
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Automatic Performance Optimisation of Parallel

Programs for GPUs via Rewrite Rules

Toomas Remmelg
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2019



Abstract

Graphics Processing Units (GPUs) are now commonplace in computing systems and are the

most successful parallel accelerators. Their performance is orders of magnitude higher than

traditional Central Processing Units (CPUs) making them attractive for many application do-

mains with high computational demands. However, achieving their full performance potential

is extremely hard, even for experienced programmers, as it requires specialised software tai-

lored for specific devices written in low-level languages such as OpenCL. Differences in device

characteristics between manufacturers and even hardware generations often lead to large per-

formance variations when different optimisations are applied. This inevitably leads to code that

is not performance portable across different hardware.

This thesis demonstrates that achieving performance portability is possible using LIFT, a

functional data-parallel language which allows programs to be expressed at a high-level in a

hardware-agnostic way. The LIFT compiler is empowered to automatically explore the optimi-

sation space using a set of well-defined rewrite rules to transform programs seamlessly between

different high-level algorithmic forms before translating them to a low-level OpenCL-specific

form.

The first contribution of this thesis is the development of techniques to compile functional

LIFT programs that have optimisations explicitly encoded into efficient imperative OpenCL

code. Producing efficient code is non-trivial as many performance sensitive details such as

memory allocation, array accesses or synchronisation are not explicitly represented in the func-

tional LIFT language. The thesis shows that the newly developed techniques are essential for

achieving performance on par with manually optimised code for GPU programs with the exact

same complex optimisations applied.

The second contribution of this thesis is the presentation of techniques that enable the

LIFT compiler to perform complex optimisations that usually require from tens to hundreds of

individual rule applications by grouping them as macro-rules that cut through the optimisation

space. Using matrix multiplication as an example, starting from a single high-level program

the compiler automatically generates highly optimised and specialised implementations for

desktop and mobile GPUs with very different architectures achieving performance portability.

The final contribution of this thesis is the demonstration of how low-level and GPU-specific

features are extracted directly from the high-level functional LIFT program, enabling building

a statistical performance model that makes accurate predictions about the performance of dif-

ferently optimised program variants. This performance model is then used to drastically speed

up the time taken by the optimisation space exploration by ranking the different variants based

on their predicted performance.

Overall, this thesis demonstrates that performance portability is achievable using LIFT.

i



Lay Summary

In recent years the devices originally developed to accelerate the creation of images for dis-

playing on computer screens (Graphics Processing Units or GPUs) have found widespread

adoption for performing other computational tasks. GPUs are found in virtually every com-

puter system, almost all desktop PCs, mobile devices and tablets, as well as supercomputers

all contain GPUs. GPUs are now being used to solve computationally intensive problems in

domains such as biology, chemistry, physics, economics and machine learning.

GPU programming is very challenging and requires expert knowledge about the hardware

details of GPUs to make efficient use of them. To make matters worse, programs written in

existing GPU programming languages have large performance variations when being run on

different GPU models. This is because of the differences between the designs of different

manufacturers as well as rapidly evolving architectures in the pursuit of higher performance

and better energy efficiency.

This thesis presents novel techniques to ease the programming of GPUs by using a high-

level functional programming language that is capable of automatically creating different pro-

gram variations using rewrite rules and exploring the options to choose suitable implementa-

tions for different GPU models. The results show that these techniques offer performance on

par with highly-tuned libraries written by experts, while greatly simplifying the development

process.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified. Some of the material in

this thesis has been published in the following papers:

• Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe Dubach. Performance

Portable GPU Code Generation for Matrix Multiplication. In Proceedings of the 9th An-

nual Workshop on General Purpose Processing using Graphics Processing Unit (GPGPU

’16).

• Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Matrix Multiplication Be-

yond Auto-Tuning: Rewrite-based GPU Code Generation. In Proceedings of the Inter-

national Conference on Compilers, Architectures and Synthesis for Embedded Systems

(CASES ’16).

• Michel Steuwer, Toomas Remmelg, and Christophe Dubach. LIFT: A Functional Data-

Parallel IR for High-Performance GPU Code Generation. In Proceedings of the 2017

International Symposium on Code Generation and Optimization (CGO ’17).

(Toomas Remmelg)

iii



Table of Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Desktop GPU Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 NVIDIA Kepler GPU Architecture . . . . . . . . . . . . . . . . . . . . 9

2.1.2 AMD Graphics Core Next GPU Architecture . . . . . . . . . . . . . . 10

2.2 ARM Mali Midgard Mobile GPU Architecture . . . . . . . . . . . . . . . . . 11

2.2.1 ARM Mali-T628 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Platform Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 OpenCL C Kernel Language . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 LIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 LIFT Rewrite Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.4 LIFT Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.5 Open Problems and Challenges of LIFT Code Generation . . . . . . . . 30

2.5 Design-Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Auto-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Performance Modelling and Prediction . . . . . . . . . . . . . . . . . 33

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Related Work 35

3.1 High-Level Approaches for GPU Programming . . . . . . . . . . . . . . . . . 35

3.1.1 Libraries for High-Level GPU Programming . . . . . . . . . . . . . . 35

iv



3.1.2 Languages for High-Level GPU Programming . . . . . . . . . . . . . 36

3.2 Compilers for GPU Programming . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 General Purpose GPU Compilation . . . . . . . . . . . . . . . . . . . 38

3.2.2 Polyhedral GPU Compilation . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Tensor Algebra Specific Compilers . . . . . . . . . . . . . . . . . . . 40

3.2.4 Compiler Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.5 Intermediate Representations . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Exploration of the Optimisation Space . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Auto-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Exposing and Making Optimisation Choices . . . . . . . . . . . . . . 43

3.4 GPU Performance Modelling & Prediction . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Analytical Performance Modelling . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Statistical Performance Modelling . . . . . . . . . . . . . . . . . . . . 45

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 High-Performance GPU Code Generation 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Compilation Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Type System and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Address Space Inference and Memory Allocation . . . . . . . . . . . . 50

4.3.3 Multi-Dimensional Array Accesses . . . . . . . . . . . . . . . . . . . 54

4.3.4 Barrier Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.5 OpenCL Code Generation . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Expressing Optimisations Structurally in LIFT . . . . . . . . . . . . . . . . . . 67

4.4.1 Mapping of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Vectorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 Using Different Address Spaces . . . . . . . . . . . . . . . . . . . . . 70

4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.1 Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.2 Expressing OpenCL Optimisations in LIFT . . . . . . . . . . . . . . . 73

4.6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.4 Evaluation of Optimisation Impact . . . . . . . . . . . . . . . . . . . . 75

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

v



5 Creating and Exploring the Optimisation Space with Rewrite Rules 78

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Optimising Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Traditional Optimisations . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Manually Optimising Matrix Multiplication for Mali . . . . . . . . . . 86

5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Rewrite Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Fusion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Memory Access Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Vectorisation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.4 Split Reduce Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.5 Interchange Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.6 Simplification Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.7 Enabling Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Macro Rules and Encoding Optimisations . . . . . . . . . . . . . . . . . . . . 100

5.5.1 Map Interchange Macro Rule . . . . . . . . . . . . . . . . . . . . . . 100

5.5.2 Basic Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.3 Optimising Matrix Multiplication with Macro Rules . . . . . . . . . . 103

5.6 Automatic Exploration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.1 Algorithmic Exploration Using Macro Rules . . . . . . . . . . . . . . 106

5.6.2 OpenCL Specific Exploration . . . . . . . . . . . . . . . . . . . . . . 107

5.6.3 Parameter Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8.1 Performance Portability and Performance Comparison Against Libraries

and Auto-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8.2 Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8.3 Performance Comparison Against Manually Optimised Kernel on the

Mali GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Performance Prediction for Accelerated Exploration of Optimisation Spaces 117

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



6.3.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.3 Control Flow and Synchronisation . . . . . . . . . . . . . . . . . . . . 127

6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Performance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 Output Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . 129

6.4.3 K-Nearest Neighbours Model . . . . . . . . . . . . . . . . . . . . . . 130

6.4.4 Making Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Feature and Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6.1 Features Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6.2 Performance Model Correlation . . . . . . . . . . . . . . . . . . . . . 133

6.6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7 Optimisation Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.7.1 Optimisation Space Characterisation . . . . . . . . . . . . . . . . . . . 134

6.7.2 Model-Based Exploration . . . . . . . . . . . . . . . . . . . . . . . . 134

6.7.3 Space Exploration Speedups . . . . . . . . . . . . . . . . . . . . . . . 134

6.7.4 Detailed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7.5 Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Conclusion 140

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1.1 High-Performance GPU Code Generation . . . . . . . . . . . . . . . . 140

7.1.2 Creating and Exploring the Optimisation Space with Rewrite Rules . . 141

7.1.3 Peformance Prediction for Accelerated Exploration of Optimisation

Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Critical Analysis and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2.2 Formalising Translation to OpenCL . . . . . . . . . . . . . . . . . . . 142

7.2.3 DSL for Expressing Macro Rules . . . . . . . . . . . . . . . . . . . . 142

7.2.4 Feature Selection for Building Performance Models . . . . . . . . . . . 143

7.2.5 Making LIFT More Suited for Practical Use . . . . . . . . . . . . . . . 143

Bibliography 144

vii



Chapter 1

Introduction

The design of computer architectures is going through major changes as a result of the end

of Dennard scaling [Denn 74], as transistors get smaller their power density no longer stays

constant and the operating voltage can no longer be reduced. This results in an inability to

increase clock-frequencies without increasing the overall power consumption. As Moore’s

law [Moor 65] is also coming to an end, the industry is turning to multi-core solutions and spe-

cialised hardware designs to further increase the performance of computer systems [Henn 19].

Programmers now have to share a much larger part of the burden of achieving performance,

instead of being able to rely on constantly rising clock-frequencies and getting performance

gains for free. They are now forced to write parallel programs to be able to harness the power

of multi-core processors. Compared to sequential programming, the additional complexity of

communication and synchronisation has to be correctly handled to avoid new types of prob-

lems, such as race conditions, deadlocks and non-deterministic behaviour.

In addition to multi-core CPUs, specialised hardware designs such as GPUs and other

parallel accelerators are now commonplace in computing systems and available for performing

general purpose computation. GPUs are found in virtually all desktop PCs, mobile devices,

as well as supercomputers. Their computational performance is orders of magnitude higher

than that of traditional CPUs making them attractive for many application domains with high

computational demands. However, achieving the full performance potential of these hardware

devices is extremely hard, even for experienced programmers, as it requires specialised kernels

written in low-level languages such as OpenCL to take advantage of specific hardware features.

Optimising programs is crucial for achieving high performance and performance require-

ments are usually the key reasons for using parallel accelerators. Figure 1.1 shows how much

performance there is to gain from optimising matrix multiplication for an AMD GPU. A naı̈ve

textbook implementation is the baseline shown as the leftmost bar. A vendor provided library

implentation reaches 5x of the performance of the naı̈ve implementation out-of-the-box or more

than 7.5x after tuning the library to the specific GPU used by picking the best performing con-

1



Chapter 1. Introduction 2

0.0

2.5

5.0

7.5

10.0

Naïve Library Tuned
Library

Hand
optimised

P
er

fo
rm

an
ce

Figure 1.1: Performance comparison of matrix multiplication implementations on an AMD GPU.

From Chapter 5.

0.00

0.25

0.50

0.75

1.00

AMD NVIDIA ARM

Run on

P
er

fo
rm

an
ce

Tuned for AMD NVIDIA ARM

Figure 1.2: Relative performance of matrix multiplication implementations tuned for different

GPUs being run on others. From Chapter 5.

figuration of implementation parameters. A carefully hand-crafted and optimised implementa-

tion for the specific GPU can in many cases be even faster than a tuned library implementation,

in this case reaching more than 10x of the performance of the naı̈ve implementation. Opti-

mising programs, therefore, makes a huge difference in terms of the performance and is very

important to pay attention to when programming GPUs.

Unfortunately, performance optimisations are not portable across different hardware de-

vices. To achieve high-performance, programs are tailored to specific hardware devices with

different characteristics resulting in large performance variations when different optimisations

are applied. Figure 1.2 shows the performance of different implementations of matrix multi-

plication being run on different GPUs. In this experiment, an implementation running on a

specific GPU but tuned for a different one reaches only a fraction of the performance. For

example, the implementation tuned for an NVIDIA GPU running on an AMD GPU reaches

only 27.5% of the available performance. All other cases in Figure 1.2 are even worse, such as

the implementation optimised for an ARM GPU running on an NVIDIA GPU, achieving only

4.2% of the available performance. At worst, the implementation will not even run because



Chapter 1. Introduction 3

of different resource constraints like the implementation for an NVIDIA GPU on an ARM

GPU. The fact that programs tuned for one device perform poorly on others is know as the

performance portability problem.

The end of Dennard scaling and the end of Moore’s law are accelerating innovation in hard-

ware design and new hardware devices are being designed faster than ever. Therefore, problems

with performance portability are becoming more acute. One major factor of new hardware de-

signs is to provide high performance for domains, such as machine learning, computer vision

and physics simulations, that require large amounts of computational power. To develop lasting

software for these important domains, a way to achieve high performance without resorting to

low-level non-performance portable solutions is highly desirable.

To tackle the performance portability problem, this thesis argues that a declarative, not

imperative, high-level programming model is needed, allowing the underlying compiler to op-

timise for a wide set of hardware devices. The compiler is the key component responsible for

transforming a high-level program into low-level code that performs well on different devices.

To build such a compiler we need:

• A capability to automatically explore optimisation choices for specialising high-level

programs to low-level programs that explicitly encode optimisation choices. This will

enable users to write programs in a high-level hardware-agnostic way without commit-

ting to a particular implementation, as well as facilitate code generation from the explicit

low-level representation.

• To be able to compile a low-level functional program with optimisations explicitly en-

coded into efficient low-level imperative code. This will solve the problem that while a

functional language is useful for exploring different optimisation choices, the code that

actually runs on the device must be imperative.

• A fast explorative optimisation process that can quickly evaluate which implementations

of a program are worth considering for achieving high-performance. This will enable the

optimisation process to be used in practice in a reasonable timeframe while exploring a

large space of optimisation choices.

1.1 Contributions

This thesis addresses the needs identified above by making the following contributions to tackle

performance portability by extending the high-level programming language LIFT first intro-

duced in [Steu 15b].

• To address the need for translating from a low-level functional program to an imperative

one, this thesis presents novel techniques to compile functional LIFT programs that en-



Chapter 1. Introduction 4

code optimisations explicitly into efficient OpenCL code. While all optimisation choices

are encoded explicitly, producing efficient imperative code is still a non-trivial task as

many performance sensitive implementation details, such as memory allocation, array

accesses and synchronisation, are not explicitly represented in the functional LIFT pro-

grams. Chapter 4 shows that common but complex optimisations in GPU programming

are expressible in low-level LIFT programs. Chapter 4 then introduces the newly devel-

oped techniques that are required to achieve performance on par with manually optimised

code applying the exact same optimisations.

• To address the need for an exploration capability, the thesis presents techniques enabling

LIFT to apply complex optimisations comprising of tens or hundreds of individual rule

applications. This is achieved by adding additional rewrite rules and a capability to

group them as provably correct macro-rules to cut through the optimisation space. Us-

ing matrix multiplication as an example, starting from a single high-level program the

compiler automatically generates highly optimised and specialised implementations for

desktop and mobile GPUs with very different architectures, achieving true performance

portability. This work is described in Chapter 5.

• To address the need for a fast explorative optimisation process, a performance model is

built and used for drastically speeding up the optimisation space exploration. To do this,

low-level, GPU-specific features are extracted directly from the functional LIFT program

and a statistical performance model is built using these features to accurately predict the

performance of different program variants. This work is presented in Chapter 6.

The work in this thesis goes significantly beyond the original version of LIFT presented in

[Steu 15b] and summarised in Chapter 2, Section 2.4. The shortcomings of the original LIFT

approach and implementation that significantly limit its scalability and applicability for more

complex applications are detailed in section 2.4.5. This thesis addresses these shortcomings

and enables, for the first time, performance portability of complex applications, like matrix

multiplication, in LIFT.

1.2 Thesis Outline

The rest of the thesis is organised as follows:

Chapter 2 presents the technical background needed to understand the thesis. It describes

different GPU architectures used in this thesis; the OpenCL standard for general purpose pro-

gramming across CPUs, GPUs and other devices; the high-level functional LIFT data-parallel



Chapter 1. Introduction 5

language that targets OpenCL; and finally, a summary of design space exploration and auto-

tuning techniques.

Chapter 3 describes related work. It introduces and discusses prior work about high-level

approaches for GPU programming using libraries and GPU specific languages; different com-

pilers, compiler building frameworks and intermediate representations for GPUs; auto-tuning

systems for parameter selection and techniques for exposing and choosing between different

optimisation choices; and finally analytical and statistical performance modelling for GPUs.

Chapter 4 presents the first contributon by describing the compilation of low-level functional

LIFT programs into low-level imperative OpenCL code and the optimisations that are applied

during this process. It presents newly developed techniques for address space inference, mem-

ory allocation, array access generation, barrier elimination and the OpenCL code generation

that are required to produce high-performance GPU code that is on par with manually written

OpenCL code applying the same complex optimisations.

Chapter 5 presents the second contribution by showing how the optimisation process takes

place. It shows how complex optimisations are represented in LIFT, the rewrite rules that are

used as building blocks, the macro-rules built out of them and the process for exploring the

optimisation space to achieve performance portability across different GPUs starting from a

single high-level program.

Chapter 6 presents the third contrbution by describing building a performance model for

speeding up the exploration of the optimisation space. It shows how different features about

parallelism, memory, control flow and synchronisation are extracted directly from LIFT pro-

grams and how those features are used to build a performance model. It analyses the perfor-

mance of the model and shows how it is used to drastically speed up the exploration of the

optimisation space.

Chapter 7 concludes the thesis by summarising the contributions, analysing their limitations

and discussing possible future extensions.



Chapter 2

Background

This chapter introduces the technical background required to understand the thesis. Section 2.1

and Section 2.2 describe the hardware that is used and optimised for in this thesis. A dis-

tincton between desktop and mobile GPUs is established as these have very different design

and performance characteristics. Section 2.3 describes OpenCL, the low-level language and

framework for programming and expressing the optimisations for the hardware. Section 2.4

describes LIFT, the high-level programming language that the optimisation process takes place

in and OpenCL code is generated from. Section 2.5 describes different approaches of design

space exploration for targeting different types of hardware and trying to achieve performance

portability. Section 2.6 summarises the chapter.

2.1 Desktop GPU Architectures

While Graphics Processing Units (GPUs) were originally designed for rendering graphics, they

are now also widely used for general purpose workloads. Compared to Central Processing

Units (CPUs) they are designed radically differently and offer higher performance per watt,

making them attractive for performing computationally intensive tasks.

Figure 2.1 shows a high-level comparison of CPU and GPU architectures. Both architec-

tures are composed of cores that perform computation and memory for storing data. Random-

access memory (RAM) is off chip memory for storing data used by the processor at runtime.

A core is a processing unit executing instructions for a single thread. A cache is a small fast

memory for frequently used data that is managed in hardware.

CPUs (Figure 2.1a) contain a small number of complex cores designed to extract instruction

level parallelism and run a single thread of execution fast. CPU architectures focus on reducing

the latency of operations using features such as several levels of large caches between the cores

and off chip RAM (per core L1, L2 and a shared L3 in Figure 2.1a), pipelining, out-of-order

execution and branch prediction.

6



Chapter 2. Background 7

RAM

L3

L2
L1

Core

L2
L1

Core

L2
L1

Core

…

(a) CPU. A small number of complex cores.

RAM

L2

L1 Scratch L1 Scratch

…

(b) GPU. A large number of simple cores.

Figure 2.1: High-level comparison of CPU and GPU architectures

Desktop GPUs (Figure 2.1b) on the other hand are throughput oriented and focus on in-

creasing the overall throughput rather than the latency of a single task. Desktop GPU architec-

tures contain a large number of simple cores generally grouped into clusters, with cores in the

same cluster sharing resources such as cache space, scratchpad memory space and registers.

Scratchpad memory is a small fast addressable memory that serves as a programmer managed

cache. The clusters of cores are connected to off chip RAM, usually via an L2 cache. GPU

architectures rely on a large number of threads and thread level parallelism to hide memory la-

tencies by swapping out threads that are waiting for memory requests. The rest of this section

investigates the design of desktop GPU architectures in more depth.

Execution Model On Desktop GPUs threads are scheduled for execution in groups that are

called warps or wavefronts, usually of 32 or 64 threads. Every thread in a warp is executing

the same instruction in a lock-step manner but on different data. This execution model is called

single instruction, multiple threads (SIMT) and is similar to single instruction, multiple data

(SIMD). In SIMT every data element is operated on by a different thread which is allowed to

follow a different path of control flow, which is not possible in the SIMD model.

As a consequence of the lock-step execution threads in a warp cannot independently exe-

cute different paths of code. If some threads follow a different execution path, they will need

to wait until the first path is finished before executing theirs. This means that threads within a

warp should avoid divergent execution paths to avoid needing to pause their execution. Avoid-

ing divergent execution within a warp is an important optimisation which affects how GPU

software is implemented.

Memory Hierarchy The memory hierarchy on desktop GPUs consists of several layers of

different types of memory. It includes main memory, an L2 cache shared by all cores, an L1



Chapter 2. Background 8

0 1 2 3 4 5 6 7THREAD ID

MEMORY

REQUEST

(a) Coalesced memory access combined into a single memory request.

0 1 2 3 4 5 6 7THREAD ID

MEMORY

REQUEST REQUEST

(b) Strided memory access requiring several memory requests.

Figure 2.2: Memory access patterns. Each request will load an entire cache line.

cache, scratchpad memory and registers.

Accessing main memory is very expensive, taking several hundred clock cycles, but GPUs

can optimise simultaneous memory accesses with certain patterns. This is achieved by coalesc-

ing memory requests by several threads into a single memory request to main memory. The

best performance is achieved when consecutive threads access consecutive memory locations

and all accesses of a warp fall within the same cache line as shown in Figure 2.2a. This means

only a single memory request needs to be issued instead of 32 individual requests. Figure 2.2b

shows a strided memory access pattern, where several loads need to be issued. In extreme

cases, only a single element of a cache line might be used, while the whole cache line will be

loaded from memory, effectively wasting available memory bandwidth. Coalescing is one of

the most important optimisations and not using these access patterns means underutilising the

memory bandwidth and possibly severely hurting performance.

In addition to caches, which are comparably small compared to the ones on CPUs and

shared between a much larger number of threads, desktop GPUs feature small and fast scratch-

pad memories shared among cores. These memories serve as programmer managed caches. A

group of collaborating threads can cooperatively copy data into the scratchpad memory where

it can then be reused by all of them. The scratchpad memory is not nearly as sensitive to mem-

ory access patterns as the main memory and it is also beneficial to use it for accesses that are

not coalesced. Finally, since the scratchpad memory is shared among threads, it can be used

for communication with other threads in the same cluster of cores.

Compared to CPUs, the register files on a desktop GPU are much larger to enable the

execution of a large number of threads. Using too many registers per thread limits the total

amount of threads that can run concurrently.



Chapter 2. Background 9

Figure 2.3: The NVIDIA Kepler GK110 architecture. From [NVID 14].

Next, two concrete desktop GPU architectures that are used in this thesis will be discussed.

2.1.1 NVIDIA Kepler GPU Architecture

The NVIDIA Kepler [NVID 14] micro-architecture was designed for efficiency, performance

and programmability. It is NVIDIA’s third general purpose GPU architcture after Tesla and

Fermi. Figure 2.3 presents an overview of the architecture. An implementation has up to 15

clusters of cores called streaming multiprocessors (SMX in Figure 2.3) and a 1.5 MB dedicated

L2 cache shared by all SMXs.

An SMX schedules threads in warps of 32 threads each, with up to 64 warps or 2,048

threads in total per SMX. Each SMX contains four warp schedulers and eight instruction dis-

patch units. In each cycle, up to four warps and two independent instructions from each warp

can be selected to be dispatched.

Each Kepler SMX contains 192 single-precision CUDA cores, 64 double-precision arith-

metic units, 32 special function units and 32 load/store units. Each CUDA core has a pipelined

floating-point and integer unit. Each SMX contains a register file of 65,536 32-bit registers

with up to 255 registers allowed per thread. However, using 255 registers per thread limits

the number of threads that can run concurrently on a streaming multiprocessor to only 256.

If each thread uses more than 32 registers each, the number of threads that can be scheduled



Chapter 2. Background 10

Figure 2.4: The AMD Radeon HD 7970 architecture. From [AMDI 12].

will start dropping. It is worth noting that for some applications, using more registers and less

parallelism is beneficial, while for others it is the exact opposite. Each SMX has a 48KB read-

only data cache and 64KB memory that is divided between a scratchpad memory and L1 cache

(configurable with 48KB for one and 16KB for the other). That is only a few dozens of bytes

per thread compared to tens of KBs of L1 cache space per thread on a CPU.

2.1.2 AMD Graphics Core Next GPU Architecture

Graphics Core Next (GCN) [AMDI 12] was designed to be more suitable for general purpose

computation than the earlier TeraScale architecture. Figure 2.4 presents an overview of the

architecture. It is a SIMT architecture like the NVIDIA Kepler architecture. The basic building

block of a CGN GPU is a GCN Compute Unit (CU). A typical number of compute units is 32,

like shown in Figure 2.4. Like on NVIDIA Kepler, the L2 cache is shared by all compute units.

The size of the L2 cache is 768 KB or 1MB for the AMD GPUs used in this thesis.

Each CU contains 4 SIMD units, each of which simultaneously executes a single instruc-

tion across 16 threads. Each SIMD unit manages the execution of up to 10 wavefronts of 64

threads each. There is a 64KB register file per SIMD unit. Each CU also has a scalar unit for

operating on values common to all threads, such as control flow instructions. There are 16KB

L1 read-write cache and a 64KB scratchpad memory per CU. To achieve memory coalescing,



Chapter 2. Background 11

a quarter of a wavefront (16 threads) must be all be accessing consecutive memory locations.

The emphasis is on finding parallel wavefronts to execute rather than independent operations

from a single wavefront.

2.2 ARM Mali Midgard Mobile GPU Architecture

As mobile GPUs have stricter limitations in terms of space and energy budget they are de-

signed differently from desktop GPUs. Mobile GPUs feature less parallelism than desktop

GPUs but still more than traditional CPUs. As a result, different optimisations are crucial for

achieving high performance than on desktop GPUs. Optimisation techniques for the ARM

Mali mobile GPU, are discussed in the ARM documentation [ArmL 13] as well as in [Gras 14]

and [Gron 14]. These are not aligned and quite often contradict the advice given by AMD or

NVIDIA for their GPUs. This leads to a large performance portability gap when executing

kernels optimised for a desktop GPU on the Mali GPU, or vice versa.

Vectorisation is one of the most important optimisations given the SIMD architecture of

the Mali GPU. Arithmetic operations performed on vector values are executed by the hardware

SIMD units. Performing vectorised memory operations reduces the number of load and store

instructions issued and helps to better utilise the memory bandwidth.

While vectorisation is a crucial optimisation for the Mali GPU, it is usually not beneficial

on AMD and NVIDIA desktop GPUs, as they do not have hardware arithmetic vector units.

Therefore, code optimised for AMD and NVIDIA desktop GPUs will most likely make no use

of vector data types and perform poorly on mobile Mali GPUs.

Register pressure is an extremely important topic on the Mali GPU, as the number of reg-

isters is small and it influences the amount of threads managed by the hardware. Therefore,

reducing the number of registers used increases the amount of active threads which helps to

hide memory latencies and keeps the cores busy. While register pressure is also important on

desktop GPUs, there are more registers available and the degree of thread level parallelism

degrades more gracefully than on Mali.

There exist some optimisations for AMD and NVIDIA GPUs which are not beneficial on

the Mali GPU. While using scratchpad memory is crucial for good performance on desktop

GPUs, the Mali does not have a dedicated scratchpad memory. Any attempt use to scratchpad

memory in programs will result in using main memory instead.

Memory accesses to the main memory are coalesced on AMD and NVIDIA if all threads in

the same execution batch access consecutive memory locations. Optimising code for coalesced

accesses is hugely beneficial on these architectures, whereas on Mali this might increase cache

misses and memory accesses should be vectorised instead.



Chapter 2. Background 12

Figure 2.5: Architecture diagram of the ARM Mali-T628 GPU. From [ArmL 19].

2.2.1 ARM Mali-T628 GPU

The Mali-T628 GPU is a mobile GPU implementing ARMs second generation Midgard micro-

architecture. A high-level overview is shown in Figure 2.5. Vendors who integrate a Mali-T628

GPU into their system on a chip can choose the number of shader cores which can vary between

1 and 8. Cores are organised into groups of up to four. There is an L2 cache per core group

which is shared by all of the shader cores in the group. The size of this is configured by the

vendor, but is typically 32KB per shader core.

Each core has two arithmetic pipelines, each of which processes 128-bits of data at a time

using SIMD operations. A single core can simultaneously manage up to 256 threads in hard-

ware, depending on the amount of registers required by each thread. A kernel using more than

4 128-bit registers reduces the number of simultaneously executed work items from 256 to

128. If the kernel uses more than 8 registers, the amount of threads halves again. This large

number of threads is used to hide memory latencies, as stalled threads waiting for memory can

be overtaken by other threads. There are two 16KB L1 data caches per shader core; one for

texture access and one for generic memory access.

We have seen that there are significant differences between desktop and mobile GPUs,

requiring different optimisation strategies to achieve performance. Next, the OpenCL low-

level programming model will be discussed. OpenCL allows people to program and manually

optimise software for these GPUs.



Chapter 2. Background 13

Figure 2.6: The OpenCL platform model. From [Khro 12].

2.3 OpenCL

OpenCL is a framework and language for programming heterogeneous systems consisting

of different types of devices such as Central Processing Units (CPUs), Graphics Processing

Units (GPUs), Field Programmable Gate Arrays (FPGAs), Digital Signal Processors (DSPs)

and other accelerators in a portable manner. [Khro 12] Version 1.2 of the specification will

be described and it is the most widely implemented version by hardware vendors, including

NVIDIA, AMD and ARM, to support their devices.

2.3.1 Platform Model

An OpenCL platform consists of a host device connected to one or more OpenCL devices. Each

OpenCL compute device contains one or more compute units and each compute unit contains

one or more processing elements. Figure 2.6 shows a visual representation of a host device on

the right connected to multiple compute devices on the left. An OpenCL program runs on the

host device and queues commands to execute computations on a compute device.

2.3.2 Execution Model

An OpenCL program is divided into two parts: a host program and device kernels. The host

program is responsible for managing OpenCL devices, moving data between the host and de-

vice and enqueueing kernels for the devices to execute.

The host program needs to create a context for the devices on an OpenCL platform it wishes

to use. In addition to devices, the context will contain kernels, program objects and memory

objects. The host program then needs to create a command-queue for a device to coordinate the

execution of kernels. The host will enqueue commands into the command-queue which will be



Chapter 2. Background 14

Figure 2.7: A two-dimensional NDRange. From [Khro 12].

scheduled for the device to execute. These commands include:

• kernel execution commands,

• memory commands to transfer data to, from or between memory objects,

• and synchronisation commands.

When the host enqueues a kernel it provides a N-dimensional index space (NDRange) con-

figuration. The kernel is executed once for each point in this index space possibly in parallel.

Each point in an NDRange is called a work-item and is generally mapped to a thread executing

on a GPU. Each work-item is identified by a unique global-id within the NDRange.

Work-items are further organised into work-groups. Each work-group is identified by a

unique work-group-id that has the same dimensionality as the NDRange. Each work-item also

has a unique local-id within a work-group. Work-items can be uniquely identified by their

global-id or a combination of their local-id and work-group-id.

An example of a two-dimensional NDRange is shown in Figure 2.7. The NDRange is

(Gx,Gy), the work-group size is (Sx,Sy). The number of work-groups is (Wx,Wy)= (Gx/Sx,Gy/Sy).

Work group indices are (wx,yy), work-item global indices are (gx,gy), and work-item local

indices are (sx,sy). The work-item global indices can be calculated given the global work-

group indices, number of work-groups and work-item local-indices as (gx,gx) = (wx× Sx +

sx,wy×Sy + sy). The work-group index for a work-item can be calculated given its global-id,

local-id and work-group sizes as (wx,wy) = ((gx− sx)/Sx,(gy− sy)/Sy)



Chapter 2. Background 15

Figure 2.8: An OpenCL device architecture. From [Khro 12].

2.3.3 Memory Model

OpenCL provides four logically distinct memory regions on the device and Figure 2.8 shows

how they relate to the OpenCL device abstraction.

• Global Memory: Accessible to all work-items in all work-groups. All locations are

accessible to all work items. Typically mapped to off-chip RAM on a GPU.

• Constant Memory: Read-only global memory that remains constant during kernel exe-

cution. Typically cached in a dedicated constant cache on a GPU.

• Local Memory: Memory local to a work-group. It can be used to share data between

work-items within the same work-group. It is not possible to access the local memory of

another work-group. Typically mapped to fast on-chip scratchpad memory on a GPU.

• Private Memory: Memory private to a work-item. It is not possible to access data in

another work-item’s private memory. Typically mapped to registers on a GPU.

OpenCL uses a relaxed memory model and the memory visible to work-items is not guar-

anteed to be consistent across all work-items.

Synchronisation between work-items within a single work-groups is achieved using the

barrier built-in function. Local memory is consistent across work-items within a single work-

group at a barrier executed with a local memory fence. Global memory is consistent across



Chapter 2. Background 16

1 kernel void reduce(global float* input , global float* output ,

2 unsigned long N, local float* tmp) {

3 size_t l_id = get_local_id(0);

4 size_t g_id = get_global_id(0);

5

6 // Copy data from global memory to local memory

7 tmp[l_id] = (g_id < N) ? input[g_id] : 0;

8 barrier(CLK_LOCAL_MEM_FENCE);

9

10 // Do a reduction in local memory

11 for (size_t s = 1; s < get_local_size(0); s *= 2) {

12 if ((l_id % (2 * s)) == 0) {

13 tmp[l_id] += tmp[l_id + s];

14 }

15 barrier(CLK_LOCAL_MEM_FENCE);

16 }

17 // Write the result for this work-group to global memory

18 if (l_id == 0) {

19 output[get_group_id(0)] = tmp[0];

20 }

21 }

Listing 2.1: Parallel tree-based reduction in OpenCL C

work-items within a single work-group at a barrier executed with a global memory fence.

There are no guarantees of memory consistency across work-groups.

2.3.4 OpenCL C Kernel Language

OpenCL kernels are written in the OpenCL C programming language. It is based on the C99

specification with some restrictions as well as extensions. Limitations of OpenCL C include

the following: a kernel argument cannot be a pointer to a pointer, pointers to functions are

not allowed, recursion and dynamic memory allocation are not supported. Extensions to C99

include address space qualifiers, vector and image data types, and built-in functions, including

for parallelism and vectorisation. Kernels written in OpenCL C are compiled at runtime using

the clBuildProgram function that will invoke the vendor compiler for a specific device.

Listing 2.1 shows an example of an OpenCL kernel performing a parallel reduction. global

(line 1) and local (line 2) are examples of address space qualifiers and denote that those

pointers point to values in the global and local address space. get global id, get local id,

get group id, get local size and barrier are examples of built-in functions. The first

three, get global id, get local id and get group id provide access to identifiers within

the NDRange, get local size gives information about the size of the NDRange while barrier

provides synchronisation and a memory fence within a work-group.

In line 7 all threads copy an element from global memory to local memory before syn-



Chapter 2. Background 17

1 kernel void patterns(global float* input , global float* output , unsigned long N) {

2 size_t g_id_0 = get_global_id(0);

3 size_t g_id_1 = get_global_id(1);

4 float tmp = input[g_id_1 * N + g_id_0]; // Coalesced read

5 output[g_id_0 * N + g_id_1] = tmp; // Non-coalesced write

6 }

Listing 2.2: Different memory access patterns in OpenCL C

1 kernel void add(global float* input1 , global float* input2 ,

2 global float* output) {

3 size_t g_id = get_global_id(0);

4 float4 tmp1 = vload4(g_id , input1); float4 tmp2 = vload4(g_id , input2);

5 float4 result = tmp1 + tmp2;

6 vstore4(result , g_id , output);

7 }

Listing 2.3: Vectorisation in OpenCL C

chronising in line 8. The for loop in line 11 performs the reduction with the number of active

threads halving in every iteration. In each iteration every thread that still has work to do reads

two elements from local memory, adds them, and writes them back to local memory in line 13.

All threads synchronise at the end of every iteration in line 15. Finally, in line 19 the thread

with id 0 in the work-group stores the result from local memory back to global memory.

Consecutive threads have consecutive global or local identifies in dimension 0 and achiev-

ing coalesced accesses therefore requires them to access consecutive memory locations. List-

ing 2.2 shows an example. The read from global memory in line 4 is coalesced. The write

to global memory in line 5 is not coalesced, as consecutive threads write to non-consecutive

locations.

Listing 2.3 shows how vectorisation is performed in OpenCL C. Line 4 loads two float4

values from global memory using the vload4 built-in function. A float4 is a vector of 4

single-precision floating-point values. Similar types exist for 2, 3, 4, 8 and 16 wide vectors of

all the basic numeric types. vload4 and vstore4 are built-in functions for loading and storing

vector values. Line 5 performs a vectorised addition of the two values. Arithmetic, logical,

relational, equality and other operators are defined for vector types as well as scalar types.

Line 6 stores the result of the addition to global memory using the vstore4 built-in function.

This section has introduced OpenCL, a low-level programming model for GPUs. It allows

to manually express optimisations but is complex and error prone due to its low-level nature.

Next, the higher-level GPU programming approach of LIFT is introduced.



Chapter 2. Background 18

2.4 LIFT

This section presents LIFT, a functional data-parallel high-level language based on parallel

patterns first presented in [Steu 15b]. It raises the abstraction level and provides the opportunity

to optimise programs using rewrite-rules. LIFT specifically targets OpenCL, although many

concepts are more widely applicable.

2.4.1 Design Principles

High-level languages based on parallel patterns capture rich information about the algorithmic

structure of programs. Take the computation of the dot product as an example:

dot(x, y) = reduce(0, +, map(×, zip(x, y)))

Here the zip pattern captures that arrays x and y are accessed pairwise. Furthermore, the

map pattern allows the compiler to perform the multiplication in parallel, as well as the final

summation, expressed using the reduce pattern.

The most important design goal is to preserve algorithmic information in the compiler

for as long as possible. LIFT achieves this by expressing the OpenCL programming model

functionally. One of the key advantages of the LIFT approach is that it is possible to decouple

the problem of mapping and exploiting parallelism from the code generation process.

2.4.2 Language

LIFT expresses programs as compositions and nesting of functions which operate on arrays.

The formal foundation of LIFT is lambda calculus which formalises the reasoning about func-

tions, their composition, nesting and application.

Type System The type system of LIFT is a limited form a dependent type system and sup-

ports scalar types, vector types, array types and tuple types. A dependent type is a type whose

definition depends on a value. Dependent type systems can be used for applications such as

static elimination of array bounds checking. [Xi 98] In LIFT, array types depend on integer

values that define their length and these types are known as vectors in the dependent typing

community. Chapter 4 will show how the length information is used to generate efficient array

accesses and improve the performance of the code as well as to detect whether barriers are

taken by all threads to check for correctness.

Vector types are written as Tm for an m element vector of a scalar type T . Array types

are written as [T ]n for an array of n elements of type T . Array types can also be nested to

represent multi-dimensional arrays and carry information about the length of each dimension.

For instance, [[T ]n]m represents a two-dimensional array of m by n elements of type T . Tuple



Chapter 2. Background 19

types are written as 〈T1,T2, . . .〉 with elements of types Ti. Functions are written as (T1, ...)→U

for a function taking arguments of types Ti and producing a value of type U .

Values of vector type are written as−−−−−→x1,x2, . . . where xi are the elements of the vector. Arrays

are written as [x1,x2, . . .] where xi are elements of the array, and tuples are written as 〈x1,x2, . . .〉.
The following section introduces the predefined patterns used as building blocks to express

programs. For each pattern the type as well as a definition of its high level semantics is given.

Besides these patterns, LIFT also supports user functions written in a subset OpenCL C oper-

ating on scalar, vector or tuple values, which implement the application specific computations.

Note that array arguments and, therefore, explicit indexing of memory are not supported.

2.4.2.1 General Patterns

Algorithmic Patterns LIFT supports five algorithmic patterns corresponding to implementa-

tions of the well known map and reduce patterns, the identity and the iterate primitive. These

patterns directly affect how the computation is performed. The reduce pattern requires the bi-

nary function ⊕ to be associative and commutative to allow for a parallel implementation. The

reduceSeq pattern is the sequential version of reduce and does not have the restrictions. The

iterate pattern applies a function f m times by re-injecting the output of each iteration as the

input of the next. The length of the output array is given by the function h of the number of

iterations m, the input array length n and the change of the array length by a single iteration

captured by the function g.

map : ((T →U), [T ]n)→ [U ]n

map( f , x1 x2 . . . xn ) = f (x1) f (x2) · · · f (xn)

reduce : (T,(T,T )→ T, [T ]n)→ [T ]1

reduce(z,⊕, x1 x2 . . . xn ) = z⊕ x1⊕ x2 · · ·⊕ xn

reduceSeq : (U,(U,T )→U, [T ]n)→ [U ]1

reduceSeq(z,⊕, x1 x2 . . . xn ) = (((z⊕ x1)⊕ x2) · · ·⊕ xn)

id : T → T

id(x) = x

iterate : (m : int, [T ]k→ [T ]g(k), [T ]n)→ [T ]h(m,n,g)

iterate(m, f , x1 x2 . . . xn ) = f (· · ·( f (︸ ︷︷ ︸
m times

x1 x2 . . . xn )))



Chapter 2. Background 20

Data Layout Patterns LIFT defines a set of patterns that do not perform any computation but

simply reorganise the data layout. Since they perform no computation then no code is generated

for these patterns but they change how the arrays are accessed. The first two patterns, split and

join, add or remove a dimension from the input array.

split : (m : int, [T ]n)→ [[T ]m]n/m

split(m, x1 x2 . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . .

m

. . . . . . . . . . . . . . . . . . . . . . . . xn

join : [[T ]m]n/m→ [T ]n

join( x1 x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . . . . . . . . . . . . . . . . . xn

The gather and scatter patterns apply a permutation function f which remaps indices when

reading from or writing to arrays respectively. Combined with split and join, for instance,

these primitives can express matrix transposition: transpose = split(nrows) ◦ gather(i → (i

mod ncols) × nrows + i / ncols) ◦ join. The ◦ symbol is used to denote sequential function

composition, i. e. ( f ◦g)(x) = f (g(x)).

gather : ((int→ int), [T ]n)→ [T ]n

gather( f , x f (1) x f (2) · · · x f (n) ) = x1 x2 · · · xn

scatter : ((int→ int), [T ]n)→ [T ]n

scatter( f , x1 x2 · · · xn ) = x f (1) x f (2) · · · x f (n)

The zip pattern is used to combine two arrays of elements into a single array of pairs while

the get primitive projects a component of a tuple.

zip : ([T ]n, [U ]n)→ [〈T,U〉]n

zip( x1 x2 . . . xn , y1 y2 . . . yn ) = 〈x1,y1〉 〈x2,y2〉 . . . 〈xn,yn〉

get : (i : int,〈T1,T2, . . . ,Tn〉)→ Ti

get(i,〈x1,x2, . . . ,xn〉) = xi

The slide pattern applies a sliding window to the input data and is used to express stencil

computations. For instance, mapSeq(reduceSeq(0,+)) ◦ slide(3,1,input) expresses a simple



Chapter 2. Background 21

3-point stencil. Multi-dimensional stencils are also expressible by composing several slide

functions interleaved with transpositions.

slide : (size : int,step : int, [T ]n)→ [[T ]size] n−size+step
step

slide(size,step, x1 x2 . . . . . . . . . . . . . . . . . . . . . xn )

= x1 x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xn

size

step . . .

Finally, the pad pattern adds le f t and right elements at the beginning and end of the input

array, respectively. There are two variants of pad. In the first, the extra elements are computed

by h, and in the second, the extra elements are added by indexing into the input array using the

value returned by h. The pad patten is used to express boundary condition in stencil codes. For

example, the clamp(i, n) = (i < 0) ? 0 : ((i >= n) ? n - 1 : i) function is

used to extend the array by repeating the elements at the beginning and end.

pad : (le f t : int,right : int,h : (i : int, length : int)→ int, [T ]n)

→ [T ]n+le f t+right

pad : (le f t,right,h, in : x1 x2 . . . xn )

= xh(0−le f t,n) . . . xh(0) x1 x2 . . . xn xh(n+1,n) . . . xh(n+right,n)

2.4.2.2 OpenCL-specific Patterns

Parallel Patterns OpenCL provides a hierarchical organisation of parallelism where threads

are grouped into work groups of local threads or a flat organisation with global threads. This

hierarchy is represented with three patterns, mapGlb, mapWrg and mapLcl. A mapLcl must be

nested inside of mapWrg to respect the OpenCL thread hierarchy.



Chapter 2. Background 22

mapGlb(i) : ((T →U), [T ]n)→ [U ]n

mapGlb(i)( f , x1 x2 . . . xn ) = f (x1) f (x2) · · · f (xn)

where i is 0,1 or 2

mapWrg(i) : ((T →U), [T ]n)→ [U ]n

mapWrg(i)( f , x1 x2 . . . xn ) = f (x1) f (x2) · · · f (xn)

where i is 0,1 or 2

mapLcl(i) : ((T →U), [T ]n)→ [U ]n

mapLcl(i)( f , x1 x2 . . . xn ) = f (x1) f (x2) · · · f (xn)

where i is 0,1 or 2

mapSeq(i) : ((T →U), [T ]n)→ [U ]n

mapSeq(i)( f , x1 x2 . . . xn ) = f (x1) f (x2) · · · f (xn)

OpenCL supports up to three thread dimensions, represented by the 0,1,2. The semantic and

type of these patterns is identical to map, except that f is applied in parallel. Finally, mapSeq

applies f sequentially.

Vectorisation Patterns LIFT supports two primitives that transform data between scalar and

vector types, and one pattern which applies vectorises a function.

asVector : (m : int, [T ]n)→ [Tm]n/m

asVector(m, x1 x2 . . . . . . . . . . . . . . . . . . . . . xn )

= −−−−−−−−→x1,x2, . . . ,xm −−−−−−−−−→. . . , . . . , . . . , . . . . . . −−−−−−−−−→. . . , . . . , . . . ,xn

asScalar : [Tm]n/m→ [T ]n

asScalar( −−−−−−−−→x1,x2, . . . ,xm −−−−−−−−−→. . . , . . . , . . . , . . . . . . −−−−−−−−−→. . . , . . . , . . . ,xn )

= x1 x2 . . . . . . . . . . . . . . . . . . . . . xn

vectorize : (n : int, f : (T1, . . .)→U)→ ((Tn, . . .)→Un)

For the vectorise pattern, the function f is transformed into a vectorised form during code

generation. This transformation is straightforward for functions based on simple arithmetic



Chapter 2. Background 23

operations since OpenCL already defines vectorised forms for these operation. In the other

more complicated cases, the code generator simply applies f to each scalar in the vector. Future

work intends to incorporate existing research on vectorising more complex functions [Karr 11].

Address Space Patterns OpenCL distinguishes between global, local and private address

spaces. LIFT offers three corresponding primitives which wrap a function and influence the

address space used to store the output:

toGlobal : ((T, . . .)→U)→ ((T, . . .)→U)

toLocal : ((T, . . .)→U)→ ((T, . . .)→U)

toPrivate : ((T, . . .)→U)→ ((T, . . .)→U)

For example, a sequential copy of an array x into local memory is expressed as follows:

toLocal(mapSeq(id))(x). This design decouples the decision of where to store data (i. e. the

address space) from the decision of how the data is produced (i. e. sequentially or in parallel).

Like the generic data layout patterns, the address space patterns do not perform any computa-

tion and no code is generated for them, but they affect the array indices that are generated.

2.4.2.3 Example: Dot Product in LIFT

Listing 2.4 shows one possible low-level implementation of dot product expressed in LIFT.

This program encodes explicitly how the computation should be performed and can be trans-

lated into OpenCL. The program is represented using a functional style, therefore, the program

is read from right to left instead of the familiar left to right common in imperative program-

ming. Furthermore, to simplify the notation the ◦ symbol is used to denote sequential function

composition, i. e. ( f ◦g)(x) = f (g(x)).

In the program of Listing 2.4 the input arrays x and y are combined using the zip pattern in

line 13. The zipped array is then split into chunks of size 128 (line 13). A work group processes

a single chunk using the mapWrg pattern (line 2) before combining the computed chunks using

the join pattern (line 2). Inside of a work group three steps are performed to process a chunk of

128 elements: 1) the chunk is split further into pairs of two zipped elements in line 12, which

are multiplied and added up before copying the computed result into local memory (lines 10

and 11); 2) two elements at a time are iteratively reduced in local memory (lines 6 to 9); 3) the

computed result is copied back into global memory (line 4).

Note that the code shown here corresponds to a single OpenCL kernel which only computes

a partial dot product. A second kernel is required to sum up all intermediate results.



Chapter 2. Background 24

1 partialDotProduct(x: [float]N , y: [float]N) =

2 join ◦ mapWrg(0)(

3 join ◦
4 toGlobal(mapLcl(0)(mapSeq(id))) ◦
5 split(1) ◦
6 iterate(6)( join ◦
7 mapLcl(0)( toLocal(mapSeq(id)) ◦
8 reduceSeq(0, add) ) ◦
9 split(2) ) ◦

10 join ◦ mapLcl(0)( toLocal(mapSeq(id)) ◦
11 reduceSeq(0, multAndSumUp) ) ◦
12 split(2) ) ◦
13 split(128, zip(x, y))

Listing 2.4: LIFT implementation of a partial dot product

2.4.3 LIFT Rewrite Rules

Rewrite rules transform the program into semantically equivalent forms. Rewriting for com-

piler optimisations is an established approach in the functional community and used, for exam-

ple, in the Glasgow Haskell compiler [Peyt 01]. The high-level dot product program comprised

of map, reduce and zip is rewritten into the low-level program in Listing 2.4. The left-hand side

of the rule shows the pattern the rule can be applied to and the right-hand side shows the result

after the transformation. This section will discuss the individual rewrite rules which are divided

into algorithmic and OpenCL specific ones. These rules are proven correct in [Steu 15a] but in

prior work on LIFT it remains unclear how they are applied to optimise practical applications.

Chapter 5 will explore techniques on how these rewrite rules are applied to optimise matrix

multiplication for 3 GPU architectures from different manufacturers.

2.4.3.1 Algorithmic Rules

Figure 2.9 shows algorithmic rules which represent different algorithmic choices that can be

made during optimisation.

Iterate Decomposition Rule The rule in Figure 2.9a expresses the fact that the number of

iterations of an iterate can be decomposed into several iterate patterns.

Split-Join Rule The split-join rule in Figure 2.9b turns a map into two nested maps. This al-

lows, for example, mapping different parts of the computation to different levels of the OpenCL

thread hierarchy.



Chapter 2. Background 25

iterate(i+ j, f ) ⇒ iterate(i, f ) ◦ iterate( j, f )

(a) Iterate decomposition rule

map( f ) ⇒ join ◦ map(map( f )) ◦ split(m)

(b) Split-join rule

reduce(z, f ) ⇒ reduce(z, f ) ◦ partialReduce(z, f )

partialReduce(z, f ) ⇒ reduce(z, f )

partialReduce(z, f ) ⇒ partialReduce(z, f ) ◦ gather(p)

partialReduce(z, f ) ⇒ iterate(i, partialReduce(z, f ))

partialReduce(z, f ) ⇒ join ◦ map(partialReduce(z, f )) ◦ split(m)

(c) Reduce rules

map( f ) ◦ map(g) ⇒ map( f ◦g)

reduceSeq(z, f ) ◦ mapSeq(g) ⇒ reduceSeq(z, λ (acc, x) . f(acc, g(x)))

(d) Fusion rules

join ◦ split(m) ⇒ id

asScalar ◦ asVector(n) ⇒ id

(e) Cancellation rules

Figure 2.9: Algorithmic Rules



Chapter 2. Background 26

Reduce Rules The rules in Figure 2.9c show how a reduce can be performed in several steps,

possibly partially iteratively or in parallel. The partialReduce primitive performs a partial

reduce, i.e. an array of n elements is reduced to an array of m elements where 1≤ m≤ n.

Fusion Rules The fusion rules are shown in Figure 2.9d. The first rule fuses two consecutive

map patterns into a single one. The second rule fuses a mapSeq followed by a reduceSeq by

applying the function g on the fly while performing the reduction. The rules only applies to the

sequential version of reduction as this version of reduction does not require associativity.

Cancellation Rules The rules in Figure 2.9e express the fact that a split followed by join or

asVector followed by asScalar is equivalent to the identity. These rules are the only algorithmic

rules that do not change how the computation is performed or how the code is generated.

2.4.3.2 OpenCL-specific Rules

Figure 2.10 shows OpenCL specific rules which map generic primitives to OpenCL specific

ones.

Map Rules The rules in Figure 2.10a turn the generic map primitive into a sequential version

or parallel versions targeting different levels of the OpenCL thread hierarchy.

Reduce Rule There is only one low-level rule for reduce. It turns the generic reduce into a

sequential version and is shown in Figure 2.10a.

Vectorisation Rule Figure 2.10c shows the rule to vectorise the data worked on and the

function applied by a map primitive.

Memory Rules The rule in Figure 2.10d allow programs to use different levels of the OpenCL

memory hierarchy. They make the function f store its result into the specified address space.

These rules do not change the computation but only affect the address space used and the index

used to access the memory.

2.4.4 LIFT Implementation

This section introduces the implementation of LIFT. One of the key features of LIFT is that it

preserves a functional representation of the program all the way through.



Chapter 2. Background 27

map( f ) ⇒ mapGlb(i)( f ) | mapWrg(i)( f ) | mapLcl(i)( f ) | mapSeq( f )

(a) Map rules

reduce(z, f ) ⇒ reduceSeq(z, f )

(b) Reduce rule

map( f ) ⇒ asScalar ◦ map(vectorize( f )) ◦ asVector(n)

(c) Vectorisation rule

f ⇒ toGlobal( f ) | toLocal( f ) | toPrivate( f )

(d) Memory rules

Figure 2.10: OpenCL-specific rules

Expr
type: Type

as: AddressSpace

Literal

value: String
Param

FunCall
f: FunDecl

args: Expr*

FunDecl

Lambda
params: Param*

body: Expr

Pattern
UserFun

code: String

MapGlb
MapWrg

MapLcl

f: Lambda

. . .
Join

Split

n: Int

Figure 2.11: Class diagram of the LIFT implementation. From [Steu 17].



Chapter 2. Background 28

2.4.4.1 Organisation of classes

LIFT is implemented as an embedded language in Scala. Programs are represented as graphs

where nodes are implemented as objects. The use of a graph-based representation avoids the

problem of performing extensive renaming when transforming functional programs [Leis 15].

The class diagram of LIFT in Figure 2.11 shows two main classes: expressions (Expr) and

function declarations (FunDecl).

Expressions represent values and have a type associated with them. Expressions are either

literals, parameters or function calls. Literals represent compile time known constants such

as 3.4f, or arrays or tuples. Parameters are used inside functions and their values are the

arguments of a function call. Finally, function calls connect a function to be called (a FunDecl)

with its arguments (Exprs).

Function Declarations correspond to either a lambda, a predefined pattern or a user func-

tion. Lambdas are anonymous function declarations with parameters and a body which is

evaluated when the lambda is called. A pattern is a built-in function such as map or reduce.

The UserFun corresponds to user-defined functions expressed in a subset of the OpenCL C

language operating on non-array data types.

2.4.4.2 Example

Figure 2.12 shows the LIFT IR of the dot-product program from Listing 2.4. The plain arrows

show how objects reference each other. The top left node labelled Lambda2 is the root node of

the graph taking two parameters and its body implements dot-product as a sequence of function

calls.

The dashed arrows visualises the way the data flows through the IR. The inputs x and y

are first used as an input to the zip function which is then fed into a call to split(128). Then

the results of the split is fed into the mapWrg function. The function which is applied to

each chunk of 128 elements is represented as a lambda which processes the input in three

steps. First, the data is moved from global to local memory by performing a partial reduction

(labelled glbToLcl). Then, the data flows to a function which iteratively reduces the elements in

local memory (iteration). Finally, the data is moved back from local memory to global memory

(lclToGlb), exits the mapWrg and the last join is applied to return the final result.

2.4.4.3 Lambda and Data Flow

Lambdas appear in several places in the graph and make the data flow explicit. For example,

focusing on the iteration part of the graph, a Lambda node is used below this Iterate node.

To understand what the lambda does, look back at Listing 2.4, lines 6– 9 copied here:



Chapter 2. Background 29

Param Param

Lambda2

param_0 param_1

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapWrg

f

Split(128)
f

FunCall

arg_0

arg_0 arg_1

Zip

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

Split(1)
f

FunCall

arg_0

FunCall

arg_0

Iterate

f

Joinf

FunCall

arg_0

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun
(multAndAdd)

f

MapSeq

f

UserFun(id)

f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

Join

f

FunCall

arg_0

MapLcl

f

arg_0

Split(2)
f

Lambda1

f

Param

param_0

FunCallbody

FunCall

arg_0

toLocal

f

arg_1

Literal(0.0f)

arg_0

ReduceSeq

f

UserFun(add)

f

MapSeq

f

UserFun(id)

f

toGlobal

f

MapSeq

f

UserFun(id)

f

x y

iteration

glbToLcl

lclToGlb

dataflow

class field

(6)

Figure 2.12: LIFT IR for dot-product example. From [Steu 17].



Chapter 2. Background 30

iterate(6)( join ◦ mapLcl(0)( . . . ) ◦ split(2) )

This notation is only syntactic sugar for:

iterate(6)( λ p . join(mapLcl(0)(. . ., split(2, p))) )

The lambda (λ) makes the data flow explicit, i.e. the iterate pattern passing its input via the

parameter p first to split which then passes it to mapLcl and join.

2.4.5 Open Problems and Challenges of LIFT Code Generation

This section discusses the design of the LIFT functional data-parallel language. It is similar in

style to prior work [Brow 16, Maie 16] and is OpenCL specific. Via rewriting LIFT expresses

precisely how programs are mapped to the OpenCL programming model, as seen for the dot

product example.

However, it is not described in [Steu 15b] how OpenCL code is generated from LIFT pro-

grams once mapped into a low-level OpenCL specific form. While code generation is straight-

forward for the simple programs presented in [Steu 15b] it is unclear how this would scale to

more complex applications. Chapter 4 will show how a naı̈ve approach to code generation and

especially array access generation leads to code that achieves only a fraction of the available

performance. Chapter 4 then introduces a novel technique for generating high-performance

code on par with handwritten and tuned code for real-world applications such as matrix-matrix

multiplication.

The set of rewrite rules presented in [Steu 15b] is incomplete for expressing many optimi-

sations relevant in practice such as tiling. Additionally, the number of different expressions

evaluated for a single program in the first LIFT paper is only around 100 and it is unclear how a

search strategy for finding good implementations will scale if hundreds of rule applications are

needed to apply optimisations and many thousands of expression variations must be explored.

Chapter 5 and Chapter 6 address these issues by introducing additional rules, grouping rules

together as macro rules to express optimisations and presenting a search strategy for exploring

tens of thousands of different versions of a program that is accelerated by using a performance

prediction model.

2.5 Design-Space Exploration

As different GPUs are designed differently and have different performance characteristics, ap-

propriate implementation choices need to be made when optimising a program for a particular

device. These choices lead to a design space of alternative implementations that can be sys-

tematically explored to find implementations that perform well on a given device.



Chapter 2. Background 31

1 kernel void multiply(global float* input , global float* output , unsigned long N) {

2 for (size_t gid = get_global_id(0); gid < N / EPT; gid += get_global_size(0) {

3 for (int i = 0; i < EPT / VW; i++) {

4 unsigned index = gid * EPT / VW + i;

5 #if VW == 1

6 output[index] = input[index] * 2;

7 #elif VW == 2

8 vstore2(vload2(index , input) * 2, index , output);

9 // ...

10 #elif VW == 16

11 vstore16(vload16(index , input) * 2, index , output);

12 #endif

13 }

14 }

15 }

Listing 2.5: An OpenCL kernel multiplying all elements of the input by 2. The amount of elements

processed by each thread is defined by EPT and the vector width is defined by VW. Values for

both are meant to be chosen by an auto-tuner.

2.5.1 Auto-Tuning

Auto-tuning is a technique for systematically choosing values for parameters in a program

to improve its performance with respect to some metric, such as time or throughput. These

implementation parameters can, for example, be the number of elements processed by each

thread, the local size of an OpenCL program or the width of vector data types.

As an example, Listing 2.5 shows a simple OpenCL kernel that multiplies every element

of an array of N elements by two. The number of elements processed by each thread in a single

iteration is defined by the parameter EPT. The vector width used for memory and arithmetic

operations is defined by the parameter VW. The value of both, EPT and VW, can be chosen or

tuned for a particular device. The parameter EPT can take all values that divide the input

size N, so that all elements would be processed. VW can take the value of 1, which means

no vectorisation, as well as the values of 2, 4, 8, 16 that are legal vector widths in OpenCL.

Additionally, constrains can be placed between values of different parameters. In the case of

the example in Listing 2.5, VW has to divide EPT.

It is the job of the auto-tuner to choose valid parameter combinations, as determined by the

constraints for EPT and VW, while improving performance as determined by a cost function. The

cost function evaluates the kernel with respect to the metric the kernel is being tuned for. It can

be as simple as compiling and running the kernel with the chosen parameters and measuring

the execution time.

Figure 2.13 shows an overview of how an auto-tuner operates. It takes as input the kernel

being tuned, its parameters, legal values for the parameters and any constraints between the



Chapter 2. Background 32

Auto-tuner Evaluate kernel

Pick parameter
values

Feedback
Best parameter

values

Kernel
Parameters & their

legal values

Constraints between
parameters

Figure 2.13: Auto-tuning loop

parameters. For example, the kernel from Listing 2.5, the parameters EPT and VW, their legal

values, and the constraints N mod EPT= 0 and EPT mod VW= 0

First, the auto-tuner will pick a combination values for all parameters that is legal with

respect to the constraints using some strategy. There exist many different search strategies.

For example, the exhaustive search strategy evaluates all different combination of parameter

values. A random search strategy picks random points in the search space to evaluate.

The cost function will be evaluated for the kernel being tuned with the chosen parameters.

The auto-tuner will then pick a new set of parameters to evaluate. Using a more sophisticated

search strategy, the auto-tuner can make the decision based on the feedback received from

evaluating previous sets of parameters and how the value of the function changed based on

changing the values of parameters.

For example, simulated annealing is a probabilistic search technique inspired by annealing

in metallurgy. In each iteration of the search it picks a neighbouring configuration to the current

one to evaluate. If the new configuration has better performance it will move to that point.

However, to avoid getting stuck in local minima it also has a probability to move to a worse

configuration that is based on the annealing temperature. The temperature is progressively

reduced to zero as the search continues and the probability to accept a worse solution decreases

with it.

The process of picking parameter values and evaluating the kernel using them will continue

until a certain level of performance is reached, a set amount of time has elapsed, a certain

number of combinations have been tried or all combinations have been evaluated. As output,

the auto-tuner will produce the set of parameter values that gave the best performance.



Chapter 2. Background 33

10

12 11

5

6 7

13

9

11

8

Figure 2.14: K-nearest neighbours algorithm with k = 3. The output value for the new point (red)

is predicted as the average of the closest existing (black) points, so (5+6+7)/3 = 6.

2.5.2 Performance Modelling and Prediction

Determining the value of the cost function by running the program can be time consuming.

To address this problem, the cost function can be replaced by a different function that is

quicker to evaluate and produces a cost prediction. One common approach is to produce the

prediction based on some program characteristics. These characteristics are known as features

and describe different aspects of the program. The prediction function should relate the feature

values to the value of the cost function.

One approach for coming up with a prediction function is analytical and consists of manu-

ally devising a mathematical formula that will calculate the predicted value of the cost function

based on the input features. For example, the input could be the number of different instruc-

tions and the function could predict the total number of cycles required based on how many

cycles each instruction takes to execute.

Another approach is to use statistical methods to automatically learn the function. This is

the approach taken in Chapter 6. It requires collecting data of different points in the space,

their feature values as well as the values of their cost functions. There exist a number of

different techniques for learning functions such as decision trees, linear regression, k-nearest

neighbours, support-vector machines, neural networks and others.

The data is separated into a training set and a test set. The training set is used to learn the

function. The test set is used to evaluate the learned function and is separated from the training

set to check for over-fitting to the training data.

As an example, Figure 2.14 shows the k-nearest neighbours algorithm. K-nearest neigh-

bours works on the assumption that points close by in the feature space have similar values

for the metric we are interested in predicting. The algorithm will find k closest points in the



Chapter 2. Background 34

training set to the new point whose metric we are interested in predicting. In the example in

Figure 2.14, k is set as 3 and the training set consists of the points in black. The new point for

which we are interested in providing an prediction for is red and its 3 closest neighbours are

highlighted in the circle. Once the closest neighbours have been found, the output value for the

new point is predicted as the average of the output of the neighbours. So the prediction for the

red point in the example would be (5+6+7)/3 = 6.

When k-nearest neighbours is applied to estimating the performance of programs, the algo-

rithm assumes that programs close to each other in the feature space have similar performance.

Therefore, a good selection of features that accurately characterises the performance of pro-

grams is crucial for this technique to work well.

2.6 Summary

This chapter discussed the technical background required to understand this thesis. First, it

described the architectures of the different GPUs used in this thesis. Then it introduced the

low-level OpenCL programming model for programming them, as well as the high-level LIFT

language that will be used for optimising and generating OpenCL code. Finally, it presented

an overview of different techniques for design-space exploration. The next chapter will give an

overview of work related to this thesis.



Chapter 3

Related Work

This chapter presents work related to this thesis. Section 3.1 describes high-level approaches

designed to ease GPU programming. Section 3.2 discusses compilers and compiler based

optimisation techniques for GPUs. Section 3.3 presents related work on exposing optimisation

choices and making decisions between them. Section 3.4 discusses performance modelling and

prediction for GPUs. Section 3.5 summarises the chapter.

3.1 High-Level Approaches for GPU Programming

Most GPU programmers use low-level languages such as OpenCL and CUDA that are difficult

and error prone to use, as they require paying attention to device specific details for correctness

and performance. There exists rich literature on high-level approaches for GPU programming

that aim to simplify the process of programming GPUs. This section gives an overview of

different proposed library and language based solutions.

3.1.1 Libraries for High-Level GPU Programming

Many high-level approaches for GPU programming are inspired by parallel patterns [McCo 12]

or algorithmic skeletons, a concept developed in the late 80’s [Cole 89]. Algorithmic skeletons

abstract over implementations for common parallel programming patterns and allow hiding the

complexity of parallelism. A common way to implement algorithmic skeletons is to expose

them as interfaces of libraries.

SkePU [Enmy 10], SkelCL [Steu 11], Muesli [Erns 12] and FastFlow [Aldi 11, Aldi 12] are

all high-level skeleton based C++ libraries that target GPUs. They provide algorithmic skele-

tons like map, reduce and scan that are combined to create more complex applications. SkelCL

targets OpenCL, Muesli and FastFlow target CUDA while SkePU supports both. SkelCL,

Muesli and SkePU additionally support distributing execution across multiple GPUs.

Thrust [Bell 11] and Bolt [AMDI 14] are C++ libraries for parallel programming written

35



Chapter 3. Related Work 36

by NVIDIA and AMD, respectively. They intend to simplify GPU programming by providing

parallel algorithmic skeletons with an interface similar to that of the C++ Standard Template

Library (STL) but with CUDA or OpenCL implementations of the algorithms. Programmers

familiar with the STL are able to easily take advantage of the GPU acceleration provided by

both. As of C++17 [ISO 17], parallel versions of STL algorithms have been added to the

official C++ standard and basic GPU implementations of them are available.

Library approaches are easy to use and do not require learning a new programming lan-

guage. They are also straightforward to integrate into an existing software project. On the

other hand, libraries limit users by tying them to fixed interfaces that are not suited for all uses.

3.1.2 Languages for High-Level GPU Programming

To provide more flexibility for GPU acceleration than the narrow interface offered by libraries

as well as to provide custom syntax not tied to the library implementation language, a number of

high-level languages for GPU programming have been designed and implemented. Languages

often have a steeper learning curve and are harder to integrate into existing solutions but provide

more acceleration and optimisation opportunities than fixed library interfaces.

StreamIt [Thie 02] is a data flow based programming language designed for program-

ming streaming applications that has been extended to be able to target GPUs by compiling

to CUDA [Udup 09]. A StreamIt program consists of filters, and data channels connecting

filters for communication forming a graph of computation and their dependencies. Different

graphs can be used to represent task and data-parallelism. The hierarchical primitives pipeline,

splitjoin and feedbackloop are provided to compose filters into larger stream graphs.

Copperhead [Cata 11] is a data-parallel language and compiler embedded in Python and

generating CUDA code. Nested parallelism is supported by mapping nested patterns to the

GPU thread hierarchy.

Single Assignment C (SaC) [Grel 06, Guo 11] is a MATLAB-like high-level functional

array programming language. The compiler automatically identifies with-loops (loops guar-

anteed to be free of dependencies) that are eligible to be executed on GPUs and compiles them

to CUDA code.

The Lime language and compiler [Duba 12] is an extension of Java for targeting hetero-

geneous systems by providing high level abstractions for parallel tasks and communication. It

adds support for immutable data types, as well as automatic optimisations for GPUs for im-

proving locality, reducing bank conflicts and vectorisation. It uses the language’s type system

to make the analysis required for the optimisations simpler.

Halide [Raga 13] is a domain specific language embedded in C++ and an optimising com-

piler targeted at image processing applications. Optimised code is generated for CPUs as well

as GPUs. Halide separates the functional description of the problem from the description of



Chapter 3. Related Work 37

the implementation, which is called a schedule. This allows re-targeting of Halide programs

to different platforms by specifying different schedules. A function in Halide maps integer

coordinates to scalar results or pixel values, and consist of arithmetic and logical operators,

loads from other images and if-then-else expressions. Because the calculation of a function at

each coordinate is independent Halide programs are inherently data-parallel. Image processing

pipelines are constructed by chaining Halide functions.

Since Halide is designed for image processing applications this can make it akward to

express other types of computation such as linear algebra whereas LIFT is more similar to

general purpose functional programming languages. Combinators can be used in the schedule

to determine which parts of the image should be produced sequentially or in parallel. Impor-

tantly, Halide allows defining how operations are executed in deep image processing pipelines

whereas the optimisations developed in this thesis focus on what would be a single stage.

Accelerate [McDo 13] is a domain specific language embedded in Haskell for GPU pro-

gramming. Various optimisations are applied internally, for example, fusion of computations

for avoiding intermediate results. The implementation relies on templates of manually written

CUDA kernels. Sharing recovery and array fusion optimisations are developed for compiling

Haskell programs for GPUs and eliminating unnecessary intermediate data-structures.

HiDP [Zhan 13] is a data-parallel language that provides hierarchical constructs and maps

them onto the hierarchical execution model for GPUs when generating CUDA code.

NOVA [Coll 14] is a functional programming language and compiler for targeting CPUs

and GPUs developed by NVIDIA. It aims to provide performance portability as well as require

no in-depth knowledge of the underlying hardware from the programmer. The compiler applies

optimisations such as aggressive inlining and fusion. NOVA supports nested parallelism by

flattening and unflattening vectors. LIFT supports these optimisations as well as more complex

transformations as described in Chapter 5.

Futhark [Henr 14, Henr 17] is a purely functional data-parallel array language targeting

GPUs by generating OpenCL or CUDA code. It provides algorithmic skeletons as primitives

such as map, scan, reduce and filter and supports nested data-parallelism by flattening while

still allowing further locality optimisations. By using a type system extension based on unique-

ness types it supports in-place array updates to avoid creating unnecessary copies while still

preserving the purity of the language.

SYCL [Khro 19c] is an open standard that enables single source C++ programming for

heterogeneous devices using completely standard C++. It builds on the concepts of OpenCL

but provides additional simplifying abstractions as well as type safety between host and device

code. While OpenCL GPU kernel code is typically provided as a string and compiled at run-

time, a SYCL compiler statically extracts and compiles the kernel portions of the C++ code

to an intermediate representation such as SPIR or SPIR-V. SYCL is considerably higher level



Chapter 3. Related Work 38

than OpenCL itself but lower level than the other approaches discussed in this section.

While languages provide opportunities to express programs that do not fit narrow library

interfaces to be offloaded to GPUs they also come with additional demands. In particular, a

language targeting GPUs needs a sophisticated compiler to compile and optimise it.

3.2 Compilers for GPU Programming

Since GPUs behave differently than CPUs, compilers for them need to use techniques suited

for generating GPU code. By raising the layer of abstraction, high-level languages for pro-

gramming GPUs help users to take advantage of GPU acceleration. But the higher layer of

abstraction also places a greater burden on the compiler to efficiently handle the complexity

that is being hidden from the user. This section first discusses GPU compilers for general

purpose languages, such as CUDA or OpenMP. It then discusses polyhedral compilation tech-

niques, before looking at related work in compiling tensor algebra applications. Finally, this

section will shift focus and discuss frameworks for building parallel compilers and different

compiler intermediate representations.

3.2.1 General Purpose GPU Compilation

There are a variety of different general purpose parallel programming models that are suitable

for GPU code generation. Compilers have been designed for these models in both, industry

and academia.

OpenMP-to-GPGPU [Lee 09] was an early compiler for translating OpenMP applications

into CUDA applications to improve programmability as well as allow existing OpenMP ap-

plications to take advantage of GPU acceleration. It operates in two phases. The first phase

transforms the OpenMP program into a form more suitable for GPUs. The second phase trans-

lates the OpenMP region into a CUDA kernel function and applies further CUDA specific

optimisations.

Other work has used a similar approach to compile OpenMP programs to OpenCL [Grew 13].

This approach was combined with a runtime system to choose whether it is more beneficial to

run the generated and optimised kernel on the GPU or the original OpenMP code on the CPU.

Bones [Nugt 14a] is a pattern based GPU compiler that automatically detects algorithm

species in sequential C code and maps them to parallel algorithmic skeletons. An algorithm

species classifies algorithms based on memory access patterns in loop nest based on static

analysis using the polyhedral model or array reference characterisations. The pattern imple-

mentations are pre-written and not performance portable.

LambdaJIT [Lutz 14] is a C++11 JIT-compiler to parallelise and optimise lambda functions

used with STL algorithms. Additionally, it can re-target lambdas to offload computation to



Chapter 3. Related Work 39

GPUs. Because of additional information available at runtime, it can also perform partial

specialisation and fuse function compositions. This type of JIT-compilation based on extra

information available at runtime could complement the work presented in the thesis which

focuses on compile time optimisation.

gpucc [Wu 16] is an open-source CUDA compiler based on LLVM and Clang. It develops

or improves several general and CUDA specific optimisations to reach performance on par with

or faster than NVIDIA’s proprietary nvcc compiler. At the time of its release it also supported

more recent C++ features than nvcc.

PACXX [Haid 16] provides a SYCL-like interface for GPU programming using single

source C++. It also provides mechanisms for multi-stage programming to embed runtime val-

ues into kernels for specialising them using JIT-compilation in a type safe manner. PACXX is

based on LLVM and Clang and supports generating Nvidia’s pseudo-assembly language Par-

allel Thread Execution (PTX) for targeting NVIDIA GPUs and SPIR for targeting GPUs with

an OpenCL implementation.

Using techniques specific to particular domains can provide compilers with additional in-

formation that is exploitable for optimisation.

3.2.2 Polyhedral GPU Compilation

Polyhedral compilers [Xue 94, Boul 98, Bast 04] represent loop nests as mathematical struc-

tures called polyhedra. Transformations are performed on these structures and then converted

back into equivalent but transformed loop nests. The polyhedral model is also used for paral-

lelisation and vectorisation.

C-to-CUDA [Bask 10] and PPCG [Verd 13] are both polyhedral GPU compilers. They

create a polyhedral model of the parallel nested loops in the source code and perform advanced

loop optimisations such as tiling and blocking to static loop nests with affine loop bounds and

subscripts. The work in Chapter 5 shows how to rewrite rules are used to apply these types of

optimisations in a functional language at a much higher level in the compiler.

Polly [Gros 12] is an implementation of the polyhedral model for loop and data locality

optimisation in the LLVM infrastructure. It works on LLVM IR to analyse memory access

patterns and perform classical loop transformations like tiling and blocking. It has been used

to detect parallel loops for generating GPU code [Miku 14] and to optimise OpenCL programs

and reduce divergence [Moll 16].

Pencil [Bagh 15] is an intermediate language defined as a restricted subset of C99. It is

intended as an implementation language for libraries and a compilation target by DSLs. It also

relies on the use of the polyhedral model to optimise code and is combined with an auto-tuning

framework.

While the polyhedral model and compilers employing it are effective at performing loop



Chapter 3. Related Work 40

transformations, it is not suitable for all types of problem domains and optimisations.

3.2.3 Tensor Algebra Specific Compilers

Compilers for specific domains use knowledge about that domain to apply optimisations that

would not be possible or not legal in a general setting. One such domain that has risen to promi-

nence recently is performing mathematical operations on tensors, a generalisation of vectors

and matrices to higher dimensions, in the context of machine learning.

The Tensor Algebra COmpiler (taco) [Kjol 17] is a C++ library and compiler for auto-

matically generating and optimising kernels for compound tensor algebra operations on dense

and sparse tensors. taco uses a novel internal representation called iteration graphs to describe

how to iterate over non-zero values of the tensor expression. It develops merge lattices that

describes how to merge index data structures of sparse tensors that are used in the same tensor

expression.

Accelerated Linear Algebra (XLA) [XLAT 17] is a domain-specific compiler for Tensor-

Flow’s computational graphs of linear algebra operations targeting and optimising for CPUs,

GPUs and custom accelerators. It uses JIT compilation to analyse the graph at runtime and spe-

cialise the computation and fuse operations. Optimisation is performed in two stages. The first

stage performs target independent optimisations like operation fusion and analysis for memory

allocation. The second stage of optimisation takes place in the backend to perform target spe-

cific optimisations, such as further operator fusion beneficial for the specific device or replacing

certain operations with optimised library calls. Finally, LLVM IR is generated and LLVM is

invoked to perform further low-level optimisation and native code generation.

Glow [Rote 18] is a machine learning compiler for heterogeneous hardware. Neural net-

works are lowered to a dataflow graph based two-phase IR. The high-level graph IR is con-

structed when a neural net is loaded and supports some basic transformations such as constant

propagation. The graph contains functions and storage nodes. The low-level IR is used for

preforming optimisation on low-level memory operations and scheduling, such as transform-

ing buffers in place instead of making copies or replacing copies with device specific DMA

operations.

Domain specific knowledge has the ability to enable further optimisation of programs but

building these type of compilers is more complex as it also requires introducing this knowledge

as well as the transformations to exploit it.

3.2.4 Compiler Frameworks

As building compilers is complicated and time consuming, there have been efforts to build

frameworks that ease producing compilers for domain specific uses.



Chapter 3. Related Work 41

Delite [Brow 11, Suje 14] is a compiler framework for creating DSLs. Delite provides

implementation of high-performance parallel patterns, optimisations and code generators that

can be reused across DSLs. It has been extended to explore different strategies for mapping

data-parallel computations onto GPU hardware [Lee 14].

LMS [Romp 12] is a library-based generative programming approach that lowers the ef-

fort of creating program generators for writing in a high-level generic style while producing

efficient and specialised programs. It makes a reusable and extensible compiler framework

available at the library level. Code generators and the generated code are expressed in a single

program. Projects using LMS include Delite (already described) and Spiral (see Section 3.3).

AnyDSL [Leis 18] is a framework based on partial evaluation for writing high-performance

domain-specific libraries targeting CPUs as well as GPUs. Code generation techniques (GPU

mapping or vectorisation) are exposed as compiler known higher-order functions which will be

partially evaluated to avoid costly closure allocations at runtime. Users control the partial eval-

uation with annotations, allowing to instantiate generic implementations with target specific

code at runtime to generate code specialised for the target hardware.

3.2.5 Intermediate Representations

Compilers do not work on source code directly but use internal data structures that accurately

represent the program and provide the means to manipulate it for the purpose of optimisation.

Different representations of programs have implications on the type of transformations they are

suitable for.

LLVM IR [Latt 04] is a widely used single static assignment (SSA) based strongly typed

intermediate representation that forms the core of the LLVM project. It is part of a large and

mature project with a large number of analyses, optimisation passes and backends and has

found widespread use in industry. It includes backends for AMD and NVIDIA GPUs.

INSPIRE [Jord 13] is a high-level parallel intermediate representation that supports par-

allel language constructs for thread identification, spawning and merging threads as well as

communicating between threads. It is suitable for representing programs written in different

parallel programming standards, such as OpenMP, Cilk, OpenCL and MPI.

SPIR (Standard Portable Intermediate Representation) [Khro 14] is a binary intermediate

representation that was designed to be used for parallel OpenCL programs and is based on

LLVM IR. One of its goals is to be able to distribute partly-compiled device independent bina-

ries instead of source code. It was later redesigned as SPIR-V [Khro 19b] to be independent of

LLVM IR and to be able to represent graphical shaders as well as compute kernels. In addition

to OpenCL, it is now also used by SYCL, Vulkan [Khro 19d] and OpenGL [Khro 19a].

Thorin [Leis 15] is a graph-based, higher-order, functional IR based on continuation-passing

style that is suitable for representing both, imperative as well as functional programs. It also



Chapter 3. Related Work 42

introduces lambda mangling, that takes the place of classical transformations like tail-call elim-

ination, loop unrolling, loop peeling and inlining and simplifies their implementation signifi-

cantly. Thorin is used as the intermediate representation of the AnyDSL project.

Distributed Multiloop Language (DMLL) ([Brow 16] is an intermediate language based on

parallel patterns for targeting distributed heterogeneous systems. It introduces transformations

to optimise for different devices and analyses for determining a distribution of work between

devices. DMLL is implemented on top of the Delite DSL framework.

Compilers do a lot in terms of optimising programs for GPUs, especially when it comes to

low-level details, but they have their limits and need to be complemented by other techniques

to achieve higher performance than is reachable by a compiler alone.

3.3 Exploration of the Optimisation Space

For programs to be able to be automatically optimised and reach high-performance on a va-

riety of devices with different performance characteristics, there needs to be a way to expose

different optimisation choices and a way to explore the effect of those choices. This section

discusses a number of approaches that have been proposed to automatically choose implemen-

tation parameters as well as projects that offer choice over optimisations.

3.3.1 Auto-Tuning

Auto-tuning is a way to choose parameter values of tunable kernels and provide users with

the ability to adapt kernels to suit different devices. It has been used to tune libaries such as

ATLAS [Whal 98a] for linear algebra and FFTW [Frig 05] for fast fourier transforms as well

as in compilers. [Kisu 00, Agak 06] There exist a large number of auto-tuning projects in the

literature and a few of them will be highlighted in this section.

OpenTuner [Anse 14] is a framework for creating domain-specific multi-objective auto-

tuners. It supports a variety of parameters and search techniques, as well as user-defined ones

providing domain specific knowledge. The user-provided domain specific knowledge is crucial

for many problems. It uses several search techniques simultaneously, automatically assigning

more work to the ones that find better performing configurations.

CLTune [Nugt 15] is a state-of-the-art generic auto-tuner for OpenCL kernels. It supports

search strategies such as simulated annealing and particle swarm optimisation to deal with

high-dimensional parameter spaces that may have many non-linearities.

ATF [Rasc 17] is a language-independent auto-tuning framework built on top of OpenTuner

which enables the exploration of huge search spaces with inter-parameter constraints.

The Petabricks language [Phot 13] discussed below has been extended to run parts of the

algorithm on different heterogeneous devices and the different algorithmic and mapping con-



Chapter 3. Related Work 43

figurations are explored using an evolutionary algorithm.

Auto-tuners are limited in the scope of the choices they can make and are restricted to

parameter based tuning. All available choices have to be provided to the auto-tuner by its user

and they lack the ability to automatically and drastically change the tunable kernels.

3.3.2 Exposing and Making Optimisation Choices

As auto-tuning on its own is too limited to achieve performance portability, there are various

projects and frameworks to expose different algorithmic versions and differently optimised

versions of programs to tune. This provides more flexibility and exposing the choices means

that various options can also be automatically explored and appropriate ones selected.

Petabricks [Anse 09] allows the user to provide several algorithmic choices or implemen-

tations of the same algorithm. The compiler and runtime try to figure out the best combinations

of them to use for a given processor. Petabricks has also been extended to generate OpenCL

code [Phot 13].

Spiral [Pusc 05, Ofen 13] is a project that aims to generate and optimise digital signal

processing algorithms for a large variety of devices. It uses DSL rewriting for loop optimisation

and parallelisation as well as expressing algorithmic choices. More recently, it has also been

extended to handle linear algebra [Spam 14].

Halide [Raga 13] schedules determine how a computation expressed as a Halide function

should be performed. It provides primitives for performing computations in a dimension se-

quentially or parallel, for unrolling and vectorisation, dimension reordering and splitting di-

mensions into two. The schedule also specifies where temporary results should be stored or

recomputed in the pipeline. Automatic scheduling based on locality and parallelism-enhancing

transformations with choices using cost models has also been developed [Mull 16].

Tangram [Chan 16, Gonz 19] is a kernel synthesis framework based on spectrums and

codelets. A spectrum specifies a computation, while a codelet provide specific implementa-

tions of them and they are interchangeable. Codelets can themselves invoke other codelets and

interchanging them exposes different levels of composition to enable finding the best fit for

different devices. Each codelet might contain parameters that can be tuned at either compile

time or runtime.

Tiramisu [Bagh 19] is a polyhedral compiler to generate high-performance code for do-

mains such as image processing, stencils, linear algebra and deep learning targeting CPUs,

GPUs and distributed architectures. It introduces a scheduling language similar to that of

Halide but with new extensions for partitioning computation, communication and synchroni-

sation. Tiramisu uses a four-level IR to separate algorithms, loop transformations, data layouts

and communication.

Locus [Teix 19] introduces a language to specify optimisation sequences separately from



Chapter 3. Related Work 44

the application itself. Code regions need to be marked in the source code of the application and

given identifiers. The Locus DSL can then be used to specify, which optimisation sequences

should be explored for the different regions.

The ability to automatically make choices about how a program should be implemented is

crucial for adapting to different devices. Exploring different variations of the same program

can be time consuming.

3.4 GPU Performance Modelling & Prediction

One approach to reducing the time it takes to explore and pick program implementations for a

specific device is to predict the time it takes to run instead of actually running it. Performance

modelling is a long standing field and there have been many projects for resource analysis and

cost models for functional languages and algorithmic skeletons [Trin 13]. This section focuses

on GPUs and describe different approaches to modelling the performance of programs running

on GPUs.

3.4.1 Analytical Performance Modelling

One approach to performance modelling is to describe the device and its runtime behaviour as

mathematical equations so that the time taken to execute a program can be directly calculated.

CuMAPz [Kim 11] is a compile time analysis tool that helps programmers to increase

the memory performance of CUDA programs. It estimates the effects of performance-critical

memory behaviours such as data reuse, coalesced accesses, channel skew, bank conflict and

branch divergence. GROPHECY [Meng 11] uses the MWP-CWP model [Hong 09] (Mem-

ory Warp Parallelism – Computation Warp Parallelism) to estimate the GPU performance of

skeleton-based applications and the effects of different transformations on the performance

to choose the best transformation. GPUPerf [Sim 12] is a version of the analytical MWP-

CWP model enhanced with understanding of cache effects, special functional units, paral-

lelism and binary-level analysis. It provides a way of understanding performance bottlenecks

and predicting the effects of different optimisations when applied to a program. The boat hull

model [Nugt 12] is a modified version of the roofline model that is based on an algorithm

classification and produces a roofline model for each class of algorithm. It uses the estimated

amount of data and computation needed by the algorithm and the theoretical bounds of the

device. It is also extended with data transfer costs to enable comparing running a program on

the host or offloading it to an accelerator.

GPU cache models [Nugt 14b] have been built by extending reuse distance theory with par-

allel execution, memory latency, limited associativity, miss-status holding-registers and warp

divergence and memory coalescing to model cache behaviour and predict miss rates based on a



Chapter 3. Related Work 45

memory trace aquired using Ocelot [Diam 10]. COMPASS [Lee 15] introduces a language for

creating analytical performance models that analyse the amount of floating point and memory

operations based on static code features. Coloured petri nets [Mado 16] have been proposed for

GPGPU performance modelling by simulating both, the program and the hardware by moving

tokens between different nodes in the net. Another approach [Beau 17] builds an analytical

performance model to determine the lower bound on execution time. The lower bound is used

to prune implementations that can not achieve the good performance from the optimisation

space. Low-level GPU ISA solving and assembly microbencharking [Zhan 17] has been used

to collect data about architectural features and performance.

Sensitivity Analysis via Abstract Kernel Emulation [Hong 18] aims to predict execution

time and determine resource bottlenecks for a given NVIDIA GPU kernel binary. It emulates a

small number of thread blocks for the target GPU and extrapolates from the results to determine

execution time of the whole kernel.

Analytical models describe low-level details of the hardware to model performance using

a model written by a hardware expert. They typically use low-level kernel representations to

make their predictions. Developing analytical models requires a significant amount of time and

effort and it is far from trivial to adapt them to new hardware devices. In contrast, the approach

presented in Chapter 6 based on machine-learning is fully automatic.

3.4.2 Statistical Performance Modelling

To automate building performance models without requiring detailed knowledge about the

hardware and its behaviour statistical methods and machine learning can be used.

Early work [Duba 07] extracts static code features and uses a machine learning model that

only needs a small number of training samples per program to predict the performance of op-

timisation sequences and therefore find good transformation sequences. Principal component

analysis, cluster analysis and regression modelling have been used [Kerr 10] to generate predic-

tive models for GPUs and CPUs. Predictive modelling has also been applied in polyhedral com-

pilation [Park 11] to predict speedups for different combinations of polyhedral transformations

based on hardware performance counters. Graph-based program characterisation [Park 12] has

also been used for polyhedral compilation to predict the speedups of optimisation sequences.

Features are collected for every basic block in the control-flow graph (CFG) and the whole

graph is used as input to the model.

Clustering on similarity of a graph-based intermediate representation [Demm 12] has been

used to cluster similar programs and detect similarities that are not obvious for humans looking

at the code. Programs in clusters react similarly to optimisations so one program from a cluster

can be used to develop optimisations also beneficial for the others. Another approach [Stoc 12]

uses machine learning models trained on assembly level features to choose a good combina-



Chapter 3. Related Work 46

tion of transformations for vectorisation. The model predicts the performance of different vec-

torised versions and uses the prediction to rank them and output the one with the best predicted

performance.

MaSiF [Coll 13] uses principal component analysis (PCA) and the k-nearest neighbour

algorithm to auto-tune skeleton parameters for programs written using TBB and FastFlow.

To tune a new program, it’s features are extracted, the k closest near optimal programs are

computed. PCA is then applied to the near optimal parameter values, the mean and eigenvectors

are used to conduct the search. Stargazer [Jia 12] uses step-wise linear regression together with

cubic splines to estimate the performance of programs on different GPU designs in GPGPU-

Sim [Bakh 09]. Starchart [Jia 13] uses random sampling and building regression trees to divide

the whole optimisation space into smaller subspaces. The model predicts the performance or

power usage, based on program parameters such as thread-block sizes, different data layouts

and usage of caches or scratchpad memory.

Regression trees have also been used as part of a hybrid method for autotuning [Pric 15] as

the fitness function for a genetic algorithm to make the auto-tuning converge quicker into the

optimal or near-optimal solution.

Statistical models in compilers traditionally use features extracted from a deep stage in the

compilation pipeline. The work in Chapter 6 instead extracts them at a considerably higher-

level from a functional IR.

3.5 Summary

This chapter presented an overview of research work related to this thesis, starting from high-

level library and language based approaches for GPU programming. Various compilers from

academia and industry along with compiler frameworks and intermediate representations were

described next, followed by auto-tuning for parameter selection and techniques for exposing

and choosing between optimisation choices. Finally, analytical and statistical techniques for

GPU performance modelling were discussed.

While the presented work has made great progress towards ease of programming and

achieving high performance for GPUs, the needs identified in Chapter 1 required to achieve

performance portability have still not been fully addressed in a single approach. The rest of

this thesis will present techniques developed towards a first solution of the performance porta-

bility problem. The next chapter addresses one of the needs identified in Chapter 1 by describ-

ing techniques to compile functional LIFT programs where optimisations have been explicitly

encoded into efficient imperative OpenCL code.



Chapter 4

High-Performance GPU Code

Generation

4.1 Introduction

This chapter describes the process of compiling the functional data-parallel LIFT language,

which explicitly expresses OpenCL-specific constructs, into efficient imperative OpenCL code.

This functional language is built on top of lambda-calculus and expresses a whole computa-

tional kernel as a series of nested and composed function calls to built-in parallel patterns. As

discussed in Chapter 2, it is equipped with a limited dependent type system that reasons about

array sizes and value ranges for variables, preserving important semantic information from the

high-level patterns. The information available in the types is used at multiple stages during

compilation, such as when performing array allocation, index calculation, and even synchroni-

sation and control flow simplification.

One traditional downside of a functional language is that all operations are represented as

functions which produce intermediate results, which require additional storage. This issue is

well known in the functional community [Wadl 90]. In LIFT it is addressed by fusing chains

of composed or nested functions that only affect the data layout (e. g. zip or gather). This

involves recording information about the accessed data in a view structure which is then used to

emit the appropriate array access expression. These indexing expressions are simplified using

a symbolic algebraic simplifier that relies on type information (e. g. array length and value

ranges). This compilation process generates highly efficient GPU code competitive with hand-

tuned kernels. Without this level of performance, any automatic exploration of optimisation

space using LIFT could not match the performance of hand tuned kernels.

This chapter presents the following contributions:

• it shows how semantic information embedded in the high-level functional language is

exploited in various phases of the compilation process, such as memory allocation, ar-

47



Chapter 4. High-Performance GPU Code Generation 48

ray access generation and optimisation, synchronisation minimisation and control-flow

simplification, to generate highly efficient low-level imperative OpenCL code;

• it demonstrates that common but complex optimisations in GPU programming are ex-

pressible in LIFT programs;

• it demonstrates that the performance of the generated GPU code is on par with manually

optimised OpenCL code.

The rest of the chapter is organised as follows: Section 4.2 motivates our approach. Sec-

tion 4.3 discusses the compiler implementation and optimisations for high-performance code

generation. Section 4.4 gives some intuition of how the different optimisations used by the

benchmarks in the evaluation are expressed in LIFT. Section 4.5 and Section 4.6 present the

experimental setup and evaluation before Section 4.7 concludes the chapter.

The author contributed to and extended an existing implemention of type checking and

address space inference and memory allocation, described in section 4.3.1 and section 4.3.2.

The author redesigned or independently developed generating and optimising array accesses,

barrier eliminaion and the code generation and the control flow simplification performed during

code generation, described in section 4.3.3, section 4.3.4 and section 4.3.5.

4.2 Motivation

The problem of producing efficient GPU code has been well studied over the years. Fig-

ure 4.1 gives an overview of the different approaches related to the work presented in this

chapter. Loop-based auto-parallelisation techniques have been extensively studied for lan-

guages like C [Bask 10, Gros 12, Verd 13, Miku 14, Bagh 15]. Recent work on polyhedral

compilation [Bagh 15] for instance has pushed the boundaries of such techniques for GPU

code generation. However, these techniques only operate on loops and require certain property

such as affine indices to work effectively.

In the last decade, there has been a shift towards algorithmic skeletons and Domain Specific

Languages (DSLs). These approaches offer the advantage of exploiting high-level and domain-

specific information. The simplest approaches are based on parametric library implementation

of skeletons such as Thrust [Bell 11] and SkelCL [Steu 11]. However, these approaches are not

portable and more importantly, cannot optimise across library calls.

A different approach consists of lowering the applications to a functional representation

which is then compiled into GPU code. This process involves the mapping of parallelism,

performing optimisations such as fusion of operations and finally code generation. This ap-

proach is used by a many systems such as Copperhead [Cata 11], Delite [Brow 11], Accel-

erate [Chak 11, McDo 13], LiquidMetal [Duba 12], HiDP [Zhan 13], Halide [Raga 13] and



Chapter 4. High-Performance GPU Code Generation 49

DSLs / Skeletons
stencilmatrixmul

Generic Functional Language
...

...

zipreducemap

lowering

map parallelism
+ optimisation

+ code generation
[Brow 11,Cata 11,
Chak 11,Duba 12,
Henr 14,Raga 13,

Zhan 13]

code
generation
[this chapter]

fixed
implementations

+ auto-tuning
[Bell 11,Steu 11] OpenCL Specific Lift

mapGlobal toLocal ...

GPU code

map parallelism
+ optimisation

[Steu 15b]

auto
parallelisation
[Bagh 15]

C Code
for loops

GPU codeGPU codeGPU code

Figure 4.1: GPU code generation landscape.

NOVA [Coll 14].

The drawback of such approaches is that the mechanism to map the parallelism and op-

timise the code is performed within the code generator and, in general, uses a fixed strategy

driven by heuristics. This means that it is challenging to achieve performance portability due

to the large gap between the functional language and the GPU code that will eventually be

produced. In contrast, LIFT is a language which encodes OpenCL-specific constructs. The

decisions of how to optimise code and map the parallelism in LIFT are taken during the con-

version from the high-level generic form to the low-level OpenCL-specific form. This clearly

separates the concerns of optimisation and parallelism mapping from the actual process of code

generation.

This chapter demonstrates that LIFT is capable of expressing many different OpenCL map-

pings and optimisations in a pattern-based and functional style. GPUs are programmed using

imperative languages and the functional LIFT language still needs to be transformed to such a

form. The main contribution of this chapter is to demonstrating novel techniques used by the

LIFT compiler to produces efficient imperative OpenCL code once the original program has

been lowered and mapped into a LIFT program that explicitly encodes optimisations. While a

naı̈ve code generation approach would be straightforward to implement, the evaluation shows

that generating high performance OpenCL code is non-trivial and relies on using the semantic

information of the parallel patterns encoded in the language.



Chapter 4. High-Performance GPU Code Generation 50

LIFT IR
Type

Analysis
Memory

Allocation

Array

Accesses

Barrier

Elimination

OpenCL Code

Generation

Figure 4.2: Overview of the LIFT compilation stages.

4.3 Compilation Flow

Figure 4.2 shows the stages involved in compiling the functional LIFT language into efficient

imperative OpenCL code. The compilation starts by analysing type information and mak-

ing sure the program is well-typed. Type information is also used heavily in the subsequent

memory allocation and efficient array accesses generation passes and is therefore the key for

high-performance code generation.. The barrier elimination stage minimises the number of

synchronisations required for correct parallel code to avoid unnecessary synchronisation over-

heads. Finally, the OpenCL code is generated using code snippets and the final optimisation of

simplifing control flow is performed.

4.3.1 Type System and Analysis

The LIFT compiler implements a limited form of a dependent type system which keeps track

of the length and shapes of nested arrays. Besides array types, the type system supports scalar

types (e. g. int, float), vector types, and tuple types. While vector types correspond to

OpenCL vector data types (e. g. int2, float4) tuples are represented as structs. Array types

can be nested to represent multi-dimensional arrays. In addition, arrays carry information about

the length of each dimension in their type. This length information comprises of arithmetic

expressions of operations on natural numbers larger than zero and named variables which are

unknown at compile time. For example, given an array x of length n where the type of the

elements is float the type of x is written as [float]n. Applying the split(m) pattern to the

array x results in the type [[float]m]n/m.

The types of function bodies are automatically inferred from the parameter types by travers-

ing the IR following the data flow.

4.3.2 Address Space Inference and Memory Allocation

A straightforward memory allocator would allocate a new output buffer for every single FunCall

node. However, this would be very inefficient as data layout patterns, such as split, only change

the way memory is accessed but do not modify the actual data. Memory allocation is, there-

fore, only performed for functions actually modifying data. These are FunCall nodes where

the called function is a UserFun node. For these nodes, the compiler uses the array length in-

formation from the type as well as the target address space to compute the size of the memory

buffer required. When a data layout pattern is encountered, an internal data structure called a



Chapter 4. High-Performance GPU Code Generation 51

view is created, which remembers how memory should be accessed by the subsequent func-

tions. Details of the views are discussed in section 4.3.3.

Address Space Inference Memory is allocated in one of three OpenCL address spaces and

before the size of the buffer can be calculated, the address space for the buffer needs to be

determined. The address space affects which threads can access the data and how the size of

an allocation in that address space needs to be specified. Global memory can be accessed by

all threads and the size of the allocation is specified as the total amount of memory used by all

threads. Local memory can be accessed by threads in a single work-group and the size of the

allocation is specified as the amount used by a single work-group. Private memory can only

be accessed by a single thread and the size of a private memory allocation is the amount of

memory used by a single thread.

The algorithm for inferring address spaces places all the arguments to the LIFT program

to global memory and then traverses the program following the data-flow, propagating and

assigning address spaces the output of all functions will reside in. Patterns that do not perform

any computation just propagate the address space of their arguments. Patters that do perform

computation either get the address space for their output based on the address spaces of their

arguments or from toPrivate, toLocal, toGlobal they are nested in.

More details can be found in [Steu 17].

Size Computation and Memory Allocation Once the address spaces have been determined,

the sizes of buffers are computed using the address space and type information. To do this

the IR is traversed depth-first following the data-flow, while keeping track of the amount of

memory that needs to be allocated for different address spaces based on the patterns and types

encountered during the traversal, as described in Algorithm 1.

The algoritm takes a lambda reprsenting a LIFT program and returns a map that for every

node contains information about which bufers it accesses and what size the buffer needs to be.

The algorithm starts by taking the program lambda and allocating memory for the inputs of the

program and inserting them to the map. The main function of the algorithm is then called in

line 4 to propagate those and all other allocated memories through the whole IR while keeping

track of the number of elements that would need to be allocated, based on the array length

information from the type. These numbers are tracked separately for the three address spaces

that might be encountered.

As before, when inferring the address spaces, the three different cases of Expr nodes:

Literals, Params and FunCalls are considered separately. Memory for Literals can be

allocated based on the size of their type in bytes as seen in line 6. Memory for Params has to

be set when their function is called, as already seen above during address space allocation, so

the algorihm just returns. When a new FunCall node is entered, its input memories entered



Chapter 4. High-Performance GPU Code Generation 52

input : Lambda expression representing a program

output: A map containing memory information for all expressions

allocateMemoryProg(in: lambda)

1 memoryMap = {}
2 foreach param in lambda.params do
3 memoryMap = insert(memoryMap, param, allocateMemory(param.type.size, param.as))

4 return allocateExpr(lambda.body, 1, 1, 1, memoryMap)

allocateExpr(in: expr, in: numGlb, in: numLcl, in: numPvt, in: memoryMap)

5 switch expr do
6 case Literal return insert(memoryMap, expr, allocateMemory(expr.type.size, expr.as));

7 case Param return memoryMap;

8 case FunCall(f, args)

9 foreach arg in args do
10 memoryMap = allocateExpr(arg, numGlb, numLcl, numPvt, memoryMap);

11 switch f do
12 case Lambda(body)

13 memoryMap = allocateLambda(f, args, numGlb, numLcl, numPvt, memoryMap);

14 return insert(memoryMap, expr, lookup(memoryMap, body));

15 case toPrivate(f ) or toLocal(f ) or toGlobal(f )

16 memoryMap = allocateLambda(f, args, numGlb, numLcl, numPvt, memoryMap);

17 return insert(memoryMap, expr, lookup(memoryMap, f.body));

18 case MapGlb(f ) or MapWrg(f )

19 memoryMap = allocateLambda(f, args, numGlb * lengthOfArray(expr.type), numLcl, numPvt,

memoryMap);

20 return insert(memoryMap, expr, lookup(memoryMap, f.body));

21 case MapLcl(f ) or MapSeq(f )

22 length = lengthOfArray(expr.type);

23 if args.as.containsPrivateMemory or f.body.as.containsPrivateMemory then
24 numPvt = numPvt * length;

25 memoryMap = allocateLambda(f, args, numGlb * length, numLcl * length, numPvt,

memoryMap);

26 return insert(memoryMap, expr, lookup(memoryMap, f.body));

27 case Reduce(f )

28 memoryMap = allocateLambda(f, args, numGlb, numLcl, NumPvt, memoryMap);

29 memoryMap = replace(memoryMap, lookup(memoryMap, f.body), lookup(memoryMap,

args.head)); // Last write to the initial value

30 return insert(memoryMap, expr, lookup(memoryMap, f.body));

31 case UserFun

32 numElems = getNumElementsForAS(expr.as, numGlb, numLcl, numPvt);

33 return insert(memoryMap, expr, allocateMemory(numElems * expr.type.size, expr.as))

34 case Iterate(f, )

35 numBytes = // Calculate swap buffer size

36 memoryMap = insert(memoryMap, f, allocateMemory(numBytes, args.head.as));

37 memoryMap = allocateLambda(f, args, numGlb, numLcl, numPvt, memoryMap);

38 return insert(memoryMap, expr, lookup(memoryMap, f.body));

39 otherwise do return insert(memoryMap, expr, lookup(memoryMap, args)) ;

allocateLambda(in: lambda, in: args, in: numGlb, in: numLcl, in: numPvt, in: memoryMap)

40 foreach p in lambda.params and a in args do
41 memoryMap = insert(memoryMap, p, lookup(memoryMap, a))

42 return allocateExpr(lambda.body, numGlb, numLcl, numPvt, memoryMap)

Algorithm 1: Recursive memory allocation algorithm



Chapter 4. High-Performance GPU Code Generation 53

to the map by visiting its arguments (line 10). Once the input memories are inserted into the

map, the type of the function being called is inspected to decide what to do next. If the function

has child nodes, e. g. a map, the memory of the FunCall node will be updated based on them.

Otherwise, e. g. for a split, the argument memory is propagated to the current node (line 39).

For Lambda the input memories are propagated to the parameters and then the body of

the lambda is visited using the allocateLambda helper function in line 13. Since toPrivate,

toLocal and toGlobal only affect the address space, they are ignored and treated almost the

same as Lambda after the address space inference has run.

When a map node is encountered, the type information is used to update the amount of

memory required. This happens as follows for different OpenCL specific map nodes. For a

mapGlb or mapWrg (line 18), the amount of global memory required is updated by multiplying

the current amount with the length of the array being mapped over. Only the global amount

is updated, since local and private memory are by definition available only to a single work-

group or work-item (thread). For a mapLcl or mapSeq (line 21), the amount of global and local

memory required are updated in the same manner as before. Additionally, if anything using

private memory appears as an input or an output, the amount of private memory required is

also updated. When the amounts have been updated, the input memories are propagated and

memory is recursively allocated for the body of the map node using the same allocateLambda

helper function. A reduce (line 27) is handled almost like an address space pattern, except the

memory allocated for the final write (the memory of the body of the lambda) is replaced in

the whole map with the memory for the initial value of the accumulator in line 29. An iterate

needs a swap buffer to be allocated, to be able to use double buffering.

Finally, when a FunCall(UserFun) node is encountered (line 31), a new memory object

needs to be allocated to hold its result. The number of elements to allocate (numGlb, numLcl

or numPvt, which contain information about how the UserFun is nested inside other patterns)

is chosen based on the address space inferred for the current FunCall node. A new memory

object in the required address space is allocated and its size is calculated by multiplying the size

of the return type with the number of elements required for that address space. The algorithm

keeps traversing the IR and propagating the newly allocated memory objects.

As an example, consider the function in Listing 4.1. When the first user function in line 3

is reached numGlb will be N×M×4, numLcl will be M×4, and numPvt will be 4 as mapWrg,

mapLcl and mapSeq have been visited. As the input and output of mapLcl read and write

global memory, numPvt has not been updated. The final size of the allocation depends on

which concrete address space pattern toAddressSpace is, toGlobal, toLocal or toPrivate. So, if

the pattern is toGlobal, then the size of the allocation will be numGlb or N×M×4 bytes.

The objects denoting the allocated buffers, that were propagated through the IR, tie together

the accesses to the same locations in the final allocated OpenCL buffers.



Chapter 4. High-Performance GPU Code Generation 54

1 f(x: [[[float]4]M]N) =

2 (mapWrg(0)(mapLcl(0)(mapSeq(toGobal(id)) ◦
3 mapSeq(toAddressSpace(id)))))(x)

Listing 4.1: Memory allocation with different address spaces. Depending on toAddressSpace

the memory needs to be allocated differently.

1 partialDotProduct(x: [float]N , y: [float]N) =

2 (join ◦ mapWrg(0)( . . .

3 join ◦ mapLcl(0)( . . .

4 reduceSeq(0, λ(a,xy). a + (xy0× xy1))) ◦ split(2)

5 ) ◦ split(128))( zip(x, y) )

Listing 4.2: Partial dot product.

4.3.3 Multi-Dimensional Array Accesses

In the LIFT IR, arrays are not accessed explicitly but implicitly; the patterns determine which

thread accesses which element in memory. This design simplifies the process of lowering high-

level programs to the LIFT IR and guarantees that data races are avoided by construction since

no arbitrary accesses into memory are permitted and threads will not try to write to the same

location. However, this introduces two main challenges when compiling the LIFT IR: First,

avoiding unnecessary intermediate results arising from functions which only change the data

layout; And, secondly, generating efficient accesses to multi-dimensional arrays which have a

flat representation in memory.

Example Consider the dot product example in Listing 4.2. We are interested in understanding

how the arrays x and y are accessed inside the lambda in line 4 and, ultimately, how to generate

code to express these accesses. This is not obvious, as the arrays are first combined using zip

and then split into chunks of size 128 in line 5. When processing a single chunk inside a work

group (mapWrg in line 2), the array is further split into smaller chunks of two elements (line 4)

and every local thread (mapLcl in line 3) performs a sequential reduction. Individual elements

of the arrays are accessed using the xy variable. The xy0 indicates an access to the first element

of the tuple, which is an element of array x.

View Construction A view in the LIFT IR describes an internal data structure which stores

information for generating array accesses. Most patterns produce views, but importantly, func-

tions that only change the data layout will not produce any code to allocate memory and copy

data to a new array in the specified fashion, but will only produce a view.

Most patterns have a view corresponding to them but a single view type can be used for



Chapter 4. High-Performance GPU Code Generation 55

View Contents Generated for Pattern

MemoryView variable used for the memory N/A

ArrayAccessView predecessor, iteration variable i map, reduce

ArrayExitView predecessor, iteration variable i map, reduce

ZipView predecessor views being zipped zip

TupleAccessView predecessor, tuple component accessed get

SplitView predecessor, size of dimension being created s split

JoinView predecessor, size of dimension being joined s join

AsVectorView predecessor, vector width introduced w asVector

AsScalarView predecessor, vector width removed w asScalar

ReorderView predecessor, reordering function f gather, scatter

Table 4.1: Summary of the views used in the LIFT compiler, along with their contents and the

patterns they are used for.

several different patterns. A summary of the different types of views and the patterns that

generate them is shown in Table 4.1. For example, all reduce and map patterns generate Array-

AccessViews when they are entered during the traversal. This is because for all of them only

the variable to use for the access, the type and the predecessor view need to be stored. The

ArrayAccessView indicates that the next inner dimension will be the next one accessed. When

map and reduce IR nodes are exited during the traversal an ArrayExitView is generated. It is

the opposite of an ArrayAccessView and signals that the next outer dimension is now being

accessed. The reordering patterns, gather and scatter, either generate a ReorderView which

contains the predecessor and the reorder function or are ignored depending on whether read or

write accesses are being generated. split, join, asVector, and asScalar all have corresponding

view types that store the chunk size or vector width. The address space patterns are examples

of patterns that do not emit a view and get ignored at this stage.

To generate the read array access for the xy0 expression from our example, the IR is tra-

versed following the data flow until the FunCall node for the user function is encountered as

that is the point where the access is made. For each node a view representing how the particular

node influences the array access is constructed. The resulting view structure is shown on the

left hand side of Figure 4.3 where each view is connected to its predecessor view. For example,

the ZipView has two predecessors, since the two arrays x and y have been combined. Each map

and reduce pattern results in a ArrayAccessView which represents an access in one dimension

of the array by the function and stores the iteration variable that is used for the access in this

dimension. Nested ArrayAccessViews, therefore, correspond to accesses to multi-dimensional

arrays.



Chapter 4. High-Performance GPU Code Generation 56

TupleAccessView(0)

ArrayAccessView(i)

ArrayAccessView(l id)

SplitView(2)

ArrayAccessView(wg id)

SplitView(128)

ZipView

MemoryView(x) MemoryView(y)

Figure 4.3: Views constructed for the generation of the first memory access of dot product.

1 f(x: [[[float]4]]M]N) =

2 (mapWrg(0)(mapLcl(0)(mapSeq(toGobal(id)) ◦
3 mapSeq(toAddressSpace(id)))))(x)

Listing 4.3: Fresh view creation after a user function. Depending on toAddressSpace the new

view needs to be created differently.

After a FunCall containing a user function is encountered, a fresh view structure needs to

be created before continuing the traversal of the IR, in case there is another user function that

needs to read the result of this one. That is the case in line 3 of the example in Listing 4.3.

Furthermore, the new view is different depending on which particular address space pattern

toAddressSpace is.

To be able to create a new view after encountering a user function, information about how

every user function is nested in map and reduce patterns is needed. Specifically, the iteration

variables that have been used until this point and their range is needed. The new views also need

to match the address space that is used. For example, because local memory in OpenCL only

exists within a single group, then it can never be accessed by an iteration variable corresponding

to a mapWrg. Similarly, because private memory only exists within a single thread, it can

never be accessed with a thread id. In Listing 4.3, assuming mapWrg uses the iteration variable

wg id ranging from 0 to N for indexing, mapLcl uses the iteration variable l id ranging from

0 to M for indexing, and the mapSeq uses the iteration variable id ranging from 0 to 4 for

indexing. To create a new view for accessing global memory, information about all three maps

is required; for local memory information about the mapLcl and mapSeq is required, and for

private memory, just information about the mapSeq is required.

Using the address space and nesting information a new MemoryView is created. Figure 4.4

shows the new views that will be created for the example in Listing 4.3. One ArrayAccessView

is created for every iteration variable that is needed for the current address space. This means



Chapter 4. High-Performance GPU Code Generation 57

ArrayAccessView(i)

ArrayAccessView(l id)

ArrayAccessView(wg id)

MemoryView(tmp)

(a) Global memory

ArrayAccessView(i)

ArrayAccessView(l id)

MemoryView(tmp)

(b) Local memory

ArrayAccessView(i)

MemoryView(tmp)

(c) Private memory

Figure 4.4: New views for different address spaces before continuing traversal for the example

in Listing 4.3.

that the MemoryView for global memory will be created with the type [[[float]4]M]N and

contain the variables wg id, l id and i as shown in Figure 4.4a. For local memory, the Mem-

oryView will be created with the type [[float]4]M and the will contain the variables l id and

i as shown in Figure 4.4b. And for private memory, the MemoryView will be with the type

[float]4 and contain just the variable i as shown in Figure 4.4c. Once the new view is created,

traversal continues as before.

To generate the view for the write access storing the result of the reduction function (a+

(xy0× xy1)) in Listing 4.2, the IR is traversed in the opposite order. Because of the reverse

direction of traversal, the dual for a read view is created. I.e. for a join a SplitView is created

and for a split a JoinView is created. For reorder patterns, this time gather is ignored and

a ReorderView is created for scatter, resulting in the reordering being applied on the correct

access. When encountering a user function, fresh views are created for all its arguments. For

our example, the view for generating the store would look very similar to the loads, but without

the TupleAccessView, the ZipView and with only one MemoryView for the output.

View Consumption Once the view structures are constructed, all information required for

generating memory accesses is available. Consuming a view follows the exact same procedure

for reads and writes. An array index expression is calculated by consuming this information in

the opposite order of construction, i. e. top-to-bottom. This process is illustrated on the right

hand side of Figure 4.5 with the resulting array access at the bottom. The constructed view is

shown on left hand side. The Tuple Stack on the right side contains information about tuple

access which determine which array is being accessed. The Array Stack in the middle records

information about which element of the array is being accessed.

Starting from the top with two empty stacks, the TupleAccessView(0) is processed first and

pushes the first component of a tuple, i. e. 0, onto the tuple stack. Then an ArrayAccessView

pushes a new variable (i) on the stack indexing the array in one dimension. Another ArrayAc-

cessView pushes another index variable (l id) on the stack. The SplitView pops two indices



Chapter 4. High-Performance GPU Code Generation 58

TupleAccessView(0)

ArrayAccessView(i)

ArrayAccessView(l id)

SplitView(2)

ArrayAccessView(wg id)

SplitView(128)

ZipView

MemoryView(x) MemoryView(y)

Array Stack Tuple Stack

[] [0]

[i] [0]

[l id, i] [0]

((2× l id)+ i] [0]

[wg id, (2× l id)+ i] [0]

[(2× l id)+(128×wg id)+ i] [0]

[(2× l id)+(128×wg id)+ i] []

[] []

x[(2 × l id) + (128 × wg id) + i]

Figure 4.5: Views constructed for the generation of the first memory access of dot product (on

the left) and consumption of views to generate an array index (on the right).

from the stack and combines them into a one dimensional index using the split factor, linearis-

ing the array access. The ZipView pops from the tuple stack and uses this information to decide

which view should be visited next: the MemoryView(x). Finally, a memory view is reached

which is used to emit the final index to the memory of input x.

In addition to the examples already seen, other views modify the index as follows, before

visiting its child view.

• AsScalarView pops the top index i off the stack, divides it by the vector width w, and

pushes the new index i/w to the stack

• AsVectorView pops the top index i off the stack, multiplies it by the vector width w, and

pushes the new index i×w to the stack

• ReorderView pops the top index i off the stack, applies its reorder function f , and pushes

the new index f (i) to the stack

• JoinView pops the top index i off the stack, distributes it into two indices using the split

factor s, and pushes the new indices i mod s and i/s to the stack in that order

• ArrayExitView pops the top index i off the stack and recursively replaces its iteration

variable in all its child views with i to propagate the correct variable to use for the access



Chapter 4. High-Performance GPU Code Generation 59

1 matrixTranspose(x: [[float]M]N) =

2 (mapWrg(0)(mapLcl(0)(id)) ◦
3 split(N) ◦ gather(λ(i)→ i/N +(i mod N)×M) ◦ join)(x)

Listing 4.4: Matrix transposition in LIFT. Without simplifying the array accesses obtained from

the input view, the arithmetic expressin is needlessly complicated.

1 ((((wg×N+l)/N)+(((wg×N+l)mod N)×M))/M)×M+(((wg×N+l)/N)+(((wg×N+l)mod N)×M))mod M

2 (( wg + l ×M) /M)×M+( wg + l ×M) mod M

3 l ×M+ wg

Figure 4.6: Simplification process of automatically generated array indices.

Simplifying Array Accesses Following the approach described above will generate correct

array indices, however, this naı̈ve treatment leads to long and overly complex expressions. This

issue is illustrated using matrix transposition, expressed in LIFT as shown in Listing 4.4. Here

the join, gather and split patterns flatten the two-dimensional matrix, rearrange the indices with

a stride before splitting the array in two dimensions. When generating the read accesses for the

id function, following the methodology introduced above, the array index shown in Figure 4.6

line 1 is obtained. While this array index expression is correct it is also quite long compared to

the index a human could write for performing a matrix transposition, shown in line 3.

However, a standard compiler would be unable to simplify this expression since important

information about value ranges is missing. In contrast, the LIFT compiler is able to derive

the simplified form using a symbolic simplification mechanism exploiting domain knowledge.

The simplification process follows a set of algebraic rules exploiting properties of arithmetic

operators supported in the compiler (additions, multiplications, integer divisions, fractions,

powers and logarithms). A small subset of the rules supported is shown below:

x/y = 0, if x < y and y 6= 0 (4.1)

(x× y+ z)/y = x+ z/y, if y 6= 0 (4.2)

x mod y = x, if x < y and y 6= 0 (4.3)

(x/y)× y+ x mod y = x, if y 6= 0 (4.4)

(x× y) mod y = 0, if y 6= 0 (4.5)

(x+ y) mod z = (x mod z+ y mod z) mod z, if z 6= 0 (4.6)

The type system exploits domain specific knowledge by inferring range information for ev-

ery variable. For iteration variables, the range takes form of addition, and has information about



Chapter 4. High-Performance GPU Code Generation 60

the start, stop, and step of the variable. For example, the wg id variable corresponding to the

iteration variable used in the for loop generated for the mapWrg, starts at get group id(0),

stops at M, which is the row length of the input matrix, and adds get num groups(0) to it-

self after every iteration. The OpenCL built-in get group id(0) itself ranges from 0 up

to get num groups(0). Similarly, the l id variable corresponding to the iteration variable

used in the for loop generated for the mapLcl loop iteration variable, has values between

get local id(0) and N, since it indexes an array split in chunks of N, and is incremented

by get local size(0) after every iteration. The OpenCL built-in get local id(0) itself

ranges from 0 up to get local size(0), possibly enabling more simplification opportuni-

ties. If the local and/or global thread counts are statically known, get local size(0) and/or

get num groups(0) can be replaced with those values.

The expression (wg id×N+l id) mod N can, therefore, be simplified to l id using rule 4.6

to distribute the modulo followed by rules 4.3 and 4.5 to simplify the remaining modulo op-

erations. A traditional OpenCL compiler is not able to simplify this code, as it is missing the

information that l id is positive and smaller than N. Lines 2 and 3 in Figure 4.6 show the ex-

pression after a few simplification steps. This results in the same compact array index a human

would write.

In one case, disabling the simplification led to the generation of several MB of OpenCL

code. By applying arithmetic simplification concise indices are generated which reduce code

size and speed up execution as costly operations such as division and modulo can often be

simplified away. The performance benefits will be investigated in Section 4.6.

4.3.4 Barrier Elimination

When different threads access the same memory location they must synchronise their accesses

to ensure memory consistency. When compiling a LIFT program, this corresponds to gener-

ating an appropriate synchronisation primitive after each occurrence of a parallel map pattern.

For mapLcl an OpenCL barrier is emitted synchronising all threads in the work group. It also

acts as a memory fence, ensuring the data is accessible to all threads in the work group after

synchronising. OpenCL does not support synchronisation across work groups and the only way

to share data between work groups is to launch several kernels. A return is therefore emitted

after the mapGlb and mapWrg patterns.

Under certain circumstances these barriers are not required, for example, when there is

actually no sharing of data between threads because each thread continues to operate on the

same memory locations or when there are two consecutive barriers emitted due to nested map

patterns.

The LIFT compiler takes a conservative approach to avoiding data races, where a barrier is

emitted by default and is only removed if it can infer from the context that it is not required.



Chapter 4. High-Performance GPU Code Generation 61

1 zip(mapLcl(. . .), mapLcl(. . .))

(a) LIFT program snippet

1 // first argument of zip

2 for (int l_id_0 = get_local_id(0); l_id_0 < N; l_id_0 += get_local_size(0)) {

3 // ...

4 }

5 barrier(CLK_LOCAL_MEM_FENCE); // unnecessary barrier

6

7 // second argument of zip

8 for (int l_id_0 = get_local_id(0); l_id_0 < N; l_id_0 += get_local_size(0)) {

9 // ...

10 }

11 barrier(CLK_LOCAL_MEM_FENCE);

(b) Corresponding generated OpenCL

Figure 4.7: Barriers when generating code for several mapLcl that are arguments to a zip.

1 mapLcl(0)(mapLcl(1)(. . .))

(a) LIFT program snippet

1 for (int l_id_0 = get_local_id(0); l_id_0 < N; l_id_0 += get_local_size(0)) {

2 for (int l_id_1 = get_local_id(1); l_id_1 < N; l_id_1 += get_local_size(1)) {

3 // ...

4 }

5 barrier(CLK_LOCAL_MEM_FENCE); // unnecessary barrier, potentially invalid code

6 }

7 barrier(CLK_LOCAL_MEM_FENCE);

(b) Corresponding generated OpenCL

Figure 4.8: Barriers when generating code for nested mapLcl.

One insight for this barrier elimination process is the fact that for composed mapLcl func-

tions, LIFT only allows sharing of data when using the split, join, gather, scatter, asVector, or

asScalar patterns. These patterns are the only ones changing the access locations and cause

different threads to read the data. Therefore, the compiler looks for sequences of sequentially

composed mapLcl calls which have no split, join, gather, scatter, asVector, or asScalar be-

tween them and marks them specially. These marked mapLcl function calls will not emit a

barrier in the OpenCL code generation stage.

All but the last barrier are eliminated in the situation where several mapLcl appear as ar-

guments of a zip (Figure 4.7a). These barriers can be eliminated since the two arguments of

a zip cannot read each other’s output and can therefore be executed completely independently.

In Figure 4.7b we can see two loops generated by two arguments to a zip and the barrier in line

5 is unnecessary and is eliminated.



Chapter 4. High-Performance GPU Code Generation 62

Similarly, if there is a mapLcl nested inside another mapLcl (Figure 4.8a) the barrier gener-

ated by the inner mapLcl is eliminated, as by definition it cannot access its own output locations

and the barrier after the outer loop will be taken before any of its output locations are read. In

Figure 4.8b we can see two loops generated by two mapLcl where one is nested inside the

other. The barrier in line 5 is unnecessary and is eliminated. Furthermore, if the number of

local threads in dimension 0 is more than N or does not divide N, then the barrier in the nested

loop is in a divergent control flow region, not all threads will take the barrier which can cause a

deadlock. According to the OpenCL specification, a barrier must be encountered either by all

threads of a work-group executing the kernel or by none at all, so the originally generated code

with two barriers is not valid OpenCL without removing the unnecessary barrier in the nested

loop.

If thread counts are known at compilation time then the presence of a barrier in a divergent

control flow region that could not be removed is detected by the LIFT compiler and an error is

raised. In a production environment, runtime checks can be emitted for the case where thread

counts are unknown at compilation time. In the experiments presented in this chapter, the

thread counts are always known and the checks are performed at compile time.

In the LIFT program in Figure 4.9a , a local memory array is first written to and then read

from. As seen in the generated code in Figure 4.9b, in every iteration of the outer loop in line

2, generated by a mapWrg, the same locations in arr are reused. If the number of groups is

known, it can be determined how many times the outer loop will be executed. If it is executed

only a single time, i. e. the number of groups is N / 128, then the barrier in line 11 is removed.

If not, the threads will need to synchronise after reading from arr, as some threads could be

running faster than others and start overwriting the data in the next iteration of the loop.

4.3.5 OpenCL Code Generation

The final stage in the LIFT compilation pipeline is the OpenCL code generation where low-level

optimisations are performed to precisely control the generated code. Computational kernels in

OpenCL are passed to the device compiler as strings so a string containing the OpenCL C code

for a program is the output of the LIFT compiler.

To generate the OpenCL code of an entire LIFT program, all the user functions are first

emitted.

Secondly, the kernel signature is emitted and pointers or arrays for temporary buffers are

emitted based on the memory allocation results. To generate the body of the kernel, the LIFT

IR graph is traversed following the data flow and a matching OpenCL code snippets are gen-

erated for all computational patterns, as well as function calls, array accesses and calls to user

functions.

As an example, the generated kernel for the dot product example in Listing 4.5 is shown in



Chapter 4. High-Performance GPU Code Generation 63

1 mapWrg(mapLcl(toGlobal(. . .)) ◦ . . . ◦ mapLcl(toLocal(. . .)))

(a) LIFT program snippet

1 local arr[128];

2 for (int wg_id = get_group_id(0); wg_id < N / 128; l_id_0 += get_num_groups(0)) {

3 for (int l_id = get_local_id(0); l_id < 128; l_id += get_local_size(0)) {

4 arr[l_id] = /* ... */;

5 }

6 barrier(CLK_LOCAL_MEM_FENCE);

7 // ...

8 for (int l_id = get_local_id(0); l_id < 128; l_id += get_local_size(0)) {

9 /* ... */ = arr[127 - l_id];

10 }

11 barrier(CLK_LOCAL_MEM_FENCE); // potentially unnecessary barrier

12 }

(b) Corresponding generated OpenCL

Figure 4.9: Barriers when generating code for several composed mapLcl in a mapWrg.

Listing 4.6 with only minor cosmetic changes made by hand for presentation purpose (renamed

variables, removed comments, removed extra parenthesis).

The kernel signature in lines 1 to 3 of Listing 4.6 contains entries for all inputs, outputs,

temporary buffers for intermediate results, and the lengths of all arrays. Storage for local

buffers whose size is known at compile time is emitted into the kernel code as seen in lines

4 to 6. No OpenCL code is generated for patterns such as split and toLocal since their effect

have been recorded in the views and allocated memory, respectively. For the different map

patterns, for loops are generated, which for the parallel variations will be executed in parallel

by multiple work groups or threads, such as the loop in in line 8. For the reduceSeq pattern, a

loop with an accumulation variable (e. g. in line 11) is generated calling its function in every

iteration. The code generated for iterate spans lines 20 to 34 with double buffering initializing

two pointers in line 21 and swapping the pointers after each iteration in lines 32 and 33.

Control Flow Simplification The LIFT compiler performs control flow simplification using

the extra semantic information available in patterns and types. A straightforward implemen-

tation would emit a for loop for every map, reduce and iterate pattern. Fortunately, the LIFT

compiler often statically infers if the number of threads for a map is larger, equal or lower

than the number of elements to process. This is the case in lines 23 and 35 of Listing 4.6

which correspond to the mapLcl in line 7 and 5 in the original Listing 4.5. Instead of a for

loop, an if condition has been generated. This is possible because get local id(0) returns

a non-negative number and given the local thread count is 64, only some threads will execute

the body. If it is inferred that the loop executes exactly once by every thread the loop is elim-



Chapter 4. High-Performance GPU Code Generation 64

1 kernel void KERNEL(const global float *restrict x,

2 const global float *restrict y,

3 global float *z, int N) {

4 local float tmp1[64];

5 local float tmp2[64];

6 local float tmp3[32];

7 float acc1; float acc2;

8 for (int wg_id = get_group_id(0); wg_id < N/128; wg_id += get_num_groups(0)) {

9 {

10 int l_id = get_local_id(0);

11 acc1 = 0.0f;

12 for (int i = 0; i < 2; i += 1) {

13 acc1 = multAndSumUp(acc1 ,

14 x[2 * l_id + 128 * wg_id + i],

15 y[2 * l_id + 128 * wg_id + i]);

16 }

17 tmp1[l_id] = id(acc1);

18 }

19 barrier(CLK_LOCAL_MEM_FENCE);

20 int size = 64;

21 local float *in = tmp1; local float *out = tmp2;

22 for (int iter = 0; iter < 6; iter += 1) {

23 if (get_local_id(0) < size / 2) {

24 acc2 = 0.0f;

25 for (int i = 0; i < 2; i += 1) {

26 acc2 = add(acc2 , in[2 * l_id + i]);

27 }

28 out[l_id] = id(acc2);

29 }

30 barrier(CLK_LOCAL_MEM_FENCE);

31 size = size / 2;

32 in = (out == tmp1) ? tmp1 : tmp3;

33 out = (out == tmp1) ? tmp3 : tmp1;

34 barrier(CLK_LOCAL_MEM_FENCE); }

35 if (get_local_id(0) < 1) {

36 z[wg_id] = id(tmp3[l_id]);

37 }

38 barrier(CLK_GLOBAL_MEM_FENCE);

39 }

40 }

Listing 4.6: Compiler-generated OpenCL kernel for the dot product example shown in Listing 4.5



Chapter 4. High-Performance GPU Code Generation 65

1 partialDotProduct(x: [float]N , y: [float]N) =

2 join ◦ mapWrg(0)(

3 join ◦
4 toGlobal(mapLcl(0)(mapSeq(id))) ◦
5 split(1) ◦
6 iterate(6)( join ◦
7 mapLcl(0)( toLocal(mapSeq(id)) ◦
8 reduceSeq(0, add) ) ◦
9 split(2) ) ◦

10 join ◦ mapLcl(0)( toLocal(mapSeq(id)) ◦
11 reduceSeq(0, multAndSumUp) ) ◦
12 split(2) ) ◦
13 split(128, zip(x, y))

Listing 4.5: LIFT implementation of a partial dot product

inated completely, which is the case in line 10 which corresponds to the mapLcl in line 10 in

Listing 4.5.

Performing control flow simplification is beneficial in two ways: first, execution time is

improved as additional jump instructions from the loop are avoided; and, secondly, in general

fewer registers are required when loops are avoided.

Private Memory Arrays To ensure that arrays in private memory are allocated to registers

on GPUs by the device compiler and not spilled into global memory, they are unrolled into

variables instead of declaring them as OpenCL C arrays as seen in Listing 4.7.

This also means, that any for loops generated by computational patterns operating on such

arrays need to be fully unrolled. If a for loop needs to be unrolled is determined by inspecting

the input and output address spaces of the corresponding map or reduce pattern. If any of the

address spaces is private memory, the pattern is marked to be unrolled during code generation.

Since variable length arrays are not supported in OpenCL C, the length of private arrays always

has to be a constant and the bounds of loops operating on those arrays are known, which means

full unrolling is always possible.

To unroll the loop, its body is simply emitted the number of times it has iterations while

keeping track of the current iteration counter when emitting the body. For all memory accesses

the current iteration counter is substituted into the access index, possibly simplifying them even

further. Accesses to the unrolled private arrays get the current constant index after substituting

the current iteration appended to the array name to generate an access to the correct variable.

Vector Component Access When using vector types in OpenCL, it is possible to access

their components. This is done by appending .s and the numeric index of the component



Chapter 4. High-Performance GPU Code Generation 66

1 // array declaration and use

2 int arr[4];

3

4 for (int i = 0; i < 4; i++) {

5 /* ... */ = arr[i];

6 }

7

8 // unrolled array declaration and use

9 int arr_0 , arr_1 , arr_2 , arr_3;

10

11 {

12 /* ... */ = arr_0;

13 /* ... */ = arr_1;

14 /* ... */ = arr_2;

15 /* ... */ = arr_3;

16 }

Listing 4.7: Private memory array declaration and use

1 float4 vec = /* ... */;

2 float sum = 0.0f;

3

4 sum += vec.s0; sum += vec.s1; sum += vec.s2; sum += vec.s3;

Listing 4.8: Vector component use when performing a vectorised reduction.

being accessed to the vector variable name. The numeric index must be within bounds of the

vector type to be legal. This is useful for example when performing a vectorised reduction and

then adding up the components as in Listing 4.8 and therefore important for hardware that has

SIMD units and benefits from vectorised code.

As with our unrolled private memory, the components cannot be accessed by indexing into

them using a loop iteration variable. This means that loops that access components of vectors

have to be unrolled as well, as seen in line 4 of the example. Unrolling is performed much in

the same way as described for private memory arrays. To detect if this needs to be done, the

type of the memory object was allocated for and the type of the type the pattern is accessing

are compared. If the original type was a vector type and it is now being accessed as a scalar

type, the generated loop is marked to be unrolled.

4.3.6 Summary

This section described how LIFT IR is compiled to OpenCL. It used a number of examples to

discuss how types and address spaces are inferred, memory is allocated, concise and efficient

array accesses are generated, barriers are eliminated, and, finally, how the dot-product OpenCL

kernel with simplified control flow shown in Listing 4.6 is generated.



Chapter 4. High-Performance GPU Code Generation 67

4.4 Expressing Optimisations Structurally in LIFT

This section describes how different optimisations commonly used in OpenCL for GPUs can be

expressed using the LIFT primitives. The different optimisations include parallelism mapping,

vectorisation and the use of distinct address spaces provided by OpenCL and the hardware.

The individual optimisations are investigated, along with how they are expressed functionally

and the corresponding generated OpenCL code.

4.4.1 Mapping of Parallelism

In OpenCL, programmers have different choices on how to map the computation to the hard-

ware, which directly affects performance. The programmer might decide to group threads

(work-items) into work groups and use their associated local ids together with their work-

group ids to distribute the work. Often it is also possible to use the global ids of work items

independently of their work-group ids.

In LIFT, using the different layers of the parallelism hierarchy is expressed by using differ-

ent low-level variations of the map pattern that were described in Section 2.4. All variations

share the same high level semantics: applying a function to each element of the input array

to produce the output array. The low-level variations differ in their OpenCL implementations,

where the computation might be performed sequentially (mapSeq), or in parallel, distributing

the workload across work groups (mapWrg), local work items (mapLcl) or global work items

(mapGlb).

Figure 4.10 shows one possible mapping of parallelism for matrix multiplication. In Fig-

ure 4.10a, the mapGlb(0) primitive is used to perform a computation for every row of A. Nested

inside is the mapGlb(1) primitive which maps over the columns of B. The used mapGlb prim-

itives indicate, that a work item with the global ids g id 0 and g id 1 will process a combina-

tion of a row of A and a column of B.

Figure 4.10b shows the corresponding OpenCL code generated for this expression. The

two for loops correspond to the map primitives. In the generic case it is unclear how many

global work items will be launched at execution time, therefore, for loops are emitted and a

single work item might process multiple data elements. For matrix multiplication (and many

other applications) it is common to specialise the OpenCL kernel so that it only works if a

matching global size is selected at execution time. To support this, array length information is

used to statically prove that each work item executes the loop exactly once and avoid gener-

ating the loop altogether as described in Section 4.3. The resulting OpenCL code is shown in

Figure 4.10c.



Chapter 4. High-Performance GPU Code Generation 68

parallelismMapping(A: [[float]M ]N , B: [[float]K ]N ]]) =

mapGlb(0)(λ rowOfA .

mapGlb(1)(λ colOfB . . . . )(B) )(A)

(a) Functional expression using the mapGlb primitive.

1 kernel void KERNEL(...) {

2 for (int g_id_0 = get_global_id(0); g_id_0 <N; g_id_0 += get_global_size(0)) {

3 for (int g_id_1 = get_global_id(1); g_id_1 <N; g_id_1 += get_global_size(1)) {

4 . . .

5 } } }

(b) Generated OpenCL code for an arbitrary global size.

1 kernel void KERNEL(...) {

2 int g_id_0 = get_global_id(0);

3 int g_id_1 = get_global_id(1);

4 . . .

5 }

(c) Generated OpenCL code for fixed global size.

Figure 4.10: Exploiting parallelism using global work items.

4.4.2 Vectorisation

Vectorised Memory Operations Vectorising load and store instructions helps to better utilise

the memory bandwidth by issuing larger memory transfers with a single instruction. For ex-

ample, AMD suggests vectorising copying memory in a vectorised fashion in their example

codes [AMDI 15]. The instructions might have specific requirements for alignment, such as

requiring addresses to be aligned to a multiple of the access size. OpenCL provides specific

vload and vstore built-in functions for loading or storing vector values from arrays of scalar

values.

In LIFT, vectorised memory operations are decomposed into two parts, as shown in Fig-

ure 4.11a: first, interpreting the initially scalar array as a vectorised array using asVector;

secondly, copying the data by applying the vectorised identity function id4 to every element of

the vectorised array. In the example toPrivate indicates a copy into the private memory. The

length of arrays are kept track of in their types. Assuming that A in the example is an array of

N float values. Therefore, its type is written as [float]N . After applying asVector(4) to it,

an array with type [float4]N/4 is obtained. This length information is used when generating

indices in OpenCL as was descirbed in section 4.3.3.

The generated OpenCL code is shown in Figure 4.11b. The id4 function is declared in

the first line and models a copy operation in the functional expression. It will be inlined and,

therefore, optimised away by the OpenCL compiler. After vectorising the array its float4 val-

ues are loaded using vload4 built-in functions. As arrays in private memory are not necessary



Chapter 4. High-Performance GPU Code Generation 69

vectorLoads(A: [float]N) =

( . . . ◦ toPrivate(mapSeq(id4)) ◦ asVector(4) )(A)

(a) Functional expression using the asVector primitive.

1 float4 id4(float4 x) { return x; }

2

3 kernel void KERNEL(const global float* A) {

4 . . .

5 float4 elemsOfA_0 = id4(vload4(index0, A));

6 float4 elemsOfA_1 = id4(vload4(index1, A));

7 . . .

8 }

(b) Generated OpenCL code using vload instructions.

Figure 4.11: Vectorised memory operations.

stored in registers, the array is unrolled into private variables. The first two variables are shown

in lines 5 and 6. To unroll the array, its size has to be statically known, which is the case for

arrays obtained through fixed size tiling. Symbolic computations are used to compute indices

like index0 using the length information stored in the array’s type.

Vectorised Arithmetic Operations Vectorising arithmetic operations is one of the most im-

portant optimisations on Mali GPUs due to its SIMD architecture. The vectorisation of the

dot-product computation will be discussed as an example, which is used as a building block in

matrix multiplication as seen in Listing 5.3.

The dot product is represented functionally by combining two arrays using the zip primi-

tive. It is followed by map(mult) which performs a pairwise multiplication before reduce(0,

add) adds up all the intermediate results. Figure 4.12a shows a vectorised version of the dot

product. The vectorize(4, mult) primitive is used to vectorise the multiplication with a

vector width of 4. After performing the vectorised pairwise multiplication, all values are added

up to compute the scalar result by first interpreting the vectorised data as scalar, and then by

performing a reduction using scalar addition.

The generated OpenCL code is shown in Figure 4.12b. The vectorised function mult4

performs the multiplication operation on two float4 values. The add function in line 2 is not

vectorised and operates on scalar float values. This example OpenCL code assumes that only

two float4 values are combined and multiplied producing a temporary tmp in line 8. The

following two lines reduce the vector by accessing its individual components to produce the

final result.



Chapter 4. High-Performance GPU Code Generation 70

vectorDotProduct(A: [float]N , B: [float]N) =

. . . λ (elemsOfA: [float4]1, elemsOfB: [float4]1) .

(. . . ◦ reduceSeq(0.0f, add) ◦
asScalar ◦ mapSeq(vectorize(4, mult)))(

zip(elemsOfA, elemsOfB))

(a) Functional expression performing a vectorised dot product.

1 float4 mult4(float4 l,float4 r){ return l*r;}

2 float add(float l,float r){ return l+r;}

3

4 kernel void KERNEL(const global float* A,

5 const global float* B) {

6 . . .

7 float4 elemsOfA = /* . . . */; float4 elemsOfB = /* . . . */;

8 float4 tmp = mult4(elemsOfA , elemsOfB);

9 float acc = 0.0f;

10 acc = add(acc,tmp.s0); acc = add(acc,tmp.s1);

11 acc = add(acc,tmp.s2); acc = add(acc,tmp.s3);

12 . . .

13 }

(b) Generated OpenCL code using vector arithmetic instructions.

Figure 4.12: Vectorised arithmetic operations.

1 reusePattern(x: float , y: [float]N , . . .) =

2 . . . map(. . . x . . .)(y) . . .

Listing 4.9: Pattern for reuse. x is used for calculating every element of map(. . .)(y).

4.4.3 Using Different Address Spaces

OpenCL provides several distinct memory regions typically (but not necessarily) corresponding

to different physical memories on the device. Global memory accessible to all work-items

and work-groups and is typically allocated to DRAM on a desktop GPU. Local memory is

shared by a work-group and for example on NVIDIA GPUs, allocated to memory local to

a streaming multiprocessor. Private memory is only accessible to a single work-item and is

typically allocated to registers. This section discusses reasons for using these different address

spaces and how their use is expressed in LIFT.

Data Reuse An important optimisation for GPUs is copying data that is reused to a faster

memory space from global memory before using it. This reduces the number of accesses to

the slow global memory and reduces the latency to access data. This can be data cooperatively

copied to local memory that is used by threads in a group, or data copied to private memory

that is used several times by a single thread, or a combination of both.



Chapter 4. High-Performance GPU Code Generation 71

1 rewrittenReuse(x: float , y: [float]N , . . .) =

2 ( λ x_private .

3 . . . map(. . . x_private . . .)(y) . . .

4 ) ◦ toPrivate(id(x))

Listing 4.10: Pattern for reuse. x is used for calculating every element of map(...)(y) and is

copied to private memory beforehand.

1 matrixVector(A: [[float]M ]N , x: [float]M) =

2 map(λ a .

3 reduce(0.0f, add) ◦ map(mult) ◦ zip(a, x)

4 )(A)

Listing 4.11: Matrix-vector multiplication. The vector x is reused for calculating every element of

the output vector.

An example of reuse occurring in a program can be seen in Listing 4.9. If x in line 1 is

used inside the map in line 2 then it will be reused when calculating every element of the map’s

output and is therefore a candidate to be copied to a faster address space. The best address

space depends on the parallelism mapping that is chosen. The argument x could be a scalar

value, a tuple or even an array. For arrays, different address spaces also impose restrictions

on the number of elements that can reside there at any given time. It will be shown later in

Section 5.5 how combinations of different patterns and rules are used to automatically reshape

the computation to create smaller chunks of data that can fit in faster address spaces.

Listing 4.10 shows the same example, but this time x is copied to private memory assuming

it’s a scalar beforehand, to reduce the cost of loading it for calculating element of the output of

the map.

Listing 4.11 shows the same basic reuse pattern occurring in matrix-vector multiplication.

It can be seen that the input x is reused for calculating every element of the output vector y and

is a candidate for copying to a faster memory space.

Changing Data Access Patterns GPU performance is very sensitive to the access patterns

that are used to load data from global memory. In particular, most desktop GPUs prefer the

data accesses to be coalesced, i. e. consecutive threads access consecutive memory locations.

This enables the hardware to coalesce a number of different accesses into a single memory

load. Sometimes it is necessary to use different access patterns, but it can be possible to use

other address spaces to keep accesses to global memory coalesced.

In the example in Listing 4.12, the writes to global memory are coalesced, but the reads

are not due to gather changing the order in which elements are read. It is possible to replace

the gather with a scatter and move it to the other side of the expression to make the reads



Chapter 4. High-Performance GPU Code Generation 72

1 reverseNotCoalesced(a: [float]N) = (mapGlb(id) ◦ gather(reverse))(a)

Listing 4.12: Example of data access patterns. Writes are coalesced while the reads are not.

1 reverseCoalesced(a: [float]N) =

2 (join ◦ mapWrg(

3 mapLcl(toGlobal(id)) ◦ gather(reverse) ◦ mapLcl(toLocal(id))

4 ) ◦ gather(reverse) ◦ split(64))(a)

Listing 4.13: Rewritten reverse, where all accesses to gloal memory are coalesced

coalesced, but then the writes will not, as scatter reorders the writes.

A better option, is to reshape the computation and process the data in smaller chunks, such

that global accesses are still coalesced as in Listing 4.13. Accesses to global memory are now

all coalesced as the 64 element chunk of the array is still accessed consecutively while the

chunks themselves are being accessed in reverse order. These non-coalesced accesses are into

local memory, where coalescing does not matter. A very similar transformation can be applied,

for example, to matrix transposition except the piece of data copied to local memory will be a

2-dimensional array.

Temporary Results and Communication As described earlier, everything is by default al-

located in global memory and this can lead to large intermediate results. If the result of a user

function is consumed by the same thread, then the result should be allocated in private memory

(double(toPrivate(add)(x,y)) vs double(add(x,y))). If the result is too big for private

memory or needs to be communicated to other threads in the group, local memory should be

used, for example, when performing an iterative tree based reduction.

4.4.4 Summary

This section has discussed a number of GPU optimisations and how they are expressed in

LIFT. It discussed how parallellism is mapped to the GPU thread hierarchy; how vectorisation

of memory and arithmetic optimisations is performed; and using different address spaces for

various purposes.

4.5 Experimental Setup

Two GPUs are used for the evaluation: an AMD Radeon R9 295X2 with AMD APP SDK

2.9.214.1 and driver 1598.5, as well as an Nvidia GTX Titan Black with CUDA 8.0.0 and

driver 367.35. All experiments are performed using single-precision floating point values.

The median runtime of 10 executions is reported for each kernel measured using the OpenCL



Chapter 4. High-Performance GPU Code Generation 73

profiling API. Data transfer times are ignored as the focus is on the quality of the kernel code.

For benchmarks with multiple kernels, the individual kernel runtimes are summed up.

4.6 Experimental Evaluation

This section evaluates the quality of the code generated by the LIFT compiler using 12 OpenCL

hand-optimised kernels collected from various sources shown in Table 4.2. These represent

GPU programs from different fields such as physics simulations (N-Body, MD), statistics and

machine learning (KMeans, NN), imaging (MRI-Q), stencil (Convolution), and universally

useful linear algebra primitives (ATAX, GEMV, GESUMMV, MM). The characteristics of the

reference implementations are described in Table 4.2. Local and private memory denote their

usage for storing data that is reused. The vectorisation of memory or compute operations is

indicated as well as global memory coalescing. Iteration space shows the thread organisation

dimensionality when running the kernel.

4.6.1 Code Size

Table 4.2 also shows the code size in lines of code for each benchmark. For LIFT we distinguish

between the low-level LIFT which is the input for the LIFT compiler discussed in this chapter

and the high-level LIFT discussed in Chapter 2.

The numbers show that writing high-performance OpenCL kernels is extremely challeng-

ing with 768 lines required for an optimised matrix multiplication kernel. The benchmarks in

LIFT are up to 45× shorter, especially the portable high-level programs. The low-level LIFT

programs are slightly longer as they encode optimisation choices explicitly.

4.6.2 Expressing OpenCL Optimisations in LIFT

The reference OpenCL implementations encode GPU specific optimisations. Each implemen-

tation is represented in LIFT by mimicking the optimisation and implementation choices of the

OpenCL reference code. We are interested in testing the ability to represent differently opti-

mised programs using the LIFT patterns presented in Section 2.4. This section gives a brief

overview of different patterns of computation and communication are encoded.

The N-Body implementation from the NVIDIA SDK makes use of local memory to store

particle locations accessed by multiple threads. In LIFT this is represented by copying the

particle locations using map(id) nested inside the toLocal pattern. How the data is copied in

the local memory is controlled by selecting one of the mapSeq, mapLcl, and mapGlb patterns.

The AMD implementation does not use local memory but vectorises the operations expressed

using a combination of mapVec and asVector.



Chapter 4. High-Performance GPU Code Generation 74

Pr
og

ra
m

So
ur

ce
In

pu
tS

iz
e

(S
m

al
la

nd
L

ar
ge

)

C
ha

ra
ct

er
is

tic
s

C
od

e
si

ze

L
oc

al

m
em

or
y

Pr
iv

at
e

m
em

or
y

Ve
ct

or
is

at
io

n
C

oa
le

sc
in

g
It

er
at

io
n

sp
ac

e
O

pe
nC

L
H

ig
h-

le
ve

l

L
IF

T

L
ow

-le
ve

l

L
IF

T

N
-B

od
y,

A
N

V
ID

IA
SD

K
16

K
,1

31
K

pa
rt

ic
le

s
1D

13
9

34
49

N
-B

od
y,

B
A

M
D

SD
K

16
K

,1
31

K
pa

rt
ic

le
s

1D
54

34
34

M
D

SH
O

C
12

K
,7

4K
pa

rt
ic

le
s

1D
50

34
34

K
-M

ea
ns

R
od

in
ia

0.
2M

,0
.8

M
po

in
ts

1D
32

25
25

N
N

R
od

in
ia

8M
,3

4M
po

in
ts

1D
18

7
7

M
R

I-
Q

Pa
rb

oi
l

32
K

,2
62

K
pi

xe
ls

1D
41

43
43

C
on

vo
lu

tio
n

N
V

ID
IA

SD
K

4K
2 ,8

K
2

im
ag

es
2D

92
48

48

A
TA

X
C

L
B

la
st

4K
2 ,8

K
2

m
at

ri
ce

s
1D

42
6

30
64

G
E

M
V

C
L

B
la

st
4K

2 ,8
K

2
m

at
ri

ce
s

1D
21

3
15

32

G
E

SU
M

M
V

C
L

B
la

st
4K

2 ,8
K

2
m

at
ri

ce
s

1D
42

6
30

64

M
M

C
L

B
la

st
,A

M
D

1K
2 ,4

K
2

m
at

ri
ce

s
2D

76
8

17
38

M
M

C
L

B
la

st
,N

V
ID

IA
1K

2 ,4
K

2
m

at
ri

ce
s

2D
76

8
17

65

Ta
bl

e
4.

2:
O

ve
rv

ie
w

,C
ha

ra
ct

er
is

tic
s,

an
d

C
od

e
si

ze
of

th
e

be
nc

hm
ar

ks



Chapter 4. High-Performance GPU Code Generation 75

The Convolution benchmark applies tiling to improve performance by exploiting locality.

Overlapping tiles, required by stencil applications, are created using the slide pattern. Two-

dimensional tiles are achieved by a clever composition of slide with map and matrix transpo-

sition, which itself is expressed using split, join, and gather. These 2D tiles are then coopera-

tively copied into the local memory using the toLocal(mapLcl(id)) pattern composition.

The CLBlast implementation of matrix-vector multiplication (SGEMV) carefully loads el-

ements from the global memory using coalesced memory accesses. In LIFT the gather pattern

is used to influence which thread loads which element from memory and by choosing the right

permutation accesses to the global memory are coalesced.

The MM implementations from CLBlast applies slightly different optimisations for both

GPUs. For NVIDIA CLBlast uses a combination of tiling in local memory, register block-

ing, and vectorisation of global and local memory operations. For AMD it also uses register

blocking and vectorisation but not tiling in local memory. In LIFT, tiling and register blocking

are represented by compositions of the split and map patterns together with a matrix trans-

position, which is itself expressed as combination of split, scatter/gather and join as seen in

section 4.3.3. The LIFT vectorise patterns are used for vectorisation.

LIFT has proven to be powerful and flexible enough to represent this set of benchmarks

and their versatile GPU optimisations. The next section investigates the performance obtained

when generating OpenCL code from low-level LIFT programs.

4.6.3 Performance Evaluation

Figure 4.13 shows the relative performance of the LIFT generated code compared to the man-

ually written OpenCL code on two GPUs. For each benchmark, the performance of the hand-

written OpenCL implementation is compared with the performance of the generated kernel

from the corresponding LIFT program. The different bars represent the performance obtained

with different optimisations enabled and will be explained in the next section.

Concentrating on the right-most, dark red bar in each sub-plot, it can be seen that the code

generator is able to achieve performance on-par with hand-written OpenCL kernels in most

cases. This clearly demonstrates that the functional LIFT is able to express all the low-level

details necessary to produce very efficient OpenCL code. The performance of the generated

code is on average within 5% of the hand-written OpenCL implementation, which is quite a

feat, considering how sensitive the underlying OpenCL compilers are.

4.6.4 Evaluation of Optimisation Impact

The differently colored bars in Figure 4.13 show the impact of code generator optimisations

discussed in Section 4.3. As can be seen, applying none of the optimisations discussed in

this chapter, leads to an average performance of only half the baseline. In extreme cases,



Chapter 4. High-Performance GPU Code Generation 76

N
-B

o
d

y
, 

A
N

-B
o

d
y
, 

B
M

D
K

-M
e

a
n

s
N

N
M

R
I-

Q
C

o
n

v
o

lu
tio

n
A

T
A

X
G

E
M

V
G

E
S

U
M

M
V

M
M

M
e

a
n

AMD NVIDIA

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

S
m

a
ll  

L
a

rg
e

M
e

a
n

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

In
p

u
t 
S

iz
e

Relative performance compared
to manually written OpenCL code.

O
p
ti
m
is
a
ti
o
n
s
:

N
o

n
e

  
 B

a
rr

ie
r 

e
lim

in
a

tio
n

+
 C

o
n

tr
o

l-
flo

w
 s

im
p

lif
ic

a
tio

n

  
 B

a
rr

ie
r 

e
lim

in
a

tio
n

+
 C

o
n

tr
o

l-
flo

w
 s

im
p

lif
ic

a
tio

n
+

 A
rr

a
y
 a

c
c
e

s
s
 s

im
p

lif
ic

a
tio

n

Fi
gu

re
4.

13
:

S
pe

ed
up

of
ge

ne
ra

te
d

co
de

co
m

pa
re

d
to

O
pe

nC
L

re
fe

re
nc

e
im

pl
em

en
ta

tio
ns

.



Chapter 4. High-Performance GPU Code Generation 77

such as matrix multiplication and convolution, the generated code can be as much as 10x or

even 20x slower than the baseline. For convolution, for instance, this is due to the complexity

of the memory accesses expressions resulting from using the slide primitive. However, as

can be seen on the figure, the effect of array access simplification on performance is very

impressive, demonstrating the importance of this optimisation. In addition, disabling array

access simplification generally leads to larger kernel code, up to 7MB of source code in the case

of matrix multiplication. There is one case where the array access simplification surprisingly

makes the perfomance worse. The kernel code does not offer clues as to why this is the case, as

the simplified case contains less aritmetic operations for calculating the array indices and the

rest of the kernel is identical.

Surprisingly, the barrier elimination and control-flow simplification seems to have little

effect on performance on both machines. The largest impact is for the AMD version of N-Body

where the simplification of control plays an important role since this AMD implementation

does not use local memory. The control simplification is able to produce a kernel with a single

loop (the reduction) which corresponds to the human-written implementation. On the other

hand, without the simplification of control-flow enabled, three loops are produced which results

in a 20% slowdown.

4.7 Conclusion

This chapter has presented the compilation flow of LIFT, a functional data-parallel intermedi-

ate representation for OpenCL. It addresses the need of compiling a functional program with

optimisations explicitly encoded into efficient imperative OpenCL code that actually runs on

the devices identfied in Chapter 1 and described the code generation techniques that are the

first contribution of this thesis.

By design, LIFT preserves high-level semantic information which can be exploited by the

LIFT compiler to generate efficient OpenCL code. However, as seen in this chapter, generating

efficient code is far from trivial and requires the careful application of optimisations such as

array access simplification.

The experimental evaluation shown that the optimisations presented in this chapter have

a significant impact on the performance of more complex applications with a performance

improvement of over 20 times. Therefore, these optimisations are crucial to achieving high

performance and producing code on par with hand-tuned OpenCL kernels. It follows that the

automatic structural optimisation techniques based on rewriting presented in the next chapter

could not achieve high performance without the optimisations for generating efficient OpenCL

code presented in this chapter.



Chapter 5

Creating and Exploring the

Optimisation Space with Rewrite Rules

5.1 Introduction

Producing high-performance GPU code is notoriously hard with low-level hardware features

that are directly exposed to programmers, requiring expert knowledge to achieve high perfor-

mance. The memory hierarchy needs to be managed explicitly and memory accesses have to be

carefully handled to avoid memory bank conflicts and ensure coalescing. The code also explic-

itly controls the mapping of parallelism at multiple levels: work-groups, threads, warps, and

vector units. Since each type of device comes with its own performance characteristics, requir-

ing different optimisations, the resulting low-level device-tailored code is ultimately not per-

formance portable. This problem is further exacerbated with mobile GPUs since optimisations

beneficial for desktop GPUs (e. g. AMD, Nvidia GPUs) can negatively impact performance on

mobile GPUs, as will be seen later in this chapter.

Auto-tuners have been proposed to address performance portability issues on GPUs. They

are generally based on a specialised parametric implementation of a computational kernel, such

as matrix multiplication, and the tuning process explores the performance space on the targeted

hardware. However, auto-tuners have two major drawbacks. First, writing the parametric im-

plementation for a given kernel requires non-negligible effort from the programmer. Secondly,

and more importantly, the implementation is limited by a finite set of parameters which might

not be good at expressing complex composition of optimisations. As already shown in Chap-

ter 1, this can result in far from optimal performance when the parametric implementation is

run on a device it was not originally designed for. In other words, auto-tuning alone is not

sufficient to solve the performance portability problem.

In [Steu 15b], the authors propose to use a functional intermediate representation in the

compiler and to express algorithmic and optimisation choices in a unified rule-rewriting sys-

78



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 79

tem. The functional representation provides an abstraction to reason about parallel programs

at the algorithmic level. The rewrite rules define the optimisation space in a formal way, trans-

forming the program seamlessly between different algorithmic forms and then into an low-level

OpenCL-specific form. The previous chapter already showed how programs in the low-level

OpenCL form are compiled into efficient imperative OpenCL code.

This chapter builds upon the work by [Steu 15b] to show how it is applied in practice and

scaled to larger applications using matrix multiplication as a case study. Matrix multiplication

is arguably one of the most studied applications in computer science. It is a fundamental build-

ing block of many scientific and high performance computing applications. Even though it has

been studied extensively for many years, traditional compiler techniques still do not deliver

performance portability automatically. Naı̈ve implementations of matrix multiplication deliver

very poor performance on GPUs; programmers are forced to manually apply advanced opti-

misations to achieve high performance (see Section 5.2). These optimisations are not portable

across different GPUs, making manual optimisation costly and time-consuming.

This chapter combined with Chapter 4 presents a fully automated compilation technique

which generates high performance GPU code for matrix multiplication for different GPUs from

a single portable source programs. This approach achieves this by combining algorithmic and

GPU specific optimisations to generate thousands of provably correct implementations. Using

a pruning strategy, 50,000 OpenCL kernels implementing matrix multiplication are generated

and run on GPUs from AMD and Nvidia. The best implementations found match or exceed

the performance of several high-performance GPU libraries on all platforms.

Additionally, this chapter shows that an auto-tuner designed primarily for desktop-class

GPUs is unable to achieve the full performance potential on mobile GPUs. As an example,

using the auto-tuner with the ARM Mali GPU results in a 40% performance loss compared

using a hand-tuned version written by an expert. In contrast, the rewrite-based approach deliv-

ers performance on par with the best hand-tuned version on each of the three platforms tested.

This is possible due to the generic nature of the rewrite-based code generation technique, which

allows encoding generic optimisations that are combined during the exploration process. This

includes vectorisation and the use of built-in functions, which are highly beneficial for the Mali

GPU.

This chapter makes the following key contributions:

• Demonstrates rewrite rules being used to optimise a complex application by expressing

well-known optimisations as provably correct and composable macro-rules (sequences

of rewrite rules);

• An automated technique for generating high-performance code from a single portable

high-level representation of matrix multiplication;



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 80

1 kernel mm(global float* A, B, C, int N, K, M) {

2 int gid0 = global_id(0);

3 int gid1 = global_id(1);

4 float acc = 0.0f;

5 for (int i=0; i<K; i++)

6 acc += A[gid1*K+i]*B[i*M+gid0];

7 C[gid1*M+gid0] = acc;

8 }

Figure 5.1: Naı̈ve OpenCL kernel for matrix multiplication.

• Experimental evidence that the rewrite based approach is performance portable and

matches the performance of highly tuned CUDA and OpenCL implementations on dif-

ferent GPUs, succeeds where auto-tuners fail to deliver and even outperforms hand-tuned

code on Mali.

The remainder of the chapter is structured as follows. Section 5.2 provides a motivation.

Section 5.3 discusses optimisations for matrix multiplication and how they are represented

functionally in LIFT. Section 5.4 presents rewrite rules that serve as building blocks and Sec-

tion 5.5 describes how they are combined to perform more complex optimisations. Section 5.6

explains the automatic program space exploration strategy used. Section 5.7 and Section 5.8

present the experimental setup and results. Finally, Section 5.9 concludes the chapter.

Some of the rewrite rules described in Section 5.4 were pre-existing from [Steu 15b] (List-

ing 5.4, Listing 5.9, Listing 5.10 and Listing 5.19). The others are original contributions of the

author. The macro rules and the automatic exploration strategy, described in Section 5.5 and

Section 5.6 are the author’s original contributions.

5.2 Motivation

This section illustrates the shortcomings of existing GPU compilers to produce high-performance

code from easy to write naı̈ve implementations as well as the shortcomings of complex auto-

tuned implementations using matrix multiplication as an example. This results in a difficulty of

writing high performing OpenCL programs requiring in-depth knowledge of various hardware

characteristics.

The difficulty to achieve high performance motivates the need for new compilation tech-

niques capable of automatically producing code close to manually optimised implementations

from an easy to write high-level program.

Naı̈ve Version Figure 5.1 shows the OpenCL kernel of a naı̈ve matrix multiplication imple-

mentation using a 2D thread space. The rows of matrix A and the columns of matrix B are

mapped to the first and second dimension of the iteration space using the thread indices gid0



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 81

1 kernel mm_amd_opt(global float* A, B, C, int K, M, N) {

2 local float tileA[512]; tileB[512];

3

4 private float acc_0; ...; acc_31;

5 private float blockOfB_0; ...; blockOfB_3;

6 private float blockOfA_0; ...; blockOfA_7;

7

8 int lid0 = get_local_id(0); lid1 = get_local_id(1);

9 int wid0 = get_group_id(0); wid1 = get_group_id(1);

10

11 for (int w1 = wid1; w1 < M/64; w1 += get_num_groups(1)) {

12 for (int w0 = wid0; w0 < N/64; w0 += get_num_groups(0)) {

13

14 acc_0 = 0.0f; ...; acc_31 = 0.0f;

15 for (int i = 0; i < K/8; i++) {

16 vstore4(vload4(lid1*M/4+2*i*M+16*w1+lid0 ,A)

17 ,16*lid1+lid0 , tileA);

18 vstore4(vload4(lid1*N/4+2*i*N+16*w0+lid0 ,B)

19 ,16*lid1+lid0 , tileB);

20 barrier(CLK_LOCAL_MEM_FENCE);

21

22 for (int j = 0; j < 8; j++) {

23 blockOfA_0 = tileA[0+64*j+lid1*8];

24 // ... 6 more statements

25 blockOfA_7 = tileA[7+64*j+lid1*8];

26 blockOfB_0 = tileB[0 +64*j+lid0];

27 // ... 2 more statements

28 blockOfB_3 = tileB [48+64*j+lid0];

29

30 acc_0 += blockOfA_0 * blockOfB_0;

31 acc_1 += blockOfA_0 * blockOfB_1;

32 acc_2 += blockOfA_0 * blockOfB_2;

33 acc_3 += blockOfA_0 * blockOfB_3;

34 // ... 24 more statements

35 acc_28 += blockOfA_7 * blockOfB_0;

36 acc_29 += blockOfA_7 * blockOfB_1;

37 acc_30 += blockOfA_7 * blockOfB_2;

38 acc_31 += blockOfA_7 * blockOfB_3;

39 }

40 barrier(CLK_LOCAL_MEM_FENCE);

41 }

42

43 C[ 0+8*lid1*N+64*w0+64*w1*N+0*N+lid0] = acc_0;

44 C[16+8*lid1*N+64*w0+64*w1*N+0*N+lid0] = acc_1;

45 C[32+8*lid1*N+64*w0+64*w1*N+0*N+lid0] = acc_2;

46 C[48+8*lid1*N+64*w0+64*w1*N+0*N+lid0] = acc_3;

47 // ... 24 more statements

48 C[ 0+8*lid1*N+64*w0+64*w1*N+7*N+lid0] = acc_28;

49 C[16+8*lid1*N+64*w0+64*w1*N+7*N+lid0] = acc_29;

50 C[32+8*lid1*N+64*w0+64*w1*N+7*N+lid0] = acc_30;

51 C[48+8*lid1*N+64*w0+64*w1*N+7*N+lid0] = acc_31;

52 } } }

Figure 5.2: Hand-optimised OpenCL kernel for fast matrix multiplication on an AMD GPU.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 82

0

1000

2000

3000

Naïve
(Figure 5.1)

clBLAS clBLAS
Tuned

Manual
(Figure 5.2)

Th
ro

ug
hp

ut
 (G

flo
p/

s)

Figure 5.3: Performance comparison of matrix multiplication implementations on an AMD GPU.

and gid1. The for-loop performs the dot-product of a row of A and a column of B in 6. The

final statement stores the result into matrix C.

While this version is easy to write, no existing compiler generates efficient code from it,

despite many years of fruitful research on automatic compiler optimisations. Advanced opti-

misations like the usage of local memory, tiling, or register blocking are not applied automat-

ically by traditional compilers. A lot of static analysis is needed to determine whether these

optimisations are applicable. In contrast, more higher level information is available to the LIFT

compiler.

Manually Optimised Version Figure 5.2 shows a manually optimised version of matrix

multiplication tuned for an AMD GPU. This version performs a tiled matrix multiplica-

tion [Mats 12, McKe 69] using local memory. Register blocking [McKe 69] is used where

each tile is further partitioned into smaller blocks stored in registers. Please notice that Fig-

ure 5.2 shows a shortened version omitting similar declarations (e. g., see line 4) and statements

(e. g., see line 24). The original source code is 268 lines long.

The implementation in Figure 5.2 takes advantage of many hardware-specific features such

as vectorised loads and local memory, which involves the use of synchronisation primitives.

The parallelism is decomposed and mapped in a very specific way, taking advantage of the

thread hierarchy and increasing registers usage using register blocking. In more detail, copying

the tiles into local memory is performed in lines 16–20. Lines 23–25 and lines 26–28 perform

register blocking for tile of A and B respectively. Lines 30–38 perform a partial dot-product

between a block of tile A and B and accumulate temporary results in private memory. Once

all the partial dot-products have been computed and accumulated, lines 43–51 store the final

result of the dot-product into global memory.

Performance Comparison Figure 5.3 shows the performance comparison of the two ver-

sions of matrix multiplication shown in Figure 5.1 and Figure 5.2 together with two versions



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 83

G
F

L
O

P
S

Desktop GPU
(Nvidia)

CLBlast
+CLTune

MAGMA
0

500

1000

1500

2000

2500

Desktop GPU
(AMD)

0

500

1000

1500

2000

2500

3000

CLBlast
+CLTune

clBLAS

Mobile GPU
(ARM)

CLBlast
+CLTune

Hand
optimised

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Figure 5.4: Performance comparison between auto-tuned (left bar) and hand-optimised (right

bar) code. Higher is better.

from the AMD clBLAS library. The clBLAS library provides an expert written implementa-

tion of matrix multiplication. In addition, a tuning script is provided for automatically choosing

implementation parameters for specific GPUs.

It can be seen in Figure 5.3 that the clBLAS library version performs 5× better than the

naı̈ve version, the tuned library version 8× better and the hand-optimised version even 10×
better. It is obvious from this data – and maybe not very surprising – that current OpenCL

compilers fail to automatically reach the performance of optimised libraries or hand-tuned ker-

nels staring from a naı̈ve version. Manual optimisations are still crucial in OpenCL to achieve

high performance and it is often possible to beat highly optimised library implementations with

manual optimisations and specialisations.

Ideally, programmers should write simple programs like the naı̈ve version and automati-

cally obtain the performance of the hand-tuned one.

Auto-Tuning Automatic tuning techniques have been applied quite successfully to matrix

multiplication for over 20 years starting with PHiPAC [Bilm 97] and ATLAS [Whal 98b].

However, auto-tuners rely on a parametric implementation (or a parametric code generator)

that is highly specialised to the target machine. This approach is well-suited in cases where

little variation exists between different processing units but falls short when the target process-

ing units exhibit significant variations. This section illustrates this problem using the CLBlast

library auto-tuned using CLTune, a state-of-the-art auto-tuner which has been shown [Nugt 15]

to achieve competitive performance on several GPUs.

Figure 5.4 shows the performance achieved by CLBlast on three different platforms; two

desktop-class GPUs (Nvidia and AMD) and one mobile GPU (ARM Mali). For each platform,

the performance of the auto-tuner is compared with the best open source reference imple-



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 84

mentation available at the time: MAGMA [Dong 14] on Nvidia, clBLAS on AMD and code

written and optimised by ARM’s engineers [Gron 14] on the Mali GPU. The auto-tuner is able

to achieve significant performance on both desktop GPUs, clearly beating the hand-written

MAGMA and slightly outperforming AMD’s clBLAS.

However, the auto-tuner is unable to achieve the full performance potential on the mobile

GPU resulting in a 40% performance loss. This shortfall is explained by the fact that CLBlast

has been primarily designed for desktop-class GPUs and includes optimisations that are benefi-

cial on these machines but detrimental on the Mali GPU. Examples of these include the use of

local memory and coalesced accesses. The Mali GPU does not have a separate faster scratch-

pad memory and local memory is mapped into global memory. This means that using local

memory just introduces an unnecessary copy of the data in the same physical memory space

without the added benefit of faster memory. Desktop GPUs coalesce the adjacent memory ac-

cesses of different threads together into fewer memory requests while the Mali GPU relies on

caching to provide performance. Using the preferred data access pattern of a device is crucial

for achieving high performance.

While it is conceptually not difficult to realise what needs to be done to reach a higher-level

of performance for some specific machine, it is extremely hard to write a parametric kernel

which exposes these choices as a finite set of parameters. Especially given that a library en-

abled for auto-tuning, such as CLBlast, is already even more complex than the hand-optimised

kernel in Figure 5.3 with more than 1500 lines of parametric OpenCL code just for matrix

multiplication.

Towards High-Performance Code from High-Level Programs This chapter argues that au-

tomatically producing high-performance code is possible if starting from a high-level func-

tional program representation and keep it in the compiler pipeline for as long as possible. To

achieve this, compiler optimisations are encoded as rewrite rules which transform the program

into semantically equivalent optimised forms for different types of hardware. The rewrite rules

express choices available to the compiler such as how parallelism is exploited, where data is

stored, or if vectorisation is applied.

This design offers two main advantages: first, a functional representation ensures that high-

level semantic information is available to the compiler, reducing the need for complicated

static analysis; secondly, the transformations expressed by the rewrite rules are composable and

provably correct, guaranteeing correctness of the generated specialised code. As will be seen,

this design based on a functional representation of programs leads to a compiler that produces

high-performance code like that shown in Figure 5.2 from a high-level program comparable to

the one shown in Figure 5.1 and it also succeeds where the auto-tuner fails.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 85

1 matrixMultiplication(A : [[float]M]K , B : [[float]K]N) =

2 map(λ rowOfA .

3 map(λ colOfB .

4 ( reduce(0.0f,add) ◦ map(mult) )( zip(rowOfA, colOfB) )

5 )( transpose(B) )

6 )(A)

Listing 5.1: Matrix multiplication expressed functionally. This is the input from which the LIFT

compiler generates efficient OpenCL code targeted for the different GPUs.

5.3 Optimising Matrix Multiplication

This section discusses how matrix multiplication represented in the LIFT IR is optimised and

transformed into forms exploiting GPU features explicitly. The basic implementation of ma-

trix multiplication in LIFT is shown in Listing 5.1 and it corresponds to the illustration in

Figure 5.5a where every element of C is computed as the dot product of the corresponding row

from A and column from B.

5.3.1 Traditional Optimisations

Register Blocking Register blocking [McKe 69] is an optimisation technique for matrix mul-

tiplication where the idea is to swap nested loops such that a data item is loaded into a register

and during the execution of the inner loop, this item is reused while iterating over a block of

data from the other matrix. Figure 5.5b shows register blocking for matrix multiplication. Here

each element of the highlighted column of B is reused n times while iterating over a single

column of the highlighted block of A.

It can also be applied to both matrices as shown in Figure 5.5c. Now n elements from A

and m elements from B can be copied to a faster address space to be reused.

Tiling Tiling is a common optimisation used on CPUs and GPUs [Cao 14, Mats 12, McKe 69]

and is highly beneficial for the matrix-matrix multiplication use case application. The idea be-

hind tiling is to increase data locality and fit small portions of data into a faster memory region.

Then the computations are performed while the data is in the fast memory region.

In the context of matrix multiplication, the aim is to create 2D tiles for the output matrix

C. The LIFT compiler achieves this by splitting each input matrix along both dimensions, so

that they are decomposed into multiple tiles, which are copied to a faster memory space before

being multiplied. Figure 5.5d visualises this situation. It is similar to 2 dimensional register

blocking as a tile of the output is still calculated but the amount of data reused can now also be

adjusted in another dimension with parameter k. The highlighted tiles of matrices A and B are

copied to local memory, then multiplied and summed up to compute a tile of matrix C.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 86

A C

B

(a) Matrix Multiplication

A C

B

n

(b) Register Blocking

A C

B

n

m

(c) 2D Register Blocking

A

n

C

B

m

k

k

(d) Tiling

Figure 5.5: Matrix multiplication and examples classical optimisations for it.

Register blocking can be used when processing a tile, combining the two optimisations.

5.3.2 Manually Optimising Matrix Multiplication for Mali

As an example of implementing the tiling optimisaton, this section discusses optimising matrix

multiplication for Mali. It first investigates a hand-optimised OpenCL kernel which implements

the tiling optimisation described before. Then it shows that the functional representation is

suitable for expressing the same optimisations structurally.

ARM has published a paper where they discuss optimisation techniques for their Mali

GPU [Gron 14]. One of the applications investigated is the general matrix multiplication for

which multiple optimised OpenCL kernels are presented. Listing 5.2 shows the best performing

version developed by ARM’s engineers [Gron 14]. To keep the discussion simple a slightly

simpler version is shown, which concentrates on the actual matrix multiplication and omits the

scalar values α and β used in the BLAS formulation of GEMM.

OpenCL kernel analysis The OpenCL kernel shown in Listing 5.2 applies vectorisation

and tiling in private memory as its two main optimisations. The for loop in line 8 iterates

over tiles (or blocks) comprising of 2 float4 elements from matrix A and B. These elements



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 87

1 kernel void mm(global float4* const A,

2 global float4* const B,

3 global float2* C, uint n) {

4 uint i = get_global_id(0);

5 uint j = get_global_id(1);

6 uint nv4 = n >> 2;

7 float4 ab = (float4)(0.0f);

8 for (uint k = 0; k < nv4; ++k) {

9 float4 a0 = A[ 2*i *nv4+k];

10 float4 a1 = A[(2*i+1)*nv4+k];

11 float4 b0 = B[ 2*j *nv4+k];

12 float4 b1 = B[(2*j+1)*nv4+k];

13 ab += (float4)(dot(a0, b0), dot(a0, b1), dot(a1, b0), dot(a1, b1)); }

14 uint ix = 2*i*(n>>1) + j;

15 C[ix] = ab.s01;

16 C[ix + (n>>1)] = ab.s23; }

Listing 5.2: Optimised OpenCL matrix multiplication kernel. This listing shows the blockedNT

version from [Gron 14].

are loaded into private variables in lines 9–12. The dot products of all four combinations of

float4 elements from matrix A and B are computed using the OpenCL built-in dot function

(lines 13 and 13) resulting in four separate intermediate results. These are combined into a

single float4 value (line 13) which is added to the accumulation variable ab (declared in

line 7).

The vectorisation of the addition operation in line 13 is independent of the use of vector

data types for the elements of matrix A and B. Instead, the tiling of 2 values from A and 2 values

from B leads to 4 intermediate results which are added to the accumulation variable using a

vector addition. After the loop, the results are written to global memory in two instructions

(lines 15 and 16) using a vector width of 2.

Optimised matrix multiplication expressed functionally Listing 5.3 shows a functional ex-

pression in LIFT resembling the optimised implementation shown in Listing 5.2. Starting from

the top, the tiling optimisation is expressed by splitting matrices A (line 23) and B (line 22) by a

factor of 2. This groups 2 rows of A and 2 columns of B together. The mapGlb primitives used

in lines 2 and 3 express the mapping of parallelism to global threads in OpenCL: every global

thread processes a pair of 2 rows of A and 2 columns of B.

To complete the tiling of A, a block of 2 rows of A is first transposed (line 20), each row

is split into chunks of 4 elements and then transposed back to obtain tiles with 2× 4 float

values. The same process is applied to B in line 21. The zip (line 20) combines the tiles of

A and B together. These pairs of tiles are then processed by the reduceSeq in line 5 which

corresponds to the for loop in the OpenCL kernel.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 88

1 matrixMultiplication(A, B) =

2 mapGlb(0)(λ 2RowsOfA .

3 mapGlb(1)(λ 2ColsOfB .

4 toGlobal(mapSeq(id2)) ◦ asVector(2) ◦ asScalar ◦
5 reduceSeq(init = (float4)0.0f, λ (acc, (tileOfA, tileOfB)) .

6 (λ 2x2DotProducts .

7 mapSeq(add4(acc)) ◦
8 join ◦ asVector(4, 2x2DotProducts) ) ◦
9 (λ (tileOfAp, tileOfBp) .

10 mapSeq(λ rowOfTileOfA .

11 mapSeq(λ colOfTileOfB .

12 reduceSeq(0.0f, add) ◦
13 asScalar ◦
14 mapSeq(mult4 ,

15 zip(rowOfTileOfA, colOfTileOfB) ),

16 tileOfBp),

17 tileOfAp) ) ◦
18 〈 mapSeq(toPrivate(id4), asVector(4, tileOfA)),

19 mapSeq(toPrivate(id4), asVector(4, tileOfB))〉 ,

20 zip( transpose ◦ split(4) ◦ transpose(2RowsOfA),

21 transpose ◦ split(4) ◦ transpose(2ColsOfB) ))

22 split(2, B)),

23 split(2, A))

Listing 5.3: Low-level functional expression resembling the OpenCL kernel presented in

Listing 5.2.

When processing a single pair of a tile of A and a tile of B inside of the reduction, the pairs

are copied into the private memory in lines 18–19. The asVector(4) primitive vectorises the

data by turning 4 individual float values of a tile into a single float4 value. This section

corresponds to the lines 9–12 in Listing 5.2 where values from matrices A and B are loaded into

private variables.

For each combination of a row of a tile of A and a column of a tile of B, each represented by

a float4 value, the dot product computation is performed in lines 15–17. The dot product is

expressed as a combination of the zip, mapSeq and reduceSeq primitives. The zip (line 15)

combines the two float4 values from the tiles of A and B, before the mapSeq(mult4) (line 14)

performs the vectorised multiplication of the two values. To finish the dot product compu-

tation, reduceSeq(0.0f, add) (line 17) adds up the multiplied values after they have been

turned back into scalar values using the asScalar primitive (line 14). This section corresponds

to the four occurrences of the dot function in line 13 in Listing 5.2.

To complete the reduction over multiple tiles, the computed intermediate result must be

added to an accumulation variable. To achieve this, the computed 2 × 2 dot products are

flattened into a one dimensional array using the join primitive (line 8). The resulting array of

4 float values is vectorised, using the asVector(4) primitve and added to the accumulation



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 89

map( f ) ◦ map(g) =⇒ map( f ◦g)

Listing 5.4: Rule definition for fusing two map primitives

variable acc in line 7. This section corresponds to the vectorised += operation in Listing 5.2

(line 13).

Finally, to write the computed results back to the global memory the vector width is

changed using asScalar and asVector(2) before the actual copy operation in line 4. This

last section corresponds to the lines 15 and 16 from Listing 5.2.

This example should give some intuition on how optimised programs are expressed func-

tionally. This representation enables the automatic transformation of the high-level program in

Listing 5.1 into low-level expressions such as Listing 5.3 using rewrite rules, as the rest of the

chapter shows.

5.3.3 Summary

This section first discussed traditional optimisations for matrix multiplication in general and

then optimisations for the Mali GPU in particular, showing how it is implemented in OpenCL

and in LIFT. The next section introduces the rewrite-rules that enable the LIFT compiler to

automatically combine various optimisations and transform high-level programs into optimised

functional low-level expressions from which OpenCL code is generated.

5.4 Rewrite Rules

A rewrite rule is a well-defined transformation of an expression represented in the LIFT IR (see

also Chapter 2; section 2.4.3). Each rule encodes a simple – and provably correct – rewrite.

Simple rules like the ones presented in this section, are the building blocks for more complex

optimisations that are described in Section 5.5. As an example of a rule, the map-fusion rule in

Listing 5.4 combines two successive map primitives into a single one.

In addition to the rules describing purely algorithmic transformations, there are also rules

lowering the algorithmic primitives to OpenCL specific primitives. For example, the algo-

rithmic map primitive can be mapped to any of the OpenCL specific map primitives, i. e.,

mapWorkgroup, mapLocal, or mapSeq, as long as the OpenCL thread hierarchy is respected.

Interesting interactions exist between the algorithmic and OpenCL specific rules. For ex-

ample, the algorithmic split-join rule in Listing 5.5 transforms a map primitive following a

divide-and-conquer style.

Here the split(n) primitive divides the input into chunks of size n, which are processed by

the outer map and each single chunk is processed by the inner map. Finally, the join primitive



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 90

map( f ) =⇒ join ◦ map(map( f )) ◦ split(n)

Listing 5.5: Divide-and-conquer style split-join rule for the map primitive.

join ◦ mapWrg(mapLcl( f )) ◦ split(n)

Listing 5.6: Nested expression mapped to the OpenCL thread hierarchy.

collects and appends all results. This rule transforms a flat one-dimensional map primitive into

a nested expression which can easily be mapped to the OpenCL thread hierarchy, as seen in

Listing 5.6.

This interaction allows the LIFT compiler to explore different strategies of mapping al-

gorithmic expressions to the GPU hardware. In the example above, the parameter n directly

controls the amount of work performed by the workgroups and local threads which is an im-

portant tuning factor.

In the following subsections, some more rewrite rules are described. They are required in

order to be able to express rich optimisations such as described in Section 5.3 as sequences

of rewrite rules, which are crucial for applications like matrix multiplication. These rules

are applied to simplify the expression, to avoid unnecessary intermediate results, vectorise

functions, or to ensure memory coalescing when accessing global GPU memory.

5.4.1 Fusion Rules

A fusion rule combining two map primitives was shown earlier in Listing 5.4. A similar rule

to fuse a combination of mapSeq and reduceSeq also exists, as shown in Listing 5.7. This

rule avoids an intermediate array produced by the mapSeq(g) primitive, as the function g is

applied to all elements of the input array inside the reduction immediately before the element

is combined with the reduction operator f.

In addition to fusing composed map and reduce primitives, rules to fuse two map primitives

in a zip pattern are also defined, as shown in Listing 5.8. As the lengths of the arrays being

zipped have to be equal then they can be fused and moved out of the zip.

reduceSeq(z, f ) ◦ mapSeq(g) =⇒ reduceSeq(z, λ(acc, x) . f (acc, g(x)))

Listing 5.7: Rule definition for fusing mapSeq and reduceSeq primitives.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 91

zip(map( f , a), map(g, b)) =⇒
map(λ x . ( f (get(0, x)), g(get(1, x))), zip(a, b))

Listing 5.8: Rule definition for horizontally fusing two map primitives that are arguments to a zip.

map(g) =⇒ scatter( f−1) ◦ map(g) ◦ gather( f )

Listing 5.9: Rule definition for changing the access patterns of a map primitive by reordering

both, the input and output.

5.4.2 Memory Access Patterns

The gather and scatter primitives allow specifying an index function to reorder an array. It is

important to point out, that this reordering is not performed in the generated code by producing

a reordered array. Instead, the index computation required to perform the reordering is delayed

until the next primitive accesses the input array. This is similar to lazy evaluation and was

discussed more thoroughly in Chapter 4; section 4.3.3. Therefore, a gather or scatter primitive

effectively controls how the following primitive will access its input or output array.

This design can be taken advantage of by applying the rewrite rule in Listing 5.9.

This rule rewrites an arbitrary map primitive to access its input array in a fashion dictated

by the reordering function f . A common reordering function to use changes the accesses to be

strided, enabling memory coalescing. To ensure correctness, the reordering has to be undone,

by reordering the computed array with the inverse index function as used before. In situations

where each thread processes multiple data elements, this transformation ensures that these

elements are read and written in a coalesced way.

5.4.3 Vectorisation Rules

The basic rule in Listing 5.10 is applied to make use of the vector units in the hardware. It

rewrites a map primitive into a vectorised version. For example, this rule can be applied to

vectorise copying of a tile into local memory which is a technique advocated by AMD in their

example OpenCL codes [AMDI 15].

The rewrite rule in Listing 5.11 describes the vectorisation of a map primitive following a

zip of the concrete operation performed by the function f or the concrete vector width n. It

is easy to see that this rule is correct, since the result of both expressions is an array of scalar

values computed by applying the function f to pairs of elements from a and b.

map( f ) =⇒ asScalar ◦ map( vectorize(n, f ) ) ◦ asVector(n)

Listing 5.10: Rule definition for vectorising the operation performed by a map primitive.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 92

map( f , zip(a, b) )

=⇒
asScalar ◦ map(vectorize(n, f ), zip(asVector(n, a), asVector(n, b)))

Listing 5.11: Rule definition for vectorising the operation of a map primitive that has several

inputs combined by a zip.

reduce(z, ⊕, a )

=⇒
reduce(z, ⊕) ◦ asScalar ◦

reduce(asVector(n, z), vectorize(n, ⊕), asVector(n, a))

Listing 5.12: Rule definition for vectorising the operation of a reduce primitive.

Similarly, a rule for vectorising a reduction is defined in Listing 5.12. The rewritten ex-

pression performs a reduction on the vectorised data using the vectorised operator ⊕ before

the final result is computed by a scalar reduction of the components of the vectorised result

of the first reduction. For this rewrite to be correct, the reduction is required operator ⊕ to be

commutative, as the order in which elements are processed is changed.

The matrix-multiplication version shown in Listing 5.2 uses the OpenCL built-in function

dot to perform a dot product of two float4 values and return the result as a scalar. This func-

tion can be implemented more efficiently by the OpenCL compiler, e. g. by using specialised

hardware instructions. As will be shown in the evaluation, this is highly beneficial on Mali. A

rule to detect a sequence of patterns computing a dot product and rewrite it into a function call

of the dot built-in function is easily defined in Listing 5.13.

For this rule to fire x and y must be of type [float4]N . Now, instead of applying the mult4

function, the dot built-in is applied which also sums the elements. The additional reduceSeq

after applying the mapSeq(dot) adds together the partial results computed by applying the

dot primitive to the accumulation variable which is initialised with z. This shows how a very

specialised optimisation can be implemented as a simple generic rewrite rule.

reduceSeq(z, add) ◦ asScalar ◦ mapSeq(mult4 , zip(x, y) )

=⇒
reduceSeq(z, add) ◦ mapSeq(dot, zip(x, y))

Listing 5.13: Rule definition for detecting computing a dot product and rewriting it to use the dot

built-in.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 93

kernel void KERNEL(global T* in,

global T* out, int N) {

for (int i = 0; i < N; i++) {

out[i] = f (in[i]);

}

}

(a) Code generated for a map before applying the

split-join rule.

kernel void KERNEL(global T* in,

global T* out, int N, int n) {

for (int i = 0; i < N/n; i++) {

for (int j = 0; j < n; j++) {

out[j + i * n] = f (in[j + i * n]);

} } }

(b) Code generated for a map after applying the

split-join rule.

kernel void KERNEL(global T* in,

global T* out, int N) {

for (int i = 0; i < N; i++) {

out[0] = ⊕(out[0], in[i]);

}

}

(c) Code generated for a reduce before applying

the equivalent to the split-join rule.

kernel void KERNEL(global T* in,

global T* out, int N, int n) {

for (int i = 0; i < N/n; i++) {

for (int j = 0; j < n; j++) {

out[0] = ⊕(out[0], in[j + i * n]);

} } }

(d) Code generated for a reduce after applying

the equivalent to the split-join rule.

Figure 5.6: Examples of generated OpenCL code showing the effect of the split-join rule.

reduce(z, ⊕) =⇒
reduceSeq(z, λ (acc, chunk) .

head ◦ reduceSeq(acc, ⊕, chunk)

) ◦ split(n)

Listing 5.14: Rule definition for distributing a reduce primitive.

5.4.4 Split Reduce Rule

The split-join rule presented in Listing 5.5 for map has the effect on generated code as shown in

the examples from Figure 5.6a and Figure 5.6b. Instead of a single loop, two are now generated.

The outer loop is generated from the map that operates on chunks of the original array and the

inner loop is generated from the map that works on elements of the chunk. To achieve the same

effect for a reduce, the rule in Listing 5.14 is defined. The effect of the rule on the generated

code is shown in Figure 5.6c and Figure 5.6d.

If the type of the input was [T]N , then now, after the split(n) it is [[T]n]N/n. This means the

outer reduce is working on chunks of the original array. It calls another reduce on the chunk

and the current partial result in the accumulator. That means that in every iteration of the outer

reduce, n elements are reduced into the accumulator. If the original array is [x1,x2, · · · ,xN ], then

after the split(n) it is [[x1,x2, · · · ,xn], [xn+1, · · · ], [· · · ,xN ]]. After the first iteration of the outer

reduceSeq, the accumulator will contain the sum of the first chunk, z⊕ x1⊕ x2⊕·· ·⊕ xn, and

this will be the initial accumulator value for the second iteration. After the second iteration the



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 94

(a) Regular (b) Transposed

Figure 5.7: Multi-dimensional array access patterns

accumulator will contain the sum of the first two chunks, z⊕x1⊕x2⊕·· ·⊕xn⊕xn+1⊕·· ·⊕x2n.

Finally, after the outer reduce has finished the final result will be z⊕x1⊕x2⊕·· ·⊕xn⊕xn+1⊕
·· ·⊕ xN which is the same as the result of the left hand side before rewriting.

Since the type of chunk and z are different for the outer reduce ([T]n and T) then the re-

duction operator is not associative and, therefore, it can no longer be a reduce but has to be

a reduceSeq. The customising function of both reduce and reduceSeq has to return the same

type as the accumulator. The head in the customising function is an artefact of reduce returning

a single element array [T]1 and is required to access the single element of the result array and

make the right-hand of the rule well typed.

5.4.5 Interchange Rules

An important building block for optimisations such as tiling, is the ability to change the or-

der in which different dimensions of arrays are accessed. Multi-dimensional arrays in LIFT

are stored in a row-major form by default, so they are accessed row by row as shown in Fig-

ure 5.7a for a 2-dimensional array. The same access pattern is used by both, the reads and

writes, when applying a function f to every element of a 2-dimensional array using nested

maps (map(map( f ))). The rest of this section introduces rules for changing the order of ac-

cesses for a number different cases. The order memory is accessed is important, as it has a big

impact on performance. On desktop GPUs, we are interested in rearranging memory accesses

to achieve coalescing.

Mapping over a multi-dimensional array The rule in Listing 5.15 changes the access pattern

when mapping over a multi-dimensional array. Assuming the input type is [[T]M]N , where T

could be any type, and N and M specify the number of rows (N) and columns (M). The

right hand side of the rule first transposes the matrix, so the type is [[T]N ]M, then applies f to



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 95

map(map( f )) =⇒ transpose ◦ map(map( f )) ◦ transpose

Listing 5.15: Rule definition for interchanging the order in which nested map primitives operate.

kernel void KERNEL(global T* in, global

T* out, int M, int N) {

for (int i = 0; i < N; ++i) {

for (int j = 0; j < M; ++j) {

out[j + M * i] = f(in[j + M * i]);

} } }

(a) Before

kernel void KERNEL(global T* in, global

T* out, int M, int N) {

for (int j = 0; j < M; ++j) {

for (int i = 0; i < N; ++i) {

out[j + M * i] = f(in[j + M * i]);

} } }

(b) After

Figure 5.8: Examples of generated OpenCL code demonstrating the effect of the map(map( f))

interchange rule.

every element of the matrix and then transposes the resulting matrix, restoring the original type

[[T]M]N . In both cases f is applied to every element and type input and output types are the

same.

As transpose is defined in terms of patterns that do not actually change the data in memory

but just the access patterns, then the expression on the right hand side accesses the input with

the pattern shown in Figure 5.7b. The outer map now works over the columns and the inner

over the rows. The effect of applying the rule on the generated OpenCL code is swapping the

two for loops that are generated from the 2 maps as seen in Figure 5.8. Note that the indices

for accessing the input and output stay the same, indicating that only the traversal order has

changed.

Mapping over separate arrays The rule in Listing 5.16 is for the case where the two maps

don’t operate on a single matrix but two separate arrays. Assuming the type of A is [T1]N and

the type of B is [T2]M, since the output of the map has the same length as the input, then the type

of output of the left hand side of the rule is [[T3]M]N . If the maps are interchanged such that

the outer one works on B and inner one on A, the output type will be [[T3]N ]M. To restore the

original type, the output needs to be transposed. The effect on the generated OpenCL code is

the same as before, swapping the two generated for loops and accessing the output in a column

by column fashion as shown in Figure 5.7b.

Mapping over a multi-dimensional in the presence of zip Listing 5.17 shows an example

of a rule for the case where the argument of the inner map is a zip. Since the zip moves out,

the arguments to f need to be replaced appropriately. The access pattern to A and the output

changes as also described previously while the one to x stays the same. A very similar rule is



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 96

λ (A: [T1]N , B: [T2]M) .

(λ r: [[T3]M ]N . r) ◦ map(λ a . map(λ b . f (a,b), B), A)

=⇒
λ (A: [T1]N , B: [T2]M) .

(λ r: [[T3]M ]N . r) ◦ transpose ◦
(λ r: [[T3]N ]M . r) ◦ map(λ b . map(λ a . f (a,b), A), B)

Listing 5.16: Rule definition for interchanging two map primitives when they do not operate on a

single matrix.

λ (A: [[T1]M ]N , x: [T2]M) .

(λ r: [[T3]M ]N . r) ◦ map(λ row: [T1]M .

map(λ elemElem: (T1, T2) .

f (get(0, elemElem), get(1, elemElem)),

zip(row,x)),

A)

=⇒
λ (A: [[T1]M ]N , x: [T2]M) .

(λ r: [[T3]M ]N . r) ◦ transpose ◦
(λ r: [[T3]N ]M . r) ◦ map(λ colElem: ([T1]N , T2) .

map(λ elem: T1 . f (elem , get(1, colElem)), get(0, colElem)),

zip(transpose(A), x))

Listing 5.17: Rule definition for interchanging two map primitives when the row of the matrix

accessed is zipped with another array.

defined for the case where the zip originally appears as an argument to the outer map.

Mapping a reduce over a multi-dimensional array Listing 5.18 shows the rule for inter-

changing a reduce that is nested inside a map. The left hand side has the effect of one by one

summing all the rows of a matrix and producing a vector of the sums. It is also possible to

do the reduction such that at each iteration of the reduction a whole column is processed and

every element added to the partial sum for that row, which is the case in the right hand side of

the rule. Firstly, as in this case the reduce directly produces an array the initial value for the

accumulator needs to be changed as well. To do this, a new literal array is created where every

element is the same as the original initial value ([z,z · · ·z]). Secondly, to access a column of A

in every iteration of the reduction, it is transposed before being passed as an argument. Now,

when performing the reduce, col and acc are zipped to match every element of the column

with the corresponding partial sum. The result of the zip is then mapped over and the element

is added to the partial sum. The final result after the reduce needs to be transposed again to

restore the same type as before applying the rule ([[T ]1]N).



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 97

λ (A: [[T]M ]N) .

(λ r: [[T]1]N . r) ◦ map(λ row: [T]M .

reduce(z, λ (elem: T, acc: T) . ⊕(elem , acc))(row) )(A)

=⇒
λ (A: [[T]M ]N) .

(λ r: [[T]1]N . r) ◦ transpose ◦
(λ r: [[T]N ]1 . r) ◦ reduce([z,z · · ·z], λ (col: [T]N , acc: [T]N) .

map(λ elemAcc: (T, T) .

⊕(get(0, elemAcc), get(1, elemAcc)),

zip(col, accArr)),

transpose(A) )

Listing 5.18: Rule definition for interchanging a map and a reduce primitive.

Assume the input is [[x1,1,x1,2, · · · ,x1,M], [x2,1,x2,2, · · · ,x2,M], · · · , [xN,1,xN,2, · · · ,xN,M]]. Then

on the left hand side, the first iteration of the map will produce [x1,1⊕x1,2⊕·· ·⊕x1,M], the sec-

ond [x2,1⊕x2,2⊕·· ·⊕x2,M], with the final result as [[x1,1⊕x1,2⊕·· ·⊕x1,M], [x2,1⊕x2,2⊕·· ·⊕
x2,M], · · · , [xN,1⊕ xN,2⊕·· ·⊕ xN,M]]. On the right hand side, the input is processed column by

column. After accumulator the first iteration of the reduce [[x1,1], [x2,1], · · · , [xN,1]], after the

second [[x1,1⊕ x1,2], [x2,1⊕ x2,2], · · · , [xN,1⊕ xN,2]] until finally computing the same final result

as before.

5.4.6 Simplification Rules

Applying rewrite rules can leave a large number of superfluous data layout patterns in the

program, which unnecessarily complicate the program and also hinder applying fusion rules.

Listing 5.19 contains some examples of simplification rules that remove data layout pat-

terns which undo each other. As a result of the patterns undoing each other, these rules have no

effect on the generated OpenCL code. Their removal is still important to enable the application

of other rewrite rules, such as fusion rules. In the notation used in this chapter, some restric-

tions that ensure that applying the rules is legal are not shown. For example, for the second

case of the split-join rule, the array that is being joined needs to have n elements in the

inner dimension. Similarly, for the second case of the asVector-asScalar rule, the vector

length of the input must be n. Lastly, the rules involving gather and scatter are limited to

reordering functions f where it is known the reordering is being undone.

Since transpose is defined in terms of split, join and gather/scatter the rule in Listing 5.20

is defined as a shortcut. This an example of a macro rule, which are described more thoroughly

in the next section.

Applying the rules presented previously can leave behind other patterns that have no com-

putational effect. For example, the rule in Listing 5.21 removes a map pattern that does not



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 98

join ◦ split(n) =⇒ ε

split(n) ◦ join =⇒ ε

asScalar ◦ asVector(n) =⇒ ε

asVector(n) ◦ asScalar =⇒ ε

gather( f−1) ◦ scatter( f ) =⇒ ε

scatter( f−1) ◦ gather( f ) =⇒ ε

Listing 5.19: Definitions of some simplification rules removing superfluous data layout patterns.

transpose ◦ transpose =⇒ ε

Listing 5.20: Rule definition for removing two transposes that undo each other.

perform any computation.

It is also possible to encode more complex transformation as rewrite rules, although they

border on abusing the rewrite rule system. For example, for simplifying unnecessarily complex

zip constructs that can arise as a result of interchange and fusion transformations. These rules

differ from other rewrite rules, as changes need to be propagated to the part of the program

that consumes the output of the zip. For example, when replacing zip(a, zip(b, c)) with

zip(a, b, c) to access an element of c, get(1, get(1, ...)) needs to be replaced with

get(2, ...)). As a result, the implementation limits them to a subset where the get calls can

be substituted appropriately.

5.4.7 Enabling Rules

Sometimes a rule is not applicable but other rules can be applied to make it possible to apply

the rule. These rules are called enabling rules and they are useful for simplifications as well as

interchange rules.

For example, interchanging the two maps in the following expression, map(join ◦ map( f)

◦ split(n)), is not possible, as the rule does not apply. To be able to transform the expression

so that the rule is applicable, the map fission rule is defined and described in Listing 5.22. This

makes it possible to rewrite the expression to map(join)◦map(map( f))◦map(split(n)), so

that the interchange rule is now applicable.

map(λ x . x) =⇒ ε

Listing 5.21: Rule definition for removing a map that only returns its input and therefore has no

effect.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 99

map( f ◦g) =⇒ map( f ) ◦ map(g)

Listing 5.22: Rule definition for fissioning a single map primitive into two to make other rules

applicable.

For simplifications, an example of an enabling rule is the split-join rule. For example, in

the expression split(n) ◦ map( f) ◦ join, the split-join rule can be applied, followed by

the appropriate simplification rule twice to get map(map( f)). When the split-join rule is used

in this fashion f contains no user functions and only other data-layout changing pattens.

5.4.8 Implementation

As the LIFT language and compiler are implemented in Scala (see Chapter 2), then implemen-

tation of rewrite rules relies on features such as pattern matching and partial functions. This

allows expressing the rules in a form quite similar to the notation used above. The rules pattern

match on the IR representation of LIFT, operate on Expr nodes and return new Expr nodes, so

have the Scala type PartialFunction[Expr, Expr]. Using partial functions allows query-

ing whether a rule is applicable at a given Expr node using its isDefinedAt(x: Expr):

Boolean member function.

When primitives require a value (e. g. split factor) to be specified then it is introduced to

the expression as a symbolic variable. Not committing to a particular value at this stage makes

it possible to explore different values that lead to different performance later in the exploration.

Pattern matching also supports adding additional constraints for a case to match the pattern.

This can be done by adding an if condition containing any code to check those constraints after

the pattern. This mechanism is used to check, for example, that the OpenCL thread hierarchy

is respected, that simplifications are valid based on array lengths or vector widths or that the

type that a rule is attempting to vectorise can in fact be vectorised.

After applying a rule, the program surrounding the Expr node where it was applied needs

to be rebuilt as the structure of the IR is immutable and the replacement cannot be performed

in place. As the goal is to create several versions of the same program then doing replacement

in place would also destroy the original program preventing the application of different rules

to it.

Rebuilding is performed by traversing the whole program, keeping track of the current

node, the node to replace and the node to perform the replacement with. If the current node

is the one to replace, the new node is returned. Otherwise, if the current node is a function

call, the replacement is first attempted in the arguments. If the call is to a function which has

child nodes, child nodes are visited next. If the replacement occurred in the arguments or in the

child node, a new FunCall node is instantiated with the new arguments or body. All map and



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 100

reduce nodes have a helper member function to create a new node of the same type but with a

new body to help perform the replacement in the child nodes. If no replacement occurred, the

existing node is returned.

5.5 Macro Rules and Encoding Optimisations

By design, each rewrite rule encodes a simple transformation. As discussed in the previous

section, more complex optimisations are achieved by composition.

To guide the automatic rewrite process rewrite rules are grouped together into macro rules

which encode sequences of rules to apply, as it can require tens or hundreds of rule applications

to perform an optimisation. The space created by applying that many rules is huge and defining

macro rules enables enables cutting the optimisation space to a much smaller size without

excluding interesting optimised implementations.

A macro rule aims to achieve a particular optimisation goal, such as apply tiling or block-

ing or a smaller steps of those optimisations. These macro rules are also more flexible than

the simple rules as try to apply different sequences of rewrites to achieve their optimisation

goal, whereas a simple rewrite rule always performs exactly the same transformation. For ex-

ample, it might be required to first rewrite the source expression into a form where the rewrites

performing the actual optimisation (e. g., tiling) can be applied, as described in section 5.4.7.

5.5.1 Map Interchange Macro Rule

An example of a macro rule performing a single step of an optimisation is one for performing

an interchange of two map patterns. As seen in section 5.4.5, there are a number of differ-

ent rules that perform the same action but in slightly different circumstances. Therefore, a

macro rule is defined that chooses the correct one to apply depending on which one of them

applies. Additionally, it will automatically apply the fissioning rule to make the rule applicable

if necessary.

In the two examples below, none of the interchange rules apply immediately but both of

them can be rewritten into a form where one of them is applicable by applying the fission rule.

The macro rule will determine the position of the nested map primitive and apply the fission

rule appropriately. In the first example, the rule needs to be applied twice, and in the second

only once.

map(join() ◦ map( f ) ◦ split(n))

map(λ a . join() ◦ map( f ) ◦ zip(a, · · ·))

The examples after applying the split-join rule where an interchange rule can now be ap-

plied are below. After applying the appropriate fission rules, the macro rule will pick the



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 101


[a, b, c, d, e, f ],

[g, h, i, j, k, l],

[m, n, o, p, q, r],

[s, t, u, v, w, x]


(a) [[T]6]4


[
[a, b, c, d, e, f ],

[g, h, i, j, k, l]

]
,[

[m, n, o, p, q, r],

[s, t, u, v, w, x]

]


(b) [[[T]6]2]2
[
[[a, b], [c, d], [e, f ]],

[[g, h], [i, j], [k, l]]

]
,[

[[m, n], [o, p], [q, r]],

[[s, t], [u, v], [w, x]]

]


(c) [[[[T]2]3]2]2


[ [

[a, b],

[g, h]

]
,

[
[c, d],

[i, g]

]
,

[
[e, f ],

[k, l]

] ]
,[ [

[m, n],

[s, t]

]
,

[
[o, p],

[u, v]

]
,

[
[q, r],

[w, x]

] ]


(d) [[[[T]2]2]3]2

Figure 5.9: Creating 2×2 tiles in a 4×6 matrix. The the data structure and its type after each

rule application is shown.

appropriate interchange rule to apply. For the top one, the basic one is chosen, and for the

bottom one, the zip one is chosen.

map(join()) ◦ map(map( f )) ◦ map(split(n))

map(join()) ◦ map(λ a . map( f ) ◦ zip(a, · · ·))

Another macro rule is defined to perform this interchange transformation for when a re-

duce is involved. As with the one described, it will apply fission rules and then choose the

appropriate reduce interchange rule to apply.

5.5.2 Basic Tiling

Tiling a matrix transposition or any other computation in the form map(map(f)) is achieved by

applying split-join macro rule twice and the interchange macro rule once. The sequence of rules

for tiling transformation and their effect when applied on a program is shown in Figure 5.10.

The corresponding input matrix for every step is shown in Figure 5.9.

To walk through the sequence, consider the example program in Figure 5.10a. Its the input

is a matrix of type [[T]6]4 and is shown in Figure 5.9a.

The tiling starts by applying the split-join rule to the outer dimension to get the program in

Figure 5.10b. The input matrix to the nested map(map(map(f))) now has the type [[[T]6]2]2 and

is shown in Figure 5.9b.

This followed by another split-join on the inner dimension to get the program in Fig-



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 102

1 tilingExample(A: [[T]6]4) = map(map( f ), A)

(a) Starting program. The input to the nested maps has type [[T]6]4.
↓ Apply split-join

1 tilingExample(A: [[T]6]4) =

2 join ◦
3 map(map(map( f ))) ◦
4 split(2, A)

(b) The input to the nested maps has type [[[T]6]2]2.
↓ Apply split-join

1 tilingExample(A: [[T]6]4) =

2 join ◦ map(map(join)) ◦
3 map(map(map(map( f )))) ◦
4 map(map(split(2))) ◦ split(2, A)

(c) The input to the nested maps has type [[[[T]2]3]2]2.
↓ Apply interchange

1 tilingExample(A: [[T]6]4) =

2 join ◦ map(map(join)) ◦ map(transpose) ◦
3 map(map(map(map( f )))) ◦
4 map(transpose) ◦ map(map(split(2))) ◦ split(2, A)

(d) Final tiled program. The input to the nested maps has type [[[[T]2]2]3]2.

Figure 5.10: Creating 2× 2 tiles when mapping over a 4× 6 matrix. The LIFT program after

each rule application is shown.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 103

tile(n, k, A) =

map(transpose) ◦ map(map(split(k)), split(n, A))

Listing 5.23: Using a combination of split, transpose and map to tile a matrix.

ure 5.10c. The input matrix to the nested map(map(map(map(f)))) now has the type [[[[T]2]3]2]2
and is shown in Figure 5.9c.

Finally, the interchange rule is applied on the two middle dimensions to get the program

in Figure 5.10d. The input matrix to the nested map(map(map(map(f)))) now has the type

[[[[T]2]2]3]2 and is shown in Figure 5.9d.

The innermost two dimensions of the resulting four dimensional array, with the type [[T]2]2,

now form the set of 2×2 tiles. This sequence of rules is one of the macro rules that encodes a

larger optimisation.

5.5.3 Optimising Matrix Multiplication with Macro Rules

Like the tiling rule presented in section 5.5.2, applying the tiling and blocking optimisations

to matrix multiplication consists of applying split-join and interchange rules in the appropriate

order. Turning a textbook matrix multiplication into an optimised version using macro rules is

shown in Figure 5.11.

Building the tiles Listing 5.23 shows map and split and the high-level function transpose

presented earlier used to produce a tiled representation of matrix A (or B). The first split(n)

divides A into chunks of n rows. The second split(k) divides the columns of A into chunks of k

columns each. Finally, the transpose reorganises the created chunks into 2D tiles of size n× k.

The reuse of unmodified primitives illustrates the power of composition and shows that larger

building block can be build on top of a very small set of primitives. This makes the design of

the compiler easier since the compiler only need to handle a very small set of primitives and

does not need to know about higher-level building blocks such as transpose or tile.

Combining everything As a result of applying split-join and interchange rules, these basic

principles are applied to both matrices and zip is used to combine them, the second expression

shown in Figure 5.11 is obtained. The tile function is used twice to tile both matrices in the last

two lines. Line 11 combines a row of tiles of matrix A with a column of tiles of matrix B using

the zip primitive. The computation of dot-product remains unchanged (line 8) and is nested

in two map primitives, now operating on pairs of tiles instead on entire matrices. To compute

matrix multiplication in a tiled fashion, the intermediate results computed by multiplying the

pairs of tiles have to be added up. This is done using the reduce primitive introduced in line 4

combined with the + operation used in line 5 to add up two tiles.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 104

Naı̈ve matrix multiplication

1 matrixMultiplication(A : [[float]M]K, B : [[float]K]N) =

2 map(λ arow .

3 map(λ bcol .

4 reduce(0, +) ◦ map(×) ◦ zip(arow, bcol)

5 , transpose(B))

6 , A)

Apply tiling macro rule

1 matrixMultiplication(A : [[float]M]K, B : [[float]K]N) =

2 untile ◦ map(λ rowOfTilesA .

3 map(λ colOfTilesB .

4 reduce(0, λ (tileAcc, (tileA, tileB)) .

5 map(map(+)) ◦ zip(tileAcc) ◦
6 map(λ as .

7 map(λ bs .

8 reduce(0, +) ◦ map(×) ◦ zip(as, bs)

9 , tileB)

10 , tileA)

11 zip(rowOfTilesA, colOfTilesB))

12 ) ◦ tile(m, k, transpose(B))

13 ) ◦ tile(n, k, A)

Apply blocking macro rule

1 matrixMultiplication(A : [[float]M]K, B : [[float]K]N) =

2 untile ◦ map(λ rowOfTilesA .

3 map(λ colOfTilesB .

4 reduce0, (λ (tileAcc, (tileA, tileB)) .

5 map(map(+)) ◦ zip(tileAcc) ◦
6 map(λ aBlocks .

7 map(λ bs .

8 reduce(0, +) ◦
9 map(λ (aBlock, b) .

10 map(λ (a) . a × b

11 , aBlock)

12 ) ◦ zip(transpose(aBlocks), bs)

13 , tileB)

14 , split(l, tileA))

15 , zip(rowOfTilesA, colOfTilesB))

16 ) ◦ tile(m, k, transpose(B))

17 ) ◦ tile(n, k, A)

Figure 5.11: Transforming matrix multiplication by combining optimisations using macro rules.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 105

This complex transformation is achieved by applying macro rules that are composed of

simple rewrite rules like the ones presented in Section 5.4. As each of these simple rules

is provably correct, by composition the bigger transformations are automatically valid as well.

This is a major advantage compared to traditional compiler techniques, where complex analysis

is required to apply such big optimisation steps.

Blocking Blocking is represented by swapping nested map primitives as shown in the third

expression in Figure 5.11. Like the macro rule for tiling matrix multiplication, the macro rule

for blocking uses split-join and interchange rules to achieve its goal.

It starts by spliting tileA on line 14 to form multiple blocks of rows. For combining multiple

rows of tileA with a single column of tileB the resulting blocks of rows of A (aBlocks) is

transposed before using zip on line 12. Then map is applied (line 9) to obtain a pair of elements

of tileA (aBlock) together with a single element of tileB (b). The element b is reused on line 10

while iterating over aBlock using the map primitive.

While it might seem like the macro rules are just compositions of existing rules, it is worth

noting that they are driven by the goal of achieving specific optimisations for the hardware

devices. This makes them an important structuring mechanism while at the same time avoiding

an explosion in the size of the search space and making it feasible to explore these optimisatons

automatically. The next section will describe how these macro rules are used to explore the

optimisation space.

5.6 Automatic Exploration Strategy

Having defined optimisations as rewrite rules, it is now possible to explore the space automati-

cally by applying a combination of rules to the input program. However, the resulting space is

extremely large, even potentially unbounded, which opens up a new research challenge. This

is in stark contrast to classical auto-tuners which have a much smaller space to explore due

to their parametric nature. However, this is also the main reason why auto-tuners sometimes

fail to achieve high-performance as seen in the motivation; they are bound by the fixed set of

parameter chosen by the implementer and cannot search beyond these. In contrast, the LIFT

rewrite-based approach is able to combine the various optimisations expressed as rules in any

way and can, therefore, explore a far larger amount of implementations unreachable with clas-

sic auto-tuning.

A simple and heuristic-based pruning strategy to tackle the space complexity problem is

presented here. Future research will investigate more advanced techniques to fully automate

the pruning process, e. g. using combinations of micro-benchmarking and machine learning.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 106

... ...

... ...

... ...

Algorithmic

Exploration

OpenCL speci c

Exploration

Parameter

Exploration

Code Generation

Phases:

Figure 5.12: Exploration and compilation strategy and the number of program variants gener-

ated for desktop class GPUs

For matrix multiplication, the exploration starts from the high level expression shown in

Listing 5.1. Rewrite rules are automatically applied until a low-level expression is produced

such as Listing 5.3 from which OpenCL code is generated.

Figure 5.12 gives an overview of the exploration and compilation strategy. For desktop

class GPUs 46,000 OpenCL kernels are generated from a single high-level program.

5.6.1 Algorithmic Exploration Using Macro Rules

To explore different algorithmic optimisation choices, the algorithm shown in Algorithm 2 is

used. allRules in line 1 contains all the rules that will be applied during the exploration. The

vectorisation optimisations discussed in section 5.4.3 as well as 1D and 2D register blocking,

and tiling presented in Section 5.5 are encoded and contained in the list.

To generate the 8 algorithmically rewritten programs, 20,000 program variations are con-

sidered. These variations are produced by applying these macro rules at all valid locations in

line 2 starting from the high-level matrix multiplication program in Listing 5.1. The recursive

algorithm (applyRulesRecursively) for applying the macro rules is described in more detail

below. As inputs, it takes the current program, the number of recursive calls that should be per-

formed and the rules applied so far. First, some rule are removed from consideration in line 6.

This removes rules that have already been applied twice. Next, in line 7, all nodes in program

are inspected for all rulesToTry to see if they can be applied there to produce a list of node

and rule pairs. Each pair contains a node and a rule can be applied there. In line 8 all these rule

applications are performed to create new algorithmically rewritten variations of program.

Finally, the algorithm either just returns the rewritten variations (line 9) or recursively calls

itself on all the newly created variations to create more (line 11).

After creating the algorithmically different variations, most variations have unnecessary



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 107

data-layout patterns in them. This inhibits the possibility of fusing map and reduce primitives

and using less memory and/or a faster address space for storing temporary results and will

therefore be automatically removed if possible. The expression below is an example where the

interchange rule has been applied twice, first on map(reduce) and then on map(map). The

reduce and map could be fused if there were no transpose patterns between them.

transpose ◦ reduce(z, λ (acc, elem) . map(⊕)(zip(acc, elem))) ◦
transpose ◦ transpose ◦ map(map( f )) ◦ transpose

Therefore, the variations are simplified in line 3 of Algorithm 2. The algorithm for sim-

plifying an expression will attempt to fuse as many map and reduce primitives as possible and

eliminate as many data-layout patterns as possible. It starts by trying to apply fusion rules to

the program. Once none of the fusion rules can be applied, it will try to apply simplification

rules. If there are simplification rules that can be applied, it will do so and then attempt to

apply fusion rules again. If no fusion or simplification rules can be applied, the algorithm will

attempt to apply different enabling rules. For each version produced by applying a different

enabling rule it will attempt fusion and simplification rules again. Once none of them can be

applied, it will pick the one with the fewest nodes as the one to keep working on and attempt to

apply enabling rules again. If no fusion or simplification rules apply, it will try to apply more

enabling rules up to a maximum of 5. If none of that enables more fusion or simplification, the

algorithm terminates and returns the current program.

In order to reduce the search space, programs which are unlikely to deliver good perfor-

mance on the GPU are discarded using two heuristics in line 4 of Algorithm 2. The first

heuristic limits the depth of the nesting in the program: some rules are always applicable,

however they are unlikely to improve performance after exploiting all levels and dimensions

of the OpenCL thread hierarchy. Using the first heuristic the number of rewritten programs to

focus on is reduced to about one hundred. The second heuristic looks at the distance between

the addition and multiplication operations after applying the simplification algorithm. A small

distance increases the likelihood of fusing these two instructions together and avoiding inter-

mediate results. The number of expressions after applying the second heuristic is reduced to 8,

which are then passed to the next phase.

5.6.2 OpenCL Specific Exploration

For each algorithmically rewritten program, different mapping strategies to the GPU are ex-

plored. The mapping is divided into two parts, the mapping of parallelism to the OpenCL

thread hierarchy and the mapping of memory to the OpenCL memory hierarchy. The algo-

rithm for performing this part of the exploration is shown in Algorithm 3.

First, parallelism mappings are applied in line 1. The exploration is restricted to a few

fixed parallelism mappings. For desktop GPUs the two outermost map primitives are turned



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 108

input : A single LIFT program

output: A list of rewritten LIFT programs

1 allRules = [...]

rewrite(program)

2 rewritten = applyRulesRecursively(program, 5, [])

3 simplified = map(simplify, rewritten)

4 filtered = filter(checkHeuristics, simplified)

5 return filtered

applyRulesRecursively(program, explorationLevel, rulesAppliedSoFar)

6 rulesToTry = filterRules(allRules, rulesAppliedSoFar)

7 ruleLocationPairs = listAllPossibleRewritesForRules(program, rulesToTry)

8 rewritten = map(λ (rule, location) . (applyRuleAt(program, rule, location), rulesAppliedSoFar + rule),

ruleLocationPairs)

9 if explorationLevel == 1 then return rewritten;

10 else return rewritten ++ flatMap(λ (program, rulesAppliedSoFar) .

11 applyRulesRecursively(program, explorationLevel- 1, rulesAppliedSoFar), rewritten);

Algorithm 2: Algorithm for performing algorithmic rewriting of a LIFT program using

macro rules.

into mapWorkgroup primitives to perform these computations across a two-dimensional grid

of work-groups. The next two maps are rewritten into mapLocal primitives to exploit the paral-

lelism inside of a two-dimensional work-group. Finally, all further nested map primitives will

be executed sequentially. This strategy is common in desktop GPU programming. For mobile

GPUs, the two outermost maps are mapped to the global work items using mapGlb and the rest

will be executed sequentially. The Mali GPU does not have physically distinct local memory,

it is mapped to global memory, and when the local memory is not used in the expression then

using work-groups is usually not beneficial.

For the memory hierarchy, the usage of local and private memory is explored. This is

achieved by inserting copies to those address spaces at various locations in line 2 and line 3.

The number of copies into each memory space is limited to two, to avoid expressions which

perform many meaningless copies. The exploration attempts to insert copies into locations

where data is reused or communicated between threads.

Starting from the 8 algorithmically rewritten programs, the exploration automatically gen-

erates 760 OpenCL specific programs for desktop GPUs and 31 for the Mali with a particular

mapping decision encoded using these heuristics.

5.6.3 Parameter Exploration

Most low-level (OpenCL specific) programs contain parameters, e. g., the argument to split(n)

controlling the size of a tile or a block. Selecting these is similar to classical auto-tuning



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 109

input : A single LIFT program

output: A list of OpenCL specific LIFT programs

rewrite(program)

1 rewritten = applyParallelismMappings(program)

2 rewritten = rewritten ++ flatMap(insertCopiesToLocal, rewritten)

3 rewritten = rewritten ++ flatMap(insertCopiesToPrivate, rewritten)

4 return rewritten

Algorithm 3: Algorithm for performing OpenCL specific rewriting of a LIFT program.

techniques. An automatic exploration of these parameters is performed by exhaustively picking

all possible parameter values in a reasonable range.

Thread counts also need to be chosen for each kernel.They are picked in such a way to

try and minimise the number of loops generated in the final OpenCL code after the control

flow simplification optimisations described in Chapter 4 are applied. To do this, the whole

program is traversed and the bounds of all mapGlb, mapWrg and mapLcl are examined. Each

dimension is considered separately. If none of the patterns appear in a dimension, both, the

local and global thread counts are set to 1. If mapGlb then the global thread count will be set to

the most common range and the work-group size will be explored as described later. If mapLcl

and mapWrg, then the local thread count will be set to the most common range for mapLcl and

number of groups to the most common range of mapWrg. The global thread count will be the

local thread count and number of groups multiplied. Because of parallelism mappings enabled,

either only mapGlb or mapWrg and mapLcl will appear in the program.

Furthermore, the exploration makes sure that the parameters picked will not generate an

OpenCL kernel requiring too much private, local, or global memory. Parameter combinations

leading to an unreasonably small or high number of work-groups or local threads are also

discarded. As the focus is on the Mali GPU, the vector width is fixed to 4 to prune the space.

For the 760 low-level OpenCL specific programs, around 46,000 fully specialised programs

are generated and for the 31 low-level expression, 677 specialised programs are generated. For

all these programs OpenCL code is generated using the techniques described in Chapter 4.

Once an OpenCL kernel has been generated, the work-group size runtime parameter, i. e.

the number of threads in a work-group, needs to be chosen if it was not chosen by the algorithm

described before. For matrix multiplication, work groups are two-dimensional and the number

of threads has to be selected in both dimensions. A search of the work-group size within the

range allowed by OpenCL is conducted on Mali. This resulted in 11, 628 unique combinations

of runtime parameters and optimisations on Mali.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 110

5.6.4 Summary

By defining rewrite rules and expressing larger optimisations using them, tens of thousands

of OpenCL kernels are automatically generated, all of which are correct by construction. This

enables exploring combinations of the tiling and register blocking optimisations combined with

strategies for mapping expressions to GPUs and numerical parameters. Section 5.8 discusses

performance results, but first, the experimental setup is briefly discussed.

5.7 Experimental Setup

Three platforms are used to compare against high-performance BLAS libraries: 1) a Nvidia

GTX Titan Black (Kepler architecture) using CUDA 6.0 and driver 331.79; 2) a AMD Radeon

HD 7970 (Tahiti architecture) using AMD APP SDK 2.9.214.1 and driver 1526.3; 3) an ODROID

XU3 board with a Samsung Exynos5422 system on a chip containing a Mali-T628 MP6 GPU.

The code generation technique is evaluated using matrix multiplication with differently

sized square and rectangular matrices (5122 ∗5122, 10242 ∗10242, 2048×512∗512×2048, 512×

2048∗2048×512) of single precision floating point values.

The mobile Mali-T628 MP6 GPU is separated into two OpenCL devices. The first device

with 4 cores is used with the Mali SDK 1.1 OpenCL implementation. DVFS is disabled and

the clock frequency is locked at 600 MHz.

For all experiments, the median performance in GFLOPS of at least 5 executions for each

kernel is reported. The runtimes are measured using the device high resolution timers.

5.8 Experimental Evaluation

This section evaluates the rewrite based approach using matrix multiplication as a case study. It

first investigates the results obtained by executing the automatically generated OpenCL kernels

on two different desktop GPUs and a mobile GPU that is designed considerably differently

from the desktop ones. Items of interest are the kernels with the highest performance and if a

universally good kernel which can be used for all input sizes and GPUs exists.

Unless specified otherwise, 10242 ∗10242 is used as the default input size.

5.8.1 Performance Portability and Performance Comparison Against Libraries

and Auto-tuning

To investigate portability of performance across different classes of GPUs the
rewrite-based approach is compared against the CLBlast1insert 1d190bec from
https://github.com/CNugteren/CLBlast

library that is auto-tuned with the state-of-the-art CLTune2insert 2ad94a3d from
https://github.com/CNugteren/CLTune



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 111

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0

500

1000

1500

2000

2500

3000

G
F

L
O

P
S

Rewrite−
 based

  CLBlast
+ CLTune

clBLAS cuBLAS

Desktop GPU
(Nvidia GeForce GTX Titan Black)

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0

500

1000

1500

2000

2500

G
F

L
O

P
S

Rewrite−
 based

  CLBlast
+ CLTune

clBLAS

Desktop GPU
(AMD Radeon HD 7970)

  512x512
* 512x512

  1024x1024
* 1024x1024

  2048x512
* 512x2048

  512x2048
* 2048x512

0

2

4

6

8

10

12

14

G
F

L
O

P
S

Rewrite−
 based

  CLBlast
+ CLTune

clBLAS
  Hand
optimised

Mobile GPU
(ARM Mali−T628 MP6)

Figure 5.13: Performance of matrix multiplication on two desktop GPUs and one mobile GPU

for different input sizes. The rewrite-based approach is the only one that achieves performance

portability across desktop-class and mobile GPUs.



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 112

Run on

Nvidia AMD Mali

Tuned

for

Nvidia 100.0 % 27.5 % N/A

AMD 20.5 % 100.0 % 11.6 %

Mali 4.2 % 14.4 % 100.0 %

Table 5.1: Performance portability of kernels (10242 ∗10242)

[Nugt 15] on three GPUs from AMD, ARM, and Nvidia. As reference points, the
clBLAS3insert 3d16f7b3 from https://github.com/clMathLibraries/clBLAS

library developed by AMD using OpenCL, as well as an implementation particularly tuned

for each architecture are used: the hand tuned version shown in Listing 5.3 on Mali, cuBLAS

on Nvidia, and clBLAS on AMD.

Figure 5.13 shows the performance comparison of all implementations on four different

input sizes and shapes. The auto-tuned CLBlast library delivers high performance on the two

desktop GPUs, achieving performance higher than clBLAS on the AMD GPU. On Nvidia,

CLBlast achieves about 80% of the performance of cuBLAS for three inputs sizes. That is a

very good number, as the proprietary cuBLAS relies on advanced assembly-level optimisations

which cannot be implemented using CUDA or OpenCL [Lai 13]. However, on the mobile Mali

GPU the auto-tuning approach is less successful, achieving only about 60% of the performance

of the hand optimised implementation on three inputs and 25% slower than the LIFT results on

the other input.

This shows that performance portability is not achieved purely using auto-tuning. By in-

vestigating the tuned OpenCL kernel used by CLBlast, it could be seen that the built-in dot

function or vectorised operations are not used which is crucial for achieving high performance

on Mali (see section 5.8.3). On the desktop GPUs these optimisations are not required as there

is no hardware support for vectorisation. Furthermore, the overall structure of the kernel is

similar to the one used for the desktop GPUs, clearly showing that CLBlast was developed for

these GPUs and applied to Mali as an afterthought.

The LIFT rewrite-based approach delivers high performance on the desktop GPUs and on

the mobile GPU. Performance on the desktop GPUs is very close (Nvidia) or even slightly

better (AMD) compared to CLBlast on all input sizes. Crucially, the rewrite-based approach

consistently achieves a large performance improvement on the Mali GPU compared to CLBlast

(up to 1.7× better). It is able to outperform any other implementation on Mali, especially for

the third input size where choosing a larger tile size increases the amount of work per thread

which is beneficial for this type of matrix shape.

The key for achieving high performance is the support for architecture specific optimi-



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 113

Nvidia AMD Mali

0.0

2.5

5.0

7.5

10.0

0

1000

2000

0

500

1000

1500

Th
ro

ug
hp

ut
 (G

Fl
op

/s
)

Figure 5.14: Distribution of performance for generated kernels.

sations expressed as generic rewrite rules and the ability to generate structurally-different

OpenCL kernels. In fact, when running the best OpenCL kernel generated for Mali on the

Nvidia GPU only 4% of the performance is obtained compared to running the kernel optimised

for this GPU (i. e. 25x slower) as seen in Table 5.1. Conversely, running the kernel optimised

for the desktop class AMD GPU on Mali results in only 11% of the performance achieved with

the best kernel generated for the embedded GPU (i. e. 9x slowdown). The Nvidia kernel does

not even run on Mali due to insufficient hardware resources.

On the desktop GPUs the rewrite-based approach generates kernels exploiting the hier-

archical organisation of threads, local memory, tiling, and the fused multiply-add instruction,

whereas on the mobile GPU, a flat organisation of threads, vectorisation, and the dot built-in are

crucial. These very different OpenCL kernels are derived from a single high-level expression

of matrix multiplication using rewrites.

5.8.2 Space Exploration

Figure 5.14 shows the distribution of performance as well as the median and quartiles for

generated kernels on the three test platforms for the 10242×10242 input size. All three graphs

show a similar shape with poor performance for most kernels. The maximal performance is

only reached by a few generated kernels. This highlights the difficulty of optimising matrix

multiplication kernels: only a few kernels find the right balance for applying the tiling and

blocking optimisations, make good use of the local memory, vectorisation, and choose well

suited implementation parameters.

For a matrix of size 10242, a single kernel execution takes on average 10ms (AMD) and

26ms (Nvidia). Even the execution of tens of thousands of OpenCL kernels can, therefore, be



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 114

1 matrixMultiplication(A, B) =

2 join ◦ mapGlb(0)(λ nRowsOfA .

3 transpose ◦ join ◦ mapGlb(1)(λ mColsOfB .

4 transpose ◦ map(transpose) ◦ transpose ◦ toGlobal(mapSeq(mapSeq(mapSeq(id)))) ◦
5 reduceSeq(init = make2DArray(n,m, 0.0f), λ (accTile, (tileOfA, tileOfB)) .

6 mapSeq(λ (accRow, rowOfTileOfA) .

7 join ◦ mapSeq(λ (acc, colOfTileOfB) .

8 reduceSeq(acc, add) ◦
9 mapSeq(λ (vectorA , vectorB) . dot(vectorA , vectorB),

10 zip(asVector(k, rowOfTileOfA),

11 asVector(k, colOfTileOfB))),

12 zip(accRow, transpose(tileOfB)) ),

13 zip(accTile, transpose(tileOfA))),

14 zip( split(k, transpose(nRowsOfA)),

15 split(k, transpose(mColsOfB)) )),

16 split(m, B)),

17 split(n, A))

Listing 5.24: The best performing low-level expression automatically derived from the high-level

expression in Listing 5.1 using rewrite rules.

performed in a reasonable time frame. Overall the exhaustive execution of all 46,000 OpenCL

kernel took less than an hour on Tahiti and Kepler, including the overheads of data transfers

and validation. The generation of all kernels with the LIFT prototype compiler implemented in

Scala took about 2 hours and 40 minutes. The compilation of all generated OpenCL kernels to

binaries took 20 minutes for Nvidia and 1 hour for AMD.

For the Mali GPU, following the strategy described in Section 5.6, the generation of the 677

OpenCL kernels from 31 functional expressions took less than half an hour while performing

the 11, 628 executions took about a day.

5.8.3 Performance Comparison Against Manually Optimised Kernel on the Mali

GPU

Figure 5.15 shows a performance comparison of three matrix multiplication implementations

on the Mali GPU. The first bar shows the performance of the generated OpenCL kernel from

the expression resembling the manually optimised kernel (Listing 5.3) whose performance is

shown as the last bar. The second bar shows the best OpenCL kernel generated by automatically

deriving the expression shown in Listing 5.24 from the five-line long high-level expression of

matrix multiplication (Listing 5.1).

Listing 5.24 shows the best performing expression found automatically for the 10242x10242

input size. By investigating the expression it can be seen that vectorisation has been applied

(lines 10–11), the dot built-in function is used (line 9), and tiling is performed with the split

and transpose in lines 14–17. The vector width (k) and tile sizes (n× k and m× k) are still



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 115

0 2 4 6 8 10 12 14

GFLOPS

0 2 4 6 8 10 12 14

Mali hand−optimised
 Listing 5.2

Generated from Listing 5.27
 with automatic exploration

Generated from Listing 5.3
 with parameter tuning

10.46

5.61

13.19

12.68+ dot built−in

13.58+ dot

Figure 5.15: Performance of different matrix multiplication kernels on the Mali GPU. The fully

automated exploration technique produces a kernel that outperforms the manually optimised

kernel.

parameters that are picked prior to OpenCL code generation. After conducting the parameter

exploration, the values leading to the fastest kernel are k = 4 and n = m = 2.

The expression is similar to the one resembling the manually optimised OpenCL kernel

(Listing 5.3). Nevertheless, there are a few notable differences. For example the tiles are not

explicitly copied to private memory and, therefore, more loads to the global memory are issued.

However, as will be seen in the next subsection, this does not affect performance negatively as

these accesses are probably cached. In fact, the generated OpenCL kernel is faster than the

kernel which explicitly copies the data into private memory.

For the two OpenCL kernels generated by the automatc exploration process in Figure 5.15

the lighter bar indicates the performance benefit measured when including the rewrite rule for

introducing the dot built-in function.

It can be seen that the performance of the OpenCL kernel generated via automatic explo-

ration even slightly outperforms the manually optimised kernel. The rewrite rule that introduces

the dot built-in turns out to be crucial, giving an extra 30% of performance as can be seen.

The kernel generated from the expression resembling the manually optimised implementa-

tion (the first bar) achieves 96% of the performance of the manually written kernel. Again, the

usage of the dot built-in function is crucial for achieving high performance for matrix multipli-

cation on Mali.

5.9 Conclusion

This chapter has shown how a system of rewrite rules encodes algorithmic and low-level trans-

formations and is used to generate different implementations of the same program. This ap-

proach can easily apply composition of optimisations which leads to very high-performance



Chapter 5. Creating and Exploring the Optimisation Space with Rewrite Rules 116

code, even on a mobile GPU. The rewrite-based technique makes it easy to add optimisations

such as expressing the OpenCL dot-product built-in function, which makes a large performance

difference on the Mali GPU. By applying the rewrite rules automatically, the system generates

thousands of semantically equivalent OpenCL kernels.

Performing the same optimisations in an auto-tuner parametric implementation requires a

significant effort to build complex parametric implementations and ultimately ends up being

specialised for a certain class of devices. Indeed, this chapter has shown that the classical auto-

tuning technique for matrix multiplication is not performance portable when presented with a

GPUs whose architecture is significantly different.

Using matrix multiplication as a case study, the chapter has shown how the rewrite-based

approach is able to generate 46,000 differently optimised OpenCL kernels for desktop GPUs

and 677 OpenCL kernels for the Mali GPU. Out of these, the best generated kernels provide

performance on par or even better than state-of-the-art high-performance OpenCL library im-

plementations on Nvidia and AMD GPUs. By investigating the performance among kernels, it

has been shown that sampling a small fraction of the generated kernels is sufficient to achieve

high performance. Furthermore, among all generated OpenCL kernels there was not a single

portable kernel providing good performance across all investigated GPUs.

Overall, the results have shown that only the rewrite-based code generator offers true per-

formance portability across desktop GPUs and the Mali mobile GPU.

The next chapter will describe statistical performance prediction techniques to speed up

optimsation space exploration and finding program variants with good performance faster.



Chapter 6

Performance Prediction for

Accelerated Exploration of

Optimisation Spaces

6.1 Introduction

As seen in the previous chapter, the rewrite based approach of LIFT leads to a huge and complex

optimisation space that can take hours or days to explore. This chapter solves this problem by

altogether avoiding the need to run candidate programs in the first place. It proposes to use

a performance model that directly predicts the performance of programs by computing static

features from the LIFT IR. This removes the necessity for compiling programs into OpenCL,

then to a device binary, and finally running them on the GPU, which accounts for the majority

of the time spent during exploration when performed as in described in Chapter 5.

The use of performance modeling for GPUs is not novel in itself and there have been nu-

merous papers on the subject [Hong 09, Nugt 12, Nugt 14b, Zhan 17, Hong 18]. However,

unlike previous approachs, this chapter shows how low-level GPU-specific features are ex-

tractable from a high-level functional IR. Concretely, this chapter demonstrates that the LIFT

IR is amenable to extraction of low-level features which are useful in predicting performance.

In particular, it shows how cache locality information, which is very important for predicting

performance, is extractable at this level. The extraction of this information relies on the use of

the rich information stored in the LIFT type system together with the ability to reason about

array indices in a symbolic manner.

Using the features extracted, a performance predictor is built using a the kNN (k-Nearest

Neighbours) machine-learning technique. The results show that this approach leads to a highly

accurate machine-learning model for the stencil domain, an important class of high-performance

code. The model achieves a high correlation of 0.8 and 0.9 on average on a GPU from Nvidia

117



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 118

and AMD, respectively. Using the model to search the space requires less than 5 runs in the

majority of the cases to achieve performance within 90% of the best available. In comparison,

a random search requires over 100 runs in the majority of the cases.

To summarise, the chapter makes the following three contributions:

• It shows how low-level GPU specific features are extracted from the high-level functional

LIFT program;

• It presents a k-nearest neighbour based machine-learning model that predicts program

performance;

• It provides experimental evidence that the model makes accurate predictions and is able

to drastically reduce the time it takes to explore the optimisation space when used to

drive the exploration process.

The rest of this chapter is organised as follows: Section 6.2 motivates this work. Sec-

tion 6.3 explains how low-level hardware features are extracted from the high-level LIFT IR

and Section 6.4 presents the performance model. Section 6.5 shows the experimental setup,

Section 6.6 shows an analysis of the features and the performance achieved by the model while

Section 6.7 shows how the model is used to drive the optimisation space exploration and that

the model is able to drastically speed up the time it takes to find points that perform well.

Finally, Section 6.8 concludes the chapter.

All the contributions presented in this chapter are the author’s original work.

6.2 Motivation

Current LIFT Exploration Approach As described in the previous chapter, LIFT uses a sys-

tem of rewrite rules to explore the space of possible GPU implementations. Figure 6.1 a

presents an overview of how LIFT explores the optimisations. First, a high-level expression

representing the program to be compiled is used as an input to the compiler. This generic

high-level expression does not encode any optimisations. Then, the rewriting takes place and

the LIFT exploration module applies rewrite rules to search the space randomly. This results

in a set of transformed expressions where optimisations have been applied and parallelism has

been mapped.

These transformed expressions are then fed into the LIFT code generator which produces

OpenCL kernel source code. These kernels are compiled with the vendor-provided OpenCL

compiler and OpenCL binaries are produced. Finally, all binaries are executed, the performance

is recorded and the best found kernel is reported.

This automatic process is very time consuming as it produces a large number of kernels.

For instance, for this chapter, up to 1,000 kernels are generated per benchmark. In addition,



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 119

Fe
at

ur
e 

Ex
tr

ac
tio

n
OpenCL
Kernel

Compilation 

OpenCL
Binary

Execution

OpenCL
Kernel
OpenCL
Kernel

Transformed
Expression

High-Level
Expression

Rewriting

Transformed
ExpressionCo

de
 

Ge
ne

ra
tio

n

Performance
 Predictor

Predicts best

OpenCL
Kernel
OpenCL
Kernel
OpenCL
Binary

Compilation 

Execution

OpenCL
Kernel
OpenCL
Kernel
OpenCL
Kernel

OpenCL
Kernel
OpenCL
Kernel

Transformed
Expression

High-Level
Expression

Rewriting

Code 
Generation

a) b)

Figure 6.1: LIFT compilation and exploration. a) Current strategy which compiles and executes

all transformed expressions. b) Improved strategy which uses a performance model to rank the

transformed expressions and only compile and execute the best one.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 120

Kernel execution
Kernel compilation
Kernel generation

90.5%

7.3%
2.2%

Figure 6.2: Time breakdown for the LIFT exploration process. Kernel generation includes time

to rewrite and compile LIFT expressions to OpenCL kernels. Kernel compilation is the vendor-

provided OpenCL compilation time. Kernel execution is the time required to execute all gener-

ated kernels.

some LIFT generated kernels are executable with a configurable number of threads which is

additionally explored using heuristics leading up to a total number of 10,000 kernel executions.

Time breakdown Figure 6.2 shows the percentages of the time spent in the different stages of

the current LIFT compilation and exploration. Unsurprisingly, the last part of LIFT’s workflow,

the kernel execution, requires by far the most time (up to 90%). For this chapter, executing all

kernels for a single application, including the exploration of thread configurations took up to

41 minutes while all kernels were generated in less than a minute, which is about 2% of the

overall time.

Using a Performance Predictor for Exploration The major bottleneck for searching the

space is clearly the OpenCL compilation and execution time of the generated kernels, which

represents 98% of total time. This chapter addresses this bottleneck by using a trained per-

formance predictor directly on the transformed LIFT expression. Figure 6.1b shows how the

exploration strategy is modified to integrate a performance model.

Once the transformed expressions have been produced, the idea is to extract features that

are informative about performance. These features are then fed into a model which ranks the

transformed expressions based on their predicted performance, which is almost instantaneous.

Then, the transformed expression with the fastest predicted performance is selected, the corre-

sponding kernel is generated, compiled and finally executed.

While this approach seems very simple, the challenges are two-fold. First, features that are

informative about performance need to be identified, such as memory access patterns. Then,

the features need to be extracted from the high-level functional LIFT IR. As will be seen, the

LIFT IR encodes all the information necessary to calculate low-level GPU-specific features.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 121

Type Feature

Parallelism
global size (dimensions 0, 1 and 2)

local size (dimensions 0, 1 and 2)

Memory

amount of local memory allocated

global stores per thread

global loads per thread

local stores per thread

local loads per thread

average cache lines per access per warp

Control Flow &

Synchronisation

barriers per thread

if statements per thread

for loop bodies executed per thread

Table 6.1: List of extracted features

The next section explains how features are extracted.

6.3 Feature Extraction

This chapter proposes to use a performance model to predict the performance of transformed

LIFT expressions on GPUs in order to identify the best performing variant. This performance

model relies on static features extracted directly from the high-level LIFT IR. Although the

features are extracted at the high-level, they represent low-level features related to OpenCL

and GPU hardware in general.

This section explains how low-level GPU-specific features are extracted from the high-

level LIFT IR. A summary of the features can be seen in Table 6.1. They broadly fall into three

categories: parallelism, memory and control-flow.

6.3.1 Parallelism

The amount of threads used to execute a program generally indicates how much of the work is

performed in parallel. For a fixed input size, a low thread count means that the threads will be

doing a lot of sequential work while a high thread counts corresponds to less sequential work.

Both global and local thread counts across the three available thread dimensions are included.

The local thread count affects how large each work-group will be, which may affect the amount

of data reused or the number of groups that can run concurrently. Nothing special need to be

done to extract these features since they are runtime parameters and readily available.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 122

6.3.2 Memory

This section covers the features related to memory. This includes the amount of memory allo-

cated, the number of memory accesses and memory access patterns.

6.3.2.1 Local memory usage

It is generally desirable to start as many threads as possible to fully utilise all cores of the tar-

get machine reaching maximum occupancy. Occupancy is typically maximised when multiple

work-group execute concurrently on the core. More concurrent work-groups typically trans-

lates to more threads executing concurrently, which ultimately helps hiding memory latency.

The number of work-groups that execute simultaneously on a core depends on the amount

of resources used by each work-group. One important resource is the amount of fast local

memory (shared memory) used by the work-group. Therefore, it is crucial to determine this

quantity.

Extracting the amount of memory used in a LIFT program is straightforward. The whole

program is traversed once, collecting all the local memory allocations and simply summing up

these numbers.

6.3.2.2 Number of Memory Accesses

In many cases, performance is greatly affected by the number and type of memory operations.

An application that exhibits a large amount of data re-usage for instance, might be able to

exploit the fast local memory. In such case, the slow global memory might be accessed very

rarely, for instance just once to load the data into fast local memory. The program can simply

reuse the local data several times, dramatically reducing the number of global memory accesses

which usually translates in an increase in performance.

Algorithm The LIFT code generator only produces loads and stores to memory when a user

function is called. Therefore, counting the number of loads and stores boils down to counting

how often each user function is called. As can be seen in Algorithm 4, a depth-first traversal

is performed on the IR while keeping track of the number of times the body of patterns that

generate loops is executed. Once a user-function is reached, the feature extractor simply up-

dates the total number of loads and stores. In addition to this, the extractor keeps track of the

type of memory being accessed, local or global, using the toLocal and toGlobal patterns. The

information about the address space is encoded directly into the IR and is populated by another

pass that runs prior to feature extraction. The number of global/local loads and stores is then

normalised by the number of total threads.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 123

input : Lambda expression representing a program

output: Numbers of different types of memory accesses.

countAccesses(in: lambda)

1 counts = { totalLoad: {local = 0, global = 0}, totalStore: {local = 0, global = 0}}
2 return countAccessesExpr(lambda.body, 1, counts)

countAccessesExpr(in: expr, in: iterationCount, in: counts)

3 switch expr do
4 case FunCall(f, args)

5 foreach arg in args do
6 counts = countAccessesExpr(arg, iterationCount, counts)

7 switch f do
8 case Lambda(body)

9 return countAccessesExpr(body, iterationCount, counts)

10 case toPrivate(Lambda(body)) or toLocal(Lambda(body)) or toGlobal(Lambda(body))

11 return countAccessesExpr(body, iterationCount)

12 case MapSeq(Lambda(body)) or MapGlb(Lambda(body)) or MapLcl(Lambda(body)) or

MapWrg(Lambda(body))

13 return countAccessesExpr(m.f.body, iterationCount * args(0).length)

14 case ReduceSeq(Lambda(body))

15 return countAccessesExpr(body, iterationCount * args(1).length)

16 case Iterate(Lambda(body), count)

17 return countAccessesExpr(body, iterationCount * count);

18 case UserFun

19 foreach arg in args do
20 counts.totalLoad[arg.addrsSpace] += iterationCount

21 counts.totalStore[arg.addrsSpace] += iterationCount

22 return counts

23 otherwise do return counts // Nothing to count ;

24 otherwise do return counts // Nothing to count ;

Algorithm 4: Pseudo-code for counting the total number of loads/stores for each type of

memories.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 124

1 example(arg0: [float]N , arg1: [float]N) =

2 mapWrg(

3 mapLcl(toGlobal(multByTwo)) ◦ mapLcl(toLocal(add))

4 )(split(64) ◦ zip(arg0, arg1))

Listing 6.1: Example program for demonstrating extracting memory access counts.

Example As an example, consider the program in Listing 6.1. The algorithm starts with the

top level lambda and soon encounters the mapWrg primitive. At this point in the algorithm,

line line 12, n will be N/64 (the length of the outer dimension of the input after the split). The

algorithm calls recursively countAccessesExpr with N/64 as the iterationCount. When visiting

either of the mapLcl in line 3, n will this time be 64 (the length of the inner dimension of the

input after the split).

When the add user function is visited, global loads will be updated twice, since the add

function has two inputs (the tuple is automatically unboxed). Since at this point, the itera-

tionCount is N/64∗ 64 = N, the total number of global loads is N ∗ 2 and the total number of

local stores is N. When the multByTwo user function is visited, local reads and global store

will both be updated once, resulting in N local loads and N global stores.

When the algorithm terminates, it has determined that the LIFT program in Listing 6.1

performs N ∗ 2 loads from global memory, N stores to global memory, N loads from local

memory and N stores to local memory.

If the program is run with N threads, such that every thread computes one element of

the output, then the output of the algorithm is used to calculate that every thread performs

N ∗ 2/N = 2 loads from global memory, N/N = 1 stores to global memory, N/N = 1 loads

from local memory and N/N = 1 stores to local memory.

6.3.2.3 Memory Access Patterns

The way a program accesses memory has a profound impact on performance. For example,

GPUs coalesce several memory requests into a single one when threads from the same warp

access a single cache line (for example, typically 128 bytes on NVIDIA GPUs and 64 bytes

on AMD GPUs). Coalescing memory accesses is critical for exploiting the large memory

bandwidth that GPUs offer. It is, therefore, important to extract information about memory

access patterns to have any hope of building an accurate performance predictor.

General Algorithm In order to determine the average number of cache lines accessed per

warp per memory access, the feature extractor recursively traverses the IR, keeping track of

the iteration count as for counting memory accesses. When a memory access is encountered,

it determines the number of unique cache lines accessed by the warp as follows. First, it



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 125

generates the actual index expression using the existing mechanism of the LIFT compiler that

was described in Chapter 4. If the expression contains no thread id, it means all the threads are

accessing the exact same address and therefore the same cache line.

When the expression contains a thread id, a new index expression is generated for each

thread in the warp by adding a constant to the thread id (threads in a warp have consecutive

ids). The original array index expressed as a function of the thread id is denoted as access(tid).

Given n, the number of threads in a warp, the set of array indices accessed by the warp is given

by the following:

{access(tid +0),access(tid +1), · · · ,access(tid +n−1)}

This list of indices relates to the different addresses accessed in memory by a warp. Now, given

the cache line size s (assuming it is expressed as a multiple of the data size being accessed), the

list of cache lines accessed can be computed:

{access(tid +0)/s,access(tid +1)/s, · · · ,access(tid +n−1)/s}

Finally, the elements in the list can be subtracted from each other to identify which ones are

equal (result of the subtraction is 0) and count the number of unique accesses.

Implementation details The approach explained above is conceptually correct, however, it

relies on having the ability to simplify arithmetic expressions symbolically. While the LIFT

arithmetic simplifier supports a significant set of simplifications, it is far from being complete

and fails in some cases to simplify some subtractions. In such cases the features extractor

might fail to recognise that some accesses are identical. The following paragraphs explain a

few workarounds for this problem that are used inside the feature extractor.

The first issue encountered, is that it is extremely difficult to calculate the set of unique

cache lines by subtraction. Conceptually, one could take the first access access(tid + 0)/s,

subtract every other accesses by it and hope that the algebraic simplifier would be able to

return 0 in the case where two accesses are identical. Unfortunately, simplifying expressions

as simple as

(tid +0)/s− (tid +1)/s

which is equal to 0 when s > 1, is far from trivial given that / represents the integer division.

To overcome this challenge, the approach is slightly modified and an extra step is added.

Before dividing by s, all the relative array accesses are first calculated as an offset of the first

access by simple subtraction. The intuition behind this is two-fold. First, it is much easier to

simplify a subtraction if it does not contain terms with integer division. Secondly, only the

distances between the accesses rather than their absolute locations matter for identifying the

number of unique cache line accessed.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 126

1 example(in: [float]N) = mapGlb(mapSeq( f ))(split(n)(in))

Listing 6.2: Example program for demonstrating extracting memory access patterns.

So if the original accesses are

{tid +0, tid +1, · · ·}

they become

{(tid +0)− (tid +0),(tid +1)− (tid +0), · · ·}

which simplifies trivially to {0,1, · · ·}. Then, the division is performed as before, which leads

to {0/s,1/s, · · ·} which trivially simplifies to {0,0, · · ·}. Now it is much easier to identify the

unique cache lines.

Another practical issue has to do with the pad pattern which is used to implement boundary

conditions in stencil programs. This introduces a lot of ternary operators ?: to check at every

memory access if the element is in bounds. This operator makes it again harder for the simpli-

fier when subtracting memory accesses with each other. To overcome this, the feature extractor

focuses on the common case which most accesses use. This is done by removing the ternary

operator, substituting it with the index for the common case and therefore ignoring the rarely

taken edge case. This substitution is only possible because the semantics of the pad pattern

makes it clear which option is the common case and which case is the edge case. It would not

work for arbitrary ternary operators.

Example Consider the example program from Listing 6.2. The array index being read for

the argument of f is i + n * gl id where i is the iteration variable of the mapSeq and gl id

the global thread id. Depending on the split factor n, a different number of cache lines will be

accessed by a warp. With a split factor of n = 1, a single cache line would be accessed since

the accesses within a warp are consecutive. However, if the split factor is larger than the warp

size, then each warp will be touching a different cache line.

Assuming a cache line size of 32 words, 32 thread per warp and 1 word for a float, then the

cache line indices within a warp are:

{(i+n∗gl id),(i+n∗ (gl id +1)), · · · ,(i+n∗ (gl id +31))}

Using the trick presented earlier, all indices can be expressed as an offset from the first one:
(i+n∗gl id)− (i+n∗gl id),

i+n∗ (gl id +1)− (i+n∗gl id),

· · · ,
i+n∗ (gl id +31))− (i+n∗gl id)}





Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 127

which simplifies trivially to: {0,n, · · · ,n∗31}. Now dividing by the cache line size results

in {0,n/32, · · · ,n∗31/32}.
If the split factor n is 1, this results in a set of 32 zeros, meaning all the thread in the warp

access a single cache line. When the split factor n = 4, this will results in the following list:

{0,0,0,0,1,1,1,1, · · · ,7,7,7,7}. Since it has 8 unique values, the warp touches 8 cache lines

for this memory access.

6.3.3 Control Flow and Synchronisation

Another important factor that often limits performance for GPUs is the amount of control flow

and synchronisation. Control flow, such as if and for loop statement typically produce branch-

ing instructions which is notoriously bad for performance on GPUs. The different branches are

counted separately, as the branches from if statements are not taken by all threads and will

cause divergent execution. Similarly, the presence of barriers is detrimental to performance

since all execution can only process once all the threads have reached the barrier. For this

reason, the features extractor determines the total number of branches resulting from if state-

ments and for loops; and barriers that will be encountered by all threads. As with memory

accesses, the numbers are the normalised by the total number of threads.

Algorithm This algorithm is similar to the algorithm used to count the number of memory

operations and is shown in Algorithm 5. The algorithm recursively traverses the IR starting

from the root in line 2, keeping track of the number of times branches or barriers are executed.

Whenever a patterns that might produce a loop (e. g. iterate, mapLocal, reduceSeq) is

encountered the updateCounts function is called (in line 15, line 19 and line 22). The

updateCounts function checks whether a branch will be emitted and update the global branch

counters, taking into account the current iteration count. This is handled in line 27.

The algorithm also detects special cases where loops might not be emitted. The first case is

when only a single statement is emitted, and can be seen in line 28. It happens when a mapSeq

iterates over an array of size 1 and it is clear that a loop is not required. This is also the case

if mapLocal, mapWrg or mapGlobal iterates over the same number of elements, as there are

local threads, work-groups or global threads respectively, then a loop is also not required. The

second case is when a for loop is unrolled because it is accessing a private memory array that

has been flattened into variables or it is accessing elements of a vector. The cases where only a

single statement or an unrolled loop is emitted are handled in line 28.

The final case is more subtle and involves mapLocal, mapWrg or mapGlobal. If the size

of the input array is smaller than the number of local threads, work-groups or global threads,

respectively, the code generator will emit an if statement instead of a loop since the loop can

at most be executed once per thread or work-group. The number of branches from if loops are



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 128

input : Lambda expression representing a program

output: Numbers of barrier calls and branches from for loops and if statements.

countBranchesAndBarriers(in: lambda)

1 counts = {forBranchCount = 0, ifBranchCount = 0, barrierCount = 0}
2 return countBranchesAndBarriersExpr(lambda.body, 1, counts)

countBranchesAndBarriersExpr(in: expr, in: iterationCount, in: counts)

3 switch expr do
4 case FunCall(f, args)

5 foreach arg in args do
6 counts = countBranchesAndBarriersExpr(arg, iterationCount, counts)

7 switch expr.f do
8 case Lambda(body)

9 return countBranchesAndBarriersExpr(body, iterationCount, counts)

10 case toPrivate(Lambda(body)) or toLocal(Lambda(body)) or toGlobal(Lambda(body))

11 return countBranchesAndBarriersExpr(body, iterationCount, counts)

12 case MapSeq(Lambda(body)) or MapGlb(Lambda(body)) or MapLcl(Lambda(body)) or

MapWrg(Lambda(body))

13 if f is MapLcl and f.emitBarrier then counts.barrierCount += iterationCount;

14 n = args(0).length

15 updateCounts(f, iterationCount, n);

16 return countBranchesAndBarriersExpr(body, iterationCount * n, counts)

17 case ReduceSeq(Lambda(body))

18 n = args(1).length

19 updateCounts(f, iterationCount, n);

20 return countBranchesAndBarriersExpr(body, iterationCount * n, counts)

21 case Iterate(Lambda(body), count)

22 updateCounts(f, iterationCount, count);

23 return countBranchesAndBarriersExpr(body, iterationCount * count, counts)

24 otherwise do return counts // Nothing to count ;

25 otherwise do return counts // Nothing to count ;

updateCounts(in: pattern, in: iterationCount, in: n, inout: counts)

26 if pattern.emitIf then counts.ifBranchCount += iterationCount;

27 else if pattern.emitFor then counts.forBranchCount += iterationCount * n;

28 else // Single statement or unrolled loop, nothing to count;

Algorithm 5: Pseudo-code for counting branches resulting from for loops and if state-

ments and barrier primitives resulting from mapLcl patterns.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 129

counted in line 26.

For determining the number of barriers, the algorithm only need to look at the occurrences

of mapLcl. This is the only pattern that might emit a barrier since OpenCL only has local

barriers for synchronising threads within a work-group. Global barriers to synchronise across

work-groups are “emulated” by multiple kernel launches. The number of encountered barriers

is updated in line 13. As described in Chapter 4, the LIFT code generator has an optimisation

which detects unnecessary barriers and tags the call to mapLcl when it is not required. There-

fore, this barrier elimination pass is run before feature extraction and this information is used

to ignore the mapLcl which have been marked as not requiring a barrier.

6.3.4 Summary

This section has shown how low-level GPU-specific features are extracted from the LIFT IR.

Memory-related features, control flow and synchronisation features, are extracted using in-

formation about the length of arrays stored in the type. In addition, it has shown how the

fine-grained memory feature related to cache lines accesses can be computed using the power

of the LIFT symbolic arithmetic expressions. The next section explains how a performance

model can be built using these features.

6.4 Performance Model

Having seen how hardware-specific features are extracted from the high-level LIFT IR, this

section now focuses on how to build a performance predictor. A performance model based

on k-nearest neighbours (kNN) is chosen. A kNN model makes prediction based on the dis-

tance between programs in the feature space. Intuitively, LIFT expressions that exhibit similar

features are likely to have similar performance.

6.4.1 Output Variable

The prediction output is throughput (1/time) normalised per input/program by the maximum

achievable. This is done to ensure that performance is comparable across programs since dif-

ferent programs might exhibit different number of operations.

6.4.2 Principal Component Analysis

Given that a kNN model works best with a small number of features, PCA (Principal Compo-

nent Analysis) is used to reduce the dimensionality of the feature space. Prior to applying PCA,

the features are first normalised. This step is necessary since different features have very dif-

ferent ranges of values, and the same feature can have a very different range of values between

different input sizes.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 130

Features, such as the amount of global memory used and the number of global threads are

first normalised with respect to the input size. The features are then centred and scaled, such

that each feature has a mean of 0 and a standard deviation of 1. Finally, PCA is applied and the

principal components that explain 95% of the variance are retained. In effect, this compresses

the feature space by removing redundant features.

6.4.3 K-Nearest Neighbours Model

A k-nearest neighbours model makes a prediction of a new data point by finding the k closest

points to it using Euclidean distance and averaging their responses to make a prediction. In this

case, the distance metric is determined by how close the feature vectors are from one another.

The kNN model does not require any special training. The execution time of rewritten

LIFT expressions, together with their features, are simply collected and added into a database.

To predict the performance of a newly unseen LIFT expression or even a new program, the

k closest neighbours are simply looked up and their responses are averaged to form a new

prediction. In the experiments in this chapter, k = 5 is used.

6.4.4 Making Predictions

To be able to make prediction about new programs, data points from a group of training pro-

grams are first collected. For each program, an exploration of their optimisation space is con-

ducted and the features and corresponding performance are stored.

Given a new program, the following procedure is used to make a prediction:

1. For each rewritten program:

(a) The features are extracted, normalised and projected based on the PCA calculated

from the training data;

(b) The model predicts the performance using the average of the k-nearest neighbours.

2. The predictions are used to sort the different rewritten programs

3. The fastest predicted rewritten program is generated, compiled and executed

6.5 Experimental Setup

Platform The experimental setup consists of two GPUs, an NVIDIA Titan Black and an

AMD Radeon R9 295X2. The Nvidia platform uses driver version 367.35 and OpenCL 1.2

(CUDA 8.0.0). The AMD platform uses OpenCL 2.0 AMD-APP (1598.5).



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 131

Benchmark
Points in

Neighbourhood
Points Used # grids

Stencil2D 9 9 1

SRAD1 9 5 1

SRAD2 9 3 2

Hotspot2D 9 5 2

Gradient 9 5 1

Jacobi2D 5 pt 9 5 1

Jacobi2D 9 pt 9 9 1

Gaussian 25 25 1

Table 6.2: Stencil benchmarks used in the evaluation along with some of their characteristics.

Benchmarks and Space All the 2D stencil benchmarks from [Hage 18] are used and they

are listed in Table 6.2. All experiments are performed using single precision floating point

numbers with matrix sizes from 5122 to 81922.

Model evaluation The performance model is evaluated using leave-one-out cross-validation,

a standard evaluation methodology for machine learning techniques. When evaluating the per-

formance of the model a given benchmark, the traning data consists of all the data collected

from all benchmarks, except the one being evaluated (it is left-out). This guarantees that the

model is never tested on data used for training.

6.6 Feature and Model Analysis

Before looking at how the performance model is used to speed up the optimisation space explo-

ration, an analysis of the features is first performed and the accuracy of the model’s predictions

are evaluated

6.6.1 Features Analysis

The redundancy metric (R) is used to analyse which features are the most informative about

performance:

R =
I(X ,Y )

H(X)+H(Y )

The redundancy metric normalises the mutual information (I) by the sum of the entropy (H)

of the two variables, X and Y . This ensures that different features can be compared with one

another.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 132

avgWarpCacheLines
globalSize1

globalStores
globalLoads

barriers
localMemory

localSize1
localSize0
forBodies

globalSize0
localStores

ifStatements
localLoads

0.00 0.02 0.04 0.06

Redundancy
F

ea
tu

re

(a) NVIDIA

avgWarpCacheLines
globalSize1

globalStores
globalSize0

localSize0
globalLoads

barriers
localMemory

localStores
localSize1
forBodies

ifStatements
localLoads

0.00 0.02 0.04

Redundancy

F
ea

tu
re

(b) AMD

Figure 6.3: Normalised mutual information (redundancy) between each feature and perfor-

mance.

Intuitively, mutual information quantifies how much information observing one variable

gives about another variable. In this case, each feature is compared with the output to predict:

performance. A higher value between a certain feature and the output indicates that the feature

is going to be very useful for making predictions.

Figure 6.3 shows the normalised mutual information between the feature and performance

for NVIDIA and AMD GPUs. As expected, one of the most important features on both plat-

form is the average number of cache lines accessed per warp. This feature, which represents

locality, is extremely important for stencil benchmarks.

The next most important feature for both machines is the globalSize in dimension 1. This

feature is directly related to the number of threads that execute and, therefore, the amount of

parallel work performed. It is also used to determine if the kernels are launched using a 2D

or 1D iteration space (in the 1D case, the globalSize1 will be 1). Then, comes the number of

global stores, followed closely by the number of global loads. This basically corresponds to

the number of memory accesses performed into the slow global memory.

For both platforms, barriers and control flow (for loops) seem to have only a medium



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 133

0.00

0.25

0.50

0.75

1.00

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average

Benchmark

C
or

re
la

tio
n

AMD NVIDIA

Figure 6.4: Correlation between the predicted and actual throughput when predicting a new

program.

relation to performance, whereas the number of if-statements does not seem very relevant at

all. Focusing on the least important features, the number of local loads does not seem to have

much relation to performance. One explanation could be that since the local memory is anyway

very fast, having fewer or more local loads might not make much of a difference in terms of

performance, especially compared to the number of global memory operations.

6.6.2 Performance Model Correlation

This section now analyses the accuracy of the model using the coefficient of correlation. Fig-

ure 6.4 shows the correlation between the predicted throughput and the actual throughput,

averaged across input sizes. As can be seen, for all programs the correlation coefficient is very

high in the range [0.7−0.9], which is a sign that the predictor works as expected. On average,

the model achieves a correlation of 0.9 on Nvidia and 0.8 on AMD.

6.6.3 Summary

This section has shown that the most important features for performance prediction on the GPU

are related to memory access pattern, amount of parallelism and number of global memory

accesses. The section has also shown that the model’s predictions correlate highly with the

actual performance. The next section will show how the model can be used to speed up the

optimisation space exploration of the benchmarks.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 134

6.7 Optimisation Space Exploration

The previous section showed that the performance model makes reasonably accurate predic-

tions. This section will describe how the performance model is used to drive the exploration

process and speed it up but first, it will characterise the optimisation space for the different

benchmark, input size and GPU combinations.

6.7.1 Optimisation Space Characterisation

The space exploration is conducted by generating transformed LIFT expression using rewrite

rules and combining them with different thread-counts. This leads to up to 10,000 design points

per program and input size combination.

Figure 6.5 shows a density plot of the normalised performance for all design points for all

program, input size and GPU combinations. The figure show that in most cases, only a small

number of kernels achieve good performance. It also shows that on all programs on AMD,

fewer kernels achive good performance than on NVIDIA.

6.7.2 Model-Based Exploration

This section shows how the optimisation space is explored with the help of the predictor and

how it speeds up finding good points in the space.

To use the performance model to drive the exploration, the OpenCL specific program vari-

ations need to be created so the features could be extracted. The model is then queried for a

performance prediction for all the variants in the optimisation space so they could be ranked

from the best predicted performance to the worst. If the model was perfectly accurate, then only

the best predicted point could be picked, code generated for it and then executed, as shown in

Figure 6.1b. However, as the predictions made by the model are not quite that accurate a few

points might need to be evaluated, starting from the one with the best predicted performance,

to find a program variant that performs well.

Figure 6.6 shows the normalised best performance achieved so far as a function of the num-

ber of points evaluated using the K-NN driven exploration, as well as the performance achieved

using a purely random evaluation order. As can be seen, using the predictor, it is possible to

very quickly achieve 100% of the performance available in the space for all programs. In com-

parison, the random strategy struggles to reach even 50% of the performance available in some

cases after having explored 3% of the whole space.

6.7.3 Space Exploration Speedups

Figure 6.7 shows the exploration speedup achived when using the model compared to random

search to achieve 90% of the available performance in the design space. A speedup of 10x



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 135

ga
us

si
an

gr
ad

2d
ho

ts
po

t
j2

d5
pt

j2
d9

pt
sr

ad
1

sr
ad

2
st

en
ci

l2
d

AMD NVIDIA

0.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
0

0.
5

1.
0

01020 051015

N
or

m
al

is
ed

 th
ro

ug
hp

ut

S
iz

e
81

92
40

96
20

48
10

24
51

2

Fi
gu

re
6.

5:
Pe

rfo
rm

an
ce

di
st

rib
ut

io
n

of
ke

rn
el

s
fo

ra
ll

pr
og

ra
m

s,
in

pu
ts

iz
es

an
d

bo
th

G
P

U
s.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 136

ga
us

si
an

gr
ad

2d
ho

ts
po

t
j2

d5
pt

j2
d9

pt
sr

ad
1

sr
ad

2
st

en
ci

l2
d

AMD NVIDIA

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0.
25

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

S
pa

ce
 e

xp
lo

re
d 

(%
)

Performance achieved

M
et

ho
d

K
N

N

R
an

do
m

Fi
gu

re
6.

6:
A

ch
ie

ve
d

pe
rfo

rm
an

ce
w

he
n

ex
pl

or
in

g
th

e
sp

ac
e

fo
ra

4K
in

pu
ts

iz
e

us
in

g
a

m
od

el
tra

in
ed

on
ot

he
rp

ro
gr

am
s.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 137

0

25

50

75

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average

Benchmark

S
pe

ed
up

(a) NVIDIA

178 367

0

25

50

75

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average

Benchmark

S
pe

ed
up

(b) AMD

Figure 6.7: The reduction in the amount of the search space needed to explore to reach at least

90% of the available performance.

0

400

800

1200

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average

Benchmark

S
pe

ed
up

(a) NVIDIA

1876 12364 27572 1517 2002

0

400

800

1200

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d Average

Benchmark

S
pe

ed
up

(b) AMD

Figure 6.8: The reduction in the amount of the kernel execution time needed to reach at least

90% of the available performance.

means that the performance model needs 10x less runs than random to achieve 90% of the

performance. As can be seen, using the performance model brings large speedup across all

programs. The per program speedups are calculated as the geometric means of speedups across

all input sizes. On Nvidia, using the performance model requires 37x less runs than random

sampling. On AMD, there are even bigger savings, since the model requires 75x less runs than

random samplig.

Figure 6.8 shows the speedup of the kernel execution time needed to execute the required

number of samples to reach 90% of the available performance when using the model for explo-

ration compared to random sampling. The kernel execution time speedups are even higher, as

the model not only requires less runs than random sampling but also manages to avoid picking

the worst performing points in the space. On Nvidia, using the performance model requires

more than 400x less time than random sampling. On AMD, the speedup is higher again and

the model needs 2000x less time than random sampling.



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 138

31

2

2

2

2

4

1

1

1

1

13

1

1

1

12

5

1

1

1

1

1

23

3

1

2

1

1

1

1

1

1

1

1

1

1

6

1

2

1

1

512

1024

2048

4096

8192

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d

Benchmark

In
pu

t S
iz

e

10

20

30

Samples

(a) KNN

691

290

131

103

101

110

92

86

121

47

111

81

62

47

44

191

70

17

19

13

51

97

104

132

171

17

10

8

8

8

41

102

57

106

46

311

59

44

34

50

512

1024

2048

4096

8192

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d

Benchmark

In
pu

t S
iz

e

10

20

30

Samples

(b) Random

Figure 6.9: The number of samples needed to reach 90% of the available performance on

NVIDIA.

1

10

1

12

2

1

1

8

8

1

2

2

18

18

2

1

1

2

26

1

1

1

1

4

3

7

7

7

7

32

1

1

1

2

1

1

1

1

1

4

512

1024

2048

4096

8192

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d

Benchmark

In
pu

t S
iz

e

10

20

30

Samples

(a) KNN

425

221

183

276

215

210

107

131

111

184

268

111

213

136

149

153

108

94

267

400

170

187

192

418

833

116

132

165

182

197

203

297

413

492

1081

167

81

69

93

169

512

1024

2048

4096

8192

gaussian grad2d hotspot j2d5pt j2d9pt srad1 srad2 stencil2d

Benchmark

In
pu

t S
iz

e
10

20

30

Samples

(b) Random

Figure 6.10: The number of samples needed to reach 90% of the available performance on

AMD.

6.7.4 Detailed Results

Finally, this last section shows more detailed results per program and input size. Figure 6.9 and

Figure 6.10 shows the actual number of runs required to reach 90% of the performance across

programs and input sizes. As can be seen, only 1 run is necessary in the majority of the cases

for Nvidia and 2 for AMD. In contrast, random needs over 60 runs for Nvidia and over 180 for

AMD in most cases.

The average number of runs using the model is 3 for Nvidia and 5 for AMD. In comparison,

random requires on average 97 runs for Nvidia and 240 for AMD. These results clearly shows

that the performance model is working extremely well in the majority of the cases.

Interestingly, there are a couple of outliers programs/input size combination that requires

over 30 runs for the model-based approach. In both cases, stencil2d on Nvidia and srad1

on AMD, this is when the largest or smallest input sizes are used. We believe that in such

cases, the behaviour of these programs probably changes drastically with the input size. For



Chapter 6. Performance Prediction for Accelerated Exploration of Optimisation Spaces 139

instance, the data might actually fit entirely in the cache for the smallest input size of stencil2d

and, therefore, change drastically the behaviour of the application for this input size. Since

the features have no notion of working-set size, the model might be unable to pick up this

change of behaviour. However, even in such cases, the model-based exploration is still ahead

of random. For stencil2d, the model needs 31 runs while random needs 691, a 21x speedup!

6.7.5 Evaluation Summary

Overall, the results have demonstrated that the performance model is able to make accurate

performance predictions from features extracted from the high-level LIFT IR. The model-based

approach outperforms random search in all cases, with an average of 75x exploration speedup

on AMD and 37x on Nvidia.

6.8 Conclusion

This chapter has demonstrated that it is possible to extract low-level hardware-specific features

from the LIFT high-level functional IR. It has shown how type information, such as array

length, is useful for computing certain features. The ability to reason symbolically about array

indices also enables the extraction of very fined-grained features such as the number of accessed

cache lines per warp. These low-level features can be extracted at very high-level, without

requiring any profiling or performance counters.

The chapter also demonstrated how a performance model can be built to make accurate

performance predictions about different program variants. Using an Nvidia and AMD GPUs,

and stencil applications, we have seen that the model is able to predict points in the space that

are within 90% of the best within one or two runs in the majority of the cases. When compared

to a random search strategy, the model requires on average 75x less runs than random on AMD

and 37x less on Nvidia. When looking at the time needed to execute the kernels needed to

reach that level of performance, the gains are even bigger, with a 2000x improvement on AMD

and a 400x improvement on NVIDIA.



Chapter 7

Conclusion

This thesis has proposed methods for tackling the performance portability problem using the

high-level programming language LIFT, a system of rewrite rules and a performance model.

Chapter 4 presented the compilation techniques necessary to produce high-performance im-

perative code from functional programs written in LIFT. Chapter 5 presented the LIFT rewrite

system and how rewrite rules are combined into macro rules to express complex optimisa-

tions. Chapter 6 presented techniques for extracting GPU specific features from the functional

language and using them to build a performance model to accelerate optimisation space explo-

ration. Section 7.1 summarises the main contributions of this thesis. Section 7.2 analyses the

limitations of this thesis and discusses possible future extensions to this work.

7.1 Contributions

This section summarises the main contributions of the previous three chapters.

7.1.1 High-Performance GPU Code Generation

Chapter 4 presented techniques for compiling a functional LIFT program with optimisation

choices explicitly encoded into highly efficient imperative OpenCL code on par with hand-

written versions applying the same optimisations. Performance critical details such as address

spaces, memory allocation, array accesses or barriers are not explicitly represented in LIFT but

have to be explicitly dealt with in OpenCL code. The presented techniques for address space

inference, memory allocation, array access generation and barrier elimination are necessary for

generating OpenCL code and making sure it is efficient.

From the results of 11 benchmarks it can be seen that the presented optimisations are crucial

to achieving performance on par with handwritten code and without them only a fraction of the

performance is reached for complex applications like matrix multiplication.

140



Chapter 7. Conclusion 141

7.1.2 Creating and Exploring the Optimisation Space with Rewrite Rules

Chapter 5 demonstrated that expressing complex optimisations as sequences of rewrite rules

called macro rules to make it feasible to explore them automatically. The chapter first looked

at how classical optimisations for matrix multiplication are represented in the LIFT language.

It then introduced additional rules to be able to apply them in an automated fashion before

grouping them together as macro rules to cut through the optimisation space. The chapter

introduced an exploration strategy to apply rewrite rules to generate program variants and then

explore the options to find high-performing implementations.

Using matrix multiplication as a case study, starting from a single high-level program the

compiler automatically generates highly optimised and specialised implementations for desk-

top and mobile GPUs with very different types of architectures achieving performance porta-

bility where existing solutions missed out.

7.1.3 Peformance Prediction for Accelerated Exploration of Optimisation Spaces

Chapter 6 presented building a performance model to be used for exploring the optimisation

space created by applying rewrite rules. It showed how to extract low-level GPU specific

features about parallelism, memory accesses, synchronisation and control-flow directly from

a functional LIFT program without needing to compile it to OpenCL, as existing techniques

would require. The chapter then showed how these features are used to build a performance

model capable of making accurate predictions about the performance of previously unseen

programs.

Using 8 benchmarks the results demonstrated that using the performance model to explore

the optimisation space reduces the number of runs needed to achieve good performance by

30 to 75x on average when compared to random search. The results also showed that unlike

random search, the model is able to avoid exploring the worst performing points and improving

the time needed to execute kernels by even more. On average from 400x to 2000x less kernel

execution time is required when using the model compared to using random search.

Together the contributions allow achieving performance portability from a single high-level

program expressed in the LIFT language. The high-level program is automatically rewritten

into different versions which will be quickly explored using the performance model to find

high-performance implementations for different GPUs, resulting in performance on par with

highly tuned device-specific libraries.



Chapter 7. Conclusion 142

7.2 Critical Analysis and Future Work

7.2.1 Limitations

While the techniques presented in this thesis are a first important step towards achieving per-

formance portability, there are a number of practical limitations. A few important ones are

highlighted here.

The arithmetic simplification for array index generation and barrier elimination work on

a case by case basis and consequently, there are cases where the arithmetic simplification or

barrier elimination could be improved. A better solution would be to research more formal

methods that can give strong guarantees about their outcomes. First work in this direction is

described in section 7.2.2

The macro rules for tiling and register blocking are quite application specific and sensitive

to the program structure while the ideas behind them of splitting dimensions and interchanging

the order in which they are mapped over are more general and applicable for a wider range

of applications. A possible solution for making macro rules more general is described in sec-

tion 7.2.3.

The accuracy of the k-nearest neighbour based performance model is very sensitive to the

input features. If applying it to new hardware with different performance characteristics, it is

likely that new features will be required that describe those characteristics. Adding new input

features is again likely to affect the performance of the model on existing platforms. A possible

approach to solve the problem of choosing input features is described in section 7.2.4.

7.2.2 Formalising Translation to OpenCL

While the rewrite rules are provably correct [Steu 15a], there are no such strong formal guar-

antees about the translation to OpenCL. Some work has been done towards achieving this by

introducing imperative primitives corresponding to the functional ones and providing a formal

translation between them along with a correctness proof [Atke 17]. However, at the time of

writing, the functionality is not yet at a level where it could be able to replace the approach of

Chapter 4 as barrier handling, for example is missing.

7.2.3 DSL for Expressing Macro Rules

Chapter 5 showed that grouping rules as macro rules enables the expression of complex optimi-

sations like tiling. However, their implementation is complex and hard to understand. A better

way to express optimisations as compositions of rewrite rules to form macro rules would be

to have a separate language for describing them. Composition, conditional application would

ease constructing macro rules that are flexible enough to handle a variety of situations in real

world programs. In addition to making them easier to represent, this would also make it much



Chapter 7. Conclusion 143

easier to reason about them. The language along with meaningful diagnostics would greatly

simplify the development of macro rules.

7.2.4 Feature Selection for Building Performance Models

New program features are likely to be required for accurate predictions, especially when con-

sidering additional platforms and applications from other domains. Features about different

memory access patterns, cache behaviour or computational intensity could help generalise the

methodology for building performance models for different domains and devices. Since ma-

chine learning and specifically k-nearest neighbour are very sensitive to the features used there

is need of a system to choose appropriate features from the available ones for a new platform.

Further experiments also showed that it is also possible to further improve the performance

of the models by selecting a subset of the features but it is not clear how it could be done

automatically in a way that transfers to previously unseen programs.

7.2.5 Making LIFT More Suited for Practical Use

While LIFT has been demonstrated to be able to achieve high-performance on a variety of pro-

grams, as a research compiler it makes some assumptions that would need to be removed in

order to use it in practice. For example, a prevalent assumption is related to choosing split

factors and vector widths which need to divide the input array lengths. Array lengths that do

not meet that assumption are very likely to crop up in practice and will need to be handled.

Possible solutions include padding the inputs to divide the parameters, inserting code to per-

form computations for elements that are on the boundaries that would currently be ignored, or

inserting runtime checks and choosing a kernel with appropriate parameter values.

This thesis has focused on producing high-performance computational kernels but integrat-

ing LIFT into a project will require identifying kernels that could be accelerated, writing them

in the LIFT language and writing the host code to run the kernels. Some work has been done

towards automatically detecting and mapping parts of large legacy applications to LIFT for

OpenCL code generation and acceleration based on computational idioms [Gins 18].



Bibliography

[Agak 06] F. V. Agakov, E. V. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,

J. Thomson, M. Toussaint, and C. K. I. Williams. “Using Machine Learning to

Focus Iterative Optimization”. In: Fourth IEEE/ACM International Symposium on

Code Generation and Optimization (CGO 2006), 26-29 March 2006, New York,

New York, USA, pp. 295–305, IEEE Computer Society, 2006. (Cited on page 42.)

[Aldi 11] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati. “Ac-

celerating Code on Multi-cores with FastFlow”. In: E. Jeannot, R. Namyst, and

J. Roman, Eds., Euro-Par 2011 Parallel Processing - 17th International Confer-

ence, Euro-Par 2011, Bordeaux, France, August 29 - September 2, 2011, Proceed-

ings, Part II, pp. 170–181, Springer, 2011. (Cited on page 35.)

[Aldi 12] M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati, and S. Palazzo. “A paral-

lel edge preserving algorithm for salt and pepper image denoising”. In: K. Djemal

and M. A. Deriche, Eds., 3rd International Conference on Image Processing The-

ory Tools and Applications, IPTA 2012, 15-18 October 2012, Istanbul, Turkey,

pp. 97–104, IEEE, 2012. (Cited on page 35.)

[AMDI 12] AMD Inc. “AMD Graphics Cores Next (GCN) Architecture Whitepa-

per”. https://www.amd.com/Documents/GCN_Architecture_whitepaper.

pdf, 2012. (Cited on page 10.)

[AMDI 14] AMD Inc. “Bolt C++ Template Library. C++ template library for heteroge-

neous compute.”. https://github.com/HSA-Libraries/Bolt, 2014. (Cited

on page 35.)

[AMDI 15] AMD Inc. “APP OpenCL Programming Guide”. 2015. (Cited on pages 68

and 91.)

[Anse 09] J. Ansel, C. P. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. P.

Amarasinghe. “PetaBricks: a language and compiler for algorithmic choice”. In:

M. Hind and A. Diwan, Eds., Proceedings of the 2009 ACM SIGPLAN Conference

144

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://github.com/HSA-Libraries/Bolt


Bibliography 145

on Programming Language Design and Implementation, PLDI 2009, Dublin, Ire-

land, June 15-21, 2009, pp. 38–49, ACM, 2009. (Cited on page 43.)

[Anse 14] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U. O’Reilly,

and S. P. Amarasinghe. “OpenTuner: an extensible framework for program auto-

tuning”. In: J. N. Amaral and J. Torrellas, Eds., International Conference on Par-

allel Architectures and Compilation, PACT ’14, Edmonton, AB, Canada, August

24-27, 2014, pp. 303–316, ACM, 2014. (Cited on page 42.)

[ArmL 13] Arm Limited. “Mali-T600 Series GPU OpenCL – Dev. Guide”. 2013. (Cited on

page 11.)

[ArmL 19] Arm Limited. “Mali-T628 - ARM”. https://www.arm.com/ja/products/

multimedia/mali-cost-efficient-graphics/mali-t628.php, 2019.

(Cited on page 12.)

[Atke 17] R. Atkey, M. Steuwer, S. Lindley, and C. Dubach. “Strategy Preserving Compila-

tion for Parallel Functional Code”. CoRR, Vol. abs/1710.08332, 2017. (Cited on

page 142.)

[Bagh 15] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy, S. Ver-

doolaege, A. Betts, A. F. Donaldson, J. Ketema, J. Absar, S. van Haastregt,

A. Kravets, A. Lokhmotov, R. David, and E. Hajiyev. “PENCIL: A Platform-

Neutral Compute Intermediate Language for Accelerator Programming”. In: 2015

International Conference on Parallel Architectures and Compilation, PACT 2015,

San Francisco, CA, USA, October 18-21, 2015, pp. 138–149, IEEE Computer

Society, 2015. (Cited on pages 39 and 48.)

[Bagh 19] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang, P. Suri-

ana, S. Kamil, and S. P. Amarasinghe. “Tiramisu: A Polyhedral Compiler for

Expressing Fast and Portable Code”. In: M. T. Kandemir, A. Jimborean, and

T. Moseley, Eds., IEEE/ACM International Symposium on Code Generation and

Optimization, CGO 2019, Washington, DC, USA, February 16-20, 2019, pp. 193–

205, IEEE, 2019. (Cited on page 43.)

[Bakh 09] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. “Analyz-

ing CUDA workloads using a detailed GPU simulator”. In: IEEE International

Symposium on Performance Analysis of Systems and Software, ISPASS 2009, April

26-28, 2009, Boston, Massachusetts, USA, Proceedings, pp. 163–174, IEEE Com-

puter Society, 2009. (Cited on page 46.)

https://www.arm.com/ja/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
https://www.arm.com/ja/products/multimedia/mali-cost-efficient-graphics/mali-t628.php


Bibliography 146

[Bask 10] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. “Automatic C-to-CUDA

Code Generation for Affine Programs”. In: R. Gupta, Ed., Compiler Construc-

tion, 19th International Conference, CC 2010, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,

March 20-28, 2010. Proceedings, pp. 244–263, Springer, 2010. (Cited on pages 39

and 48.)

[Bast 04] C. Bastoul. “Code Generation in the Polyhedral Model Is Easier Than You Think”.

In: 13th International Conference on Parallel Architectures and Compilation

Techniques (PACT 2004), 29 September - 3 October 2004, Antibes Juan-les-Pins,

France, pp. 7–16, IEEE Computer Society, 2004. (Cited on page 39.)

[Beau 17] U. Beaugnon, A. Pouille, M. Pouzet, J. A. Pienaar, and A. Cohen. “Optimization

space pruning without regrets”. In: P. Wu and S. Hack, Eds., Proceedings of

the 26th International Conference on Compiler Construction, Austin, TX, USA,

February 5-6, 2017, pp. 34–44, ACM, 2017. (Cited on page 45.)

[Bell 11] N. Bell and J. Hoberock. “Thrust: A Productivity-Oriented Library for CUDA”.

In: GPU Computing Gems Jade Edition, Morgan Kaufmann, 2011. (Cited on

pages 35 and 48.)

[Bilm 97] J. A. Bilmes, K. Asanovic, C. Chin, and J. Demmel. “Optimizing Matrix Multiply

Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology”.

In: S. J. Wallach and H. P. Zima, Eds., Proceedings of the 11th international con-

ference on Supercomputing, ICS 1997, Vienna, Austria, July 7-11, 1997, pp. 340–

347, ACM, 1997. (Cited on page 83.)

[Boul 98] P. Boulet, A. Darte, G. Silber, and F. Vivien. “Loop Parallelization Algorithms:

From Parallelism Extraction to Code Generation”. Parallel Computing, Vol. 24,

No. 3-4, pp. 421–444, 1998. (Cited on page 39.)

[Brow 11] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky, and

K. Olukotun. “A Heterogeneous Parallel Framework for Domain-Specific Lan-

guages”. In: L. Rauchwerger and V. Sarkar, Eds., 2011 International Conference

on Parallel Architectures and Compilation Techniques, PACT 2011, Galveston,

TX, USA, October 10-14, 2011, pp. 89–100, IEEE Computer Society, 2011. (Cited

on pages 41 and 48.)

[Brow 16] K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth, C. D. Sa, C. R. Aberger, and

K. Olukotun. “Have abstraction and eat performance, too: optimized heteroge-

neous computing with parallel patterns”. In: B. Franke, Y. Wu, and F. Rastello,



Bibliography 147

Eds., Proceedings of the 2016 International Symposium on Code Generation and

Optimization, CGO 2016, Barcelona, Spain, March 12-18, 2016, pp. 194–205,

ACM, 2016. (Cited on pages 30 and 42.)

[Cao 14] C. Cao, J. J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. Tomov. “clMAGMA:

high performance dense linear algebra with OpenCL”. In: S. McIntosh-Smith and

B. Bergen, Eds., Proceedings of the International Workshop on OpenCL, IWOCL

2013 & 2014, May 13-14, 2013, Georgia Tech, Atlanta, GA, USA / Bristol, UK,

May 12-13, 2014, pp. 1:1–1:9, ACM, 2014. (Cited on page 85.)

[Cata 11] B. Catanzaro, M. Garland, and K. Keutzer. “Copperhead: compiling an embedded

data parallel language”. In: C. Cascaval and P. Yew, Eds., Proceedings of the 16th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPOPP 2011, San Antonio, TX, USA, February 12-16, 2011, pp. 47–56, ACM,

2011. (Cited on pages 36 and 48.)

[Chak 11] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover. “Accel-

erating Haskell array codes with multicore GPUs”. In: M. Carro and J. H. Reppy,

Eds., Proceedings of the POPL 2011 Workshop on Declarative Aspects of Multi-

core Programming, DAMP 2011, Austin, TX, USA, January 23, 2011, pp. 3–14,

ACM, 2011. (Cited on page 48.)

[Chan 16] L. Chang, I. E. Hajj, C. I. Rodrigues, J. Gómez-Luna, and W. W. Hwu. “Effi-

cient kernel synthesis for performance portable programming”. In: 49th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 2016, Taipei,

Taiwan, October 15-19, 2016, pp. 12:1–12:13, IEEE Computer Society, 2016.

(Cited on page 43.)

[Cole 89] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-

tion. MIT Press, 1989. (Cited on page 35.)

[Coll 13] A. Collins, C. Fensch, H. Leather, and M. Cole. “MaSiF: Machine learning guided

auto-tuning of parallel skeletons”. In: 20th Annual International Conference on

High Performance Computing, HiPC 2013, Bengaluru (Bangalore), Karnataka,

India, December 18-21, 2013, pp. 186–195, IEEE Computer Society, 2013. (Cited

on page 46.)

[Coll 14] A. Collins, D. Grewe, V. Grover, S. Lee, and A. Susnea. “NOVA: A Functional

Language for Data Parallelism”. In: L. J. Hendren, A. Rubinsteyn, M. Sheeran,

and J. Vitek, Eds., ARRAY’14: Proceedings of the 2014 ACM SIGPLAN Interna-

tional Workshop on Libraries, Languages, and Compilers for Array Programming,



Bibliography 148

Edinburgh, United Kingdom, June 12-13, 2014, pp. 8–13, ACM, 2014. (Cited on

pages 37 and 49.)

[Demm 12] J. Demme and S. Sethumadhavan. “Approximate graph clustering for program

characterization”. TACO, Vol. 8, No. 4, pp. 21:1–21:21, 2012. (Cited on page 45.)

[Denn 74] R. H. Dennard, F. H. Gaensslen, H. nien Yu, V. L. Rideout, E. Bassous, Andre,

and R. Leblanc. “Design of ion-implanted MOSFETs with very small physical

dimensions”. IEEE Journal of Solid-State Circuits, Vol. 9, No. 5, pp. 256–268,

1974. (Cited on page 1.)

[Diam 10] G. F. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. “Ocelot: a dynamic op-

timization framework for bulk-synchronous applications in heterogeneous sys-

tems”. In: V. Salapura, M. Gschwind, and J. Knoop, Eds., 19th International

Conference on Parallel Architectures and Compilation Techniques, PACT 2010,

Vienna, Austria, September 11-15, 2010, pp. 353–364, ACM, 2010. (Cited on

page 45.)

[Dong 14] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Ya-

mazaki. Numerical Computations with GPUs, Chap. Accelerating Numerical

Dense Linear Algebra Calculations with GPUs. Springer Intl. Publishing, 2014.

(Cited on page 84.)

[Duba 07] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, and O. Temam.

“Fast compiler optimisation evaluation using code-feature based performance pre-

diction”. In: U. Banerjee, J. Moreira, M. Dubois, and P. Stenström, Eds., Proceed-

ings of the 4th Conference on Computing Frontiers, 2007, Ischia, Italy, May 7-9,

2007, pp. 131–142, ACM, 2007. (Cited on page 45.)

[Duba 12] C. Dubach, P. Cheng, R. M. Rabbah, D. F. Bacon, and S. J. Fink. “Compiling a

high-level language for GPUs: (via language support for architectures and com-

pilers)”. In: J. Vitek, H. Lin, and F. Tip, Eds., ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’12, Beijing, China -

June 11 - 16, 2012, pp. 1–12, ACM, 2012. (Cited on pages 36 and 48.)

[Enmy 10] J. Enmyren and C. W. Kessler. “SkePU: A Multi-backend Skeleton Program-

ming Library for multi-GPU Systems”. In: Proceedings of the Fourth Inter-

national Workshop on High-level Parallel Programming and Applications, Bal-

timore, Maryland, USA, pp. 5–14, ACM, 2010. (Cited on page 35.)



Bibliography 149

[Erns 12] S. Ernsting and H. Kuchen. “Algorithmic skeletons for multi-core, multi-GPU

systems and clusters”. IJHPCN, Vol. 7, No. 2, pp. 129–138, 2012. (Cited on

page 35.)

[Frig 05] M. Frigo and S. G. Johnson. “The Design and Implementation of FFTW3”. Pro-

ceedings of the IEEE, Vol. 93, No. 2, pp. 216–231, 2005. (Cited on page 42.)

[Gins 18] P. Ginsbach, T. Remmelg, M. Steuwer, B. Bodin, C. Dubach, and M. F. P. O’Boyle.

“Automatic Matching of Legacy Code to Heterogeneous APIs: An Idiomatic Ap-

proach”. In: X. Shen, J. Tuck, R. Bianchini, and V. Sarkar, Eds., Proceedings of

the Twenty-Third International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA,

March 24-28, 2018, pp. 139–153, ACM, 2018. (Cited on page 143.)

[Gonz 19] S. G. D. Gonzalo, S. Huang, J. Gómez-Luna, S. D. Hammond, O. Mutlu, and

W. Hwu. “Automatic Generation of Warp-Level Primitives and Atomic Instruc-

tions for Fast and Portable Parallel Reduction on GPUs”. In: M. T. Kandemir,

A. Jimborean, and T. Moseley, Eds., IEEE/ACM International Symposium on

Code Generation and Optimization, CGO 2019, Washington, DC, USA, Febru-

ary 16-20, 2019, pp. 73–84, IEEE, 2019. (Cited on page 43.)

[Gras 14] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramı́rez. “Energy Efficient

HPC on Embedded SoCs: Optimization Techniques for Mali GPU”. IEEE, 2014.

(Cited on page 11.)

[Grel 06] C. Grelck and S. Scholz. “SAC - A Functional Array Language for Efficient Multi-

threaded Execution”. International Journal of Parallel Programming, Vol. 34,

No. 4, pp. 383–427, 2006. (Cited on page 36.)

[Grew 13] D. Grewe, Z. Wang, and M. F. P. O’Boyle. “Portable mapping of data paral-

lel programs to OpenCL for heterogeneous systems”. In: Proceedings of the

2013 IEEE/ACM International Symposium on Code Generation and Optimiza-

tion, CGO 2013, Shenzhen, China, February 23-27, 2013, pp. 22:1–22:10, IEEE

Computer Society, 2013. (Cited on page 38.)

[Gron 14] J. Gronqvist and A. Lokhmotov. “Optimising OpenCL kernels for the ARM Mali-

T600 GPUs”. In: GPU Pro 5: Advanced Rendering Techniques, A K Peters/CRC

Press, 2014. (Cited on pages 11, 84, 86, and 87.)

[Gros 12] T. Grosser, A. Größlinger, and C. Lengauer. “Polly - Performing Polyhedral Op-

timizations on a Low-Level Intermediate Representation”. Parallel Processing

Letters, Vol. 22, No. 4, 2012. (Cited on pages 39 and 48.)



Bibliography 150

[Guo 11] J. Guo, J. Thiyagalingam, and S. Scholz. “Breaking the GPU programming barrier

with the auto-parallelising SAC compiler”. In: M. Carro and J. H. Reppy, Eds.,

Proceedings of the POPL 2011 Workshop on Declarative Aspects of Multicore

Programming, DAMP 2011, Austin, TX, USA, January 23, 2011, pp. 15–24, ACM,

2011. (Cited on page 36.)

[Hage 18] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach. “High perfor-

mance stencil code generation with lift”. In: J. Knoop, M. Schordan, T. Johnson,

and M. F. P. O’Boyle, Eds., Proceedings of the 2018 International Symposium

on Code Generation and Optimization, CGO 2018, Vösendorf / Vienna, Austria,

February 24-28, 2018, pp. 100–112, ACM, 2018. (Cited on page 131.)

[Haid 16] M. Haidl, M. Steuwer, T. Humernbrum, and S. Gorlatch. “Multi-stage program-

ming for GPUs in C++ using PACXX”. In: D. R. Kaeli and J. Cavazos, Eds.,

Proceedings of the 9th Annual Workshop on General Purpose Processing using

Graphics Processing Unit, GPGPU@PPoPP 2016, Barcelona, Spain, March 12 -

16, 2016, pp. 32–41, ACM, 2016. (Cited on page 39.)

[Henn 19] J. L. Hennessy and D. A. Patterson. “A new golden age for computer architecture”.

pp. 48–60, 2019. (Cited on page 1.)

[Henr 14] T. Henriksen, M. Elsman, and C. E. Oancea. “Size slicing: a hybrid approach to

size inference in futhark”. In: J. Berthold, M. Sheeran, and R. Newton, Eds., Pro-

ceedings of the 3rd ACM SIGPLAN workshop on Functional high-performance

computing, FHPC@ICFP 2014, Gothenburg, Sweden, September 4, 2014, pp. 31–

42, ACM, 2014. (Cited on page 37.)

[Henr 17] T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E. Oancea.

“Futhark: purely functional GPU-programming with nested parallelism and in-

place array updates”. In: A. Cohen and M. T. Vechev, Eds., Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pp. 556–571, ACM,

2017. (Cited on page 37.)

[Hong 09] S. Hong and H. Kim. “An analytical model for a GPU architecture with memory-

level and thread-level parallelism awareness”. In: S. W. Keckler and L. A. Barroso,

Eds., 36th International Symposium on Computer Architecture (ISCA 2009), June

20-24, 2009, Austin, TX, USA, pp. 152–163, ACM, 2009. (Cited on pages 44

and 117.)



Bibliography 151

[Hong 18] C. Hong, A. Sukumaran-Rajam, J. Kim, P. S. Rawat, S. Krishnamoorthy, L.-N.

Pouchet, F. Rastello, and P. Sadayappan. “GPU Code Optimization Using Abstract

Kernel Emulation and Sensitivity Analysis”. In: Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

Philadelphia, PA, USA, pp. 736–751, ACM, 2018. (Cited on pages 45 and 117.)

[ISO 17] ISO. ISO/IEC 14882:2017 Information technology — Programming languages —

C++. fifth Ed., 2017. (Cited on page 36.)

[Jia 12] W. Jia, K. A. Shaw, and M. Martonosi. “Stargazer: Automated regression-based

GPU design space exploration”. In: R. Balasubramonian and V. Srinivasan, Eds.,

2012 IEEE International Symposium on Performance Analysis of Systems & Soft-

ware, New Brunswick, NJ, USA, April 1-3, 2012, pp. 2–13, IEEE Computer Soci-

ety, 2012. (Cited on page 46.)

[Jia 13] W. Jia, K. A. Shaw, and M. Martonosi. “Starchart: Hardware and software op-

timization using recursive partitioning regression trees”. In: C. Fensch, M. F. P.

O’Boyle, A. Seznec, and F. Bodin, Eds., Proceedings of the 22nd International

Conference on Parallel Architectures and Compilation Techniques, Edinburgh,

United Kingdom, September 7-11, 2013, pp. 257–267, IEEE Computer Society,

2013. (Cited on page 46.)

[Jord 13] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer. “INSPIRE: The

insieme parallel intermediate representation”. In: C. Fensch, M. F. P. O’Boyle,

A. Seznec, and F. Bodin, Eds., Proceedings of the 22nd International Conference

on Parallel Architectures and Compilation Techniques, Edinburgh, United King-

dom, September 7-11, 2013, pp. 7–17, IEEE Computer Society, 2013. (Cited on

page 41.)

[Karr 11] R. Karrenberg and S. Hack. “Whole-function vectorization”. In: Proceedings of

the CGO 2011, The 9th International Symposium on Code Generation and Opti-

mization, Chamonix, France, April 2-6, 2011, pp. 141–150, IEEE Computer So-

ciety, 2011. (Cited on page 23.)

[Kerr 10] A. Kerr, G. F. Diamos, and S. Yalamanchili. “Modeling GPU-CPU workloads

and systems”. In: D. R. Kaeli and M. Leeser, Eds., Proceedings of 3rd Workshop

on General Purpose Processing on Graphics Processing Units, GPGPU 2010,

Pittsburgh, Pennsylvania, USA, March 14, 2010, pp. 31–42, ACM, 2010. (Cited

on page 45.)



Bibliography 152

[Khro 12] Khronos OpenCL Working Group. “The OpenCL Specification, Version: 1.2,

Document Revision: 19”. https://www.khronos.org/registry/OpenCL/

specs/opencl-1.2.pdf, 2012. (Cited on pages 13, 14, and 15.)

[Khro 14] Khronos Group. “The SPIR Specification: Standard Portable Intermediate Repre-

sentation, Version 1.2”. https://www.khronos.org/registry/SPIR/specs/

spir_spec-1.2.pdf, 2014. (Cited on page 41.)

[Khro 19a] Khronos Group. “The OpenGL Graphics System: A Specification”.

http://khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf,

2019. (Cited on page 41.)

[Khro 19b] Khronos Group. “SPIR-V Specification, Version 1.4, Revision 1, Uni-

fied”. https://www.khronos.org/registry/spir-v/specs/unified1/

SPIRV.pdf, 2019. (Cited on page 41.)

[Khro 19c] Khronos OpenCL Working Group - SYCL subgroup. “SYCL Specification:

SYCL integrates OpenCL devices with modern C++, Version: 1.2.1, Document

Revision: 5”. https://www.khronos.org/registry/SYCL/specs/sycl-1.2.

1.pdf, 2019. (Cited on page 37.)

[Khro 19d] Khronos Vulkan Working Group. “Vulkan 1.1.109 - A Specification”. https:

//www.khronos.org/registry/vulkan/specs/1.1/pdf/vkspec.pdf, 2019.

(Cited on page 41.)

[Kim 11] Y. Kim and A. Shrivastava. “CuMAPz: a tool to analyze memory access patterns

in CUDA”. In: L. Stok, N. D. Dutt, and S. Hassoun, Eds., Proceedings of the 48th

Design Automation Conference, DAC 2011, San Diego, California, USA, June

5-10, 2011, pp. 128–133, ACM, 2011. (Cited on page 44.)

[Kisu 00] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. “Combined Selection

of Tile Sizes and Unroll Factors Using Iterative Compilation”. In: Proceedings

of the 2000 International Conference on Parallel Architectures and Compilation

Techniques (PACT’00), Philadelphia, Pennsylvania, USA, October 15-19, 2000,

pp. 237–248, IEEE Computer Society, 2000. (Cited on page 42.)

[Kjol 17] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. P. Amarasinghe. “The tensor

algebra compiler”. PACMPL, Vol. 1, No. OOPSLA, pp. 77:1–77:29, 2017. (Cited

on page 40.)

[Lai 13] J. Lai and A. Seznec. “Performance upper bound analysis and optimization of

SGEMM on Fermi and Kepler GPUs”. In: Proceedings of the 2013 IEEE/ACM In-

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/SPIR/specs/spir_spec-1.2.pdf
https://www.khronos.org/registry/SPIR/specs/spir_spec-1.2.pdf
http://khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/vulkan/specs/1.1/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.1/pdf/vkspec.pdf


Bibliography 153

ternational Symposium on Code Generation and Optimization, CGO 2013, Shen-

zhen, China, February 23-27, 2013, pp. 4:1–4:10, IEEE Computer Society, 2013.

(Cited on page 112.)

[Latt 04] C. Lattner and V. S. Adve. “LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation”. In: 2nd IEEE / ACM International Symposium

on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,

CA, USA, pp. 75–88, IEEE Computer Society, 2004. (Cited on page 41.)

[Lee 09] S. Lee, S. Min, and R. Eigenmann. “OpenMP to GPGPU: a compiler framework

for automatic translation and optimization”. In: D. A. Reed and V. Sarkar, Eds.,

Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPOPP 2009, Raleigh, NC, USA, February 14-18, 2009,

pp. 101–110, ACM, 2009. (Cited on page 38.)

[Lee 14] H. Lee, K. J. Brown, A. K. Sujeeth, T. Rompf, and K. Olukotun. “Locality-Aware

Mapping of Nested Parallel Patterns on GPUs”. In: 47th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, MICRO 2014, Cambridge, United

Kingdom, December 13-17, 2014, pp. 63–74, IEEE Computer Society, 2014.

(Cited on page 41.)

[Lee 15] S. Lee, J. S. Meredith, and J. S. Vetter. “COMPASS: A Framework for Auto-

mated Performance Modeling and Prediction”. In: L. N. Bhuyan, F. Chong, and

V. Sarkar, Eds., Proceedings of the 29th ACM on International Conference on

Supercomputing, ICS’15, Newport Beach/Irvine, CA, USA, June 08 - 11, 2015,

pp. 405–414, ACM, 2015. (Cited on page 45.)

[Leis 15] R. Leißa, M. Köster, and S. Hack. “A graph-based higher-order intermediate rep-

resentation”. In: K. Olukotun, A. Smith, R. Hundt, and J. Mars, Eds., Proceed-

ings of the 13th Annual IEEE/ACM International Symposium on Code Generation

and Optimization, CGO 2015, San Francisco, CA, USA, February 07 - 11, 2015,

pp. 202–212, IEEE Computer Society, 2015. (Cited on pages 28 and 41.)

[Leis 18] R. Leißa, K. Boesche, S. Hack, A. Pérard-Gayot, R. Membarth, P. Slusallek,

A. Müller, and B. Schmidt. “AnyDSL: a partial evaluation framework for program-

ming high-performance libraries”. PACMPL, Vol. 2, No. OOPSLA, pp. 119:1–

119:30, 2018. (Cited on page 41.)

[Lutz 14] T. Lutz and V. Grover. “LambdaJIT: a dynamic compiler for heterogeneous

optimizations of STL algorithms”. In: J. Berthold, M. Sheeran, and R. New-

ton, Eds., Proceedings of the 3rd ACM SIGPLAN workshop on Functional high-



Bibliography 154

performance computing, FHPC@ICFP 2014, Gothenburg, Sweden, September 4,

2014, pp. 99–108, ACM, 2014. (Cited on page 38.)

[Mado 16] S. Madougou, A. L. Varbanescu, and C. de Laat. “Using colored petri nets for

GPGPU performance modeling”. In: G. Palermo and J. Feo, Eds., Proceedings of

the ACM International Conference on Computing Frontiers, CF’16, Como, Italy,

May 16-19, 2016, pp. 240–249, ACM, 2016. (Cited on page 45.)

[Maie 16] P. Maier, J. M. Morton, and P. Trinder. “JIT costing adaptive skeletons for

performance portability”. In: D. Duke and Y. Kameyama, Eds., Proceedings

of the 5th International Workshop on Functional High-Performance Computing,

FHPC@ICFP 2016, Nara, Japan, September 22, 2016, pp. 23–30, ACM, 2016.

(Cited on page 30.)

[Mats 12] K. Matsumoto, N. Nakasato, and S. G. Sedukhin. “Performance Tuning of Matrix

Multiplication in OpenCL on Different GPUs and CPUs”. In: 2012 SC Compan-

ion: High Performance Computing, Networking Storage and Analysis, Salt Lake

City, UT, USA, November 10-16, 2012, pp. 396–405, IEEE Computer Society,

2012. (Cited on pages 82 and 85.)

[McCo 12] M. McCool, J. Reinders, and A. Robison. Structured Parallel Programming. Mor-

gan Kaufmann Publishers Inc., 1st Ed., 2012. (Cited on page 35.)

[McDo 13] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. Lippmeier. “Optimis-

ing purely functional GPU programs”. In: G. Morrisett and T. Uustalu, Eds.,

ACM SIGPLAN International Conference on Functional Programming, ICFP’13,

Boston, MA, USA - September 25 - 27, 2013, pp. 49–60, ACM, 2013. (Cited on

pages 37 and 48.)

[McKe 69] A. C. McKellar and E. G. C. Jr. “Organizing Matrices and Matrix Operations for

Paged Memory Systems”. Commun. ACM, Vol. 12, No. 3, pp. 153–165, 1969.

(Cited on pages 82 and 85.)

[Meng 11] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram.

“GROPHECY: GPU performance projection from CPU code skeletons”. In:

S. Lathrop, J. Costa, and W. Kramer, Eds., Conference on High Performance Com-

puting Networking, Storage and Analysis, SC 2011, Seattle, WA, USA, November

12-18, 2011, pp. 14:1–14:11, ACM, 2011. (Cited on page 44.)

[Miku 14] D. Mikushin, N. Likhogrud, E. Z. Zhang, and C. Bergstrom. “KernelGen - The

Design and Implementation of a Next Generation Compiler Platform for Accel-

erating Numerical Models on GPUs”. In: 2014 IEEE International Parallel &



Bibliography 155

Distributed Processing Symposium Workshops, Phoenix, AZ, USA, May 19-23,

2014, pp. 1011–1020, IEEE Computer Society, 2014. (Cited on pages 39 and 48.)

[Moll 16] S. Moll, J. Doerfert, and S. Hack. “Input space splitting for OpenCL”. In: A. Zaks

and M. V. Hermenegildo, Eds., Proceedings of the 25th International Confer-

ence on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016,

pp. 251–260, ACM, 2016. (Cited on page 39.)

[Moor 65] G. E. Moore. “Cramming more components onto integrated circuits”. Electronics

38.8, 1965. (Cited on page 1.)

[Mull 16] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian. “Au-

tomatically scheduling halide image processing pipelines”. ACM Trans. Graph.,

Vol. 35, No. 4, pp. 83:1–83:11, 2016. (Cited on page 43.)

[Nugt 12] C. Nugteren and H. Corporaal. “The boat hull model: enabling performance pre-

diction for parallel computing prior to code development”. In: J. Feo, P. Fara-

boschi, and O. Villa, Eds., Proceedings of the Computing Frontiers Conference,

CF’12, Caligari, Italy - May 15 - 17, 2012, pp. 203–212, ACM, 2012. (Cited on

pages 44 and 117.)

[Nugt 14a] C. Nugteren and H. Corporaal. “Bones: An Automatic Skeleton-Based C-to-

CUDA Compiler for GPUs”. TACO, Vol. 11, No. 4, pp. 35:1–35:25, 2014. (Cited

on page 38.)

[Nugt 14b] C. Nugteren, G. van den Braak, H. Corporaal, and H. E. Bal. “A detailed GPU

cache model based on reuse distance theory”. In: 20th IEEE International Sym-

posium on High Performance Computer Architecture, HPCA 2014, Orlando, FL,

USA, February 15-19, 2014, pp. 37–48, IEEE Computer Society, 2014. (Cited on

pages 44 and 117.)

[Nugt 15] C. Nugteren and V. Codreanu. “CLTune: A Generic Auto-Tuner for OpenCL Ker-

nels”. In: IEEE 9th International Symposium on Embedded Multicore/Many-core

Systems-on-Chip, MCSoC 2015, Turin, Italy, September 23-25, 2015, pp. 195–

202, IEEE Computer Society, 2015. (Cited on pages 42, 83, and 112.)

[NVID 14] NVIDIA Corporation. “NVIDIAs Next Generation CUDA Compute Ar-

chitecture: Kepler GK110/210”. https://www.nvidia.com/content/

dam/en-zz/Solutions/Data-Center/tesla-product-literature/

NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf, 2014.

(Cited on page 9.)

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf


Bibliography 156

[Ofen 13] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and M. Püschel. “Spiral

in scala: towards the systematic construction of generators for performance li-

braries”. In: J. Järvi and C. Kästner, Eds., Generative Programming: Concepts

and Experiences, GPCE’13, Indianapolis, IN, USA - October 27 - 28, 2013,

pp. 125–134, ACM, 2013. (Cited on page 43.)

[Park 11] E. Park, L. Pouchet, J. Cavazos, A. Cohen, and P. Sadayappan. “Predictive mod-

eling in a polyhedral optimization space”. In: Proceedings of the CGO 2011, The

9th International Symposium on Code Generation and Optimization, Chamonix,

France, April 2-6, 2011, pp. 119–129, IEEE Computer Society, 2011. (Cited on

page 45.)

[Park 12] E. Park, J. Cavazos, and M. A. Alvarez. “Using graph-based program characteri-

zation for predictive modeling”. In: C. Eidt, A. M. Holler, U. Srinivasan, and S. P.

Amarasinghe, Eds., 10th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO 2012, San Jose, CA, USA, March 31 - April

04, 2012, pp. 196–206, ACM, 2012. (Cited on page 45.)

[Peyt 01] S. Peyton Jones, A. Tolmach, and T. Hoare. “Playing by the rules: rewriting as a

practical optimisation technique in GHC”. In: Haskell Workshop, 2001. (Cited on

page 24.)

[Phot 13] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. P. Amarasinghe. “Portable

performance on heterogeneous architectures”. In: V. Sarkar and R. Bodı́k, Eds.,

Architectural Support for Programming Languages and Operating Systems, AS-

PLOS ’13, Houston, TX, USA - March 16 - 20, 2013, pp. 431–444, ACM, 2013.

(Cited on pages 42 and 43.)

[Pric 15] J. Price and S. McIntosh-Smith. “Improving Auto-Tuning Convergence Times

with Dynamically Generated Predictive Performance Models”. In: IEEE 9th

International Symposium on Embedded Multicore/Many-core Systems-on-Chip,

MCSoC 2015, Turin, Italy, September 23-25, 2015, pp. 211–218, IEEE Computer

Society, 2015. (Cited on page 46.)

[Pusc 05] M. Püschel, J. M. F. Moura, J. R. Johnson, D. A. Padua, M. M. Veloso, B. Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and

N. Rizzolo. “SPIRAL: Code Generation for DSP Transforms”. Proceedings of

the IEEE, Vol. 93, No. 2, pp. 232–275, 2005. (Cited on page 43.)

[Raga 13] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. P. Amaras-

inghe. “Halide: a language and compiler for optimizing parallelism, locality, and



Bibliography 157

recomputation in image processing pipelines”. In: H. Boehm and C. Flanagan,

Eds., ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pp. 519–530, ACM,

2013. (Cited on pages 36, 43, and 48.)

[Rasc 17] A. Rasch, M. Haidl, and S. Gorlatch. “ATF: A Generic Auto-Tuning Framework”.

In: 19th IEEE International Conference on High Performance Computing and

Communications; 15th IEEE International Conference on Smart City; 3rd IEEE

International Conference on Data Science and Systems, HPCC/SmartCity/DSS

2017, Bangkok, Thailand, December 18-20, 2017, pp. 64–71, 2017. (Cited on

page 42.)

[Romp 12] T. Rompf and M. Odersky. “Lightweight modular staging: a pragmatic approach

to runtime code generation and compiled DSLs”. Commun. ACM, Vol. 55, No. 6,

pp. 121–130, 2012. (Cited on page 41.)

[Rote 18] N. Rotem, J. Fix, S. Abdulrasool, S. Deng, R. Dzhabarov, J. Hegeman, R. Leven-

stein, B. Maher, N. Satish, J. Olesen, J. Park, A. Rakhov, and M. Smelyanskiy.

“Glow: Graph Lowering Compiler Techniques for Neural Networks”. CoRR,

Vol. abs/1805.00907, 2018. (Cited on page 40.)

[Sim 12] J. Sim, A. Dasgupta, H. Kim, and R. W. Vuduc. “A performance analysis frame-

work for identifying potential benefits in GPGPU applications”. In: J. Ramanujam

and P. Sadayappan, Eds., Proceedings of the 17th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPOPP 2012, New Orleans,

LA, USA, February 25-29, 2012, pp. 11–22, ACM, 2012. (Cited on page 44.)

[Spam 14] D. G. Spampinato and M. Püschel. “A Basic Linear Algebra Compiler”. In: D. R.

Kaeli and T. Moseley, Eds., 12th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO 2014, Orlando, FL, USA, February

15-19, 2014, p. 23, ACM, 2014. (Cited on page 43.)

[Steu 11] M. Steuwer, P. Kegel, and S. Gorlatch. “SkelCL - A Portable Skeleton Library

for High-Level GPU Programming”. In: 25th IEEE International Symposium on

Parallel and Distributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-

20 May 2011 - Workshop Proceedings, pp. 1176–1182, IEEE, 2011. (Cited on

pages 35 and 48.)

[Steu 15a] M. Steuwer. Improving programmability and performance portability on many-

core processors. PhD thesis, Universität Münster, 2015. (Cited on pages 24

and 142.)



Bibliography 158

[Steu 15b] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. “Generating performance

portable code using rewrite rules: from high-level functional expressions to high-

performance OpenCL code”. In: K. Fisher and J. H. Reppy, Eds., Proceedings of

the 20th ACM SIGPLAN International Conference on Functional Programming,

ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, pp. 205–217, ACM,

2015. (Cited on pages 3, 4, 18, 30, 78, 79, and 80.)

[Steu 17] M. Steuwer, T. Remmelg, and C. Dubach. “Lift: a functional data-parallel IR for

high-performance GPU code generation”. In: V. J. Reddi, A. Smith, and L. Tang,

Eds., Proceedings of the 2017 International Symposium on Code Generation and

Optimization, CGO 2017, Austin, TX, USA, February 4-8, 2017, pp. 74–85, ACM,

2017. (Cited on pages 27, 29, and 51.)

[Stoc 12] K. Stock, L. Pouchet, and P. Sadayappan. “Using machine learning to improve

automatic vectorization”. TACO, Vol. 8, No. 4, pp. 50:1–50:23, 2012. (Cited on

page 45.)

[Suje 14] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and

K. Olukotun. “Delite: A Compiler Architecture for Performance-Oriented Embed-

ded Domain-Specific Languages”. ACM Trans. Embedded Comput. Syst., Vol. 13,

No. 4s, pp. 134:1–134:25, 2014. (Cited on page 41.)

[Teix 19] T. S. F. X. Teixeira, C. Ancourt, D. A. Padua, and W. Gropp. “Locus: A Sys-

tem and a Language for Program Optimization”. In: M. T. Kandemir, A. Jim-

borean, and T. Moseley, Eds., IEEE/ACM International Symposium on Code Gen-

eration and Optimization, CGO 2019, Washington, DC, USA, February 16-20,

2019, pp. 217–228, IEEE, 2019. (Cited on page 43.)

[Thie 02] W. Thies, M. Karczmarek, and S. P. Amarasinghe. “StreamIt: A Language for

Streaming Applications”. In: R. N. Horspool, Ed., Compiler Construction, 11th

International Conference, CC 2002, Held as Part of the Joint European Confer-

ences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April

8-12, 2002, Proceedings, pp. 179–196, Springer, 2002. (Cited on page 36.)

[Trin 13] P. W. Trinder, M. I. Cole, K. Hammond, H. Loidl, and G. Michaelson. “Resource

analyses for parallel and distributed coordination”. Concurrency and Computa-

tion: Practice and Experience, Vol. 25, No. 3, pp. 309–348, 2013. (Cited on

page 44.)

[Udup 09] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. “Software Pipelined Ex-

ecution of Stream Programs on GPUs”. In: Proceedings of the CGO 2009, The



Bibliography 159

Seventh International Symposium on Code Generation and Optimization, Seat-

tle, Washington, USA, March 22-25, 2009, pp. 200–209, IEEE Computer Society,

2009. (Cited on page 36.)

[Verd 13] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, and F. Catthoor.

“Polyhedral parallel code generation for CUDA”. TACO, Vol. 9, No. 4, pp. 54:1–

54:23, 2013. (Cited on pages 39 and 48.)

[Wadl 90] P. Wadler. “Deforestation: Transforming Programs to Eliminate Trees”. Theor.

Comput. Sci., Vol. 73, No. 2, pp. 231–248, 1990. (Cited on page 47.)

[Whal 98a] R. C. Whaley and J. J. Dongarra. “Automatically Tuned Linear Algebra Software”.

In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, San Jose,

CA, pp. 1–27, IEEE Computer Society, 1998. (Cited on page 42.)

[Whal 98b] R. C. Whaley and J. J. Dongarra. “Automatically Tuned Linear Algebra Soft-

ware”. In: Proceedings of the ACM/IEEE Conference on Supercomputing, SC

1998, November 7-13, 1998, Orlando, FL, USA, p. 38, IEEE Computer Society,

1998. (Cited on page 83.)

[Wu 16] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. A. Pienaar, B. Roune,

R. Springer, X. Weng, and R. Hundt. “gpucc: an open-source GPGPU compiler”.

In: B. Franke, Y. Wu, and F. Rastello, Eds., Proceedings of the 2016 International

Symposium on Code Generation and Optimization, CGO 2016, Barcelona, Spain,

March 12-18, 2016, pp. 105–116, ACM, 2016. (Cited on page 39.)

[Xi 98] H. Xi and F. Pfenning. “Eliminating Array Bound Checking Through Dependent

Types”. In: Proceedings of the ACM SIGPLAN 1998 Conference on Programming

Language Design and Implementation, Montreal, Quebec, Canada, pp. 249–257,

ACM, 1998. (Cited on page 18.)

[XLAT 17] XLA Team. “XLA - TensorFlow compiled.”. https://developers.

googleblog.com/2017/03/xla-tensorflow-compiled.html, 2017. (Cited

on page 40.)

[Xue 94] J. Xue. “Automating Non-Unimodular Loop Transformations for Massive Par-

allelism”. Parallel Computing, Vol. 20, No. 5, pp. 711–728, 1994. (Cited on

page 39.)

[Zhan 13] Y. Zhang and F. Mueller. “Hidp: A hierarchical data parallel language”. In: Pro-

ceedings of the 2013 IEEE/ACM International Symposium on Code Generation

and Optimization, CGO 2013, Shenzhen, China, February 23-27, 2013, pp. 7:1–

7:11, IEEE Computer Society, 2013. (Cited on pages 37 and 48.)

https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html


Bibliography 160

[Zhan 17] X. Zhang, G. Tan, S. Xue, J. Li, K. Zhou, and M. Chen. “Understanding the GPU

Microarchitecture to Achieve Bare-Metal Performance Tuning”. In: V. Sarkar and

L. Rauchwerger, Eds., Proceedings of the 22nd ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, Austin, TX, USA, February 4-8,

2017, pp. 31–43, ACM, 2017. (Cited on pages 45 and 117.)


	cover sheet

