
Dual-context multicategories as models for

implicit computational complexity

Fedor Fomenko

Doctor of Philosophy

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh
2006

Dual-context multicategories as models for

implicit computational complexity

Fedor Fomenko

Doctor of Philosophy

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh
2006

Abstract

In this thesis we study dual-context type systems and their models. A dual-context type

system is one in which the context of a term is split into two parts, a normal part and
a safe part. This separation allows one to put different kinds of usage restrictions on

the two types of variable. For example, in implicit computational complexity, such a

separation is used to implement resource-free characterisations of complexity classes.
A similar separation between two kinds of variable occurs in type systems for linear

logic, where different structural operations are permitted in the normal and safe parts
of the context.

We start by defining two basic dual-context calculi II(X) and IL(X) of typed terms,
built using two kinds of free variables and dual-typed function symbols. In the IL(X)
calculus we use safe variables in a 'linear' fashion, forbidding any weakening and
contraction, while, in the II (X) calculus, contraction and weakening are allowed for
both safe and normal variables.

We then consider models for II(X) and IL(Z) with basic equational judgements.
Rather than following the traditional approach of encoding dual-contexts through ad¬
ditional structure on a category, we consider dual-context multicategories in which
dual-contexts are built into the definition. The main advantage this approach is that it
covers a wider class of models, including some particularly natural models from the
field of implicit computational complexity.

Next we enrich our basic calculi with different type constructions such as products
and sums and provide their multicategorical interpretation. We consider a dual-context
list type constructor together with a type-theoretic analogue of the safe recursion of
Bellantoni and Cook's system 03, which characterises polynomial time computability
on natural numbers. We define an interpretation for such dual-context lists using safe
list objects. We show that the polytime computable functions are exactly the functions
definable in every dual-context multicategory with safe binary list object.

Finally, motivated by the standard approach to the categorical interpretation of

primitive recursion using the notion of initial algebra, we develop a notion of safe ini¬
tial algebra, which generalises the safe recursion scheme and provides us with insights
about the choice of initial functions in system 93.

Acknowledgements
I am hugely grateful to my supervisor Alex Simpson who spent countless hours of his
time discussing and reading this thesis, shared his insights and helped me to overcome

difficulties. My second supervisor John Longley was invaluable source of moral sup¬

port and encouragement and helped me to shape a better understanding of some of
the problems I was trying to solve in this thesis. I am also very grateful to Gordon
Plotkin who gave many helpful comments on the subject of the thesis. I would like to

thank Masahito Hasegawa for invitation to RIMS Kyoto University where some of the
fundamental ideas of this thesis were conceived.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(Fedor Fomenko)

v

To my wife and parents for their trust and support

vi

Table of Contents

1 Introduction 1

1.1 Background 2
1.1.1 Dual Intuitionistic Linear Logic 2
1.1.2 Type systems for describing feasible computations 4

1.2 Contributions and outline of the thesis 9

1.2.1 Basic dual-context calculi 9

1.2.2 Semantics of basic dual-context calculi 11

1.2.3 Extending basic dual-context calculi 13
1.2.4 Chapter Outline 15

2 Basic dual-context type systems 16
2.1 Dual-typed signatures and dual-contexts 16
2.2 Basic dual-context calculus 11(2) 18
2.3 Basic dual-context calculus IL(E) 28
2.4 Basic dual-context calculi with safe substitution 32

3 Dual-context multicategories 37
3.1 Categorical semantics of II(E) 37
3.2 Dual-context Il-multicategories 44
3.3 Multicategorical semantics of 11(E) 50
3.4 IL-multicategories 56
3.5 R-Multicategories 59

4 Dual-context type constructors 67
4.1 Dual-context binding operators 67
4.2 Products in 11(E) 71
4.3 Sum types 78

vii

5 Safe dual-context lists 85

5.1 Single-context case 85
5.2 Dual-context lists in 11(E) 87
5.3 Extending safe dual-context lists 94
5.4 Representing system 93 98

6 Strong endofunctors and initial algebras 101
6.1 Strong endofunctors 101
6.2 Safe initial algebras 107
6.3 Flat recursion property 112

7 Conclusions and future work 115

7.1 Main results 115

7.2 Future work 116

A Single-context multicategories 119
A.l Monoidal multicategories 119
A.2 Cartesian multicategories 123

B Proofs for R-multicategories 127

C Single-context strong endofunctors 133
C.l Strong endofunctors on cartesian multicategories 134
C.2 Strong endofunctors on monoidal categories 137

Bibliography 140

viii

Chapter 1

Introduction

A type system provides a formal set of rules for dividing programs into classes called
types. A statement that a given program belongs to a given type can be formally written
as a typing judgement of the form T b t: cr, where T is a context, t is a term, representing
the program and o is a type.

Usually the context for a term is a sequence of typings of the formal :Ci,...,xn:an

where each typing x-L : o,- assigns the type a, to the variable x,-. Variables themselves
are terms, which can be typed using the following rule:

Y.xj: Oj,A\-Xi: a,

There are special rules whose purpose is to allow different manipulations on the
context of a term. Such rules are called structural and play an important role. For

example, the following rule allows one to introduce a new typing (such an operation is
called weakening):

xi . cti,... ,xn . on h~ t. p

x\ :Gi,...,xn:an,y:x\-t:p
Other examples of structural rules include the exchange rule which allows the permu¬

tation of typings in a context and the contraction rule for replacing a variable in a

term by another variable of the same type. There are interesting type systems in which
some of these structural rules are forbidden or restricted in some way. One well-known

example of such a type system is associated with Girard's linear logic [Gir87],
In this thesis we shall be studying type systems with contexts which are divided

into two parts. Such contexts will be called dual-contexts. A typing judgement in such

type systems will have the following form:

x\ : cti,...,xn . Gn, yi . T],... ,ym . xm F t. p

1

2 Chapter 1. Introduction

where the separator ; is used to divide the dual-context into two parts.

Situations when it is convenient to divide variables into two classes with different

properties are quite common. For example, a number of type systems with two kinds
of variables were studied in the logic programming community [Mil94, HM94, PH94,
HPW96],

In a dual-context setting we can consider type systems with different structural
rules allowed for the different kinds of variables. We shall see several examples of
such systems in this thesis. In this chapter we shall discuss why are we interested
in dual-context type systems, give a few examples of such systems and outline our

approach and main results.

1.1 Background

In this section we will present the relevant background for our research. We start with a

brief description of a dual-context type system for the intuitionistic linear logic which
is called DILL. This type system will be our main motivational example. Then we shall
describe a functional system with a restricted recursion scheme, called system Q3which
characterizes polynomial time computability on the natural numbers. The restrictions
used to achieve it are formulated using the separation of variables into two kinds. One
of the type systems studied in this thesis will be developed following the ideas behind
the system 03.

1.1.1 Dual Intuitionistic Linear Logic

In this section we shall briefly describe a type system in which dual-contexts are used

explicitly. This type system is called DILL which stands for 'dual intuitionistic linear
logic' and is a dual-context natural deduction formulation of intuitionistic linear logic
[Gir87]. It was developed by Barber and Plotkin [Bar96b, Bar96a].

The set of types in DILL consist of some basic types, unit type I, monoidal product

types o (g> x, linear function types a —° x and exponential types !cr. A dual-context
is a pair of sequences of typings, written as x\ : G\,... ,xn : cn ; y\ : X\,... ,ym : Xm.

The variables x\,... ,xn are called intuitionistic and the variables yi,... ,ym are called
linear.

A typing judgement of DILL has the following form:

x\ cti,... ,xn • on; yi : X\,... ,ym : xm l~~ t: p

1.1. Background 3

We shall be mostly interested in the different structural rules, which are admissi¬
ble in DILL, since these rules illustrate the use of dual-contexts. We start with the

rules which are used for typing of intuitionistic and linear variables. Note that in the
intuitionistic case the typing context does not contain any linear variables:

Int-Ax Lin-Ax
r,x:a;h;c:a r;y:xhy:x

For the intuitionistic variables the following weakening and contraction rules are

admissible in DILL:

T;AFf:p T,x : o,z : o; A h t: p

r,x:a;AI-t:p r,*: a; A h t[x/z\ : p

where t[x/z] denotes a substitution of the variable jc for the variable z. The usage of the
linear variables is more restrictive and the weakening and the contraction rules for the
linear variables are not admissible.

We have seen how the substitution operation was used in the contraction rule above.
In fact the contraction rule is a special case of a general substitution rule, which de¬
scribes how the operation of substituting of a term for a free variable in another term
is typed. Since we have two kinds of variables in the dual-context setting we also have
two kinds of substitutions. The substitution for a linear variable in a term is typed by
the following rule:

T;Aih^:a T; A2,y : o h t: x

T; A]#A2 h t[s/y\ : x

where A|#A2 is an arbitrary sequence of typings obtained by concatenation of typings
from Ai and A2 in any order. As a special case of linear substitution the following rule
is admissible:

T; x : a,A h t: p

T,x : a; A h t: p

This rule allows one to change the kind of variable from safe to normal.
Substitution for an intuitionistic variable is described by the following rule:

T; h s : a T,jc : a; A h t: x

T; A h t[s/x] : x

Note that the term s must not contain any linear variables. This is a fundamental
restriction which can be understood intuitively as follows. Intuitionistic variables can

be used liberally in a term while the usage of linear variables is limited. If we allow
substitution of a term which contains linear variables for an intuitionistic variable then

it would be possible to violate the linearity restrictions.

4 Chapter 1. Introduction

One of the benefits of DILL compared to the single-context formulations of ILL
see e.g. [BBHdP93b, BBHdP93a] is the handling of the exponential !, which makes
the substitution rules given above admissible. See [Bar96b] for a thorough comparison
of the two approaches.

A sound and complete interpretation of DILL can be given using linear/non-linear
models [Ben95] which consist of a cartesian closed category C, a symmetric monoidal
closed category M and a pair of strong monoidal functors F : C —» M and G : M —» C,
which form a monoidal adjunction G b F. Such models generalise previous notions of
models of linear logic [Bie94, See89, Laf88].

The interpretation works as follows. Assume a function which maps every basic

type o to an object [c] G |M|. This function can be extended to give an interpretation
of non-basic types using the structure of linear/non-linear model. Then every DILL
term x\ : 0\,... ,xn : <5n; y\ : Tj,... ,ym : lm b t: p can be interpreted as a morphism

FG([giJ) ® • • • ®FG([o„]) ® [i,] • • ■ ® M fp]

Another possible interpretation of DILL uses linear categories [BBHdP93a], which
consist of a symmetric monoidal category L together with a symmetric monoidal
comonad ! : L —» L satisfying several additional conditions. Benton [Ben95] showed
that linear/non-linear models and linear categories are equivalent.

The important features of DILL can be summarized as follows:

• The terms of DILL contain two kinds of free variables, which are typed in the

separate parts of contexts.

• The substitution in DILL is restricted - no terms which contained free linear

variables were allowed to be substituted for the intuitionistic variables in other

terms.

• The weakening and the contraction rules are admissible only for the intuitionistic
variables.

In this thesis we shall describe a syntactic framework for describing a general dual-
context type system with the same of restriction on the substitution but a different set

of structural rules.

1.1.2 Type systems for describing feasible computations

In this section we shall see another example of a dual-context system. This system

will exhibit several features of DILL, which we described in the previous section.

1.1. Background 5

In particular, two kinds of variables will be considered and the substitution will be
restricted in the same way. One difference compared to DILL will be that weakening
and contraction will be allowed for both kinds of variables. Another distinction is that

this system is untyped. Before we describe this system, we briefly describe it's origin.
Traditional models of computability such as Turing machines or recursive functions

describe computations which may not terminate in general. Even when a computation
is terminating it may require enormous amount of time or memory in order to produce
a result even for inputs of small size. So such traditional models are too powerful to

describe precisely feasible or practically possible computations.
A number of restrictions have been suggested for delineating computations which

can be regarded as feasible. The most direct approach is to restrict the execution time
of a Turing machine by a polynomial. In such model a machine working on any input
must terminate in a number of steps which is less than a value of a of some polyno¬
mial in the length of input written in binary notation. Any machine for which there
exist such polynomial is called polynomial time computable (polytime computable for
short). The class of polytime computations has some interesting properties and is an

important topic of research in complexity theory.
A number of very different models were proposed for describing the notion of gen¬

eral computation. It was shown that all of them are equivalent which suggests a thesis
that they adequately formalize the notion of computation. It is therefore natural to ask
if we can find an alternative equivalent models for describing polytime computations.
Such models would suggest that polytime computability is a good formalization of
feasible computations.

Let us consider the class of computable functions called primitive recursive func¬
tions. This class can be described as the smallest class of functions containing some

initial functions and closed under function composition and the primitive recursion
scheme, which allows one to define a new function / from given functions g and h by:

/(0,=g(x l,...,Xn)

f(n + \,xi,... ,xn) = h(n,x\,x„,f(n,xi,... ,xn))

In this setting we can take the length of f(a\,...,an) written in binary notation as

lower bound for the execution time of the function on inputs a\,...,an. This length will
be denoted as \f(x)\ and we will write \x\ for \x\| H b |.xn|. We can find a primitive
recursive function f for which there does not exist a polynomial p such that |/(Jc)| <
p(\x\). So the model of primitive recursive functions is too powerful to describe exactly

6 Chapter 1. Introduction

the polytime functions.
Cobham [Cob65] suggested replacing the primitive recursion scheme by the fol¬

lowing bounded recursion on notation scheme, which defines the function / from the
given functions g, h and k:

f(0,x) = g(x)

f(n+l,x) = h(n,x,f([n/2\,x)

f(n,x) < k(n,x)

The function / is defined by this scheme if the bounding condition f(n,x) < k(n,x)
is satisfied for all n. Cobham proved that the class of polytime computable functions
is the smallest class of functions containing various initial functions and closed under
function composition and the bounded recursion on notation schemes. Among the
basic functions are projections, binary successor functions, parity, integer division by
2, conditional, the constant 0 functions and the smash function xQy = 2W'ly|. The role
of the smash function is to provide large enough bounds in order to get the bounded
recursion of the ground.

Cobham's scheme provides an equivalent model for describing polytime compu¬

tations but is difficult to work with. One has to come up with a bounding function
in order to use the bounded recursion scheme. Verifying that a particular definition is
valid is in general undecidable. Cook and Urquhart [CU93] suggested changing the
semantics of bounded recursion to cut off at size overflow:

f(x,y) = min{k(x,y),h(x,y,f([x/2j,y))}

A more principled approach, avoiding boundary functions entirely, was proposed
by Bellantoni and Cook [BC92], who considered functions on the natural numbers
with two kinds of inputs. Such functions are denoted as f(xi,... ,xn; yi,... ,ym). The
variablesare called normal and the variablesyq,... ,ym are called safe.

Definition 1.1.1 (Bellantoni-Cook).
The class 93 is the smallest class of functions on the natural numbers with two kinds

of inputs containing:

• The zero function 0

• Projections 1, • • • ,xn+m) = xj

• The binary notation successor functions sf;a) = 2a + i, for i G {0,1}

1.1. Background 7

The binary notation predecessor function p(;x) = \x/2\

The conditional function

C(-,x,y,z) =
y if x is even,

z otherwise

and closed under:

• Given functions h, s\,...,sn and in 23 the following safe composition
scheme defines a function in 03 as well:

f(x;y)=h(s(x;);t(x-,y))

where s(x;) is an abbreviation for s\ (x~,),... ,sn(x;).

• Given functions g, ho and h\ in 23 the following safe recursion on notation
scheme defines a function in 23 as well:

f(0,x;y)=g(x;y)

f(z,x;y) = h0(z,x;y,f(\z/2\,x\y)) z > 0 and z is even

f(z,x;y) = h] (z,x\y,f(_z/2\,x\y)) z > 0 and z is odd

The main theorem about the system 23 can be stated as follows:

Theorem 1.1.2 (Bellantoni-Cook). For any f(x;y) e 23 the following holds:

• f is bounded by a monotone polynomial pf

\f(x;y)\ < Pf(\x\) + max |y;-j
j

• f is polytime computable

• Ifg : N" —> N is a polytime computable function then g(x\,..., xn\) E 23

It is worth emphasizing the following 'structural' features of the system 23:

1. Using the safe composition and projection functions we can perform the follow¬

ing manipulations with an /' e 23:

8 Chapter 1. Introduction

• Add dummy normal and safe inputs
Given f{x\y) we can define the following function:

/' (x, u; y, z) = /(ttj1'° (x, u;)n]'2 (x, u; y, z))

The introduction of a safe dummy variable also works if / has only normal
inputs

f\x;y) = /(jcJ'°(x;);)

Similarly for / with no inputs at all /'(•*; y) =/(;) is a valid function
definition by safe composition.

• Copy normal and safe inputs
Given f(u, v; z, w) we can define the following function:

f'(u;z) =/(7tj'°(w;),jc|'°(m;); z),j^'°(m; z))

• Shift normal inputs to safe inputs
Given /(; y) we can define the following function:

f'iy\) =/(jcl,0(y;);)
Note that the restriction on safe composition prevents shifting safe inputs
to normal.

2. The restrictions on safe composition prevent the substitution of functions de¬

pending on safe variables for normal variables.

3. The successor functions, the predecessor function and the conditional function
are all defined with safe inputs. Since we can shift normal inputs to safe we can

also define same function with normal inputs.

4. In the safe recursion scheme the argument of recursion must be normal and the
recursive value is substituted into the safe position. This feature together with
the restriction on composition (point 2 above) prevents nested recursions.

Another characterisation of polytime computability on the natural numbers was

given by Leivant and Marion [Lei93, LM93]. Instead of just two sorts of inputs in
functions they assigned a natural number called tier to every input of a function and
to the function itself. A function of tier k can be substituted for an input of tier I only

1.2. Contributions and outline of the thesis 9

if I < k. In their version of recursion on notation scheme a tier of a function defined

by recursion should be lower than a tier of the recursion variable. All the polytime
computable functions on the natural numbers can be defined using the zero function,
projections and successors available on all tiers and the composition and the recursion
schemes just outlined. Hofmann [Hof97] showed that this approach is a generalisation
of Bellantoni and Cook's approach. Otto [Ott95] defined a categorical framework
based on Leivant's system, in which polytime computable and Kalmar's elementary
functions on the natural numbers could be characterised.

The system 93 presented in this section allows one to describe polytime computa¬

tions on the natural numbers without any references to polynomial bounds and is easy

to work with. It shares two features with DILL type system described earlier. First,
the functions definable in the system 03 have two kinds of inputs. Second, the function

composition scheme is restricted in such a way that no function with safe inputs can be
plugged into a normal input of another function. The main structural difference com¬

pared to DILL is that it is possible to duplicate safe arguments and introduce additional
safe arguments in function definitions.

1.2 Contributions and outline of the thesis

In this section we shall briefly describe our contributions and outline the structure of
the rest of the thesis. We start with a brief description of two dual-context calculi of
terms. Then we shall outline our approach to semantics of dual-context-calculi based
on the notion of dual-context multicategory. Finally consider possible extensions of
dual-context calculus and in particular extension with the safe natural numbers type.

1.2.1 Basic dual-context calculi

In this section we shall give a brief description of dual-context calculi we are inter¬
ested in. Earlier in this chapter we presented DILL, a dual-context type system with
a sophisticated set of types, including monoidal products, linear functions and expo¬

nentials. In the first half of this thesis we shall consider much simpler dual-context

systems, which have only the basic types.

Similar to DILL, our calculi will operate with typing judgements of the following
form:

x\ :c,...,xn:cn;y\ ,ym :xm\~t:p

10 Chapter 1. Introduction

where a,-, Xj and p are basic types and t is a term. Following Bellantoni and Cook we
shall refer to the variables jq,... ,jcn as normal and to the variables yi,... ,ym as safe.

Pre-terms of our calculi will consist of two kinds. First, the terms of the form xi,

where jc,- is a variable. Such terms can be typed using the axiom rules, which are similar
to the axiom rules of DILL. Second, the terms of the form f{t\ ,...,tn\s\,...,sm), where
ti and sj are terms and / is a function symbol. The first n arguments of / will be called
normal and the remaining m arguments will be called safe. Each argument is assigned
a type. Function symbols come from a signature, which also contains a set of basic
types. Each dual-context calculus we define in this thesis will be given for a particular
signature.

Since our dual-context calculi have only basic types, we will focus our attention
on the structural properties of such calculi. A first important structural property is
the form of term substitution that can be typed. In DILL any term which depends
on linear variables can not be substituted for intuitionistic variables. On the other

hand substituting a term depending on intuitionistic variables for a linear variable is

perfectly legal. We have seen the same kind of restriction in Bellantoni and Cook's safe
composition scheme. In the dual-context calculi we consider in this thesis, substitution
will be restricted in the same way. This restriction can be motivated as follows. Safe
variables are usually used in a special way in a dual-context calculus. For example,
a calculus may have a limited set of structural rules for safe variables, so that any

argument which is passed via a safe variable can not be duplicated. If substitution is
not restricted then it would be possible to violate such kind of limitations of usage.

Even with restricted substitution, we have many different choices for the possi¬
ble admissible structural rules. In this thesis we will consider two basic dual-context

calculi:

1. The 11(E) calculus in which weakening and contraction for both the safe and the
normal variables will be admissible. This calculus will have the same structural

properties as Bellantoni and Cook's system 23.

2. The IL(E) calculus in which weakening and contraction will be admissible for
the normal variables only. This calculus will be essentially the structural core of
DILL.

After considering two examples of basic dual-context calculi with restricted sub¬
stitution and different stmctural rules, we develop a framework in which both of these

1.2. Contributions and outline of the thesis 11

calculi and many others can be described. The main idea is to consider structural rules
as basic rather than as admissible rules.

We observe that many structural rules can be described via renamings, which are

functions between the dual-contexts, mapping variables in one dual-context to vari¬
ables in another dual-context while preserving types of variables. The renamings can

be thought of as primitive substitutions where only variables can be substituted. A class
of such renamings, which satisfy some closure conditions, can be used to describe a

set of admissible structural rules in a dual-context calculus.

Our syntactic framework for describing dual-context calculi will be based on the
dual-context calculus LL(£) in which both the safe and the normal variables will be
treated linearly. Adding to such calculus structural rules, described by a particular set
of renamings we obtain another dual-context calculus. For example, one can construct

in this way two calculi which are equivalent to the previously considered III(£) and
IL(£). Many other variations are possible too.

1.2.2 Semantics of basic dual-context calculi

Our approach to semantics of dual-context type systems is different from the one taken
in DILL and is based on a modified notion of multicategory. One reason for such a

choice is the fact that the semantical model of DILL does not scale down very well to
our calculi, which have no type constructors.

To explain our approach we consider how it works in a single-context case. Con¬
sider a many-sorted signature £ which contains a set of basic types |£| and a set
of typed function symbols f : oi... o„ —» x, where ai,..., a„ and x are basic types

from |£|. Contexts over this signature are just sets of variable typings of the form
x\ : O],... ,xn : o„. Pre-terms are either variables or function applications f(t\
where t\,..., tn are pre-terms and / G £ is a function symbol.

Given a signature £ the calculus /(£) has the following typing rules [JacOl]:

T h t\ : Oi ... TI-tn:an
x\ : <71,... ,xn : on \~ Xi'. Oi T F f{t\,. • • , tn): x

It can be shown that the standard structural rules, namely exchange, weakening and
contraction, are admissible in this calculus.

The standard categorical semantics of I(£) can be given using a category with finite
products C. We start with an interpretation of the basic types as objects of C. Since
contexts are sets of typings we need to assume an ordering on the variables, so that

12 Chapter 1. Introduction

contexts can be turned into sequences of typings. Then we can interpret any context
x : Gi,.. .xn : Gn as an object [oi] x • • • x [o„]. Given a term t, typed by the following
judgement x: 0\,...xn:on\-t:T,'we interpret it as a morphism |aj x • • • x |a„J —» [[x].

The disadvantage of this approach is that it requires a cartesian category thus lim¬

iting the class of structures in which 1(E) can be interpreted.
Instead of assuming finite products, a more direct approach is to use a multicategory

[Lam89, HerOO, Lei04], In Appendix A we give a definition of cartesian multicategory.
Like an ordinary category, a cartesian multicategory has of a set of object but instead
of morphisms with objects as domains and co-domains it has multiarrows which have

sequences of objects as domains and objects as co-domains. The multiarrows are de¬
noted as a\... an —> b. Identity morphism are replaced with projection multiarrows of
the form a\... an —> at and the composition operation has the following signature:

n

M(fl! ...an,b) x |~[M(fci ...bm,di) -*M(b\...bm,b)
i= 1

where M(«i...an,b) denotes set of all the multiarrows with the sequence a\. ..an as

domain and object b as co-domain. The composition is written as fo (g\,... ,gn).
We also need symmetry maps of the form a : M(ai.. .an,b) —> M(a0(^ . ,.ac^,b)

for each object b, each sequence of objects a\ ...an and each permutation a.

Given a cartesian multicategory, we interpret the basic types as objects of multicat¬
egory. Assuming an ordering on the variables we can model any term x\ : 0\,...xn:

on h t: x as a multiarrow [ci|... [an] [x]. Showing the soundness of such an in¬
terpretation is easy. We can modify the standard completeness proof for this setting
and construct the term multicategoty, which is possible even without products, since
contexts are considered as primitive and we do not need products in order to model
them.

In the dual-context setting the story is very similar. Barber's approach involving
linear/non-linear models can be modified to provide a sound interpretation of the IL(Z)
calculus. A categorical semantics for the 111(2) calculus can also be done with appro¬

priate modifications. But such categorical interpretation will suffer from the same

drawback we described earlier. It requires a category with sophisticated structure thus
limiting our choice of models.

In this thesis we will develop multicategorical semantics for dual-context calculi
based on the notion of dual-context multicategory, which has multiarrows with dual-
contexts as domains. First, we will consider two variants of dual-context multicate-

gories, which will be used for giving a sound and complete interpretation of the 11(2)

1.2. Contributions and outline of the thesis 13

and the IL(E) calculi. Then we will consider a general notion of multicategories with
renaming and show that the first two definitions are instances of it. Such multicate¬

gories with renamings can be used to give a sound and complete interpretation of any

dual-context calculus described by our syntactic framework.

Advantages of using dual-context multicategories

The multicategorical approach to the semantics of the dual-context types systems has
several advantages. Such an approach provides a complete interpretation of the ba¬
sic dual-context calculi unlike the traditional approach which is more suitable for the
dual-context type systems with tensor products and exponentials. Moreover, for such
extended type systems it is possible to show that our multicategorical approach in¬
cludes the traditional approach as a special case. Thus the multicategorical approach
is more general than the categorical one. Indeed the multicategorical approach allows
one to interpret basic dual-context calculi in a broader range of models. In particular,
for the interpretation of the single object variant of 11(E) calculus we can use a set of
polytime computable functions on natural numbers, which satisfy the Bellantoni and
Cook's invariant:

\f(x;y)\ < pf(\x\) + msL\ \yj\

where pf is a monotone polynomial and | — | denotes length in binary notation. Such
an idea will be the basis for important examples of dual-context multicategories con¬

sidered in this thesis, specifically multicategories B and H in chapter 3.

1.2.3 Extending basic dual-context calculi

The language of simple dual-context calculi is very basic. It can only describe terms
which are either variables or applications. We can extend it with different type con¬

structors, like products and disjoint sums. Functions and exponential types are not

covered in this thesis and remain one of the possible directions of future work.
We will perform the extensions mainly for the 11(E) calculus since this calculus is

particularly interesting for us because of its relation with the system 03.
We start by extending the 11(E) calculus with products. In the dual-context setting

several different variants of products can be defined. We consider normal and safe
products and provide a systematic way of building a sound multicategorical interpreta-

14 Chapter 1. Introduction

tion for these two extensions. In the similar fashion we extend 11(E) with two different
variants of disjoint sums and provide a sound multicategorical interpretation for them.

Then we shall consider an extension of the 11(E) calculus with the dual-context safe
list type with an elimination rule describing safe recursion of Bellantoni and Cook. We
will show the polynomial time computable functions on natural numbers can be defined
using such an extension of the 11(E) calculus. In this way we will build a typed variant
of Bellantoni and Cook's system 23. A sound multicategorical interpretation of safe
dual-context list type will be given using the notion of safe list object.

The safe recursion of system IB can be regarded as one of many different possibil¬
ities of extending the primitive recursion scheme to a dual-context setting. Bellantoni
and Cook showed that the restrictions of the safe recursion scheme were sufficient in

order to avoid the definability of non-polytime computable functions. Is this just a

coincidence or does safe recursion have deep fundamental significance? In the case of

primitive recursion, it has been long known that it is not an ad-hoc definition mecha¬
nism, but one that arises naturally in several different contexts. For example in logic,
the primitive recursive functions are exactly the definable functions in several dialects
of arithmetic, including /Ei (arithmetic with induction over E° formulae). In category

theory, which is a quite different setting, a simple parameterized version of Lawvere's
notion of natural number object again yields exactly the primitive recursive functions
in categories with finite products [LS86, Rom89]. The notion of parameterized natural
number object can also be defined for categories with monoidal product [RP89].

The account of primitive recursion through parameterized natural number object
is particularly attractive. Parameterized natural number objects can be recast as para¬

meterized initial algebras for the strong endofunctor 1 + (—) which suggests a general
method of adapting primitive recursion to other algebraic datatypes, as parameterized
initial algebras for other endofunctors. This route has been followed extensively, for
example in [CS92, CS95, Hag87a, Hag87b, Jac95].

To end the thesis, we consider a similar possibility for safe recursion. We define a

notion of safe endofunctor on a dual-context multicategory and we show how safe list
object can be viewed as a suitable kind of initial algebra for an appropriate strong endo¬
functor. Thus safe recursion does potentially generalise naturally to other endofunctors
and hence other data-types.

1.2. Contributions and outline of the thesis 15

1.2.4 Chapter Outline

This section provides a brief outline of content of remaining chapters:

• In Chapter 2 we define basic-dual-context calculi 11(2) and IL(2) and study
their structural properties. Then we present a framework for describing dual-
context calculi, which consists of the LL(2) calculus and renamings. We show
how equivalent formulations of the 11(2) and the IL(2) calculi can be obtained
in this framework.

• In Chapter 3 we develop semantics of the basic dual-context systems defined in
the previous chapter. We start with modifying the linear/non-linear models of
DILL to give sound interpretation of the 11(2) calculus. We then define notions
of II-multicategory and IL-multicategory and give sound and complete interpre¬
tations of 11(2) and IL(2). We present examples of II- and IL-multicategories,
which are built out of polytime computable functions, satisfying some additional
conditions. After this we develop a notion of R-multicategory, which generalizes
II- and IL-multicategories.

• In Chapter 4 we extend 11(2) and EL(2) with products, sums and terminal ob¬
jects. In the dual-context setting these constructions have several variations, for
which we give sound interpretation using dual-context multicategories with ad¬
ditional structure.

• In Chapter 5 we extend 11(2) with a safe binary list datatype and provide a

sound interpretation of this extension in an II-multicategory equipped with a

safe binary list object. We show that every function from the system 03 can

be represented in an Il-multicategory with safe binary list object and that the
polytime computable functions are exactly the normal functions representable in
every Il-multicategory with safe list object.

• In Chapter 6 we define the notion of strong endofunctor on Il-multicategory.
Then a notion of the safe initial algebra for such endofunctors is considered.
We show that such safe initial algebra generalises the notion of safe binary list

object.

Chapter 2

Basic dual-context type systems

In this chapter we present a syntactic framework which describes a wide class of dual-
context type systems. We start with the basic calculus of terms in which weakening and
contraction is allowed for both the safe and the normal variables. Then we consider a

modified variant in which weakening and contraction are allowed only for the normal
variables. Finally we present a dual-context calculus with renamings which can be
instantiated to obtain an equivalent formulations many different dual-context calculi.

2.1 Dual-typed signatures and dual-contexts

This section contains preliminary syntactic definitions which will be used in dual-
context type systems. We start with dual-typed many-sorted signatures.

A standard many-sorted signature £ contains a set of sort symbols |£| and a set
function symbols each of which is assigned a type of the form G\... on —> 1, where

Gi,..., on and x are sorts from |£|.
We shall be working instead with function symbols with types of the form

CJi ... (5n , X\ ... Xm *■ p

Such function symbols will be called 'dual-typed'.

Definition 2.1.1 (Dual-typed many-sorted signature).
A dual-typed many-sorted signature £ is a pair (S, F) where 5 is a set of symbols
called basic types and F is a set of dual-typed function symbols

f . O] ... <Jn , T i ... Tm > p

where 0\,... ,on,X]. ,xm,p are basic types from S.

17

18 Chapter 2. Basic dual-context type systems

Remark 2.1.2. Since all the signatures used in this thesis are going to be dual-typed

many-sorted we shall refer to them as just 'signatures' dropping the 'dual-typed many-

sorted' part.

We now assume a countably infinite set of variables Var ranged over by x,y

Given a signature X, a typing is a pair x : o where x G Var is a variable and a G |X| is
a basic type from X.

A dual-context (d-context for short) is a pair of sets of typings which will be
written as [x\ : Gi,... ,xn : C7„ ; yi : Ti,... ,ym : im] subject to the condition that any

variable can appear in a d-context in at most one typing. D-contexts will be ranged
over using capital Greek letters such as T; A or Id; 0. Quite often we shall use just
the abbreviation T; A assuming that it stands for the d-context [jci : Gi,... ,xn : on ; yi :

tl i • • • j ym • tm\-
The variables x\,...,xn from the left part of a d-context will be called normal and

the variables yi,... ,ym will be called safe. A d-context without safe variables will be
called a normal d-context. We shall use the notation T(x:) for the type of a normal
variable x from the d-context T; A and A(y) for the type of a safe variable y.

Given two d-contexts with disjoint sets of variables

Ti; Aj =[vi : ai,..., v„ : on; u\ : ,..., um : tm]
r2; A2 =[x\ :pi,...,xk:pk-,y\ : £i,...,y/: £/]

we can union them together to get a new d-context

rj,r2; Ai,A2 =[vi : : on,xi : pi,...,** : p*;

u\ . Ti,...,um . xm,yi . 5... jy/ • ^/]

We shall use the notation Ti,... ,T„ ; Ai,..., A„ for denoting the union of n mutually
disjoint d-contexts.

Given a signature X we define pre-terms over X as follows:

tx | f{t\,...,tn,u\,..., um)

where t\,..., tn, u\,..., um are pre-terms, x is a variable and / G X is a function symbol
with type cti ,..., on; Ti,..., Tm -> p.

We can substitute variables in a pre-term with other pre-terms using simultane¬
ous substitution denoted by t[si/x\,...,sic/xic], where t,s\,...,sk are pre-terms and

2.2. Basic dual-context calculus HI(I) 19

xi,...,xk are distinct variables. Substitutions will be abbreviated using small Greek
letters a, P,a. Simultaneous substitution is defined as follows:

x if t = x and x ^ Xi for every 0 < i <n

t[a] = < s; if t = Xi

J(ui[a],...,uk[a\; vi[a],...,v/[a]) if t = f(u\,...,uk\ vi,...,v/)
where a = [51 /x\,..., sk/xk].

Since we do not have any binding constructions any variable in a pre-term is free.
We write FV(t) for the set of free variables.

Lemma 2.1.3. The simultaneous substitution satisfies the following properties:

t[]=t

t[a,x/x] — t[a]

t[a,u/x\ = t[a] ifx ^ FV(t)

t[ui/xi,...,un/xn][a] =t[u\[a]/x\,...,un[a}/xn] if FV(t) = {xu..'.,xn}

Proof. Induction on the structure of t. □

2.2 Basic dual-context calculus II(£)
In this section we shall present the basic dual-context calculus II(S) for a given signa¬
ture Z and study its properties. A typing judgement of II(S) will have the following
form:

T; A h t: a

where T; A is a d-context over Z, t is a pre-term over Z and a 6 |Z| is a basic type.

Definition 2.2.1.

The rules of H3(Z) are as follows:

II-S-Ax II-N-Ax
r;A,y:Thy:x T,x:a;AI-^:a

for any symbol / : ct]... o„; Xi... %m —> p G Z
T; \-t\ : Oi ... T; \~tn : on

r, A F .Si . X] ... r, Ah Stn . Tin

r; Ah/(ti,.s\,...,sm): p
Il-Sort

20 Chapter 2. Basic dual-context type systems

A pre-term t is an 11(E)-term of type o in a d-context T; A if T; A b t: a can be derived
in 11(E). Any 11(E)-terms of the form T; b t: a will be called normal.

Note the following important features of the II-Sort rule:

• The terms t\,..., tn are required to be normal.

• For a function symbol / : Gj,..., on ; —> p the corresponding II-Sort rule is

r, hti. a, ... r, i— tn. on

r; Ah ..,fn;): p

where A is arbitrary such that T; A is a valid d-context. Similarly for a function

symbol / with the type ; —> p the II-Sort rule looks as follows

r;Ab/(;):p

where T; A is an arbitrary d-context. Normally we shall treat such a zero-

argument function as a constant and write simply / instead of /(;).

The following proposition lists two important properties of the 11(E) calculus. The
first one is the unique derivation property which enables us to drop any distinctions
between an II(E)-term and it's derivation. The second property states that every free
variable in an II(E)-term must be typed in the d-context of that term. Since we have
an implicit weakening built into the II-Sort rule we can encounter situations when a

variable appears in the d-context T; A but not among free variables of the term t such
that T; A h t : a. Also we may see multiple appearances of the same variable in an

II(E)-term.

Proposition 2.2.2.

• Any typing judgement F; A h ; : o which can be derived in 11(E) has a unique
derivation.

• If a judgement T; A h t: a can be derived in 11(E), then every free variable oft
appears in the d-context T; A

Proof Induction on the structure of the pre-term t. □

We shall now investigate the structural rules, which are admissible in the 11(E)
calculus. We start with typing rules for substitution since many other structural rules
can be seen as special cases of substitution.

2.2. Basic dual-context calculus 11(E) 21

In the dual-context setting we have two kinds of substitutions. We can substitute
for a safe variable as follows:

T; A b t: 0 T; y : 0, A b ,s : x

T; A b sjf/y] : x

This substitution rule is admissible as we shall see below. On the other hand, the

following substitution rule for a normal variable is not admissible in 11(E):

T; Ab t: 0 r,jc:a;Ahi:x
T; Ah s\t/x\ : x

The reason for that is the restrictions we pointed out in the II-Sort rule. Only the

following restricted substitution is admissible for normal variables:

T; \~t: 0 T,jc: a;Ahi:x
T;Ah s[t/x] : x

Such 'unary' substitution rules are consequences of the following more general 'si¬
multaneous' substitution rule:

x\ . (J],... fxn . (5n, yi . Xi,... ,ym . xm b t. p

r;hwi:oi ... T; h h„ : o„

r, Abv! :xi ... r, A I- vm . xm
———

7 7 7 t t II-Subst
r; A b t[u\/x\,... ,un/xn,v\/y\,... ,vm/ym\ :p

This rule has two special cases which are worth mentioning. The first one is when the
term t is normal. In this case the II-Subst rule looks as follows:

x1:ch...,xn:cn;\-t:p
r,hH].0| ... r, hun.0/2

r; \\-t[u\/x\,...,un/xn] : p

where A is arbitrary such that T; A is a valid d-context. Another special case is when
both n and m are equal to 0:

; h~ t : p
T; A h t: p

where T; A is any valid d-context.

Comparing the substitution typed by the II-Subst rule with the safe composition
scheme from the Bellantoni and Cook's system 93 (see the definition 1.1.1 on page 7)
we can see that they are identical. We shall thus refer to such substitutions as safe.

In order to prove the admissibility of the II-Subst rule we need the following
lemma, which shows that we can perform weakening of safe contexts for normal terms.

Proposition 2.2.3. If T; h /: p then T; A b t: p for any A.

22 Chapter 2. Basic dual-context type systems

Proof. By induction on the derivation of Y; b t: p:

• The II-S-Ax case does not apply and the II-N-Ax case is trivial.

• In the II-Sort case we have t = f(u\v\,...,vm). Assume that m ^ 0.
Then t was derived using the following terms:

T; b u\ : CTi ... F; b un : on

r.hvi :xi ... r,h vm. Tm

By applying the induction hypothesis to v\,..., vm we get

r,Abvi .xi ... r, Ab vm.xm

and by the II-Sort rule we get

r; A b /(«],..., un; VI,..., vm): p

This proof works also for the case m = 0.

□

We can now show the admissibility of the II-Subst rule.

Proposition 2.2.4. Il-Subst is admissible in 11(2).

Proof. The proof will be by induction on the derivation of II; 0 b t: p where Ft; 0 =

[xj : o\,... ,xn : on;y\ : Xi,... ,ym : xm]. We shall abbreviate the substitution as follows:

a = u\/x\,...,un/xn

P = v\/y\,...,vm/ym

• In the II-S-Ax case assume t =yj. By the definition of the substitution X/[°b P] =

vj and know that T; A b Vj : Xj.

• In the II-N-Ax case assume t = jq. By the definition of the substitution XiW-, P] =

ui. We know that T; b ui: a,-. Then by Lemma 2.2.3 we get T; A b w, : Gi-

• In the II-Sort case suppose that t = f(s\,..., si; t\,..., tf) ■ Assume k 7^ 0. We
have the following IlI(Z)-terms:

n; b s\ : X.i ... Ft; b 5/: A,/

n; 0 b : 0, ... n;0btt:0t

2.2. Basic dual-context calculus 11(E) 23

Applying the definition of the substitution we have

=/(si[a,p],...,j/[a,p];ri[a,p],...,^[a,p])

Since T; h Si: A,- then Si does not contain variables y\,... ,ym so sfa, P] = Si[a].
Using the induction hypothesis we get

r; h 51! [a]: A] ... T; h s/ [a] : A/
T; A h ti [a,P] : 0] ... T; A h tk[a,P] : 0/t

Applying the II-Sort rule we get

T; Ah/(si[a],...,j/[a];fi[a,P],...,ft[a,P]): p

□

In a sense the II-Subst rule describes all the structural rules of our system. This
was our main motivation for introducing it instead of usual unary substitution rule. The
following proposition shows how other common structural rules can be derived from
the II-Subst rule:

Proposition 2.2.5. The following rules are admissible in 11(E):

T; x : c, A h t: p

T,x : ct; A b t: p
Shift

T; A b t: p

T; A ,y :obf:p
S Weak

T; A b t: p

T,x : a; A b t: p
N Weak

T; A,y : x,z : T h t : p S-Contr
T,x : o,z : cr; A b t: p N-Contr

T; A,y : x h t[y/z\ : p T,jc : a; Ah t[x/z]: p

Proof. All these rules turn out to be the special cases of the II-Subst rule. For each
rule we show how the appropriate premises of II-Subst rule can be derived either from
the premises of the structural rule or the axioms and then show the desired conclusion
of the structural rule by application of the II-Subst rule. Assume that

[r, A] = [xj . Oj,... ,xn . Gn, yi . T|,...,ym . xm]

• The Shift rule allows us to move variable typing from the safe part of a d-context
to the normal part. Note that the opposite operation is not admissible.

Chapter 2. Basic dual-context type systems

We are given the term V; x : G, A h t: p. By the II-N-Ax rule we obtain

r,;c: a; h jo,: O; 1 < i < n

r,x : o; A b x : a

By the II-S-Ax rule we get

r,x:o;Ahyk:xk 1 <k<m

So by the II-Subst rule we get

r,* •.<5\A\-t[x\/x\,...,xn/xn,x/x,y\/y\,...,ym/ym] : p

which is the same as

T,x : a; A h t: p

The S-Weak rule allows us to introduce a fresh safe variable into the safe part

of the context of a term. We are given the term T; A b t : p. By applying the
II-S-Ax and II-N-Ax rules we get the following terms:

T; b Xi: a, 1 < i < n

T; A,y : x hyk : xk 1 <k<m

We can now apply the II-Subst rule and obtain

r; A,y :i\-t]xi/xi,...,xn/xn,yi/yi,...,ym/ym]: p

In case of empty A using the II-Subst rule we get

r\y : %\~ t[x\/x\,...,xn/xn] : p

If r and A are empty then we have ; y : x b t[] : p by the II-Subst rule.

The N-Weak rule allows us to introduce a fresh normal variable into the normal

part of the context of a term. We are given the term T; A b t: p. By the II-S-Ax
and II-N-Ax rules we get the following terms:

r,* : G,\~ Xi: Gi 1 < i <n

r,x : a; A : Tt \<k<m

We can apply the II-Subst rule and obtain

T,x: g; A b t[xi/x\,... ,xn/xn,yx/yx,... ,ym/ym} : p

If both r and A are empty we can still use the II-Subst rule to get the term

x.g-, hfo : P-

2.2. Basic dual-context calculus II (X) 25

• The S-Contr rule allows us to drop a safe variable from a context of a term,

replacing all occurrences of this variable in the term by another safe variable of
the same type. We are given the term T; A,y : x,z : t b t: p. By the II-S-Ax and
II-N-Ax rules we get the following terms:

T; b xi: o, 1 < i < n

T; A,y : X by^ : 1 <k<m

T; A,y : x by : T

Applying the II-Subst rule we get

T;A,y:T\-t[xi/xi,...,xn/xn,yi/yi,...,ym/ym,y/y,y/z]: p

which by the properties of the substitution is the same as

T; A,y : x b t\y/z\ : p

• The N-Contr rule allows us to drop a normal variable from a context of a term,

replacing all occurrences of this variable in the term by another normal variable
of the same type. We are given the term T,jc : c,z '■ o; A b t: p. Using the II-S-Ax
and II-N-Ax rules we get the following terms:

T,jc : a; b xi: a, 1 < i < n

T,x : o; b x : a

T,x : a; A b y^ : 1 <k<m

We can apply the II-Subst and get the term

V,x: a; A b t[x\/x\,... ,xn/xn,x/x,x/z,y\/y\,... ,ym/ym]: p

which by the properties of the substitution is the same as

T,x : o; A b t[x/z] : p

□

We have shown that weakening and contraction are admissible in II(X) for the both
parts of d-context. This explains our choice of name for II(X), where II stands for
'Intuitionistic-Intuitionistic' and describes how two parts of dual-contexts are treated
in this system. In the next section we shall define another basic dual-context calculus,
in which weakening and contraction will be allowed only for the normal variables and
it will be called IL(X) (Tntuitionistic-Linear').

26 Chapter 2. Basic dual-context type systems

Remark 2.2.6. We have not said anything about the exchange rules which allow per¬

mutations of typings in a dual-context. Since our dual-contexts are pairs of sets of
typings we get permutations of safe and normal typings for free. If we were to define
dual-contexts as pairs of sequences for example as Barber does in [Bar96b] then the

exchange rules would still be admissible in the 111(E) calculus.

The basic dual-context calculus we have defined so far has the following features:

1. Two kinds of variables in terms, which are typed using dual-contexts.

2. Restricted substitution - only normal terms can be substituted for normal vari¬
ables.

3. Weakening and contraction are available for both normal and safe variables.

Our goal is to define a general syntactic framework for describing a general dual-
context calculus with restricted substitution but with a different set of admissible struc¬

tural rules. We have seen that the weakening rule and the contraction rule are the spe¬

cial cases of the II-Subst rule. Now we are going to consider an alternative notion,
which also can be used for describing structural rules:

Definition 2.2.7 (II-Renaming).
Given a pair of d-contexts

[T; A] = [xi : a\,... ,xn : an ; y\ :bh... ,ym : bm]

[II; 0] = [u\ : ci,...,uk : ck\ v\ : di,...,vi: d{]

an II-renaming e is a function between the sets of variables

e : yi,...,ym} -»■ {u\,... ,uk, vi,..., v/}

which satisfies the following properties:

• e(jc;) G n and r(x,) = n(e(jc,)) (normal variables are mapped by e to normal
variables with the same types)

• e(yj) G 0 and My/) = 0(e(x,-)) (safe variables are mapped to safe variables with
the same types)

We shall denote renaming as e : [T; A] —> [n; 0],

2.2. Basic dual-context calculus II (E) 27

Note that several different variables can be mapped to the same variables and some

variables may have no variables mapped onto them.
Given an 11(E)-term T; A b t: p and an II-renaming £ : [r; A] —» [II; 0] an appli¬

cation of e to t will be denoted as IT; 0 b t ■ £ : p where

t • £ = t [e (*1) fx\,..., £(xn) /Xn, £ (y1) /yi,..., £ (ym) /ym]

For every Il-renaming £ : [r; A] —> [FI; 0] we consider the following typing rule:

T; A h t : p ^
— — Ren(£)

n; © b t ■ £ : p

Different structural rules can be described as instances of the Ren(£) rule for a partic¬
ular Il-renaming. Consider the safe weakening rule for example:

x\ . . ,xn . Gn, y\ . Xi,... ,ym . %m H t. p

X] . . ,xn . Gn , yj . X],... ,ym . xm,y . x \~ t. p

It can be described by the following inclusion renaming:

k: {xi,...,xn,y\,...,ym} -> {xi,...,xn,yi,...,ym,y}

Proposition 2.2.8. For any Il-renaming £ the Ren(£) rule is admissible in 11(E).

Proof. By the II-N-Ax rule we have II; h e(x,•) : o, since a(jc,-) G II and a respects

types. Similarly by the II-S-Ax rule we have n; 0 h £(yy) : Xj. Using the II-Subst
rule we get II; 0 h t ■ £ : p. The cases with an empty A and an empty [T; A] are

similar. □

Since renamings are functions we can compose them and get an II-renaming. Also
an identity map is obviously an Il-renaming:

Proposition 2.2.9. The set ofall Il-renamings has the following properties:

• Given two Il-renamings

a: [H ; Aj] —► [T2; A2] p : [T2; A2] -> [r3 ; A3]

their composition, defined as function composition

P o a : [T]; Aj] —> [r3; A3]

is also an Il-renaming.

• The identity mapping between on a d-context [T; A] is an Il-renaming.

28 Chapter 2. Basic dual-context type systems

Proof. Straightforward check. □

Renamings will be used in section 4 of this chapter as a part of a framework for de¬
scribing a dual-context calculus with safe substitution and an arbitrary set of structural
rules.

The II (X) calculus can be equipped with a basic equational logic. Such logic will
be simple since II(X) does not have any type constructors.

Definition 2.2.10.

An equation-in-context over a signature X can be written as T; A b t\ where

t\,t2 are II(X)-terms of type a in the dual-context T; A. A dual-context algebraic
theory Th for a signature X consists of a set of equations-in-context over X, which are

called the axioms of Th. The set of theorems of a theory Th consists of all equations-
in-context which can be proved from the axioms of Th using the following rules:

r;Ahti=t2:c7
Ref ——— Sym

T; A b t t: a T; A b r2 = ti : a

T \ k\-1\ = t2 '■ o T; A b = ^3 : cr
Trans

T; A b t\ = tj : o

T; A b Pi = P2 : p

n b u\ — v\. oi ... n, b un — Vfi. (T/?

rij0bij —1\ \ t,\ ... n, 0bsm — tm.Tm
— — —

it 11-Sub
n; 0 b pi [a] =P2[P] : P

where a abbreviates the substitution u.\/x\,.. ,,un/xn,s\/y\,... ,sm/ym and p abbrevi¬
ates the substitution v\/x\,..., vn/xn,t\/y\,... ,tm/ym-

The rules Ref, Sym and Trans assert that the equality = is a reflexive, symmetric
and transitive relation. The rule II-Sub asserts the safe substitution preserves equality.

In this section we have presented a simple dual-context calculus of terms built

using dual-typed functional symbols from a signature X. The admissible substitution
in this calculus is restricted allowing only normal terms to be substituted for normal
variables. We have shown that weakening and contraction for both the safe and the
normal variables are admissible in II(X). In the second half of this thesis we shall
extend this calculus with inductive data-types and relate it to the system 03.

2.3. Basic dual-context calculus IL (X) 29

2.3 Basic dual-context calculus IL(Z)
In this section we shall present another variant of simple dual-context calculus of terms
built using functional symbols from a signature X. This calculus will be called IL(X)
('Intuitionistic-Linear') and will have the admissible substitution rule restricted in the
same way as the substitution in the IL(X) calculus. One major difference between
IL(X) and II(X) will be that only normal weakening and contraction rules will be
admissible in IL(X).

The IL(X) calculus essentially described the structural core of the system DILL
from [Bar96b], We present it here for a number of reasons. Firstly, Barber does not

consider this system explicitly, defining instead a generalised version with separate
intuitionistic and linear types. Secondly, we believe that this calculus is interesting as it
can be potentially used as a foundation for a dual-context reformulation of the polytime
type systems of Hofmann [Hof99] and Schwichtenberg [SB02], Thirdly, comparing
this calculus with II(X) helps us to understand better how the subtle differences in the
typing rules lead to different sets of admissible structural rules. This will be utilised
in the next section in which we consider a framework for describing a general dual-
context calculus with safe substitution.

The development of the IL(X) calculus follows closely that of II(X) so we shall be
brief and only concentrate on the differences between the two.

Definition 2.3.1.

Given a signature X, the IL(X) calculus has the following typing rules:

IL-S-Ax . IL-N-Ax
r;y:tl-y:T r,i:o;

for any symbol f \ G\.. .. .lm —> p G X
r; F t\ : Gj ... r, F tn . Gn

r; Ai F ... T, Am F sm . Xm

r, Ai,..., Am F f{t\,..., tn , Si,..., 5m) . p

where A),..., Am are mutually disjoint.

IL-Sort

Definition 2.3.2 (IL(X)-Term).
A pre-term t is a IL(X)-term of type o in a d-context [T; A] if T; A F t : a can be
derived in IL(X).

Let us compare these typing rules with the typing rules of II(X) given in definition
2.2.1 on page 18. Note that in the IL-S-Ax rule the dual-context in the conclusion

30 Chapter 2. Basic dual-context type systems

contains only one safe variable and that in the IL-N-Ax rule the term x is normal. The
IL-Sort rule is still 'safe' in the sense that only normal terms can be used
when constructing the term f(t\,... ,tn si,... ,sm). Comparing IL-Sort with II-Sort
we see that safe parts of d-contexts in the terms s\,...sm are no longer shared.

For a function symbol with normal arguments only / : Gi,..., G„; —> p the IL-Sort
rule looks as follows:

Comparing this rule with the corresponding case of the II-Sort rule we can see that
there is no implicit weakening with an arbitrary A. For a constant function symbol the
IL-Sort rule looks as follows:

where T; is an arbitrary normal d-context. So in this case IL-Sort contains implicit
normal weakening.

IL(Z) also has the unique derivation property and the free variable property. In
addition every safe variable from a d-context must appear exactly once in the term,

thus no repetition or dropping of safe variables is allowed.

Proposition 2.3.3. IEL(E) calculus has the following properties:

• Unique derivation property

Ift is an IL iff)-term of type a in a d-context [T; A] then there is a unique deriva¬
tion ofT; Ah t: o in IL(£).

• Free variable property

IfT;A\-t:c then every variable from FV(t) is typed in [T; A],

• Safe variable property

IfT;A\~t:o then every variable y e A belongs to FV(t) and appears exactly
once in the term t

Proof By induction on the structure of t. □

Simultaneous substitution in IL(S) can be typed by the following rule:

T; F t\ : O] r, f tn. csn

r;): p

r;H/(;):p

X] . CT],..., Xn . On , y] : Ti,... ,ym • tm Ft', p

F; b u\ : CTj

r; Ai F vi : Xi

r, f un. on

r, Am F vm . Tm

r; A\,...,AmFt[u]/xi,...,un/xn,vi/y\,...,vm/ym] : p
IL-Subst

2.3. Basic dual-context calculus IL(E) 31

where A\,...,Am are mutually disjoint. Comparing it with the II-Subst rule on page

20 we see terms v\,...vm do not share safe parts of d-contexts. In the case when m is
equal to zero the IL-Subst rule has the following form:

x\ : C\,...,xn : on; \~t: p

r, i-u\.&i ... r, bun.c5n

r•,\-t[ui/xi,...,un/xn\ : p

and when both m are n are equal to zero then the IL-Subst rule looks as follows:

; \-t: p

T; b t: p

Proposition 2.3.4. The IL-Subst rule is admissible in IIL(E).

Proof. By induction on the derivation of t. Denote the substitution by [a, (3].

• The IL-S-Ax and IL-N-Ax cases are trivial. Note that we no longer need lemma
for weakening of normal terms.

• In the IL-Sort the term t is f(p\,..., ; S],..., s{). Using the induction hypoth¬
esis we obtain p\ [a],... ,Pk[oi\ and sj [a, Pi],... ,s/[oc, P/] where P = pi,..., P/.
Then by the applying the IL-Sort rule we get T; A b t[a, P] : p.

□

The IL-Subst rule can be used to derive a number of usual structural rules. Some

of the rules which were admissible in 11(E) can no longer be derived because of the
differences between the two calculi:

Proposition 2.3.5. The following structural rules are admissible in IIIL(E):

T; A b r: p T,x : o,z : o; A b t: pN-Weak ————11 N-Contr
r,x:o;Abf:p T,jc : a; A b t[x/z] : p

r;*:g-Aht:p Shift
T,x : a; A b t: p

Proof. Similar to the corresponding proof in the 11(E) calculus. □

The fact that IL(E) has fewer admissible structural rules than 11(E) is reflected
in the following notion of IL-renaming, which satisfies stronger properties compared
with II-renaming: renamings.

32 Chapter 2. Basic dual-context type systems

Definition 2.3.6 (IL-Renaming).
Given a pair of d-contexts

[T; A] = [xi : ax,...,xn : an; y\ : b\,... ,ym : bm]
[n; 0] = [m : c\,..., uk : ck; vj : di,..., v/: <//]

an IL-renaming e is a function between the sets of variables

e : Jtiuyt,...,^} -► {u\,...,uk,vi,...,v/}

which satisfies the following properties:

• e(x,-) G n and r(i() = II(e(x/)) (normal variables are mapped by e to normal
variables with the same types)

• e(yj) G 0 and A(yj) = 0(e(jc,-)) (safe variables are mapped to safe variables with
the same types)

• e restricted to yi,... ,ym is a bijection (m=l and every safe variable is mapped to

exactly one safe variable)

Proposition 2.3.7. For every IL-renamings e the Ren(e) rule is admissible in IL(X).

Proof. Ren(e) is a special case of IL-Subst. □

Basic equational logic for IL(E) is similar to one for II(X) given in definition
2.2.10 on page 27. The only difference is that the II-Subst rule is replaced with the

following appropriately modified rule:

T; A b pi = p2 : p

where a abbreviates the substitution u\/x\,... ,un/xn,s\/y\,.. .,sm/ym and p abbrevi¬
ates the substitution v\/x\,... ,vn/xn,t\/yi,...,tm/ym.

In this section we have presented simple dual-context calculus IL(S) with safe
substitution and normal weakening and contraction. We have seen how the changes in
axioms and sort rule affect the set of admissible structural rules.

II; b u\ = vi : Oi

II; 0i b si = t\ : Ti

II; 0i,...,0m b p\ [a] = p2[p] : p
IL-Subst

2.4. Basic dual-context calculi with safe substitution 33

2.4 Basic dual-context calculi with safe substitution

In the previous sections we have introduced two basic dual-context calculi 11(H) and
IL(H). The main difference between these two systems was in the sets of admissible
structural rules as a result of different typing rules.

In this section we shall consider another approach to defining a dual-context cal¬
culus with safe substitution. It is based on the idea of adding weakening and contrac¬
tion rules directly rather than showing that such rules are admissible. We start with
a minimal dual-context calculus in which both kinds of variables are treated in the

linear fashion. Such a calculus can then be extended with structural rules which are

described by a set of renamings. By considering different sets of renamings we can

define different dual-context calculi in this way.

The minimal dual-context calculus will be called LL(H). It will be developed
similarly to 11(H) with some appropriate modifications. Typing rules of LL(H) are

given below:

Definition 2.4.1.

The LL(H) calculus has the following typing rules:

LL-S-Ax LL-N-Ax
;y : T hy : T r:ff;rr:o

for any symbol / : cti... Gn ; %\... xm —> p e H
III '■> I-1\ : cri ... n„, I~ tn . on

I"j j A] h : X] ... Tm, Am I- sm . xm
————— - LL-Sort
r; Ah f(t\,... :tn, , sm). p

where T; A = rii,...,n„,ri,...,rm; Ai,...,Am is a union of mutually disjoint dual-
contexts [II][n„;] and [T] ; Ai],...,[Tm, ; Am].

One may wish to compare the rules of LL(H) with the rules for 11(H) given in the
definition 2.2.1 on page 18 and the rules for IL(H) from the definition 2.3.1 on page 28
and note that both normal and safe variables are treated in LL(H) in the linear fashion.

Proposition 2.4.2. LL(H) calculus has the following properties:

• Unique derivation property

If t is an LL(Z)-term of type a in a d-context [T; A] then there is a unique
derivation o/T; Ahl : (7 in LL(H).

34 Chapter 2. Basic dual-context type systems

• Free variable property

IfT; A b t: o then every variable from FV(t) is typed in [r; A].

• Normal variable property

IfT; A b t : a then every normal variable x G T belongs to FV(t) and appears

exactly once in the term t

• Safe variable property

IfT; A b t: cr then every safe variable y e A belongs to FV(t) and appears exactly
once in the term t

Proof By induction on the structure of t. □

The admissible simultaneous substitution rule in LL(Z) looks as follows:

X] : <7i,...,xn : on ; y\ : X],... ,ym : xm t: p

T] , b M] . <3i ... Tw ,\~ un . on

III 5 ^1 I vi . t i ... nm, Am b vm : x„
LL-Subst

r; A\-t[ui/xi,...,un/xn,vi/yi,...,vm/ym\ : p

where T; A = Ti,..., Tn, IIi,..., Tlm; Ai,..., Am. Note that LL-Subst does not include

implicit safe or normal weakening in the case of n or m being zero. The only admissible
structural rule which follows from the LL-Subst rule is the following familiar rule:

shm
T,jc : a ; A b t: p

The basic equational logic of LL(Z) is similar to the logics of II(Z) with the following
rule replacing the II-Subst rule:

T; A b P\ — p2 : p

ni \\~ u\ = V\ : Oj ... nn, I- un = vn : on

Q] ; 0] \~ si —1\ : X] ... Tlm, Qm I- sm = tm . xm

n1,...,nn,Qi,...,Qw; 0m I-/?![a] =/?2[P] : P LL Sub
where a abbreviates the substitution u\/x\,...,un/xn,s\/y\,...,sm/ym and (3 abbrevi¬
ates the substitution v\/x\,..., vn/xn, t\/yi, ■ ■ ■ ,tm/ym.

Essentially, the LL(Z) calculus is the minimal dual-context calculus with safe sub¬
stitution. We will now consider extensions of this calculus with renaming rules for

every II-renaming e : [T; A] —> [IT; 0]:
T; A h t: p Ren(e)

fl; 0 h t • e : p v '

2.4. Basic dual-context calculi with safe substitution 35

and show that the resulting calculus is equivalent to IE(E). This extended calculus will
be called IIR(E). The similar result would hold for IL(E) if we extend LL(E) with
renaming rules for every IL-renaming.

The basic equational logic of EIR(E) is the same as logic of LL(E) extended with
the following rule:

r; A b t\ = t2 : p
— —

, Ren
n;0hfi-e = t2-e:p

Theorem 2.4.3. An equation-in-context T;Abt = i:p can be proved in II (E) iff it
can be proved in IIR(E).

Proof. We start with 11(E) to IER(E) direction and show that T; A h t: p can be derived
in IIR(E) by induction on the derivation in 11(E):

• In the II-S-Ax case we have T; A,y : x h y : x. By the LL-S-Ax we can show
; y : x b y : x. Consider a inclusion II-renaming e : [; y : t] —■» [T; A,y : t]. Using
the Ren rule for such a renaming we get T; A,y : x b y : x.

• The II-N-Ax case is similar to the II-S-Ax case.

• In the II-Sort rule apply renaming rules to get

Ti , \~ t\ . <7i ... Tn , I~ tn . (5n

n, , Ai h~ .si : Xi ... IIm , Am \~ sm . Tm

where ITi,..., nm, Ti,..., Tn are mutually disjoint copies of T and A\,..., Am are

mutually disjoint copies of A. Then using the LL-Sort rule we get

Ti,...,r„,ni,..., Tlm ; A],..., Am \~ f{t\,... ,tn \ ,... ,sm) : p

Then we can apply the renaming [ri,...,rw,ni,...,IIm; Ai,...,Am] —> [T; A]
which maps T,- and II7- to T and Aj to A and get the desired conclusion.

We have shown that both T; A b t : p and T; A h j-: p can be derived in IIR(Z). We
now prove that T;AI-t = s:pin IIR(E) by induction on the derivation in 11(E):

• Ref, Sym and Trans cases are obvious.

• In the II-Subst case by induction hypothesis T; A b p\ = p2 : p and the following
equations-in-context hold in IIR(E):

n;h«i=vi:ai ... n;bwM = vw:a„

n,©h = /|.Ti ... n,0hsm = tni.xm

36 Chapter 2. Basic dual-context type systems

Using the Ren rule we can prove that

ri]; I- u\ = vi : G] ... nw \\~ un — vn . <5n

r"l » €)) I 5*1 = I ... T/mj 0/n I- Sm = tm • Tm

where Hi,..., n„, T],..., Fm are mutually disjoint copies of n and 0],..., 0m
are mutually disjoint copies of 0. Then using the LL-Subst rule we get

III > • • • j nni I~j j • • • i T/n ; ©1) • • • j ©m h P\ [®] ~ P2[P] • P

and finally we can use the Ren rule to get the desired conclusion

II; 0 b pi[a] =P2[(3] : P

In the opposite direction we start with showing that T; A b t: p can be derived in 11(E)
by induction on the derivation of this judgement in IIR(E):

• In the LL-S-Ax and the LL-N-Ax cases the desired conclusion can be obtained

using the II-S-Ax and the II-N-Ax rules.

• In the Ren we use proposition 2.2.8 on page 26 showing that Ren rule was

admissible in 11(E) for every II-renaming.

• In the LL-Sort case we first apply admissible safe and normal weakening rules
to get the show the following judgements:

T; b t\ : <3i ... T; b tn:on

r, Ah J! .ti ... r, Ahsm. %m

where [T; A] = [rj,... ,r„,IIi,... ,nm; Ai,..., Am]. Then by the II-Sort we get
the desired conclusion.

Showing that T; A b t = s : p can be proved in 11(E) can be done similarly. □

In this chapter we have defined two basic dual-context calculi for a signature E. In
both the 11(E) and the IL(E) calculi only the safe substitution was admissible. The
subtle differences in the typing rules of 11(E) and IL(Z) lead to a different set of
admissible structural rules. In the IL(E) calculus weakening and contraction were

admissible only in the case of normal variables.
We then proposed another way of defining basic dual-context calculus. Instead of

building the structural rules into the basic rules of the calculus, we defined the minimal

2.4. Basic dual-context calculi with safe substitution 37

dual-context calculus LL(Z) and added structural rules explicitly to it. The structural
rules were described using the notion of renaming.

We have shown that such a framework was suitable for specifying different basic
dual-context calculi with safe substitution. We used renamings which mapped normal
variables to normal variables and safe variables to safe variable. It is possible to con¬

sider different notion of renaming, for example allowing mapping of safe variables to
normal or requiring that some additional constraints hold.

Chapter 3

Dual-context multicategories

In this chapter we define three different notions of dual-context multicategories, which
extend the usual notion of multicategory with contexts, separated into two parts. We
start with a notion of II-multicategory and show how the basic equational logic for the
calculus II(E)presented in the previous chapter can be soundly interpreted in such mul¬
ticategory. We then consider a notion of IL-multicategory, in which the IL(E) calculus
can be soundly interpreted. Finally we present a uniform definition of multicategory
with renamings, which generalizes II- and IL-multicategories.

3.1 Categorical semantics of 11(E)
In the previous chapter we defined two basic dual-context calculi 11(E) and IL(E). For
the 11(E) calculus we have shown that weakening and contraction rules were admis¬
sible for safe and normal variables, while IL(E) had only the normal weakening and
contraction rules.

In this section we shall define categorical interpretation of the II(E) calculus. First
we recall how the interpretation of the type system DILL was defined and then modify
it appropriately for the 11(E) case.

Barber [Bar96b] defined the semantics of DILL using a notion of linear/non-linear
models first proposed by Benton [Ben95]. A linear/non-linear model consist of:

• a cartesian closed category (C, 1, x, —>)

• a symmetric monoidal closed category (S,/,<g>,—°)

• a pair of symmetric monoidal functors (G, n) : S —> C and (F,m) : C —> S which
form a symmetric monoidal adjunction GIF

39

40 Chapter 3. Dual-context multicategories

Given a linear/non-linear model (C,S,F,G) types of DILL are interpreted as ob¬
jects of S. Dual-contexts are modeled as objects of S:

where a, is an interpretation of the type a, and bj is an interpretation of the type Xj.
Terms of DILL term are interpreted as morphisms of S with objects representing dual-
contexts as domains:

Barber proved that DILL interpretation defined in such a way is sound an complete.
Benton [Ben95] showed that linear/non-linear models are equivalent to linear cat¬

egories, which consist of a symmetric monoidal closed category S and symmetric
monoidal comonad ! : SS —> S with two natural transformations ea :\a —> I and da :

\a —satisfying several non-trivial conditions.
We will modify linear categories for giving an interpretation of the 11(E) calculus.

First, instead of symmetric monoidal category we take a category with finite products.
Second, we do not require cartesian closeness.

Definition 3.1.1.

An II-model consists of a category with finite products C, a strict product-preserving
endofunctor N : C —> C and two natural transformations £ : N => I and 5 : N => N2

which satisfy the following conditions:

• (N, £, 5) is a comonad:

[r; A] = FG(a\) ®FG(an) ®b\ ®---®bm

[r; A h t: p| = [T; A] [p]

N(a) —N2(a)

Af(6a) (Com-1)

N2(a) N3(a)

8a (Com-2)

N(a)

3.1. Categorical semantics of11(E) 41

Comonad (IV, e, 8) preserves products:

N(a\) x • • • x N(an) — a\ x • • • x an
Eat X • • • X Ean

N(f) f

N(b)
£b

(Com-3)

Sv sj

N(ai) x ■ ■ ■ x N(an) "|X'"X ^2(a,) x ... x N2(a„)

N(f)

N

N2(f)

h

(Com-4)

N2(b)

Now we define an interpretation of the basic types and the functional symbols from
a signature £:

Definition 3.1.2.

Given an II-model (C,iV,e,8) an II-structure L for a signature £ in this II-model is
specified by giving an object [<jJ e |C| for each basic type a e |£| and for each function
symbol / : Oi,...,cr„; Xj,...,%m —> p a morphism

1/1 :^(Ioi]) x ••• xiV([oB]) x [Til x ••• W [pi

We defined dual-contexts as pairs of sets of typings, so we assume a total order on

the variable set Var and interpret dual-context as objects of the category C:

[xi : c?i,..., xn . on ,y \ . T],... ,ym . xn

iV([oi]) x • • • x N(lan1) x [tj] x ... [xm]

We shall now define an interpretation of II(£)-terms as morphisms in an II-model

(C,N,e, 5). We shall denote the composition in C by o. For the projection morphisms
in C we shall use the notation nai : a\ x • • • x a,- x • • • x an —> a,- and given morphisms
f\ : c —► a\,..., fn : c —> an we denote the morphism obtained by the universal property
of products as (f\c —> a\ x • • • x an.

Definition 3.1.3 (Interpretation of Ill(£)-terms).
Given an II-structure L in an II-model (C,N,E,d) we define an interpretation of 11(E)-

42 Chapter 3. Dual-context multicategories

terms [r; A b t: o] as follows:

{T; Ah Xi. O,-] = £[0(-] 07W([a,'J)

[T; A I- r„;si,..., sm): pi = [/I ° (WA([/!])

where Wa(M) is defined as follows:

WA(M) =MW)°(S[Oi]l X ••• X S[CT„]]) ° (^(ICJIDJ • • - '^([cJn!))
We shall now prove that this interpretation is sound with respect to the basic equa-

tional logic for 11(E). In 11(E) the operation of weakening of normal terms with safe
variables played an important role. We start with establishing how such weakening is
modeled in our interpretation:

Lemma 3.1.4. Given a normal term T; b t: p the following holds:

|T; Abt] = [r

Proof. By induction on the derivation of T; b t: p.

• The II-S-Ax case does not apply.

• In the II-N-Ax case by the property of projection morphisms we have

[r; b Xil o (TCtfflo,J),..., 7t;v([on])> = ejo,.] o Kyv(M) O (7%([0l]), • • •, ^([a„l)) =

e[o,-J ° *tf([o(]) = P" ' ^ X('l

• In the II-Sort case by the definition of [...} and properties of product and com¬

position we have the following:

[r, b f{t\,... ,tn , S\,. .. ^/n)! o (7TM[01J),. .. ,%([<,„])} ~

1/1 ° (W ([tl]) 0 (ttTVddl). • • • , ^([CTj)) > • • • W (W) ° (^([oi])»• • • i ^([On]))
[jl] O (7t^(|0,j),... ..., [sm] O (ltAt([ai])> • • •)7tA'([o„]))) (*)

By the definition of W we have

w(M) ° (^([o.]),- • • '^([oj)) = WA([b])

Using the induction hypothesis we can show

[r; b Sjl o (7C^([0l]|), • • • ,%([o„])) — [r; A b Sjl

3.1. Categorical semantics of 11(E) 43

Using the above two equalities we can rewrite (*) as follows

[/]o(WA([fi]),...,WA([t„]),[r;Ah51l,...,[r;Ah5OT])

which is equal to [r; A b . .,tn\si,..., by the definition of

□

We can now proof the main lemma for the coming soundness theorem. This lemma
shows how the safe substitution is interpreted:

Lemma 3.1.5. Given an term T; A b t: p and terms which can he substituted into it

Proof. By induction on the derivation of T; A b t : p. We assume that the context

II; 0 contains typings u\ : ar,... ,ur : ar; v\ : b\,... ,bs : rs and abbreviate parts of the
substitution as a = [u\/x\,...,un/xn] and (3 = [v\/y\,...,vm/ym].

• The II-S-Ax case is trivial.

• In the II-N-Ax case we need to show

[IT; 0 b Mi] = [x,-J o (W©([wi]),.. • ,W©([«„]), [vil,..., |vmJ) (*)

Expanding the definition of [*,■] and using the properties of projections the right-
hand side of (*) is equal to:

e[o,l°^iV(lo«l)o(Wr0(I«il),---,W0(Kl),[vil,...,[vml) = £[0(.]j oW©([[«,•])

Expanding the definition of W©([w,]) we get

e[Oi] ° (^[«i] X • • • X 5|arj) o (KN{M),...)7t/V([atJ))

Using the Com-3 of £ and 8 we get

M°(£JV(ai) X xeA^(ar))°(S|flil X X S[flr]) ° (%([a,]),-••, ^([a*]))

n; b u\ : Gi

n; 0 b vi : Ti

n; b un . <5n

n;0b vm xm

the following holds:

[Id; Q\~ t[ui/x\,...,un/xn,vi/y\,...,vm/ym]} =

M ° (wb(iMii),..., w0([«„]), [vii,..., M)

44 Chapter 3. Dual-context multicategories

By the associativity of composition this is equal to

[«ij° (%(«!) oS[ail x ••• x%(ar)o5M)°(T,:A'([a,l)»---)7t/V(M)}

By the Com-2 of E and 5 this is equal to [m,-] o (Jt^(|aij),...)%r([at])) which is
equal to JT; A b Uj} by lemma 3.1.4.

• In the II-Sort case we need to show

lf(h, ■ • • ,tk; sh..., j/)[a, P]] = lf(t i sh..., j/)] o (W©([[mi]), - ■ •,

W© ([un]), [vi J,..., [vM]) (Sort-Sem)

Using the properties of substitution and the definition of [.. .J we can write the
left-hand side of (Sort-Sem) as follows:

[/(ri,...,^;si,...,sz)[oc,|3]] = [/(ri[a],...,^[a];^i[a,p],...,5/[a,p])J =

1/1 ° OMIfi [a]D,..., We([^[a]]), [ji [a, p]J,..., |s/[cc, p]])

By the definition of |...] the right-hand side of (Sort-Sem) can be rewritten as

follows:

lf(t\ ., s/)] o (WedmJ),..., W©([«„]), [vi],..., fvm]) =

I/lo(WA(It1]),...,^A(M),[^l,...,M)o(W0([Ml]),...,B/0([Mnl),

Using the induction hypothesis we have

[j/Ia,P]]| = [j,-]o(We([«i]),...,We([all]),[vil,...,[vm])

Then in order to show (Sort-Sem) we need to prove the following

WA(M)o(W0([Ml]),...,W0(M)Jv1],...4vm])=W0(^[a]l) (*)

Using the definition of WA(|t,J) the left hand-side of (*) is equal to

N([fiJ)0(6|[0l! X ••• X 8|0/i])o(7tA,([0lj),...,7C^([0|IJ))o(W0([mi1),...

By the properties of composition and projections this is equal to

N(M) ° <5[0ll 0 WeflM), • •. ,5|0bj O Wq([«„!))

3.1. Categorical semantics of 11(1.) 45

Using the definition of We([f,-[ot]]) the right-hand side of (*) is equal to

A?([fi[a]l)°(5[a1] x ••• x S|arj)o(7CA,([aij),...,7tN([flrj))

Using the induction hypothesis this is equal to

N(M) ° (N(W (I" 11))>•••>■N(W (M))) ° (5[a,] ° ^yv([a,])>•••> 1 ° *N{M)}

Expanding the definition of W(...) and using the fact that TV is a product pre¬

serving functor we get

W(I'|J)° {W2(["l])° (W(f>Jai|) x ••• X^v(5[flr])),. ..,JV2([h„])o(A'(6[(,||) X ...

X AT(6[a,]))) O (8[ail 0 7t,v(lailj Vi'jnv,!,,,!))

By the associativity of composition this is equal to

W(pi]|) o (iV2([Ml]) o (N(SlaiJ) o5[aij oTC^ja,]),... ,Af(5[arj) o5m o7t^([arl)),
• • • ([«„]) O <A^(5[aij) o8|fll| oiCjvdaj]),... ,iV(8|arj) o5W OTCjvda,!)))

Using the Com-1 property of e and 8 this is equal to

N([tij) ° (W2([M) ° (8N([ail) o5[ail o7CMI«i!)'•••)5MKD o5K1 07C^(K1)>'
• • • ,^2(M) o (8^]) ° 8M °«iV([fll])» • • • »SiV(Kl) ° 8[flr] o^(Kl)))

By the associativity of composition this is equal to

^(M)0(A^2(ttMll)0(5iV(|a1l) x ••• x5iV(Iarl))0(8[a1l07CiV([fl1l)>--->
8K1 °%r([ar])>, • • •, W2(KI) ° (5W(M) X * " X 8W(M)) ° °7C^([a,l)J • • •

8M°^([ar])))

Using the Com-4 property of e and 8 this is equal to

N(M)0(80l °^(I«lI)o(8[a1J X ••• X 8|ar])o(7C/vda1J),---,'CAt([arJ))>•■•>
8o„ oiV(Kl) ° (SI«il X • • • X 8[arj) o <7T/v([a, J)) • • • ,^(K1))}

which can be rewritten as W([r/[a]]) o (8faij x • • • x 8[flrj) o (%([fll]),... ,^yv(M))
This proves (*) and (Sort-Sem).

□

46 Chapter 3. Dual-context multicategories

We are now ready to state and prove the soundness theorem for the interpretation
we defined. We say that an II-structure L satisfies an equation-in-context T; A b t\ =

t2 : o if |[r; A b t\ J = [r; A I— Given a dual-context algebraic theory Th we say that
an II-structure is a Th-algebra if it satisfies all the axioms of Th.

Theorem 3.1.6. Let an ll-structure L in an Il-model (C,N,e. 8) be a Th-algebra for a

dual-context algebraic theory Th. Then L satisfies any theorem ofTh:

T; A h t\ =t2'.o =» [ti] = \tf\

Proof. By induction on the proof of the equation-in-context T; A b t\ = t2 : CT

• Axioms of Th are satisfied because L is a Th-algebra.

• Ref, Com and Trans follow from the properties of equality of morphisms.

• II-Subt follows from the lemma 3.1.5.

□

We have define a sound interpretation of the 11(E) calculus. Another important
property of an interpretation is completeness with respect to the basic equational logic.
Traditionally, completeness is proved by constructing a term model, in which types are

objects and terms are morphisms. In our case such term model should have the struc¬
ture of Il-model. Construction of such term model requires product and exponential

types, which are not present in the 11(E) calculus. In the next section we propose a

different approach to semantics of 11(E), for which we provide a completeness proof.

3.2 Dual-context ll-multicategories

In the previous section we defined an interpretation of the 11(E) calculus using II-
models and proved the soundness result for it. In this section we propose an alternative
approach to the semantics of dual-context systems which we show to be sound and
complete.

The main problem of proving completeness of the Il-model interpretation was that
the calculus 11(E) did not have enough type constructors to obtain a term model using
II(E)-terms. Such structure was essential for the interpretation of dual-contexts, in
particular a comonad was used in the interpretation of normal typings in a d-context.

3.2. Dual-context ll-multicategories 47

We propose a different approach to the semantics of II (Z). We shall introduce dual-
contexts directly into our models, instead of modeling dual-contexts using products and
comonad structure. The II(Z) calculus will be interpreted using the notion of a dual-
context II-multicategory, which has morphism with dual-contexts as domains. The safe
substitution will be interpreted as a composition in such II-multicategory.

The use of multicategories in semantics was pioneered by Lambek [Lam68, Lam69,
Lam89]. Leinster and Hermida have used the language of multicategories for express¬

ing the different concepts of higher-dimensional category theory [Lei04, HerOO],
In Appendix A we give a definition of multicategory from [Lei04]. The major

difference between categories and multicategories is that morphisms in a multicategory
have sequences of objects as domains. Such change requires modified composition
which is the following operation:

n

M(a\...an,b) x riMfe
i= 1

where M(aj.. .an.b) denotes a set of morphisms from the sequence of objects a\ ...an

to the object b and a\...an is a concatenation of the sequences a\ ...an. Lambek
[Lam89] used a different unary composition scheme, which required one additional
axioms. We believe that using simultaneous composition is more natural.

The axioms of a multicategory are similar to the usual axioms of a category. We
have an appropriately modified associativity axioms and two obvious identity axioms.
Leinster and Hermida [Lei04, HerOO] showed that multicategories are closely related
to monoidal categories. More details can be found in Appendix A.

The multicategories can be used in semantics in a similar way as categories. A term

jci : ai,... ,xn : an b t: p can be interpreted as a morphism [[ai]... [a„] —> [pj. Such
an approach would be suitable for interpretation of linear calculi but one ingredient is
missing. We need some way of interpreting exchange rules, which are usually present
in any calculus.

One way of dealing with this issue is to add a symmetric structure to the definition
of multicategory, which is given by the following family of maps [Lei04]:

•a : M(ai ...an,b)^ M(aa(1)...aa{n),b)
for each permutation a. Leinster [Lei04] proposed using indexed families rather than

sequences as domains of morphisms in a multicategory. In this case we do not need any

symmetry maps. Leinster [Lei04] showed that these two approaches are equivalent.
More details can be found in Appendix A.

48 Chapter 3. Dual-context multicategories

For the interpretation of intuitionistic calculi we need to make more modifications.

Composition operation should look as follows:

m

C{b\...bm,c) x nC(ai...an,bi) —> C {a\...an,c)
i= 1

Note that concatenation of sequences is no longer used. Another change is that instead
of usual identity morphisms we require projection morphisms a\ ...an —■» a,-. Such

multicategories can be related with the cartesian categories. More details can be found
in Appendix A.

We are now ready to define multicategories which are suitable for interpreting of
dual-context calculi. We shall follow the Leinster's approach and consider morphisms
which have dual-contexts as domains, denoted as:

[.V] '. a\,... ,xn anyi . b\,... ,ym . > c

where a\,... ,an and b\,...,bm are object of multicategory. As we did in the previous

chapter, in the multicategorical setting we will use the standard abbreviation [r; A] to
stand for the dual-context [x\ : a\,... ,xn : an; y\ : b\,... ,ym : bm\.

Next we need to modify the composition operation. It will be used for interpreting
of the safe substitution in 11(2). Recall that such substitution is typed by the following
rule:

T; A h r: p

n,bM, .a, ... n, bun.

n,0bvi .X] ••• n,0b vm.im

II; 0 b t[u\/x\,...,un/xn,vi/y\,...,vm/yrn\ : p

So we need the following operation as composition:

n m

M([r; A],c) x IjM([n; x f[xM([H; 0],^-) -> M([n; 0],c)
i=l j= 1

We shall use the following notation for denoting composition

omitting the subscript [II; 0] when possible. Note that the subscript is essential as m

or both n and m can be equal to zeros. In this case we see an implicit weakening built
into the composition.

3.2. Dual-context ll-multicategories 49

What properties should such composition operation have? One obvious property
is the modified associativity, which corresponds to the similar property of the safe
substitution:

/°[n;©] (gi °[n;] (O)"-?«°[n;] °[n;0] (t;s),...hm O[n.0] (t; s)) =

(/°[r;A] <f;^))°[n;0]

Note that such property also covers special cases when implicit weakening is involved.
We also need to modify the identity morphisms. In the dual-context settings we

have two kinds of identities, one of which is required to be normal:

jiXj
[x\ :a\,...,xn :an;\ —a\ 1 <i<n

Cy.
[xi:ai,...,xn:an-,yi:bi,...,ym:bm]—>bj \<j<m

/
If we compose any multiarrow [jq : a\,... ,xn : an ; yi : b\,... ,ym : bm] —* c with the
identities the following should hold:

/ °[n ; 0] ft*] > • • • > nxn '» Oyj ,..., Oym) = /

Other properties describing the composition with identities are as follows:

ttjc; °[ri;] (/l ;•••>/«>) = fi
®yj o[n;0] (/l i • • • ifn \ 8\i - • • 18m) = 8j

Combining all the above we give the following definition:

Definition 3.2.1 (II-multicategory).
An II-multicategory M consists of

• a set of objects Mo

• for each object c and each d-context [r; A] over Mo a set M([r; A],a), whose
f

elements will be called multiarrows and denoted as [r; A] —» a

• for each object c, each d-context (T; A] and each d-context [n; 0] a composition
operation:

n m

M([r; a],c) x []M([n;],a(-) x []M([n; 0],^;) —^ M(n; e,c)
i= 1 7=1

50 Chapter 3. Dual-context multicategories

Kx■
• for each d-context [T; A] and each x, a normal identity multiarrow [r;] —at

<5y;
and for each yj a safe identity multiarrow [r; A] —> bj

satisfying the following equalities:

• Associative law

/ °[n;©] (?i °[n;] (*>) •■•Sn °[n;] l °[n;©] {t',s),...hm o[n;©] (t; s)) =

(/°[T,A] °[n;0] (t; s) (Assoc)

• Identity laws

°jr;A] (si> ■ ■ ■» 8n ; h\,... ,hm) = hj (S-Id)
Kxi0 [r;] (gu---,gn\) =8i (N-Id)
f °[r;A] (^i j • • • ,Kxn i ®y\ 5 • • • i®ym) = f (^)

Remark 3.2.2. An alternative definition of II-multicategory with unary composition
can be given. One would need two different operations, one for each side of dual-
context.

The II-multicategories defined in this section can be related to the II-models we

used in the previous section. In Appendix B we outline how every H-model can be
represented as II-multicategory. Going in the opposite direction and representing every

II-multicategory as II-model requires some additional structure on II-multicategory
which we study in the next chapter.

We now consider one important example of an II-multicategory, which will play an

important role in this thesis:

Definition 3.2.3.

The II-multicategory B is defined as follows:

• The set of objects consists of one element - set of all natural numbers N.

• The set of multiarrows Bi ([xi : N,... ,xn : N; yi : N,... ,ym : N],N) consists of
all the functions / : N" x Nm —► N such that / is polytime computable and is
bounded by a monotone polynomial pf

\f(x',y)\ < Pf(*\) + max \yj\ (B-Bound)
j

3.2. Dual-context ll-multicategories 51

where |_| denotes a length of a binary representation of a number. When |_| is
applied to a vector of numbers a\ ...anit means £"=1 Wi\- We shall call such p/
the size-bounding polynomial.

• The normal identity multiarrow nXi(x\,... ,xn;) is given by the projection x-t and
the safe identity multiarrow Gyj{x\,...,xn;yi,... ,ym) is the projectionyj.

• The composition operation / °[r;A] (#l > • • •)8n \ h\,..., hm) is defined using the
usual function composition as f{g\ (x),... ,gn(x),h\(x,y),.. .,hm(x,y)).

Proposition 3.2.4. B is an II-multicategory.

Proof. The composition is associative since it is based on the usual function compo¬

sition. If functions f, g and h are polytime computable then their composition is also
polytime computable. Let the bounding polynomials for /, gi, hj are p, qi and rj

respectively. Then the bounding polynomial for the composition can be obtained as

follows:

\f°(g\,---,gn-,h,---,hm)(x;y)\ < p(\g\) +max(|fiyj)
j

< p(q 1 (l-*l) -i !-?«(I^D) + max(ry'(|x|) + max(|yy|)) <

P(^i(l^l) + "- + ^(|^|)) + n(|^|) + --- + ^m(|^|)+max(|yy|
j

Take p(q\ (x) H b #«(*)) + r\ (x) H b rm{x) as the bounding polynomial for the
composition /o[n.0] {g;h).

The identities KXi and cyj are polytime computable with the bounding polynomi¬
als pn(x) = x and p0[x) = 0. The composition and identities satisfy all the desired
properties. □

Definition 3.2.5.

Given an II-model (C,! : C —> C) define underlying Il-multicategory C as follow:

• A set of objects of C is the same as |C|.

• For each dual-sequence of objects a\ ...an\b\ . ..bm and each object c a set of
multiarrows

C(a\ ...an\b\ ...bm,c) = C(!oi x ••• x\an x b\ x ••• x bm,c)

• For each dual-sequence of objects a\.. -an\b\.. .bm and each object a normal
projection multiarrow KUi = pai; £«,

52 Chapter 3. Dual-context multicategories

• For each dual-sequence of objects a\ ...an\b\ ...bm and each object bj a safe
projection multiarrow G/;; = pbj

• For each dual-sequence of objects a\ ...an\b\ .. .bm, each object c and each dual-
sequence of objects d\.. .d^e] .. .ei a composition operation

hm) = (N(gi),... ,N(g„),hi ,...,hn);f

where N(gi) = {p\af,§\ai,-• ■ ,P\an\§\an)',\gi-

Proposition 3.2.6. C is an II-multicategory.

Proof. Tedious but routine verification of required conditions.
Another important example of an II-multicategory will be considered in the next

section, in which we define a sound and complete interpretation of the 11(E) calculus
using II-multicategories.

3.3 Multicategorical semantics of M(Z)
In the previous section we defined II-multicategories, which have dual-contexts as do¬
mains of multiarrows. This feature and the special composition of II-multicategories
allow us to construct an interpretation of the 11(E) calculus and show that it is sound
and complete. We shall start with a standard definition, which describes how elements
of a signature E can be interpreted in an II-multicategory.

Definition 3.3.1.

An II-structure 5(E) for a signature E in an II-multicategory M is specified by giving
an object [oj £ Mo for each basic type G £ |E| and a multiarrow

[xi : [giJ,...,x„ : [g„J ; y\ : [Ti],...,ym : [xm]] [p]

for each functional symbol / : Gi,..., G„ ; Ti,..., Tm —> p in E.

Given a Il-structure in a II-multicategory M dual-contexts from 11(E) can be mod¬
eled as dual-contexts in M with types replaced by their interpretations. We will often
use the same abbreviations for the dual-contexts and their interpretations.

Each II(E)-term T; A h t: p will be interpreted as a multiarrow in M:

[*i : [gi],...,jc„: [g„];yi : [ti],...,ym : M] ^ [pi

3.3. Multicategorical semantics of 11(E) 53

Definition 3.3.2.

Given an II-structure in an II-multicategory M we define [r; A h t: aj as follows:

IFA h Xi : <7,-J = KXj °[r;A] tex, > • ■ •) Kxn i)
[r;Ah^:xjMo„
[r; A I- /((I t„; si sm): p] = [/] °|r;4] I'J ; M)

We start proving the soundness of such an interpretation with the following lemma,
which shows how weakening of normal terms is interpreted:

Lemma 3.3.3. For any term T; b t : p the following holds:

[r; A b tj = [T; b #J o[r.A] {nXl,..., %Xn;)

Proof. By induction on the derivation of T; b t: p:

• The II-S-Ax case does not apply.

• In the II-N-Ax case by the definition of [.. .J we have:

[*i'J I°[r;A] tex, > • • •) nx„ *>) — (ttx,- °[r;] tex, i • • • i KX„ 1)) °[r;A] tex, > • • •»^xn i)

which is by the associativity of the composition equal to ttXi °[r;A] te*i
which is [T; A h jc/J .

• In the II-Sort case by the definition of [...] we have

lf(u\, ■ ■ ■,; vi,..., vm)] o[r.A] (nXl,..., KXn ;) = ([/] o[r.j <|M]],..., \unJ;
Ivl]> •■■■> IvmJ)) ° [T:;A] texi j • • • jnxn '■>)

By the associativity of the composition this can be rewritten as

1/1 °[r;a] <["i] °[rj tex,, • • • ,KXn, M °[r;] tex,, • • • ,nx„;);
[Vll °[r;A] tec, J • • • , tCx„ ; [vm] °[r;A] tex, 1 • • • J^x„ i }}

By the induction hypothesis and the definition of [...] this is equal to

[/J °[r;A] , M ; [vil,..., M) = [r; A h/(mi,. .. ,Mn; V1,. ..,vm)\

□

54 Chapter 3. Dual-context multicategories

The next lemma proves that the safe substitution in the 11(H) can be interpreted
using the composition of II-multicategory:

Lemma 3.3.4. Given the 11(H)-term T; A b t: p and the following II fL)-terms:

the following holds: [f [a, [3]] = [rj o[n;0] ([wi],..., [w„J; [vi],..., [vm]), where a ab¬
breviates u\ jx\,..., un/xn and (3 abbreviates v\/y\vm/ym.

Proof By induction on the structure of t. We will abbreviate the family [miJ,...,
as [ii] and the family [vi],..., [vm] as [vj.

• In the II-S-Ax case by the properties of substitution y, [a, (3] = v,-. On the other
hand by the S-Id property and the definition of J.. .J we have

• In the II-N-Ax case by the properties of the substitution x, [a, P] = On the
other hand by the definition of associativity of the composition and the
N-Id property we get:

faxs °[r;A] fax,)•••»%„;)) °[n;0] (["] > IM) = K*i °[ri;0] fax, °[n;] (["!;)>•••>
Kxn °[n;] (I"l i i) = KXi °[n;0] (I"l i }

By the Id property we have |«,-J = [m,-J ojn.j (jt^,... ,nXn;) so we have:

%Xi °[n;0] (["I ;) = KXi °[n;0] (IMlJ °[n;] fax, > • • • iKxn ',),■■■,
[Mrc] °[n;] fax, > • • • > tt'Xn '■>)>)

Using associativity and N-Id this can be written as

faxi °[n;j (IM1 !>•••> [M«l »)) °[ri;0] fax, > • • • >^x„ >) = o[n;0] fax, j • • • j Kx„ >)

which by the lemma 3.3.3 is equal to [II; O b u,•: a,-].

• In the II-Sort by the properties of the substitution we have:

n; b u\ : C7i

II; 0 b vi : Ti

n; b un . on

n; 0 b vm . xm

M °[n;0] (M ; [v]) = ovo[ri;0] (M; H) = [v,-]

f(s!,...,sk; ti,...,t/)[a,p] =f(si[a\,...,sk[a];ti[a,p],...,t/[a,P])

3.3. Multicategorical semantics of II (X) 55

On the other hand we have:

lf(si,...,sk-,tu...,ti)j O[n.0] <[m] ; [v]> = ([/] o[r.A] (M,..., {sk}; [til,...,
M))°[n;0]<N; [vl)

which by the associativity of composition is equal to

1/1 °[n;0] (M °[n;] (I"l ;)»••■ > NJ °[n;] <[«];);
Ihj °[n;0] (["1; [v]), • • •, M °[n;0] (I"l > [v]|»

Using the induction hypothesis this can be rewritten as

[/] °[n;0] (I^i[«]!,...,{sk[a]]; {h[a,p]],..., [f/[a,(3]]) = |/(ji[a],...,sk[a];
h [a,p],...,r/[a,p])]

□

Given an equation-in-context V; A b t\ = t2 : o any Il-structure 5(E) gives rise to
the two multiarrows [?i|, J^] : flT; A| —> |a|. We say that an Il-structure S(Z) satisfies
this equation-in-context if these two multiarrows are equal. If Th is a dual-context
algebraic theory over a signature X then we say that S(X) is a Th-algebra if it satisfies
all the axioms of Th. The following theorem shows that any 77i-algebra satisfies all the
theorems of Th:

Theorem 3.3.5 (Soundness). Let M be an 11-multicategory and S(X) be a Th-algebra
in M for a dual-context algebraic theory Th. Then S(X) satisfies any theorem ofTh

T; A h t\ = t2 : a => [*i] = Ifel

Proof. By induction on the derivation of T; A b t\ =ti'. o

• Axioms of Th are satisfied because S(X) is a T/z-algebra.

• Ref, Com and Trans follow from the properties of equality of multiarrows in a

II-multicategory.

• II-Sub follows from the lemma 3.3.4.

□

56 Chapter 3. Dual-context multicategories

We will now prove the completeness of our multicategorical interpretation of 11(E).
At the heart of such proof is the definition of classifying II-multicategory built out of
types and terms of 11(E).

Assuming that Th is a dual-context algebraic theory over the signature E we shall
write t\ —Th h if T; A b t\ = tj '■ p is a theorem of Th. In this case we say that the terms

t\ and t2 are Th-provably equal. The Ref, Sym and Trans rules of basic equational

logic of 11(E) ensure that the relation =jh is an equivalence relation.

Definition 3.3.6.

Given a signature E a classifying II-multicategory Ox will be defined as follows:

• The objects of Clx are the basic types from |E|.

• For each d-context [T; A] the set of multiarrows Ox([r; A], p) will be the set of
all equivalence classes of II(E)-terms T; A b t : p under the relation =jh- We
will denote such equivalence classes as [T; A h t: p].

• Given a multiarrow [T; A h t: p] and a family of multiarrows

the composition t O[n.0] (u\,..., un; vj,..., vm) is defined as equivalence class of
the term n; 0 b t[u\/x\,... ,un/xn,v\/y\,.. .,vm/ym] : p.

• A safe identity cyj : [T; A] —► Xj is the equivalence class [T; A h yj : Xj] and a
normal identity nXi : [T; A] —> o(- is the equivalence class [T; h xi: a,].

Proposition 3.3.7. Clx is an ll-multicategory.

Proof. We need to check that all the axioms of II-multicategory are satisfied:

• For the identity laws of Il-multicategory we have:

avi°[r;A] (s\,...,sn;t\,...,tm) = \yi[si/xi,... ,sn/xn,ti/yi,... ,tm/ym]] = [<U}
nXi °(r;A] (si,.",sn;) = \xi[si/xi,...,sn/xn,ti/yi\] = [^-]
t °[r;A] {^x\ i • • • ! Ctyi > ■ • • > Gym) = \f\x\/x\ > • ■ • ixn/xmy\ /y\ ■> • • • = M

• The composition is associative because of the associativity property of the safe
substitution.

[FI; h : ai]

[Fl;0bvi :xx]

[n un. crn]

[n; © F vm '. xm]

3.3. Multicategorical semantics of II (£) 57

□

Next we describe the 'generic' II-structure 3 in Cfe. In 3 each basic type a is
interpreted by the object a and each function symbol / : Oi,... ,cn ; ti,... ,xm —> p is
interpreted as a multiarrow [r; A b f{x\,... ,xn; y\,... ,ym) : p].

Proposition 3.3.8. 3 is a Th-algebra.

Proof. We need to show that any II(X)-term T; A b t : p is interpreted by the equiva¬
lence class [jT; A b t: p].

• In the II-N-Ax case we have:

[r;Ahx;: Of] = 7U*,. o[r.A] (nXx,...,KXn;) = [xt[xi/x\,... ,xn/xn]] = [xi\

• In the II-S-Ax case we have:
i

[r; A b yj : Ty] = <3yj °[r;A] (^1 > • • • > nxn i Gy\ > • • •) Gym) =

\yj[xi/xi,... ,xn/xn,yi/yi,... ,ym/ym]} = [y;-]

• In the II-Sort case we have

[n; 0 b f(S],... ,sk; ti,... ,ti): pj = [/J o[n.0] ([jiJ, ..., {sk] ;

lh},-■ ■, Jt/1) = \f(x i ,yi)[si/xi,sk/xk,t\fy\,.. -fi/yi]] =

□

Theorem 3.3.9 (Completeness). Iffor the given two II (Z)-terms T; A b t\ : p and
r; A b t2 : P their interpretations in any Th-algebra I are equal [/ij7 = then
r; A b t\ = t2 : p is a theorem ofTh.

Proof. Since]' = [z2l in any Th-algebra then it must also hold in 3. From this we

can conclude that T; A b t\ — Z2 : p is a theorem of Th. □

We have shown how the II(X) calculus can be interpreted in II-multicategories and

proved that this interpretation was sound and complete with respect to the basic equa-

tional logic of II(Z). The construction worked because II-multicategories contained
dual-contexts as primitive and products and exponential types were not needed in or¬

der to construct the classifying multicategory.

58 Chapter 3. Dual-context multicategories

After establishing soundness and completeness of the multicategorical interpreta¬
tion of the 11(E) calculus we start using the language of 11(E) for reasoning about

f
II-multicategories. A multiarrow [r; A] —> c can be represented as the 11(E)-term

[xi : ci],... ,xn \ an\y\ : b\,... ,ym : hm] f(x\,... ,xn ; yi,... ,ym) : c

The composition /op. 0j (gi,..., gn ; h\,..., hm)will be represented using substitution
by the II(E)-term

[n; 0] f(gi (*;),... ,gn(x'>);hi(x;y),... ,hm(x;y))

Identities will be represented by the terms [T; A] jc; and [T; A] yj.

3.4 IL-multicategories

In the previous section we defined the notion of II-multicategories and used it to give
the interpretation of the 11(E) calculus which was sound and complete. In this section
we are going to define a similar notion of IL-multicategories and use it for interpreta¬
tion of the IL(E) calculus. Much of the development will be very similar to the 11(E)
case so we shall be brief.

The semantics of II(E)defined in the previous section was essentially based on the
following two principles:

1. Dual-contexts are included in the definition of II-multicategories as domains of
multiarrows.

2. The safe substitution on 11(E) corresponds to the composition operation in II-
multicategory.

3. The axioms of 11(E) are interpreted using the identities of an II-multicategory.

The axioms and the safe substitution rule of the IL(E) are different from corre¬

sponding has slightly different variants of the substitution and identities:

Definition 3.4.1 (IL-multicategory).
An IL-multicategory M consists of

• a set of objects Mo

• for each object c and each d-context [T; A] over Mo a set M([T; A],a), whose
f

elements will be called multiarrows and denoted as [T; A] —»• a

3.4. IL-multicategories 59

• for each object c, each d-context [r; A] and each d-context [Id; 0] a composition
operation:

n m

M([r; A],c) x J~jM([n;],a,-) x]~[M([n; ©y],^-) —> M([n; 0,,... ,0m],c)
i'=l 7=1

where 0],..., Qm are assumed to be mutually disjoint. We shall denote compo¬

sition as fo {g\,... ,gn;hi,... ,hm). In principle we need to subscript o with II
since in the case of / being a multiarrow with the empty d-context as domain,
the composition of / with the empty family of multiarrows is a multiarrow with
[IT;] as domain, where [Id;] is an arbitrary normal d-context but we decided to

disregard this in favor of lighter notation.
Kx.

• for each d-context [r;] and each jc,- a normal identity multiarrow [r;] —-*• a,-

and for each d-context [T; y : b] a safe identity multiarrow [r; y : b] —^ b

satisfying the following equalities:

• Associative law

/ ° (gi ° (t;} • • • gn o {t;}; h\ ° (t;),..., hm o {t; sm)) =

(f°(g',h))o(i;su...,sm) (Assoc)

• Identities laws

nXi o {g\,...,gn\)=gi (IL-N-Id)

Gy ° (gi, ■ • •, gn; h) = h (IL-S-Id)
f ° {itx\) • • •) ; ctyj,..., Oym) = f (IL-Id)

Given a signature Z the notion of an IL-structure in an IL-multicategory M is de¬
fined in the same way as II-structure, providing the interpretation of the basic types as

objects of M and function symbols as morphisms in M.

Definition 3.4.2.

Given an IL-structure I in an IL-multicategory M the interpretation of an IL(Z)-term
T; A h t: p is defined as follows:

[r;hx,: <j/J = nXi

[T; y: x h y: t] = oy

[r; A1;... ,Am j1,...,sim) : pj = [/I ° <[ti]|, • • •, M ; [si], • • •, M)

60 Chapter 3. Dual-context multicategories

The main lemma for establishing the soundness of this interpretation tells that the
safe substitution in IL(Z) is interpreted by the composition in IL-multicategory:

Lemma 3.4.3. Given an IL(H)-term T; A b t: p and a family ofTL(H)~ terms:

n; b u\ : Gi ... n;h«„:o(1

n; 0|—V] : X] ... n, 0OT \~ vm . Tm

we have the following:

[f [ml/x\,...,un/xn,v\/y\,•••.,Vm/ym]] = ft} ° (|mi],..., {unJ; [vi]|,..., |vmJ)

Proof. Induction on the structure of t, which is similar to the corresponding proof in
the II case. □

Given a dual-context theory Th for a signature £ an IL-structure is a 77r-algebra if
satisfies all the axioms of Th.

Theorem 3.4.4 (Soundness). Let M be an II-multicategory and S(£) be a Th-algebra
in M for a dual-context algebraic theory Th. Then S(£) satisfies any theorem ofTh

T; A b t\ =t2'.o =>• [[til = [fcl

Proof. By induction on the derivation of T; A b t\ = t2 : a with the previous lemma

being the only non-trivial case. □

In the opposite direction we have the following completeness theorem:

Theorem 3.4.5 (Completeness). Iffor the given two 11(H)-terms T; A h t\ : p and
T; A h t2 : P their interpretations in any Th-algebra I are equal |fi J7 = [^J7 then
T; A b t\ — t2 : p is a theorem ofTh.

Proof. Proof is done by constructing the classifying IL-multicategory out of the ba¬
sic type and the equivalence classes of terms in the same way as the classifying II-

multicategory was built. □

We give one example of IL-multicategory, taken from Hofmann [Hof99]:

Definition 3.4.6 (Multicategory H).
The IL-multicategory H is defined as follows:

• The set of objects consists of one element - set of all natural numbers N.

3.5. R-Multicategories 61

• The set of multiarrows Hi ([*1 : N,... ,xn : N; yi : N,... ,ym : N],N) consists of
all the functions / : N" x Nffl -» N such that / is polytime computable and is
bounded by a monotone polynomial pf.

\f(x-,y)\<pf(\x\) + \y\ (H-Bound)

• The normal identity multiarrow nXi(x\ is given by the projection xt and
the safe identity multiarrow Gyj (*i yi,... ,ym) is the projection yj.

• The composition operation /or (g\,... ,gn~, h\,..., hm) is defined using the usual
function composition as f(g\ (*),... ,gn(x),h\ (x,y),. ..,hm(x,y)).

Proposition 3.4.7. H is an IL-multicategory.

Proof. The composition is associative since it is based on the usual function compo¬

sition. If functions f, g and h are polytime computable then their composition is also

polytime computable. Let the bounding polynomials for /, gi, hj are p, qi and rj

respectively. Then the bounding polynomial for the composition can be obtained as

follows:

\f(gu...,gn,hi,...,hm)\ < Pf(\g\) + \h\ <

Pf{l l (W) +'' -+^(1*1)) + n (|*|) + |yi | H f rm(\x\) + \ym\

Take p(q\ (x) -\ b qn{x)) + H (•*) H b rm(x) as the bounding polynomial for the
composition. Note that the having IL-style composition is essential in order to obtain
the needed bound.

The identities nXi and <3yj are polytime computable with the bounding polynomi¬
als Pk{x) = x and pc(x) = 0. The composition and identities satisfy all the desired
properties. □

3.5 R-Multicategories

In the previous sections we have defined the notion of II- and IL-multicategories and
have shown how these structures can be used for interpretation of II(X) and IL(X).
In this section we shall define a general notion of a dual-context multicategory, which

generalizes both II- and IL-multicategories.

62 Chapter 3. Dual-context multicategories

We have seen that both IL(E) and II (Z) can be described using the minimal dual-
context calculus LL(Z) extended with appropriate renaming rules. The multicategor-
ical interpretation of such extended LL(Z) calculus requires the following changed
notion of dual-context multicategory:

• Composition will have the following signature:

n m

M([T; A], c) x f[M([Af;], a/) x J] M([n7 ; ©;],bj)^
i=l 7=1

M([Ai,..., An,111,...,nm ; 0i,...,0m],c)

• For identities we take

[jc : a;] —^ a [; y : b] —Z b

• Composition and identities should satisfy the usual laws:

f° (gi° (h;), • • • ,gn ° (tn;}; hx o (ax; si),...,hm ° (um; sm)) =

(/ ° (g; h)) o (ti,..., tn, mi ,..., um; si,...,sm)
nx ° (g;) = g

Oy o (; h) = h
f ° (it*] 5 • • • 5 KX„ ! CT-yj , . . . , Oym) = f

• For any renaming e : [T; A] —> [FT; 0] in and any object c we need an operation

•£ : M([r; A],c) —> M([T1; 0],c)

The renaming operation e should satisfy the following laws:

• For the identity renaming t: [T; A] —> [T; A] the corresponding renaming opera¬

tions should be the identity as well:

f-l=f (Ren-Id)

• For composable renamings

El : [Fi; A!] ^ [r2; A2] e2 : [T2; A2] -> [T3; A3]

the corresponding renaming operations should satisfy

/• (£2o£!) = (/•£,)-82 (Ren-Sup)

R-Multicategories 63

Given a multiarrow / £ M([r; A],c), where

[r; A] = [xi : fli,... ,xn : an ; y\ : b\,... ,ym : bm]

which can be composed with the following family:

{gx\ ■ 6^1) • • •) gxn ■ £*„ i hy] • Eyx , . . . , hym ■ Eym)

where

gxt • [nXi;] * r(x/) hyj : [n-y^; 0-^.] ■» A(yj)
£xt '■ [nXi;] —> [nJC;;] Eyj: [n^.; ©yj] —>■ [Tly.;

we require have the following

f° (gxi • £Xi > • • •) gxn • £x„ ; hyi • Eyj,.. • • %m) =

(/° (fo,, • • • ,gXn ; fy,, • • - Am))'e (Ren-Comp-1)

where the renaming operation e corresponds to sum of renamings eXl,..., eXn and
e-y,,..., Eym such that:

£; nxi,..., nx„,nyi, riym; 0^,..., 0^
i

IXl) • • •) !'•**' ">>m ' v'yi ' ' ' " ' wym

lym ' W>'1 > • • • > w>'m
/ II

nxi > • • • j n*, n ,..., n , 0V

e(v)
ex» if v £ [nX(.;]

Eyj(v) if V £ [nv . ; Qyj]
Given a renaming e : [r; A] —> [fl; 0]

[r; A] = [xi : a\,... ,x„ : an; y\ : b\,... ,ym : bm]
[n; 0] = [u\ : Ci,...,uk : ck\ vi :di,...,vi: dt]

and a multiarrow / £ M([r;A],e) and a family of multiarrows composable with
/•e:

gUi ■ [nUi;] -> n(ii,-) 1 < i < k

hVj: [nv.; 0V.] G(vj) 1 <j<l

consider a family

(^e(jci)j • • • >8e(x„) > he(yi)> • • • >8e(y„))

64 Chapter 3. Dual-context multicategories

This family can't be composed with / directly because it may contain same

multiarrow occurring twice. So we have to apply renamings which will make
sure that all the multiarrows have disjoint contexts:

Sxj = ge(xj) " hyj = h£(yj) • Gyj

where the renamings oXj and oyi are defined as follows:

: [ne(Xj);] -* [TlXi;] oX((v) =

°V; : [n£(,,) '> ©e(yy)] [Tlyj ©yy] aVy(V) = ^

We require that

(/ • e) ° (gUl, ■ ■ ■ ,guk; hn.. ,hVl) = (fo (gXl,... ,gXn ■ hyi,... ,hym)) ■ a

(Ren-Comp-2)
where

a : nXl , . . . , IlXn , Ily, , . . . , IIym ; Qy, , . . . , 0ym —>

nU\ i • • • i nuk, nVl,..., nv;, @VI,..., ©v;

a(vXi) = v e ne(jc.)

To summarize we have the following definition:

Definition 3.5.1 (R-multicategory).
An R-multicategory M($R) for a given renaming set iR consists of

• a set Mo, whose elements are called the objects of M

• for each d-context [T; A] over Mo and each object c, a set M([T; A],c)

• for each object c, for each d-context

[T; A] = [*i: m,... ,xn : an; y\ : b\,... ,ym : bm\

and each d-context [Tli,..., Tln, <l>i,..., <!>,„ ; ©],..., 0m] a composition opera¬

tion

n m

M([T; A],c) x nM([n,;],<3i) x J~[M([07-; Qj],bj)x —>
i= 1 7=1

M([nb..., ;©!,..., 0w],c)

3.5. R-Multicategories 65

• for each d-context [jc : a;] a normal identity multiarrow

[x : a;] a

and for each d-context [; ya] a safe identity multiarrow

a

• for every renaming a : [F; A] —> [II; 0] € R a map

•a : M([r;A],c) —> M([fl;0],c)

satisfying

• Associative law

f°{gio(si;),...,gno(sn);hio(ui-,vi),...,hmo(um;vm})

(/o (glgn;hihm)) o (sisn,um;vi,...,vm) (R-Assoc)

• Identity laws

where /: [xi : a\,... ,xn : an; yi : b\,... ,ym : bm] —> c

• Renaming laws Ren-Comp-1 and Ren-Comp-2

We can construct II-multicategory M out of R-multicategory M(9ct//), where £H//
is a set of all II-renamings.

• M has the same objects and multiarrows as M(fH//).

• Given a multiarrow

/ ° (ftjci > • • • 5 Kxn ; Ctyi J • • • 5 Gym) — f
Kx°{g-,)=g

Gyo(\h) = h

(R-Id)

(R-N-Id)

(R-S-Id)

f:[x i :ai,...,xn:an;yi : h,... ,ym : bm] -»■ c

and a family of multiarrows

gXi: [n;] -> di

Syj : [n; 0] —> bj

1 < i < n

1 < j < m

66 Chapter 3. Dual-context multicategories

we define

/ °[n;0] (foi) • • •) 8xn hym) =

(/° (fo, • eX! 5 • • • ,8xn ■ £xn ; hyx • £yt , . . . ,hym ' Eym)) ' <3

where

&xi: [n;] ^ [n*;;] eXi(uj) = uj
Eyj: [II; 0] —»• [Uyj; 0_V;] £yj {uj) = ui' &y/(vi) = v/7
°: [nxj,• • • jn*„,n-yj,nym; ©yi,...,oym] —> [n; 0]

c(uj) = Ui <3(uyj) — Uj o(vj) = Vj

• The normal identity multiarrows are defined by

[T, j [x] . Cl\;. G.fi ,] Q-l

KXi = ttx " V

v : [xla,-;] -> [T;] v(x) = x,

• The safe identity multiarrows are defined by

Oyj
[T, A] = [xj .a1,... ,xn . an',y\ . b1,... ,ym • bm\ * bj

Oyj = <5y ' jj.

p: [;y:bj\ -»• [T; A] n(y)=yj

Proposition 3.5.2. M is an II-multicategory.

Proof. See appendix B. □

We can also obtain a R-multicategory out of II-multicategory.

Definition 3.5.3.

Give an II-multicategory M we define the R-multicategory M as follows:

• M has the same objects and multiarrows as M.

• The composition of a multiarrow

f '• [-*1 • a\ > • • • ixn '■ an \y\ • b\,... ,ym . bm] » c

3.5. R-Multicategories 67

arid a family of multiarrows

gi: [II; ;]—>«, [n(-] = [x\:c\,... ,4.: c\.;]
: [Ai; ©7] bi [Ay; ©;] = [4 :dJv...,uJh : dj. ;v\ : eJv...,vJr. : eJr.]

is defined as

f°{gu--,gnm, h,---,hm) =/o[n;©] (gi °[n;] (^j»• • • >nx\ i)>■••>
Sn°[n;] (njtji• • • ,^4n;);^1 °[n;0] (nBi>••• >nut ; »• • • >av\)»• • • >

^m°[n;0] (Kuy,---,KuJ>m '■> G\>™, ■ ■ ■, av?m))
where

[EI; 0] = 0m]

• For the safe and normal identities take the corresponding identities of M.

• Given an Il-renaming

£ • [r; A] = [x\ . Gi,... ,xn . on , yi . Xi,... ,ym . xm] » [n, 0]

and a multiarrow / : [r; A] —> c we define

/' £ = /°[I1;0] (^(xi)) • • • >^e(x„) > ^e(yi)> • • • 'Ge(vm))

Proposition 3.5.4. M is an R-multicategory.

Proof. See appendix B. □

In this chapter we defined notions of II- and IL-multicategory. The important fea¬
ture of our approach to multicategories is the use of dual-contexts as domains for mul¬
tiarrows compared to sequences of objects in the traditional approach. The usage of
dual-contexts requires further modifications in the notions of composition of multiar¬
rows and identity multiarrows.

The difference between II- and IL-multicategories is in the allowed structural op¬

erations on multiarrows. In the case of II-multicategories the usual intuitionistic struc¬

tural operations can be performed for both safe and normal variables in dual-contexts,
while in the case of IL-multicategories only linear usage of safe variables is allowed.

Dual-context multicategories allow more natural interpretation of dual-context cal¬
culi compared to using categories with structure. We defined interpretations of the

68 Chapter 3. Dual-context multicategories

11(E) and the EL(E) calculi using II- and IL-multicategories and proved that this inter¬
pretation was sound and complete.

Finally we outline one possible way of unifying the notions of II- and IL- mul¬
ticategories using the notion of R-multicategories, in which structural operations on

multiarrows are introduced explicitly as opposed to being constructed using composi¬
tion operation and identity multiarrows.

Chapter 4
$

Dual-context type constructors

In chapter 2 we introduced two simple dual-context calculi 11(E) and IL(E), which had
only the basic types and no type constructors. In this chapter we are going to extend
the 11(E) and the IL(E) calculi with products, sums and unit type. For each of these
extensions will will define a sound interpretation using extended notions of II- and IL-

multicategories, obtaining multicategorical versions of cartesian products, coproducts
and terminal objects.

4.1 Dual-context binding operators

In the natural deduction formulation of intuitionistic logic, each propositional connec¬

tive is defined by introduction and elimination rules. Consider for example the rules
for disjunction v:

rba
TT rba TT, r,Abc r,sbc thavsVl-L — VI-R — — VE

rbAvfi rbfivA rbc

The VI-L and VI-R rules are quite simple, the context of assumptions is the same in
the premise and the conclusion of each rule. In the VE rule the formula A is discharged
from the first premise and the formula B is discharged from the second premise.

In general many different natural deduction rules can be described by the following
data: the number n of premises of the rule, the sets of formulae A; which are discharged
in from each premise, the conclusions A,- of each premise and the final conclusion B.
Such data is called the arity of the rule [Acz80] and can be written as follows:

(AQAi ... (An)An
B

where A, are the sets of discharged assumptions.

69

70 Chapter 4. Dual-context type constructors

In type theory, each natural deduction gives rise to a binding operator typed by a

rule of the form:

r,(Ai) htj :Ai ... r, (An) \-tn:An
rhop((Ai>i,...,(An)tw) :B

where T, Ai,..., An are typing contexts and the operator construct op((Ai)t\,..., (An)tn)
binds all variables from the context A, in the term ?,■ for all i from 1 to n.

Simultaneous substitution for operator terms can be defined as follows:

op((Ai)*i,..., (A„)t„)[a] = op((A])r, [a],..., (A„)?w[a])

where we assume that some measures are taken in order to avoid incidental capturing
of free variables.

We can show that in any type system given by some set of typing rules of the form
OP the following substitution rule is admissible:

x\ . A],...,JC/j. An I~ t. B
n b~ si . A] ... n l~~ Syi. A72

Yl\-t[s\/x\,...,sn/xn] :B

We shall now consider a generalization of such binding operators in dual-context

setting. We start with II-operators. First, we need to change all single contexts to the
dual contexts and allow both normal and safe assumption to be discharged:

r, (ri!); A, (0,) h A, ... r, (rg; a, (e„) i- a„
T;Ah B

Next, we consider operators with two kinds of premises, called normal and safe. Nor¬
mal premises will share only normal d-contexts and safe premises will share arbitrary
d-contexts. It turns out that many interesting operators require this feature. So arity of
an II-operator looks as follows:

r, (no; (©j) fa, ... r, (n„); (©„) hA„;
r,(«l»1);A,OF1)l-fli ... r,(Om);A,(»Pm)hfim

T; AhC

In the case of an Il-operator with only normal premises its arity is

r^nO; (0]) FA] ... r,(n„);(0n)hA„;
T; AhC

where A is arbitrary, not necessarily empty.

4.1. Dual-context binding operators 71

Consider a set of II-operators O with associated arities as above. We shall now

define an extension of the 11(E) calculus with such binding operators, called II(E)+0.
For each II-operator in O we introduce a new kind of pre-term:

OP(C^l • ^1 > • ^l)^l j • • • > (%n '• 5 fn • Xn)tn >

(A : ^ ; y\ : x[)t[,..., (x'm : &m; y'm : x'Jt'J

where (x,-: a(; yt: x,-)f stands for (xi : c>\,... ,xm : o,,,.; yi : X\,... ,ymi : Xmi)t and rep¬
resents a binding of the variables xi,...,xn,y\,...,ym in the term t. The set of free
variables of a term is defined as before with the following additional case for each

operator:

FV(op((xi : 5i; yi : xi)fiCTn; yn ■ xn)tn ; (x) : o);y\ : x\
n m

(4 ■ A,; y'm ■ 4)4)) = U (FV(4 - fe^))u U (FV(4 - (4:4)
i= 1 i=l

In the presence of binding we require all substitutions to be capture-avoiding. The
simultaneous substitution is defined as before with the following additional case for
each operator:

op((xi : 6i; yi : Ti)fi,..., (x„ : ; y„ : xn)tn; (x) : o\ ; y[: x)
(x'm ■ 4 ; y'm : 4)4)[«] = °P((*1 -^1^1 • X\)t\ [a],..., (x„ : Gn J yn ■■ t„)tn[a\ ;

(A ■ a'i; /i: A)t[. (4: An; y'm ■ 4)4 [a])

For each operator we add the following typing rule to 11(E):

r,n,, 0] f t]: cri ... r,nn, Qn \~ tn. on,

r, Oi, a, i f . Xi ... r, , a, *i'm \~ sm. %m

F; A F op((Fli; 0j)ti,..., (n„; Qn)tn; (Oi; j)si,..., (<&m > x^lm)sm): P

For a normal operator such rule will have the following form:

r,ni; 0] Ft]:o\ ... r,n„, 0^ \~ tn. on,

r; A h op((n,; 0])fi,..., (n„ ; Qn)tn;): p

where A is arbitrary.
The type system II(E)+0 retains all the basic structural properties of 11(E). In

particular, the safe substitution rule II-Subst is admissible. Before showing this we

need the prove following lemma:

Lemma 4.1.1. Ifa term T; A b t: p can be derived in 11(E)+0 then T, T'; A, A' h t: p
is derivable as well.

72 Chapter 4. Dual-context type constructors

Proof. Induction on the derivation of t. It is important that in the typing rules for II-
operators with only normal premises, A in the conclusion of each rule is allowed to be
non-empty. □

Theorem 4.1.2. Il-Subst is admissible in M(E)+0.

Proof. Recall the Il-Subst rule for T; A b t: p

n,hMl .o, ... n,bun.c5n

n, 0 b V] : Xi ... Ft ; 0 b vm . Tm

FI;0b t[u\/x\,.un/xn,v\/yi,.. .,vm/ym\ : p

We consider the only the new case when t is typed using one of the added rules:

t = op((rii;0i)fi,...,(iii; ®\)tn; (^i;,(^1; *Pi)sOT)

Abbreviate a = u\/x\,..., un/xn and (3 = vj /y\,..., vm/ym■ By the definition of sub¬
stitution

op(?i,... ,tn; si,... ,5-m)[ot, (3] = op(t] [a, p],... ,tn[a, p]; s\ [a, p],... ,sm[a, p])

Consider arbitrary T, <t>,; A,^, b Si: xWe assume that

T = xi : ai,... ,xn : on A = yi : Xi,... ,ym : xm

<D/ = 4 : pi,... ,4 : Pk ^ = y'i : ©t, • • • ,y'i: 6/

By the properties of substitution

•b'[a, P] = ^["l At> • • •, un/xn,v\/y\,..., vm/ym,x\ /x\,... ,x'k/x'k,y[/y\,... ,/,/yJ]

Given n; b u\ : Oi,..., n; b un : an and n; 0 b vi : Xi,...,II; 0 b vm : xm by lemma
4.1.1 we can apply weakening and get the following terms

n,0/;b«i :ai ... n,(D,;bH„:on

n,0,; 0,*F,- b Vi : ti ... n,Oi;0,lFl bvw :xm

Applying the Il-Subst rule we get b Si[a, p] : x,-. Similarly we derive
n, n,-; b ti[a, P] : a, for all 1 < i <n. Using the operator rule we get

II; 0 b op(ti [a, P],...,[a, P]; [a, P],...,sm[a, p]): p

□

4.2. Products in 11(E) 73

4.2 Products in II(S)
In this section we shall consider dual-context products in the 11(21) and the IL(£)
calculi give multicategorical interpretation for it.

In the single-context case, the typing rules for products are well-known. We adopt
the elegant formulation in [Pit95]):

rhn:o rhm: T rhp:axT T,x : cs,y : x h S : p
T h pair(n,m): o x x T h let(x,y) = p in s : p

with the following equality judgements:
T\~n:o T h m : x T,x : c,y : x h s : p
r h let (x,y) = pair(n,m) in s = s[n/x,m/y] : p

rhp:oxx r,z:oxxht:p
— T1

r h let (*,y) = p in f[pair(*,y)/z] = t\p/z] : p

One can show that in order to soundly interpret such rules in a category with finite

products one can use the existing product structure.
We start with extending the II(Z) calculus with normal products a x x, which will

be restricted to normal terms only. Terms of type a x x are introduced by the following
rule:

T; h t\ : o T; h t2 : x;

F; A I— pair(fi,f2;): a x x

Note that both t\ and t2 are normal terms. This restriction will play crucial role when
we shall define basic equations for the normal product types.

The elimination rule for the a x x types can be given as follows:

T;hp:axx ; r,x:oj:x;Ahs:p
T; A h let (x,y) = p in s : p

The important feature of this rule is that both variables x and y which are being bound
in the term s are normal.

In order to give semantics of the normal product rules in an II-multicategory M we

need a binary operation on objects x : |M| x |M| —> |M| which will be used for the
interpretation of the x operation on basic types:

[a x xj = [a] x [xj

The semantics of the introduction rule is given by the following operation on mul-
tiarrows:

paira : M([T; },a) x M([T;],b) -> M([T; A],a x b)

74 Chapter 4. Dual-context type constructors

which commutes with II-composition in the following way:

pairA(f,g) o[n.0] (j; t) = pairQ(f o[n;] (s;),go[n;] (s;))

Note that since the variables in A were introduced by an implicit weakening the multi-
arrows t do not appear on the right-hand side. Also the composition on the right-hand
side is restricted to the normal d-context [II;] rather than [II; 0]. This property en¬

sures that the application of the pairA to the multiarrows pT;] ^ a and [T;] b is
completely determined by the composition with a multi-arrow pab = pair^(n™ ,K™),
where [II;] = [jc : a,y : b;]:

pairA(f,g) = pairA(K™ o[r;] (f,g\), n™ o[r;] (f,g;)) = pab o[r.A] (f,g\)
So the semantics of the introduction rule can be given as follows:

[r; A h pair(m,n) :oxt]= P[o],[t] °ir;Al (H> H i)
For the interpretation of the elimination rule we need the following operation on

multiarrows:

split : M([T;],a x b) x M([T,x : a,y : b\ A],c) —> M([T; A],c)

which should commute with II-composition in the following way:

[IT; 0] split(p,s)(f; g) = split(p',s')

where p' is the multiarrow p(/;) and s' is the multiarrow s(f,x,y).
Since split commutes with Il-composition it can be expressed as follows:

[F; A] split(p,s) = sp(s)(x,p; y)

using the operation

sp : M([r,jc : a,y : b\ A],c) —> M([T,z : a x b\ A],c)

which should also commute with 11-composition:

[Yl,z:axb-,Q] sp(s)(g,z;h) = sp(s')

where s' is (g,x,y, h).
We can define the interpretation of the elimination rule in the following way:

[r; A h let (x,y) = p in sj = sp(s)(x, |p]; y)

4.2. Products in 11(E) 75

We shall now consider basic equalities for the normal product types. First we have
the following beta equality:

r;hn:o T; h m : x : a,y : t; A b s : p
r; A h let (x,y) = pair(n,m) in s = s[n/x,m/y] : p

This equality is important in understanding the intuition behind our definition of nor¬

mal product types. Since we have chosen both x and y to be normal in the elimination
rule for a x x we have to restrict to normal n and m to satisfy the restriction of II-

composition.
This beta equality rule translates into the following property of sp and pay.

[T; A] sp(s)(x,pa,b(f,g)-,y) = s(x,f,g-,y)

for every multiarrow s : [F, jc : a,y : b; A] —> c, f : [r;] —> a and g : [T;] —> b.
Next, we ask for the following eta equality to hold:

T;hr:axx T,z : a x x; A \~ t: p
T; A b let (*,y) = r in t[pair(x,y)/z])) = t[r/z] : p

This equality translates into the following property ofsp and pa,b-

[T; A] sp(t(x,pa!b(x,y;);y))(x,r;y) =t(x,r;y)

for every multiarrow t: [T, z '■ a x b; A] —> c and r : [T;] —> a x b.
Given an II-multicategory M with sp and pa.b, which satisfy p and r\ equalities

there exists the following bijection between the sets of multiarrows:

M([T,jc : a,y : b; A],c) —> M([r,z :flxi;A],c)

given by sp and with inverse given by the composition with pa,b:

[T,x:a,y:b;] sp(s)(x,pa!b(x,y,);) =s(x,x,y\) using the p equality
[r,z:axb\] sp(h(x,Pajb(x-,y,)))(x,z;) =? h(x,z;) using the r) equality

We can construct the following multiarrows

[z : a x b;] fst(z;) = sp(x)

[z:axb;] snd(z\) = sp(y)

Using these multiarrows we can construct an isomorphism

M([T;),a) x M([T;],b) s M([T;],a x b)

76 Chapter 4. Dual-context type constructors

given by the composition with pa^ and inverse by compositions with fst and snd. In
one direction by the (3 equality for sp and pa,b we have

sp(x)(pa,b(f,g',))=f sp(y)(PaJ>(f,g\))=g

In the opposite direction we have

[r;] Pa,b (fst (p;),snd(p;);) =s (pa,b (fst (pa,b (x,y-,)-,),snd (pa,b;);)) {p\)
= s(pa,b(x,y,))(p;)
= P

Using this isomorphism we can give a different interpretation of the normal product in
an II-multicategory M using the following definition:

Definition 4.2.1 (Normal product).
Let M be an Il-multicategory. Let a,h E |M|. A normal product of a and b is an

object ax b together with the two multiarrows

pr\ : [x : a x b;] —> a pr2 : [x : a x b;] —> b

such that for any pair of multiarrows

/ : [r;] —» 0 g:[r;]->£

there exists a unique multiarrow \f,g\ : [r;] —> a x b making the following diagram
commute:

[r;] i

[/ g]

/ ,
a ■* ax b »- b

pr\ pr2

[r;] pn([f,g\;)=f
[T;] pn{\f,g]\)=g

In Il-multicategory with normal products we can define

[x : a,y : b;} pa,b(x,y;) = [nx,Ky\
[r, z: a x b; A] sp(s) (x, z;y)=s(x, prx (z;), pr2 (z;))

4.2. Products in llil) 77

and define the semantics of the product rules as follows:

{T; A h pair(m,n)] = [[m], [«]]
[r; Ah let {x,y)=p in sj = M(x, pridpj;), pr2(lpj;);)

This interpretations is sound with respect to (3 equality

[r; A] s(x,pri([n,m]-,),pr2([n,m];);) = s(x,n,m;)

and r) equality

[T; A] t(x,[pn{r,),pr2(r,)]-,) =t(x,r,)

since \pr\(r,),pr2(r,)\ — r by the universal property of normal product.
We shall now consider a different version of product types called safe products.

The introduction rule for the safe products looks as follows:

r; A h t\ : o F;Aht2;t
T; Ah pair(ti,^2): a x x

Note that in this rule t\ and ?2 do not have to be normal and the introduction rule for
normal product types is the special case of this rule.

The elimination rule for the safe a x x has the following form:

r;Af-/?:axx T; A,x : a,y : x b S : p

T; A h let (x,y) = p in s : p

The important feature of this rule is that both x and y are safe variables.
We ask for the following beta equality for safe products:

T;Ah«:o T; Ah m:x T; A,jc : o,y : x h s : p

T; A h let (x,y) = pair(«,m) in s = s[n/x,m/y\ : p

and the following eta equality:

T;Ahr:oxx T; A,z : o x x h t: p
T; A h let (x,y) = r in t[pair(x,y)/z])) = t[r/z\ : p

Safe product types can be interpreted in an Il-multicategory M with the following
additional structure:

Definition 4.2.2 (Safe product in Il-multicategory).
Let M be a Il-multicategory. Let a,b G |M|. A safe product of a and b is an object
a x b together with the two multiarrows

pr\ : [; x : a x b\ —► a pri: [; x : a x b\ —► b

78 Chapter 4. Dual-context type constructors

such that for any pair of multiarrows

/: [r; A] —► a g:[T;A]-*

there exists a unique multiarrow [f,g] : [r; A] —> a x b such that

[r; A] pn(-,[f,g](x;y))=f(x;y)

[r; A] pr2(',[f,g](x-,y))=g(x;y)

We can define an interpretation of safe product rules in an II-multicategory M with
a safe product as follows:

[o X T] = [a] X [t]

[r; A h pair(m,n)] = [[m], [«]]

|r; Ahspiit(p,j)] = H(^;y,/?n(;bl),m(;bl))

This interpretation is sound with respect to (3 equality

[T; A] s(x;y,pr\(-,[n,m]),pr2(-,[n,m])) = s(x;y,n,m)

and r\ equality

[T; A] t(x;y,[pri(;r),pr2(;r)]) =t(x-,y,r)

since [T; A] [pr\ (; r),pr2(\ r)] = r by the universal property of safe product.
The property of having safe products is a stronger requirement compared to having

normal products as the following proposition shows:

Proposition 4.2.3. Let M be an Il-multicategory with safe products. Then M has
normal products.

Proof. We shall use superscripts to distinguish between the normal and the safe prod¬
ucts. The normal product will be defined as follows:

• a xn b = a Xs b

• Projections are defined as follows:

[x:axb\] prj'fA;;) = pr\ (;x)

[x:axb;] pif,(x;) = p^x)

• Given/: [T;] -> a and g : [T;] -+b take [f,g]n = [/,g/

4.2. Products in 11(E) 79

Then we have the following:

[H] Prf([f,g]n(x;)\) = pr\(;[f,g]s(x;)) = f(x;)

□

So far we considered binary product types. Now we look at the 'nullary' product,
called unit type and denoted as 1. Terms of type 1 are introduced by the following rule:

T; Ab*:l
We consider two different elimination rules for unit type. The elimination rule for the
normal unit type looks as follows:

T; b s : 1 T; A b t: cr

T; A b let * be s in t: a

The elimination rule for the safe unit type will be
T;Abs:l T;Ab t:o

T; A b let * be s in t: a

The only difference between these two rules is that in the case of the normal unit type
the term 5 must be normal. This restriction allows the following eta equality for the
normal unit type:

T; b s : 1 r,x:l;Abt:o
T; A b let * be s in t[*/x] = t[s/x]

Note that the safe substitution t[s/x] is valid since 5 is a normal term. In the case of the
safe unit type the eta equality looks as follows:

r;Abs:l r;A,x:lht:o
T; A b let * be s in t[*/x] = t[s/x]

The following beta equality is derivable for both safe and normal unit types:

T; A b t: o

T; A b let * be * in t = t: a

We can construct the following bijection between sets of terms:

T,jc :l;Abj:oi->r;Ab s[*/x] : a

T; A b t: a T,x : 1; A b let * be jc in t: a

Using the eta and beta equalities defined above, we can show these mappings indeed
form a bijection.

In single-context case categorical interpretation for unit type is given using the
notion of a terminal object. In dual-context case we need the following structure for
the interpretation of the unit type:

80 Chapter 4. Dual-context type constructors

• An object 1 for the interpretation of 1

• A multiarrow t: [r; A] —> 1 for each d-context [r; A] so that the introduction
rule is interpreted as |T; A b * : 1] = i.

• Interpretation of the elimination rule for normal unit type requires a multiarrow
pa : [x : 1; y : a] —> a using which we define

[r; A b let * be 5 in t: oj = P[0j(M ; W)

The eta equality then translates into the following property of pa:

pa(s(x;);t(x,i;y)) =t(x,s;y)
JZ

for every s : [T;] —> 1 and t : [F,jc : 1 ; A] —> a. If we take [z '■ 1;] —^ 1 for s and
[z : 1 ,x : 1; y : a] —^ a for t we get [z : 1; y : a] pa(z',y) = y. So we have that
[x: \; y : a] pa = ay and [T; A b let ★ be s in t: aj = [?J.

Definition 4.2.4.

A normal terminal object in an II-multicategory M is an object 1 such that for any

normal d-context [T;] there exists a unique multiarrow [F;] —* 1. The object 1 is a safe
terminal object if for any d-context [T; A] there exists a unique multiarrow [F; A] —>• 1.

4.3 Sum types

In this section we are going to consider several extensions of the 11(E) calculus with
sum type constructor. In the single-context case, sum constructor is defined as follows
[Pit95]:

T b t: a T b t: x

Tb inlx(r) : a + x T b inrG(t): a + x

Tbc:a + x T,x:abti:p T,y:xbt2:p
Tb case(c,(x :o)ti,(y: x) t2): P

Tbi:o T,jc:abti:p T,y:xbt2:p
T b case(inlT(j'), (x :a)t\,(y: x) t2) = t\[s/x]

Tbrx T,x:abti:p T,y:xbt2:p
T b case(inra(5), (x :a)tu(y: x) t2) = t2[s/y\

4.3. Sum types 81

rhro+ x r,z:a + xl-x:p
T h case(,s, (x : o) f [inlx(x)/z], (y : x) t [inr0(y)/z]) = t[s/z\

There are several ways of adding sums types to the 11(E) calculus. Firstly, we

restrict to normal terms only and define normal sums. The introduction mles for the
normal g + x look as follows:

T; h t: g T; \-t: x

T; A h inlx(t): g + x T; A h inrc(t): o + x

Consider the following elimination rule for the terms of type o + x:

r;hs:a + x ; T,x : a ; A b t\ : p T,y : x; A h t2 : p

T; A h case(,s, (x: o;) t\, (y : x;) t2): p

These rules can be interpreted in an II-multicategory M as follows. First, we need
is a binary operation on objects + : |M| x |M| —»■ |M| for constructing sums:

Ig+xJ = [a] + [xj

For the interpretation of the introduction rules we need two natural operations on mul-
tiarrows:

inlaib : M([T;], a) M([T; A], a + b) inra,b : M([T;] ,b) -> M([T; A], a + b)

Such operations are determined by composition with the following multiarrows

inla^b : [x : a;] —► a + b inra b : [x : b;] —» a + b

The interpretation of inlc(t) and inrT(r) terms is given as follows:

[inloWJ =i'nZIo],Ii:](W0
[inrx(f)] = inr[aj)W([t];)

For the interpretation of the elimination rule we need an operation

{ —|—} : M([T,x : a; A],c) x M([T,y : b\ A],c) —> M([T,z : a-\-b\ A],c)

which should satisfy the following naturality property:

[Tl,z:a + b-,e] {f\g}(s,z;t) = {f'\g'}

where [n,x: a\ 0] f =f(s,x;t) and [n,y: b; 0] g' =g(s,y;t) for / e M([r,x: a; A],c)
and g G M([T,y : b; A],c). Using this operation we define the interpretation of the
elimination rule as follows:

[r; A b case(^, (x: g;) tx, (y : x;) t2)J = {{t\j\[f21}(x, W ; y)

82 Chapter 4. Dual-context type constructors

For a + x type we consider the following two beta-equality rules:

r;h5:o r,jc: o; A h t\ : p T,y : x; A h t2 : p
T; A h case(inlx(5'),(x: a;) t\, (y : x;)t2) = t\[j-/*]

r;bs:T : o; A h t\ : p r,y : t; A h ^ : p
T; A h case(inr0(ji), (*: a;) th(y : x;) t2) = t2[s/y\

Since the variables jc and y in the terms t\ and t2 are normal, the term 5 must be normal
as well so that the substitution is safe and as a consequence well-typed.

The beta rules translate into the following properties of inla^,inra^ and { — | — }:

[r,x:a; A] {f\g}(x,inlajb(x;);y) =/

[r,y : b; A] {f\g}(x, inra,b(y\);y) = g

where / G M([r,x : a; A], c),g G M([T,x : b; A],c). Together these two properties
mean that { — | —} has an inverse given by composition with inl and inr. This {/|g} is
unique if we require the following eta-equality to hold:

T;I-.s:g + x r,z:a + x;Ah?:p
T; A b case(s, (x : a;) f[inlT(x)/z], (y : ?[inro(y)/z]) = t[s/z]

This equality can be written as [T,z: a + b; A] {tj ^2} = t where t G M([T,z: a + b\ A],c)

[T,x : a; A] t\ = t(x, inla>b(x;);y) [T,y : b; A] t2 = t(x, inla^b(y;); y)

Suppose that [f\g] G M([T,z : a + b\ A],c) satisfies beta-equalities. Then using eta-

equality we can show that [/|g] = {f\g}'-

{f\g} = {[f\g](x,inla,b(x\);y)\[f\g](x,inraib(y;) ;y)} = [f\g]

The uniqueness property also ensures that { — | — } automatically satisfies the naturality
requirement we imposed on it.

So the semantics of normal disjoint union types can be given using the following
structure:

Definition 4.3.1 (Normal coproduct in II-multicategory).
Let M be an Il-multicategory. Let a,b G |M|. A normal coproduct of a and b is an

object a + b together with two multiarrows

inla^b : [x : a;] —> a + b inra>b : [x : b;] —> a + b

4.3. Sum types 83

such that for any pair of multiarrows

f:[r,x:a;A]^c g : [r,y : b;A\ —► c

there exists a unique multiarrow {/|g} : [r,jc: a + b\ A] —> c such that

[r>:a;A] {f\g}{x,inla,b(x\)\y) =f(x,x\y)
[T,y:6;A] {f\g}(x,inra,b(y,); y) = g(x,y; y)

Given an Il-multicategory with normal coproducts we extend the notion of dual-
context structure for a signature £ interpreting disjoint union type [o + x] as fa] + [xj.
Then we extend the definition of |T; A b t: p] to handle the new kinds of terms:

Definition 4.3.2.

[inl0(f)J

linr-tWl = i«r[0])[T]([t];)
[r; A h case(s, (x: a;) h, (y: x;) t2)j ^ {[t{\ \ [t2]} (x, W ; y)

In the normal sums we restricted scope to normal terms. Another variant of sums

called safe can defined by the following typing rules:
r;Aht:a r;Aht:x

T; A h inlT(t) : a + x T; A h inra(t) : a + x

r;Ahi:a+ x T; A,jc : a h t\ : p T; A,y : x b t2 : p

T; A h case(>, (;x :a)ti, (;y: x) t2): p

Comparing these rules with the corresponding rules for the normal sums we note that
the introduction rules are no longer restricted to normal term and in the elimination rule
the term ,v is arbitrary and the variables x and y are safe. These changes are propagated
to the basic equalities, which look as follows:

T;AI-5:o T; A,jc : a h t\ : p T; A,y : x h t2 : p

T; A h case(inlT(j), (;x :o)t\, (;y : x) t2) = t\ [s/x]

T; A h s : x T; A,jc : a b t\ : p T; A,y : x h t2 : p

T; A h case(inr0(5), (;ac: a) t\, (;y : x) t2) = t2[s/y\

T;Ah^:a + x r;A,z:a + x(-t:p
T; A h case(s, (;x : a) r[inlT(x)/z], (;y : x) t[inra(y)/z]) = t[s/z]

The systematic development of the interpretation for the safe sums is very similar to
normal case so we omit it. In the end we obtain the following structure needed for the
sound interpretation of safe sums:

84 Chapter 4. Dual-context type constructors

Definition 4.3.3 (Safe coproduct in II-multicategory).
Let M be an II-multicategory. Let a, b e |M|. A safe coproduct of a and b is an object
a + b together with two multiarrows

inL,b : [;x : a] —>► a + b inrafb : [,x : b\—> a + b

such that for any pair of multiarrows

/: [T;A,x:a] -»c g: [T;A,y : b] c

there exists a unique multiarrow {/|g} : [T;A,z: a + b] —> c such that:

[r;A,jc: a] {f\g}(x-y,inla,b(;x)) = f
[L;A,y : b\ {f\g}(x\y,inra,b(;y)) = g

Given an Il-multicategory M with safe coproducts we interpret safe sums in the
following way:

Definition 4.3.4 (Interpretation of safe sums).

[inl0(f)] ~ in/joy,](;[*])
pnrx(f)] =//ir|0j)[Tj(;[f])
[r; A h case(s, (;x: a) fi,(;y: x) f2)l = (Ml NIK*; y, W)

This interpretation is sound with respect to beta and eta equalities for safe sums.
It is possible to define a third variant of sums which will be called uniform, which

are essentially a combination of normal and safe sums. The typing rules for uniform
sums are:

T; A b r: a T;AbLx
T; A b inlx(r): a + x T; A b inrc(f) : G + x

r;hs:a + T ; T,jc : g; A b t\ : p r,y : t; A b t2 : P
T; Ah case(s, (x : a;) t\,(y : x;) t2) : p

F;Ahi:o + x T; A,x : a b t\ : p T;A,y:xbt2:p
T; A b case(s, (;x : o) t\, (;y : x) t2): p

with the following basic equalities:
T;bs:G T,jc : o; A b t\ : p r,y : x; A b t2 : p
r; A b case(inlx(s), (x: g;) t\, (y : x;) t2) = t\ [j/x]

4.3. Sum types 85

F; h s : x r,x: a; A h t\ : p r,y : x; A h t2: p
r; A h case(inro0), (x : a;) fi, (y : x;) t2) = t2[s/y]

T; A h .y : a T; A,x : g b t\ : p T; A,y : x h t2 : p
T; A h case(inlt(s), (;x: a) t\, (;y : x) t2) = h [s/x]

r; A hs : x T; A,x : ab t\ : p T; A,y \%\-t2:p
T; Ah case(inr0(V), (;x : a) t\, (;y : x) t2) = t2[s/y\

T;l-5':a + x : g + x; A I-1: p
T; A I- case(5, (x: g;) ?[inlT(x)/z], (y: x;) t[inra(y)/z]) = t[s/z]

rjAhsxG + x T; A,z : g + x h t: p
T; Ah case(1y,(;x : a) f[inlT(x)/z], (;y : x) t[inra(y)/z]) = t[s/z]

We need the following structure on an II-multicategory for the sound interpretation of
uniform sums:

Definition 4.3.5 (Uniform coproduct).
Let M be an Il-multicategory. Let a. b £ |M|. A uniform coproduct of a and b is an

object a + b together with two multiarrows

inla,b '• [;x : a] —> a + b inrab : [;x : b] —> a + b

such that for any pair of multiarrows

/: [r;A,x: a] —> c g : [r;A,y : b\ -> c

there exists a unique multiarrow {f\g} : [T]A,z:a + b\ —> c such that

[T;A,k : a] f\g(x\y,inlajb(;u)) = f(x;y,u)
[r;A,v : b] f\g(x;y,inra,b(;v)) = g(x;y,v)

and for any pair of multiarrows

s : [r,x : a; A] —» c t: [r,y : b\ A] —> c

there exists a unique multiarrow s\t: [r,z : a + b\ A] —> b such that

[r,M : a;A] s\t(x,inla>b(;u);y) =s(x;y,u)
[r,v: b\ A] s\t{x,inra,b{\v)\y) = t{x\y,v)

This induces the following bijections between the set of multiarrow:

M([T;A,y : a],c) x M([T;A,y : b],c) = M([r;A,y : a + b],c)
M([r,x : a;A],c) x M([T,x : b\A\,c) = M([r,x : a + b',A],c)

86 Chapter 4. Dual-context type constructors

Using the uniform coproduct structure we can define the interpretation as follows:

Definition 4.3.6.

Given an II-multicategory with uniform coproducts the interpretation of the a+x terms
is defined as follows:

[|n|i(/)l = w/[oi,[t] (;M)
[inra(0J = '"r[o],[x](; M)
|case(s, (x: a;) t\, (y : x;) t2) 1 = {[fi] | [felK*, M i y)
|case(s, (;*: ct) ti,(;y: t) f2)J = {[filial}(*;y, H)

In this chapter we have extended the 11(E) and the IL(E) calculi with products,
coproducts and unit type. Unlike the traditional categorical case the presence of dual-
contexts allowed us to consider different versions of these extensions. For each ex¬

tensions we provided a sound interpretation using extended notions of II- and IL-

multicategories. In II- case we have have also shown that these extensions can be

regarded as a special case of the general notion of binding operator.

Chapter 5

Safe dual-context lists

In this chapter we shall extend the II (Z) calculus with safe dual-context list types
which contain modified safe recursion scheme. We will give a sound interpretation for
this type constructor using a notion of safe list object. Safe natural number object as

an important special case of safe list objects will be considered. We will the extend
safe dual-context list types with additional rule, which would allow definitions by flat
recursion. We show that in any model of 11(2) with extended safe list types every

function from the system 23 is representable. As a result of this effort, we get some

insights about the fundamental roles of various components of system 23, in particular
explaining the choice of some of the initial functions.

5.1 Single-context case

In this section we recall typing rules, basic equalities and interpretation for the ordinary
single-context list type <3 list [Pit95]. Such list type is parameterized with the type a,

which is a type of elements of lists. The introduction rules for the o list type can be

given as follows:

T•. T b h : a Tb t: a list
— — I-Nll : r I-Cons
lb nila:olist T b cons(/z,t) : a list

The term nilc represents the empty list and the term cons(h,t) represents a list obtained
from a given list, represented by the term t, by adding an element represent by the term
h.

The elimination rule for o list is given as follows:

r,jc: a,y : a list.z '■ T b s : t Tb /: a list Fbn:t
— — — I-Rec

T b listrec(/,n, (jc,y,z)s) : T

87

88 Chapter 5. Safe dual-context lists

Recall that we use notation (x,y,z)s to denote a binding of the variables x,y,z in the
term s. The term listrec(/,n, (;t,;y,z),s) : x represents an application of a function / to
a list, represented by the term I. The function / is defined by the following recursion
scheme:

This interpretation of listrec(/,n, (x,y,z)s) is reflected in the following basic equalities
for a list, which essentially code the above recursion scheme:

T b listrec(nil0, n, (u, v, w)s) = n:x

rb«:x T,w : a, v : o list,w : x b s : x Tbbo Tbf: o list
T b listrec(cons(/?,t),n, (u, = s[h/u,t/v, listrec(t,n, (u,v,w)s/w)): x

The following basic equality ensures the uniqueness of such a function, defined by the
above recursion scheme:

In a cartesian category C given an interpretation of a as an object a, o list terms

can be soundly interpreted using a list object, which consists of an object L and two

morphisms nil : 1 —» L and cons : a x L —» L which satisfy the following universal

property: for each pair of morphisms h:Ixaxb—>b and g : I —> b there exists a

unique morphism / : / x L —> b making the following diagrams commute:

f(nil,x) = n{x)

f(cons(h,t),x) =s(x,h,t,f(t,x))

fbn:x T, u: o,v : a list,w: x b s: x

T b /: o list Tbn:x T,u : a,v : a list,w: x b s: x

T, v : a list,w :xbg:x r,w:xb g[nil0/v] = w

T, u : a, v : a list,w : x b ^[g/w] = g[cons(w, v)/v] : x
T b listrec(/,«, (u,v,w)s) — g[l/u,n/w] : x

7x1
idj x nil

IxL

f

I b
8

I xaxL
id] x cons

IxL

(ni,7C2,/o(7li,7C3)) /

I x ax b
h

b

5.2. Dual-context lists in II (X) 89

5.2 Dual-context lists in 11(E)
In this section we are going to extend the 11(H) calculus with a dual-context list type
constructor and give a sound interpretation for this extension in an II-multicategory.

There are many different ways of modifying single-context list type for the dual-
context setting. Recall that the introduction rules for list type define terms, which
represent empty list and a list obtained by adding a new element to a given list. The
elimination rule together with the basic equalities describes recursion on lists. We will
consider a version of the dual-context list type which is based on safe recursion scheme
of system 03. We shall call such list type a safe dual-context list.

Strictly speaking safe recursion in system 03 was defined for binary presentation
of natural numbers, which is cumbersome to work with. Leivant[Lei94] suggested to

use lists of O's and 1 's instead, which seem to be a more natural approach and requires

only the minor modifications of system 03.
The safe dual-context list type will be parameterized by list elements type o. Later

we shall consider a special version of safe list type for a being 1 + 1, where 1 is a unit

type and + is a uniform sum type.

Before we give typing rules for the safe list type, recall some important features of
system IB which was defined on page 6:

• Constant zero zero :[;]—> N.

• Two successor functions with safe inputs so : [;x : N] N and si : [;jc : iV] —» N.
In the safe list type setting we will have one successor with two safe arguments.

• In the safe recursion scheme a recursion argument is always normal, a recursive
value is substituted into a safe position in step functions, which also have an

additional normal input for the recursion argument:

f(nil,x-,y) = g(x;y)

f(0.t,x;y) = h0(t,x;y,f(t,x;y))

f(l.t,x\y) = hi (t,x;y,f(t,x;y))

For the safe list type we will use the following modified safe recursion scheme:

f{nil,x\y) = g(x;y)

f{const{a,t),x\y) = h{a,t,x\y,f{t,x\y))

90 Chapter 5. Safe dual-context lists

Now we are ready to define typing rules for the safe dual-context list types. Given an

element type o the safe list type will be denoted as a list. The introduction rules for
this type are as follows:

IT XT-. r; A h h '■ ° r; A h t: a listII-Nil ——— t II-Cons
T; Ah nilG : a list T; Ah consa(h, t): a list

The term nilG represents the empty list and the term conso(h,t) represents a list ob¬
tained from a given list, represented by the term t, by adding an element represent by
the term h. Note that neither h nor t are required to be normal.

The elimination rule for a list is given as follows:

Y,x : G,y : o list ;A,z:xhi:T r; h /: a list T;Ah/i:x
f; Ah listrec(/,n, (x : o,y : a list;z '■ i)s) : x

II-Rec

The term listrec(/,«, (jc^z),?) : x represents an application of the function /, defined
by safe recursions above, to a list, represented by the term I. The term s represent the

step function h The normal variables x and y in s are used for passing the recursion
argument and the safe variable z for passing the recursive value. The term n represents
the function g.

Proposition 5.2.1. In the II (X) calculus extended with the II-Nil, II-Cons and II-Rec
rules the Il-Subst rule is admissible.

Proof. The typing rules II-Nil, II-Cons and II-Rec are instances of general II-binding
operators, so by the theorem 4.1.2 the Il-Subst rule is admissible in 11(E) extended
with these rules. □

The basic equality rules for the o list type are given as follows:

T;Ahn:x T,x : G,y : a list; A,z '■ x h s : x

F;Ah listrec(nil0,«, (x,y;z)s) = n : x

r,x: o,y : a list; A,z : x h s : x

T;Ahn:x T;b/z:o T; h t: a list

T; A h listrec(consa(/z,t),«, (x,y;z)s) = s[h/x,t/y,\is\rec(t,n, (x,y\z)s)/z): x

The first equality corresponds to the base case in the above recursion scheme, while
the second equality corresponds to the inductive case. Note that the substitutions h/x
and t/y are valid since both h and t are required to be normal.

5.2. Dual-context lists in 11(E) 91

The above two equalities define 'weak' dual-context safe list, which postulate the
existence of the function, defined by the above safe recursion on lists. Adding the
following equality ensures the uniqueness of this function:

T; b /: a list T; A b n : x T,jc : o,y : a list; A,z '■ x h s : x

T, u : a list ; A, v : x h g : x T; A, v : x h g[nil0/w] = z

r,jc :o,y:o list; A,z : x h s[g\y/u,z/v\/z] = g[cons(x,y)/u,z/v] : x

T; A h listrec(/,n, (x,y,z)s) = g[l/u,n/v] : x

Using the method followed in the previous chapter we can show that the interpretation
of a list terms in an II-multicategory requires the following structure:

Definition 5.2.2 (Safe list object).
Let M be an Il-multicategory. A safe list object for an object a is an object L{a)
together with multiarrows [;] L and [;jc : c,y : L(a)] conSa > L(a) such that for any

pair of multiarrows g E M([T; A],b) and h E M([T,x : c,y : L(a); A,z : b\,b) there
exists a unique multiarrow sra(g,h) E M([T,jc : L(a); A],b) such that

[r; A] sra(g, h)(x,nilA;y) = g

[r> : c,y : L(a); A] sra(g,h)(x,consa(-,x,y)-,y) = h(x,x,y;y,sra(g,h)(x,y;y))
The following lemma shows sr(g,h) is natural in T; A]:

Proposition 5.2.3. Let L(c) be a safe list objectfor an object c in an ll-multicategory
M. For any pair ofmultiarrows g E M([T; A],b) andhE M([T,x:: c,y: L(c); A,z -b],b)
and any family si: [IT;] —> a,- and tj : [1T;0] —> bj the following holds:

[Tl,x : L(c); 0] sra(g,h)(si («;),... ,sn(u;),x;t\ (m;v), .. .,tm(u;v)) = sra(g',h')
where g' is defined as [n,0] (w;),...,sn(fl\)',t\ (m;v), ... ,tm(u\v)) and h! is defined
as [n,x : c,y :L;Q,z:b\ h(s\ (u;sn(u\),x,y,t\(w,v),... ,tm(u;v),z).

Proof. Using the associativity of a Il-composition and the properties of sr(g, h) we can

show that the following holds:

[TI; ©] sra(g,h)(s,nila'J) = g(s;t) = g'

[n,x : c,y : L;0] sra(g,h)(s,consa(\x,y)-,t) = h(s,x,yj,sra(g,h)(s;t,y)) =

h'(u,x,y,v,sr(g',h'))
From this using the uniqueness property of sra(g',h') we conclude that

[n,x: L(c); 0] sra(g,h)(s,x\t) =sra(g',h')

□

92 Chapter 5. Safe dual-context lists

Definition 5.2.4 (Interpretation of safe list terms).
Given an II-multicategory M with safe list object for the object flc] we define the
interpretation of a list terms as follows:

[cto]^fL([a])
[r;Ahnila]=m7w
[r; A h consa(/z,t)l = cons^j(; [A], [r])
[r; A h listrec(/,n, s)j = j ([n], {sj) (x, [/J ;y)

This interpretation is sound with respect to the basic equalities of a list types:

|[listrec(nil|0j,«,s)] =$r[aj([n], fs])(x, [/»7[0|]; y) = [n]
[T; A I- listrec(cons(A, f), n, s)] = srjaj ([n], [s]) (x, cons^ (; [A], [f]); y, [«]) =

14 (x, [A], [fJ ; y, srjaj ([n], {sj) (x, [f] ; y, [nj)
For the remaining equality we have that

[gj(x,m7[a] ;y,H) = [«J
[gl(x,co/W[0j(;x,y);y, [«]) = [A](x,x,y;y,g(x,y;y, [«]))

which means that the interpretation of g[n/w\ satisfies two properties of safe lists there¬
fore it must be equal to sr|0j ([[«], [5]). Next lemma shows that any two safe list objects
in an II-multicategory are isomorphic:

Proposition 5.2.5. Let M be an 11-multicategory. Assume that nila :[;]—► L(a), consa :

[;x : L{a)\ L(a) and nil'a :[;]—► L'(a),cons'a : [;x: L'(a)\ —* L'(a) are safe list objects
for an object a. Then L(a) and L'(a) are isomorphic via normal isomorphism, which
means that there exists two multiarrows

i: [x : L(a);] —> L'(a) i': [x : Ll(a)\\ —> L(a)

such that [x : L'(a);\ /(/'(x;);) = x and [x : L(a)\] /'(/(x;);) =x.

Proof Consider [;] L'(a) and [x : a,y : L(a);z : L'(a)\ a<K' L'{a). Since L{a)
is a safe list object then for such pair of multiarrows there exists i:[x: L(a);\ —> L'(a)
satisfying the following properties:

[;] i{nila\) =nil'a
[x : a,y : L(a);] i(consa{-,x,y);) = cons'af,x,i(y;))

5.2. Dual-context lists in 11(E) 93

Similarly considering nila and consa we get a multiarrow i! : [x : L'(a);] —> L{a) satis¬
fying the following properties:

[;] i'(nil'a;) = nila

[x : a,y : L'(a);] i'(cons'a(;x,y)-,) = consa(\x,i'(y;))

Take [;] L(a) and [* : a,y : L(a);z '■ L(a)] £(a). For such pair of multiar-
f

rows there exists a unique multiarrow [jc : L(a)\] —> L(a) with the following properties:

[;] f(nila;) = nila

[x : a,y : L(a);] f(consa(-,x,y);) = consa(\x,f(y,))

Obviously [x : L(a);] f = x since tzx satisfies the above conditions. But on the other
hand if we consider the composition [jc : L(a)\] i'(i(x;);) then we can show that it
satisfies these conditions as well:

[;] i!(i(nila;)-,) = i'(nil'a;) =nila

[x : a,y : L{a)\] i'{i(consa(\x,y)\)\) = i'(cons'a(;x,i(y;));) = consa(;x,i'(i(y;);))

Since / is unique we conclude that [x : L(a)\] i'(i(x;);) = x. Similarly we can show
that [x : L'(a)\\ i(i'(x;);) =x. □

The following lemma shows that using a safe list object we can construct a normal
multiarrow which represents predecessor function.

Proposition 5.2.6. Let M be an II-multicategory and L(a) with multiarrows nila and
consa be a safe list objectfor an object a. Then there exists a unique multiarrow

t: [jc : L(a);\ —> L(a)]

such that the following holds:

[;] l{nila,) = nila

[x:a,y: L{a)\] l(consa(;x,y);) =y

Proof. Using the safe list property for a pair of multiarrows nila and Ky we get i satis¬
fying the desired properties. □

We have defined the extension of the 11(E) calculus with the safe dual-context list
type. In case of 11(E) extended with safe unity type and uniform sums we can consider

94 Chapter 5. Safe dual-context lists

a special variant of safe list type with element of type 1 + 1. We shall call such safe list
type as safe natural number type and denote it as N. The following typing rules and

equalities for N can be derived systematically from the rules of safe list type, unit type

and uniform sums:

T;A\-t:N T;A^t:N
r; Ah nil: A r;Ahs0(t):lV T; Ahs,(t) : N

T;\-1 :N r;Ab«:x

T,x : N; A,y : % \- ho : T T,x : N; A,y :xh hx : x

r; A b bl(Z,n, (x;y)ho, (x;y)h\) : x

T; Ahn:x r,;c: N; A,y : x b ho : x r,x : N) A,y : x b hi : x

T; Ah bl(nil,n, (x;y)ho, (x;y)h\) = n:x

r;Ahn:x T;\~t:N

T,x : N; A,y : x b ho : x T,jc : N; A ,y : xh h\ : x

r; Ah- b\(so(t),n,(x\y)ho,(x;y)hi) = h0[t/x,b\(t,n, {x;y)h0, (x\y)hi)/y] : x

T; A h n : x T;ht\N

T,x : N •, A,y : x h ho : x T,x : N\ A,y : x h h\ : x

T; Ah bl(si(t),n, (x;y)ho, (x;y)hi) = h\[t/x,b\(t,n, (x;y)/i0, (x\y)h\)/y\ : x

T; h Z: T;Ahn:x

T,x : 2 list; A,y : x h ho : x T,x : N; A,y : x h lo : x

T,x : 2 list; A,y : x h g : x T; A,z : x h g(x, nil ;y,z) = z

I> : 2 list; A,y : x h h0(x,x; y,g(x,x; y,y)) = g(x, s0(x); y,w) : x

r,x : 2 list; A,y : x h Zzj ; y,g(x,x; y,y)) = g(x,s] (jc) ; y, w) : x

T; Ah bl(/,«, (x;y)ho, (x\y)hi) = g[l/x,n/y\ :x

The above typing rules can be added to the 11(E) calculus directly, without having to
do sum and unit type extensions. Semantics of this extensions can be defined using the
following notion:

Definition 5.2.7 (Safe natural number object).
Let M be an Il-multicategory. A safe natural number object (SNNO for short) is an

object I together with multiarrows [;] -^>7, [;x : I] ^ I and [;jc : I] I such that for
any triple of multiarrows

g e M([T; A],b) ho e M([T,JC: I; A,y : b],b) hx G M([T,x : 7; A,y : b],b)

5.2. Dual-context lists in 11(E) 95

there exists a unique multiarrow sr(g,ho,h\) G M([r,jc: /; A\,b) such that the follow¬
ing holds:

[r; A] sr(g,ho,hi)(jc,z;y) = g

[r,x : /; A] sr(g,ho,h\)(x,so(;x)-,y) = h0(x,x;y,sr(g,h0,hi)(x,x;y))
[r,x : / ; A] sr(g,h0,hi)(x,si(;x);y) = hx(x,x;y,sr(g,ho,hi)(x,x\y))

Theorem 5.2.8. The 11-multicategory B has a SNNO.

Proof. For the SNNO take N G |B| with the following functions:

z = 0 sq(;x) = 2x+ 1 si(;x) = 2x + 2

These functions are clearly polytime computable and can bounded as follows:

|z| < 1 k'(;*)| < 2+ \x\

Given g, ho and h\ we define sr(g, ho, h\) using the safe recursion scheme:

f(x,z;y)=g(x;y)

f(x,so(\n)-,y) = ho(x,n\y,f{x,n\y))

f{x, si (; n) ;y) = hi (x,n\y, f(x, n;y))

We shall now demonstrate that / defined in such a way can be bounded (this proof is
taken from Lemma 4.1 in [BC92]). Assume that g is bounded by the a polynomial pg.
Then the following holds:

\f(x,z',y)\ = |g(x;y| < pg(\x\) + max|yy|
j

Assuming bounds ph0 and pin for the function ho and hi respectively we can show that

\f(x,Si(;n);y)\ < ph(\x\ + |n|) +max{max |y;-|,\f(x,n\y)}\
j

where ph = PHq + Ph^ ■ By induction we shall show that Pf(x) = x ■ Ph(x) + Pg(x) is
indeed a bounding polynomial for /. For the initial case we have

\f(x,z;y)\ < Pg(\x\) + max \yj\ < pf(\x\ + |z|) + max \yj\
j j

96 Chapter 5. Safe dual-context lists

For the inductive case we assume that \f(x,n;y)\ < p/(\x\ + \n\) + maxy-\yj\. Then for
\f(x,Si(;n)-,y)\ we have:

\f(x,Si(;n);y)\ < phi(\x\ + |«|) + max{max \yj\,\f(x,n;y)\}
< Phi(\x\ + \n\)+pf(\x\ + |»|) +max |yy|
< Phi(\x\ + M) + (|*| + M) • Ph(*\ + \n\)+pg(\x\ + M) + max |yy|

< (|*| + |n| +1) • ph(\x\ + \n\) + Pg(\x\ + |n|) + max \yj\

< (|*| + \si(;n)|) • ph(|*| + \si{;n)\) +pg(\x\ + |n|) + max \yj\
J

<pf{\x\ + \si(-,n)\) +max \yj\
So pf is indeed a bounding polynomial for the function /. It can be shown that safe
recursion can be executed in polynomial time if the length of result of the recursion is
bounded by a polynomial and the step and the base functions are polytime [BC92], So
we have shown that / e B([*j : N, ...,*« : N,x: N; yj : N,... ,ym : N],N) which proves

that N is a SNNO.

□

5.3 Extending safe dual-context lists

In the previous sections we extended 11(E) with the safe dual-context list type a list and
gave multicategorical semantics for such extensions. The typing rules for the safe list

type were constructed following the basic principles of Bellantoni and Cook's system

03. In particular the elimination rule for a list together with the basic the equalities
associated with it were essentially describing list version of safe recursion scheme.

Consider the following typing derivation the 11(E) calculus extended with the dual-
context list types:

* : o list; h nilc : o list x : a list; h * : a list
x : a list, u : o, v : o list; w: a list hv:a list
x : a list; b listrec(*, nilc, (u, v;w)v) : a list

It is easy to see that the term listrec(x, nilc, (a, v;w)v) represents a predecessor function
pred(x : o list;) : ct list given by the following safe recursion:

[;] pred(nil;) = nil

[x : a,y : a list;] pred{cons{;x,y);) =y

5.3. Extending safe dual-context lists 97

Since in the safe recursion scheme the argument of the recursion is always normal
we can not define a safe version of the predecessor function. Clearly we can not allow
the argument of recursion to be safe since in such a scheme the nesting of recursions
would be possible and as a result we would be able to define functions which are not

polytime computable. On the other hand a safe predecessor is indeed one of the basic

ingredient of system 93 (see page 6).
In order to solve this problem we propose to extend the safe dual-context list type

with the following rule:
T; A b I: a list T; A b n : x r; A,x : o,y : g list hs:x

r; A h cases(/,«, (;x,y)s): x
which should satisfy the following basic equalities:

T; A b n : x T; A,x : o,y : a list b s : x

r; A b cases(nil0, n, (;x,y)s) =n:x

r; A b n : x T; A,x : o,y : g list b S: x r;Ab/i:o T;Abt:a list
T; A b cases(cons(/z,t),n, (;jt,y).s) = s[h/x,t/y] : x

It is easy to see that this rule allows us to define functions by flat recursion [Lei94]:

[T; A] f(x;nil,y) =g(x;y)

[r; A,u : 0,v : a list] f(xm,cons(-,u,v),y) = h(x',y,u,v)

Adding the following equality ensures that the function defined flat recursion is unique:

r; A b I: o list T; Abn:x F;A,m:g,v:g list b s : x

F; A,x : g list b g : x T; A b g[nilG/x] = n

r; A, u : g, v : g list b g[cons(«, v)/x] = s : x

r; A b cases(/,n, (;u, v)s) = g[l/x] : x

Interpretation of the cases rule requires an additional property of safe list objects in a

multicategory:

Definition 5.3.1.

An II-multicategory M with a safe list object L satisfies flat recursion property if for

every pair of multiarrows g G M([r; A],fc) and h E M((T; Ax : a,y : L],b) there exists
a unique multiarrow

cases(g,h) G M([r; A,x : L,b)

satisfying the following properties:

[r; A] cases{g,h)(x\ y,nil) = g

[r; A,u : a,v : L(a)\ cases(g,h)(x; A,cons(;u,v)) — h(x \ y,u,v)

98 Chapter 5. Safe dual-context lists

Given an II-multicategory M with a safe list object L which satisfies flat recursion

property we can interpret cases terms as follows:

Jcases(/,n, (;«, v)s)] = cas«s([n], [s])(x; y, W)

This interpretation is obviously sound with respect to the basic equalities for the cases

operator.

For the safe natural number type the same extension can be defined:

T;A\~l:N T; A h « : x T; A,x : N h ho : x T; A,x : N b h\ : x

T; A b cases(l,n, (',x)ho, {\x)h\) : x

T; A b n : x T; A,x: N b ho : x T; A,x : N b h\ : x

r; A h cases(zero, n, (;x)ho, (;x)h\) = n : x

T; A h n : x T; A,x : N b ho : x T; A,x : N h h\ : x T\A\~t:N
T; A h cases(so(t),n, (;x)ho, {',x)h\) = ho[t/x] : x

T; A h n : x T; A,x : N h ho : x T; A,x : N h hi : x F;A\~t:N
T; A h cases(si (t),n, (;x)ho, (\x)hi) = h\ [t/x] : x

T;Ah/:A^ T;AI-«:x T \ A,x \N \~ ho\x T-, A,x: N h ho :x

T; A,jc : N \~ g :x T; Ah g[zexo/x] = n

T; A,jc : N h g[so(x)/x] = ho : x T; A,x : N h g[si(x:)/x:] =h\\x
T; Ah cases(l,n, (',x)ho, (\x)h\) = g[l/x\ : x

We shall refer to 11(E) extended with safe natural number type and the above rule as

IISB(E). The interpretation of IISB(E)requires SNNO with additional property:

Definition 5.3.2.

A SNNO I in an II-multicategory M satisfies flat recursion property if for any triple
of multiarrows

geM([r;A],fc) ho e M([r-, A,x:N],b) hi G M([T; A,x: A],Z?)

there exists a unique multiarrow c(g,ho,h\) e M([T; A,x : which satisfies the
following conditions:

[T; A] c(g,h0,hi)(x\y,z)=g
[T; A,x : N] c(g,ho,hi)(x;y,Si(\x)) = hi(x\y,x)

5.3. Extending safe dual-context lists 99

Given an II-multicategory M with a SNNOI which satisfies the flat recursion prop¬

erty we can interpret cases terms as follows:

[cases(/,«, (-x)h0, (;x)ffi)J = C(H.W» MX*; y, M)

This interpretation is obviously sound with respect to the basic equalities for the cases

operator.

Proposition 5.3.3. In the multicategory B the SNNO N satisfies theflat recursion prop¬

erty.

Proof. Given polytime computable functions

g : [*i : N,...,xn : N; y\ : N,... ,ym : N] —> N)
h0 : [*t : N,... ,xn : N; yi : N,... ,ym : N,x : N] -> N)
hi : [x\ : N,... ,xn : N; yi : N,... ,ym : N,x: N] -> N)

with bounding polynomials pg, Ph0 and phx we define c(g, ho, h\) as an algorithm which
executes g, ho or hi depending on the value of recursion argument. Such c(g,ho,h\) is
polytime computable function with a bounding polynomial pg + p^0 + ph\ '•

\c(g,h0,hi)(x-,z,y)\ = |g(^;y)| < pg(\x\)+max\yj\ <Ph0(\x\)+Phi(\x\) + Pg(\x\)+

max{max \yj \, 1}
j

\c(g,h0,hi)(x;si(;n),y)\ = \hi(x;y,n)\ < Phi(\x\) +max{max|yy-|, |n|} <

Ph0(\x\) +Phi(\x\) + Pg(*\) +max{max\yj\, \n\ +2}
J

□

In the IISB(E) calculus we can define the safe predecessor and conditional func¬
tions, which are included in the system 03 as basic:

• The safe predecessor function [;jc : N] cases(jc,zero, (;x)jc, (;jc)jc) : N

• The conditional function [;x : N,y : x,z : x] cases(x,y, (;x)y, (;x)z) : t

100 Chapter 5. Safe dual-context lists

5.4 Representing system 53

In this section we are going to show that the IISB(E) calculus defined in the previous
section contains all the components of the system 93. Doing a syntactic translation
from IB to II§B(Z) is a routine exercise since IB was the main motivation for II§B(Z).

Instead we shall concentrate on the semantic side and study what functions can be

represented in an II-multicategory, which is equipped with SNNO, satisfying the flat
recursion property (SNNOF for short). First we need to represent natural numbers as

multiarrows in such a multicategory:

Definition 5.4.1.

In an Il-multicategory with SNNOF for any natural number n we define the numeral
fi to be the following multiarrow:

where ,... ,«o is a binary representation of n.

Now we define the notion of representable function in an Il-multicategory with
SNNOF:

Definition 5.4.2.

A function on natural numbers /:N"x Nm —» N is representable in an Il-multicategory
M with SNNOF I if there exists a multiarrow

f
[xi ,xn : I\y\ ,ym : I] -► I

such that for any sequence of natural numbers (a\,...,an, an+1,..., an+m) we have
A . A

f °[;] \^1 > • • •) 3n'ifi-n+l i — > ^n+m) = k

where k = .. ,an,an+\,...,an+m).

Theorem 5.4.3. Every function f(x\,... ,xn;y\,... ,ym) definable in the system 93 is
representable in an Il-multicategory M with a SNNOF I.

Proof. We shall do the proof by induction on the definition of / in 93. :

• If / is the zero function then take / to be sq(\z).

• If / is the projection function Knfm then take / to be the following multiarrow:

[x\ ,xn : I; '•!■>••• ixn+m '• xj

5.4. Representing system 55 101

• If / is the successor function Si then take / to be s;-.

• If / is the predecessor function p then it will be represented as the multiarrow
[;;c: /] cases(x,z, (;jc)jc, (;x)jc).

• If / is the conditional function C then it will be represented as the multiarrow

[;x :I,y:I,z: /] cases(x,y, (;x)y, (;x)z).

• If / is defined using the safe composition scheme

h(s\ (x;),... ,s„(x;);ti (x;y),.. .,tm(x;y))

then by induction we have h, s\,... ,sn and t\,... ,tm. We define / as the compo¬

sition h($i,... ,sn'J\,tm).

• If / is defined using the safe recursion scheme:

f(0,x-y)=g(x-,y)

f(z.0,x;y) = h0(z,x-,y,f(z,x;y))

f(zA,x;y) = hi(z,x;y,f(z,x-,y))

then define / as srec(;c,g, (x\y)ho, {x\y)h\)

□

Theorem 5.4.4. The following are equivalent:

1. f(xi,... ,xn) is a polytime computable function on natural numbers.

2. f(x\,...,xn;)is representable in every II-multicategory with a SNNOF.

Proof. We know that if f(x\,...,xn) is a polytime computable function on natural
numbers then f{x\,... ,xn\) belongs to 53. Using the previous theorem we can con¬

clude that f(x\,... ,xn;) is representable in every II-multicategory with a SNNOF.
If f(xi,... ,xn;) is representable in every II-multicategory with a SNNOF then it is

representable in the multicategory B. □

We note that the use of II-multicategories (as opposed to ordinary categories with
structure) is essential to our proof of this theorem because it relies on the multicategory
B, which would not be easy to dress up as a category with structure since it is not clear
how to define a tensor product ® and linear exponential ! for encoding of safe/normal
distinction.

102 Chapter 5. Safe dual-context lists

The IISB(E) calculus defined in this chapter can be regarded as a typed version of
system 03. It contains safe composition and safe recursions schemes and all the basic
functions of system 03 can be represented in it. The interpretation of MSB (E) uses safe
natural number object which satisfies flat recursion property, which can be regarded as

a 'feasible' analogue of familiar categorical notion of natural number object.

Constructing such typed version of the system 03 along with appropriate multicate-

gorical interpretation sheds some light on the roles played by the different constituents
of system 03. We can summarize it as follows:

• The projection functions and the safe composition scheme together define the
structure of II-multicategory, which is a dual-context analogue of the notion of
category.

• The zero function, the binary successors and safe recursion constitute the defini¬
tion of safe natural number object, which can be thought of as feasible analogue
of natural number object.

• The predecessor and the conditional functions of system 03 rather than being
basic ingredients come from the special property of SNNO, which allows defin¬
itions by flat recursion.

Chapter 6

Strong endofunctors and initial

algebras

The single-context natural numbers type is an example of a so called inductive datatype.
In categorical setting inductive datatypes are studied using the notion of parameter¬

ized initial algebra for a strong endofunctor [CS92, CS95, Jac95], In this chapter we

shall define a notion of strong endofunctors for II-multicategories and a notion of safe
initial algebras for such endofunctors. We shall prove that some of the familiar prop¬

erties of initial algebras hold for the safe initial algebras. We also show that in an

II-multicategory with uniform coproducts and safe terminal objects the safe natural
number object can be recast as a safe initial algebra for a suitable strong endofunctor.

6.1 Strong endofunctors

We start by recalling the definition of strong endofunctor on a cartesian category

[JacOl]. Then we work out a similar definition for a single-context cartesian multi-

category and then extend it to a dual-context II-multicategory.

Definition 6.1.1.

An endofunctor T : C —-> C on a cartesian category C is called strong if it comes

equipped with a natural transformation sta h : a x Tb —> T(a x b) called a strength

103

104 Chapter 6. Strong endofunctors and initial algebras

which makes the following diagrams commute:

a x

rM

r(fe)

a x (6 X r(c)) X^ „ x T(bxc) r(«(txc))

(ax b) x T(c)
Staxb.c T((a x b) x c)

In a categorical setting such strong endofunctors are special kinds of endofunctors,
which in turn are special kinds of functors. In a multicategorical setting such chain
of specializations becomes problematic. The main reason for this is the asymmetry in
multiarrows, which have sequences of objects as domains and objects as co-domains.
The questions which have to be resolved is what is the action of an endofunctor on

dual-contexts.

A first attempt to define endofunctors in a multicategorical setting would be to con¬

sider a map of objects T : |M| —> |M| and assume that an application of an endofunctor
T to a multiarrow a\ .. ,an —> b gives a multiarrow T(a\)... T(an) —> T(b). Such a

route was followed by Hermida in case of monoidal multicategories and we develop
a similar definition for cartesian multicategories in Appendix B. Moreover we do not

have to restrict to endofunctors since general functors can be defined in the same way.

The problem with this approach is that we can't obtain strong endofunctors in this

way. One can systematically relate cartesian multicategories and cartesian categories
and show that such functors on multicategories correspond to product-preserving func¬
tors on cartesian categories. Since strong endofunctors do not preserve products in

general such a definition would be too narrow for our purposes.

If we look at the above definition of a strong endofunctor we see that strength
transformation allows us to construct a morphism axT(b) —>T (c) out of a morphism
T(a xb) —> T(c). This gives an idea of a different approach to the definition of a strong
endofunctor in a multicategorical settings. Consider a map of objects T : |M| —» |M|.
An application of T to a multiarrow a\...an —» b will happen at a position i giving
a multiarrow a\ .. .ai_i.r(a,).ai+i ...an-+ T(b). Obviously such an approach works

6.1. Strong endofunctors 105

only for endofunctors and is not obvious how to define general functors in the same

way.

We propose the following definition of a strong endofunctors based on the above
idea. In Appendix C we give a more precise correspondence between single-context
strong endofunctors as defined below and strong endofunctors on a cartesian category.

We shall be working with cartesian multicategories, which are defined in Appendix A.

Definition 6.1.2.

A strong endofunctor J on a cartesian multicategory C is given by the following
family of maps:

• A map of objects T : |C| —■> |C|

• For each object b, each sequence of objects a\...an and each object a,- within
this sequence a map of multiarrows

Tai : C(a\...an,b) -> C(a\...a;_i T (m) ai+\.. ,anJ (b))

These maps should satisfy the following properties:

• Identity law Tai(nai) = nT(ai)

• Composition law

^a'j (•/"(& 1 > • • •) 8n)) Tbi {f)(gi i... ,gi— 1, 7(gi), gi+l > • • • j grt)
where / : b —> c and gi: a, —► at.

Extending this definition to II-multicategories is quite straightforward. We again
need a map of objects F : |M| —> |M|. Then for each object b, for each dual-context
[T; A] and for each variable x within this context (either normal or safe) we need a map

of multiarrows

M([T;A],Z?) —> M([r/;A'],F(7»))
where the context [T'; A'] is the same as [T; A] except that the variable x has type F(a).
We shall use Fx(f) to denote application of F to a multiarrow / at a position x.

Remark 6.1.3. Another natural definition of a dual-context strong endofunctor would
be one in which the positions the functor can be applied to are restricted to either nor¬

mal or safe. We do not consider this further because such restrictions are not suitable

for our purposes.

106 Chapter 6. Strong endofunctors and initial algebras

Which properties should these maps satisfy? Firstly, we require that they preserve

normal and safe projections:

Secondly, our strong endofunctors should preserve linear composition. Given a multi-
arrow / : [r;A] —» h and a family of multiarrows, which do not share any variables:

8i: [r,;] —> cii hj :[Uj\Gj\-^bj T;, ny,07 mutually disjoint

we can compose them together and get a multiarrow

Suppose F is applied to such composition at a position x which belongs to the context

r,-. Since g,- is the only multiarrow which really depends on the input x, such application
should commute with the composition in the following way:

Tx(f(g\(xi;),...,gn(xn;);hi(ui;v1),...,hm(um;vm))) =

TXi(f)(g\(xu),--., Tx(gi)(*,-;gn(xn;);hi(u\;v\),... ,hm(um;vm)) (COMP-N)

Similarly, if the position x comes from the context [n,;0;] the following should hold:

Tx(f(gi(xi;),... ,gn(xn;);h1(ui;vi),... ,hm(um-,vm))) =

TXi(/)(gi (*i;), • • •,gn(xn;)\hi (mi; Vi),..., Tx(hi)(uf,Vi). ,hm(um;vm)) (COMP-S)

Putting it all together, we propose the following definition:

Definition 6.1.4 (Strong endofunctor).
A strong endofunctor F : M —» M on an II-multicategory M is given by a family of

maps, consisting of:

• A map of objects F : |M| —» |M|

• For each object b, for each dual-context [r;A] and for each variable x : a within
this context (either normal or safe) a map of multiarrows

Fx, (nXi) = nXi where nXi: [F;] a,

Fyj (°yj) = °y, where ayj: [r;A] hj

(ID-S)

(ID-N)

[FI;©] /(gi(xign(xn\);hi (u\ ;v(),..., hm(um;vm))

[n;©] = [ri,...,rM,ni,...,nm;0i,...,0m]

M([T-A},b)->M([r'-A'},F(b))

where context [r';A'] is the same as [r;A] except variable jc has type F(a).

6.1. Strong endofunctors 107

These maps should preserve normal and safe projections (ID-N and ID-S above) and
linear composition (COMP-N and COMP-S above).

As in the case of single-context multicategories this definition only makes sense

for endofunctors and there is no obvious way of generalizing it to functors between
different multicategories.

There is an obvious identity endofunctor and strong endofunctors can be composed.

Definition 6.1.5.

Let T:M^M and S : M —> M be strong endofunctors on M. The strong endofunctor
S T : M —> M is defined as follows:

• S- T(a) = S(T(a)) for each a E |M|.

• For each multiarrow / E M([T;A],a) (S-T)x(f) = Sx(Tx(f))

Lemma 6.1.6. S T is a strong endofunctor.

Proof. A routine check that S ■ T satisfies properties of a strong endofunctor. □

We now give some examples of strong endofunctors:

Example 6.1.7.

Suppose M is an Il-multicatgory with a safe product x. Let c G |M|. We define strong
endofunctor Pc as follows:

• Pc(a) = c x a

• Given a multiarrow / : [T,z : a; A] —> b we define a multiarrow P(z (/) as follows:

[Y,z: cxa;A] I*(f)(x,z;y) = [pr\(-,z),f(x,pr2(;z);y)]

• Given a multiarrow / : [T; A,z : a] —» b we define a multiarrow Pz(f) as follows:

[T, ; A,z : c x a] Ff(f)(x\y,z) = [pn(;z),/(x,pr2(;z);>')]

Lemma 6.1.8. P' is a strong endofunctor.

Proof. We verify the properties of a strong endofunctor:

• For the safe identity preservation we have

[T;A,z:cx a] Pz(oz) = [pr\(;z),az(jf;y,pr2(;z))] = \pr\{\z),pri{\z)\ = z

108 Chapter 6. Strong endofunctors and initial algebras

• For the normal identity preservation property we have:

[r,z:cxa;]/£(jcz) = \pri(;z),nz(x,pr2(;z);)\ = [pn{;z),pr2(;z)\ = z

• For the COMP-S property the left-hand side is equal to

\pn(-,z),f(g;h,s(u;v,pr2(-,z)))\

Using the definition of Pc we have P£(f) = [pr\(;x),f(x;y,pr2(;x)]. If we sub¬
stitute the family g;h, [pr\(;z),s(u;v,pr2{\z))] we can write the right-hand side
of COMP-S as \pri(;z),f(g;h,s(ii;v,pr2(;z)))\, which is equal to the left-hand
side of COMP-S. Similarly we can check that COMP-N holds.

□

Example 6.1.9.

Suppose M is an II-multicategory with a uniform coproduct. Let c e |M|. The endo-
functor Sc will be defined as follows:

• Sc(a) = c + a

• Given a multiarrow /: [T,z : a; A] —» b we define

[T,z : c + «;A] Scz(f) = case(z,(x : c;)inlc,b(\x),(z : a\)inrCtb(;f(x,z;y)))

Example 6.1.10.

Suppose M is an Il-multicategory with a safe coproduct. The endofunctor d is defined
as follows:

• d(a) = a + a

• For any multiarrow / : [T,z : a; A] b we define

[T,z : a + a;A] dz(f) = inlb,b(;{f\f}(,x,z;y))

Checking that d and Sc are strong endofunctors is similar to the proof we gave for
the endofunctor Pc and is quite technical, so we decided to omit it.

6.2. Safe initial algebras 109

6.2 Safe initial algebras

In the previous section we have defined the notion of strong endofunctor on an II-

multicategory. In this section we shall consider a notion of a safe initial algebra for
such endofunctors. Such initial algebras can be used for the interpretation of the safe
natural number type we defined i the previous chapter.

We start with the following categorical definition of parameterized initial algebra
[CS92, CS95, JacOl]:

Definition 6.2.1.

Let C be a cartesian category and T : C —> C be a strong endofunctor on C. A para¬

meterized initial algebra for T is a morphism T(I) -^>7 such that for any morphism
AxT (B) B there exists a unique morphism A x/^> B making the following diagram
commute:

(TCi ,StAi) idxT(f)
A x T (/) X "> AxT (Ax I) —A x T(B)

id x a h

Ax I »B
f

Let us specialize this definition to one particular case and see how initial algebras
can represent functions defined by recursion [Rom89]. Let C be a cartesian category
with distributive coproducts. Consider a strong endofunctor N with action on objects
as N(x) = 1 -{-X and on morphisms as N(f) = {inl(id\),inr(f)}. Then a parameterized
initial algebra a : 1 + N —► N for this endofunctor is nothing more but a parameterized
natural number object given by morphisms zero : 1 —»N and s : N —> N [LS86].

A function on natural numbers / : Nm —* N is representable in such C with a

parameterized natural number object N if there exists a morphism / : Nm —> N such
that for any sequence of natural numbers a\,..., an we have fo(a\,..., an) — k where
k = f(a\an) and h is defined as n applications of s to zero.

Then using properties of parameterized natural number object is possible to repre¬

sent functions, which are defined by the following recursion scheme:

f(0,y)=g(y)

f(s(x),y) =h(y,f(x,y))

This scheme differs from the usual primitive recursion scheme, which has an additional

110 Chapter 6. Strong endofunctors and initial algebras

parameter in the step function:

f(0,y) = g'(y)
f'(\(x),y) =ti(x,y,f'(x,y))

But we can code such recursion scheme using products as f'(x,y) = 7ti (f(x,y)) where
/ is defined by recursion as follows:

/(0,y) = pair(g' (y), zero)

f(s(x),y)=pair(h'(n2(f(x,y)),y,ni(f(x,y))),s(Ti2(f(x,y))))

The goal of this section is to define such notion of dual-context initial algebra that
when applied to a particular dual-context strong endofunctor can represent the safe
recursion scheme:

f(0,x;y) = g(x\y)

f(z.0,x;y) = h0(z,x\y,f(z,x-,y))

f{z. 1 ,x;y) = hi (z,x;y, f(z,x;y))

Such initial algebra should be a multiarrow of the form [;x : T(I)] ^ I. Why do
we insist that x be safe? Recall that in the system 53 the successors so and si each
have one safe argument and asking for a function with a safe argument is in general a

stronger requirement since turning a safe argument into normal is allowed by the safe
composition.

Next we should decide on the signature for the step function h. Obviously h should
have both normal and safe parameters given by the context pT; A]. In addition to those
parameters h should have a position for plugging in a recursive value. The safe recur¬

sion scheme dictates that this position should be safe. Another parameter of the step

function should be a normal variable for plugging in the recursion argument. So the
step function should be [r,x : T(I);A,y : T(a)\ a.

For each such step multiarrow we require the existence of a multiarrow [r,z :
f

I; A] —> a where z is the recursion argument, which according to the safe recursion
scheme should be normal. This / should satisfy the following property:

[T,Z : r(I);A] /(Jc,a(;z);y) = h(x,z;y,Uf)(x,z;y))

Note that the functor T is applied to the normal z. Summing up, we propose the
following definition of initial algebra:

6.2. Safe initial algebras 111

Definition 6.2.2 (Safe initial algebra).
Given an II-multicategory M and a strong endofunctor T : M —> M a safe initial alge¬
bra for T is a multiarrow [;x : 7T] I such that for any object a and any multiarrow

h f
[F, jc : T(I);A,y : T(a)] —> a there exists a unique multiarrow [T,z : I; A] —> a such that

[r,z : T(l);A] f(x,a(;z);y) = h(x,z;y,Tz(f)(x,z;y))

Obtaining the safe recursion scheme out of this definition requires the strong end¬
ofunctor B(x) = 1 +x + x. Let M be an Il-multicategory with a uniform coproduct and
safe terminal object 1. Then, as we have seen in the previous section, B is indeed a

strong endofunctor. Assume that a = {e^oki} is a safe initial algebra for B, where
[;] iand [;x:/]^7.

For any multiarrow [T,x : 1+1 + I',A,y: 1 + a + a] a there exists a unique mul-
f

tiarrow [r,z : 7;A] —> a such that

[T,z: 1 +/ + /; A] /(x,a(;z);y) = h(x,z\y,Bz(f)(x,z;y))

Substituting [inlij+j(\x)/z] we get

[T; A] f(x,e;y)=g(x\y)

Similarly for the substitutions [inrij+i(;inlij(;x)/z] and [inrij+i(;inr[j(;x)/z] we have

[V,x : I; A] f(x,s0(;x)\y) = h0(x,x-,y,f(x,x-,y))

[r,x : I;A] f(x,si(\x)\y) = hi(x,x;y,f(x,x\y))

We shall now prove some properties of safe initial algebras which are dual-context
version of corresponding properties of categorical initial algebras. We start with check¬

ing that safe initial algebras are unique up to isomorphism:

Proposition 6.2.3. Let M be an Il-multicategory and T : M —» M be a strong endo¬

functor on M. Assume that [,x: T(/)] I and [;x : T(/')] /' are safe initial algebras
i i!

for T. Then there exists [x : /;] —> I' and [x I such that [x : /;] /'(/(x;);) = x and
[x:I';] i(i'(x-,)-,) =x

Proof. Consider the multiarrow [x : T(I);y : T(I')] a'(;y). By the initial algebra prop¬

erty of a there exists [x : /;] I' such that [z : T(I)\] i(a(;z);) = a'(;Tx(i)(z;)). Simi¬
larly for the multiarrow [x : T(I');y : T(I)] a(;y) there exists a multiarrow [x : /';] I
such that

[z:T(iy,}i\a'(-zy,) = a(-,Tx(i')(z-,))

112 Chapter 6. Strong endofunctors and initial algebras

Consider the multiarrow [x : /;] i'(/(x;);) such that

[z: r(/);] i'OXaOz););) =f'(ot#(;rx(0(r0);) =a(;2i(O(2i(0fe);))

By the composition property of strong functors this is equal to

[z:r(/);]a(;7i0-'(i(x;);))(z;))

Now consider the multiarrow [.x :T(I);y:T(/)] y. By the initial algebra property there
f

exists a unique [x:/;] —»/ such that [z: T(/);]/(cc(;z);) = a(;Tx(f)(z;)). On one hand
/ must be equal to [x: I;}nxI since [z: T(I);] pix(a(;z);) = a(;z) = a(;7i(jcx)(z;)) by
the projection property of safe endofunctors.

But the multiarrow [x : /;] i'(i(x;)) satisfies the same equation. So by uniqueness
we have that [x: /;] i'(/(x;);) = x. Similarly we obtain that [x : /';] i(i'(x;);) = x. □

Note that since we are using the initiality property of a to construct i and i! these
multiarrows are normal. In general we can't show the stronger property of having a

safe isomorphism. This observation also applies to the next property which states that

any safe initial algebra has a normal inverse and can be seen as a dual-context analogue
of Lambek's Lemma for initial algebras in category theory:

Proposition 6.2.4. Let M be an ll-multicategory and T : M —»■ M be a strong endo-

functor on M. Suppose that [;x : T (/)] —► I is a safe initial algebra for T. Then there
exists a multiarrow : [x : /;

a-l

T (/) such that

[x: I;] a(;a_1(x;)) =x

[x: 1(1);] a_1(a(;x);) =x

Proof We shall construct a 1 : [x : I;] —» T(I) as follows:

[x:Tl-]
Ki

7ti (3)

r n 1 7><a"1-[x: 7T;j

a

b:i;]

[x: 7T;1

Ty{a-1)

[z:T2!-,] \x:Tli]

(0 Tx

a~l

a) (2)

:T1-]
a

a

[y = i;]

6.2. Safe initial algebras 113

Diagram (1) defines a-1 using the initiality property of a for the step function Tx(a).
Diagram (2) commutes which makes the combined horizontal diagram (1-2) commute.

Since T preserves composition

Tx(a) o (ry(a-1);) = ^(ao(a-1;)) T-Comp

so the outer diagram is the initiality property of a for the step function a. By unique¬
ness we have

ao(a-1;)=7ti LI

Diagram (3) commutes so combined vertical diagram (3-1) commutes. Together with

T-Comp and LI this gives

a_1o(a;) =7tn

so a is an isomorphism. □

Using the normal inverse a-1, constructed in the previous lemma, we can show
that the application of the strong endofunctor T to a safe initial algebra for T gives
back another safe initial algebra:

Proposition 6.2.5. Let M be an Il-multicategory and T : M —> M be a strong endo¬

functor on M. Assume that [;x : T(/)] —^ / is a safe initial algebras for T. Then a

multiarrow Tx(a) : [;x : T(T (/))] —> T (I) is also a safe initial algebra for T.

Proof. We need to check that for any multiarrow h : [T,x : T(T(I));A.y : T(a)] there
exists a unique multiarrow / : [T,z : T(I);A] —» a such that the following holds:

[T,w: T(T(I));A] f(x,Tx(a)(;u);y) = h(x,u;y,Tz(f)(x,z;y))
a"1

By Lemma 6.2.4 we have a multiarrow [x : /;] » T (/) which is a normal inverse of
a. Consider a multiarrow defined by the following composition:

[r,z: T(I);A,y : T(a)] h'(x,z;y,y) = h(x,Tx(a'1)(z\);y,y))

Since a is a safe initial algebra for such h there exists a unique f': [T,z : /; A] —> a such
that the following holds:

[T,z: r(/);A] f'(x,a(-,z)-,y) = h'(x,z;y,Tz(f')(x,z;y))

We can now define / using the following composition:

[T,z: r(/);A] f{x,z\y) = f'(x,a(;z);y)

114 Chapter 6. Strong endofunctors and initial algebras

Then we have the following:

[r,M : 7(7(7));A] f(x,Tx(a)(;u)-,y) = f'(x,a(-,Tx(a)f,u));y)
= h! (x,Tx(a)(;uy,y,Tz(f')(x,Tx(a)(;u);y))

□

In this section we have defined a notion of safe initial algebra for a strong endo-
functor which is an analogue of the categorical notion of initial algebra and have shown
that some of the usual properties of initial algebras hold for safe initial algebras as well.

6.3 Flat recursion property

In the previous section we have proved that any safe initial algebra [\x : 7(7)] 7 has
an inverse [jc : /;] ——» 7(7). Since a"1 was constructed using initiality property it is
essential that the argument x is normal. It seems that having a safe inverse does not
follow from the properties of initial algebra and it is therefore interesting to add the
existence of such a safe inverse as an additional property to an initial algebra.

Definition 6.3.1.

Let M be an Il-multicategory with a strong endofunctor 7 : M —> M. A multiarrow

[;jc : 7(7)] I is called a strongly safe initial algebra for 7 if it is a safe initial
a-i

algebra for 7 and there exists a multiarrow [;x : I] » 7T such that

[;jc:7T] h a_1(;a(;x)) = x

The property of being a strongly safe initial algebra has an illuminating alternative
characterization:

Definition 6.3.2.

Let M be an Il-multicategory with a strong endofunctor 7 : M —► M and a multiarrow a

be a safe initial algebra for 7. We say that a satisfies the flat recursion property if for
any object a and any multiarrow [T,x : 7(7); A] a there exists a unique multiarrow

f
[T;jc : I, A] —» a such that the following holds:

[T,z : 7(7); A] /(x;a(;z),y) = h(x,z\y)

Proposition 6.3.3. A safe initial algebra a is strongly safe iffa satisfies the flat recur¬

sion property.

6.3. Flat recursion property 115

Proof. Assume that a has a safe inverse. Given a multiarrow [T,x : T(I); A] a con¬

sider the following multiarrow:

[V,z: I;A] f(x;z,y) = h(x,a~l

For this multiarrow the following holds:

[T,z: T(I)-,A\f(x;a(-,z),y) = h(x,a~\;a(-,z));y)=h(x,z-,y)

So a satisfies the flat recursion property.

In order to show the opposite direction consider a multiarrow [x : T(I);] x. Since a
a-\

satisfies the flat recursion property there exists a multiarrow [;jc : 7] » T (/) such that

[x : 7(7);] a_1(;a(;x:)) = *

Consider a multiarrow [x : T{I);] a(;x). Since a satisfies the flat recursion property
f

there exists a multiarrow [;jc : /] —► T{I) such that [x : 71;] /(;cc(;jc)) = a(;x). On one

hand we should have that [;jc : I] f(',x) = x. On the other hand the following holds

[;*:/] f(;x) = a(;a_1(;x))

since [x : a(;a_1 (;a(;x))) = a(;jc). So by uniqueness of / we have that

[;x : I] a(; a-1 (;jc)) = x

□

We shall now prove that our definition of a strongly safe initial algebra is equivalent
to the definition of safe natural number object, satisfying the flat recursion property:

Theorem 6.3.4. Let M be an Il-multicategory with a uniform coproduct and a safe
terminal object. Consider a strong endofunctor B{x) = 1 + x + x on M. Then the
following holds:

• There exists a safe initial algebra for B in M iff there exists a safe binary list

object.

• There exists a strongly safe initial algebrafor B in M iff there exists a safe binary
list object, satisfying flat recursion property.

116 Chapter 6. Strong endofunctors and initial algebras

Proof. We shall give only the sketch of the proof. Let I be an SNNOF. Then we

consider a multiarrow [;x: 1+I+I] a(\x) = {V |soki}, where z!: [\x: 1] —>/is obtained
from z- Any multiarrows [T,x : 1 +1 + 1; A, y : 1 + b + b] —> b is uniquely determined
by the multiarrows g : [T; A] —» b, ho : [r,;c : /; A,y : b\ —> b and h\ : [r,jc: I; A,y :

b\ —> b. For these multiarrows using the universal property of SNNO we obtain the
multiarrow / : [T,x : 7; A] —> a. Checking that this multiarrow satisfies the required
universal property of safe initial algebra is routine. In the same way we can check
that this construction satisfies the flat recursion property and in the opposite direction
construct the SNNO I out of the safe initial algebra [;jc : 1 +I + I] ^ I. □

In this chapter we defined strong endofunctors for II-multicategories and safe initial

algebras for such endofunctors. We have shown how safe initial algebras can be used
for interpretation of safe inductive datatypes in particular safe natural number objects
introduced in the previous chapter. We have proved that some of the usual properties of
initial algebras hold for the safe initial algebras. In particular we have proved the dual-
context analogue of Lambek's lemma showing that safe initial algebras have normal
inverse. Obtaining the safe inverse seemed not trivial so we added sych property to

the definition of safe initial algebras and showed that the resulting notion can be used
to give a sound interpretation of extended safe natural number type, introduced in the

previous chapter.

Chapter 7

Conclusions and future work

7.1 Main results

In this thesis we worked with calculi in which normal and safe variables were consid¬

ered. The separation of variables into two kinds led us to using dual-contexts for typing
the free variables occurring in terms. In this setting we were able to define different
rules for using normal and safe variables. In particular, we considered different struc¬
tural rules for normal and safe variables. In order to maintain the separation between
normal and safe variables the substitution had to be restricted.

We showed how different dual-context calculi with restricted substitution could be

described in a uniform way using the minimal dual-context calculus and specifying
structural rules as renaming operations. We paid special attention to the dual-context
calculus 11(2).

We observed that constructing a complete interpretation of a basic dual-context
calculus with safe substitution using standard techniques was problematic because of
absence of necessary type constructors in the calculus. We proposed an alternative
approach to the interpretation of such calculus based on the notion of dual-context
multicategory. We proved soundness and completeness for this interpretation. We
then defined a uniform notion of R-multicategory, which covered different flavors of
dual-context multicategories in a uniform way.

One important dual-context multicategory for interpretation of 11(2) was the mul¬
ticategory B built out of polytime computable functions on natural numbers with size
bounded in a special way. This multicategory was used in establishing our main repre-

sentability results.
We speculated about the relation between multicategorical and categorical models

117

118 Chapter 7. Conclusions and future work

of 11(E). In order to establish it precisely we needed to extend 11(E) with various
type constructors. We considered such an extension for product types. We observed
that several different flavors of product types exist and gave sound multicategorical
interpretation for them. We also considered extensions of 11(E) with sums and unit
type.

The most important extension of 11(E) was done when we considered safe dual-
context natural numbers. The typing rules for this extension were formulated in such
a way that the safe recursion scheme of Bellantoni and Cook's system 95 could be de¬
fined. The safe dual-context natural numbers were interpreted using the notion of safe
natural number object. We also defined safe natural number object with an additional

property, which was capable of expressing the flat recursion scheme. In this way we

obtained the calculus IISB(E) in which whole system IB could be defined.
The III§B(E) calculus allowed us to better understand the relationship between the

different parts of system IB. The fundamental part of system 05 consists of the projec¬
tion functions and the safe composition scheme, which are the basic ingredients needed
in the setting with two kinds of variables. Adding successors and safe recursion into
the system can be regarded as adding a safe dual-context natural number type. Finally,
the addition of the safe predecessor and conditional can be seen as a consequence of

adding the flat recursion.
We showed that every function from IB could be represented in an II-multicategory

with a safe natural number object, which satisfied flat recursion property (SNNOF for
short). Using the multicategory B we also showed that only the polytime functions
could be represented in every II-multicategory with SNNOF.

We recast SNNO as safe initial algebra for a particular strong endofunctor on an

II-multicategory. This required a definition of strong endofunctors and safe initial

algebra. We showed that adding a generalized flat recursion property to a safe initial

algebra was equivalent to requiring that it has a safe inverse.

7.2 Future work

One of the interesting possibilities for continuing the research presented in this thesis is

studying extensions of basic dual-context calculi with other common type constructors.
In this thesis we considered variations of products and sums in the Il-case. Similar
extensions can be considered without difficulty in the IL-case and another interesting
possibility is to consider these extensions in an arbitrary basic dual-context calculus

7.2. Future work 119

given by the minimal dual-context calculus extended with a collection of renamings.
One important extension to consider would be the exponential types of linear logic,

e.g. as defined in type system DILL. Having a multicategorical semantics of exponen¬

tial types together with monoidal product types is essential in order to establish the rela¬

tionship between dual-context multicategories and categories with additional structure

(like linear/non-linear models of DILL) used for interpretation of dual-context calculi.
Function types is another extension, which is very interesting from the feasible

computability point of view. In order to explain this in more details we need to consider
briefly some of the development, which have been proposed to extend Bellantoni and
Cook's system 03.

Hofmann [Hof97] constructed a type system SLR based on the ideas from Bellan¬
toni and Cook's approach. In SLR dual-contexts are not present explicitly, instead a

unary type constructor □ is used for representing normal values. Among other things,
SLR includes linear function types and recursor constant, which enable definitions by
safe recursion. Hofmann showed that in the presence of function types one needs to

impose a linearity discipline on using safe values otherwise it would be possible to
define functions which are not polytime computable.

We have related extensions of II (X) with system 03. It would be interesting to try
to relate extensions of IL(X) with monoidal products, function spaces and exponential
types to the type system SLR. Doing this might potentially bring the same benefits
as those provided by having a dual-context formulation of intuitionistic linear logic. It

might be also interesting to consider another type system developed by Schwichtenberg
and Bellantoni [SB02], which is related to SLR.

One can also extend II (£) with function types and investigate what happens when
safe natural numbers and function spaces are mixed. In the light of Hofmann's ob¬
servations about linearity restrictions on safe variables, we conjecture that it would be

possible to define functions, which are not polytime computable.
Our reformulation of safe natural number objects as safe initial algebras for strong

endofunctor can be used for considering safe versions of other inductive data-types.
In particularly, a notion of 'safe tree' type can be studied in this setting. It would be

interesting to see how such safe trees relate to the 'feasible trees' of Hofmann's SLR

[Hof99].

A completely different direction is inspired by Leivant's characterization of poly¬
time computable functions [Lei93, LM93] mentioned in Chapter 1. It suggest a gen¬

eralization of dual-context calculi, in which contexts are divided into more than two

120 Chapter 7. Conclusions and future work

zones. Another possible motivation for considering such a generalization is Otto's
characterization of Kalmar's elementary functions, which uses three kinds of variables.
An interpretation of such a generalized calculus would require modifying the notion of
dual-context multicategories. One way of doing such modification is to consider a no¬

tion of T-multicategories [Lei04], which can be roughly described as multicategories
with structures defined by functor T as domains of multiarrows.

Appendix A

Single-context multicategories

A.1 Monoidal multicategories

In this section we recall a definition of multicategories taken from [HerOO]. We shall
call them monoidal multicategories to distinguish from cartesian multicategories in¬
troduced in the next section. [Lei04] is a more recent source for multicategories.

Definition A.l.l (Monoidal multicategory).
A monoidal multicategory M consists of

• a set |M|, whose elements are called the objects

• for each sequence of objects a\...an and each object b a set M(ai...an,b),
/

whose elements are called multiarrows and denoted as a\... an —»■ b

• for each object bb, each sequence of objects a\ ...an and each sequence of se¬

quences of objects a\... an a function be called composition:
n

M(ai...an,b) x riMfe ai) —> M(ai.. .an,b)
i—\

where d\...an stands for concatenation of sequences a\,... ,an. The composi¬
tion will be denoted as /o (gj. .,gn).

• for each object a a multiarrow ida £ M(a, a) called identity

satisfying the following laws:

• associativity law

f°{g\o{h\)...gno(hn)) = (f°(g))o{h\...hn)

whenever f,gi,hj are multiarrows for which these composites make sense.

121

122 Appendix A. Single-context multicategories

• identity laws

/ O (idai ...idan)=f = ida o (/)

where a\.. .an a.

We are interested in the following special kind of monoidal multicategories:

Definition A.1.2.

A symmetric monoidal multicategory is a monoidal multicategory M equipped with

symmetry maps
- • a : M(fli... an, b) -» C(ao(1)... ao(n), b)

for each object b, each sequence of objects a\...an and each permutation G which

satisfy the following properties:

• / • 1 = 1 where 1 is the identity permutation

• (/• g) • x = /• (gox) where Gox is a composition of permutations g and x.

• Compatibility with composition:

(/ • g) ° (g0(i) • fto(l) • • -Sa(n) ' Ka(«)> = ■ • ■ 8n)) ' (Cf ° (^a(l) • •

Alternatively, symmetric monoidal multicategories can be defined using labeled
families of objects [jti : a\,... ,xn : an\ as domains of multiarrows instead of sequences

of objects. We shall refer to such labeled families as contexts and use capital Greek
letters to range over them. Concatenation of sequences will be replaced with union
of contexts which have mutually disjoint sets of labels. Such unions will be denoted
as Ti,..., r„. Formally such multicategories are defined as follows [Lei04] (they are

called fat since they contain essentially the same sets of multiarrows with different
labels in contexts):

Definition A.1.3.

A fat symmetric monoidal multicategory M consists of:

• A set of objects |M|

• For each context [jci : ai,...,xn : an] and each object b a set of multiarrows
M([*i : ai,...,xn : an),b)

A.1. Monoidal multicategories 123

• For each object c, each context [jci : b\,...,xn : bn], each family of mutually
disjoint contexts {r}x.e{Xli a composition map:

M([xi :bi,...,xn: b„\,c) *nM(W^)^M(|rii r4W
Xi

• For each context [x : a] an identity multiarrow idya, G M([jc : a],a)

satisfying the following laws:

• Associativity law

/°(foi = (f ° (gXl, • • ■ ,gxn)) ° (hi, ■ • • ,K)

• Identity laws

.., id[Xn:an]) =f = id[x:a] o langlef)

Leinster showed that the two definitions of symmetric multicategories are equiva¬
lent [Lei04],

We now recall how monoidal multicategories and categories can be related.

Definition A.1.4.

Given a monoidal multicategory M we define a base category of M denoted as M as

follows:

• For the set of objects |M| take |M|. For a set of morphisms M(a, b) take a set of
multiarrows M(a,b).

• Composition of / 6 M(b,a) and g G M(c,&) will be defined using the composi¬
tion of M as fog = fo(g). For identity morphisms in M take identity multiarrow
of M

Proposition A.1.5. M is a category.

Proof. Routine check. □

Definition A.1.6.

A monoidal multicategory M is called representable if for every sequence of objects
a\...an there exists a universal multiarrow : a\. <8>fl such that:

• For any multiarrow / G M(aj ...an,b) there exists a unique multiarrow f G

M(<E)fl, b) such / o (rria) = /

124 Appendix A. Single-context multicategories

Universal arrows are closed under composition

Proposition A.1.7. If a monoidal multicategory M is representable then it's base cat¬

egory M is monoidal.

Proof. Define monoidal structure on M as follows:

• For any objects a and b take a ®b to be a codomain of some universal arrow

for I take a codomain of some universal arrow me

• Structural isomorphisms are constructed using universal arrows as follows:
a a

fa
(m£,ida)

mi,a

idn

a,I
(ida,me)

idn

l®a -a

L

a,b,c-

ma,i

a®l -a

ra

(ida,mt,jC)

a®b,-e-
{ma,b) idc)

a,b®c

ma®b,i ma,b®c

a„
(.a®b)®c -c a®(b®c)

• We do skip checking the coherence diagrams, details can be found in [HerOO]

□

In [HerOO] the following notion of the functor between the monoidal multicate¬
gories is introduced:

Definition A.1.8.

Given a pair of monoidal multicategories Mi and M2 a functor T : Mi —» M2 is given
by the following family of maps:

A.2. Cartesian multicategories 125

• A map of objects To : |Mi| —> IM2I

• For any sequence a\...an a map of multiarrows

Tax...an : Mi (a, ...an,a) ->M2(T0(ai) ...T0(an),T0(a))

satisfying the following properties:

• Ta(ida) = iclrrQa

• Th -bn gn)) = Tai...an (/) ° (Th] (gl) •. • Thn (gn))
Hermida showed that such functors between monoidal multicategories correspond

to monoidal functors between the underlying monoidal categories.

A.2 Cartesian multicategories

In the previous section we have introduced monoidal multicategories, which were con¬

nected to monoidal categories. In this section we shall consider special multicategories

corresponding to cartesian categories.

Definition A.2.1 (Cartesian multicategory).
A cartesian multicategory C consists of

• a set |C|, whose elements are called the objects

• for each sequence of objects a\...an and each object a a set C(a\ ...an,a),
/

whose elements are called multiarrows and denoted as a\ ...an—+ a

• for each object c, each sequence of objects a\ ...an and each sequence of objects
a function which is called composition:

m

C(b\...bm,c) x i) -> C(ai...an,c)
i=l

The composition will be denoted as f oa (gi.. ,gn) where a stands for a\ ...an.

We shall use e to denote the empty sequence.

• for each sequence a\...an and each I < /' < n a multiarrow 7t / € C(ai...an,a.i)
which is called projection

satisfying the following laws:

126 Appendix A. Single-context multicategories

• associativity law

f°a (gl °a {h)...gn°a {fy) = (/ °b {g)) °a (fy

where hi G C(a,bi), gj G C(b\. ,.bm,Cj) and / G M(cj... cn,d) and b = b\ .. ,bm.

• identity laws

foa{K\...K„) = / where a\...an->a a\...an-Cai

Ki°b{gi---gn) =gi where a\...an^*ai b\...bm-^ai

Comparing cartesian and monoidal categories we see that the main differences is in

composition scheme. In monoidal case we can compose / : b\.. .bn —> c with a family

gi: at —> bi and get a multiarrow in domain a\ ...an. In cartesian case all g/ must have
the same domain a which will become domain of a composite multiarrow as well.
Another difference is that identity multiarrows in cartesian case are not restricted to

singleton domains. Using these two features of cartesian multicategories it is possible
to define several operations on multiarrows:

• Interchange which produces a multiarrows in C(di.c.d2-b.d3,d) from a multiar¬
row in C(ai .b.a2.c.d3,d) can be defined as f°ai.c.a2.b.a3 (Sai ttb ai Kc fta3) where
fta denotes a sequence of identity multiarrows for each of a sequence a.

• Weakening which produces a multiarrow in C(a.b, c) from a multiarrow in C(d, c)
can be defined as / oa b (jts)

• Contraction which produces a multiarrows in C(a.b,c) from a multiarrow in
C(a.b.b,c) can be defined as foa b (7ia nb nb)

Lambek [Lam89] gave a different definition of cartesian multicategories by adding
interchange, weakening and contraction operations with appropriate laws to monoidal
multicategories. It can be shown that such definition is equivalent to ours.

Definition A.2.2.

Given a cartesian category C an underlying cartesian multicategory Uc consists of:

• A set of objects |Uc| = |C|

• For each object b and each sequence of objects <21... an a set of multiarrows

Uc(a\...an,b) = C(a\ x ••• xan,b)

A.2. Cartesian multicategories 127

• For each sequence of objects a\...an and each object a,- within such sequence a

projection multiarrow 7q-: a\... an —> at given projection morphism 71/

• For each object c, each sequence of objects a i... an and each sequence of objects
b\... bm a composition function / oa (gl,..., gn) = / o [gj,..., gn]

Proposition A.2.3. Uc is a cartesian multicategory.

Proof. The identity and associativity laws of cartesian multicategory follow from the

properties of product on C. □

Definition A.2.4.

Given a cartesian multicategory C we define a base category of C denoted as C as

follows:

/V /V

• For the set of objects |C| take |C|. For a set of morphisms C(a,b) take a set of
unary multiarrows C(a,b).

• Composition of / G C(b, a) and g G C(c, b) will be defined using the composition
of C as f°g = f°c(g). For the identity morphism ida take Tti G C (a, a).

Proposition A.2.5. C is a category.

Definition A.2.6.

A cartesian multicategory C is called representable if for every sequence of ob¬

jects a\ ...an there exists a universal multiarrow pd : a\...an —•> xa such that for

any multiarrow / G C(a\... an,b) exists a unique multiarrow f G C(xa,b) such that

f = f°a (Pa)■

Proposition A.2.7. If C is a representable cartesian multicategory then the corre¬

sponding base category C has finite products.

Proof. We define finite product structure on C as follows:

• For a product a x b take codomain of the universal multiarrow pab- For projec¬
tion maps take 7ti G C(a x b,a) and 7t2 £ C(a x b,b).
Given morphisms / G C(d,a) and g G C(d,b) take [f,g] = pab °d (f,g)• For
such choice we have

^1 ° [f,g] = (^1 °ab (Pab)) °d (f,g) = Ki od (f,g} = /

Similarly we have % o [f,g] = g.

128 Appendix A. Single-context multicategories

Given any morphism t G C(d, a x b) such that tio/ = / and 7t2 ° t = g we have
the following:

\f,g] =Pab°d (f,f)=Pab°d (A) °t,ft2°t) = (Pab°axb{ft\,ft2))°d (0

pab is universal so we must have that pab °axb (^1 jfe) = idaXb since the follow¬

ing holds:

(Pab °axb °ab (Pab) Pab°ab (^1>^2) Pab

So we can conclude that t = [f,g\-

• For the terminal object 1 take a codomain of a universal multiarrow pE. We have
that p£ oj () = id] since pe is universal and (pe oj ()) oe (pe) = pz oe () = pe.

For any object a we have a morphism p£ oa () G C(a, 1). Given any other mor¬

phism / G C(a, 1) we have the following:

/ = id1 oa (/} = (p£ O! ()) oa (/) = pz oa ()

So pEoa () is a unique morphism in C(a, 1).

□

Appendix B

Proofs for R-multicategories

Proposition B.0.8. M is an ll-multicategory.

Proof. • N-Id

°[rf] {Sx\ j • • ■ j gxn 5) = fax ' V) ° (§X 1 ' eXl 5 • • •) »)

Using Ren-Comp-2 we get

faxo((gxreXi) ■%■,))-a

where

Sjc, : [IT; 0] —>■ [n'; 0'] x : [n'; 0'] [II"; 0"] a : [n"; 0"] - [n; 0]

are isomorphic renamings. Using Ren-Sup and R-N-Id we get gXi ■ (go (toeJ)
which is equal to gXi by Ren-Id.

• S-Id is similar to the previous case.

• Associative law

/°[n;0] (gxi °[n;] (U) ■■■gxn °[n;] (t;); hyi °[n;©] (t\s),...hym o[n;©] (t; s)) =

if °[r;A] (g',h))°ln;0]

f: [xi : ai,... ,xn : an; y\ : b\,... ,ym :bm\-*c

gXi: [r;] -»• at hyj: [r; A] —>■ bj
[r; A] = [u\ : d\,...,uk : dk; vi : <?i,..., vt: et\

tUi: [n;] —> di sVj : [n; 0] -> ej

We assume the following renamings:

129

130 Appendix B. Proofs for R-multicategories

- Isomorphic renamings on [r; A]

e,,:[r;]-»[r,,;] e,,: [T; A]-+[r„

- Contraction renaming on [r; A]

° : [I*,, • • • ,... ,Tym ; Ayj,...,Aym] —> [r; A]

- Isomorphic renamings on [II; 0]

V : [n;] —► [IIUi;] iVj: [n; 0]
: [n;] -> [n^.;] Xyj: [II; 0]

x* : [UUj;] - [n* ;] T*: [Uu.;]
xl'j : [nv.; 0V;;] -> [II*; 0*]

- Contraction renaming on [II; 0]

Pu,v • [nM1,... ,iiMjt, iiV],..., nv;; 0Vl,..., 0v;] * [n, 0]
pXi :[n*,...,n*;]-»[n;]

fly.: [nyu{,...,nyJk,nli,...,nil;eli,...,ell] - [n; 0]
Px,y '• [nxi,..., nXn, ,..., nym; 0yi,..., eym] —■> [n; ©]

- Contraction renaming

p : [nxi,...,n*n,n;yi,...,n>'m; g*,...,©*"] ->

[riuj, • • •, nUk, iiVl,..., nv,; ©Vl, • • •, ©vj

[nV;- ; ©Vy]
[Hyy ; ©V7]

;]

n* = n«,...,n« m = nJi,...,ng 8"/ = eft,..., eg

/'(if) = {

We use the following family abbreviations:

ix'=tUi-xUi • t* ,..., tUk ■ xUk • t*
f^' — tu\ ' twi ' Xui j • • • j tUk " XUk • xujk

= 5Vl • XVl • Tyj ,..., SVl • TV; • xli

131

Righ-hand side can be rewritten as follows:

(/ ° (gx1 • 5 • • •) 8xn • £xn \hy 1 • 6-y, , . . . , hym ' £ym) " G) O

' t«l > • • • • TUk , • XVJ , . . . ,SV[• TV/) • H>U,V

By applying Ren-Comp-2 we get

(/° (fol " 5 • • • lgxn • £*„ hy, • %m}°
(P1 ,...,P",P1,...,Pm;P1,... ,sym))-n-fiu,v

By associativity law of R-multicategories we get

/° ((fei • e*i) ° (P1, (g*„ • pj o (P»;};

{hy 1 • Eyj) o (P1 ; P1), . . . , (hym • £yj O (P"1 J P"1))) • fl ■^

Since £x. and ey;- are isomorphism renamings we can apply Lemma and get

f° (gXl o (f*1 ,gxn o (Pn;); ^ o (P1; P1), ...,hymo(Fm; Pm))

Left-hand side can be rewritten as follows:

/° (fox ° (f*1 i) -^x! • Ln, • • • o (p» ;) -Hxn ■ xXn; /ryi o (P1 ; P1) • xyi,...,

hym ° (^m ;^m)-g-ym ' Pcm)'P*,?

Using Ren-Comp-1 we get

/° (fci ° o (P»;); /iyi o (P1 ; p1),... ,hym ° (p» ; pm}) .^o

(L*l hTXn 0^n> -1-X-yj Oflyx -\ \-Xym o/r^)

□

Proposition B.0.9. M is an R-multicategory.

132 Appendix B. Proofs for R-multicategories

• We have

/: [*1 : a\,...,xn: an;y\ c

Sxi '■ [TXi;] —> <2,- eXi: [rX/;] * [nX(.,]

hyj '■ [Fy,-; Ayj] —> bj £yj : [r^ ; Ayj] —> [IIy;.; 0^.]
[r; a] = [rXl,..., rXn, ryi,..., Tym; ,..., aym]
[n; 0] = [nxii\Xn, riyj,..., ; oyi0-ym]
[TXi;] = [ux{ : c?,..., : c* ;] [TlX{;] = [z? : af,...^ : a*;]
[ryt; AyJ - K ■ di'»• • •'u%t ■d\'^:
[nv,; Qy,] = [%' z*. : a*. ; wf w* : fc*}

We need to show:

/° (?*i ' exi j • • • -,Sxn ' £*„ » hyi ■ £yi,... ,hym ■ £ym) =

(f°(Sxi,---,gXn',hyhym)) ■ (eXl H f £Xn + £y, 4 f £ym)

We introduce the following abbreviations:

^nx. = K/i ■ ■ ■ 7l/i Tin. = Kji ■ ■ ■ Kji GQy. = ^v,,.. •, Ojixt Zx Zqx. >1 Z1 Zqy. Ji Wj wry.

7tr^. = 7t,/i ■ ■ ■ n *i Srv. = 7t 3<i... K Vi 6A = CT v,,. - ■, o y,*< 1 UkXi y' "l kyt y' V1 \-

% = %.(«?) • • • %(«£.) =) • • • %(<.) °e» = °e(v?)' • • •' ae(^;.)
Left-hand side can be rewritten as:

/°[n;©] (gxi °[nxi;] (^j;) °[n;] ;),•••,gx„ °[nx„;] (^eXn;) °[n;] (sn^„;);
hyi °{nn ;0yj] (SeVl i) °[n;0] ; G&yi), ■ ■ ■,

hym °[nym,Qym] (Kzym ; Gzym) O[n;0] (rcnym ; VQym))
By associativity and identity laws this is equal to:

/°[n;0] (g*i °[n;] (^ex, ;),••• ,gxn °[n;] (S£Xn ;) ;

hy\ °[n;0] {Thn ;dEy}),-- ■,hym op;0] (7te>,m ; o£ym))
Right-hand side can be rewritten as:

/ °[r;A] (gxi °[r;] (srXl;),---,gxn °[r;] (^rJn \)\hy, o[r.A] (jtryi ; aAyi),...,
hym 0 [r;A] (^rym > GAym)) 0[ri;0] > • • • > ^eXn > > * • * > > • • • > ®zym)

133

By associativity and identity laws this is equal to:

/°[n;0] (&1 °[n;] (s£xj i)> • • • i8xn °[n;] (%„ i);
hyi °[n;0] (%■, I Geyi), • ■ ■, hym O[n;0] (Thym ; ^eym))

• Given

[r; A] = [x\ : a\,... ,xn : an ; y\ bm]

[ri; 0] = [mi : C\,...,uk : ck; vi :d\,...,vi: dt\
e : [r; A] —> [Ft; 0]

/: [r; A] —> e gUi: [nttj.;] -»• c,- /iv. : [nVj; 0Vy] — d}
Sxt — 8z(xi)' ®x, &xi '■ [ne{xi);] —> [nX(.;]
hyj = hE(y.) ■ Gyj Gyj: [ne(y.); ©e^-)] —► [11^ ; Qyj]
[ntt, nv; 0V] — [n«] > • • • 5 nUk, nVl, •. •, ov/; ©Vl,..., ©v;]
[nx, ny, ©y] = [nxi, nXn, riy,,..., nym; ©V1,..., ©ym]
a: [nx,n^,0y] [nM,nv; ©v]

We need to show the following:

(/• e) o {gm ,...,gUk;hVl,.. .,hVl) = (fo(gXl ,...,gXn;hyi,.. .,hym)) ■ a

Left-hand side is equal:

/°[n;0] (rce(jti)> • • ^ke(x„) ; ae(v,)> • • • >aE(ym)) °[n„,nv;0v] (gUl °[n„,nv;] (%„, ;)>•••»
8uk°[nM,nv;] (nnUk \)\KX °[nu!nv;0v] (finvi; a0V]hVlO[nM)nv;0v] (^iiV/; 6©v/))

By associativity and identity laws this is equal to:

f°[nH,nv;©v] {§£(xi) °[n„,nv;] (^nE(;ci);),• • -,8z(xn) °[nu,nv;] ;);
h£(yi) °[n„,nv;0v] (^nE(vi) 1 ^©e^))' • • • °[n„,nv;0v] (^nE(vm); ^©e(ym)))

Right-hand side is equal to:

/°[nx,ny;©d (8z(xi) °[nx,ny-,} (%x, ;)>■•• »&(*,) °[rix,ny;] (^nXn;);
hE(yi) °[nx,ny;Gy} ; Gen), • •• A(>>m) °[nx.ny;©d (nnym ; veym))

°[nH,nv;0v] (^nE(xj))-• • • •)^netym); °&£(yi)>-■ ■ >G&e(ym)}

Appendix B. Proofs for R-multicategories

By associativity and identity laws this is equal to:

/°[n„,nv;0v] <£e(xi) °[n„,nv;] ; >, • • • ,g£(Xn) °[n„,nv;] (^n,{Xn);};
K(yi) °[n„,nv;0v] (^ne(>1); 6©e(yi)),... ,^e(ym) o[n„,nv;0v] (^n£(>m); ^0£(},m)))

□

Appendix C

Single-context strong endofunctors

In this section we study the notion of strong endofunctor on the single-context multi-
category and show how it is related to the strong endofunctors on underlying monoidal

category. To our knowledge strong endofunctors on single-context multicategories
were not considered before in the literature on multicategories.

Definition C.0.10 (Strong endofunctor on cartesian category [JacOl]).
An endofunctor T : C —> C on a cartesian category C is called strong if it comes

equipped with a natural transformation sta^ : a x Tb —> T (a x b) called strength which
makes the following diagrams commute:

axT{b) Sta^T^\a x b)

T(nb)

Tip)

ax{bx T(c)) lda X Stb,c> axT(bx c) Sta'bxc, j{a x (b x c))

(iax b) xT (c) — «- T((axb) x c)
Definition C.0.11 (Strong endofunctor on monoidal category).
An endofunctor T : S —> S on a monoidal category S is called endofunctor with

strength if it comes with a natural transformation stab : a® Tb —> T {a® b) called

135

136 Appendix C. Single-context strong endofunctors

strength which makes the following diagrams commute:

I<S>Ta Stl4Tt{I®a>)

T(la)

Ta

a<8> (b®Tc) — a(g)T(b<g)c) a,b®c» T{a®{b®c))

&a,b,Tc

(a®b)®Tc -
sta®b,<

T(&a,b,c)

T((a®b) ®c)

C.1 Strong endofunctors on cartesian multicategories

Definition C.l.l.

A strong endofunctor f on a cartesian multicategory C is given by the following

family of maps:

• A map of objects T : |C| —> |C|

• For each object b, each sequence of objects a\...an and each object a,- within
this sequence a map of multiarrows

Tai ■ C(ai...an,b) —>■ C(a\ T(ai) ai+\.. ,an,T(b)

These maps should satisfy the following properties:

• Identity law Tai(nai) = %T(ai)

• Unary composition law

W°a.d.b (Kd,g,H}) = W) °a.T(d).b (^a,^(g),%)
where / : a.c.b —> e, g : a.d.b —> c and jt« denotes a sequence of projections from
appropriate context to each a, 6 a.

Definition C.1.2.

Given a strong endofunctor T : C —> C on a representable cartesian multicategory we

define an endofunctor f on a corresponding base category C as follows:

t(a) = T(a) t{a±>b) = Ta(f)

C. 1. Strong endofunctors on cartesian multicategories 137

Proposition C.1.3. T : C —> C is a strong endofunctor.

Proof. First check that f satisfies endofunctor properties:

• Given an identity morphism ida we have f (ida) = Ta(iia) = T^r(a) = ^T(a) since
T preserves identity multiarrows.

• Given a composition of b ^ c with a ^ b we have f(fog) = Ta(f oa (g)) =

Tb(f) oT/a\ (Ta(g)} = f (/) o T(g) since T preserves unary composition.

Strength stab '■ a xT{b) —> T{a x b) is defined as the unique multiarrow such that

s^a,b °a.T(b) (Pa,T(b)) Tb(pa,b)-
• Naturality of stajb

axT{b) T{axb)

fxT(g) T(fxg)

a1 x T(b') T(a'xb')
sta\y

Composing the upper part of this diagram with Pa,T(b) we can show the following
using associativity of composition and definition of stab\

Taxbif X g) °axT(b) faa,b)) °a,T(b) {Pa,T(b))
Taxb(f X g) °a,T(b) {sta,b °a,T(b) (Pa,T(b))) =

Taxb(f X g) oaj(b) {Tb{pa,b))

Expanding f x g and using unary composition property this is equal to

Tb((pa'°axb (f °axb faa) ig °axb fib))) °a,b (Pa,b))

Using associativity and the fact that 7za oa b {pafa = na we get

Tb((Pa',b' °a,b {f °a,b faa) i g °a,b fab)))

Lower part of the diagram can be written as

sta',b'°axT(b) (Pa',T{b') °axT(b) (f °axT{b) faa), Tb(g) °aXT(b) far(b))))

Using associativity this is equal to

(sta',b> °a',T(b') (Pa',T(b'))) °axT(b) (f°axT(b) faa),Tb(g) oaxT^ faT^))

138 Appendix C. Single-context strong endofunctors

which is by the definition of sta> y equal to

Tb,(Pa',b')°axT(b) (/°axT{b) (%a),Tb(g) °axT{b) (%T{b}))

Composing this with Pa,T(b) and using associativity of composition and universal
property of paj(h) we get:

Tb'(Pa',b') °a,T(b) (/°a,T{b) (Ka),Tb(g) °a,T(b) (nT(b)))

Using unary composition and identity property of T this is equal to

Tb'{Pa',b') °a,T(b) (f °a,T{b) {na)Jbig °a,b b)))

First diagram for stay.

a x T(b) Sta®>f(a x b)

Taxb&b)

T(b)
The following diagram is just a definition of sta^'.

rr,/i\ Tb(pa,b)
aJib) —

Pa,T{b)

axT{b) ► T(axb)
Sta,b

The following diagram commutes because of unary composition property of T:

aJ{b) ^

Tb(Pa,b)

T(ax b)
Taxbi^b)

T{b)

Putting these two diagrams together we get the following:
aJ{b) ^ ■

TbiPa,b)

ax Tib) x b) ——— Tib)
s^a,b 'axbjb)

C.2. Strong endofunctors on monoidal categories 139

Since the outer diagram commutes by universality of Pa,T(b) we conclude that
Taxbfab) ° Sta b — T^T(b)-

Second diagram for sta^:

/i m/ w idaXStbc . sta,bxC ^^ w
ax {b xT(c)) »- axT(b xc) ► T{ax (b x c))

a,■a,b,T(c)

Staxb,c
(axb) xT (c)

Need to copy/modify proof from IL case.

T (V-a,b,c)

T((a xb)xc)

□

C.2 Strong endofunctors on monoidal categories

Definition C.2.1 (Strong endofunctor on multicategory M).
A strong endofunctor T : M —► M on a multicategory M is the family of functions:

T : |M| —>■ |M|

Tai : M([ai ...an],b) —»• M([ai Taiai+\.. .an\,Tb) for each [a\ ...an],ai,b

satisfying the following properties:

Ta(ida) = idja

Tb) if ° («1>• • • >8n)) = Tai (/) ° (gl, • • •, 8i-1) Thi. (,gi) ,gi+1, •. •, 8n)
where /: [a\... an\ -»■ c and gt: [b\ ... b'n.\ -► at

Definition C.2.2.

Given a strong endofunctor T : M —> M on a representable monoidal multicategory
M we define a strong endofunctor t: M —> M on a corresponding base category M as

follows:

t(a) = T(a)

f(a^b) = Ta([a]^b)
a,Tb

Star&a,%lfa®T» ► T(a

Tb{ma,b)

140

Lemma C.2.3. t: M

Appendix C. Single-context strong endofunctors

M is an endofunctor with strength.

Proof. Take the definition of la\

(m{),ida) ida mj a
a ► /, a ► / ® a

+
a

Apply the functor T to the position a. Since T preserves the identity and the composi¬
tion we get

(mQ, idTa) idTIa{mga)
la > 1,1a > / ®»Ta

Tl®a{}a)
t

Ta

Combining this diagram with the definition of strength we have the following com¬

muting diagram:

Ta-
id-Ta

IJet*
(mQ,idTa)

I®Ta-
stia

Ta(rni,a)

Tl0a{la)
Ta

This proves the first property of st.To prove the second property consider the following

C.2. Strong endofunctors on monoidal categories 141

diagram:

a,b,Tc
idai TC(mb,C)

a®b,T>e-
mt,h, id'i

ida i mb,Tc

a,b®Tc
ida i stb,c

Tc{ma®b,c)

ma®b,T
a,T{b®c)

ma,b®Tc (3)

ida 0 Stb,c

T((a®b) &e)-

a® (b®Tc)

&a,b,Tc

(5) (a®b)®Tc (6)

T(CLa,b,c)

^c) mYi(f^'fc®ci9C)

Tb'yx: (ma,b(dc,

T(a0 (Z?0 c))
Sta<Z>b,Tc

We need to show that diagram (6) commutes. Diagrams (4) and (5) commute by the
definition of stap®c and sta®b,Tc respectively . Diagram (2) commutes by the defini¬
tion of aa,b,Tc- Diagram (3) commutes by the definition of ida®stb,c- The outermost
diagram commutes as it is the application of functor T to the commutative diagram
defining aa^,c- Notice that m = ma,b®Tc° {ida,mb,c) is universal. Diagram (6) com¬
mutes if

Tb^c{p^a,b®c) ° {ida, 1c(fHb,c)} — Sta,b®c ° {ida &)Stb,c) ° (^)
Tc{rna®b,c) ° a,b,idc) Sta®b,Tc ° {&a,b,Tc) ° {m)

First line holds because diagrams (1),(3) and (4). commute. Second line holds because
diagrams (2) and (5) commute. □

Bibliography

[Acz80] Peter Aczel. Frege structures and the notions of proposition, truth and
set. In H.J. Keisler J. Barwise and K. Kunen, editors, The Kleene Sym¬

posium, pages 31-59. North-Holland Publishing Company, 1980.

[Bar96a]

[Bar96b]

Andrew Barber. Dual intuitionistic linear logic. LFCS technical report

ECS-LFCS-96-347, School of Informatics, Edinburgh University, 1996.

Andrew Barber. Linear Type Theories, Semantics and Action Calculi.
PhD thesis, Edinburgh University, Laboratory for Foundations of Com¬
puter Science, 1996.

[BBHdP93a] P.N. Benton, G.M. Bierman, J.M.E. Hyland, and V.C.V. de Paiva. Linear
lambda calculus and categorical models revisited. In E. Borger et al.,
editor, Selected papers from Computer Science Logic'92, volume 702
of Lecture Notes in computer Science, 1993.

[BBHdP93b] P.N. Benton, G.M. Bierman, J.M.E. Hyland, and V.C.V. de Paiva. A term
calculus for intuitionistic linear logic. In Proceedings of the Interna¬
tional Conference on Typed Lambda Calculi and Applications, volume
664 of Lecture Notes in computer Science, pages 75-90, 1993.

[BC92] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic char¬
acterization of the polytime functions. Computational complexity, 2:97-
110, 1992.

[Ben95] P.N. Benton. A mixed linear and non-linear logics; proofs, terms and
models. In Proceedings of Computer Science Logic '94, volume 933 of
Lecture notes in Computer Science, 1995.

[Bie94] Garret Bierman. On Intuitionistic Linear Logic. PhD thesis, University
of Cambridge, Computing Laboratory, 1994.

143

144 Bibliography

[Cob65] A. Cobham. The intrinsic computational difficulty of functions. In
Y.Bar-Hillel, editor, Logic, Methodology and Philosophy of Science II,

pages 24-30, 1965.

[CS92] Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In
R.A.G. Seely, editor, Category theory 1991, volume 13 of CMS Confer¬
ence Proceedings, pages 141-169, 1992.

[CS95] Robin Cockett and Dwight Spencer. Strong categorical datatypes. II. A
term logic for categorical programming. Theoret. Comput. Sci., 139(1-
2):69-l 13, 1995.

[CU93] Stephen Cook and Alasdair Urquhart. Functional interpretation of fea¬

sibly constructive arithmetic. Annals of Pure and Applied Logic, pages

103-200, 1993.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,

50(1): 1—102, 1987.

[Hag87a] T. Hagino. A categorical Programming Language. PhD thesis, Edin¬

burgh University, 1987.

[Hag87b] T. Hagino. A typed lambda-calculus with categorical type constructors.
In D.E. Rydeheard D.H. Pitt, A. Poigne, editor, Category and Computer
Science, volume 283 of Lecture Notes in Computer Science, pages 140-
157. Springer, 1987.

[HerOO] Claudio Hermida. Representable multicategories. Advances in Mathe¬
matics, pages 164—225, 2000.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327-
365, 1994.

[Hof97] Martin Hofmann. An application of category theory semantics to the
characterisation of complexity classes using higher order function alge¬
bras. Bulletin ofSymbolic Logic, 3(4):469^185, 1997.

Bibliography 145

[Hof99] Martin Hofmann. Type Systemsfor polynomial-time computations. Ha-
bilitationsschrift Vom Fachbereich Mathematik der Technischen Univer-

sitat Darmstadt, 1999. Also available as Edinburgh University, LFCS

report ECS-LFCS-99-406.

[HPW96] James Harland, David Pym, and Michael Winikoff. Programming in ly-

gon: an overview. In Algebraic Methodology and Software Technology,
volume 1101 of Lecture Notes in computer Science, pages 391 —405,
1996.

[Jac95] B. Jacobs. Parameters and parametrization in specification using distrib¬
utive categories. Fund. Informaticae, 24(3):209-250, 1995.

[JacOl] Bart Jacobs. Categorical logic and type theory, volume 141 of Studies
in Logic and Foundations ofMathematics. Elsevier, 2001.

[Laf88] Y. Lafont. Linear abstract machine. Theoretical Computer Science,

59:157-180, 1988.

[Lam68] Joachim Lambek. Deductive systems and categories i. J. Math Systems

Theory, 2:278-318, 1968.

[Lam69] Joachim Lambek. Deductive systems and categories ii. Springer Lecture
Notes in Mathematics, 86:76-122, 1969.

[Lam89] Joachim Lambek. Multicategories revisited. In J.W.Gray and
A.Scedrov, editors, Categories in Computer Science and Logic, 1989.

[Lei93] Daniel Leivant. Stratified functional programs and computational com¬

plexity. In Proceedings of20th IEEE Symposium on Principles of Pro¬

gramming Languages, 1993.

[Lei94] Daniel Leivant. Ramified recurrence and computational complexity i:
Word recurrence and poly-time. In P.Clote and J. Remmek, editors,
Feasible Mathematics II, 1994.

[Lei04] Tom Leinster. Higher Operads, Higher Categories. Cambridge Univer¬

sity Press, 2004.

[LM93] Daniel Leivant and Jean-Yves Marion. Lambda calculus characterisa¬
tion of polytime. Fundamentae Informaticae, 19:167-184, 1993.

146 Bibliography

[LS86] J. Lambek and PJ. Scott. Introduction to higher order categorical logic,
volume 7 of Cambridge studies in advanced mathematics. Cambridge

University Press, 1986.

[Mil94] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor,
Proceedings of the 9th symposium on Logic in Computer Science, pages

272-281, 1994.

[Ott95] James Otto. Complexity Doctrines. PhD thesis, Department of Mathe¬
matics and Statistics, McGill University, 1995.

[PH94] David Pym and James Harland. The uniform proof-theoretic founda¬
tion of linear logic programming. Journal of Logic and Computation,
4(2): 175-207, 1994.

[Pit95] Andrew Pitts. Categorical logic. Handbook of logic in computer Sci¬
ence, VI, 1995.

[Rom89] Leopoldo Roman. Cartesian categories and natural numbers object.
Journal ofPure and Applied Algebra, 58:267-278, 1989.

[RP89] Leopoldo Roman and Robert Pare. Monoidal categories and natural
numbers object. Studia Logica, XLVIII:361-376, 1989.

[SB02] Helmut Schwichtenberg and Stephen J. Bellantoni. Feasible com¬

putation with higher types. In Helmut Schwichtenberg and Ralph

Steinbriiggen, editors, Proof and System-Reliability, pages 399-415,
2002.

[See89] R.A.G. Seely. Linear logic, *-autonomous categories and cofree alge¬
bras. In Conference on Categories in Computer Science and Logic, vol¬
ume 92 of AMS Contemporary Mathematics, pages 371-382, 1989.

