific 

structural conformation important for immunogenicity [65, 81]. 

Characterisation of the P.knowlesi AMA-1 homologue implied that the 
protein may have a receptor function, as Fab fragments from AMA-1 

specific mAbs inhibited invasion of merozoites in vitro [322]. AMA-1 is 
considered a potential target for vaccine induced immune responses. The 

location of AMA-1 makes it accessible for immune recognition. Strong 

protective responses were induced in rhesus monkeys by immunisation 
with the P.knowlesi AMA-1 homologue in combination with exposure to the 

parasite [82]. Also, recombinant AMA-1 produced in baculovirus-infected 

insect cells has completely protected monkeys against challenge with 

simian parasites [65]. In addition, there is a high prevalence of antibodies to 

AMA-1 in individuals from malaria endemic areas and the.acquisition of 
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these antibodies is age-dependent [323], although no correlation was 

observed between AMA-1 antibodies and parasite density or fever. 

EBA-i75: 

A 175kDa erythrocyte binding antigen (EBA-175) which is thought to act as 

a ligand for attachment of merozoites to specific receptors on the 

erythrocytes [169], is another vaccine candidate antigen. The gene 

encoding the molecule has been sequenced, and parts of that sequence 

were believed to encode B cell epitopes. These were synthesised and 

used to immunise rabbits [292]. The hyperimmune serum reduced 

merozoite invasion of erythrocytes in vitro by 80% and inhibited binding of 

purified native EBA-175 to erythrocytes [292]. The protein appears to be 

antigenically conserved among the strains of parasites studied so far [292]. 

Parasite molecules contained in the apical membrane complex of the 

merozoites are believed to play a crucial role in invasion. The major 

organelles that make up the apical complex are the rhoptries, membrane-

bound electron dense structures which appear to discharge their contents 

at the time of schizont rupture and on the invasion of erythrocytes [263]. 

RAP-1 is a non-polymorphic multi-component antigen [262, 263]. The 

complex is recognised by human immune serum, mAbs specific for the 
P.falciparum RAP-1 can inhibit parasite growth in vitro [155, 286] and 
immunisation with this protein complex protects against infection [262]. 

1.4.2 Antigens associated with the surface of the infected erythrocytes 

Erythrocytes containing mature trophozoites and schizonts adhere through 

knobs to endothelial cells lining the venules in deep tissues. This 

cytoadherence of parasitised erythrocytes prevents their passage through 

the spleen and their eventual destruction in this organ. Because 

cytoadherence requires recognition and attachment, a vaccine that induces 

antibodies to the components on the parasitised erythrocytes required for 

endothelial cell attachment could eliminate the adherence. 

PfE M P1 (Plasmodium falciparum-infected erythrocyte membrane protein 
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Cytoadherence can be inhibited by antisera in a strain specific manner 

[157, 198] but the erythrocytes also express shared determinants. 

Longitudinal analysis of the recognition of the parasite-dependent red 

blood cell neoantigens (PDN) suggested a protective effect of anti-PDN 

antibodies [200]. However, the cytoadherence phenotype appears to 

display considerable antigenic variation [273]. The main candidates for the 

parasite-derived ligands that mediate cytoadherence are represented by 

the variably sized (250-400kDa) group of proteins expressed on the 

surface of the P.falciparum-infected erythrocytes and collectively 
designated PfEMP1[153]. Antigenically distinct forms of PfEMP1 occur, 

generated by a mechanism of antigenic variation [25, 272, 273]. PfEMP1 
appears to be the target antigen for naturally acquired antibodies that 

agglutinate infected rbc and inhibit cytoadherence [157, 198]. Isolation of 

the PfEMP1 gene will open the door to a molecular analysis of antigenic 

variation and is likely to greatly aid the development of anti-malarial 

vaccines. 

Pf 1 55/RESA: 

A well characterised antigen Pf155/RESA (ring-infected erythrocyte surface 

antigen) is present in dense granule organelles of merozoites and 

transferred to the cytoskeleton of newly invaded red cells. RESA, which 

does not exhibit antigenic heterogeneity among different isolates of 
P.falciparum, contains 2 blocks of tandem repeats encoding 

immunodominant B cell epitopes [177]. Interestingly, the antibodies 

directed against these repeat regions cross-react with at least six other 

asexual stage components [239]. Antibodies to RESA inhibit invasion in 

vitro [23, 344] and one study has shown that animals were partially 

protected against blood stage challenge by immunisation with a 
recombinant protein expressed in E.coli [64]. However, more recent primate 
immunisation studies have been less convincing [147]. 

In naturally exposed populations, there is an association between 

increasing titres to RESA and decreasing parasitaemia [341] and with 

resistance to high parasitaemia [265]. Further studies confirmed this but 

also showed that the presence of antibodies binding to peptides containing 

B cell epitopes was associated with susceptibility to clinical attacks of 

malaria [265], however the association between antibody and disease may 

reflect antibody boosting due to the current infection. In a cross sectional 
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study of Liberian adults [240], an association was observed between 

Antibodies binding to the 3' repeat region and reduced parasite density. A 

recent study in Papua New Guinea, found that adults having high antibody 

concentration to RESA were less likely to be parasitaemic [3]. 

Rosettins: 

Distinct from cytoadherence to endothelial cells is the phenomenon of 

rosetting - the binding of uninfected erythrocytes to circulating erythrocytes 

infected with mature parasites. It has been suggested that blockage of the 

cerebral vessels is due to adhesion of irbc to the endothelial and 

concomitant rosetting [342]. In studies on children from The Gambia, 

parasites from cerebral malaria patients had a significantly higher rosetting 

rate than did those from patients with uncomplicated P.falciparum malaria. 
Anti-rosetting antibodies have been found to hinder rosette formation in 

vitro and have been implicated in protection against severe malaria [342]. 

The surface of the infected erythrocytes is covered with minute electron-

dense excrescences called knobs. After being transported from the internal 

parasite, antigens involved in the binding to other cells are thought to be 

concentrated at the knobs and subsequently exposed to the exterior of the 

erythrocyte membrane. Potential rosetting ligands have been identified on 

the surface of irbc. These "rosettins' are of variable size (22-28 kDa) and 

can induce strain-specific rosette-disruptive antibodies [342]. 

1.4.3 Soluble antigens associated with schizont rupture 

Parasitised rbc rupture allows merozoite release and invasion of new 

erythrocytes. Since prbc development in vivo is synchronous, large 
amounts of prbc-derived lipids, glycolipids and glycoproteins are released 

into the plasma within a relatively short period of time. These elicit host 

responses that lead to the symptoms of malaria infection, particularly fever. 

It has been proposed that vaccine-induced antibodies specific for these 

molecules could lead to immune-mediated removal of these antigens 

without inducing the cascade of undesired host responses [190, 245]. Heat-

stable exoantigens in the supernatants of blood-stage parasite cultures 

induce the release of TNF in vitro from activated macrophages and behave 
like toxins in vivo. Mice immunised with the antigens are protected from the 

toxic effect and their serum specifically blocks the ability of the antigens to 
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stimulate the production of TNF [19, 317]. Thus vaccination with these 

exoantigens might provide a means of protection against the clinical effects 

of malaria and of generating anti-disease immunity by reducing cytokine 

production. Evidence suggests that the active moiety contains an 

inositophospholipid structure, possibly related to the 

glycophosphatidylinositol (GPI) anchors on the two major merozoite 

surface antigens and other plasmodial proteins [190]. Glycolipids induce 

the production of T-independent antibodies that are capable of neutralising 

this biological activity of TNF [19, 317]. 

At least seven exoantigens have been identified and it may be significant 

that most children in The Gambia do not develop precipitating antibody 

against one of them, Ag7, until they are about 4 years old [158]. This is 

about the time that they develop some immunity to the clinical 

manifestations of malaria. Riley et a! [269] examined the association 

between malaria morbidity and cellular and humoral immune responses to 

these soluble glycoprotein exoantigens in a longitudinal prospective study 

of semi-immune children in The Gambia. The presence of antibody to Ag2 

was more prevalent in children with asymptomatic malaria than in children 

with confirmed clinical malaria, suggesting that these antibodies may be 

able to inhibit parasite multiplication and consequently control the clinical 

symptoms of malaria infection. 
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1,5 Merozoite surface protein 2 (MSP2) 

1.5.1 Characteristics of MSP2: 

The P.falciparum merozoite surface protein, MSP2, is considered a 

candidate for inclusion in a vaccine against falciparum malaria. MSP2 was 

independently identified by several laboratories and is also known as gp56 

[310], GYMSSA [254], MSA2 [282, 297], 46000 dalton antigen [220], QF1 22 

[101], GP3 [110] and 46-53Kda antigen [55]. MSP2 is an integral 

membrane glycosylated protein with an observed size on electrophoretic 

migration varying from 35 to 56 kDa. The molecule does not exhibit 

conformational properties dependent on intrachain disulphide bridging - 

there is no significant shift in migration of the protein under reducing and 

non-reducing conditions [142, 220]. Unlike MSP1, there is proteolytic 

cleavage of the protein [297]. 

1.5.2 Location of MSP2: 

MSP2 has been demonstrated in trophozoites, "segmenters", schizonts, 

and isolated merozoites by immunoblotting using either poly- or 

monoclonal antibodies [55, 101, 220, 254, 297, 310], by immuno-EM [55, 

101, 220, 310] and by IFA [55, 101, 297]. These observations are consistent 

with observation that MSP2-mRNA transcription begins in young 

trophozoites and reaches the highest levels during the transition from 

trophozoites to schizonts [18]. MSP2 has been detected on the outer 

merozoite surface by surface-iodination [142] and mAb-labelling - giving a 

grape-like fluorescence pattern characteristic of antibody binding to the 

merozoite surface [101, 254]. 

After erythrocyte invasion, the protein is not detected [55, 254] or is 

detected in low quantities in the new ring stages [220, 297]. This indicates 

that the molecule is completely or partially lost during invasion, and thus 

possibly suggests a role for MSP2 in attachment to the erythrocyte. 

1.5.3 Structural characteristics of MSP2: 

A striking structural feature of MSP2 is its high level of variability. 

Characterisation of the protein by restriction-fragment length polymorphism 

(RFLP) analysis [108], hybridisation studies [201, 217, 231, 250, 304], 

serological analysis with mAbs [66, 67, 101, 109] and DNA sequencing 

[109, 201-203, 250, 256, 304] has shown that MSP2 is a highly 
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polymorphic protein. From this information, MSP2 has been classified into 

two allelic families: serogroup A (3D7/CAMP) and serogroup B (FCQ-27) 

[109, 202, 203, 297-299, 304, 321]. Sequencing of the gene provides an 

absolute means of examining the diversity of MSP2 and studies comparing 

information obtained on size and RFLP have shown that a considerable 

amount of microheterogeneity was evident once isolates were sequenced 

[201, 250]. Alignment of the many MSP2 sequences shows the 3' and 5' 

ends of the gene to be highly conserved, whereas a large central region is 

variable [109, 201-203, 250, 297-299, 304, 321] (figure 1.3). The amino-

and carboxy-termini, 43 and 74 residues respectively, are conserved 

among all isolates; 3 amino acid substitutions have been reported in the C-

terminus [321]. The central region contains two tandemly repeated 

sequences, Ri and R2, flanked by serogroup specific sequences. Both the 

repetitive and non-repetitive sequences exhibit a dimorphism; however, the 

non-repetitive sequences define the two basic, prototypic allelic forms and 

are highly conserved within each serogroup, showing limited conservative 

substitutions [321] and a deletion permissive area [109, 321] (figure 1.3). 

The Ri repeats of serogroup A consist of 1 to 13 copies of glycine-, serine-

and alanine-rich sequences containing between 4 and 10 residues. 

Variable repeat units can occur within one isolate and in different isolates 

(for examples see figure 1.3). Downstream there is a second repeat unit 

(R2) which consists of 3 alternative codons for the amino acid threonine 

[299]. Subfamilies of serogroup A exist, defined by the presence or 

absence of short regions within the sequences flanking the polymorphic 

domain [202] (figure 1.3) and reactivity with serogroup A specific mAbs [66, 
67, 109]. 

The corresponding repeat regions in serogroup B are unrelated to those of 

serogroup A, consisting of 32 and 12 amino acids respectively. These 

repeats display less sequence polymorphism than the serogroup A 

repeats, but occur in varying numbers. Isolates have been sequenced 

which lack the 1 2-mers altogether [201, 250, 257]. The permissiveness for 

variation in size is limited; changes in repeat number are compensated for 

by deletions or insertions elsewhere in the variable region. 

Despite the extensive differences between the serogroups, there is a 

striking conservation of the overall amino acid composition, net charge and 
hydrophobicity [299]. 
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As in MSP1, additional diversity has been superimposed on the 

dimorphism by intragenic recombination [203, 231]. However, in contrast to 

MSP1 where homologous recombination has apparently occurred between 

sequences in the conserved blocks close to the 5' end of the gene [66, 67], 

the recombination within MSP2 has occurred in the repeat regions which, 

although very different, have a short region of homologous sequence which 

has presumably facilitated the recombination event [8, 203]. 
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1.5.4 Immunological studies of MSP2: 

MSP2 is a potential target of protective host immune responses due to its 

location on the surface of extracellular merozoites. MSP2 specific poly- and 

monoclonal antibodies inhibit in vitro parasite invasion and growth [55, 

101, 220, 254, 255, 282, 299]. These antibodies define variable, linear 

epitopes [101, 255]. 

The immunogenicity of peptides representing sequences from the 

conserved and variable regions of MSP2 have been investigated [165-168, 

276-279, 282]. Several of these peptides, when administered with adjuvant 

either free or conjugated to diptheria toxoid, elicit antibodies in mice that 

recognise the native protein [165-168, 276, 282]. In addition, some of the 

peptides induced proliferation of murine and human T cells [277-279]. 

Furthermore, mice, immunised with peptides from the conserved regions of 

P.falciparum MSP2, were protected from challenge with asexual parasites 

of the murine malaria P.chabaudi [284]. However, immunisation of Saimiri 

monkeys with a rAg representing the full length protein of serogroup B 

expressed in vaccinia virus failed to protect monkeys against challenge 

with P. faiciparum [252]. 

Despite the apparent protective capacity of the conserved sequences, 

contradictory results have been obtained for the recognition of these 

regions. Aotus and human serum eluted from immune clusters of 

merozoites did not react with rAgs representing the N- and C-termini [321] 

and Saul et a! [284] were unable to detect antibodies against conserved 

peptides in individuals from Papua New Guinea (PNG). However, 

antibodies have been detected to C-terminal sequences in individuals 

naturally exposed to malaria in Sri Lanka and another PNG study [256] [2] 

Antibodies to MSP2 are prevalent in individuals from malaria endemic 

areas [2, 256, 279]. Antibodies to MSP2 are acquired in an age-specific 

manner [2, 256], with the highest prevalence of seropositivity in individuals 

older than 15 years in Papua New Guinea [2]. A proportion of these 

individuals had antibodies to only one form of MSP2 indicating that 

recognition may be serogroup-specific and not directed towards the 

conserved regions, although the authors postulated that non-

responsiveness may be genetically regulated [2]. A negative association 

between antibody to MSP2 and fever was observed, suggesting a possible 

protective role of anti-MSP2 antibodies in natural infection [2]. 
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1.6 Aims and outline of the thesis 

The aim of this thesis is to examine the qualitative and quantitative aspects 

of the serological immune response to MSP2 in a population of malaria-

exposed individuals from The Gambia, West Africa (figure 1.4). 

The Gambia is a small country on the west coast of Africa; one of the 

smallest and most densely populated in Africa. It is an area of flat Sudan 

savannah with some mangrove and rice swamps near the river Gambia. 

The climate is characteristic of the sub-Sahel with a long dry season (mid-

October to June) and a shorter rainy season with around 500-1000mm of 

rainfall per year [66, 67, 128]. This results in hyperendemic malaria 

transmission with a seasonal point parasite prevalence which may exceed 

50%, and a peak number of clinical cases occurring between September 

and November [200]. 

Recombinant antigens, representing MSP2 and fragments thereof, are 

used to determine the presence of serum antibodies by enzyme-linked 

immunosorbent assay (ELISA). The antigenic integrity of the rAgs has been 

confirmed to ensure that they accurately reflect the antigenic characteristics 

of native MSP2 (Ch.3). Optimisation of the ELISA procedure was performed 

to ensure that antibodies specific for MSP2 are detected and the assay 

procedure is robust and reproducible (Ch.4). 

Serum antibodies are initially determined in malaria immune adults from 

the village of Brefet (figure 1.4) to determine the immunogenicity of MSP2 

after natural exposure to malaria and the relative antigenicity of conserved, 

dimorphic and polymorphic regions of the molecule (Ch.5). Cross-sectional 

(Ch.6) and prospective longitudinal (Ch.7) studies, using serum samples 

collected in villages around the town of Farafenni (figure 1.4), are used to 

examine the dynamics of the acquisition of anti-MSP2 antibodies with age 

and the association of anti-MSP2 antibodies with subsequent susceptibility 

to clinical malaria, respectively. The quality of MSP2-specific antibodies are 

investigated (Ch.8), in terms of lgG subclass specificity, and related to age 
and clinical status. 

The effect of the extensive polymorphism of MSP2 on immune recognition 

is elucidated and associated with age and exposure to distinct parasite 

genotypes (Ch.9). A field study has been carried out in Fajara, The Gambia 

(figure 1.4) (Ch.10). Serum samples and infected erythrocytes will be 

obtained from individuals with uncomplicated clinical malaria, to determine 
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the relationship between the specificity of the immune response to MSP2 

and the MSP2 genotype of the P.falciparum infection. 

The possibility that the immune recognition of MSP2 may be genetically 

regulated is investigated by comparing the antibody responses of 

monozygous and dizygous twins, and by looking for associations between 

antibody specificity and HLA-type (Ch.1 1). 

Each chapter is a discrete unit with its own introduction and discussion. An 

overall discussion (Ch.12) consolidates the findings and discusses their 

implication for vaccine development. 



Figure 1.4: A map of the western part of The Gambia showing the locations 

of the villages from which samples were collected. 



2. Materials and Methods 

Unless otherwise stated reagents were obtained from SIGMA Chemical 

company Ltd., Poole, UK. 

2.lRecombinant MSP2 proteins: 

2.1.1 Construction of plasmids 

pGEX expression vectors were used to direct the synthesis of MSP2 

polypeptides in E.coli as fusions with the C-terminus of glutathione 5-

transferase (GST) of Schistosoma japonicum [295] (figure 2.1). Polymerase 

chain reaction (PCR)-amplified fragments of the MSP2 gene were ligated 

into pGEX vectors, after the PCR products were cut with the appropriate 

restriction enzymes. The pGEX vectors provide BamHI, Smal and EcoRl 

cloning sites in all three reading frames followed by a series of termination 

codons. After transformation into E.coli, transformants were screened for 

the expression of the required GST fusion protein by small scale 

purification. Individual transformants were picked into 2m1 of L-broth 

containing lOjig/mi ampicillin and incubated at 37°C, with shaking, for 3-5 

hours. l sop ropyl-13-D-thiogalactopyranoside (IPTG) was added to a final 

concentration of 0.1mM to induce the expression of the fusion protein and 

incubation continued for 1-3 hours. Analysis of a lOjil aliquot of the culture 

by SDS-PAGE is used to determine the expression of a protein of the 

expected molecular weight. Sequencing is used to determine that the 

protein is in the correct orientation and reading frame and is of the 

predicted sequence. Appropriate transformants were stored as glycerol 

stocks at -70°C. 

These recombinant proteins were produced by Dr Donald Smith and Mrs 

Jane Robinson in Dr J McBride's laboratory, Edinburgh University. 
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Figure 2.1: Schematic representation of the pGEX vector. The 

plasmid contains Ampr  encodes ampicillin resistance, ORI denotes 

the origin of transcription, a fragment of the lac operon containing the 

overexpressed Iaclq allele of the lac repressor and part of IacZ. In the 

absence of inducer (IPTG), the plasmid encoded Iaclq allele is 

efficient in repressing transcription from the tac promoter. Sj26 cDNA 

encode glutathione S-transferase of S.japonicum; the normal 

termination codon is replaced by a polylinker containing unique 

recognition sites for BamHI, Smal and EcoRl and followed by TGA 

translation termination codons in all three reading frames. 



2.1.2 Purification of rAgs 

To generate fusion proteins for immunisations and use in ELISA, colonies 

of transformed E.coli were grown on agar plates (ampicillin@50j.tg/ml)  

overnight at 37°C. 100 ml of L-broth containing 50pg/ml of ampicillin was 

inoculated with a single colony and grown overnight at 37°C in a shaking 

incubator. This culture was added to ii of L-broth (ampicillin@50j.tg/ml)  and 

incubate for 2hrs at 37°C before addition of imi of 100mM IPTG. After a 

further 2-4hr incubation, cells were pelleted by centrifugation at 10,000g at 

4°C for 10 minutes. Pellets were resuspended in 20mls PBS and lysed by 

sonication at 4°C. A 5mm probe was used for sonication and care was 

taken to minimise frothing of the cell suspension by sonicating in short 

bursts for 1-3 minutes. 

Contamination of fusion protein by E.coli proteins was minimised by 

addition of Triton X-100 (BDH Lab. Supplies, Poole, UK) to 1% and gentle 

mixing. In order to remove insoluble material, the mixture was transferred to 

eppendorfs and centrifuged for 5 minutes at 10,000g. The supernatant was 

transferred to 50m1 tube containing 4mls of 50% (w/v) glutathione-agarose 

beads in PBS and incubated for 30-60 minutes at room temperature on a 

shaker. After centrifugation at 500g, the beads were washed three times in 

SOmls in PBS. Fusion protein was recovered from the beads by incubation 

with an equal volume of 50mM tris-HCI containing 5mM glutathione, gently 

mixing at room temperature for 10-30 minutes. The beads were pelleted by 

brief centrifugation and the supernatant containing eluted fusion protein 

removed. Fusion proteins were stored at -70°C. 

The purity and concentration of fusion proteins were estimated by the 

intensity of Coomassie blue staining on acrlyamide gels (section 2.2); see 

figure 2.2. 
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2.1.3 Recombinant MSP2 antigens: 

Recombinant antigens (rAgs) produced and the regions of MSP2 they 

represent are listed in table 2.1. Recombinant proteins are schematically 

represented in figure 2.3 and in appendix 1A. 

Serogroup 	rAg  Isolate Region 

A 	 Al 19/96 Full length 

A2 T9/96 Ri repeat 

Thai Tn 

7G8 

T9/102 
CH12/12 Part of C-terminal gp. spf. seq. 

deleted 

R033 

T9/94 (i) 
T9/94 (ii) N-terminal 	gp. 	spf. 	seq. 

deleted 

A3 R033 R2 repeat/group specific 

CH12/12 

CH150/9 (i) part of gp. spf.seq. deleted 

CH150/9 (ii) 

Gi 

T9/102 R2 repeats deleted 

B 	 Bi Dd2(13/14) Full length 

Dd2(5/6) Shortened conserved regions 

B2 K1 (ii) Ri repeats 

T9/105 Shortened C-terminus 

K 	(I) Shortened N-terminus 

B3 Ki R2 repeats/group specific 

T9/105 (I) 

T9/105 (ii) No repeats 

N Ki Conserved 

C Ki Conserved 

Table 2.1 Recombinant MSP2 proteins produced as fusions with GST and 

expressed in E.coli. rAgs will be referred to as Al, A2, A3 Bi, B2 and B3 in 

subsequent chapters; to avoid confusion the isolate from which they were 

produced will be stated in brackets. 

HIM 



2.2 SIDS-polyacrylamide gel electrophoresis (SDS-PAGE): 

2.2.1 Preparation of the SDS-polyacrylamide gel: 

A 10% acrylamide gel solution (resolving gel solution) was prepared and 

poured between glass plates using the SE250-Mighty Small It slab gel 

electrophoresis unit (Hoefer Scientific Instruments, San Francisco, USA). 

The meniscus of the acrylamide solution was 1.5cm below the top of the 

notched plate to allow room for the comb. Approximately 0.5ml of water-

saturated isobutanol was carefully layered on top of each gel to create a 

barrier to oxygen, which would inhibit the polymerisation of the acrylamide. 

After the gel had set (1-2 hrs), the overlay solution was poured off and the 

top of the gel washed several times with distilled water (dH20), then 

drained well. The comb was inserted and the stacking gel solution was 

poured and left to set (30mins). The comb was removed and wells washed 

with dH20 to remove unpolymerised acrylamide. 

2.2.2 Running the gel: 

Running buffer was added to the upper and lower reservoirs of the gel box. 

Samples were loaded into the wells (figure 2.2). The gels were run at 

20mNgel for approximately 1.5hrs, until the dye front had reached the 

bottom of the gel. The apparatus was carefully dismantled and the gels 

were stained with Coomassie blue stain (0.1% Coomassie brilliant blue 

R250, 50% methanol, 10% acetic acid in dH20) for 30 mins and destained 

with destain solution (10% methanol, 10% acetic acid in dH20) until bands 

were clearly visible. 

Gels were placed on Whatman 3MM filter paper, covered with Saran wrap 

and dried at 80°C for 1 hour under vacuum, using a gel dryer. 



Figure 2.3: Schematic representation of MSP2 recombinant antigens Al, 

A2 (T9/96), A3, Bl, B2 (Ki) and B3 (T9/105i). Isolates from which the rAgs 

were derived are shown in bold. The amino acid number refers to the 

position of the first and last residue of the proteins from the published 

sequences of T9/96 (serofroup A) and FC27 (serogroup B) [109]. 
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2.2.3 Solutions for SDS-PAGE: 

Resolvina ael solution 

Acryl 	 4.66m1 

(30g acrylamide, 0.8g N,N'-methylene-bis-acrylamide in lOOmIs dH20) 

Resolving gel buffer 	 3.50m1 

(19.2g Tris-HCI, 0.4g SIDS in 1 00m dH20, pH8.8) 

dH20 	 5.74m1 

10% (w/v) ammonium persulphate (APS) 	 20091 

TEMED (N,N, N',N'-tetramethylethylenediamine) 	 5il 

Stackina ael solution 

Acryl 	 0.50m1 

Stacking gel buffer 	 1 .25m1 

(6.06g Tris-HCI, 0.4g SIDS in 1 00m dH20, pH6.8) 

dH20 	 3.20m1 

10% APS 	 50jil 

TEMED 	 7p1 

Runnina Buffer 

Iris base 15.15g 

Glycine 72.05g 

SIDS 5g 

dH2O 51 

2.3 Immunoblotting 

2.3.1 Transfer of protein from the gel onto nitrocellulose: 

Transfer of proteins from gel to nitrocellulose membrane (Anderman & Co. 

Ltd., Kingston-upon-Thames, UK.) was achieved by electrophoretic elution 

[325]. The gel and nitrocellulose were sandwiched between filter paper 

(Whatman 3MM) and immersed in a buffer-filled tank (LKB 2005 Transphor 

electroblotting unit, LKB Instruments Ltd., Croyden, UK.) (electrophoresis 

buffer- 29.Og Tris, 14.5g glycine, 1.85g SIDS, ii methanol in 41 dH20), with 

the membrane closest to the positive electrode. Transfer is complete after 

1-2hours at an electric current of 0.65mA/cm 2  of gel. 
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2.3.2 Labelling transferred antigenic proteins with antibodies: 

When the transfer of the protein onto the nitrocellulose was complete, the 

nitrocellulose was separated from the SIDS-polyacrylamide gel and 

staining with Ponceau-S was used to provide visual evidence that 

electrophoretic transfer of proteins had taken place. Ponceau-S is a 

transient stain and is washed away during the processing of the Western 

blot. Staining does not interfere with the subsequent detection of antigens. 

Ponceau-S (3-hydroxy-4-(2-sulfo-4-[4-sulfophenylazo]-phenylazo)-2,7-

napthalene disulfonic acid) was diluted 1:20 with PBS/Tween. 

After washing (washing buffer (WB)-PBS/0.05% Tween 20), the 

nitrocellulose was incubated in a non-cross reactive protein solution 

(blocking buffer (BB)-1%(w/v) nonfat dried milk in WB) for at least 1 hour at 

room temperature. This blocking step helps prevent the antibodies from 

binding nonspecifically to the nitrocellulose. The nitrocellulose was washed 

(x3) and probed with mouse anti-sera or mAb, diluted in BB, for 1-3 hours at 

room temperature. After washing, the nitrocellulose was incubated for 1-3 

hours with HRP-conjugated rabbit anti-mouse Ig (DAKO, Ltd.) at a 1:400 

dilution in WB. 

2.3.3 Developing the Western blot: 

The binding of Antibody was visualised using 4-chloro-1-napthol. Prior to 

developing the blot, a solution of chloronapthol was prepared (30mg 

chloronapthol in lOmI methanol) and added to 40m1 of triethanolamine 

buffered saline (0.12g Tris-HCL, 0.9g NaCI in lOOmI dH20, pH7.4). H202 

(30p1) was added immediately before use. 

The blot was washed in WB (x3) and TBS (xl) then developed at room 

temperature in the dark until bands appeared. Blots could then be 

photographed. 

All incubation steps were carried out on a shaker. 
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2.4 Enzyme-linked immunosorbent assay (ELISA) 

2.4.1 Basic protocol for indirect ELISA: 

Microtitre plates (lmmulon-4 (Dynatech)) were coated overnight at 4°C with 

100tl/well of antigen in coating buffer (1.59g Na2CO3, 2.93g NaHCO3 in ii 

dH20; pH9.4-9.6), and blocked for 5 hours at room temperature with 

200j.iI/well of blocking buffer (BB; 1% (w/v) nonfat dried milk in washing 

buffer). At the same time, sera were diluted in BB and incubated at room 

temperature for 5 hours. Plates were washed three times with washing 

buffer (PBS/0.05%Tween20 (PBS/Tween)) and lOOjtl/weIl of diluted serum 

was added to duplicate wells and incubated overnight at 4°C. Plates were 

washed and incubated with horse-radish peroxidase-conjugated rabbit 

anti-human lgG antibody (Dako Ltd., High Wycombe, UK) at 1/9000 for 3 

hours at room temperature. 

All plates were developed with lOOpi/well of substrate buffer with H202 as 

substrate and o-phenylenediamine (OPD) as chromagen, at 4°C and the 

reaction was stopped after 10 minutes with 20p1/well of 2M H2SO4.  The 

optical density values (OD) were measured at a wavelength of 492 nm, 

using a Titeretek plate reader (ICN Flow, Buckinghamshire, UK). 

Data was transferred into a computerised data management system, 

Elisalite (Meddata, Inc., New York, USA) 

Protein and antibody concentrations were selected after optimisation of the 

protocol, described in chapter 3. 

2.4.2 Solutions for ELISA: 

Substrate buffer 

0.1M citric acid 6.0 ml 
0.2M phosphate (Na2HPO4) buffer 6.4 ml 

dH20 12.5 ml 
o-phenylenediamine (OPD) 10 mg 

H202 10 g 
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2.51n vitro cultivation of asexual stages of Plasmodium 

falciparum 

2.5.1 Incomplete medium: 

The medium was based on that used by Trager and Jensen [326], 

consisting of RPMI 1640 (Gibco BRL) supplemented with 25mM HEPES 

buffer (5.94g/1) and hypoxanthine (50mg/mI). The medium was filtered 

through a 0.22jiM Nalgene filter and stored at 4°C for up to 4 weeks. 

2.5.2 Complete Medium: 

Freshly made and filtered sodium bicarbonate (NaHCO3, 2g/1) was added 

to incomplete medium. The solution was adjusted to pH7.2 by the addition 

of 1M NaOH, and filter sterilised into 200m1 sterile culture flasks. 10% (v/v) 

of heat inactivated human serum was added. Complete medium was used 

within one week and incubated at 37°C for 24hrs before use. 

2.5.3 Culturing of Plasmodium falciparum parasites: 

Plasmodium falciparum ring stage infected red blood cells (rbc) of culture 

adapted parasite clones (31D7 and Dd2) were obtained from existing 

cultures. P.falciparum isolates were grown at 5% haematocrit with 0+ 

human rbc (Edinburgh and South East Scotland Blood Transfusion 

Service) which had been washed free of leukocytes. These cultures were 

grown under sterile conditions in 25mls of complete medium in 200m1 

culture flasks (Corning, New York, USA). The cultures were incubated at 

37°C in a 1% 02,  3% CO2 and 96% N2 gas mixture. A parasitaemia of up to 

10% infected rbc was permitted. 

Small quantities of blood were removed with a sterile Pasteur pipette to 

prepare thin blood films, stained with Geimsa's stain at pH 7.2 and 

examined microscopically to measure the parasitaemia and health of the 

culture and to assess the maturity of parasites. 

2.5.4 Isolation of schizont-infected red blood cells: 

Isolation from culture of live schizont infected rbc was carried out using 

density gradient centrifugation [185]. 

A culture which was predominantly at the schizont stage, and at least 5% 

parasitaemia, was spun for 10 minutes at 2000rpm, the cells were washed 

in fresh incomplete medium and resuspended in 10 ml of incomplete 

medium. 5ml of this suspension was carefully layered onto 8ml of 60% 
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Percoll (60m1 Percoll (Pharmacia, Uppsala, Sweden), 6ml 10xPBS, 34mI 

incomplete medium) in 15m1 tubes, and spun at 2000rpm for 10 minutes. 

Several distinct layers appear; the dark brown schizont infected cells 

aggregate in a thin band towards the top of the gradient. These schizont 

infected cells were carefully removed and washed (x2) in incomplete 

medium. The washed schizont pellet was transferred to an eppendorl tube 

and stored at -20°C. 

The remaining infected rbc were washed and returned to culture. 

2.6 Indirect immunofluorescence assay (IFA): 

Indirect immunofluorescence recognition of P. falciparum isolates was 

performed with individual mAbs or mouse serum on acetone-fixed 

schizonts as described by Conway et a! [66]. 

2.6.1 Preparation of multispot schizont slides: 

Schizont-infected erythrocytes were washed three times and resuspended 

at approximately 3% haematocrit in PBS. Multispot slides (C A Hendley 

Ltd., Essex) of schizonts were prepared with 20tl of the cell suspension per 

well. The slides were air-dried and stored under dessication at -20°C, in 

sealed polythene bags containing silica gel (BDH). 

2.6.2 Preparation of antibody samples: 

Working dilutions of mAbs, mouse sera and commercial antibodies in 1% 

(w/v) bovine serum albumin in PBS (pH 7.3-7.5) containing 0.01% sodium 

azide were prepared. Dilutions can be kept at 4°C for several months. 

2.6.3 Single-labelled IFA: 

A 25 p1 volume of each mAb or mouse serum was incubated on the 

schizonts for at least 30 minutes at room temperature in a wet box to 

prevent evaporation. Care was taken to avoid cross contamination of 

samples on adjacent wells. 

After careful removal of serum by Pasteur pipette, the slides were washed 3 

times (1,5 & 5 minutes) in PBS. Slides were gently air-dried on a warm 

plate set at 50°C, then 12p1 of a 1:50 dilution of fluoresceine isothiocyanate 

(FITC)-conjugated polyvalent rabbit anti-mouse Ig antibody (ICN 

Immunoglobulins, Lisle, Israel) was added to each well and incubated for 

30 minutes in a wet box at room temperature. After 2 washes (1 & 5 
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minutes) in PBS',parasite nucleii were stained with DAR (4',6-diamino-2-

phenylindole; 1x10 6  (w/v) in PBS) for 1 minute. Slides were washed twice 

(1 & 5 minutes) in PBS and mounted under a coverslip in 2-3 drops of 

Citifluor (City University, London). 

Parasites were visualised by FITC-fluorescence (green, serum specific) 

and DAPI-fluorescence (blue, DNA specific), with incident light of 450-

490nm and 390-440nm respectively, at magnification x360 or x600. 

2.6.4 Double-labelled IFA: 

Combinations of two mAbs with different epitope specificities and different 

isotypes were used to test for the presence of two or more populations of 

parasites within an isolate or to look at coexpression of two distinct 

epitopes. Each pair of mAbs was incubated (12p1 of each) together on a 

well for 30 minutes. An RITC (rhodamine isothiocyanate)-conjugated and 

an FITC-conjugated antibody (Southern Biotechnology Associates Inc., 

Birmingham, Alabama; dilution 1:50), each specific for the different isotypes 

of the two mAbs, were then incubated together on the well for the second 

stage for 30 minutes and carefully removed with a Pasteur pipette. After 2 

washes (1 & 5 minutes) in PBS, parasite nuclei were stained with DAPI for 

1 minute. Slides were washed twice (1 & 5 minutes) in PBS and mounted 

under a coverslip in 2-3 drops of Citifluor. 

RITC-fluorescence (red) was visualised using incident light 515-560nm. 

The proportion of schizonts showing (i) green (and blue) fluorescence only, 

(ii) red (and blue) fluorescence only, (iii) red and green (and blue), and (iv) 

neither red nor green (blue only), was recorded for each pair of mAbs 

tested. Slides can be photographed and examples of staining patterns are 

shown in figure 2.4. 
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Figure 2.4: Double-labelled IFA slides of P.falciparum isolate from The 

Gambia, using DNA staining and differential labelling of MSP1-specific 

monoclonal antibodies. a) to c) show one microscopic field stained with: a) 

DAPI, b) mAb 9.5 (isotype lgG2b) and FITC-conjugated anti-lgG2b, c) mAb 

10-213 (isotype lgG2a) and RITC-conjugated anti-lgG2a. In this field each of 

the schizonts gives a positive reaction with both mAbs. 

d) to f) show a second field, stained with: d) DAPI, e) mAb 12.2 (isotype 

IgGi) and FITC-conjugated anti-IgGi, f) mAb 10-213 and RITC-conjugated 

anti-lgG2a. In this field, each schizont is positive for only one of the mAbs. 

g) to j) show a third field stained with: g) DAPI, h) mAb 111.4 (isotype IgGi) 

and FITC-conjugated anti-IgGi, j) mAb 10-213 and RITC-conjugated anti-

lgG2a. In this field, one of the schizonts gives a positive reaction with both 

mAbs, and the others are positive with one or other of the mAbs. 

This photograph was reproduced with the kind permission of Dr David 

Conway. 
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2.7 Mouse immunisations: 

2.7.1 Preparation of antigen: 

Recombinant MSP2 proteins were mixed in an equal volume of Freunds 

adjuvant (either incomplete or complete) to give a concentration of 50pg of 

rAg per mouse. This mixture was then emulsified with an equal volume of 

Tween 80 solution (1% v/v Tween 80 in PBS), which promotes the 

formation of oil-in-water emulsions. A Sorvall Omnimixer was used for 

mixing. 

2.7.2 Immunisation protocol: 

Mice were given a primary immunisation with 0.2m1 of the antigen 

preparation intraperitoneally. The mice were boosted approximately 4 

weeks after the first immunisation. Mice were bled retro-orbitally at least 2 

weeks after each immunisation. The blood was allowed to clot, then the 

serum was separated, aliquoted and stored at -70°C. 

Immunisations were performed by a licensed animal technician. 
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3. Optimisation of enzyme-linked immunosorbent assays 
(ELISA) for use in malaria serology 

"There is plenty to challenge the intellect in this apparently simple method' 

D.M Kemeny 1991 [172] 

3.1 Introduction 

The introduction of enzyme labels in immunoassays by Engvall and 

Perlmann in 1971 [98, 99], represented a significant technical advance in 

diagnostic and serological assays. Since then, the enzyme-linked 

immunosorbent assay (ELISA) has been widely used for the assay of 

infection-specific antibodies and antigens [334, 336]. The technique has 

been shown to have an important role in the laboratory and in field studies, 

however, the scope of the assay is limited. Because the assay is quick and 

inexpensive it is widely used, but the data it generates is not always 

properly interpreted. Thus, it is essential to optimise the assay for its 

particular purpose. 

3.1.1 The indirect ELISA: 

In the indirect ELISA [98-100, 173, 175, 331, 333-336], antigen is 

immobilised by passive adsorption onto a solid phase. The antigen solid 

phase is then used to bind specific antibody in the test sample. Unbound 

material is removed by washing and bound antibody is detected with an 

enzyme-labelled anti-immunoglobulin antibody (figure 3.1a). When it is not 

possible to label this secondary antibody directly, an anti-species enzyme-

labelled immunoglobulin can be employed (figure 3.1b). 

In a direct ELISA, the antibody in the test sample is conjugated to the 

enzyme. This type of assay is used more for antigen detection than for 

antibody analysis. 

Inclusion of the additional steps leads to amplification of the reaction and 

therefore, increases sensitivity. However, there is the possible hazard that 

each additional step may result in a loss of specificity. 
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Figure 3.1a: Schematic representation of the standard indirect ELISA 
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Figure 3.1 b: Schematic representation of a two-step indirect ELISA 
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Bound antibody is visualised by the addition of an appropriate substrate 

and chromagen. The resulting colour change is detected. using a 

spectrophotometer which measures the amount of tight absorbed by a 

solution at a particular wavelength and converts this to an optical density 

(OD) or absorbance value. Absorbance is defined as the logarithm of the 

ratio of incident to transmitted light (Beer-Lambert Law) [117]. 

3.2 Principles of assay optimisation: 

It is necessary to ascertain the optimum conditions for each stage of the 

assay [173, 175, 334, 336], the objectives being robustness, reliability and 

specificity with maximum sensitivity [175, 188]. 

3.2.1. Antigen concentration: 

The optimal antigen concentration is the least quantity giving near-maximal 

binding [175]. If the capacity of the plate is exceeded, some of the protein 

will be weakly bound and become detached during the assay [172-175] or 

it can lead to overcrowding and concealment of epitopes [331], with 

subsequent loss of sensitivity and poor reproducibility. 

3.2.2. Antibody concentration: 

In an ELISA there are two components of the binding of antibodies in 

serum - non-specific binding to exposed sites on the plate or to antigen 

[176], and specific binding to epitopes on the antigen [331]. The aim of 

optimising the assay is to minimise non-specific binding and maximise 

specific binding. Non-specific binding can be reduced by blocking vacant 

sites with protein such as dried milk or bovine serum albumin [175]. 

However, care must be taken to choose a protein which is not recognised 

by naturally occurring antibodies. 

The choice of serum concentration depends on the assay procedure. 

i) End-point titration - all sera can be titrated by serial dilution. The end-

point may be defined as the titre at which the positive sample dilution 

equilibrates to a negative sample [331]. Alternatively, a specific absorbance 

value may be chosen and the dilution of serum yielding such an 

absorbance value is the "titre" [336]. This procedure involves more plates, 

reagents and time than a single dilution assay. 
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ii) Single-dilution assay - single-dilution assays are more economical and 

thus are suitable for large scale serological screening. Under carefully 

controlled conditions, the results may be expressed in absorbance values 

[336]. In choosing an appropriate single dilution, sera are titrated and a 

dilution on the steep or linear part of the curve is chosen, such that the 

background absorbance is minimal. It is possible to relate the absorbance 

value from a single-point dilution to a standard curve derived from a 

reference serum [336]. 

3.2.3. Antibody detection: 

In optimising the use of anti-immunoglobulin antibodies, specificity and 

sensitivity must be considered [159, 288]. The secondary antibody should 

be specific for the stated isotype and should not cross-react. The selected 

concentration must be sufficient to detect all specific antibody binding [331]. 

The concentration chosen is determined by reagent economy, obtaining a 

steep titration curve and minimising non-specific background [173, 331]. 

An ideal assay for the measurement of antigen-specific lgG subclass 

antibodies should possess the additional performance characteristic of 

equipotency [87]. Equipotency must be assured if one is to compare 

antibody titres or optical densities (OD) measured for different lgG 

subclasses. The aim is that similar concentrations of antibodies of different 

lgG subclasses produce the same signal. This is not easily achieved in lgG 

subclass assays because the anti-subclass antibodies have different 

affinities. To compensate for this, different concentrations of anti-subclass 

antibody are used to ensure equal signals [87]. However, there is a need to 

maintain equipotency over the whole analytical range, therefore titration 

curves must be parallel [138, 172, 188]. 
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3.2.4 Choice of conjugate: 

The conjugated enzyme and its substrate are chosen for sensitivity and 

convenience [331]. The relative merits of horse-radish peroxidase (HRP), 

alkaline phosphatase (AP) and 13-galactosidase (13-gal) have been 

compared [247]. The marker enzyme of choice is HRP as it was shown to 

have higher specific enzyme activity as well as immunological reactivity 

248]. The chromogenic hydrogen donors of choice for peroxidase 

depend on the system [188]; o-phenylenediamine (OPD) is one of the most 

satisfactory for ELISAs [175, 188]. 

3.2.5. Data analysis: 

There is no generally accepted way of expressing ELISA results; the 

methods for interpreting results from ELISA are without definition and are 

considered to be completely arbitrary [140]. A major problem in dealing 

with ELISA results is overinterpretation of the data and drawing quantitative 

results when only semi-quantitative or qualitative results are possible [331]. 

Detection of specific antibodies is much easier than their quantification 

334] and there is insufficient understanding of absorbance values 

among ELISA users [188]. 

Qualitative information on the presence or absence of antibody can be 

obtained by statistical comparison of ODs from test and control sera [138, 

140, 173, 331, 334, 336]. However, the determination of a baseline is 

complicated and there is no standard protocol. Several approaches are 

employed for dichotomising results [85, 136, 140, 188, 309]. The cut-off 

value may be set at a fixed OD, for example 0.150 or 0.200 [136], however 

this is purely arbitrary. Alternatively, the cut-off may be based on the OD 

values of a population of serologically negative sera tested in parallel, such 

as two or three times the mean OD for the controls, or the mean plus two or 

three standard deviations (SD) [85, 188]. To reduce expenditure and time 

involved in establishing a cut-off value, Van Loon [330] calculated the 

mean and SD of a large group of normal sera and, in parallel, tested a 

reference serum. They observed the mean plus three SD equalled 40% of 

the absorbance of the reference serum. This reference was included in 

subsequent tests as an internal standard to define the cut-off level. 

Whichever method is used, a compromise is generally necessary since, 

.irrespective of the cut-off value, false negatives or positives will occur [188]. 
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To avoid this, it has been suggested that intermediate results be classified 

as "doubtful" [140]. 

Semi-quantitative methods include expressing results as an end-point titre. 

This value is equivalent to the reciprocal dilution at which the test sample 

gives an OD the same as the reference negative sample [188, 334, 336]. A 

problem in determining the end-point titre is that the discrimination value 

cuts the dose-response curve in the tail of the sigmoidal curve and, 

consequently, low accuracy is obtained [188]. The effective-dose method 

[188] circumvents this problem by measuring the Antibody curves in the 

linear region (at maximum sensitivity) and to compare these results with a 

positive reference serum (figure 3.2). The result is then expressed as the 

logarithm of the difference in dilution of the two sera at the steepest part of 

the dose-response curves. 

Results can also be expressed as the ratio of the OD of the test sample to a 

group of known reference negative samples [334]. However, this can give 

highly variable results because low OD values are highly susceptible to 

variation. Similarly, results can be expressed as the percentile probability 

of the OD of the test sample being within the range of a predetermined 

"normal" population [334]. 

It may be that the analyst wants to know "how much" antibody is present. 

However, the ability of ELISAs to measure absolute concentrations is 

questionable. An indirect ELISA measures antibody binding which is a 

function of both antibody concentration and antibody affinity [248, 331]. 

Furthermore, the relationship between antibody binding and colour 

generated is not linear [173, 175, 331], and may vary from day-to day [172, 

331]. It is important to realise that antibody affinity may play a critical role in 

determining biological activities of antibodies [85] and may significantly 

influence ELISA results [43, 173, 248, 313]. In a single dilution assay, a 

serum sample with high affinity antibody present in low concentration may 

give the same binding (and OD) as a serum sample with low affinity 

antibody present in high concentration. End point titration curves would 

however differentiate the two sera (figure 3.3). 

Nonetheless, ELISA results are often expressed as absolute 

concentrations. Results are determined by reference to a standard curve 

prepared by plotting OD values obtained from a series of dilutions of the 

reference standard [100, 173]. The basic assumption underlying the use of 

a standard reference curve is that the samples being compared are 
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essentially similar, i.e. that test and reference samples produce parallel 

dose-response curves [138, 172, 173, 188]; these criteria are rarely tested 

or fulfilled. Affinity may influence the slope of the linear part of the curve; 

high affinity antibodies give a steep curve and low affinity antibodies give a 

more gradual curve (figure 3.3). The composition of the test sample may 

differ from that of the reference serum [175]. For polyclonal sera, the relative 

amounts of high and low affinity antibodies will also influence the shape of 

the curve [85, 173]. Thus, unless test and reference samples are highly 

homogeneous, a standard indirect ELISA does not give absolute 

quantitative information [85, 331]. The best analysis is some sort of 

comparative evaluation, bearing in mind that a doubling in OD value does 

not necessarily mean a doubling in antibody binding 
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Figure 3.2: The determination of the effective dose (ED). The 
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dilutions and compared with a reference serum of high activity at 
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3.3 Optimisation of the ELISA for assessment of human 

antibody responses to MSP2 using recombinant GST fusion 

proteins: 

GST fusion proteins were coated onto solid phase, incubated with human 

sera and bound antibody was detected with HRP-conjugated rabbit anti-

human lgG and OPD. Each step was optimised for maximum sensitivity and 

specificity. 

3.3.1 Solid phase: 

Immu Ion®  4 96-well microtitre plates (Dynatech Laboratories, Inc.) were 

selected for their ability to bind high levels of protein in a reproducible 

manner and provide high optical clarity. This grade of plate is specially 

formulated for maximum protein adsorption. 

3.3.2 Reagent concentrations: 

Optimal concentrations of antigen and serum were determined by 

chequerboard titration [175, 334, 336]. Serial four-fold dilutions of serum 

from malaria-exposed Gambian adults were tested for recognition of 

varying concentrations of recombinant antigen. 

Antigen 

Initially a wide range of antigen concentrations was tested. Overlapping 

titration curves were then obtained for concentrations of antigen between 5 

and 0.5j.tg/ml  (figure 3.4a). Therefore, 0.5 pg/ml was chosen to be the 

coating concentration of antigen. 

Serum 

A serum dilution of 1:1000 was selected to be the optimum dilution. For 

positive sera, this gave an OD value on the linear part of the titration curve 

and non-specific binding to the GST control was low (figure 3.4b). 

Detecting antibodies 

1. Rabbit anti-human lgG: 

For the determination of specific lgG, a peroxidase-conjugated rabbit anti-

human lgG specific for gamma chains (DAKO) was used. The antibody was 

tested at four dilutions - 1:3000, 1:6000, 1:9000 and 1:12000. 

At a dilution of 1:3000, background OD values were unacceptable and OD 

values greater than 2.000 were produced for test samples. When the 

conjugate was diluted 1:12000, there was insufficient to detect all the 

specific antibody bound. 

70 



The results obtained for 1:6000 and 1:9000 dilutions were similar. A 

dilution of 1:9000 was selected for subsequent assays in order to keep the 

background OD values low and thus increase the sensitivity of the assay. 

2. lgG subclass-specific reagents: 

For the detection of lgG subclasses, murine mAbs to specific human lgG 

subclasses were used, followed by an HRP-conjugated rabbit anti-mouse 

Ig antibody. A variety of commercially available lgG subclass-specific 

reagents were tested; many of these were unsuitable because of cross-

reactivity or low sensitivity. The subclass specificity of the mAbs finally 

chosen has been widely reported [161, 162, 194] and was reconfirmed 

prior to their use in our assay system: ELISA plates were coated with 

purified myeloma proteins of each human lgG subclass and then incubated 

with each of the murine mAbs. Each mAb was shown to be specific for the 

appropriate subclass. In addition, the HRP-conjugated rabbit anti-mouse Ig 

antibody was shown not to cross-react with the human antibodies. 

In order to determine the optimal working concentration of the murine 

mAbs, plates were coated with four-fold serial dilutions of purified myeloma 

proteins from 10pg/ml and mAbs were tested over a range of 

concentrations. 

For each mAb a working dilution was selected such that parallel titration 

curves were obtained for the different mAbs and these curves overlapped, 

such that the relationship between OD and IgG concentration was 

approximately equal for each subclass (figure 3.5). This was achieved for 

the mAb to IgGi, lgG3 and lgG4, however, the mAb to lgG2 was known to 

be less sensitive [104, 162]. The mAbs finally selected, their source and 

working concentration are shown in table 3.1. 

Subclass Clone number Supplier Working 

specificity dilution 

1 NL16/Hp6012 BDH 1:2000 

2 GOM1/HP6008 BDH 1:500 

3 HP6050 SEROTEC 1:1000 

4 RJ4/HP6011 BDH 1:500 

Table 3.1: Details of murine monoclonal antibodies to human lgG 

subclasses. 
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Figure 3.4b: Optimisation of serum concentration. Serum was serially 
diluted from 1:50 to 1:12800 and tested for recognition of recombinant 
protein Al (0) and the GST control 
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3.3.3 Data analysis: 

ELISA plates were read at a wavelength of 492nm using an automated 

spectrophotometer (Titretek). OD values were transferred to a computer 

and analysed using the computer package ELISALITE. 

Data is expressed as specific OD values; the OD value of the GST control 

antigen is subtracted from the OD of the GST fusion protein. Thus, specific 

OD values can be negative if the OD value for the GST control exceeds that 

for the fusion protein. The GST control plates are run in parallel with the 

MSP2 fusion protein plates. 

Specific OD values obtained from malaria-unexposed European donors 

are used to establish a normal range for each antigen. Seropositivity is 

defined as a specific OD value greater than the mean plus two SD of the 

European control sera (95% confidence limit). 

To avoid day-to-day variability of results, all the assays were designed such 

that a specific hypothesis was tested on one batch of plates on the same 

day. 

3.4 ELISAs and malaria seroepidemiology 

Voller et a! 	[335] pioneered the application of ELISA in 

seroepidemiological studies of malaria and since then the method has 

been used extensively in studies of many parasitic diseases [332, 333]. In 

the first study on malaria, the tube or macro method was used with antigen 

prepared from P.knowlesi, a simian malaria parasite [338]. The microplate 

method was then developed [335], and P.falciparum antigen prepared from 

experimental infections of Aotus monkeys was used to compare 

seroreactivities of two Colombian populations. However, even at this early 

stage, the problem of standardisation was evident, particularly if 

comparable results were to be obtained at different times by different 

laboratories [335]. The source of antigen was the most variable factor [309, 

335]. One result of the recent emphasis on vaccine development has been 

a much improved understanding of the antigenic make-up parasites, and 

this is having a significant impact on immunodiagnosis [332]. Expression of 

these antigens as recombinant proteins allows the determination of 

antibody binding to specific malaria antigens. Nevertheless, there is still no 

standardisation of assay design and data interpretation. Table 3.2 

summarises the methods used for analysis of results obtained in 
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seroepidemiological studies of malaria using the indirect ELISA to measure 

IgG responses. 

A major problem with some of these analyses is extrapolation to a standard 

curve and expression of the results in terms of concentration of antibody. 

This assumes parallelism of test and reference sera [188]. These studies 

are measuring the recognition of malaria antigens by polyclonal sera which 

will contain antibodies of differing affinities and are thus unlikely to produce 

parallel titration curves. In addition, these seroepidemiological studies are 

screening large numbers of sera and it is highly unlikely that each serum 

was tested to ensure parallelism, therefore such extrapolations are invalid. 

Furthermore, indirect ELISAs measure antibody binding - a function of both 

antibody concentration and affinity [331]. 

The most robust way to express the data is in a semi-quantitative manner, 

reporting the data in terms of OD values and defining those which are 

positive and negative, with minimal manipulation of the data. The choice of 

cut-off level depends on the relative distributions of the control and test 

data. If the control values represent a distinct set of values below the test 

samples, then a cut-off value outside the upper range of the control values 

would be suitable. The choice of cut-off value is particularly difficult when 

the test data is a continuum of values from negative to positive, and the 

control and test values overlap. The selection of the cut-off should be one 

which keeps false negatives and positives to a minimum. The upper limit of 

a 95% confidence interval is a common choice. 

In this chapter, I have established the optimum conditions for the detection 

of MSP2-specific antibodies in ELISA. These conditions will be used 

throughout subsequent studies, unless otherwise stated. 
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ANTIGEN DATA ANALYSIS REFERENCE 
Crude 	parasite Seropositivity - reciprocal titre of last dilution giving OD>0.3 Spencer 	et 	a! 	1979; 
antigen 1981[307, 308] 

Seropositivity - OD > 0.2 Voller eta! 1980a  [337] 
Seropositivity - OD > 0.25 Wahlgren et al1 983   [340] 
Results expressed as OD values; cut-off not stated Marsh et a! 1988, 1989 [197, 

200] 
Antibody conc. (jig/ml) determined by reference to myeloma protein Wahlgren et a! 1983, 1986C 
SCs. Antibody concs. were corrected for amount of protein bound to [339 343] 
plate.  

Pf155/RESA % binding of high titred standard plasma. Antibody conc. of reference Perlmann 	1989 	[235]; 
plasma determined from SC of purified lgG; limit of positivity - mean Bjärkmann 1990, 1991 [26, 
+2SD of control sera 27]; Peterson 1990 [240] 

As above; positivity determined as Antibody. conc. outside range of Riley et a/l 991 [271] 
unexposed donors 
Seropositivity - OD > mean +2SD of negative controls Beck et a! 1995 [20] 

MSP1 0D492 converted to units/ml by comparison with SC of high titred Riley eta11992[266] 
standard serum; seropositivity - units/ml > mean +2SD of controls 
Assay was standardised using a set of positive and negative sera; cut- Früh et al1 991   [115] 
off = mean + 3SD of negative controls 
Seropositivity - OD > mean +SD of negative controls Egan et a! 1995 [93] 
Seropositivity - OD > mean +2SD of negative controls Riley et a! 1993 [270] 
Seropositivity - 00 > mean +3SD of negative controls Tolle et a! 1993 [324] 

Pf 1 55/RESA, 	CS, Seropositivity - OD> mean +3SD of negative controls Quakyi eta!1989 [253] 
parasite extract  
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MS P 1, 	A 	5. 1, Seropositivity - OD > mean +2SD or 3SD Srivastava et al1 989   [309] 
aldolase 
MSP1, 	41kDa Gabra eta11986 [116] 
rhoptry 	protein, 
parasite extract  
MSP2 Extrapolation from SC of high titred serum pool. Highest conc. of Al-Yaman eta11994 [2] 

positive control serum was assigned 1000 antibody units (AU); 
seropositivity AU > mean +2SD of AU of controls negative sera  

RESA as above, except AU converted to pjg/mI of lgG based on SC of known Al-Yaman et a! 1995 [3] 
IgG standard. Positive> mean + 2SD of Antibody. conc. of controls  

RESA, CS (P.f & Cut-off computed from the 95th percentile of ranked OD values for all Deloron eta! 1989 [83] 
P.m) serum tested against control antigen  
GLURP Normalised data with an OD value of 1.200 assigned to positive Dziegel et a! 1991[90] 

control serum. Cut-off determined as 99-percentile for reactivity of all 
sera with control antigen  

PfHRP-2 Cut-off equals highest OD value of controls plus 0.05 Taylor eta! 1993b  [318] 
Exoantigens Adjustment of data according to a reference positive OD reading of Luty et a! 1994c [196] 

1.000, 	followed 	by 	subtraction 	of 	background 	value. 	Cut-off 
determined by mean + 3 SE of controls  

Table 3.2: Summary of analysis of results for the detection of lgG antibodies to malaria antigens in indirect ELISAs 

a-lg detection; b-capture ELISA; c- lgG subclass determination; SD- standard deviation; SC- standard curve; conc.-

concentration 

P.! and P.m denote P.falciparum and P.malariae respectively 
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4. Characterisation of the immunogenicity and 
antigenicity of recombinant MSP2 proteins. 

4.1 Introduction: 

In order to study the immune recognition of MSP2 it is necessary to isolate 

and purify the protein in a form suitable for serological analysis. Isolation 

and purification of native MSP2 is impractical as it would require 

substantial amounts of parasite material and MSP2-specific mAb. An 

alternative is to express MSP2 as a recombinant polypeptide. 

Until 1987 the expression-purification systems available in E.coli required 

the use of denaturing reagents during purification, and it seemed likely that 

these might interfere with the immunogenicity and activity of expressed 

protein [294]. Smith et a! [296] found that a glutathione S-transferase 

(GST) from the helminth Schistosoma japonicum could be expressed as 

COOH-terminal fusions with foreign polypeptide. It has been shown that a 

variety of polypeptides can be expressed in E.coli as soluble GST fusion 

proteins and could be purified by absorption of crude cell lysates to 

glutathione-agarose under physiological conditions. The pGEX vectors 

were designed such that the GST component could be removed by 

treatment with site-specific protease thrombin or factor Xa [295]. Since the 

introduction of the pGEX vector, several refinements and modifications 

have been made to the original protocol (reviewed by [294]) and pGEX 

vectors have been used to generate polypeptides for biological, structural 

and biochemical analyses. 

Various recombinant MSP2 proteins have been produced by other groups. 

Thomas eta! [321] expressed the central region of CAMP MSP2 using the 

vector pMG42Kn. Immune monkey serum and human serum recognised 

the rAg in immunoblots. Smythe et a! [299] produced a rAg representing the 

full length molecule of FC27 MSP2, using the pGEX expression system. 

Anti-serum to the rAg, raised in rabbits, reacted in immunoblots with MSP2 

of FC27 parasite extracts. Rzepczyk et a! [279] used a recombinant MSP2 

protein in ELISA to measure the immune recognition of serogroup B in 

malaria-exposed Melanesian donors and found that most individuals had 

MSP2 specific antibodies. Recently Al-Yaman et a! [2] reported the use of 

three MSP2 rAgs in seroepidemiological studies in Papua New Guinea. 

The rAgs were produced using the plasmid vector pDS56/RBSII,6xHis and 

expressed in E.co!i. Analysis of the purified proteins showed in each case a 



dominant single band that reacted on Western blots with rabbit antibodies 

to MSP2. 
These studies indicate that rMSP2 expressed in bacterial systems may be 

appropriate for use in epidemiological studies. Nonetheless, it is critical to 

ensure that our panel of MSP2 rAgs mimicked the native antigen. For 

example, the tertiary structure of PfMSP119 has been shown to be essential 

for immune recognition [93] [38]. PfMSP119 has been expressed as a GST-

fusion protein in E.coli and studies with a panel of mAbs confirmed its 

structural integrity and antigenicity. The fusion protein contained epitopes 

that were conformation-sensitive and in this respect exhibited the same 

properties as the natural antigen [38]. 

In this chapter, I report the results of the validation of the structural integrity 

and antigenicity of recombinant MSP2 antigens. We have studied the 

immune recognition of the rAgs by a panel of MSP2-specific mAbs in 

ELISA. Also we have raised MSP2-specific antisera in mice and tested the 

specificity of these antibodies for rAg and native protein in ELISA, IFA and 

immunoblotting experiments. 
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4.2 Materials and methods: 

4.2.1 .Mouse immunisations: 

Recombinant antigens were prepared as described in Materials and 

Methods (chapter 2, section 2.7.1). 

Two immunisation protocols were used. 

Groups of 5-8 female, 8 week old, Balb/C mice were immunised 

intraperitoneally and boosted after 4 weeks, with 50j.tg/mouse and 

25pg/mouse respectively of fusion proteins in Freunds incomplete 

adjuvant. Sera for antibody determination were obtained 3-4 weeks after 

each immunisation. 

These immunisations were performed by Dr J McBride and she kindly 

provided access to the sera for serological analysis. 

Groups of 4-5 female, 8 week old, CBA and MF1 mice were immunised 

intraperitoneally with up to 50pg/mouse of fusion protein in Freunds 

complete adjuvant and challenged after 4 weeks with 25pg/mouse of 

fusion protein in Freunds incomplete adjuvant. Sera for antibody 

determination were obtained 3-4 weeks after each immunisation. 

These immunisations were performed by either K Samuel or Dr E Riley. 

Recombinant antigens used for these immunisations are listed in table 4.2. 

4.2.2. Monoclonal antibodies 

Monoclonal antibodies specific for MSP2 were used to probe recombinant 

MSP2 antigens in ELISA. The mAbs included; 12.3-2-2, 12.5-1-2, 12.7, and 

13.4 [55, 109, 110, 207], 8-51D and 4-417 [310] specific for group A and 

8G10/48 & 8F6/49 [283] specific for group B [109]. The specificities of these 

mAbs are shown in table 4.1 and Appendix lB. 



mAb Serogroup Isolate Epitope Reference 

12.3, 12.5, 12.7 	A T9/96 Group specific Fenton et a! 	1991 
[109] 

13.4 A T9/94 (GSAG) n  Clark et a! 1989 [55] 

4-4F/8-5D A FVO Stanley et a! 	1985 
[310] 

8G10/48 B FC27 SINS (Ri repeats) Epping et a! 	1988 
[101] 

8F6/49 B FC27 DTPTATE (gp. spf.) Ramasamy 	et a! 
1990 [255] 

Table 4.1: MSP2 specific monoclonal antibodies. Hybridomas were raised 

against schizonts of P.falciparum isolates. The specificity of these mAbs is 

indicated by MSP2 serogroup and the amino acid sequence of the epitope 

or the region of the molecule which is thought to contain the epitope. 

4.2.3 Western blotting of Plasmodium falciparum schizont extracts: 

Schizonts from 31D7 and Dd2 isolates of P.falciparum were boiled for 10 

minutes in 10% SIDS sample buffer and centrifuged. Samples of the 

soluble fraction were loaded onto SDS-PAGE under non-reducing 

conditions. 

The samples were electrophoretically transferred to nitrocellulose as 

described in Materials and Methods (chapter 2, section 2.3). The 

nitrocellulose was probed with mouse sera (diluted 1:200 in blocking 

buffer) or mAb (diluted 1:100 in blocking buffer) specific for MSP2 and 

these antibodies were detected using HRP-conjugated anti-mouse 1g. 

Bands were visualised using 4-chloro-1-napthol as the substrate. 

4.2.4 Immunofluorescence assay: 

Sera from mice immunised with MSP2 recombinant proteins were tested 

using single-labelled IFA for recognition of P.falciparum schizonts. Sera 

were tested at 1:50, 1:200 and 1:800; dilutions were made in 1% BSA in 

PBS. 



4.2.5 ELISA: 

MSP2 specific antibody was measured in ELISA using HRP-conjugated 

rabbit anti-mouse Ig diluted 1:1000 in PBS/Tween. 

Mouse sera was diluted 1:500 and serial five-fold dilutions were made. 

mAb was diluted 1:500 and serial four-fold dilutions were made. 

Competition ELISAs: 

Selected sera were preincubated with increasing concentrations of 

inhibiting antigen from 0 p.g/ml upto 5pg/ml. Sera were diluted 1:20000. 

4.2.6 Recombinant MSP2 proteins: 

The rAgs used in this chapter are those described in Materials and 

Methods (chapter 2, section 2.1), plus variants of particular regions. The 

sequence differences of these variants have been described in table 4.2 

and represented schematically in figure 4.1. 
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ft 	Isolate 

Al 	T9/96a 

A2 	T9/96 a 

Thai Tn a 

738 a 

T9/102 

CH 12/12 

Region 	 Repeat sequence 

Full length 	 GAVAGSGA 

Ri repeat 	 GAVAGSGA 

GASG RAGA 

GSAGGS 

GSAGGS 
Part of C-terminal gp.spf. GSAGGS 
seq. deleted 

R033 a 

T9/94 (i) a 

T9/94 (ii) 

A3 	R033 b 

CH12/12 

CH 150/9 (i) 

CH150/9 (ii) 

Gi 

T9/102 

Bi 	Dd2(13/14) a 

Dd2(5/6)  

B2 K1(5/3)a 

T9/105 

K 	(13/3)ab 

B3 Kl 

T9/105 (i) b 

T9/105 (ii) 

N Kiab 

C K1 

N-terminal gp. spf. seq. 
deleted 

R2 repeat/group specific 

part of gp. spf. seq 
deleted 

R2 repeats deleted 

Full length 

Shortened conserved 
regions 

Ri repeats 

Shortened C-terminus 

Shortened N-terminus 

R2 repeats/gp. specific 

No repeats 

Conserved 

Conserved 

GSAG 

GSAG 

GSAG 

PSTPATPA(T) g  

PSTPA(T)g 

PSTPA(T)6 

PSTPA(T)9 

PSTPA(T)6 

3x32 mer, ?x12- 
me r* 

3x32-mer, lxi 2-mer 

1 x32-mer 

1 x32-mer 

1 x32-mer 

5x1 2-mer 

1x12-mer 

Table 4.2: Recombinant MSP2 proteins. The isolates from which these 

proteins are derived, the region of MSP2 they represent and the sequence 

or number of repeats are shown. 

a denotes mice immunised using protocol a); b  denotes mice immunised 

using protocol b). * indicates that this sequence has not been fully 

elucidated. gp . denotes group; spf. denotes specific; seq. denotes 

sequence. 
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Figure 4.1a: Schematic representation of MSP2 serogroup A 

recombinant proteins, A2 and A3, indicating the isolates from which 

they were derived. 
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Figure 4.1b: Schematic representation of MSP2 of serogroup B 

recombinant proteins B2 and B3, and indicating the isolates from 

which they were derived. 
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4.3 Results: 

4.3.1 Recognition of recombinant MSP2 proteins by MSP2-specific 

monoclonal antibodies or mouse serum, in ELISA: 

Monoclonal antibodies specific for MSP2 had been raised against native 

protein and recognised the surface of intact schizonts in IFA [55, 101, 109, 

110, 207, 255, 283, 310], and for some of these mAbs epitopes have been 

characterised (table 4. 1, appendix 1B). The mAbs were used in ELISA to 

probe rAgs to ensure that the rAgs contained native epitopes. 

All the rAgs were recognised by the appropriate mAbs as predicted (table 

4.3) with the exception of A2(CH12/12). This rAg was recognised by 

serogroup B-specific mAbs; there is no obvious explanation for this 

apparent cross-reactivity, as A2(CH12/12) does not have any sequence 

homology with the known epitopes of the mAbs. 

In addition, we have shown differential recognition of the A3 constructs by 

mAbs 12.3, 12.5, and 12.7. Epitopes recognised by these mAbs are shared 

by group A variants and are associated with the less variable, group 

specific parts of the central region [109]. The use of this panel of A3 

constructs has enabled us to elucidate possible epitopes of these mAbs. 

12.7 seroreactivity is dependent on a group specific region which is lacking 

in A3(CH105/9(i)) (table 4.3). Furthermore, a natural deletion occurs in this 

region in some alleles, but this does not affect the reactivity of this mAb 

[109]. Thus, the epitope of 12.7 lies in the region between the end of the 

deleted sequence and the conserved C-terminus region. Whereas the 

epitope(s) of 12.3 and 12.5 lies in the group specific region of serogroup A, 

but the reactivity of these mAbs is not dependent on the R2 repeats as they 

recognise rAgs lacking these repeats. 

Sera from mice immunised with MSP2 rAgs were tested for recognition of 

the immunising construct in ELISA. All the rAgs tested were shown to be 

immunogenic in mice, in that all sera recognised the immunising construct 

(table 4.4). In most mice, the antibody response was directed 

predominantly at the MSP2 epitopes of the rAg, rather than at the GST 

component (figure 4.2). 
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Figure 4.2: Immunisation with MSP2-GST fusion proteins induces 
antibodies which are MSP2-specific. Mice were immunised with 
recombinant proteins A2(ThaiTn) and A2(7G8), representing the Ri repeat 
region of MSP2 serogroup A from isolates ThaiTn (a) and 7G8 (b). The 
sera obtained were tested in ELISA for recognition of the immunising 
construct and GST. The titration curves are shown. 
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Table 4.3: Recognition of MSP2 recombinant antigens using MSP2-specific mAbs in ELISA. mAb specificities are given in 

table 4.1 and appendix lB. 

- denotes negative result; ++ and +++ indicate moderately and strongly positive results, respectively. 



4.3.2. Recognition of native MSP2 by mouse antibodies raised against 

rMSP2: 

The sera raised in mice were also tested for the recognition of native MSP2 

by immunofluorescence of mature, schizont infected erythrocytes and by 

immunoblotting of SIDS-soluble extracts of P.falciparum schizonts. In all 

cases, with the exception of mice immunised with N, the murine antibodies 

gave specific parasite surface fluorescence of homologous isolates (figure 

4.3). 

Sera were used to probe Western blots of schizont extracts from two 

P.falciparum clones 31D7 (MSP2 serogroup A) and Dd2 (MSP2 serogroup 

B). Sera from mice immunised with rAgs representing the full length 

molecule and the group specific regions, and 132-specific sera recognised 

the schizont extract (figure 4.4). However, not all the A2-specific sera 

recognised the 31D7 schizont extract. Recognition may depend on 

sequence homology of the repeats. 

All positive reactions resulted in a single band of the expected molecular 

weight, as determined by recognition by mAbs. 

Parasite-specific staining was not seen with pre-bleeds (naive mouse 

serum) under the same assay conditions. 

4.3.3. Cross-reactivity of antibodies to serogroup A and B: 

Antibodies to Al were shown to cross-react with MSP2 serogroup B in IFA, 

Western blotting and ELISA, and vice-versa (table 4.4). These sera were 

seropositive for the conserved C-terminus but did not recognise the 

conserved N-terminus, indicating that cross-reactivity may be due 

predominantly to epitopes within the C-terminus (figure 4.5a & b). This was 

supported by the results of inhibition ELISAs. Sera from mice immunised 

with the full length constructs, Al and Bi, were preincubated with 

increasing concentrations of C (the C-terminal conserved region), and 

tested for recognition of Al and Bi in ELISA (figure 4.5c & d). The inhibition 

curves show that preincubation of anti-Al sera with C can inhibit the 

recognition of Bi and C; and vice versa. Thus, the cross recognition of the 

serogroups seems dependent on antibodies specific for the conserved C-

term in us. 

These results also show that recognition of the full length proteins by the 

mouse sera is not solely dependent on antibodies to the conserved C- 

EIM 



terminus, as preincubation with C does not appear to have a significant 

effect on the recognition of the same full length rAg. 

b) 

Figure 4.3: Photographs showing the double-stained fluorescence pattern 

of malaria parasites using serum from a mouse immunised with B2(K1 i). a) 

DAR stained nuclei; b) mouse anti-B2 serum plus anti-mouse lg-FITC. 
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Figure 4.4: Western blot of schizont extracts from 3D7 (lanes 1-7) and Dd2 

(lanes 8-13) P.falicparum isolates probed with sera from mice immunised 

with Al, B1 and C. 

Lane 1,2,8,9: sera from mice immunised with Al (full length serogroup A); 

lanes 3,4,10,11: sera from mice immunised with Bi (full length serogroup 

b); lanes 5,6,12,13: sera from mice immunised with C (conserved C 

terminus). Lane 7: mAb 8-51D. 

Figure 4.5 (a-d): Cross-reactivity of antibodies to MSP2 serogroups A and B 

is due to recognition of epitopes within the C-terminal conserved region of 

the protein. 

Mice were immunised with recombinant proteins representing the full 

length molecule of MSP2 serogroup A (a) or B (b). The sera produced were 

tested for recognition of Al, B1 ,N and C. 

Inhibition curves obtained after preincubation of individual serum samples 

with the rAg representing the C-terminal conserved region are shown for 

the recognition of Al, Bi and C (c & d). 

- Al (full length serogroup A), • - Bl (full length serogroup B), 4 - N 

(N-terminal conserved region), A - C (C-terminal conserved region) 



1 2 3 4 	6 	7 8 9 1011 12 13 	kD LANE 

3D7 schizont extract 
I 	 I 

Dd2 schizont extract 

31 

r 45 



93 

-0.5 
iO 104 	105 	106 

SERUM DILUTION 

w 
-J 

> 
a 
0 

2.5 

1.5 

0.5 

EIS] 

tow 
103 	 104 	105 	106 

SERUM DILUTION 

Figure 4.5 a & b. 

2.5 

2 

1 .5 



Figure 4.5 c & d. 
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rMSP2 Native MSP2 
Antigen Isolate ELISA IFA WESTERN 

Al T9/96 + + + 

A2 T9/96 + + - 

ThaiTn + + - 

7G8 + + - 

A3 R033 + + + 

Bl Dd2 + + + 

B2 Kl(5/3) + + n.t 
Kl(13/3) + + + 

B3 19/105 + + + 

N Ki + - - 

C Ki + + + 

Table 4.4: Summary of reactivities of mice sera after immunisation with 

MSP2 recombinant proteins. Sera were tested for reactivity to homologous 

recombinant MSP2 proteins in ELISA. n.t - not tested 
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4.4 Discussion 

Immunity to the asexual stages of malaria parasites has been induced in 

primate models of human malaria both with whole merozoites [227] and 

with purified merozoite antigens [137, 237]. These studies indicate that 

native malaria antigens associated with the merozoite induce significant 

protective immunity. 

MSP2 has been identified as an important antigen on the surface of the 

merozoite and it is essential to determine the immune recognition of this 

molecule in malaria-exposed individuals. However, the use and purification 

of native MSP2 is impractical. Thus, it has become critical to identify 

appropriate methods to produce synthetic malaria antigens which are 

immunologically equivalent to their native counterpart. 

A large number of malaria antigens, or antigen fragments, have been 

expressed as recombinant polypeptides in E.coIi. The pGEX expression 

system has been used for the production of rMSP2 proteins. We have 

expressed a panel of rAgs representing the full length molecule of the two 

aiieiic forms of MSP2, plus fragments representing defined regions of the 

protein from various P.falciparum isolates/clones. It is important to 

determine whether the rAgs have been expressed in the correct 

conformation, i.e. whether the proteins accurately reflect the antigenic 

characteristics of native MSP2, before studies using human serum begin. 

Our approach was two-fold. Firstly, mAbs specific for MSP2 were used in 

ELISA to determine whether the rAgs contained native epitopes. With one 

exception, all those rAgs which were known to contain mAb epitopes 

(determined from sequence data) were recognised by the appropriate mAb 

in ELISA. Thus, at least some of the rAgs presented native epitopes. 

Secondly, we immunised mice intraperitoneally with the rAgs and tested 

the sera for reactivity with both recombinant MSP2 (by ELISA) and native 

MSP2 (by IFA and Western blotting). All the rAgs were shown to be 

immunogenic in mice and, in most cases, high titres of MSP2-specific 

antibodies were induced. The GST component was rarely recognised and 

if it was, low titres of Ab were induced allowing the distinction between 

MSP2-specific Ab and GST-specific Ab. 

All but two of the rAgs tested by mouse immunisation induced antibodies 

which were able to bind to native MSP2, indicating that the rAgs were 

conformationally correct. The apparently defective construct represents the 

conserved N-terminus. Previous studies have indicated that peptides 
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representing the N-terminus conserved sequence are immunogenic only 

when attached to a carrier protein [166, 278]. In our study, the GST fusion 

protein appeared to act as a suitable carrier, and the protein was 

immunogenic in mice, although the majority of mice produced low titres of 

antibody. However, the protein did not seem to mimic the structure of the 

native antigen. This tends to support the study of Jones et a! [166] who 

reported that sera from mice immunised with synthetic peptides 

representing the conserved N-terminus did not recognise native MSP2 in 

IFA or Western blotting. There is no obvious explanation why the rAg failed 

to present the same epitopes as the native protein, for example there are 

no cysteine residues in the N-terminus sequence. One could propose, that 

this region of the molecule is not available for Ab binding in the native 

antigen. 

Interestingly, antibodies from mice immunised with Al cross-react with Bi 

in ELISA, IFA and Western blotting, and vice versa. Competition ELISAs 

have shown that the cross-reactive antibodies are specific for the C-

terminal conserved region. This could also infer that the N-terminus is not 

available for immune recognition and antibody binding. 

In conclusion, we have established that rAgs of MSP2 produced in E.coli 

resemble the natural P.falciparum antigen very well. For the subsequent 

studies reported in this thesis, we will present data for a range of the rAgs, 

including N, in addition to those rAgs not tested in mouse immunisations, 

but the possibility that these do not accurately reflect native protein will be 

kept in mind. 
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5. Recognition of recombinant MSP2 proteins by 
malaria-immune sera 

5.1 Introduction: 

Recombinant proteins representing MSP2 have been produced as fusions 

with glutathione S-transferase in E.coIi. It has been established that many 

of these rAgs resemble the native protein and therefore are extremely 

useful tools for studying the naturally acquired immune response to MSP2 

(chapter 4). To date, there is very little published data on naturally acquired 

immunity to MSP2 and no information on the relative immunogenicity of 

conserved, group specific (dimorphic) and repetitive (polymorphic) regions 

of the molecule. The epitopes of MSP2-specific mAbs are within the 

dimorphic and polymorphic regions of the molecule [55, 101, 109, 255]. 

This indicates that these regions are immunogenic. However, it is important 

to determine which regions are recognised during natural infection. In order 

to better understand the nature of protective immunity to malaria it is 

necessary to determine whether naturally acquired antibody responses to 

MSP2 are cross-reactive within and between serogroups. Such information 

would also be useful for determining which, if any, regions of MSP2 might 

usefully be included in a malaria vaccine. A study of adult, malaria 

exposed, Melanesians showed that 82% had antibodies against MSP2 

serogroup B [279], but the specificity of these antibodies was not fully 

characterised. A recent study in a highly endemic area of Papua New 

Guinea found high antibody prevalence ( ~! 90%) to recombinant antigens 

representing the full length proteins of both MSP2 serogroup A (3D7) and 

serogroup B (FC27) [2]. Using a serogroup A construct lacking the central 

repeats, this study also showed that a proportion of immune individuals 

responded only to epitopes within the repeat region. Experimental 

immunisation of Aotus monkeys with P.faiciparum results in an anti-MSP2 

antibody response directed primarily to a recombinant antigen representing 

repeat and group-specific regions of MSP2 in Western blot [321]. 

Antibodies purified from immune clusters of merozoites also recognise 

group specific sequences, suggesting that this region is accessible at the 

surface of the intact parasite and may therefore be a target for parasite-

inhibitory immune responses [321]. However, immunoblotting studies using 

affinity purified human serum suggest that naturally immunodominant 

epitopes are encoded within the repetitive sequences of the molecule 



[299]. None of these studies has addressed the crucial question of whether 

sequence polymorphism gives rise to antigenic diversity and whether 

epitopes in one allelic form of the protein cross-react with similar epitopes 

from other parasites. 

The aims of this study are to determine: 

if MSP 2 is naturally immunogenic in man in an area of seasonal malaria 

transmission; 

the relative antigenicity of conserved, dimorphic and polymorphic 

regions of MSP2; and 

if the naturally acquired immune response to MSP2 is cross-reactive 

between serogroups. 

In this chapter, I report a comprehensive study of the immune recognition of 

MSP2 by sera from malaria-immune adults from The Gambia, and the 

identification of regions of the molecule which are immunogenic during 

malaria infections. Adults were chosen because they have had many years 

exposure to malaria and would be likely to have anti-MSP2 antibodies. 

a We 



5.2 Materials and methods: 

5.2.1 .Sera 
Serum samples were obtained from 70 adults (aged 15-65 years) living in 

rural and pen-urban areas of The Gambia. 

These serum samples were collected by Dr E Riley. 

Control serum samples were obtained from 15 European adults who had 

not been exposed to malaria. 

5.2.2. Recombinant antigens: 

The recombinant MSP2 antigens used in this chapter are listed in table 5.1 

(see appendix 1A). 

ANTIGEN ISOLATE 

Al T9/96 

A2 T9/96 

A2 Thai Tn 

A2 7GB 

A2 T9/94 (i) 

A3 R033 

Bi Dd2 

B1 (short) Dd2 

B2 Kl(i) 

B2 K1 (ii) 

B3 T9/105 (i) 

N Kl 

C Ki 

MSP1 - P190.1 

As a positive control for prior exposure to Plasmodium falciparum, sera 

were also tested for reactivity with a conserved sequence from another 

merozoite surface protein, MSP1. p190.1 represents a non-variable region 

of MSP1 (gp190) which has previously been shown to be recognised by 

more than 90% of malaria exposed individuals [266] and was produced in 

E. co/iasa free polypeptide [llB]. p190.1 was a kind gift of DrJ.R.L Pink, F. 

Hoffman La Roche, Basel, Switzerland. 
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5.2.3. Enzyme-linked Immunosorbent Assay (ELISA): 

Sera were tested for lgG recognition of the recombinant proteins in ELISA 

using HRP-conjugated rabbit anti-human lgG antibody diluted 1:9000 in 

PBS/Tween. Sera were diluted 1:1000. 

Competition ELISA: 

Sera were preincubated with increasing concentrations of inhibiting 

antigen from Ogg/ml up to 5tg/ml. Sera were diluted 1:1000. 

5.2.4. Statistical analysis 

Determination of positivity: 

The reactivity of the sera with various MSP2 fusion proteins in ELISA was 

calculated by subtracting the OD value for the GST control from the value 

obtained for the MSP2 fusion protein, to obtain specific OD values. Positive 

samples were defined as those giving a specific OD above the normal 

range for control European sera. The normal range was taken as the mean 

± 2 standard deviations of 15 control sera. 

Spearman's Rank Correlation analysis: 

The reactivity of individual sera with different antigens was compared by 

means of Spearman's rank correlation test [305]. This is a non-parametric 

measure of the association between two numerical values. The parametric 

equivalent is the correlation coefficient. The values of each variable are 

independently ranked and the measure is based on the differences 

between pairs of ranks of the two variables [184]. 
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5.3 Results 
5.3.1. Reactivity of human serum lgG antibodies with recombinant MSP2 

proteins: 

Serum lgG antibodies from Gambian and European adults were tested for 

the recognition of a panel of MSP2 rAgs and a recombinant MSP1 protein, 

p190.1. The recognition of p190.1 has been included in this study to ensure 

that these Gambian adults have anti-malarial antibodies and thus have 

been exposed to malaria. 

The MSP2 rAgs were specifically recognised by sera from individuals who 

have been exposed to malaria (figure 5.1a-c). The cut-off levels for 

positivity, determined from the control sera OD values, ranged from 0.117 to 

0.384 OD units. 

These results show that MSP2 is well recognised (table 5.2). Serogroup A 

and serogroup B full length rAgs are recognised by 81% and 86% of sera, 

respectively, indicating that MSP2 is highly antigenic during natural 

infections with P.falciparum. The repeat regions and group specific regions 

are also well recognised. Of the four A2 rAgs used, the one representing 

the T9/96 sequence was recognised most often. However, the proportion of 

parasites expressing the A2(T9/96) Ri repeat sequence has not been 

determined, so whether this reflects the degree of exposure to this MSP2 

sequence or is a result of the T9/96 sequence being more immunogenic 

than the others is not known. A high percentage of individuals also 

recognise the A3 rAg which contains predominantly serogroup-specific 

sequences, indicating that the repetitive sequences are not recognised 

preferentially over the group-specific regions of serogroup A. The B2 and 

B3 rAgs of serogroup B seem less well recognised than the corresponding 

serogroup A constructs, even though these sequences are relatively 

conserved. However, each contains only one copy of the repeated 

sequence whereas higher antibody binding would be obtained if the 

epitopes were repeated. 

The conserved sequences at the N and C-termini seem to be poorly 

recognised. If the cut-off limit for positivity is strictly applied, thirty-six 

percent of these individuals are seropositive for the conserved C-terminus, 

however the OD values were very low and only 3 sera recognised this 

protein with an OD value > 0.300. 
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Antigen Isolate %responders Range of OD values 

minimum maximum 

Al T9/96 81 -0.026 1.991 

A2 

T9/96 81 -0.053 2.157 

ThaiTn 59 -0.356 1.427 

7G8 40 -0.225 1.540 

T9/94(i) 51 -0.220 2.107 

A3 R033 73 -0.194 1.632 

131 Dd2 86 -0.140 1.981 

131 (short) Dd2 71 -0.218 2.147 

B2 Kli 64 -0.259 1.755  

K1 ii 34 -0.466 1.831 

B3 T9/105i 43 -0.339 1.044 

N Ki 10 -0.262 0.418 

C Ki 136 -0.439 10.542 

p190.1 163 10.117 2.754 

Table 5.2: Percentage of responders recognising MSP1 and MSP2 

recombinant proteins. The range of OD values obtained is stated for each 

rAg. Sera from 70 Gambian adults were tested at a dliution of 1:1000 in 

ELISA. 

5.3.2 Comparisons of the antibodies reactive with different MSP2 rAgs: 

i. Lack of antigenic cross-reactivity between serogroups A and B: 

Seventy-nine percent of sera from adult Gambians recognised both the A 

and B serogroups of MSP2 (proteins Al and Bi, which represent the full 

length molecules). To determine whether this 'dual' recognition was due to 

a single population of antibodies which react with epitopes common to both 

proteins or whether the serum contained two separate, non-cross-reacting, 

populations of antibody, the reactivity of individual sera was compared with 

each of the full length proteins (Al and Bi) (figure 5.2a). It is clear that 

although some sera recognise the two proteins to approximately the same 

extent, other sera clearly recognise one protein but not the other. 

Using Spearman's rank correlation test, a positive correlation was obtained 
between responses to Al and Bi (r=0.555; r5=0.307, p=0.005). However, 
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we consider that the high level of statistical significance is the result of the 

large sample size and the presence of double negative sera; the 

association is in fact quite weak and may simply reflect independent 

exposure to both serogroups of P.falciparum. As an estimate of association 

due to exposure, the recognition of MSP2 proteins with the recognition of a 

recombinant protein representing a conserved region of an unrelated 

merozoite surface protein (MSP1, p190.1) was compared (figure 5.2b). 

Correlation coefficients of up to 0.492 were obtained. Thus the correlation 

coefficient obtained for Al versus Bl was only slightly higher than that 

obtained for MSP2 versus MSP1, suggesting that the correlation is indeed 

due to exposure rather than to cross-reacting antibodies. 

To confirm that antibodies to the two serogroups are not cross-reactive, 

individual sera were tested in competition ELISAs. Sera which were known 

to contain antibodies to both Al and Bi were selected; these sera were 

preincubated with either Al or Bl and tested in ELISA for recognition of the 

other protein. The four example shown in figure 5.3 was typical of the sera 

tested: whiist preincubation with increasing concentrations of Al prevents 

subsequent binding of antibodies to Al-coated plates, it has no effect on 

binding of antibody to 131 -coated plates, and vice versa. Thus, in double 

positive sera, there appear to be two distinct populations of antibodies, one 

specific for serogroup A and the other specific for serogroup B. 
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Figure 5.3: Competition assay to determine the extent of cross-reactivity 

between antibodies recognising Al and Bl. The results for a single, typical, 

serum are shown. Sera were preincubated with antigen at concentrations 

from Opg/ml - 5ig/mI. Sera were tested at a dilution of 1/1000. 

Key: A Al (on plate) vs Al (in serum), 0 Al vs Bi, 0 Bl vs Bl, N Bl vs 

Al, 	GSTvsGST. 
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ii-Distinct populations of antibodies recognise different regions of MSP2 

serogroup A: 

Sixty-three percent of the Gambian adults were seropositive for A2(T9/96) 

and A3, but the dot plots show only a poor correlation between the two 

(figure 5.2c) and the correlation coefficient was lower than for MSP1 vs. 

MSP2. Inhibition ELISAs clearly demonstrate that there are two distinct 

populations of antibodies (figure 5.4). One population are specific for the 

Ri repeat region and the other for the R2 repeat/group specific region. 

These data fit with the demonstration that MSP2 serogroup A-specific mAbs 

recognise Ri repeats (13.4, 4-4F & 8-5D) or the group specific region (12.3, 

12.5 & 12.7), and therefore, distinct epitopes are present in both regions. 

iii. Lack of recognition of the conserved C and N-termini: 

The percentage of responders and the OD values obtained for the 

recognition of C and N indicate that these regions are not highly 

antigenic/immunogenic during a natural infection. However, for the N-

terminus at least, there is some question as to the antigenic integrity of this 

rAg (see chapter 4). Comparison of the recognition of two pairs of rAgs, 131 

and 131 (short), and B2(K1i) and B2(K1ii), allows further analysis of the role 

of the conserved regions in the recognition of MSP2. 131 (short) lacks a 

large proportion of the conserved sequences present in 131. B2(K1 i) lacks 

the N-terminal conserved sequence present in B2(K1ii). Despite the 

differences between the pairs of antigens, the recognition of the rAgs is 

very highly correlated (table5.3, figure 5.2 d and e). These data thus 

confirm the initial data and indicate that the conserved sequences do not 

contribute significantly towards the recognition of MSP2. 
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Antigen MSP1 Al A2 

(T9196) 

A2 

(ThaiTn) 

A2 

(7G8) 

A2 

(T9/941) 

A3 Bi 

______ 

Bi 

(short) 

B2 (Ku) B2 

 (Ki ii) 

B3 

(T9/105i) 

N 

MSP1 1.000  

Al 0.457 1.000  

2(T9/96) 0.071 0.620 1.000  

A2(ThaiTn) 0.270 0.558 0.733 1.000  

A2 (7G8) 0.173 0.463 0.644 0.731 1.000  

A2 (1994i) 0.193 0.559 0.691 0.765 0.830 1.000  

A3 0.352 0.764 0.462 0.465 0.444 0.526 1.000  

BI 0.492 0.555 0.449 0.512 0.436 0.479 0.579 1.000  

B1 (short) 0.394 0.464 0.487 0.553 0.472 0.505 0.520 0.848 1.000  

B2 (Ku) 0.415 0.437 0.392 0.450 0.506 0.510 0.472 0.743 0.678 1.000  

B2(K1ii) 0.483 0.440 0.303 0.436 0.473 0.387 0.425 0.648 0.654 0.816 1.000  

B3(T9/105i) 0.226 0.350 0.367 0.249 0.166 0.215 0.339 0.527 0.498 0.380 0.344 1.000  

N 0.273 0.187 -0.041 -0.043 0.058 0.061 0.079 0.051 0.018 0.225 0.180 -0.014 1.000 

C -0.356 0.0291 0.362 0.350 0.394 0.394 0.245 0.050 0.154 0.072 0.027 0.058 -0.336 

Table 5.3: Comparison of the recognition of MSP1 and MSP2 rAgs using the OD values obtained from 70 Gambian adults' 

sera in Spearman's rank correlation tests. Critical value for n=70 is 0.307, p=0.005. 
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5.4 Discussion 
The aim of this study was to characterise the reactivity of serum antibodies 

from malaria-exposed adult individuals with the merozoite surface protein, 

MSP2. Evaluation of MSP2 as a potential component of a subunit malaria 

vaccine requires an understanding of the naturally occurring immune 

response to MSP2 and, most importantly, the immunological significance of 

amino acid sequence polymorphisms. In particular, it is important to 

determine whether antibodies against one MSP2 serogroup will cross react 

with the other serogroup, or whether the Ab response is group-specific or 

allele-specific. Such information may also help us to understand the 

relative importance of allele-specific ("strain-specific") immune responses 

in the acquisition of clinically protective immunity to malaria by people 

living in malaria endemic areas. 

There are two main theories to explain the slow development of protective 

immunity to malaria which is typically seen in individuals living in endemic 

areas: (i) polymorphism of antigens which are the targets of protective 

immune responses and, (ii) intrinsically poor immunogenicity of the target 

molecules. The data presented here indicate that the latter explanation is 

not true, at least with respect to MSP2. Sixty seven of the 70 individuals 

tested had clearly detectable anti-MSP2 antibodies (to either serogroup A 

or B or both) with end point titrations of > 1/9,000 for most sera (data not 

shown). This is comparable with the level of recognition of MSP2 found in 

the Solomon Islands [279] and Papua New Guinea [2]. 

Antibodies tended to recognise epitopes within the dimorphic and 

polymorphic regions of MSP2; the conserved C-terminus seems to be 

poorly antigenic. This is in agreement with Thomas et a! [321] who 

reported that although intact MSP2 is recognised by monkey and human 

antibodies eluted from intact merozoites, such antibodies did not recognise 

peptides representing the N- and C-terminal regions of the molecule. 

Similarly, Saul et a! [284]were unable to detect antibodies against 

synthetic peptides representing the conserved regions of MSP2 in sera 

from 18 people with high titres of anti-parasite antibodies (as determined by 

immunofluorescence assays). 

Importantly, the sequences which are conserved within each allelic family 

(detected using A3 and B3 proteins) are highly immunogenic. Ninety 

percent of the sera tested contained antibodies which recognise either A3 

or B3 (or both); thus a vaccine based on MSP2 may need to contain only 

113 



two different antigens - representing the group-specific sequences of each 

serogroup. Interestingly the group-specific A3 protein is recognised by 

significantly more individuals than the B3 protein. This may reflect more 

frequent or more recent exposure of the donors to parasites of serogroup A 

since approximately 60% of parasites isolated in The Gambia belong to the 

A serogroup [66]. Antibodies eluted from immune clusters of merozoites 

recognise dimorphic MSP2 sequences [321], indicating that epitopes 

associated with these sequences are accessible at the surface of intact 

merozoites, and may therefore be a target for inhibitory antibodies. 

Proteins which represent the polymorphic Ri repeat regions of both 

serogroups (i.e. A2 and 132) were recognised by a substantial proportion of 

the sera, a greater proportion in fact than recognised the dimorphic regions. 

This finding was somewhat unexpected since, for serogroup A, the amino 

acid sequence of the repeats from different isolates varies extensively [201, 

250]. One likely explanation of this finding is that the antibodies detected 

were in fact recognising epitopes within a short N-terminal segment of 
4I 	 A' 	 A A-   

	

group upspecHNIC Q^%eGJ uG1n1%-1G, %,%JIILCLIIIVUIII II l 1J 1  'JLII I r. 	 I lJLl t II9UI 

4.1). Alternative explanations include extensive immunological cross-

reactivity between different repeat sequences. Whichever explanation is 

the case, the association between the recognition of different A2 variants is 

evident from the Spearman's rank correlation values (table 5.3). 

Immunological cross-reactivity may occur among the Ri repeats of 

serogroup B, where the amino acid sequence is relatively conserved. 

Further studies will investigate the effect, on antibody recognition, of 

variation in the sequence and number of repeats (see chapters 9 and 10). 

Quantification of absolute amounts of Ab by ELISA is difficult since the OD 

value obtained is dependent on both the concentration of antibody and its 

affinity. It is not possible to compare the amounts of antibody in sera which 

react with different recombinant antigens since the number of epitopes in 

each assay (and thus the avidity of the reaction) is unknown [331] 

Therefore, in order to make comparisons between the Ab responses to 

different proteins, we used a nonparametric rank correlation test to 

compare specific OD values for individual sera, tested at a single dilution, 

against the rAgs. Comparison of the recognition of Al and Bl show that 

the correlation between the responses to the two serogroups is weak and is 

probably due to exposure to parasites of both serogroups rather than to 

cross-reactive antibodies. Competition ELISAs demonstrate that antibodies 
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to serogroup A and B are not cross-reactive, since protein Al cannot 

compete for binding of B1 -specific antibodies, and vice versa. It should be 

noted that there is a short sequence of limited sequence homology within 

the Ri repeat region of serogroup A and B [298, 299], but this does not 

appear to induce cross-reactive antibodies in a natural infection. 

It is apparent from studies in mice that antibodies specific for Al will cross-

react with serogroup B in ELISA, IFA and Western blot, and vice versa 

(chapter 4, section 4.3.3). The cross-reactivity appears to be due to 

recognition of the conserved C-terminus. Although this region appears to 

be antigenic in mice immunised with the rAg C, it is not recognised during 

natural malaria infections in humans and does not contribute to cross- 

reactivity. 
Therefore we have shown here that MSP2 is naturally antigenic and that 

the immune response is directed primarily to the dimorphic and 

polymorphic regions of the molecule. Correlation analysis and competition 

ELISAs have indicated that, in general, there is no serological cross-

reactivity between the two serogroups. 

Further work is required to determine the significance of the polymorphisms 

within the repeat sequences in their contribution to the slow development of 

protective immunity to P.falciparum (see chapter 9). 
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6. Population cross-sectional studies of antibody 
recognition of MSP2 - the relationship between age, 
malaria exposure and anti-MSP2 lgG 

6.1 Introduction 
In areas with stable, endemic P. falciparum malaria transmission, 

parasitaemia is most common in young children, and the incidence of 

parasitaemia declines steadily with age. The precise timing of events 

depends on the local patterns of malaria transmission and levels of 

endemicity. In The Gambia, where transmission is seasonal but stable from 

year to year, parasite rates do not begin to decline until the age of 10 to 12 

years, whereas the incidence of clinical disease peaks at age 6 [264]. In the 

same population, peak mortality from malaria occurs in children aged 4 

years [128]. Thus, as protective immunity to malaria is acquired gradually, 

and associated with age (and exposure to malaria), the prevalence of anti-

malarial antibodies would be expected to increase in parallel with 

increasing cnica! immunity. Why does it take so Ionq to become immune? 

Possible reasons for the slow development of immunity are: 1) children are 

unable to make appropriate antibody; adults may respond more 

appropriately and therefore acquire immunity more rapidly; 2) the antigens 

are poorly immunogenic; or 3) the antigens are polymorphic. 

As early as 1965, Brown & Brown [35] proposed that children may have a 

constitutional inability to respond appropriately to endemic infection 

pressure. They had observed that young rats infected with P.berghei 

relapse more frequently and with higher parasitaemia than older animals, 

indicating that the young of some hosts may have an inability to respond 

appropriately and develop generalised immunity. Baird et a! [15, 16] 

studied the effect of age on protection, independent of cumulative exposure 

to malaria antigens in a mixed-age population in The Philippines migrating 

into a malaria-endemic area from a non-endemic area. They propose that 

the protective acquired immune response to endemic falciparum malaria is 

governed by relatively brief exposure and some intrinsic immune factor(s) 

associated with age of the host. If this is true, antigenic polymorphisms in 

the parasite may only briefly influence susceptibility to infection. However, 

this data does not prove that adults acquire protective immunity faster than 

children, since the authors do not specifically address the issue of an age-

specific rate of development of clinical immunity. Certainly the number of 
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clinical episodes that are necessary before clinical immunity develops may 

differ in adults and children but they report age-specific differences in 

prevalence of parasitaemia which does not necessarily reflect age-specific 

differences in clinical episodes. Baird et a! [14-16] conclude that the 

degree of protection was governed by recent heavy exposure and age, 

independent of chronic heavy exposure. Clearly, immunologically naive 

adults suffer severe and life-threatening malaria. This fact argues against 

some purely physical consequence of the ageing process, i.e., people 

without prior exposure to malaria seem equally susceptible to the 

consequences of falciparum malaria, regardless of age. Furthermore, a 

study of epidemic malaria in Madagascar following a period of 20 years 

when the island was malaria free, has shown that all age groups, except 

those previously exposed to malaria were equally susceptible to disease 

[84]. 
Cohen & McGregor [62] suggested that the slow immunological response 

to malaria, which requires several years of repeated infection in order to 

reach a level sufficient enough to suppress the acute manifestations of the 

disease, is associated with the inherently poor antigenicity of the parasite. 

A modern interpretation of this is that immunological non responsiveness 

could be a result of the parasite antigens evolving to present limited T cell 

epitopes to the immune system and thus failing to give T cell help for 

antibody production [120]. 
Early observations on malaria infections therapeutically induced in 

neurosyphilitic patients showed that individuals convalescing from P.vivax 

infections acquire an effective immunity to the strain of the parasite that 

caused the infection but not to a heterologous strain [30]. These results 

imply that immunity may be strain- or variant-specific and targets of 

protective immunity are likely to be polymorphic, and importantly may 

depend on the immunogenicity of primary infections. Thus, susceptibility in 

children may mean that resistance depends on exposure to a wide, but 

finite range, of antigenic variants occurring in one locality [35]. 

The hypothesis that there is a constitutional and age-associated inability to 

respond appropriately to infection [14-16, 35] such that protective immunity 

to malaria is dependent on the age of the individuals rather than cumulative 

exposure to many variants over a number of years cannot be easily 

investigated in endemic populations. 
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However, the other two hypotheses can be investigated by comparing the 

antibody responses of relatively naive individuals with semi-immune and 

clinically immune individuals. 
The hypothesis that malaria antigens are inherently poorly immunogenic 

can be tested by looking at antibody in individuals convalescing from one 

or two malaria infections. Such data is presented in this chapter. Finally, the 

theory that protection is dependent upon cumulative exposure to many 

variants can be investigated by comparing antibody responses of children, 

who have limited exposure to malaria with adults who will have 

experienced infection with most or all of the variants present within the local 

population of parasites. 
Thus, in this chapter, the dynamics of the acquisition of antibodies to MSP2 

in Gambian populations is described, examining the effects of age and 

exposure to malaria infection. We have also examined the antigenicity of 

MSP2 in children and individuals from non-endemic areas who are known 

to have experienced a limited number of malaria infections. 
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6.2 Materials and Methods 

6.2.1 Serum samples: 

Malaria-exposed individuals 
178 serum samples were obtained from individuals (aged 1-75 years) 

living in rural villages around the town of Farafenni on the north bank of the 

Gambia river, about 100 km inland. The geographical and demographic 

features of this area have been described by Greenwood et a! [129]. The 

majority of clinical cases of malaria occur in the 3 month period from 

September to November each year. The serum samples used here were 

collected in October 1988, during the malaria transmission season. 

"Naive" Individuals 
Sera were obtained from individuals from non-endemic areas who had 

been infected with P.falciparum whilst visiting malaria endemic countries 

(table 6.1). These individuals were known to have been infected either for 

the first time or more than twice. Some sera were collected during 

conva!escence (CS). 
Serum samples were kindly provided by Prof. G Pasvol and Dr J Carlsson, 

Dept. of Infectious Diseases and Tropical Medicine, Northwick Park 

Hospital. 

Control serum samples were obtained from 25 European children and 

25 European adults who had not been infected with malaria. 

All serum samples were stored at -20°C. 
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SAMPLE NUMBER EXPOSURE COUNTRY VISITED 

92:21 N & CS Ghana 

92:35 N Nigeria 

92:51 N Ghana 

93:01 N Kenya 

93:28 N & CS Uganda 

92:11 >2 Nigeria 

92:30 >2 Ghana 

92:33 >2 Kenya 

92:41 >2 Ghana 

93:33 >2 Malawi-Zimbabwe-Zaire 

92:10 CS Nigeria 

92:12 CS Nigeria 

92:38 CS Liberia 

Table 6.1: Serum samples from individuals from non-endemic countries 

who became infected with malaria after visiting malaria endemic countries. 

Samples were taken after returning to Britain, on diagnosis of infection with 

P. falciparum. 
N indicates naive individual; >2 indicates second or more infection; CS 

indicates convalescent sera. 

6.2.2 Recombinant MSP2 proteins: 
The following rAgs were used in this work: Al, A2(T9/96), A3, Bl, B2 (Ki i), 

B3 (T9/105i); see Appendix 1A. 

6.2.3 Enzyme-linked immunosorbent assay (ELISA): 

MSP2 specific lgG antibodies were measured in ELISA as described in 

materials and methods (chapter 2, section 2.4). For screening, all sera were 

diluted 1/1000 in blocking buffer and tested in duplicate. 

For titration ELISAs, sera were diluted from 1/100 to 1/12800 with doubling 

dilutions. 
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6.2.3 Statistical methods: 
Determination of positivity: 

Positive samples were defined as those giving a specific OD above the 

normal range for control sera. The normal range was taken as the mean + 2 

standard deviations of the OD values obtained for the control sera. 

Kruskal-Wallis test: 
Kruskal-Wallis test were performed using MINITAB statistical software in 

order to determine differences in the median OD values to each for each 

age group. 

3: Chi-square for trend: 
X

2 
tests for trend were performed using Epi Info, a statistical software 

package, and are used to determine whether there is a trend in proportions 

of responders with age. 
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6.3 Results 
6.3.1. Age-specific recognition of MSP2: 

Anti-MSP2 lgG levels were measured in 178 individuals from the area 

around the village of Farafenni, The Gambia, West Africa. The median OD 

increases markedly with age for all the rAgs tested, reaching a peak after 

the age of 16 years. Kruskal-Wallis tests indicate this increase is statistically 

significant (p.<O.Ol) despite the large standard deviation (table 6.2). 

Thus, these data show that the median antibody level specific for MSP2 

increases with age, in a pattern which would be expected if immunity to 

MSP2 is associated with the acquisition of protective immunity. 

6.3.2. Age-specific prevalence of antibodies to MSP2: 

The large standard deviation for the analysis of variance (table 6.2) 

indicates a wide range of OD values in each age group. This reflects the 

number of non-responders in each age group. Table 6.3 and figure 6.1 

shows that the number of responders, i.e. the prevalence of antibodies, 

increases with age. In this analysis smaller age groups were used in order 

to reveal the pattern of antibody prevalence, particularly in those 

individuals still actively acquiring immunity to malaria. 

For all the rAgs, there is a gradual rise throughout childhood in the 

prevalence of seropositivity. The recognition of MSP2 reaches a peak in 

adolescence; depending on the antigen, between 71-100% of this 

population are eventually seropositive. 
The pattern of antibody prevalence varies between the antigens (figure 

6.1a & b). Al and A3 have similar profiles with seropositivity reaching > 

90% by adolescence and remaining >80% throughout adulthood. The 

prevalence of antibodies to A2(T9/96) is lower, reaching a maximum of 

71%. 
The recognition of serogroup B antigens reaches a peak of 100% 

responders by age 7-8 years for the full length protein Bi; the prevalence of 

antibodies specific for B2(K1 i) is >80% and for B3(T9/1 05i) >70% from 9-10 

years onwards. The prevalence of antibodies to the Ri repeat region of 

serogroup B, B2(Kii), reaches levels close to those for the full length 

protein; this is in marked contrast to the corresponding region of serogroup 

A. 
There is a small decline in prevalence of anti-MSP2 antibodies through 

adult life. 
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X
2 tests for trend indicate that the antibody prevalence for the recognition 

each antigen is strongly age related (table 6.3) 

Hence, the age trend is a reflection of the increase in prevalence of 

antibodies to MSP2 rather than an increase in the median OD with age. 

Analysis of the positive OD values showed that, except for Bi, there was 

no significant difference in the median of the positive OD values with age 

(table 6.4). Additional analysis of the data for Bi showed that there was no 

difference in the median OD value between the ages of 1-15 years, but that 

individuals older than this tended to have higher OD values. 
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Recombinant MSP2 Proteins ____  

AGE n Al A2(T9/96) A3 	( Bi B2(K1i) B3(T9/105i) 

1-5 33 0.126 (0.346) 0.037 (0.264) 0.143 (0.310) 0.208 (0.370) 0.069 (0.356) 0.111 (0.2721 

6-10 36 0.343 (0.434) 0.066 (0.283) 0.266 (0.342Y _0.365 (0.450) 0.191 (0.451) 0.338 (0.392) 

11-15 35 0.468 (0.383) 0.320 (0.309) 0.279 (0.368) 0.535 (0.386) 0.489 (0.399) 0.482 (0.481) 

16-30 35 0.528 (0.364) 0.402 (0.426) 0.526 (0.419) 0.715 (0.415) 0.615 (0.363) 0.874 (0.497) 

30+ 39 0.641 (0.435) 0.279 (0.441) 0.442 (0.432) 0.693 (0.420) 0.589 (0.495) 0.493 (0.512) 

H 22.01 30.27 14.00 - 22.69 33.90 27.32 

p 

____ 

_______ <0.001 <0.001 0.008 - <0.001 <0.001 <0.001 

Table 6.2: 178 serum samples from a cross-section of the population were tested for the recognition of a panel of rAgs 

representing MSP2. Median (SD) of OD values for Gambian sera (1/1000 dilution) for different age groups are shown. 

Differences between medians were analysed using Kruskal Wallis tests. 



Recombinant MSP2 proteins 

A2(T9/96) A3 
AGE Ed- Al _ 

45(5) 

 Bi 	I 	B2(Kli) 	B3

1-2 -18(2) 45(5) -73(8) 	-54.5(6) 	27(3) 

40(6) 53(8) 	40(6) 	47(7) 
3-4 15- 47(7) 13(2) 

61(11) 72(13) 	-61(11) 	67(12) 
5-6 

- 
18  -33(6) - 

69(9) 100 (13) 	77 (10) 	62 (8) - 
7-8 14 69(9) -  15(2) 

82 (9) -100(11) 	82(9) 	73 (8L  
9-10 - 11 100 (11) 54.5 (6) 

67(14) 100(9) 	100(21) 	86(18t 
11-12 21  67(14) -  

93(13) 100(21) 	93(13) 	79(11) 
13-15 14 93(13) 71 	10 

81(21) 96(25) 	-96(25) 	92(24j 
16-25 26 85(22) 65(24) - 

95(19) 90(18) 	95(19) 	80(16) 
26-35 20 85(17) 44(11) 

86(24) 93(26)- -86(24) 	75(21) 
36+  

- 
82(23) -46(13) 

19.811 13.821 - 	27.744 - 	14.628 - - 
15.285 - 10.294 - 

>0.001 - - 	0.002 	>0.001 	>0.001 
>0.001 >0.001 

Table 6.3: Prevalence of anti-MSP2 antibodies in sera from Gambian individuals aged 1-75 years. Percentage of positives 

for each age group and the number of positive samples (n) in each age group are given. Association between age and 

antibody prevalence for each antigen was assessed using X 2  tests for trend. 
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Figure 6.1: Prevalence (% responders) of IgG positive 
sera, by age, for MSP2 serogroup A (a) and B (b). 
Age groups are 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-15,  

16-25, 26-35, 36+ years. 
(a)• full length protein, Al, U Rl repeat region, A2(T9/96), 
£ R2/group-specific region A3. 

(b)0 full length protein, Bl, 0 RI repeat region, B2(Kl i), 
R2/group-specific region B3 (19/1 05i) 
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Recombinant MSP2 prOtEflS  

AGE Al A2(T9/96) A3 Bl - B2(K1i) B3(T9/105i) 

1-5 0.541 0.455 0.555 0.581 - 0.402 0.523 

6-10 0.718 0.573 0.611 0.414_ 0.290 0.609 

11-15 0.629 0.400 0.403 0.535_ 0.500 0.525 

16-30 0.560 0.533 0.583 0.764 0.633 0.894 

30+ 0.777 0.706 0.503 0.723_ 0.666 0.687 

H 6.91 6.91 2.34 10.48 9.00 6.17 

p 0.142 0.142 0.674 0.034_ 0.062 0.188 

Table 6.4: Analysis of positive responses to MSP2 rAgs; median of the positive OD values per age group. Differences 

between medians were analysed using Kruskal Wallis tests. 
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6.3.3 Immunogenicity of MSP2: 
It appears from the analysis above that children are capable of producing 

levels of antibodies equivalent to the levels in adults. However, the nature 

of the assay does not allow us to determine whether children produce the 

same quantity and/or affinity of antibody as adults when the serum is tested 

at a single dilution. Therefore, selected sera were titrated and comparison 

of the titration curves produced by these sera gives an indication of the 

differences in affinity and/or amount of MSP2-specific antibody (figure 6.2a 

&b). 
Al was strongly recognised by the three sera tested (figure 6.2a). Two 

donors were aged 5yrs (Fl and 172) and one was aged 42yrs (F3). The 

slope and the peak plateau of the titration curves were similar in all 3 

cases, indicating that the concentrations and affinities of antibodies specific 

for Al were similar in these individuals. 
Bi was well recognised by child F2 and adult F4, and it appears from the 

titration curves that the affinity and concentration of these antibodies is 

similar (figure 6.2b). Child F3, who was 1 years old, had antibodies specific 

for serogroup B with similar affinity but of a lower concentration. 

Therefore, in general, the MSP2-specific antibodies in children and adults 

are comparable in terms of concentration and affinity, indicating that MSP2 

is not poorly immunogenic. 

Table 6.5 summarises antibody recognition of MSP2 proteins by sera of 

individuals from non-endemic areas who have limited experience of 

P.falciparum infections. 6/13 of these individuals have detectable 

antibodies to the rAgs tested. Interestingly, all the convalescent sera were 

seropositive, indicating that, even after only very limited experience of 

P.falciparum, MSP2 is immunogenic. 
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Figure 6.2 a & b: Titration curves for the recognition of Al (a) and Bi 
(b), to compare the relative concentration and affinity MSP2-specific 
antibodies in children and adults. Sera were diluted 1/100 to 1/12800 
with doubling dilutions. 
(a) • Fl (age 5 years), A  F2 (age 5 years), • F3 (age 42 years). 

.(b) o F5 (age 1 year), £ F2 (age 5 years), • F6 (age 69 years). 
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MSP2 SEROGROUP A MSP2 SEROGROUP B 

DONOR STATUS T9/96 
13/14 

T9/96 I 
5/7 

R033 
8/6 

Dd2 
13/14 

Ki 
13/3 

T9/105 
12/6 

92:21 N - - +1- - + - 

Cs - - ++  
92:35 N - - - - - - 

92:51 N - - - - - - 

93:01 N - - - - - - 

93:28 N - - - - - - 

92:11 >2 - - - - - - 

92:30 >2 - - - - - - 

92:33 >2  
92:41 >2 - - - - - - 

93:33 >2 - - - - - - 

92:10 CS - - - ++ ++ + 

92:12 CS + + +++ +1- - - 

92:38 CS +++ ++ +++  

Table 6.5: Summary of results for antibody recognition of recombinant 

proteins of MSP2 by "naive" individuals. 

- indicates an OD was measured <mean +2SD of the control sera 

+1- indicates an OD was measured close to the mean + 2SD of the control 

sera 
+ indicates an OD was measured > mean +2SD of the control sera 

++ indicates an OD was measured > mean +4SD of the control sera 

+++ indicates an OD was measured > mean +6SD of the control sera 
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6.4. Discussion 

Serum samples were obtained from a cross-section of the population 

around the village of Farafenni, The Gambia. These individuals were aged 

between 1 and 75 years. The antibody recognition of recombinant MSP2 

antigens was determined in order to look at the dynamics of the acquisition 

of antibodies to MSP2 in a malaria endemic area. 

The recognition of the rAgs was shown to be markedly age dependent. The 

median 00 value for each age group increased with age and the 

association with age was statistically highly significant. This age 

dependency could possibly reflect the acquisition of protective immunity. 

Considerable variability in the recognition of MSP2 between individuals in 

each age group. The increase in the median OD with age was due to an 

increase in the prevalence of antibodies with age rather than to an increase 

in antibody concentration or affinity (table 6.2). 

The serum samples tested here have previously been tested for antibody 

prevalence to other malaria antigens, PfMSP1 [266] and soluble 

exoantigens [158]. The pattern of recognition observed for MSP2 (figures 

6.1a & b) is similar to that described for the recognition PfMSP1 and certain 

soluble antigens by these same sera. The humoral response to PfMSP1 

appeared to be acquired in an age-dependent manner, with peak 

prevalence occurring in late childhood or early adolescence [266]. The 

antibody responses to all the soluble antigens were strongly age-

dependent, but two different profiles were seen in the prevalence of 

antibodies. The age-related patterns of recognition of asexual stage 

antigens and the circumsporozoite protein were also studied in this region 

several years earlier [197, 200]. It was found that the immunological 

responses to blood-stages were all strongly age-dependent. Total blood-

stage antibodies (mean OD) increased with age, reaching a peak around 

15 years old [200]. This pattern was closely paralleled for the recognition of 

Pf 1 55/RESA. The development of anti-CS protein antibodies was also age-

related; both the prevalence of antibody positivity and mean antibody levels 

showed a progressive rise after the age of about 10 years [197]. The 

response reached a plateau in adulthood, however this pattern was distinct 

from that shown by antibodies to asexual blood-stage antigens, which 

developed more rapidly, suggesting that the CS protein is less 

immunogenic than the blood stage antigens. 
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The antibody profiles described by Jakobsen [158] represented the 

acquisition of anti-toxic and anti-parasite immunity. In this two stage 

development of naturally acquired immunity to malaria, the rate of 

acquisition of anti-toxic and anti-parasite immunity differ. The acquisition of 

resistance to the clinical effects (anti-toxic immunity) is reflected by a 

profound fall in the death rate in early childhood to much lower levels which 

are subsequently sustained. This precedes anti-parasite immunity which 

serves to reduce the prevalence and density of parasitaemia, occurring 

slowly throughout childhood to reach lowest levels in adult life. 

Anti-toxic immunity, also called anti-disease immunity, is an immune 

response which is effective against the clinical symptoms, targeting 

antigens such as those which induce TNF. The pattern of this anti-toxic 

immunity is such that the prevalence of antibodies increases very rapidly 

reaching its peak by age 5-8 years and remains high throughout life. Anti-

parasite immunity, which controls parasite multiplication and reduces 

parasitaemia, results in a low antibody prevalence in children under 7 

years but increases to a Plateau after age 25-35 years. It appears that the 

data for MSP2 fits with the latter profile i.e. antibody prevalence is low in 

children but increases to a plateau by adulthood, although the precise 

timing and level of response varies between antigens. This pattern has also 

been described for other studies of age-dependent recognition of 

P.falciparum antigens [158, 197, 241]. Indeed, the incidence of severe 

disease and death declines rapidly in young children (peak mortality in The 

Gambia occurs in children aged over 4 years [128]). Therefore, since the 

peak recognition of MSP2 occurs after the age of 4 years and antibodies to 

MSP2 are unlikely to play a role in anti-toxic immunity. 

It has been proposed that the slow immunological response to P.falciparum 

malaria may be associated with the intrinsically poor antigenicity of malaria 

parasites [62]. This does not appear to be the case for MSP2. Analysis of 

the median positive ODs (table 6.4) showed no significant difference with 

age, except for Bi. Thus, although the prevalence of antibodies to MSP2 

is strongly age dependent, the level of antibody does not depend on age. 

The affinity and concentration of antibody in the serum of children 

appeared to be comparable to the antibody of adults (figure 6.2a & b). 

Furthermore, convalescent sera from individuals who were known to have 

been exposed to malaria parasites a limited number of times, in some 
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cases only once, recognised MSP2 with OD values comparable to endemic 

sera. Therefore it can be concluded that MSP2 is naturally highly 

immunogenic. 
A2(T9/96) represents one variant sequence of the most polymorphic region 

of MSP2. The median OD and prevalence of antibodies to this antigen 

were strongly age-dependent, but in comparison to the other antigens, the 

antibody prevalence was lower. However, it is likely that this antibody 

prevalence is an underestimate of the recognition of this region of MSP2 

serogroup A reflecting the high degree of polymorphism in the Ri repeats 

rather than a lack of immunogenicity. 

To conclude, our data indicates that immunity to MSP2 is gradually 

acquired with age, with a prevalence profile that suggests a role in anti-

parasite rather than anti-toxic immunity. This antibody response is, in part, 

strain specific. The data indicate that poor immunogenicity is not the reason 

for the lack of MSP2 antibodies in children. Neither is constitutional 

non responsiveness in small children a prob!em However, several possible 

explanations remain for the relatively low prevalence of antibodies to 

MSP2 in children: 

seropositivity in children may be transient. When the serum samples 

were collected it is possible that a proportion of the children had not been 

infected since the previous transmission season and their immune 

responses to MSP2 had not been boosted, whereas adults have a more 

stable immune response due to the development of immunological 

memory; 
the antibody in some very young childrens' sera may be predominantly 

1gM, which could not be detected in this ELISA; 

immunity may be strain-specific - it may be necessary for an individual to 

be infected with all the isolates circulating in the local population. 

From this data it is not possible to determine whether the increased 

prevalence with age of anti-MSP2 antibodies is associated with 

protective immunity to P.falciparum. The prevalence of antibodies 

appears to correlate, at a population level, with acquired immunity, but this 

may not hold up at an individual level. Therefore, it is important to 

determine whether there is an association between antibody to MSP2 and 
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clinical status of children who are actively acquiring immunity to 

P.falciparum malaria. 
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7. Association of the immune recognition of MSP2 with 
malaria morbidity 

7.1 Introduction 
Individuals who are clinically immune to malaria are characterised by the 

rarity and mildness of clinical symptoms if an attack of malaria should 

occur. Acquired immunity is only partial, as parasites are often found in low 

densities in the peripheral blood of "protected" individuals, and immunity 

wanes once exposure to the parasites ceases [320] :  Children suffer the 

most from clinical malaria, with the greatest prevalence of malaria-related 

deaths. Malaria is responsible for approximately 25% of deaths in children 

aged 1-4 years in The Gambia [128]. The first evidence of acquired 

immunity in children is often their ability to carry a relatively high parasite 

burden without suffering severe clinical symptoms [211]. With increasing 

age (and exposure), children and adolescents suffer fewer and less acute 

malarious episodes. By adulthood, the level of infection is subpatent and 

clinical manifestations are rare [2401. The clinical symptoms of Piasmodium 

infection are associated with the erythrocytic stages of the life cycle; 

episodes of fever coincide with the release of merozoites from the infected 

rbc. 
There are several pieces of evidence to suggest that anti-bloodstage 

antibodies play a role in protection against malaria. 

In vitro assays have examined the inhibitory effect of immune monkey 

serum, human serum or mAbs on parasite growth. Cohen et a! [61] 

demonstrated that serum from monkeys immune to P.knowlesi could 

specifically inhibit the cyclical proliferation of the parasite. This protective 

antibody was shown to be associated with lgG and 1gM, but its activity was 

complement independent and could be provided by F(ab')2 fragments [59]. 

The immune serum had little effect on the growth of the intracellular 

parasites but suppressed the cycle following schizogony, suggesting that 

merozoites were the target and antibody inhibited their invasion into rbc. 

After the development of improved methods for parasite culture, the effects 

of immune serum on P.falciparum growth in continuous culture could be 

assessed [45, 54, 105, 223, 258]. Aotus monkeys could be made immune 

to P.falciparum by drug-therapy after the development of high parasitaemia 

[45]. Immunity to P.falciparum could also be induced by injecting the 

animals with parasite suspensions enriched in merozoites emulsified in 
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Freund's complete adjuvant [226]. For example, Reese and Motyl [258] 

found that 0.5-3.5% immune monkey serum in the culture system caused 

29-56% inhibition of parasite growth after 4 days. This was increased to 

75% inhibition by the use of purified 1g. Although the animals were resistant 

to malaria and developed antibodies capable of inhibiting growth in vitro, 

suggesting that such antibodies were protective, it was not assumed that 

this was an absolute correlation [54]. Early passive transfer experiments 

using a primate system demonstrated that, in some instances, serum taken 

from monkeys with chronic infection and injected into those suffering from 

an acute attack could prevent death or at least prolong the course of the 

experimental disease [58]. However, Fandeur et a! [105] showed that the 

presence of inhibitory antibody, measured in vitro, was not correlated with 

the level of functional immunity or with the ability to confer protection upon 

in vivo passive transfer. It is possible that, in such cases, the effector 

function of antibody was dependent upon co-factors such as activated 

mononuclear cells to mediate antibody-dependent cell-mediated 

cytotoxicity (ADCC). 
The role of human immune serum, in resistance to malaria, has also been 

evaluated. Serum or purified Ig from individuals living in endemic areas 

has been tested for inhibitory effects in vitro on the growth of parasites 

originating from the same area or different geographical areas [33, 164, 

360]. The results of these studies indicated that antibodies from some, but 

not all, individuals can inhibit parasite growth in vitro. Therefore, studies of 

immunity to malaria have demonstrated that sera collected from 

experimentally infected animals, or from human living in malaria endemic 

areas, contain factors that inhibit parasite development in vitro. 

The role of antibody in protection against malaria in vivo has previously 

been inferred from the occurrence of neonatal immunity in the offspring of 

immune mothers and the presence of protective antibody in such newborn 

infants' sera. Edozien et a! [92] demonstrated a close correlation between 

levels of gammaglobulin in blood from the umbilical cord and from the 

mother, concluding that increased gammaglobulin in the blood of African 

mothers could be transferred across the placenta to their babies. Passive 

transfer of cord-blood gammaglobulin [92] was shown to dramatically 

decrease P.falciparum parasitaemia in a Nigerian infant. Also, passive 

transfer of gammaglobulin from Nigerian adults demonstrated antiparasitic 

properties with high parasite densities in patients consistently being 
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reduced within 4 days of starting treatment [92]. This confirmed the 

observation of Cohen et a! [63] who administered purified gammaglobulin 

from immune adult Gambians to Gambian children suffering from acute 

attacks of malaria; the treatment had a marked effect on parasitaemia and 

clinical symptoms. This was more recently demonstrated by passive 

transfer of African lgG antibodies to Thai patients [280]. 

The utilisation of hybridoma technology has permitted the description of 

mAbs active against different malarial parasites. In the rodent model, it has 

been possible to examine the in vivo protective capacity of such mAbs 

[114]. Protection was evident with the use of mAbs specific for determinants 

on the merozoite, thus it appears that antibody-mediated protection against 

malaria was acting at the level of the free merozoite, inhibiting invasion of 

the host erythrocytes. In the case of P.falciparum and P.knowlesi, antibody 

activity was measured in vitro and mAbs were shown to block invasion of 

merozoites into rbc [102, 238]. 
Thus, the target antigens of the protective immune response are thought to 

be antigens either on the surface of the merozoite [59, 102, 114, 238] or 

alternatively antigens expressed on the surface of infected erythrocytes 

containing late stage parasites. Antibody against merozoites could promote 

a number of possible anti-parasite effector mechanisms. In vitro studies 

have shown that immune serum or mAbs can prevent invasion of 

merozoites into erythrocytes. This could be mediated either by 

agglutination of free merozoites by immune serum [59, 102], or antibodies 

may bind to the surface and interfere with the parasite ligand-rbc receptor 

[114, 238]. Others suggest a direct interaction of protective antibodies with 

some cellular effectors through a mechanism like antibody-dependent 

cellular cytotoxicity; Cytophilic antibodies may act by stimulating blood 

monocytes through Fc receptors after binding to the parasite target [42, 88, 

105, 195]. 
Several epidemiological studies have examined the relationship between 

anti-malarial immune responses and protection from clinical malaria [158, 

197, 200, 264-266, 269]. The direct, causative relationship between 

antibody level to a specific antigen and malaria morbidity is difficult to 

prove. However, it would be expected that antibody levels would rise with 

age at approximately the same rate as clinical resistance, that these 

antibody levels would remain high throughout adulthood, and that 

antibodies to a particular antigen are directly associated with protection in 
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prospective longitudinal studies. Such studies are used to examine the 

relationship between naturally acquired immune response to malaria 

antigens and subsequent susceptibility to malaria infection and clinical 

disease. The serum samples which have been used in our study have 

previously been used to study the association of antibody recognition of CS 

protein [264], PfMSP1 [266], Pf 1 55/RESA [265] and soluble exoantigens 

[269] with the subsequent susceptibility to malaria infection. Significant 

levels of anti-CS antibodies were found in a minority of Gambian children 

and although the proportion increased gradually with age, no association 

could be demonstrated between the presence of antibody and protection 

from malaria [264]. A study in the same area a few years earlier, also 

indicated that the humoral immune response to the CS protein did not play 

a major role in the development of immunity to clinical malaria, despite 

seropositivity being age-related [197]. However, antibody to blood stages 

was found, in some cases, to be associated with protection from malaria. 

The prevalence and concentration of antibodies to PfMSP1 increased with 

age and it was found that high titres of antibody to the N-terminai conserved 

region and to the C-terminal PfMSP142 were significantly associated with 

resistance to clinical malaria and high parasitaemia. Antibody responses to 

soluble exoantigens have been shown to be strongly age-dependent [158]. 

Apparent associations were seen for antibody to Ag4 [158] and antibody to 

Ag2 [269] and resistance to clinical malaria, however, it was concluded that 

although antibody to these soluble exoantigens did not protect seropositive 

children against fever, these antibodies did seem to be associated with 

resistance to high levels of parasitaemia [269]. 
In The Gambia an association between increasing titres of anti-

Pf155/RESA antibodies and decreasing parasitaemia with age was found, 

but no association could be demonstrated at an individual level between 

the presence of erythrocyte membrane immunofluorescence (EMIF) 

antibodies and protection [200]. Riley et a! [265] confirmed the temporal 

association between the development of clinical immunity and the 

acquisition of EMIF antibodies. In addition, it was shown that the presence 

of antibodies binding to peptides containing B cell epitopes of Pf 1 55/RESA 

was associated with reduced susceptibility to clinical attacks of malaria and 

with resistance to high parasitaemia. Marsh et a! [200] also reported that 

between the ages of 3 and 8 years the development of antibodies to 

parasite-dependent rbc neoantigens (PDN) was rapid and that these 
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antibodies were associated with protection from clinical episodes of 

malaria. Thus in such longitudinal prospective studies it is possible to 

demonstrate significant associations of malaria specific antibodies with 

resistance to clinical malaria. 

There are several factors which suggest that antibodies to MSP2 may have 

a protective role in malaria infections. Antibodies to MSP2 are strongly age-

dependent, reaching peak prevalence in adolescence (chapter 6). The rate 

of acquisition of antibodies is consistent with the development of anti-

parasitic immunity. However, this is not an index of functional malaria 

immunity and does not mean that the increase in antibody prevalence and 

the decrease in malaria morbidity with age are causally related. The 

location of MSP2 on the merozoite surface makes it directly accessible to 

the immune effector mechanisms [298]. mAbs specific for MSP2 

serogroups A and B have been produced which inhibit parasite replication 

in vitro [101, 255] and prevent free merozoites from invading erythrocytes 

[55]. Rabbit anti-serum raised against MSP2 was also shown to inhibit 

merozoite invasion [220]. Furthermore, Saul et a! [284]report protective 

immunisation of mice with invariant peptides of MSP2: octapeptides from 

the conserved regions induced anti-MSP2 antibody which cross-reacted 

with a homologue in the rodent malaria parasite P.chabaudi. Vaccinated 

mice, challenged with an otherwise lethal inoculum of P.chabaudi, showed 

substantial resistance with most mice surviving. Recently, Al-Yaman et a! [2] 

studied the relationship between the humoral response to MSP2 and 

malaria morbidity in Papua New Guinea. The proportion of the population 

with antibodies to MSP2 increased significantly with age. The authors 

observed a negative association between antibody prevalence/ 

concentration and fever episodes and a positive association between a 

decrease in antibody and haemoglobin levels, indicating a possible 

protective role of antibodies against presumptive P.falciparum malaria. 

The aim of the study described in this chapter is to determine whether the 

acquisition of antibodies to MSP2 is associated with increasing resistance 

to malaria infection. The approach used is to examine the association 

between malaria morbidity and the immune recognition of MSP2 in a 

cohort of semi-immune children, in a prospective, longitudinal study. The 

study was designed to determine whether pre-existing antibodies to 
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defined MSP2 epitopes were correlated with the subsequent malaria 

history of the children. 



7.2 Materials and methods 

7.2.1 Study design 
Plasma samples were obtained from a previous study of antimalarial 

immunity [264]. 
In May 1988 (before the malaria transmission season), 355 children aged 

3-8 years from hamlets around the village of Farafenni, were recruited into 

the study and a blood sample collected. The children were examined by a 

physician; the spleen was palpated and any enlargement noted. Blood 

films were examined for malaria parasitaemia and all parasitaemic children 

received a curative dose of chloroquine and Maloprim®. Heparinised blood 

was centrifuged and plasma removed, aliquoted and stored at -40/-20°C. 

During the following six month period each child was visited once a week 

by a field worker who filled in a health questionnaire and recorded the 

child's axillary temperature. If the temperature was 37.5°C or greater, a 

blood film was made and examined for malaria parasites. Infected children 

were treated with chioroquine. The children were re-examined in 

November, at the  end of the malaria transmission season, and a finqerprick 

blood sample was obtained and examined for malaria parasites. 

It was possible to allocate each child to one of four groups depending on 

their malaria experience during the preceding 6 months: 

Group 1 - 	 clinical episode of malaria, defined by fever> 37.5°C in the 

presence of P.falciparum parasitaemia ~!5000 asexual stage 

parasites/tl. 

Group 2- 	Indeterminate infection, defined by fever (> 37.5°C) in the 

presence of low parasitaemia (<5000 asexual stage 

parasites/ui). 

Group 3 - 	 Asymptomatic infection, defined as any child in whom an 

episode of fever had not been detected but who had a 

positive 	blood film at the second survey, or who had splenomegaly 

that had not been present in May or that had increased by > 

2cm. 

Group 4- 	no evidence of infection, defined as an individual who 

experienced no clinical episode of malaria, no parasitaemia 

and no splenomegaly. 

Control sera were obtained from European donors, children (n=19) and 

adults (n=12). These individuals had not been exposed to malaria. 
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7.2.2 Recombinant proteins 
The rAgs used for this study represented the Ri repeat region and the R2 

repeat/group specific region of serogroups A and B - A2(T9/96), A3, B2 

(Ku) and B3 (T9/105i). 

7.2.3 Enzyme-linked immunosorbent assay (ELISA): 

lgG antibodies were measured in ELISA as described in materials and 

methods. For screening, all sera were diluted 1/1 000 in blocking buffer and 

tested in duplicate. 

7.2.4 Statistical methods: 
Determination of positivity: 

Positive samples were defined as those giving a specific OD above the 

normal range for control sera. The normal range was taken as the mean + 2 

standard deviations of the OD values obtained for the control sera. 

Logistic regression analysis: 
Logistic regression analysis determines the "relative risk" of a particular 

outcome (in this case susceptibility malaria) in association with a measured 

variable (recognition of MSP2) and tests the difference in the relative risk in 

different groups. The difference is represented by an odds ratio (OR) which 

gives an indication of the strength of the association between the factor 

(antibody response to MSP2) and the susceptibility to malaria. In addition 

possible confounding factors can be included in the analysis to give the 

adjusted OR. If the 95% confidence interval for the adjusted OR includes 1, 

then there is no significant association between the measured variable and 

outcome of infection. 
The outcome variable in logistic regression is binary or dichotomous, in this 

cases responder or non responder. 

Generalised linear model: 
This analysis compares the mean OD of each group, to determine whether 

the magnitude of the response is different between groups. The 

significance of the particular variable (OD) is assessed by fitting two 

models, one including and the other excluding that variable. The test is 

based on the difference of the deviances of the two models. 

Possible confounding variables are included in the GLM and a gamma 

distribution is used to directly model the skewed distribution of the outcome 

variable. 
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7.3 Results 

7.3.1. Association of the immune recognition of MSP2 rAgs with malaria 

morbidity: 
Serum samples were collected from 355 children aged 3 - 8 years during 

the dry season when malaria transmission is minimal. Morbidity surveys 

were carried out during the following transmission season and the children 

were allocated into one of four groups defined by their infection status. 

A x2  test for trend showed that the prevalence of MSP2 antibodies was 

strongly age-related (table 7.1), as previously described (chapter 6). 

LA  g Age (years) I esi Tor irena 

3-4 5-6 7-8 Total X 2 p 

(n=129) (n=121) (n=105) (n=355)  

A2 25.6 28.1 43.8 31.8 8.42 0.004 

A3 13.2 24.8 43.8 26.2 27.64 <0.001 

B2 11.6 14.9 28.6 17.7 10.90 <0.001 

B3 39.5 53.7 69.5 53.2 120.85 <0.001 

Table 7.1: Prevalence (%) of anti-MSP2 antibodies in semi-immune 

children from The Gambia. 
Serum was collected from 355 children during the dry season (before 

malaria transmission season) and tested for recognition of MSP2 rAgs. The 
children were divided into 3 age groups: 3-4 yrs, 5-6 yrs and 7-8 yrs. A x2  
test for trend was performed on the % responders per age group to 

determine the association of anti-MSP2 antibodies with age. 

To determine whether antibody positivity was an indicator of protection, the 

antibody recognition of MSP2 by asymptomatic individuals (group 3) and 

by individuals who developed clinical malaria (group 1) was compared. 

Since it is not certain that children with no evidence of infection (group 4) 

had in fact been exposed to infected mosquitoes and since the status of 

children with fever and low parasitaemia (group 2) is also unclear as fever 

could be due to a different intercurrent infection, comparisons of immune 

responses and malaria morbidity were made between groups 1 and 3 only. 

Two analyses were used; the first compares the proportion of responders 

and nonresponders to each antigen between individuals with clinical 
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malaria and those with asymptomatic malaria, the second compares the 

mean OD to each antigen for groups 1 and 3. 

Both analyses are multivariate, thus age, sex, ethnic group, bednet status 

and sickle cell carriage can be included, as it is essential to adjust for their 

possible effects. 
The following analyses were performed by D McGuiness, ICAPB, 

Edinburgh University. 

1. Multiple logistic regression: 

The relationship between antibody recognition of rMSP2 and subsequent 

malaria morbidity was modelled by logistic regression to give an odds ratio 

(table 7.2). An adjusted OR was calculated to allow for the possible effect of 

the confounding variables. 

rA Asymptomatic 
%responders 

n=87 

Clinical 
%responders 

n=108  

Crude OR 
(95% Cl) 

Adjusted OR * 

(95% Cl) 

A2(T9/96) 34 (39.1) 36 (33.3) 0.78 0.97 
(0.43-1.40) (0.50-1.88) 

ns ns 

A3 30 (34.5) 26 (24.1) 0.60 0.89 
(0.32-1.12) (0.43-1.84) 

ns ns 

B2(K1i) 22 (25.3) 11(10.2) 0.34 0.42 
(0.15-0.74) (0.17-1.02) 

p<0.005 ns 

B3(T9/105) 58 (66.7) 49 (45.4) 0.42 0.43 
(0.23-0.75) (0.22-0.84) 

p<0.005 p<0.005 

Table 7.2: 	Multiple logistic regression analysis to determine the 

relationship between recognition of MSP2 and subsequent susceptibility to 

malaria. *An  adjusted OR was calculated to account for any possible effects 

of confounding by age, sex, ethnic group, bednet status and sickle-cell 

carriage. 

The analysis indicates that the presence of antibodies to B3 is significantly 

associated with asymptomatic infection i.e the proportion of responders to 

B3 is higher in asymptomatic malaria cases than in clinical cases. The 

association between malaria morbidity and antibodies to B2 approaches 
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significance; the influence of the confounding variables accounting for the 

association observed with the crude OR. 
No significant association is apparent for the recognition of the serogroup A 

rAgs, A2 and A3. 

2. Generalised linear model: 
For each antigen the mean OD for the asymptomatic group was compared 

with the mean OD for the clinical malaria group by means of a generalised 

linear model. The data is positively skewed (figure 7.1), with many OD 

values being close to zero. Therefore, a standard linear regression of the 

OD values would be inappropriate, as this assumes normal distribution of 

data. Instead the generalised linear model was fitted to the data using a 

gamma distribution to directly model the distribution of the OD values. 

Results from this linear regression assuming a gamma distribution are 

shown in table 7.3, with and without including the possible confounding 

variables. 

mean OD 	8 . dv  a 	est. 3 a 	8AV  b 	est. 3 b 

(s.e) 	 (s.e) 
Asymp. 	Clinical 
n=86 	n=107  

A2(T9/96) 0.354 0.286 +1.55 -0.083 +0.002 0.003 
(0.067) (0.070) 

A3 0.292 0.195 +4.98 -0.130 +1.426 -0.066 
(0.058) (0.061) 

B2(K1i) 0.204 0.103 +4.64 -0.111 +0.308 -0.028 
(0.052) (0.054) 

B3(9/105) 0.532 0.348 +7.14 -0.196 +5.21 § -0.156 
(0.074) (0.077) 

Table 7.3: Association of mean OD to rMSP2 with malaria status. Results 

were analysed using linear regression assuming a gamma distribution; 
.dv is the change in deviance when 'group' (i.e either 

asymptomatic/clinical ) is removed from the model; est.b is the estimated 

regression parameter. 

§ indicates d.dv>3.84, which is significant. 
a indicates analysis without allowing for confounding variables; b  indicates 

analysis including confounding variables. 
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Inclusion of the confounding variables in this analysis clearly indicates that 

they are exerting an effect on the outcome of infection. Overall, the results 

are essentially the same as for the multiple logistic regression. No 

significant association of antibody to A2, A3 and B2 with subsequent 

susceptibility to malaria morbidity was observed, whereas the mean OD to 

B3 was significantly higher in individuals who were asymptomatic. 
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Figure 7.1: Dot plot of the antibody recognition of MSP2 
rAgs. Serum samples were collected from a cohort of 
semi-immune children in May (pre-transmission) and 
individuals monitored during the malaria transmission 
season and subsequently classified as having clinical 0 

or asymptomatic A infections. 

Horizontal lines represent the cut-off level determined 

from OD values of control sera 
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7.4 Discussion 
Antibodies to MSP2 are strongly age-dependent, reaching a peak 

prevalence in adolescence (chapter 6). This rate of acquisition of 

antibodies reflected a pattern of anti-parasitic immunity rather than anti-

disease immunity. However, immunity resulting in decreased parasite 

densities would also lead to less severe symptoms. Many epidemiological 

studies show that antibody prevalence to a particular antigen increases 

with age, but it is unlikely that all of these are involved in protective 

immunity. An increase in antibody with age may be associated with 

protection or may just be a measure of exposure. Therefore, to determine if 

the age-dependent pattern of MSP2 antibody prevalence reflects a role for 

MSP2-specific antibodies in effective protective immunity, the immune 

recognition of MSP2 by a cohort of semi-immune children was studied and 

related to their subsequent susceptibility to malaria infection and disease. 

The antibody recognition of rAgs representing the Ri repeat region (A2 and 

A3) and the R2 repeat/group specific region (A3 and 133) of each serogroup 

was measured during the dry season, before the malaria transmission 

season. These children had already begun to develop immunity to malaria 

and the aim was to relate existing anti-MSP2 antibodies to their 

subsequent infection status. Care must be taken in the interpretation of the 

results as any apparent associations between antibody recognition and 

infection status do not prove a direct, causative relationship but do identify 

areas worthy of further investigation. 

In terms of estimating protective immunity against disease, it is appropriate 

to compare those children who were infected but did not become ill during 

the transmission season (group 3) with those who experienced at least one 

febrile episode associated with Plasmodium infection (group 1). 

Comparison of the proportion of responders in each group using logistic 

regression analysis allowing for confounders, showed a significant 

association between the presence of antibody to B3 and reduced risk of 

clinical symptoms. No such association occurred for the other antigens. A 

second analysis using a general linear model, taking into account the 

skewed nature of the data, showed that the mean OD of 133-specific 

antibodies was higher for individuals with asymptomatic malaria, whereas 

the mean OD to A2, A3 and B2 was not significantly different between the 

two groups. 
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The confounding variables were shown in both analyses to influence the 

outcome of infection, and therefore it is essential that such variables are 

included in analyses of this kind. 
Thus, in both analyses, the recognition of B3 is associated with protection 

from clinical malaria in this cohort of children. However no association was 

found for the other antigens tested. Possible explanations for this are: i) that 

under natural conditions, individuals do not have a focalised immune 

response, i.e. a response directed exclusively to one particular region or 

epitope of an antigen, thus antibody responses to different regions of MSP2 

(and possibly to other antigens) are closely associated preventing the 

demonstration of a protective effect to any one antigen or epitope i.e. MSP2 

may be necessary but not sufficient for protection; ii) antibody to the other 

regions of MSP2 may be associated with protection but that the sequence 

polymorphism precludes the demonstration of this with any one 

representative sequence. 

In this chapter the data suggest that the antibodies to epitopes in the 5' 

repeat/group specific region of MSP2 serogroup B (133) appear to confer 

resistance to clinical malaria. In previous studies of blood stage antigens 

[158, 200, 264, 269], few associations with protection have been found 

therefore, in terms of vaccine development, the results presented here are 

encouraging. However, additional aspects of the immune recognition of 

MSP2 need to be studied. Since the antibody-dependent killing of malaria 

parasites is, at least in part, cell-mediated, an important aspect in studying 

the induction of protective immunity is to assess the lgG subclass of the 

antibodies involved. Such studies are reported in chapter 8. 
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8. lgG subclass specificity of anti-MSP2 antibodies 

8.1 Introduction 
Human IgG subclasses are known to have a variety of biological effector 

functions [306, 361]. They have been designated lgG 1-4 based on their 

relative abundance in normal serum. The structure and function of each 

human lgG subclass protein has been studied extensively [39, 361], and 

they have been shown to differ in their abilities to fix complement and bind 

to cell surface Fc receptors [40]. The four subclasses of murine lgG, listed in 

( 	
order of serum concentration, are IgG2a, IgGi, lgG2b and lgG3 [306]. 

The subclass induceuring an infection can be dependent on the nature of 

the antigen being presented. In humans, IgGi and lgG3 are secreted in 

response to proteins [160], lgG2 is preferentially induced by 

polysaccharides [139] and lgG4 'would be induced after chronic exposure 

to proteins [139]. Since the biological effector functions of different lgG 

subclasses vary greatly, the serum concentrations of antibodies belonging 

to a given subclass may indicate their clinical role in the course of an 

infection. 
The study of lgG subclass responses in parasitic infections is limited; 

however, it is apparent that certain organisms preferentially induce 

antibodies of particular subclasses. These subclasses can be associated 

with effective, protective immune responses or immunopathology. This has 

been shown for human filariasis. Cabrera et a! [44] established a 

correlation between a particular clinical condition of onchocerciasis 

(Sowda) and a predominantly lgG3 antibody response to a low molecular 

weight antigen of Onchocerca volvulus. The lgG3 antibody appears to 

mediated a type Ill hypersensitivity reaction. During infection with 

Wuchereria bancrofti, lgG4 antibody responses are associated with 

asymptomatic microfilaraemia, whereas lgGl and IgG3 antibodies are 

associated with the clinical presentation of chronic pathology and 

elephantiasis [156]. Similarly, lgG4 antibodies are predominant in 

asymptomatic microfilaraemics during infection with Brugia malay! [187] 

whereas increased levels of IgG1-3 and IgE are associated with chronic 

disease. Therefore it appears that IgG4 may act as a blocking antibody, 

preventing the chronic outcome of infection. 
Protozoal infections predominantly induce antibodies that have cytophilic 

and complement fixing properties in mice and humans. Parasite-specific 
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IgGi and IgG3 are the predominant subclasses in visceral Leishmania 

infections [94, 95], and in Chagas' disease patients [287]. In the mouse 

model, lgG2a has been implicated as important in resistance to 

Trypanosoma cruzi infection [249]. 

A predominance of cytophilic antibodies has also been found in murine 

malaria models. White et a! [354] studied the response in mice to P.yoelii 

infection to determine if protective antibody was equally distributed among 

all the isotypes, and if a single isotype was capable of modulating infection. 

The data suggested that anti-malarial antibody of the cytophilic lgG2a 

subclass was predominantly responsible for protection in passive transfer 

experiments. Also, lgG2a mediated protection in P.berghei infected mice 

[1]. 
The role of malaria specific lgG antibody in protection from clinical malaria 

in humans has been described in chapter 7. Several mechanisms of 

parasite clearance were proposed and these could be dependent on the 

induction of the appropriate lgG subclasses. For example, an antibody-

dependent cellular cytotoxicity mechanism requires Cytophilic antibodies to 

stimulate effector cells through cross-linking of Fc receptors after binding to 

the parasite target. In fact, several studies have shown that in vivo 

protection from malaria correlates with an in vitro inhibition of parasite 

growth by immune lgG only in the presence of blood monocytes [183, 

195].Therefore, it is likely that if ancillary cells are required for biological 

function, then the isotype of the relevant antibodies is an important variable. 

Thus, the authors suggested that, in light of the monocyte-dependent effect 

of antibodies functional differences may exist among antibodies of the 

same specificity and this may contribute to the slow development of anti-

malarial immunity. This has been continued in studies which show that 

lgGl and 1g03 antibodies, specific for mature schizonts, predominate in 

individuals protected from clinical malaria, and that lgG2 and 1gM from non-

protected individuals could block the activity of immunoglobulins in immune 

sera [29]. In these studies the antigenic specificity of the antibodies was not 

established, however, it was speculated that the antibodies should 

recognise accessible antigen on the merozoite surface [88]. 

Groux and Gysin [131] proposed opsonisation as an effector mechanism in 

protection against blood stages of malaria parasites. In humans, IgGi and 

lgG3 are the most effective. opsonising subclasses. The results of their 

study suggested a correlation between immune protection, the ability of 
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serum to mediate opsonisation of infected erythrocytes and the 

predominance of IgGi and lgG3 over lgG2 and lgG4 directed against the 

surface of infected erythrocytes. 
The levels of human lgG subclasses to crude or defined malarial antigens 

have been investigated in several studies. The first report measured the 

response in three heavily parasitised P.falciparum patients from The 

Gambia to heat-stable (S) antigens of the red cell stages [357]. All 3 

patients had highest antibody titres in the IgGi subclass. Wahigren et a! 

[20] used a trophozoite/schizont-enriched culture antigen preparation of 

P.falciparum in ELISA studies of lgG subclass responses of infected 

Swedish patients and of African adults living in a malaria endemic region of 

Liberia. It was shown that antibodies occurred in all 4 subclasses with IgGi 

titres being highest. However, higher lgG3 levels were found in most 

Liberian sera than in the European sera. A preliminary study of antibody 

levels to a soluble blood stage antigen in children and adults in Pakistan 

found that in most sera the malaria specific antibody exists as IgGi, 

sometimes to the total exclusion of other subclasses. Malaria-specific lgG3 

antibody was present in about half the group, and lgG2 and lgG4 only 

rarely [48]. Using defined Pf155/RESA peptides in ELISA, Dubois eta! [89] 

found that IgGi and lgG3 subclasses were the most frequent and, when 

present, were coexpressed in almost all serum samples. However, in that 

study, IgGi levels were inversely correlated with protection [89].  In Papua 

New Guinea, Beck et a! [20] found that humoral responses directed against 

RESA were frequent in all lgG subclasses tested (IgGi, lgG2 and lgG3). 

RESA-specific lgG3 responses were shown to be age-dependent and 

cytophilic antibodies were associated with reduced P.falciparum 

prevalence [20]. Most recently, antibodies to a defined region of PfMSP1 

(PfMSP119) were shown to be predominantly IgGi; this study involved 

essentially the same Gambian population as the present MSP2 study, and 

the results are directly comparable [93]. 

Therefore, it is important to determine not only the antigen specificity of anti-

malarial antibodies, but also the isotype of these antibodies to ascertain 

their possible protective role against clinical malaria. 

I have already shown that anti-MSP2 antibodies are present in serum from 

individuals exposed to malaria. In this chapter I aim to determine 1) the lgG 

isotypic distribution of these antibodies in malaria-immune adults; 2) 
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whether the distribution of lgG isotypes changes with age (and might 

therefore be related to the acquisition of protective immunity); and 3) 

whether there is any association between isotype distribution and clinical 

outcome of infection. 
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8.2 Materials and methods: 

8.2.1 Serum samples: 
Sera which and been shown to have anti-MSP2 lgG antibodies were 

selected from 1) Brefet adults (chapter 5), 2) Farafenni cross-sectional 

survey (chapter 6), and 3) Farafenni longitudinal survey (chapter 7). 

8.2.2 ELISA: 
lgG subclass ELISAs were carried out as described in chapter 3, section 

3.3.2. Sera were diluted 1:1000, in duplicate, and tested for the presence of 

each of the lgG subclasses using anti-subclass reagents. 

lgG subclass standard curves were included as a positive control; purified 

myeloma proteins were diluted in four-fold dilutions from 1Opg/ml. 

8.2.3 MSP2 recombinant proteins: 

The rAgs used in this chapter were Al, A2(T9/96), A3, Bi, B2(Kli) and 

B3(T9/1 051). 

8.2.4 Statistical analysis: 

Determination of positivity 

Control sera, from individuals with no history of malaria, were tested at the 

same time. The cut-off level for positivity was taken to be greater that the 

mean + 2SD of the control sera OD values for each subclass. 

Kruskal-Wallis one-way analysis of variance 

This is the non-parametric equivalent of the ANOVA test, allowing 

comparisons of the median of a variable to be made between several 

groups. 

Mann-Whitney test: 

This test is the non-parametric equivalent of the Nest and is used to test the 

null hypothesis that the median of a variable is the same in two groups. 

x2  for trend test: 
X

2 tests for trend were performed using Epi Info, and are used to determine 

whether there is a trend in proportions of responders with age. 
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8.3 RESULTS: 
8.3.1 Isotypic distribution of anti-MSP2 antibodies in malaria-immune 

adults: 
The lgG subclass specificity of anti-MSP2 antibodies was determined for 

sera from adults that has been shown to contain MSP2-specific lgG. 

Figures 8.1, 8.2 and table 8.1 show the lgG subclass distribution of 

antibodies specific to each of the rAgs. Although the subclass distribution 

differs slightly for antibodies to the different rAgs, the predominant MSP2-

specific antibody subclass is lgG3. 
77% and 80%, respectively, of Al- and A3-positive sera contained lgG3 

only, whereas 28% and 38% of IgG3 positive A2-specific sera contained 

lgG2 and lgG4 antibodies, respectively. A2 is a fragment of Al, therefore 

one would have expected some lgG4 containing Al-positive sera. 

However, the majority of the A2-positive results were close to the cut-off, 

and gave values below the cut-off for Al-lgG4. Al-positive sera which do 

not contain lgG3 antibodies, are IgGi positive. 
The pattern of recognition is similar for the serogrou'b. proteins, in that 

lgG3 is the predominant subclass. However, 59% and 47% of Bi- and B2-

specific sera were IgGi positive; in the majority of cases this was 

coexpressed with lgG3. Although only a small number of sera were tested 

for the IgO subclass recognition of B3, the majority of sera expressed lgG3 

antibodies. 
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rAg Number Antibody subclass 
Number of responders (%) 
IgGi 	IgG2 IgG3 IgG4 

Al 30 6 	1 26 0 
(20) 	(3) (87) (0) 

A2 25 8 	3 21 11 
(32) 	(12) (84) (44) 

A3 30 3 	2 30 2 
(10) 	(7) (100) (7) 

B  29 17 	1 28 3 
(59) 	(3) (97) (10) 

B2 17 8 	0 16 2 
(47) 	(0) (94) (12) 

B3 11 4 	2 8 2 
(36) 	(18) (72) (18) 

Table 8.1: Prevalence of anti-MSP2 IgG subclasses in Gambian adult 

donors 

8.3.2 Age-related distribution of anti-MSP2 lgG subclass antibodies in 

malaria exposed individuals: 

In all age groups, there is a predominance of antibodies which belong to 

the cytophilic and complement-fixing subclasses. 

In the adult sera from the age cross sectional study, the distribution of lgG 

subclasses was essentially similar to that shown for the Brefet adults sera, 

with a predominance of anti-MSP2 IgG3 antibodies. 

Table 8.2 shows how the distribution of MSP2-specific lgG subclass 

antibodies changes with age. There is an apparent decrease in frequency 

of IgG1 expression and an increase in lgG3 expression with increasing 

age. In general the number of lgG2- and lgG4-positive sera are too small 

for any valid conclusions to be drawn about their association with age. 

However, x2 for trend analysis indicates that the increase in lgG3 

expression with is statistically significant for A2-, A3-, 131 -, and 133-specific 

antibodies, and the decrease in prevalence of IgGi antibodies is significant 

for the recognition of A2, Bi and B2. It seems that no trend was apparent for 
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a) 	 b) 

C) 	 U) 

/ 	 F 

the lgG3 recognition of Al and B2 because even in the youngest age group 

a large percentage of individuals expressed anti-MSP2 of this subclass. 

The mean OD for each subclass has been plotted against age (figure 8.3) 

There is no obvious trend for IgGl, lgG2 and lgG4. However, the mean OD 

of lgG3 antibodies clearly increases with age. To determine whether any of 

these observations were statistically significant, data were analysed using 

a non-parametric Kruskal-Wallis test to compare the OD values of each age 

group, for each rAg (table 8.3). With one exception, recognition of B2, the 

level of anti-MSP2 lgG3 antibodies was shown to be age-related. Whereas 

anti-MSP2 lgGl antibodies were shown to be age-related only for rAgs A2, 

Bi and B2. 

Figure 8.2: Photograph showing the distribution of anti-Al lgG subclass 

antibodies in ELISA. 48 samples were tested in duplicate at a dilution of 

1:1000. a) IgGi, b) lgG2, c) lgG3, d) lgG4. 
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LAg ft  e Number Antibody subclass 
group Number of responders (%) 

IgGi lgG2 IgG3 IgG4 
Al :510 20 12(60) 3(15) 11 (55) 0(0) 

11-20 25 15 (60) 1 (4) 17 (68) 0 (0) 
21+ 18 7 (39) 0 (0) 13 (72) 0 (0) 

x2  for trend 1.605 3.601 1.244 N/A 

p 0.205 0.058 0.265 
A2 :5 10 14 12 (86) 1 (7) 4 (29) 4 (29) 

11-20 16 11 (67) 2(13) 13(81) 2(13) 
21+ 17 6 (35) 1 (6) 13 (82) 4 (24) 

X2  for trend 8.287 0.027 9.103 0.077 

p 0.004 0.870 0.003 0.781 
A3 :5 10 15 8 (53) 3 (20) 7 (47) 1 (7) 

11-20 18 10 (56) 2 (11) 12 (67) 4 (22) 
21+ 13 6 (46) 1(8) 12 (92) 1(8) 

2  for trend 0.129 0.935 6.603 0.858 

p 0.720 0.334 0.010 0.354 
131  :5 10 14 8 (57) 0 (0) 8 (57) 5 (36) 

11-20 19 5 (26) 1 (5) 15 (79) 3 (16) 
21+ 14 2(14) 1(7) 14(100) 1(7) 

2  for trend 7.513 0.858 7.513 3.612 

p 0.006 0.354 0.006 0.058 
B2 :5 10 13 10 (77) 2 (15) 9 (69) 0 (0) 

11-20 26 11 (42) 0(0) 21 (81) 0(0) 
21+ 14 5(36) 0(0) 12 (86) 0(0) 

2  for trend 4.386 4.158 1.077 N/A 

p 0.036 0.041 0.299 
B3 :5 10 20 14 (70) 0 (0) 12 (60) 0 (0) 

11-20 22 8 (36) 2 (9) 19 (86) 1 (5) 
21+ 21 11 (52) 3 (14) 20 (95) 1 (5) 

2  for trend 1.195 2.803 8.052 0.732 

P 0.274 0.095 0.005 0.392 

Table 8.2: Prevalence (%) of anti-MSP2 lgG subclass antibodies in different 

age groups. x2  for trend values are given. 
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rAg Age Number Antibody subclass 
group Median OD 

IgGi IgG2 IgG3 lgG4 
Al 10 20 0.267 0.014 0.378 0.005 

11-20 25 0.403 -0.025 0.771 0.006 
21+ 18 0.308 -0.017 1.068 0.021 

H 0.34 3.13 12.15 1.41 
p 0.842 0.210 0.002 0.494 

A2 10 14 0.357 -0.030 0.134 0.024 
11-20 16 0.329 0.033 0.739 -0.009 
21+ 17 0.145 0.054 1.157 0.011 

H 7.12 4.96 19.13 2.20 
p 0.029 0.084 0.000 0.334 

A3 10 15 0.223 0.044 0.291 0.025 
11-20 18 0.247 0.022 0.434 0.068 
21+ 13 0.192 0.047 1.259 0.004 

H 0.92 0.69 8.13 3.62 
p 0.633 0.710 0.017 0.164 

131. 10 14 0.336 0.003 0.371 0.110 
11-20 19 0.091 0.049 0.529 0.012 
21+ 14 0.071 0.040 0.936 0.028 

H 6.69 0.80 10.77 3.32 
p 0.036 0.671 0.005 0.191 

B2 10 13 0.459 -0.133 0.515 -0.030 
11-20 26 0.159 -0.103 0.665 0.005 
21+ 14 0.191 -0.037 0.977 0.028 

H 7.61 2.88 3.26 9.27 
p 0.023 0.237 0.196 0.010 

B3 15 10 20 0.197 0.013 0.106 -0.009 
11-20 22 0.086 0.009 0.275 0.005 
21+ 21 0.155 0.032 0.936 -0.010 

H 2.16 1.29 20.94 1.61 
p 0.341 0.525 0.000 0.447 

Table 8.3: Median OD of anti-MSP2 lgG subclass antibodies. Kruskal 

Wallis tests were used to determine the association of median OD with age 

for each antigen. 
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8.3.3 Distribution of anti-MSP2 lgG subclass antibodies in relation to 

subsequent susceptibility to clinical malaria: 
The lgG subclass distributions of MSP2-specific antibodies were 

compared, using Mann Whitney tests, for individuals who had 

asymptomatic malaria infections and those with clinical malaria, for the 

recognition of Al and Bi. No significant differences between the groups 

were evident for the median OD values for each of the antibody subclasses. 

However, on comparing the proportion of responders (table 8.4), two 

significant results occurred. For the recognition of Al, igG3 antibodies were 

associated with asymptomatic infection and for the recognition of Bi, lgGl 

antibodies were associated with a clinical outcome of infection. 

Eft 	igG subclass Number of responders (%) XZ value 

Asymptomatic Clinical 

Al n=25 n=28 

1 24 (86) 19 (76) 0.81 0.367 

2 12 (43) 9 (36) 0.26 0.610 

3 26 (93) 17 (68) 5.33 0.021 

4 3(11) 1(4) 0.85 0.356 

Bi n=19 n=32 

1 25 (78) 19 (100) 4.82 0.028 

2 4(12.5) 2(10.5) 0.04 0.832 

3 24(75) 13(68) 0.26 0.611 

4 1 (3) 0 (0) 0.61 0.436 

Table 8.4: Proportion of responders with lgG subclasses specific for rAgs 

Al and Bi. x 2  tests. were used to determine if there were significant 

differences in the prevalence of Al- and 131 -specific antibodies of each lgG 

subclass between individuals who developed clinical malaria and those 

who had asymptomatic infections. 

These ELISAs were kindly done by Dr E Riley. 
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8.4 Discussion 
It has previously been shown that malaria exposed individuals have MSP2-

specific antibodies and that the prevalence of these antibodies is age-

dependent (chapter 5 & 6). The acquisition of antibodies to MSP2 parallels 

the overall slow development of immunity to malaria. It has been proposed 

that this slow development of immunity also depends on the acquisition of 

the appropriate lgG subclass(es) of antibody [29]. Effective anti-malarial 

immunity may require a predominance of antibodies with particular 

functions [131]. 
In theory, antibodies specific for MSP2 could inhibit merozoite invasion of 

erythrocytes by a number of mechanisms including merozoite 

agglutination, complement-mediated lysis, opsonisation or blocking of 

receptors involved in the adherence of merozoites to erythrocytes. These 

various mechanisms would be mediated by antibodies of different lgG 

subclasses - only IgG1 and lgG3 are opsonising and complement-fixing but 

all four subclasses could mediate agglutination or receptor blocking. Since 

functional differences may exist among antibodies of the same specificity, 

the subclass of MSP2-specific lgG in sera from adults naturally immune to 

malaria has been determined. The antibodies which recognise MSP2 are 

predominantly of the lgG3 subclass. This is surprising in view of the fact that 

this subclass accounts for less than 10% of normal serum lgG [306]. It has 

been suggested that the ratio of lgGl and lgG3 to IgG2 and lgG4 may be 

important in immunity to asexual blood stages of P. falciparum [29, 131] 

since, whilst lgGl and IgG3 can mediate opsonisation and phagocytosis of 

parasitised erythrocytes or free merozoites, lgG2 and lgG4 antibodies (of 

the same epitope specificity) may block the binding of the protective 

subclasses. lgG3 is considered to be the most effective subclass for 

activating the complement pathway [40], and it is known to mediate cell 

lysis by monocytes or Fc receptor bearing lymphocytes, so called antibody-

dependent cell-mediated cytotoxicity (ADCC) [306]. 

The distribution of lgG subclasses was measured in relation to age, to 

determine whether there was a change in the IgG subclass profile with age 

which might explain the changes in susceptibility to clinical malaria with 

age. Overall, lgG3 was the predominant subclass in adolescents and adults 

but IgG1 was more common in children under the age of 10 years. Both the 

prevalence and median OD of lgG3 antibodies increased with age and 

there was a corresponding decrease in the prevalence of lgGl antibodies. 
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The shift in IgG subclass distribution with age, and the predominance of the 

lgG3 response in adults - who tend to have a higher degree of protective 

immunity to malaria - suggested that lgG3 antibodies to MSP2 may be able 

to mediate protective immune effector mechanisms. Therefore, the lgG 

subclass of anti-MSP2 antibodies (in a cohort of Gambian children) was 

compared with their subsequent susceptibility to clinical malaria infection. 

Two significant differences were detected between individuals who 

subsequently developed asymptomatic malaria and those with clinical 

malaria; these were a higher prevalence of Al-specific IgGi in individuals 

with clinical malaria, and of 131-specific lgG3 in individuals with 

asymptomatic malaria. Although the result is not consistent between the 

two antigens tested, it does indicate that lgG subclass differences occur 

and may influence the outcome of infection. 

The predominance of the lgG3 response to MSP2 is unusual and is 

noticeably different from the response to MSP1[93]. The only other 

examples, of which we are aware, of an antibody response which is 

significantly skewed towards lgG3, are the responses to the streptolysin M 

protein where lgG3 predominated in the response of more than half the 

individuals tested [104], and the response to the outer membrane protein of 

Branhamella cattarhalis where lgG3 antibodies represent approximately 

70% of the total response in children over 4 years old [119]. Interestingly, in 

the case of B.cattarhalis, the switch to lgG3 production was age related, 

specific lgG3 being essentially absent in children under 4 years of age. The 

reason for the absence of lgG3 during the first few years of life and the 

subsequent "switch" to significant levels of lgG3 synthesis is unclear since 

synthesis of lgG3 is already approaching adult levels by the age of 2 years 

[192]. 
IgGi and lgG3 are typically produced in response to protein antigens [160] 

with IgGi present in significantly greater amounts than lgG3 but, as yet, 

little is known about the factors which may preferentially induce the 

production of lgG3. Ig class switching is the process whereby B cells that 

initially express either 1gM and/or lgD switch, on immunisation, to the 

expression of IgE, lgA or one of the 4 lgG subclasses [301]. In the mouse, 

specific switch factors have been described for different lgG subclasses. In 

particular, T cells can play a pivotal role in regulating the Ig isotype switch 

by their ability to secrete cytokines such as, IL-4, IFN-g and TGF-13 [76, 111, 
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244, 251, 275, 300, 302, 303, 312, 319]. For example, IL-4 released by Th2 

cells upon activation is known to induce B cell proliferation in resting B 

cells, to enhance MHC class-11 expression on B cells, and to mediate the Ig 

class switch to IgGi and IgE [104, 244]. Current evidence suggests that 

cytokines act as switch factors by selectively inducing transcriptional 

activation of the constant heavy chain (CH) genes that encode the Ig class 

that is subsequently expressed [303]. CH gene activation is believed to 

make the DNA accessible to a switch recombinase [311]. However, 

cytokines are probably insufficient in themselves to effect class switching 

but must act in concert with a B cell activator such as bacterial 

lipopolysaccharide (LIPS) [303, 311], an antigen receptor [31, 275], an 

activated T cell or another cytokine [251]. 
Much less is known about the trigger factors for specific class switching in 

humans, however, cytokines are presumed to play a critical role. Isotype 

switching to both lgGl and lgG3 appears to be controlled by similar 

processes which may be regulated by the T-cell derived cytokine IL-1 0 [31]. 

Falconer et al proposed that the preferential induction of lgG3 may be a 

result of the mode of antigen presentation which could have consequences 

for the quality of the T-cell response to the antigen i.e. in the nature and 

amounts of the cytokines produced, which in turn could influence lgG 

subclass production [104]. Similarly, Goldblatt et al suggested that the 

membrane bound nature of B.cattarhalis proteins, and their mitogenic 

activity for B cells, may be partly responsible for the lgG3 antibody 

response [119]. The fact that MSP2 is a membrane bound protein, and 

contains tandemly repeated amino acid sequences which are believed to 

activate B cells independently of T cells [285] may therefore account for its 

propensity for induction of lgG3. Antigens such as MSP2 are a useful tools 

for investigating subclass specific switch mechanisms in human B cells. 

Thus it has been shown that in individuals who are likely to be immune to 

malaria i.e. adults from a malaria endemic area, the predominant anti-

MSP2 subclass is lgG3, the prevalence of which tends to increase with 

age. Furthermore, lgG subclass responses may differ between individuals 

who develop clinical malaria and those who have asymptomatic infections. 

It is obviously important to determine if the subclass of anti-MSP2 

antibodies correlates with an inhibitory effect, in vitro, on P.falciparum 

growth and whether this is dependent on the presence of blood monocytes. 
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9. Antigenic polymorphism of MSP2 and immune 
recognition 

9.1 Introduction 

The existence of diversity among Plasmodium strains has been evident for 

many years. Early observations on malaria infections therapeutically 

induced in neurosyphilitic patients showed that individuals convalescing 

from P.vivax infections acquire a potent immunity to the strain of parasite 

that caused the infection but not to a heterologous strain [30]. Jeffery [163] 

also demonstrated that individuals were significantly more protected after 

reinoculation with a homologous strain of parasite, but that reinoculation 

with a heterologous strain gave variable results ranging from no apparent 

effect to a fairly substantial modification. 

Antigenic differences among malaria parasites in humans were first 

demonstrated in studies of soluble antigens detected in the serum of 

infected individuals or extracts of infected placental blood [358]. Further 

characterisation of malaria antigens has revealed extensive heterogeneity 

of malaria antigens (reviewed in [7, 9, 10, 177]), including soluble parasite 

antigens [24, 154, 281, 359], surface antigens - CSP [77, 79, 96], MSP1 

and MSP2 [55, 108, 201-203, 205, 217, 219, 221, 250, 298, 299, 304, 315, 

321]- and infected erythrocyte surface components [71, 72, 106, 157, 199]. 

The diversity of Plasmodium in the natural parasite population has been 

clearly demonstrated. Many patients are infected with mixtures of 

genetically distinct parasite clones which differ in characters such as 

antigens, response to drugs, and other biochemical markers [11-13, 74]. 

For example, Creasey et a! [74] found that extensive polymorphism in 20 

genetic markers occurs in isolates from Thailand, Zimbabwe and Brazil, 

and multiple infections with >1 parasite phenotype were common. Babiker 

et a! [12] characterised 29 isolates from Sudan, for variation in 18 different 

genetically controlled characters, each of the patients contained parasites 

of different genotypes. 

The extent of diversity in Plasmodium is thought to contribute to the slow 

development of immunity, such that immunity only develops after repeated 

infections over a number of years and exposure to the repertoire of 

circulating genotypes is necessary for protection; this assumes that different 

sequences are antigenically distinct with little or no cross-reactivity. 
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However, Baird et a! [14-16, 250, 257] contest this idea, proposing that a 

protective immune response to endemic malaria is governed by relatively 

brief heavy exposure plus some intrinsic immune factors associated with 

the age of the host. If this were true, antigenic polymorphism may only 

briefly govern susceptibility. 

In general, antigenic diversity is generated in two ways [8]: 
antigenic variation, whereby a clonal population of parasites periodically 

changes its antigenic profile. Antigenic variation has been shown to be a 

feature of antigens expressed on the surface of infected red blood cells [25, 

35, 273]. 
antigenic polymorphism which occurs in allelic genes giving rise to the 

expression of structurally and antigenically distinct forms of a particular 

protein in different strains of parasite. 
Diversity among the antigens of asexual blood stages predominantly 

occurs through antigenic polymorphism. Further diversity is generated 

through recombination, reassortment and mutation of these genes during 

meiosis [182, 347]. As a result, there is the potential for a very large number 

of different genotypes within one species. Many of the polymorphic asexual 

stage antigens have been shown to contain regions of tandem repeats and 

polymorphic residues tend to be more common in repetitive regions rather 

than in non-repetitive regions e.g. S-Ags, MSP1 and MSP2. However, not 

all repetitive sequences are polymorphic. CS protein and RESA have 

sequence repeats which are conserved within the species, and SPAM 

(secreted polymorphic antigen associated with merozoites) has repeat 

sequences which clearly encodes a structural motif, with the alanine 

residues being highly conserved in positions 1 and 4 of the heptad repeats 

[8]. The overall picture is one of great tolerance by the parasite for diverse 

repetitive structures of different amino acid sequences and sizes in a wide 

range of proteins. 
Repeat sequences may reflect some adaptation of the parasite to its host. 

Schofield [285] proposed that repetitiveness causes T-cell-independent B 

cell activation by cross-linking hapten-specific surface 1g. Schofield 

undertook an investigation into the regulation of the antibody response to 

the repetitive domain of the CS protein on intact sporozoites, and observed 

that the parasite induced a thymus-independent B-cell response to the 

repeats [285]. This is beneficial to the parasite since lack of T cell help 
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leads to poor immunological memory and inefficient class switching to 

protective isotypes. It is a common belief that repeats also provide the 

parasite with a mechanism for immune evasion. Epitopes with repeats may 

be immunodominant, but antibody responses to them may have no serious 

effects on parasite survival. Furthermore, the repeats present the immune 

system with an extensive network of cross-reactive epitopes which promote 

polyclonal B and I cell activation and prevent affinity maturation of the 

response to protective epitopes [7, 177, 179]. 

It has been proposed that some repetitive sequences may have evolved as 

efficient ligands, specialised to mediate interactions of the parasite with 

host components [179]. The binding units are repeated because this allows 

multimeric high-avidity interactions between parasite and receptor [285]. 

However, the proposal that repeats are immunodominant does not 

reconcile with this concept of ligand-receptor interactions since ligand-

receptor interactions are likely to be highly sensitive to the presence of 

blocking antibodies and it is thus likely that such epitopes would be 

concealed from the immune system in some way. In addition, radically 

different repeat sequences occur in the same region of allelic variants of a 

protein which presumably have the same function. It may be that the 

repeats in some gene products may have no function other than immune 

evasion, whereas other repetitive genes may retain critical functions. 

Polymorphism in the repeats may therefore be a marker for 

immunologically irrelevant sequences; conserved repeats on the other 

hand may be functional. 

Diversity in MSP2 has been demonstrated in many studies both at the 

protein level using mAbs [12, 55, 69, 74, 109, 299], and at the genetic level 

by hybridisation analysis [201, 219, 298] and RFLP techniques [108, 217, 

250]. Several alleles of MSP2 have been sequenced from different 

isolates/clones, revealing extensive polymorphism [109, 201, 202, 250, 

298, 299, 321]. The molecule has been classified into two allelic prototypes 

- serogroup A or CAMP allelic family and serogroup B or FC27 allelic family 

- defined by regions of nonvariable, group-specific sequence. Within each 

group a number of variants have been described and these are 

characterised by tandem repeats which vary in number, length and 

sequence. Further diversity is created by intragenic recombination ([203, 

231]; unpublished data); with crossover appearing to occur within the 

repetitive variable regions. 
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Polymorphism is most extensive among the serogroup A alleles; the Ri 

repeat region is glycine-, serine- and alanine-rich with repetitive sequences 

of 4-8 amino acids occurring up to 13 times [201] (see chapter 1, figure 1.3 

& figure 9.1). Although the repeats can vary dramatically from isolate to 

isolate, some underlying patterns can be seen [298]. Indeed, Fenton et a! 

[109] suggested that the repeat sequence of serogroup A could be derived 

from some common ancestor. Point mutations may have arisen in this 

postulated ancestral gene and these mutations accumulate until a new 

repeat spreads through the sequence [109]. Although there is a 

considerable microheterogeneity in MSP2 [201, 250] there must be some 

constraints which limit the diversity as the same repeat sequences occur in 

isolates from different geographical areas and there is a striking 

conservation of the overall amino acid composition, net charge and 

hydrophobicity of the molecule [299]. In addition the permisiveness for 

variation in size of MSP2 is much less than for S-antigens; changes in 

repeat number are often compensated for by deletions or insertions 

elsewhere in the non-variable region [109, 299, 321]. 
The repeat sequences of MSP2 have been shown to be immunogenic - 

mAbs and naturally acquired antibodies recognise this region ([2, 55, 101, 

299, 321]; Chapters 5 & 6). However, the repeats are not necessarily 

immunodominant, unlike the repeats of the S-antigens which can encode 

upto 90% of the molecule and against which the entire antibody response 

is directed [7]. Al-Yaman et a! [2] compared the recognition of a 

recombinant antigen representing the full length molecule of 31D7 

(serogroup A) and a recombinant antigen of 31D7 which lacked the Ri 

repeats (d3D7). The majority of individuals were seropositive for both of the 

constructs%owever, there was a small proportion of individuals among all 

age groups who responded only to the variable region. Monoclonal 

antibodies are known to recognise group-specific sequences as well as 

repetitive sequences [109]. 
The function of MSP2 repeats remains to be elucidated. One could propose 

that MSP2 may be involved in merozoite invasion of the erythrocyte due to 

its location on the merozoite surface and the ability of MSP2 specific mAbs 

to inhibit parasite growth in vitro [55, 220, 283]. However, the repeat region 

of the molecule may not be essential for parasite survival as isolates have 

been found which lack some of the repetitive sequences [250, 257, 321]. 

For example, Thomas et a! [321] reported the absence of tandemly 
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repeated sequences within the GSA-rich region of CAMP isolate. The 

authors suggest that this may occur as a result of continual in vitro 

cultivati orvflowever, others have reported wild isolates which lack the 12- 

mer repeats of serogroup B [250, 257]. 

In this chapter the aim was to determine whether sequence diversity within 

MSP2 serogroup A results in antigenic diversity. A significant association 

between the recognition of four variant sequences of serogroup A by 

malaria immune adults was observed (chapter 6). In this chapter I will 

investigate whether this association is due to cumulative exposure or cross-

reactivity by looking at the recognition by a number of immune sera of a 

panel of A2 rAgs representing the Ri repeats (plus short group-specific 

regions flanking the repetitive sequences) of MSP2 serogroup A. Nine rAgs 

were produced from 8 different isolates. Two of these rAgs were shown to 

have deletions in the expected sequence - A2(CH12/12) lacks 8 amino 

acids in the C-terminal group specific region and A2 (T9/94ii) lacks the N-

terminal sequence (figure 9.1). 
Sera from mice immunised with single constructs were tested in ELISA for 

the recognition of the panel of A2 variants. Also, sera from individuals with 

limited exposure to P.falciparum and from children and adults from a 

malaria endemic area were tested for their seroreactivity with this panel of 

rAgs. 
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9.2 Materials and methods 

9.2.1 Serum samples 

MSP2-specific mouse serum: 
Mice were immunised with A2(T9/94i), A2(TTn), A2(7G8), A2(R033) or 

A2(T9/96) as described in chapter 4. The sera produced were tested in 

ELISA for recognition of the panel of A2 rAgs. 

Naive sera: 
Sera was obtained from individuals from non-endemic areas who had 

been infected with P.falciparum whilst visiting malaria endemic countries; 

details are provided in chapter 6. 

Malaria-exposed sera: 
Sera was obtained from individuals aged 1-75 years living in rural villages 

around the town of Farafenni on the north bank of the Gambia river (as 

described in chapter 6). 

9.2.2 Recombinant proteins: 
The recombinant antigens used in this study represent the Ri repeat region 

of MSP2 serogroup A from eight different isolates (figure 9.1). Nine 

constructs were produced; two of the proteins have deletions in the group 

specific sequences flanking the repeat region A2(T9/94 ii) and 

A2(CH1 2/12). 

9.2.3 Enzyme-linked immunosorbent assay: 

MSP2-specific antibodies were detected in the mouse serum and human 

serum using HRP-conjugated anti-mouse Ig or HRP-conjugated anti-

human lgG antibodies, respectively. 

Human serum was diluted 1:1000 or serial two-fold dilutions from 1:250. 

Mouse sera were titrated with serial ten-fold dilutions from 1:500. 

9.2.4 Statistical methods: 

L Kruskal-Wallis one way analysis of variance: 

This non-parametric one way analysis of variance was performed using 

MINITAB statistical software in order to determine the differences in 

seroreactivity with age. 
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Figure 9.1: Schematic representation of A2 recombinant proteins of MSP2 derived from different isolates. 

A2 Predominant repeat sequence Country of isolation 

GAVAGSGA Thailand 
T9196 

Thai Tn GSAGRAGA 
Thailand 

Gi The Gambia 

7G8 GSAGGS Brazil 

T91102 GSAGGS Thailand 

CH12/12 GSAGGS/A Thailand 

R033 GSAG Ghana 

T9194(i) GSAG Thailand 

T9194 (ii) GASG Thailand 

KEY 	
conserved 	 Ri repeats Ea serogroup A specific 



9.3 Results 

9.3.1 Recognition of serogroup A Ri repeats by anti-A2 antibodies induced 

in mice: 

Mice were immunised with a selection of A2 rAgs (as described in chapter 

4) and their serum was tested for the recognition of the panel of A2 rAgs in 

ELISA. In each case, the anti-serum produced recognised all the rAgs. 

Thus, after immunisation with a particular A2 rAg, the antibodies induced 

recognised epitopes which were cross-reactive between variants. 

In the majority of cases, the titration curves were overlapping indicating that 

the antibodies produced had the same affinity for all the constructs (figure 

9.2a). In some cases, the affinity of the antibodies varied, with the 

recognition of A2(T9/94i1) being the poorest (figure 9.2b). 

It appears that mice immunised with one particular sequence produced 

antibodies which cross-react with the panel of A2 rAgs which have varying 

sequences. The group-specific sequences are not essential for this cross-

reactivity since the constructs which lack these regions (A2(CH12112) and 

A2 (T9/94ii)) are also recognised. Although in some cases, A2(T9/94ii) is 

slightly less well recognised suggesting that the group specific region may 

be involved. 

175 



2 

1.5 

W 
-J 

> 
0 
0 

0 

	

-0.5 1 	I 	 I 	 I 

10-7 	10-6 	10-5 	10-4 	10-3 	10-2 

Serum dilution 

	

2.51 	 (b) 

2 

1.5 

W 

-J 

> 
0 
0 

0 

T9/94i 

£ T9/94ii 

• T9/102 

o 7GB 

• CH12/12 

x T9196 

ci Thafln 

• R033 

wGST 

-0.5 1 	1 	 1 	 1 	 i 

10- 	10-6 	10-5 	10-4 	10 	10-2 

Serum dilution 

Figure 9.2: Recognition of A2 proteins by sera from mice 
immunised with (a) A2(T9196) and (b) A2 (R033). Sera 
were titrated with ten-fold dilutions from 1:500. 	176 



9.3.2 Recognition of A2 rAgs after limited exposure to malaria: 

Sera from individuals known to have had only one malaria infection or a 

limited number of infections, were tested in ELISA for recognition of A2 

rAgs in ELISA (table 9.1). 

Sera collected at the time of infection were all seronegative, with the 

exception of donor 92:33. This individual recognised one rAg, A2 (T9196). 

These antibodies appear to be of low affinity and concentration, indicated 

by the low OD value, and this may limit the ability of the antibodies to cross-

react with other sequences. 

In four out of five individuals, convalescent sera were seropositive for this 

region. Two of these individuals recognised only one rAg - donor 93:28CS 

recognised A2 (19/102) with an OD value very close to the cut-off level, and 

donor 92:21 CS was seropositive for A2(T9/94ii). Donor 92:12 had 

antibodies which recognised A2(T9/94i) and A2(T9/96). There is no 

sequence similarity between T9/96 and T9/94 suggesting that this 

individual was exposed to a mixed genotype infection or two separate 

infections. 

Sera from donor 92:38 recognised eight of the rAgs, being seronegative for 

A2(CH12/12). This construct is known to have a deletion in the group-

specific sequence at the C-terminus. Therefore, it appears that in this case 

antibodies are directed to an epitope in the group-specific region rather 

than the repetitive sequences. 
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MSP2 recombinant proteins 

Isolate 	T9194ii 	T9/94i 	T9/102 	7G8 	CH12112 	R033 	Tin 	T9/96 

	

Sequence GSAG 	GSAG GSAGGS GSAGGS GSAGGS/A GSAG GSAGRAGA GAGSGA 

GAVASA GAVASA GAVAGSGA 

Donor Status 
92:21 N 	 - 	- 	- 	- 	- 	- 	- 	- 

Cs 	- 	+ 	- 	- 	- 	- 	- 	- 
92:35 N 	 - 	- 	- 	- 	- 	- 	- 	- 
92:51 N 	 - 	- 	- 	- 	- 	- 	- 	- 
93:01 N 	 - 	- 	- 	- 	- 	- 	- 	- 
93:28 N 	 - 	- 	- 	- 	- 	- 	- 	- 

Cs 	- 	- 	- 	- 	- 	- 	- 	+ 
92:11 >2 	 - 	- 	- 	- 	- 	- 	- 	- 
92:30 >2 	 - 	- 	- 	- 	- 	- 	- 	- 
92:33 >2 	 - 	- 	- 	- 	- 	- 	- 	+ 
92:41 >2 	 - 	- 	- 	- 	- 	- 	- 	- 
93:33 >2 	 - 	- 	- 	- 	- 	- 	- 	- 
92:10 CS 	- 	- 	- 	- 	- 	- 	- 	- 
92:12 CS 	- 	++ 	- 	- 	- 	- 	- 	++ 
92:38 CS 	+++ 	+++ 	+++ 	+++ 	- 	+++ 	+++ 	+++ 

Table 9.1: Summary of results for antibody recognition of MSP2 recombinant A2 proteins by sera from individuals from non 

endemic countries. N indicates one infection; >2 indicates more than two infections; CS indicates convalescent serum. 

--1) 	 - indicates an OD value less than the mean + 2SD of the control sera; + indicates an OD value greater than the mean + 2SD 
00 

of the control sera; ++ indicates an OD value greater than the mean + 4SD of the control sera; +++ indicates an OD value 

greater than the mean + 6SD of the control sera. 



9.3.3 Recognition of serogroup A Ri repeats by malaria-exposed children 

and adults: 
Forty-four individuals, aged 1-75 years, were tested for recognition of A2 

rAgs. The individuals selected had previously been tested for recognition of 

A2(T9/96) in ELISA (chapter 6) and seroreactivity ranged from low 

responders to high responders. The association in recognition of these A2 

sequences was determined using a non-parametric Spearman's rank 

correlation test (table 9.2). In all cases, the recognition of the A2 rAgs was 

significantly associated. 

ISOLATE T9/94ii T9/94i T9/102 7G8 CH12/12 R033 Gi TIN 

T9/94ii 1.000  
T9/94i 0.725 1.000  
T9/102 0.639 0.907 1.000  

7G8 0.720 0.926 0.971 1.000  

CH12/12 0.311 0.644 0.644 0.616 1.000  

R033 0.624 0.607 0.617 0.631 0.630 1.000  

Gi 0.352 0.595 0.677 0.634 1 0.794 0.767 1.000  

TIN 0.407 10.582 0.647 0.604 0.774 0.781 0.970 1.000 

T9/96 0.395 10.340 10.402 0.434 10.318 0.662 1 0.597 0.535 

Table 9.2: Spearman's rank correlation analysis of the recognition of MSP2 

serogroup A Ri repeat regions from different isolates. 

Forty-four individuals, aged 1-75 years, were tested for the recognition of 

this region in ELISA using recombinant proteins. 

Critical Spearman's rank correlation value = 0.251, p=0.05. 

The recognition of certain rAgs was very strongly associated and this 

appeared to reflect sequence similarities. A2(TTn) and A2(G1) are known 

to be identical in sequence and a correlation value of 0.970 (p<0.005) was 

obtained; this also confirms the robustness and reliability of the assay. 

A2(7G8) and A2(T9/102) have the same sequence repeated 5 and 3 times, 

respectively; the recognition of these rAgs was strongly associated 

(rs=0.971, pcz0.005). Strong associations were also shown between 

A2(T9/94i) and A2(T9/102) or A2 (7GB), each of which contains the 

sequence GSAG. 
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Figure 9.3: Number of variants of MSP2 A2 proteins 
recognised by sera (n=44) from children and adults from The 
Gambia. Recognition of nine rAgs was tested for each 
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The number of variants recognised by each individual was determined and 

related to age (figure 9.3). The number of variants recognised was shown 

to be age dependent. Despite this, some older individuals (e.g. donor 1617, 

47 years old) only recognised 3 variants, and some children recognised the 

majority of A2 rAgs. 
Nine of the 44 individuals apparently recognised group-specific sequences 

rather than the tandem repeats since seropositivity was dependent on 

sequences which are absent in either A2(T9/94ii) or A2 (CH12/12) (table 

9.3). A further three individuals , who were seropositive for all the rAgs, had 

the lowest titres for either A2(T9/94ii) or A2 (CH12/12), indicating that 

recognition may be partly dependent on these group-specific sequences, 

for example epitopes overlapped with the group specific sequences. This 

data makes it clear that humans see antigens individually and do not 

preferentially recognise the short group specific regions, i.e. humans do 

develop sequence-specific immune responses. 
For certain individuals it is apparent that the rAgs recognised have 

sequence similarities in the repeats (table 9.3). For example, donor 1574 is 

seropositive for rAgs from the isolates T9/96, Gi, TTn and R033, which all 

contain the sequence GAVASA. 
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Donor T9/941111 T9/94i T9/102 	7G8 

1574 0.004 0.217 -0.006 -0.020 

1649 0.034 0.161 0.103 0.143 

1610 0.749 1.342 1.122 1.158 

1568 1.102 1.193 1.106 0.969 

1528 0.203 0.924 0.823 0.645 

MSP2 A2 rA 

CH12/12 R033 Gi ThaiTn T9196 

-0.011 0.607 0.832 0.731 1.028 

0.157 0.634 0.528 0.474 0.740 

0.084 0.063 0.093 0.024 1.043 

0.194 1.204 1.185 1.051 1.492 

0.618 0.722 0.659 0.374 0.722 

Table 9.3: Examples of recognition of MSP2 A2 rAgs by individuals from The Gambia. Underlined OD 

values are greater than the mean + 2SD of the control sera. 

00 
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9.3.4 Cross-reactive antibodies 
To investigate the hypothesis that antibodies to closely related sequences 

are cross-reactive, competition ELISAs were performed. Sera were 

preincubated with increasing concentrations of rAg and tested for 

recognition of the other rAgs. 
Donor 1535 (aged 5 years): This individual recognised all the A2 rAgs 

with approximately the same affinity, except A2(CH12/12) (which lacks the 

C terminal group specific region) (figure 9.4a). Therefore, it was 

hypothesised that this serum recognised an epitope in the C terminal group 

specific region. The serum was preincubated with A2(T9/94ii), A2(TTn), 

A2(7G8) or A2(T9/96) and tested against the A2 antigen panel. Recognition 

of all antigens was inhibited (example for incubation with A2(TTn) is shown 

in figure 9.4b) confirming our hypothesis. 

Donor 1638 (aged 12 years): This serum recognised all the A2 rAgs, 

except A2 (T9/94ii), but the affinity of the reaction varies from antigen to 

antigen. When the serum was preincubated with A2(T9/94i), A2(T9/94ii), 

A2(CH12/12), A2(TTn) or A2(T9/96) antigen recognition was inhibited, but 

the degree of inhibition varied (figure 9.5). 
The titration curves (figure 9.5a) and inhibition ELISAs indicate that there 

may be two populations of antibodies with different specificities, but both 

are dependent on the presence of the N-terminal group specific 

sequences. One group of antibodies appears to recognise T9/102, 7G8 

and CH12/12, and the other group recognises R033, ThaiTn, T9/94i and 

T9/96. In fact, competition assays indicate that the two groups of antibodies 

recognise sequences in A2(7G8), A2(T9/102), A2(T9/94i) and A2(CH12/12) 

or sequences present in A2(T9/96) and A2(RO33). An example is shown in 

figure 9.5b. A2(TTn) inhibits the recognition of all the rAgs to some extent; 

this may be due to the partial homology of the repeat sequence GRAG and 

GSAG, the latter is present in A2(7G8), A2(T9/102), A2(T9/94i) and 

A2(CH12/12), and to the sequence GAVASA which is present in A2(T9196) 

and A2(R033). 

Donor 1610 (aged 27 years): This individual was shown to recognise 5 

of the A2 proteins (figure 9.6a). In the inhibition ELISAs, preincubation with 

either A2(T9/94i), A2(T9/94ii), A2(7G8) or A2(T9/102) inhibited the 

recognition of the other rAgs, whereas preincubation with A2(T9196) 

183 



inhibited the recognition of A2(T9/94ii) only (table 9.4, figure 9.6b). The 

common sequence in A2(T9/94i), A2(T9/94ii), A2(7G8) and A2(T9/102) is 
'N GSAGhowever, this occurs once in A2(CH12112) but this construct is not 

recognised. There is no obvious explanation, in terms of sequence 

similarities, for the inhibition of recognition of A2(T9/96). 

Antigen on plate 

Antigen in T9/94i T9/94ii T9/102 7G8 T9/96 

serum 

T9/94i + + +1- +1- + 

T9/94ii +1- + +1- +1- + 

7G8 + + + +1- 
T9/1 02 +1- + + + +1- 
T9/96 - + - - + 

Table 9.4: Inhibition of recognition of A2 rAgs in ELISA, by donor 1610, 

after preincubation with either A2(T9/94i), A2(T9/94ii), A2(7G8), A2(T9/102) 

or A2(T9/96) in increasing concentrations from 0-5 .tg/ml. - indicates no 

effect; +1- indicates partial inhibition; + indicates inhibition. 



LU 

-J 

> 
0 
0 

1 

0.5 

[!] 

T9/94i 

£ T9/941i 

• T9/102 

o 7G8 

• CH12/12 

x T9/96 

D ThaiTn 

• R033 

LU 

-J 

> 
0 
0 

1.5 

1 

0.5 

1000 	 104 	 105 

SERUM DILUTION 

01.I 
10-4 0.001 	0.01 	0.1 	1 	10 

Antigen Conc.ig/ml 

Figure 9.4: Recognition of A2 proteins by donor 1535, aged 5 
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Titration curves showing the recognition of A2 rAgs. Sera was 
titrated by four-fold dilutions from 1:400; 

Example of inhibition ELISA curves, after preincubation of sera 

with increasing concentrations of A2(ThaiTn) from 0-5 tg/mI. 
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Figure 9.5: Recognition of A2 proteins by donor 1638, aged 12 
years. 

Titration curves showing the recognition of A2 rAgs. Sera was 
titrated by four-fold dilutions from 1:400; 

Example of inhibition ELISA curves, after preincubation of 

sera with increasing concentrations of A2(T9/94i) from 0-5 p.g/ml. 
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9.4 Discussion 

In chapter 5 we observed that the recognition of 4 different A2 proteins was 

significantly associated within individuals, but were not able to tell whether 

this was due to the presence of multiple, non overlapping, antibody 

specificities or to the presence of a single, cross-reactive antibody. Here, I 

have studied the recognition of MSP2 serogroup A2 rAg repeat sequences 

from different isolates to determine whether amino acid sequence 

polymorphism reflected antigenic polymorphism and whether associations 

in recognition are a reflection of cumulative exposure or cross-reactive 

epitopes. Although the isolates present in The Gambia and the other areas 

of Africa where these individuals were infected, may not be fully 

represented in our panel of rAgs, these rAgs do represent a worldwide 

distribution of isolates (figure 9.1). 

Anti-sera from mice immunised with the rAgs were tested in ELISA against 

the panel of A2 rAgs. In all cases, sera from mice immunised with any one 

of the rAgs, recognised all of the other A2 rAgs, irrespective of sequence. 

This indicates that these sequences have the potential to encode cross-

reactive epitopes and that such epitopes may be immunodominant in mice. 

However, we also determined the reactivity of malaria immune human sera 

and observed considerable diversity in antigen recognition after natural 

malaria infections. 

The overall associations in recognition were confirmed (reported in chapter 

5) and the strongest correlations were shown to be between rAgs with the 

most sequence homology. In other words, the degree of cross-reactivity 

could, in some cases, be related to the degree of sequence similarity. 

However, it is difficult to clearly differentiate the effects of cumulative 

exposure and possible variant-specific immune recognition just by looking 

at statistical corrrelations. The data indicate that sera from individuals with 

infrequent malaria-exposure (i.e. individuals from non-endemic areas and 

children from endemic areas) recognise fewer variants than do individuals 

with life long malaria exposure. The data from semi-immunes confirm that 

MSP2 A2 sequences are recognised in a sequence specific manner; data 

from the adults confirm that the number of variants recognised is cumulative 

and related to the diversity of parasite exposure. Although immune 

recognition of MSP2 A2 repeats is strain specific, some cross-reactive 

antibodies are present. Several individuals were shown to recognise 
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several A2 proteins. For one of these individuals, preincubation of the 

serum with A2 proteins was shown to inhibit the recognition of the other 

rAgs in ELISA, indicating that these antibodies were recognising cross-

reactive epitope(s). A proportion of individuals were shown to have 

antibodies specific for epitopes in the group specific regions flanking the 

repeats rather than for the repetitive sequences, indicating that the repeats 

of MSP2 are not necessarily immunodominant. Therefore, "cross-

recognition" can occur due to recognition of either the group-specific 

sequences or due to cross-reactive antibodies recognising truly variable 

sequences. 
Thus, the correlation in recognition of different Ri repeat sequences, and 

the increase in number of variants recognised with age, could arise as a 

consequence both of cumulative exposure to different genotypes and 

limited cross-reactivity of repeat sequences. Protective immunity may 

therefore depend upon exposure to a number of parasite isolates which, 

between them, induce antibodies which cross-react with the whole range of 

sequence diversities. 



10. Strain-specific immune recognition of MSP2 

10.1 Introduction 
In areas with endemic malaria transmission, immunity to malaria is acquired 

gradually with increasing age and is reflected by a decline in both parasite 

density and prevalence and the incidence of clinical disease. The long 

period required to develop immunity to malaria has been interpreted, by 

some, as a consequence of antigenic diversity of the parasite, such that 

exposure to the local repertoire of circulating "strains" in the parasite 

population is necessary for effective immunity. This assumes that immunity 

to malaria is essentially strain-specific. However, direct evidence for strain-

specific immunity is limited and rather speculative. 
Jeffery [163] examined the significance of repeated experimental human 

infections with homologous and heterologous "strains" of P.falciparum. In 

general, the homologous reinfections were considerably milder than those 

where heterologous strains were used. The asexual parasite and 

gametocyte densities were considerably lower in those given homologous 

infections than in those who received heterologous reinoculations. The 

author interpreted the data as an indication of the presence of strain-

specific antibodies. 

To dissect the relative importance of serotype-specific immune responses 

to different polymorphic antigens, an obvious strategy is to relate the 

prevalence/incidence of a particular serotype of P.falciparum to the 

prevalence of immunity to that serotype. This can be done both at the 

population level and at an individual level. In the last decade the 

characterisation of polymorphic antigen genes and their expression as 

recombinant polypeptides has allowed more detailed study of strain-

specific immune recognition of malaria parasites. 

Naturally acquired antibodies to MSP1 appear to be serotype-specific, in 

that the antibody prevalence against the dimorphic regions of the molecule 

1 The genes encoding different polymorphic antigens of P.falciparum lie on different 
chromosomes and will undergo genetic recombinantion independently of each other during 
meiosis [180, 181]. The term strain which implies a stable clonal lineage, is not a particularly 
useful epidemiological description of parasites with non-linked polymorphic antigen loci that 
may be rapidly interbreeding [13, 78]. The terms genotype and serotype are more 
useful, where genotype refers to the presence of a particular allele of a polymorphic locus 
and serotype refers to the presence of a serological reactivity to a gene product of a 
particular allele [78]. 
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appears to correlate with the prevalence of the corresponding allelic type in 

the infecting parasite population [115, 228, 324]. Similarly, the transmission 

dynamics of the FC27 S-antigen serotype in village communities in 

Madang, Papua New Guinea, have been related to the prevalence of 

antibodies to that serotype [78, 112, 11 3]. Measurement of lgG antibody 

responses to repeat sequences of the FC27 S-antigen showed a marked 

age-dependent increase in prevalence. Recent transmission of the 

serotype in one village induced specific lgG, particularly in children under 

15 years of age. Spatial and temporal variation in the transmission of the 

FC27 S-antigen serotype was considered to be consistent with the 

hypothesis that serotype-specific immunity occurs and contributes to the 

changes in frequencies over time [78, 112, 113], although it has been 

argued that random fluctuations in allelic frequencies are inevitable in 

P.falciparum populations in villages due to genetic drift imposed by a 

restricted population size [66, 69]. Furthermore, as genes for other 

polymorphic asexual blood stage antigens are on different chromosomes, 

parasites of a particular S-antigen serotype will undoubtedly be 

heterogeneous with respect to some of these antigens, and, if immune 

responses to these antigens have any protective effect, transmission of a 

particular S-antigen serotype will vary independently of anti-S-antigen 

responses [112, 113]. 

Marsh and Howard [199] demonstrated isolate-specific antibody responses 

to determinants on the surface of malaria-infected erythrocytes. Antibody 

specificities of Gambian children recovering from acute malaria infections 

were related to the antigen phenotypes on the surface of their own 

P. falciparum-infected erythrocytes. Children developed isolate-specific 

antibody responses against the parasites with which they had recently 

been infected, but in general these antibodies did not react with infected 

cells from other children. However, sera from uninfected Gambian adults 

contained antibodies that cross-reacted with the surface antigen(s) of many 

isolates. The authors proposed that the differences in reactivity between 

sera from children and adults could be due to the adults having 

experienced previous infections with many different malaria "strains". 

Although the surface antigens were not characterised, it was concluded 

that they were extremely diverse and that this diversity may represent a 

strategy by the parasite for evasion of the host's immune response. 

According to this concept of immune evasion, the susceptibility of the 
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acutely infected children to P.falciparum was due, at least in part, to the fact 

that they had not previously experienced infection with the same "strain". 

Evidence for serotype-specific immune recognition of MSP2 is limited. 

Specific murine mAbs differentiate variants of MSP2, giving isolate specific 

reactions [109]. The pattern of recognition by different mAbs allows the 

characterisation of isolates into MSP2 serotypes [66-69, 109]. Thus, the 

mAb reactivities can delineate variant forms of MSP2, some more 

serologically related than others. The extent of MSP2 polymorphism and 

the frequency of different serotypes has previously been determined by 

indirect immunofluorescence analysis with a panel of mAbs to identify 

allelic variants of the 3 polymorphic blood stage antigens, MSP1, MSP2 

and Exp-1 [66-69]. The frequencies of polymorphic epitopes and serotypes 

of these antigens were shown to remain stable for several years (1982-

1989) in The Gambia; epitope variants remaining either rare or common, 

suggesting that immunity to these antigens does not lead to detectable 

frequency-dependent selection, even though naturally acquired antibodies 

are serogroup specific (chapter 5). 
The recognition of MSP2 serogroup A variants was investigated in chapter 

9, to determine whether serotype-specific antibodies were present in 

children and adults from The Gambia. Non-immunes and semi-immunes 

were shown to recognised a limited number of variants but the number of 

variant sequences recognised increased with age, indicating that an 

individual may need to experience the local repertoire of parasites in order 

to develop antibodies capable of recognising all MSP2 serotypes. 

In this study, variant-specific immune recognition of MSP2 is investigated 

further at an individual level. To study the relationship between MSP2 

polymorphism and naturally acquired immunity to malaria, the humoral 

immune response to MSP2 variants is examined in sera obtained from 

children with acute, uncomplicated malaria and compared with the 

antigenic characteristics of the infecting parasites. The antigenic profile of 

the infecting parasites is determined by lEA using a panel of mAbs specific 

for the major merozoite surface protein, MSP1, MSP2 and an exported 

protein Exp-1. These antigens are each encoded by a single locus within 

the haploid genome, and the loci have been mapped to different 

chromosomes [180, 181]. The antibody profile of the infected patients is 

determined in ELISA using MSP2 rAgs. 
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10.2 Materials and methods 

10.2.1 Study design: 

Children with acute, uncomplicated malaria2  who attended the outpatients 

department at the Medical Research Council clinic, Fajara, The Gambia, 

over a six week period from October 1992, were recruited for our study, with 

parental consent. A sample of blood was obtained from each patient by 

fingerprick or as part of a venous sample obtained for other studies. 
74 complete sample sets (serum and multispot parasite slides) were 

collected from children attending the clinic, after identification of 

P.falciparum infection and successful in vitro culture of the isolated 

parasites. Of these, 51 children were re-examined 4 weeks after treatment 

and follow-up serum samples obtained. 
After centrifugation of the blood sample, the serum and buffy coat were 

removed and stored at -20°C. The rbc were retained for parasite culture. 

10.2.2 Parasite culture 
Erythrocytes were washed and parasites were grown in approximately 3m1 

culture volumes at a 5% haematocrit (section 2.5.3.), in covered petri 

dishes. They were cultured for 24-48 hours until the majority had matured 

to schizonts (as determined by periodic microscopic examination of Geimsa 

stained thin smears). 
Multispot slides were prepared (section 2.6.1.) for immunofluorescence 

typing. 

10.2.3 Indirect immunofluorescence assay (IFA): 

All mAbs were first used individually in indirect IFA (section 2.6.3.) to 

determine the MSP1, MSP2 and Exp-1 variants expressed by the schizonts 

of each isolate. The epitope site of MSP1 mAbs are shown in figure 10.1, 

and the putative epitopes sites of MSP2 mAbs have been described in 

chapter 4, table 4.1 and figure 10.1 and appendix lB. Details of 

monoclonal antibodies are given in appendix 2. 

Those isolates which appeared to contain more than one genotype were 

subsequently tested using pairs of mAbs (with different isotypes and 

21ndividuals who have a temperature >37.5°C and a parasitaemia of >5000 parasites/pi. 
These patients show no signs of cerebral involvement or severe anaemia and do not require 
hospitalisation. 
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epitope specificities) in a double-labelled IFA (section 2.6.4.) Allelic 

serotypes for each of the antigens was distinguished according to their 

different profiles of reactivity with the mAbs [66, 67, 109]. Each allelic 

serotype was assigned a number according to a classification scheme 

based on combinations of individual mAb specificities (tables 10.1 & 10.2). 

10.2.4 Enzyme-linked immunosorbent assay (ELISA): 
Sera were tested for lgG recognition of MSP2 rAgs in ELISA, at a dilution of 

1:1000. Acute sera were tested for recognition of Al and Bl; acute and 

convalescent sera were tested, in parallel, against Al, Bi, A2 variants and 

B3 variants. 

10.2.4 Data analysis: 
I. Determination of seropositivity 
Positive serum samples were defined as those giving a specific OD above 

the normal range for control European sera. The normal range was taken 

as the mean ± 2 standard deviations of European control sera. 

Mann-Whitney test 
A non-parametric two sample rank test was performed to test the difference 

between the median OD values of two groups. 

2-test 
This analysis was used to determine if an observed distribution differed 

from the expected distribution. 
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1 2 	3 	4 5 	6 	7 8 	9 	10 1112 13 14 15 	16 	17 

Figure 10.1a: Alternative epitope specificities at different domains of 

MSP1 are shown in boxes. 

Polymorphism in MSP1 is also shown schematically, indicated by the 

numbered blocks, according to Tanabe etal(1987). 

I 	13.4 	I 

4-4F/8-5D I 	 1 12.3,12.5,12.7 	 Serogroup A mAbs 

I 8F6/49  I 
	

Serogroup B mAbs 

Figure 10.1b: Epitope specificties of MSP2 mAbs for serogroup A and B 

dimorphic and polymorphic domains. 

=denotes conserved sequences 

...: denotes semi-conserved/dimorphic sequences 

denotes polymorphic sequences 
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10.3 Results 
10.3.1 Parasite serotyping: 
Blood-stage parasites from patients with acute, uncomplicated malaria 

were cultured in vitro until they matured to schizonts. Multispot slides were 

prepared of each isolate. At least 200 schizonts from each isolate were 

scored for reactions with the mAbs and mouse sera by indirect IFA. All 

schizonts in every isolate gave specific reactions with the control mAb 9.8, 

a conserved epitope of MSP1 [204]. Each of the other mAbs identified 

some isolates within which all schizonts were positive, some isolates within 

which all parasites were negative, and some isolates within which only a 

proportion of schizonts gave specific fluorescence (i.e multiple-clone 

infections). 
74 isolates were serotyped and a total of 111 clones were identified, more 

than half of the isolates being apparently single genotype infections. 

i. MSP1 serotypes 
Clones were assigned a serotype on the basis of reactivity with MSP1-

specific mAbs and their frequency recorded (table 10.1). For the sake of 

comparability between studies, serotypes which had been described 

previously were given the same number as in the published studies [66, 

67]. 6 clones remain unclassified due to difficulty in interpretation of 

reactivity with particular mAbs. 29 different MSP1 serotypes were identified; 

individual serotypes were found in up to 9 different isolates. 

The frequency of these serotypes can be compared with previous studies 

carried out in the area by Conway et a! [66, 67, 69] from parasite isolates 

from patients presenting to the outpatients department of the MRC, Fajara 

and the Royal Victoria Hospital, Banjul. Overall, the frequency of serotypes 

was comparable, particularly the strong bias towards the MAD20-type block 

6-16 (reactivity with mAbs 1 27F1 .1, 127B1 1, 9.2, 9.7 and 10.3). 

Two serotypes, 22 and 30, which had not been observed previously in The 

Gambia [66, 67], occurred at low frequency in our study population. 

However, x2  tests indicate that there are no significant differences in the 

frequencies of MSP1 serotypes observed in this study and previous studies 

[66, 67,69]. 

Eight serotypes (53-60) are based on lack of seroreactivity with mAbs 

specific for block 4 (12.1 and 10-2B). These two mAbs are mutually 
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exclusive in their reactivity, iowever, parasites negative for both have 

previously been observed [67]. The single example that has been 

sequenced has a third alternative sequence corresponding to this region. 

In this study, 4 of these additional serotypes were observed and designated 

53, 56, 58 and 59. 
Block 2 is the most polymorphic region of MSP1. mAb 12.2 defines the 

3D7-type sequence, 31D3 defines the CAMP-type sequence and 31.1 is 

specific for the R033-type sequence. mAb 31.1 was included in our study, 

but reactivity with this mAb was not used in the definition of the MSP1 

serotypes. Reactivity with 31.1 appears to be mutually'exclusive of reactivity 

with 122.2 and/or 3D3; of those clones which were negative with 12.2 

and/or 303, 32 out of 49 were positive for 31.1. Previous studies in The 

Gambia have not used this mAb, therefore no comparisons in frequency of 

reactivity can be made. 
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Monoclonal antibody 
12.2 	3D3 	13.2 	9.5 	10-2B 12.1 	127F1 	1-1c 111.4 

Block 	2 	2 	3 	3 	4 	4 	6-16 	6-16 16-17 

Isolate 	3D7 CAMP Ki 	MAD 	Ki 	MAD MAD 	Ki 	Ki 
n % 

Serotype 	
N=111 

1 0.9 
++ 	- 	

+ 
2 1.8 

- 	+ 	+ 	- 	
+ 

4 	 - 	- 	+ 	- 
5 	 + 	+ 	+ 	- 	- 	+ 	+ 	- 	

- 3 
1 

2.7 
0.9 - 

6 	 - 	+ 	+ 	- 	- 	+ 	+ 	- 3 2.7 
- 	+ 	+ 	- 	

- 
7 	 + 	- 	+ 	- 

- 	+ 	- 	- 	+ 	+ 	- 	
- 4 3.6 

8 	 - 
9 	 + 	+ 	+ 	- 	+ 	- 	+ 	- 	+ 9 

3 
8.1 
2.7 

- 	+ 	- 	
+ 

10 	 - 	+ 	+ 	- 	+ 
- 	+ 	- 	+ 	- 	+ 	- 	

+ 9 8.1 
11 	 + 
12 	 - 	- 	+ 	- 	+ 	- 	+ 	- 	

+ 5 
6 

4.5 
5.4 - 

13 	 + 	+ 	+ 	- 	+ 	- 	+ 	- 2 1.9 
- 	+ 	- 	+ 	- 	

- 
14 	 - 	+ 	+ 

- 	+ 	- 	+ 	- 	+ 	- 	
- 3 2.7 

15 	 + 
16 	 - 	- 	+ 	- 	+ 	- 	+ 	- 	

- 5 
9 

4.5 
8.1 

20 	 - 	- 	- 	+ 	- 	+ 	+ 	- 	
+ 

1 0.9 
- 	+ 	- 	+ 	+ 	- 	

- 
22 	 - 	+ 
24 	 - 	- 	- 	+ 	- 	+ 	+ 	- 	

- 7 
6 

6.3 
5.4 

28 	 - 	- 	- 	+ 	+ 	- 	+ 	- 	
+ 

1 0.9 
- 	+ 	+ 	- 	+ 	- 	

- 
30 	 - 	+ 
32 	 - 	- 	- 	+ 	+ 	- 	+ 	- 	

- 7 
3 

6.3 
2.7 

33 	 + 	+ 	- 	- 	- 	+ 	+ 	- 	
+ 

- 	- 	+ 	+ 	- 	
+ 2 1.9 

36 	 - 	- 	- 
43 	 + 	- 	- 	- 	+ 	- 	+ 	- 	

+ 2 
1 

1.9 
0.9 

44 	 - 	- 	- 	- 	+ 	- 	+ 	- 	
+ 

- 	+ 	- 	+ 	
+ 1 0.9 

52 	 - 	- 	+ 	- 
53* 	 + 	+ 	+ 	- 	- 	- 	+ 	- 	+ 2 

1 
1.9 
0.9 

56* 	 - 	- 	+ 	- 	- 	- 	+ 	- 	
+ 

4 3.6 
- 	- 	+ 	- 	

- 
58* 	 - 	+ 	+ 	- 

- 	- 	+ 	- 	- 2 1.9 59 * 	 + 	- 	+ 	- 

Table 	10.1: 	Serotypes, 	and their frequencies, 	of MSP1 	defined by 

combinations of reactivities with individual mAbs [11, 16]. 
* denotes those 

serotypes not previously defined by Conway et a! [11, 1 6]. 

ReactivitieS with mAbs 127B11.1, 9.2, 9.7, 10.3 and 127F1.1 all give the 

same pattern of recognition; to save space serotypes are defined as + or - in 

reactivity to 127F1.1 only. 
ReactivitieS with 1-1C, 6.1, 13.1 and 17.1 are the same for each serotype; 

1-1C reactivities only are recorded here. 



ii. MSP2 
MSP2 serotype frequencies are given in table 10.2. The results appear 

consistent with the frequencies in 1988 and 1989 [66, 67], in that serotypes 

3 and 9 have not been detected. However, fluctuations in the frequencies of 

the other serotypes are apparent (table 10.2). In particular, there is an 

increase in the frequency of serotype 7 from less than 15% (in 1989) to 
33% (in 1992), which is statistically significant (x2=89.7 d.f=1, p<0.001). 

This increase in serotype 7 (serogroup B) is compensated for by a 

decrease in the frequency of several other serotypes. The decrease in 

frequency of serotype 6 from 7.7% in 1989 to 0.9% in 1992 (x2=6.26  d.f=1, 

p<0.O25). 

Monoclonal antibody 
Characteristic n 

13.4 851D 12.3 8GlO/488F6/49 isolate* N=111 °"° 

Serogroup A A A B 	B 

Serotype 

1 + + + - 	- - 	T9/94 4 3.6 

2 - + + - 	- 	CH12/12, R033 30 27 

3 + - + - 	- 0 0 

4 - - + - 	- 	T9/96 19 17.1 

5 - + - + 	+ 7 6.3 

6 - + - + 	- 	K29 1 0.9 

7 - - - + 	+ 	Ki, FC27 37 33.3 

8 - - - + 	- 9 9.1 

9 + + - - 	- 0 0 

10 - + - - 	- 2 1.8 

Table 10.2: MSP2 serotypes, and their frequencies, defined by 

combinations of reactivity with individual mAbs [66, 67] collected from 

patients with acute, uncomplicated malaria in The Gambia. 

* determined from Fenton et a! [109] 
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10.3.2 Antibody recognition of serogroup A and B by acute sera and the 

relationship with the antigenic profile of the infecting parasites: 

74 sera from children with acute, uncomplicated malaria were tested for 

recognition of MSP2 rAgs Al and Bi. The frequency of antibodies to these 

proteins is given in table 10.3. Table 10.4 gives the frequency of parasites 

expressing serogroup A and B, including mixed infections. 

To examine the relationship between the presence of parasites expressing 

a particular serogroup of MSP2 and the presence of antibodies to that 

serogroup x2 tests were performed (table 10.5). Individuals infected with 

parasites of MSP2 serogroup A were divided into those with antibody to Al 

and those without (and similarly for serogroup B). Antibodies to B1 were 

significantly associated with infection with malaria parasites expressing 

MSP2 serogroup B. No such association was observed for anti-Al 

antibodies and serogroup A parasites. However, a greater than expected 

number of individuals who had antibodies to Al were not infected with 

serogroup B parasites. 
A Mann-Whitney test was performed to compare the median OD values to 

each rAg of individuals infected with the corresponding, or alternative, 

serogroup (table 10.6). The median OD to Bi was greater if an individual 

was infected with serogroup B parasites, and no association was observed 

between the median OD to Al and serogroup A parasites. 

Taken together, the data indicates that there is evidence for boosting of the 

antibody response to serogroup B, after infection with parasites expressing 

MSP2 serogroup B. The results for serogroup A are inconclusive. 

Importantly, there was no evidence that children with high titres of antibody 

to one serogroup were less likely to be infected by parasites expressing 

that serogroup - as one would expect if "strain-specific" immunity was 

operating at the level of MSP2. 
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MSP2 serogroup 

A only 

B only 

Amix 

BMix 

NB mix 

Number 

(N=74) 

22 

26 

5 

5 

16 

Frequency 	Number 	Frequency 

(N=51) 

29.7 15 29.4 

35.1 19 37.3 

6.8 3 5.9 

6.8 1 2.0 

21.6 13 25.4 

Acute 

Number frequency 

(N=74) 	% 

11 	14.9 

19 	25.7 

20 	27.0 

24 	32.4 

Acute 

Number frequency 

(N=51) 	% 

8 	15.7 

9 	17.6 

20 	39.2 

14 	27.5 

Convalescent 

Number frequency 

(N=51) % 

4 7.8 

16 31.4 

25 49.0 

6 11.8 

Al only 

Bi only 

Al and Bi 

neither 

Table 10.3: Frequency of antibodies to rAgs Al and Bi in acute samples 

(N=74) and acute and convalescent samples (N=51). 

Acute 
	

Acute and Convalescent 

Table 10.4: Frequency of parasite serogroups and mixed infections in acute 

samples only, and paired acute and convalescent samples. 
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Parasite 	Antibody 	 n 	 x2 	P 
MSP2 	specificity 	Ab+ 	Ab- 

serogroup 

A 	 Al 	21 	22 	2.03 	0.154 

A 	 Bi 	15 	28 	13.07 	>0.001 

B 	 Al 	15 	32 	5.26 	0.022 

B 	 Bl 	30 	17 	6.40 	0.011 

Table 10.5: x2 analysis to determine the association between antibody 

specificity of an individual and serogroup of parasites infecting that 

individual, for 74 acute samples collected from children with acute, 

uncomplicated malaria in The Gambia. 

Median OD 

Antibody Parasite Parasite Parasite U p 

specificity serogroup positive negative (n=74) 

Al A 0.130 0.221 0.045 0.355 

Bl B 0.549 0.117 0.239 0.018 

Al B 0.109 0.316 0.132 0.027 

Bi A 0.117 0.639 0.414 0.0005 

Table 10.6: Mann-Whitney analysis to determine the association between 

median OD to Al or 131 and infection with parasites expressing serogroup 

A and/or B, for 74 acute samples collected from malaria patients attending 

the MRC outpatients clinic, Fajara. 

10.3.3 Antibody recognition of MSP2 by acute and convalescent sera 

and the relationship with the parasite serotype: 

The recognition of MSP2 was studied for paired acute and convalescent 

serum samples. Table 10.3 shows the pattern of antibody recognition of Al 

and Bi in these individuals and the characteristics of the infecting parasites 

(table 10.4). The antibody profile of acute and convalescent sera was 
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significantly correlated, as determined by Spearman's rank correlation tests 

(data not shown). 
Mann-Whitney analysis of both acute and convalescent samples again 

showed no association between the median OD to Al and the presence of 

serogroup A parasites, whereas the median OD to Al was greater if an 

individual was infected with parasites that were not serogroup B. The latter 

association implies that the median OD to Al should be greaterif the 

parasites are expressing serogroup A. This apparent contradiction could 

arise due to the extensive polymorphism in the Ri repeat region of MSP2 

serogroup A. Therefore we tested the sera for recognition of the panel of A2 

rAgs. 8 individuals who were seronegative for Al, but infected with 

serogroup A parasites, were seropositive to some of the A2 variants (table 

10.7). 
Some individuals were seronegative for Al (T9/96) but recognised 

A2(T9/96). A possible explanation for this is that A2-specific antibodies 

were in low concentration (indicated by a low OD) and the epitope density 

when the plate is coated with the larger Al molecule is lower, therefore 

these antibodies are not detected. 
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Donor Age 

MSP2 serotype of 
infecting parasites 

 al) 

Al 

1 ) a 

B 1. 

c 

A2 variants 
recognised 

227 1 7,2 - - - +1- 
R033(c), 
0H12/12(c) 

230 6 4,2,1 + +1- - - T9/96(a),7G8(a) 

237 1 7 +1- + + + 

238 1 4,2 - - - 
- 

19/96(c), 	R033(c), 
CH12/12(c), 
T9/94i(c) 

245 2 2,5,7 - +/ - + 
T9/96(a&c), 
R033(c), T9/94i(c), 
ThaiTn(c) 

248 7 7 - +1- - ++ T9/96(a&c) 

249 6 7 - - + ++ 

251 4 7,2 * , 10 ++ + ++ ++ T9/96(a&c) 

262 4 4 - +1- - + T9/96(a&c) 

266 6 7 - +1- ++ ++ 

284 1 7 ++ + + + 
R033(a&c), 
CH12/12(a&c), 
T9/94i(a&c), 
ThaiTn(a&c) 

292 4 8 - - ++ ++ 

306 5 4 + - + + 

310 1 2 - - - - T9/96(a&c) 

311 1 4 ++  

342 2 7 ++ + ++ ++ 

345 8 4 ++ ++ + +1- 
T9/96(a&c),
7G8(a&c), 
ThaiTn(a&c) 

353 1 2 - - - 
- 

R033(c), 
CH12/12(c), 
T9194_i(c) 

354 9 7 + - ++ ++ 

355 5 7,10 ++ + ++ ++ 

356 1 8 + + ++ ++ 

367 2 7 - - - - 

369 2 7,2 - - ++ 

375 8 5 + - - + 

377 4 7,1 - + - + T9/94(c) 

380 1 7 

386b 4 8 +1- - ++ ++ T9/96(a&c) 

387 6 7 +1- +1- - ++ T9/96(a&c) 

389 3 5,7 + + ++ ++ 19/96(c) 

390 9 5 - - ++ 4+ 



ThaiTn(c) 

393 1 2 - ++ - + R033(a&c), 

ThaiTn(c) 

394 4 2 +1- + + + T9/96(c) 
R033(a&c), 

400 6 8,2°° - + - + 19/102(c), 
T9/94(a&c) 

401 3 2 + + - ++ 
T9/96(a), 

405 3 7,2 ++ ++ ++ + R033(a&c), 
T9/1 02(a&c), 
ThaiTn(a&c), 
T9/94(a&c), 
7G8(a&c) 

407 1 2,4 ++ + + - ThaiTn(a) 

414 3 8 - - +1- +1- 

415 3 2°°'8 - - + ++ T9/96(c) 

416 5 2 
T9/96(a&c) 

421 2 7 ++ + ++ R033(a), 
CH1 2/12(a), 
T9/94i(a) 

424 4 2 

426 0 2 ++ - ++ + 

429 4 7 +1- - ++ ++ 

430 6 4,8 - - +1- + T9/96(a&c) 

435 7 4 ++ + - - 

441 1 2 - -i-I- ++ +4- 

455 9 7 +1- - + ++ R033(a) 

457 14 2°°,5 + - + - 
CH12/12(a&c), 

458 6 2 + - - T9/102(a&c), 
T9/94i(a&c) ,7G8(a& 
C),_ThaiTn(a&c) 

460 3 7,4 - - - ++ :1 

Table 10.7: Details of parasite serotype (major serotype first) and antibody specificity for 51 

children aged 10 months -10 years from the villages around Fajara, The Gambia. Samples were 

collected in October - November 1992. 

* denotes positive reactivity with anti-ThaiTn mouse serum 

denotes positive reaction of parasites in IFA with anti-T9/96 mouse serum 

b denotes recombinant allele determined by DNA sequencing 

1) a & c denote acute and convalescent samples, respectively. 

Antibody recognition is denoted by - (negative), +1- (OD value close to cut-off), + (seropositive), 

++ (strongly positive). 	 205 



10.3.4 Recognition of A2 rAgs and the relationship with serogroup A 

parasites: 

The variant-specific antibody profiles of individual sera could be compared 

with the serotype of the infecting parasites by measuring antibodies to A2 

rAgs (table 10.7). Several examples are given below: 

Donor 227 was seropositive for A2(R033) and A2(CH12/12) 4 weeks after 

infection. The majority of infecting parasites expressed serogroup B 
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however a subpopulation of the parasites (approximately 7%) were shown 

to express epitopes 12.3 and 8-5D (serotype 2). This combination of 

epitopes is characteristic of MSP2 alleles in R033 and CH12/12 strains 

[109] (table 10.2). Thus this child shows clear evidence of boosting of the 

immune response to the parasites with which it was infected. 

Donor 238 was seropositive in convalescence for T9/96, R033, CH12/12 

and T9/94. Approximately 97% of the infecting parasites were MSP2 

serotype 4, the sequenced expressed by T9/96.,9espite this the OD for 

A2(T9/96) was very low. Approximately 3% of the parasites were serotype 2 

and strong antibody responses were detected for the corresponding A2 

proteins - R033 and CH12/12. In addition, a high OD was measured for 

A2(T9/94i), although no parasites of this particular serotype were detected. 

However, partial sequence homology does occur between R033 and 

T9/94. Thus, a small proportion of parasites boosted the antibody response 

to a construct with similar sequences to those predicted by the mAb 

reactivity pattern of the parasites infecting this child. 

Donor 353 was seropositive, in the convalescent sample, for A2(R033), 

A2(CH12/12) and A2 (T9/94i) although the OD values were low. The 

parasites were an apparently single genotype infection of serotype 2 

(R033/CH1 2/12), which appears to have boosted the antibody response. 

Donor 377 was seronegative at the time of infection, however became 

seropositive to T9/94 4 weeks later. This individual was infected with a 

mixed isolate; 35% of the parasites were serotype 1, characteristic of T9/94. 

The majority of parasites were serotype 7 (serogroup B) and antibodies to 

Bi were detected during convalescence. 
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Donor 430 was seropositive for A2(T9/96) in the acute and convalescent 

samples. Approximately 80% of the infecting parasites were serotype 4 

(T9/96-type). The remainder of the parasites were serotype 8 and this child 

was weakly seropositive to Bi in the acute sample and clearly seropositive 

in the convalescent sample. Thus the antibody profile of this child is clearly 

related to the MSP2 serotypes expressed on the parasites with which it was 

infected. 

Donor 458 was seropositive for A2 variants CH12/12, T9/102, T9/94i, 7G8 

and ThaiTn, with OD values very similar for acute and convalescent 

samples. This individual had an apparently homologous infection with 

serotype 2, characteristic of CH12/12. Isolates CH12/12, T9/102, T9/94 and 

7G8 all contain the sequence GSAG and there is partial homology with the 

sequence GRAG of ThaiTn. There is no obvious boosting of the immune 

response during convalescence. However, boosting may have already 

occurred by the time the acute sample was obtained if this child did not 

attend the clinic early during infection. 

There were individuals who had antibodies to serogroup A variants but 

were not infected with serogroup A parasites. For example, donor 284 is 

seropositive for A2(R033), A2(CH12112), A2(T9/94i) and A2(ThaiTn), 

however only serogroup B parasites were detected. There was a decrease 

in the OD values to these constructs after 4 weeks, which may indicate that 

this individual had made a response to a previous infection with serogroup 

A parasites and the antibody levels were beginning to decline. This 

individual did have anti-131 antibodies. 

10.3.5 Recognition of B3 variants by acute and convalescent sera: 

Four of the serogroup B parasites collected during this study were 

subsequently shown to lack the 12-mer R2 repeat sequence (sequencing 

carried out by Dr. P. Roberts and C. Dobano). Because of this observation, I 

investigated the recognition of this region by the childrens' sera. Three rAgs 

were used - B3(K1), B3(T9/105i) and B3(T9/105ii) which are serogroup B 

proteins with 5, 1 and 0 12-mer sequences, respectively. 
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The construct with 5 12-mers was recognised more often by acute and 

convalescent sera than were the constructs with 1 or 0 12-mers (figure 

10.2). Thus, it seems as though a dominant epitope in this construct is 

dependent on the presence of more than 3 12-mer repeats. 

Ten sera, which were positive for at least one of the B3 rAgs, were selected 

and titrated against each of the B3 constructs to compare the relative 

affinities and concentrations of antibodies to this region. Examples of three 

such sera are shown in figures 10.2 & 10.3. Varying patterns were seen. 

Some individuals appeared to recognise epitopes outwith the 12-mer 

sequence as titrations curves were virtually overlapping for each of the 

rAgs including the one with no 12-mers (figure 10.3a). In others, the 

recognition of the 12-mers occurred in a "dose-dependent" manner, with 

the greatest antibody binding to B3(K1) (figure 10.3b). In others, the epitope 

recognised was completely dependent on the presence of more than 1 12-

me rs. 

Interestingly, donors 248, 249, 354 and 387 were strong responders to 

B3(K1) but low or non responders to B3(T9/105i) and B3(T9/105ii) (figure 

10.2 - closed circles; for example figure 10.3c) and yet were infected with 

parasites which lacked the 12-mer sequence which perhaps enables the 

parasites to evade the existing antibody response. 
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Figure 10.2: Recognition of B3 rAgs by acute (A) and 

convalescent (C) sera from 51 mild malaria patients. Each circle 

represent one individual. Closed symbols represent donors who 

were infected with parasites which lacked the 12 mer repeat. 

Horizontal lines indicate the mean + 2SD of the OD values for the 

control sera. 
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10.4 DISCUSSION 
Immune recognition of MSP2 is acquired in an age-dependent manner 

(chapter 6). Data from chapter 9 demonstrate variant-restricted immune 

recognition of MSP2 polymorphic sequences in non-immune individuals 

and children, in particular. The data is consistent with the hypothesis that 

the gradual development of immunity to MSP2 requires that an individual 

experiences a range of MSP2 serotypes and that clinical immunity 

develops once an individual has experienced a representative sample of 

parasites and possesses antibodies which cross-react with all potential 

sequences. 
In this study the objective was to look for correlations between such variant-

specific antibodies in children and the antigenic profiles of the parasites 

responsible for the clinical episode to see, firstly, whether boosting of the 

antibody response to specific MSP2 sequences could be observed and 

secondly, whether pre-existing antibody protected against subsequent 

infections with parasites carrying that sequence. Parasites were typed for 

MSP1 and MSP2 [66, 67]. Each of these antigens exhibits allelic 

polymorphisms. The frequencies of the serotypes were comparable to the 

frequencies observed by Conway et a! [66, 67] in the same region in 1988 

and 1989. Some fluctuations were observed for certain serotypes of MSP1 

and MSP2. We are aware that considerable microheterogeneity occurs in 

MSP2 [201, 250] and that typing with mAbs will tend to underestimate the 

extent of this diversity. However, within the limits of the assays used, we do 

not believe that major shifts in allelic frequencies are occurring over time, in 

this population. 

The antibody profile of each individual at the time of infection and during 

convalescence was determined by ELISA, primarily using rAgs Al and Bi, 

the full length recombinant proteins of each serogroup. We compared the 

antibody profile and the serogroup of MSP2 expressed by the parasites 

with which that child was infected. 

Interpretation of serogroup B associations were straightforward, whereas 

the serogroup A data were more complicated - probably because MSP2 

serogroup A sequences are more heterogeneous. A significant correlation 

was observed between the presence of antibody to Bi (during the acute 

and convalescent stages) and infection with serogroup B parasites. 

However, there was no direct association between presence of anti-Al 

antibodies and presence of serogroup A parasites. However, individuals 
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were shown to have a higher median 00 to Al if they were not infected 

with serogroup B parasites. Since, if the parasites are not serogroup B, they 

must be serogroup A MSP2 (excluding recombinant forms). The data 

indicate that antibodies to serogroup A are associated with infection with 

serogroup A parasites. 
A panel of rAgs representing the Rl repeat region of MSP2 serogroup A 

were used to investigate the recognition of polymorphic repeat sequences. 

Several individuals who were seronegative for Al (T9/96), but were infected 

with serogroup A parasites, were shown to have antibodies specific for 

other serogroup A variants. In many cases, the antibody profiles of the 

children, particularly in convalescence, corresponded to the antigenic 

profiles of the parasites with which they had been infected. 

Therefore, overall, the data show a strong relationship between the 

antibody profile of an individual and the MSP2 serogroup expressed by the 

malaria parasite, with the antibody response to a particular serotype being 

boosted by the infection. 

A few children were seronegative to all proteins tested, however these 

children may have antibodies specific for sequences which are not 

represented by our panel of proteins. Some individuals were seropositive 

for either Al or Bi, but were not infected with the corresponding serogroup 

of parasite. These antibodies had obviously persisted from a previous 

infection, but it is not known whether these antibodies protected against 

infection with parasites expressing that serogroup of MSP2 or whether 

these children had simply not been exposed to those parasites in the 

interim. 

It is not known whether polymorphisms in MSP2 enable the parasite to 

evade variant-specific immune responses. If so, such polymorphisms might 

be subject to frequency-dependent selection. In this context, it is of interest 

that MSP2 alleles that lack the 12-mer repeat sequence of serogroup B 

were identified. Such variants have been reported elsewhere [201, 250] 

and these parasites appear to be viable (similar have been sequenced in 

oocysts [257]). The individuals harbouring these novel variants were shown 

to have high antibody responses to a rAg containing 5 copies of the repeat 

sequence. It is therefore tempting to conclude that parasites lacking the 12-

mer sequence were able to evade the immune responses in these 

individuals, and were therefore at a selective advantage. In serogroup B 
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polymorphism within the R2 repeats is minimal with isolates varying in 

repeat number rather than in sequence, therefore not having the repeats 

may be very advantageous. 

More extensive longitudinal studies are now required to investigate the 

dynamics of individual serotypes of P.falciparum in parallel with a 

description of the dynamics of the immune response to these serotypes, to 

determine whether polymorphisms arise as a result of immune selection 

pressure or due to random genetic drift, and to see whether pre-existing 

antibody protects against infection. 
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11: Longitudinal studies of antibody responses to 
PfMSP1 and MSP2 

11.1 Introduction 
In chapter 6, describing the age profiles of anti-MSP2 antibodies, I found 

that there was a significant increase in the prevalence of anti-MSP2 

antibodies with age, whereas the overall mean OD for positive samples did 

not increase. Many children were essentially negative for one or both 

MSP2 serogroups; the proportion of seronegative adults was lower than in 

children, but a significant proportion of adults do appear to be 

nonresponsive to MSP2 antigens. In children this could be explained by a 

lack of exposure to malaria, whereas in adults this is unlikely. 

The antibody prevalence data was collected by cross-sectional analysis of 

a population at a single point in time, in this case during the malaria 

transmission season in 1988. Malaria transmission in The Gambia is 

seasonal and it is possible that antibody levels fluctuate over time 

depending on the frequency of re-exposure to infection. In order to obtain a 

realistic evaluation of responders and non-responders to an antigen or 

epitope, it is necessary to conduct longitudinal studies collecting serum 

samples from the same individual over a period of months or years. 

Several such studies have been carried out for P.falciparum antigens from 

various stages of the life cycle [26, 27, 83, 115, 228, 235, 241, 267, 270, 

348]. In general, it appears that variation in antibody levels within one 

individual over time is less common in individuals who are clinically 

immune to malaria, than in those who are still actively acquiring immunity or 

who have only recently been exposed to malaria; in such individuals, 

antibody levels do fluctuate over time [26, 53, 253, 348]. Furthermore, 

among those individuals who are clinically immune, a proportion are 

consistently seronegative to particular antigens or epitopes within an 

antigen, whilst being stable responders to other antigens. Riley et a! [270] 

found that at any one time, up to 70% of clinically immune adults were 

seronegative to PfMSP142 and around 40% of the donors tested in a 

longitudinal study were persistent non-responders. This phenomenon of 

non-responsiveness has been observed for other antigens of P.falciparum. 

The ability of an individual to produce, or not to produce, antibodies to the 

230kD gamete surface antigen was a consistent phenotype which 

appeared early in life [267]. Quakyi et a! [253]observed widespread 
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restricted immunogenicity to antigens from the sporozoite and blood stages. 

Responses to peptides representing different repeat sequences of 

Pf155/RESA show highly consistent differences between individual 

Liberian donors [235]. 
Several explanations have been proposed for this selective non-

responsiveness to certain antigens or epitopes. The detection of MHC-

dependent genetic restriction of immune responses to defined peptide 

epitopes of malaria antigens in mouse models has led to the fear that 

genetically determined non-responsiveness to malaria antigens may be 

widespread in human populations [120, 124a]. However, in outbred human 

populations, polymorphism of HLA antigens is extensive compared to 

inbred laboratory mice. Genetic regulation of antibody responses to 

Pf155/RESA has previously been inferred from longitudinal studies which 

showed that, under conditions of continual year-round malaria 

transmission, heterogeneous antibody profiles were observed [27, 235, 

253]. Serological data [27] indicated a higher degree of variability in 

seroreactivity between individuals, the more specific the antigen tested (i.e. 

crude parasite antigen versus synthetic oligopeptides of Pf155RESA). In 

addition, the seroreactivity remained consistent within an individual even 

though the parasitaemia, and hence the antigenic load, varied between 

surveys. Thus, the restricted but consistent recognition indicated that 

genetic regulation might be involved. A study on the recognition of 

candidate vaccine antigens by malaria exposed sera concluded that their 

observations of differential non-responsiveness were consistent with the 

concept that poor responsiveness was the result of immune response (Ir) 

genes mapping within the human MHC, but no direct evidence of MHC 

restriction was presented [253]. 

In an effort to determine the practical importance of genetic constraints in 

the development of anti-malarial immunity in endemic human populations, 

Riley et a! [270a] examined the naturally acquired cellular and humoral 

immune responses to defined P.falciparum antigens in individuals of 

differing HLA class II genotypes. They concluded that non-responsiveness 

is not primarily due to HLA class 11-mediated genetic restriction. However, it 

has not been excluded that non-MHC genes may influence immune 

responses to malaria Ags. For example, variation could be due to allotype 

restriction of the donors' antibody repertoire, genetic regulation of 
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lymphokine production, or antigen processing or at the B- or T-cell level [27, 

235, 271]. 
An alternative approach to determine the importance of genetic versus 

environmental factors in the immune recognition of malaria antigens is to 

compare responses in identical and non-identical twin pairs. Sjaberg et a! 

[293] investigated twins for possible genetic restriction of T-cell and B-cell 

responses to defined, repetitive epitopes of Pf 1 55/RESA. They found that 

anti-peptide responses were more concordant within monozygous twin 

pairs than within either dizygous twins or sibling pairs who were matched 

for age, sex and exposure to malaria. The data implied that the antibody 

response to Pf155/RESA came under genetic regulation but further 

analysis showed no associations with HLA class II type. They conclude that 

regulation of antibody response reflects the impact of factors encoded by 

genes outside the HLA class It region. 
Non-responsiveness could also be attributed to such factors as antigenic 

polymorphism, immunosuppression, temporal variation in antibody levels 

and/or inadequate exposure to malaria. Antigenic polymorphism is a 

common feature of malaria antigens. Since memory T cells primed by 

exposure to one parasite strain will not respond to a variant strain bearing a 

non-cross-reacting epitope, such polymorphism may account for this 

apparent non-responsiveness and presumably represents a parasite 

adaptation for immune evasion [271]. Temporal variation in antibody levels 

could be due to low transmission rates during long dry periods in some 

endemic areas and poor T cell memory. Specific serum antibody titres may 

fall below detectable levels, particularly in children and in areas of low 

endemicity [115, 200, 348]. Thus cross-sectional surveys are likely to miss a 

proportion of responders since sampling occurs at one point in time. 

Down-regulation of the immune response due to repeated infection and 

chronic exposure of the individual could result in apparent non-

responsiveness to particular antigens. Riley et a! [267] have observed that 

a stable responsiveness phenotype is fixed early in life and is apparent in 

children as young as 3-5 years of age for Pfs230. Thus tolerance might be 

induced following prenatal or perinatal exposure to malaria antigens [246a]. 

It is well recognised that specific unresponsiveness to immunisation can be 

induced by prolonged exposure to antigenic proteins [286a]. It would be 

expected that exposure of the foetus or new-born to malaria antigen, at a 

time when the immune system is immature, would have an influence on 
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subsequent malaria immunity and may play a partial role in the lack of 

childhood immunity to malaria [246a]. 

A novel explanation for the selective recogniton of malaria antigens is a 

mechanism, originally proposed to explain the restricted antibody response 

to influenza viruses, known as Original Antigenic Sin [107] or clonal 

imprinting [118a]. Clonal imprinting has been proposed as part of the 

explanation for the limited antibody repertoire seen in patients with HIV-1 

infections [118a]. Clonal imprinting is a phenomenon in which a primary 

infection with a particular variant leads to the clonal expansion of B-cells 

specific for certain antigen epitopes. During a secondary infection, antigens 

which cross-react with those presented in the original infection are 

recognised by memory B-cells and antibody of the original specificity is 

produced. Epitopes which were not present in the primary infection are 

effectively ignored because naive B-cells cannot compete for Ag with 

higher affinity memory cells. As a result certain antigens and epitopes are 

persistently recognised and others are not recognised. 

The questions which need to be addressed concerning the recognition of 

MSP2 are:- 

is non-responsiveness to particular epitopes of MSP2 a stable 

phenotype in adults and children who have been exposed to endemic 

malaria? 

is non-responsiveness to MSP2 genetically determined? 

In this chapter, I report the results of two longitudinal serological studies 

conducted in The Gambia. Samples were collected at six month intervals 

from adults and children from the villages of Brefet and Farafenni, 

respectively. Surveys were made at the end of the dry season (when 

malaria transmission is minimal) and at the end of the wet season (when 

transmission is at its maximum) over several transmission seasons. 

Antibody responses to the two major P.falciparum merozoite surface 

proteins, PfMSP1 and MSP2, were measured in ELISA. The rAgs used 

represented regions of the proteins that were conserved, dimorphic or 

polymorphic. In this way we examined the temporal variation of antibody 

responses in individuals who are clinically immune and in individuals who 

are still actively acquiring their immunity to malaria. Furthermore, we 

examine whether the regulation of immune recognition of MSP2 is 
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genetically determined by comparing antibody recognition of pairs by 

monozygous and dizygous twins and examining the relationship between 

human leukocyte antigen (HLA) class II genotype and anti-MSP2 immune 

responses. 
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11.2 Materials and methods 

11.2.1 Subjects 

Malaria exposed adults 
Sera were collected from 27 adults (aged 16-65) living in the village of 

Brefet, The Gambia. Samples were collected at 6 month intervals (dry 

season and wet season) from November 1990 to November 1993. For each 

individual at least 4 serum samples were obtained. The age, sex and 

number of samples obtained for each individual is detailed in table 11.1. 

Malaria exposed children 
Sera were collected from children (aged 3-8 years in 1988) living in the 

villages near the town of Farafenni, The Gambia. Sera were collected at 6 

month intervals from June 1988 to November 1991. For each individual at 

least 4 samples were collected. The age, sex and number of samples 

obtained for each individual is detailed in table 11.2. 

These samples were collected by Dr S Allen. 

Malaria exposed twins 
Serum samples were obtained from 36 pairs of adult twins living all over 

the Eastern region of The Gambia. 15 pairs of twins were shown to be 

monozygous. Zygosity was determined using cloned human DNA 

minisatellites as locus-specific hybridisation probes [362]. 

Samples and zygosity data were kindly provided by Dr. Annette Jepson. 

4 Controls 
Control serum samples were obtained from European adults (n=12) and 

children (n=12). These individuals have not been exposed to malaria. 

All serum samples were stored at -20°C. 
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Donor 	No. of 	Age 	Sex 
samples 	(in 1990) 

1 5 59 m 
4 6 34 
7 6 36 f 
12 6 64 m 
13 5 65 m 
15 4 45 m 
28 6 57 
31 6 44 m 
35 6 37 f 
45 5 57 m 
50 5 38 m 
53 5 59 m 
69 5 49 m 
79 5 50 m 
95 5 41 f 
104 4 16 f 
105 5 24 f 
109 5 16 f 
110 5 17 
112 6 16 f 
114 5 16 f 
116 6 28 m 
117 6 17 f 
120 6 65 f 
125 6 28 f 
127 4 41 m 
167 5 16 f 

Table 11.1: Longitudinal recognition of merozoite surface proteins - adult 

serum samples. Donor details giving the number of samples collected for 

each individual, their age (at beginning of study) and sex. 
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Donor No. of Age Sex 
samples (in 	1988) 

E07008 6 5 m 
E08018 7 7 m 
E09009 5 3 m 
E17004 7 3 m 
E18003 6 7 f 
E20015 5 5 m 
E24008 7 6 m 
E24009 7 4 m 
E25007 6 3 m 
E25009 7 6 f 
P06008 5 7 m 
P06009 6 5 m 
P10016 6 7 m 
P10017 5 4 m 
P11005 4 6 m 
P12009 5 5 f 
001008 4 7 m 
003005 5 4 m 
N05034 4 4 m 

Table 11.2: Longitudinal recognition of merozoite surface proteins - 

childrens serum samples. Donor details giving the number of samples 

collected for each individual, their age (at beginning of study) and sex. 
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11.2.2 Recombinant proteins: 

The following rAgs were used for this work: MSP2 - A2(T9/96), A3, B2(K1 i) 

and B3(T9/105i); MSP1 - see tablel 1.3. 

rAg Serogroup Region 
EGF-1A Wellcome 19kDa 	(1st 	EGF-like 

motif) * 

EGF-1B 
_______________  

Mad-20 19kDa 	(1st 	EGF-like 
motif) * 

19IGST Wellcome 19kDa (both motifs)* 

Table 11.3: Summary of recombinant proteins MSP1 used in this chapter. 

Proteins kindly provided by A.Egan; for further details see Egan et a! [93] 

and figure 11.1. 

11.2.3 Enzyme-linked immunosorbent assay (ELISA): 

lgG antibodies were measured in ELISA as described in materials and 

methods. For screening, all sera were diluted 1/1000 in blocking buffer and 

tested in duplicate. 

11.2.4 Statistical methods: 

Determination of positivity: 

Positive samples were defined as those giving a specific OD above the 

normal range for control sera. The normal range was taken as the mean + 2 

standard deviations of the OD values obtained for the control sera. 

HLA analysis: 

The overall association of HLA class II genotype with antibody prevalence 

was determined by logistic regression allowing for age and sex. 

This analysis was performed by D. McGuiness, ICAPB, Edinburgh 

University. 
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Figure 11.1: Schematic representation of PfMSP1 

recombinant proteins. 

Hatched boxes indicate rAgs used. 
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11.3 Results 

11.3.1 Longitudinal study of antibody responses to P.falciparum merozoite 

surface antigens by Gambian adults: 
Sera collected over a period of 3 years from adults from the village of 

Brefet, were tested for recognition of the two major merozoite surface 

antigens, MSP1 and MSP2, in ELISA. The rAgs of MSP1 represented the 

relatively conserved 19kDa C-terminal fragment of PfMSP1 (which contains 

two EGF-like motifs) and two rAgs representing the alternative allelic 

sequences of the first of the two EGF-like motifs (see figure 11.1). 

In order to minimise intra- and inter-assay variation, all samples from a 

single individual were tested against all the proteins on one plate. 

Table 11.4 and figures 11 .2a-c show a representative sample of results; a 

complete set of results is given in appendix 3, table 1. There is very little 

seasonal variation in Ab concentration in adults despite the varying 

transmission conditions during the year. Where seasonal variation is 

observed, it tends to be for variant rather than conserved antigens and is 

more cornonly seen in the younger donors. 

The most striking finding is that, despite lifelong exposure to malaria, there 

are a number of individuals who are consistently non-responders to some 

of the rAgs, whilst consistently recognising other rAgs. In other words, these 

individuals show differential recognition of antigens and epitopes within 

those antigens. For example, donor 45JK differentiates between MSP1 and 

MSP2, being consistently seronegative for PfMSP1 and consistently 

seropositive for all of the MSP2 proteins (table 11.4, figure 11.2a). In this 

donor, there is some evidence of boosting during the transmission season 

in 1993 to MSP2 serogroup B epitopes. The Ab recognition of MSP2(B) 

increases but there is still no response to MSP119. Other donors, for 

example 1 2TS and 500S, also differentiate between the recognition of 

MSP119 and MSP2 antigens, being consistently seronegative for MSP119 .  

However, donor 79AJ (figure 11.2b) recognises all the rAgs strongly, and 

remains seropositive throughout the period of the study, although the titre 

decreases suggesting that there has been no boosting for some time. Thus, 

all the rAgs are immunogenic and non-recognition of any of the rAgs is not 

due to poor immunogenicity. 

Donor 11OBS differentiates between epitopes within MSP2 (table 11.4). 

She is seronegative for the A2(T9/96), but seropositive for the group 
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specific region of the same protein. She also shows differential recognition 

of the serogroup B rAgs and there appears to be a boosting of the response 

to B3(T9/105i); this is likely to have occurred in November 1992, however 

no serum sample was available from that collection time. This donor is 

unusual in that she differentiates between the slightly different allellic 

sequences of MSP1-EGF1 and MSP1-EGF2 (figure 11.2c); Egan eta! [93] 

have shown that the recognition of these two rAgs is usually highly 

correlated within individual donors. 
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DONOR DATE EGF-1A EGF-1B 19flT A2 
(T9/96) 

A3 	IB2(Kli) B3 
 (9/105 

12 TS 11/90 0.090 -0.054 -0.031 0.020 0.063 -0.056 -0.058 

11/91 -0.350 -0.352 -0.250 0.305 0.538 1.113 1 0.573 

4/92 -0.187 -0.199 -0.213 0.171 0.520 0.238 0.188 

11/92 -0.242 -0.173 -0.279 -0.060 0.526 0.435 0.689 

4/93 -0.168 -0.027 -0.121 0.061 0.487 1.048 0.842 

11/93 -0.088 -0.113 0.125 0.125 0.399 1 0.996 0.952 

45 JK 11/91 0.171 0.017 0.159 1.042 0.912 0.490 1.114 

4/92 -0.032 -0.008 0.100 0.791 0.775 0.521 1.127 

11/92 0.103 0.132 0.311 0.677 0.635 0.451 1 	0.95.5 

4/93 0.089 0.009 0.072 0.821 0.734 0.387 0.880 

11/93 0.040 0.036 0.037 0.640 0.737 0.826 1.300 

50 OS 11/90 0.140 -0.053 -0.067 1.122 1.170 0.590 0.139 

11/91 -0.268 -0.277 -0.294 0.660 0.447 0.391 0.121 

4/92 -0.154 -0.157 -0.110 1.004 0.957 0.508 0.351 

4/93 -0.208 -0.196 -0.210 1.184 1.173 0.549 -0.017 

11/93 -0.261 -0.267 -0.256 0.936 1.082 0.463 0.101 

79 AJ 11/91 0.740 0.625 0.971 1.355 1.286 1.437 1.259 

4/92 0.810 0.806 1.035 1.071 1.170 0.890 1.340 

11/92 0.909 0.886 0.971 0.800 1.212 1.129 1 	1.654 

4/93 0.589 0.536 0.919 0.803 0.792 0.873 1.281 

11/93 0.253 0.296 0.757 0.418 . 0.453 0.565 1.194 

110 BS 11/90 0.121 0.218 0.482 -0.140 0.990 0.786 0.321 

11/91 0.072 0.438 0.501 -0.159 1.025 1.261 0.286 

4/92 -0.012 0.406 0.504 0.105 0.793 0.665 0.195 

4/93 0.111 0.360 0.500 -0.007 0.677 0.701 1.043 

11/93 -0.017 1 	0.338 0.442 1 	0.180 0.824 0.848 0.630 

Table 11.4: Longitudinal recognition of merozoite surface proteins by adults 
from Brefet, The Gambia. Serum samples were collected at 6 month 
intervals during the dry season (April) or the wet, transmission season 
(November). Sera was diluted 1/1000 and IgG recognition of rAgs 
measured by ELISA. Positivity is determined as OD values above the 
mean+2SD of the European control sera. EGF-1A = 0.249, EGF-113 = 
0.229, 19/GST = 0.196, A2(T9/96) = 0.290, A3 = 0.139, B2(K1i) = 0.111 and 
B3(T91105i) = 0.146. Positive responses are shaded. 
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11.3.2 Longitudinal recognition of P.falciparum merozoite surface antigens 

bj malaria exposed children: 
The recognition of merozoite surface antigens was determined for 20 

children from the village of Farafenni, using sera collected over a period of 

4 years during the dry seasons (June) and the wet seasons (November) 

(table 11.5). 
As expected, the overall recognition of these proteins is much lower in 

children but in contrast to the adults, the recognition of these rAgs was also 

less stable in children (Appendix 3, table 2). Few of the donors had a stable 

"responder" phenotype to any of the antigens. Donor 001008 was one of 

the few indivduals to show consistent positive recognition of some of the 

rAgs (table 11 .5, figure 11.3a) but even here, boosting of antibody 

concentration was evident in the wet season. 
The general pattern of recognition is that the antibody response fluctuates 

and is often boosted during the transmission season. This was apparent for 

donor E18003 (figure 11.3b); the antibody concentration is boosted during 

the transmission season in 1988, declines and is boosted again in 1991. 

Boosting of the antibody response can be seen clearly for donor P10016 

(figure 11.3c); the antibody response to the group specific regions of MSP2 

(A3 and 133) increases during the transmission season of 1989 and to a 

lesser extent in 1991. Donor E24009 also showed boosting of the antibody 

response to MSP2 in the 1990 and 1991 transmission seasons, but 

remains seronegative for MSP119. 
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DONOR IDATE I EGF- 1A EGF-1B 119/T 9/96) B2 (Ku) 

001008 5/88 0.002 0.022 0.013 6.170 1.182 0.614 1.356 

11/88 -0.117 0.051 0.199 ).226 1.342 0.593 1.689 

3/89 -0.041 0.011 .0.012 0.244 0.862 1.436 1.448  
111/89 0.121 0.435 0.513 0.799 1.358 0.873 0.839 

E18003 5/88 •0.073 0.127 .0.155 FO.222 0.185 0.239 0.067 

11/88 0.957 L906 0.764 0.081 1.317. 0.118 0.259 

3/90 •0.238 0.220 0.202 0.200 0.209 0.184 0.198 

11/90 -0.197 0.131 0.036 0.061 0.004 0.068 0.112 

6/91 0.025 0.030 0.031 10.211 •0.034 0.041 0.069  

111/91 0.672 0.701 0.446 0.074 0.214 0.075 10.316 

P10016 6/88 -0.107 0.122 0.119 0.049 0.319 0.044 0.121 

11/88 -0.051 0.073 0.4,619 0.113 1.995 0.026 1.031 

3/89 0.118 0.139 0.116 0.059 0.512 0.074 0.152 

11/89 -0.047 0.242 0.104 0.042 1.910 0.527 1.117 

6/91 -0.001 0.044 0.164 0.036 0.683 0.155 ).432 

11/91 -0.196 0.256 0.126 10.361 1.126 -0.180 ).656 

E24009 6/88 0.022 0.006 0.022 0.222 0.096 0.120 0.064 

11/88 0.021 0.006 0.026 0.005 0.115 0.156 0.107 

3/89 0.125 0.113 0.135 0.026 0.094 0.203 0.028 

3/90 0.004 0.131 0.089 0.125 0.000 0.179 0.028  
111/90 0.002 0.034 0.008 0.373 0.092 0.954 1.824 

5/91 -0.022 0.105 0.146 0.070 0.182 0.140 0.074 

11/91 0.028 ).230 ).611 6.179 1.064 -0.060 1.453 

Table 11.5: Longitudinal recognition of merozoite surface proteins by 

children from Farafenni, The Gambia. Serum samples were collected at 6 

month intervals during the dry season (June) or the wet, transmission 

season (November). Sera was diluted 1/1000 and lgG recognition of rAgs 

measured by ELISA. Positivity is determined as OD values above the 

mean+2SD of the European control sera; EGF-1A = 0.186, EGF-1B = 0.264, 

19/GST = 0.200, A2(T9/96) = 0.138, A3 = 0.245, B2(Kli) = 0.194 and 

B3(T9/105i) = 0.126. Positive responses are shaded. 
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11 .3.3 Is the pattern of recognition of MSP2 genetically determined?: 

i) Recognition of MSP2 by twins: 
The data from the adult donors suggested that some individuals were 

unable to make an Ab response to some of the rAgs. To investigate whether 

this is due to a genetically determined "non-responder" status, serum from 

15 pairs of monozygous (mz) twins and 21 pairs of dizygous (dz) twins were 

tested for recognition of MSP2 rAgs. Typical OD values are shown in table 

11.6. It is clear from this data that individual mz twin pairs can have very 

different antibody patterns to MSP2. 
Table 11.7 gives the number of concordant pairs i.e. the number of pairs of 
twins that are either both positive or both negative to individual rAgs. A x2  
test showed that there was no significant difference in the numbers of 

concordant (and discordant) mz or dz twins. Furthermore, if one looks at the 

difference in the specific OD values within individual twin pairs, there is no 

significant difference in the closeness of recognition of the rAgs by mz and 

dz twins (table 11.8). This data suggests that mz twins are no more likely to 

have similar anti-MSP2 Abs than are dz twins, suggesting that genetic 

factors are not a major determinant of recognition of MSP2. Furthermore, 

mz twins (with essentially identical malaria exposure, since in all cases they 

lived together for all their lives) can have markedly different antibody 

responses. 

The twins study and data analysis was carried out by R.Adair, an 

undergraduate student, as part of his Immunology Honours project, under 

my supervision. 
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DONOR I STATUS IODVALUE 
634* 

635 
mz -0.189 

 0.880 
646 
647 

mz 1 . 462 
 1.480 

664 
665 

mz 0.171 
 :1.512 

672 
673 

mz -0.128 
 -0.094 

677 
678 

mz -0.084 
 -0.279 

682 
683 

mz 1.751 
 1.383 

842 
843 

mz 1.354 
 1.135 

642* 

643 
dz 0.576 

 -0.109 
661* 

671  
dz 1.600 

-0.162 
674 
679 

dz 0.370 
 0.508 

684* 

685 
dz 0.694 

 -0.246 
691 
692 

dz 0.214 
 0.374 

693* 

694 
dz -0.030 

 1.096 
756 
758 

dz 0.352 
 1.712 

757 
759 

dz 0.718 
 1.935 

Table 11.6: Examples of specific OD values for the Ab recognition of 

B3(T9/105i) by monozygous (mz) and dizygous (dz) twin pairs. Positive 

responders are shaded. 

* indicates discordant pairs. Concordancy was defined as OD values of a 

pair both being above or below the cut-off value (0.092), calculated as the 

mean +2SD of 8 European control sera. 
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rAg No. of concordant pairs X2 value p 

mz (n=15) dz (n=21) 

A2(T9/96) 7 16 3.14 >0.05 

A3 12 17 0.038 >0.5 

B2(K1i) 11 17 0.038 >0.5 

B3(T9/105i) 11 1 10.073 1 >0.5 

Table 11.7: Concordancy of Ab recogition of MSP2 rAgs by mz zand dz 

twins. 
Critical x2 value= 3.84, p=0.05. 

rAg Rank sum  Mann-Whitney 

U value 

p 

mz (n=15) I dz (n=21) 

A2(T9/96) 295.0 371.0 137.5 0.53 

A3 250.0 416.0 140.0 0.59 

B2(K1i) 301.0 365.0 134.5 0.47 

B3(T9/105i) 1257.5 1408.5 1137.0 10.57 

Table 11.8: Comparison of the median values for the ranked differences in 

OD value within pairs of mz and dz twins to each antigen, using a non-

parametric Mann-Whitney U-test. 

The difference in the specific OD value between paired samples of both mz 

and dz twins were calculated and ranked. The sum of the ranks was 

calculated for mz and dz pairs separately. The Mann-Whitney test was 

performed to determine the difference in the sum of the ranks. 

233 



ii) Relationship between presence of anti-MSP2 antibodies and HLA classil 

genotype: 

HLA class II typing had previously been performed (by Dr 0. Olerup, Center 

for BioTechnology, Karolinske Institute, Sweden) for the individuals 

recruited for the cross sectional study (sera collected from the villages 

around Farafenni, October 1988) and the morbidity study (sera collected 

from the villages around Farafenni, May 1988) [15]. Allelic RFLP patterns at 

each locus (DRB, DQA, DOB) were designated by Roman numerals and 

individual DRB -DQA -DOB haplotypes have been ascribed Arabic 

numerals; the HLA class II haplotypes in the Gambian population are 

shown in table 11.9. For the analysis, associations between immune 

responses and RFLP-defined DRB -DQA -DOB haplotype rather than 

individual class II alleles or associated serological specificities were 

determined, and only those DRB -DQA -DOB haplotypes present in the 

sample in sufficient numbers were included (i.e. at least 20 individuals for 

May 1988 samples and at least 10 indivivals for October 1988 samples). 

Antibody responses to all antigens were dichotomised into responders and 
nonresponders; a x 2  statistic was calculated from multiple logistic 

regression (table 11.9 and 11.10). The logistic regression allows for 

confounding effects of age, sex, and previous malaria control interventions. 

Ethnic group was not included as a confounder because its causal 

association with haplotype would have led to a masking of the association 

between haplotype and disease [270a]. 

Gambian villages are made up of compounds which accommodate large 

extended families. Therefore, these related individuals share HLA 

haplotypes, a variable number of background genes and also the same 

environment [270a]. The effect of shared environment and background 

genes were removed by stratifying on compound using conditional logistic 

regression, which restricts the analysis to the effect of HLA differences 

between individuals of the same compound (tables 11.9 and 11.10). 

Since the production of anti-MSP2 antibodies appears to be a consistent 

phenotype within one individual the possibility that non-responsiveness to 

MSP2 might be due to HLA class II dependent genetic restriction of the 

immune response was investigated. No significant associations were 

observed between HLA class II haplotype and immune recognition of 

MSP2. 
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Haplotype RFLP pattern Associated Antibody recognition of MSP2 rAg 

number seologic specificity Phenotype number (frequency) 
DRB DOA DOB DR DO n A2 A3 B2 B3 

1 I I I 1 w5 8 3(0.38) 2(0.25) 1 (0.13) 4(0.50) 

2 II II II w15 w6 7 1(0.14) 1(0.14) 1(0.14) 1(0.14) 

7 * VII IV III w17 w2 31 13 (0.42) 9(0.29) 6(0.19) 17 (0.55) 

8 XV VI IV w18 w4 13 3(0.23) 2(0.15) 1(0.08) 5(0.38) 

9 XXII VI IV 3 w4 5 1 (0.20) 1 (0.20) 1 (0.20) 2(0.40) 

11 XII V IV 4 w8 18 8(0.44) 7(0.39) 6(0.33) 12 (0.67) 

12 * XII V VI 4 w2 26 12 (0.46) 9(0.35) 6(0.23) 15 (0.58) 

14 XIII V VI 7 w2 16 3(0.19) 3(0.19) 3(0.19) 10(0.63) 

15 * XIV V VI 7 w2 58 21(0.36) 21(0.36) 13 (0.22) 31(0.53) 

17 * V VI V w8 w7 30 11(0.37) 6(0.20) 4(0.13) 13 (0.43) 

18 V IV V w8 w7 18 6(0.33) 8(0.44) 5(0.28) 12 (0.67) 

21 * XVII V IX 9 w2 43 18(0.42) 11(0.26) 9(0.21) 21(0.49) 

22 * III I I wlO w5 60 17 (0.28) 14 (0.23) 6(0.10) 27 (0.45) 

23 VI IV V wil w7 14 6(0.43) 2(0.14) 4(0.29) 10(0.71) 

26 XX IV V W11 w7 9 2(0.22) 3(0.33) 0(0.00) 4(0.44) 

29 * XXI IV V W11 w7 119 38 (0.32) 25 (0.21) 15 (0.13) 62 (0.52) 

34 IX III II w13 w6 10 1(0.10) 0(0.00) 0(0.00) 1(0.10) 

35 IX III I w13 Wi 11 4(0.36) 4(0.36) 4(0.36) 5(0.45) 

37 XI III II w13 w6 9 3(0.33) 2(0.22) 2(0,22) 3(0.33) 

38 * X II I w13 w6 62 26 (0.42) 9(0.15) 9(0.15) 35 (0.56) 

39 XV IV V w13 w7 13 3(0.23) 3(0.23) 3(0.23) 9(0.69) 

7.29 8.66 7.08 5.31 

p 0.51 0.37 0.53 0.72 

2)X 2 4.35 7.34 9.47 7.50 

p 0.82 0.50 0.50 0.48 



Table 11.10: Association between class II haplotypes and immune 

responses to MSP2 rAgs for a cross-section of the population aged 1-75 

years (n=119). Samples were collected at the end of the malaria 

transmission season (October 1988). 

* denotes those haplotypes which were present in the study population in 

sufficient numbers (>10) to allow evaluation of their association with 

immune responses. 
1) denotes standard logistic regression and 2)  denotes conditional logistic 

regression. 
a indicates d.f=3 as haplotypes 14 and 21 were not included due to small 

group sizes. 

N/A - the conditional model was not applicable to this set of data because 

numbers were too small. 



00 

Haplotype 
number 

DAB 

RFLP pattern 

DOA 	DOB 

Associated 
seologic specificity 
DR 	DO n 

Antibody recognition of MSP2 rAg 
Phenotype number (frequency) 

A2 	A3 	B2 	B3 

1 I I I 1 w5 8 5(0.63) 8(1.00) 8(1.00) 6(0.75) 

2 II II II w15 w6 7 2(0.50) 4(1.00) 4(1.00) 4(1.00) 

7 VII IV III w17 w2 4 4(0.57) 7(1.00) 7(1.00) 7(1.00) 

8 XV VI IV w18 w4 1 1(1.00) 0(0.00) 0(0.00) 0(0.00) 

9 XXII VI IV 3 w4 7 2(0.29) 6(0.86) 6(0.86) 5(0.71) 

11 XII V IV 4 w8 5 2(0.40) 5(1.00) 5(1.00) 4(0.80) 

12 XII V VI 4 w2 1 1(1.00) 1(1.00) 1(1.00) 1(1.00) 

14 * XIII V VI 7 w2 11 7(0.64) 9(0.82) 9(0.82) 8(0.73) 

15 XIV V VI 7 w2 3 1(0.33) 3(1.00) 3(1.00) 3(1.00) 

17 V VI V w8 w7 5 3(0.60) 5(1.00) 3(0.60) 3(0.60) 

18 V IV V w8 w7 3 3(1.00) 3(1.00) 3(1.00) 2(0.67) 

21 * XVII V IX 9 w2 12 7(0.58) 12(l.00). 11(0.92) 11(0.92) 

22 * III I I wlO w5 16 10 (0.63) 14 (0.88) 13 (0.81) 13 (0.81) 

23 VI IV V W11 w7 5 4 (0.80) 5 (1.00) 4(0.80) 4(0.80) 

26 XX IV V W11 w7 4 2(0.50) 4(1.00) 4 (1.00) 1 (0.25) 

29 * XXI IV V W11 w7 60 31(0.52) 54 (0.90) 54 (0.90) 44 (0.73) 

34 IX III II w13 w6 4 2(0.50) 4 (100) 3 (0.75) 4(1.00) 

35 IX III I w13 wi 0 
37 XI III II w13 w6 3 2(0.67) 3(1.00) 3(1.00) 3(1.00) 

38 * X II I w13 w6 28 16 (0.57) 25 (0.89) 26 (0.93) 25 (0.89) 

39 XV IV V w13 w7 9 7(0.78) 9 (1.00) 9 (1.00) 7 (0.78) 

1 )X 2 2.44 4.67 3.43 5.27 

p (d.f=5) 0.79 0.46 0.63 0.38 

5.48 0.05 N/A 2.69 

p (d.f =5) 0.36 1.00 a 0.75 



11.4 Discussion 
In this chapter I have examined the recognition of the major merozoite 

surface proteins of P.falciparum, MSP1 and MSP2, by longitudinal analysis 

of the seroreactivities of adults and children over a period of time. 

Cross-sectional analysis of the recognition of MSP2 indicated that antibody 

prevalence increased with age and that in each age group there were a 

number of non-responders. Longitudinal analysis enables us to determine 

if this non-responsive phenotype is stable. Serum samples were collected 

from adults and children from The Gambia during the dry season (minimal 

malaria transmission) and at the end of the wet season (maximum malaria 

transmission) for a period of 4 years. We found that the recognition of 

MSP119 and MSP2 in adults is, in general, a stable response. A stable 

antibody response is one which persists over time, even when malaria 

transmission is minimal. A possible explanation for this is that in these 

adults there is a persistence of antigen due to asymptomatic infections. 

Alternatively, adults may have developed an efficient memory response to 

malaria antigens and low level infections, when malaria transmission is 

minimal, are sufficient to boost the antibody levels to certain malaria 

antigens. The antibody levels were constant over time and many adults 

showed differential recognition of the antigens, and of specific epitopes 

within those antigens (table 11.4, figure 11.2a-c). There were certain 

donors who, despite being clinically immune to malaria, were consistently 

seronegative to certain rAgs whilst consistently recognising others. 

However, all the rAgs are known to be immunogenic and some individuals 

were consistently positive to all the rAgs tested. 

In contrast to the adults, children, who were still actively acquiring immunity 

to malaria, had more heterogeneous antibody profiles. There was clear 

evidence of seasonal variation in antibody concentration, with the Ab 

response being boosted during the malaria transmission season (figure 

11 .3b-c). It is possible to make an educated guess as to the genotype of the 

infecting parasites, based on the increase in antibody to the MSP2 

serogroup A or B proteins. In addition, it was evident from the data that 

MSP1 19  was less immunogenic in children than the MSP2 rAgs, despite 

the fact it is the least polymorphic. 

Thus our data follow the patterns observed for other P.falciparum antigens 

with a proportion of adults being consistently seronegative and boosting of 

antibody levels being more apparent in children and non-immunes. The 
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phenomenon of persistent non-responsiveness to specific malaria antigens 

has been reported in previous studies [27, 53, 253, 267, 270]. Riley et a! 

[267] found that non-responsiveness to the sexual stage antigen Pfs230 

was a stable phenotype which is fixed early in life and is apparent in 

children as young as 3-5 years of age. Also, around 40% of malaria-

immune adults tested from The Gambia were shown to be persistently 

seronegative to PfMSP1 with little seasonal variation despite major 

differences in parasite transmission rates throughout the year [270]. This is 

in contrast to the findings of Fruh et a! [115] who reported that seasonal 

differences were evident in the antibody levels in children and adults from a 

rural community in Mali, West Africa. However, this data was presented as a 

summary of the recognition of an age group rather than the antibody profile 

of an individual donor and as such, persistent non-responders may have 

been overlooked. Thus, in general, a stable non-responder phenotype 

occurs in clinically immune adults. Non-immunes (i.e. children and recently 

exposed adults) are more likely to have fluctuating Ab levels which are 

boosted during the transmission season, although persistent seropositivity 

has been observed in children as young as 3 years [267]. 

In the introduction to this chapter several possible explanations were 

outlined for this consistent non-responsiveness in adults who have had life-

long exposure to malaria. 

Antigen polymorphism may play a role as the recognition of variant 

epitopes is lower than for some less variant epitopes, but non-recogniton of 

the 1 9kD conserved region means it is not the whole answer. 

If confirmed, genetic regulation of the immune recognition of malaria 

antigens would have important implications for vaccine design. 

Comparison of the recognition of MSP2 by mz and dz twins indicates that 

non-responsiveness to MSP2 is not genetically determined; mz twins can 

clearly have discordant antibody recognition of the same rAg. Furthermore, 

the level of exposure to infection does not appear to be a major factor which 

regulates the recognition of MSP2 by these twin pairs: all twins had 

essentially identical malaria exposure since, in all cases, they had lived 

together for all their lives. In addition, the relationship between the 

presence of anti-MSP2 antibodies and HLA class II genotype was 

investigated for 444 individuals from The Gambia. A logistic regression 

analysis, considering the most frquent haplotypes, showed that there was 

no difference in the overall distribution of haplotypes between responders 
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and nonresponders. Furthermore, Rzepczyk et a! [279] analysed the 

responsiveness of T-cells from donors in Papua New Guinea and the 

Solomon Islands to peptides of MSP2. They found that no peptides were 

preferentially recognised in association with specific HLA class II antigens. 

I would like to propose an alternative explanation for stable non-

responsiveness in adults. 

A primary humoral immune response to most antigens results in the 

development of a long-lasting state of immunity. This state of immunity 

influences the secondary immune response to the priming antigen and may 

also alter subsequent immune responses to antigens that are structurally 

related to this priming antigen. This phenomenon has been termed "original 

antigenic sin" [107]. This cross-reactive property of immunity results in the 

previous immune experience of an individual having a direct bearing on the 

immune recognition of antigens that may be encountered in the future 

[111 a]. 

The phenomenon of original antigenic sin, also referred to as clonal 

imprinting [11 8a], was first observed when humans vaccinated against 

influenza virus were shown to produce antibodies of a higher titer against 

variants experienced in childhood than against the immunising antigen. It 

appears that the primary antibody response to the initial infecting strain 

becomes clonally dominant and may limit, suppress or prevent the effective 

triggering of other B cell clones that have the potential to respond to virus 

variants that are presented subsequently. Thus, epitopes that are cross-

reactive between the primary and boosting strain are recognised by 

memory B cells and antibody of the original specificity is produced. New 

epitopes are effectively ignored. 

There are certain criteria which need to be fulfilled in order for original 

antigenic sin to occur; 1) the antigens must have conserved and variable 

regions in order for cross-reactivity to occur, 2) there should be a number of 

variants in the infecting population so that subsequent infections are likely 

to be of differing strains, and 3) antigen should be present in limiting 

concentrations since competition for antigen between B cells with Ag 

receptors of differing affinity is a crucial factor in clonal selection [107]. 

One can envisage how malaria infections could induce a state of clonal 

imprinting resulting in persistent restricted responsiveness. Firstly, many 

malaria Ags have conserved and polymorphic epitopes, therefore cross-

reactions would be expected between variant Ags. Secondly, 
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polymorphisms are extensive and so it is likely that successive infections 

would be with parasites of differing genotypes. Thirdly, although initially 

there is a high antigenic load since individuals are exposed to repeated 

infections of high parasitaemia, as clinical immunity sets in, individuals 

experience infections with low, frequently subpatent parasitaemias and 

consequently Ag availability becomes a limiting factor, resulting in boosting 

of memory to cross-reactive epitopes. Thus, the observed differential 

recognition of epitopes in malaria-immune individuals could be the result of 

clonal imprinting. 

This explanation is virtually impossible to confirm in the field. One would be 

required to follow the antibody profiles of individuals form birth and 

determine the genotype of the infecting malaria parasites. However, the 

possibility that imprinting may occur in the perinatal period, following low 

doses of antigen in utero, cannot be ignored. In terms of vaccine design, 

one would be required to find an antigen that was universally immunogenic 

and could induce an effective immune response. The phenomenon of 

clonal imprinting could be utilised to redirect the immune response against 

epitopes which could induce protective immunity. This could be achieved 

more easily in young vaccinees, as less imprinting would have occurred. 

However, in those who have had long term exposure to malaria, target 

antigens would need to be presented in the absence of epitopes to which 

the immune system has already become imprinted. 

In summary, longitudinal studies have shown that patterns of malaria 

epitope recognition tend to become fixed in immune donors. Our data 

cannot easily be explained by a theory of genetically determined non-

responsiveness but do fit with a model of clonal imprinting. 
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12. General conclusions 

The purpose of this thesis has been to investigate and evaluate the 

immune recognition of the P.falciparum merozoite surface protein MSP2 by 

serum antibodies from a population in West Africa exposed to stable, 

endemic malaria. Such epidemiological studies facilitate our 

understanding of naturally acquired immune responses to malaria, and this 

knowledge is necessary for the assessment of malaria proteins for 

inclusion in a vaccine against malaria. 

12.1 Recombinant proteins representing P.falciparum MSP2 

Recombinant proteins representing various regions of MSP2 have been 

successfully expressed in E.coli and these have been used to investigate 

the immunogenicity and antigenicity of MSP2 in mice, after immunisation 

with rAgs, and in humans, after natural exposure to P.falciparum malaria. 

The antisera raised in mice were used to ensure that the rAgs reflected the 

antigenic characteristics and integrity of the native molecule, determined by 

IFA of mature schizont-infected erythrocytes and immunoblotting using 

SIDS-soluble schizont extracts (chapter 4). The antibody specificities of 

these antisera were investigated to evaluate the serological relationship 

between MSP2 serogroups A and B. Serological cross-reactivity was 

observed in mice, mediated through epitope(s) within the conserved C 

terminus. However, this does not reflect the antibody specificity in humans 

after natural infection. Antibodies to both serogroups of MSP2 are prevalent 

in adults from The Gambia (chapter 5). These antibodies are serogroup-

specific and do not cross-react. In this population, the conserved regions 

are poorly immunogenic whereas the central group-specific and repetitive 

sequences are immunodominant. Thus, I have shown that MSP2 rAgs are 

useful tools for detecting MSP2-specific antibody in individuals naturally 

exposed to malaria and that they permit mapping of the antibody response 

to defined regions of MSP2. These rAgs were used for the further 

investigation of qualitative and quantitative aspects of the serological 

immune recognition of MSP2. 
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12.2 Immune recognition of MSP2: 
Clinical immunity to malaria has characteristic features: 1) it develops after 

multiple infections and 2) it requires frequent boosting; the resulting 

immunity is not sterile and does not completely prevent reinfection. 

Many epidemiological studies have been carried out to investigate these 

characteristics of the development of clinical immunity to malaria. In doing 

so, the immune responses to particular malaria antigens are measured and 

their possible contribution to immunity to malaria is assessed. Individuals 

who have high levels of antimalarial antibodies in their serum may still be 

susceptible to attacks of malaria. These sera either lack antibody 

specificities that are critical to resistance, the antibodies are of low affinity or 

they have the wrong isotype to confer protection. Thus, although a large 

number of malaria proteins are recognised by the host's immune system 

during natural exposure to infection, it is likely that the immune responses 

to the majority of these antigens play no role in protecting the host from 

clinical malaria. 

In The Gambia, immune responses to MSP2 are acquired in an age-

dependent manner; antibody prevalence increases with age and mirror the 

decline in parasite density and prevalence in this population (chapter 6). In 

this respect, MSP2 is similar to many other P.falciparum antigens that have 

been studied [177, 263, 292]. 

Several hypotheses have been proposed for the slow development of 

immunity to malaria, these include a) poor immunogenicity, b) genetic 

restriction, c) induction of inappropriate immune responses, and d) 

antigenic diversity. I will discuss these hypotheses with regard to the 

immune recognition of MSP2. 

Firstly, the data indicate that MSP2 is not poorly immunogenic. Individuals 

known to have limited experience of malaria mount high antibody 

responses to the molecule and young children have MSP2-specific 

antibodies of comparable concentration and affinity to adults (chapter 6): 

Secondly, the immune recognition of MSP2 does not appear to be 

genetically restricted, although a proportion of individuals in all age groups 

remain seronegative to particular epitopes (chapter 11). 

Inappropriate immune responses may also contribute to the slow 

development of immunity. For instance, the presence of repeat sequences 

in many of the immunodominant antigens may act as a decoy mechanism 
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which allows the parasite to escape protective immunity, inhibiting the 

maturation of high affinity B cells and creating a "smokescreen" effect 

hiding more functionally important epitopes [7, 177]. However, the repetitive 

domains of MSP2 are not the only immunodominant regions; there is a 

high prevalence of antibodies to both repetitive and group specific 

sequences (chapter 5). This is in contrast to RESA and the S-antigens, for 

example, in which the repeated sequences are immunodominant. In MSP1, 

the repeat region represents a small proportion of the molecule and 

although these sequences are immunogenic they do not appear to be 

immunodominant. 
Therefore, I can discount several of the hypotheses mentioned above. 

MSP2 is immunogenic, immune responses to MSP2 are not genetically 

restricted and they are not necessarily inappropriate. However, the 

antigenic diversity of the molecule may well contribute to the gradually 

acquired immune recognition of MSP2. 

Many P.falciparum proteins are antigenically diverse. It is proposed that the 

chronically exposed host accumulates a repertoire of memory and effector 

cells capable of controlling infection by any given strain or variant of the 

parasite, immunity thus being essentially "strain-specific". If this were true, it 

would be extremely difficult to estimate how many infections would be 

necessary to develop immunity to the repertoire of MSP2 genotypes 

circulating in a community, particularly considering the extent of 

microheterogeneity of MSP2. It appears that although immune recognition 

of MSP2 is essentially strain-specific in non-immunes and semi-immunes, 

adolescents and adults develop "serotype-transcending" immunity to MSP2 

(chapter 9, 10). In adults, this presumably reflects exposure to multiple 

variants leading to a wide enough range of responses to cope with new 

infections. The rate at which this serotype-transcending immunity develops 

presumably depends on transmission rates and the frequency of mixed 

genotype infections. 

Strain-transcending immunity could arise in two ways, due to: 1) antibodies 

which recognise cross-reacting epitopes within the repeats, such that a few 

antibody clones could recognise the whole repertoire, or 2) antibodies 

which recognise group specific regions. The development of anti-group 

specific antibody may arise by continual restimulation of some B cell 

clones. In addition, cross-reacting antibodies may arise by chance after 

many infections, but these would probably be of lower affinity. 
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An alternative view to the accepted convention of gradually acquired 

immunity to malaria is that a few episodes of malaria are sufficient to induce 

naturally acquired immunity in adults, while the immune system of a child 

may be constitutionally less capable of mounting a protective response 

against the parasite [14-16]. However, in areas such as The Gambia, where 

all individuals are regularly exposed to malaria infection from infancy 

onwards, the effects of cumulative exposure cannot be separated from any 

possible effects of age itself. Differences between the immature and mature 

immune systems which might affect the rate of development of protective 

immunity may include the ability to recognise complex carbohydrate 

antigens, the relative prevalence of Thi versus Th2 cells and the capacity 

to induce switching to certain lg isotypes. 

Studies on the immune response to natural malaria infections have so far 

focused almost exclusively on the specificity of a response. Another 

important aspect is the quality of that response. Some antibody-mediated 

mechanisms of parasite clearance require cooperation with accessory cells 

and therefore it is necessary that antibodies of an appropriate subclass are 

produced to allow this interaction. The predominant subclass involved in 

the recognition of MSP2 is lgG3, an antibody subclass with cytophilic 

properties and high affinity for Fc receptors on monocytes and neutrophils 

(chapter 8). By examining a cross-section of the population, I have shown 

that the prevalence and mean OD of lgG3 antibodies increases with age. 

MSP2-specific lgG3 is the predominant subclass in adolescents and adults, 

but IgGi is more common in children under 10 years old (chapter 8). A 

similar trend for lgG3 antibody to increase with age was observed for the 

response to RESA by Beck et a! [20], but does not occur in response to 

MSP1 19  where the antibody response is predominantly IgGi in all age 

groups [93]. 

The data for MSP2 supports the hypothesis that qualitative differences in 

the antibody responses to malaria antigens may be important in the 

development of protective immunity [29]. It is tempting to propose that the 

immune protection in children is less efficient due to the lgG subclass 

distribution; although IgGi antibodies also have cytophilic properties and 

could also contribute to parasite clearance, it is possible that lgG3 

antibodies may be more efficient at cooperating with the accessory cells 

[329]. Whether this reflects a constitutional difference between children and 

adults or is simply the result of frequent re-exposure to antigen leading to 
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differential class switching is not known. Further investigation is required to 

elucidate the cytokines which trigger the subclass switch and induce the 

propensity for lgG3 antibodies to MSP2. 

In summary, the diversity of MSP2 appears to contribute to the gradually 

acquired immune response to the antigen, whereas the rate of 

development of serotype-transcending immunity and the rate of induction of 

a predominance of MSP2-specific lgG3 antibodies may well contribute to 

the rate at which protective immunity to malaria develops. 

Another accepted characteristic of clinical immunity to malaria is that its 

development and maintenance requires frequent boosting. I investigated 

the requirement for frequent boosting of the antibody response to MSP2 

(chapter 11). Malaria transmission is seasonal in many endemic areas, 

including The Gambia, and it is possible that antibody levels fluctuate over 

time, depending on the frequency of re-exposure to infection. If variation in 

antibody levels is considerable, then certain people may appear to be non-

responders on some occasions and responders on other occasions, 

particularly using samples taken during cross-sectional surveys. In order to 

obtain a realistic estimate of antibody prevalence, serum samples need to 

be collected from the same individuals over a period of months or years in 

longitudinal studies. I found that antibody responses vary seasonally in 

children whilst antibody levels in clinically immune adults remain stable 

(chapter 11). Therefore, it appears that in semi-immune children boosting is 

required, whereas in adults antibody responses remain stable irrespective 

of recent boosting. I also found that epitope recognition is selective, with 

individuals consistently recognising some epitopes whilst failing to 

recognise adjacent epitopes from the same antigen or epitopes from 

distinct antigens. These patterns of antibody recognition differed from 

person to person but were not genetically regulated. This selective 

recognition of MSP2 epitopes is a stable phenotype within a single 

individual and is reminiscent of the clonal imprinting or original antigenic 

sin observed for influenza virus [107]. It seems likely that prior exposure to 

one form of MSP2 primes an individual for an enhanced immune response 

when exposed to a closely related, antigenically cross-reactive form of 

MSP2 in a subsequent infection. This priming phenomenon may result in a 

lowered response to novel, antigenically distinct epitopes encountered at 
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the same time since low affinity naive B cells will compete poorly with 

memory B cells for antigen. 
The pattern in children was not unexpected; there was clear evidence of 

seasonal variation in antibody titres with antibody levels rising at the end of 

the malaria transmission season. Specific antibody boosting is apparent in 

the children who attended the MRC outpatients clinic with acute, 

uncomplicated malaria (chapter 10). The antibody profile of these children 

can be clearly related to the antigenic profile of the parasites with which an 

individual was infected. However, even in children it was evident that 

responses to some epitopes were being boosted more readily than for 

other epitopes. For example, the antigenically conserved epitope MSP1 19 

would have been present during every infection but the response to it was 

boosted in some children but not in others. 

The phenomenon of selective immune recognition has been observed for 

other malaria antigens: MSP1 [115, 270],RESA [26, 27, 240] and Pfs230 

[267].Children lose their MSP1-specific antibodies rapidly after cessation of 

infection, while the adult humoral response remains high throughout the 

year [115]. Selective recognition of MSP1 epitopes has also been 

observed, with a proportion of individuals remaining persistently 

seronegative [270]. The level of recognition of RESA varies among the 

population [27, 240], and this is not readily explained by differences in 

exposure to malaria [253]. The authors conclude that the most probable 

explanation for the existence of a group of adults with low RESA response 

is an inherent difference in the antibody response to the antigen. The 

genetic regulation of the RESA antibody responses is thought to reflect the 

impact of factors encoded by genes outwith the HLA class II region [293, 

327]. The fact that the prevalence of antibodies to RESA differs among 

different ethnic groups in The Gambia supports this conclusion [265]. 

However, there is no real evidence for genetic regulation of the response to 

RESA. 

In Madagascar, where there was an epidemic outbreak of P.falciparum 

after 20 years without malaria transmission, clear seasonal variation in the 

titre of anti-RESA antibodies in children and adults was observed [53]. This 

supports the idea that antibody levels stabilise in malaria-immune 

individuals but fluctuate according to recent exposure in non-immunes or 

semi-immune individuals. The age at which the antibody levels stabilise 

would probably depend on the intensity of malaria transmission and on the 
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diversity of the antigen. Seropositivity to both RESA and Pf230, essentially 

conserved antigens, stabilise in children aged 3-5 years [26, 267], whereas 

the responses to MSP1 and MSP2, variable antigens, seem not to stabilise 

until later in life. 
Hence, recognition of MSP2 does not appear to be genetically determined, 

but that antibody repertoires tend to become fixed in clinically immune 

adults as a result of clonal imprinting. 

12.3 MSP2 as a vaccine candidate: 
The evaluation of potential vaccine antigens requires the understanding of 

several factors. Information about the structural characteristics of the 

antigen is essential in order to select the most appropriate expression 

system to produce a recombinant protein which is antigenically equivalent 

to its native counterpart. Studies are required to elucidate the 

immunogenicity of the antigen during natural infection, the effect of host 

genetics on the ability of an individual to mount an immune response, the 

stability of the immune response and, importantly, the correlation between 

the development of the immune response and clinical markers of 

resistance. In addition, the effect of antigenic diversity on all of the above 

must be assessed. 

Many of the asexual stage antigens described in section 1.4 have been 

structurally defined and expressed as synthetic polypeptides. The 

importance of conformation to protein structure, and consequently to 

protein antigenicity, is greatest for proteins in which secondary structure is 

stabilised by multiple intrachain disulphide bonds [49]. Despite the 

presence of multiple cysteine residues, MSP1 has been successfully 

expressed in eukaryotic and prokaryotic systems [38, 228, 266] and AMA-1 

has been expressed using the baculovirus system [65, 323]; in both cases, 

immunogenicity is dependent on the correct conformation of disulphide 

bonds [38, 65]. The structure of MSP2 is not dependent on the formation of 

disulphide bonds, nevertheless, it is still necessary to ensure the structural 

integrity of recombinant proteins (chapter 4). Stable, soluble polypeptides 

of MSP2 (expressed as fusions with GST), have been produced which 

reflect the antigenic characteristics of native MSP2. One exception is a 

short rAg representing the conserved N-terminus; after immunisation, mice 

produced antibody of low titre against the immunogen and these antibodies 
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did not recognise the native protein in IFA or immunoblotting. Thus, the N-

terminus appears to be poorly immunogenic. Contradictory results have 

been obtained in other studies. In agreement with our results, Rzepczyk et 

a! [277] found that immunisation of mice with an N terminal peptide 

produced essentially no antibody response. In contrast, others found that 

peptides from the N terminus are capable of raising appropriate antibodies 

in mice, even in the absence of a carrier protein [167, 168, 284]. Thus, it 

appears that although murine B cell epitopes are present in the N terminal 

sequence, our construct was not recognised, even though T cell help can 

be provided by GST and both inbred and outbred strains of mice were used 

(chapter 4). 
Previous studies have identified epitopes within the dimorphic and 

polymorphic regions of MSP2 as targets of invasion inhibitory mAb [55, 

101, 109, 220, 255, 310]. These mAbs also recognised the rAgs (chapter 

4). Naturally acquired antibodies to MSP2 are directed against dimorphic 

and polymorphic domains rather than the conserved domains. The reasons 

for this are not clear. Conserved epitopes of other malaria antigens are 

immunogenic during natural infection. For example, RESA is antigenically 

conserved among different strains [235] but is recognised at high frequency 

with repeat sequences being immunodominant [235]. Like MSP2, MSP1 

contains conserved and variable regions, but antibodies are directed 

against epitopes mapping to polymorphic, dimorphic and conserved 

regions of the molecule [93, 115, 228, 266, 270, 324]. However, conserved 

epitopes located very close to the C terminus of MSP1 are recognised less 

frequently than upstream dimorphic epitopes [93, 266] suggesting that 

there maybe a physical or structural reason for poor immunogenicity, in that 

epitopes in membrane associated regions of the protein are inaccessible. 

Epitopes in the N terminal region of the native MSP2 molecule are perhaps 

also inaccessible for immune recognition and antibody binding. 

Another possibility is that during the evolution of the parasite, some malaria 

antigens/epitopes have been selected for because they contain few T and 

B cell epitopes [124]. 
Antibody recognition of MSP2 in immune adults is stable and persists even 

when malaria transmission is minimal. Distinct patterns of recognition 

occur, but this does not reflect differences in exposure or genetic regulation 

(chapter 11). Stable antibody response in adults is encouraging for vaccine 

development 'as it suggests that there is good immunological memory. In 
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addition, the antibody response is rapidly boosted by reinfection in 

children, therefore vaccination in early childhood should induce a level of 

immunity equivalent to that occurring naturally in adults and may be 

enough to provide life time protection against malaria. 

It is important to evaluate whether acquired immunity to a particular antigen 

contributes to immunity to malaria. The analysis of the association of 

immune recognition with resistance to clinical malaria is complex. 

Overinterpretation of the data must be avoided, but statistically significant 

associations obviously warrant further investigation. The interpretation of 

epidemiological studies is complicated by difficulties in defining and 

measuring morbidity due to malaria [266], and the assessment of the 

immune response is confounded by such factors as polymorphism of the 

host and parasite populations. 

As parasite frequency and density, and severity of clinical symptoms are 

age-dependent, many seroepidemiological studies concentrate on the 

dynamics of the acquisition of antibodies with age. The acquisition of 

antibodies to MSP2 parallels the decline in parasitaemia and parasite 

density (chapter 6), suggesting a role for MSP2-specific antibodies in 

parasite clearance; however, the data do not indicate a direct, causative 

relationship. Most epidemiological studies show that antibodies to 

particular malaria antigens increase in childhood, but it is unlikely that all of 

these are involved in protective immunity. An increase in antibody with age 

may be associated with protection or may just be a measure of exposure. 

To separate these two effects, longitudinal studies of individuals, their 

immune responses and clinical status are required. Therefore, the immune 

recognition of MSP2 was correlated directly with the clinical status of a 

cohort of semi-immune children in a longitudinal, prospective study 

(chapter 7). Antibodies to epitopes in the 5' repeat/group specific region of 

serogroup B (133) appear to confer resistance to clinical malaria. However, 

no association was found for the other antigens tested (A2, A3 and 132). 

There are three possible explanations for this finding: 1) only antibodies to 

B3 are in fact able to mediate MSP2-associated protection; 2) antibody to 

the other proteins are protective, but the extensive sequence and antigenic 

diversity in these regions precludes the demonstration of the protective 

effect of any one representative sequence; 3) antibody responses to 

different regions of MSP2 (and possibly other merozoite surface proteins) 
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are closely associated, so preventing the demonstration of a protective 

effect of any one antigen or epitope, i.e. MSP2 may be necessary but not 

sufficient for a protective antibody response. 

Antibodies to MSP1 [93, 115, 265], AMA-1[323] and RESA [341] are also 

acquired in an age-dependent manner. Antibodies to certain regions of 

MSP1 are associated with reduced malaria morbidity [228, 266]. 

Contradictory results have been reported for antibodies to RESA; 

increasing antibody titres are associated with decreasing parasitaemia and 

resistance to high parasitaemia [3, 240, 265, 341] however, antibodies to 

RESA epitopes have also been associated with clinical attacks of malaria 

[265], but this may well reflect antibody boosting by concurrent infection. In 

contrast, antibody responses to some antigens (such as the CS protein) 

have been shown repeatedly to have no association with protective 

immunity [197, 264]. Epidemiological studies, although not perfect, do 

however differentiate non protective antigens from possibly protective ones. 

More conclusive evidence for protection relies on clinical studies. 

It can be argued that if antigenic polymorphism is indeed an important 

immune evasion mechanism for the parasite, it should correlate with the 

degree of immune pressure imposed on the parasite antigens by naturally 

acquired anti-parasite immunity [215]. This is true, to the extent that the 

highest degree of antigenic polymorphism has been shown in stages of the 

parasite, including the asexual blood stages, against which potent 

immunity is eventually mounted, particularly antigens on the surface 

membrane of extracellular forms of the parasite exposed to the vertebrate 

immune system. However, there are also some relatively invariant 

antigens/epitopes that are thought to be the targets of anti-parasite 

immunity. Many of the parasite molecules that are critical for biological 

function are probably conserved. Any change in the antigenicity of critical 

molecules to avoid immune attack would need to preserve this function. 

Ironically, the deployment of antimalarial vaccines itself may provide the 

most direct evidence as to whether polymorphism is an important immune 

evasion mechanism in malaria [215]. 

Polymorphism of malaria antigens among natural parasite populations is 

extensive and has been described for both B and T cell epitopes of many 

antigens of all stages of the parasite. The extent to which this diversity 

could affect the efficiency of a vaccine would depend on the degree of 
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variability (in natural isolates) of the targets of immunity and the extent to 

which mutations in the target genes are compatible with parasite viability. 

Malaria antigens can be divided into three groups with regard to their 

antigenic polymorphism: 
those that are essentially conserved, perhaps exhibiting minor 

polymorphisms involving point mutations; 

those that exhibit allelic dimorphism, with regions (which are usually 

repetitive) of truly polymorphic sequence; 

those where the polymorphism is extensive, and where only limited C 

and N terminal sequence conservation indicates that these genes are in 

fact alleles at a single locus, e.g. S antigens and probably also PfEMP1. 

Any of these antigens may also contain regions of tandemly repeated 

sequences. 
Each group has advantages and disadvantages for vaccine development. 

Those antigens which are essentially conserved make attractive targets 

because immune responses induced against such antigens would be 

effective against all isolates. However, it may be that minor amino acid 

changes could significantly alter the antigenicity whilst maintaining the 

biological function of the molecule. Therefore, the trick is to identify 

functionally important molecules. 

Antigens that exhibit allelic dimorphism have the advantage that the 

dimorphic sequences are conserved within each allelic family. The fact that 

these genes can be grouped into allelic families indicates that some 

selective constraints apply [10]. The different allelic forms of these antigens 

would not become fixed in the parasite population and be widely dispersed 

unless they provide a biologic advantage for the parasite. However, these 

dimorphic sequences often flank repetitive sequences which could divert 

the immune response from critical epitopes through immunodominance or 

induce T-independent responses by cross-linking surface Ig on B cells. It 

may be that immunisation with epitopes from the dimorphic domains, 

delivered in the absence of repetitive sequences, could enable the rapid 

development of protective immunity [179]. 

Antigens that are extremely polymorphic would be less useful as targets of 

vaccine induced immunity, as the immune responses would only be 

effective against a limited repertoire of parasites. On the other hand, a 

vaccine may be able to selectively exploit any sequence conservation at 

the N and C termini. 
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Among current contenders, EBA-175, the rhoptry protein complex antigen 

RAP-1 and RESA are non-polymorphic [263, 292]. AMA-1 exhibits limited 

polymorphisms (diversity is generated by non-conservative point 

mutations) [8] and MSP1 consists of 17 blocks of conserved, dimorphic or 

polymorphic sequences [315] with additional polymorphism is created by 

intragenic recombination. However, it appears that the conserved 19kDa 

fragment may be an important target of MSP1-specific antibodies [28, 38, 

93]. Of these, several clinical and preclinical trials with RESA have been 

disappointing and this antigen is now generally considered as unsuitable 

for a malaria vaccine. Evaluation of the other antigens is continuing, with 

particularly promising recent results for AMA-1 and PfMSP1 ig. 

The extent of diversity in MSP2 is considerable; although the molecule can 

be classified into two basic prototypes, the tandemly repeated sequences 

can vary extensively in number and sequence. Like MSP1, within an allelic 

family point mutations, insertions, deletions and intragenic recombination 

increase variability. The effect of antigenic diversity of MSP2 on immune 

recognition remains to be fully elucidated, but the data presented in this 

thesis indicates that polymorphism plays a major role in the immune 

recognition of the molecule. Preliminary studies indicate that the antibody 

profile of semi-immune children is clearly related to the specific serotype of 

the parasite with which that child was infected (chapter iO). Nonetheless, 

antibodies to epitopes in the dimorphic regions are prevalent and, if these 

were associated with protection (as may be the case for serogroup B), it 

may only be necessary to include sequences from the two major 

serogroups in a vaccine. Success may come from artificially raising 

antibodies to the conserved or semi-conserved sequences to which the 

natural immune response is rare or suppressed, thus circumventing the 

problem of antigenic diversity. Studies in mice have shown the conserved 

C-terminus of MSP2 to be immunogenic (chapter 4) and to induce 

protective antibodies [284]. The fact that the natural immune response to 

these regions is poor and the sequence is highly conserved, indicates that 

these domains may be essential for parasite survival. 

12.4 Future directions: 

To conclude, I think that MSP2 is an antigen worthy of further investigation 

to fully clarify its potential as a vaccine candidate. 
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I have proposed that antibodies to MSP2 may be important in parasite 

clearance and the subclass of these antibodies may be critical in conferring 

protection. Protective antibodies may have a limited direct effect upon 

parasite growth and invasion, but rather act in cooperation with accessory 

cells. Therefore, it would be of interest to investigate the ability of MSP2-

specific antibodies to exert an antibody-dependent inhibitory effect on 

parasite growth in cooperation with normal blood monocytes. 

In addition I have shown that antibody levels in children are boosted by 

current infection and the specificity of these antibodies can be clearly 

related to the antigenic profile of the infecting parasites. The effect of these 

antibodies on subsequent infections needs to be assessed in longitudinal 

epidemiological studies. The hypothesis would be that pre-existing 

antibody to a particular MSP2 serotype would prevent further infection with 

that serotype, but would not protect against infection with an antigenically 

distinct serotype. 
Direct immunisation studies are also required in animal models and 

humans. In practical terms it is necessary to determine the factors which 

influence the switch to production of lgG3 antibodies and the immunisation 

methods required to mimic this. Of course vaccination against MSP2 may 

encourage the emergence of mutant forms of the parasite. We have already 

seen that the parasite is viable without the R2 repeat region of serogroup B 

(chapter 10). Thus, identification of regions of the molecule that are 

functionally important and on which parasite survival is dependent , is a 

strategy by which we may prevent the evolution of such variants. 

To vaccinate against malaria is to interfere in a host-parasite system of 

evolutionary success. Measures that sustain a selection pressure on the 

parasite may be countered by the parasite through the evolution of new 

variants. The use of a multi-stage vaccine may prevent this, or at least slow 

it down, and inclusion of a transmission-blocking component would stop 

the transmission and spread of these mutants. 

Whatever the vaccine of choice, the interest of science and society should 

not take precedence over the consideration of the individual's well-being. It 

is possible that while a malaria vaccine trial may reduce transmission and 

benefit the community as a whole, the vaccinated individual may, as 

artificial immunity wanes, become more susceptible to severe malaria than 

he was before being vaccinated. Furthermore, short-lived immunity could 
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result in a shift of the age related pattern of malaria-related disease and 

mortality. An unsuccessful vaccination campaign could convert an area of 

stable endemic malaria to one which is subject to unstable epidemic 

malaria. Thus, vaccine trials have to be considered in an environmental 

and sociological setting, where controlling malaria may eliminate some 

problems and introduce new ones. For example, significant reduction in 

childhood mortality may worsen the effects of overpopulation in some 

communities. 

Whilst awaiting the results of trials of the synthetic malaria vaccine SPf66 in 

The Gambia and Thailand, the results from Tanzania are encouraging, 

showing at the very least that vaccination against malaria is a reality [5]. Of 

course modifications and improvements will be needed. By normal 

standards, a vaccine that reduces cases by only one third (as obtained for 

SPf66) would not be acceptable. Vaccines against polio or measles, for 

example, would be expected to reduce cases by 90%. But malaria is 

perhaps a special case because even natural immunity is only partial, 

years of research have failed to produce a vaccine and the world situation 

worsens. We need to ask: is the need to tackle the disease so great that a 

suboptimal vaccine (such as SPf66) should be given to all those that want it 

in the hope that millions of cases of malaria might be averted? Or should 

scientists regard SPf66 as the first step, the proof of a principle that should 

now be refined and therefore redouble their efforts to find a more effective 

vaccine? [36]. There are ethical arguments for and against the use of a 

suboptimal vaccine. Arguments for are that infections (and therefore 

presumably deaths) would be prevented. Arguments against are the false 

feeling of security engendered by vaccination and the possible decrease in 

alternate malaria prevention methods, the use of limited Third World 

resources for an ineffective vaccine and the difficulty of subsequently 

introducing a (possibly) more effective alternative. 

SPf66 does have its limitations. It currently cannot be recommended for use 

before a child's first birthday, since there is no evidence that it is safe or 

efficacious in this age group [316]. An age restriction would seriously limit 

vaccine effectiveness in areas of extremely high transmission where a 

large proportion of the malaria morbidity is in infants. Furthermore, it is not 

known how SPf66 mediates protection, and there is no evidence that the 

vaccine protects against death due to malaria. The duration of SPf66- 
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mediated protection under different levels of exposure is not known, nor is it 

known to what extent natural boosting occurs [316]. There is a danger that 

public opinion, in assuming that there is now an effective vaccine against 

malaria, will turn against investment of scientific resources in further 

malaria vaccine research. It is vital therefore that researchers in the field 

stress that SPf66 - whilst a vindication of previous attempts to make a 

vaccine - is only the beginning of the process. 
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Appendix 1 

1A: Schematic representation of MSP2 recombinant proteins - see inside 

back cover. 

113: Schematic representation of putative epitopes of MSP2-specific 

monoclonal antibodies - see inside back cover. 



Appendix 2 

Antib ody * Working dilution Isotype Epitope and location 
Anti-MSP1 
9.8-4-4-1 1000 IgGi conserved 
12.2-1-1 200 lgGl block 2 (3D7-type) 
123D3.10 1000 lgG2b block 2 (CAMP-type) 
CE2.1 § 50 IgGi block 2 (CAMP-type) 
31.1-8t neat IgGi block 2 (R033-type) 
13.2-3 2000 IgGi block 3 (Ki-type) 
9.5-1-5-1 500 lgG2b block 3 (MAD-20-type) 
10-2B 1000 lgG2a block 4 (Ki -type) 
12.1-5-4 2000 IgGi block 4 (MAD-20-type) 
127B1 i.ia 300 lgGl block 6-16 (MAD-20-type) 
9.262a 1000 IgGi 
9.7_1a 500 IgGi 
10.32a 500 lgGl 
127F1.1a 100 IgGi 

iiCb 500 IgGi block 6-16 (K1 -type) 
73...7b 500 lgG2a 
7 • 62b 1000 IgGi 

1000 IgGi 
104 lgGl 

17.13b 1000 IgGi 
111 .4 1000 IgGi block 16-17 (Ki -type) 
Anti-MSP2 
13.4-2-1 500 IgGi T9/96 specific -Ri repeat 

GSAG 
440 200 1gM FVO specific - Al repeat 
85Dd 200 1gM 

500 IgGi Serogroup A specific - 
dimorphic 

500 IgGi 
12.7-1-2-4 500 IgGi 
8G10/48 1000 lgG2b Serogroup B - STNS 
8F6/49 50 lgG3 Serogroup B - DTPTATE 
anti-7G8 300 Serogroup A -Ri repeats 
anti-ThaiTn 300 mouse sera Serogroup A -Ri repeats 
anti-T9/96 400 Serogroup A -Ri repeats 
Anti-Exp 1 
5.1-4 500 lgGl 

Characteristics of monoclonal antibodies used for parasite typing. 
mAb epitopes marked by idenctical symbols (a,b,c,d,e) exhibit identical 
allelic distributions. 
Mouse sera were pooled from bleeds 2 & 3 after the second 
immunisation. 
*Details  of mAbs are given in Conway et a! [66] and references therein. 
§ mAb produced by Locher, Hawaii; t mAb produced by McBride, 
Edinburgh. 
Access to mAb and serum stocks was kindly provided by Dr J McBride. 



Appendix 3 

MSP1 rAgs MSP2 rAgs 
Donor Sample EGF-1A EGF-1B 19/GST A2 A3 Bi B3 

date 
Mean + 0.249 0.229 0.196 0.290 0.139 0.111 0.146 

2SD 
12 TS 11/90 0.090 -0.054 -0.031 0.020 0.063 -0.056 -0.058 

11/91 -0.350 -0.352 -0.250 0.305 0.538 1.113 0.573 
4/92 -0.187 -0.199 -0.213 0.171 0.520 0.238 0.188 
11/92 -0.242 -0.173 -0.279 -0.060 0.526 0.435 0.689 
4/93 -0.168 -0.027 -0.121 0.061 0.487 1.048 0.842 
11/93 -0.088 -0.113 0.125 0.125 0.399 0.996 0.952 

13 	A 	11/90 
11/91 0.264 0.042 0.786 -0.004 0.582 1.609 1.020 
4/92 0.067 0.125 0.761 -0.022 0.624 1.573 0.866 
11/92 -0.003 0.197 0.861 0.033 0.460 1.156 0.470 
4/93 0.051 0.244 0.824 0.051 0.421 1.309 0.639 
11/93 -0.110 -0.113 0.701 -0.084 0.326 1.073 0.706 

127 	J 11/90 
11/91 0.866 0.999 0.378 0.425 0.675 1.133 0.221 
4/92 0.940 1.474 0.701 0.189 0.459 0.267 0.021 
11/92 0.819 0.834 0.498 0.061 0.475 0.332 -0.035 
4/93 
11/93 0.816 0.836 0.417 0.304 0.430 0.498 0.034 

109 	11/90 0.321 0.145 0.179 0.222 0.081 0.051 0.129 
FWS 

11/91 0.036 0.189 0.469 0.114 0.507 0.094 0.057 
4/92 0.120 0.011 0.095 0.024 0.021 -0.004 0.064 
11/92 0.047 0.057 0.442 0.122 0.329 0.090 0.076 
4/93 
11/93 0.153 0.033 0.456 0.109 0.209 0.062 0.095 

31 S 	11/90 0.316 0.101 0.264 0.233 0.385 0.312 0.046 
11/91 0.093 0.077 0.411 0.168 0.552 0.580 0.038 
4/92 -0.088 -0.112 0.112 -0.045 0.346 0.406 -0.025 
11/92 -0.062 -0.040 0.218 0.033 0.363 0.706 0.011 
4/93 0.224 0.485 0.613 0.372 0.825 0.598 0.000 
11/93 0.350 0.319 0.596 1.155 0.621 0.552 -0.044 

104 FK 11/90 0.153 0.143 0.199 0.984 0.148 0.379 0.240 
11/91 0.110 -0.034 0.008 0.250 0.054 0.370 -0.067 
4/92 0.152 0.132 0.090 0.209 0.214 0.933 0.105 
11/92 0.676 0.727 0.476 0.872 0.457 0.614 0.095 
4/93 
11/93 0.453 0.285 0.322 0.036 0.772 0.498 0.210 

53 MC 11/90 	0.02.0 -0.034 -0.026 0.594 0.433 0.001 0.107 
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MSP1 rAgs MSP2 rAgs 
Donor Sample EGF-1A EGF-1B 19/GST A2 A3 Bi B3 

date 
Mean+ 0.249 0.229 0.196 0.290 0.139 0.111 0.146 
25D 
12 TS 11/90 0.090 -0.054 -0.031 0.020 0.063 -0.056 -0.058 

11/91 -0.350 -0.352 -0.250 0.305 0.538 1.113 0.573 
4/92 -0.187 -0.199 -0.213 0.171 0.520 0.238 0.188 
11/92 -0.242 -0.173 -0.279 -0.060 0.526 0.435 0.689 
4/93 -0.168 -0.027 -0.121 0.061 0.487 1.048 0.842 
11/93 -0.088 -0.113 0.125 0.125 0.399 0.996 0.952 

13 	A 11/90 
11/91 0.264 0.042 0.786 -0.004 0.582 1.609 1.020 
4/92 0.067 0.125 0.761 -0.022 0.624 1.573 0.866 
11/92 -0.003 0.197 0.861 0.033 0.460 1.156 0.470 
4/93 0.051 0.244 0.824 0.051 0.421 1.309 0.639 
11/93 -0.110 -0.113 0.701 -0.084 0.326 1.073 0.706 

127 	J 11/90 
11/91 0.866 0.999 0.378 0.425 0.675 1.133 0.221 
4/92 0.940 1.474 0.701 0.189 0.459 0.267 0.021 
11/92 0.819 0.834 0.498 0.061 0.475 0.332 -0.035 
4/93 
11/93 0.816 0.836 0.417 0.304 0.430 0.498 0.034 

109 11/90 0.321 0.145 0.179 0.222 0.081 0.051 0.129 
FWS 

11/91 0.036 0.189 0.469 0.114 0.507 0.094 0.057 
4/92 0.120 0.011 0.095 0.024 0.021 -0.004 0.064 
11/92 0.047 0.057 0.442 0.122 0.329 0.090 0.076 
4/93 
11/93 0.153 0.033 0.456 0.109 0.209 0.062 0.095 

31 S 11/90 0.316 0.101 0.264 0.233 0.385 0.312 0.046 
11/91 0.093 0.077 0.411 0.168 0.552 0.580 0.038 
4/92 -0.088 -0.112 0.112 -0.045 0.346 0.406 -0.025 
11/92 -0.062 -0.040 0.218 0.033 0.363 0.706 0.011 
4/93 0.224 0.485 0.613 0.372 0.825 0.598 0.000 
11/93 0.350 0.319 0.596 1.155 0.621 0.552 -0.044 

104 F 11/90 	0.153 0.143 0.199 0.984 0.148 0.379 0.240 
11/91 0.110 -0.034 0.008 0.250 0.054 0.370 -0.067 
4/92 0.152 0.132 0.090 0.209 0.214 0.933 0.105 
11/92 0.676 0.727 0.476 0.872 0.457 0.614 0.095 
4/93 
11/93 0.453 0.285 0.322 0.036 0.772 0.498 0.210 

53 MC 11/90 	0.020 -0.034 -0.026 0.594 0.433 0.001 0.107 



11/91 
4/92 
11/92 
4/93 
11/93 

15 T 11/90 
11/91 
4/92 
11/92 
4/93 
11/93 

0.039 -0.030 0.000 0.493 0.434 0.027 -0.007 -0.020 -0.076 -0.100 0.245 0.210 -0.093 -0.040 0.004 -0.065 0.080 0.217 0.120 -0.090 -0.012 0.143 -0.015 0.039 0.908 0.431 -0.012 0.005 

0.139 0.229 0.426 0.449 0.121 0.073 0.487 0.175 0.199 0.760 0.240 0.218 0.144 0.818 0.057 0.136 0.479 0.188 0.169 0.048 0.515 0.429 0.425 0.777 0.486 0.146 0.130 0.550 

-0.062 -0.083 0.004 0.177 
0.091 0.077 0.010 0.152 
0.051 0.045 0.129 0.185 
0.035 0.118 -0.013 0.130 

-0.181 -0.181 -0.223 -0.080 
0.107 0.003 0.101 0.045 

0.245 -0.034 -0.021 
0.734 0.158 0.129 
0.546 0.168 0.077 
0.541 -0.014 0.078 
0.244 -0.119 -0.032 
0.535 0.089 0.112 

7 S 11/90 
11/91 
4/92 
11/92 
4/93 
11/93 

79 A 11/90 
11/91 
4/92 

0.740 
0.810 

0.625 
0.806 

0.971 
1.035 

1.355 1.286 1.437 1.259 
11/92 0.909 0.886 0.971 

1.071 
0.800 

1.170 
1.212 

0.890 
1.129 

1.340 
1.654 4/93 

11/93 
0.589 
0.253 

0.536 
0.296 

0.919 
0.757 

0.803 0.792 0.873 1.281 
0.418 0.453 0.565 1.194 

45 	J 	11/90 
11/91 
4/92 

0.171 
-0.032 

0.017 
-0.008 

0.159 
0.100 

1.042 0.912 0.490 1.114 
11/92 0.103 0.132 0.311 

0.791 
0.677 

0.775 
0.635 

0.521 
0.451 

1.127 
0.955 4/93 

11/93 
0.089 
0.040 

0.009 
0.036 

0.072 
0.037 

0.821 0.734 0.387 0.880 
0.640 0.737 0.826 1.300 

167 WK 11/90 
11/91 
4/92 

0.070 
-0.203 

-0.025 
-0.187 

-0.047 
-0.198 

0.252 0.021 1.170 0.016 
11/92 0.013 -0.034 -0.009 

-0.157 
0.131 

-0.148 
-0.011 

0.033 
0.235 

0.015 
-0.020 4/93 

11/93 
0.021. 

-0.217 
0.062 

-0.199 
0.047 0.195 -0.004 0.545 0.021 

-0.198 0.470 -0.104 0.789 -0.096 
35 BS 	11/90 

11/91 
0.658 0.769 0.452 0.545 0.278 0.501 -0.026 

4/92 
0.369 
0.125 

0.254 
0.142 

0.279 0.674 0.258 0.427 0.016 
11/92 -0.157 -0.081 

0.328 
-0.135 

0.391 
0.121 

0.056 
-0.167 

0.215 
0.196 

0.008 
-0.232 4/93 

11/93 
-0.017 
0.354 

0.057 
0.460 

0.033 0.297 0.120 1.057 -0.134 
0.409 0.473 0.202 0.366 -0.024 

114 	11/90 
MSS 

11/91 0.722 0.743 0.407 1.072 0.660 0.087 0.435 



11/92 0.044 0.004 0.059 -0.038 0.429 0.912 0.674 
4/93 -0.108 -0.123 0.277 -0.104 0.269 1.375 0.541 
11/93 -0.125 -0.148 0.300 0.394 0.893 1.143 0.053 

34 BS 11/90 
11/91 	-0.064 -0.150 0.109 0.858 0.805 1.235 0.264 
4/92 	-0.135 -0.048 0.023 0.756 0.409 0.990 0.082 
11/92 	-0.136 -0.148 0.026 0.910 0.344 1.201 0.254 
4/93 
11/93 

4 FB 11/90 0.331 0.353 0.268 0.079 0.005 0.240 0.202 
11/91 0.700 0.633 0.692 0.032 -0.009 0.973 0.178 
4/92 0.391 0.425 0.482 0.064 -0.036 0.339 0.064 
11/92 0.370 0.584 0.447 0.134 0.301 0.549 0.122 
4/93 0.189 0.261 0.304 0.027 -0.045 0.238 0.214 
11/93 0.363 0.373 0.388 0.049 0.169 0.263 0.453 

117 KB 11/90 0.047 0.057 -0.009 0.066 0.500 0.022 0.180 
11/91 -0.065 -0.037 -0.056 -0.040 0.953 0.489 0.646 
4/92 -0.061 -0.004 0.000 0.266 0.656 0.253 0.123 
11/92 0.103 0.298 0.216 0.374 1.167 0.924 0.668 
4/93 -0.052 0.020 0.042 1.075 0.797 0.141 0.375 
11/93 0.049 0.138 0.106 1.030 1.097 1.521 0.198 

1 MS 11/90 
v. high 11/91 -0.529 -0.723 -0.659 -0.246 -0.185 -0.200 -0.325 
GST 

4/92 -0.881 -0.875 -0.778 -0.202 -0.403 -0.408 -0.616 
11/92 -0.850 -0.853 -0.783 -0.154 0.080 -0.610 -0.732 
4/93 -0.829 -0.901 -0.812 -0.509 -0.279 -0.733 -0.747 
11/93 -0.743 -0.684 -0.623 -0.170 0.437 -0.192 0.288 

110 BS 11/90 
11/91 
4/92 
11/92 
4/93 
11/93 

105 NK 11/90 
11/91 
4/92 
11/92 
4/93 
11/93 

500S 11/90 
11/91 
4/92 
11/92 

0.121 0.218 0.482 -0.140 0.990 0.786 0.321 
0.072 0.438 0.501 -0.159 1.025 1.261 0.286 

-0.012 0.406 0.504 0.105 0.793 0.665 0.195 

0.111 0.360 0.500 -0.007 0.677 0.701 1.043 
-0.017 0.338 0.442 0.180 0.824 0.848 0.630 

0.234 0.440 0.240 0.487 0.191 1.267 0.825 
-0.017 0.089 0.313 1.553 1.031 1.131 0.005 
-0.058 -0.044 -0.039 0.144 0.023 0.841 0.073 

-0.104 -0.096 -0.139 0.158 -0.045 0.896 0.223 
-0.468 -0.410 -0.409 0.145 0.001 0.549 0.440 

0.140 -0.053 -0.067 1.122 1.170 0.590 0.139 
-0.268 -0.277 -0.294 0.660 0.447 0.391 0.121 
-0.154 -0.157 -0.110 1.004 0.957 0.508 0.351 



4/93 	-0.208 -0.196 -0.210 1.184 1.173 0.549 -0.017 
11/93 	-0.261 -0.267 -0.256 0.936 1.082 0.463 0.101 

Table 1: Longitudinal recognition of merozoite surface proteins by malaria 

exposed adults from The Gambia. Samples were collected at 6 month 

intervals from November 1990 to November 1991. 



MSP1 rAgs MSP2 rAgs 
Donor 	Sample EGF-1A EGF-1B 	19/GST A2 A3 B2 B3 

date 
mean + 2SD 0.186 0.264 0.200 0.138 0.245 0.194 0.126 
E07008 6/88 0.198 0.114 0.076 0.162 0.167 -0.027 0.172 

11/88 
6/89 0.187 0.013 0.117 0.110 -0.069 -0.039 -0.079 
11/89 0.856 1.045 0.657 -0.051 1.739 0.168 0.175 
6/90 -0.089 0.162 -0.104 -0.167 0.789 -0.200 -0.003 
11/90 0.023 -0.023 -0.054 -0.195 0.106 -0.105 -0.130 
6/91 -0.235 -0.181 -0.182 -0.172 -0.013 -0.121 -0.153 
11/91 

E08010 6/88 0.359 0.603 0.173 -0.322 0.199 -0.473 0.671 
11/88 -0.152 -0.133 0.619 0.513 1.664 1.567 0.517 
6/89 1.389 1.352 0.937 -0.027 0.101 -0.055 1.197 
11/89 
6/90 0.163 0.336 0.174 -0.176 -0.011 -0.154 0.779 
11/90 0.085 0.210 0.230 -0.229 -0.098 -0.177 0.488 
6/91 0.004 0.078 0.001 -0.061 -0.066 -0.202 0.097 
11/91 0.232 0.242 0.104 -0.043 0.000 -0.025 0.250 

E09009 6/88 -0.229 -0.171 -0.108 -0.165 -0.236 -0.218 -0.105 
11/88 
6/89 -0.059 -0.141 -0.055 -0.035 -0.015 0.051 0.129 
11/89 
6/90 
11/90 -0.081 -0.143 -0.168 -0.160 -0.170 -0.177 -0.126 
6/91 -0.282 -0.267 -0.250 -0.261 -0.289 -0.215 -0.185 
11/91 -0.117 -0.125 -0.086 -0.059 -0.107 -0.075 -0.101 

E17004 6/88 0.020 -0.139 -0.159 -0.175 -0.158 -0.148 -0.177 
11/88 
6/89 -0.283 -0.241 -0.261 -0.123 0.014 -0.023 -0.092 
11/89 -0.188 -0.254 -0.244 -0.025 0.192 -0.040 -0.016 
6/90 -0.147 -0.166 -0.150 -0.023 0.145 -0.119 0.064 
11/90 -0.170 -0.143 -0.130 -0.075 -0.103 -0.161 0.089 
6/91 -0.104 -0.035 -0.111 -0.066 -0.060 -0.064 -0.062 
11/91 -0.132 -0.288 -0.271 -0.185 -0.255 -0.301 -0.181 

E18003 6/88 -0.073 -0.127 -0.155 -0.222 -0.185 -0.239 -0.067 
11/88 0.957 0.906 0.794 -0.081 1.317 -0.118 0.259 
6/89 
11/89 
6/90 -0.238 -0.220 -0.202 -0.200 -0.209 -0.184 -0.198 
11/90 -0.197 -0.131 -0.036 -0.061 0.004 -0.068 0.112 
6/91 0.025 0.030 -0.031 0.211 -0.034 0.041 0.069 
11/91 0.672 0.701 0.446 0.074 0.214 -0.075 0.316 

E20015 6/88 	0.007 0.233 0.201 -0.011 -0.041 0.111 0.176 



11/88 
6/89 -0.061 -0.106 0.016 -0.062 -0.077 0.186 0.101 
11/89 0.196 0.229 0.349 0.163 0.340 1.633 1.705 
6/90 
11/90 -0.077 -0.028 -0.099 0.963 0.160 1.181 1.154 
6/91 
11/91 -0.085 -0.061 -0.179 1.151 0.029 0.110 1.686 

E24008 6/88 -0.035 -0.205 -0.239 0.111 -0.080 -0.191 -0.233 
11/88 0.112 0.062 0.190 0.477 0.428 0.262 0.562 
6/89 0.087 0.293 0.214 0.280 0.208 -0.013 0.910 
11/89 
6/90 -0.176 -0.173 -0.204 -0.079 -0.058 -0.089 -0.054 
11/90 0.000 -0.073 -0.042 0.055 0.062 0.092 0.260 
6/91 -0.174 -0.239 -0.150 -0.109 -0.125 -0.091 -0.113 
11/91 -0.196 -0.181 -0.327 -0.246 -0.198 0.027 -0.189 

E24009 6/88 0.022 0.006 0.022 0.222 0.096 0.120 0.064 
11/88 0.021 0.006 0.026 0.005 0.115 0.156 0.107 
6/89 -0.125 -0.113 -0.135 -0.026 -0.094 0.203 -0.028 
11/89 
6/90 0.004 -0.131 -0.089 0.125 0.000 0.179 -0.028 
11/90 0.002 -0.034 0.008 0.373 0.092 0.954 1.824 
6/91 -0.022 -0.105 -0.146 -0.070 -0.182 -0.140 -0.074 
11/91 0.028 0.230 0.611 0.179 1.064 -0.060 1.453 

E25007 6/88 -0.102 -0.079 0.058 -0.038 -0.021 -0.086 -0.046 
11/88 
6/89 -0.050 -0.131 -0.131 0.095 -0.104 0.015 0.007 
11/89 -0.451 -0.431 -0.450 -0.447 -0.215 -0.402 -0.389 
6/90 0.008 -0.024 -0.033 0.075 -0.012 -0.004 0.094 
11/90 
6/91 -0.082 -0.149 -0.159 0.007 -0.145 -0.168 -0.149 
11/91 -0.016 -0.042 -0.063 -0.124 -0.056 0.019 0.175 

E25009 6/88 -0.068 -0.037 -0.049 -0.056 0.094 0.030 -0.014 
11/88 -0.065 0.029 0.231 0.018 0.012 -0.059 0.189 
6/89 -0.135 -0.138 -0.088 0.087 0.326 -0.050 0.208 
11/89 
6/90 -0.191 -0.283 -0.218 -0.179 0.082 -0.166 0.047 
11/90 -0.359 -0.304 -0.336 -0.295 0.027 -0.154 0.072 
6/91 -0.042 0.017 0.040 0.010 0.116 -0.015 0.038 
11/91 -0.196 -0.119 -0.211 -0.156 -0.190 -0.227 -0.259 

P06008 6/88 0.086 0.216 0.071 0.104 0.133 0.059 0.056 
11/88 -0.026 0.080 0.176 0.388 0.205 0.056 0.395 
6/89 0.025 -0.020 0.024 0.139 0.150 0.121 0.055 
11/89 
6/90 
11/90 
6/91 -0.037 -0.049 -0.048 0.232 0.146 0.002 0.126 



11/91 	0.058 0.032 0.112 0.000 1.362 0.193 0.617 

P06009 6/88 -0.117 -0.046 0.318 -0.056 -0.061 -0.034 -0.008 
11/88 -0.135 -0.030 -0.044 -0.059 1.185 -0.106 0.631 
6/89 -0.320 -0.200 -0.267 -0.262 -0.203 0.000 -0.003 
11/89 0.028 -0.017 -0.030 0.038 -0.043 0.062 -0.031 
6/90 
11/90 
6/91 0.211 -0.051 -0.022 0.045 -0.097 -0.021 0.099 
11/91 -0.182 -0.190 -0.104 -0.027 -0.167 -0.168 0.446 

P06010 6/88 -0.098 -0.092 -0.073 0.156 0.108 0.002 -0.032 
11/88 -0.337 -0.242 -0.216 -0.248 0.389 -0.174 0.451 
6/89 
11/89 -0.076 -0.032 -0.074 -0.010 0.036 -0.018 0.135 
6/90 
11/90 
6/91 0.021 0.077 0.216 -0.018 -0.045 0.008 0.130 
11/91 0.262 0.169 0.222 0.626 0.666 0.001 0.924 

P10016 6/88 -0.107 -0.122 -0.119 -0.049 0.319 -0.044 0.121 
11/88 -0.051 -0.073 0.469 -0.113 1.995 -0.026 1.031 
6/89 -0.118 -0.139 -0.116 0.059 0.512 0.074 0.152 
11/89 -0.047 0.242 0.104 0.042 1.910 0.527 1.117 
6/90 
11/90 
6/91 -0.001 0.044 0.164 0.036 0.683 0.155 0.432 
11/91 -0.196 -0.256 0.126 0.361 1.128 -0.180 0.656 

P10017 6/88 -0.003 -0.072 -0.066 -0.067 0.015 0.019 0.162 
11/88 0.002 -0.018 0.041 -0.165 0.416 -0.106 0.398 
6/89 -0.226 -0.283 -0.272 -0.269 -0.221 -0.172 -0.154 
11/89 
6/90 
11/90 
6/91 0.021 -0.029 -0.016 0.101 0.034 -0.009 0.275 
11/91 0.396 0.379 0.594 0.055 2.322 0.654 1.095 

P11005 6/88 -0.047 -0.020 -0.052 -0.005 -0.005 -0.046 0.030 
11/88 0.019 -0.002 0.002 0.158 0.109 0.067 0.071 
6/89 -0.091 -0.032 -0.062 0.035 0.045 0.078 -0.038 
11/89 0.023 -0.020 -0.036 0.021 0.152 -0.066 0.106 
6/90 
11/90 
6/91 
11/91 

P12009 6/88 	-0.217 -0.196 -0.112 -0.044 -0.023 -0.140 0.523 
11/88 	0.548 0.669 0.556 0.240 0.593 -0.008 1.567 
6/89 	0.106 0.117 0.122 0.230 0.219 0.521 0.367 
11/89 



6/90 
11/90 
6/91 0.176 0.128 0.159 0.471 0.811 0.015 0.721 
11/91 -0.093 -0.050 0.138 0.977 0.660 0.665 0.408 

001008 6/88 0.002 0.022 0.013 0.170 1.182 0.614 1.356 
11/88 -0.117 0.051 0.199 0.226 1.342 0.593 1.698 
6/89 -0.041 0.011 -0.012 0.244 0.862 1.436 1.448 
11/89 0.121 0.435 0.513 0.799 1.358 0.873 0.839 
6/90 
11/90 
6/91 
11/91 

003005 6/88 -0.132 -0.024 -0.029 0.006 0.206 -0.042 0.284 
11/88 
6/89 -0.217 -0.107 -0.146 -0.189 -0.082 -0.139 0.024 
11/89 0.269 0.476 0.247 0.134 0.911 -0.023 0.305 
6/90 
11/90 
6/91 -0.159 -0.222 -0.078 -0.142 -0.166 -0.120 -0.079 
11/91 1.065 1.092 0.970 0.213 1.157 -0.157 1.086 

N05034 6/88 -0.079 -0.106 -0.078 -0.108 -0.038 -0.091 -0.012 
11/88 -0.164 -0.060 -0.102 0.697 0.749 -0.036 0.396 
6/89 -0.113 -0.136 -0.139 0.106 0.002 0.101 0.382 
11/89 
6/90 
11/90 
6/91 -0.119 -0.088 -0.059 0.280 0.112 -0.095 -0.012 
11/91 

Table 2: Longitudinal recognition of merozoite surface proteins by malaria 

exposed children from The Gambia. Samples were collected at six month 

intervals from June 1988 to November 1991. 
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ABSTRACT 

MSP2 is a merozoite surface protein of Plasmodium fàlciparum and, as such, 
is a potential component of a malaria vaccine. In this study we have used a 
panel of recombinant MSP2 antigens in ELISA assays to investigate the 
recognition of MSP2 by antibodies from malaria-immune human serum. 
These recombinant antigens include full length proteins of serogroups A and 
B, and fragments representing the conserved, group-specific or repeat 
regions of each serogroup. Ninety five percent of the sera tested contained 
MSP2-specific antibodies; 81% of sera tested responded to serogroup A and 
86% responded to serogroup B. 
The antibody response is directed almost exclusively towards dimorphic and 
polymorphic regions of MSP2; the conserved regions are rarely recognised 
and antibodies to serogroups A and B do not cross-react. Interestingly, the 
antibody response is predominately of the cytophilic and complement fixing 
subclass IgG3. 



INTRODUCTION 

Antigens on the surface of malaria merozoites are of interest as potential 
targets for vaccine induced immune responses. Since these antigens may 
be involved in merozoite adherence to, and invasion of, red blood cells [1], 
antibodies specific for merozoite surface antigens could prevent invasion of 
erythrocytes and thereby interrupt the asexual cycle of parasite 
proliferation. 
One such antigen, of the human malaria parasite Plasmodium falciparum, 
is the merozoite surface protein 2 (MSP2 , also called MSA2, gp35-56 or 
G3). Several pieces of evidence suggest that antibodies to MSP2 may be 
involved in protective immunity to malaria. Monoclonal antibodies (mAb) to 
MSP2 have been shown to inhibit parasite growth in vitro [2, 3], MSP2 is 
among the antigens recognised by antibodies that inhibit merozoite 
dispersal [4] and mice immunised with peptides corresponding to the 
conserved regions of MSP2 of P.falciparum are protected against 
challenge with the rodent parasite P.chabaudi [5]. 
Sequencing data and serological characterisation of malaria parasites with 
MSP2-specific mAbs [4, 6-9] show that MSP2 is a polymorphic protein 
which can be classified into two allelic families corresponding to two 
antigenically distinct serogroups. Serogroup A includes the isolates T9/96, 
Camp, 3D7 and IC1, and serogroup B includes the isolates FCQ-27, Ki 
and Dd2. The protein has conserved sequences, at the amino- and 
carboxy-termini, which are common to both serogroups. These conserved 
regions flank dimorphic, group-specific sequences containing two central 
regions of polymorphic, tandemly arranged repetitive sequences. Fenton et 
a! [9] designated the two regions of tandem repeats as Ri and R2. The Ri 
region of serogroup A is glycine, serine and alanine rich and varies 
considerably from isolate to isolate; the R2 region is a relatively conserved 
repeat, rich in the amino acid threonine. The repeat sequences of 
serogroup B are unrelated to those of serogroup A and consist of either 32 
amino acids (Ri) or 12 amino acids (R2). Although the sequences of group 
B repeats are relatively conserved between isolates, they vary in number. 
The extensive sequence polymorphism of MSP2 raises the important 
question of whether immune reponses to the protein might be sequence 
specific. If this is the case, then responses to MSP2 may be implicated in 
the notion that the slow development of protective immunity to malaria, in 
people living in malaria endemic areas, is due to gradual acquisition of 
specific immunity to all the variant genotypes of the parasite circulating in 
the community [10]. In order to better understand the nature of protective 
immunity to malaria it is neccessary to determine whether naturally 
acquired antibody responses to MSP2 are cross-reactive within and 
between serogroups. Such information would also be useful for 
determining which, if any, regions of MSP2 might usefully be included in a 
malaria vaccine. To date, there is very little published data on naturally 
acquired immunity to MSP2 and no information on the relative 
immunogenicity of conserved, group specific (dimorphic) and repetitive 
(polymorphic) regions of the molecule. A study of adult, malaria exposed, 
Melanesians showed that 82% had antibodies against MSP2 serogroup B 
[11], but the specificity of these antibodies was not fully characterised. A 
recent study in a highly endemic area of Papua New Guinea found high 
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antibody prevalence (2! 90%) to recombinant antigens representing the full 
length proteins of both MSP2 serogroup A (3D7) and serogroup B 
(FC27)[12]. Using a serogroup A construct lacking the central repeats, this 
group also showed that a proportion of immune individuals responded only 
to epitopes within the repeat region. Experimental immunisation of Aotus 
monkeys with P.falciparum results in an anti-MSP2 antibody response 
directed primarily to repeat and group-specific regions of MSP2 [4]. 
Antibodies purified from immune clusters of merozoites also recognise 
group specific sequences, suggesting that this region is accessible at the 
surface of the intact parasite and may therefore be a target for parasite-
inhibitory immune responses [4]. However, immunoblotting studies using 
affinity purified human serum suggest that naturally immunodominant 
epitopes are encoded within the repetitive sequences of the molecule [7]. 
None of these studies has addressed the crucial question of whether 
sequence polymorphism gives rise to antigenic diversity and whether 
epitopes in one allelic form of the protein cross-react with similar epitopes 
from other parasites. 

Here we report a comprehensive study of the recognition of MSP2 by sera 
from malaria-immune adults from The Gambia, West Africa, and the 
identification of regions of the molecule that are immunogenic during 
malaria infections. We find that MSP2 is naturally immunogenic in man, 
inducing lgG antibodies which predominantly recognise epitopes located in 
the dimorphic and polymorphic regions of the molecule. Importantly, 
antibodies to the two main serogroups of MSP2 (A and B) do not appear to 
cross-react. Anti-MSP2 antibodies were found to belong mainly to lgG 
subclasses that have opsonising and complement fixing properties, 
suggesting that they might play a role in regulating the proliferation of 
intraerythrocytic parasites. 



MATERIALS AND METHODS 

Sera 
Serum samples were obtained from 70 adults (aged 15-65 years) living in 
rural and pen-urban areas of The Gambia, West Africa, where malaria 
transmission is intense during the short wet season (from July to 
November) and minimal at other times of the year [13]. Control serum 
samples were obtained from 15 European adults who had not been 
exposed to malaria. 

Antigens 
Recombinant MSP2 proteins 
pGEX expression vectors were used to direct the synthesis of MSP2 
polypeptides in E.coii as fusions with the C-terminus of glutathione S-
transferase (GST) of Schistosoma japonicum [14, Smith et a!, in 
preparation]. This permits the purification, on a glutathione column, of 
recombinant antigens as stable, soluble fusion polypeptides. Expression of 
the protein was initiated by the addition of isopropyl-b-D-
thiogalactopyranoside (IPTG) to cultures of transformed E.coIi. After 3-5 
hours, cells were pelleted, resuspended in PBS and lysed on ice by mild 
sonication in the presence of 10% (v/v) Triton X-100 (BDH Chemicals, 
Poole, UK.). The fusion proteins were purified from the supernatant by 
absorption onto glutathione agarose beads (Sigma, Poole, UK.). The 
proteins were eluted by competition with free glutathione and their 
concentrations estimated by the intensity of coomassie blue staining on 
acrylamide gels. 
As a control, the fusion protein partner, GST, was purified from pGEX 
plasmids lacking an MSP2 insert. 
The immunogenicity and antigenic integrity of the fusion proteins were 
assessed by mouse immunisation and testing of the mouse sera in ELISA, 
Western blotting and immunofluoresence assays (using acetone-fixed, 
mature P. falciparum schizonts) [Smith et a!, in preparation]. All the 
recombinant proteins used in this study were shown to reflect the antigenic 
character of the native protein and are represented in figure 1. It has not yet 
been possible to produce a recombinant protein which accurately reflects 
the antigenic structure of the N-terminal conserved sequence of the protein, 
hence no analysis of responses to this region is reported. 

MSP1 - p190.1 
As a positive control for prior exposure to Plasmodium falciparum, sera 
were also tested for reactivity with a conserved sequence from another 
merozoite surface protein, MSP1. p190.1 represents a non-variable region 
of MSP1 (gplgO) which has previously been shown to be recognised by 
more than 90% of malaria exposed individuals [15] and was produced in E. 
coil as a free polypeptide [16]. p190.1 was a kind gift of Dr J.R.L Pink, F. 
Hoffman La Roche, Basel, Switzerland. 

Enzyme-linked Immunosorbent Assay (ELISA) 
Microtitre plates (lmmulon-4 (Dynatech)) were coated overnight at 4C with 
lOOpi/well of antigen at 0.5jig/ml in 0.11VI carbonate (Na2CO3/NaHCO3) 
buffer (pH9.6), and blocked for 5 hours at room temperature with 200j.tl/well 
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of blocking buffer (1% (w/v) milk powder in PBS/0.05 9/` Tween 20). At the 
same time, sera were diluted in blocking buffer and incubated at room 
temperature for 5 hours. Plates were washed three times with PBS/Tween 
and lOOpi/well of diluted serum was added to duplicate wells and 
incubated overnight at 4°C. Plates were washed and incubated with horse-
radish peroxidase-conjugated rabbit anti-human lgG antibody (Dako Ltd., 
High Wycombe, UK) for 3 hours at room temperature. 
For the detection of specific lgG subclasses, plates were incubated for 3 
hours with murine monoclonal antibodies to specific human lgG 
subclasses, followed by HRP-conjugated rabbit anti-mouse lg antibody for 
3 hours. The subclass specificity of these mAbs [IgGi (NL16, Boehringer 
Mannheim, Germany), lgG2 (ROM1, Boehringer), lgG3 (HP6050, Serotec, 
Oxford, England), lgG4 (RJ4, Boehringer)] has been widely reported [17-20] 
and was reconfirmed before their use in this study. Each mAb was titrated 
against varying concentrations of purified lgG of the appropriate subclass; 
all mAbs gave parallel titration curves. For each mAb, a working 
concentration was selected such that the relationship between OD and lgG 
concentration was approximately the same for each subclass. This allows 
the amounts of antibody in each subclass to be assessed, on a roughly 
quantitative basis, by comparing the OD values. 
All plates were developed with H202 as substrate and o-phenylenediamine 
(OPD) as chromagen at 4°C and the reaction was stopped after 10 minutes 
with 20jtl/well of 2M H2SO4.  The optical density (OD) was measured at a 
wavelength of 492 nm. 
Optimal concentrations of antigen and antibody were determined by 
chequer board titrations. 

Statistical analysis 
The reactivity of the sera with various MSP2 fusion proteins in ELISA was 
calculated by subtracting the OD value for the GST control from the value 
obtained for the MSP2 fusion protein, to obtain specific OD values. Positive 
samples were defined as those giving a specific OD above the normal 
range for control European sera. The normal range was taken as the mean 
± 2 standard deviations of 15 control sera. 
The reactivity of individual sera with different antigens was compared by 
means of Spearman's rank correlation test [21]. 



RESULTS 

Reactivity of human serum antibodies with MSP2 fusion 
proteins. 
Serum lgG antibodies from Gambian and European adults were tested for 
recognition of recombinant MSP2 proteins in ELISA. MSP2 proteins were 
specifically recognised by sera from individuals who have been exposed to 
malaria (Fig 2). The cut-off level for positive sera for each antigen ranged 
from 0.117 to 0.384 OD units (Fig 2). The proportion of sera recognising 
each of the proteins is shown in table I. 
These results show that MSP2 is well recognised by sera from individuals 
who have been exposed to malaria. Serogroup A and serogroup B are 
recognised by 81% and 86% of sera respectively, indicating that MSP2 is 
highly antigenic during natural infections. MSP2-specific antibodies 
predominantly recognise polymorphic and dimorphic regions of the protein; 
the conserved C terminus is recognised by only 36% of sera and the OD 
values obtained with this protein were significantly lower than for the full 
length and group specific proteins (only 3 sera recognised this protein with 
an OD value greater than 0.300). 

Lack of antigenic cross-reactivity between serogroups A and 
B: 
Seventy-nine percent of sera from adult Gambians recognised both the A 
and B serogroups (proteins Al and Bl, which represent the full length 
molecules). To determine whether this 'dual' recognition was due to a 
single population of antibodies which react with epitopes common to both 
proteins or whether the serum contained two separate, non-cross-reacting, 
populations of antibody, we compared the reactivity of individual sera with 
the full length proteins from both serogroups (Al and Bi) (Fig 3). It is clear 
that although some sera recognise the two proteins apparently equally, 
other sera clearly recognise one protein but not the other. 
Using Spearman's rank correlation test, a positive correlation was obtained 
for responses to Al and Bl (r=0.555; r5=0.307, p=0.005). However, we, 
consider that the high level of statistical significance is the result of the large 
sample size and the considerable number of double negative sera; the 
association is in fact quite weak and may simply reflect independent 
exposure to both serogroups of P.falciparum. As an estimate of association 
due to exposure, we compared the recognition of MSP2 proteins with the 
recognition of a recombinant protein representing a conserved region of an 
unrelated merozoite surface protein (MSP1, p190.1). Correlation 
coefficients of up to 0.492 were obtained. Thus the correlation coefficient 
obtained for Al versus Bl was only slightly higher than that obtained for 
MSP2 versus MSP1, suggesting that the correlation is indeed due to 
exposure rather than to cross-reacting antibodies. 
To confirm that antibodies to the two serogroups are not cross-reactive, 
individual sera were tested in competition ELISAs. Sera which were known 
to contain antibodies to both Al and Bl were selected; these sera were 
preincubated with either Al or Bl and tested in ELISA for recognition of the 
other protein. The example shown in Figure 4 was typical of the sera tested: 
whilst preincubation with increasing concentrations of Al prevents 
subsequent binding of antibodies to Al-coated plates, it has no effect on 
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binding of antibody to 131 -coated plates, and vice versa. Thus, in double 
positive sera, there appear to be two distinct populations of antibodies, one 
specific for serogroup A and the other specific for serogroup B. 

3. Subclass of anti-MSP2 IgG antibodies: 
The IgG subclass of anti-MSP2 antibodies was determined for sera that had 
been shown to contain MSP2-specific lgG. Figure 5 shows the lgG 
subclasses of antibodies to proteins Al, A2 and A3. The distribution was 
similar for the corresponding serogroup B proteins (data not shown). 
Although the lgG subclass pattern differs slightly for antibodies to the 
different proteins (Fig. 5) the predominant MSP2-specific antibody subclass 
is lgG3. 77% and 80%, respectively, of Al and A3 positive sera contained 
only lgG3. The remainder of the Al and A3-positive sera contained only 
IgGi. In comparison, 44% of A2-positive sera contained A2-specific lgG4. 
The pattern of recognition is similar for the serogroup B proteins, in that 
lgG3 is the predominant subclass. However, approximately 57% of 
serogroup B positive sera were IgGi positive; in the majority of cases, IgGi 
was coexpressed with lgG3. 
This predilection for induction of lgG3 antibodies is unusual and suggests 
that there may be something about the antigenic structure of the MSP2 
molecule which preferentially triggers isotype switching to lgG3 in MSP2-
specific plasma cells. 



DISCUSSION 

The aim of this study was to characterize the reactivity of serum antibodies 
from malaria-exposed adult individuals with the merozoite surface protein, 
MSP2. Evaluation of MSP2 as a potential component of a subunit malaria 
vaccine requires an understanding of the naturally occuring immune 
response to MSP2 and, most importantly, the immunological significance of 
amino acid sequence polymorphisms. In particular, it is important to 
determine whether Abs against one MSP2 serogroup will cross react with 
the other serogroup, or whether the Ab response is group-specific or allele-
specific. Such information may also help us to understand the relative 
importance of allele-specific ("strain-specific") immune responses in the 
acquisition of clinically protective immunity to malaria by people living in 
malaria endemic areas. 
There are two main theories to explain the slow development of protective 
immunity to malaria which is typically seen in individuals living in endemic 
areas: (i) polymorphism of antigens which are the targets of protective 
immune responses and, (ii) intrinsically poor immunogenicity of the target 
molecules. The data presented here indicate that the latter explanation is 
not true, at least with respect to MSP2. Sixty seven of the 70 individuals 
tested had clearly detectable anti-MSP2 antibodies with end point titrations 
of > 1/9,000 for most sera (data not shown). It is possible that the three 
seronegative individuals had not been exposed to parasites carrying the 
MSP2 variants tested here. In addition, we have screened a small number 
of sera collected 2 to 4 weeks after a known primary malaria infection and 
all contained detectable levels of antibody to MSP2 (R. Taylor and J. 
Carlsson, unpublished data). 
Antibodies tended to recognise epitopes within the dimorphic and 
polymorphic regions of MSP2; the conserved C-terminus seems to be 
poorly antigenic. This is in agreement with Thomas et al [4] who reported 
that although intact MSP2 is recognised by monkey and human antibodies 
eluted from intact merozoites, such antibodies did not recognise peptides 
representing the N- and C-terminal regions of the molecule. Similarly, Saul 
et a! [5] were unable to detect Abs against synthetic peptides representing 
the conserved regions of MSP2 in sera from 18 people with high titres of 
anti-parasite antibodies (as determined by immunofluorescence assays). 
Importantly, the sequences which are conserved within each allelic family 
(detected using A3 and B3 proteins) are highly immunogenic. Ninety 
percent of the sera tested contained Abs which recognise either A3 or B3 
(or both); thus a vaccine based on MSP2 may need to contain only two 
different antigens - representing the group-specific sequences of each 
serogroup. Interestingly the group-specific A3 protein is recognised by 
significantly more individuals than the B3 protein. This may reflect more 
frequent or more recent exposure of the donors to parasites of serogroup A 
since approximately 60% of parasites isolated in The Gambia belong to the 
A serogroup [22; R.Taylor, unpublished]. Antibodies eluted from immune 
clusters of merozoites recognise dimorphic MSP2 sequences [4], indicating 
that epitopes associated with these sequences are accessible at the 
surface of intact merozoites, and may therefore be a target for inhibitory 
antibodies. 



Proteins which represent the polymorphic Ri repeat regions of both 
serogroups (i.e. A2 and 132) were recognised by a substantial proportion of 
the sera, a greater proportion in fact than recognised the dimorphic regions. 
This finding was somewhat unexpected since the sera were tested against 
only one variant for each serogroup and, at least for serogroup A, the amino 
acid sequence of the repeats from different isolates varies extensively [23, 
24]. One likely explanation of this finding is that the antibodies detected 
were in fact recognising epitopes within a short N-terminal segment of 
group specific sequence contained in the protein A2 (see figure 1). 
Alternative explanations include extensive immunological cross-reactivity 
between different repeat sequences or a very high frequency of parasites in 
The Gambia expressing the tested Ri repeat sequence. This latter 
explanation is unlikely since considerable microheterogeneity within 
repetitive sequences has been reported for parasite populations and 
isolates from all over the world [7-9, 23-25; R. Taylor, unpublished]. 
Immunological cross-reactivity may well occur among the Ri repeats of 
serogroup B, where amino acid sequences are relatively conserved, but is 
less likely for serogroup A. Further studies are underway to study the effect, 
on antibody recognition, of variation in the sequence and number of 
repeats. 
Quantification of absolute amounts of Ab by ELISA is difficult since the OD 
value obtained is dependent on both the concentration of Ab and its' 
affinity. It is not possible to compare the amounts of Ab in sera which react 
with different recombinant antigens since the number of epitopes in each 
assay (and thus the avidity of the reaction) is unknown [26]. Therefore, in 
order to make comparisons between the Ab responses to different proteins, 
we used a nonparametric rank correlation test to compare specific OD 
values for individual sera, tested at a single dilution, against the full length 
proteins of serogroup A and serogroup B. Such comparisons show that the 
correlation between responses to the two serogroups is weak and is 
probably due to exposure to parasites of both serogroups rather than to 
cross-reactive antibodies. Competition experiments clearly demonstrate 
that antibodies to serogroup A and B are not cross-reactive, since protein 
Al cannot compete for binding of 131 -specific antibodies, and vice versa. 
In theory, antibodies specific for MSP2 could inhibit merozoite invasion of 
erythrocytes by a number of mechanisms including merozoite agglutination, 
complement-mediated lysis, opsonisation or blocking of receptors involved 
in the adherence of merozoites to erythrocytes. These various mechanisms 
would be mediated by antibodies of different lgG subclasses - only IgGi 
and lgG3 are opsonising and complement-fixing but all four subclasses 
could mediate agglutination or receptor blocking. Since functional 
differences may exist among Abs of the same specificity, we have 
determined the subclass of MSP2-specific lgG in sera from individuals 
immunised by natural exposure to malaria. Our work indicates that 
antibodies which recognise MSP2 are predominantly of the lgG3 subclass. 
It has been suggested that the ratio of IgGi and lgG3 to lgG2 and lgG4 may 
be important in immunity to asexual blood stages of P. falciparum [27, 28] 
since, whilst IgGi and lgG3 can mediate opsonisation and phagocytosis of 
parasitised erythrocytes or free merozoites, lgG2 and lgG4 antibodies (of 
the same epitope specificity) may block the binding of the protective 
subclasses. lgG3 is considered to be the most effective subclass for 
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activating the complement pathway [29], and it is known to mediate cell 
lysis by monocytes or Fc receptor bearing lymphocytes [30]. Thus, the 
predominance of the 1g33 response to MSP2 in adults with a high degree 
of protective immunity to malaria, suggests that this molecule may be a 
target of protective antibody reponses. 
The predominance of the lgG3 response is unusual and is noticeably 
different from the response to MSP1 [31]. The only other examples of which 
we are aware, of an antibody response which is significantly skewed 
towards lgG3, are the response to the outer membrane protein of 
Branhamella cattarhalis where lgG3 antibodies represent approximately 
70% of the total response in individuals over 4 years of age [32] and 
responses to the streptolysin M protein where lgG3 predominated in the 
response of more than half of the individuals tested [33]. Interestingly, in the 
case of Branhamella, the switch to lgG3 production seemed to be age-
related, specific lgG3 being essentially undetectable in children under the 
age of 4 years [32]. IgGland IgG3 are typically produced in response to 
protein antigens [34] with lgGl present in significantly greater amounts than 
lgG3 but, as yet, little is known about factors which may preferentially 
induce the production of lgG3. Although specific switch factors have been 
described for different lgG subclasses in the mouse, much less is known 
about this system in humans. lsotype switching to both lgGl and lgG3 
appears to be controlled by similar processes which may be regulated by 
the T cell-derived cytokine IL-1 0 [35]. Goldblatt eta! [32] suggest that the 
membrane-bound nature of the Branhame!Ia proteins, and their mitogenic 
activity for B cells, may be partly responsible for the lgG3 antibody 
response. The propensity for MSP2 to induce lgG3 antibodies suggests that 
this antigen may be a useful tool for investigating subclass specific switch 
mechanisms. 
The most important question regarding the potential of MSP2 as a vaccine 
antigen is whether or not MSP2-specific immune responses are involved in 
protective immunity to malaria. We have shown here that MSP2 is naturally 
antigenic, that the immune response is directed to dimorphic as well as 
polymorphic regions of the molecule and that these antibodies are of 
appropriate subclasses. Longitudinal epidemiological studies are now 
underway to determine whether these antibodies are able to mediate 
immunity to clinical malaria and to investigate the hypothesis that 
polymorphism within the repeat sequences of MSP2 is a significant factor in 
the slow development of protective immunity to P. falciparum. 
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LEGENDS 

Figure 1: Schematic representation of the MSP2 fusion proteins. Isolates 
from which the recombinant proteins were derived are indicated in bold. 
Al -A3 and Bl -133 are the codes for the rAgs. 

KEY: 	AR1 REPEATS 	1 	BR1REPEATS 

	

A R2 REPEATS 	 B R2 REPEATS F----] 

	

GROUP A SPECIFIC 	GROUP B SPECIFIC 

CONSERVED I 	I 
Figure 2: Dot plots showing specific lgG responses (OD 492)  to MSP2 
fusion proteins of serogroup A (a) and B (b) in 70 Gambian sera. 
The cut off level for positive sera is indicated by a horizontal line. 
Sera were tested at a dilution of 1/1000. 

Figure 3: Comparison of OD values for Al versus Bi for sera from 70 
Gambian adults. Solid lines indicate the cut-off level as determined from the 
mean+ 2SD of 15 European sera. Arrow indicates the serum shown in the 
competition ELISA (Figure 4). 
Each circle represents a single serum tested at a dilution of 1/1000. 

Figure 4: Competition assay to determine the extent of cross-reactivity 
between antibodies recognising Al and Bi. The results for a single, typical, 
serum are shown. Sera were preincubated with antigen at concentrations 
from 0Ig/mI -5 ig/ml. Sera were tested at a dilution of 1/1 000. 

Key: • Al (on plate) vs Al (in serum), 0 Al vs 131, • Bi vs Bl, 0 Bl 

vs Al, EGST vs, GST. 
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Figure 5: Dot plots of lgG subclass of antibodies to serogroup A proteins: 
a) Al (n=30) 	b) A2 (n=25) 	c) A3 (n=30) 
Horizontal lines represent the mean + 2SD of 15 control sera. 
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SEROGROUP A SEROGROUP B CONSERVED 

PROTEIN Al A2 A3 B1 B2 B3 C 

% RESPONDERS 81 81 73 86 64 43 36 

RANGE -mm. -0.026 -0.053 -0.194 -0.140 -0.256 -0.339 -0.493 

-max. 1.911 2.157 1.632 1.981 1.755 1.044 0.542 

TABLE 1: The percentage of malaria immune sera recognising recombinant MSP2 

proteins. 

70 Gambian sera were tested in ELISA for recognition of MSP2 proteins. The percentage of 

responders was calculated as those sera giving OD values greater than the mean+2SD of 

the OD values obtained for 15 European (malaria non-exposed) sera (see figure 2). The 

range of OD values (minimum and maximum) obtained for each protein are shown. 

(Negative values occur when the 00 value of the GST control protein exceeds the OD value 

of the fusion protein). 



Selective recognition of malaria antigens 

by human serum antibodies. 

Rachel R. Taylor', Andrea Egan', David McGuinness', 

Annette Jepson 2 , Richard Adair', Chris Drakely 2 , 

and Eleanor Riley 1 ' 2  

1 Institute of Cell, Animal and Population Biology, Division of Biological 

Sciences,Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh 

EH9 3JT, UK. 

2 Medical Research Council Laboratories, P0 Box 273, Fajara, The Gambia. 

1 



2 

SUMMARY 
Malaria infection induces the production of serum antibodies to a variety of malaria 
antigens but the prevalence of antibodies to any particular antigen is typically much less 
than 100%. It has been assumed that non-responsiveness to defined antigens in malaria 
immune subjects is due to HLA-mediated restriction of the immune response, but 
numerous studies of the relationship between antibody responses and HLA genotype 
have failed to show any significant associations. In this study we show that whilst 
antibody levels vary in accordance with seasonal variations in malaria transmission in 
semi-immune children, antibody levels remain stable in clinically immune adults. 
Antigen recognition is selective with individual donors showing consistent high titre 
responses to some antigens/ epitopes whilst consistently failing to recognise adjacent 
regions/epitopes from the same protein. We have investigated the role of HLA and non-
HLA genes in the antibody response to two merozoite surface antigens (MSP1 and MSP2) 
and a sexual stage antigen (Pfs260/230) of Plasmodium falciparum and conclude that 
host genotype is not a major determinant of responsiveness. Thus, we propose that clonal 
imprinting (original antigenic sin) is an alternative explanation for selective antibody 
responses to malaria antigens in immune individuals. 

INTRODUCTION 
Protective immunity to blood stage malaria parasites is at least partly antibody dependent 
(1). Inhibition of merozoite invasion into erythrocytes, opsonisation and/or antibody-
dependent cellular cytotoxicity are believed to be the principle mechanisms of antibody-
mediated immunity (2-4) and antibody responses to a number of defined erythrocyte or 
merozoite surface antigens correlate with acquisition of clinical immunity to malaria 
(5- 8). 
Malaria infection induces antibodies directed against both conserved and variable 
epitopes of merozoite antigens. However, the prevalence of antibodies to any particular 
antigen or epitope is typically much less than 100%, even where the epitope is highly 
conserved between parasite isolates and where malaria transmission rates are high enough 
to ensure that the study population is frequently re-exposed to infection (9-15). Since 
immunization of MHC (H-2) congenic mice with short polypeptides derived from 
malaria antigens has shown that non-responsiveness can, in certain circumstances, be 
linked to H-2 genotype (16,17) it has been assumed that non-responsiveness to malaria 
antigens in humans is also the result of HLA-dependent genetic restriction of the 
immune response (10,18,19). However, when immune responses of humans immunised 
by natural exposure to malaria are compared with their HLA class II genotype very few 
associations are found between responsiveness (or non-responsiveness) and HLA gene 
expression (14,20-24). Since widespread non - responsiveness to defined malaria antigens 
could pose difficulties for the implementation of subunit vaccines, it is important that 
alternative explanations for individual non-responsiveness should be explored. 
Most antibody prevalence data has been collected by cross-sectional analysis of a 
population at a single point in time. Malaria transmission is seasonal in many endemic 
areas and it is possible that antibody levels fluctuate over time such that people appear 
to be non-responders on some occasions and responders on other occasions. To obtain 
reliable estimates of antibody prevalence it is neccessary to conduct longitudinal studies, 
collecting serum from the same individuals over a period of months or years. Few such 
studies have been reported. 
It is clear that some regions of any given protein are more potent activators of B cells 
than are other regions, giving rise to immunodominant epitopes. For example, the 
repetitive amino acid sequences which are common in malaria proteins tend to be 
immunodominant (25). However, even epitopes which are immunodominant at a 
population level are not universally recognised (11,26,27), so immunodominance (or lack 
thereof) is not, in itself, a sufficient explanation for selectivity of antibody responses. 
In this study we have investigated the effect of three potential causes of apparent non-
responsiveness to malaria antigens, (i) poor immunogenicity of malaria antigens (ii) 
temporal variations in antibody levels and (iii) host genotype, on the antibody response 



to conserved or semi-conserved sequences of two P. falciparurn merozoite surface 
proteins (PfMSP1 and PfMSP2) and a sexual stage specific antigen (Pfs260/230). The 
inherent immunogenicity of the antigens has been assessed by looking for specific 
antibody in the serum of individuals recovering from a primary malaria infection. In 
longitudinal serological studies, we have found that whilst antibody responses vary 
seasonally in children antibody levels remain stable in clinically immune adults. Antigen 
recognition is selective, with some individuals consistently recognising specific regions 
of some antigens whilst failing to recognise adjacent epitopes from the same protein. To 
determine whether selective recognition of malaria antigens is primarily due to host 
genetic factors, or to external 'environmental" factors, we have looked for associations 
between HLA class II genotype and antibody responses in malaria immune donors and 
have compared antibody responses in identical and non-identical twins. Antigen 
recognition does not appear to be genetically regulated. We therefore propose an 
alternative explanation for selective antibody responses in malaria immune individuals - 
clonal imprinting, or original antigenic sin. 

MATERIALS AND METHODS. 
1. Subjects 

Naive donors 
Serum samples were obtained from six patients convalescing from primary malaria 
infections at the Department of Infectious Diseases and Tropical Medicine, Northwick 
Park Hospital. Samples were obtained 14-21 days after successful chemotherapy and 
were stored at -20 °C. 

Malaria immune/ semi-immune donors 
All subjects lived in rural areas of The Gambia, West Africa, where malaria transmission 
is seasonally endemic with the majority of new infections occurring during and after the 
annual rainy season (July to October) (28). The level of malaria transmission is such that 
individuals are exposed to between one and five infective mosquito bites per year (28). 

HLA class II study: Blood samples were obtained from a group of 355 semi-immune 
children (group A) and a separate group of 283 children and adults (Group B) (for details 
see (22)). HLA typing for DRB, DQA and DQB was performed by Southern blot analysis 
of Taq 1-cleaved DNA from peripheral blood leucocytes as described previously (22). 
Carriage of the sickle cell trait, which is a potential confounder of the immune response 
to malaria, was determined by haemoglobin electrophoresis. 

Twin study: Serum samples were obtained from 36 pairs of same-sex adult twins. In 
each case, the twins had been raised together and were still living in the same, or 
adjacent, house(s); thus it is likely that their past history of malaria infection is very 
similar. 
Fifteen pairs were shown to be monozygous by DNA probing with five separate 
minisatellite probes (29). Sera were collected during the dry season, when malaria 
transmission was minimal and stored at -20 °C. 

Longitudinal studies 
The first longitudinal study involved 20 children, all of whom were under the age of 10 
years at the end of the study. The second study was of 22 adults (all over the age of 16 
years at the beginning of the study). Serum samples were collected twice yearly - at the 
end of the dry season (when malaria transmission is minimal) and at the end of the wet 
season (when transmission is maximal). 
iv. Controls 
Control sera were collected from 12 European (malaria unexposed) adults and 12 
European children (aged 3-8 years). 
2. Antigens 
All the antigens (Figure 1) were recombinant proteins, fused to glutathione S transf erase 
(GST) or maltose binding protein (MBP), expressed in E. coli, transfected with either 
pGex or P111-902 plasmids(30,31). Previous studies have confirmed that the recombinant 
proteins express essentially the same B cell epitopes as the native proteins (15,31) (R. 



Taylor et al submitted for publication). 
PfMSP1 is the major merozoite surface protein of P. falciparunz and, except for a 

short N terminal polymorphic region, is dimorphic. The two allelic types are defined as 
MAD20 - type and Wellcome - type. The C-terminal 42kDa region of PfMSP1 is processed 
into a dimorphic 33kDa fragment and a 19kDa fragment which is composed of two 
epidermal growth factor-like motifs and which is essentially antigenically conserved 
(15,32). 19-GST represents the Wellcome sequence of the 19kDa fragment (33) and was 
a gift of Dr P. Berghaus, NIMR, London. EGF-1 and EGF-2 represent the MAD20 
sequences of the first and second EGf-like motifs respectively and were a gift from Dr 
J. Chappel, NIMR, London (34). Finally, MAD33 represents the MAD20 sequence of the 
C-terminal, 33kDa dimorphic region (Egan et a!, in preparation). All the PfMSP1 
antigens were GST fusion proteins. 

PIMSP2 
Four polypeptides, derived from a second dimorphic merozoite surface protein PfMSP2 
(35) and fused to GST, were a kind gift of Dr Jana McBride, University of Edinburgh. 
A2 represents the amino-terminal group- specific sequence of the A (3137-like) serogroup 
of PfMSP2 together with the highly polymorphic tetrapeptide Ri repeat region from the 
Thai isolate T9/96. A3 represents the carboxy- terminal group-specific and R2 repeat 
region of serogroup A. B2 and B3 represent the equivalent regions of MSP2 serogroup 
B (FCQ27-like). All four MSP2 antigens thus contain both semi-conserved (group-
specific) sequences and repetitive sequences which show varying degrees of 
polymorphism. 

Pfs260/230 
The r260 construct (31) represents the glutamic acid-rich tetrapeptide repeat region of 
the gametocyte /gamete surface antigen Pfs260/230 (36) fused to MBP and was kindly 
provided by Dr Kim Williamson, Loyola University, Chicago. The repeats ([EEVG]) 
share sequence homology with other glutamic acid-rich malaria proteins and appear to 
be immunodominant in natural human infections (31). 

Fusion protein controls. 
For all immunoassays, ) a control GST or MBP peptide, purified from E. coli transformed 
with vectors lackingn insert, was used to determine the response to the fusion protein 
alone. 

Enzyme linked immunosorbent assays (Elisa) 
Microtitre plates (Immulon-4, Dynatech) were coated at 4 °C with 1000/well of antigen 
at 0.5igIml in 0.1M carbonate (Na 2 CO3 /NaHCO 3) buffer (pH9.6), blocked at room 
temperature with 200i.&l/well of blocking buffer (1% w/v milk powder in PBS/0.05% 
Tween 20) and washed three times in PBS/Tween20. Sera were diluted 1:1,000 in 
blocking buffer. One hundred il of diluted serum was added to duplicate wells and 
incubated at 4 °C overnight. Plates were washed and incubated with an optimal 
concentration of horse - radish peroxidase - conjugated rabbit anti - human IgG antibody 
(Dako Ltd, High Wycombe, UK) for 3 hours at RT. Plates were developed with H 202  
as substrate and o-phenylenediamine (OPD, Sigma, UK) as chromagen and the reaction 
was stopped after 10 minutes with 20p1/well 2M H 2SO4 . The optical density (OD) was 
measured at a wavelength of 492 nm. 
To minimise interassay variation, sera from each pair of twins were tested in parallel on 
the same microtitre plate. For the longitudinal studies, consecutive samples from the 
same donor were all tested on a single plate. 

Data analysis 
The reactivity of the sera with malaria antigens was calculated by subtracting the OD 
value for the GST or MBP control from the value obtained for the fusion proteins, to 
obtain specific OD values. Positive sera were defined as those giving a specific OD above 
the normal range (mean plus 2 SD) for 24 control European sera. 
The association between HLA class II genotype and antibody response was tested as 



described previously (22). Briefly, HLA genotype was defined by the DRB-DQA-DQB 
haplotype and only those haplotypes which were present in at least 20/355 children in 
group A or 10/283 people in group B were included in the analysis. Individuals were 
classified as either responders or non-responders to each antigen and the probability of 
an immune response in individuals of any particular haplotype was estimated by multiple 
logistic regression allowing for the potential confounding effects of age, sex and, in 
group A, sickle cell status. To allow for linkage of HLA genotype and malaria exposure 
within members of a single family group, the data were stratified by household and 
analysed by conditional logistic regression. 
Differences between monozygous (mz) and dizygous (dx) twins were assessed in two 
ways. Firstly, the proportion of discordant pairs (i.e. where one twin was seronegative 
and the other seropositive for any particular antigen) in each group (mz vs dz) was 
compared by Fisher's exact test. Secondly, the absolute difference in OD values for each 
twin pair (for each antigen) was calculated and the significance of the median difference 
between mz and dz pairs was assessed using a non-parametric Mann-Whitney test. 

RESULTS 
How immunogenic are merozoite and gametocyte surface proteins? 

In determining the significance of apparent non-recognition of malaria antigens by 
serum antibodies from malaria exposed individuals it is important to assess the relative 
immunogenicity of the antigens. It is not necessarily appropriate to assess the 
immunogenicity of a particular antigen on the basis of the proportion of responders in 
an immune population since even poorly immunogenic antigens may be recognised after 
long term exposure. Alternatively, down regulation of responses following frequent re-
infection may underestimate the initial immunogenicity of the antigen. An alternative 
method for assessing the natural immunogenicity of these antigens is to examine 
convalescent serum samples from people who are known to have had only one or two 
malaria infections. We have examined convalescent sera from six such individuals (Table 
1). 
MSP2 is highly immunogenic, with all six convalescent sera recognising either the 
serogroup A or serogroup B proteins. Five sera recognised the highly conserved double 
EGF motif construct (19-GST) whilst the individual EGF motifs and the dimorphic 
MAD33 protein were each recognised by 3 sera. None of the sera from non-immune 
malaria patients recognised the Pfs260/230 construct, suggesting either that the sequence 
is poorly immunogenic or that their infections had been cleared (by drug therapy) before 
significant differentiation of the asexual parasites into sexual stages. 
Thus, with the possible exception of Pfs260/230, poor immunogenicity seems an unlikely 
explanation for non-responsiveness to these particular proteins in malaria-immune 
individuals. 

Are antibody levels, within one individual, stable over time? 
In order to confirm that non-responsiveness to malaria antigens is a real phenomenon, 
it is important to determine whether responder or non-responder status is a consistent 
phenotype within an individual. To do this we collected multiple serum samples from 
children and adults, at intervals of approximately six months, i.e. both high and low 
malaria transmission seasons. 
In children there was clear evidence of seasonal variation in antibody responses with 
oscillation between seropositivity and seronegativity (Table 2) and boosting of the 
antibody response during the malaria transmission season (Figure 2). It is possible to 
make a shrewd guess as to the MSP2 genotype of the infecting parasites, based on the 
rise or fall of antibodies to MSP2 serogroup A or B proteins. For example, donor E07008 
shows boosting of antibodies to serogroup A whilst E24009 shows boosting of the 
response to serogroup B in 1990 and to A and B in 1991. It is also clear that some 
antigens are more frequently recognised than others. Surprisingly, the dimorphic antigens 
(MAD33, MSP2-A3 and MSP2-B3) appear to be more frequently recognised than the 
conserved antigens (MSP1 19 , r260, EGF-1 and EGF-2) but this may simply reflect the 
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fact that they are somewhat larger and presumably express a more diverse array of 
epitopes. 
In contrast to the variable responses seen in children, adult responses were much less 
variable over time (Figure 3; Table 3). Individuals tend to be either consistently 
seropositive or consistently seronegative for specific antigens. What is evident in the 
adults however, is some kind of epitope selection. Donor 13 (Fig 3a) is consistently 
antibody positive for MSP2-A3, B2 and B3 but negative for MSP2-A2. Donor 45 (Table 
3, Fig 3b) recognises MAD33 and MSP2 but fails to recognise the MSP1 19  proteins. Some 
donors (e.g. 79) make strong antibody responses to all the antigens tested and all donors 
(with the exception of donor 109) make consistent responses to at least one of the 
antigens tested. 

3. Is the pattern of antibody recognition of MSP1 and MSP2 genetically determined? 
To determine whether 	persistent non-responder status in adults is genetically 
determined, the effects of HLA Class II genes and non-HLA genes on antibody 
responses were examined. Table 4 summarises the results of the statistical analysis of the 
relationship between HLA class II haplotype and antibody responses to MSP1 and MSP2. 
No significant associations were seen between any of the antigens tested and any HLA 
class II antigen. One marginally significant association was observed, for MAD33, in 
Group A but this was not apparent in Group B and is therefore unlikely to be a true 
association. r260 was analysed for Group B only but few individuals were tested for each 
haplotype (data not shown) and although no association was found (x2 = 3.04, p = 0.55), 
the group sizes were too small for any definitive conclusions to be drawn. 
Sera from 15 pairs of adult monozygous (mz) twins and 21 pairs of adult dizygous (dz) 
twins were tested for recognition of MSP1 19  and MSP2 (Table 5). Overall, the level of 
concordance is high (36 pairs tested against 5 antigens = 180 comparisons, of which 142 
were concordant, = 79%), this presumably reflects the similarity of past malaria exposure 
within the pairs. However, some pairs are clearly discordant with one twin showing a 
strong antibody response to a particular antigen and the other twin being seronegative. 
If these differences were the result mainly of genetic differences between the twins, one 
would expect that more dz than mz pairs would be discordant, but this is not the case. 
There was no significant difference between mz and dz twins in either the number of 
discordant pairs (Fisher's exact test, p > 0.05 for all antigens) or the median difference 
in OD values (Mann-Whitney; p >0.07 for all antigens). In other words, mz pairs are no 
more alike than are dz twins and genetically identical mz twins can have very different 
antibody responses. 
Sufficient serum was available from eight pairs of twins (3 mz, 5 dz) for testing for 
responses to r260. All eight pairs gave concordant responses (i.e. both negative or both 
positive). However, in a larger number of twins, we have demonstrated discordant 
responses to native Pfs260/230 within monozygous pairs (14). 

DISCUSSION 
Limited antibody recognition of malaria merozoite antigens is a potential problem for 
vaccine development, particularly if non-responsiveness is genetically determined, since 
a proportion of any given population may be unable to respond to vaccination. Although 
non-responsiveness to malaria antigens has been widely reported (9,10,14,18,20) there 
has been little attempt to determine the cause. In this study we have investigated the role 
of three factors - immunogenicity of the antigens, temporal fluctuations in antibody titre 
and host genotype - in the response to defined epitopes of two merozoite surface 
antigens, MSP1 and MSP2 and a gametocyte surface antigen Pfs260/230. In order to 
overcome the confounding effects of antigenic polymorphism and heterogeneity of 
malaria exposure, we have deliberately selected antigens representing semi-conserved 
or conserved protein sequences which are commonly expressed by parasites circulating 
in the study area (37). We also selected antigens which we believed would be highly 
immunogenic in that more than 50% of immune adults have antibodies to them (15,31) 
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(R. Taylor et al, submitted for publication, A. Egan et a!, unpublished). The 
immunogenicity of the antigens used is confirmed by our finding that high titre antibody 
responses can be detected during the convalescent phase of primary malaria infections. 
Previous studies in human populations have not shown any significant association 
between naturally acquired antibody responses to defined malaria antigens and HLA 
class II genotype (14,20-24). Similarly, in this study, we have looked for relationships 
between HLA class II and responses to MSP1, MSP2 and r260 antigens in some 500 
malaria-immune individuals and found no significant associations between the two 
variables. However, demonstration of HLA associated non-responsiveness in outbred 
human populations is hindered by the extreme genetic diversity of even quite small 
communities (38-40) and by the heterogeneity of antigenic challenge, particularly for 
polymorphic micro-organisms such as malaria parasites (37). In this study we have 
overcome this problem by comparing immune responses of twins which have a shared 
genetic background and similar malaria exposure histories. Although the number of twin 
pairs tested was rather small, comparison of antibody responses in identical and non-
identical twins indicates that genetic background is not a major factor in determining 
responsiveness to MSP1, MSP2 and r260. This is in agreement with data from a much 
larger twin study (see below) and with our previous observations for antibody responses 
of twins to native Pfs260/230 (14). We have shown that, despite life long exposure to 
malaria, monozygous twin pairs can have clearly discordant antibody responses to the 
same antigen. (Recent boosting of the antibody response in one twin but not the other 
is unlikely since samples were collected several months after the end of the transmission 
season.) 
In this, rather small, twin study it is not possible to dissociate the MHC (HLA class II) 
effects from non-MHC effects. However, in a related, but much larger, study of 
antimalarial immune responses in Gambian twins (41), it was found that although T cell 
responses to a wide variety of malaria antigens are influenced by genetic factors lying 
outside the HLA class II region, neither HLA or non-HLA genes contributed 
significantly to antibody responses. This is probably because environmental factors 
outweigh genetic factors in determining the level of the antibody response at any 
particular point in time. Thus, we conclude that genetic factors do not play a major role 
in determining serological responsiveness or non-responsiveness to these particular 
malaria antigens. We therefore turned to an examination of temporal (environmental) 
factors which may influence the response. 
We compared patterns of antibody responsiveness over time in a group of 20 partially-
immune children who were still susceptible to clinical malaria infection (and who 
experience high levels of parasitaemia when infected) with the pattern of responses in 
clinically immune adults who experienced only asymptomatic, low level, infections. The 
pattern of responses in children was not unexpected - there was clear evidence of 
seasonal variation in antibody levels with titres rising at the end of the malaria 
transmission season. However, even in children it was evident that responses to some 
antigens were being boosted more readily than others. For example, epitopes within 
MSP1 19  would have been present during every infection but the response to this protein 
was boosted in some children but not in others. Antibody levels were remarkably stable 
in adults with individuals remaining consistently seropositive or consistently seronegative 
with respect to individual antigens. Individual donors were clearly able to recognise 
different antigens in a selective manner, recognising some regions of an antigen but 
failing to recognise adjacent regions of the same protein. 
Few immuno- epidemiological studies have examined antibody responses to malaria 
antigens over a period of months or years in the same person, but in a two year study in 
Liberia Bjorkman et a! (42) found that antibodies to the erythrocyte membrane antigen 
Pf155/RESA were consistent on consecutive surveys and they were able to divide their 
cohort into responders or non-responders. These workers ascribed the stability of 
responses to genetic restriction but provided no supporting evidence. Interestingly, in a 
longitudinal study conducted in Madagascar, where an epidemic outbreak of Plasmodium 
falciparum occurred after 20 years without malaria transmission, clear seasonal variation 



in the titre of anti-Pf155/RESA antibodies was seen in both children and adults (43). 
This supports our conclusion that antibody levels stabilise in malaria- immune individuals 
but fluctuate according to recent malaria exposure in non-immunes or semi-immunes. 
The age at which antibody levels begin to stabilise may depend on the intensity of 
malaria transmission and on the antigen in question. In an area of perennial, holoendemic 
malaria transmission, Björkman et a! (44) found that seropositivity to Pf155/RESA was 
consistent from season to season in children aged 3 to 5 years. We have previously found 
stable antibody responses to Pfs260/230 in children as young as 3 to 5 years old (14), and 
in this study responses of some children to MSP2-B3 were very consistent, but on the 
whole responses to merozoite surface antigens, and to the repeat region of Pfs260/230, 
do not seem to stabilise until later in life. 
Since recognition of malaria epitopes does not appear to be genetically determined, and 
since antibody repertoires appear to become fixed in clinically-immune adults, we have 
considered the possibility that the selective recognition of these antigens may be the 
result of clonal imprinting (original antigenic sin). 
The term "original antigenic sin" was first used to explain the observation that adult 
humans vaccinated against influenza produced antibodies with higher affinity for strains 
to which they had been exposed in childhood than for the vaccine strain (45,46). The 
molecular basis of original antigenic sin was subsequently shown to be the presence of 
cross-reactive epitopes within the polymorphic viral haemagglutinin (47,48). On primary 
infection, specific clones of naive T and B cells proliferate and transform into memory 
cells. Memory B cells have higher avidity for antigen than naive B cells since they 
express more surface Ig (slg) and somatic mutation of the Ig genes results in expression 
of slg of higher affinity (49). On secondary infection, memory B cells successfully 
compete with naive B cells for antigens which cross-react with the original infection and 
antibody of the original specificity is produced. Epitopes which were not present in the 
original infection, or which induced memory cells of lower affinity, are effectively 
ignored. Since relative affinity of slg for antigen is crucial to this process, it follows that 
the effect can be overcome by high doses of antigen (48). 
There are many features of malaria infection which make clonal imprinting a likely 
explanation for the selective antibody responses seen in malaria-immune individuals. 
Firstly, malaria antigens are composed of both conserved (or semi-conserved) and 
polymorphic epitopes (50), so cross-reactive immune responses would be expected. 
Secondly, people are infected many times by malaria and polymorphism within malaria 
parasite populations is extensive enough (51) that it is highly likely that successive 
infections would be of differing genotypes. Finally, in clinically immune individuals 
blood stage infections are of very low density, such that competition for antigen may 
occur between B cells of differing affinity. In this case, high affinity responses would 
be boosted and low affinity responses would eventually be lost. This may explain why 
the prevalence of antibodies to, for example, MSP1 19 , appears to be higher in individuals 
recovering from a primary malaria infection (5/6 in this study) than in immune or semi-
immune individuals. 
As yet, there is no direct evidence that clonal imprinting occurs to malaria antigens, but 
the data presented here are consistent with such an explanation. Confirmation requires 
longitudinal studies where the development of antibody responses can be monitored in 
individuals whose infection history is carefully documented in terms of parasite 
genotype. We have recently initiated such a study in West Africa to confirm or refute the 
clonal imprinting hypothesis. 
If the low prevalence of antibodies to certain antigens is due to clonal imprinting, 
injudicious vaccine design may cause problems. However, antibody responses to a 
synthetic vaccine antigen may be more widespread than responses to the same antigen 
following natural infection since presentation of an antigen in the absence of the epitope 
to which the immune system has become imprinted, would allow imprinting to be 
circumvented. 
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Figure legends. 

Figure 1: Schematic representation of the MSP1 and MSP2 antigens 

used in this study. 
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Figure 2: Longitudinal study of anti-malarial antibody levels in 

Gambian children. Samples were collected at 6 month intervals 

from June 1988 to November 1991. Values are OD units for serum 

tested in ELISA at a dilution of 1/1000. The horizontal lines 

represent the upper limit of the normal range for non-immune 

sera. 
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Figure 3: 

Longitudinal study of anti-malarial antibody levels in Gambian 

adults (aged more than 20 years). Samples were collected at 6 

month intervals from November 1991 to November 1993. Values are 

OD units for serum tested in ELISA at a dilution of 1/1000. The 

horizontal lines represent the upper limit of the normal range 

for non-immune sera. 
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Table 1: Antibody recognition of recombinant MSP1 and MSP2 antigens by acute and convalescent sera 
from individuals experiencing their first or second attack of P. falciparum malaria. Sera were 
tested at a dilution of 1:1000. Values given are specific OD values. Values shown in bold are 
positive (i.e. greater than the mean plus 2SD of the naive European control sera). 

M0 1 	 MSP2 	 Pfs260/230 

Serum 	EGF-1 	EGF-2 	19-GST 	MAD33 	A2 	 A3 	B2 	B3 	r260 

92/21 	0.343 	-0.005 	0.865 	0.701 	0.002 	0.722 	0.278 	-0.125 	-0.104 

93/28 	0.047 	-0.084 	0.285 	0.403 	0.425 	0.615 	0.374 	-0.300 	0.160 

92/10 	0.049 	0.166 	0.028 	0.149 	0.312 	-0.042 	0.807 	0.396 	-0.254 

92/38 	2.119 	0.501 	2.113 	1.523 	1.288 	1.079 	0.271 	0.639 	0.126 

92/12 	0.423 	0.322 	0.723 	1.123 	0.909 	1.108 	-0.144 	-0.402 	-0.005 

92/33 	0.071 	0.439 	0.285 	0.086 	0.536 	0.082 	0.113 	-0.195 	-0.301 

Cut off 	0.150 	0.300 	0.100 	0.614 	0.509 	0.330 	0.311 	0.167 	0.186 

for +ve 



Table 2: Longitudinal survey of antibody responses to MSP1 and MSP2 antigens in Gambian children. 
Each symbol represents a separate serum sample. Samples were collected at six month intervals. 
- = antibody negative, + = antibody positive, + = strongly antibody positive. 

MS?] 
	

MSP2 	 Pfs260/230 

Donor Age EGF-i. MSP119 MAD33 A2 A3 B2 B3 r260 

E07008 5 --4 --+--- -++ +----- --++-- +-+--- 

E08010 7 +-++-+ _++-+- ++ -+ -k -+---- ++++++ 

E09009 3 -+--- 
E17004 3 
E18003 6 -+---+ -+---+ ++++-+ ---+- +---+- 

E20015 5 -++++ --+++ --+ --++- +-+++ 

E24008 6 --+ --+--- +- ...... -+ -+---- -++-+- 
E24009 4 + -+-+-+ +---i---+ -----+ ---+-- ---+-+ ++---- 

E25007 3 ----+- 
E25009 6 -+---- +--++ --+--- -++--- --+--- 
N05034 3 ---- -+-+ -+ ---- 
?06008 7 -+++ -----+ -+--+ 

P06009 4 +----- -+ -+---- -+---+ 

P06010 3 ---++ -+--++ +---+ -+--+ -++++ 

P10016 6 _------ ++++++ -----+ ++++++ ---+-- -+++++ --+-+- 

P10017 3 ----+ ----+ +++-+ -+--+ ----+ ++-++ 

P11005 6 ---- -+ ---- ---- 
P12009 5 -+ -+--- ++-++ -++++ -+-++ --+-+ +-t-+++ 

Q01008 6 ---+ ---+ ++++ -+++ ++++ +.+. ++.+ 

Q03005 4 --+--+ --+-+ --+-+ --+--+ +-+-+ -+-++ 



Table 3: Longitudinal study of antibody responses to MSP1 and MSP2 antigens in Gambian adults. Each 
symbol represents a separate serum sample. Samples were collected at six month intervals. 
- = antibody negative, + = antibody positive, + = strongly antibody positive. 

MSP1 MSP2 Pfs260/230 

Donor Age EGF-1 MSP119 MAD33 A2 A3 B2 B3 r260 

12 60 +++++ +++++ +++++ +++++ ----+ 

13 55 +++++ nd nd +++++ +++++ +++++ 

45 45 --+ +.+++ +++++ +++++ +++++ +++++ nd 

50 38 +++-f-+ +++++ +++++ +++++ --+-- 

79 50 +++++ +++++ +4-+++ +++++ +++++ +++++ +++++ +++++ 

110 17 +++++ +++++ +++++ +++++ +++++ +++++ 

167 16 +++++ ----+ +-+++ 

109 16 -+-+ -+-+ _ __ 
31 44 ---++ +-+++ +++++ ---++ +++++ +++++ 

104 16 ---++ ----++ +++++ ---+ +-+++ +++++ nd 

53 60 -------------- ++++++ ++--++ ++++-+ 

15 45 -+ ++++ ++++ +--+ -+++ ++++ 

120 65 ---++ ---+++ --+-+ --+++- 

95 41 +++++ +++++ +++++ +++++ +-++- +++++ 

4 34 ++++++ ++++++ +++.++ + ++++++ +++-++ 

117 17 --+ --+ ++++++ ---+++ ++++++ ++++++ ++++++ +-+++ 

28 55 ++++++ +++-+ ++++++ -++--++ +++++ 

69 35 ---+ +-+++ +++++ 

116 28 +++++ --+++ +++ +++++ 

125 28 +-+-+ +---+ +++++ +++++ ++.++ +++++ +---- 

112 18 +++++ -++-i-+ 

105 24 +---- ++--- +++++ ++--- -+--- +++++ +--++ 



Table 4: Association between HLA class II haplotype and antibody responses to MSP1, MSP2 and r260 
proteins. Number (proportion) of individuals expressing each haplotype who were seropsitive for each 
antigen. x2  is conditional logistic regression statistic for overall association between HLA type 
and immune response. 
a) Group A.  

MSP1- 
________ 

MSP2 
Serolog I 

HLA II specif. n EGF-1 EGF-2 MSP1 1 9 MAD33 A2 A3 B2 B3 

1 
DR 
1 

DQ 
w5 8 4(0.50) 5(0.63) 2(0.25) 4(0.50) 3(0.38) 2(0.25) 1(0.13) 4(0.50) 

2 w15 w6 7 2(0.29) 1(0.14) 0(0.00) 1(0.14) 1(0.14) 1(0.14) 1(0.14) 1(0.14) 

7 w17 w2 31 16(0.52) 16(0.52) 16(0.52) 14(0.45) 13(0.42) 9(0.29) 6(0.19) 17(0.55) 

8 w18 w4 13 7(0.54) 7(0.54) 4(0.31) 4(0.31) 3(0.23) 2(0.15) 1(0.08) 5(0.38) 

9 3 w44 5 0(0.00) 2(0.40) 2(0.40) 2(0.40) 1(0.20) 1(0.20) 1(0.20) 2(0.40) 

11 w8 18 11(0.61) 10(0.56) 9(0.50) 11(0.61) 8(0.44) 7(0.39) 6(0.33) 12(0.67) 

12 4 w2 26 16(0.62) 11(0.42) 14(0.54) 17(0.65) 12(0.46) 9(0.35) 6(0.23) 15(0.58) 

14 7 w2 16 7(0.44) 8(0.50) 4(0.25) 11(0.69) 3(0.19) 3(0.19) 3(0.19) 10(0.63) 

15 7 w2 58 28(0.48) 26(0.45) 27(0.47) 33(0.60) a  21(0.36) 21(0.36) 13(0.22) 31(0.53) 

17 w8 w7 30 13(0.43) 14(0.47) 12(0.40) 15(0.50) 11(0.37) 6(0.20) 4(0.13) 13(0.43) 

18 w8 w7 18 14(0.78) 11(0.61) 8(0.44) 9(0.50) 6(0.33) 8(0.44) 5(0.28) 12(0.67) 

21 9 w2 43 27(0.63) 25(0.58) 21(0.49) 19(0.44) 18(0.42) 11(0.26) 9(0.21) 21(0.49) 

22 w1Ow5 60 36(0.60) 29(0.48) 33(055)25(042)b17(028) 14(0.23) 6(0.10) 27(0.45) 

23 w1lw7 14 11(0.79) 7(0.50) 5(0.36) 8(0.57) 6(0.43) 2(0.14) 4(0.29) 10(0.71) 

26 w1lw7 9 5(0.56) 2(0.22) 3(0.33) 4(0.44) 2(0.22) 3(0.33) 0(0.00) 4(0.44) 

29 w1lw7 119 53(0.45)54(0.45)50(0.42)53(0.45)c38(0.32)25(0.21) 15(0.13) 62(0.52) 

34 w13 w6 10 4(0.40) 4(0.40) 2(0.20) 3(0.30) 1(0.10) 0(0.00) 0(0.00) 1(0.10) 

35 w13wl 11 4(0.36) 4(0.36) 3(0.27) 4(0•44)d 4(0.36) 7(0.64) 4(0.36) 5(0.45) 

37 w13 w6 9 3(0.33) 4(0.44) 1(0.11) 4(0.44) 3(0.33) 0(0.00) 2(0.22) 3(0.33) 

38 w13 w6 62 31(0.50) 29(0.47) 24(0.39) 27(0.44)e26(0.42) 18(0.29) 9(0.15) 35(0.56) 

39 w13 w7 13 10(0.77) 9(0.69) 5(0.38) 9(0.69) 3(0.23) 2(0.15) 3(0.23) 9(0.69) 

x2 11.99 10.14 5.00 13.23 4.35 7.34 9.47 7.50 

df 8 8 8 8 8 8 8 8 

P 0.15 0.26 0.76 0.10 0.82 0.50 0.30 0.48 

-' el 	, 



Table 4: b) Group B. 
-MSP1 

_______  

I 	
MSP2 

1 
Serolog. 

HLA II 
specif. 
DR 	DQ n EGF-1 EGF-2 MSP1 19  MAD33 A2 A3 B2 B3 

1 1 w5 8a 1(0.14) 6(0.86) 5(0.71) 5(0.71) 5(0.63) 8(1.00) 8(1.00) 6(0.75) 

2 w15 w6 4 2(0.50) 3(0.75) 4(1.00) 4(1.00) 2(0.50) 4(1.00) 4(1.00) 4(1.00) 

7 w17 w2 7 4(0.57) 5(0.71) 7(1.00) 7(1.00) 4(0.57) 7(1.00) 7(1.00) 7(1.00) 

8 w18 w4 1 1(1.00) 1(1.00) 1(1.00) 1(1.00) 1(1.00) 0(0.00) 0(0.00) 0(0.00) 

9 3 w4 7a 1(0.17) 4(0.67) 2(0.33) 6(1.00) 2(0.29) 6(0.86) 6(0.86) 5(0.71) 

11 4 w8 5a 2(0.50) 3(0.75) 4(1.00) 2(0.50) 2(0.40) 5(1.00) 4(0.80) 4(0.80) 

12 4 w2 1 1(1.00) 1(1.00) 1(1.00) 1(1.00) 1(1.00) 1(1.00) 1(1.00) 1(1.00) 

14 7 w2 ha 3(0.30) 10(1.00) 8(0.80) 10(1.00) 7(0.64) 9(0.82) 9(0.82) 8(0.73) 

15 7 w2 3 a 1(0.50) 2(1.00) 2(1.00) 2(1.00) 1(0.33) 3(1.00) 3(1.00) 3(1.00) 

17 w8 w7 5a 2(0.50) 3(0.75) 4(1.00) 4(1.00) 3(0.60) 5(1.00) 3(0.60) 3(0.60) 

18 w8 w7 3 2(0.67) 3(1.00) 3(1.00) 3(1.00) 3(1.00) 3(1.00) 3(1.00) 2(0.67) 

21 9 w2 12' 3(0.30) 9(0.90) 9(0.90) 9(0.90) 7(0.58) 12(1.00) 11(0.92) 11(0.92) 

22 w1Ow5 16 5(0.31) 14(0.88) 13(0.81) 15(0.94) 10(0.63) 14(0.88) 13(0.81) 13(0.81) 

23 w1lw7 5b 1(0.33) 3(1.00) 3(1.00) 3(1.00) 4(0.80) 5(1.00) 4(0.80) 4(0.80) 

26 w1lw7 4 2(0.50) 2(0.50) 3(0.75) 3(0.75) 2(0.50) 4(1.00) 4(1.00) 1(0.25) 

29 w1lw7 60c 22(0.41) 46(0.85) 42(0.78) 53(0.98) 31(0.52) 54(0.90) 54(0.90) 44(0.73) 

34 w13 w6 4 0(0.00) 3(0.75) 2(0.50) 4(1.00) 2(0.50) 4(1.00) 3(0.75) 4(1.00) 

37 w13 w6 3 0(0.00) 3(1.00) 3(1.00) 3(1.00) 2(0.67) 3(1.00) 3(1.00) 3(1.00) 

38 w13 w6 28a 10(0.37) 23(0.85) 24(0.89) 27(1.00) 16(0.57) 25(0.89) 26(0.93) 25(0.89) 

39 w13 w7 9 3(0.33) 7(0.78) 6(0.67) 9(1.00) 7(0.78) 9(1.00) 9(1.00) 7(0.78) 

2.82 6.13 2.79 4.44 5.48 0.05 
3•43* 2.69 

df 5 5 5 5 5 3 5 5 

p 0.73 0.29 0.73 0.49 0.36 1.00 0.63 0.75 

a n = 1 less for MSP1 proteins; b n = 2 less for MSP1 proteins; c n = 3 less for MSP1 proteins. 
* results for unconditional (standard) logistic regression since conditional model did not converge 
for anv combination of haplotypes. 



Table 5: Comparison of antibody responses to MSP1 and MSP2 
antigens in adult, monozygous and dizygous Gambian twins. The 
first figure in each column represents the OD value for one twin, 
the second figure is the OD value for the other twin in the pair. 
Discordant results (one above and one below cut off) are 
underlined. * Cut off values for positive responses (mean + 2SD 
of control sera). 

MSP1 19  MSP2-A2 MSP2-A3 MSP2-B2 MSP2-B3 

MZ1 0.123 0.138 0.010 0.569 0.068 0.086 0.010 0.637 0.189 0.880 
MZ2 0.769 0.822 1.992 1.854 1.088 1.184 2.481 2.228 1.462 1.480 
MZ3 0.114 0.163 0.509 0.849 0.223 0.269 0.680 0.850 0.171 1.512 
MZ4 0.128 0.106 0.526 0.311 0.172 0.002 0.007 0.069 0.128 0.094 
MZ5 0.289 0.138 0.461 1.216 0.120 0.792 0.121 1.747 0.084 0.279 
MZ6 1.220 0.482 0.700 0.601 0.254 0.072 0.418 2.313 1.751 1.383 
MZ7 0.047 0.681 0.718 0.986 1.472 0.970 1.760 2.219 0.718 1.935 
MZ8 1.358 1.738 1.986 0.254 2.261 0.150 1.932 1.359 1.354 1.135 
MZ9 0.079 0.341 0.881 1.050 1.571 1.241 0.361 2.482 0.967 1.864 
NZ10 0.075 0.085 0.053 0.513 0.059 0.213 0.049 0.300 0.061 0.359 
MZ11 0.315 0.129 0.792 0.957 0.560 1.173 1.758 0.339 2.339 0.012 
MZ12 0.457 0.843 0.181 0.788 2.185 2.039 1.267 0.434 2.083 1.673 
M213 0.153 0.205 0.100 0.841 0.689 0.929 0.082 0.636 1.029 2.055 
MZ14 0.230 0.571 0.148 0.480 1.425 2.165 1.675 0.544 2.188 1.159 
MZ15 0.225 0.103 0.387 0.129 0.858 0.404 1.357 0.673 0.694 0.455 

DZ1 0.171 0.139 0.486 0.374 0.265 0.052 0.328 0.613 ' 0.576 0.109 
DZ2 0.339 0.147 0.541 0.266 0.237 0.248 2.140 0.329 1.600 0.162 
DZ3 0.146 0.157 0.301 1.837 0.107 0.305 0.576 2.273 0.370 0.508 
DZ4 0.099 0.106 0.203 0.163 0.537 0.092 0.021 0.084 0.694 0.246 
DZ5 0.105 0.256 0.185 0.077 0.010 0.054 0.393 0.120 0.214 0.374 
DZ6 0.140 0.123 1.176 0.596 0.506 0.486 0.411 0.704 0.030 1.096 
DZ7 0.369 0.806 0.873 1.066 0.555 0.285 0.148 0.744 0.352 1.712 
DZ8 0.096 0.082 1.391 0.936 1.874 1.250 0.089 0.819 0.041 0.327 
DZ9 0.222 0.390 0.858 2.118 1.291 2.166 0.751 2.290 0.292 1.919 
DZ10 0.097 0.076 1.411 0.417 1.703 2.267 1.215 1.514 2.193 0.826 
DZ11 1.414 0.197 0.557 0.486 1.136 0.958 1.935 0.754 1.842 1.607 
DZ12 0.348 0.145 0.120 0.027 0.808 0.121 0.301 2.121 1.957 2.076 
DZ13 0.579 0.607 1.164 1.989 1.500 1.449 0.958 1.379 0.828 1.341 
DZ14 0.181 0.332 1.558 0.674 1.077 1.990 1.374 1.031 1.407 2.023 
DZ15 0.073 0.168 0.119 1.146 0.321 2.069 1.976 0.649 1.194 2.264 
DZ16 0.123 0.115 0.072 0.109 2.035 0.542 2.078 0.051 2.101 0.128 
DZ17 0.067 0.077 0.029 0.032 0.495 0.716 0.030 0.561 0.574 0.997 
DZ18 0.086 0.080 0.607 0.125 .0.831 0.723 0.194 0.045 0.478 0.227 
DZ19 0.332 0.167 0.087 0.351 0.739 0.256 0.322 0.433 0.763 1.214 
DZ20 0.086 0.163 0.574 0.657 1.497 0.722 0.603 0.622 1.694 0.452 
DZ21 0.061 0.061 0.030 0.270 0.117 0.369 0.148 0.148 0.124 0.104 

* 	> 0.098 0.296 0.185 0.096 0.130 

0.129 3.14 0.038 0.038 0.073 

p > 0.5 >0.05 >0.5 >0.5 >0.5 

U 101.5 137.5 140.0 134.5 137.0 

p 0.07 0.53 0.59 0.47 0.5 



Epitope specificities of MSP2 monoclonal antibodies for serogroup A and B 

dimorphic and polymorphic domains. 
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Appendix 1A 

Schematic representation of MSP2 recombinant proteins 
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