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Abstract 

The field of biological computing offers the potential to construct devices using 

complex and dynamic regulation for applications ranging from theranostics to the 

production of high value chemicals in bioreactors. However, building these complex 

regulatory systems depends on the creation of effective logic gates, which form the 

basis of digital systems. The low metabolic load, small genetic footprint and the low 

latency of expression that can be achieved with a small RNA-based regulatory 

system in contrast to protein regulators, emphasises the potential within RNA 

regulation. From an engineering perspective, the great advantage of an RNA 

approach is the highly predictable nature of RNA folding and the availability of 

established in silico tools. 

This thesis describes a novel de novo mechanism for NAND gate implementation in 

vivo using two RNAs, both of which must be expressed for the repression of an 

output gene. To construct this regulatory system a guide RNA of the CRISPR-Cas9 

system is modified through the addition of a cis-repressing element, which 

complements part of the guide RNA and represses its activity. The activity of the cis-

repressed guide RNA (crgRNA) can be rescued by the expression of an antisense 

RNA, which complements the cis-repressing element. This allows the guide RNA to 

return to an active conformation and repress the target promoter through CRISPRi 

(in strains expressing dCas9). This represents a NAND gate, as the output is 

repressed (OFF) only when both input RNAs are expressed. The design and 

optimisation of this system was performed using modelling of system energy states 

and dynamics and machine learning optimisation in a process which was automated 

into a single pipeline for future users. This system was characterised over a range of 

crgRNA and dCas9 expression levels and temperatures, and in different growth 

phases. Eight designs were tested and the optimal variant, for which output gene 

expression most closely approximated the OFF (repressed) and ON (un-repressed) 

states required for a logic gate, was chosen. The resulting NAND gate has a 10-fold 

repression of the output promoter when both RNAs were present; in contrast, only 
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1.2 fold repression was obtained when only the crgRNA was expressed. 

Consequently, multiple versions of the optimal variant were synthesised, each with 

different sequences but the same design principles. These performed similarly 

when applied to the repression of different reporter genes. Finally, an in silico 

approach was used to maximise orthogonality of different versions of the optimal 

variant which was then demonstrated in vivo. This novel NAND gate design offers 

the ability to build large libraries of logic gates with small genetic footprints (304 bp) 

and the potential to be combined to produce complex regulatory networks. 
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Lay abstract  

Complex machines require control systems or ‘logics’; from elevators to cars, 

control systems are most often made using logic gates which make an output 

change depending on two inputs. This is usually in the form of electronic transistors. 

The rise of synthetic biology as a field has led to the need for control systems for 

biological machines. To this end, this thesis presents a new design of a biological 

logic gate and demonstrates its functionality.  

The logic gate exploits an already established system in which a protein called dCas9 

can be guided by an RNA known as a guide RNA to a DNA target where it represses 

or turns OFF the output gene inside the cell. In the system presented here the guide 

RNA, which is used to target the repression of the dCas9 to a particular gene, was 

engineered through the addition of an extra sequence that folds into the guide RNA 

and stops it repressing the output gene. The other main component of the logic 

gate is a second RNA which binds to the extra sequence preventing it from folding 

in to the guide RNA allowing repression of the output gene. This means for the 

target output gene to be repressed both input RNAs need to be expressed. This 

forms a NAND gate.  After testing a number of designs, the optimal design variant 

was selected.  This variant demonstrated 10-fold repression as an OFF output and 

between 0 and 19% repression as an ON output. Different versions of this variant 

were created which were able to repress different output genes in the same 

manner. A computational approach was taken to creating versions which were able 

to operate in the same cell without interacting with one another.  This low level of 

crosstalk was demonstrated within living cells. This novel NAND gate design offers 

the ability to build a large number of logic gates with each gate using only a small 

amount of the genome. It also has the potential to be layered in to complex 

regulatory networks. 
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Chapter 1: Introduction  

1.1 RNA folding and secondary structure  

RNA structure is defined on three main levels: primary structure, secondary 

structure and tertiary structure. The primary structure is the linear sequence of 

nucleotides which the RNA molecule is made up of in order: this is principally 

defined by the template DNA from which the RNA is transcribed. The secondary 

structure is formed by the interactions between bases within the RNA sequence. 

These interactions, principally hydrogen bonds, allow the sequence to form 

secondary structures such as the stem and loop. Tertiary structure describes the 

position of each of the atoms within the structure in three dimensional space and is 

able to take into account geometric and spatial constraints.  

1.1.1 Structure from comparative sequence analysis 

When studying structure and folding in nature, for both RNA and proteins, 

comparative sequence analysis has been one of the most powerful techniques for 

identifying which nucleotides or amino acids contact with others. In this technique, 

the structure of a subject, for example a ribosomal RNA, is inferred by sampling a 

wide pool of homologues containing sufficient variation and aligning them.  Where 

there is a strong correlation between mutations in one position and mutations in 

another position it is an indication that those two points in the primary structure 

are in contact with one another in the secondary or tertiary structure. Where the 

two positions are complementary (for example a G and a C) and this 

complementarity is maintained independent of mutations this indicates that those 

two parts of the sequence complement one another. 
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A Primary structure    B  Secondary structure 

structure  

C Tertiary structure  

Figure 1.1 The 16S ribosomal RNA given here as an example of (A) primary structure, (B) secondary 

structure and (C) tertiary structure of RNA (tertiary structure includes additional poly peptides in 

purple) . (B,C) are reproduced under a Creative Commons Licence (CC3.0) (David S. Goodsell, 2012) 
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1.1.2 Lowest free energy folding prediction  

Comparative sequence analysis has proved a powerful technique when investigating 

naturally occurring RNA structure and function but for the synthetic biologist 

sequence design is important and therefore de novo folding prediction becomes 

important. Most folding prediction methods have at their base a thermodynamic 

model derived from calorimetry (Mathews et al., 2004). This thermodynamic model 

can be used to predict the free energy of any arbitrary RNA structure. The most 

obvious approach to structure prediction would be to take an RNA sequence and 

generate every possible structure for that sequence then find the structure with the 

lowest free energy. However, this brute force approach takes too much 

computational time, a sequence of 100 nucleotides has more than 1025 possible 

secondary structures (Mathews, 2006). Instead a dynamic programming approach 

using a nearest neighbour technique is utilised. In this approach lowest possible 

conformational free energy is identified for sub-sequences which are increased in 

length from the centre (Zuker & Stiegler, 1981). While this is the most commonly 

used general approach to RNA secondary structure prediction, it has downsides 

such as the inability to predict pseudoknots. More recent approaches have been 

developed to include pseudoknot prediction (Reeder & Giegerich, 2004; Rivas & 

Eddy, 1999).  

1.1.3 Ensemble and RNA-RNA interaction prediction  

The RNA folding prediction approach described so far has been able to find the 

secondary structure with the lowest free energy for a given RNA sequence. 

However, in the cellular environment, RNA does not exist in a single structure but in 

an ensemble of structures in which the most common structure may not be that 

structure with the lowest free energy. Understanding this level of complexity is 

particularly important when working with RNA which may have two major 

structures with different functional properties such as in the case of a riboswitch 

(described below). Calculating the partition function of the ensemble also allows 

the calculation of base pairing probabilities and melting temperatures. These are 
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important when predicting how a multi-state RNA mechanism design is likely to 

function (Hofacker et al., 1994; McCaskill, 1990). When measuring the effect of a 

change in sequence on structure, changes in structure can be measured either in 

terms of a change in the pairing probabilities which gives granular indications as to 

which nucleotide pairs have changed comparing probability, or alternatively, it can 

be measured in terms of a change in the free energy of the ensemble which gives a 

single number indicating whether the changes resulted in a lower free energy 

ensemble (more stable, more bonds).  

When considering the interaction of two RNAs, it is possible to treat the problem in 

a similar manner to finding a structure for a single RNA; in this approach, the two 

RNAs are combined and folded together. When this approach is taken, similar 

drawbacks are seen to predict a single structure, due to the nested nature of 

interactions, some interactions are excluded from predictions. One example of an 

interaction excluded from predictions being the kissing loop interactions where two 

loop sequences, each enclosed by a stem complement one another (Bernhart et al., 

2006).  

1.1.4 Software packages  

There are a number of software packages which combine techniques for RNA 

structure prediction into a single unit which can be used by investigators when 

studying naturally occurring RNA structures or engineering new ones. The original 

ViennaRNA package contained a set of basic tools for predicting minimum free 

energy structures or partition functions of RNA sequences (Hofacker et al., 1994). 

The version 2.0 uses an updated energy model and an expansion in the range of 

tools available, specifically including tools for RNA-RNA interaction such as 

RNAcofold (Mathews et al., 2004). Also, increasing the range of outputs to include 

centroid structures and maximum expected accuracy structures as well as allowing 

input such as FASTA format. Each of these tools are available either on a publicly 

accessible server or as stand-alone routines which can easily be integrated into user 

scripts (Gruber, Lorenz, Bernhart, Neubock, & Hofacker, 2008; Hofacker, 2003). The 
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Nucleic Acid Package (NUPACK) is a growing software suite for analysis of nucleic 

acid systems which expands on ViennaRNA 2.0 applications by the inclusion of 

design tools (Zadeh et al., 2011). Similarly to the Vienna 2.0 package, the suite can 

either be used on the NUPACK web server, or alternatively, it can be downloaded 

and compiled for stand-alone use. 

1.2 Logic in biological systems 

Logic gates take a number of binary inputs (usually two) and perform a logical 

operation to produce a single binary output (Boole, 1854). Most technological 

applications of logic gates are found in electronic circuitry and form the basis of 

modern day computing, utilising the outputs of specific gates as input into 

subsequent gates to form a logical network. Logic gates also feature in control 

systems for many machines which are not computers, such as elevators, 

automobiles, washing machines, etc. † 

The Boolean logic gates are: NOT, AND, OR, NAND, NOR, XOR, XNOR and IMPLY 

(Figure 1.2). All of these except the NOT gate have two inputs and a single output, 

however they vary in the logical operation which is performed on the inputs to 

reach the output. The output is defined by the truth table, which takes all 

combinations of inputs, and for each possible combination defines which output the 

gate produces: it is the truth table which defines the logic gate. In Figure 1.2, the 

standard Boolean logic gates are shown with corresponding truth tables and 

symbols.    

The logic gates can be broken into two categories: (i) functionally complete, and (ii) 

non-functionally complete. Functionally complete gates are able to perform any 

logical operation by combining multiple gates. The two functionally complete and 

 

† In section 1.2 (Logic in biological systems) due to the established nature of some of the 
mathematics, Logic and Circuitry described; where not otherwise specifically referenced, the citation 
should be taken to be (Lehman, Leighton, & Meyer, 2017; Tanenbaum & Goodman, 2005). 
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therefore most useful gates are the NAND and NOR gates. An example of a circuit 

made up of these logic gates is the Full Adder which is a vital part of a computer 

processor. The Full Adder produces the sum of two numbers, by an operation, 

which sums two inputs and the carry value (Figure 1.3). 
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Name  Symbol Truth table  

INPUTs  OUTPUT 

NOT (inverter) 

 

A  NOT A 
0  1 
1  0 

AND 

 

A B A AND B 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

OR 

 

A B A OR B 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

NAND 

 

A B A NAND B 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

NOR 

 

A B A NOR B 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

XOR 

 

A B A XOR B 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

XNOR 

 

A B A XNOR B 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

IMPLY 

 

A B A IMPLY B 
0 0 0 
0 1 0 
1 0 1 
1 1 0 

Figure 1.2 Boolean logic gates, symbols and truth tables.  All symbols are those from the IEEE Std 

91/91a-1991 standard.  
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A 

B 

Figure 1.3 An example of a commonly used Logic circuit; The Full Adder logical circuit adds 

two numbers (expressed as binary input A and B). When the circuit needs to carry a value 

to the next position, the Cout carries the value to the Cin of the next full adder. As a 

demonstration of functionally completeness the circuit is either implemented with the (A) 

NAND gate or the (B) NOR gate, both of which are functionally complete. Symbols vary 

slightly from IEEE standard as circuits were visualised using Logic Gate Simulator TM. 



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Introduction  9 

1.2.1 History of the Boolean Logic Gate  

In his seminal 1854 work, George Boole took the concept of algebra and expanded 

it, applying algebra to values of true and false (Boole, 1854). Despite this forming 

the basis of modern computing, ironically it was published after Ada Lovelace had 

published the first designs for a computer (Lovelace, Ada; Babbage, 1842).  Over the 

course of the nineteenth century, Boolean logic was principally used in the field of 

Set Theory. It wasn't until 1938 that Claude Shannon applied Boolean algebra to 

binary switching in electronic circuits (Shannon, 1938). Over the course of the 

twentieth century logic gates have been built in a myriad of ways, including 

electromagnetic relays, vacuum tubes, pneumatic logic, optics, fluid logic, and even 

mechanical approaches such as marble runs, before the transistor achieved 

dominance (R. Stanković, 2008). In the twenty-first century in the age of synthetic 

biology, there is a similar expansion in the range of logic gate implementation 

approaches for biological systems. It is this field that the work presented in this 

thesis most contributes to. 

1.2.2 Signal transfer in logic gates 

Logic gates have a number of fundamental characteristics which need to be taken 

into account during the design process. Here, each of these characteristics are first 

described in the context of electronic systems (as an established form of logic 

implementation). Following this, the analogous characteristic is described in terms 

of one of the simplest biological logic gates: a repressor-based inverter, such as the 

ones used to make the Elowitz Repressilator is compared (Figure 1.4) (Elowitz & 

Leibler, 2000). 

Logic gates are described in terms of binary inputs and outputs which can be 0 (low, 

False) or 1 (high, True). Physical implementations of theoretical logic gates, 

however, have a greater degree of complexity. In electronic logic gates, there is a 

range of input voltages that the circuit will accept as a 1 value, and another range of 

voltages which the gate will accept as a 0 value. Similarly, the output voltages 

constituting the binary 1 or 0, in practise also cover a voltage range. The input 
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voltage, together with a number of physical factors affects the output voltage. This 

results in a voltage transfer characteristic, in which the input position within the 

high or low input range of the logic gate, can alter the position of the output within 

the output high or low voltage range. The voltage transfer characteristic also 

characterizes the output voltage produced by an input voltage between the high 

and low ranges. In biological terms, the high (or 1) input voltage range might 

equate, for example, to the transcription level of a gene encoding a repressor 

protein. The low or 0 input voltage then equates to the levels of expression of a 

repressor at which the output gene ceases to be repressed. In this hypothetical 

biological system, the output low or 0 level voltage would equate to the basal level 

of expression when the output gene is repressed (Figure 1.4). In this example, the 

voltage transfer characteristic, would refer to the level of expression of the output 

reporter gene at each possible level of expression from the input promoter of the 

repressor.  
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A 

Figure 1.4 (A) The NOT gate can be implemented in a cellular environment as a genetic circuit by 

the use of a transcriptional repressor. (B) In this biological circuit the level of expression is 

analogous to the voltage in an electronics implementation of a NOT gate. There is a range of input 

levels that can be taken as High or (ON) and a range of outputs that might be expressed as High or 

Low. How the output voltage is affected by the input voltage is defined by the voltage transfer 

characteristic.  

B 
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1.2.3 Latency  

Latency refers to the delay between the change in the input of a gate and the 

change in the output in electronics: this is broken down into gate delay and fall or 

rise time (Figure 1.5). The gate delay is the full time between the changing of the 

input and the changing of the output. The fall or rise time is the period between the 

output starting to change and completing the transition from one output state to 

the other (Figure 1.5). One of the limiting factors in biological gates to date, is gate 

delay. There are a number of factors that can affect gate delay within a biological 

system. Using the repressor protein based inverter example described in Section 

1.2.2, the gate delay includes transcription of the repressor coding sequence, 

translation of the mRNA, protein folding and accumulation time for surpassing the 

amount of repressor necessary for output gene repression. Subsequently the fall 

time can be described as the time required for the level of output reporter to 

equilibrate with the new rate of transcription. This period will be dependent on the 

degradation rate of the reporter and the dilution rate or growth phase of the host 

organism. In the opposite direction the gate delay would depend on the 

dissociation, degradation and dilution of the repressor alongside synthesis and 

folding of the reporter protein (Bowsher, Voliotis, & Swain, 2013). The dissociation 

can take particularly long in circuits using CRISPRi based repression, due to very high 

binding efficiency; though DNA replication can lead to an acceleration in the rate of 

dissociation. 
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Figure 1.5 Latency within a logic gate, is most commonly measured in terms of two periods. First, 

the gate delay which is measured between the input changing state (becoming high in this case) 

and the output changing state (becoming low in this case). Second, the fall or rise time which is 

measured between the output starting to change state and reaching the alternate state (in this 

case going from high to low).  
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1.3 CRISPR Cas9 system  

Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) were first 

discovered in Archaea and later found in bacteria (Jansen, Embden, Gaastra, & 

Schouls, 2002; Mojica, Díez-Villaseñor, Soria, & Juez, 2000; Mojica, Ferrer, Juez, & 

Rodríguez-Valera, 1995). CRISPR is primarily an adaptive immune system, where 

three main stages: adaptation, expression and interference allow targeted cleavage 

of invading foreign DNA (Figure 1.6). During the adaptation phase, foreign DNA will 

be processed by Cas proteins (Cas1 and Cas2 for the Cas9 system), integrating the 

protospacer sequence flanked by a Protospacer Adjacent Motif (PAM), which is 

necessary for distinguishing foreign DNA from host DNA. This sequence is 

integrated into an existing CRISPR RNA (crRNA) array, immediately downstream of 

the direct repeat. Subsequently during the expression phase, the entire crRNA array 

will be expressed alongside trans-activating crRNA (tracrRNA) and the effector 

protein such as Cas9 Figure 1.6. The crRNA array can complex with tracrRNAs and in 

the presence of Cas9, RNase III enables cleavage to form the end complex of Cas9 

and a single guiding RNA (gRNA). During interference, this complex can then target 

the respective protospacer sequence, complementary to the spacer within the 

gRNA, and cleave the sequence if the appropriate PAM is present. 
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Figure 1.6 Mechanisms of CRISPR system. Wild type CRISPR system integrates sections of invading 

nucleotide either from plasmids or from viruses into the spacer regions of the CRISPR array where 

they are transcribed and used to target degradation of future invading plasmids or viruses. Figure 

by J. Atmos (2018), reproduced under Creative Commons License 3.0. 
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One of the best characterised CRISPR systems to date is the Streptococcus pyogenes 

Cas9 system (SpCas9). Being a type II CRISPR, the Cas9 protein is able to act without 

ancillary proteins, when coupled with a gRNA, to enable targeted cleavage. Further 

the SpCas9 system utilises a relatively simple PAM sequence ‘NGG’, permitting the 

targeting of many sequences, with NGG occurring approximately every 8 bp when 

targeting either DNA strand. The system has been further simplified by the fusion of 

the crRNA and tracrRNA into a single transcript to form a functional gRNA, which 

does not require processing (Mali et al., 2013).  

The Cas9 nuclease itself possesses two nuclease domains, HNH and RuvC, which 

each cleave different strands to create a blunt double strand break within the gRNA 

base paired region. An interesting development, which underpinned this body of 

work, was the generation of a catalytically dead Cas9 nuclease (dCas9). This was 

achieved by single amino acid substitutions within the HNH domain and RuvC 

domain, with the subsequent dCas9 protein able to bind to but no longer cleave 

targeted loci.  

While the basic mechanism of dCas9 dependent transcriptional repression appears 

simple, there is underlying complexity around the specificity and kinetics of complex 

formation with DNA and the degree of transcriptional repression. The main classes 

of context which can affect these are the level of homology between the spacer of 

the gRNA and the DNA sequence as well as the nucleotide composition of the 

spacer sequence. Which orthologue of Cas9 is utilised as well as the host organism 

also needs to be considered. From the perspective of off-target effects and 

specificity, complementarity is more important at the 3’ end of the spacer which 

appears to act as the seed region during complex formation with the DNA target. 

Mismatches and bulges in the 5’ end of the spacer still allow the formation of the 

gRNA-dCas9-DNA complex (Gilbert et al., 2014). In terms of DNA binding, 

mismatches between the gRNA and DNA template appear to be tolerated to a 

similar degree and in a similar pattern for both Cas9 and dCas9 (Bikard et al., 2013a; 

Gilbert et al., 2014), concordant with the binding kinetics they appear to share 
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(Richardson, Ray, DeWitt, Curie, & Corn, 2016). Cleavage activity of Cas9 on the 

other hand has different tolerances for bulges and mismatches, with a higher 

degree of complementarity being required for cleavage than binding (Bikard et al., 

2013a; Knight et al., 2015).  

This allows for Cas9 to be used in a comparable manner to dCas9 for regulation 

without cleavage, when a gRNA is used containing the appropriate truncation or 

mismatches. The extra sensitivity to mismatches seen for Cas9 cleavage is likely a 

result of the large conformational change that occurs during cleavage (Knight et al., 

2015; Sternberg, LaFrance, Kaplan, & Doudna, 2015). 

Catalytically inactive Cas9 is well suited for transcriptional regulation in synthetic 

gene circuits due to the high degree of transcriptional repression that can be 

achieved with the system and the ability to bind to and repress transcription from 

arbitrary DNA sequences. This allows the system to interact with a wide range of 

synthetic and endogenous promoters. Previous systems such as Zinc Fingers (ZFs) 

and transcriptional activator-like proteins (TALEs) required a long protein coding 

sequence for each additional transcriptional regulation target.  In contrast, only one 

copy of the 4.2 kbp dCas9 protein needs to be expressed for the repression of 

multiple genes, when expressed alongside the corresponding gRNAs. The ability to 

use one gRNA to repress the expression of another gRNA is conducive to the 

generation of interconnected de novo networks. Here interactions can either 

equate to NOT gates: when the input gRNA is expressed (ON) the output gRNA 

target gene of the gate is repressed (OFF). Alternatively, if there are multiple input 

promoters expressing gRNAs to repress the output gene this functions as a NOR 

gate, with an arbitrary number of inputs. In this system, any input gRNA being 

expressed (ON) will lead to the output gene being repressed (OFF). To exploit this, 

Nielsen & Voigt, (2014) generated and validated 5 orthogonal promoter/gRNA pairs, 

which were used to create networks with up to 4 layers and interface with inducible 

promoters as well as endogenous genes in a predictable manner. In a more recent 
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paper, circuits regulating metabolic pathways were constructed using T7 

polymerase promoters repressed by dCas9(Cress et al., 2016).  

 

1.3.1 Modifications of the gRNA  

1.3.1.1 Aptamer dependent gRNA functionality  

An RNA aptamer is an RNA sequence which binds a specific ligand; these can be 

found naturally, or alternatively, selected in vitro via Systematic Evolution of Ligands 

by EXponential enrichment (SELEX). Generally, binding of a specific ligand to the 

aptamer stabilizes the RNA molecule or causes conformational changes in its 

structure. In nature, such aptamer sequences can be found in messenger RNA 

(mRNA) transcripts, where this change in structure is mechanistically linked to a 

change in the level of expression of the protein the mRNA encodes, for example by 

occluding the RBS. This is known as a riboswitch, with a classic example being the 

BtuB riboswitch in which binding of coenzyme B12 to the riboswitch regulates the 

rate of translation of the BtuB gene (Nahvi et al., 2002). This concept has also been 

applied to other RNA functionalities such as aptazymes: a combination of aptamer 

and ribozyme, where aptazyme cleavage becomes dependent on the presence of 

the aptamer ligand (Zhong, Wang, Bailey, Gao, & Farzan, 2016). The predictable 

nature of RNA binding and folding as well as the number of available aptamers 

presents the opportunity to engineer gRNAs as ligand-responsive switches, adopting 

different conformational states and functionality depending on presence or absence 

of small molecule or protein ligands. 

1.3.1.2 Aptamer based recruitment  

Aptamers have been used in several ways to increase the range of CRISPR/Cas 

applications and improve CRISPR/Cas efficacy for a number of pre-existing 

applications. Aptamers have been included in loop sequences of the gRNA to recruit 

effectors. for example, Konermann et al., 2015 fused two MS2 aptamers within loop 

sequences of the gRNA, allowing the gRNAs to recruit the VP64 transactivation 

domain, connected by a glycine/serine rich linker to the MS2 binding protein. This 
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has been applied, with a clinical focus, to up-regulate expression of latent HIV1 for 

therapeutic purposes (Zhang et al., 2015). 

The inclusion of aptamers in the gRNA can also be used to facilitate live cell genome 

imaging. Aptamers added to the gRNA transcript recruit one of three possible 

fluorophores which can be added to the media. Fluorophores pas through the cell 

membrane to become part of the cytoplasm. The fluorophore which is recruited to 

the riboprotein complex this is then in turn targeted to a specific region of the 

genome by the gRNA for imaging. The presence of two aptamer insertion sites in 

the gRNA allows the creation of combination of colours, when using different 

pairings from the aptamers available, each of which corresponds to a different 

fluorophore. By recruiting different combinations of pairs of fluorophores with 

different emission spectra, then 6 different combinations of colours can be used to 

image the genome during cell division (Ma et al., 2016; Wang, Su, Zhang, & Zhuang, 

2016). 

Liu et al. (2016) utilised a series of aptamer-containing gRNAs, to engineer gRNA 

“signal conductors”, with functionality dependent on the presence or absence of 

ligand signals. In this paper, they demonstrated functionality of such signal 

conductors with either a small molecule (tetracycline, theophylline) or protein (β-

catenin) as signals. In the ON state, the spacer sequence of the gRNA is 

complemented by an additional functional module inserted in the 3’ end of the 

gRNA transcript, which also contains an aptamer sequence (Figure 1.7Aii). This 

means the gRNA does not direct the dCas9 complex to the DNA target site leaving 

transcription unrepressed. The ligand complexing with the ligand-binding loop of 

the aptamer induces a conformational change and binding between the 

complementary sequence and the antisense stem within the 3’ aptamer module. 

This strand displacement releases the spacer sequence, and in this OFF state, the 

spacer guides the dCas9 complex to the DNA target site where transcription is 

repressed (Figure 1.7Aiii). 
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In order to optimise the system, and maximise the dynamic range achievable, a 

number of different antisense stem lengths were tested. Irrespective of the ΔΔG of 

ligand binding, Liu et al. (2016) found that an antisense region of 15 nucleotides 

maximised ligand-dependent range of transcriptional modulation. If the antisense 

region was increased to 18 bases, the stable interactions between the spacer and 

aptamer module resulted in reduced transcriptional repression activity, with low 

dependence on ligand concentration. Conversely, when the antisense region was 

reduced to 11 bases, the gRNA exhibited “leakiness”, with a degree of activity 

retained in the absence of ligand, which is hypothesised to be due to the lower 

stability of the hairpin (Liu et al., 2016). 

Following this optimisation process, Liu et al (2016) used their signal conductors to 

construct logic gates, attempting all the symmetric Boolean logic gates. Whilst these 

gates certainly have some functional value, they also have great limitations. The 

two inputs of the logic gates are in the form of ligands to modulate two ligand 

dependent gRNAs, and in all cases (except the XOR logic gate) the combinatorial 

effect of the two inputs is evaluated through two complexes binding to/near the 

promoter, as opposed to one. Consequently, the effect of having one input in the 

ON state instead of two, approximates to being halfway between having no inputs 

ON, and both ON (an output value which might approximate to 0.5 rather than 1 or 

0). 

After this earlier work, Tang et al. (2017) engineered a system in which ligand-

binding enabled a ribozyme to cleave itself from the transcript, taking with it the 

antisense cis-repressing element. Tang et al. (2017) were able to engineer gRNAs 

using either theophylline or guanine as aptazyme ligands. A “blocking sequence” in 

the transcript complemented a section of the gRNA sequence to repress activity 

(Figure 1.7B). Tang et al. (2017) explored a number of approaches to engineering 

the aptazyme into the gRNA including complementation of the spacer region, 

separating the gRNA into separate crRNA and tracrRNA molecules, and using the 

blocking sequence to prevent the complementation between the crRNA and 
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tracrRNA necessary to create a functional unit. Tang et al. (2017) found that the 

most effective of these three approaches was using the blocking sequence to 

complement the spacer region. They demonstrated functionality of a theophylline-

regulated aptazyme gRNA, for theophylline-dependent cleavage of DNA using Cas9, 

and also a guanine-dependent aptazyme, for guanine-dependent activation of a 

promoter via dCas9-VP64-p65-Rta activity. 
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Figure 1.7 Model of (A) original structures (B) aptamer and (C) aptazyme-regulated gRNA system. 

(Ai) in the wt system, crRNA and tracrRNA combine with Cas9 to make a functional complex, the 

(Aii) gRNA is produced by combining the crRNA and tracrRNA in to a single transcript. The 

functional modules of the gRNA are labeled. (Bi) gRNA in its active, native conformation. (Bii) 

module added to the 3’ end of the transcript complements the spacer region functionally 

inactivating it. (Biii) ligands bind to the aptamer in the 3’ module resulting in a change in 

conformation releasing the spacer and rescuing functionality. (Ci) inactive system, spacer is 

functionality sequestered by blocking sequence. (Cii) when the ligand is present in the system 

this complexes with the aptazyme leading to a change in structure resulting in the, now active, 

aptazyme cleaving. (Ciii) after cleavage the blocking sequence dissociates from the gRNA 

allowing it to return to an active state. 
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1.3.1.3 Sequestration of gRNA by antisense RNA  

As described in Section 1.3.1.2, Liu et al (2016) demonstrated dCas9 repression as 

the evaluation of two logical inputs by adding an extra dependency (repression was 

dependent on the gRNA and the aptamer ligand). Using a different approach, Lee et 

al., (2016) were able to form logic gates by making repression dependent on two 

RNAs. In this system they explored direct sequestration and degradation of a gRNA 

by an antisense RNA (asRNA) which complements the gRNA. This means repression 

is only intended to occur when the gRNA is present and the asRNA is absent.  

Lee et al., (2016) used three rounds of improvement, initially the asRNA 

complemented the spacer region of the gRNA. As well as inhibiting complex 

formation between the dCas9 and the gRNA, an Hfq binding scaffold was included 

in the asRNA transcript (first MicF then Spot42). Hfq stabilises the asRNA and 

promotes interactions with other RNAs as well as recruiting RNase E to degrade the 

RNA heteroduplex (Morita & Aiba, 2011). This initial method of sequestration and 

degradation led to a de-repression of 15% which increased to 43%, 55% and finally 

95%. Through the extension of the complementary spacer, exchange of Hfq scaffold 

from MicF to Spot42 which was found to have a higher affinity, and finally swapping 

the target of the asRNA from the spacer to an engineered 3’ linker sequence added 

to the gRNA transcript. This allowed the investigators to further decrease the ΔG of 

heteroduplex formation between the asRNA and the gRNA. The strategy used by 

Lee et al (2016) expresses system components from two plasmids; first, dCas9 is 

expressed from a vector, available from Addgene - Plasmid #44249 (pdCas9-

bacteria), which has become the standard for expressing dCas9 in bacterial hosts. 

Secondly, a single high copy ColE1 plasmid was used to express both the gRNA and 

asRNA RNAs. This is a different plasmid to the Addgene - Plasmid #44249 (pdCas9-

bacteria).  The details of this setup are described here as they were used as the 

basis for the design of the experimental system used in this thesis.  
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The Lee et al., (2016) system has two input RNAs, which combine in a logical 

operation to yield a repressed or non-repressed output (analogous to OFF/ON or 

0/1). When represented as a logic gate, this system equates to an IMPLY gate as the 

output is only repressed when the gRNA input is ON and the asRNA input is OFF 

(Figure 1.8). The IMPLY gate however is asymmetric and appears rarely in 

computational design. Lee et al. have therefore presented their mechanism in terms 

of gene regulation more generally, rather than emphasising use as a logic gate. 

  



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Introduction  25 

gRNA  asRNA Mechanism  output 
0 0 

 

1 

0 1 

 

1 

1 0  

 
 

0 

1 1 

 

1 

 

Figure 1.8 Mechanism of antisense gRNA system with truth table of each mechanistic state.  The 

Logical evaluation performed by the mechanism equates to an IMPLY gate.  
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1.4 RNA synthetic biology 

When constructing genetic circuitry within synthetic biology, the requirements of a 

system can vary dramatically in terms of regulation, sensing, latency, orthogonality 

and interaction with host systems. Early genetic circuits principally used protein-

based gene repression, including two papers seminal to the field of synthetic 

biology; the Elowitz repressilator and the Gardner toggle switch (Elowitz & Leibler, 

2000; Gardner, Cantor, & Collins, 2000). However the diversity in RNA functions and 

predictable nature of RNA folding and structure, have led to an increase in focus on 

RNA-based regulation in genetic circuitry.  

One of the advantages of utilising RNA from a synthetic biology perspective, is the 

wide range of functional mechanisms available. RNA can interact with small 

molecules or other RNA to modulate rates of translation, interfere directly with 

transcription, catalyse reactions including RNA cleavage and RNA synthesis, and 

form cofactors for enzymatic reactions (Dutta & Srivastava, 2018). Another great 

advantage is the predictable nature of RNA folding and structure, and the software 

tools available for RNA structure/function analysis and design such as the Vienna 

2.0 RNA folding suite and NUPACK (Lorenz et al., 2011; Zadeh et al., 2011).  

1.4.1 Toehold switches 

There have been a range of mechanisms described by which an RNA molecule can 

change the rate of translation of an mRNA in nature, such as the hok/sok system 

and pseudoknot-dependent repBA system of the IncB plasmid (Gultyaev, Franch, & 

Gerdes, 1997; Praszkier & Pittard, 2002). Inspiration from these natural systems led 

to the creation of a range of synthetic translation-regulating RNA mechanisms. The 

first of these was the cis-repressed RNA/trans-activating RNA (taRNA) system 

created by Isaacs et al., 2004. In this system the Shine-Dalgarno (SD) of an mRNA is 

occluded by a 5’ untranslated region (UTR), which forms a hairpin with the SD, 

preventing ribosome binding; this is referred to as cis-repressed mRNA (note, the 

‘crRNA’ acronym used by the authors is not used here due to a conflict with crRNA 

‘CRISPR RNAs’). Translation of the transcript is activated by the taRNA, which forms 
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a heteroduplex with the cis-repressing element of the cis-repressed mRNA, 

displacing the hairpin and exposing the SD for ribosome binding (Figure 1.9). This 

system has two major limitations. First, complementing the SD imposes sequence 

constraints on the cis-repressing element, and hence on the taRNA. This results in 

low orthogonality as there is a high degree of sequence similarity between the cis-

repressing elements and taRNAs from different pairs, resulting in crosstalk. This also 

impacts the range in SDs that can be used. The second limitation is that the same 

structure which occludes the SD also prevents the taRNA from interacting with the 

cis-repressed mRNA. Consequently, heteroduplex formation is dependent on either 

the taRNA complexing with the nascent cis-repressing element, or spontaneous 

hairpin melting. The result is in a low percentage rescue of function by the taRNA, 

and therefore a low taRNA-dependent fold change in expression (Isaacs et al., 

2004).  

The basic concept that the cis-repressed mRNA/taRNA system was based on (that a 

hairpin can reversibly inactivate a functional module of an RNA sequence, and that 

a different RNA can displace the hairpin to rescue transcript functionality), has the 

potential to be applied in a variety of ways if previously highlighted drawbacks can 

be mitigated. Green et al 2014 sought to create a system in which both of these 

drawbacks were mitigated. The biggest innovation was the inclusion of a ‘toehold’ 

sequence at the 5’ end of the hairpin, which was also complemented by the ‘trigger 

RNA’ (note the change in nomenclature from taRNA to trigger RNA). Exposed 

nucleotides of the toehold are available to form a seed interaction with the trigger 

RNA, and this transient complex allows for strand displacement to spread up the 

hairpin, displacing the cis-repressing element from the SD (Figure 1.9). In the 

dynamic equilibrium between dissociated RNA molecules and heteroduplex 

formation, the toehold increases the forward rate constant, by reducing the 

activation energy required for heteroduplex formation. It also reduces the reverse 

reaction rate, by generating a heteroduplex with a lower enthalpy than the 

enthalpy of cis-repressing element hairpin formation. This results in a higher 
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equilibrium constant, and a higher proportion of the cis-repressed mRNA pool 

expressed within a cell complexing with the trigger RNA. The second drawback of 

sequence constraints was mitigated by changing the mode of repression so the SD 

sequence and AUG codon are loop and bulge sequence respectively and the hairpin 

forms in the sequence either side of the SD and with the spacer sequence between 

the SD and AUG. This reduces the sequence constraints on the cis-repressing 

element and the trigger RNA; the increase in available sequence space allows a 

higher degree of orthogonality.   

The system was later expanded and improved by the multiplexing of toehold switch 

hairpins to allow multiple inputs to a single modified mRNA or ‘gate RNA’ thus 

creating an OR gate (Green et al., 2017). The authors also expanded the logical 

applications of the system by subdividing the taRNA into multiple component input 

RNAs which need to bind together to form a functional complex, able to trans-

activate the toehold switch. As all input RNAs are required for trans-activation this 

is an AND gate. NOT gates were also included by adding the antisense of an input 

RNA to sequester it (Green et al., 2017). 
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Figure 1.9 (A) Mechanism of interaction between cis-repressed mRNA and taRNA to expose cis-repressed 

mRNA SD for translation initiation created by Isaacs et al., 2004. (B) Mechanism dramatically improved 

upon by Green et al 2014. The toehold forms a seed interaction with the trigger RNA increasing the 

probability of strand displacement and heteroduplex formation. Neither the SD nor the AUG are directly 

complemented, reducing constraints and increasing the available sequence space allowing for a higher 

degree of orthogonality  
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1.5 Objectives for constructing a NAND gate 

When constructing and optimising the NAND gate presented in this thesis there 

were three main objectives that the majority of challenges and design decisions 

could be described in terms of. These main objectives are introduced here. For the 

first objective, a NAND gate has a high output unless both inputs are ON. The 

equivalent for the gate developed here, being that the output promoter is 

unrepressed unless both the input RNAs are being expressed. Hence, the first 

objective is that neither of the two input RNAs lead to repression of the output 

when expressed individually. In a similar manner, the second objective is that the 

expression of both input RNAs leads to a high level of repression of the output 

promoter, as would be seen in a NAND gate. While the first two objectives are in 

terms of making the RNA mechanism operate in the manner of a NAND gate, the 

third objective is in terms of orthogonality of a number gates expressed within the 

same host.  To maximise the utility of this NAND gate to practitioners it is important 

that multiple versions of a gate may be generated targeting different promoters and 

that these versions when expressed in the same cell operate without crosstalk 

between them. Hence the third main objective is that the design should be 

amenable to creating a range of versions, with a maximum orthogonality between 

different instances. 

1.6 Targets for inactivation within the gRNA  

The NAND gate presented in this thesis will rely on the reversible inactivation of a 

gRNA by the inclusion of a cis-repressing element in the gRNA transcript. In this 

section the information to be considered when selecting a target for inactivation of 

a gRNA is introduced. The gRNA is made up of seven principal modules (Figure 1.7) 

each of which has a different role in complex formation, both between the gRNA 

and the Cas9 Protein, and between the resulting complex and the target DNA.  Cas9 

undergoes substantial conformational changes during complex formation with the 

gRNA (Jinek et al., 2014). When designing how to reversibly disrupt the gRNA a 
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rational place to start would be looking at which part of the gRNA sequence forms 

the seed interaction with the Cas9 protein.  Unfortunately, this is not known, and 

whilst there are speculations, a mechanistic path of complex formation has also not 

yet been elucidated. There are two types of data available on which a design may 

be based. The first is structural data showing which parts of the gRNA sequence are 

in contact with which domains of the Cas9 protein (Nishimasu et al., 2014). The 

second is mutational data showing which sequences within the gRNA are required 

for catalytic activity, by mutating the sequence and observing the effect on catalytic 

activity (Briner et al., 2014).  

The crystal structures for the gRNA-Cas9-DNA complex show very few contacts 

between the Cas9 protein and the 3’ hairpins of the guide RNA (Nishimasu et al., 

2014) (Figure 1.10). This implies that the 3’ hairpins are unlikely to be a suitable 

target for disruption by the cis-repressing element, because disruption may not 

prevent complex formation with dCas9, or the resulting repression of the output 

promoter, contravening the first objective. The first of the two 3’ hairpins make a 

small number of contacts with the C-terminal domain and RuvC nuclease domain. 

This region is also therefore ruled out, due to the low potential for disruption of 

transcriptional repression (first objective).  

In contrast with the 3’ hairpins, the nexus displays extensive contacts with the C-

terminal domain and the arginine rich bridge helix. This is consistent with mutation 

data in which changes to complementarity within the nexus have led to elimination 

of catalytic activity for Cas9 (Briner et al., 2014). This meant the nexus was not ruled 

out as a potential target for repression.  

The lower stem, bulge, and upper stem formed by the crRNA repeat and tracrRNA 

antirepeat also show a great many contacts with the Cas9 protein.  Mutations which 

disrupt complementarity within the lower stem or bulge can both lead to the 

elimination of catalytic activity(Briner et al., 2014).  The upper stem on the other 
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hand can be entirely removed while maintaining catalytic activity, meaning the 

bulge and lower stem remain as potential targets for disruption(Briner et al., 2014).  

The spacer region of the gRNA can be divided into two parts, the seed region (3’ 

end of the spacer) and non-seed region (5’end of the spacer).  The seed region is 

where duplex formation between the gRNA and target DNA begins.  It also has 

lower levels of mismatch tolerance (Bikard et al., 2013; Gilbert et al., 2014). The 5’, 

10 nucleotide, non-seed RNA sequence lies in the cavity formed between the RuvC 

and HNH nuclease domains.  The seed region is pre-ordered through extensive 

contacts with the ribose-phosphate backbone into an A form conformation(Jiang, 

Zhou, Ma, Gressel, & Doudna, 2015). 

Due to the lack of specific contacts within the non-seed region of the spacer, and 

contacts within the seed region being specifically in the ribose phosphate backbone, 

a complementary cis-repressing element targeted to the spacer region would not 

necessarily stop the gRNA from complexing with Cas9. Complementation would 

likely only lead to minor topological changes in the phosphate backbone at the 

point where it contacts the Cas9. This would initially suggest the spacer region 

would not be a good target for the cis-repressing element, however, as the goal is 

to prevent transcriptional repression of the output promoter. Therefore, 

complementation between the cis-repressing element and the seed region (5’ end 

of the gRNA spacer), displacing or preventing contact between the seed region and 

the target DNA may provide the most promising avenue of investigation, 

particularly given the small number of mismatches with the seed region required to 

impair DNA binding (Pattanayak et al., 2013).  

In summary, having looked at the structural roles of each functional module of the 

gRNA as well as the available mutation-functionality data to consider the potential 

efficacy of a cis-repressed element targeted to each functional module of the gRNA, 

four potential candidates remain. The spacer region, the lower stem, the bulge and 

finally the nexus. 
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Figure 1.10 Crystal structure of gRNA complexed with Cas9 and the target DNA. (Nishimasu et 

al., 2014) 
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1.7 RNA-RNA interaction initiation  

There are a number of ways to initiate the interaction between an asRNA and an 

RNA hairpin (Figure 1.11) such as a ‘kissing loop’ interaction, toehold interaction 

(described in Section 1.4.1), interaction between the asRNA and the nascent crgRNA 

before it has folded, or final interaction between the asRNA and members of the 

structural ensemble in which the complementation between the cis-repressing 

element and the spacer has spontaneously melted (Andersen & Collins, 2001; 

Meyer, Chappell, Sankar, Chew, & Lucks, 2015). Both complementing with nascent 

RNA and relying on spontaneous melting are inefficient and require a very high 

concentration of asRNA (Chappell, Takahashi, & Lucks, 2015). The kissing loop 

interactions occur commonly in nature, but suffer from topological restrictions due 

to torsion introduced through asRNA displacement of the hairpin (Di Palma, 

Bottaro, & Bussi, 2015). The toeholds however, have been used and characterised 

in a number of de novo systems, can be optimised for orthogonality and reduce the 

activation energy for heteroduplex formation reducing the ratio of asRNA to crgRNA 

required (Green, Silver, Collins, & Yin, 2014). This highlights the toehold as a 

suitable method of interaction initiation for two input RNAs.  
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Figure 1.11  (A) there are several ways to initiate the interaction between an 

asRNA and an RNA hairpin to form a heteroduplex. (Bi) kissing loop interaction. 

(Bii) spontaneous melting of hairpin. (Biii) Toehold interaction. (Biv) Interaction 

between the asRNA and the nascent hairpin RNA prior to hairpin structure 

formation.  
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Chapter 2: Construction & characterisation of 
crgRNA 

2.1 Introduction  

The aims of synthetic biology are to apply engineering based approaches to the 

utilisation of cellular functions for technological applications. Synthetic biology 

circuits available to date use protein, DNA, and RNA components to achieve a range 

of functionality, from feedback and oscillation to bi-stability and logic.  The main 

limitations of the currently available systems include the limited number of well-

characterised, orthogonal parts and the metabolic load placed upon the host 

system. Other factors that must also be considered are: the human and economic 

resources required to synthesise and build such circuits, the amount of genetic real 

estate they require, and the limited number of components that can be 

incorporated into any one cell. Many of these problems are particularly pronounced 

in protein-based logic systems (Bradley, Buck, & Wang, 2016). 

Current synthetic biology approaches offer the potential to perform a great range of 

tasks, from sensing through to actuation. To coordinate these abilities within 

biological devices, complex biological computing is required. Taking inspiration from 

the approaches adopted by engineers working in more traditional engineering 

media, biologists have been seeking to construct binary-based systems to regulate 

biological systems using Boolean logic (Bradley et al., 2016; Green et al., 2017; Liu et 

al., 2016). These approaches can be divided by the different mechanisms used, 

including protein engineering and RNA engineering, as well as by the level at which 

they modulate activity, from transcriptional modulation to post translation 

modification(Meyer, Chappell, Sankar, Chew, & Lucks, 2015; Prindle et al., 2014).  

Much of the early work on cellular logic focused on the use of transcriptional 

activators and repressors acquired through genome mining(Stanton et al., 2014). 

With this approach, it was difficult to produce logic gates that were both orthogonal 

and functionally equivalent to one another. When orthologues have high homology 
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there is a greater probability of functional uniformity but also crosstalk, when 

orthologues are more distantly related, the inverse is true(Stanton et al., 2014). 

Next, a diversity of protein based systems emerged, ranging from the use of zinc 

finger and TALE effectors to intein based systems(Gaber et al., 2014; Schaerli, Gili, & 

Isalan, 2014). These systems are functional for creating individual logic gates but as 

the number of logic gates required increases, so the metabolic burden increases as 

does the genetic real estate needed. There are also temporal constraints when 

layering these gates as the transcription, translation and folding of protein can take 

time and lead to substantial dynamical error.  

RNA systems on the other hand can be produced with relatively little metabolic load 

and due to the predictable nature of RNA folding, as well as the expansive sequence 

space available, large libraries of orthogonal, functionally equivalent components 

can be generated (Meyer et al., 2015). A common approach is to use RNA regulators 

to modulate the rate of translation from a constitutively expressed, engineered 

mRNA (Green et al., 2017).  Such systems include the toehold systems or a system 

using Hfq based sRNA repression (Sakai et al., 2013). The key issue with such 

systems is that when constructing complex multi-layered logical networks, it is 

necessary for the output of one gate to form the input to the next. When the input 

is transcription of RNA and the output is modulated translation rate of protein, an 

extra step is required to make this output an input into the next gate.  

The CRISPR Cas9 system has allowed the targeting and cleavage of specific DNA 

sequences using predictable, RNA sequence based targeting(Cong et al., 2013; Mali 

et al., 2013). The mutation of Cas9 to remove catalytic activity forming dCas9 has 

allowed a plethora of CRISPRi based regulatory systems to emerge (Qi et al., 2013). 

The advantages of these systems include the high fold change that can be achieved 

with a dCas9 based system and the predictability of the system, the ability to target 

multiple genetic loci, as well as the low genetic footprint for each additional target 

within a cell. Additionally, the output of a dCas9 based system, is a modulated rate 

of transcription. As transcribed gRNAs act as the inputs, this opens the way for 
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systems in which dCas9 based regulation is applied to the expression of gRNAs 

(Nielsen & Voigt, 2014).  

This chapter seeks to combine the advantages of RNA based logic with those of 

dCas9 based systems.  Specifically, to create a functionally complete Boolean NAND 

gate by making dCas9 based repression dependent on the expression of two RNAs.  

2.1.1 Overview of an RNA-mediated NAND gate  

The majority of genetically encoded logic gates fall into two categories; those that 

are protein-mediated and those that are RNA-mediated.  The two categories each 

have their own advantages: protein or repressor/transcription factor based systems 

offer high fold changes in output, but often have problems with either orthogonality 

or library size. On the other hand, RNA based mechanisms, due to their highly 

designable nature, offer very large library sizes but often produce small fold 

changes in output. In the CRISPR dCas9 system there is an opportunity to combine 

the advantages of the two systems: an ability to produce large numbers of 

orthogonal logic gates, and with high output fold repressions.  

For the formation of a logic gate, repression needs to be dependent on two or more 

inputs. In the existing CRISPR/Cas9 system, repression is dependent on the 

presence of both a gRNA and dCas9. While this can represent a logic gate, a large 

library of such gates operating orthogonally would not necessarily be possible due 

to the constraints from a low number of dCas9 orthologues as well as orthogonality 

issues between dCas9 orthologues and their respective gRNAs. Instead an approach 

was selected in which transcriptional repression was made dependent upon the 

interaction of two RNAs. One intuitive approach is to create a gRNA antisense RNA, 

which would complement the gRNA and thus prevent it from complexing with 

dCas9 or interacting with the target DNA sequence (Lee, Hoynes-O’Connor, Leong, 

& Moon, 2016a). Rather than yielding the more commonly used symmetric logic 

gate in which the two inputs are interchangeable, this would produce an IMPLY 

gate. An IMPLY gate is an asymmetric gate in which the output is only OFF if input A 
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(the gRNA) is ON (present) and input B (the anti-sense or asRNA) is OFF (absent). 

The IMPLY gate is a less commonly used logic gate which is not functionally 

complete.  

An alternative approach is one in which the element which represses gRNA activity 

is included in the gRNA transcript itself, yielding a gRNA which is reversibly 

inactivated.  Such gRNA can be reactivated when complexed with an asRNA which 

complements the repressing element in the gRNA transcript. This allows the rest of 

the gRNA transcript to return to its native conformation, enabling complexing with 

dCas9, to repress a target gene (Figure 2.1).    

The design presented here is a system in which dCas9 mediated repression is 

dependent on two different RNA inputs which rely on the insertion of a ‘cis-

repressing element’ into the gRNA transcript (Figure 2.1). This cis-repressing 

element will sequester a region of the gRNA transcript inactivating the cis-repressed 

gRNA (crgRNA) in terms of transcriptional repression. This effect can be negated by 

interaction with an asRNA which interacts with the crgRNA through a toehold, 

passing through strand displacement to complement and sequester the cis-

repressing element. This leads to the gRNA region of the transcript returning to a 

native state to produce dCas9 mediated transcriptional repression of an output 

gene. The experimental setup to test this system will be three plasmids; one to 

express dCas9, one to express a fluorescent reporter and a final plasmid to express 

the asRNA and crgRNA. The system will be operating as intended if, only when both 

the crgRNA and the asRNA are expressed is the output reporter repressed by dCas9 

complexed with the crgRNA and asRNA (described further in Section 1.3.1.1). 

This mechanism is a functional analogue of a NAND gate, as the output gene is only 

repressed in the presence of both of the input RNAs; the inactive crgRNA and the 

activating asRNA. Both RNAs must be present to see repression of the output. An 

additional advantage of this system is that, as the input and output can be 

expressed in terms of transcriptional flux from a targeted promoter, this system is 
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amenable to layering. In addition, the RNA basis of this mechanism opens up the 

opportunity for large libraries of orthogonal parts. 
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Figure 2.1: NAND gate design. The gate consists of a constitively active output promoter that is 

repressed only in the presence of both the crgRNA and asRNA inputs. (A) Schematic 

representation of the inactive crgRNA and the active crgRNA /asRNA heteroduplex. (B) The 

crgRNA/asRNA system performing as a Logic gate with the two RNA transcribing promoters as the 

inputs and a single repressible promoter as the output. Repression of the output is dependent on 

the two input RNAs in the same manner as the logic gate. The inputs and output of the gate are 

organised in to the symbol of the NAND gate to make the inputs and output clear.  
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2.2 Results  

2.2.1 Experimental setup  

To test the NAND gate in E. coli, there are a number of components that need to be 

co-expressed (Figure 2.2).  These components are expressed from three plasmids. 

The first component is a reporter to act as the output of the logic gate; so when the 

output is ON the reporter is expressed and when the output is OFF, the reporter is 

repressed. For this purpose mCherry was expressed from plasmid pZS2-123. This 

plasmid also expresses two other fluorescent proteins (YFP and CFP) which are used 

as controls(Cox, Dunlop, & Elowits, 2010).  

The second plasmid expresses dCas9 which mediates the repression of the output 

reporter gene (mCherry). This is the AddGene plasmid pdCas9-bacteria (#44249) 

which expresses dCas9 under the control of the anhydrotetracycline (aTc) inducible 

pLtetO-1 promoter and is the standard plasmid for expression of dCas9 in bacterial 

systems. The final two components are the two RNAs which act as inputs to the 

logic gate: the crgRNA and the asRNA. Both are expressed from the pBR322 

plasmid. The pLlacO-1 promoter was selectd as an inducible, titratable promoter to 

drive the expression of the crgRNA, allowing for tuning of the expression level . The 

j23119 promoter is used to drive the expression of the asRNA as it is a strong 

promotor maximising the observable effect of the asRNA. To simulate the turning 

OFF and ON of the asRNA input, two instances of the plasmid exist for each variant. 

One instance of the plasmid expressing the asRNA and the crgRNA (the +asRNA 

state), and the other expressing the crgRNA and a nonsense, control instead of the 

asRNA (the -asRNA state).  The reporter plasmid also expresses CFP and YFP; YFP is 

used as a control to verify whether the effects observed are specific to the mCherry 

target. When the logic gate functions correctly the output reporter (mCherry) will 

only be repressed when both the crgRNA and the asRNA are expressed (crgRNA 

+asRNA) (Figure 2.2).  
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E.coli 

Figure 2.2 Three plasmid experimental setup. pBR322 expressed the asRNA and the crgRNA, 

AddGene plasmid #44249 was used to express dCas9. Fluorescent reporter protein (mCherry) and 

control fluorescent proteins (CFP, YFP) were expressed from pZS2-123 (Cox et al., 2010). The 

fluorescent reporter gene (mCherry) acted as a measure of the level of repression created by the 

system. 
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2.2.2 Selecting target for cis-repressing element 

When designing the cis-repressing element to be included in the gRNA transcript 

there are a number of important variables to consider. First, which region or 

functional module within the gRNA should the cis-repressing element complement 

to reversibly inactivate the gRNA transcript.  Second, should the cis-repressing 

element be included in the 5’ or 3’ end of the transcript. Third, how should 

interaction between the activating asRNA and the crgRNA initiate and propagate.    

As described in the introduction (section 1.6), the structural roles of each of the 

functional modules of the gRNA as well as the available mutation-functionality data 

highlighted four promising candidates. The spacer region, the lower stem, the bulge 

and finally the nexus. Of the four candidates identified, the bulge sequence lies 

between the upper and lower stems. Consequently, a cis-repressing element, which 

only complements the bulge sequence (4 nt) has a small change in enthalpy (-0.67 

kcal/mol). This is likely to result in the transcripts native conformation having the 

highest prevalence in the ensemble, negating the effect of the cis-repressing 

element. Therefore, to effectively complement the bulge sequence, the lower stem 

must also be displaced. As the lower stem is already a candidate, this effectively 

combines the bulge sequence and lower stem sequence into a single candidate 

target for a cis-repressing element to complement. 

Complementing a hairpin can be problematic as the hairpin competes with the cis-

repressing element, leading to a structural ensemble containing both 

conformations. This would have consequences for the first objective as the 

members of the ensemble in the native conformation would lead to partial 

repression of the output promoter this is an argument against the bulge-lower stem 

target. Of the, now three, potential targets for the cis-repressing element, the two 

within the dCas9 binding scaffold (nexus and bulge-lower stem) have a fixed 

sequence. The spacer sequence on the other hand is variable depending on the 

gRNA target. If the cis-repressing element complements part of the dCas9 binding 

scaffold, this sequence will be non-variable between versions, as is true for the 
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asRNA, which would complement the cis-repressing element. Accordingly, attempts 

to create functionally comparable versions which were nonetheless orthogonal 

would be hampered (third objective). The Spacer has already been successfully used 

as a target for gRNA inactivation (Lee, Hoynes-O’Connor, Leong, & Moon, 2016; 

Tang, Hu, & Liu, 2017). The combination of all these factors resulted in the decision 

to choose the spacer as the target for the cis-repressing element. 

Having selected the spacer as the target for the cis-repressing element the next 

stage was to choose whether to fuse the cis-repressing element to the 5’- or 3’-end 

of the transcript. The shorter the sequence distance between two complementing 

elements, the smaller the effect of entropy and more stable the interaction (Suker 

& Stiegler, 1981). Consequently, it was decided to fuse the cis-repressing element to 

the 5’end of the gRNA transcript. 

The Toehold was chosen as the method of interaction initiation between the asRNA 

and the crgRNA. Increasing the length of the toehold increases the rate of 

heteroduplex formation between the asRNA and the crgRNA as well as stabilises the 

heteroduplex through the increased number of complementary bases. 

Consequently, increasing toehold length increases the proportion of molecules 

within the RNA structural ensemble that are in a heteroduplex and therefore active 

in terms of reporter repression (second objective). As the length increases however, 

the potential for non-cognate interactions also increases (third objective). To 

balance these competing considerations a 12 nt toehold was chosen, because it has 

been observed that the effect of increasing toehold length on heteroduplex 

formation tends towards saturation at a length of 12 nt (Green, Silver, Collins, & Yin, 

2014). 

2.2.3 Design and synthesis of crgRNA 

The design decisions taken so far have resulted in a mechanism in which a 5’ cis-

repressing element complements part of the spacer region of the gRNA as well as 

an asRNA, which, when present, is then able to interact with the crgRNA through 
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complementing the 5’ toehold and displacing the cis-repressing element from the 

spacer. This in turn allows the crgRNA to complex with dCas9 and repress the 

output promoter. A balance must be struck between the need for the cis-repressing 

element to inactivate the crgRNA and the need for the crgRNA, when expressed 

with the asRNA, to produce a high fold repression of the output promoter (the first 

and second objectives). A cis-repressing element that folds with a low ΔG, forming a 

stable structure reduces the probability of the crgRNA repressing the output 

promoter in the absence of the asRNA. Correspondingly, it may reduce the 

efficiency of asRNA binding and activation of the crgRNA leading to a low fold 

change in the output promoter when expressed with the asRNA. The inclusion of 

bulges in the cis-repressing element’s complementation of the scaffold reduces the 

stability of the cis-repressed conformation and increases the ΔΔG of asRNA binding. 

Consequently, a library of variants with different thermodynamic stabilities was 

created (naming is alphabetic, in order of stability). These ranged from designs such 

as variant N (Figure 2.3A) where stability is reduced through the addition of several 

bulges, to variant J (Figure 2.3A) in which stability is increased through extending 

complementarity into the Cas9 binding scaffold. Stabilities ranged from -36.95 

kcal/mol (N) to -60.10 kcal/mol (J). 

The inducible PLac promoter was chosen to express the crgRNA as it was also used in 

the most comparable work to this by Lee et al., 2016 to express gRNA. To avoid 

issues with leaky expression of the asRNA; the asRNA was expressed from a 

constitutive promoter, which was included or excluded from the construct to 

observe the resulting change in repression of the output promoter. The set of 

constructs, designed using these criteria (Figure 2.3A), were sent for synthesis at 

IDT. A problem arose when the long hairpins included in each of the constructs led 

to difficulties with synthesis, requiring multiple synthesis attempts leading to 

delayed delivery or synthesis failure. These challenges meant only the ‘+asRNA’ and 

‘-asRNA’ versions of the K variant were received, as well as the asRNA-only control 

and gRNA-only control (see Figure 2.3A).  
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After discussions with staff at the synthesis facility it appeared that a crgRNA with a 

3’ cis-repressing element would be easier to synthesise. Consequently, variants in 

which the cis-repressing element was included in the 3’ terminus were designed. 

Variants W, X and Y used cis-repressing elements from N, M and K respectively 

(Figure 2.3). To prevent torsion issues resulting from changing the cis-repressing 

element terminus, the toehold was moved from the 5’ to 3’ terminus of the cis-

repressing element.  

The synthesised library of constructs were delivered in the very high copy plasmid 

pIDTSmart-Amp (IDT Inc.). Initial attempts at transforming this very high copy 

plasmid, produced colonies which could not be cultured in liquid media. This may 

have been due to toxicity caused by the high copy number plasmid combined with 

the strong constitutive promoter (J23119) used to express the asRNA. 

Consequently, when the 3’ cis-repressing element crgRNAs were sent for synthesis, 

the strong constitutive promoter in the constructs sent for synthesis was replaced 

with a slightly lower strength constitutive promoter (J23107, relative strength 0.70). 

This second synthesis round was more successful, yielding both ‘+asRNA’ and ‘-

asRNA’ versions of two of the variants; W and Y, as well as a control in which 

nonsense RNA had been substituted for the 3’ cis-repressing element of the same 

length.  This additional control was included to observe changes in gRNA efficacy 

resulting from the inclusion of extra sequence in the 3’ terminus. Complications 

which had arisen with the transformations of plasmids from both rounds of 

synthesis in the high-copy IDT vector, so constructs were sub-cloned into the lower 

copy pBR322 vector (expounded in methods and materials). This change of vector 

removed all observable toxicity effects and allowed the constructs to be expressed 

with the other two plasmids required for the experimental setup.  
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Figure 2.3 Structures of crgRNA designs. Green: dCas9 binding scaffold, Yellow: DNA binding spacer 

region, Orange: cis-repressing element, Purple: toehold. Designs are divided up in to two 

categories: 5’ in which the cis-repressing element is placed upstream of the spacer region, and 3’ in 

which the cis-repressing element and toehold are added between the final hairpin and the 

terminator. In both cases the cis-repressing element complements principally the spacer. Due to 

issues with synthesis, only those designs within boxes completed synthesis.  Structures above 

include a control gRNA with no cis-repressing element and a control with nonsense RNA inserted 

in the site used for the 3’ cis-repressing element to test for deleterious effects on gRNA 

functionality.  Structures visualised using Forna (Force-directed RNA, Kerpedjiev, Hammer, & 

Hofacker, 2018) 
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2.2.4 Initial testing of crgRNA variant K 

 

The first variant to be successfully generated and tested was variant K. to test it, 

crgRNA K was expressed with and without the cognate asRNA, in an E. coli strain 

also expressing dCas9 and the mCherry which is the target of the crgRNA 

transcriptional repression as per Figure 2.2. The results of this initial experiment are 

shown in Figure 2.4 as mCherry fluorescence, relative to the average fluorescence 

of the control strains which expressed mCherry and dCas9, but no gRNA or asRNA. If 

the system functioned as anticipated, crgRNA expression without asRNA would not 

result in reduced mCherry fluorescence, while crgRNA expression with asRNA would 

enable the crgRNA to repress mCherry. Expression of crgRNA K without the cognate 

asRNA resulted in partial repression of mCherry fluorescence; however the degree 

of repression was significantly greater when the crgRNA was expressed with the 

asRNA (two sample homoscedastic t-test P=0.05).  
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A B 

Figure 2.4. Preliminary test of K variant. (A) mCherry fluorescence (584/610-20), (B) YFP 

fluorescence (485/520). In both A and B, the level of fluorescence is normalised to a culture 

expressing the fluorescent protein without the crgRNA. A and B were read from the same cultures 

on different fluorescence channels. Error bars are the standard deviation of the sample. Inducer 

concentrations were 200 pg/ml aTc, and 250µM IPTG. The fold change in normalised fluorescence 

of mCherry was 1.86 fold (n=8). Full data processing methods found in section 5.3.1  
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2.2.5 Optimization of dCas9 and crgRNA expression levels 

As it was observed in testing crgRNA K, that mCherry was partially repressed with 

expression of the crgRNA without asRNA, the efficacy of dCas9 in the presence of 

very small levels of aberrantly folded crgRNA was considered, and expression levels 

of dCas9 and crgRNA optimised. 

The dCas9 plasmid used here was constructed in a study which demonstrated the 

high levels of repression that can be achieved with dCas9 (Qi et al., 2013). Although 

dCas9 expression is being induced at a low level with 200 pg/ml aTc, this is still in 

the upper limit of the dynamic range for dCas9-mediated repression activity (Qi et 

al., 2013).Therefore, if the levels of dCas9 being expressed are in excess of the level 

required, even a small proportion of the crgRNAs within the structural ensemble 

could be forming a structure that can complex with dCas9 even in the absence of 

the asRNA.  This is true particularly if the crgRNA is being expressed at a level well 

above that required. Similarly, the crgRNA is induced at a level, used in another 

paper which may not be optimal for this system (Lee, Hoynes-O’Connor, Leong, & 

Moon, 2016). 

As both the dCas9 and crgRNA K are under control of inducible promoters, for 

which expression level can be titrated with differing concentration of inducer, 

dCas9-mediated repression of mCherry was tested with different amounts of aTc 

(for dCas9 induction) and IPTG (for crgRNA induction). Again, strains were cultured 

for 24 hours and fluorescence from mCherry measured. The results from this 

experiment are shown in Figure 2.5. 

As anticipated, higher levels of dCas9 and crgRNA induction led to greater 

repression of mCherry, both with and without asRNA expression. At all induction 

levels crgRNA +asRNA strains exhibited greater mCherry repression than crgRNA -

asRNA confirming that the mechanism is working. However, the fold difference in 

repression between +asRNA and -asRNA varies. Both low (0 µM IPTG) and high (250 

µM IPTG) expression led to low fold differences between +asRNA and -asRNA 
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cultures. The maximal fold change between +asRNA vs -asRNA was observed when 

the crgRNA was induced between the minimum and maximum, at 50µM IPTG. This 

is true at each level of dCas9 induction observed. High induction of dCas9 (200 

pg/mL aTc) resulted in a low fold difference.  As the level of dCas9 induction is 

decreased, so the fold difference increases, until it reached its maximum 3-fold 

when entirely un-induced. This demonstrates that in the dynamic range, observed 

crgRNA expressed without the activating asRNA is more sensitive to changes in level 

of dCas9 expression than crgRNA with the asRNA. It is notable however that the 

lowest level of expression in the dynamic range observed for dCas9 is still high 

enough to result in a 3 fold repression between the positive control and the 

+crgRNA, +asRNA Strain. This is likely to be due to the low level leaky expression 

previously observed using this system (Lee et al., 2016).  

The result is that the dynamic range of dCas9 induction available from the inducible 

promoter only covers 25% of the dynamic range of the target promoter repression. 

This leaky expression of dCas9 prevents the characterisation of the logic gate at 

lower levels of dCas9 expression. Based on this data, the same three plasmid setup 

was used in successive experiments with an induction level of 50 µM IPTG and 0 

pg/mL aTc. The correlation between reduced level of dCas9 expression and higher 

fold change may be extrapolated to hypothesise that reducing the level of dCas9 

expression further would lead to a greater fold difference between the +asRNA and 

- asRNA states. The very high expression levels seen in this system presently result 

in repression of the target promoter with the crgRNA when the asRNA is not 

expressed. This hypothesis was explored in Section 2.2.11 following production of 

different variants of the dCas9 expressing plasmids, modified for lower levels of 

expression.   



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Construction & characterisation of crgRNA  56 

Figure 2.5 Please see figure legend on next page 
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Figure 2.5 Testing for optimal induction levels of dCas9 and crgRNA for asRNA dependent crgRNA 

repression of mCherry.  Each point represents cultures grown for 24 hours in the level of the two 

inducers specified. Results are presented in a number of ways; in a series of slices with normalised 

fluorescence on the y axis, one inducer on the x-axis and the other increasing slice by slice to allow 

the presentation of error bars (A,B) . Data are presented with each inducer on the x axis. The more 

intuitive way the level of repression is represented is as the three-dimensional, triangle plots 

(right). Both -asRNA and +asRNA show the greatest repression at the highest level of dCas9 and 

crgRNA induction, and the least repression in an un-induced state. The fold difference between 

the +asRNA and the - asRNA varies across the induction space and is portrayed in the uppermost 

triangle plot (D). Error bars are standard deviation of sample. n=24. 
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2.2.6 Testing crgRNA variants K, W and Y with optimized 
dCas9 and crgRNA expression levels 

Following the optimisation of dCas9 and crgRNA K induction levels, the crgRNA 

variants W and Y (in which the cis-repressing element is at the 3’ end of the crgRNA, 

Figure 2.3) were additionally tested in parallel with crgRNA K. to control for changes 

in repression efficiency resulting from the inclusion of the 3’ cis-repressing element, 

a gRNA control and a gRNA with a nonsense 3’ insert were also included, both with 

the same spacer region and target as the crgRNAs. Strains were grown in LB for 24h 

and mCherry florescence measured (Figure 2.6). No statistically significant changes 

in optical density of cultures were observed for any of the variants either in the 

+asRNA or -asRNA state (Figure 2.6B), giving no evidence of toxicity from any of the 

three variants irrespective of asRNA presence.  

There are a number of differences between the performance of the three different 

variants. When comparing variants W and Y, the mCherry repression in the absence 

of asRNA is 44% repression for W, and 21% repression for Y. Variant W displays a 

statistically significant (p=0.05) 1.1-fold difference between the +asRNA and -asRNA 

states. This is a smaller fold change than the 1.2-fold change (p=0.05) seen in the Y 

variant. Variation in inhibition resulting from the two different cis-representing 

elements can also be seen in the variation of change observed when the introduced 

asRNA negates or partially negates the effect of the cis-repressing element. The 

greater degree of inhibition seen from the Y cis-repressing element means a greater 

change in repression is seen when that effect is negated through the addition of an 

asRNA. 
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Figure 2.6 Testing the performance of all synthesised designs. (A) Normalised fluorescence of 

reporter mCherry showing repression resulting from crgRNA -asRNA and crgRNA +asRNA. Controls 

include a gRNA and a gRNA with 3’ insert to observe the effect of adding the cis-repressing 

element and as a comparison with the crgRNA + asRNA to ascertain the level of functional rescue 

by the expression of the asRNA. All variants show greater repression when the crgRNA is activated 

by the asRNA. (B)  Optical density of cultures as a measure of toxicity; no statistically significant 

differences between samples and controls were observed. (C) Normalised fluorescence of a 

control fluorescent protein (YFP) being expressed in the same cultures. No statistically significant 

differences between samples and controls were observed. Error bars are standard deviation n = 

24. Full data processing methods found in section 5.3.1. 
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There is variation between the two crgRNAs with the cis-repressing element at the 

3’ end when in their active (+asRNA) state. Y +asRNA (34% repression) does not lead 

to the same level of repression as W +asRNA (49% repression), which in turn does 

not repress to the same level as the gRNA with control 3’ sequence (76% 

repression). Both of these observations imply that the expression of the asRNA is 

not entirely negating the effect of the cis-repressing element (objective B) and so 

the more stable Y crgRNA is still leading to a greater degree of cis-repression. In 

addition, neither W +asRNA nor Y +asRNA (49% and 34% repression) approach the 

level of repression seen in the gRNA with a control 3’ element (76% repression).  A 

similar effect is seen in the K variant (which has the cis-repressing element at the 5’ 

end), where the +asRNA (84% repression) strain shows less repression than the 

gRNA control with the same target and spacer region as the crgRNA (93% 

repression). However the difference between the + asRNA state and the gRNA 

control is smaller for the 5’ variant (84%: 93% repression) when compared with the 

3’ variants (49%-34%: 76% repression).  There is a difference in percentage rescue 

upon the addition of the asRNA between the 5’ and 3’ system variants; the K variant 

(5’ cis-repressing element) expressed a percentage rescue of 81%, the 3’ Y and W (3’ 

cis-repressing elements) expressed rescue percentages of 19% and 9%. No 

significant differences were observed for the control fluorescence (YFP) (Figure 

2.6C) suggesting the changes what changes are not the result of a global metabolic 

change in the strains.   

The addition of the 3’ element leads to a reduction in the level of repression seen 

even when the 3’ element doesn't contain a cis-repressing element (3.8-fold 

change). This extra factor, reducing the activity of the inactive Y variant may explain 

why the observed repression exerted by inactive Y is lower than that of the K 

variant. Each of these factors suggested that the optimal level of expression for the 

crgRNA and dCas9 may be different for the two 3’ variants and so a second 

induction level optimisation experiment was conducted.  
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2.2.7 Testing dCas9 dependency of reporter repression  

The sequences used in each of the crgRNA designs contain sequences 

complementary to the sense strand of the mCherry promoter, and also to the 5’ 

terminus of the mCherry reporter mRNA transcript. Therefore, it is necessary to 

check for any RNA-RNA interactions between the crgRNA and the 5’ UTR of the 

reporter transcript.  These include interactions which might either stabilise the 

transcript, lead to transcript degradation, alter transcription through association 

with the nascent RNA strand, or affect the rate of translation of the transcripts by 

ribosomes.  Understanding the mechanisms underlying the observed modulation of 

reporter expression is necessary for the design, build, and test cycle.  

To test for any modulation of the mCherry reporter by RNA-RNA interactions rather 

than dCas9 mediated interactions with DNA, strains were generated in which the 

crgRNA (with and without asRNA) and mCherry were expressed without dCas9. The 

observed reporter fluorescences are shown in Figure 2.7. A one-way ANOVA yielded 

no statistically significant differences between the different strains.  This leaves no 

evidence of direct RNA-RNA interactions modulating reporter expression and no 

evidence of non-dCas9 mediated, crgRNA dependent modulation of reporter 

expression. 
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Figure 2.7 Normalised fluorescence of reporter when crgRNA are expressed without 

dCas9. No statistical differences were observed confirming the dCas9 dependency of 

crgRNA modulation of reporter expression. Error bars are standard deviation n = 24. 

Induction level was 50 µM IPTG (crgRNA). Full data processing methods found in 

section 5.3.1. 
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2.2.8 Optimization of induction levels for crgRNA Y variant  

Of the two crgRNA variants with 3’ cis-repressing elements, crgRNA Y exhibited the 

greatest fold difference in mCherry fluorescence between +asRNA and –asRNA 

strains. This variant was therefore taken forward for optimisation. 

The low fold repression seen in the +asRNA condition for variant Y, is problematic 

for the second objective (the output should be OFF when the crgRNA and asRNA are 

both expressed).  Previous optimisation showed that crgRNA-mediated mCherry 

repression could be enhanced by increasing expression of either dCas9 or the 

crgRNA.  For the fold difference between the -asRNA and +asRNA strains to 

increase, the +asRNA condition would have to be exhibit a greater increase in 

repression than the –asRNA when the induction level of either the crgRNA or the 

dCas9 is increased. Optimisation was conducted, using higher levels of inducer than 

the level used for the full library in Figure 2.8. While the increase in the two 

induction levels led to increases in repression by the crgRNA Y in the active 

(+asRNA) state, they also led to increases in repression by the crgRNA Y in the 

inactive -asRNA state. Thus failing to provide an increase in fold change between 

the two states. Therefore, the original induction level of 0 pg/mL aTc and 50µM 

IPTG is used in succeeding experiments. 

  



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Construction & characterisation of crgRNA  64 

  

0

0.2

0.4

0.6

0.8

1

1 10 100

N
o

rm
a

lis
e

d
 f

lu
o

re
sc

e
n

c
e

dCas9 induction (pg/mL aTc)

-asRNA

+asRNA

0

0.2

0.4

0.6

0.8

1

1 10 100

N
o

rm
a

lis
e

d
 f

lu
o

re
sc

e
n

c
e

dCas9 induction (pg/mL aTc)

0

0.2

0.4

0.6

0.8

1

1 10 100

N
o

rm
a

lis
e

d
 f

lu
o

re
sc

e
n

c
e

dCas9 induction (pg/mL aTc)

A – 50 µM IPTG 

B – 100 µM IPTG 

C – 250 µM IPTG 

Figure 2.8 Level of repression of mCherry by the 3’ Y crgRNA variant in the +asRNA and -asRNA 

states. Fold difference is greatest at 0 aTc and 50µM IPTG. Repression observed at four different 

aTc concentrations and three different (A,B,C) IPTG concentrations. Induction concentrations of 0 

are changed to 1 so they may be presented on a log scale.  Full data processing methods found in 

section 5.3.1. Error bars are standard deviation (n=24) 
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2.2.9 Effect of Temperature on repression 

Changing temperature is known to result in changes in the RNA structural ensemble 

(Kortmann & Narberhaus, 2012), therefore the effect of change in temperature on 

the functionality of each of the three crgRNA variants was explored. Strains were 

grown at either 20 °C, 30 °C or 37 °C in LB media with 200 rpm shaking for 24 hours. 

The results are shown in Figure 2.9. 

Results from cultures grown at 37 °C reproduced the results of the original test (also 

carried out at 37 °C). The results at 30 °C showed little variation relative to 37 °C. At 

20 °C, the crgRNA K variant with 5’ cis-repressing element performed in a similar 

manner as seen at 37 °C.  The two variants with 3’ cis-repressing elements however 

both resulted in complete repression of the fluorescent reporter protein at 20 °C 

with or without asRNA. 
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Figure 2.9 Each crgRNA variant (K,W,Y) expressed at three different temperatures. Normalised 

fluorescence shows repression by the crgRNA/asRNA system. Controls include a gRNA and a gRNA 

with 3’ insert. OD of cultures is also included. Error bars are standard deviation. n = 24. Induction 

level of dCas9 is 0 pg/mL aTc, induction level of crgRNA is 50 µM IPTG.  Full methods found in 

section 5.3.1. 
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2.2.10 Time series measurements  

In each experiment so far, fluorescence measurements have been taken after 24 

hours of culturing. To explore whether the system behaves differently in each 

growth phase, a time series for strains expressing the K variant crgRNA both with 

and without the asRNA was carried out. Fluorescence and optical density was 

measured every 30 minutes for the 24-hour time course at 37 °C. The results are 

shown in Figure 2.10. 

It is worth noting that during the lag phase and the early exponential phase, a small 

number of cells results in a very low level of fluorescence for all samples including 

positive and negative controls.  This low level of fluorescence means that small 

random errors inherent within the plate reader results produce a very high margin 

of error in percentage terms for readings early within the time series. 

The results show that the observations made in the stationary phase do not hold 

true for the exponential phase. In the exponential phase there still remains a 

difference between crgRNA functionality +asRNA and –asRNA, but both produced a 

lower level of fold repression than is seen at the 24-hour mark. As the cultures 

transition from exponential into stationary phases, the level of normalised 

fluorescence decreases for both the +asRNA and -asRNA states. But the decrease is 

more rapid for +asRNA cultures, which results in a greater fold difference between 

+asRNA and -asRNA states. Within the stationary phase the level of fluorescence in 

the -asRNA strain continues to drop. The +asRNA cultures on the other hand appear 

to reach maximum repression saturation point at approximately 20 hours. This 

contrasted with the continuing decrease in fluorescence resulting in the fold 

difference between +asRNA and – asRNA peaking before the 24-hour time point.  

As the cultures transition from the exponential phase into the stationary phase the 

relative level of fluorescence appears to drop, in the +asRNA strains.  This change 

appears to follow a sigmoidal curve reaching a saturation point at 20 hours. The -
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asRNA cultures on the other hand continue to drop resulting in the fold difference 

between +asRNA and -asRNA peaking at approximately 22 hours. 
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Figure 2.10 (A) Time series of repression by 5’ K crgRNA variant in both +asRNA and -

asRNA states. (A-primary Y axis) normalised fluorescence of mCherry expressed with 

crgRNA in either +asRNA (red) or – asRNA (orange) strains. Error bars are SEM (three 

repeats, each with 8 replicates) n = 24 . (A-secondary Y axis) fold difference between 

+asRNA and –asRNA strains (brown).  (B) Growth curve, OD600 of cultures. Induction 

level for dCas9 is 0 pg/mL aTc. Level of induction for crgRNA is 50 µM IPTG. Full data 

processing methods found in section 5.3.2. 

A 

B 
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To further characterise the growth phase dependent nature of the crgRNA 

functionality, time series data with was collected with a different dCas9 induction 

level. Having observed very low levels of repression during the exponential phase, 

to approach an optimum level of induction for this stage, increasing the level of 

dCas9 induction was explored. Again, fluorescence readings were recorded every 30 

minutes. The results are shown in Figure 2.11.  

No significant differences were observed in growth rate between +asRNA and –

asRNA strains. Different repeats showed variation in the time point at which the 

fold change peaked, ranging from 17hrs to 21 hrs (Figure 2.11). This time range is 

earlier in the growth curve than the peak in average fold change with a lower level 

of dCas9 expression (Figure 2.10). A higher level of expression of dCas9 leads to fold 

change peaking at an earlier point in culture growth.   
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Figure 2.11 (A-D) Time series of mCherry fluorescence with repression by the crgRNA K variant 

either +asRNA (Red) or –asRNA (Orange) on the primary (left) Y axis and fold difference (brown 

circles) plotted on the secondary (right) Y axis. Each panel also includes a growth curve in which 

the OD600 is plotted over time. (A-C) are repeats conducted on different days, error bars are 

standard deviation n= 8. (D) Is the combination of the three repeats, error bars are SEM, n=24. 

Each of the repeats are presented separately as well as combined to allow the observation of 

variation between repeats. Induction level for dCas9 was 2 ng/mL aTc, for crgRNA it was 50 µM 

IPTG.  Full data processing methods found in section 5.3.2. 
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2.2.11 Engineering the dCas9 Expressing Plasmid for 
Lower Expression 

As highlighted in Section 2.2.8, the level of expression of dCas9 from the original 

AddGene plasmid #44249 may be above the optimum for this system, even when 

expression is entirely un-induced.  Therefore, the next step was to reduce the level 

of expression by engineering the plasmid from which it was expressed.  Two 

different approaches were taken to reducing the level of expression.  The first was 

having a transcriptional attenuator between the promoter and RBS of the gene to 

make pdCas9-T (Figure 2.12). The attenuator used was a terminator from the 

Biobrick registry (BBa_B1003) with a termination efficiency of 83% (Huang, 2007). 

This reduces the level of expression from the promoter in both the induced and un-

induced state. The fold induction for the pLtetO-1 promoter is >10 fold. Reducing 

the level of expression by less than 10 fold should allow characterisation of the 

system in an expression level range below that from the un-induced original 

plasmid. With the expression level from the induced pdCas9-T overlapping with the 

level of expression from un-induced original plasmid.  

The original plasmid ribosome binding site had a predicted strength of 4662 AU 

(Espah Borujeni, Channarasappa, & Salis, 2014).  Two alternative versions of the 

plasmid were made with edits to the RBS, to reduce the rate of mRNA translation 

(Figure 2.12). RBS 2 had a predicted strength of 4068 AU and RBS 3 had a predicted 

strength of 3618 AU. These two plasmids allowed for two eventualities; (A) the 

transcriptional attenuator reduces the level of expression so that even when fully 

induced a level of expression does not reach that of the un-induced original 

plasmid.  In this case one of these two plasmids would be used to cover this part of 

the dynamic range. (B) A large decrease in the level of expression of dCas9 is not 

required because in this case one of these two plasmids would suffice to expand the 

dynamic range into a potential optimum.   
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pLtetO-1  
Promoter  

Transcriptional Attenuator 

Transcriptional Attenuator RBS  

RBS  dCas9 CDS 

Figure 2.12 Alignment of the original dCas9 expression plasmid (AddGene plasmid 

#44249) with three variants engineered to reduce the level of expression of dCas9 

either through the addition of a transcriptional attenuator (pdCas9-T) or through the 

mutation of the RBS sequence.  

Original 
RBS 2 
RBS 3 

Attenuato
r 
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The attenuator in pdCas9-T leads to very little repression of the reporter (though 

still statistically significant repression of P<0.05).  RBS2 does not result in a 

statistically significant change.  RBS3 however does lead to a lower repression, 

statistically significant for the -asRNA condition. 

In the same way the un-induced original plasmid had a higher level of induction 

than an apparent optimum level for fold change, conversely the un-induced pdCas9-

T has a level of expression below the apparent optimum. Fortunately, the promoter 

can be induced to increase the level of expression, hence the need for a second 

induction level optimisation.  

The level of induction of the crgRNA was varied as well as the level of induction for 

dCas9. In the previous optimisation, five different crgRNA induction levels (IPTG) 

and four different dCas9 (aTc) induction levels were tested. As it is dCas9 expression 

which has been reengineered five different induction levels of dCas9 (aTc) were 

tested, correspondingly the number of induction levels for the crgRNA (IPTG) was 

reduced to four. These results are shown in Figure 2.14. 
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Figure 2.13 Varying dCas9 expression through two different approaches; the addition 

of a transcriptional attenuator (pdCas9-T) or a change in RBS strength. There is a 

substantial and statistically significant drop in the level of repression by the plasmid 

containing a transcriptional attenuator. The fluorescence measured is mCherry. The 

original AddGene plasmid #44249 is marked as dCas9-O. RBS 2 has a strength of 4068 

AU, RBS 3 has a strength of 3618 AU. The plasmid with a transcriptional attenuator 

engineered into it is marked as pdCas9-T. The transcriptional attenuator has been 

experimentally characterised as having a termination efficiency of 83%, though this is 

partially context dependent. In all cases it is the K variant of the crgRNA/asRNA 

system which is used. As with previous experiments the levels of induction are 50 µM 

IPTG (crgRNA) and 0 pg/mL aTc (dCas9). Error bars are standard deviation, n=24. Full 

data processing methods found in section 5.3.1. 
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At 400 pg/mL aTc induction with pdCas9-T , there is a comparable level of 

repression to that seen with the original dCas9 expressing plasmid (Figure 2.13, 

Figure 2.5). This is true in both the +asRNA and -asRNA states and at each of the 

IPTG induction levels observed. This is evidence that the level of dCas9 expression 

at 400 pg/mL aTc is comparable to the level of expression from the original plasmid 

when un-induced. 

When performing the induction level optimisation with the original plasmid, the 

variation in the level of repression appeared to follow a log-exponential curve. With 

pdCas9-T, the dynamic range of the dCas9 promoter (aTc) covers a greater 

proportion of the dynamic range of repression (from 86% to 17% repression, -

asRNA). With this greater dynamic range available the curve that can now be 

plotted appears to be log-sigmoidal rather than log-exponential.  

The fold difference between the crgRNA +asRNA and -asRNA varies with the level of 

induction of both the dCas9 (aTc) and the crgRNA (IPTG). As discussed earlier in 

Section 2.2.11 the level of repression with pdCas9-T at 400 pg/mL aTc is comparable 

to that of the original plasmid when un-induced (5 fold).  Correspondingly, the 

highest fold difference at this level of dCas9 induction is at 50 µM IPTG (crgRNA) 

induction.  The next lower dCas9 induction level (200 pg/mL aTc) shows the new 

peak fold difference.  At this point the peak fold difference moves from being at 50 

µM IPTG (crgRNA) to 100 µM IPTG with a very similar result at 250 µM IPTG (10 

fold).  When either the crgRNA or dCas9 are un-induced there is a small fold 

difference between +asRNA and -asRNA.  This is also true for high levels of 

induction of dCas9. 

The fold difference between +asRNA and -asRNA correlates with the dCas9 

repression/induction gradient (ΔRepression/Δinduction). Where small changes in 

induction lead to large changes in the level of repression a greater fold difference is 

seen between +asRNA and - asRNA. For example a change from 100 µM IPTG, 200 
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pg/mL aTc to 100 µM IPTG, 400 pg/mL aTc leads to a fold change from 10 to 4 but 

the successive change 100 µM IPTG, 800 pg/mL aTc results in a 4 to 3 fold change.  
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Figure 2.14 please see figure legend on next page.  

Fold difference  
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Figure 2.14 Testing for optimal induction levels of dCas9 and crgRNA while expressing 

dCas9 from pdCas9-T. All fluorescences measured are mCherry. Results are presented 

in a number of ways; in a series of slices with normalised fluorescence on the y axis 

and one inducer on the x-axis and increasing slice by slice to allow the presentation of 

error bars. Data are presented with each inducer on the x axis. The more intuitive way 

the level of repression is represented is in the three-dimensional, triangle plots (right). 

Both -asRNA and +asRNA show the greatest repression at the highest level of dCas9 

and crgRNA induction, and the least repression in an un-induced state. The fold 

difference between the +asRNA and the - asRNA varies across the induction space and 

is portrayed in the uppermost triangle plot. Error bars are standard deviation of 

sample. n=24.  
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2.3 Discussion  

The aim was to construct a RNA based logic system, in this chapter is laid out a 

proof of concept for the system and a detailed characterisation of the preliminary 

system, laying out strengths as well as points for improvement. Here, the main 

results that will be taken forward from this chapter into the next chapter will be 

explored, leaving an overarching compare and contrast discussion between this 

work and the broader field to the final Thesis Discussion chapter. The results seen 

here will be compared with those from other published systems.  

2.3.1 Proof of Concept  

Before producing the results laid out in this chapter the underlying mechanism 

explored here was entirely hypothetical.   There was an original hypothesis: that it 

would be possible to design a gRNA with a cis-repressing element included in the 

transcript that would inactivate it, and that this element itself could then be 

sequestered through the expression of an asRNA to rescue the crgRNA activity and 

repress expression of an output gene.  On the evidence laid out in this chapter the 

null hypothesis that this is not possible can be rejected. Nevertheless, there are a 

number of areas for improvement to make the best possible logic gate for use by 

practitioners of synthetic biology. 

2.3.2 Methodological Insights  

The work presented in this chapter has produced a number of insights into the best 

methodology to use in practice when further exploring this type of mechanism and 

these have been taken forward into the next chapter.  This includes the three 

plasmid system used in this chapter.  Expressing the system from a low copy 

plasmid such as pBR322 yields a functional system lacking in the toxicity observed 

when expressed from the original high copy synthesis plasmid. The most commonly 

used dCas9 expressing plasmid (AddGene plasmid #44249) expresses dCas9 at a 

level above the optimum for this system through leaky expression when un-

induced.  Consequently, the engineered version of this plasmid (pdCas9-T) was 

taken forward with a transcriptional attenuator that produces dCas9 over a dynamic 
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range including the optimal level of expression of dCas9 for this system. So far as 

synthesis of the constructs is concerned, large hair pins, repeats, inverted repeats 

and strong secondary structure are required by these designs, but producing to 

these requirements is beyond the limits of some synthesis companies, which needs 

to be taken into account for future work, when selecting which synthesis companies 

to use when exploring these mechanisms.  

2.3.3 dCas9 expression  

The use of CRISPRi in bacteria has been explored in a range of papers each of which 

requires the expression of dCas9. The majority of these papers either use the 

original AddGene plasmid pdCas9-bacteria #44249 or the operon from this plasmid 

in a different back bone. A number of papers include a dCas9  induction curve (Lee 

et al., 2016a; Vigouroux, Oldewurtel, Cui, Bikard, & van Teeffelen, 2018) covering 

only 40% - 60%  of the dynamic range of dCas9 induction (depending on system 

used). The induction of the pdCas9-T plasmid covers >74% of the dynamic range of 

dCas9. The plasmid was not used at high levels of induction due to the 

requirements of this work but the remaining dynamic range within the promoter 

(expression levels reaching saturation at 10 ng/mL) implying the dynamic range 

covered may be up to 83%. Alternatively, pdCas9-T may be used alongside the 

original dCas9 expressing plasmid to reach such a combined coverage of the dCas9 

induction range. This engineered pdCas9-T, when made available, offering increased 

dynamic range may make future insight into the performance of systems at low 

dCas9 expression more easily attainable. 

2.3.4 Cis-repressing elements at the 5’ and 3’ terminus 

The repression is lower for the W crgRNA than for the Y crgRNA when expressed in 

the absence of the asRNA. This variation is intuitive based on the differences 

between the two structures. The cis-repressing element in Y contains a direct 

complement of the spacer region of the gRNA leading to a more stable structure 

(ΔG = -38.05 kcal/mol). The W variant on the other hand, has a complementary 

region of the cis-repressing element containing a number of mismatches reducing 



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Construction & characterisation of crgRNA  83 

the stability of the cis-repressed structure (ΔG = -24.37 kcal/mol). Consequently, 

there is a lower predicted partial pairing probability between the cis-repressing 

element and the spacer region for W, leading to a higher proportion of the 

structural ensemble to be in a conformation suitable for repressing the output 

promoter. Therefore, the difference in repression from the two crgRNAs in their 

inactive state can be understood in terms of structural stability.  

The repression is greater for the K crgRNA than for the Y or W crgRNA when 

expressed with the asRNA. As described in Section 2.2.4; when synthesizing the 3’ 

cis-repressing elements, the possibility of toxicity led to the decision to change the 

asRNA promoter to a weaker one than that used in the 5’ variants. This may 

account for the difference in percentage functional rescue between 5’ and 3’ 

variants.  

The cis-repressed structure of K is more stable than the cis-repressed structure of Y 

or W due to the effects of entropy on the long sequence between the cis-repressing 

element and its complementary target (structural predictions performed with 

Vienna2.0). Armed with this information one might anticipate that the inactive K 

variant would be more stably inactivated than the Y variant. Our observations 

indicate the contrary however: the inactive K variant retains more activity than the 

inactive Y variant. There is clearly an extra factor to be considered here, and this can 

be seen in the difference between the two controls. The addition of the 3’ element 

leads to a reduction in the level of repression seen even when the 3’ element 

doesn't contain a cis-repressing element. 

When cultured at 20 °C instead of 37°C, the two variants with 3’ cis-repressing 

elements both resulted in complete repression of the fluorescent reporter protein 

at 20 °C with or without asRNA. There are a number of potential reasons for this 

change including (i) Lower temperature leading to a change in the RNA structural 

ensemble resulting in a change in crgRNA/asRNA functionality. (ii)  Metabolic 

changes resulting from lower temperature. (iii) Change in expression of RNA 
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chaperone proteins or expression of heat shock proteins. The data available is not 

sufficient to interpret the mechanistic underpinning of these results.  

2.3.5 Design insight  

While issues with synthesis resulted in not all of the intended designs being tested, 

the data from those designs which were tested still offer insight into how future 

designs might be optimised.  

Based on the evidence within this chapter, it was decided to continue to develop 

the 5’ cis-repressing element over the 3’ cis-repressing element due to the 

enhanced performance of the K variant when contrasted with the W and Y variants.  

The K variant, when expressed without asRNA (in its inactive state) still shows some 

dCas9 repression activity at 27% repression (pdCas9-T, 250 uM IPTG, 200 pg/mL 

aTc). When expressed with the asRNA, the crgRNA (in its active state) shows only 

12% less repression than the gRNA control (pdCas9-T, 250 uM IPTG, 200 pg/mL aTc). 

This emphasises that the inactivation of the gRNA is more in need of optimisation 

than the reactivation by asRNA. There were mismatches were included in the 

complementation between the cis-repressing element and the spacer region of the 

gRNA in a number of the design variants which failed to be synthesised. These 

mismatches would have stabilised formation of the heteroduplex in the active state 

and conversely destabilised the cis-repressing element. The spacer hairpin in the 

inactive state changes in the relative ΔG of each of the competing structures (ΔΔG). 

As it is the inactivation of the gRNA that needs to be optimised, the next library 

should seek to further stabilise the interaction between the cis-repressing element 

and the gRNA, as well as further sequestering sequences necessary for complex 

formation between dCas9 and the crgRNA. A promising avenue of approach for this 

optimisation would be to extend complementarity of the cis-repressing element 

from the spacer into the gRNA scaffold. 

2.3.6 Characterisation  
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In this chapter, the most thoroughly characterised and best performing design 

variant was the K variant. In this chapter it is demonstrated that the addition of the 

cis-repressing element to the gRNA transcript reduced the degree of CRISPRi 

repression of a reporter gene, and that the addition of a corresponding asRNA to 

complement the cis-repressing element rescued CRISPRi repression activity. This 

repression, rather than being a direct RNA-RNA interaction, was dCas9 dependent 

and no repression was seen in the absence of dCas9. Similarly, repression seen was 

the result of a specific interaction rather than a large-scale metabolic change 

produced by the system as can be observed by the lack of change in control 

fluorescent protein expression.  

The performance of the system varies with the level of expression of dCas9 and 

with the level of expression of the crgRNA. The level of repression seen by the 

system follows a log-sigmoidal curve when graphed against the level of expression 

induction. In both these curves, it is the point at which the induction/repression 

gradient is at its highest that the greatest difference was seen between the +asRNA 

and -asRNA states. This is true of both dCas9 induction level and crgRNA induction 

level.  

The results show that the observations made in the stationary phase do not hold 

true for the exponential phase. In both exponential phase and stationary phase 

+asRNA strains show greater repression than –asRNA strains but the fold difference 

between the two states is greatest in stationary phase. It was hypothesized that the 

variation in system performance between the growth phases and specifically the 

lower level of repression in the exponential phase when contrasted with stationary 

phase observed relates to a dilution effect and the act of DNA replication. Once 

bound, dCas9 will remain bound to its DNA target sequence until replication (Jones 

et al., 2017). Therefore, the rapid replication seen during the exponential phase 

disrupts the repressive effect of dCas9 as the target promoter continues to express 

until a new crgRNA/dCas9 complex can bind. This effect may be accentuated by the 

effects of dilution. At each round of replication, the expressed dCas9 protein is 
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divided between the two daughter cells which continue to grow and increase in 

volume leading to a dilution affect. This means that rather than accumulating as in 

the stationary phase, the concentration of dCas9 is continually diluted, resulting in a 

lower concentration of dCas9 and therefore a lower level of repression. Hence the 

higher levels of fluorescence observed. The level of induction of dCas9 can be tuned 

for optimal performance in the exponential phase or the stationary phase.  

The K variant shows a statistically significant difference in repression between 

+asRNA and -asRNA strains at a range of temperatures from 20 °C to 37 °C. 
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Chapter 3: Optimisation of crgRNA and 
orthogonality 

3.1 Introduction  

In the previous chapter (Chapter 2:), three design variants of the crgRNA-asRNA 

were designed, and characterised.  While the system demonstrated functionality, 

there was also substantial room for improvement. Two crgRNA variants in which 

the cis-repressing element was at the 3’ end, and one variant with the cis repressing 

element at the 5’ were synthesised and characterised. Of these, the 5’ variant 

exhibited the best properties in terms of achieving the greatest fold change in 

repression upon the addition of the asRNA and was consequently further 

characterised. In this chapter, the insights gained from characterisation of the 

system using the 5’ variant were used as the basis for construction of a new library 

of variants to further improve our crgRNA-asRNA RNA based biological logic gate 

system.  

In the previous chapter is described the design and testing of a crgRNA that has 27% 

basal repression of a target reporter gene, in the absence of asRNA and leads to a 

maximal repression of 81% when activated by asRNA, under optimal levels of 

induction of the plasmids expressing crgRNA, asRNA and the Cas9 enzyme.  It was 

anticipated that there would still be room for improving the fold change observed 

by the current design, by both reducing basal repression of target promoter by 

crgRNA in the absence of asRNA and increasing maximal repression by crgRNA in 

the presence of asRNA. Improving the maximal repression by the crgRNA in the 

presence of asRNA can be done by increasing the level of expression of dCas9. 

However, this would also lead to an increase in basal repression from the crgRNA in 

the absence of asRNA, which is undesirable.  Hence, reduction of basal repression 

level by improving the inactivation of the crgRNA by its cis-repressing element was 

considered the more reasonable design space to explore, as it would allow the 

system to be used even at higher dCas9 expression levels, improving both the basal 

repression and the active crgRNA repression, simultaneously.  
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Accordingly, throughout the design process the focus was on optimising the cis-

repressing element to further inactivate the crgRNA, including extending the area of 

complementarity from the spacer region into the Cas9 binding scaffold. A library of 

variants was synthesised and tested.  

Having identified a good design for the cis-repressing element, the next steps were 

to optimise the system for orthogonality so that multiple logic gates can be 

expressed in the same cell without cross-reactivity. This was done using an in silico 

machine learning approach to optimise the toeholds for orthogonality. The final 

step was to demonstrate that this system can be applied to multiple different 

promoters to produce predictable and consistent results. 
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Figure 3.1 Please see figure legend on next page.  

crgRNA 

crgRNA-asRNA 

complex  

A 

  

B 

dCas9 

Upper stem  Bulge  

Lower Stem 

Spacer 

3’ Hairpins  

Nexus  

Loop 

gRNA 

Cis-repressing element 
now complements the 
spacer and part of the 
dCas9 binding scaffold   

Interaction initiates at the 
toehold  



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Optimisation of crgRNA and orthogonality  90 

 

 

  

  

Figure 3.1 (A) Schematics of crgRNA with asRNA complexed and without. (B) System acting as 

NAND Logic gate. In both cases, colour changes through the Cas9 binding region of the transcript 

denotes different functional modules: Spacer in purple.  Cis-repressing element colour matches 

that of the region of the transcript it compliments. Toehold in blue, asRNA in pink. 
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3.2 Results  

3.2.1 Library Design  

As discussed, the best way to improve the system is the further inactivation of the 

crgRNA through the cis-repressing element. There are two approaches to improving 

the cis-repression: the first is to further stabilise the inactive state through 

stabilising secondary structure formed between the cis-repressing element and the 

rest of the crgRNA. The second approach would be to increase inactivation of the 

crgRNA by further complementing and therefore sequestering other functional 

modules of the gRNA. As increasing the length of complementation of the cis-

repressing element would both stabilise the cis-repressed structure and allow it to 

compliment other functional modules of the gRNA. The logical progression would 

be to extend complementarity from the spacer region into the 5’ end of the Cas9 

binding scaffold.   

Mutation of the scaffold reveals that the 5’ region contains a number of functional 

modules required for Cas9 binding and cleavage (Briner et al., 2014). The structure 

at the 5’ end of the Cas9 binding scaffold is a hairpin formed by the combination of 

the crRNA and tracrRNA into a single transcript replacing the repeat-antirepeat 

duplex (Mali et al., 2013). It is formed of a number of modules, the lower stem, the 

bulge, the upper stem and loop sequence (Figure 3.1). Mutations on each of these 

modules have different consequences for Cas9 activity. This could be due to the 

prevention of complex formation between the Cas9 and its binding scaffold. 

Alternatively, it is possible that as complex formation between dCas9 and the gRNA 

leads to substantial conformational rearrangements which are required for target 

DNA recognition, the mutated gRNA may lead to a gRNA-Cas9 complex which is 

inactive (Jiang et al., 2015; M. Jinek et al., 2014). When examining the change in 

efficacy resulting from mutation, module by module, it was discovered that when 

two of the 6 nucleotides of the lower stem are mutated to non-complementary 

bases, there is a drop of 45-100% in Cas9 cleavage activity. In the bulge module, 

there is a high tolerance for mutations including deletions which change the 
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sequence but retain the bulge within the secondary structure. However, if the bulge 

is removed through making the two sides complementary to one another, there is a 

100% removal of cleavage activity. The upper stem and loop sequence can be 

deleted while retaining 52-81% activity.  

To prevent repression of the target promoter by the crgRNA in the absence of the 

asRNA, a library of crgRNAs was created in which the region of complementarity 

within the cis-repressing element was extended. Each library member had the 

region of complementarity extended into the next successive module, extending 

from the spacer (Sp), first into the lower stem (LS), then into the bulge (Bg), the 

upper stem (US) and finally complementing the loop sequence as well (Lp) (Figure 

3.2). It is the first two modules that have the greatest impact on complex activity in 

mutational studies using Cas9. Hence, the greatest stepwise improvement might be 

anticipated to be due to the complimentary of these two modules. However, the US 

and Lp variants may lead to a greater stabilisation of the crgRNA in its inactive state 

and it is hypothesised that the Lp variant will result in the greatest degree of cis-

repression. In the previous chapter, the secondary structure of the crgRNAs were 

problematic for the synthesis company, consequently, a different synthesis 

company (GeneArt) was used to produce this library of variants. 
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Figure 3.2 Structure schematic of library of crgRNAs. Purple represents the toe hold where 

interaction initiates with the asRNA, Orange is the region of the cis-repressing element which 

compliments and sequesters functional modules. Yellow is the spacer region, green is the Cas9 

binding scaffold.  A native state gRNA is included for reference, to demonstrate how modules of 

the Cas9 Binding scaffold are iteratively complemented by successive members of the library. 

Structures visualised using FORNA (Kerpedjiev, Hammer, & Hofacker, 2018). 
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3.2.2 In vivo Library testing  

To test functionality of these designs, library variants were sub cloned into the 

pBR322 plasmid with the crgRNA expressed by the PLacO-1 promoter and the asRNA 

expressed by the J23119 promoter (in the same manner used to express the K 

variant). Similarly, the three plasmid system described in section 2.2.1 was used to 

test the library. The only change being that dCas9 was expressed from pdCas9-T to 

reduce the level of expression of dCas9 (2.2.11) (pdCas9-T). The crgRNAs targeted 

repression of mCherry expressed from the pZS2-123 plasmid, with two other 

fluorescent proteins are also expressed from the plasmid as controls (Cox et al., 

2010). Based on the studies using the K variant of crgRNA, described in section 

2.2.11, the optimal fold change was produced with an induction level of 0.2 ng/mL 

aTc (dCas9 induction, pdCas9-T plasmid) and 100 uM IPTG (crgRNA induction). 

Therefore, these levels of induction were used initially for the new library.  

In the Sp variant the cis-repressing element compliments the spacer region in the 

same manner as the K variant (the two are functionally equivalent with small 

differences in restriction sites and cloning). Therefore, as predicted, the levels of 

repression seen by Sp +asRNA and -asRNA are not significantly different from those 

of the K variant. The Sp and K variants had basal repression levels of 32.6% and 27.8% 

repression respectively.  Additionally, Sp and K variants in the active +asRNA state 

resulted in 81.4% and 80.4% repression respectively (Figure 3.3).  

Predictions in the library design section of this chapter are based on mutation data, 

in which changes are made to complementarity within the Cas9 binding scaffold and 

changes in their functionality are observed. This approach was used, as changes in 

sequence complementarity might be predicted to yield similar changes in scaffold 

structure by using a cis-repressing element to compliment that part of the structure. 

Predictions based on this approach do not however adequately predict the 

comparative level of performance seen by the library. Thus, the mutational data at 

the least shows that multiple nucleotides within this sequence can be exchanged for 

non-complementary ones, disrupting complementation, while the complex 
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maintains activity (Briner et al., 2014). However, extending complementation from 

the spacer region into the lower stem leads to a significantly increased level of 

crgRNA cis-repression (P<0.05). Similarly, when the mutations removed the bulge by 

making the sequence entirely complementary, Cas9 was no longer able to cleave its 

target. When the cis-repressing element is extended from the lower stem into the 

bulge however, the level of cis-repression is reduced and the crgRNA activity 

increases. When the cis-repressing element is extended from the bulge into the 

upper stem no statistically significant change in the level of basal repression was 

seen. Similarly, Briner et al (2014) found that deleting the other stem led to little 

change in activity. The final member of the design set includes the extension of the 

cis-repressing element through the loop sequence (Lp). This variant expresses the 

highest degree of crgRNA inactivation in the absence of the asRNA (only exhibiting 

15.3% basal repression of the target promoter).  

There are also statistically significant differences in the level of repression of each of 

the crgRNAs in their active state (+asRNA), The LS variant exhibits significantly less 

repression (76.2% repression) than the Sp variant (81.4% repression) (p<0.05). The 

Bg and US variants also show reduced repression, though not statistically significant 

(20.7% and 21.1% repression respectively). On the other hand, the Lp variant, showed 

the greatest degree of repression (85.0% repression). This is statistically significantly 

greater than the LS variant (p<0.05) but not significantly greater than that of the Sp 

variant. To exclude any contribution of growth rate and other global effects in gene 

expression, on the repression of target promoter by various variants of crgRNA, the 

optical density and expression level of a control fluorescent protein, unaffected by 

the crgRNA variants were measured in all variants. Both the optical density and the 

level of fluorescence of the control fluorescent protein showed no statistically 

significant difference across variants (Figure 4B & 4C). 
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Figure 3.3 Functional test of the Library of crgRNA designs. Expressed in 0.2 ng/mL aTc (dCas9 

induction) and 100 uM IPTG (crgRNA induction). (A) Fluorescence of reporter gene (mCherry) 

normalised to positive control expressing mCherry with no crgRNA repression.  (B) Optical 

densities of the cultures, no statistically significant differences (one way ANOVA, p<0.05). (C)  

Level of fluorescence of control fluorescent protein normalised to positive control, no 

statistically significant differences (one way ANOVA, p<0.05). Error bars represent standard 

deviation of sample n=24. sample. Full data processing methods found in section 5.3.1. 
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Based on the design variants expressed in this library it is evident that the Lp 

expression demonstrates the most optimal performance by having both the 

greatest cis-repressed inactivation (-asRNA) and the greatest repression in the 

active state (+asRNA) (Figure 3.3A). The inducer levels used in these experiments 

were the same levels found to be optimal for the K variant from section 2.2.11. 

Therefore, an induction level optimisation was required to get the best 

performance out of this variant. Whilst there is still approximately 15% of the 

dynamic range of both the upper and lower end of the spectrum (approximately 

15% repression in inactive -asRNA state and 85% repression in active state +asRNA) 

to reach the maximum fold change, it is more important to maximise repression in 

the active state with +asRNA than basal repression in the inactive -asRNA state. This 

also corresponds to the requirements for biological logic gates where low levels of 

OFF state leakiness can cause greater problems than small changes in the level of 

ON state expression. Consequently, while optimising inducer levels for the 

induction of crgRNA and dCas9 higher dCas9 expression levels of both dCas9 and 

the crgRNA were explored, as both of these have the potential to lead to an 

increase in repression from the system, based on earlier observations.  

As predicted, the increase in the level of expression of dCas9 increases the degree 

of repression of mCherry (Figure 3.4). The largest fold difference between +asRNA 

and -asRNA is seen at 100 uM IPTG and 0.5 ng/mL aTc. This is the same 

concentration of IPTG as was used in the first test of this library, which was also 

optimal for the K variant. On the other hand, 0.5 ng/mL aTc represents an increase 

in the level of expression of dCas9. The increase in level of induction from 0.2 to 0.5 

ng/mL aTc led to an increase in the fold change because the change in repression 

for the +asRNA state was greater in percentage terms than the change for the -

asRNA.  
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Figure 3.4 Induction curve of dCas9 with the Lp variant in both the active +asRNA and inactive -

asRNA states.  (A) 100 uM IPTG, (B) 250 uM IPTG (crgRNA induction). Concentrations of aTc; 0.2, 

0.5, 1, 2 ng/mL aTc. Error bars represent standard deviation of sample (3 reapeats with 8 

replicates; n=24). Results are normalised to a positive control expressing mCherry without crgRNA 

to repress it. Full data processing methods found in section 5.3.1. 
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When the new optimal induction levels for the Lp variant (100 uM IPTG and 0.5 

ng/mL aTc) are applied to the entire library, the performance pattern of the library 

remains consistent but with an increase in the fold change of each library variant 

(Figure 3.5).   
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Figure 3.5 Library of crgRNA designs expressed in 0.5 ng/mL aTc (dCas9 induction) and 100 uM 

IPTG (crgRNA induction). (A) Normalised fluorescence of target gene (mCherry). (B) Normalised 

level of fluorescence of control fluorescent protein, no statistically significant differences (one way 

ANOVA, P<0.05). (C) Optical densities of the cultures, no statistically significant differences (one 

way ANOVA, P<0.05). Error bars represent standard deviation of sample, n = 24. Full data 

processing methods found in section 5.3.1. 
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3.2.3 Toehold orthogonality  

A potential advantage of the crgRNA system is the ability to have many crgRNAs 

gates functioning within the same cell. One way to achieve this is to use different 

crgRNA asRNA pairs which target different promoters or genes. Orthogonality 

between crgRNA asRNA pairs is critical for preventing off target effects and cross-

talk between crgRNAs and non-cognate asRNAs. When the crgRNA is transcribed 

and the cis-repressing element folds, complementing the Cas9 binding scaffold, the 

toehold is left accessible for the asRNA to initiate complementation (Figure 3.1).  

The entire cis-repressing element of the crgRNA is complemented by the asRNA. 

There are three main modules of the cis-repressing element (toehold, spacer 

complementing and scaffold complementing) each showing different degrees of 

sequence variability. The asRNA complements the entire cis-repressing element and 

so the same sequence constraints that apply to the cis-repressing element, also 

apply to each respective module of the asRNA. The first module of the crgRNA is the 

toehold which is unbound in the crgRNA’s inactive conformation and initiates the 

interaction with the asRNA before the junction migrates up the hairpin. This module 

is entirely variable and can be optimised to avoid complementation with the rest of 

the crgRNA. Unintended toehold complementation within the structure could 

potentially hinder structure formation or lead to reduced probability of initiating an 

interaction with the asRNA. The toehold can also be optimised to minimise 

interactions with non-cognate asRNAs to ensure orthogonality.   

As it was the Lp variant which showed the greatest fold change; it was then decided 

to make multiple functional homologues of the Lp variant that are orthogonal to 

each other.  However, there are challenges in using the Lp variant to create 

orthogonal homologues, as it has a large region of the Cas9 binding scaffold 

complemented by the cis-repressing element imposing sequence constraints. Since 

the asRNA in turn, complements the cis-repressing element, the asRNA also bears 

these sequence constraints. This means when different versions of the Lp variant 

are made with different DNA targets the sequence constraints imposed result in a 



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Optimisation of crgRNA and orthogonality  102 

segment of all asRNAs being identical and therefore matching a segment of all 

crgRNAs. Consequently, there is a high probability of non-cognate interactions and 

cross talk between different versions.  

An element of the system that would mitigate this effect is the hairpin sequence (in 

the inactive state) that forms between the cis-repressing element and the rest of 

the crgRNA. The hairpin includes the sequence which is identical between versions 

reducing base accessibility and therefore reducing the chance of crosstalk. The 

toehold sequence is where interaction initiation occurs between the asRNA and the 

crgRNA. Therefore, maximising orthogonality at the toehold becomes the focus for 

maximising the orthogonality of the system.  

A boost for orthogonality is the fact that the spacer module of the crgRNA would 

vary between versions depending on the target DNA sequence. Therefore, the 

corresponding regions of the cis-repressing element and the asRNA will also differ 

between variants. This has a positive impact for orthogonality, and it is possible to 

take this into consideration when optimising DNA targets for orthogonality. To 

change the spacer sequence while keeping the target gene the same to minimise 

variation within the experiment three different PAM sites were selected from 

within the coding region of the gene for use with the orthogonality experiment. 

After this when applying the system to multiple different promoters in each case 

the PAM closest to the transcriptional start site was used.  

To generate multiple versions of the Lp system it was first necessary to ascertain 

whether sequences with different toeholds will retain the same functionality.  To 

this end, three different versions of the Lp system were made, each with a different 

toe hold sequence (Lp-α, Lp-β, Lp-γ), sub-cloned into pBR322 and expressed in the 

same manner (0.5 ng/mL aTc, 100 uM IPTG). There was no statistically significant 

difference between the three versions, indicating that indeed the system can 

function with different toehold sequences (Figure 3.6).  
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Figure 3.6 Variants on the Lp design with different toeholds. No statistically significant 

differences in repressive capability between the variants despite change of toehold sequence 

(p=0.05). Inducer concentrations were 0.5 ng/mL aTc, 100uM IPTG. Error bars are standard 

deviation, n=24. Full data processing methods found in section 5.3.1.   
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To aid in the design process of crgRNA-asRNA pairs and maximise orthogonality, an 

in silico method was developed which generates toehold sequences that maximises 

the orthogonality of the different Lp versions. The method functions by 

optimisation in three stages (Figure 3.7). In the first stage a range of potential 

toeholds with maximum accessibility and minimal complementation with the rest of 

the crgRNA was generated. In the second stage, pairwise orthogonality tests were 

conducted between the asRNAs and crgRNAs with each of the toeholds from the 

earlier stage. This generated an interaction matrix, used in the third and final stage 

where the orthogonality of different combinations of toeholds, one for each 

cognate pair, were assessed to find the best combination of toeholds. The 

underlying script described here is included in Appendix 1: Toehold orthogonality 

script. 
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3.2.4 Stage 1: Toehold generation 

A pool of randomly generated 12 nucleotide toehold sequences was produced. This 

pool was first screened for GC content, keeping only toeholds with a GC content of 

more than 45%. It is important for the toehold to have a high GC content to 

optimise the interaction initiation between the asRNA and the crgRNA. A higher GC 

content leads to a lower ΔGf of the initial interaction between the toeholds of the 

crgRNA/asRNA pair, reducing transient interactions and consequently increasing the 

flux towards the pair forming a heteroduplex (Green et al., 2014a). A further screen 

to remove any sequence of low complexity like tandem repeats of 4 or more 

nucleotides such as ‘AAAA’, this left 56% of the initial toeholds pool. Random 

toeholds continued to be generated and screened until a pool of 5,000 toeholds 

which had passed the screen was achieved. This resulted in initially approximately 

8,900 random toeholds being generated to reach the screened 5,000 toehold pool.  

3.2.5 Stage 2: Toehold ranking and screening 

In the next stage toehold sequences were scored for toehold base accessibility and 

unintended interactions with the rest of the transcript. The best toeholds will have 

the greatest proportion of bases within them available to complement with the 

antisense RNA within the thermodynamic ensemble. Undesirable secondary 

structure and complementation within the toehold or between the toehold and the 

rest of the crgRNA will reduce the base availability for the asRNA and so these 

sequences were removed. This was done using folding predictions from the Vienna 

2.0 RNA folding package (Lorenz et al., 2011). The free energy of the 

thermodynamic ensemble of the crgRNA was calculated with the toehold (ΔfGcT) 

and without (ΔfGc). The same values were calculated for the cognate asRNA; with 

toehold (ΔfGaT) and without (ΔfGa). If the free energy dropped upon the addition of 

the toehold, this indicates complementation either within the toehold or between 

the toehold and the rest of the transcript. These free energy values are combined in 

Equation 3.1 to form a toehold availability score for each toehold. 
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Out of the pool of 5,000 screened toehold sequences, the highest scoring 1% of 

toeholds for each cognate pair was selected to go on to the next stage. Therefore, 

each crgRNA/asRNA pair had a range of 50 candidate toeholds to be selected from.  

3.2.6 Stage 3: Pairwise Interaction Matrix 

To find a set of sequences which are mutually orthogonal it was necessary to score 

the pairwise interactions, both cognate and non-cognate, between the collective 

crgRNAs and asRNAs. As there are 50 candidate toeholds for each crgRNA/asRNA 

pair and 5 crgRNA/asRNA pairs a total of 250 toeholds will be included in the 

orthogonality optimisation. Scoring the pairwise interactions between all 250 

asRNAs and all 250 crgRNAs yields 62,500 interactions. These interactions were 

scored before selecting combinations of toeholds with the maximum overall 

orthogonality.  

The interaction score was based on interactions that might affect orthogonality. For 

example, orthogonality will be compromised if a non-cognate asRNA interacts with 

a crgRNA, displacing the cis-repressing element and allowing repression of the 

output gene.  As the occurrence frequency of this non-cognate interaction was 

crucial, the score was based on pairing probability rather than free energy. 

Specifically, pairing probability between the asRNA and the cis-repressing element 

is used.  

This scoring combines the pairing probabilities of each of the nucleotides in the cis-

repressing element with the asRNA in an inverse geometric mean (Equation 3.2) 

where 𝑎1, 𝑎2... are the partial pairing probabilities that each of the nucleotides of 

the cis-repressing element will complement with the asRNA. The score ranges from 

0, indicating a negligible degree of interaction to 1, indicating a substantial level of 

interaction. The inverse geometric mean is used, as this leads to an even smaller 

𝑇𝑜𝑒ℎ𝑜𝑙𝑑 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = ሺ−ΔfGc + ΔfGcTሻ + ሺ−ΔfGa +  ΔfGaTሻ   Equation 3.1 
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number of nucleotides having a high partial pairing probability with the asRNA 

resulting in large changes in the score.  

 

 

The pairwise interactions formed a matrix, with each of the crgRNAs along the x-axis 

and each of the asRNAs along the y-axis. The matrix was grouped into crgRNA 

variants with the same DNA target and spacer region but different toeholds (Figure 

3.8). The value in each cell of the matrix is an interaction score calculated by the 

method discussed here. 

  

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 1 − √ሺ1 − 𝑎1ሻሺ1 − 𝑎2ሻ … ሺ1 − 𝑎𝑛ሻ 
𝑛

 

 

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 1 − √ሺ1 − 𝑎1ሻሺ1 − 𝑎2ሻ … ሺ1 − 𝑎𝑛ሻ 
𝑛

 

 

Equation 3.2 
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Figure 3.8 Full interaction matrix above, simplified interaction matrix below. crgRNAs are 

presented across the x-axis, asRNAs along the y-axis. Gridlines have within them crgRNA/asRNA 

pairs targeting a single genetic locus but with varying toehold sequences. Pairs of crgRNA/asRNAs 

are coloured to represent which genetic locus they target, toeholds are represented in different 

shades.      
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Several approaches to scoring the pairwise interaction within the interaction matrix 

were explored. An initial look at just the partial pairing probability between the 

spacer binding module of the cis-repressing element and the associated region of 

the asRNA created a score which was only dependent on stable interactions. These 

are stable interactions, as complementation of the cis-repressing element would 

have to be almost entirely unfolded for the spacer binding module to be 

complementing the asRNA (Figure 3.9A). While this measure was good for 

describing stable interactions with a very high probability of affecting orthogonality, 

it would hide low level interactions which may also affect orthogonality. This can be 

seen in the strongly bimodal matrix histogram. Using a similar approach, but instead 

targeting the scaffold binding module of the cis-repressing element (Figure 3.9B) 

reveals greater details of the interactions. As described in Section 3.2.3, due to the 

cis-repressing element complementing part of the Cas9 binding scaffold, there is a 

sequence common to all crgRNAs which is complementary to all asRNAs, cognate 

and non-cognate. This universality makes this section likely to be involved in any 

non-cognate interactions and using this region reveals where interactions between 

toeholds propagate along the cis-repressing element hairpin. As can be seen from 

the matrix (Figure 3.9B) this measure exposes more non-cognate interactions. 

Looking only at toehold interactions (Figure 3.9C) was too sensitive a measure as it 

captures many of the interactions between exposed toeholds, which would not lead 

to propagation of the interaction into the cis-repressing element with less 

detrimental effect on orthogonality.  Taking into account these various issues, the 

measure that was finally chosen (Figure 3.9D) was a composite of these measures 

using the entire partial pairing probability between the cis-repressing element and 

the asRNA. This measure is dominated by interactions in the scaffold binding and 

spacer binding regions as they represent more of the sequence but also includes the 

interaction with the toehold. This interaction measure was used to generate the 

matrix used for optimisation. 
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Figure 3.9 Pairwise interaction matrices for a library of asRNAs and crgRNAs calculated 

using folding predictions based either on (A) the spacer binding module of the cis-

repressing element,(B) the scaffold binding module of the crgRNA's cis-repressing 

element, (C) the toehold or (D) all interactions between the cis-repressing element and 

the asRNA. Below each interaction matrix is a descriptive histogram with interaction 

score along the x-axis and score and frequency on the y-axis. 

C          D 

A         B 

High 
Interaction  

Low 
Interaction  
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3.2.7 Toehold set optimisation  

To obtain a full set of crgRNA/ asRNA pairs, one toehold has to be chosen for each 

of the five pairs (Figure 3.8). To calculate a combined orthogonality score for a set 

of crgRNA/asRNAs, the pairwise non-cognate interactions for a particular set of 

toeholds can be retrieved from the interaction matrix and summated. Trying all 

possible combinations of 5 toeholds, one from each set of 50 toeholds, for each of 

the cognate pairs, yields 3.1*108 different possible combinations. Calculating the 

orthogonality index for all of these combinations would not be feasible. Instead a 

two-stage approach was used: a random search (Figure 3.10), followed by a genetic 

machine learning optimisation. 
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Interaction  
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Figure 3.10 Simplified representation of random search optimisation. The interaction matrix 

above has three different crgRNA/asRNA pairs (within gridlines) each with 50 toeholds 

(between gridlines). The algorithm selects a random toehold from the matrix for each 

crgRNA/asRNA pair from the matrix. Creating a pool of different toehold selections below. The 

toehold selection with the lowest orthogonality index (the highlighted central one) represents 

the better toehold set for orthogonality.    
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In the random search stage (Figure 3.10), a million random combinations are 

assessed (Figure 3.11) and the top scoring 100 candidate combinations are passed 

into the second stage. These candidates go through 1 million iterations; each 

iteration includes selection of a random toehold set from the pool of 100 and 

‘mutated’ to change some of the toeholds in the set, for alternatives from the 

interaction matrix. The new, altered set is given a combined orthogonality score. If 

the new score is better than the lowest scoring set in the pool, that set was 

replaced with the new set. In the mutation function, the number of toehold 

changes that are made to yield a set of toeholds and the selection of toeholds to be 

changed are random. The probability distribution for the number of toehold 

substitutions in a set is Equation 3.3 where n is the number of mutations and p is 

the probability. This probability distribution means that while most ‘mutations’ only 

change one or two toeholds in the set, a small number of mutations will change a 

higher number of the toeholds allowing the system to escape from local minima. 

 

The search resulted in crgRNA/asRNA pairs with toeholds optimised for 

orthogonality. The 5 selected optimal crgRNA/asRNA pairs were synthesized and 

cloned for functional testing in vivo. The script developed here is available 

(Appendix 1: Toehold orthogonality script) and can be used to design new sets of 

crgRNA asRNA pairs for use with different DNA targets in the same cell, combined 

by the user into the desired genetic circuitry. 

3.2.8 Orthogonality index over time  

As the program iterates through the toehold optimisation, the orthogonality index 

of the toehold set decreases (a lower index indicates higher orthogonality). A 

randomly selected toehold set from the matrix gives an average orthogonality index 

of 39 (arbitrary units). As the random search and learning optimisation progresses, 

the orthogonality index drops to 24 with a standard deviation of 0.4 (Figure 3.11). 

𝑝 = 0.5𝑛 Equation 3.3 
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The low variation seen at the end of the process suggests that the algorithm has, in 

each case, yielded a toehold set with an orthogonality index very close to the 

optimal minimum. It is also notable that, of the 140 runs of this optimisation 

process, no two runs yielded the same set of toeholds, implying this is an 

optimisation problem with a large number of potential answers with comparable 

levels of orthogonality. As the algorithm progresses, the reduction in orthogonality 

index appears to follow an asymptotic curve approaching a theoretical minimum. 

This reflects the underlying biology in which orthogonality is dependent on a 

number of factors and while optimising the toehold sequence appears to lead to 

substantial increase in orthogonality, there is only so far it can go. The curve formed 

by plotting orthogonality index appears to be asymptotically approaching a 

theoretical limit for the orthogonality with increasing the number of iterations 

(Figure 3.11). This is to be expected from a biological perspective as it is only the 

toehold which is being optimised; there are still regions of each asRNA which 

complement every crgRNA and so there is a maximum degree of orthogonality 

which can be achieved with this approach.  
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Figure 3.11 Orthogonality index (AU) over iterations of optimisation.  The first million iterations 

are random search (in blue), the second million iterations are evolving toehold sets in orange. 

Error bars are standard deviation. n=140 different runs of the optimisation. 
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3.2.9 Result verification  

Next validation of the results obtained using the Vienna 2.0 folding package (Lorenz 

et al., 2011) was sought to verification of the change in orthogonality using another 

package. The software package (NUPACK) was therefore used to measure the 

interaction score for a random set of crgRNA asRNA toehold sequences. The 

interaction score obtained with NUPACK software (Zadeh et al., 2011) was 

compared to that obtained from the Vienna 2.0 folding package (Figure 3.12). The 

interaction score derived from the NUPACK software represents the incidence of 

the heteroduplex within the structural ensemble, taken as a logarithm of base 10. 

This is analogous to the pairing probability used to generate the Vienna 2.0 based 

interaction score. As seen from Figure 3.12A, there is a positive correlation between 

the Vienna 2.0 based score and the NUPACK based score with cognate RNAs 

exhibiting strong interactions on both scales and a positive correlation amongst 

non-cognate interactions between the predicted interaction score of one system 

and the other providing a validation.  

The same approach was repeated with a set of optimised toeholds (Figure 3.12B). 

Cognate RNA interactions still received high scores on both scales; however, within 

non-cognate interactions, lower levels of interaction are seen on both scales, 

denoting an increase in orthogonality within the set. As predicted, the reduction in 

non-cognate interactions was greater in terms of the scale that was used to 

optimise the toeholds (Vienna 2.0 suite), when compared to the NUPACK derived 

scale. It is notable that the positive correlation between scales seen in the random 

toehold set is mostly absent amongst non-cognate interactions within the 

optimised toehold set. This may be due to the fact that two million rounds of 

optimisation can lead to the selection of outliers, which are not necessarily the 

most accurate folding predictions. Therefore, the optimised toeholds no longer 

have a clear positive correlation between the indices derived from the two 

alternative folding prediction packages. This suggests that, even though it was 

possible to run more iterations of optimisation, any further decrease in the 
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orthogonality index would not necessarily be biologically relevant or correspond to 

a further increase in orthogonality. 
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Figure 3.12 The orthogonality index used for optimisation of a toehold set (x axis) is plotted 

against orthogonality index calculated with an alternative folding package (NUPACK) plotted on 

the Y axis. Each graph shows both cognate and non-cognate interactions as different data series. 

(A) The orthogonality scores resulting from a random set of toeholds showing a positive 

correlation between the two measures for orthogonality. (B) The orthogonality scores resulting 

from a set of toeholds optimised using the Vienna 2.0 suite. The positive correlation between the 

two indices within non-cognate interactions has broken down in B. non-cognate interactions, 

n=20; cognate interactions n = 6.   

A                 B 
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3.2.10 Testing universalizability of Lp crgRNA  

Having produced an in silico method for generating Lp versions which are functional 

homologues while exhibiting orthogonality from one another, the next step was to 

generate a set of homologues with different targets and test them. Of the five 

crgRNA asRNA pairs optimised for orthogonality, three were expressed with 

cognate and non-cognate interactions as a test for orthogonality. These repressed 

mCherry through targeting different sites in the coding region. The decision to 

target the same reporter gene in the orthogonality test was intended to avoid bias 

resulting from using multiple reporters. The remaining two optimised versions were 

used to target the Transcriptional Start Site (TSS) of two other fluorescent reporter 

genes (YFP and CFP) to be contrasted with the original Lp variant targeting the TSS 

of mCherry.  

All five new crgRNA/asRNA pairs were used as the input for the program to produce 

toeholds to maximise orthogonality between all of them.  It was only necessary to 

maximise orthogonality between the three, that were used to test orthogonality 

but applying the program to all 5 gave a more realistic understanding of the level of 

orthogonality that can be expected from 5 crgRNA, asRNA pairs operating in the 

same cell.  

3.2.11 In vivo Orthogonality  

Here is described in greater depth how new functional homologs of Lp were 

generated and optimised for orthogonality testing. New DNA targets for dCas9 

binding were selected and then the associated gRNA sequence is generated.  The 

cis-repressing element derived from the resulting gRNA sequence complements the 

spacer region as well as the Cas9 binding scaffold up to and including the first loop 

sequence. After the selection of target sequences for various Lp versions, all Lp 

versions that are intended for use in the same cell are optimised for orthogonality 

using software described in Sections 3.2.3-3.2.8 and included in Appendix 1: 

Toehold orthogonality script.  
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Figure 3.13B shows results normalised to a positive control, Figure 3.13C shows 

results renormalized to reveal level of orthogonality and level of crgRNA functional 

rescue by cognate asRNA. The level of repression by each of the three crgRNAs used 

in the orthogonality test show variation in the level of repression when each of the 

crgRNAs is expressed with its cognate asRNA (88% to 74% repression) (Figure 

3.13B). Control gRNAs with the same target but without the cis-repressing element 

for each crgRNA show variation in repression which correlates with the variation in 

crgRNA +asRNA repression (Figure 3.13B). To control for this variation resulting 

from underlying gRNA properties, the level of fluorescence was re-normalised so 

the gRNA repressed strains are 0 for their respective crgRNAs, to demonstrate the 

level of orthogonality, variation in the level of repression of each of the crgRNAs 

(Figure 3.13B, -asRNA) is masked by re-normalising, the crgRNA -asRNA level of 

fluorescence to 1 for each crgRNA (Figure 3.13C). After controlling for variation in 

the underlying gRNA no statistically significant differences were found between the 

repression levels of the crgRNAs expressed with cognate asRNA. When variation in 

crgRNA –asRNA is masked a degree of non-cognate cross reactivity is seen varies 

depending on the asRNA and on the crgRNA (0% to 20% with an average of 11% 

repression) this contrasts with the average 89% repression resulting from 

interaction with a cognate asRNA.  
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Figure 3.13 Please see figure legend on next page.  
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Figure 3.13 (B) data normalised to system expressing fluorescent proteins and dCas9 but no 

crgRNA (value of 1) and cultures expressing dCas9 but no fluorescent proteins (value of 0).  (A,C) 

Data normalised to system expressing dCas9 and flourescant proteins and either +crgRNA -asRNA 

for a value of 1 or the corresponding gRNA for a value of 0. (A) Assessing orthogonality of crgRNA 

system variants. The crgRNA-asRNA pairs have unique spacer sequences targeting three different 

sites in the mCherry gene. Each crgRNA is expressed with each asRNA. the gRNA only version of 

each crgRNA are included as controls. There is an average non-cognate repression of 11% (1.1 fold) 

contrasting with an average 89% (9.3 fold) repression for cognate interactions. Error bars are SEM, 

n = 24. Full data processing methods found in section 5.3.1.   
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3.2.12 Multiple crgRNA targets  

The next step was to apply the system to three different genes; two additional Lp 

versions were generated targeting two additional fluorescent reporter genes (YFP, 

and CFP) to be combined with the original Lp targeting the mCherry gene. The 

sequence of the Lp crgRNA was changed to be target specific to each of these 

promoters. First the nearest PAM to the TSS of the target promoter was selected; 

the 20 bases of the spacer region in the crgRNA were modified to complement the 

sequence adjacent to the PAM to allow the crgRNA, asRNA, dCas9 complex to bind 

to the new target promoter. The cis-repressing element in the Lp variant 

complements the spacer region as well as part of the dCas9 binding scaffold, 

therefore the part of the cis-repressing element which complements the spacer also 

was changed to maintain complementarity with the spacer region. The dCas9 

binding scaffold and corresponding segment of the cis-repressing element were 

kept constant. A sequence which did change was the toehold; this is where complex 

formation between the asRNA and the crgRNA initiates and therefore has 

consequences for orthogonality between non cognate asRNA, crgRNA pairs. The 

algorithm described in Sections 3.2.3-3.2.9 optimised each toehold sequence to 

prevent non-cognate interactions leading to an in silico increase in orthogonality. 

This orthogonality was demonstrated in vivo (Figure 3.13B).  

Due to the promoter used, the Cyan Fluorescent Protein (CFP) is expressed at a low 

level; therefore, even though the normalisation allows it to be compared directly 

with the other two fluorescent proteins, the low level of expression means that 

intrinsic errors in measurement are larger (Figure 3.14). The three gRNAs, one 

targeted to each promoter TSS did not show statistically significant variation in level 

of repression (though crgRNA repressed CFP, has high error bars). Similarly, the 

level of repression in the three crgRNA +asRNA for each target fluorescent protein 

were not significantly different from one another (86% average repression). All 

three crgRNAs showed a small amount of repression for their target gene in the -

asRNA state (19% average repression) (Figure 3.14).  
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Figure 3.14 Three different crgRNAs are used to repress three different fluorescent reporter genes. 

gRNAs are crgRNA indicated by the colour but with the cis-repressing element removed. In each 

case ‘+asRNA’ or ‘-asRNA’ refers to the cognate asRNA to that crgRNA. Error bars are SEM, n = 24. 

Full data processing methods found in section 5.3.1.    
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3.2.13 Control Experiments  

A number of control experiments were carried out to rule out non-specific effects 

on the cells from expression of components of the crgRNA asRNA system. Growth 

curves for strains for various conditions (with only crgRNA, with only asRNA alone, 

with both crgRNA and asRNA, and without crgRNA or asRNA) were measured 

(Figure 3.15A).  There were no significant differences in the optical densities 

between different strains over 24-hs of growth. Therefore, there is no evidence that 

the expression of the crgRNA, the asRNA and the complex they form are toxic to the 

cell or impede growth when contrasted to an equivalent strain expressing neither 

the asRNA nor crgRNA.  

The repression that results from expressing the system is dCas9 dependent, rather 

than being dependent on direct RNA-RNA interactions between the system and the 

mRNA of the target gene. This is demonstrated in Figure 3.15B where the system is 

expressed with or without dCas9. Repression is seen only when dCas9 is expressed.  
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Figure 3.15  dCas9 dependency in the crgRNA asRNA system.  (A) Growth curve of strains with 

different combinations of asRNA and crgRNA. There is no significant difference between the 

optical densities at the 24hr mark. Error bars rendered as translucent envelopes represent 

standard deviation from data set, n =24.  (B) dCas9 dependency of crgRNA system. mCherry 

expression is only repressed by the crgRNA system when expressed with dCas9. Fluorescence is 

normalised to mCherry expressing control, error bars are SEM, n=24. Full data processing methods 

found in section 5.3.2.   
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3.3 Discussion 

In this chapter is presented a framework for generating functionally complete 

NAND gates. The system designed here has a small genetic footprint and causes a 

low metabolic burden per additional gate while expressing a high degree of 

orthogonality. While there are a number of avenues that could be explored to 

further improve the system, this work forms a strong basis for further exploring and 

exploiting the potential crgRNA asRNA system for Boolean logic circuits in biological 

control systems.   

3.3.1 No recruitment of dCas9 by asRNA  

One of the concerns about extending the cis-repressing element into the Cas9 

binding scaffold is that the corresponding asRNA which complements the entire cis-

repressing element is therefore a complement for the sequence that complements 

the Cas9 binding scaffold. Thus, the extension of the cis-repressing element results 

in an asRNA with Cas9 binding scaffold sequence.  However, complex formation 

between the gRNA and the dCas9 protein are dependent on structure more than 

sequence and in most cases mutations which change the sequence but not the 

structure of the gRNA do not affect its ability to recruit Cas9. Therefore, the fact 

that the longest asRNA only includes the 5’ side of the first hairpin indicates that, 

while the asRNA contains Cas9 binding scaffold sequence, it does not exhibit the 

same folding or structure and, duly does not form a functional complex with dCas9. 

This fact is supported by the lack of transcriptional repression when the asRNA 

alone is expressed along with dCas9, confirming  the finding by others that the 

length of Cas9 binding scaffold sequence in asRNA is less than the minimum 

sequence required for dCas9 functionality (Briner et al., 2014). 

3.3.2 Cis-repressing element mechanism of inactivation.  

The evidence presented in this chapter indicates that the addition of the Lp cis-

repressing element to the gRNA transcript leads to a reduction in the level of dCas9 

dependent repression. Similarly, the addition of the Lp asRNA to complement the 

cis-repressing element leads to a rescue in the level of repression of the system. 
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However, what is not clear from the evidence is how the cis-repressing element 

causes this change in repression. There are a number of steps in the formation of 

the final DNA-dCas9-RNA complex: at each of these steps the cis-repressing element 

may be interfering with the progression of complex formation. How complex 

formation between a gRNA and the dCas9 initiates, and which part of the gRNA 

forms the initial recognition interaction with the dCas9 is yet to be determined. 

Additionally, it is unclear how the gRNA transitions into complex formation with the 

Cas9, though there are detailed studies on the substantial conformational changes 

which occur within the protein during this process (M. Jinek et al., 2014).  At either 

of these steps, the cis-repressing element may be interfering with complex 

formation. Similarly, the cis-repressing element may be interfering with complex 

formation between the ribo-protein complex and the target DNA. 

The Sp variant exhibits cis-repression despite not complementing the Cas9 binding 

scaffold. It is possible that in the Sp variant the crgRNA complexes with the dCas9 

and the hairpin sits in the same major cleft as the spacer region lies and prevents 

complex formation between the ribo-protein complex and the DNA. How this 

mechanism might change, when the cis-repressing element is extended in to the 

Lower Stem, Bulge and Upper Stem is unclear. Particularly when the extension into 

the bulge and upper stem sequence stabilizes spacer complementation and 

potentially interferes with ribo-protein complex formation, the level of cis-

repression is reduced. This contrasts with the Lp variant where the level of cis-

repression is significantly increased. The exact mechanism of the system 

functionality is not clear and requires further investigation. 

3.3.3 Orthogonality Algorithm  

In this chapter is presented a new algorithm for optimization of the system in terms 

of orthogonality.  This algorithm nevertheless has many ways in which it may be 

improved. The interaction matrix, which was generated exhaustively, looks at the 

pairwise interactions of 50 toeholds from each Lp functional homologue (with 

different DNA targets) to be included in the same system. This means the number of 
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pairwise interactions which need to be scored, where n is the number of asRNA 

crgRNAs pairs in a system, is given by Equation 3.4. Since the amount of 

computational time required for this calculation rises as the square of the number 

of crgRNA asRNA pairs being assessed, having a large number of crgRNA asRNA 

pairs optimized for orthogonality in this manner becomes unfeasible. 

 

The levels of cross reactivity that a particular toehold has with one alternative 

toehold correlates with the score it will receive from others. It would be possible to 

increase the efficiency of the algorithm by removing toeholds with above-average 

cross-reactivity before completing the full pairwise interaction matrix.  

One potential alternative approach would be to generate many more candidate 

toeholds for each crgRNA-asRNA pair and use a neural learning approach in which 

the neural network could pick a set of toeholds, one for each crgRNA pair. The 

toehold set would be scored and iteratively the neural network would learn which 

toeholds are more likely to produce lower scores. Building such a system would 

reduce the computational barriers for generating large numbers of orthogonal 

crgRNA-asRNA pairs to run in the same cell. 

3.3.4 Observed orthogonality in vivo 

When characterising different versions of this system there are multiple attributes a 

system has at which variation may occur. One variable which changes the level of 

repression is the DNA target which is chosen: a target closer to the transcription 

start site may have a higher level of repression than a DNA target which is in the 

coding region. Additionally, there is variation in the underlying gRNA which may 

have a high or low affinity with its DNA target depending on amongst other things 

the GC content of the seed region (Vigouroux et al., 2018). Finally, there are the two 

relevant factors in identifying the properties of the Lp version. Firstly, the cis-

repressing element’s ability to inactivate the rest of the transcript may vary due to 

Equation 3.4:   𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒔 =  𝟓𝟎𝒏𝟐 
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changes in the spacer and the toe-hold sequence. Secondly, can changes in the 

toehold and spacer sequences lead to changes in the ability of the asRNA to 

complex with the crgRNA rescuing repression activity. Identifying these two factors 

is important in understanding how the system is working and controlling for 

variation in these two factors is necessary for identifying orthogonality levels or the 

change in repression by a crgRNA resulting from the co-expression of a non-cognate 

asRNA.  

An examination of the level of repression by the three crgRNAs and control gRNAs 

used in the orthogonality test show variation in the underlying level of repression 

from the gRNA; the same pattern is seen when each of the crgRNAs is expressed 

with its cognate asRNA. There was also variation in the level of repression of each of 

the crgRNAs (Figure 3.13B). When variation in these two factors was controlled for, 

the level of orthogonality was found to average 11% reporter repression from a 

crgRNA with non-cognate asRNA. This is a low level of cross-reactivity considering a 

large part of the asRNA transcript is uniform between sequences, it is also sufficient 

orthogonality for most biological applications.  

3.3.5 Application of system to multiple genes  

There are several issues raised in the Section 3.3.4 with variation in the level of 

repression by crgRNA systems due variation in repression by the underlying gRNA 

either due to DNA target or gRNA affinity. This is not found when the system is 

targeted to the TSS as is done as in section 3.3.5 (Figure 3.14) where no statistically 

significant difference in level of crgRNA repression was observed. When the system 

is used by a practitioner targeting repression of genes, the system should be 

targeted to the TSS. 
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Chapter 4: Discussion  

4.1 Summary  

The aim of this work was to generate a biological NAND gate for use in the cellular 

environment with a large potential library size, near-binary output, low metabolic 

burden and orthogonality. The approach taken has been to engineer gRNAs 

(crgRNAs) to require an asRNA for dCas9-mediated repression of an output 

promoter. The greatest challenges faced in this work have been (1) reducing the 

level of repression of the output when it is in an ON state, (2) increasing the level of 

repression of the output when it is in an OFF state and (3) maximising orthogonality 

between non-cognate RNAs.  

The first positive results, with the K variant, produced an asRNA-dependent 1.86-

fold change but highlighted the need to reduce the level of repression when the 

output is in the ON state, as expression of the crgRNA without the asRNA (which 

should give a high output) still resulted in 74% repression. Both of the main 

components in CRISPRi repression, the crgRNA and dCas9, were transcribed by 

inducible promoters, allowing their expression to be tuned to the optimal level by 

varying the level of inducer. For the K variant, the optimal level of induction was 0 

pg/mL aTc (for dCas9 expression) and 50 µM IPTG (for crgRNA expression). Leaky 

expression of dCas9 from the uninduced promoter therefore provided sufficient 

repression. By extrapolating the induction curve for dCas9 to lower expression 

levels than were possible with this experimental setup, greater fold changes were 

predicted.  Hence, lower expression dCas9 plasmids were investigated (see Section 

4.2.2). 

Meanwhile, alternative designs were tested that used 3’ cis-repressing elements 

(the W and Y variants), rather than the 5’ cis-repressing element used for the K 

variant. Although induction levels were optimised for the W and Y variants, the K 

variant still proved to have the highest fold change of the synthesized variants.  
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Subsequently, a time series experiment demonstrated that the system’s 

performance was dependent on growth phase, with lower levels of repression 

observed during exponential phase when contrasted to stationary phase. This might 

be explained by DNA replication-induced dissociation of dCas9 from the target DNA, 

as well as dilution of dCas9 during cell division, which occurs at a higher rate during 

exponential phase. As such, the optimum level of induction of dCas9 was higher in 

exponential phase than when measuring at stationary phase.  

The addition of a transcriptional attenuator to the dCas9 expression plasmid 

(pdCas9-T) allowed the characterisation of the K variant at lower levels of dCas9 

expression, increasing the fold change to 4-fold, surpassing the previous maximum 

of 3-fold.  

To further reduce the level of repression resulting from the crgRNA, a new 

generation of variants were created in which the complementarity of the cis-

repressing element was extended into the dCas9 binding scaffold of the transcript 

to varying degrees. Of this new generation, the Sp variant displayed the least 

repression when expressed without the asRNA (ON state) and the greatest 

repression when expressed with it (OFF state).  The cis-repressing element of the Sp 

variant complements the spacer, lower stem, bulge, upper stem and loop 

sequences as contrasts with the K variant, where the cis-repressing element only 

complements the spacer.  

Next, orthogonal versions of the Sp variant were created. However, the sequence 

constraints imposed by the Sp variant complicates the design of orthogonal versions 

as the sequence of sections of the cis-repressing element (and therefore asRNA) is 

defined by the sequence of the dCas9 binding scaffold which is complemented. As 

such, an in silico approach was taken to maximise the orthogonality of the toeholds 

used.  This was done with a pair-wise interaction prediction and the optimisation 

was conducted using a two-step approach involving a Monte Carlo optimisation 

followed by a genetic machine learning optimisation.  This approach was used to 
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optimise five crgRNA/asRNA pairs. Three were tested for orthogonality through 

exhaustive pairwise in vivo interaction testing. Despite the high sequence identity 

between the different crgRNA/asRNA pairs, only a 17% average crosstalk was 

recorded. In addition, versions of the Lp variant were used to regulate three 

different fluorescent reporter proteins. The levels of repression exhibited by each of 

the versions showed no statistically significant differences, demonstrating the 

ability to generate a library of functionally uniform versions. 

In this thesis a new biological NAND gate is presented. This NAND gate compares 

favourably with other attempts to make guide RNA functionality dependent on two 

inputs when evaluated in terms of how close to binary the output is (discussed in 

Section 4.2.1). The gate requires low level background expression of dCas9, but 

since the gate is dependent on the interaction of two small RNA transcripts each 

additional gate only requires a genetic footprint of 304 bp per gate of which only 

196 are the actual RNA sequences. The metabolic load produced by the gate was 

negligible. The protocol presented here for generating this NAND gate exploits the 

predictable nature of RNA folding and interaction allowing the creation of an almost 

arbitrarily large library size.  

4.2 Future work  

4.2.1 Logic circuit layering  

The ultimate ambition of this line of work would be a biological computer based on 

Logic implemented at the molecular level. Though there are many applications 

which may successfully exploit progressions in biological logic and computing before 

this lofty goal is achieved. One of the first steps from logic gate to biological 

computer is to produce a system which is able to conduct complex logical 

operations by layering gates into more sophisticated logic circuits as has been 

attempted with a number of other logic gates (Rosado, Cordero, & Rodrigo, 2018; 

Wong, Wang, Poh, & Kitney, 2015). The logic gate described here exhibits some 

attributes beneficial to layering as well as some which may be detrimental. First, the 

input of this gate, polymerase flux or transcription of the two input RNAs is the 
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same as the output from the gate, polymerase flux or transcription from the output 

promoter which makes it well suited for layering. The ultimate ambition of this line 

of work is to generate a biological computer, based on logic implemented at the 

molecular level.  

A potential difficulty with applying layering to this transcription-based system 

however, is the propensity for signal drift; as described in section 1.2.2, the voltage 

transfer characteristic is used to characterise electronic logic gates, and is a useful 

concept when considering biological logic gates (in this system voltage is analogous 

to rate of transcription or expression level).  In the gate presented here, as in the 

case of other biological and electronic logic gates, there are indications that logic 

gate layering may lead to a degree of ‘signal drift’. Signal drift occurs when the 

binary nature of a signal degrades as it passes through layers of the system. For 

example in a set of inverters connected in series with a binary 1 or 0 input, if the 

input to the first inverter is 1, but the output is repressed to 0.1 rather than 0. Then 

this low-level input to the next inverter may result in an output of 0.8 (rather than 

1.0), which may then produce an output of 0.3 rather than 0, after the next inverter, 

and so on. The signal quality is therefore degraded at each successive logical layer. 

This behaviour can limit the number of logical layers that may be used.  

The NAND gate described here has high and low outputs which neither reach 1 nor 

0 (19% and 91% repression respectively).  The optimisation of component 

expression levels detailed in (sections 2.2.8, 2.2.11, 3.2.2) have shown that 

repression efficiency is dose-dependent on the level of crgRNA expression. In a 

layered system crgRNA would be both the output of one gate and the input to the 

next gate, and so it can be anticipated that signal drift would occur. 

The issue of signal drift has already been faced and addressed in computer 

architecture at the electronics level; in order to deal with signal drift and 

asynchrony (signal timing), logic circuits in modern computers output to a ‘flip-flop’ 

(Figure 4.1).  The flip-flop is based on a positive feedback loop, that pushes non-
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binary values to the closest binary value, e.g. 0.3 becomes 0, and 0.7 becomes 1 

(Tanenbaum & Goodman, 2005). The simplest flip-flop, the ‘SR NAND flip-flop’, can 

be constructed using two connected NAND gates (Figure 4.1A), while the flip-flop 

which is most commonly used to store values in a computer is the ‘gated D flip-flop’ 

(Figure 4.1 B). Notably both the implementations displayed in Figure 4.1 are entirely 

composed of NAND gates (the type of logic gate presented in this thesis). Whether 

the crgRNA asRNA-mediated logic gate could be used to form a flip-flop or not 

would depend on whether the logic gate exhibited cooperativity. Even if it were 

found not to be possible to utilise asRNA and crgRNA to form flip-flops, there are 

other candidate flip-flop and toggle switch mechanisms which may be used to 

combat signal drift in a biological system, and extend the degree of layering possible 

(Atkinson, Savageau, Myers, & Ninfa, 2003; Bothfeld, Kapov, & Tyo, 2017; Gardner, 

Cantor, & Collins, 2000). 
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Figure 4.1 Flip-flops can be used to store data and rescue signal degradation. (A) The SR flip- flop 

is the simplest flip- flop, the S input is used to set the value stored, and the R input resets the 

flip-f flop. The output Q maintains the signal input from S until reset. Q’ will always have the 

opposite value to Q. (B) The gated D flip-flop is commonly used to store values in a computer (S-

RAM). Input D is the ‘data’ input and sets the value that the flip- flop holds.  The clock input is 

used to keep the system in synchrony.  



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Discussion  138 

4.2.2 Reduced background repression  

When the inactive crgRNA is expressed without the asRNA there is still a low level 

(19%) dCas9 dependent repression of the output gene (basal repression). RNA exists 

within a structural ensemble in which the RNA may pass briefly through 

energetically unstable structures. Complex formation between the gRNA and dCas9 

is attended by large conformational changes in the dCas9 protein, and represents a 

large ΔΔG making the reaction principally one directional as the dissociation 

constant is very low.  The levels of repression observed indicate the crgRNA exists in 

a structural ensemble in which some of the more rare structures are able to 

complex with dCas9. This complex formation has a low dissociation constant and so 

leads to a significant level of repression. One way to reduce this effect would be to 

express a nonsense gRNA in stoichiometric excess of the dCas9, thus reducing the 

probability of dCas9 complexing with transient crgRNA structures. However, with 

this approach the nonsense gRNA could also compete with the crgRNA asRNA 

complex for the unbound dCas9 pool, requiring a slightly higher level of expression 

of dCas9 to reach the same level of active state crgRNA repression. Also the 

reduced background repression may allow the use of a higher level of dCas9 

expression to be used resulting in greater crgRNA +asRNA repression. Hence, the 

constitutive expression of a nonsense gRNA may improve fold change in crgRNA-

mediated repression of the target gene by simultaneously reducing basal repression 

in the absence of asRNA and increasing maximal repression in the presence of 

asRNA. 

4.2.3 Potential network size  

When considering how many gates may be included in the single cell there was 

negligible metabolic load from a single gate and there are 275 predicted sRNA 

systems alone in E. coli (Rivas, Klein, Jones, & Eddy, 2001). If an investigator is 

prepared to impose a metabolic burden on cells it may be possible to add more 

than 275 gates to a cell. For more context, when understanding the value of a 
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number of logic gates, the guidance computer of the spacecraft Apollo was 

composed of only 4,100 logic gates (O’Brien, 2010). 

How many gates may be expressed while maintaining orthogonality is a different 

question. In this thesis, the level of orthogonality expected for a library of 5 logic 

gates is ascertained using measurements from a subset of three of the five gates.  

The level of orthogonality seen is achieved by optimising from a base of 50 screened 

candidate toeholds per gate. Using a different optimisation approach, possibly 

heuristics or machine learning, it may be possible to optimise from a larger pool of 

screened candidate toeholds per gate and generate sets of gates with  many more 

members and a lower orthogonality index (more orthogonal). 

4.2.4 Future work: autoregulation   

The evidence presented here demonstrates the variation in dCas9 level induction 

that is necessary for optimal performance in different growth phases; a low level of 

expression in the stationary phase and a high level of expression in the exponential 

phase, with an apparent gradient required as the cultures transition from the 

exponential phase into the stationary phase.  This provides an interesting problem; 

how to produce a system which performs at close-to-optimal levels, irrespective of 

the growth phase. To address this challenge there are several designs that could be 

explored in future work. One way of introducing a negative feedback loop to 

smooth the variation in levels of repression seen between growth phases, would be 

to make dCas9 expression auto-regulated. If dCas9 is used to repress the expression 

of dCas9 then this creates a negative feedback loop for the repression level created 

by dCas9. The level of repression could be tuned through the introduction of 

mismatches into the seed and non-seed regions of the spacer (Vigouroux et al., 

2018). Such a mechanism, if placed on the genome, may produce a noisy output 

due to a single copy having a binary level of expression; dCas9 is either bound or 

unbound. But placed on a plasmid there are many copies and output becomes 

dependent on the percentage of plasmids which have the dCas9 bound. Combined 

with the dynamical error introduced by the slow degradation rate of previously 
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expressed dCas9, this would have a smoothing effect. Such a mechanism to produce 

a cellular circuit with performance closer to the optimum, irrespective of growth 

phase, holds the promise of increasing the utility of such a system.  

4.3 Contrast with other systems 

4.3.1 Contrast with a gRNA antisense system  

In the mechanism put forth in this thesis, an element designed to repress the gRNA 

is included in the gRNA transcript and an asRNA sequesters this cis-repressing 

element to rescue gRNA function.  The closest comparable work explores direct 

sequestration and degradation of a gRNA by an asRNA (Lee et al., 2016). Lee et al., 

(2016) used three rounds of improvement, initially the asRNA complemented the 

spacer region of the gRNA (Figure 4.2). As well as inhibiting transcriptional 

repression by the dCas9 and the gRNA, an Hfq binding scaffold was included in the 

asRNA transcript. Hfq stabilises the asRNA and promotes interactions with other 

RNAs as well as recruiting RNase-E to degrade the two RNAs (Morita & Aiba, 2011). 

This initial method of sequestration and degradation led to a derepression of 15% 

which rose to 43%, 55% and finally 95% through the extension of the 

complementary spacer, exchange of the MicF Hfq scaffold for Spot42 and finally 

swapping the location of the system from the 5’end of the gRNA transcript into an 

extended linker in the 3’ end of the gRNA transcript.  This allowed the investigators 

to further decrease the ΔΔG of asRNA binding. 

Whereas the mechanism presented in this work is dependent on two interactions 

and therefore has two, sometimes competing, objectives; the Lee et al. (2016) 

mechanism is based on one interaction and has one objective.  In the mechanism 

put forth by Lee et al (2016), the asRNA sequesters and degrades the gRNA 

producing as high a derepression percentage as possible.  The two interactions in 

the work presented here are firstly the interaction between the cis-repressing 

element and the crgRNA, and secondly the interaction between the asRNA and the 

cis-repressing element.  The first interaction, equivalent to derepression, ensures an 

output value as close as possible to 1 when the output is ON.  The second 
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interaction, equivalent to de-derepression (rescuing repression activity), ensures an 

output value as close as possible to 0 when the output is OFF.  This second 

interaction means that avenues for optimising the first one, do not include 

degradation of the crgRNA, an avenue open to and exploited by Lee et al. (2016) 

through the use of Hfq. However, the mechanism adopted in this thesis does allow 

the repressing element to be included in the gRNA transcript (making a crgRNA), an 

avenue not open to Lee et al. (2016). Inclusion in the same transcript means the cis-

repressing element is in proximity with the target region within the gRNA during 

folding of the nascent RNA transcript, thus increasing the rate of initial interactions 

and stabilising the resulting structure. 

To achieve an optimal performance for this system, the level of expression of dCas9 

had to be reduced to below the saturation level. Similarly, to achieve the greatest 

percentage de-repression, Lee et al. (2016) reduced the level of dCas9 induction to 

200 pg/mL aTc (from an initial 10 ng/mL aTc), although the rationale given was to 

reduce toxicity.  While the Lee et al. (2016) mechanism expresses dCas9 from the 

same plasmid as used here, both the gRNA and antisense RNAs are expressed from 

a plasmid with the high copy ColE1 origin by Lee et al. (2016) rather than the 

medium copy pMB1 used in this work (the same gRNA promoter was used). This is 

one possible reason for the difference in optimal dCas9 expression levels between 

the two systems, together with the different requirements of the two mechanisms 

and the use of different strains.  

Both mechanisms have two input RNAs which combine in a logical operation to 

yield a repressed or non-repressed output (analogous to OFF/ON or 0/1) and as 

such, both can be represented as logic gates. The crgRNA system equates to a 

NAND gate, as the output is only repressed when both input RNAs are expressed (or 

ON) Figure 4.2). The Lee et al. (2016) antisense/gRNA system on the other hand 

equates to an IMPLY gate as the output is only repressed when the gRNA input is 

ON and the asRNA input is OFF. The NAND gate is a functionally complete logic gate, 

meaning any logical operation can be generated through combination of NAND 
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gates.  The NAND gate is a symmetric gate, commonly used in computer processor 

design (Tanenbaum & Goodman, 2005). The IMPLY gate however is asymmetric and 

appears rarely in computational design. Lee et al. have therefore presented their 

mechanism in terms of gene regulation more generally, rather than emphasising 

use as a logic gate. 
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Figure 4.2 Truth tables of the crgRNA system NAND Gate and the antisense gRNA IMPLY gate with 

mechanistic schematics. 
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4.3.2 Contrast with riboswitched gRNAs: study I 

Many approaches to generating biological logic gates have been published, and 

similarly a great number of engineering approaches explored for transcriptional 

regulation using the dCas9 system (Lee & Moon, 2018).  Here, the advantages of 

dCas9 transcriptional regulation are applied to the requirements of a logic platform. 

Basic dCas9 repression requires two main components; the dCas9 protein and the 

gRNA.  Both of these components have the potential to be engineered.  The protein 

element can be engineered in a similar manner to other protein transcription 

factors such as TetR through fusing of additional functional domains to the protein 

(Peres-Pinera et al., 2013; Roybal et al., 2016). The gRNA offers the opportunity to 

use the predictable nature of RNA folding to engineer transcriptional repression in a 

way that is novel amongst other transcriptional regulation systems. One of the main 

ways this opportunity has been exploited has been through the inclusion of 

aptamers in the gRNA transcript (Tang, Hu, & Liu, 2017). These have been used to 

recruit proteins in a gRNA specific manner to the gRNA target binding site. 

Aptamers have also been used to make gRNA functionality ligand-dependent (Liu et 

al., 2016). 

The main challenge encountered in this work has been to use the predictable 

nature of RNA folding, to develop a sequence which can be included in a gRNA 

transcript which will effectively inactivate/abrogate gRNA activity in a reversible 

manner.  This is a similar challenge to that faced by those who wish to make gRNA 

functionality dependent on a ligand, through the inclusion of riboswitches and 

aptazymes.  It is therefore instructive to compare and contrast the approaches 

taken in papers producing ligand-dependent gRNAs to the approaches taken in this 

chapter.  

Tang, et al (2017) included, in two different instances, either the theophylline 

aptazyme or the guanine aptazyme in the gRNA transcript in combination with a 

“blocking sequence”.  This blocking sequence complemented part of the gRNA 

sequence to abrogate activity. Tang, et al (2017) explored a number of approaches 
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including complementation of the spacer region, separating the gRNA into the 

crRNA and tracrRNA, and using the blocking sequence to aggregate 

complementation between the crRNA and tracrRNA to create a functional unit. 

Tang, et al (2017) found that the most effective of the three approaches was using 

the blocking sequence to complement the spacer region, the same approach 

pursued in the mechanism presented in this thesis. Tang, et al (2017) also found 

that the greatest repression of gRNA activity was achieved with the longest 

complementation within the blocking sequence that they tried (a similar correlation 

to that found in the library tested here; section 3.2.2).  The 17nt maximum blocking 

sequence used by Tang, et al (2017) contrasts with the 20nt cis-repressing element 

used in the K design variant. The mechanism presented here displaces the cis-

repressing element from the gRNA, rather than relying on post cleavage duplex 

melting and disassociation.  As a result, the inclusion of bulges in the blocking 

sequence lead to an increase in ON state activity.  

Tang, et al (2017) explored the use of a theophylline aptazyme gRNA for 

theophylline-dependent cleavage of DNA using Cas9, and also explored the use of a 

guanine-dependent aptazyme for guanine-dependent activation of a promoter 

through the use of dCas9 fused to a transcriptional activator. Direct comparisons 

between the ON and OFF states achieved by Liu et al and those presented in this 

thesis are challenging. Tang, et al (2017) used a mammalian system, whereas the 

system presented in this chapter was characterised in a bacterial system (E. coli).  

The most immediately comparable of the two approaches taken by Tang, et al 

(2017) would appear to be the guanine-based system as it is used to regulate 

transcription, although the lack of a positive control using a wild type gRNA means 

the induction can only be presented in terms of fold increase from the negative 

control.  This makes it impossible to assess what percentage activity of the guanine 

ribosyme-gRNA is rescued by the addition of guanine. Theophylline, on the other 

hand, has both controls, although it is measuring DNA cleavage catalyzed by Cas9 in 

a mammalian system, rather than transcriptional repression.   The theophylline-
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ribozyme-gRNA exhibits a background cleavage rate of 23% in the absence of 

theophylline, and 58% cleavage rate at 2 mM theophylline. This compares 

favourably with the +asRNA 91% repression and –asRNA 19% repression presented 

in Chapter 3:. 

4.3.3 Contrast with riboswitched gRNAs: study II 

Liu et al., 2016 generated a series of gRNA containing aptamers to make the gRNA 

functionality dependent on interactions between the aptamer and the aptamer 

ligand.  In this paper, they demonstrated the applicability of their method to both 

small molecule-dependent riboswitches and protein-dependent riboswitches.  This 

additional functional module was inserted in the 3’ end of the gRNA transcript. An 

antisense sequence with engineered, ligand-dependent nucleotide availability from 

the 3’ module was complemented within the 5’ spacer region.  In seeking to achieve 

bistability so as to maximise the dynamic range achievable through the addition of 

the riboswitch ligand, a number of different antisense lengths were explored.  

Irrespective of the ΔΔG of ligand binding, they found an antisense of 15 bases 

maximised ligand-dependent change in repression or activation.  If the antisense 

region had a length of 18 bases, the stable interactions lead the gRNA to have 

reduced activity with low dependence on ligand concentration.  Conversely, when 

the antisense region was 11 bases the gRNA retained its activity also with a low 

dependence on ligand concentration. The percentage repression efficiencies of 

gRNAs into which Liu et al had engineered with 15 nt antisense showed relatively 

little variation in repression efficiency when the cognate aptamer ligand was absent 

(1~2%). When the ligand was added to the system the level of repression ranged 

between variants within the library from 34% to 77%.  This compares with the 

+asRNA 91% repression and –asRNA 19% repression presented in this thesis.  The 

authors comment on this variability, including in the method that several variants 

must be generated and the optimal variant selected. 

While the authors do discuss the substitution of the two 3’ hairpins in the gRNA for 

other aptamers, they don't discuss the design decision to include the riboswitch 
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module in the 3’ terminus of the transcript or whether any designs including the 

module in the 5’ of the gRNA were explored in preliminary work. The decision to 

place a riboswitch functional module in the 3’ terminus of the gRNA transcript leads 

to a structure in which complementation between the antisense and spacer regions 

has a substantial cost to entropy. To maintain a ΔG which would render this a stable 

structure in the absence of the ligand, requires a higher enthalpy of the interaction 

between the antisense and spacer regions of the gRNA. Other than changing the GC 

percentage, this can be achieved by increasing the number of complementary 

nucleotides.  Hence, by locating the riboswitch module in the 3’ terminus rather 

than 5’ terminus of the gRNA transcript, a larger number of complementary 

nucleotides are required to maintain the same ΔG.  This is important both for 

maintaining stability and for switching upon the addition of the ligand. The 

increased number of complementary nucleotides for this design schema potentially 

offers greater interference with complex formation between the gRNA, dCas9, and 

the target DNA in the absence of the riboswitch ligand. In contrast, this approach is 

not advantageous for the mechanism presented in this thesis as the area that 

requires greatest optimisation is the full inactivation of the gRNA.  Reduced entropy 

effects for the inactivated state of the gRNA of having the cis-repressing element in 

the 5’ terminus rather than the 3’ terminus provide an advantage for inactivating 

the gRNA. Consequently, whilst fusing the cis-repressing module to the 3’ terminus 

is advantageous for Liu et al. conversely, fusing the cis-repressing element to the 5’ 

terminus of the gRNA is advantageous for the crgRNA presented here.  

Liu et al also take this one step further and arrange their circuitry in the form of 

logic gates. They attempt all of the Boolean logic gates.  Whilst these certainly have 

logical value they are also flawed. The two inputs of the logic gates are in the form 

of ligands to modulate the two riboswitched gRNAs, and in all cases (except the XOR 

logic gate) the combinatorial effect of the two inputs is evaluated through two 

complexes binding to/near the promoter, as opposed to one.  Consequently, the 

effect of having one input in the ON state instead of two, is an intermediate result, 
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approximate to being halfway between having no inputs (OFF) and both (ON) (an 

output value which might approximate to 0.5). Additionally, there are barriers to 

the layering of these gates as making the output of one gate the input of the other 

would require that the expression of the output promoter of one gate would result 

in the synthesis of the input ligand of the next gate. Similarly, developing a library of 

gates is a laborious process requiring the creation of new ligand responsive 

riboswitches, and their inclusion into the gRNA framework. To both these points, 

the system described here is far easier to expand, with simple design rules allowing 

reliable synthesis of RNA-dependent logic gates.  This is because the design is 

dependent on predictable RNA-RNA interactions, without the complexities of 

aptamer-ligand interactions. In a similar vein, the logic output of the system 

presented here, is dependent on the direct interaction of two RNAs, creating an 

output closer to the binary 1 or 0 than the additive effects of two effectors. It is 

worth noting that the critique presented here is entirely in terms of the objectives 

of this project, which are quite different to the objectives of the authors in terms of 

the application of the circuits to cancer, which should not be understated. 
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Chapter 5: Methods and Materials  

5.1 Materials  

Glycerol stock 

20% glycerol (v/v) dissolved in dH2O and autoclaved at 115 °C for 15 minutes. 

Stored at room temperature  

Ampicillin 

Stock concentration was 100 mg/ml in dH2O, filter sterilised (0.22 μm). Working 

concentration was 100 μg/ml. 1 mL aliquots stored at -20 °C. 

Kanamycin 

Stock concentration was 50 mg/ml in dH2O, filter sterilised (0.22 μm). Working 

concentration was 100 μg/ml. 1 mL aliquots stored at -20 °C. 

Chloramphenicol 

Stock concentration was 40 mg/ml in 100 % ethanol; working concentration was 40 

μg/ml. 1mL aliquots stored at -20 °C. 

Anhydrotetracycline (aTc) stock 

200 ug/mL aTc dissolved in 50% ethanol, 50% dH2O, filter sterilised (0.22 μm), 

stored at -20 °C.  

Isopropyl-beta-D-thiogalactoside (IPTG) stock 

500 mM IPTG prepared in 1 mL aliquots stored at -20 °C. 

Lysogeny broth (LB)  
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To make 1 Litre, 10 g bacto-tryptone, 5 g yeast extract,10 g NaCl. pH adjusted to 7.5 

with NaOH, autoclaved at 115 °C for 15 minutes. Requisite inducers and antibiotics 

added to LB. 

S.O.C broth  

To make 1 Litre, 20 g Bacto Tryptone, 5 g Bacto Yeast Extract, 2 ml of 5 M NaCl, 2.5 

ml of 1 M KCl, 10 ml of 1 M MgCl2, 10 ml of 1 M MgSO4, 20 ml of 1 M glucose. pH 

adjusted to 7.0 with NaOH, autoclaved at 115 °C for 15 minutes. 

LB Agar  

15 g Agar was added to 1 L of LB broth prior to autoclaving. Agar was cooled to ca 

55°C before adding requisite antibiotics. 

Tris-acetate-EDTA buffer (TAE buffer) 

To make 1 litre: 4.844 g Tris Base, 1.21 g Acetic Acid, 0.372 g EDTA. 

Tris EDTA buffer (TE buffer) 

To make 1 litre: 10 mL of 1 M Tris base (pH to 8.0 using HCl), EDTA; 2 mL 0.5 M, 

dH2O 988 mL.  

Transformation Buffer 1 (TFB1) 

30 mM CH3COOK, 100 mM RbCl, 10 mM CaCl2, 50 mM MnCl2, 15% (v/v) glycerol; pH 

adjusted to 5.8 with acetate; sterilised by filtration (0.22 μm) 

Transformation Buffer 2 (TFB2) 

10 mM MOPS (pH 6.5), 75 mM CaCl2, 10 mM RbCl, 15% (v/v) glycerol; pH adjusted 

to 6.5 with KOH; sterilised by filtration (0.22 μm) 

Restriction enzymes:  
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All restriction enzymes described were purchased from NEB 

QIAprep Spin Miniprep Kit 

Kits were purchased from QIAGEN and used according to the manufacturer’s 

instructions. Plasmid mini-prep kits were prepared from 5 mL overnight cultures in 

LB broth, with supplements/antibiotics as required. DNA was stored at -20°C until 

required.  

Q5 

5X Q5 Reaction Buffer, 10 mM dNTPs and 2 U/μl Q5 High-Fidelity DNA Polymerase 

were purchased from NEB 

Agarose 

UltraPureTM Agarose was purchased from Invitrogen.  

QIAquick Gel Extraction Kit 

Kits were purchased from QIAGEN and used according to the manufactures 

instructions. DNA was stored at -20°C until required.  

10X T4 DNA ligase and ligase buffer 

Purchased from NEB (B0202S)  

Gel Loading Dye, Purple 

Purchased from NEB (B7024S) 
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5.1.1 List of plasmids  

Sequences are to be found in   
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Appendix 2: Nucleotide sequences 

pZS2-123  

pdCas9 addgene #44249 

pdCas9-T 

pdCas9-RBS2 

pdCas9-RBS3 

pBR322 

pBR322-K 

pBR322-Kc 

pBR322-W 

pBR322-Wc 

pBR322-Y 

pBR322-Yc 

pBR322-Z 

pBR322-gRNA 

pBR322-Sp 

pBR322-Sp-c 

pBR322-LS 

pBR322-LP-crgRNA-A/asRNA-C 

pBR322-LS-c 

pBR322-Bg 

pBR322-Bg-c  

pBR322-US 

pBR322-US-c 

pBR322-Lp (-α) 

pBR322-Lp (-α)-c 

pBR322-Lp-β 

pBR322-Lp-β 

pBR322-Lp-γ 

pBR322-Lp-γ-c 

pBR322-Lp-CFP 

pBR322-Lp-CFP-c 

pBR322-Lp-YFP 

pBR322-Lp-YFP-c 

pBR322-LP-crgRNA-A/asRNA-A 

pBR322-LP-crgRNA-A/asRNA-B 
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pBR322-LP-crgRNA-A/asRNAc 

pBR322-LP-crgRNA-B/asRNA-A 

pBR322-LP-crgRNA-B/asRNA-B 

pBR322-LP-crgRNA-B/asRNA-C 

pBR322-LP-crgRNA-B/asRNAc 

pBR322-LP-crgRNA-C/asRNA-A 

pBR322-LP-crgRNA-C/asRNA-B 

pBR322-LP-crgRNA-C/asRNA-C 

pBR322-LP-crgRNA-C/asRNAc 

5.1.2 E. coli strains  

All cloning and experimentation was performed in Top10 from lab stock generated 

from NEB commercial competent cells. Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) 

φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) 

endA1 λ- 

5.2 Molecular Biology Methods  

5.2.1 Storage of E. coli strains  

For short term storage, strains were kept on LB agar plates with appropriate 

antibiotics in a fridge at 4°C. For long term storage, E. coli strains were stored at -80 

°C in 15 % (v/v) glycerol, either in a volume of 500 µL in a cryotube or in 350 µL 

volume in the well of a round bottomed 96 well plate. To prepare E. coli glycerol 

stocks, 5 mL LB containing the appropriate antibiotic was inoculated with the 

desired E. coli strain and grown for 16-24 hr (shaking at 200 rpm) at 37 °C before 

being mixed with 20 % (v/v) glycerol.  

5.2.2 Preparation of chemically competent cells 
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Chemically competent cells were prepared using the RbCl method. 5 mL of LB was 

inoculated with E. coli TOP10 and grown at 37 °C for ~ 16 hr (shaking at 200 rpm). 

The culture was diluted 1:400 in 500 mL LB containing 20 mM MgSO4 and grown at 

37 °C (shaking at 200 rpm) until the ODf reached ~ 0.5. The cells were transferred to 

ten 50 mL Falcon tubes (50 mL per tube) and incubated on ice for 10 min. The cells 

were kept cold from this point on. The cells were centrifuged (3750 RCF for 5 min at 

4°C), re-suspended in 20 mL cold TFB1 buffer, and incubated on ice for 5 min. The 

cells were centrifuged as before, re-suspended in 2 mL cold TFB2 buffer, and 

incubated on ice for 15 min. Cells were aliquoted, snap-frozen on dry ice and 100 % 

ethanol, and stored at -80°C.  

5.2.3 Transformation into E. coli 

Competent cells are thawed on ice, the aliquot was divided into 50 µL per reaction 

for cloning reactions or 20 µL for purified plasmid DNA. For single transformations 

and cloning reactions, the transformation was performed in a 1.5 mL Eppendorf 

micro-centrifuge tube. For the large number of three plasmid system 

transformations, the transformation was conducted in a 96 well plate 

(Manufacturer: Ritter, model: riplate PP - 1 mL, Part number: #43001-0116). 

Between 1 µL and 10 µL of cloning reaction or purified plasmid was added to the 

competent cells and allowed to incubate for 20 min on ice. The cultures were then 

heat shocked at 42°C for 45 seconds before being returned to the ice bath. Due to 

the large thermal mass of the 96 well plate, both stages of the heat shock were 

performed with agitation to the 42 °C water bath or ice bath to ensure the cells 

reached the correct temperature rapidly. For cultures in 1.5 mL Eppendorf tubes, 1 

mL of SOC media is added. For transformations in 96 well plates 200 µL of SOC 

media is added to each reaction. Transformations were allowed to recover for 1 

hour with shaking 200rpm in a 37 °C incubator. 1.5 mL Eppendorf tubes are 

centrifuged for 1 min at 18,626 G, the excess supernatant poured off and the pellet 

re-suspended in the remaining ~50 µL supernatant before being spread on an LB 

agar plate containing the relevant antibiotics. Transformations in 96 well plates are 
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transferred directly to LB agar plates containing the relevant antibiotics. LB agar 

plates are dried before being inverted and incubated at 37 °C for ~ 16 hr.  

5.2.4 Plasmid preparation  

5 mL of LB containing the appropriate antibiotic was inoculated with a colony of E. 

coli containing the desired plasmid and grown at 37 °C for ~ 16 hr (shaking at 200 

rpm). Plasmid extraction was performed using the QIAprep Spin Miniprep Kit 

according to manufacturer’s instructions, eluting in 20 μL elution buffer.  

5.2.5 Polymerase Chain Reaction (PCR) 

PCR reactions were performed using Q5 DNA Polymerase.  

For A standard 25 µL Q5 PCR reaction:  

Component  Final concentration  Volume (uL) 

Q5 reaction buffer - 5x 1X Q5 reaction buffer 5 µL 

dNTPs - 10 mM 200 µM 0.5 µL 

Primers - 0.5 µM 0.5 μM 1.25 (each) 

template n/a 0.2 

Q5 High-Fidelity DNA 

Polymerase. 

0.02 U/µl 0.25 µL 

H2O n/a 16 µL 

 

The thermocycling program was: 98°C x 30 s; (98°C x 10 s, what temperature was 

used for annealing 20 s, 72°C x 30s per kb of PCR product) x30 cycles, 72°C x 15 min. 

Hold at 16°C. The PCR products were purified by gel extraction using QIAquick Gel 

Extraction Kit.  
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5.2.6 Restriction digest  

Restriction digests of plasmid minipreps were performed as follows. Mixed up to 1 

µg plasmid, 1 μL each restriction enzyme (NEB) and 1X CutSmart buffer (NEB) in a 

final volume of 50 μL. Incubated at 37 °C for at least 1 hr and analysed by agarose 

gel electrophoresis. 

5.2.7 Agarose gel electrophoresis  

Restriction digests or PCR reactions were mixed with 1X Gel Loading Dye, Purple 

and loaded onto an agarose-TAE gel. The percentage of agarose was typically 1 % 

but was adjusted based on the expected size of the bands to between 0.7% and 2%. 

The gel was run at 100 V in 1X TAE buffer and imaged using a Gel Doc™ XR+ Gel 

Documentation System (BioRad).  

5.2.8 Gel extraction 

PCR reactions or restriction digests were run on agarose-TAE gels and purified using 

the QIAquick Gel Extraction Kit, according to the manufacturer’s instructions. 

Elution was in 10 μl elution buffer Sanger sequencing. Band specific gel extractions 

were performed with a transilluminator (Safe Imager™ 2.0 Blue Light 

Transilluminator) 

Plasmids were sequenced by MRC PPU DNA Sequencing and Services (University of 

Dundee) using the Sanger sequencing method. 

5.2.9 Plasmid construction 

The pdCas9-T plasmid (addgene plasmid #46569 with transcriptional attenuator 

engineered in) was constructed by performing a PCR on the original plasmid in 

which the two primers bind, back to back in the 5’ UTR of the dCas9 gene, facing 

outwards to PCR round the whole plasmid. One of the primers was an ultramer 

oligo including the transcriptional attenuator and a restriction site (EcoRI) the other 

primer also introduces the same restriction site.  
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A DpnI digestion was used to remove the plasmid template. An EcoRI digest was 

used to generate ‘sticky ends’ before ligation and transformation. After digestion 

confirmation, NsiI and SwaI were used to digest and ligate the engineered region of 

the plasmid into the original addgene plasmid #46569 to remove any PCR mutations 

in the backbone. The pdCas9-T was verified by sequencing. The same procedure 

was carried out to mutate the RBS site.  

Library of crgRNA asRNA parts were synthesised by IDT (K,W,Y variants) or GeneArt 

(all variants used in Chapter 3:) and were cut out from the supplied donor plasmid 

using EcoRI and HindIII restriction enzymes and directly ligated into pBR322 

acceptor plasmid which carries a different antibiotic resistance. All library members 

had the inserts sequence verified.  

5.3 Data Gathering Methods  

5.3.1 End point reading  

Each experiment had three repeats conducted on different days and each repeat 

including multiple replicates, usually 8. When characterising each member of the 

design libraries, three plasmids were used, a reporter plasmid expressing three 

different fluorescent proteins pZS2-123, pBR322 expressing the asRNA/crgRNA of 

the library member and pdCas9 addgene #44249 or the pdCas9-T with an 

attenuator (Cox et al., 2010; Qi et al., 2013). All three plasmids were co-transformed 

at the same time. Eight colonies were picked from each transformation and 

inoculated into 200 µL of LB broth in each well of a 96 well plate and cultured 

overnight.  

A fluorescence plate was prepared (Greiner-Bio CELLSTAR 96 Well Black µClear® # 

655090) each well was filled with 340 µl of LB broth containing the requisite 

concentrations of antibiotics and inducers.  10 µl of overnight culture was used to 

inoculate each culture.  Every plate included sterility blanks of non-inoculated 

media, every plate also included 8 cultures expressing dCas9 and reporter 

fluorescent protein without the asRNA or crgRNA (positive control). There is also a 
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negative control expressing the dCas9 and the crgRNA/asRNA but without any of 

the fluorescent reporter genes.  These two controls are used to normalise the 

results.  A third control is also included expressing fluorescent reporter proteins, 

dCas9 and a gRNA to allow a comparison between the level of repression from the 

‘wt’ gRNA and the crgRNA/asRNA system. The 96-well fluorescence plate is cultured 

at 37°C (Unless otherwise specified) while shaking at 200 rpm. After 24 hours the 

plate is red with a BMG FLUOstar Omega which reads the optical density (OD600) of 

each culture as well as the level of fluorescence from three channels 

excitation/emission (355/490, 485/520, 584/620-10 nm). The gain is calculated by 

adjusting until the positive control is 80% of the saturation level. 

5.3.2 Time course 

For the time course, the same protocol is used as the endpoint scheme detailed in 

Section 5.3.1, but rather than shaking in an incubator overnight, the fluorescence 

plate is placed directly in the plate reader (a BMG FLUOstar Omega) which 

incubates the plate at 37 °C while double orbital shaking (500 rpm). Reading the 

same optical density and channels as detailed in Section 5.3.1 every 30 min. This 

provides data both for observing the system at different growth phases but also for 

comparing the rate of growth between different cultures. In experiments exploring 

the effect of temperature or dCas9 dependency, the same protocol as in Section 

5.3.1 was carried out at either a different temperature or without the dCas9 

expressing plasmid. 

5.4 Data Processing  

5.4.1 Controlling for row bias  

In both the fluorescence plates used for Endpoint analysis and time courses, there is 

variation in the level of evaporation from wells in the plate depending on their 

position. Wells at the edge of the plate exhibited an elevated level of evaporation. 

To control for this, cultures are organised so the 8 cultures from the same 

transformation fill an entire column and each column represents a single set of 

plasmids. This leads to each row having the same value, on average, due to 
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including one of each of the different plasmid sets hence any variation in level of 

fluorescence between rows can be controlled for by dividing the average level of 

fluorescence for a row by the average level of fluorescence for the entire plate and 

using the resulting value as a multiplier for each of the values within a row to 

control for any row bias.  

5.4.2 Propagation of noise 

 In each of the experiments, there has been no statistically significant difference 

between the optical densities of each of the cultures there is however, well to well 

variation which exceeds the level of variation seen in the level of fluorescence. It is 

standard procedure when working with this kind of fluorescence to control for 

optical density of a culture. Yet in this case, as there is no statistically significant 

variation in the level of optical density and the degree of variation in optical density 

between wells is greater than that of the fluorescence measurements it appears 

that the plate reader measures fluorescence to a greater accuracy than it does 

optical density. Therefore, dividing the level of fluorescence by the optical density 

increases the level of noise rather than reducing error thus unless otherwise 

specified this step has not been included. 

5.4.3 Normalisation 

To normalise the level of fluorescence for each culture the first step is to remove 

auto fluorescence by subtracting the level of fluorescence seen in the negative 

control from each cell. The next step is to divide the level of fluorescence by the 

positive control.  For both these steps, the average of the 8 cultures for each control 

is used.  
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Equation 5.1 is used to calculate the normalised level of fluorescence where XN is 

the normalised level of fluorescence, XO is the pre normalisation level of 

fluorescence, pn are the positive controls, and en are the negative controls. After 

normalisation, values can be compared between plates from different repeats, Or in 

a time-series, from an earlier or later time point. 
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Appendix 1: Toehold orthogonality script  

>>>Language: Python 3.6 

import random 

import time 

import os 

import subprocess 

import math 

import copy 

begin = time.clock() 

asRNA = '' 

crgRNA = '' 

def randomnt(): 

    for i in range(3): 

        f = 1 

        s = 1  

        while f ==s : 

            s = f 

            f = random.randrange(0,100) 

    if f <25 : 
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        o = 'A' 

    elif f < 50 : 

        o = 'T' 

    elif f < 75 : 

        o = 'G' 

    else : 

        o = 'C' 

    return(o) 

def sequencegenerator(length= 12, GC = 45 ): 

    # GC is the minimum GC content 

    #there is a basic complexity screen , no more than three of a neucleotide in a row  

    gc = False 

    while not gc : 

        seq = '' 

        for i in range(length): 

            seq = seq + randomnt() 

        if float(seq.count('G') +seq.count('C'))/float(length) > (float(GC)/100.0): 

            gc = True 

            if 'AAAA' in seq or 'TTTT' in seq or 'CCCC' in seq or 'GGGG' in seq: 

                gc = False  
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    return (seq) 

def RNAcofold (sequence1 ,  sequence2, concentration1 = '', concentration2 = '' ): 

    # note free energy read outs may be inacurate below -99.99 

    keep_on = True 

    cycles = 0  

    while keep_on : 

        try : 

            if os.path.isfile('concfile.txt'): 

                os.remove('concfile.txt') 

            if os.path.isfile('temp_RNAcofold_inputs_24544.txt'): 

                os.remove('temp_RNAcofold_inputs_24544.txt') 

            if os.path.isfile('temp_RNAcofold_ouputs_24544.txt'): 

                os.remove('temp_RNAcofold_ouputs_24544.txt') 

            if ''!= concentration1 and concentration2 != '': 

                conc_w = open('concfile.txt','w') 

                conc_w.write(str(concentration1)+' ' + str(concentration2) + '\n') 

                conc_w.close() 

                concentrations = '−−concfile=concfile.txt' 

            else : 

                concentrations = '' 
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            in_w = open('temp_RNAcofold_inputs_24544.txt', 'w') 

            in_w.write(sequence1.replace(' ','') + '&' + sequence2.replace(' ','')) 

            in_w.close() 

            in_r=open('temp_RNAcofold_inputs_24544.txt', 'r') 

            out_w = open('temp_RNAcofold_ouputs_24544.txt', 'w' ) 

            p = subprocess.Popen(['C:/Program Files (x86)/ViennaRNA 

Package/RNAcofold.exe', concentrations ,'-p' , '-a'] , stdin = in_r , stdout = out_w  

,shell =True ) 

            p.wait() 

            out_w.close() 

            in_r.close() 

            out_r = open('temp_RNAcofold_ouputs_24544.txt','r') 

            output = out_r.read().splitlines() 

            #print (output) 

            out_r.close() 

            #print ('b') 

            keep_on = False 

        except PermissionError : 

            keep_on = True 

            time.sleep(1) 
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            cycles = cycles + 1  

            print ('RNAcofold run permission error :' + str(cycles)+ ' attempts.'  ) 

    onwards = True 

    cycles = 0  

    while onwards : 

        try : 

            if os.path.isfile('concfile.txt'): 

                os.remove('concfile.txt') 

            if os.path.isfile('temp_RNAcofold_inputs_24544.txt'): 

                os.remove('temp_RNAcofold_inputs_24544.txt') 

            if os.path.isfile('temp_RNAcofold_ouputs_24544.txt'): 

                os.remove('temp_RNAcofold_ouputs_24544.txt') 

            onwards = False 

        except PermissionError : 

            onwards = True 

            time .sleep (1) 

            cycles= cycles +1 

            print ('RNAcofold file wipe permission error ' + str(cycles) + 'cycles') 

    return (output)  

def RNAfold (seq): 
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    a = RNAcofold(seq,'ATGC') 

    return (float(a[6].split('\t')[3])) 

def RNAcofoldcentroid (seq1,seq2): 

    #gives the free energy of the centroid structure formed by two RNA sequences. 

    a = RNAcofold (seq1,seq2)[1] 

    b= float(a[ a.find (' '):].replace('(','').replace(')','').replace(' ','')) 

    return (b) 

def generatetoehold2(crgRNA,asRNA, length,no_toeholds, no_runs ): 

    # establishes the delta gibbs free energy of the crgRNA then adds a 

    #random (with screens) toehold and tests the delta gibbs free energy 

    #again, most toe holds will complement within the crgRNA but if there 

    #is negligible complementation (-0.5) the toehold is returned as one 

    #that doesn't do internal folding 

    term = 'UUAA'+'AAAAAACCCCGCTTCGGCGGGGTTTT'# yunr + terminator with the 

last two 'T's removed to reflect the probable transcription stop point.  

    e = RNAfold(crgRNA) 

    asf = RNAfold(asRNA+term) 

    i = 0 

    accumulator = [] 

    start = time . clock() 
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    l = start  

    for o in range (no_runs): 

        i = i +1  

        a = sequencegenerator() 

        b = a + crgRNA 

        r = RNAfold(b) 

        ast = asRNA + complement(a) +term 

        asr = RNAfold(ast) 

        accumulator = accumulator + [[a,r-e + asr-asf, r,e,asr,asf]] 

        if time.clock() > l +5 : 

            l = time . clock() 

            print(str((o/no_runs)*100)[:4] + '% done producing toeholds for system 

variant' ) 

    accumulator = order(accumulator)[:no_toeholds] 

    return(accumulator) 

def complement(seq): 

    seq = seq.upper () 

    out = '' 

    for i in seq : 

        o = '' 
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        if i == 'A': 

            o = 'T' 

        elif i == 'T': 

            o = 'A' 

        elif i == 'G' : 

            o = 'C' 

        elif i == 'C': 

            o = 'G' 

        else: 

            o = '*' 

            print ('ERROR : complementing non neucleotide sequence' + i) 

        out = o + out 

    return (out) 

def toeholdorthogonalitytest (toe1,toe2, crgRNA= crgRNA, asRNA=asRNA,without 

='' ) : 

    a = without 

    b = 0  

    c = RNAcofoldcentroid (toe2+crgRNA,asRNA +complement(toe1)) 

    d = RNAcofoldcentroid (toe1+crgRNA,asRNA +complement(toe2)) 

    e = 0  
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    x = [a,b,c,d,e,] 

    y = [] 

    for i in x : 

        y = y + [i - x[0]] 

    z = y[2]+y[3] 

    return([z,y]) 

 

 

def generatingtoeholds(crgRNAs_asRNAs, no_of_toeholds,no_runs = 100): 

    #input is the asRNAs and gRNAs in the format [[name, asrna,crgrna],[name, asrna, 

grna]] etc. 

    term = 'UUAA'+'AAAAAACCCCGCTTCGGCGGGGTTTT' 

    a = crgRNAs_asRNAs 

    no = no_of_toeholds 

    crgRNA_out = [] 

    asRNA_out = [] 

    z = 0 

    start = time.clock() 

    l = start 

    complete = len(a) 
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    for i in a : 

        z = z +1  

        toeholds = generatetoehold2(i[2],i[1], 12, no_of_toeholds, no_runs) 

        for o in range(len(toeholds)): 

            toehold = toeholds[o][0] 

            crgRNA_out =crgRNA_out + [[i[0]+' crgRNA '+str(o),toehold+i[2]]] 

            asRNA_out =asRNA_out + [[i[0]+' asRNA '+str(o),i[1]+ 

complement(toehold)+term ]]#here 

            if time.clock()>l + 1 : 

                l = time.clock() 

                print (str((z/complete)*100)[:5]+'% complete. '+str((((1/(z/complete))*(l-

start))-(l-start))/60)[:5] + ' minutes predicted remaining of toehold generation') 

    return([asRNA_out,crgRNA_out]) 

def pairing_probability (asRNA,starta,finisha,crgRNA,startc,finishc, mean = 'arith', 

allow_internal = False): 

    if not allow_internal:         

        startc = startc + len (asRNA) 

        finishc = finishc + len (asRNA) 

    a = RNAcofold(asRNA,crgRNA) 

    a = open ('ABdot5.ps','r') 

    b = a .read() 
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    a.close() 

    probabilities = b[b.find('%start of base pair probability data')+37:b . find 

('showpage\nend\n%%EOF')] 

    probabilities = probabilities .split('\n') 

    new = [] 

    for i in probabilities : 

        new = new + [i.split(' ')] 

    probabilities = new 

    new = [] 

    for i in probabilities : 

        z = [] 

        for o in i[:-1]: 

            z = z + [float(o)] 

        new = new + [z] 

    probabilities = new[:-1] 

    selected = [] 

    for i in probabilities: 

        if starta<=i[0]<= finisha and startc<=i[1]<= finishc: 

            selected = selected + [i] 

    if mean == 'geo':             
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        score = 1 

        for i in selected: 

            score = score * i[2] 

        score = math.pow(score,1/len(selected)) 

        return (score) 

    else : 

        score = 0 

        for i in selected : 

            score = score +i[2] 

        return (score) 

def genmatrix(no): 

    #generates square matrix where there isn't assighnment cross over  

    x = [''] 

    y = [''] 

    while len (y)<no: 

        y = copy.deepcopy(y) + copy.deepcopy(x) 

    z = [y] 

    while len(z)<no: 

        z = copy.deepcopy(z)+ [copy.deepcopy(y)] 

    return (z) 
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def evaluatecombo1(variants, matrix): 

    score = 0 

    for i in variants : 

        for o in variants : 

            if not i==o: 

                score = score + float(matrix[i][o]) 

    if score != 0: 

        score = score / ((len(variants)*len(variants))-len(variants)) 

    return(score) 

def cleanrandom(): 

    s = 0 

    t = 0 

    while s == t : 

        s = random.randrange(0,2) 

        t = random.randrange(0,2) 

def genrandomcombo(together,no_toeholds,matrix ): 

    bottom = 0 

    combo = [] 

    for i in range(len(together)): 

        cleanrandom() 
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        combo =combo + [random.randrange(bottom , bottom+no_toeholds)] 

        bottom = bottom + no_toeholds 

    return ([combo,evaluatecombo1(combo,matrix)]) 

def random_optimisation (no_combos, together, no_toeholds, matrix ): 

    z = 0 

    complete = no_combos 

    start = time.clock() 

    l = start  

    output = [] 

    outputs = [] 

    best = 1  

    for o in range(no_combos): 

        k = genrandomcombo(together,no_toeholds, matrix) 

        output = output + [k] 

        if k[1]<best: 

            best = k[1] 

            top = k 

            a = open ('best combintation .txt','w') 

            a.write(str(time.clock())+ '\n\n'+str(k) ) 

            a.close() 
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        z = z + 1 

        if time.clock()>l + 2 : 

            l = time .clock() 

            print (str((z/complete)*100)[:5]+'% complete. ' + str((((1/(z/complete))*(l-

start))-(l-start))/60)[:5] + ' minutes predicted remaining of optimisation') 

            outputs = outputs + output 

            output = [] 

    return(outputs) 

def no_changes(): 

    go = True 

    changes = 1  

    while go : 

        cleanrandom() 

        if random .randrange(2)==1: 

            go = False 

        else: 

            changes = changes + 1 

    return (changes) 

def learning_optimisation (no_combos, together, no_toeholds, matrix, 

no_random_combos): 
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    z = 0 

    complete = no_random_combos 

    start = time.clock() 

    l = start  

    output = [] 

    outputs = [] 

    best = 1  

    for o in range(no_random_combos): 

        k = genrandomcombo(together,no_toeholds, matrix) 

        output = output + [k] 

        if k[1]<best: 

            best = k[1] 

            top = k 

            a = open ('best  combintation .txt','w') 

            a.write(str(time.clock())+ '\n\n'+str(top) ) 

            a.close() 

            a = '' 

        z = z + 1 

        if time.clock()>l + 2 : 

            l = time .clock() 
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            print (str((z/complete)*100)[:5]+'% complete. ' + str((((1/(z/complete))*(l-

start))-(l-start))/60)[:5] + ' minutes predicted remaining of random search') 

            outputs = outputs + output 

            outputs = order (outputs, fast = True) 

            output = [] 

    # 

    outputs = outputs + output 

    outputs = order (outputs, fast = True) 

    for_file = '' 

    for i in outputs :for_file = for_file + str(i) +'\n' 

    a = open ('combinations from random search .txt','w') 

    a.write(for_file) 

    a.close() 

    print ('\n\ncombination optimisation\n') 

    z = 0 

    complete = no_combos 

    start = time.clock() 

    l = start 

    parameters = [] 

    lowerbound = 0 
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    #parameters are the upper and lower bounds of the regions of the x and y axis 

that have each of the crgRNAs on  

    for i in together : 

        parameters = parameters+ [[lowerbound,lowerbound + no_toeholds]] 

        lowerbound = lowerbound + no_toeholds 

    #gets rid of all but the top 10 outputs so far. one of these will be mutated then 

reincerted. the list will then be reordered and the last one removed  

    outputs = outputs[:10] 

    for i in range(no_combos): 

        subject = outputs[random.randrange(0,len(outputs))] 

        changes = no_changes() 

        for i in range(changes) : 

            change = random.randrange(len(parameters)) 

            subject[0][change] = 

random.randrange(parameters[change][0],parameters[change][1]) 

        subject = [subject[0] ,evaluatecombo1(subject[0], matrix)] 

        outputs = [subject] + outputs  

        outputs = order (outputs) 

        outputs = outputs [:100] 

        z = z + 1  

        if time.clock()>l + 60 : 
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            l = time .clock() 

            print (str((z/complete)*100)[:5]+'% complete. ' + str((((1/(z/complete))*(l-

start))-(l-start))/60)[:5] + ' minutes predicted remaining of combination 

optimisation' + str(z) + ' iterations ') 

            a = open('outputs learning artih mean '+str(z)+' iterations .txt','w') 

            a.write(str(outputs)) 

            a.close() 

    return(outputs) 

def order(combinations, fast = False ): 

    out = [[[''],-1000],[[''],1000]] 

    start = time.clock() 

    l = start 

    z = 0 

    complete = len (combinations) 

    for i in combinations: 

        done = False 

        for o in range(len(out)): 

            if i[1]>=out[o][1] and out[o+1][1]>=i[1] and not done: 

                out = out[:o+1]+ [i]+out[o+1:] 

                done = True 
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        if not done : 

            print ('failed to order "' + str(i) + '"') 

        z = z + 1 

        if l+5 < time.clock(): 

            l = time.clock() 

            print ('ordering '+str((z/complete)*100)[:5]+'% complete') 

            if fast : 

                out = out[:200]+ [[[''],1000]] 

    out = out[1:201][:-1] 

    return (out) 

def gen3uniform (s, gen3crgRNA, gen3asRNA ,no_toeholds): 

    # both gen3crgRNA and gen3asRNA need to be in the form that already has the 

toehold attached 

    crgRNAs = s[1][:0-no_toeholds] 

    asRNAs = s[0][:0-no_toeholds] 

    crgRNAs = crgRNAs + no_toeholds*[['Gen3 crgRNA 0',gen3crgRNA]] 

    asRNAs = asRNAs +  no_toeholds*[['Gen3 asRNA 0',gen3asRNA]] 

    return([asRNAs,crgRNAs]) 

def readmatrix(): 

    a = open ('generated interference matrix .txt','r') 
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    b = a .read () 

    a .close() 

    b = b .replace('[[','').replace(']]','') 

    lines = b.split ('], [') 

    matrix = [] 

    for i in lines : 

        matrix = matrix + [i . split(',')] 

    return (matrix) 

def interactionmatrix(x,y): 

    matrix = genmatrix(len(x))                

    #for targeting the spacer region  

    asRNAstart = 0 

    asRNAfinish= 19 

    crgRNAstart = 12 + 16 

    crgRNAfinish = 12 + 16 + 20 

    #for targeting the scafold region  

    asRNAstart = 19 

    asRNAfinish= 19 +16 

    crgRNAstart = 12  

    crgRNAfinish = 12 + 16 



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Appendix 1: Toehold orthogonality script  183 

    #for capturing the entire interaction (this set used) 

    asRNAstart = 0 

    asRNAfinish= 77 

    crgRNAstart = 0 

    crgRNAfinish = 155 

    #                   

    z = 0 

    start = time.clock() 

    l = start 

    complete = len(x)* len(y) 

    for i in range(len (x)) : 

        for o in range(len (y)): 

            matrix [i][o]= pairing_probability 

(y[o][1],asRNAstart,asRNAfinish,x[i][1],crgRNAstart,crgRNAfinish) 

            z = z + 1 

            if time.clock()>l + 1 : 

                    l = time.clock() 

                    print (str((z/complete)*100)[:5]+'% complete. '+str((((1/(z/complete))*(l-

start))-(l-start))/60)[:5] + ' minutes predicted remaining of pairwise interaction 

calculations') 

    print ('writing interference matrix to file ') 
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    a = open('generated interference matrix .csv','w') 

    a . write (str(matrix).replace('[[','').replace(']]','').replace('], [','\n'))#.replace(',','\t') 

    a.close() 

    return (matrix) 

def read_toeholds(): 

    a = open ('generated toeholds .txt','r') 

    b = a.read() 

    a.close() 

    print ('----------') 

    print (b.find(']], [[')) 

    print (b [ b.find(']], [[')-20: b.find(']], [[')+20]) 

    b = b .split(']], [[') 

    print (len (b)) 

    asRNA = b[0].split("'], ['") 

    crgRNA = b[1].split("'], ['") 

    asRNAs = [] 

    crgRNAs = [] 

    for i in asRNA : 

        asRNAs = asRNAs + [i . split("', '")] 

    for i in crgRNA : 
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        crgRNAs = crgRNAs + [i . split("', '")] 

    print (crgRNAs[:3]) 

    return([asRNAs,crgRNAs]) 

def return_optimal_crgRNA_asRNA_set(combination,crgRNAs, asRNAs): # x = 

crgRNAs , Y = asRNAs 

    print (combination) 

    out = [] 

    for i in combination[0]: 

        out = out + [asRNAs[i],crgRNAs[i],] 

    out = [out,combination] 

    return (out) 

#reading inputs  

a = open ('input crgRNA set .txt','r') 

together = ast.literal_eval(a.read()) 

a.close() 

#important : number of runs and iterations at each stage 

no_toeholds = 50 

no_runs = 5000 

no_combinations  = 1000000 

no_random_combos = 1000000 



Synthetic Logic Circuits encoded on Toehold Strand-Displacement Switchable CRISPR guide RNAs. 

Appendix 1: Toehold orthogonality script  186 

#these are the qucik run values, to test changes  

##no_random_combos = 1000 

##no_combinations = 1000 

##no_toeholds = 4 

##no_runs = 6 

##together = together[:4] 

#generating toeholds  

print ('\n\ngenerating toeholds\n') 

s = generatingtoeholds(together, no_toeholds, no_runs = no_runs) 

x = s [1]# crgRNA 

y = s[0] # asRNA 

print ('writing toeholds to file') 

a = open ('generated toeholds .txt','w') 

a .write (str(s)) 

a.close() 

print ('\n\ncreating interaction matrix\n') 

matrix = interactionmatrix(x,y) 

print ('\n\nrandom optimisation\n') 

combinations = learning_optimisation (no_combinations, together, no_toeholds, 

matrix, no_random_combos) 
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print ('writing combinations to file') 

a = open ('combinations of toeholds .txt', 'w') 

a.write(str(combinations)) 

a.close() 

RNAset = return_optimal_crgRNA_asRNA_set(combinations[0],x, y) 

RNAsets = str(RNAset[1])+'\n' 

for i in RNAset[0]: 

    RNAsets =RNAsets + str(i) + '\n' 

RNAsets =RNAsets  + '\n total run time ' + str((time.clock()-begin)/60) + ' minutes' 

a = open ('script result .txt','w') 

a .write(RNAsets) 

a.close() 

print (' total run time ' + str((time.clock()-begin)/60) + ' minutes') 
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Appendix 2: Nucleotide sequences  

Sequences from results chapter 1  

5’ variants  

asRNA-J 

AGTAACAATTTCACACAGACCTGTTTTAGGGAGTTGTGAGG 

asRNA-K 

AGTAACAATTTCACACAGACCTGGAGTTGTGAGG 

asRNA-L 

AGTAACAAATTCACAGAGACCTGGAGTTGTGAGG 

asRNA-M 

AGTAACAGTTTCTCACACACCTGGAGTTGTGAGG 

asRNA-N 

AGTTACAGTTTCTCACACACCTGGAGTTGTGAGG 

asRNA-nonsense RNA  

CGTTAACATATTCTTACGTATGACGTAGCTATGT 

crgRNA-J 

cctcacaactccctaaaacAGGTCTGTGTGAAATTGTTActaatcggAACAATTTCACACAGACCTGT

TTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGC

ACCGAGTCGGTGCTTTT 

crgRNA-K 
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cctcacaactccAGGTCTGTGTGAAATTGTTActaatcggAACAATTTCACACAGACCTGTTTTAG

AGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCG

AGTCGGTGCTTTT 

crgRNA-L 

cctcacaactccAGGTCTCTGTGAATTTGTTActaatcggAACAATTTCACACAGACCTGTTTTAGA

GCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGA

GTCGGTGCTTTT 

crgRNA-M 

cctcacaactccAGGTGTGTGAGAAACTGTTActaatcggAACAATTTCACACAGACCTGTTTTAG

AGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCG

AGTCGGTGCTTTT 

crgRNA-N 

cctcacaactccAGGTGTGTGAGAAACTGTAActaatcggAACAATTTCACACAGACCTGTTTTAG

AGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCG

AGTCGGTGCTTTT 

gRNA only control 

AACAATTTCACACAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG

TTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT 

j23119 (asRNA promoter) 

ttgacagctagctcagtcctaggtataatgctagc 

pLlacO-1 (crgRNA promoter) 

ataaatgtgagcggataacattgacattgtgagcggataacaagatactgagcacg 

3’ variants  
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asRNA-W 

CTCTCACCTTCCTCGTTAACAATTTCACACAGACCT 

asRNA-X 

TAGGAAAGGCGAGCGATAACAGTTTCTCACACACCT 

asRNA-Y 

GGCGCTGTGCAATTGATTACAGTTTCTCACACACCT 

asRNA-Nonsense control 

AGGGAACGGGAAGACAGTCAGCGCTGGGACGATCCC 

crgRNA-W 

AACAATTTCACACAGACCTgttttagagctagaaatagcaagttaaaataaggctagtccgGAGGGGAGG

AAGGTCTGTGTGAAATTGTTAACGAGGAAGGTGAGAGAGGGGAGGcaaaGCCCGCCgaaa

GGCGGGCtttttttt 

crgRNA-X 

AACAATTTCACACAGACCTgttttagagctagaaatagcaagttaaaataaggctagtccgATTGCTTGCT

AGGTGTGTGAGAAACTGTTATCGCTCGCCTTTCCTACGACATATcaaaGCCCGCCgaaaGGC

GGGCtttttttt 

crgRNA-Y 

AACAATTTCACACAGACCTgttttagagctagaaatagcaagttaaaataaggctagtccgAGGGCACGT

TAGGTGTGTGAGAAACTGTAATCAATTGCACAGCGCCTCCATCTGcaaaGCCCGCCgaaaGG

CGGGCtttttttt 

crgRNA-nonsense 3’ element  
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AACAATTTCACACAGACCTgttttagagctagaaatagcaagttaaaataaggctagtccgTCTGTCTTAT

TGGGATCGTCCCAGCGCTGACTGTCTTCCCGTTCCCTCTTCCCAcaaaGCCCGCCgaaaGGCG

GGCtttttttt 

j23107 (asRNA promoter) 

tttacggctagctcagccctaggtattatgctagc 

PLlacO-1 (crgRNA promoter) 

ataaatgtgagcggataacattgacattgtgagcggataacaagatactgagcacg 

Sequences from results chapter 2  

Variant library and toehold change  

control nonsense asRNA  

GCGTTAACATATTCTTACGTATGACGTAGCTATGT 

asRNA-Sp 

AACAATTTCACACAGACCTACTGTGAATGCC 

asRNA-LS 

AACAATTTCACACAGACCTGTTTACTGTGAATGCC 

asRNA-Bg 

AACAATTTCACACAGACCTGTTTTAGAACTGTGAATGCC 

asRNA-US 

AACAATTTCACACAGACCTGTTTTAGAGCTAACTGTGAATGCC 

asRNA-Lp(α) 

AACAATTTCACACAGACCTGTTTTAGAGCTAGAAAACTGTGAATGCC 
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asRNA-Lpβ 

AACAATTTCACACAGACCTGTTTTAGAGCTAGAAAGTCTTGGGTATC 

asRNA-Lpγ 

AACAATTTCACACAGACCTGTTTTAGAGCTAGAAAATTCGACGAGGA 

asRNA only 

AACAATTTCACACAGACCTGTTTTAGAGCTAGAAAACTGTGAATGCC 

crgRNA-Sp 

GGCATTCACAGTAGGTCTGTGTGAAATTGTTACTAGTAACAATTTCACACAGACCTGTTTTA

GAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACC

GAGTCGGTGCTTTTTTT 

crgRNA-LS 

GGCATTCACAGTAAACAGGTCTGTGTGAAATTGTTACTAGTAACAATTTCACACAGACCTG

TTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGG

CACCGAGTCGGTGCTTTTTTT 

crgRNA-Bg 

GGCATTCACAGTTCTAAAACAGGTCTGTGTGAAATTGTTACTAGTAACAATTTCACACAGA

CCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAA

GTGGCACCGAGTCGGTGCTTTTTTT 

crgRNA-US 

GGCATTCACAGTTAGCTCTAAAACAGGTCTGTGTGAAATTGTTACTAGTAACAATTTCACAC

AGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAA

AAAGTGGCACCGAGTCGGTGCTTTTTTT 
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crgRNA-Lp(α) 

GGCATTCACAGTTTTCTAGCTCTAAAACAGGTCTGTGTGAAATTGTTACTAGTAACAATTTC

ACACAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACT

TGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT 

crgRNA-Lpβ 

GATACCCAAGACTTTCTAGCTCTAAAACAGGTCTGTGTGAAATTGTTACTAGTAACAATTTC

ACACAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACT

TGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT 

crgRNA-Lpγ 

TCCTCGTCGAATTTTCTAGCTCTAAAACAGGTCTGTGTGAAATTGTTACTAGTAACAATTTC

ACACAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACT

TGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT   

gRNA only control 

ACTAGTAACAATTTCACACAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCT

AGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT 

j23119 (asRNA promoter)  

ttgacagctagctcagtcctaggtataatgctagc 

PLlacO-1 (crgRNA promoter) 

ataaatgtgagcggataacattgacattgtgagcggataacaagatactgagcacg 

Orthogonality  

asRNA-A  

TGATAGATTCAATTGTGAGGTTTTAGAGCTAGAAATAGCGATGGACC 
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crgRNA-A 

GGTCCATCGCTATTTCTAGCTCTAAAACCTCACAATTGAATCTATCATCTAGATGATAGATT

CAATTGTGAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACT

TGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT 

asRNA-B 

CACCTGCCATGGTTTCCAAGTTTTAGAGCTAGAAACCATGGGCCTCC 

crgRNA-B 

GGAGGCCCATGGTTTCTAGCTCTAAAACTTGGAAACCATGGCAGGTGCCTAGGCACCTGCC

ATGGTTTCCAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAAC

TTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT'] 

asRNA-C 

GTCACGAGTTCGAGATCGAGTTTTAGAGCTAGAAAGCAGACTAGCTC 

crgRNA-C 

GAGCTAGTCTGCTTTCTAGCTCTAAAACTCGATCTCGAACTCGTGACCCTAGGGTCACGAG

TTCGAGATCGAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAAC

TTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT 

Multiple targets  

asRNA-CFP 

AGATACTGAGCACATCAGCGTTTTAGAGCTAGAAACAGCCAGTGCCA 

crgRNA-CFP 

TGGCACTGGCTGTTTCTAGCTCTAAAACGCTGATGTGCTCAGTATCTCCTAGGAGATACTG

AGCACATCAGCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAAC

TTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT 
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asRNA-YFP 

AGATACTGAGCACATCAGCGTTTTAGAGCTAGAAAGCCAGATCCGTC 

crgRNA-YFP 

GACGGATCTGGCTTTCTAGCTCTAAAACGCTGATGTGCTCAGTATCTTCTAGAAGATACTG

AGCACATCAGCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAAC

TTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT 

asRNA-mCherry 

AACAATTTCACACAGACCTGTTTTAGAGCTAGAAAACTGTGAATGCC 

crgRNA-mCherry 

GGCATTCACAGTTTTCTAGCTCTAAAACAGGTCTGTGTGAAATTGTTACTAGTAACAATTTC

ACACAGACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACT

TGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT 

j23119 (asRNA promoter)  

ttgacagctagctcagtcctaggtataatgctagc 

PLlacO-1 (crgRNA promoter) 

ataaatgtgagcggataacattgacattgtgagcggataacaagatactgagcacg 

dCas9 expression  

dCas9 coding sequence used: 

atggataagaaatactcaataggcttagctatcggcacaaatagcgtcggatgggcggtgatcactgatgaatataag

gttccgtctaaaaagttcaaggttctgggaaatacagaccgccacagtatcaaaaaaaatcttataggggctcttttatt

tgacagtggagagacagcggaagcgactcgtctcaaacggacagctcgtagaaggtatacacgtcggaagaatcgta

tttgttatctacaggagattttttcaaatgagatggcgaaagtagatgatagtttctttcatcgacttgaagagtcttttttg

gtggaagaagacaagaagcatgaacgtcatcctatttttggaaatatagtagatgaagttgcttatcatgagaaatatc
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caactatctatcatctgcgaaaaaaattggtagattctactgataaagcggatttgcgcttaatctatttggccttagcgc

atatgattaagtttcgtggtcattttttgattgagggagatttaaatcctgataatagtgatgtggacaaactatttatcca

gttggtacaaacctacaatcaattatttgaagaaaaccctattaacgcaagtggagtagatgctaaagcgattctttctg

cacgattgagtaaatcaagacgattagaaaatctcattgctcagctccccggtgagaagaaaaatggcttatttgggaa

tctcattgctttgtcattgggtttgacccctaattttaaatcaaattttgatttggcagaagatgctaaattacagctttcaa

aagatacttacgatgatgatttagataatttattggcgcaaattggagatcaatatgctgatttgtttttggcagctaaga

atttatcagatgctattttactttcagatatcctaagagtaaatactgaaataactaaggctcccctatcagcttcaatga

ttaaacgctacgatgaacatcatcaagacttgactcttttaaaagctttagttcgacaacaacttccagaaaagtataaa

gaaatcttttttgatcaatcaaaaaacggatatgcaggttatattgatgggggagctagccaagaagaattttataaatt

tatcaaaccaattttagaaaaaatggatggtactgaggaattattggtgaaactaaatcgtgaagatttgctgcgcaag

caacggacctttgacaacggctctattccccatcaaattcacttgggtgagctgcatgctattttgagaagacaagaaga

cttttatccatttttaaaagacaatcgtgagaagattgaaaaaatcttgacttttcgaattccttattatgttggtccattgg

cgcgtggcaatagtcgttttgcatggatgactcggaagtctgaagaaacaattaccccatggaattttgaagaagttgtc

gataaaggtgcttcagctcaatcatttattgaacgcatgacaaactttgataaaaatcttccaaatgaaaaagtactacc

aaaacatagtttgctttatgagtattttacggtttataacgaattgacaaaggtcaaatatgttactgaaggaatgcgaa

aaccagcatttctttcaggtgaacagaagaaagccattgttgatttactcttcaaaacaaatcgaaaagtaaccgttaa

gcaattaaaagaagattatttcaaaaaaatagaatgttttgatagtgttgaaatttcaggagttgaagatagatttaatg

cttcattaggtacctaccatgatttgctaaaaattattaaagataaagattttttggataatgaagaaaatgaagatatct

tagaggatattgttttaacattgaccttatttgaagatagggagatgattgaggaaagacttaaaacatatgctcacctc

tttgatgataaggtgatgaaacagcttaaacgtcgccgttatactggttggggacgtttgtctcgaaaattgattaatggt

attagggataagcaatctggcaaaacaatattagattttttgaaatcagatggttttgccaatcgcaattttatgcagctg

atccatgatgatagtttgacatttaaagaagacattcaaaaagcacaagtgtctggacaaggcgatagtttacatgaac

atattgcaaatttagctggtagccctgctattaaaaaaggtattttacagactgtaaaagttgttgatgaattggtcaaa

gtaatggggcggcataagccagaaaatatcgttattgaaatggcacgtgaaaatcagacaactcaaaagggccagaa

aaattcgcgagagcgtatgaaacgaatcgaagaaggtatcaaagaattaggaagtcagattcttaaagagcatcctgt

tgaaaatactcaattgcaaaatgaaaagctctatctctattatctccaaaatggaagagacatgtatgtggaccaagaa

ttagatattaatcgtttaagtgattatgatgtcgatgccattgttccacaaagtttccttaaagacgattcaatagacaat

aaggtcttaacgcgttctgataaaaatcgtggtaaatcggataacgttccaagtgaagaagtagtcaaaaagatgaaa

aactattggagacaacttctaaacgccaagttaatcactcaacgtaagtttgataatttaacgaaagctgaacgtggag

gtttgagtgaacttgataaagctggttttatcaaacgccaattggttgaaactcgccaaatcactaagcatgtggcacaa
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attttggatagtcgcatgaatactaaatacgatgaaaatgataaacttattcgagaggttaaagtgattaccttaaaatc

taaattagtttctgacttccgaaaagatttccaattctataaagtacgtgagattaacaattaccatcatgcccatgatgc

gtatctaaatgccgtcgttggaactgctttgattaagaaatatccaaaacttgaatcggagtttgtctatggtgattataa

agtttatgatgttcgtaaaatgattgctaagtctgagcaagaaataggcaaagcaaccgcaaaatatttcttttactcta

atatcatgaacttcttcaaaacagaaattacacttgcaaatggagagattcgcaaacgccctctaatcgaaactaatgg

ggaaactggagaaattgtctgggataaagggcgagattttgccacagtgcgcaaagtattgtccatgccccaagtcaat

attgtcaagaaaacagaagtacagacaggcggattctccaaggagtcaattttaccaaaaagaaattcggacaagctt

attgctcgtaaaaaagactgggatccaaaaaaatatggtggttttgatagtccaacggtagcttattcagtcctagtggt

tgctaaggtggaaaaagggaaatcgaagaagttaaaatccgttaaagagttactagggatcacaattatggaaagaa

gttcctttgaaaaaaatccgattgactttttagaagctaaaggatataaggaagttaaaaaagacttaatcattaaact

acctaaatatagtctttttgagttagaaaacggtcgtaaacggatgctggctagtgccggagaattacaaaaaggaaat

gagctggctctgccaagcaaatatgtgaattttttatatttagctagtcattatgaaaagttgaagggtagtccagaaga

taacgaacaaaaacaattgtttgtggagcagcataagcattatttagatgagattattgagcaaatcagtgaattttcta

agcgtgttattttagcagatgccaatttagataaagttcttagtgcatataacaaacatagagacaaaccaatacgtga

acaagcagaaaatattattcatttatttacgttgacgaatcttggagctcccgctgcttttaaatattttgatacaacaatt

gatcgtaaacgatatacgtctacaaaagaagttttagatgccactcttatccatcaatccatcactggtctttatgaaaca

cgcattgatttgagtcagctaggaggtgactaa 

pLtetO-1 (promoter used to express dCas9) 

gttgacactctatcgttgatagagttattttaccactccctatcagtgatagagaa 
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