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Abstract

This thesis analyses satellite-based radar data to improve our understanding of

the interactions between the Antarctic Ice Sheet and the ocean in the Amundsen

Sea Sector of West Antarctica. Over the last two decades, the European Remote

Sensing (ERS) Satellites have provided extensive observations of the marine and

cryospheric environments of this region. Here I use this data record to develop

new datasets and methods for studying the nature and drivers of ongoing change

in this sector. Firstly, I develop a new bathymetric map of the Amundsen Sea,

which serves to provide improved boundary conditions for models of (1) ocean

heat transfer to the ice sheet margin, and (2) past ice sheet behaviour and extent.

This new map augments sparse ship-based depth soundings with dense gravity

data acquired from ERS altimetry and achieves an RMS depth accuracy of 120

meters. An evaluation of this technique indicates that the inclusion of gravity data

improves the depth accuracy by up to 17 % and reveals glaciologically-important

features in regions devoid of ship surveys. Secondly, I use ERS synthetic aperture

radar observations of the tidal motion of ice shelves to assess the accuracy of tide

models in the Amundsen Sea. Tide models contribute to simulations of ocean

circulation and are used to remove unwanted signals from estimates of ice shelf

flow velocities. The quality of tide models directly affects the accuracy of such

estimates yet, due to a lack of in situ records, tide model accuracy in this region is

poorly constrained. Here I use two methods to determine that tide model accuracy

in the Amundsen Sea is of the order of 10 cm. Finally, I develop a method to
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map 2-d ice shelf flow velocity from stacked conventional and multiple aperture

radar interferograms. Estimates of ice shelf flow provide detail of catchment

stability, and the processes driving glaciological change in the Amundsen Sea.

However, velocity estimates can be contaminated by ocean tide and atmospheric

pressure signals. I minimise these signals by stacking interferograms, a process

which synthesises a longer observation period, and enhances long-period (flow)

displacement signals, relative to rapidly-varying (tide and atmospheric pressure)

ones. This avoids the reliance upon model predictions of tide and atmospheric

pressure, which can be uncertain in remote regions. Ice loss from Amundsen

Sea glaciers forms the largest component of Antarctica’s total contribution to sea

level, yet because present models cannot adequately characterise the processes

driving this system, future glacier evolution is uncertain. Observations and models

implicate the ocean as the driver of glaciological change in this region and have

focussed attention on improving our understanding of the nature of ice-ocean

interactions in the Amundsen Sea. This thesis contributes datasets and methods

that will aid historical reconstructions, current monitoring and future modelling

of these processes.
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Chapter 1

Introduction

1.1 Aim

The aim of this thesis is to use satellite-based radar observations to develop

datasets and methods to improve our understanding of ice-ocean interactions

in the Amundsen Sea Sector of the West Antarctic Ice Sheet (WAIS). In recent

years, this region has exhibited signs of rapid glaciological change, which has

fuelled speculation as to its stability in a changing climate. This thesis will add

to a growing body of work which details the processes governing the response of

the WAIS to changes in its external environment over a range of timescales.

1.2 Motivation

It is almost 50 years since the first scientific observations of Antarctica were

made from space. Since then, satellites have revolutionised our ability to monitor

the Antarctic Ice Sheet (AIS) on a continent-wide scale; detailing the diverse

1
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behaviour of a vast ice sheet. During this period, satellites have identified

coastal regions of the WAIS which are out of balance, and where outlet glacier

dynamics are changing rapidly (Rignot, 2008). Interpreting the significance

of these changes is difficult given our limited understanding of the complex

interactions between the ice sheet and its surrounding environment. Global-scale

models do not adequately account for the interactions between ice, atmosphere

and ocean and as a result are unable to simulate the current coastal ice mass

imbalances (Huybrechts, 2004). Satellite records are of insufficient duration to

determine whether we are witnessing a secular anthropogenically-driven trend or

merely a snapshot of Earth’s natural variability. As a result, the implications of

current observations are unclear, and the future contribution of the AIS to sea

level rise remains uncertain (Lemke et al., 2007).

Satellite observations from the last two decades have shown the Amundsen Sea

Sector of the WAIS to be a system out of balance; losing more mass at its margins

than it accumulates through precipitation (Rignot, 1998; Shepherd et al., 2001;

Thomas et al., 2004). Currently this sector has the greatest mass deficit of

all of Antarctica (Shepherd and Wingham, 2007) and is losing mass at a rate

comparable to that of the entire Greenland Ice Sheet (Turner et al., 2009). The

Pine Island Glacier has become an icon of the change occurring in this area,

exemplifying the characteristics expected from an out-of-balance system; both

grounded and floating ice are thinning (Shepherd et al., 2001, 2004; Thomas et al.,

2004; Pritchard et al., 2009) and accelerating (Rignot, 2008), and the grounding

line of the glacier is retreating (Rignot, 1998; Joughin et al., 2010).

As a whole, the Amundsen Sea Sector holds enough ice to raise sea levels by

approximately 1.5 metres (Rignot, 2001). Much of the ice rests on bedrock well

below sea level and many of the ice streams draining this sector sit in deep troughs

that deepen further inland (Lythe and Vaughan, 2001; Holt et al., 2006; Vaughan

et al., 2006). Theoretical arguments (Weertman, 1974; Schoof, 2007) suggest that



CHAPTER 1. Introduction 3

such a configuration may be intrinsically unstable; once the ice sheet begins to

retreat, it is impossible for it to stabilise whilst it remains on an inward-sloping

bed. Evidence of past ice sheet behaviour indicates that the Amundsen Sea Sector

of the WAIS has indeed undergone a progressive retreat since the Last Glacial

Maximum (Smith et al., 2011), across the broadly inward-sloping continental shelf

(Nitsche et al., 2007). Furthermore, there have been periods of rapid sea level

rise (Meltwater Pulse 1a, ∼ 14 000 years ago, contributing in excess of 5 cm/yr)

and a WAIS source to this event cannot be discounted (Bassett et al., 2007).

These arguments have fuelled speculation (Mercer, 1978; Vaughan, 2008) that

the influence of humans could drive the WAIS into a more rapid and unstoppable

retreat, and so accelerate rates of sea level rise beyond current expectations.

Recent satellite observations of accelerating mass imbalances in the Amundsen

Sea Sector of the WAIS have raised the possibility that we may be witnessing such

a scenario. However, from the short timespan of the satellite era, it is difficult to

determine whether this is indeed occurring, or whether we have simply captured

a snapshot of the long-term post-LGM ice sheet decline. This uncertainty has

reinforced the need to continue monitoring this region and to understand the

processes that are driving change. This will allow tighter constraints to be placed

upon the probability and timescales of a more rapid collapse event occurring.

Numerous studies have identified the ocean as the probable source of the recent

elevated Amundsen Sea Sector ice imbalance (Rignot and Jacobs, 2002; Shepherd

et al., 2002; Payne et al., 2004; Shepherd et al., 2004). Atmospheric factors

have been rejected as the principle driver on the basis of insufficient surface

melting (Tedesco, 2009) and snowfall variability (Wingham et al., 1998; Shepherd

et al., 2004). The synchronised thinning of ice shelves and their upstream

catchments (Shepherd et al., 2002, 2004) is consistent with the hypothesis of

ocean-driven change. This hypothesis is further supported by observations of

warm Circumpolar Deep Water breaching the continental shelf break (Walker
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et al., 2007), flowing along troughs in the continental shelf (Nitsche et al., 2007)

and accessing the cavities beneath ice shelves (Jacobs et al., 1996; Jenkins et al.,

2010). This water is several degrees above the in situ freezing point and thus

capable of driving the high rates of basal melting which have been estimated for

ice shelves in this region (Jacobs et al., 1996; Rignot and Jacobs, 2002; Shepherd

et al., 2004). However, glaciers draining into the Amundsen Sea exhibit spatial

(Shepherd et al., 2004; Rignot, 2008) and temporal (Joughin et al., 2003; Rignot,

2008) variations in behaviour. Not all glaciers are accelerating and retreating, ice

shelf thinning rates vary by an order of magnitude (Shepherd et al., 2004), and

periods of change have been punctuated by intervals of relative mass balance and

stability (Joughin et al., 2003; Rignot, 2008).

The spatially and temporally differing behaviour of glaciers draining into the

Amundsen Sea indicates a complex system of ice-ocean interactions that at

present is poorly understood. This lack of understanding limits the ability of

models to extrapolate from current observations to future trends in ice mass

loss. Consequently, the contribution of this region to sea level projections,

originating from changes to glacier dynamics, remains unaccounted for (Lemke

et al., 2007). To address this, the significance of various factors that modulate

glaciological behaviour in this region must be determined. These factors include

subglacial topography, ocean bathymetry, ocean circulation, ocean temperature,

heat transfer in sub-ice shelf cavities, and the dynamic response of glaciers to

events occurring both during and prior to the satellite era. To understand the

relative influences of these factors, and the timescales over which they operate,

requires observations with the resolution and accuracy required by models. These

can extend the record of contemporary change and provide datasets with which

to validate and constrain models of ice-ocean interactions. In remote regions,

such as the Amundsen Sea, satellites are well suited for this purpose, providing

spatially extensive datasets at the spatial and temporal resolution required by
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models. These observations can contribute towards an improved understanding

of ice-ocean interactions, and a narrowing of the uncertainty associated with the

WAIS contribution to sea level rise.

1.3 Objectives

The aim of this thesis is to utilise satellite-based radar data to develop methods

and datasets to improve our understanding of ice-ocean interactions in the

Amundsen Sea Sector of the West Antarctic Ice Sheet. Within the current

literature relating to ice-ocean interactions in the Amundsen Sea, there are

several specific areas in which improved datasets and methods could benefit our

understanding, and to which the application of satellite-based radar is well suited.

Currently there is (1) no bathymetric map of the Amundsen Sea that utilises

data sources other than sparse ship-based surveys, (2) uncertainty regarding the

accuracy of tide models in this region, and (3) uncertainty regarding the degree

of contamination, arising from the vertical motion of an ice shelf, in many ice

shelf velocity estimates. These issues hamper both modelling studies of ice-ocean

interactions and the monitoring of ongoing glaciological change. As such, they

motivate the following objectives of this thesis:

1. To use satellite radar data to produce a new bathymetric map of the

Amundsen Sea.

2. To use satellite radar data to assess the accuracy of tide models in the

Amundsen Sea.

3. To develop an interferometric synthetic aperture radar-based method for

mapping ice shelf velocity, that minimises and quantifies the effect of ice

shelf vertical motion.
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Objective (1) will provide a new set of boundary conditions of improved certainty

for modelling studies of past ice sheet behaviour and current ocean heat transfer

to the base of ice shelves. Past ice sheet behaviour provides context for current

observations (Lowe and Anderson, 2002) and analogues for how the ice sheet might

respond to changes in climate. Models of ocean heat transfer can quantify the

heat currently available to melt each ice shelf in the Amundsen Sea, and provide

predictions of how a changing climate may affect heat availability (Thoma et al.,

2008).

Objective (2) narrows the uncertainty associated with tide model predictions

in the Amundsen Sea. Tides are one of the main drivers of ocean circulation

and mixing beneath ice shelves and therefore tide models are an essential

component of modelling studies of ice-ocean interactions (Makinson et al., 2011).

Additionally, tide model predictions are essential to many satellite-based methods

of estimating ice shelf elevation (Bamber et al., 2009) and flow speeds (Rignot

and Jacobs, 2002), which are themselves key observables for both monitoring

and understanding glaciological change. Tide model accuracy directly affects the

accuracy of these estimates and must therefore be determined.

Objective (3) contributes towards a reduction in the error and uncertainty associ-

ated with many satellite-derived estimates of ice shelf velocity. Improved velocity

estimates benefit the ongoing monitoring of ice shelf stability, as accelerating flow

can be a precursor to ice shelf collapse (Rignot et al., 2004). High quality velocity

maps also form an essential part of satellite-based methods to determine ocean

melting beneath ice shelves (Joughin and Padman, 2003) and so contribute to

efforts to understand the processes driving glaciological change in the Amundsen

Sea.



Chapter 2

The Amundsen Sea Sector of the

West Antarctic Ice Sheet

2.1 Physical Setting

The Antarctic Ice Sheet (AIS) is the largest ice mass on Earth. With an ice

volume of 25 million km3 (Lythe and Vaughan, 2001), it covers an area larger

than Europe and holds ∼ 70 % of Earth’s freshwater (Turner et al., 2009).

The AIS consists of three distinct components; the East and West Antarctic

Ice Sheets (covering areas of 10.3 x 106 km2 and 2.0 x 106 km2 respectively), and

the Antarctic Peninsula (spanning an area of 0.5 x 106 km2). The work of this

thesis focuses upon the Amundsen Sea Sector of the West Antarctic Ice Sheet

(WAIS) (figure 2.1). This sector drains over 40 % (by volume) of the WAIS

(Payne et al., 2004) and holds sufficient ice to raise sea levels by ∼ 1.5 metres

(Rignot, 2001). The WAIS is the only marine ice sheet that still exists in our

current climate. Approximately 75 % of its area currently rests on bedrock below

sea level (Lythe and Vaughan, 2001; Vaughan et al., 2001), and much of this area

7
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would remain submerged even if the ice was removed. The conditions at the base

of the WAIS vary between areas of soft deformable marine sediments, deposited

during past periods of WAIS deglaciation, and hard non-deformable sediments or

bedrock (Anandakrishnan et al., 1998; Bingham and Siegert, 2007; Joughin et al.,

2009; Rippin et al., 2011). The WAIS is predominantly a warm-based ice sheet

(Siegert, 2008), with sub-glacial melting driven by a combination of frictional and

geothermal heat (Kamb, 2001; Raymond et al., 2001). The presence of water, a

smooth base and deformable sediment underneath large regions of the ice sheet

allows the ice to slide over its base and provides the conditions required for fast-

flowing ice streams and outlet glaciers to persist (Alley et al., 1986; Siegert et al.,

2004, 2008).

Several fast flowing ice streams and outlet glaciers drain the Amundsen Sea Sector

of the WAIS. These start as a network of tributaries hundreds of kilometres

inland (Rignot et al., 2004), which converge and accelerate to flow at speeds

of several kilometres per year as they reach the coast (Rignot, 2008). Many

of these glaciers sit in deep, narrow bedrock troughs, where the bedrock is in

places around 1000 metres lower than its surroundings, and deepens further inland

(figures 2.2 and 2.3) (Holt et al., 2006; Vaughan et al., 2006). At present, the

two largest glaciers (Pine Island and Thwaites) are grounded at their termini on

regions of hard bedrock (Joughin et al., 2009). Seaward of the grounding line (the

boundary between bedrock, ice and ocean), the ice streams form small floating ice

shelves, typically several thousand square kilometres in area (with the exception

of the larger Abbott and Getz Ice Shelves), and 500-1000 meters thick (Shepherd

et al., 2004). It is here that the majority of ice loss from this region occurs,

primarily through ocean melting at the base of ice shelves (Jacobs et al., 1996;

Rignot and Jacobs, 2002). Atmospheric-driven surface melting is minimal in this

region (van den Broeke et al., 2006; Tedesco, 2009), as sub-zero temperatures

predominate at this latitude.
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Figure 2.1: The Amundsen Sea Sector of the West Antarctic Ice Sheet (location
marked by red box in inset figure). The main image is taken from the MODIS mosaic
of Antarctica (Haran et al., 2006); A, Abbott Ice Shelf; P, Pine Island Ice Shelf; T,
Thwaites Ice Shelf; C, Crosson Ice Shelf; D, Dotson Ice Shelf; G, Getz Ice Shelf. Inset
is a shaded relief of Antarctica’s surface topography, adapted from Bamber et al.

(2009).
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Figure 2.2: Bedrock topography of the Pine Island Glacier drainage basin, in
the Amundsen Sea Sector of the WAIS, from Vaughan et al. (2006). The black
line delineates the coastline and ice shelves; white line indicates Pine Island Glacier
drainage basin; yellow line locates transect shown in inset figure; H indicates location
of bedrock high; PNE marks location of field camp used in survey. Inset shows the
bed depth of a transect along the main Pine Island Glacier trough, indicating that the
bed deepens for ∼ 200 km inland.
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Figure 2.3: Bedrock topography of the Thwaites Glacier drainage basin, in the
Amundsen Sea Sector of the WAIS, from Holt et al. (2006). The brown line delineates
the coastline; red line indicates Thwaites Glacier drainage basin; white lines are ice
velocity contours; yellow line locates position of transect shown in inset figure c; PNE

marks location of field camp used in survey. Inset a shows a previous map of bed
topography of the WAIS (BEDMAP). Inset c shows the bed depth along the transect
marked in the main figure, indicating continual bed deepening into the WAIS interior.
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2.2 Observations of Ice Sheet Change in the Satel-

lite Era

During the late twentieth and early twenty-first centuries, satellites have provided

a new view of the AIS. The wealth of data has revealed a complex picture of ice

sheet behaviour and provided new insights into the mechanisms and timescales

of glaciological change. Satellites have provided scientists with a platform from

which to monitor the ice sheet on a continent-wide scale, and this has enabled

comprehensive estimates of the AIS mass balance to be made. These studies

(see Shepherd and Wingham (2007) for a full summary), which are based upon

a range of techniques, agree that current AIS mass loss is dominated by losses to

glaciers draining into the Amundsen Sea (figure 2.4). Estimates from 1996 and

2000 (Thomas et al., 2004) indicated that over this four year period these glaciers

discharged ∼ 60 % more ice than they accumulated within their catchments.

From being in near-balance in the 1970’s (Rignot, 2008), glaciers draining into

the Amundsen Sea are now estimated to be losing between 50 Gt and 137 Gt

of mass each year (Turner et al., 2009). This is comparable to the rate of mass

loss from the entire Greenland Ice Sheet (Turner et al., 2009). The large range

in current mass balance estimates reflects the different methods used, and the

varying timespan and spatial coverage over which these measurements were made.

In the following sections I summarise the satellite observations of glaciological

change in the Amundsen Sea Sector of the WAIS.

2.2.1 Thinning of Grounded Ice

At the end of the last century, satellite-based radar altimetry showed that the

ice of the Amundsen Sea Sector of the WAIS was thinning (Wingham et al.,

1998). Further estimates (Shepherd et al., 2002) indicated that thinning rates,
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Figure 2.4: Ice velocity of the Antarctic Ice Sheet, from Rignot et al. (2008). Black
lines delineate catchment basins. Coloured circles indicate mass loss (red) and mass
gain (blue); circle radius indicates magnitude of imbalance.
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when averaged over the entire Amundsen Sea Sector (grounded ice only), were

9 ± 2 cm yr−1, during the period 1991-2000. Thinning was most pronounced

over fast flowing areas of ice, suggesting that it was likely being driven by glacier

dynamics. Maximum (grounded ice) thinning rates of 1.6 ± 0.2 m yr−1, 2.6 ±
0.5 m yr−1 and 4.8 ± 0.3 m yr−1 were observed close to the grounding lines of

the Pine Island, Thwaites and Smith glaciers, respectively (Shepherd et al., 2001,

2002). These rates were beyond those expected from natural variability in snowfall

accumulation; indeed they may have been an underestimate as variations in firn

depth were not accounted for (Helsen et al., 2008). Subsequently, repeat airborne

observations from 2002-2004 (Thomas et al., 2004) suggested that inland thinning

rates along a 200 km section of the Pine Island Glacier had doubled compared to

the values determined by Shepherd et al. (2001). Furthermore, thinning rates close

to the grounding lines of several glaciers were estimated to now approach 6 m yr−1.

Although some of the variation may have been due to the different spatial scales of

the observations (of the order of metres for airborne, versus kilometres for satellite-

based radar), Thomas et al. (2004) concluded that the observed changes were at

least in part due to a real acceleration in the thinning rate. More recently, laser

altimetry acquired during the period 2003-2007 (Pritchard et al., 2009) indicated

thinning rates of up to 6 m yr−1, 4 m yr−1 and 9 m yr−1 close to the grounding

lines of the Pine Island, Thwaites and Smith Glaciers, respectively (figure 2.5).

A separate study (Wingham et al., 2009) has confirmed these trends over the

central trunk of the Pine Island Glacier, finding that between 1995 and 2006

thinning rates had quadrupled. Combined, these observations document almost

two decades of accelerating thinning rates over the fast flowing, grounded ice that

drains into the Amundsen Sea.
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Figure 2.5: Rates of elevation change of grounded ice in the Amundsen Sea Sector
of the WAIS between 2003 and 2007, determined from ICESat laser altimetry by
Pritchard et al. (2009). AIS, Abbott Ice Shelf; PIG, Pine Island Glacier; THW,
Thwaites Glacier; HAY, Haynes Glacier; POP, Pope Glacier; SMI, Smith Glacier;
KOH, Kohler Glacier; GIS, Getz Ice Shelf. Inset shows thinning over Pine Island
Glacier (marked by box in main figure). Profiles 1 and 2 are not shown here.
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Table 2.1: Area, thickness and average 1992-2001 rates of elevation and thickness
change of ice shelves floating in the Amundsen Sea, redrawn from Shepherd et al.

(2004).

Ice Shelf Area Ice thickness Elevation rate Thinning rate
(km2) (m) (cm year−1) (m year−1)

Abbot 30 827 419 -6 ± 4 0.6 ± 0.4
Cosgrove 2553 729 -8 ± 3 0.7 ± 0.4

Pine Island 2365 657 -42 ± 4 3.9 ± 0.5
Thwaites 1687 698 -59 ± 7 5.5 ± 0.7
Crosson 3843 776 -49 ± 4 4.5 ± 0.5
Dotson 3433 469 -36 ± 2 3.3 ± 0.4
Getz 31 186 899 -17 ± 6 1.6 ± 0.6

2.2.2 Thinning of Ice Shelves

Between 1992 and 2001, satellite observations (Shepherd et al., 2004) showed that

all ice shelves in the Amundsen Sea underwent surface lowering (table 2.1). This

was greatest (59 ± 7 cm yr−1) for the centrally-located Thwaites Ice Shelf, and

decreased towards the periphery of the embayment. The maximum observed rate

of surface lowering corresponded to a thinning of 5.5 ± 0.7 m yr−1, which has

resulted in a 7 % thinning of the Thwaites Ice Shelf over the 9 year period of

observation (Shepherd et al., 2004). A context for this decadal record of thinning

has been provided by Bindschadler (2002), who used a long-term record of Landsat

imagery to estimate an upper bound of 4.8 m yr−1 for the mean thinning rate

of the Pine Island Ice Shelf during the period 1973-2001. Because of several

assumptions made in their study, the authors were not able to further constrain

this estimate with a lower bound, and so the extent to which high thinning rates

persisted before then 1990’s remains uncertain.
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2.2.3 Grounding Line Retreat

Changes in the position of the grounding line of a glacier reflect variations in

ice thickness (assuming a constant sea level during the period of observation).

Although satellites cannot directly detect the position of a glacier’s grounding

line, the technique of satellite-based radar interferometry can be used to locate

a glacier’s hinge line (the limit of tidal flexure) which is commonly taken as

a surface expression of the grounding line (Rignot, 1998). Between 1992 and

1996, the grounding lines of the Pine Island and Thwaites glaciers were estimated

(Rignot, 1998, 2001) to have retreated at a rate of 1.2 ± 0.3 km yr−1 and 0.4

± 0.1 km yr−1, respectively. A recent study of Pine Island Glacier (Joughin

et al., 2010) showed that since then grounding line retreat had continued at a

comparable rate. Using an alternative method (altimeter-derived measurements

of ice thinning, combined with ice surface and bedrock elevation data), Shepherd

et al. (2002) derived estimates of grounding line retreat rates over the period

1991-2000 of 0.8 km yr−1, 0.31 km yr−1 and 0.72 km yr−1 for the Pine Island,

Thwaites and Smith glaciers, respectively. In the case of Pine Island Glacier, the

retreat rate calculated by Shepherd et al. (2002) was based upon altimetry data

located 13 km from the grounding line. This may have underestimated thinning

at the grounding line, and explain why the retreat rate calculated by Shepherd

et al. (2002) is slower than that derived by Rignot (1998).

2.2.4 Ice Acceleration

Satellite observations dating back to the 1970’s have revealed large spatial and

temporal variations in ice flow. Of all the glaciers draining into the Amundsen

Sea, Pine Island Glacier has received perhaps the most attention, with an almost

40-year record of flow variability having been constructed (Joughin et al., 2003;
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Rignot, 2008). During this time there appear to have been two distinct periods of

glacier acceleration (1974-1987 and 1994-2008) separated by an interval of more

constant flow (Joughin et al., 2003; Rignot, 2008). The timing of the earlier

acceleration is only roughly constrained because of coarse temporal sampling,

and may have extended prior to 1974. As of 2010, Pine Island Glacier was

flowing at a speed approaching 4 km yr−1 close to its grounding line, which

represents approximately an 80 % velocity increase since 1974, when the glacier

was roughly in mass balance (Rignot, 2008). This type of behaviour is not

ubiquitous throughout the Amundsen Sea Sector of the WAIS (figure 2.6). Whilst

the Smith Glacier and Crosson Ice Shelf have undergone similarly high rates of

acceleration (Rignot, 2008), the Dotson Ice Shelf, Kohler Glacier and easternmost

sector of the Getz Ice Shelf maintained stable velocities in the period 1974-2006

(Rignot, 2008). Meanwhile, although the Thwaites Ice Shelf has accelerated, there

has been no concurrent acceleration of the fast-flowing grounded ice stream, but

instead a widening of this part of the Thwaites Glacier (Rignot, 2008).

2.2.5 A Glimpse of WAIS Instability?

The glaciological behaviour of the Amundsen Sea Sector of the WAIS is consistent

with that expected from an unstable ice sheet in a state of retreat (Mercer, 1978).

Specifically, the marine instability hypothesis (Weertman, 1974; Schoof, 2007)

states that the grounding line of an ice sheet cannot be stable on an inward-

sloping bed. With such a configuration, any retreat in the grounding line leads

to an increase in ice thickness at the grounding line. This in turn causes an

acceleration in ice flow (and hence ice discharge) across the grounding line, and

results in the thinning of inland ice and further grounding line retreat. In such a

scenario, ice sheet retreat is self-perpetuating, until a point is reached where the

ice no longer rests on an inwardly-sloping bed. As a whole, the Amundsen Sea



CHAPTER 2. The Amundsen Sea Sector of the WAIS 19

Figure 2.6: Ice velocity increase between 1996 and 2006. PIG, Pine Island Glacier;
Thw, Thwaites Glacier; Smi, Smith Glacier and Crosson Ice Shelf; Dot, Dotson Ice
Shelf, from Rignot (2008). Thin black lines indicate position of 1996 grounding lines;
thin white lines are 2007 grounding lines. Thick white lines and A-F indicate transects
that are not shown here.
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Sector of the WAIS satisfies the criteria of a marine ice sheet that sits on a broadly

inward-sloping bed (Holt et al., 2006; Vaughan et al., 2006; Nitsche et al., 2007).

Furthermore, this sector of the ice sheet has indeed been in long-term decline since

the Last Glacial Maximum (LGM) some 20 000 years ago (Lowe and Anderson,

2002). The characterisation of the Amundsen Sea Sector of the WAIS as resting

on a uniform reverse slope is of course a simplification; the topography is complex

and contains numerous local highs which could halt or slow unstable retreat. The

concern is, however, that current observations of a large ice mass deficit may

indicate that an additional external forcing is now acting to drive an accelerated

phase of unstable retreat.

It is against the backdrop of post-LGM deglaciation that contemporary satellite

observations must be judged. To determine the significance of recent mass loss

observations requires an understanding of whether, in the context of long-term

ice retreat, the behaviour we are currently witnessing is anomalous. Have we

merely captured a snapshot of the long term evolution of the ice sheet as it

retreats across the inward-sloping continental shelf? Or are we observing elevated

rates of change which are a response to some external forcing? If so, what is

the nature of this forcing - is it anthropogenic in origin, or simply a result of

the natural variability exhibited by Earth’s system? Answering these questions

requires an understanding of (1) the longer term behaviour of the ice sheet

prior to contemporary satellite observations and (2) the processes driving recent

changes to the ice sheet. These can provide an insight into whether or not we are

witnessing the early stages of a more rapid ice sheet collapse. In the following

sections I review evidence relating to the post-LGM history of the ice sheet and

the processes driving current changes.
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2.3 Post-LGM History of the Amundsen Sea Sector

of the WAIS

In this section I provide an overview of the history of the Amundsen Sea Sector

of the WAIS since the LGM, which is defined as the last period of maximum ice

extent around Antarctica, ∼ 20 000 years ago. At that point in time the ice sheet

extended to the continental shelf edge (Evans et al., 2006; Larter et al., 2009).

Since then the ice sheet has retreated ∼ 500 km to its present day position, leaving

behind a record of its past on what is now the Amundsen Sea floor. Evidence of

post-LGM ice sheet behaviour has been acquired by ship-based surveys. These

have provided imagery detailing the morphology of the seabed (figure 2.7) and

sediment cores with which to constrain the timing of ice sheet retreat.

2.3.1 Ice Sheet Behaviour Inferred from Sea Floor Morphology

Ship-based surveys have mapped several sea-floor troughs that extend across the

continental shelf from beneath current day ice shelves (Jacobs et al., 1996; Lowe

and Anderson, 2002; Dowdeswell et al., 2004; Evans et al., 2006; Larter et al.,

2009; Graham et al., 2011). These troughs tend to become progressively deeper

as they approach the current ice margin (Nitsche et al., 2007). Surveys of these

troughs have identified elongated bedforms on both the inner (Larter et al., 2009)

and outer (Evans et al., 2006; Graham et al., 2011) continental shelf. These

bedforms are characteristic of ice streaming, and provide evidence that these

troughs were once inhabited by paleo-ice streams that extended to close to the

continental shelf edge. On the inner shelf, the troughs are incised with systems

of subglacial meltwater channels, providing evidence that large volumes of water

were discharged from beneath the ice sheet (Lowe and Anderson, 2002; Larter

et al., 2009). The frequency and duration of such events, however, remains
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Figure 2.7: Summary of the principle morphological features imaged by surveys of
the Amundsen Sea continental shelf region, from Evans et al. (2006).
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uncertain. On the mid-shelf region, surveys show regularly-spaced furrows

running perpendicular to the direction of ice flow (Jakobsson et al., 2011). These

have been interpreted as the footprint of a massive flotilla of icebergs as they

temporarily grounded at low tide, and used as evidence for a massive ice shelf

disintegration that occurred more than ∼ 12 000 years ago (Jakobsson et al.,

2011). On the mid- and outer-shelf, the presence of a series of sediment wedges

indicate that ice retreat was periodically stabilised, probably by topographic highs

in the underlying bedrock topography (Lowe and Anderson, 2002; Graham et al.,

2011). These wedges may have formed in as little as ∼ 100 years (Graham et al.,

2011), and so their presence remains consistent with a process of relatively rapid,

if episodic, ice retreat.

2.3.2 Timing of Deglaciation in the Amundsen Sea

Determining the timing of post-LGM deglaciation across the Amundsen Sea

continental shelf is important because it provides the wider context for the

currently observed rates of ice retreat. Such a chronology can be determined

by dating sediment samples retrieved from sites across the continental shelf. Ice

retreat histories have been inferred from data acquired both from the eastern

Amundsen Sea (along a cross-shelf sea floor trough originating from the Pine

Island and Thwaites Glaciers) (Lowe and Anderson, 2002) and the western

Amundsen Sea (along troughs originating from the Dotson and Getz Ice Shelves)

(Smith et al., 2011). In the eastern sector only sparse data are available, although

the few dates that do exist are broadly consistent with evidence from the western

sector (Lowe and Anderson, 2002; Smith et al., 2011). In particular, no data

exist within ∼ 200 km of the current position of the Pine Island Ice Shelf’s

calving front, and so the retreat rate immediately prior to the satellite era remains

uncertain. In the western sector, a more extensive data record provides a more
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detailed history. Based upon radiocarbon dating of samples from the western

trough, Smith et al. (2011) estimate that ice retreat from the continental shelf

edge commenced between ∼ 22 000 and 16 000 years ago. By ∼ 14 000 years

before present (BP) the ice extent was limited to the mid-shelf, before retreating

to within 10-12 km of the current ice shelf front by 13 000 - 10 000 years BP

(figure 2.8).

Smith et al. (2011) used their chronological record to calculate average rates of ice

retreat since the LGM (figure 2.8). Over the outer part of the continental shelf

the rate of ice retreat was relatively slow (mean rate of ∼ 20 m/yr). These rates

increased to 140-400 m/yr as the ice sheet retreated across the inner ice shelf.

This increase in retreat rate coincides with a region of deepening bedrock (i.e. an

increase in the landward-sloping gradient), which is consistent with the marine

instability hypothesis. Additionally, the retreat broadly coincides with the timing

of Melt Water Pulse 1a, and so it is possible that a sudden rise in sea level may

have helped to drive accelerated retreat across the inner shelf. Over the past ∼
10 000 years, as the ice sheet reached its current position, the retreat rate slowed

again to an average of ∼ 7 m/yr.

Comparing past and present retreat rates suggests that the current retreat rate

of the Pine Island Glacier (1.2 ± 0.3 km/yr (Rignot, 1998)) is anomalously high

compared to the mean ice sheet retreat rates across the Amundsen Sea continental

shelf since the LGM (figure 2.8). The recent retreat rate of Thwaites Glacier (0.4

± 0.1 km/yr (Rignot, 2001)) is broadly comparable to the maximum historical

retreat rate estimated by Smith et al. (2011). The past rates of retreat determined

by Smith et al. (2011) are, however, only long term averages and may encompass

short periods of more rapid deglaciation, such as currently experienced by the

Pine Island Glacier.

Satellite observations show that glaciers draining the Amundsen Sea Sector of
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Figure 2.8: Retreat trajectory for the deglaciation of the WAIS in the western
Amundsen Sea, from Smith et al. (2011). Average retreat rates are shown together
with the trajectory of a range modern and palaeo retreat rates (lines numbered 1-5)
for Ice Stream B and C, Pine Island Glacier and ice draining into the Bellingshausen
Sea. Grey shading represents the range of rates estimated for the mid-inner shelf.
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the WAIS are undergoing rapid change, and are currently retreating at rates

far higher than the long term average since the LGM (Rignot, 1998; Smith et al.,

2011). However, because of the limited temporal resolution of the historical record

in the Amundsen Sea, it is unclear whether current rates have been matched in

the past, albeit over short time periods, or whether they are uniquely a recent

phenomenon. As such, it is difficult to judge the significance of current behaviour

solely from these observations, without additionally understanding the processes

driving change. These processes are addressed in the following section.

2.4 The Coupled Ice-Ocean System

Observations and modelling studies agree that the ocean plays a key role in

driving the current large mass imbalance in the Amundsen Sea Sector of the

WAIS (Rignot, 1998; Payne et al., 2004; Shepherd et al., 2004; Walker et al.,

2007; Joughin et al., 2010). Contemporary ocean forcing has the potential to

(1) accelerate the long term decline of the ice sheet, and (2) push ice retreat

beyond bedrock highs which may otherwise stabilise retreat (c.f. the instability

hypothesis (Schoof, 2007)). Furthermore, the ocean can exhibit short-term

temporal variability (compared to bedrock topography for example), and thus

drive relatively fast changes to the ice sheet. Ocean forcing is of particular

importance in the Amundsen Sea sector, because of the presence of relatively

warm ocean waters flowing into the cavities beneath ice shelves. These drive

high rates of ice shelf basal melting near the grounding line. Several mechanisms

have been suggested to link enhanced basal melt to an increase in ice discharge

across the grounding line. These include (1) a reduction in basal drag as more

ice loses contact with the bedrock, either through the thinning of the ice shelf /

ice plain (Rignot, 2002b; Payne et al., 2004) or by the direct melting of grounded

ice (Schoof, 2007), or (2) an increase in longitudinal stresses across the grounding
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line, as melting steepens the base of the ice shelf, and thus increases driving

stresses near to the grounding line (Schoof, 2007).

Given the significance of the ocean influence, an adequate explanation of the

evolution of glaciers draining into the Amundsen Sea requires that they are treated

as part of a coupled ice-ocean system. This in turn demands knowledge relating

to the properties and behaviour of the ocean, and the interactions that occur

between ice shelves and the ocean. In the remainder of this section I review these

topics. I begin with a description of the oceanography of the Amundsen Sea.

I then turn to the sub-ice shelf cavity and give an overview of the generalised

cavity system, describing both ocean circulation and the mass exchanges that

occur at the ice-ocean interface. I then focus specifically upon measurements of

basal melting beneath ice shelves in the Amundsen Sea. Finally, I widen the

discussion to consider other effects of the ocean upon ice shelves, as these will be

of importance in later chapters.

2.4.1 Amundsen Sea Oceanography

The likelihood that ocean conditions are driving contemporary glaciological

change in the Amundsen Sea Sector of the WAIS has focused interest on

ocean processes in this region. In this section I give an overview of the

current understanding of these processes, as provided by oceanographic data and

modelling studies.

Oceanographic Modelling of Amundsen Sea Circulation

The Antarctic continent is surrounded by the Antarctic Circumpolar Current

(ACC), a vast ocean current that circulates eastwards around the globe (figure
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2.9). In the Amundsen Sea, this current passes close to the continental shelf

break, allowing relatively warm ACC water that resides at depth (Circumpolar

Deep Water (CDW)) to flow on to the continental shelf via depressions in the

continental shelf break (Walker et al., 2007). This water is typically at least

2◦C warmer than water found at other locations on the continental shelf and

3◦C warmer than the in situ melting point (Jacobs et al., 1996). As such, it is

sufficiently warm to cause high rates of ice-melting should it cross the relatively

narrow continental shelf and reach the underside of ice shelves. On the continental

shelf of the Amundsen Sea there is a clockwise circulation of surface waters

(Grotov et al., 1998; Assmann et al., 2005), with coastal waters driven westwards

by easterly coastal winds (figure 2.10).

Oceanographic Surveys in the Amundsen Sea

Ship-based oceanographic surveys are sparse in the Amundsen Sea, because of

its remote location and perennial sea-ice cover. In recent years, as it has become

clear that the ocean may be driving rapid glaciological change, there has been

an increase in survey activity. In 1994, the first surveys across a deep channel

running along the front of the Pine Island Glacier Ice Shelf were made (Jacobs

et al., 1996). Basal melt rates were found to be 5-50 times higher than at other

ice shelves around Antarctica, as a result of the intrusion of CDW into the cavity

beneath the ice shelf. These observations provided evidence that this region may

provide a substantial deficit to the AIS mass balance.

Subsequent surveys have focused upon providing both topographic detail of the

sea floor (Lowe and Anderson, 2002; Evans et al., 2006) and further details of

the delivery of ocean heat to the base of ice shelves (Walker et al., 2007; Wahlin

et al., 2010). Sea floor surveys have identified deep sea floor troughs, originating

from paleo-ice streams (Dowdeswell et al., 2004), that run across the relatively
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Figure 2.9: The location of the Antarctic Circumpolar Current (ACC), adapted
from Turner et al. (2009). The ACC lies between the inner and outer red lines;
other red lines indicate positions of other oceanic fronts. Colour scale shows surface
topography; AS marks the Amundsen Sea Sector.
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Figure 2.10: Modelled mean winter sea ice drift velocities around the WAIS, from
Assmann et al. (2005). Arrows indicate velocity vectors, and the colour scale indicates
sea ice thickness. The Amundsen Sea is roughly bounded by 90◦W and 125◦W.
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narrow continental shelf. These features provide pathways along which dense

CDW can access sub-ice shelf cavities and drive high rates of ice shelf basal

melting. Oceanographic surveys conducted in 2003 and 2008 have provided details

of the properties of water flowing through two of these large troughs (Shoosmith

and Jenkins, 2006; Walker et al., 2007; Wahlin et al., 2010) (figure 2.11). These

confirm the presence of warm CDW residing at depth, and show spatial variation

in water column composition between sites. This variability is, in part, due

to the outflow of cooler, less dense melt water from beneath ice shelves. The

water passing through the two surveyed troughs (Walker et al., 2007; Wahlin

et al., 2010) contains sufficient heat to account for all current mass loss from

glaciers draining into the Amundsen Sea (Rignot and Thomas, 2002), under the

assumptions that (1) the surveys were representative of annual and inter-annual

heat flow variability, and (2) all available heat reached the base of ice shelves and

was used to melt ice. These assumptions are, however, difficult to validate from

the limited number of observations that exist.

2.4.2 Ocean Circulation and Melting in the Ice Shelf Cavity

General Overview of the Cavity System

Beneath an ice shelf is a body of water whose properties are determined by the

processes of melting and freezing at the base of the ice shelf and by the exchange

of water with the open ocean. At different locations around Antarctica, the

inflowing water entering the cavity originates from different sources, leading to

a distinction between so called cold water and hot water ice shelves. The Ross

and Weddell seas are home to cold water ice shelves. Here, the primary water

source for ice shelf melting is High Salinity Shelf Water (HSSW). Strong katabatic

winds blow sea ice off shore, exposing coastal waters to the cold air. Consequently
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Figure 2.11: Profiles of Amundsen Sea ocean temperature in 2003, from ship
surveys of a shelf-break trough and from the fronts of the Dotson and Getz Ice Shelves.
Top panel, location map; red box marks trough survey. Middle panel, data across the
shelf-break trough, from Walker et al. (2007); white line marks upper boundary of
CDW. Bottom panel, comparison of water temperature profiles from the shelf break
and from the fronts of the Dotson and Getz Ice Shelves, from Shoosmith and Jenkins
(2006). Water column properties vary significantly between the shelf break and the
coastline, indicative of the presence of increased melt-water in the water column close
to the ice shelves.
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sea ice forms, which through the process of brine rejection increases the salinity,

and hence density of the surface waters. These waters sink and then flow along

the inward-sloping seabed to the grounding lines beneath the ice shelves. The

increase in pressure with depth suppresses the freezing point, and so these waters

have sufficient heat to melt ice where they contact the ice shelf base. Because

of the mechanism of HSSW formation, the maximum temperature of HSSW is

limited to the surface freezing point. The heat available for melting is therefore

dependent upon the influx of HSSW, which is governed by the rate of sea ice

formation, and hence the strength of katabatic winds. At hot water ice shelves,

such as those in the Amundsen Sea, there is an alternative ocean source of heat.

Here, warm, dense CDW which normally resides at depth off the continental shelf,

breaches the shelf break and flows along the deep troughs in the continental shelf.

The temperature of CDW is typically 3-4◦C above the in situ melting point and

is therefore capable of driving high rates of basal melting where it meets the base

of an ice shelf. As with cold water ice shelves, it has been suggested that the flux

of CDW onto the continental shelf is controlled by surface winds, although this

time operating at the continental shelf edge to drive CDW upwelling onto the

shelf (Thoma et al., 2008).

Regardless of the origin of the warm water flowing into the ice shelf cavity, the

subsequent melting that occurs where it contacts the ice drives a thermohaline

circulation of water in the ice shelf cavity. Melting near the grounding line (the

deepest part of ice shelf) causes a cooling and freshening of the water, which

decreases its density. This buoyancy drives a turbulent plume of Ice Shelf Water

(ISW), which flows along the base of the ice shelf as it strives to reach shallower

depths and neutral buoyancy (Payne et al., 2007; Jenkins et al., 2010). As it

flows, the ISW plume interacts with the ice above, driving melting or refreezing,

according to its depth, temperature and salinity. Where refreezing occurs, brine

rejection causes a densification of the water, allowing it to sink and once again
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acquire the potential to melt ice at depth. At the base of the plume, the turbulent

flow entrains the warmer water below, providing a further source of heat to melt

ice. The rate at which water is entrained is dependent upon the velocity of the

plume, which in turn is determined by the density contrast between the plume

and the surrounding water. Consequently the entrainment of warmer water, and

thus the continued supply of heat for melting, lessens as the plume rises along the

underside of the ice shelf. As the plume travels towards its exit from beneath the

ice shelf, its path is affected by both the topography of the underside of the ice

shelf and the Coriolis effect (Payne et al., 2007).

In addition to the basic thermohaline-driven system described above, ocean tides

can enhance circulation and melting in the sub-ice shelf cavity, by increasing the

flux of inflowing warm water (Makinson et al., 2011). Tides can also increase

the turbulent mixing of the water column and thus the heat available to melt

ice. At locations where tidal velocities are larger than those generated by the

thermohaline circulation, tidal forcing can become the dominant process governing

cavity circulation and melting. This is likely to be most apparent at cold water ice

shelves which exhibit a weaker thermohaline circulation, and also at locations that

experience large ocean tides, such as the Weddell Sea. In rare cases, tidal mixing

can completely homogenise the water column, thus destroying the thermohaline

circulation (Holland et al., 2008).

Ocean-Driven Melting Beneath Amundsen Sea Ice Shelves

To better understand the role of the ocean in driving glaciological change in

the Amundsen Sea sector of the WAIS requires data detailing interactions at

the ice-ocean interface. It is difficult and expensive to directly measure melting

at the base of ice shelves and so indirect methods, using satellite data and

assumptions of mass conservation, have been developed. Rignot (1998) differenced
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ice flux estimates from two across-glacier transects to estimate that, between the

grounding line and the ice front, the Pine Island Glacier ice shelf had a mean basal

melt rate of 24 ± 4 m yr−1. This calculation was based on the assumption that

the ice shelf was in steady state (i.e. not gaining or losing mass). The basal melt

rate was found to be substantially higher (44 ± 6 m yr−1) immediately seaward

of the grounding line (Rignot, 1998; Rignot and Jacobs, 2002), and an order of

magnitude higher than basal melt rates found underneath other Antarctic ice

shelves (Jacobs et al., 1996; Rignot and Jacobs, 2002). Rignot and Jacobs (2002)

extended the same method to estimate steady-state basal melting immediately

downstream of the grounding lines of other Amundsen Sea ice shelves, recording

values for the Thwaites (34 ± 9 m yr−1), Dotson (20 ± 5 m yr−1), Crosson (18

± 8 m yr−1) and Getz (19 ± 6 m yr−1) ice shelves. Shepherd et al. (2004) used

these estimates, in conjunction with altimeter-derived ice shelf thinning rates and

information regarding the likely spatial distribution of basal melting (Joughin

et al., 2003), to calculate non-steady-state basal melt rates, averaged over the

entire ice shelf (figure 2.12). Shepherd et al. (2004), in agreement with Rignot

and Jacobs (2002), found that rates of melting underneath the Pine Island and

Thwaites ice shelves were substantially higher than underneath other ice shelves

in the Amundsen Sea. Both studies found that basal melt rates were positively

correlated with nearby estimates of ocean temperature (Giulivi and Jacobs, 1997).

This further supported the argument that current glaciological change in this

region is being driven by warm ocean waters.

2.4.3 Tidal Influence on Ice Shelf Dynamics

Earlier in this chapter I discussed the effect of tides upon the ocean circulation

within the ice shelf cavity. When considering the influence of tides within

a coupled ice-ocean system, tides have a more obvious impact; driving the
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Figure 2.12: Estimated net melt rate at the base of Amundsen Sea ice shelves versus
ocean temperature above in situ freezing, from Shepherd et al. (2004). Net melt rate
includes both steady-state rate computed from equations of mass conservation, and
thinning rate determined from altimetry data. The shaded area bounds empirical
relationships for ice melting determined for a selection of Antarctic glaciers (lower
curve, from Rignot and Jacobs (2002)) and laboratory samples (upper curve, from
the data of Russel-Head (1980)).

displacement of the ice shelf as it responds to the tidal motion of the ocean.

The tidally-driven movement of water in and out of the ice shelf cavity induces an

oscillation in the vertical position of the ice shelf. Additionally, tides can influence

the motion of an ice shelf in the horizontal plane, in both the longitudinal (aligned

with flow) and transverse (perpendicular to flow) directions. Several studies

have used GPS data to resolve these processes. The tidal effect on longitudinal

displacement is to produce a modulation in the flow speeds of the ice shelf.

Through longitudinal coupling, this effect propagates upstream of the grounding

line, so that both ice shelf and inland ice stream experience a tidal modulation of

flow at a range of frequencies (Doake, 2002; Anandakrishnan, 2003; Gudmundsson,

2006; Murray et al., 2007). Various phase lags between the tidal displacement and

ice velocity oscillations have been recorded at different ice shelves, and have led to

a range of mechanisms being proposed to explain the modulation of ice flow. These

include the reduction in basal drag experienced by the ice shelf as pinning points
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become partially ungrounded, increases in water pressure beneath the grounded

ice stream and variations in the force exerted by tidal currents passing across the

rough underside of the ice shelf.

In addition to the tidally-driven modulation of ice shelf flow, oscillations in the

transverse direction have also been recorded at the Brunt Ice Shelf (Doake, 2002)

and the Mertz Glacier Ice Tongue (Legresy et al., 2004). The exact causal

mechanism is not well understood, but it is possible that this effect results from

tidal currents acting on the rough base of the ice shelf / ice tongue. In both cases,

the floating ice is unconstrained by land at its lateral margins and so it is plausible

that tidal currents flowing along the coast could pass in a transverse direction

underneath the floating ice, thus producing the observed transverse motion.

Observations of the complex 3-d response of ice shelves to tidal forcing and the

associated modulation of inland ice flow highlight the important role ocean tides

play in controlling the short-period dynamics of ice shelves and the ice streams

that feed them. In studying the longer term evolution of these systems, such

as the changing dynamics of glaciers draining the Amundsen Sea Sector of West

Antarctica, it is therefore important to account for these tidal effects.

2.5 Spatial and Temporal Variability in the Amund-

sen Sea

In this chapter I have detailed a complex picture of glaciological behaviour in the

Amundsen Sea sector of the WAIS. It is likely that the ice sheet is responding to a

range of forcing mechanisms which operate over varying timescales. Furthermore,

there is spatial variability in the response of individual glacier catchments, likely

due to a combination of the subtleties in the forcing mechanisms and the different
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geometries of each catchment. Separating the relative influence of these factors

is challenging, yet it is essential for understanding the processes driving recent

glaciological change.

2.5.1 Causes of Temporal Glaciological Variability

As we have seen, ocean processes may control much of the temporal glaciological

variability in the Amundsen Sea Sector of the WAIS. However, ship-based surveys

provide only spatially and temporally sparse details of the variability in the ocean

properties of the Amundsen Sea. As a result, they cannot alone adequately resolve

the causes of the glaciological change witnessed in the region. For example, we

cannot determine the extent to which temporal changes in ocean properties (e.g.

CDW warming or circulation changes) have driven glacier evolution. It remains

uncertain how spatially and temporally representative the sparse oceanographic

observations are, and as a result their interpretation and significance is unclear.

In view of the limited temporal record provided by oceanographic surveys,

modelling studies have been used to simulate oceanographic variability in the

Amundsen Sea. To investigate the role of CDW variability, Thoma et al. (2008)

conducted oceanographic model simulations for the period 1980-2004. This study

found both seasonal and inter-annual variations in CDW intrusion onto the

continental shelf, and in broad terms, the modelled influx of CDW correlated

well with periods of glaciological stability and change (Rignot, 1998; Joughin and

Padman, 2003; Shepherd et al., 2004). These model simulations indicated that

temporal variability in CDW influx was related to regional wind forcing, with

stronger offshore westerly winds driving increased upwelling of CDW onto the

continental shelf.
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The work of Thoma et al. (2008) suggests a possible indirect link between glacio-

logical change in the Amundsen Sea Sector and atmospheric forcing. Decadal-

scale atmospheric variability may drive ocean variability, which in turn could af-

fect glacier dynamics. Whether such changes can be attributed to anthropogenic

forcing or merely result from natural decadal variability in weather patterns re-

mains uncertain. For example, there is evidence that anthropogenically-driven

climate warming and stratospheric ozone depletion may have caused a southward

shift, and strengthening, in the westerly winds that drive the ACC (Thompson

and Solomon, 2002; Fyfe and Saenko, 2006). This is turn may have driven the

ACC south, bringing it closer to the continental shelf break and increasing CDW

delivery onto the Amundsen Sea continental shelf. Such behaviour would be con-

sistent with observations of ACC warming in recent decades (Gille, 2002), but

at present the reality of such a mechanism driving glaciological change in the

Amundsen Sea remains speculative.

2.5.2 Causes of Spatial Glaciological Variability

Alongside the search to explain temporal glaciological variability, lies a need to

explain the varying behaviour of different glaciers draining into the Amundsen

Sea. What controls the spatial variability in recent rates of ice thinning and

retreat? Bedrock topography is likely to have a strong influence upon glacier

behaviour in several ways; (1) ocean bathymetry will determine the volume of

CDW reaching each ice shelf and, in part, the mixing that occurs underneath each

ice shelf, (2) grounding line depth will determine the availability of ocean heat for

ice shelf melting (via the melting point dependency upon pressure), and (3) sub-

glacial topography will modulate the glaciological response to any forcing (e.g.

bedrock slope determines the sensitivity of a glacier’s retreat rate to its thinning

rate). It may be no coincidence that the glaciers that have undergone the greatest
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acceleration (Pine Island and Smith) both sit in deep, narrow subglacial troughs

(see figures 2.2 and 2.3) (Vaughan et al., 2006; Holt et al., 2006). The relative

influence of these factors upon ice dynamics is not, however, well understood.

Additionally, the influence of bedrock topography has important implications for

the wider evolution of the ice sheet in this region. In particular, geometrical

differences between individual catchments (figures 2.2 and 2.3) are likely to affect

the outcome of retreat in each catchment. The Pine Island Glacier sits in a

confined inward-sloping bedrock trough, which extends ∼ 200 km inland of the

grounding line (figure 2.2). It therefore seems plausible that unstable retreat

could lead to an ungrounding and retreat of the main Pine Island Glacier but

not to the widespread collapse of the WAIS. The Smith Glacier similarly sits in

a confined trough which is smaller in length than the Pine Island Glacier trough.

In contrast to these geometrical configurations, the Thwaites Glacier lies on a

topographically-unconstrained inward-sloping bed (figure 2.3), which gives access

to the deep interior of the WAIS. As such, retreat of the Thwaites Glacier has

a greater potential to initiate a wider WAIS collapse. Thus glaciers which sit in

deep confined troughs may provide a greater contribution to sea level in the short

term, but it is a retreat of the catchments which lie in more open topgraphic

basins that may pose the greatest risk to the long term stability of the WAIS as

a whole.

2.6 Summary of Current Understanding

The following points broadly summarise our current understanding of the be-

haviour of glaciers draining into the Amundsen Sea Sector of the WAIS:
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• Satellite observations show that glaciers draining into the Amundsen Sea

are currently suffering high rates of mass loss.

• Oceanographic surveys, satellite data and modelling studies implicate warm

CDW as the principle driver of this glaciological imbalance.

• Oceanographic models suggest that decadal atmospheric variability may

regulate CDW delivery onto the continental shelf, and so be ultimately

responsible for temporal variability in glaciological behaviour.

• Surveys suggest that bedrock topography plays a role in controlling the

spatial variability of glacier behaviour.

These points demonstrate a broad understanding of what drives change in the

glaciological system in the Amundsen Sea, but at present the details required to

be able to predict its future evolution are lacking. Observations and models have

identified multiple factors which may contribute to the spatial and temporal vari-

ability of glaciological change in this region. These include bedrock topography,

ocean circulation, the spatial and temporal variability of ocean properties, and

temporal variability in atmospheric conditions. Because of current limits in un-

derstanding, arising from sparse observations and model limitations, the relative

importance of these factors remains uncertain. Consequently, separating the ef-

fect of factors that could change over decadal timescales (e.g. CDW inflow), and

indeed could be influenced by humans, from those which will not (e.g. bedrock

topography) is difficult.

To address these limitations, and to understand the wider implications of ongoing

changes for the future evolution of this region, requires the extension of existing

ice-dynamic models to include the oceanic and atmospheric domains. These

models must run at the spatial and temporal resolution required to accurately

simulate the complex interactions between the ice, the ocean and the atmosphere.
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The development of such models requires similar scale observations, to provide

constraint and validation. In remote regions such as the Amundsen Sea Sector of

the WAIS, satellites are well suited to providing these observations.



Chapter 3

Review of Methods

In this chapter I review the methods employed in this thesis, so as to provide

a brief history of the development of the methods that I use and extend, and

also to place these methods within the wider context of current research. Further

detailed descriptions of the processing methods are given in each of the results

chapters, which are presented as journal articles, and so not repeated here.

3.1 Bathymetric Prediction from Sparse Ship Sur-

veys and Marine Gravity Data

Accurate bathymetric maps are vital for numerous applications in the fields of

geology, oceanography, glaciology and biology. Around Antarctica, bathymetric

data provide evidence of past ice sheet behaviour and extent (Lowe and Anderson,

2002; Evans et al., 2006), and of current delivery of ocean heat to the base of ice

shelves (Walker et al., 2007; Thoma et al., 2008). However, the oceans are vast

and ship-based surveys are time-consuming and expensive. As a result, much

43
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Figure 3.1: Bathymetric prediction from satellite altimetry and ship-based depth
soundings, from Smith and Sandwell (1997). Bathymetric coverage does not extend
beyond 72◦S, and so the coastal waters of the West Antarctic Ice Sheet remain
unmapped.
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Figure 3.2: Distribution of ship-based surveys in the Amundsen Sea Sector of West
Antarctica, from Nitsche et al. (2007). Bathymetric detail is still lacking over a large
proportion of this region.

of the ocean remains unsurveyed by ships, and maps based solely upon these

sparse data must resort to extensive interpolation to fill unsurveyed regions.

This is particularly true in the remote Southern Ocean. In the 1970’s, several

studies (Dorman and Lewis, 1970; Lewis and Dorman, 1970; McKenzie and

Bowin, 1976) demonstrated that marine gravity anomalies were correlated with

sea floor topography over a limited range of length scales. Gravity anomalies

cause distortions in the geoid, which can be mapped from measurements of sea

surface slope. With the advent of satellite-based altimeters came the potential

to acquire such data over a large proportion of Earth’s oceans, and so provide

bathymetric detail in the vast regions devoid of ship-based surveys (Dixon et al.,

1983). Following these proof-of-concept studies, Smith and Sandwell (1994, 1997)

developed a global-scale bathymetric map, using a combination of sparse ship

surveys and gravity data derived from the altimeters on-board the Seasat, Geosat

and ERS-1 satellites (figure 3.1).
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Figure 3.3: Marine gravity field adjacent to West Antarctica, determined from
altimeters on-board the ERS-1 and Geosat satellites, from McAdoo and Laxon (1997).
West Antarctic crustal blocks shown are Antarctic Peninsula (AP), Thurston Island
(TI), Ellsworth-Whitmore Mountain (EWM), Marie Byrd Land (MBL), and the Ross
Sea Embayment (RE).
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This bathymetric solution (Smith and Sandwell, 1994, 1997) did not, however,

cover Antarctica’s coastal waters south of 72◦S, because the presence of sea ice

made gravity retrieval unreliable in this region. Consequently, polar bathymetric

maps (Nitsche et al., 2007) are still based solely on ship-based surveys, which

because of the difficulty and expense of accessing such remote regions, are

relatively sparse (e.g. figure 3.2). As a result, much of the bathymetric

detail required to understand the oceanic processes affecting AIS glaciological

change is lacking. Several years after Smith and Sandwell (1994) published their

bathymetric map, altimetry processing techniques were developed so that polar

marine gravity could be resolved with confidence (McAdoo and Laxon, 1997;

Laxon and McAdoo, 1994) (figure 3.3), albeit with lesser accuracy than was

achievable over the open ocean. This has provided the potential for the method

of Smith and Sandwell (1994) to be extended to add additional gravity-derived

detail to polar bathymetric maps. Alongside any such attempt, is a need to assess

the impact of reduced gravimetric accuracy on bathymetric prediction, and the

viability of applying this technique to sparsely surveyed polar regions.

3.2 Tide Model Validation in Antarctic Waters

Signals arising from the ocean tide effect measurements of the Antarctic Ice

Sheet made by a range of satellite sensors, including ice shelf thinning rates from

altimetry (Shepherd and Peacock, 2003), ice shelf velocity from interferometric

synthetic aperture radar (Goldstein et al., 1993) and ice mass changes from

gravimetry (Ray et al., 2003). Tides also affect melting and re-freezing at the

base of ice shelves (MacAyeal, 1984; Joughin et al., 2003; Makinson et al., 2011)

and so the inclusion of accurate tidal forcing improves studies that model ice-

ocean interactions. In all of these applications, tide models have been used to
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simulate the effect of the tide, and so the accuracy of these studies is affected by

the quality of tide model predictions.

In non-polar oceans, tide model accuracy is good - typically 2-3 cm (Andersen

et al., 1995; Shum et al., 1997), primarily because models assimilate satellite data

covering this area. The coastal waters of Antarctica, however, lie beyond the

limits of these data and so, in combination with a lack of in situ tidal records,

relatively shallow waters and sparse bathymetric data, they represent a much

greater challenge for tide models. In this context, ascertaining the accuracy of tide

models in Antarctic waters is an important task, yet it is hampered by the limited

in situ data available for validation. King and Padman (2005) performed such a

validation, based upon the data shown in figure 3.4, and estimated the accuracy

of the best performing tide model to be ∼ 7.5 cm. However, the distribution

of these tidal records around the Antarctic coastline was not uniform (figure

3.4). In particular, the data used to validate the tide models tended either to

be situated close to the data assimilated into the models, or may themselves

have been assimilated into the models. Consequently, this measure of tide model

accuracy may not be representative of model accuracy at remote locations which

are far from in situ records. In the absence of in situ data, remote sensing

observations, and in particular interferometric synthetic aperture radar, can be

used to assess tide model accuracy.

3.2.1 Validating Tide Models with Interferometric Synthetic

Aperture Radar

For the last fifteen years, satellite-based Interferometric Synthetic Aperture Radar

(InSAR) has provided precise, spatially extensive observations of ice motion

(Goldstein et al., 1993; Joughin et al., 1995, 1996a; Kwok and Fahnestock, 1996;

Rignot, 1996; Rignot et al., 2008). InSAR measures differences in the phase of
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Figure 3.4: Distribution of in situ tidal records around Antarctica, from King and
Padman (2005). TG, tide gauge; WS, Weddell Sea; RS, Ross Sea; RIS, Ross
Ice Shelf; FRIS, Filchner-Ronne Ice Shelf; AIS, Amery Ice Shelf; AP, Antarctic
Peninsula (encompassed by blue dashed line); pink dashed line indicates southerly
limit of TOPEX/Poseidon altimetry commonly assimilated into tide models; green
line indicates extent of floating ice; grey lines are bathymetric contours.
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Figure 3.5: Diagram illustrating how horizontal (ice flow) and vertical (e.g. tidal)
ice shelf motion both contribute to the range change detected by InSAR.

the signal recorded in pairs of SAR images, and converts these into changes in

the distance between the satellite and the ice surface. These observations are

used to estimate surface displacement in the satellite’s viewing direction (line

of sight), over the period of the interferometric acquisition, which is typically

several days. The wavelength at which SAR’s operate is well-suited to measuring

centimetre-scale surface displacement via changes in phase, and so SAR’s are

capable of detecting surface height changes caused by ocean tides. InSAR cannot

directly detect the tidal motion of the ocean surface because the water surface

never remains sufficiently stable. However, an ice shelf does provide a surface

which is often stable enough to allow InSAR to detect surface motion. To

avoid directional ambiguities SAR’s are pointed off nadir, and so the detected

signal is sensitive to both horizontal and vertical motion. Consequently, InSAR

displacement measurements of an ice shelf consist of components due both to

ice flow (approximately in the horizontal plane) and the action of the ocean

tide (Goldstein et al., 1993) (figure 3.5). By differencing InSAR displacement
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measurements (so called differential InSAR), the steady component of ice flow

is removed and any non-steady motion isolated (Hartl et al., 1994; Rignot, 1996;

Schmeltz et al., 2001) (figure 3.6). Under the assumption that all non-steady

motion of an ice shelf is a vertical response to the ocean tide, this method

has provided a means to estimate tidal displacement and validate tide model

predictions. As described in section 2.4.3, observations have shown that not all

tidally-driven ice shelf motion is in a vertical direction, and there is often also a

component in the horizontal plane. Thus the signal recorded by InSAR and the

tide model predictions are not entirely comparable. However, unlike the vertical

component, tidal modulation of flow is a long wavelength signal, extending tens of

kilometers inland (Gudmundsson, 2006) and so by measuring tidal displacement

relative to grounded ice close to the grounding line, the effect of flow modulation

can be minimised. InSAR observations have been used to evaluate tide models at

several locations around Antarctica, including the Ross Ice Shelf (Padman et al.,

2003a), the Filchner-Ronne Ice Shelf (Hartl et al., 1994; Rignot et al., 2000) and

the Pine Island Ice Shelf (Rignot, 2002a). At these locations, models have been

able to produce the tidal signal recorded by differential InSAR with an accuracy

of the order of 10 - 20 cm.

Whilst differential InSAR can be used to provide a general validation of a tide

model, it only assesses a model’s ability to reproduce the difference between two

displacements, and not the ability of a model to simulate the tidal displacement

itself (figure 3.7). This method does not, therefore, quantify the accuracy with

which a model can simulate the tidal signal recorded within an interferogram.

Consequently, differential InSAR cannot quantify the effect of tide model error

on InSAR-based ice shelf velocity estimates that utilise tide model predictions to

remove the tidal signal. Furthermore, these methods have not determined what

proportion of the mismatch between tide model predictions and observations is

due to tide model inaccuracies, and what part is due to other non-tidal, non-steady
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Figure 3.6: Differential interferogram of the Pine Island Ice Shelf in the Amundsen
Sea Sector of West Antarctica, from Schmeltz et al. (2001). Each colour cycle (fringe)
represents a 12 radians phase shift, equivalent to ∼ 6 cm vertical displacement of the
surface. The ice shelf lies between the ice front and the densely-spaced fringes running
along the top of the image, which are indicative of the transition from freely-floating
to grounded ice.
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Figure 3.7: The tidal signal recorded in a differential interferogram. SAR 1-4

denote the acquisition times of the four synthetic aperture radar images, I12 and I34

indicate the tidal displacement captured in each interferogram, and I12 - I34 indicates
the displacement signal recorded in a differential interferogram.

ice shelf motion, such as changes in ice shelf height resulting from fluctuations in

atmospheric pressure (the so called Inverse Barometer Effect or IBE ). Finally,

there are only a few studies to date that have utilised InSAR observations to

validate tide models and so tide model accuracy in remote regions of Antarctica,

such as the Amundsen Sea, is still relatively uncertain. Because of the importance

of tide model accuracy to a range of applications, there is a need to (1) develop

further InSAR methods to quantify the error associated with model predictions of

tidal displacement, and (2) conduct further, comprehensive assessments in remote

regions to supplement the few studies to date.

3.3 Satellite-based Methods for Mapping Ice Shelf

Flow

Mapping ice shelf flow provides a means to monitor (1) the stability of ice shelves

and their inland catchments (Rignot et al., 2004; Vieli et al., 2007), (2) the

processes through which ice shelves interact with their surrounding environment

(Joughin and Padman, 2003), and (3) the coupling between floating and grounded

ice (Payne et al., 2004). Satellite-based observations are well suited for mapping

ice shelf flow and for monitoring ongoing changes, as they provide regular and
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spatially extensive coverage. Early studies used data from sensors operating at

optical frequencies to develop techniques to map the flow of inland (grounded)

(Bindschadler and Scambos, 1991) and floating (Lucchitta and Ferguson, 1986)

ice. These studies demonstrated that ice flow speeds could be determined by

tracking the movement of surface features in co-registered pairs of satellite images.

However, usable data acquired over this waveband was limited because (1) the

ice surface was often hidden by cloud cover, (2) data acquired at night was not

usable, and (3) the ice surface was featureless over much of the ice sheet. In view of

these limitations, synthetic aperture radar (SAR) provides a valuable alternative

source of data. Operating at microwave frequencies allows the penetration of

clouds, reveals trackable patterns over apparently featureless ice surfaces and

allows meaningful surface displacement information to be derived from phase

changes in the returned signal. Being an active system (i.e. emitting its own

radiation), it is not reliant upon ambient solar radiation, and so can also operate

at night. Several different SAR techniques have been utilised to map ice shelf

flow from SAR imagery. These are described below.

3.3.1 Mapping Ice Shelf Flow with Synthetic Aperture

Radar Feature Tracking

Using methods analogous to those employed to track features in optical imagery,

estimates of ice flow have been determined from pairs of SAR images by measuring

the displacement of features, such as crevasses, recorded in the amplitude of the

returned signal (Werner et al., 2001; Strozzi et al., 2002; Luckman et al., 2003;

Luckman and Murray, 2005; Luckman et al., 2006) (figure 3.8). When the pair

of SAR images are coherent (i.e. there is a good degree of correlation between

the signals recorded at each acquisition), two additional tracking methods can

be used. These offer improved spatial and temporal precision, and can detect
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Figure 3.8: Surface velocity vectors (white arrows) of the Pine Island Ice Shelf,
determined using the technique of SAR intensity tracking, from Lucchitta and
Rosanova (1997).
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displacement over apparently featureless terrain. Speckle tracking matches small-

scale trackable patterns (referred to as image speckle) in either the backscatter

amplitude, or the complex (amplitude and phase) images (Gray et al., 1998;

Michel and Rignot, 1999; Gray et al., 2001; Joughin, 2002). Coherence tracking

matches similar patterns based purely on the phase of the returned signal (via an

optimisation of the phase coherence between patches of the SAR image pair)

(Derauw, 1999; Werner et al., 2001; Pattyn and Derauw, 2002). With both

techniques, the patterns that are tracked relate to the configuration of individual

scatterers within a resolution cell. These patterns only persist for as long as

the scatterer configuration remains stable and so limit these coherence-based

techniques to measuring displacement over typically daily to weekly timescales.

Using these techniques, displacement can be measured with an order of magnitude

improvement in accuracy, as compared to methods that track features in optical

imagery (Gray et al., 1998). These techniques for mapping ice flow from SAR data

have been readily applied to map ice shelf flow speeds (Luckman and Murray,

2005; Rignot, 2008).

3.3.2 Mapping Ice Shelf Flow with Interferometric

Synthetic Aperture Radar

Synthetic aperture radar data can also be used to map ice flow using the technique

of radar interferometry (Goldstein et al., 1993; Joughin et al., 1995, 1996a; Kwok

and Fahnestock, 1996; Rignot, 1996; Luckman et al., 2002; Rignot et al., 2008).

This technique has the potential to provide a higher spatial resolution, precision

and accuracy than the tracking methods described above (Werner et al., 2001;

Joughin, 2002; Massom and Lupin, 2006). As described in section 3.2.1, when

a SAR images an ice shelf, the measured displacement consists of motion from

ice flow, the action of the ocean tide and variations in atmospheric pressure. To
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map ice flow, these other signals must be removed. Commonly, in the case of

the tidal signal, this has been achieved by using a tide model to simulate the

difference in tide height at the times of the SAR acquisitions (Rignot and Jacobs,

2002; Joughin et al., 2003; Rignot et al., 2004; Vieli et al., 2006). An alternative

technique was proposed by Rignot (1996), whereby ice shelf flow speeds at a

limited number of locations were determined by tracking crevasses in a pair of

SAR backscatter images. This allowed the tidal signal to be isolated at these

locations. In both methods, the predicted tidal amplitude was combined with

a map detailing the pattern of tidal displacement (determined using differential

InSAR, see section 3.2.1), to estimate tidal displacement over the whole ice shelf.

This signal was then removed from the original interferogram, producing a map

of ice flow, with any IBE signal ignored. Both of these methods for isolating

the flow component of the InSAR displacement signal have limitations. In the

case of the method which uses model predictions, errors arise from the limited

accuracy of model simulations of the tidal signal. In the case of the method

that uses tracking displacement estimates (Rignot, 1996), there is a reliance upon

tracking data, which has an inferior accuracy and precision to InSAR (Werner

et al., 2001). For example, in the study of Rignot (1996) tracking velocities were

calculated over a one year period, and as such these velocity estimates may vary

from the daily-scale displacement recorded in an interferogram. In both methods,

because displacement is measured over a short time period, an anomalous period

of flow may be captured (e.g. because of tidal modulation of flow) and this may

lead to inaccuracies when scaling to an annual velocity.
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3.3.3 Comparison of SAR Techniques for Mapping

Ice Shelf Flow

The methods described above for mapping ice shelf flow each have advantages

and disadvantages. Typically, when mapping ice flow, InSAR provides the

greatest accuracy, precision and spatial resolution, followed by coherence-based

tracking approaches (coherence tracking and speckle tracking), followed in turn

by incoherent tracking approaches (incoherent intensity tracking) (Werner et al.,

2001; Joughin, 2002; Strozzi et al., 2002; Massom and Lupin, 2006). All coherence-

based techniques (InSAR and tracking) are ineffective when coherence is not

maintained. This constraint limits the quantity of data available; both in the

exclusion of regions which do not exhibit a coherent signal (e.g. because of high

precipitation rates), and because only image pairs separated by a short time

period can be used. Incoherent tracking approaches, on the other hand, do not

suffer these constraints, but do instead require larger scale (i.e. spanning multiple

pixels) surface features, such as crevasses, that can be tracked. Also, because

incoherent techniques typically track features over a much longer time period,

they suffer less contamination from short period effects, such as from tide- and

atmospheric pressure-related motion of the ice shelf. Unlike tracking methods,

InSAR only measures ice flow in a single dimension and so, without additional

information, a second viewing direction is needed to determine ice flow velocity

vectors. Often there is insufficient data to achieve this, and so a tracking solution

must be used to provide a second component of the velocity field. In light of

these considerations, the most suitable technique will vary depending upon the

application, data availability and region of study, and often a combination of

approaches (Joughin, 2002) will provide the most effective solution.
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3.4 Summary

In this chapter I have provided a brief review of the techniques employed in this

thesis. The following three chapters describe the work undertaken in this thesis.

Each of these chapters takes the form of a journal article, and details of the

publication status of each article precede each chapter. Chapter 4 details work

to produce a new bathymetric map, Chapter 5 provides an assessment of tide

models and Chapter 6 outlines a new method for mapping ice shelf flow. Each

study focuses upon the Amundsen Sea, and demonstrates the utility of satellite-

based radar data to studying ice-ocean interactions. In Chapter 7 I describe

how the three results chapters address the aim of my thesis and provide new

datasets and methods that will contribute to an improved understanding of ice-

ocean interactions in the Amundsen Sea.
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4.1 Abstract

Bathymetric charts are essential for modelling oceanic processes, yet in remote

areas direct measurements of seafloor depth are often scarce. It is possible to

augment sparse depth soundings with dense, satellite-derived gravity data, to

provide additional bathymetric detail in regions devoid of sounding data. We

demonstrate this method by using marine gravity derived from the European

Remote Sensing (ERS-1) satellite altimeter, combined with depth soundings,

to form a bathymetric prediction of the Amundsen Sea, West Antarctica. We

estimate the root mean square error of depth estimates at un-surveyed locations

in our solution to be ∼ 120 metres. We use a Monte Carlo method to assess

the value of gravity as a bathymetric predictor in sparsely surveyed regions, by

comparing our solution to predictions formed from depth soundings alone. When

less than ∼ 11 % of 10-km grid cells contain depth soundings, inclusion of gravity

data improves the depth-accuracy of the solution by up to 17 %, as compared to

a minimum curvature surface interpolation of the depth soundings alone. When

depth data are sparse, our gravity-derived prediction reveals additional short-

wavelength bathymetric features, such as troughs on the continental shelf, which

are not resolved by interpolations of the depth soundings alone.

4.2 Introduction

Approximately 70 % of Earth’s surface lies below sea-level, yet in comparison

to Earth’s land-masses, the topography of the ocean floor, especially in the

Southern Ocean, is not well known (Smith, 1993). Ship-based surveys of seafloor

topography provide incomplete coverage due to the limited opportunities available

for acquiring data, and there still exist areas as large as 105 km2 with no sounding

data (Marks and Smith, 2006). Because bathymetric predictions aid scientific
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advancement across a diverse range of fields - oceanography, marine biology and

geology, to name a few - it is important that, in sparsely surveyed regions,

additional techniques are utilised to allow the incorporation of complementary

data.

A number of studies (Dorman and Lewis, 1970; Lewis and Dorman, 1970;

McKenzie and Bowin, 1976) have shown that, over a restricted range of length-

scales, anomalies in the marine gravity field are well correlated with topographic

variations. Dixon et al. (1983) compared known bathymetry with one-dimensional

marine gravity anomalies derived from satellite altimetry and demonstrated that

filters could be developed to predict topographic variation from these gravity

data. After the declassification of Geosat data (acquired between March 1985 and

September 1986), Smith and Sandwell (1994, 1997) combined satellite altimetry

from the Geosat, Seasat and European Remote Sensing (ERS) 1 satellites, along

with depth sounding data, to map ocean bed topography between 72◦S and

72◦N. Dense satellite altimetry was used to derive gravity anomalies, and this

was converted to seabed topography with the aid of the sparse ship-based depth

measurements, which were used for model calibration. This method achieved a far

greater uniformity of coverage than was possible with depth sounding data alone

and resolved additional bathymetric detail in the areas between sparse ship tracks.

Although this published prediction was limited to regions north of 72◦S, and so

excluded almost all of West Antarctica’s coastal waters, an updated version of this

dataset is now available (http://topex.ucsd.edu/WWW html/mar topo.html),

which incorporates ship tracks south of 72◦S and an extended gravity field.

However, the accuracy of this solution has yet to be determined, and the extent to

which gravity data can improve polar bathymetric solutions derived solely from

ship-based depth soundings (Nitsche et al., 2007) remains unclear. In this paper,

we augment ship-based depth soundings with dense satellite altimeter derived

marine gravity data (McAdoo and Laxon, 1997) to produce a bathymetric map
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of the Amundsen Sea, and assess the value of gravity as a bathymetric predictor

in this region.

4.3 Data and Method

Our area of study comprises the region from 90◦W to 120◦W, and extends north

from the Antarctic coast to 68◦S. In this region ship-based depth soundings

are more abundant than in other Antarctic waters, and so we were able to

form bathymetric predictions using quantities of depth soundings typical of

more sparsely surveyed regions, whilst retaining additional data for the purpose

of model assessment. Additionally, the bathymetry in this region exhibits a

variety of different length-scale features, and the area is of interest to current

glaciological and oceanographic studies (see, for example, Thoma et al. (2008)).

Ship-based depth measurements (figure 4.1a) were acquired from 15 single-beam

and multi-beam survey missions (ELT11, ELT17, ELT33, ELT42, DSDP35GC,

THB80, DF85, PD190L02, RITS94B, NBP92-08, NBP94-02, NBP95-05, NBP96-

02, NBP99-02, NBP00-01). These data are well distributed over our study area,

although we note that more recent acquisitions (see Nitsche et al. (2007), not

available to us) offer greater coverage in some regions.

Several free air gravity anomaly maps for the area of interest exist (McAdoo and

Laxon, 1997; Sandwell and Smith, 2005, 2009). We chose to use the map derived

by McAdoo and Laxon (1997) (figure 4.1b), because the altimeter waveform re-

tracking procedure used to form the solution was optimised for regions covered

with sea ice. Consequently this solution has a reduced noise level over such

regions (Peacock and Laxon, 2004), as compared to solutions formed using a

re-tracker designed for open ocean (Sandwell and Smith, 2009). Variations in

the marine gravity field manifest themselves as topographic features on the sea
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surface, which can be measured by satellite based altimeters and used to derive

marine gravity anomalies (McAdoo and Marks, 1992; Sandwell, 1992; Sandwell

and Smith, 1997; Peacock and Laxon, 2004). The gravity anomaly map (figure

4.1b) utilises altimetry data from the ERS-1 satellite, which has a sufficiently high

orbit inclination angle (98.5◦) to give the coverage required to map the continental

shelf region of the Amundsen Sea. Data were collected during the ERS-1 satellite

Geodetic Mission (April 1994 - March 1995), and consist of densely spaced (∼ 3

km at 72◦S) ground tracks. These were supplemented with five additional cycles

of ERS-1 35-day repeat data, which allowed data gaps occurring in any individual

cycle of data to be filled, and random errors or noise in individual data profiles

to be reduced via temporal averaging. The presence of sea ice on the Amundsen

Sea surface increases the uncertainty associated with standard altimeter-derived

sea-surface elevation measurements. To minimise this uncertainty, many months

of ERS-1 data were averaged, ERS-1 returns from large icebergs were edited

out and the full altimeter waveform data were used, which enabled the range

difference between the leading edge of the waveform and the range given by the

instrument’s on-board tracker to be estimated (Laxon and McAdoo, 1994). The

resulting offset was used to apply a correction and to reduce the noise associated

with the presence of sea ice (Laxon, 1994; Peacock and Laxon, 2004). For the

purpose of this study, we chose to grid both the depth sounding data and the

gravity data at 10-km resolution.

Flexural isostatic compensation theory describes how the lithosphere acts under

a topographic load and can be used to construct a function (termed gravita-

tional admittance) that relates variations in seafloor height to gravity anomalies

(Smith and Sandwell, 1994). By inverting this function it is possible to predict

bathymetry from gravity anomalies. This prediction is limited to a restricted

range of length scales (between ∼ 15 km and the flexural wavelength of the litho-

sphere), over which the relationship between gravity and topography is adequately



CHAPTER 4. Amundsen Sea Bathymetry from Marine Gravity Data 65

Figure 4.1: a. Gridded depth sounding tracks; b. Gravity anomalies derived from
satellite altimetry (large anomalies omitted from colour scale).

characterised by a linear approximation (Smith and Sandwell, 1994). At wave-

lengths longer than the flexural wavelength of the lithosphere, which is typically

between 135 and 800 km (Smith and Sandwell, 1994), lithospheric isostatic com-

pensation almost completely cancels any topographic effect on the gravity field,

and so variations in bathymetry do not correspond to variations in the gravity

anomaly. At short (sub 15 km) wavelengths, the signal to noise ratio of the gravity

field is small, and so variations in the measured gravity anomaly do not necessar-

ily represent topographic variation (Smith and Sandwell, 1994). Consequently,

outside of this restricted waveband, gravitational admittance tends towards zero

and bathymetric prediction is unreliable. Following the method of Smith and

Sandwell (1994), we construct high- and low-pass filters (equations 4.1 and 4.2,

respectively, and figure 4.2) to remove long- and short-wavelength features that

fall outside of this restricted waveband.
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W1(k) = 1 − exp[−2(πks)2] (4.1)

W2(k, d) = [1 + 9500k4 exp(4πkd)]−1 (4.2)

Equation 4.1 defines a Gaussian high-pass filter as a function of wavenumber, k,

which is used to suppress wavelengths longer than the flexural wavelength of the

lithosphere. s is a parameter that controls the shape of the filter. Because the

precise flexural wavelength of the lithosphere in this region is not well constrained

within the 135-800 km range, we choose a value of 60 km for the parameter s (as

compared to a value of s = 30 km in Smith and Sandwell (1994)), and consequently

W1 has half amplitude when k−1 = 320 km. This choice of s maximised the

improvement gained by the inclusion of the filtered gravity data. Equation 4.2

is a function of wavenumber, k, and the regional water depth (in km), d. For a

regional depth of 2.5 km (the mean of our depth sounding dataset) W2 has a half

amplitude when k−1 = 16 km. The combined band pass filter, W1W2, is shown

in figure 4.2.

We calculate the relationship, S, between the filtered gravity and topography on

a coarse (135 km) grid, using a method similar to that of Smith and Sandwell

(1994). At every point we form a linear regression between all depth sounding

data within a 135 km radius and the corresponding gravity data. We use this

regression to estimate the relationship between gravity and topography at that

location. Where there is insufficient depth sounding data nearby, or there is a

poor correlation between depth soundings and gravity anomalies, a global solution

based upon all depth soundings in the study area is used. The magnitude of the

correlation between all depth soundings and the corresponding gravity anomalies

is 0.58. The resulting grid is re-sampled to the resolution of the gravity data



CHAPTER 4. Amundsen Sea Bathymetry from Marine Gravity Data 67

Figure 4.2: The band-pass filter W1W2 (equations 4.1 and 4.2) plotted as a function
of wavenumber, k (km−1), for a range of regional sea floor depths.
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and then multiplied by the gravity data to estimate seafloor topography over the

same waveband. By allowing S to vary, it is possible to account for regional

differences in ocean floor density, caused by variations in ocean bed material

and, in particular, the depth of sediments on the seabed. Long (greater than

320 km) wavelength topography is added to our prediction by low-pass filtering

an interpolation based upon our depth sounding dataset. Finally, we force our

prediction to fit the depth sounding data.

4.4 Results and Model Assessment

We use the method described above to generate a bathymetric map of the Amund-

sen Sea, West Antarctica (figure 4.3). This map utilises data with a uniformity

of coverage not offered by the depth sounding data alone. Our prediction resolves

a varying continental shelf break gradient and mounds extending seawards of the

shelf break. On the continental shelf, deep (exceeding 600 metres) troughs extend

from beneath the Pine Island, Thwaites, Crosson, Dotson and Getz ice shelves,

all of which have undergone thinning in recent years (Shepherd et al., 2004).

To assess the performance of our model, and the benefits of using gravity

data to reduce bathymetric uncertainty in sparsely-surveyed polar waters, we

used several different interpolation schemes to form solutions based solely on

the depth sounding data. We constructed a triangulation network and used a

bilinear interpolation scheme to form a bathymetric solution. We also used a

natural neighbour interpolation scheme and a minimum curvature surface (MCS)

interpolation scheme to form alternative solutions. These interpolations were

implemented using standard interactive data language (IDL) routines. We ran

a Monte Carlo simulation to compare our gravity-derived prediction with these

interpolations. In each case, we ran all models with the same, randomly selected,
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Figure 4.3: Bathymetric prediction from gravity anomalies and ship-based depth
soundings, Amundsen Sea, West Antarctica. Dashed red line indicates the location
of the transect shown in figure 4.5; Abb, Abbot Ice Shelf; PI, Pine Island Ice Shelf;
Thw, Thwaites Ice Shelf; Cro, Crosson Ice Shelf; Dot, Dotson Ice Shelf; Get, Getz Ice
Shelf.
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subset of the gridded depth sounding data. We then compared a randomly

selected fraction of the remaining gridded depth soundings (equating to ∼ 400 grid

cells) with each model’s estimate of depth at those locations. We repeated this

process, running the models with ten different random selections of sounding data

and defined the model error to be the root mean square deviation (RMSD) of all

(∼ 4000) model estimates from the coincident observed depth values. We adopted

the RMSD of the predicted depth from the withheld data as a measure of model

accuracy because this function penalises increases in both the magnitude and the

range of a model’s deviation from the actual depth (both factors are important

in assessing the performance of a model). We repeated this comparison, using

varying fractions of the depth sounding dataset as model input, to investigate

how the density of depth soundings affected model performance. During this

process, the proportion of 10-km ocean grid cells containing at least one ship-

based depth sounding observation (hereafter referred to as the density of sounding

data) ranged from 0.5 % to 11.1 %. The fraction of sounding data used to validate

each model was kept constant throughout.

Our assessment (figure 4.4) indicated that the accuracy of solutions based solely

on depth soundings was highly sensitive to the choice of interpolation scheme. For

example, the solution based on a MCS interpolation scheme returned, on average,

a 36 % improvement in accuracy as compared to a bilinear interpolation of the

depth soundings. The accuracy of the natural neighbour interpolation scheme

varied greatly as a result of occasional instances where there was a very large

deviation of the solution from the measured depth. Of the bathymetric predictions

based on depth soundings alone, we found that the solution formed using a MCS

interpolation scheme gave the most accurate results, regardless of the density of

depth soundings used for the interpolation. Next, we compared the MCS solution

with our gravity-derived prediction (figure 4.4). For all densities of depth sounding

data analysed in this assessment (0.5 % - 11.1 %), the inclusion of gravity data
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Figure 4.4: Comparison of the accuracy of the gravity-derived Amundsen Sea
bathymetry, with the accuracies of bathymetries formed using different interpolations
of the depth sounding data alone. The root mean square deviation of the model
from withheld depth soundings is used to assess model accuracy. Each data point
is calculated from ∼ 4000 grid cells, collected over ten model runs, where model
estimates of depth are compared to withheld depth soundings. Root mean square
deviations greater than 800 metres are not shown.
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improved the accuracy of the solution. The mean and maximum improvement

offered by our gravity-derived solution over the MCS interpolation was 10 %

and 17 %, respectively. For densities of depth sounding data close to zero, the

accuracy of the gravity-derived model was relatively low, reflecting a lack of data

with which to calibrate the model. As the density of data increased, the accuracy

of the gravity-derived solution rapidly improved, suggesting that a reasonable

degree of certainty can be achieved with sparse depth sounding data. In other

regions around Antarctica, ship-based depth data are considerably less abundant

than in the Amundsen Sea, and so it is encouraging that our model reduces the

level of uncertainty at low data densities. Furthermore, as the depth sounding

density increased, the accuracy of the gravity-derived prediction improved at a

higher rate than the MCS solution, with the inclusion of gravity data offering

the greatest benefit (relative to the MCS solution) when the density of depth

soundings was ∼ 3 %. As the density of depth soundings increased further,

our gravity-derived solution continued to outperform the MCS solution, but the

margin of improvement tended to decrease - a consequence of the diminishing

impact of gravity data once a large number of depth soundings are available to

guide the model. Consequently, our study indicates that when the density of

gridded depth sounding data is less than ∼ 11 %, (1) the choice of interpolation

scheme can greatly affect the RMSD-accuracy; and (2) incorporating gravity data

into a bathymetric prediction will give further benefits. We note that, when this

technique is applied elsewhere, both the range of data densities over which gravity

adds value, and the magnitude of the improvement achieved, may vary as a result

of the quality of the gravity data and the topography of the area being mapped.

To obtain an estimate of the accuracy of our final bathymetric prediction, we

modelled the relationship between the density of depth soundings and the RMSD

of our gravity-derived model. This relationship was well approximated (R2 = 0.98)

by a power law and indicated that our bathymetric prediction, when formed using
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our entire depth sounding dataset, could be expected to have a RMSD of ∼ 120

metres.

Several authors (Rignot and Jacobs, 2002; Payne et al., 2004; Shepherd et al.,

2004; Walker et al., 2007) have concluded that recent glaciological changes in the

Amundsen Sea sector of the WAIS (Shepherd et al., 2002; Davis and Ferguson,

2004; Rignot, 1998) have been caused by high rates of ocean-driven ice shelf

melting, resulting from the flow of relatively warm Circumpolar Deep Water

(CDW) to the coast (Jacobs et al., 1996). The routing of CDW is dependent

upon troughs on the continental shelf sea floor and so models of CDW flow require

accurate maps of the structure and extent of these troughs. The length-scales of

these troughs are such that they typically fall within the waveband over which

gravity adds bathymetric detail. Consequently, gravity-derived bathymetric

solutions are well suited for mapping these features, in particular in regions around

Antarctica where depth soundings are sparse. Figure 4.5 illustrates such a scenario

from our study area, whereby the addition of gravity data resolves a trough (of

width ∼ 100 km) on the continental shelf. Both the gravity-derived solution and

the MCS interpolation transects shown in figure 4.5 were obtained using the same

subset of depth soundings, which occupied ∼ 1 % of grid cells in our study area.

In each case, the transect was obtained from the full 2-dimensional solution, and

was thus constrained both by data along the transect and by nearby data on either

side of the transect. Further depth soundings located along the transect, which

were not used to constrain either model, were used to assess model performance.

Although both models provide an accurate map of the large, long-wavelength

depth variation of the continental shelf break (figure 4.5a), the gravity-derived

solution provides greater mid- and short-wavelength topographic detail (figure

4.5b, long-wavelength topography removed). In particular, the gravity-derived

solution resolves the ∼ 500 metre deep, 100 km wide trough on the continental
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Figure 4.5: Comparison of gravity-derived Amundsen Sea bathymetry, with a
bathymetry determined by a minimum curvature surface interpolation of depth
soundings alone, along a transect (location shown in figure 4.3). Also shown are
ship-based depth soundings that were excluded from both predictions and used to
validate both models, and the gravity anomaly along the transect. a. sea-floor depth.
b. local topographic variation, formed by removing long-wavelength topography.
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Figure 4.6: The ratio, S, of band-passed topography over gravity. For reference,
bathymetric contours are shown (black lines, from figure 4.3). The ice sheet has been
masked in yellow.

shelf floor (600-700 km along the transect), which the MCS interpolation fails to

predict.

The presence of sediment can diminish the effectiveness of gravity as a bathymetric

predictor, as the assumption is made that topographic variations correlate with

variations in ocean floor mass. For example, if sediments (of a typically lower

density than the underlying bedrock) preferentially fill topographic hollows (e.g.

troughs on the continental shelf) then the bed topography will become flatter,

whilst the gravity anomaly will reflect the steeper topography of the underlying

bedrock. In such cases, the correlation between topography and gravity will be

low and consequently we reject our local value of S in favour of the S value

estimated from all data. S is plotted in figure 4.6. We find that low correlations

in the locally-calculated S occur close to the coast in Pine Island Bay and in the

deep ocean seaward of the continental shelf break. Close to the Pine Island Bay
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shoreline, this may be because glacial sediments mask complex underlying bedrock

topography. In the deep ocean, the lack of correlation may be accentuated by the

decreased topographic relief, which will result in a relative increase in the influence

of noise in the gravity field. At locations where there is a high local correlation

between gravity and topography, S will vary as a function of the sea floor density.

Specifically, increases in S are likely to be indicative of areas where the sea floor

is less dense. There is a region of higher S just seaward of the continental shelf

break, which I speculate may reflect the off-shelf sediment mounds that have been

mapped in this region (Dowdeswell et al., 2006). However, if this is the case, it is

unclear why S is not elevated along the entire shelf break, and what causes the

depressed value of S in the Western sector.

4.5 Conclusions

We have developed and evaluated a bathymetric prediction of the Amundsen Sea,

West Antarctica, which incorporates ship-based depth soundings and satellite-

derived gravity data. We estimate the root mean square depth deviation of our

solution from the actual depth at un-surveyed locations to be ∼ 120 metres. Our

prediction resolves a varying continental shelf break gradient, mounds extending

seaward of the continental shelf break and troughs in the continental shelf that

exceed 600 meters depth for much of their length. We perform a Monte Carlo

simulation to assess the improvement in depth-accuracy offered by incorporating

gravity data into our solution. We find that (1) in sparsely surveyed regions (where

less than 11 % of 10-km grid cells contain depth soundings), incorporating gravity

data into the bathymetric prediction improves model accuracy; (2) in sparsely

surveyed regions, the accuracy of bathymetric predictions is highly dependent

upon the choice of interpolation scheme; (3) the inclusion of gravity data offers

the greatest benefit when ∼ 3 % of 10-km grid cells contain depth-soundings; and
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(4) although an interpolation based solely on sparse depth soundings accurately

resolves large-scale features, it omits shorter wavelength features that are not

covered by depth sounding data, and that can be resolved with the inclusion of

gravity data. Our study demonstrates that gravity data can retrieve bathymetric

detail beneath polar seas, and so can improve bathymetric mapping in such regions

where depth soundings are scarce, such as sparsely surveyed Antarctic coastal

waters.
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5.1 Abstract

This study assesses the accuracy of tide model predictions in the Amundsen Sea

Sector of West Antarctica. Tide model accuracy in this region is poorly con-

strained, yet tide models contribute to simulations of ocean heat transfer, and to

the removal of tidal signals from satellite observations of ice shelves. I use two

satellite-based interferometric synthetic aperture radar (InSAR) methods to mea-

sure the tidal motion of the Dotson Ice Shelf at multiple epochs; a single-difference

technique that measures tidal displacement, and a double-difference technique that

measures changes in tidal displacement. I use these observations to evaluate pre-

dictions from three tide models (TPXO7.1, CATS2008a opt and FES2004). All

three models perform comparably well, exhibiting root mean square deviations

from the observations of ∼ 9 cm (single-difference technique) and ∼ 10 cm (double-

difference technique). Care should be taken in generalising these error statistics

because (1) the Dotson Ice Shelf experiences relatively small semidiurnal tides,

and (2) my observations are not sensitive to all tidal constituents. An error anal-

ysis of my InSAR-based methods indicates measurement errors of 7 cm and and 4

cm for the single- and double-difference techniques, respectively. A model-based

correction for the effect of fluctuations in atmospheric pressure yields a ∼ 6 %

improvement in the agreement between tide model predictions and observations.

This study suggests that tide model accuracy in the Amundsen Sea is compara-

ble to other Antarctic regions where tide models are better constrained. These

methods can be used to evaluate tide models in other remote Antarctic waters.

5.2 Introduction

Floating ice shelves fringe around one third of Antarctica’s coastline (Sugden,

2009) and regulate the rate at which ice mass is lost from the continent. As a
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consequence of being in contact with both the ocean and the warmer air around

the ice sheet’s margin, they are particularly sensitive to changes in atmospheric

(Vaughan and Doake, 1996) and oceanic (Rignot and Jacobs, 2002; Shepherd

et al., 2004) conditions. Many studies have documented late-twentieth century

ice shelf retreat (Vaughan and Doake, 1996; Rignot, 1998; Cook and Vaughan,

2010) and collapse (Rott et al., 1996; Scambos et al., 2009), and have identified

the ocean and atmosphere as having driven these changes. Although the steric

effect of ice shelf mass loss upon sea level is small (Shepherd et al., 2010), an

indirect dynamical response (De Angelis and Skvarca, 2003; Rignot et al., 2004,

2005) resulting from reduced buttressing of upstream ice may provide a much

larger sea level contribution (Payne et al., 2004; Pfeffer et al., 2008). Until this

mechanism is incorporated into model predictions of the response of the Antarctic

Ice Sheet (AIS) to changing climatic conditions, the future sea level contribution

of the AIS remains uncertain. In this context, continued monitoring of ice shelf

behaviour is essential.

Tide models contribute to our understanding of the response of the AIS to changes

in its surrounding ocean environment. Tides are one of the principle drivers

of ocean mixing beneath ice shelves and therefore tide models are an essential

component of modelling studies of ice-ocean interactions (Makinson et al., 2011).

Tide models are also used to correct for the tidal signal in many satellite-based

interferometric synthetic aperture radar (InSAR) methods to estimate ice shelf

flow (Rignot and Jacobs, 2002; Joughin et al., 2003; Rignot et al., 2004; Vieli

et al., 2006). Such methods are used to assess ice shelf stability and the processes

through which ice shelves interact with the atmosphere, the ocean and grounded

ice upstream (Joughin and Padman, 2003; Vieli et al., 2007). In a similar fashion,

tide models have been used to remove unwanted tidal signals from altimetry-

derived estimates of ice shelf surface height (Bamber et al., 2009) and from time
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series of satellite-based gravity measurements (Ray et al., 2003). The accuracy of

tide models impacts directly upon the accuracy of such observations.

The waters around Antarctica present a challenge for tide models because (1)

satellite altimeter observations commonly assimilated into models (Egbert et al.,

1994) do not extend to Antarctic coastal waters, (2) in situ tidal records are

sparse (King and Padman, 2005), (3) ocean bathymetry is relatively uncertain,

and (4) water column thickness beneath ice shelves is generally not well known.

Consequently, tide models perform less well around Antarctica than at more

northerly latitudes (King and Padman, 2005; King et al., 2011). Where in situ

records exist, these can be used to evaluate tide models. However, large portions of

the Antarctic coastline lack such records, and in these regions tide model accuracy

is less certain. Satellite observations have been used to assess the accuracy of

Antarctic tide models, including the techniques of laser altimetry (Padman and

Fricker, 2005), radar altimetry (Fricker, 2002; Shepherd and Peacock, 2003) and

InSAR (Rignot et al., 2000; Rignot, 2002a; Padman et al., 2003a). The utility

of InSAR as a technique for measuring tidal motion was first demonstrated by

Hartl et al. (1994) in a study of the Filchner-Ronne Ice Shelf. Later studies

further developed this InSAR-based approach to (1) evaluate tide models at the

Pine Island (Rignot, 2002a) and Ross (Padman et al., 2003a) ice shelves, (2)

demonstrate that InSAR could resolve small-scale tidal detail which was useful for

model development (Rignot et al., 2000), and (3) describe a theoretical analysis of

how individual tidal constituents could be determined from InSAR data (Rignot

et al., 2000).

At present, tide model accuracy in the Amundsen Sea Sector of West Antarctica

remains relatively uncertain. Only one study (Rignot, 2002a) has performed an

assessment of a tide model in this region, which forms part of a 75◦ arc of coastline

lacking (as of 2005) any in situ tidal records (King and Padman, 2005). InSAR-

based studies hold the potential to evaluate tide models in this region. However,
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a comprehensive assessment of the errors affecting InSAR observations of ice

shelf tidal motion has yet to be conducted. Here I investigate the utility of two

interferometric methods for evaluating ocean tide models. I firstly quantify the

measurement error associated with each interferometric method and then assess

the accuracy with which three tide models are able to predict tidal motion of the

Dotson Ice Shelf in the Amundsen Sea.

5.3 Theoretical Background

The application of interferometric synthetic aperture radar to mapping ice motion

has been well documented (Goldstein et al., 1993; Joughin et al., 1995, 1996a;

Kwok and Fahnestock, 1996; Rignot, 1996). Here, I provide only a short overview

of the methods relevant to this study. InSAR provides a measurement of ground

displacement that is of superior precision and spatial resolution to other remote

sensing methods, such as synthetic aperture radar (SAR) intensity tracking

(Werner et al., 2001; Massom and Lupin, 2006). It is however limited by its

dependency upon surface coherence (i.e. the maintenance of a stable configuration

of scatterers within each resolution cell). As such, it performs best over short time

periods, typically measuring surface displacement over a period of several days.

InSAR utilises SAR image-pairs to measure relative changes in the phase of the

signal returned from a scattering surface. For any given pixel in a co-registered

SAR image-pair, the unwrapped interferometric phase difference, ϕ, is related to

the difference in the pixel-to-satellite range, ∆r, by:

ϕ =
4π

λ
∆r (5.1)

where λ is the radar wavelength (∼ 5.7 cm for the European Remote Sensing
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(ERS) satellites used in this study). For repeat-pass SAR acquisitions, the

interferometric phase signal, ϕ, consists of a linear combination of terms:

ϕ = ϕflat + ϕtopo + ϕdispl (5.2)

which refer to phase variations due to (1) increases in viewing angle across

the ground track, ϕflat, (as described by the shape of Earth’s ellipsoid), (2)

surface topography, ϕtopo, and (3) surface displacement in the radar’s line of sight

(range) direction, ϕdispl, which occurs between the two SAR acquisitions. For

the remainder of this section I shall assume that the first two terms have been

simulated from a digital elevation model (DEM) and knowledge of the satellites’

spatial configuration, and removed from the interferometric phase in order to

isolate the displacement term (e.g. Joughin et al. (1998)). Errors associated with

the incomplete removal of these effects will be assessed in section 5.7.

When InSAR images a floating ice shelf, the surface displacement term, ϕdispl,

is commonly separated into steady and non-steady components. Typically

(Goldstein et al., 1993; Rignot, 1996; Rignot and MacAyeal, 1998; Rignot

et al., 2000), the flow component of the displacement field, due to ice moving

downstream, is categorised as a steady motion, approximately in the locally-

horizontal plane. In contrast, the tidal component of motion, resulting from the

oscillation of the floating ice shelf in response to the action of the ocean tide, is

taken to be a vertical non-steady motion. Additionally, over the timescales of the

InSAR data used in this study, atmospheric pressure changes can cause variations

in sea surface height of the order of 10 cm (Rignot et al., 2000; Padman et al.,

2003b). This atmospheric forcing introduces a further source of vertical non-

steady ice shelf motion. Because of the viewing angle of the satellites used in

this study (∼ 23◦ from vertical) the interferometer is at least 2.4 times more

sensitive to vertical motion than to motion in the horizontal plane. The basis for
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this work is that the displacement component of the phase signal (ϕdispl) may be

characterised as a simple combination of these separate flow (ϕflow), tidal (ϕtide)

and atmospheric pressure (ϕpress) signals:

ϕdispl = ϕflow + ϕtide + ϕpress (5.3)

Here I describe two techniques that exploit differences in the temporal variability

of these modes of displacement to separate the steady (flow) and non-steady (tide

plus atmospheric pressure) components of ice shelf motion. These techniques

provide the basis for two methods of evaluating tide models; one which determines

tidal displacement (i.e. the tide-induced change in ice shelf elevation) and the

other which measures the difference between two displacements.

5.3.1 Single-Difference Approach

My first method follows a similar approach to that described by Rignot (1996).

I aim to directly estimate the non-steady, vertical displacement of the ice shelf,

∆z, captured within a single interferogram. This method measures the difference

in the ice shelf height between the times of the two SAR acquisitions and so I

refer to it as a single-difference technique.

First I estimate the flow component of the line of sight displacement recorded

by an interferogram, ∆rflow. This flow signal is extracted from a 2-d map of

ice flow, which is determined by tracking the displacement of surface features

in pairs of SAR backscatter intensity images. Because this tracking method

measures displacement over a relatively long time period (see table 5.1 for details)

it is insensitive to short-period signals and provides a close approximation of the

steady flow signal. I then scale this tracking-derived displacement so that it
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matches the time-scale of the interferogram. To isolate the non-steady signal

within an interferogram, I convert the interferometric phase into a line of sight

displacement (equation 5.1), remove the tracking-derived flow component, and

convert the remaining non-steady signal into a vertical displacement:

∆ztide + ∆zpress =
∆r − ∆rflow

cosψ
(5.4)

Here ψ is the incidence angle of the radar beam relative to the normal to

Earth’s ellipsoid, and ∆ztide, ∆zpress denote the vertical change in ice shelf

height occurring during the acquisition of the interferogram, due to the tide

and atmospheric pressure fluctuations. To isolate the tidal component of this

non-steady vertical motion, I use an inverse barometer approximation to correct

for the effect of change in atmospheric pressure (Padman et al., 2003b). This

single-difference method assumes that the average velocity recorded within an

interferogram matches that of the velocity observed using my tracking technique

(see table 5.1 for a description of the acquisition periods of these techniques).

Otherwise the tracking result will not exactly cancel the flow component of the

interferometric signal. The single-difference technique is further limited by its

reliance upon the SAR intensity tracking technique, which has an inferior precision

and resolution to InSAR (Werner et al., 2000).

5.3.2 Double-Difference Approach

My second method follows earlier work (Hartl et al., 1994; Rignot, 1996, 2002a),

whereby two interferograms are differenced in order to cancel the displacement

component of the interferometric phase common to both interferograms. If flow

velocities remain constant during the acquisition period, then the remaining
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phase signal describes the difference in the vertical motion recorded in the two

interferograms:

∆z1,tide − ∆z2,tide + ∆z1,press − ∆z2,press =
λ

4π cosψ
(ϕ1,displ − ϕ2,displ) (5.5)

where the subscripts 1 and 2 refer to the first and second interferograms. As

with the single difference technique, an inverse barometer correction is applied to

isolate the tidal signal. The resulting tidal signal is the difference between the two

height differences captured in the pair of interferograms, and I therefore refer to

this method as a double-difference technique. This method assumes that identical

displacement occurs during each of the interferogram acquisitions. It also, by its

nature, requires greater quantities of coherent SAR data.

5.4 Study Area

In this study I focus upon the Dotson Ice Shelf, in the Amundsen Sea Sector of

the West Antarctic Ice Sheet (WAIS) (figure 5.1). Holding enough ice to raise

sea levels by ∼ 1.5 m, the Amundsen Sea sector of the WAIS has the greatest

mass deficit of all of Antarctica (Rignot et al., 2008). Over the last two decades,

satellite observations of this region have revealed a pattern of thinning of both

grounded (Shepherd et al., 2002; Pritchard et al., 2009; Wingham et al., 2009)

and floating (Shepherd et al., 2004; Wingham et al., 2009) ice, glacier acceleration

(Rignot, 2008) and grounding line retreat (Rignot, 1998). The penetration of

warm circumpolar deep water via seabed troughs (chapter 4) to sub-ice shelf

cavities (Thoma et al., 2008; Jenkins et al., 2010) suggests that high rates of ice
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shelf basal melting (Rignot and Jacobs, 2002; Shepherd et al., 2004) are primarily

responsible for the changes witnessed in this region (Payne et al., 2007).

The Dotson Ice Shelf (figure 5.1) occupies an area of ∼ 3400 km2, and is ∼ 450 m

thick (Shepherd et al., 2004). It is fed by the Smith and Kohler Glaciers, which

over recent decades have suffered sustained net mass loss (Rignot, 2006). Close

to the grounding line of the Dotson Ice Shelf, grounded ice has been thinning for

the past 20 years, at a mean rate that exceeds 1.5 m/yr (Shepherd et al., 2002;

Pritchard et al., 2009). Between 1992 and 2001, satellite altimeter observations

of ice shelf surface lowering indicated that the ice shelf thinned at an average rate

of 3.3 ± 0.4 m/yr (Shepherd et al., 2004). By assessing the contributions from

the various processes affecting surface lowering (namely temporal fluctuations in

sea level height, ocean density, ice shelf density, surface mass accumulation, and

ice mass flux divergence), Shepherd et al. (2004) estimated an average net basal

melt rate underneath the Dotson Ice Shelf of ∼ 8 m/yr.

5.5 Data

5.5.1 Interferometric Synthetic Aperture Radar

In this study I used SAR data acquired by the European Remote Sensing

satellites (ERS-1/2) to determine ice shelf motion. The SAR data were acquired

during the first and second ice phases of ERS-1 (during early 1992 and early

1994, respectively), and the ERS-1/2 tandem phase (1995-1996) (tables 5.1 and

5.2). The SAR data were acquired in raw format and processed using the

Gamma software package (Werner et al., 2000). I used a 5-km Antarctic-wide

DEM (Bamber and Bindschadler, 1997) to simulate and remove the topographic
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Figure 5.1: The Dotson Ice Shelf, West Antarctica. Thick white outline indicates
SAR data coverage over the Dotson Ice Shelf, white arrow indicates the range (across-
track) direction of the satellite. Background image is taken from the MODIS mosaic
of Antarctica (Haran et al., 2006).
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component of the interferometric phase. The effect of DEM inaccuracies is

considered in section 5.7.

Table 5.1: Single-difference synthetic aperture radar data, e1 signifies ERS-1
satellite. B⊥ specifies the perpendicular baseline of the interferometer.

A. Interferometric Data

Image pair Ice shelf Reference Image pair Track B⊥

(sensor-orbit-frame) image temporal
acquisition separation

e1-13153-5182 / e1-13196-5182 Dotson 20 Jan 1994 3 days 39 17 m

e1-13239-5182 / e1-13282-5182 Dotson 26 Jan 1994 3 days 39 -196 m

e1-13325-5182 / e1-13368-5182 Dotson 1 Feb 1994 3 days 39 44 m

e1-13626-5182 / e1-13669-5182 Dotson 22 Feb 1994 3 days 39 -23 m

e1-13798-5182 / e1-13841-5182 Dotson 6 Mar 1994 3 days 39 -2 m

B. Tracking Data

e1-13153-5182 / e1-13368-5182 Dotson 20 Jan 1994 15 days 39 -

5.5.2 Tide Models

I used three tide models to simulate the effect of ocean tides on the InSAR

observations: the Circum-Antarctic Tidal Simulation, Inverse Model Version

2008a (CATS2008a opt), TPXO7.1 (Egbert and Erofeeva, 2002) and the Finite

Element Solution model FES2004 (Lyard et al., 2006) (hereafter referred to as

CATS, TPXO and FES). CATS is an updated version of the regional inverse

model described by Padman et al. (2002). These models (or their predecessors:

CATS02.01 and TPXO6.2) are among the most accurate around Antarctica, with

root mean square errors of 6-17 cm, based on a comparison with tidal records (4

major tidal constituents only) (King and Padman, 2005).

The tide models considered here are built on different sized grids. FES and TPXO

are both global tide models, with 1/8◦ and 1/4◦ resolution respectively (equating

to a resolution of the order of tens of kilometres at the latitude of this study).

CATS is a high resolution regional model, for the waters around Antarctica

only, and operates at a 4 km grid spacing. All 3 models assimilate remotely
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Table 5.2: Double-difference synthetic aperture radar data, e1 and e2 signify ERS-
1 and ERS-2 satellites. B⊥ specifies the effective perpendicular baseline, and is
calculated as the difference between the perpendicular baselines of the two component
interferograms.

Image pair Ice shelf Reference Image pair Track B⊥

(sensor-orbit-frame(s)) image temporal
acquisition separation

e1-03318-5182 / e1-03361-5182 Dotson 4 Mar 1992 3 days 39 57 m

e1-03404-5182 / e1-03447-5182 10 Mar 1992 3 days 39

e1-13153-5182 / e1-13196-5182 Dotson 20 Jan 1994 3 days 39 82 m

e1-13196-5182 / e1-13239-5182 23 Jan 1994 3 days 39

e1-13153-5182 / e1-13196-5182 Dotson 20 Jan 1994 3 days 39 214 m

e1-13239-5182 / e1-13282-5182 26 Jan 1994 3 days 39

e1-22400-5176 / e2-02727-5176 Dotson 27 Oct 1995 1 day 368 141 m

e1-24404-5176 / e2-04731-5176 15 Mar 1996 1 day 368

e1-23817-5175-5193 / Dotson 3 Feb 1996 1 day 282 39 m

e2-04144-5175-5193

e1-24318-5175-5193 / 9 Mar 1996 1 day 282

e2-04645-5175-5193

e1-23885-5601 / e2-04212-5601 Crosson 8 Feb 1996 1 day 350 -80 m

e1-24386-5601 / e2-04713-5601 14 Mar 1996 1 day 350

sensed and ground-based data in order to constrain their physical forward model.

FES utilises sparse Antarctic tide gauge data (less than 10 records), along with

TOPEX/Poseidon and ERS altimetry. TPXO assimilates TOPEX/Poseidon

and TOPEX tandem radar altimetry, and Antarctic tide gauge data. CATS

is forced by tide heights from TPXO at its northern boundary, and assimilates

TOPEX/Poseidon altimetry, ∼ 50 tidal records and ICESat laser altimetry from

the Ross and Filchner-Ronne ice shelves. I used the load tide model TPXO6.2 load

(Egbert and Erofeeva, 2002) to correct CATS and TPXO for the ocean floor

deformation associated with the tidal displacement of water (this correction is

included within FES).

5.5.3 Meteorological Model Reanalysis

To account for ice shelf height changes arising from atmospheric pressure fluctua-

tions I used surface level atmospheric pressure data from the European Centre for
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Medium-Range Weather Forecasts’ (ECMWF) ERA-40 reanalysis (Uppala et al.,

2005). These data were acquired from the British Atmospheric Data Centre on a

1◦ x 1◦ regularly spaced grid, which was derived from an N80 reduced Gaussian

grid. ERA-40 provides surface pressure fields at six-hourly intervals and so I used

a linear interpolation between the two closest times to derive pressure estimates

at the times of SAR data acquisition.

5.6 Methods

In this section I describe the practical application of the theoretical approach

outlined in section 5.3. I begin by detailing the processing steps of my single-

difference and double-difference techniques. I then describe how I compare my

results to tide model predictions.

5.6.1 Single-Difference Technique

I formed multiple interferograms from co-registered SAR image pairs (table

5.1), and then used estimates of surface displacement determined using SAR

intensity tracking to approximate, and remove, the flow signal recorded within

each interferogram (equation 6.3). This provided a map of tidal displacement

over the ice shelf, subject to the coverage provided by my InSAR and tracking

observations. In the following sections I describe the main stages of this process.

Maps showing the coverage obtained are shown in section 5.8.
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SAR Intensity Tracking

Previous studies (Werner et al., 2001; Strozzi et al., 2002; Luckman et al., 2003)

have demonstrated that surface displacement can be mapped from a pair of co-

registered SAR backscatter intensity images, by tracking the motion of features in

the two images. The data processing can be divided into two main stages; image

co-registration and displacement mapping. In the first step, images must be

accurately co-registered, in order to minimise the misinterpretation of image co-

registration errors as surface displacement. In the second step, small subsections

(also known as patches) of the two images are matched in order to determine

displacement offsets.

Both image co-registration and the estimation of surface displacement utilise the

same cross-correlation technique, and so care must be taken in the co-registration

step to avoid mistakenly accounting for a component of the surface displacement

field. In situations where major sections of the imaged area are stationary during

the acquisition period, accurate co-registration can be achieved by estimating

the offsets of large-scale features over the entire image, and culling anomalous

values which may include ice motion (Pritchard et al., 2005). However, only a

small proportion of my study area exhibits such stability, with the majority of

the imaged area consisting of moving ice or ocean. Consequently, performing a

standard co-registration based upon offsets acquired over the whole image does

not satisfactorily eliminate regions of surface motion from the co-registration

procedure (figure 5.2).

I therefore applied a mask prior to co-registration so that co-registration was

based solely on non-moving areas (figure 5.3). Because these areas were not

extensive, I based my co-registration upon offsets compiled from two patch sizes,

enabling me to exploit a range of different sized features and increase the number

of offsets used. Bilinear functions of range and azimuth pixel number were fitted
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Figure 5.2: Location of co-registration offsets determined using a standard cross-
correlation procedure over the entire image domain, for a pair of ERS-1 SAR images
acquired on 20th January and 4th February 1994. The white crosses mark locations
of co-registration offsets, and the background image is an ERS-1 backscatter intensity
image of the Dotson Ice Shelf, displayed in range-doppler co-ordinates. Many of the
co-registration offsets are located on moving ice and so surface displacement will
affect the co-registration procedure.
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Figure 5.3: Location of offsets used to co-register images acquired on 20th January
and 4th February 1994. Offsets were determined only over regions identified as
stationary. White crosses mark locations of co-registration offsets, black lines bound
the stationary regions which the co-registration was limited to. The background image
is a backscatter intensity image of the Dotson Ice Shelf, displayed in range-doppler
co-ordinates.
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to these offset estimates in order to perform image co-registration. I chose not

to fit a higher order polynomial because (1) the data points used to determine

the polynomial were limited in extent and irregular in their spatial distribution

throughout the image (figure 5.3), and (2) a first-order polynomial is sufficient to

represent the principle transformations required to co-register ERS data (namely

image shifts, stretches and small rotations).

Once images were co-registered, I performed SAR intensity tracking to produce

a displacement map with a nominal pixel spacing of ∼ 240 x 200 metres.

To determine displacement, I cross-correlated patches with dimensions of 128

pixels in range and 512 pixels in azimuth (∼ 2.6 x 2.0 km in ground co-

ordinates). Tracking features of this size maximised the area over which a coherent

displacement signal was retrieved. Smoothing of the displacement map was not

necessary at this point because I spatially average displacement estimates at a

later stage, as part of my method to measure tidal displacement. Finally, I

identified and masked regions of noise (i.e. spatially incoherent signal), based

upon the deviation of each pixel value from the local mean. During the ice phase

of the ERS-1 mission, images of the Dotson Ice Shelf were acquired at regular

3-day intervals, allowing me to form a series of displacement maps from image

pairs acquired over a range of time-scales. From these data, I selected the image

pair for this study (table 5.1, 15-day separation) that maximised the area over

which I obtained a coherent displacement signal.

InSAR

Taking each interferogram, I firstly isolated the displacement component of the

interferometric signal (equation 5.2). The simulated topographic component,

together with the phase signal originating from the changing look angle across

the satellite track (the flat Earth signal), was projected into the SAR imaging
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geometry and removed from each interferogram. During the simulation of the

topographic and flat-Earth phase signals, I used precise orbit information acquired

from the Technical University of Delft to determine the imaging geometry. Further

baseline refinement was not necessary for this study because I only use image-

wide averages of relative displacement (see section 5.7 for a further discussion

and assessment of the associated error). Each interferogram was smoothed,

unwrapped (Goldstein et al., 1988) and converted to a map of displacement in

the range direction. The InSAR map shows only relative displacement, i.e. how

displacement varies across the image. To convert to absolute displacement, these

relative displacement values were tied down to pixels with known displacement.

Commonly, non-moving regions of the image are identified, such as bedrock

protruding though the ice or areas of known stagnant flow. These must be linked

to the ice shelf by a path that does not cross discontinuities in the interferometric

phase. Because I was not confident that I could identify such a path I did not tie

down my InSAR displacement maps to stationary regions. Instead I used range

displacement values derived using SAR intensity tracking, at locations where ice

was grounded, to provide ∼ 2400 points of known velocity to tie down each

InSAR map. Specifically, I used a displacement map derived using the double-

difference technique (see section 5.6.2) to identify grounded regions of ice (figure

5.4). At these grounded locations, I retrieved tracking (range component only)

and InSAR displacements, calculated the difference between each tracking and

InSAR estimate (figure 5.5) and then shifted the InSAR solution so that the

mean difference between the set of InSAR-tracking pairs was zero (figure 5.6). In

this way I used an extensive dataset to tie down my InSAR-derived displacement

map.
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Figure 5.4: Location of grounded regions used to tie down InSAR displacement
maps. Grounded regions are the multiple regions bounded by white lines, and were
identified using a double-difference technique (see section 5.6.2). The background
image is a backscatter intensity image of the Dotson Ice Shelf, displayed in range-
doppler co-ordinates.
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Figure 5.5: Distribution of the differences between tracking and InSAR velocity
estimates at grounded locations (figure 5.4). Tracking displacements were calculated
over the period 20th January - 4th February 1994 and InSAR displacements over the
period 20th - 23rd January 1994. Each have been converted here to equivalent annual
displacements. InSAR estimates are tied to an arbitrary point and so these differences
are not a measure of the inconsistency between tracking and InSAR estimates. Rather
the mean difference, as indicated by the brown dotted line, is used in my method to
tie down the InSAR velocities.
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Figure 5.6: Procedure used to tie down InSAR displacements using tracking data.
Plotted is a comparison of the InSAR and tracking-derived range velocities derived
from the same data as figure 5.5, at locations where the ice was grounded (figure 5.4).
The original InSAR data, whose velocities were relative to an arbitrary displacement,
are shown in red. To tie down the InSAR velocities, the original velocities were shifted
so that the mean difference between tracking and InSAR velocities was zero (blue
crosses). This is equivalent to a horizontal shift of the data points so that they are
centred on the line of equivalence (blue line).
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Removing the Ice Flow Signal

I used the velocities derived by SAR intensity tracking to remove the flow

component of the displacement signal from each InSAR displacement map.

Because InSAR only measures changes in the satellite’s line of sight (range)

direction, I used only the component of the tracking displacement in that

direction. Differencing each InSAR-derived displacement map and the range

component of the SAR intensity tracking displacement map isolated non-steady

displacement. This displacement was converted into a vertical motion.

5.6.2 Double-Difference Technique

I formed multiple interferograms from co-registered SAR image pairs (table

5.2), and then differenced pairs of interferograms to isolate the non-steady

component of the displacement signal. The procedure outlined in section 5.6.1 was

followed to remove topographic and flat-Earth effects, and convert the differenced

interferograms to a vertical displacement map.

5.6.3 Tide Model Evaluation

Tide heights were determined from each of the three tide models at the times

of the SAR data acquisitions, at a location just seaward of the ice front (74.1◦S,

247.5◦E, marked in figure 5.1). I did not use model predictions coincident with

the ice shelf itself because of inconsistencies between the models at those locations

(see section 5.9.2). These predictions were combined so as to give estimates of

the tidal signal, as recorded by my single- and double-difference methods. In a

similar way, equivalent predictions of the atmospheric pressure signals were formed

from the model reanalysis data. These were converted to ice shelf height changes
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assuming an inverted barometer response at a rate of -0.95 cm / hPa, which was

determined empirically by Padman et al. (2003b). These estimates were used

to account for ice shelf motion arising from atmospheric pressure fluctuations.

The observed mean tidal displacements over a freely-floating portion of the ice

shelf (figure 5.7) were then compared to the tide model predictions. Far-range

regions (to the right of the black line in figure 5.7) were excluded from my single-

difference estimates, because this region suffered from a lack of constraint in the

image-pair co-registration used in my tracking solution (figure 5.3). This issue

is discussed in further detail in section 5.9. In both the single-difference and

double-difference methods of tide model evaluation, I considered only the mean

tidal displacement in order to reduce the effect of measurement error (section 5.7).

This step sacrifices spatial resolution but allows us to derive a single estimate of

tidal displacement with which to characterise each dataset.

5.7 Error Assessment of Single-Difference and

Double-Difference Methods

To assess the certainty with which InSAR data can be used to evaluate tide

models, and the relative strengths of my two InSAR-based methods, I considered

the ability of my methods to completely remove all other signals. I define the

error associated with each observation of tide as follows:

ε2 = ε2

topo + ε2

flat + ε2

flow + ε2

press + ε2

atm + ε2

coh + ε2

unw (5.6)

where εtopo, εflat, εflow and εpress are the errors associated with the incomplete

removal of terms in equations 5.2 and 5.3, εatm is the error arising from

atmospheric distortions of the phase signal, εcoh is the error due to loss of signal



CHAPTER 5. Tide Model Accuracy in the Amundsen Sea 102

Figure 5.7: Extent of the area of floating ice over which tidal observations were
made. The white line bounds the area used in my double difference approach. The
black line marks the additional constraint in the range direction placed upon my
single difference estimates. This was motivated by the uneven distribution of tracking
co-registration offsets (figure 5.3). X marks the area discarded, so that the refined
area over which single difference observations were made is given by the floating area
(bounded by white lines) to the left of the black line. Background image is ERS-1
SAR backscatter intensity image displayed in range-doppler co-ordinates.
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coherence between the radar acquisitions and εunw arises from any error in the

unwrapping process. In this section I estimate the magnitude of each of these

components; a summary of these error terms is provided in table 3. The errors

quoted are the mean values obtained from the datasets used to evaluate each

component.

5.7.1 Topographic Error

In this study I have used a DEM to remove the topographic component of the

interferometric phase. Spurious topographic phase signals, which will be falsely

interpreted as surface displacement, arise from inaccuracies in both the DEM and

the baseline estimation (the latter effect causing an incorrect scaling of the DEM

when removing the topographic phase). The following analysis of these error

terms is based on the work of Joughin et al. (1996a). I resolve the baseline, B,

into components perpendicular, B⊥, and parallel, B‖, to the radar’s centre look

direction, θc. The sensitivity of the interferometric phase to topography can be

approximated (Joughin et al., 1996a) as:

ϕtopo =
4πB⊥

λr sin θc

z (5.7)

where r denotes the range from the satellite to the target pixel, and z the elevation

of the target pixel above Earth’s ellipsoid. If z is determined from a DEM, with

an associated error εz, then the corresponding error in the interferometric phase

will be given by:

εϕ
z =

4πB⊥

λr sin θc

εz (5.8)
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Falsely interpreting this topographic phase error as a surface displacement in the

satellite’s line of sight direction, and converting to a vertical tidal motion yields:

ε∆z
z =

B⊥

r sin θc cos ψ
εz (5.9)

where ψ is the incidence angle of the radar beam relative to the normal to Earth’s

ellipsoid. Taking typical values for the ERS satellites for θc, ψ and r of 23◦, 26◦

and 862.5 km respectively, and a relative DEM error of 5 m (Bamber and Gomez-

Dans, 2005), based on the average surface slope of ice in my study area, gives the

vertical displacement error arising from the DEM as a function of perpendicular

baseline:

ε∆z
z = 1.65 × 10−5 B⊥ (5.10)

This yields mean (maximum in parenthesis) vertical displacement errors, resulting

from DEM inaccuracies, of 0.1 cm (0.3 cm) and 0.2 cm (0.4 cm) for my single-

difference (table 5.1) and double-difference (table 5.2) datasets, respectively.

To determine the effect of the second form of topographic error, that of inappro-

priate scaling of the topographic phase, I rewrite equation 5.9 as a function of the

perpendicular baseline error:

ε∆z
B⊥

=
z

r sin θc cosψ
εB⊥

(5.11)

I assume the spatially uncorrelated component (i.e. no correlation between repeat

orbits) of the across-track and radial precision orbit errors to be 8 cm and 5 cm,

respectively (Hanssen, 2001). Based upon the satellite geometry, I project this
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error vector into the perpendicular baseline direction to determine a 9 cm orbital

error in that direction, and a
√

2×9 = 13 cm perpendicular baseline error. Using

the ERS orbit parameters outlined above, and a mean ice elevation (determined

from the DEM) in my study region of 75 m, I estimate ε∆z
B⊥

as 2 × 10−3 cm,

which is insignificant in comparison to the topographic error resulting from DEM

inaccuracies. Combining the two sources of topographic error gives mean single-

difference and double-difference errors of 0.1 cm and 0.2 cm respectively. The

topographic error is small because of the minimal relief of the ice surface at my

study site.

5.7.2 Flat Earth Correction Error

Errors in removing the flat Earth phase signal arise from inaccuracies in estimating

the interferometric baseline. Here, I start with the approximation determined by

Joughin et al. (1996a) from the interferometric geometry:

εϕ
flat =

4π

λ
(εB⊥

sin θd,flat + εB‖
cos θd,flat) (5.12)

where εϕ
flat is the flat Earth phase error, εB⊥

and εB‖
are the errors in estimating

the perpendicular and parallel components of the baseline, and θd,flat is the

angular deviation from the centre of the radar beam across the image swath,

assuming no topography. Two factors are important here: (1) I measure the

displacement of floating ice relative to grounded ice, and (2) to mitigate the effect

of the perpendicular baseline error I have taken spatial averages over each of

the grounded and floating regions of ice, to determine a single estimate of tidal

displacement at each epoch. Consequently, the displacement error resulting from

unmodelled baseline effects is determined by the change in the mean baseline error

between the grounded (figure 5.4) and floating (figure 5.7) regions of ice. Across

the image track, the parallel baseline error term remains effectively constant, and
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so will not contribute to εϕ
flat. The perpendicular baseline error term contributes

an almost linear phase ramp across the image swath, with zero error at the centre

line of the swath (θd,flat = 0). Consequently, the contribution of this term to my

total error will be determined by the phase change associated with this ramp,

occurring between grounded and floating regions. From these considerations I

ignore the parallel baseline term and re-write equation 5.12 as:

εϕ
flat =

4π

λ
εB⊥

sin(〈θd,fl〉 − 〈θd,gr〉) (5.13)

where 〈θd,fl〉, 〈θd,gr〉 are the mean angular deviations of floating and grounded ice

regions, respectively. Over my study area, 〈θd,fl〉 − 〈θd,gr〉 = 3.2◦. In essence, this

angle expresses the difference in range position between the grounded and floating

regions of ice (figures 5.4 and 5.7). This separation, combined with the phase

gradient deriving from the baseline error, provides an estimate of the baseline

error phase shift between grounded and floating regions, which will incorrectly be

interpreted as tidal motion.

As before (section 5.7.1), I assume a 13 cm error in the perpendicular baseline

estimate, which equates to a
√

2 × 13 = 18 cm error in my double-difference

baseline estimates. Applying equation 5.13, and converting to a vertical displace-

ment, yields flat Earth errors of 0.8 cm and 1.1 cm for my single-difference and

double-difference approaches, respectively.
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5.7.3 Ice Flow Error

Single-Difference Method

As part of my single-difference method, I removed the flow component of the

interferometric signal using estimates determined from SAR intensity tracking.

Errors in cancelling the flow signal may arise from errors in my tracking dis-

placement map. Specifically, high frequency noise may arise from inaccuracies

in matching image patches using the intensity tracking technique, and errors in

the SAR image pair co-registration may contribute long wavelength errors. In

this study I mitigate the effect of high frequency noise by spatially averaging dis-

placement estimates over the ice shelf. However, long-wavelength co-registration

errors in my tracking estimates will contribute a spurious signal to my estimates

of single-difference tidal displacement. I estimate this error, ε∆z
flow, by converting

to a vertical displacement the mean line-of-sight displacement of pixels which are

located on stable ground (and hence should exhibit no displacement):

ε∆z
flow =

〈∆rstable〉
cosψ

(5.14)

where 〈∆rstable〉 denotes the mean line-of-sight displacement of stable pixels and

ψ is the incidence angle of the radar beam. From this calculation I determine

a 6.5 cm ice flow error in my single-difference measurements of vertical tidal

displacement. Incomplete cancellation of the flow signal may also arise from

flow variations occurring during the different length sampling periods (3 days for

InSAR versus 15 days for tracking). Without independent high-quality velocity

measurements (e.g. from in situ Global Positioning System data) I cannot directly

quantify this effect. However, I have aimed to minimise any influence by (1)

forming InSAR and SAR intensity tracking predictions from contemporaneous
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data, and (2) measuring displacement relative to grounded ice close to the

grounding line, which itself is likely to undergo similar variations in flow to that

of the ice shelf, given the relatively long wavelength of previously observed flow

modulation signals (Gudmundsson, 2006).

Double-Difference Method

I do not utilise velocities determined from SAR intensity tracking when estimating

tidal motion using the double-difference approach, and so the only source of ice

flow errors are those that may potentially arise from non-steady variations in

flow. Specifically, errors in my double-difference tidal predictions could arise if

the total displacement occurring during an interferogram acquisition (i.e. 1- or

3-day displacement) varies between the first and second interferograms. Although

not strictly flow, I also consider here any transverse motion of the ice shelf

(as described in section 2.4.3), as this will similarly lead to inaccuracies in my

estimates of vertical tidal motion. Importantly, the Dotson Ice Shelf is bounded

by land at its lateral margins (figure 5.1). In contrast, transverse motion has only

been observed on laterally unconstrained ice shelves (Doake, 2002; Legresy et al.,

2004) where the tide can enter the ice shelf cavity at its lateral margins, and the ice

shelf has space to flex in a transverse direction. In view of this, I believe that my

observations will not have a transverse-motion component to them and so I assume

no corresponding error contribution. To investigate the prevalence of a signal

arising from the longitudinal modulation of flow, I checked my double-difference

displacement maps for long-wavelength displacement variation indicative of a

residual flow signal. Spatial variation in displacement over the ice shelf was small

(∼ 1 cm on average for my dataset), indicating no significant residual flow signal.

I therefore also discount this term in my double-difference error budget.
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5.7.4 Atmospheric Pressure Error

Incomplete removal of ice shelf height changes associated with atmospheric pres-

sure fluctuations will result from inaccuracies in model predictions of atmospheric

pressure, and in particular from a failure to predict the timing of large pressure

fluctuations associated with passing weather fronts (Padman et al., 2003b). The

scarcity of independent in situ meteorological records in remote regions such as

the Amundsen Sea limits the assessment of the accuracy of the model reanalysis

upon which my atmospheric pressure correction is based. However, one study

(King, 2003), has performed an evaluation of the ECMWF modelled surface level

atmospheric pressure in the nearby Bellingshausen Sea, based upon independent

field data. Although these data span only a relatively short period (February-May

2001), they agree well with the model predictions. I take the 1.05 hPa standard

deviation of the model predictions from the independent observations (King, 2003)

as an estimate of the error associated with each model estimate of atmospheric

pressure. I then calculate the corresponding error associated with single- and

double-difference pressure estimates, and convert these to errors in vertical dis-

placement using the empirical ratio determined by Padman et al. (2003b). This

yields errors associated with my inverse barometer correction of 1.4 cm and 2.0

cm in my single- and double-difference estimates of tidal motion, respectively.

A second source of error associated with my correction for atmospheric pressure

fluctuations arises from the validity of the inverse barometer approximation as a

means for converting from pressure to ice shelf height changes. Previous studies

(Ponte et al., 1991; Padman et al., 2003b) have shown the inverse barometer

approximation to be valid at frequencies lower than ∼ 0.5 cycles per day (cpd). At

these frequencies the ocean responds to changes in atmospheric pressure such that

equilibrium is maintained. Consequently, pressure changes correlate well with sea

surface height changes. The repeat times of my satellite observations (tables 5.1
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and 5.2) require that I model this effect at 0.3 and 1.0 cpd, and so I am at the limit

of the frequency range at which an inverse barometer approximation is valid. As

such, it is possible that this correction does not account for the full spectrum of

atmospheric pressure-driven height changes, in particular for my double-difference

approach which utilises some 1-day repeat data (table 5.2). In section 5.9.3 I

further investigate my inverse barometer correction, to determine whether, in light

of these limitations, such an approximation is beneficial in reducing atmospheric

pressure-related signals.

5.7.5 Atmospheric Distortions

The two primary sources of atmospheric distortions affecting repeat pass interfer-

ometry arise from tropospheric delay and ionospheric disturbances. Spatial and

temporal tropospheric in-homogeneity causes varying phase delays in the radar

signal (Goldstein, 1995; Massonnet and Feigl, 1998), primarily as a result of chang-

ing water vapour content. Based upon Global Positioning System data, the effect

of the varying state of the troposphere on interferometric measurements has been

parametrised (Emardson et al., 2003) over a range of length- and time-scales, by

the following expression:

ε∆r
tropo = cLα + kH (5.15)

ε∆r
tropo is the line-of-sight displacement error due to tropospheric effects (in mm),

c and α vary according to the time-scale of the acquisition, and L and H are the

length-scale and height difference, respectively (in km), over which tropospheric

variability is estimated. Over the scales relevant to my study (50 km length-scale,

0.1 km height difference, and 3 day time period (corresponding to c = 2.6, α =

0.48, k = 3.4 (Emardson et al., 2003))), equation 5.15 gives tropospheric errors
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in my single-difference and double-difference estimates of vertical displacement of

1.9 cm and 2.7 cm respectively. These estimates can be taken as an upper bound

for tropospheric error because Antarctic tropospheric water vapour variability,

and hence c (Emardson et al., 2003), is likely to be much reduced compared to

the Californian study site of Emardson et al. (2003) (Trenberth et al., 2005).

Over the spatial and temporal interval for which a SAR illuminates a target, vari-

ations in the density of electrons in the ionosphere can modulate the phase signal

(Gray et al., 2000) and cause errors in associated displacement measurements.

This effect can manifest itself as distinctive azimuth streaks in the azimuth com-

ponent of the co-registration offsets, the coherence image and the interferogram

(Joughin et al., 1996b; Mattar and Gray, 2002). I checked each interferogram,

its corresponding coherence image and the azimuth component of my tracking

solution and found no evidence of such features. Furthermore, I note that (1) at

the wavelength of ERS, ionospheric errors are typically sub-centimetre (Mattar

and Gray, 2002), and (2) by my spatial averaging I will further minimise any

ionosphere effects. Consequently, I do not anticipate any significant ionospheric

error in my displacement estimates, and so I disregard this term.

5.7.6 Coherence Error

Interferometric phase errors arise from changes in surface properties occurring be-

tween the two SAR acquisitions (Zebker and Villasenor, 1992). For a sufficiently

multi-looked image, the corresponding line of sight error, ε∆r
coh, can be approxi-

mated (Rodriguez and Martin, 1992) from an estimate of the local coherence, γ,

of the interferometric phase within each multi-looked pixel:

ε∆r
coh =

λ

4π
√

2N

√

1 − γ2

γ
(5.16)



CHAPTER 5. Tide Model Accuracy in the Amundsen Sea 112

where N is the number of looks that are averaged. For each interferogram, I take

the spatial mean of ε∆r
coh as a measure of this error term. Converting to a vertical

displacement yields mean errors of 0.1 cm for my single-difference approach and

0.2 cm for my double-difference approach.

5.7.7 Phase Unwrapping Error

Errors can occur during the process of phase unwrapping when discontinuities in

the interferometric phase (arising from noise or high phase gradients) are crossed

(Goldstein et al., 1988). I checked each unwrapped interferogram to ensure that

there was no evidence of the discontinuities associated with unwrapping error, and

consequently I assumed no unwrapping errors to be present in my displacement

maps.

5.7.8 Combined Error

A summary of the relative contribution of the component error terms is given

in table 5.7.8. Assuming the tropospheric error to be at its upper bound, and

combining error terms (equation 5.6) yields estimated errors of 7.0 cm and 3.5

cm in my single- and double-difference estimates of vertical tidal displacement,

respectively. Consequently, the double-difference technique provides a more

accurate assessment of tide model accuracy, primarily because the method is

independent of displacement estimates derived using SAR intensity tracking.
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Table 5.3: Summary of error terms. Each term is the average calculated from all
interferograms used by that technique.

Error term Single difference Double difference

error (cm) error (cm)

Topography, εtopo 0.1 0.2

Flat Earth correction, εflat 0.8 1.1

Flow, εflow 6.5 0

Inverse Barometer Effect, εibe 1.4 2.0

Atmosphere, εatm 1.9 2.7

Coherence, εcoh 0.1 0.2

Unwrapping, εunw 0 0

Total, ε 7.0 3.5

5.8 Results

In this section I firstly describe my SAR observations of the flow velocity and

tidal displacement of the Dotson Ice Shelf. I then use my observations of tidal

motion to evaluate the FES, TPX and CATS tide models.

5.8.1 Observations of Ice Shelf Flow Displacement

I have used the technique of SAR intensity tracking to estimate flow speeds

across the Dotson Ice Shelf (figure 5.8a). Although this map provides only

partial coverage, it is sufficiently complete to determine that the ice shelf is

fed by fast flowing ice from the south-west, which originates from the Smith

and Kohler glaciers. Considerable flow variation exists over the ice shelf with

velocities exceeding 500 m/yr close to the grounding line, yet falling to ∼ 100

m/yr at other locations on the ice shelf. The range component of the tracking-

derived ice velocities are required to isolate the tidal signal using the single-

difference technique. These are shown in figure 5.8b. In comparison to the

range displacement map derived from InSAR (figure 5.8c, also includes vertical
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Figure 5.8: Displacement maps of the Dotson Ice Shelf. a) Annual velocity
from SAR intensity tracking; b) Range component of 3-day displacement from SAR
intensity tracking; c) 3-day range displacement from InSAR. White arrows indicate
range direction of satellite; A and B mark fast flowing features referred to in text.
Background image is taken from the MODIS mosaic of Antarctica (Haran et al.,
2006).

displacement), the SAR intensity tracking map offers more limited coverage

and, due to its inferior resolution and precision, a noisier picture of range

displacement. It may have been possible to derive a more spatially complete

tracking displacement map, using data from an alternative epoch. However, for

the purposes of this study, the priority was to obtain a solution contemporaneous

with my InSAR data so as to minimise the impact of temporal variations in flow,

and complete coverage of the ice shelf was not necessary. A qualitative comparison

of the range component of the tracking displacements and the InSAR-derived

displacements shows similar large-scale flow displacement patterns. Both resolve

the same fast flowing features (marked A and B in figure 5.8b), and a general

pattern of increasing displacement towards the calving front of the ice shelf.

5.8.2 Observations of Ice Shelf Tidal Displacement

I made observations of the tidal motion of the Dotson Ice Shelf at multiple epochs

using my single-difference and double-difference techniques. I formed five maps of
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tidal displacement (e.g. figure 5.9a) using my single-difference technique. These

tidal predictions offer only partial coverage of the ice shelf, a consequence of the

limited extent of my displacement map derived using SAR intensity tracking.

The single-difference tidal maps exhibit substantial long and short wavelength

variation, and visually this makes the distinction between floating and grounded

ice unclear. There is a long wavelength ramp in each of the five tidal predictions,

leading to ∼ 1 m variation in the tidal signal across the ice shelf. I discuss the

origin of this ramp in section 5.9.1.

I used twenty-four SAR images (table 2) to form six maps of tidal motion

(e.g. figure 5.9b) using the double-difference technique. These predictions gave

excellent spatial coverage and, in contrast to the single-difference technique,

resolved a detailed pattern of floating and grounded ice (blue and red colours,

respectively, in figure 5.9b). These solutions indicate a region of grounded ice

located between A and B in figure 5.9b, suggesting that a bedrock ridge underlies

the ice at this point. This is coincident with a region of slow flow (figure 5.8a).

On the freely floating part of the ice shelf, there was little (∼ 1 cm on average)

spatial variation in the tidal signal, indicating that the double-difference tide is

relatively constant over these length scales, and that there is no residual signal

arising from variable flow.

5.8.3 Tide Model Evaluation

I used my single-difference and double-difference tidal observations to evaluate

the FES, TPX and CATS tide models at the Dotson Ice Shelf. Comparing my

single-difference observations to the equivalent tide model predictions (figure 5.9c)

yielded root mean square differences between the observed and modelled tidal

displacements of 9.8 cm, 8.8 cm and 8.7 cm for the TPXO, CATS and FES

models respectively. The measurement error associated with my single-difference
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Figure 5.9: Tidal displacement of the Dotson Ice Shelf. a) map of tidal motion
determined using single-difference method; b) map of tidal motion determined using
double-difference method; c) comparison of modelled and observed single-difference
tidal motion, observations determined from multiple SAR image pairs (table 5.1);
d) comparison of modelled and observed double-difference tidal motion, observations
determined from multiple SAR image pairs (table 5.2). In panels a) and b) the white
arrow indicates the satellite’s range direction, and the background image is taken from
the MODIS mosaic of Antarctica (Haran et al., 2006). In panel b) A and B bound
the locally-grounded areas referred to in section 5.8.2. In panels c) and d) the dashed
line indicates equivalence between model predictions and observations, and errors bars
represent observational error as determined in section 5.7.
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technique is 7 cm (table 3). At three out of the five epochs, the models agreed

extremely well with my observations, with only a ∼ 2 cm root mean square

difference between the two. I have been unable to determine any distinctive

circumstances pertaining to these observations, which could explain the apparent

distinction between cases of good and poor agreement.

Comparing my double-difference observations to predictions formed from the

three tide models (figure 5.9d) gave root mean square differences between the

observed and modelled tidal signals of 10.5 cm, 12.4 cm and 10.3 cm for TPXO,

CATS and FES respectively. The measurement error associated with my double-

difference technique is 3.5 cm (table 3).

5.9 Discussion

In this study I have used two different InSAR-based methods to assess three

tide models. In section 5.9.1 I assess the relative strengths of the two evaluation

methods, in section 5.9.2 I compare the performance of the three tide models, in

section 5.9.3 I consider the benefits of my inverse barometer approximation for

pressure-related ice shelf height changes, and in section 5.9.4 I place my results

within the context of previous studies.

5.9.1 Comparison of Methods of Observation

I have employed two InSAR-based methods to isolate the tidal motion of an

ice shelf; a single-difference method that measures tidal displacement, and a

double-difference method that measures changes in tidal displacement. My

assessment of measurement error (section 5.7) indicates that both techniques

are sufficiently accurate to provide useful information regarding the accuracy
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of the current generation of tide models around Antarctica. However, should

polar tide model accuracy approach that of the deep ocean (typically 2-3 cm),

the techniques presented here would need to be improved if they were to provide

the required accuracy for model evaluation. Comparing my two methods, I found

that the double-difference technique provided a clearer picture of the tidal signal,

consistent with the smaller error associated with this method, and additionally

offered better spatial coverage. This analysis indicates that the double-difference

method should be used in work that requires a map of tidal displacement, for

example when mapping the grounding line of a glacier (e.g. Rignot (1998)).

For certain applications, however, the double-difference method may be unsatis-

factory because, in the process of differencing two estimates of tidal displacement,

I cancel any systematic error in the model predictions of tidal displacement. An

important use of tide models around Antarctica is to simulate the tidal displace-

ment recorded within a single interferogram. This prediction can be used to

remove the tidal signal from an interferogram and forms part of a commonly-used

interferometric method to map ice shelf flow velocity (e.g. Rignot and Jacobs

(2002); Joughin et al. (2003); Rignot et al. (2004)). In this case, the error in

such predictions of flow, resulting from any un-modelled tidal signal, must be

quantified. For this purpose a single-difference technique should be applied, so as

to account for both systematic and random errors in model predictions of tidal

displacement. Accordingly, I can convert my estimate of single-difference tide

model accuracy (e.g. 8.7 cm for FES) into an equivalent horizontal displacement

error in the ground range direction. This quantifies the uncertainty introduced

into the ground range component of model-dependent velocity estimates, should

an un-modelled tidal signal of this magnitude be interpreted as a horizontal flow

displacement. In this case, my study suggests that tide model inaccuracies will

introduce an error of 22 m/yr into such predictions (range component of velocity

only).
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My analysis has shown that the single-difference technique yields relatively

imprecise and noisy observations of tidal displacement. A particular problem

with these estimates was the ∼ 1 metre amplitude long-wavelength variation in

tidal displacement across the ice shelf. Neither my double-difference observations

nor the model predictions (section 5.9.2) exhibit a ramp of this magnitude. I

therefore conclude that it is an artifact of the processing method used, rather than

a real tidal signal. Specifically, I believe it results from errors in my estimation

of ice flow (see section 5.7.3), arising from inaccuracies in the co-registration of

the image pair used for intensity tracking. This is due to the co-registration

function being poorly constrained over some parts of the ice shelf (figure 5.3). To

mitigate the effect of the ramp I have refined my method to exclude displacement

estimates in regions where the co-registration function is poorly constrained

(figure 5.7), specifically the far-range portion of the image where I was unable

to determine any co-registration offsets on stationary ground (figure 5.3). Even

so, my error analysis suggests that my single-difference measurement error is

dominated by errors originating from the co-registration stage of my intensity

tracking procedure. This highlights the difficulty of achieving the precision

required for tide model evaluations using my single-difference method, particularly

at locations lacking stable areas for image co-registration. In other regions, where

more extensive stable areas exist, my single-difference technique may provide more

precise estimates.

It is possible that additional processing steps could further improve image co-

registration. For example, the application of a low-pass filter prior to image

co-registration could remove short-wavelength surface features and isolate long-

wavelength features originating from sub-ice bedrock topography (e.g. Bind-

schadler and Scambos (1991)). This could allow a more extensive co-registration

dataset to be derived. I do not apply this technique here because of the limited



CHAPTER 5. Tide Model Accuracy in the Amundsen Sea 120

grounded ice present in my images. An alternative approach to minimise the ef-

fect of co-registration error would be to measure ice flow (via intensity tracking)

over a longer time period. This would reduce the contribution of co-registration

error relative to the measured displacement signal. In this study I found that

tracking displacement over a longer time period reduced the area over which a

coherent displacement signal could be derived, providing insufficient coverage to

determine tidal motion. In areas that exhibit more stable surface characteristics,

or alternatively by using lower frequency sensors that penetrate further into the

snow pack (such as the L-band radar on-board the Advanced Land Observation

System (ALOS) (Rignot, 2008)), it may be possible to reduce the effect of co-

registration errors by increasing the time period over which surface features are

tracked.

Sensitivity of Tide to Observation Method

The characteristics of the tidal signals recorded by my single-difference and

double-difference methods will vary according to the method used and the

timespan over which the SAR data were collected (as determined by the satellite

repeat time - see tables 5.1 and 5.2). To investigate the impact of these factors

upon the amplitude of the tidal signal I simulated the statistics of the single-

and double-difference signals from hourly-resolution tide model data spanning

the year of 1994 (figure 5.10). When calculating the single- and double-difference

tidal signals, I considered the two scenarios relevant to the orbital characteristics

of the data used in this study. For my single-difference technique this was the

tidal displacement occurring over a 1-day (ERS-1/2 tandem) and 3-day (ERS-1

ice phase) interval. For my double-difference technique I calculated the signals

corresponding to (1) a differential interferogram formed from four SAR images,

with each acquisition separated by 3 days (hereafter referred to as 3,3 acquisition
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mode); and (2) a differential interferogram formed from two interferograms

separated by 35 days, with the component SAR images of each interferogram

separated by 1 day (hereafter referred to as 1,35 acquisition mode). Figure 5.10

indicates that the likely magnitude of the tidal signal will vary depending upon

which of the two acquisition modes is being used, and whether single- or double-

difference tides are being measured. For both single- and double-difference tides

a greater sensitivity to the tidal signal would be expected in the 3,3 acquisition

mode, as compared to the 1,35 acquisition mode. This is to be expected since the

1-day sampling period of the 1,35 acquisition mode results in a greater aliasing of

the ∼ diurnal and semidiurnal tidal constituents. As a result, the 3,3 acquisition

mode provides a more comprehensive evaluation of the modelled tidal signal,

although it still does not adequately sample all tidal constituents (e.g. S2, 12

hour period).

For a given acquisition mode, the double-difference technique is likely to resolve

a larger tidal signal than the single-difference technique. Consequently, if the

aim of a study is to resolve the tidal signal (for example to map the grounding

line of a glacier (Rignot, 1998)) then it would be preferable to use 3,3 acquisition

mode data, along with a double-difference technique. Conversely, if the aim is to

minimise the tidal signal, say for estimating ice flow using a single interferogram,

then 1,35 acquisition mode data is a better choice.

5.9.2 Comparison of Tide Models

The three tide models considered here predict the amplitude of the observed

single- and double-difference tidal signals with comparable accuracy. In both cases

FES marginally outperformed the other two models, but the difference between

models was not large. To assess the extent to which model choice affected the

simulated tidal amplitude, I investigated the spatial and temporal consistency of



CHAPTER 5. Tide Model Accuracy in the Amundsen Sea 122

Figure 5.10: Distribution of hourly modelled tide predictions at the Dotson Ice Shelf,
1994. a) tide height; b) difference in tide height over a 3 day period (i.e. the tidal
signal recorded by a 3-day interferogram); c) double-difference in tide height (i.e. the
tidal signal recorded in a differential interferogram, formed from 4 consecutive SAR
images, each separated by 3 days); d) difference in tide height over a 1 day period
(i.e. the tidal signal recorded in a 1-day interferogram); e) double-difference in tide
height (i.e. the tidal signal recorded in a differential interferogram, formed from two
1-day interferograms, with a 35-day separation between the two interferograms).
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Figure 5.11: Model predictions of tidal displacement at the Dotson Ice Shelf, at
14:50 hrs on 3rd February 1996. Thick black line in a) - c) separates the ocean (Oc),
the ice shelf (IS) and grounded ice (GI ). a) TPXO; b) CATS; c) FES; d) north-south
transect of modelled tide heights along 247.5◦E. The spatial extent of predictions are
limited to that of FES model domain.

the FES, TPXO and CATS tide model predictions in the vicinity of the Dotson

Ice Shelf.

Figure 5.11 illustrates the spatial variability in the tidal amplitude predicted

by the three models. Maps of single- and double-difference tidal displacement

exhibited similar spatial patterns. Seaward of the ice shelf front, predictions

from the three models are relatively consistent. However, upon crossing the ice

front, there is a discontinuity in the gradient of the FES solution, and FES tide

height rapidly diverges from the other two models. TPXO and CATS retain their

consistency over the whole of the ice shelf. Possible sources of the inconsistency

of FES may be differing bathymetry used in this region or varying sub-ice shelf

water column thickness. Further investigation is required to understand the cause

of this discrepancy. The agreement between FES predictions and interferometric

observations is far greater seaward of the ice front than on the ice shelf itself,

suggesting that the on-shelf ramp in FES tide height (figures 5.11c-d) is not a real

phenomenon. This motivated my decision to use modelled tide heights from just

seaward of the ice front, at 74.1◦S, 247.5◦E (figure 5.1). This is not problematic

for this work, but in studies where the pattern of tidal displacement over the ice
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Figure 5.12: Temporal variability of modelled tide predictions at the Dotson Ice
Shelf. a) - c) January 1994; d) - f) 3 day period indicated by dashed lines in a) - c)
showing differences between models. a) and d) tide height; b) and e) difference in tide
height over a 3 day period (i.e. the tidal signal recorded in a 3-day interferogram); c)
and f) double-difference in tide height (i.e. the tidal signal recorded in a differential
interferogram, formed from 2 consecutive 3-day interferograms).

shelf is being modelled, it would be worthwhile checking the consistency of FES

with other models, and may provide a reason to favour CATS or TPXO. I note

that a similar assessment of FES95.2 at the Filchner-Ronne Ice Shelf (Rignot

et al., 2000) found no such discrepancy, and so this issue may only pertain to

small ice shelves.

Next I assessed the temporal consistency of model predictions of tide height,

and of the tidal signals isolated by my single-difference and double-difference

methods. Using results from the three tide models, I formed time series of tide

height, 3-day tide height difference, and the double-difference in tide height for a

month-long period coincident with part of my SAR dataset (figure 5.12). All three

tide models were generally in good agreement in predicting both the amplitude
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and the phase of the tidal signal. Inter-model variability was further reduced

by both differencing and double-differencing the tidal signals (figures 5.12d-f).

This analysis is consistent with the results of my InSAR-based model evaluation

(section 5.8.3), which showed little difference in the performance of the three

models. Over the month-long period considered here, the longer-period (greater

than diurnal) variability was reduced in the differenced, and double differenced,

tidal signal. This analysis (figure 5.12) also indicates that semidiurnal tides are

relatively weak at the Dotson Ice Shelf.

5.9.3 Assessment of Inverse Barometer Correction

In situations where in situ meteorological records are located close to the

study site, an inverse barometer correction based upon such measurements can

substantially improve InSAR-based assessments of tide models (Padman et al.,

2003b). What has been less clear is whether, in the absence of such records,

model data are sufficiently accurate to merit being used as the basis for inverse

barometer corrections. Additionally, previous studies (e.g. Ponte et al. (1991))

have indicated that an inverse barometer model may not be appropriate over the 1-

day timescales at which some of my data (table 5.2) were collected. To investigate

these issues, I compared my single- and double-difference results, both with and

without inverse barometer corrections. I found that, for all models considered

here, and for both the single- and double-difference results, the inclusion of the

correction improved the agreement between observations and model predictions by

an average of 6 %. This suggests that the accuracy of model reanalysis pressure

fields and the validity of the inverse barometer approximation are sufficient to

model, at least in part, ice shelf displacement arising from atmospheric pressure

changes over these timescales. It is possible that a more sophisticated model-based
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correction for atmospheric pressure loading (e.g. Carrere and Lyard (2003)) may

provide further improvement over short timescales.

5.9.4 Comparison to Previous Work

To my knowledge, only one study (Rignot, 2002a) has provided an evaluation of

tide model predictions in the Amundsen Sea. My results find a similar degree

of agreement between double-difference observations and model predictions to

that of Rignot (2002a). Studying the nearby Pine Island Ice Shelf, Rignot

(2002a) found the accuracy of FES99 (a predecessor of FES2004) double-difference

predictions to be 9 cm. Here I find the equivalent (no inverse barometer

correction) root mean square difference to be 10.6 cm. Other tide model

evaluations have been conducted around Antarctica, based upon both remote

sensing (Padman et al., 2003a) and in situ (King and Padman, 2005; King et al.,

2011) data. Variations in these error estimates arise because of differences in

(1) the models evaluated, (2) the evaluation methods used, (3) the error metric

chosen and (4) the tidal characteristics of the region in which the analysis was

performed. Nonetheless, the studies conducted by Rignot (2002a), Padman et al.

(2003a), King and Padman (2005) and King et al. (2011), together with the work

described here, paint a broadly consistent picture of approximately decimetre-

level tide model accuracy in Antarctic coastal waters.

5.10 Conclusions

In this study I have developed InSAR-based estimates of ice shelf tidal motion in

order to assess the accuracy with which ocean tide models can predict ice shelf

tidal motion in remote regions of Antarctica. Firstly, I used a single-difference
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technique to assess the ability of tide models to predict changes in tide height.

Secondly, I used a double-difference technique to evaluate model predictions of

the difference between two tidal displacements. Comparing these two methods,

I find that the double-difference technique, with a 3.5 cm measurement error,

provides a more accurate assessment of tidal displacement. Three tide models

(TPXO7.2, CATS2008a opt and FES2004) perform comparably well, with root

mean square deviations from observations of ∼ 9 cm (single-difference technique)

and ∼ 10 cm (double-difference technique). I find here that FES predictions

coincident with the ice shelf itself are not reliable. The inclusion of a model-

based correction for atmospheric pressure fluctuations improves the agreement

between tide model predictions and observations, suggesting that the accuracy

of model reanalysis pressure fields is sufficient to merit the application of such a

model-based correction.

The single-difference approach, unlike its double-difference counterpart, directly

assesses the accuracy with which tide models can reproduce the tidal signal

recorded in an interferogram. This quantifies the tidal error in model-dependent

InSAR estimates of ice flow, which results from model inaccuracies in predicting

tidal displacement. My study indicates that the tide models considered here can

reproduce daily-scale tidally-induced ice shelf height changes in the Amundsen

Sea to an accuracy of ∼ 9 cm. This would equate to an error of 22 m/yr in the

ground range component of the velocity field if this unmodelled tidal signal was

interpreted as ice shelf flow. This level of accuracy is comparable to other regions

around Antarctica, where there is a higher prevalence of in situ tidal records.

The methods described here can be used to evaluate tide models in other remote

Antarctic waters.
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6.1 Abstract

Interferometric Synthetic Aperture Radar (InSAR) observations of ice shelf flow

contain ocean tide and atmospheric pressure signals. A model-based correction

can be applied, but this method is limited by its dependency upon model

accuracy, which in remote regions can be uncertain. Here I describe a method

to determine 2-d ice shelf flow vectors independently of model predictions of

tide and atmospheric pressure, by stacking conventional and multiple aperture

(MAI) InSAR observations of the Dotson Ice Shelf in West Antarctica. In this

way I synthesise a longer observation period, which enhances long-period (flow)

displacement signals, relative to rapidly-varying (tide and atmospheric pressure)

signals and noise. I estimate the error associated with each component of the

velocity field to be ∼ 22 m/yr, which could be further reduced if more images were

available to stack. With the upcoming launch of several satellite missions, offering

the prospect of regular short-repeat SAR acquisitions, this study demonstrates

that stacking can improve estimates of ice shelf flow velocity.

6.2 Introduction

Around the coastline of Antarctica, ice shelves provide an interface through which

ice is melted by the ocean and the relatively warm coastal air. Through this

connection, changes in atmospheric (Vaughan and Doake, 1996) and oceanic

(Rignot and Jacobs, 2002; Shepherd et al., 2004) conditions can trigger an ice

shelf response which, over decadal timescales, can propagate a dynamic instability

hundreds of kilometres inland (Payne et al., 2004). These changes can affect the

mass balance of glaciological catchments (Shepherd et al., 2002; Wingham et al.,

2009) and as a consequence can accelerate sea level rise. Evidence of the dynamic

response of inland ice to changing ice shelf conditions has been observed at several
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locations on the Antarctic Peninsula and the Amundsen Sea sector of the West

Antarctic Ice Sheet (Rott et al., 2002; Shepherd et al., 2002; De Angelis and

Skvarca, 2003; Rignot et al., 2004; Scambos et al., 2004; Rignot et al., 2005;

Pritchard et al., 2009). These studies demonstrate how external perturbations

in climate can lead to changes in Antarctic Ice Sheet (AIS) mass over relatively

short time periods. Several studies have documented ice shelf acceleration prior

to collapse (Rignot et al., 2004; Vieli et al., 2007). These highlight the importance

of monitoring ice shelf flow velocities, both as an indicator of the stability of the

glaciological catchment, and in providing detail of the processes through which

ice shelves interact with the atmosphere, the ocean and grounded ice upstream

(Joughin and Padman, 2003; Payne et al., 2007; Vieli et al., 2007). Until such

mechanisms are well understood, the AIS contribution to future sea level rise

remains uncertain.

Over the last two decades, conventional satellite-based Interferometric Synthetic

Aperture Radar (InSAR) has provided precise, spatially extensive measurements

of ice velocity (e.g. Goldstein et al. (1993); Joughin et al. (1995, 1996a); Kwok and

Fahnestock (1996); Rignot (1996); Lang et al. (2004); Rignot et al. (2008)). This

technique measures displacement in the satellite’s line of sight, and so the signal

returned from the surface of an ice shelf contains both components due to ice

flow (assumed here to be in the horizontal plane) and vertical motion (Goldstein

et al., 1993; Rignot, 1996; Rignot and MacAyeal, 1998; Rignot et al., 2000).

Over the (typically daily) timescales at which InSAR measurements are best

made, vertical displacement deriving both from tidal motion and from changes in

atmospheric pressure can be significant relative to the speed at which the ice flows

(Rignot et al., 2000; Padman et al., 2003b). Consequently, these signals must be

removed in order to determine ice flow velocity with confidence. The response

of an ice shelf to atmospheric pressure fluctuations is commonly modelled as an

inverted barometer (Padman et al., 2003b) and termed the Inverse Barometer
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Effect (IBE). Whilst this method has been used to isolate the tidal component

of altimetry observations (Padman et al., 2008), no studies have attempted to

model and remove this component of the InSAR signal when estimating ice shelf

flow. In the case of the tidal component, a tide model is commonly used to

simulate this part of the interferometric signal (computed as the difference in tide

height at the acquisition times of the two SAR images) (e.g. Rignot and Jacobs

(2002); Joughin et al. (2003); Rignot et al. (2004); Vieli et al. (2006)). However,

in remote Antarctic regions this method is limited by two factors: (1) modelling

tides is challenging, because tide gauge, bathymetric and altimetry data are scarce

(Egbert et al., 1994; King and Padman, 2005), and (2) in the absence of in situ

data, it is difficult to assess precisely the ability of a model to predict changes

in tide height over the period of interferometric acquisition (chapter 5). As a

consequence, the extent to which unmodelled tidal motion affects these ice shelf

flow velocity estimates is uncertain.

Stacking interferograms is routinely used to map solid Earth topography

(Sandwell and Price, 1998; Sandwell and Sichoix, 2000) and ground deforma-

tion (Zebker et al., 1997; Wright et al., 2001; Gourmelen and Amelung, 2005).

When mapping surface deformation, stacking enables a longer observation period

to be utilised, and so the magnitude of unwanted atmospheric, orbital and topo-

graphic signals is reduced relative to the steady rate of deformation. Here I apply

this technique to the problem of mapping ice shelf flow; by stacking I minimise

unwanted short period tidal and IBE signals, relative to the steady flow signal.

As a consequence, I do not rely on tide or IBE model predictions to map ice shelf

flow speeds, and hence eliminate the requirement that any single model realisa-

tion of tidal or IBE displacement is sufficiently accurate (or of known accuracy).

As with solid Earth applications, by stacking I also reduce atmospheric, orbital

and topographic noise.

Stacking interferograms to minimise the tidal component of ice shelf displacement
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was originally proposed by Rignot and MacAyeal (1998) in a study of the Filchner-

Ronne Ice Shelf. To date, however, mapping ice shelf flow using this approach

has primarily been limited by the lack of long sequences of regular, short-repeat

SAR acquisitions which lend themselves to this technique. The recent European

Remote Sensing satellite (ERS-2) 3-day campaign and the planned Sentinel-1 and

Radarsat Constellation satellites offer the prospect of the provision of such data.

With a view to these missions, I revisit the ERS data archive to provide a detailed

demonstration and assessment of the technique at the Dotson Ice Shelf, in the

Amundsen Sea sector of West Antarctica. Specifically, I (1) extend the stacking

method so as to resolve 2-d velocity vectors from data acquired from a single

viewing direction, by utilising conventional and multiple aperture interferometry,

(2) use model statistics to quantify the residual tidal and IBE error in my stacked

velocity solution, (3) compare my results to flow predictions determined using a

traditional method whereby model predictions are used to remove the tidal and

IBE signals, and (4) assess the wider application of a stacking-based approach to

future satellite missions.

6.3 Study Area

The Dotson Ice Shelf (figure 6.1) spans an area of approximately 3400 km2, and

is one of several small ice shelves situated along the Amundsen Sea coastline of

the West Antarctic Ice Sheet. This region, which contains sufficient ice to raise

sea levels by ∼ 1.5 m, currently has the greatest mass deficit of all of Antarctica

(Shepherd and Wingham, 2007). In the last two decades, satellite observations of

this region have revealed ice shelf thinning (Shepherd et al., 2004) and grounding

line retreat (Rignot, 1998, 2002a). Additionally, grounded ice upstream has

thinned (Shepherd et al., 2002; Pritchard et al., 2009; Wingham et al., 2009)

and accelerated (Rignot, 2008). The changes in this region are likely to have
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been driven by high rates of ice shelf basal melting, resulting from the intrusion

of warm Circumpolar Deep Water into sub-ice shelf cavities (Jacobs et al., 1996;

Thoma et al., 2008; Jenkins et al., 2010), via seabed troughs that run across the

continental shelf (Nitsche et al., 2007) (chapter 4). Satellite observations indicate

that between 1992 and 2001, the Dotson Ice Shelf was thinning at an average

rate of 3.3 ± 0.4 m/yr (Shepherd et al., 2004). Once other factors affecting

surface lowering had been accounted for (namely temporal fluctuations in sea

level height, ocean density, ice shelf density, surface mass accumulation, and ice

mass flux divergence), Shepherd et al. (2004) estimated that an average net basal

melt rate of ∼ 8 m/yr was required to produce this rate of thinning.

6.4 Data

The principle dataset used in this study to demonstrate the stacking method was

a sequence of SAR images acquired by the ERS-1 satellite. These data were

processed using a range of techniques to provide measurements of ice shelf flow.

As part of the InSAR processing, a digital elevation model (DEM) and laser

altimetry data were used for the removal of unwanted signals from the SAR data.

To determine the errors associated with the stacking technique, and to provide a

more general assessment of my proposed method, I have used data from tide and

atmospheric pressure models to simulate other forms of ice shelf motion. Further

details of these data are given below.

6.4.1 Synthetic Aperture Radar

To map ice shelf flow I used Synthetic Aperture Radar data acquired during the

second ice phase of the ERS-1 satellite (table 6.1). The SAR data were obtained
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Figure 6.1: The Dotson Ice Shelf. Colour scale shows pattern of non-steady (tidal
and IBE) displacement, derived from differential interferometric synthetic aperture
radar; red indicates grounded ice, blue indicates floating ice. White box shows the
spatial extent of the SAR data frames used in this study. White arrow indicates
the satellite across-track direction. White stars indicate the location of the transect
shown in figure 6.8 and P indicates the position of the pinning point identified in
figure 6.8. The background image is taken from the Moderate Resolution Imaging
Spectroradiometer (MODIS) mosaic of Antarctica (Haran et al., 2006).
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in raw format and processed using the Gamma software package (Werner et al.,

2000). I used a 5-km Antarctic-wide DEM (Bamber and Bindschadler, 1997)

to remove the topographic component of the interferometric phase. To refine

the ERS-1 interferometric geometry, I used point (60 m diameter) measurements

of elevation from the Geoscience Laser Altimeter System (GLAS), on-board the

Ice Climate and Elevation Satellite (ICESat) (Zwally, 2002). These data were

acquired during the period 2003 - 2007. I used GLAS Level 1B elevation data

(GLA06), which includes corrections for atmospheric propagation delays and the

effect of solid Earth tides (Brenner et al., 2003). Data points with no saturation

elevation correction or large receiver gain values (greater than 50) were discarded.

Saturation correction was added to the elevations. Geolocations in the GLA06

dataset were used without additional corrections.

Table 6.1: Synthetic aperture radar data used to form interferometric solutions. e1

signifies ERS-1 satellite, B⊥ specifies the perpendicular baseline of the SAR image
pair.

Image pair Acquisition date Temporal Track B⊥ Usage Interferogram
(sensor-orbit-frame) (reference image) separation identifier

e1-13153-5182 / 20 Jan 1994 3 days 39 17 m InSAR + MAI I1
e1-13196-5182

e1-13239-5182 / 26 Jan 1994 3 days 39 -196 m InSAR + MAI I2
e1-13282-5182

e1-13325-5182 / 1 Feb 1994 3 days 39 44 m InSAR I3
e1-13368-5182

6.4.2 Tide Model

To model the tidal motion of the Dotson Ice Shelf, I used the Finite Element

Solution model FES2004 (Lyard et al., 2006), which performs well in the

Amundsen Sea (chapter 5). FES2004 is a global tide model, with 1/8◦ resolution,

which utilises sparse Antarctic tide gauge data (less than 10 records), together

with TOPEX / Poseidon and ERS altimetry. The model was used for two

purposes: (1) to generate tidal predictions coincident with the acquisition of the
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Figure 6.2: Modelled tide height (a) and surface level atmospheric pressure (b) at
the Dotson Ice Shelf during the period of SAR data acquisition. Tide heights were
estimated at 74.1◦S, 247.5◦E using the FES2004 tide model (Lyard et al., 2006).
Atmospheric pressure was estimated at 74◦S, 247◦E using the ERA-40 reanalysis
(Uppala et al., 2005). Shaded areas indicate periods over which interferograms were
formed.

SAR data, and (2) to compute the distribution of tidal signals from a year-long,

hourly resolution model run. Tide heights were obtained from the model just

seaward of the ice front, at 74.1◦S, 247.5◦E, as I believe them to be more accurate

at that location (chapter 5), than under the ice shelf itself where water column

thicknesses are poorly known. The modelled tide height during the period of SAR

data acquisition is shown in figure 6.2a.

6.4.3 Surface Level Atmospheric Pressure

In the absence of in situ meteorological data, model data from the European

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 reanalysis

(Uppala et al., 2005) were used to determine surface level atmospheric pressure

changes at the Dotson Ice Shelf. Data at 74◦S, 247◦E were extracted from a 1◦

x 1◦ regularly spaced grid (derived from an N80 reduced Gaussian grid), which

was acquired from the British Atmospheric Data Centre at 6-hourly temporal
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resolution. These model data were used in two ways: (1) to generate predictions of

surface level atmospheric pressure coincident with the acquisition of the SAR data

(via a linear interpolation between the two closest 6-hourly model records), and

(2) to compute the distribution of pressure signals from a year-long model record.

The modelled atmospheric pressure during the period of SAR data acquisition is

shown in figure 6.2b.

6.5 Methods

In this section I describe (1) the methods used to generate stacked displacement

maps, (2) the use of model statistics to estimate the associated tidal and IBE

error, and (3) the formation of comparison displacement maps using single

model realisations to remove the predicted tidal and IBE signals from a single

interferogram.

6.5.1 Conventional InSAR Stacking

The conventional interferometric synthetic aperture radar processing techniques

used to map ice motion are well documented (Goldstein et al., 1993; Joughin

et al., 1995, 1996a; Kwok and Fahnestock, 1996; Rignot, 1996) and so here I

provide only a short overview of the methods used in this study. Interferograms

were formed from co-registered SAR image pairs, with 3 days separating each

acquisition (table 6.1). This acquisition configuration was chosen so as to (1)

minimise temporal decorrelation by keeping the interferometric temporal baseline

short, and (2) assess the method with respect to a simple and regular acquisition

cycle. The sensitivity of my method to the temporal sampling provided by this

acquisition cycle is examined in section 6.7.
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For repeat-pass SAR observations of an ice shelf, the interferometric phase, ϕ, is

due to a combination of terms:

ϕ = ϕflat + ϕtopo + ϕflow + ϕtide + ϕibe + ϕnoise + ϕref (6.1)

This expression describes the spatial variation in phase, relative to a spatially-

constant reference or phase offset (ϕref). Phase variations across the image are

caused by (1) the changing viewing angle across the ground track (ϕflat), (as

described by the shape of Earth’s ellipsoid), (2) surface topography (ϕtopo), (3)

surface displacement due to ice flow (ϕflow), tidal forcing (ϕtide) and the IBE

(ϕibe), and (4) noise in the received signal (ϕnoise). The noise term encompasses

both short-wavelength noise (for example from temporal decorrelation of the

received signals) and mid-wavelength noise (such as atmospheric distortions of

the interferometric phase).

Firstly, I used the interferometric geometry to simulate and remove the flat Earth

signal. Where possible I used ICESat surface elevations over non-moving terrain

to further refine my interferometric baseline estimate, and thus improve my model

of this component of the signal. Where this was not possible, due to a lack

of interferometric coherence over stationary regions, precise orbit information

acquired from the Technical University of Delft was used. Loss of coherence over

the period of interferogram acquisition was likely due to wind- or precipitation-

driven changes to the near-surface snow pack.

Next, I unwrapped each interferogram. Ignoring the noise term (which I assess

in the Errors section) and the constant phase offset (which I address at the end

of this section), the remaining variation in the interferometric phase comprises

contributions from (1) topography and (2) the line of sight component of the

various modes of surface displacement:



CHAPTER 6. Mapping Ice Shelf Flow with InSAR Stacking 139

ϕ = −4π

λ

[

z B⊥

r sin θ
+ sinψ ∆hflow + cosψ (∆ztide + ∆zibe)

]

(6.2)

λ denotes the radar wavelength (5.7 cm for the ERS-1 satellite used in this study),

B⊥ denotes the component of the interferometric baseline perpendicular to the

radar line of sight, z is the elevation of the target pixel above Earth’s ellipsoid, r

denotes the range from the satellite to the target pixel, θ is the radar look angle

and ψ is the incidence angle of the radar beam relative to the normal to Earth’s

ellipsoid. Over the time period (∆t days) of the interferometric observation,

∆hflow denotes the horizontal ground range component of surface displacement

due to ice flow, and ∆ztide and ∆zibe denote the vertical displacement of the ice

shelf in response to the tide and IBE, respectively. Stacking n interferograms

yields a stacked phase:

n
∑

i=1

ϕi = −4π

λ

[

z

r sin θ

n
∑

i=1

B⊥,i + sinψ
n

∑

i=1

∆hflow,i

+ cosψ
n

∑

i=1

(∆ztide,i + ∆zibe,i)

]

(6.3)

To isolate the surface displacement component, elevations from a digital elevation

model (Bamber and Bindschadler, 1997) were scaled by the effective perpendicular

baseline of the stacked interferogram, and used to simulate and remove the

topographic phase. Dividing the remaining stacked phase through by the total

observation period of the stack yields an estimate of the ice flow velocity during

that period (in m/day) subject to error from residual tidal and IBE signals:
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(6.4)

This expression forms the basis of this work, whereby I use the stacked phase to

estimate horizontal ice flow and model statistics to determine the magnitude of

the associated tidal and IBE errors.

The method so far only determines relative displacement, i.e. how displacement

varies across the image space. To determine absolute displacement values (by

estimating the reference phase offset), I referenced my displacement map to a

set of displacement estimates acquired where ice was grounded. As in chapter

5, grounded areas were identified by differencing two interferograms (figure 5.4).

Reference displacements were then determined using the technique of coherence

tracking (mapping surface motion based upon optimising coherence between

patches of SAR image pairs (Derauw, 1999; Pattyn and Derauw, 2002; Strozzi

et al., 2002)) to map surface displacement in the satellite’s line of sight direction.

Following the same procedure described in section 5.6.1, InSAR velocities were

adjusted so that the mean InSAR-derived velocity (over regions identified as being

grounded) matched the equivalent velocity determined using coherence tracking.
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6.5.2 Modelling Tide and IBE Error

My stacked InSAR velocity solution does not utilise model predictions of tide

or IBE to isolate ice shelf flow. Instead I have aimed to minimise these

signals by stacking displacement estimates. I now use the tide and IBE models

to simulate the statistics of the residual tide and IBE signals in order to

quantify the associated error in my stacked predictions of flow. I formed

time series from both the FES2004 tide model and the ERA-40 atmospheric

pressure reanalysis for the entirety of 1994, at hourly and 6-hourly intervals

respectively. I converted atmospheric pressure changes into changes in ice shelf

height (IBE displacement) using an inverse barometer approximation, namely the

ratio determined empirically by Padman et al. (2003b) of -0.95 cm / hPa. Padman

et al. (2003b) found little variation in estimates of this ratio derived from data

collected at three widely-spaced and different-sized ice shelves, and so I assume

this estimate to be valid at the Dotson Ice Shelf. Next, I calculated the tidal-

and IBE-displacements that would occur in a stacked interferometric prediction

acquired at every point along the timeseries. I converted these modelled vertical

displacements into annual velocities in the satellite’s across-track direction and

so determined the distribution of velocity errors, arising from residual tidal and

IBE signals, that could be present in my stacked prediction of flow.

6.5.3 Isolating Flow Displacement Using Model Predictions

To assess my stacked velocity solution I used the same InSAR data (table 6.1)

to form alternative displacement maps, using the standard technique of removing

the tidal signal from each individual interferogram, based upon the coincident tide

model predictions (Rignot and Jacobs, 2002; Joughin et al., 2003; Rignot et al.,

2004; Vieli et al., 2006). I have extended this method to additionally remove
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the modelled IBE component of ice shelf motion. To isolate flow, I followed

the interferometric method described above to convert individual interferograms

into maps of absolute across-track displacement. Next, I used a double difference

technique (Hartl et al., 1994; Rignot, 1996, 2002a) to determine the pattern of

non-steady (tide and IBE) displacement of the Dotson Ice Shelf (figure 6.1). To

simulate the tidal and IBE signals occurring within each interferogram, I scaled

the double difference solution so that the mean displacement across the freely

floating portion of the ice shelf matched that of the combined modelled tide and

IBE displacement. This prediction was subtracted from each conventional InSAR

displacement map, in order to produce multiple predictions of ice flow.

6.5.4 Multiple Aperture InSAR Stacking

Conventional InSAR only measures one dimension of the displacement field; along

the satellite’s line of sight. To determine 2-d vectors I estimated displacement

along the satellite track using Multiple Aperture InSAR (MAI) processing (Be-

chor and Zebker, 2006; Jung et al., 2009; Gourmelen et al., 2011). Previous work

has shown that MAI offers improvements in estimates of along-track displace-

ment as compared to tracking methods, both for solid Earth (Bechor and Zebker,

2006) and glaciological (Gourmelen et al., 2011) applications. MAI processing

splits the antenna beam to form two sub-aperture Single-Look Complex (SLC)

images, one forward-looking and one backward-looking, from each conventional

SAR image. Then, from a pair of SAR images, the forward looking SLC’s and the

backward looking SLC’s are each combined to form two interferograms which are

sensitive to displacement in both the azimuth and range directions. Differencing

the interferometric phase of these forward-looking and backward-looking interfer-

ograms cancels the common range component of the interferometric phase and

isolates a phase difference that is proportional to the along-track component of
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the displacement field. Because MAI measures the difference between the inter-

ferometric phase as observed from two different viewing angles, rather than the

interferometric phase itself (as measured by conventional InSAR), the MAI phase

measurement is less sensitive to surface motion. Specifically, from the interfer-

ometric geometry Bechor and Zebker (2006) show that the MAI phase, ϕmai, is

related to the along-track displacement, x, by the expression:

ϕmai ≈ −2π

l
x (6.5)

where l denotes the antenna length (10 m for the ERS-1 satellite). Consequently, a

2π phase change corresponds to a 10 metre change in displacement for MAI (versus

2.8 cm for InSAR), meaning that MAI phase gradients are lower than InSAR and

the phase over moving and stationary areas could be linked. These stationary

areas provided an absolute reference for my displacement estimates. Although

MAI is insensitive to vertical ice shelf motion, I still stack MAI interferograms,

so as to amplify the steady ice flow signal, relative to temporally uncorrelated

noise sources. Finally I combine the along-track velocity component from MAI

with the across-track velocity component from conventional InSAR, in order to

determine a map of velocity magnitude.

6.6 Results

6.6.1 Stacked Velocity Map

I used the stacked multiple aperture and conventional InSAR solutions to

determine the along-track (figure 6.3a) and across-track (figure 6.3b) components,

respectively, of the flow velocity vectors. I then combined these components to
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Figure 6.3: Flow velocity of the Dotson Ice Shelf. a. Along-track velocity
component derived from stacked MAI, white arrow indicates the satellite along-
track direction; b. Across-track velocity component derived from stacked InSAR,
white arrow indicates the satellite across-track direction; c. Velocity magnitude from
combined azimuth (a) and range (b) components. The background image is taken
from the MODIS mosaic of Antarctica (Haran et al., 2006).

give a map of the magnitude of the 2-d flow velocity vectors (figure 6.3c). I

assumed ice flow to be in the horizontal plane, i.e. that the vertical component of

flow was negligible. My solution shows that the Dotson Ice Shelf is primarily fed

by fast flowing ice originating from the Smith and Kohler Glaciers. Close to the

grounding line, where the ice funnels through a narrow gap, velocities exceed 500

m/yr. Further downstream, on the freely-floating portion of the ice shelf, speeds

drop to ∼ 320 m/yr, before increasing again to ∼ 500 m/yr close to the calving

front.

6.6.2 Error Assessment

To assess the viability of my stacking method, I considered the error associated

with my stacked velocity solution. I define the error, ε, associated with

interferometric estimates of horizontal ice shelf flow as follows:

ε2 = ε2

tide + ε2

ibe + ε2

topo + ε2

base + ε2

atmos + ε2

coh + ε2

ref + ε2

unw (6.6)
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The error components refer, in left to right order, to errors from residual tidal dis-

placement, residual IBE displacement, unmodelled topography, unmodelled base-

line effects, atmospheric phase distortions, loss of coherence, error in determining

an absolute reference and error in the phase unwrapping process. To simplify this

assessment, I assumed that all errors were independent. This provides a close ap-

proximation of the true error since the dominant error components (namely tide

and IBE, as outlined in this section) are independent. The extent to which these

error sources affect the across- and along-track components of my displacement

field varies as a consequence of the different techniques used. I address the error

associated with each component in turn.

Conventional InSAR

Firstly I considered the effect of each error component (equation 6.6) on my

conventional InSAR estimates of across-track displacement. To assess the tide

and IBE errors (εtide and εibe) I used one year’s worth of model data to

estimate the distribution of these signals occurring over the timescales of the

interferometric acquisitions, using the procedure outlined in chapter 5. I then

converted these estimates of vertical displacement into equivalent errors in the

across-track component of the velocity solution (figure 6.4). In each case I

computed the signals corresponding to (1) a single interferogram (i.e. the 3-day

difference in tide height), (2) two stacked interferograms, and (3) three stacked

interferograms. Both the tide and IBE contributions to the velocity error tend

to diminish in size as the interferometric predictions are stacked, primarily as a

consequence of the longer observation period over which displacement is measured.

The distributions of the stacked tidal and IBE signals are roughly normal and

centred close to zero. In contrast, the twin-peaked distribution of the single

interferogram tidal displacement indicates that, in a single interferogram, a much

larger signal is likely to be present, and demonstrates the value of stacking to
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Figure 6.4: Modelled distribution of the (a) tidal and (b) IBE contributions to
conventional InSAR estimates of across-track flow velocity at the Dotson Ice Shelf.
Each panel shows the expected distribution of across-track velocity errors arising
from the tidal and IBE motion of the ice shelf within a single interferogram (3 day
separation, as shown in figure 5.10b), and for 2- and 3- stacked interferograms. Tide
was computed from hourly realisations of the FES2004 tide model, and the IBE from
6-hourly realisations of the ERA-40 reanalysis of surface level atmospheric pressure,
converted into changes in ice shelf height using the empirical relationship determined
by Padman et al. (2003b). Both models were run for the entirety of 1994, and the
resulting vertical displacements were converted into equivalent annual velocities in the
satellite’s across-track direction.
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Figure 6.5: Stationary areas (bounded by white lines) used to estimate the error in
my tracking displacement map, εref .

reduce the tidal contribution. The distribution of the single interferogram tidal

displacements (black line in figure 6.4a) is asymmetric, with the right-hand peak

(positive velocity contribution) being larger than the left hand peak (negative

velocity contribution). This is likely to be a consequence of the positively skewed

distribution of modelled tidal height (figure 5.10a). I do not believe it to be

an artifact of the FES model as all three models considered in chapter 5 are

consistent in predicting such an effect. To determine the contribution of tide and

IBE error to the 3-stack velocity estimate, I combined the standard deviations

of the modelled tidal (20 cm over a 9-day period) and IBE (18 cm over a 9-day

period) signals. This yielded a total error due to residual vertical motion of 27

cm, which equates to an error of 22 m/yr in the across-track component of the

stacked velocity solution.

To determine an absolute reference for my InSAR displacements, I matched

the mean InSAR and mean tracking range displacements over grounded ice.
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Consequently, any bias in the tracking displacements is transferred to my InSAR

solution. I estimated this referencing error, εref , from the displacement values of

pixels that were located on stationary areas (figure 6.5). Over the 3-day period

of my tracking measurements, the mean displacement of these points was 6 cm,

equivalent to a bias of 7 m/yr in my velocity solution.

The effect of the remaining error terms upon my velocity solution is likely to

be small in comparison to the aforementioned errors. Because of the minimal

topographic relief in my study area, relative DEM errors are small (of order

5 m (Bamber and Gomez-Dans, 2005)) as compared to the 70 metre altitude of

ambiguity of my stacked interferogram (i.e. the elevation change equivalent to one

complete cycle of the interferometric phase, which is a function of the effective

baseline of my stacked interferogram). This topographic error, εtopo, equates

to a 0.9 cm across-track displacement error in my 9-day stacked interferogram,

equivalent to a 0.4 m/yr error in my velocity estimate.

As a measure of the displacement error arising from loss of coherence, εcoh, I

calculated the errors associated with the average coherence of each interferogram

(Rodriguez and Martin, 1992). The resulting displacement error in my 9-

day stacked interferogram is 0.4 cm, equivalent to an error in the across-track

component of my velocity solution of less than 0.2 m/yr. Atmospheric distortions

of the interferometric phase, εatmos, occur because of spatial and temporal

inhomogeneity in the troposphere and ionosphere. To quantify the tropospheric

component, I followed the procedure outlined in chapter 5. Based upon the length-

and time-scales appropriate to this study and the parametrisation determined

by Emardson et al. (2003), I estimated the error arising from the tropospheric

variability to be at most 4.1 cm in my 9-day stacked interferogram, equivalent to

a 1.7 m/yr error in my velocity solution. I neglected ionospheric errors, (Gray

et al., 2000) as these tend to manifest themselves as distinctive features, and I do

not see any evidence of these features in my dataset. I have aimed to minimise any
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Table 6.2: Summary of terms contributing to displacement error in the three-stack
(9-day) InSAR estimate of across-track displacement. Referencing error calculated
from tracking displacements determined over a 3-day period.

Error term Across-track error Contribution to

(cm) across-track velocity (m/yr)

Tide 41.0 16.6

Inverse Barometer Effect 36.9 15.0

Topography 0.9 0.4

Referencing 5.9 7.2

Atmosphere 4.1 1.7

Coherence 0.4 0.2

Total 55.6 23.5
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unmodelled baseline effects by, where possible, refining my baseline estimates and

checking for residual long-wavelength phase gradients over stationary areas. It is

possible that some small residual baseline error may exist in my velocity solution,

which I have not accounted for in my error budget. The process of stacking will,

however, further reduce any such effect. During the phase unwrapping process I

unwrapped along a path that gave no visible unwrapping errors and so I assume

no unwrapping errors in my velocity solution. The contributions from errors

associated with my across-track displacement estimates are summarised in table

6.2. Of these, the errors arising from atmospheric distortions and loss of coherence

are specific to the C-band frequency of the ERS SAR and will vary for sensors

operating at alternative frequencies. Combining all across-track error sources

yields a 23.5 m/yr error in this component of my velocity solution. This error

component is dominated by the errors from tidal and IBE effects.

Multiple Aperture InSAR

I now consider the error contributions (equation 6.6) to my MAI estimates

of along-track displacement. As part of MAI processing the forward- and

backward-looking interferometric phases are differenced, and so errors common

to both viewing angles will cancel. These include topographic and tropospheric

contributions (Bechor and Zebker, 2006), plus any signal associated with the

vertical motion of the ice shelf. Long wavelength phase trends over stationary

areas were used to estimate residual phase ramps resulting from unmodelled

baseline effects (Jung et al., 2009) and these were removed. A visual inspection

again showed no evidence of ionosphere-related errors (Gray et al., 2000). Because

MAI is less sensitive to surface displacement than conventional InSAR, fringe rates

are lower and so I do not anticipate unwrapping errors occurring.

I estimated the remaining MAI error terms, that of loss of coherence, εcoh, and
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Figure 6.6: Comparison of along-track surface displacement estimates determined
using (a) coherence tracking and (b) MAI. No post-processing filtering has been
applied to either image. Both estimates were made from a pair of SAR images
acquired on the 20th and 23rd January 1994.



CHAPTER 6. Mapping Ice Shelf Flow with InSAR Stacking 152

of satisfactorily referencing displacements to stationary areas, εref , from the

displacement values of pixels that were located on non-moving ground. The

displacements of these points exhibit an approximately normal distribution, with

a root mean square error of 34 cm for my 6-day stacked pair, equivalent to an

error of 21 m/yr in the along-track component of my velocity field. To assess

the MAI technique, I compared my MAI estimate of azimuth displacement to

an equivalent estimate determined using coherence tracking (figure 6.6). As

compared to coherence tracking, MAI yields both better spatial coverage and

a ∼ 30 % reduction in the error, as determined over stationary regions (figure

6.5).

I have determined that that the errors associated with the across- and along-

track components of my flow velocity solution are roughly equal (23 m/yr and

21 m/yr respectively); a consequence of (1) the improved along-track accuracy

offered by stacking MAI images, as compared to conventional tracking methods,

and (2) the effect of residual vertical motion upon InSAR estimates of across-

track displacement. As such, I have demonstrated that 2-d ice shelf velocity

can be estimated by combining MAI and InSAR data acquired from a single

viewing direction, with comparable errors pertaining to both of the velocity vector

components.

Velocity Magnitude

Commonly in studies of ice flow, it is estimates of velocity magnitude (figure

6.3c) that are of most interest. The simplest approach to determining the error

associated with the velocity magnitude is to sum in quadrature the along-track

and across-track error components, which yields an error of 31 m/yr in my velocity

magnitude solution. This approach assumes independence of along-track and

across-track errors. The MAI and InSAR observations are both derived from
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the same SAR data, and so the coherence and referencing errors affecting both

velocity components will not necessarily be independent. However, because these

errors form only a tiny fraction of the total InSAR error (table 6.2), I expect any

increase in the total error due to the non-independence of these components to

be small. The extent to which the error vector (defined by the along- and across-

track error components) affects the velocity magnitude will vary according to the

orientation and magnitude of the velocity vector relative to the error vector. For

a 2-d flow velocity vector, v, with an associated error vector, e, the change (i.e.

error) in the velocity magnitude, ε|v|, resulting from the vector addition of e to

v, can be described using the cosine rule:

ε|v| = |v + e| − |v| =
√

|v|2 + |e|2 − 2|v||e| cos θ − |v| (6.7)

If the vectors v and e are placed head to tail, then θ is the inner angle formed

where they meet, such that when θ = 180◦ the vectors v and e point in the same

direction, and θ = 0◦ indicates that v and e are orientated in opposite directions.

To illustrate the variation in velocity magnitude error, I have used this expression

(equation 6.7) to plot the error in velocity magnitude, ε|v|, as a function of the

size and orientation of the velocity vector relative to the satellite heading, given a

fixed error vector (figure 6.7). I have orientated the error vector in the direction

determined from the ratio of my along-track and across-track error components

(49◦ from the along-track direction). The error in velocity magnitude peaks at 31

m/yr when the velocity and error vectors are orientated in the same, or exactly

opposite, direction. The quadrature sum of my along- and across-track error

components therefore represents an upper bound upon the error associated with

my velocity magnitude estimate. In more favourable cases the error in velocity

magnitude will be significantly smaller, tending to zero when the velocity and
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Figure 6.7: Polar contour plot of the velocity magnitude error, as a function of the
size and orientation of the flow velocity vector relative to the satellite track. The plot
angle indicates the orientation of the flow vector, with 0◦ - 180◦ being the along-track
direction, and 90◦ - 270◦ being the across-track direction. The plot radius indicates
the flow speed, plotted here from 0 m/yr to 300 m/yr. The coloured contours indicate
the magnitude of flow error, and the thick black dashed line indicates the orientation
of the error vector, which is determined from the relative contributions of the errors in
along- and across-track directions (see Velocity Magnitude Error Assessment section
in text for more details). Flow is assumed to be in the horizontal plane. The velocity
magnitude error is greatest when flow is orientated in line, or directly opposing the
error vector. Velocity magnitude errors decrease to 0 m/yr when these vectors are
close to orthogonal.
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error vectors are close to orthogonal. Consequently, a simple quadrature sum of

the error components will often overestimate the true velocity magnitude error.

6.7 Discussion

In this section I begin by comparing my stacking method to conventional InSAR

methods for determining ice shelf flow. With a view to upcoming satellite

missions, I then assess the wider applicability of the method described here. I

investigate (1) the sensitivity of the tidal and IBE signals to alternative temporal

sampling regimes offered by other satellites and (2) the potential for larger image

stacks to further reduce these errors.

6.7.1 Comparison of Velocity Predictions

Residual tidal and IBE displacement contribute the greatest error to my across-

track velocity solution. To assess the impact of these two error sources upon

my across-track velocity estimates, I compared my stacked map of across-track

displacement to solutions obtained by a commonly-used method (e.g. Rignot

and Jacobs (2002); Joughin et al. (2003); Rignot et al. (2004); Vieli et al. (2006)),

whereby model predictions are used to remove the tidal and IBE signals. I formed

three velocity estimates by removing modelled tidal and IBE signals from each of

the individual interferograms used in my stacking solution. Figure 6.8 shows

a comparison of these solutions extracted from a transect along the primary

line of ice flow (transect location shown in figure 6.1). I have plotted only the

across-track component of velocity, as only this component is sensitive to vertical

motion. Where ice is grounded (indicated by P in figures 6.1 and 6.8) all velocity

estimates converge. Because the InSAR solutions are tied down using all grounded
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Figure 6.8: Across-track component of the Dotson Ice shelf flow speed, transect
location marked in figure 6.1. P indicates a pinning point where the ice is grounded.
Black lines indicate the maximum and minimum displacements of 3 interferograms
(I1, I2 and I3, see table 6.1) which include tidal and IBE signals. Crosses indicate the
range of these interferometric predictions of displacement, after modelled tide and
IBE have been removed. Red line indicates stacked prediction of displacement, with
no use of tide or IBE models. Red shading indicates uncertainty of stacked prediction,
determined from tide and IBE model statistics.

locations (as shown by red colours in figure 6.1), and not just at the point P, this

convergence confirms that errors arising from unmodelled topography and baseline

effects are small, and that flow remains steady over the period of data acquisition.

Where the ice is freely floating (greater than ∼ 10 km along the transect), each

velocity estimate exhibits a roughly constant offset, which I interpret as resulting

from vertical displacement due to the combined effect of the tide and IBE. The fact

that this offset displays little spatial variation over the floating ice shelf indicates

that my velocity estimates are not greatly affected by spatial variability in the

tidal and IBE signals over the length scales of the ice shelf. This is consistent

with the modelled IBE’s spatial variability over the ice shelf at the times of data

acquisition, which produces on average 3 m/yr variation in the velocity signal. I

do not perform an equivalent assessment for the tidal signal because the accuracy

of the FES model under the ice shelf is uncertain (chapter 5). Assuming that these

spatial patterns are uncorrelated in time, then stacking will further diminish the

effects of any such spatial variability.
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I compared InSAR velocity predictions before and after modelled tide and IBE

corrections. Using model predictions to remove the tidal and IBE signals from

each of the interferograms decreases the variability between each of the inter-

ferograms (blue crosses in figure 6.8), as compared to the original interferograms

(black lines in figure 6.8), and indicates that models successfully account for some

of the tidal and IBE motion. However, some variation still exists, likely as a result

of residual unmodelled vertical ice shelf motion. This variation is indicative of

the accuracy limits of the model predictions used to remove these signals. As a

measure of this variation, I calculated the standard deviation of these individual

model-dependent estimates of flow at each point along the transect. The mean

standard deviation along this transect (floating ice only) was 17 m/yr, which is in

reasonable agreement with the estimate of single-difference model accuracy from

chapter 5 of 22 m/yr.

In contrast to these model-dependent flow estimates, my stacked velocity solution

does not rely upon model predictions and consequently is not limited by the ac-

curacy of these estimates. By utilising stacking, I have maintained independence

from model data, whilst achieving a velocity prediction that falls within the range

of model-dependent solutions (i.e., the region bounded by the blue crosses in fig-

ure 6.8). This gives us confidence that, for the data used here, stacking only a

small number of interferograms (three in this case) provides a reasonable, and

model-independent, estimate of flow velocity. This study is, however, only based

upon a relatively limited set of SAR data and I have no independent means of

determining the actual tidal and IBE displacement. Consequently, I cannot dis-

count the possibility that, fortuitously, the tidal and IBE signals happened to

cancel in my particular stacked prediction of flow, and in other instances the

stacked solution may be more greatly affected by these signals. My error model

does, however, account for this uncertainty, because I have modelled the distribu-

tion of all potential tide and IBE errors. This provides a measure of the possible
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variation in my velocity solution, depending upon the particular tidal and IBE

realisation present in my data. The fact that I have only stacked relatively few

interferograms is reflected in the spread of this distribution. I assess the magni-

tude of this error and the implications for my stacking method in the following

section.

6.7.2 Comparison of Methods for Error Estimation

When ice shelf flow velocities are determined from a single interferogram, together

with a single model realisation of tide and IBE displacement, then different image

pairs produce varying velocity solutions (as shown by blue crosses in figure 6.8).

This variation results from inaccuracies in model predictions of tidal and IBE

displacements. Accordingly, the error assigned to such a velocity solution must

account for the effect of these model inaccuracies. A direct model validation

is difficult in remote areas such as the Amundsen Sea, where I know of only one

attempt (chapter 5) to assess the accuracy with which tide models can specifically

reproduce the interferometric tidal displacement. Rignot (2002a) assessed a

model’s ability to simulate the difference between two displacements, but not

the displacement itself. Whilst the work described in chapter 5 produces the first

such accuracy estimate in the Amundsen Sea, imprecision inherent in the method

used limited the estimate of the associated across-track velocity error to 22 ± 17

m/yr. Consequently, the error associated with flow velocities determined from a

single interferogram (blue crosses in figure 6.8) is not well constrained.

In contrast, because velocities derived using the stacking method are independent

of model predictions, I avoid the problem of quantifying the associated model

accuracy. In my method I do not use models to simulate and remove specific tidal

and IBE displacements, but only to estimate the statistics of these signals, in order

to assess the distribution of possible errors within my stacked velocity prediction.
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As such, I only require that the statistics of the model are sufficiently accurate;

in other words, that the model simulates lifelike behaviour. A previous study

(Shepherd and Peacock, 2003) found that tide model error was dominated by

inaccuracies in predicting the tidal phase. Consequently, model statistics should

adequately reflect the set of all tidal amplitudes, even if they do not correctly

predict the timing at which a given amplitude occurs. The combined tidal and

IBE error determined from model statistics for the stacked velocity solution is

plotted in figure 6.8 (red shading). This assessment of error is consistent with

the variability of solutions that utilise model predictions to remove the tidal and

IBE signals, as would be expected given that both the error associated with my

stacked solution and the model error in predicting tidal and IBE displacement

(chapter 5) are of the order of 20 m/yr. By stacking only three interferograms, I

have achieved an accuracy comparable to that provided by current tide models.

Future satellite missions, offering the prospect of forming larger image stacks,

have the potential to further reduce this stacked velocity error.

6.7.3 Generalisation of Stacking Method

The results of this study indicate that for the dataset considered here, stacking

provides an effective method for reducing tidal and IBE errors, without using

model predictions to remove these signals. In this section I assess the wider

applicability of this method by considering alternative sampling regimes, resulting

from satellites with different orbit configurations. I also assess the potential for a

further reduction of errors by stacking a larger number of images.

The motivation for this assessment is provided by the prospect of new data,

from satellites which will make regular, short-repeat acquisitions that are well-

suited to this stacking method. In the first half of 2011, the ERS-2 satellite

was placed into a 3-day acquisition cycle, thus providing a new set of data with
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the potential to create larger image stacks. Looking to the future, the planned

launch of the Sentinel-1 and Radarsat Constellation satellites offers the prospect

of regular SAR acquisitions, albeit with different temporal sampling regimes, and

with it the potential to create larger image stacks and further reduce tidal and

IBE errors.

Sensitivity of Tide and IBE to Temporal Sampling

This work has focused on a specific acquisition configuration; a series of inter-

ferograms formed from a regular 3-day acquisition cycle, such that the reference

images of each interferogram are separated by 6 days (table 6.1). Using this con-

figuration I have modelled the distribution of tidal and IBE signals which could

occur within my stacked interferogram. If, however, the tidal and IBE signals

exhibit temporal structure, then the magnitude of these signals will vary accord-

ing to the temporal sampling offered by the satellite. To asses this variability, I

modelled the tidal and IBE signals for a range of sampling configurations. For

each configuration, I modelled the signals in both a stack of 3 and a stack of 5

interferograms to investigate how the sensitivity was affected by the number of

interferograms stacked. I varied both the temporal baseline of the interferogram

(i.e. the separation between the two SAR images forming each interferogram)

and the interferogram separation (i.e. the separation between each master image

in the interferogram stack). Repeating the procedure described in the Methods

section of this chapter, tide and IBE model statistics were calculated for each

sampling regime. For every distribution, the standard deviation of the modelled

signal associated with the image stack was converted into an equivalent error in

the annual flow velocity. Results are shown in figure 6.9.

In both stacks, the tidal and IBE signals tend to decrease as the temporal baseline

increases. This is because of the decreasing influence of the tide and IBE, relative
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Figure 6.9: Modelled sensitivity of tidal (panels a and b) and IBE (panels c and
d) signals to the interferometric temporal sampling regime. Results are plotted for
stacks of 3 interferograms (panels a and c) and 5 interferograms (panels b and d).
Each plot shows the standard deviation of the modelled velocity error arising from
the tide or IBE. Each standard deviation is calculated from the set of all modelled
signals, obtained from a year-long model run, such as those shown in figure 6.4. The
temporal baseline specifies the time period separating the pair of SAR images used
to form each interferogram; the interferogram separation indicates the elapsed time
between the master images of consecutive interferograms in the stack. The white
boxes mark the sampling regime used in this study. Interferogram separations shorter
than the temporal baseline have been set to zero.
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to the steady flow signal, as the observation period increases. With respect to the

period of separation between interferograms in the stack, the tidal signal displays

a clear structure (figures 6.9a and 6.9b), and exhibits considerable sensitivity to

the time separation of interferograms. In both the stack of 3 interferograms (figure

6.9a) and the stack of 5 interferograms (figure 6.9b) the tidal signal peaks at a

contribution of ∼ 70 m/yr when interferograms are separated by a multiple of ∼
14 days. This is a consequence of the strong fortnightly beating of the Mf tidal

constituent at my study site, which is clearly evident in the modelled tidal record

(figure 6.2a), and which dominates the long period (greater than diurnal) tidal

signal.

The sensitivity of the tidal signal to the temporal sampling regime implies that

the repeat time of the satellite will influence the effectiveness of the stacking

technique. Worst case errors occur where the sampling frequency matches that

of the dominant long-period tidal constituent. In this case stacking is unlikely to

achieve the accuracy offered by a method that uses model predictions to remove

the tidal and IBE signals. For the majority of sampling configurations, however,

my analysis (figure 6.9) indicates that stacking will be an effective technique. The

temporal sampling provided by the ERS acquisitions used in this study (indicated

by white boxes in figure 6.9) proves favourable in producing a relatively small tidal

signal. Furthermore, this analysis provides an indication of the effectiveness of

stacking given the 6 day revisit time planned for Sentinel-1. For a continuous stack

of 6-day interferograms (where the slave image of the preceding interferogram

becomes the master image of the next interferogram), this analysis suggests that

stacking five interferograms, and hence observing a full month-long period, would

reduce the tidal error contribution to ∼ 5 m/yr.

In contrast to the tidal signal, the period of separation between the stacked

interferograms has little effect upon the magnitude of the IBE signal (figures

6.9c and 6.9d). This is a consequence of the lack of temporal structure in the
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atmospheric pressure record. Comparing the 3-stack and the 5-stack scenarios,

both the tidal and IBE error contributions tend to be lower in the 5-stack, as a

consequence of the longer period of observation. In the case of the tidal signal,

the temporal structure is less well defined in the 5-stack; again a consequence of

the longer total period of observation, which captures more completely the full

tidal cycle.

Benefits Offered by a Larger Stack

In this study the data archive has limited us to stacking only three regularly

spaced interferograms. The ERS-2 2011 3-day acquisition phase and the planned

Sentinel-1 and Radarsat Constellation satellites offer the prospect of regular SAR

acquisitions and with it the potential to stack a greater number of interferograms.

To investigate the possible benefits offered by stacking a greater number of images

I used the tide and atmospheric models to estimate the magnitude of these signals

in larger stacks (again following the procedure described in the Methods section).

In particular, I considered three sampling scenarios; (1) the configuration used

in this study (3-day interferograms, 6 days between each reference image in the

interferogram stack), (2) a continuous series of observations from 3-day data (i.e.

the slave image of the previous interferogram becomes the master image of the

following interferogram), and (3) as in (2) but with 6-day repeat data (as planned

for Sentinel-1). Results for up to 10 stacked interferograms are shown in figure

6.10. In all three sampling scenarios, the tidal and IBE errors decrease as a larger

stack is formed; a consequence of the longer period of observation. The greatest

benefit is gained with the first few interferograms that are stacked, particularly

in the cases where interferograms are separated by 6 days, when simply stacking

two interferograms reduces the tidal signal by two thirds. As more interferograms

are stacked, there is a general trend towards diminishing improvements, although

the availability of a larger number of interferograms has the benefit of providing
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Figure 6.10: Variation in the velocity error arising from modelled tidal and
atmospheric pressure (IBE) signals, according to the number of interferograms
stacked. Velocity error is dependent upon the temporal sampling regime (figure
6.9) and so I show results for three configurations. a. the configuration used in
this study; b. a continuous 3-day sampling configuration whereby the slave image of
each interferogram is used as the master image of the following interferogram; c. a
continuous sampling configuration (as in b) but for a 6-day repeat cycle, as is planned
for the Sentinel-1 satellites. Velocity errors are calculated from the standard deviation
of the tidal and IBE signals, modelled over a year-long period.
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the opportunity to selectively choose interferograms based upon criteria such as

coherence and baseline characteristics.

Limitations and Method Development

The primary limitation of the stacking method is its high demand upon data.

This was noted by Rignot and MacAyeal (1998) in their earlier assessment of

this technique. In the case of this study, for example, I have only been able to

form a relatively small stack of images, and there is insufficient usable data to

be able to stack interferograms from a second viewing direction. For glaciological

applications, the quantity of data suitable for stacking is limited by the relatively

rapid timeframe over which signal coherence is lost over ice. To date, stacking has

primarily been used for solid Earth applications where surface displacements are

relatively small and surface scatterers are relatively stable. This allows coherent

interferograms to be formed over much longer time periods than is possible for

glaciological applications and consequently provides a more extensive dataset to

work with. Future satellite missions with regular short-repeat acquisitions will

therefore particularly benefit glaciological applications, by providing longer image

sequences that are suitable for stacking. Further improvements to the method

described here may also be achieved by utilising more sophisticated stacking

regimes (e.g. Biggs et al. (2007)), for example by including pixels that are only

coherent in a subset of all interferograms in the stack.

Despite the limited data currently available, I find that stacking proves to be a

valuable technique for mapping ice shelf velocity, with only relatively few scenes

required to reduce residual tidal errors to match the accuracy achievable with

tide models in the Amundsen Sea (chapter 5). This is aided by the satellite

repeat time, which is exactly 3 days, and yields interferograms that are relatively

insensitive to much of the high amplitude, ∼ diurnal cyclicity of the tides. As
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a consequence, the modelled standard deviation (from its ∼ zero mean) of the

vertical 3-day tidal displacement is only 26 cm. Both tide model errors (King and

Padman, 2005; King et al., 2011) and tidal amplitudes in the Amundsen Sea are

broadly comparable to most of Antarctica’s coastal waters, with the exception of

the Weddell Sea which experiences ∼ 2-3 times the tidal range (Padman et al.,

2002). Consequently, this study demonstrates that stacking is likely to be an

effective method for mapping ice shelf velocity around much of Antarctica. In

the case of Weddell Sea ice shelves, or regions where other tidal constituents

dominate, it may be necessary to stack more images to reduce the tidal signal

to acceptable levels, or to use a combined approach that removes the modelled

tidal signal from the stacked interferogram. Alternatively, tide model predictions

could be used to guide future satellite acquisition schedules to periods of low tidal

variability.

6.8 Conclusions

This study demonstrates a method to map ice shelf flow independently of tide and

atmospheric pressure model predictions. By stacking interferograms, I synthesise

a longer observation period, and amplify the steady flow signal relative to other

temporally-varying signals, such as the vertical motion of an ice shelf in response

to the tide and changing atmospheric pressure. Models, instead of being employed

to isolate the flow signal, are used to simulate the distribution of residual tidal

and IBE signals, and so provide a better constraint upon the remaining error

in my velocity solution. By utilising MAI processing, I have demonstrated that

2-d ice shelf velocity can be estimated from InSAR data acquired from a single

viewing direction.

I have stacked interferograms to map the ice flow velocity of the Dotson Ice Shelf,



CHAPTER 6. Mapping Ice Shelf Flow with InSAR Stacking 167

West Antarctica. Residual tide and IBE signals contribute 22 m/yr error to the

across-track component of my stacked velocity solution. With the inclusion of

other error terms, the total error in my map of velocity magnitude is at most 31

m/yr. The technique of stacking is particularly well-suited to areas where the

accuracy of tide and atmospheric pressure models is uncertain, such as remote

regions of Antarctica where in situ validatory records are scarce. Even in regions

where model accuracy is high, stacking will complement the removal of modelled

tidal and IBE signals by further reducing residual signals, along with unwanted

atmospheric, topographic and baseline effects. In the coming years, the launch

of several satellite missions with short revisit times offers the prospect of regular

sequences of SAR acquisitions. This study demonstrates that applying a stacking-

based approach to these data can further improve estimates of ice shelf flow.



Chapter 7

Synthesis

7.1 Summary of Principle Findings

In the preceding three chapters I have described the work that I have undertaken

to develop new datasets and methods for understanding ice-ocean interactions

in the Amundsen Sea Sector of the WAIS. In this chapter I firstly summarise

the principle findings from each piece of work, I then discuss the significance of

the datasets produced, the wider implications of the methods developed and the

potential for the future extension of the work described here.

7.1.1 Mapping Amundsen Sea Bathymetry

In Chapter 4, I combined sparse ship-based surveys with satellite-derived gravity

data to produce a new bathymetric map of the Amundsen Sea (McMillan et al.,

2009). I estimated the depth accuracy of this map to be 120 metres. This is

the first published map of this region to utilise data other than that provided by

sparse ship-based surveys. The inclusion of satellite gravity data improved the

168
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depth accuracy of the solution by up to 17 %. As a result of additional gravity

data being incorporated, large regions of the Amundsen Sea’s bathymetry were

detailed at a finer spatial resolution than in previously published studies (Nitsche

et al., 2007).

7.1.2 Assessing Tide Model Accuracy in the Amundsen Sea

In Chapter 5, I used satellite-based synthetic aperture radar data to assess tide

model accuracy in the Amundsen Sea. I compared two methods of validation; one

that assessed a model’s ability to simulate tidal displacement (i.e. the difference

between two tide heights; a single-difference technique), and one that assessed a

model’s ability to predict the difference between two tidal displacements (a double-

difference technique). I found that the TPXO7.1, CATS2008a opt and FES2004

tide models performed comparably well, with root mean square (RMS) deviations

from observations of ∼ 9 ± 7 cm (single-difference technique) and ∼ 11 ± 4 cm

(double-difference technique). Both methods of validation have advantages; the

double difference technique yields a more precise model validation, but the single

difference technique directly quantifies the tide model error introduced into model-

dependent InSAR-derived velocity estimates. Converting the single-difference

RMS deviation into an equivalent across-track displacement yields an estimate

of the tide model error associated with model-dependent InSAR-derived ice shelf

velocities of ∼ 22 ± 17 m/yr.

7.1.3 Mapping Ice Shelf Flow in the Amundsen Sea

In Chapter 6, I described a new method for mapping 2-d ice shelf flow using

satellite-based InSAR data acquired from a single viewing direction. InSAR has

traditionally been used to provide high resolution and spatially extensive datasets,
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but these estimates of ice shelf flow are contaminated by tidal and IBE signals.

In this work I aimed to minimise and quantify the tidal and IBE contributions

to InSAR-derived velocity estimates, by stacking multiple interferograms and by

analysing the statistics of tide and IBE model predictions. The effect of any

remaining tide and IBE signals upon across-track velocity estimates was estimated

to be 22 m/yr from the modelled distribution of these residual signals. For the

first time, along-track ice shelf velocities were determined using multiple aperture

interferometry. This eliminated the need for data acquired from a second viewing

direction, or for results acquired using (typically less accurate) feature tracking

techniques. Along- and across-track velocity components were combined to give

a 2-d velocity field, with an associated magnitude error of at most 31 m/yr.

7.2 Significance of Derived Datasets

The work of this thesis is in part motivated by the desire to fully utilise the

available satellite-based radar observations to develop datasets for studying the

glaciological and oceanic environments of the Amundsen Sea Sector of the WAIS.

In this section I discuss how the datasets I have developed can be used for these

purposes.

7.2.1 Contribution to Amundsen Sea Glaciology

The datasets developed in this thesis contribute to understanding the past and

present behaviour of ice draining the Amundsen Sea Sector of the WAIS.
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Past Behaviour of Glaciers Draining into the Amundsen Sea

Knowledge of the past behaviour of the ice sheet is required so as to place con-

temporary satellite observations within an historical context and to understand

the factors which have initiated an ice sheet response in the past. The new bathy-

metric map described in Chapter 4 (McMillan et al., 2009) contributes towards

a better understanding of ice sheet history in two ways. Firstly, it provides a

new set of topographic boundary conditions for models of past ice sheet evo-

lution, when the ice extended further across the continental shelf than it does

today. This map utilises data covering the entire region and so provides more

uniform topographic detail than previous maps. Figure 7.1 shows a comparison

between my bathymetry and the most recent previously published bathymetric

map of the Amundsen Sea, which was based solely upon ship-based survey data

(Nitsche et al., 2007). My bathymetric map resolves more clearly the elevated

ridges extending out from the continental shelf break and provides more shorter

wavelength topographic detail, such as the undulating surface of the continental

shelf region (marked by white ellipses in figure 7.1). This on-shelf detail will allow

a more realistic simulation in oceanographic models of the turbulence and mixing

the occurs as water passes over a rough bed, as compared to if a relatively smooth

bed is assumed (Nitsche et al., 2007).

Secondly, the new bathymetric information extracted from unsurveyed regions

can be used to identify previously unsurveyed glaciological bedforms and thus

as a resource with which to guide future ship-based surveys. Ship-based surveys

can resolve in great detail these glacial bathymetric landforms and so provide

evidence with which to constrain the style, timing and duration of ice advance

and retreat (Lowe and Anderson, 2002). Surveys can also be used to infer past ice

sheet characteristics, such as the locations of paleo-ice streams from mega-scale

glacial lineations (Lowe and Anderson, 2002). However, ship surveys in such
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Figure 7.1: Comparison of bathymetry derived in Chapter 4 (top) with map derived
solely from ship-based surveys (bottom, redrawn from the data of Nitsche et al.

(2007)). Plot limited to area common to both bathymetric predictions. Abb, Abbott
Ice Shelf; PI, Pine Island Ice Shelf; Thw, Thwaites Ice Shelf; Cro, Crosson Ice Shelf;
Dot, Dotson Ice Shelf; Get, Getz Ice Shelf. White ellipses highlight regions where
the addition of gravity data resolves additional shorter-wavelength detail both on the
continental shelf and on the elevated ridges that extend seaward of the shelf break.
Red line indicates location of transect discussed in Chapter 4.
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remote regions are time-consuming and expensive, and hence it is important that

they are well-directed to regions which will most likely yield the greatest scientific

value. I intend to make my bathymetric map available online so that it can be

used to aid the planning of these surveys.

Present Behaviour of Glaciers Draining into the Amundsen Sea

The datasets developed by this thesis contribute towards understanding the

current behaviour of glaciers draining into the Amundsen Sea. Observations of ice

shelf acceleration are central to monitoring the stability of this region. However,

the satellite-based methods commonly used to detect velocity changes are reliant

upon tide model predictions to remove unwanted signals which arise from the

vertical motion of ice shelves (Rignot and Jacobs, 2002; Joughin et al., 2003;

Rignot et al., 2004; Vieli et al., 2006). Where model predictions are uncertain, this

can lead to errors or data gaps, particularly at locations close to the grounding

line, where the gradient of tidal displacement is at its greatest. This region is

where basal melt rates peak (Rignot, 1998; Rignot and Jacobs, 2002) and so it

can prove difficult to constrain maximum melt rates using methods that rely upon

a velocity solution (Joughin and Padman, 2003) (figure 7.2). For example, the

modelling study of Payne et al. (2007) found that basal melt was concentrated

within a narrow region 20 km downstream of the Pine Island Glacier grounding

line. However, in mass conservation estimates of the basal melting occurring

under this ice shelf, a quarter of this 20 km region had to be excluded because of

uncertainties arising from tide model predictions (Payne et al., 2007). My stacked

velocity solution addresses this problem by minimising the tidal and IBE signals.

This provides a complete InSAR-derived velocity solution in the vicinity of the

Dotson Ice Shelf’s grounding line. Model statistics can then be used to constrain

the uncertainty associated with residual tidal and IBE signals. Furthermore, my

assessment of tide models quantifies the accuracy with which tide models can
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Figure 7.2: Melt rates (m/yr) underneath the Pine Island Ice Shelf determined using
a flux divergence calculation, modified from Payne et al. (2007). Basal melt rates
were not estimated close to the grounding line (white band) because of uncertainty in
the velocity map, arising from uncertainty in the accuracy of the tide model correction
applied. As a consequence, peak rates of basal melting are not well defined.

reproduce the unwanted tidal component of the InSAR signal in the Amundsen

Sea. This assessment indicates the magnitude of velocity changes required to

separate long-term trends from tidal artifacts in methods which do utilise tide

model predictions to determine ice shelf velocity estimates in the Amundsen Sea.

7.2.2 Contribution to Amundsen Sea Oceanography

In an oceanographic context, the datasets developed by this thesis serve two

purposes; that of providing new boundary conditions for models of current ocean

circulation and that of providing data for model validation. Oceanographic models

require accurate bathymetry, and this is particularly important for studying heat

transfer in the Amundsen Sea, as troughs in the sea floor provide a route through
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which warm CDW accesses the coastline (Walker et al., 2007; Wahlin et al., 2010).

In particular, my bathymetric map (chapter 4) can be used in modelling studies to

investigate variations in the heat transported to different ice shelves, to determine

whether this can explain differences in ice shelf behaviour in the Amundsen Sea.

My bathymetric map also provides comprehensive depth data along the front of

all ice shelves in the Amundsen Sea. Accurate depths across the ice shelf front are

vital for determining the characteristics of water entering the sub-ice shelf cavity

(see, for example, figure 2.11 for an illustration of the depth dependency of ocean

temperature). In turn, knowledge of water temperature in the sub-ice shelf cavity

allows the heat available for ice melting to be estimated. Bathymetry along the

front of ice shelves also influences tidal mixing, and hence heat transfer, in the

cavities beneath ice shelves (Makinson et al., 2011).

In terms of validation, my assessment of tide models determines the accuracy of

this component of an ocean model. More generally, models of ocean circulation

and heat transport in the Amundsen Sea can be validated by assessing how

well they predict the magnitude and distribution of melting occurring at the

base of an ice shelf (Payne et al., 2007). Basal melting can be inferred from

estimates of ice flux divergence (Joughin et al., 2003), once all other terms in

the mass balance equation have been accounted for. Such a method requires

high quality maps of ice velocity, because any noise in the velocity solution is

amplified when the divergence of the velocity field is calculated. As highlighted

in section 7.2.1, tidal and IBE errors in the velocity field can also preclude the

validation of model predictions of basal melting at the grounding line. Arguably,

because melt rates peak close to the grounding line, this is precisely the region

where there is the greatest need for models of basal melting to be validated.

The Dotson Ice Shelf velocity field determined in chapter 6 is well suited for

the purpose of flux divergence calculations, because it combines the technique of

stacking with methods (namely InSAR and MAI) that have a high accuracy and
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precision, as compared to other remote sensing techniques (e.g. feature tracking).

It is intended that estimating the basal melt distribution of the Dotson Ice Shelf

will be the focus of future work. By developing new datasets for oceanographic

modelling and model validation, my thesis contributes to the effort to understand

the ocean processes driving glaciological change in this region, and the reasons

for the observed spatial and temporal variability in glaciological behaviour.

7.3 Significance of Thesis Methods

Throughout this thesis I have focused upon developing and assessing radar-based

methods for studying ice-ocean interactions in the Amundsen Sea Sector of the

WAIS. The wider significance of this work lies in the demonstration that these

are viable techniques with wide applicability. As part of each piece of work I have

conducted an assessment of the method used; I compared my bathymetric solution

to solutions formed solely from ship-based soundings, I assessed the precision

with which InSAR methods could validate tide models and I compared stacked

InSAR maps of ice shelf flow to those determined by traditional InSAR methods.

Through these critical evaluations I have aimed to justify the wider application

of the methods described in this thesis. In this section I briefly summarise

the significance of each method. By their very nature, much of each method’s

significance lies in its application to future studies, and so many of the points

raised here will be expanded upon when considering extensions to this body of

work (section 7.4).



CHAPTER 7. Synthesis 177

7.3.1 Significance of Bathymetric Prediction Method

The bathymetric map of the Amundsen Sea (Chapter 4) is the first published

map of gravity-derived bathymetry from a polar region with perennial sea ice

cover. The assessment of this technique demonstrates the improvements in

polar bathymetric prediction that can be achieved with the inclusion of gravity

data; this had been shown to be the case for the deep, open ocean (Smith and

Sandwell, 1994), but until now the validity of applying this method to ice-covered

ocean remained unclear. Chapter 4 illustrates the potential of this method to

provide comprehensive bathymetric coverage of Antarctic coastal waters and to

resolve glaciologically, and oceanographically, important bathymetric details in

unsurveyed regions.

7.3.2 Significance of Tide Model Validation Method

The work described in Chapter 5 provides a comprehensive assessment of two

InSAR-based methods of tide model validation, and documents the relative

strengths of each method. As such it provides a template for tide model validation

from satellite-based InSAR data, which can be widely applied to assess tide model

accuracy in other remote Antarctic waters where ice shelves exist. Assessments

of tide model accuracy serve a number of important roles. Firstly, they quantify

the tidal error in estimates of ice shelf flow and provide a basis to choose between

alternative methods for estimating flow. This is discussed in more detail in section

7.3.4. Secondly, it forms part of the error budget associated with gravimetry and

altimetry products which utilise tide model data to remove unwanted tidal signals.

Finally, it can identify areas of tide model weakness and focus efforts to further

improve these models.
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7.3.3 Significance of Stacking Method of Mapping Ice Shelf

Flow

The work described in Chapter 6 demonstrates the viability of a new InSAR-based

method for producing high quality 2-d estimates of ice shelf velocity. The principle

advantages of this technique are (1) data acquired from a single viewing direction

are sufficient to determine 2-d velocity vectors, and (2) model predictions are not

required to remove unwanted tidal and IBE signals. This is the first time that

multiple aperture interferometry has been used to map ice shelf flow. In view of

the likely importance of ice shelf basal melting as a driver of glaciological change,

these techniques provide a valuable new method for deriving the high quality

velocity maps required by many methods of estimating basal melt (Joughin and

Padman, 2003). Furthermore, I have outlined a new approach whereby model

statistics are used to estimate the error in velocity maps, which arises from residual

tidal and IBE signals. This method can be widely applied in instances where the

accuracy of individual model predictions is uncertain.

7.3.4 An Integrated Approach to Mapping Ice Shelf Flow

Together, the work described in Chapters 5 and 6 form an integrated approach to

mapping ice shelf flow. Specifically, the tide model inter-comparison described in

Chapter 5 provides a basis for selecting the optimal model to use to produce the

stacking error statistics, and the quantification of tide model error can be used to

guide the stacking approach.

The evaluation of several tide models using the methods of Chapter 5 provides a

means to select the most accurate tide model for generating the tidal statistics,

as required to determine the uncertainty in stacked flow predictions. In this

thesis, I chose to use the FES2004 model for this purpose (Chapter 6), based



CHAPTER 7. Synthesis 179

upon the assessment of several tide models in Chapter 5. Specifically, I chose

the FES2004 model because it exhibited the lowest root mean square deviation

from our interferometric observations. Given the close agreement between models,

arguments could be made for choosing the TPXO7.1 or CATS2008a opt models,

based upon the apparent inconsistency of FES2004 predictions coincident with the

ice shelf. However, such an approach prioritises on-shelf performance over off-shelf

performance, which is debatable given the difficulty of modelling tides under ice

shelves, where bathymetry and water column thickness are poorly known. Instead

I preferred to base model choice on data just seaward of the ice front, where

all models produce consistent results and where bathymetry and water column

thickness are more certain. Furthermore, at this location all three tide models

predict a similar distribution of signals within the 3-day interferograms stacked in

Chapter 6 (figure 5.10; standard deviations of 0.26 m (FES), 0.25 m (TPXO) and

0.24 m (CATS)), and so the estimate of tidal error is anyway largely insensitive to

the choice of model. Secondly, of these small differences in the models’ predicted

distributions, FES2004 predicts the largest tidal signal. As such, using FES2004

model statistics in Chapter 6 provides the worst case scenario (i.e. upper bound)

for model estimates of tidal error.

Having chosen which tide model to use for the generation of error statistics, a

comparison between the model error determined using the method of Chapter 5

and the model statistics determined in Chapter 6 can be used to guide the precise

stacking approach to mapping flow. The residual tidal error in a prediction of flow

that utilises tide model predictions to remove the tidal signal (Rignot and Jacobs,

2002; Joughin et al., 2003; Rignot et al., 2004; Vieli et al., 2006) can be estimated

using the single difference method described in Chapter 5. Here I find this error

to be 22 ± 17 m/yr. In comparison, the residual tidal error associated with my

stacking-based approach can be estimated from model statistics (Chapter 6) and

equates to a flow velocity error of 17 m/yr. These errors will vary according



CHAPTER 7. Synthesis 180

to factors such as tide model accuracy, the tidal range in the area of interest

and the number of interferograms stacked. The relative magnitude of the errors

associated with each method should be considered when choosing how to estimate

flow velocities. Where the stacking error is smaller, as is the case here, a purely

stacking-based approach to estimating flow velocities (as described in Chapter 6)

should be favoured. Model accuracy is insufficient to merit the model being used

to remove the tidal signal. However, in cases where the tide model error is smaller

than the modelled tidal signal in the stacked interferogram, the model predictions

should be used to remove the tidal signal from the stacked velocity estimate. The

residual tidal error in the flow prediction would then be estimated from the tide

model error as determined in Chapter 5. Such a scenario may occur in regions of

Antarctica where tide models are better constrained by in situ data, or where the

tidal range is large, such as in the Weddell Sea Sector of Antarctica.

7.4 Future Work

In this section I explore the ways in which the methods developed in this thesis

can benefit future studies, and also the improvements that new data can bring to

my methods. Firstly I consider the application of the methods developed in this

thesis to other relevant areas of study. I then look at how these methods can be

applied to current and planned future remote sensing missions.

7.4.1 Application of Methods to Other Areas

In this thesis my work has focused on the Amundsen Sea Sector of West

Antarctica, as this is a region where the ocean is believed to be driving rapid

glaciological change (Shepherd et al., 2004). Much of the work has focused
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Figure 7.3: Locations of ship-based depth surveys in the Bellingshausen Sea, West
Antarctica, upon which the most recent bathymetric map is based, from Graham
et al. (2011). Green hatching indicates grounded ice and ice shelves. Large areas,
particularly along the western coastline, are lacking ship-based depth sounding data.

specifically upon the Dotson Ice Shelf. The methods employed in this thesis

are well suited to the study of other ice shelves in the Amundsen Sea Sector

of the WAIS and more widely to other remote marine terminating regions of

Antarctica and Greenland. In particular, they can provide detail of glaciological

and oceanic processes in regions where the effect of the ocean is significant or

poorly understood.

Like the Amundsen Sea, the coastal waters of other regions of the WAIS south

of 72◦S are typically only sparsely covered by ship-based surveys. The work

described in Chapter 4 has demonstrated that by utilising marine gravity data,

additional bathymetric detail could be resolved in these poorly surveyed regions.

This could improve our understanding of past ice extent and current ocean

circulation around other parts of the WAIS, such as in the adjacent Bellingshausen
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Sea, which is also only sparsely covered by ship-based surveys (figure 7.3). This

would provide comparative studies which may enable us to better understand the

reasons for the rapid glaciological change occurring in the Amundsen Sea Sector

of the WAIS.

The techniques described in this thesis for mapping ice shelf dynamics (Chapters

5 and 6) can be applied to any environment in which glaciers terminate in floating

ice which undergoes short-period vertical motion; be it ice shelves in Antarctica

or ice tongues in Greenland. Where there is sufficient satellite coverage, the

work described here provides a template both for assessing tide model accuracy

and for mapping ice shelf flow. These methods can contribute valuable data in

the absence of in situ measurements and help to build comprehensive records of

changes to marine terminating glacier catchments that drain the great ice sheets.

In particular, the methods employed here can be applied to other ice shelves

in the Amundsen Sea, to further our understanding of ice-ocean interactions in

this region. For example, by contrasting flow histories of the neighbouring Dotson

and Crosson Ice Shelves, and comparing the bathymetric configuration seaward of

each ice shelf (Chapter 4), it would be possible to explore reasons for the differing

behaviour exhibited by these two ice shelves.

7.4.2 Application of Methods to Other Remote Sensing Plat-

forms

Current and future remote sensing missions will provide the opportunity to

collect new, high quality datasets. These data, in conjunction with the methods

developed in this thesis, can be used to improve upon the datasets produced in

this thesis. This in turn will provide better data with which to understand the

past and present behaviour of the Amundsen Sea Sector of the WAIS, and also
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allow the continued monitoring of any ongoing glaciological and oceanic change

in this region.

Bathymetric Prediction from Gravimetry

Two current missions have the potential to provide high quality marine gravity

data, which in turn could be used to further improve bathymetric maps of the

Amundsen Sea, via the method described in Chapter 4. NASA’s Operation

IceBridge is a six-year airborne campaign, planned to run from 2009 - 2015, which

is providing repeat observations of the polar regions. Because of the rapid change

occurring in the Amundsen Sea region of West Antarctica, this area has been the

focus of many flights (figure 7.4) and so a valuable dataset is being acquired. One

element of these missions is to record gravity, and because this is an airborne

campaign, this can be achieved at a higher resolution and accuracy than satellite-

based studies. Using the approach described in chapter 4, the resulting gravity

fields can be used to map sea floor topography. In particular, because gravity

data is acquired directly (rather than from measurements of sea surface slope),

bathymetry can be determined beneath ice shelves. Consequently, the IceBridge

mission offers the opportunity to extend the bathymetric map derived here to

include sub-ice shelf cavities. This is particularly important for modelling studies

of ocean circulation and heat transfer beneath ice shelves, which are currently

limited by the lack of such data. IceBridge gravity data have recently been used to

map sea floor topography below the Pine Island Ice Shelf (figure 7.5, unpublished

work), illustrating the potential of such a method to be extended to other ice

shelves covered by the IceBridge campaign (figure 7.4).

The European Space Agency’s (ESA) Cryosat-2 satellite was launched in 2010,

carrying onboard a radar altimeter capable of providing improvements in the

resolution, accuracy and precision of estimates of sea surface slope, as compared
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Figure 7.4: WAIS surveys flown during the 2009 (top) and 2010 (bottom) IceBridge
campaigns. Map compiled by M. Studinger. These surveys provide extensive coverage
of ice shelves in the Amundsen Sea Sector of the WAIS and have the potential to
provide high resolution maps of the bathymetry underneath ice shelves.
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Figure 7.5: The Pine Island Glacier Ice Shelf in the Amundsen Sea of the WAIS. Top,
Landsat image of ice surface, black line indicates grounding line. Bottom, bathymetry
of sub-ice shelf cavity determined from Operation IceBridge airborne gravimetry.
Images taken from NASA’s Earth Observatory (http://earthobservatory.nasa.gov).
Images created by Jesse Allen, bathymetric model by Michael Studinger and gravity
data from Columbia University.
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to the ERS data used in Chapter 4. As such, it has the potential to provide

a factor of two improvement in the marine gravity field over length scales less

than 100 km (Sandwell et al., 2011). Such a gravity field could be used, via

the method described in Chapter 4, to further improve polar bathymetric maps.

In particular, this could enhance the depth accuracy with which glaciologically-

important features in the Amundsen Sea could be mapped with marine gravity,

and thus provide better constraints upon the delivery of warm CDW to the base

of ice shelves in this region. Early investigations (Stenseng and Andersen, 2011)

have produced promising results and indicate that this may indeed be achievable

in the future. Looking further ahead, ESA’s pair of Sentinel-3 satellites, which

are scheduled for launch in 2013, will also carry onboard SAR altimeters with the

aim of collecting high quality ocean altimetry data. This mission also holds the

potential to further improve bathymetric maps derived from marine gravity.

Ice Shelf Dynamics from InSAR

Since the end of the ERS-1/2 tandem mission phase in 1996, there has been a lack

of SAR data with the short (∼ daily) revisit time required by the interferometric

methods used here to determine ice shelf flow and tidal motion. In recognition

of the value of short repeat SAR data to a wide range of glaciological studies,

several recent, current and imminent missions aim to provide new sources of such

data.

Between September 2007 and February 2008 ESA placed the ERS-2 and Envisat

satellites in a configuration capable of performing short-repeat, cross-platform

interferometry, whereby ERS-2 followed Envisat with a time lag of approximately

30 minutes. This has enabled the processing of cross-sensor interferograms

(Wegmüller et al., 2009), each capturing surface displacement over a 30-minute

interval. The short time-period over which the SAR image pairs were acquired
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Figure 7.6: ERS2-Envisat cross-platform interferogram acquired over the Larsen
Ice Shelf, Antarctic Peninsula. Image courtesy of U. Wegmuller and Gamma Remote
Sensing. Overall the phase signal is noisy, although some regions exhibit a spatially
coherent signal arising from a combination of topographic, tidal and ice flow effects.
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increased the sensitivity of the interferogram to tidal motion relative to ice flow.

Consequently these acquisitions should be well-suited to measuring the tidal

displacement of an ice shelf and validating tide models through the methods

described in Chapter 5. This new dataset has the potential to improve upon

the relative imprecision associated with my measurements of single difference

tidal displacement (Chapter 5), because there will be less reliance upon tracking

techniques to remove the reduced ice flow signal. However, because of inter-

platform differences between the ERS-2 and Envisat SAR sensors, constraints

are placed upon the interferometric geometry (Wegmüller et al., 2009), which

makes the interferograms particularly sensitive to surface topography and noise

arising from the effect of near-surface volume scattering. Recent efforts to map

ice shelf displacement using cross-interferometry have only had limited success

(figure 7.6), but this is an ongoing area of research with the potential to provide

valuable, contemporary datasets of tidal motion.

Between March and July 2011, ERS-2 was manoeuvred into a 3-day repeat cycle.

During that time, the satellite repeated the acquisitions of ERS-1 in 1992 and

1994, thus providing new data with which to study glaciological change over the

past two decades. Extensive coverage of the coastal regions of the WAIS was

achieved (figure 7.7) offering the potential to apply the methods of Chapters 5

and 6 to study current ice shelf dynamics, and the changes that have occurred

since the early 1990’s.

Looking to the future, two missions promise future data relevant to the methods

developed in this thesis. ESA’s pair of Sentinel-1 satellites are scheduled for

launch in 2013-2015 and will each carry onboard a SAR. With a stated objective

of monitoring the polar environment and a potential revisit time of 6 days, they

could provide a new source of data with which to monitor ice shelf dynamics using

the methods described in Chapters 5 and 6. Data from Sentinel-1 should provide

the opportunity to improve the quality of measurements of ice shelf tidal motion
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Figure 7.7: ERS-2 ground tracks during 2011 campaign (black boxes). Extensive
coverage over coastal regions of the WAIS. Image from http://earth.esa.int/ers/ers2-
ice-phase.gif.

and flow using the methods of this thesis. The SAR data will have a higher

resolution than the ERS-1/2 SAR’s, which should provide higher quality tracking

estimates of flow displacement. This in turn will improve the accuracy with which

the tidal signal can be isolated using my single difference technique (Chapter 5).

Furthermore, the regular repeat time of Sentinel-1 will provide large amounts

of data suitable for interferometry. This, in particular, will benefit studies that

use stacking to map ice shelf flow (as in Chapter 6), as this technique has a

high demand on data. Consequently, it will be possible to extend the stacking

method described in Chapter 6 to stack large numbers of interferograms to further

reduce unwanted signals. Further into the future, the Canadian Space Agency

(CSA) plans to launch the Radarsat Constellation of three satellites in 2014 and

2015. Each satellite will carry onboard a SAR and the individual satellites will

be staggered so that together they will provide a 4-day revisit time capable of

acquiring data applicable to the methods described in Chapters 5 and 6.
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In the last fifteen years, there has been a conspicuous lack of short repeat-time

InSAR data suitable for the applications described in this thesis. As such,

studies have been limited to archived data and focused upon understanding

glaciological processes, rather than providing current monitoring of ongoing

glaciological change. With the recent ERS-2 acquisitions and the future Sentinel-

1 and Radarsat Constellation missions, the future promises the potential for the

methods described in Chapters 5 and 6 to be applied to contemporary data. These

will complement the results of this thesis and allow a record spanning twenty years

to be constructed, which will shed new light on the changing nature of ice-ocean

interactions over this period.

7.5 Concluding Remarks

Over the last twenty years, radar remote sensing has transformed our ability to

monitor the Antarctic Ice Sheet. Observations have highlighted the complexity

of the Antarctic system and the limitations in our current understanding of the

processes that drive it. We are now in a position where we can monitor the

response of the ice sheet to a changing climate but not where we can confidently

predict its future evolution. In this context, satellite observations can provide

the data required to understand past behaviour, monitor ongoing change and

test model predictions of the future. In this thesis I have developed datasets

and methods that contribute towards this effort, with a particular focus upon

the Amundsen Sea Sector of the West Antarctic Ice Sheet. At present, the

reasons for the rapid change occurring in this region are not well understood,

and the relative influence of anthropogenic and natural factors remains uncertain.

The datasets developed in this thesis should, in conjunction with models of the

glaciological and ocean environments, aid in the narrowing of this uncertainty.

With the prospect of new radar-equipped satellite missions on the horizon, the
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methods developed in this thesis will have considerable future relevance. Only by

extending the observational record and providing improved datasets for modelling

studies will ice-ocean interactions in the Amundsen Sea be better understood,

and the implications for future glacier evolution in this region resolved. Given

the potential impact of a declining WAIS on rates of sea level rise and numerous

coastal centres of population, it is imperative that advances in understanding

are made, so as to allow more certain assessments of both the likelihood and

timescales of such a scenario occurring.
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